hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
1ecb1b056b45fb646b5124396662365d5daf50c4
151
py
Python
0x11-python-network_1/6-post_email.py
calypsobronte/holbertonschool-higher_level_programming
c39c060d8473976fa475d22fffba5cb4329c9965
[ "MIT" ]
null
null
null
0x11-python-network_1/6-post_email.py
calypsobronte/holbertonschool-higher_level_programming
c39c060d8473976fa475d22fffba5cb4329c9965
[ "MIT" ]
null
null
null
0x11-python-network_1/6-post_email.py
calypsobronte/holbertonschool-higher_level_programming
c39c060d8473976fa475d22fffba5cb4329c9965
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import requests from sys import argv if __name__ == "__main__": print((requests.post(argv[1], data={'email': argv[2]})).text)
18.875
65
0.675497
48f726dd79dfc27b4607c76077038bd79e95758c
75,622
py
Python
paddlenlp/transformers/visualbert/modeling.py
chenkangyang/PaddleNLP
0d4a8a80c8c20d774db207fae214509be402d149
[ "Apache-2.0" ]
null
null
null
paddlenlp/transformers/visualbert/modeling.py
chenkangyang/PaddleNLP
0d4a8a80c8c20d774db207fae214509be402d149
[ "Apache-2.0" ]
null
null
null
paddlenlp/transformers/visualbert/modeling.py
chenkangyang/PaddleNLP
0d4a8a80c8c20d774db207fae214509be402d149
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from collections import OrderedDict import paddle import paddle.nn as nn from .. import PretrainedModel, register_base_model __all__ = [ "VisualBertModel", "VisualBertForPreTraining", "VisualBertForQuestionAnswering", "VisualBertForVisualReasoning", "VisualBertForMultipleChoice", ] dtype_float = paddle.get_default_dtype() class VisualBertEmbeddings(nn.Layer): """Construct the embeddings from word, position and token_type embeddings and visual embeddings.""" def __init__( self, vocab_size=30522, hidden_size=768, visual_embedding_dim=512, hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, layer_norm_eps=1e-12, special_visual_initialize=True, pad_token_id=1, ): super(VisualBertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding( vocab_size, hidden_size, padding_idx=pad_token_id) self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) self.layer_norm = nn.LayerNorm(hidden_size, epsilon=layer_norm_eps) self.dropout = nn.Dropout(hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", paddle.arange(max_position_embeddings).expand( (1, -1))) # For Visual Features # Token type and position embedding for image features self.visual_token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) self.visual_position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) if special_visual_initialize: assert isinstance(self.visual_token_type_embeddings.weight, paddle.Tensor) assert isinstance(self.visual_position_embeddings.weight, paddle.Tensor) self.visual_token_type_embeddings.weight.set_value( self.token_type_embeddings.weight.clone()) self.visual_position_embeddings.weight.set_value( self.position_embeddings.weight.clone()) self.visual_projection = nn.Linear(visual_embedding_dim, hidden_size) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, visual_embeds=None, visual_token_type_ids=None, image_text_alignment=None, ): if input_ids is not None: input_shape = input_ids.shape else: input_shape = inputs_embeds.shape[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if token_type_ids is None: token_type_ids = paddle.zeros(input_shape, dtype=paddle.int64) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings # Absolute Position Embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if visual_embeds is not None: if visual_token_type_ids is None: visual_token_type_ids = paddle.ones( visual_embeds.shape[:-1], dtype=paddle.int64) visual_embeds = self.visual_projection(visual_embeds) visual_token_type_ids = visual_token_type_ids.astype(paddle.int64) visual_token_type_embeddings = self.visual_token_type_embeddings( visual_token_type_ids) if image_text_alignment is not None: # image_text_alignment = Batch x image_length x alignment_number. # Each element denotes the position of the word corresponding to the image feature. -1 is the padding value. dtype = token_type_embeddings.dtype image_text_alignment_mask = (image_text_alignment != -1).long() # Get rid of the -1. image_text_alignment = image_text_alignment_mask * image_text_alignment # Batch x image_length x alignment length x dim visual_position_embeddings = self.position_embeddings( image_text_alignment) visual_position_embeddings *= image_text_alignment_mask.astype( dtype=dtype).unsqueeze(-1) visual_position_embeddings = visual_position_embeddings.sum(2) # We want to averge along the alignment_number dimension. image_text_alignment_mask = image_text_alignment_mask.astype( dtype=dtype).sum(2) if (image_text_alignment_mask == 0).sum() != 0: image_text_alignment_mask[ image_text_alignment_mask == 0] = 1 # Avoid divide by zero error warnings.warn( "Found 0 values in `image_text_alignment_mask`. Setting them to 1 to avoid divide-by-zero error." ) visual_position_embeddings = visual_position_embeddings / image_text_alignment_mask.unsqueeze( -1) visual_position_ids = paddle.zeros( *visual_embeds.shape[:-1], dtype=paddle.int64) # When fine-tuning the detector , the image_text_alignment is sometimes padded too long. if visual_position_embeddings.shape[1] != visual_embeds.shape[ 1]: if visual_position_embeddings.shape[ 1] < visual_embeds.shape[1]: raise ValueError( f"Visual position embeddings length: {visual_position_embeddings.shape[1]}" f"should be the same as `visual_embeds` length: {visual_embeds.shape[1]}" ) visual_position_embeddings = visual_position_embeddings[:, : visual_embeds. shape[ 1], :] visual_position_embeddings = visual_position_embeddings + self.visual_position_embeddings( visual_position_ids) else: visual_position_ids = paddle.zeros( visual_embeds.shape[:-1], dtype=paddle.int64) visual_position_embeddings = self.visual_position_embeddings( visual_position_ids) visual_embeddings = visual_embeds + visual_position_embeddings + visual_token_type_embeddings embeddings = paddle.concat((embeddings, visual_embeddings), axis=1) embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class VisualBertEncoder(nn.Layer): def __init__(self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1): super(VisualBertEncoder, self).__init__() encoder_layer = nn.TransformerEncoderLayer( hidden_size, num_attention_heads, intermediate_size, dropout=hidden_dropout_prob, activation=hidden_act, attn_dropout=attention_probs_dropout_prob, act_dropout=0) self.layer = nn.TransformerEncoder(encoder_layer, num_hidden_layers) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): """ Returns: last_hidden_state: ``padle.Tensor`` of shape `(batch_size, sequence_length, hidden_size)` hidden_states: `optional`, returned when ``output_hidden_states=True`` is passed attentions: `optional`, returned when ``output_attentions=True`` is passed """ all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None assert isinstance(self.layer.layers, nn.LayerList) if output_attentions: raise NotImplementedError( f"nn.TransformerEncoderLayer don't support args: `output_attentions`, Please build an inherit Class to support" ) if head_mask: raise NotImplementedError( f"nn.TransformerEncoderLayer don't support args: `head_mask`, Please build an inherit Class to support" ) for i, layer_module in enumerate(self.layer.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states, ) # layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module(hidden_states, attention_mask) # layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) # retrun a tuple hidden_states = layer_outputs if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1], ) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states, ) if not return_dict: return tuple(v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None) return OrderedDict( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions) class VisualBertPooler(nn.Layer): def __init__(self, hidden_size=768): super(VisualBertPooler, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class VisualBertLMPredictionHead(nn.Layer): """ Bert Model with a `language modeling` head on top for CLM fine-tuning. """ def __init__(self, hidden_size, vocab_size, activation, embedding_weights=None): super(VisualBertLMPredictionHead, self).__init__() self.transform = nn.Linear(hidden_size, hidden_size) self.activation = getattr(nn.functional, activation) self.layer_norm = nn.LayerNorm(hidden_size) self.decoder_weight = self.create_parameter( shape=[vocab_size, hidden_size], dtype=self.transform.weight.dtype, is_bias=False) if embedding_weights is None else embedding_weights self.decoder_bias = self.create_parameter( shape=[vocab_size], dtype=self.decoder_weight.dtype, is_bias=True) def forward(self, hidden_states, masked_positions=None): if masked_positions is not None: hidden_states = paddle.reshape(hidden_states, [-1, hidden_states.shape[-1]]) hidden_states = paddle.tensor.gather(hidden_states, masked_positions) # gather masked tokens might be more quick hidden_states = self.transform(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = paddle.tensor.matmul( hidden_states, self.decoder_weight, transpose_y=True) + self.decoder_bias return hidden_states class VisualBertPreTrainingHeads(nn.Layer): """ Perform language modeling task and next sentence classification task. Args: hidden_size (int): See :class:`BertModel`. vocab_size (int): See :class:`BertModel`. activation (str): Activation function used in the language modeling task. embedding_weights (Tensor, optional): Decoding weights used to map hidden_states to logits of the masked token prediction. Its data type should be float32 and its shape is [vocab_size, hidden_size]. Defaults to `None`, which means use the same weights of the embedding layer. """ def __init__(self, hidden_size, vocab_size, activation, embedding_weights=None): super(VisualBertPreTrainingHeads, self).__init__() self.predictions = VisualBertLMPredictionHead( hidden_size, vocab_size, activation, embedding_weights) self.seq_relationship = nn.Linear(hidden_size, 2) def forward(self, sequence_output, pooled_output, masked_positions=None): """ Args: sequence_output(Tensor): Sequence of hidden-states at the last layer of the model. It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size]. pooled_output(Tensor): The output of first token (`[CLS]`) in sequence. We "pool" the model by simply taking the hidden state corresponding to the first token. Its data type should be float32 and its shape is [batch_size, hidden_size]. masked_positions(Tensor, optional): A tensor indicates positions to be masked in the position embedding. Its data type should be int64 and its shape is [batch_size, mask_token_num]. `mask_token_num` is the number of masked tokens. It should be no bigger than `sequence_length`. Defaults to `None`, which means we output hidden-states of all tokens in masked token prediction. Returns: tuple: Returns tuple (``prediction_scores``, ``seq_relationship_score``). With the fields: - `prediction_scores` (Tensor): The scores of masked token prediction. Its data type should be float32. If `masked_positions` is None, its shape is [batch_size, sequence_length, vocab_size]. Otherwise, its shape is [batch_size, mask_token_num, vocab_size]. - `seq_relationship_score` (Tensor): The scores of next sentence prediction. Its data type should be float32 and its shape is [batch_size, 2]. """ prediction_scores = self.predictions(sequence_output, masked_positions) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class VisualBertPreTrainedModel(PretrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ base_model_prefix = "visualbert" model_config_file = "model_config.json" # pretrained general configuration pretrained_init_configuration = { "visualbert-vqa": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 2048, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-vqa-pre": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 2048, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-vqa-coco-pre": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 2048, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-nlvr2": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 1024, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-nlvr2-pre": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 1024, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-nlvr2-coco-pre": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 1024, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-vcr": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 512, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-vcr-pre": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 512, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, }, "visualbert-vcr-coco-pre": { "vocab_size": 30522, "hidden_size": 768, "visual_embedding_dim": 512, "num_hidden_layers": 12, "num_attention_heads": 12, "intermediate_size": 3072, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02, "layer_norm_eps": 1e-12, "bypass_transformer": False, "special_visual_initialize": True, "pad_token_id": 1, "bos_token_id": 0, "eos_token_id": 2, } } resource_files_names = {"model_state": "model_state.pdparams"} pretrained_resource_files_map = { "model_state": { "visualbert-vqa": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-vqa/model_state.pdparams", "visualbert-vqa-pre": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-vqa-pre/model_state.pdparams", "visualbert-vqa-coco-pre": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-vqa-coco-pre/model_state.pdparams", "visualbert-vcr": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-vcr/model_state.pdparams", "visualbert-vcr-pre": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-vcr-pre/model_state.pdparams", "visualbert-vcr-coco-pre": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-vcr-coco-pre/model_state.pdparams", "visualbert-nlvr2": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-nlvr2/model_state.pdparams", "visualbert-nlvr2-pre": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-nlvr2-pre/model_state.pdparams", "visualbert-nlvr2-coco-pre": "https://paddlenlp.bj.bcebos.com/models/transformers/visualbert/visualbert-nlvr2-coco-pre/model_state.pdparams", } } def init_weights(self, layer): """ Initialization hook """ if isinstance(layer, (nn.Linear, nn.Embedding)): # In the dygraph mode, use the `set_value` to reset the parameter directly, # and reset the `state_dict` to update parameter in static mode. if isinstance(layer.weight, paddle.Tensor): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=self.initializer_range if hasattr(self, "initializer_range") else self.visual_bert.config["initializer_range"], shape=layer.weight.shape)) elif isinstance(layer, nn.LayerNorm): layer._epsilon = 1e-12 # weight 1.0, bias 0.0 # if isinstance(layer, nn.Linear) and layer.bias is not None: # # bias 0.0 @register_base_model class VisualBertModel(VisualBertPreTrainedModel): """ The bare VisualBERT Model transformer outputting raw hidden-states without any specific head on top. This model inherits from :class:`~paddlenlp.transformers.model_utils.PretrainedModel`. Refer to the superclass documentation for the generic methods. This model is also a Paddle `paddle.nn.Layer <https://www.paddlepaddle.org.cn/documentation /docs/en/api/paddle/fluid/dygraph/layers/Layer_en.html>`__ subclass. Use it as a regular Paddle Layer and refer to the Paddle documentation for all matter related to general usage and behavior. Args: vocab_size (:obj:`int`, `optional`, defaults to 30522): Vocabulary size of the VisualBERT model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.VisualBertModel`. Vocabulary size of the model. Defines the different tokens that can be represented by the ``inputs_ids`` passed to the forward method of :class:`~transformers.VisualBertModel`. hidden_size (:obj:`int`, `optional`, defaults to 768): Dimensionality of the encoder layers and the pooler layer. visual_embedding_dim (:obj:`int`, `optional`, defaults to 512): Dimensionality of the visual embeddings to be passed to the model. num_hidden_layers (:obj:`int`, `optional`, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, `optional`, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, `optional`, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, `optional`, defaults to 2): The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.VisualBertModel`. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. bypass_transformer (:obj:bool, optional, defaults to :obj:`False`): Whether or not the model should bypass the transformer for the visual embeddings. If set to :obj:`True`, the model directly concatenates the visual embeddings from :class:`~transformers.VisualBertEmbeddings` with text output from transformers, and then pass it to a self-attention layer. special_visual_initialize (:obj:bool, optional, defaults to :obj:`True`): Whether or not the visual token type and position type embedding weights should be initialized the same as the textual token type and positive type embeddings. When set to :obj:`True`, the weights of the textual token type and position type embeddings are copied to the respective visual embedding layers. """ def __init__(self, vocab_size=30522, hidden_size=768, visual_embedding_dim=512, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, bypass_transformer=False, special_visual_initialize=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, add_pooling_layer=True): super(VisualBertModel, self).__init__() self.pad_token_id = pad_token_id self.initializer_range = initializer_range self.embeddings = VisualBertEmbeddings( vocab_size=vocab_size, hidden_size=hidden_size, visual_embedding_dim=visual_embedding_dim, hidden_dropout_prob=hidden_dropout_prob, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, layer_norm_eps=layer_norm_eps, special_visual_initialize=special_visual_initialize, pad_token_id=pad_token_id) self.encoder = VisualBertEncoder( hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, hidden_act=hidden_act, hidden_dropout_prob=hidden_dropout_prob, attention_probs_dropout_prob=attention_probs_dropout_prob) self.pooler = VisualBertPooler( hidden_size=hidden_size) if add_pooling_layer else None self.bypass_transformer = bypass_transformer if self.bypass_transformer: self.additional_layer = nn.TransformerEncoderLayer( hidden_size, num_attention_heads, intermediate_size, dropout=hidden_dropout_prob, activation=hidden_act, attn_dropout=attention_probs_dropout_prob, act_dropout=0) self.apply(self.init_weights) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" The VisualBertModel forward method, overrides the `__call__()` special method. Args: input_ids (Tensor): Indices of input sequence tokens in the vocabulary. They are numerical representations of tokens that build the input sequence. Its data type should be `int64` and it has a shape of [batch_size, sequence_length]. attention_mask (Tensor, optional): Mask used in multi-head attention to avoid performing attention on to some unwanted positions, usually the paddings or the subsequent positions. Its data type can be int, float and bool. If its data type is int, the values should be either 0 or 1. - **1** for tokens that **not masked**, - **0** for tokens that **masked**. It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`. Defaults to `None`, which means nothing needed to be prevented attention to. token_type_ids (Tensor, optional): Segment token indices to indicate different portions of the inputs. Selected in the range ``[0, type_vocab_size - 1]``. If `type_vocab_size` is 2, which means the inputs have two portions. Indices can either be 0 or 1: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. Its data type should be `int64` and it has a shape of [batch_size, sequence_length]. Defaults to `None`, which means we don't add segment embeddings. position_ids(Tensor, optional): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, max_position_embeddings - 1]``. Shape as `(batch_size, num_tokens)` and dtype as int64. Defaults to `None`. head_mask (Tensor, optional): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (Tensor, optional): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. visual_embeds (Tensor, optional): The embedded representation of the visual inputs, generally derived using using an object detector. visual_attention_mask (Tensor, optional): Mask to avoid performing attention on visual embeddings. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ visual_token_type_ids (Tensor, optional): Segment token indices to indicate different portions of the visual embeds. `What are token type IDs? <../glossary.html#token-type-ids>`_ The authors of VisualBERT set the `visual_token_type_ids` to `1` for all tokens. image_text_alignment (Tensor, optional): Image-Text alignment uses to decide the position IDs of the visual embeddings. output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (bool, optional): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (bool, optional): Whether or not to return a `OrderedDict` instead of a plain tuple. Returns: tuple: Returns tuple (`last_hidden_state`, `pooled_output`, `hidden_states` (optional), `attentions` (optional)). Or OrderedDict: { last_hidden_state=sequence_output, pooled_output=pooled_output, hidden_states=encoder_outputs['hidden_states'], attentions=encoder_outputs['attentions'], } With the fields: - `last_hidden_state` (Tensor): Sequence of hidden-states at the last layer of the model. It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size]. - `pooled_output` (Tensor): The output of first token (`[CLS]`) in sequence. We "pool" the model by simply taking the hidden state corresponding to the first token. Its data type should be float32 and its shape is [batch_size, hidden_size]. - `encoder_outputs` (List(Tensor)): A list of Tensor containing hidden-states of the model at each hidden layer in the Transformer encoder. The length of the list is `num_hidden_layers`. Each Tensor has a data type of float32 and its shape is [batch_size, sequence_length, hidden_size]. Example: .. code-block:: import paddle from paddlenlp.transformers import VisualBertModel, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # Built-in pretrained models for VisualBertModel are as follows # 'visualbert-vqa-coco-pre' # 'visualbert-vqa-pre' # 'visualbert-nlvr2-coco-pre' # 'visualbert-nlvr2-pre' # 'visualbert-vcr-coco-pre' # 'visualbert-vcr-pre' model = VisualBertModel.from_pretrained('visualbert-vqa-coco-pre') inputs = tokenizer("Welcome to paddlenlp.", return_attention_mask=True) inputs['input_ids'] = paddle.to_tensor([inputs['input_ids']]) inputs['token_type_ids'] = paddle.to_tensor([inputs['token_type_ids']]) inputs['attention_mask'] = paddle.to_tensor([inputs['attention_mask']]) # 2048-dim visual embeds for vqa-pre model # 1024-dim visual embeds for nlvr2-pre model # 512-dim visual embeds for vcr-pre model visual_embeds = paddle.ones([100, 2048]).unsqueeze(0) visual_token_type_ids = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) visual_attention_mask = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) return_dict = True inputs.update({ "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, "return_dict": return_dict }) outputs = model(**inputs) if not return_dict: last_hidden_state = outputs[0] pooled_output = outputs[1] else: last_hidden_state = outputs['last_hidden_state'] pooled_output = outputs['pooled_output'] """ output_attentions = output_attentions if output_attentions is not None else False output_hidden_states = (output_hidden_states if output_hidden_states is not None else False) return_dict = return_dict if return_dict is not None else False if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.shape elif inputs_embeds is not None: input_shape = inputs_embeds.shape[:-1] else: raise ValueError( "You have to specify either input_ids or inputs_embeds") if visual_embeds is None: raise ValueError( f"`visual_embeds` can not be of type {type(visual_embeds)} when using a VisualBert Model." ) batch_size, seq_length = input_shape # device = input_ids.device if input_ids is not None else inputs_embeds.device visual_input_shape = visual_embeds.shape[:-1] if attention_mask is None: attention_mask = paddle.ones( input_shape) # (batch_size, text_seq_len) if visual_attention_mask is None: visual_attention_mask = paddle.ones( visual_input_shape) # (batch_size, visual_seq_len) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, from_seq_length, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. combined_attention_mask = paddle.concat( (attention_mask, visual_attention_mask), axis=-1) # (batch_size, seq_len) batch_size, combined_seq_length = combined_attention_mask.shape extended_attention_mask = paddle.concat( [ combined_attention_mask[b].broadcast_to( [combined_seq_length, combined_seq_length]).unsqueeze(0) .unsqueeze(0) for b in range(batch_size) ], axis=0) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, ) if self.bypass_transformer and visual_embeds is not None: text_length = input_ids.shape[1] text_embedding_output = embedding_output[:, :text_length, :] visual_embedding_output = embedding_output[:, text_length:, :] text_extended_attention_mask = extended_attention_mask[:, :, text_length, : text_length] encoded_outputs = self.encoder( text_embedding_output, attention_mask=text_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoded_outputs[0] concatenated_input = paddle.concat( (sequence_output, visual_embedding_output), axis=1) sequence_output = self.additional_layer(concatenated_input, extended_attention_mask) pooled_output = self.pooler( sequence_output) if self.pooler is not None else None else: encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: sequence_output = encoder_outputs[0] else: sequence_output = encoder_outputs['last_hidden_state'] pooled_output = self.pooler( sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return OrderedDict( last_hidden_state=sequence_output, pooled_output=pooled_output, hidden_states=encoder_outputs['hidden_states'], attentions=encoder_outputs['attentions'], ) class VisualBertForPreTraining(VisualBertPreTrainedModel): """ VisualBert Model with pretraining tasks on top. Args: visual_bert (:class:`VisualBertModel`): An instance of :class `VisualBertModel`. """ def __init__(self, visual_bert): super(VisualBertForPreTraining, self).__init__() self.visual_bert = visual_bert self.cls = VisualBertPreTrainingHeads( self.visual_bert.config["hidden_size"], self.visual_bert.config["vocab_size"], self.visual_bert.config["hidden_act"], embedding_weights=self.visual_bert.embeddings.word_embeddings. weight) self.apply(self.init_weights) def get_predctions_decoder_weight(self): return self.cls.predictions.decoder_weight def get_predctions_decoder_bias(self): return self.cls.predictions.decoder_weight def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, sentence_image_labels=None, ): r""" Args: input_ids (Tensor): Indices of input sequence tokens in the vocabulary. attention_mask (Tensor, optional): See :class:`VisualBertModel`. token_type_ids (Tensor, optional): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: position_ids (Tensor, optional): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. head_mask (Tensor, optional): See :class:`VisualBertModel`. inputs_embeds (Tensor, optional): See :class:`VisualBertModel`. visual_embeds (Tensor, optional): The embedded representation of the visual inputs, generally derived using using an object detector. visual_attention_mask (Tensor, optional): See :class:`VisualBertModel`. visual_token_type_ids (Tensor, optional): See :class:`VisualBertModel`. image_text_alignment (Tensor, optional): Image-Text alignment uses to decide the position IDs of the visual embeddings. output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (bool, optional): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (bool, optional): Whether or not to return a `OrderedDict` instead of a plain tuple. labels (Tensor, optional): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` sentence_image_labels (Tensor, optional): Labels for computing the sentence-image prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates sequence B is a matching pair of sequence A for the given image, - 1 indicates sequence B is a random sequence w.r.t A for the given image. Returns: tuple: Returns tuple (`loss`, `prediction_logits`, `seq_relationship_logits`, `hidden_states`(optional), `attentions`(optional)). Or OrderedDict: { loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs["hidden_states"], attentions=outputs["attentions"], } Example:: .. code-block:: import paddle from paddlenlp.transformers import VisualBertForPreTraining, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # Built-in pretrained models for VisualBertModel are as follows # 'visualbert-vqa-coco-pre' # 'visualbert-vqa-pre' # 'visualbert-nlvr2-coco-pre' # 'visualbert-nlvr2-pre' # 'visualbert-vcr-coco-pre' # 'visualbert-vcr-pre' model = VisualBertForPreTraining.from_pretrained('visualbert-vqa-coco-pre') inputs = tokenizer("Welcome to paddlenlp.", return_attention_mask=True) inputs['input_ids'] = paddle.to_tensor([inputs['input_ids']]) inputs['token_type_ids'] = paddle.to_tensor([inputs['token_type_ids']]) inputs['attention_mask'] = paddle.to_tensor([inputs['attention_mask']]) # 2048-dim visual embeds for vqa-pre model # 1024-dim visual embeds for nlvr2-pre model # 512-dim visual embeds for vcr-pre model visual_embeds = paddle.ones([100, 2048]).unsqueeze(0) visual_token_type_ids = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) visual_attention_mask = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) return_dict = True inputs.update({ "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, "return_dict": return_dict }) outputs = model(**inputs) if not return_dict: loss = outputs[0] prediction_logits = outputs[1] seq_relationship_logits = outputs[2] hidden_states = outputs[3] attentions = outputs[4] else: loss = outputs['loss'] prediction_logits = outputs['prediction_logits'] seq_relationship_logits = outputs['seq_relationship_logits'] hidden_states = outputs['hidden_states'] attentions = outputs['attentions'] """ return_dict = return_dict if return_dict is not None else False outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: sequence_output, pooled_output = outputs[:2] else: sequence_output, pooled_output = outputs[ 'last_hidden_state'], outputs['pooled_output'] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and sentence_image_labels is not None: total_size = attention_mask.shape[-1] + visual_attention_mask.shape[ -1] if labels.shape[-1] != total_size: raise ValueError( f"The labels provided should have same sequence length as total attention mask." f"Found labels with sequence length {labels.shape[-1]}, expected {total_size}." ) loss_fct = nn.CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct( prediction_scores.reshape( [-1, self.visual_bert.config["vocab_size"]]), labels.flatten()) sentence_image_loss = loss_fct( seq_relationship_score.reshape([-1, 2]), sentence_image_labels.flatten()) total_loss = masked_lm_loss + sentence_image_loss if labels is not None and sentence_image_labels is None: total_size = attention_mask.shape[-1] + visual_attention_mask.shape[ -1] if labels.shape[-1] != total_size: raise ValueError( f"The labels provided should have same sequence length as total attention mask." f"Found labels with sequence length {labels.shape[-1]}, expected {total_size}." ) loss_fct = nn.CrossEntropyLoss(ignore_index=-1) total_loss = loss_fct( prediction_scores.reshape( [-1, self.visual_bert.config["vocab_size"]]), labels.flatten()) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ( (total_loss, ) + output) if total_loss is not None else output return OrderedDict( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs["hidden_states"], attentions=outputs["attentions"], ) class VisualBertForQuestionAnswering(VisualBertPreTrainedModel): """ VisualBert Model with a classification/regression head on top (a dropout and a linear layer on top of the pooled output) for VQA. Args: visual_bert (:class:`VisualBertModel`): An instance of VisualBertModel. num_classes (int, optional): The number of classes. Default to `2`. dropout (float, optional): The dropout probability for output of VisualBERT. If None, use the same value as `hidden_dropout_prob` of `VisualBertModel` instance `visualbert`. Defaults to `None`. """ def __init__(self, visual_bert, num_classes=2, dropout=None): super(VisualBertForQuestionAnswering, self).__init__() self.num_classes = num_classes self.visual_bert = visual_bert self.dropout = nn.Dropout(dropout if dropout is not None else self. visual_bert.config["hidden_dropout_prob"]) self.cls = nn.Linear(self.visual_bert.config["hidden_size"], self.num_classes) self.apply(self.init_weights) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (Tensor, optional): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. A KLDivLoss is computed between the labels and the returned logits. Returns: Example:: .. code-block:: import paddle from paddlenlp.transformers import BertTokenizer, VisualBertForQuestionAnswering tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = VisualBertForQuestionAnswering.from_pretrained("visualbert-vqa", num_classes=3129) model.eval() inputs = tokenizer("Who is eating the apple?", return_attention_mask=True) inputs['input_ids'] = paddle.to_tensor([inputs['input_ids']]) inputs['token_type_ids'] = paddle.to_tensor([inputs['token_type_ids']]) inputs['attention_mask'] = paddle.to_tensor([inputs['attention_mask']]) visual_embeds = paddle.ones([100,2048]).unsqueeze(0) visual_token_type_ids = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) visual_attention_mask = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) return_dict = True inputs.update({ "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, "return_dict": return_dict }) labels = paddle.nn.functional.one_hot(paddle.to_tensor(50), num_classes=3129).astype(paddle.float32) # Batch size 1, Num labels 3092 with paddle.no_grad(): outputs = model(**inputs, labels = labels) if not return_dict: loss = outputs[0] logits = outputs[1] else: loss = outputs['loss'] logits = outputs['logits'] """ return_dict = return_dict if return_dict is not None else False if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.shape elif inputs_embeds is not None: input_shape = inputs_embeds.shape[:-1] else: raise ValueError( "You have to specify either input_ids or inputs_embeds") # Get the index of the last text token if attention_mask is None: attention_mask = paddle.ones(input_shape) index_to_gather = attention_mask.sum(1) - 2 # as in original code outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) if not return_dict: sequence_output = outputs[0] else: sequence_output = outputs['last_hidden_state'] # (batch_size, seq_length, hidden_size) # --> gather_index_list # --> (batch_size, seq_length=len(gather_index_list), hidden_size) index_to_gather = index_to_gather.astype(paddle.int64) pooled_output = paddle.concat( [ paddle.gather( sequence_output[b], index_to_gather[b], axis=0).unsqueeze(0) for b in range(input_shape[0]) ], axis=0) pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) # logits = paddle.transpose(logits, perm=[self.num_classes, 0, 1]) reshaped_logits = paddle.reshape(logits, shape=[-1, self.num_classes]) loss = None if labels is not None: loss_fct = nn.KLDivLoss(reduction="batchmean") log_softmax = nn.LogSoftmax(axis=-1) reshaped_logits = log_softmax(reshaped_logits) loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits, ) + outputs[2:] return ((loss, ) + output) if loss is not None else output return OrderedDict( loss=loss, logits=reshaped_logits, hidden_states=outputs['hidden_states'], attentions=outputs['attentions'], ) class VisualBertForVisualReasoning(VisualBertPreTrainedModel): """ VisualBert Model with a sequence classification head on top (a dropout and a linear layer on top of the pooled output) for Visual Reasoning e.g. for NLVR task. Args: visual_bert (:class:`VisualBertModel`): An instance of VisualBertModel. num_classes (int, optional): The number of classes. Default to `2`. dropout (float, optional): The dropout probability for output of VisualBERT. If None, use the same value as `hidden_dropout_prob` of `VisualBertModel` instance `visualbert`. Defaults to `None`. """ def __init__(self, visual_bert, num_classes=2, dropout=None): super(VisualBertForVisualReasoning, self).__init__() self.num_classes = num_classes self.visual_bert = visual_bert self.dropout = nn.Dropout(dropout if dropout is not None else self. visual_bert.config["hidden_dropout_prob"]) self.cls = nn.Linear(self.visual_bert.config["hidden_size"], self.num_classes) self.apply(self.init_weights) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (Tensor, optional): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. A KLDivLoss is computed between the labels and the returned logits. Returns: Example:: .. code-block:: import paddle from paddlenlp.transformers import BertTokenizer, VisualBertForVisualReasoning tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = VisualBertForVisualReasoning.from_pretrained("visualbert-nlvr2", num_classes=2) model.eval() inputs = tokenizer("Who is eating the apple?", return_attention_mask=True) inputs['input_ids'] = paddle.to_tensor([inputs['input_ids']]) inputs['token_type_ids'] = paddle.to_tensor([inputs['token_type_ids']]) inputs['attention_mask'] = paddle.to_tensor([inputs['attention_mask']]) visual_embeds = paddle.ones([100,1024]).unsqueeze(0) visual_token_type_ids = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) visual_attention_mask = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) return_dict = True inputs.update({ "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, "return_dict": return_dict }) labels = paddle.to_tensor(1).unsqueeze(0) # Batch size 1, Num choices 2 with paddle.no_grad(): outputs = model(**inputs, labels = labels) if not return_dict: loss = outputs[0] logits = outputs[1] else: loss = outputs['loss'] logits = outputs['logits'] """ return_dict = return_dict if return_dict is not None else False if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.shape elif inputs_embeds is not None: input_shape = inputs_embeds.shape[:-1] else: raise ValueError( "You have to specify either input_ids or inputs_embeds") # Get the index of the last text token if attention_mask is None: attention_mask = paddle.ones(input_shape) outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) if not return_dict: pooled_output = outputs[1] else: pooled_output = outputs['pooled_output'] pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = paddle.reshape(logits, shape=[-1, self.num_classes]) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels.flatten()) if not return_dict: output = (logits, ) + outputs[2:] return ((loss, ) + output) if loss is not None else output return OrderedDict( loss=loss, logits=reshaped_logits, hidden_states=outputs["hidden_states"], attentions=outputs["attentions"], ) class VisualBertForMultipleChoice(VisualBertPreTrainedModel): """ VisualBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for VCR tasks. Args: visual_bert (:class:`VisualBertModel`): An instance of VisualBertModel. num_classes (int, optional): The number of classes. Default to `1`. dropout (float, optional): The dropout probability for output of VisualBERT. If None, use the same value as `hidden_dropout_prob` of `VisualBertModel` instance `visualbert`. Defaults to `None`. """ def __init__(self, visual_bert, num_classes=1, dropout=None): super(VisualBertForMultipleChoice, self).__init__() self.num_classes = num_classes self.visual_bert = visual_bert self.dropout = nn.Dropout(dropout if dropout is not None else self. visual_bert.config["hidden_dropout_prob"]) self.cls = nn.Linear(self.visual_bert.config["hidden_size"], self.num_classes) self.apply(self.init_weights) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, visual_embeds=None, visual_attention_mask=None, visual_token_type_ids=None, image_text_alignment=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (Tensor, optional): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. A KLDivLoss is computed between the labels and the returned logits. Returns: Example:: .. code-block:: import paddle from paddlenlp.transformers import BertTokenizer, VisualBertForMultipleChoice text = "Welcome to use paddle paddle and paddlenlp!" choice0 = "Use it." choice1 = "Like it." model = VisualBertForMultipleChoice.from_pretrained("visualbert-vcr", num_classes=1) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model.eval() inputs = tokenizer.batch_encode(batch_text_or_text_pairs=[[text, text], [choice0, choice1]], max_seq_len=128, pad_to_max_seq_len=True, return_attention_mask=True) input_ids_list = [] token_type_ids_list = [] attention_mask_list = [] inputs_dict = {} for item in inputs: input_ids_list.append(paddle.to_tensor(item['input_ids']).unsqueeze(0)) token_type_ids_list.append(paddle.to_tensor(item['token_type_ids']).unsqueeze(0)) attention_mask_list.append(paddle.to_tensor(item['attention_mask']).unsqueeze(0)) inputs_dict = { "input_ids": paddle.concat(input_ids_list, axis=0).unsqueeze(0), "token_type_ids": paddle.concat(token_type_ids_list, axis=0).unsqueeze(0), "attention_mask": paddle.concat(attention_mask_list, axis=0).unsqueeze(0) } visual_embeds = paddle.ones([100,512]).unsqueeze(0) visual_embeds = visual_embeds.expand(shape=[1, 2, *visual_embeds.shape]) visual_token_type_ids = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) visual_attention_mask = paddle.ones(visual_embeds.shape[:-1], dtype=paddle.int64) labels = paddle.to_tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 return_dict = True inputs_dict.update({ "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, "return_dict": return_dict }) with paddle.no_grad(): outputs = model(**inputs_dict, labels=labels) if not return_dict: loss = outputs[0] logits = outputs[1] else: loss = outputs['loss'] logits = outputs['logits'] """ return_dict = return_dict if return_dict is not None else False num_choices = input_ids.shape[ 1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.reshape( [-1, input_ids.shape[-1]]) if input_ids is not None else None attention_mask = attention_mask.reshape( [-1, attention_mask.shape[-1]]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape( [-1, token_type_ids.shape[-1]]) if token_type_ids is not None else None position_ids = position_ids.reshape( [-1, position_ids.shape[-1]]) if position_ids is not None else None inputs_embeds = (inputs_embeds.reshape( [-1, inputs_embeds.shape[-2], inputs_embeds.shape[-1]]) if inputs_embeds is not None else None) visual_embeds = (visual_embeds.reshape( [-1, visual_embeds.shape[-2], visual_embeds.shape[-1]]) if visual_embeds is not None else None) visual_attention_mask = (visual_attention_mask.reshape( [-1, visual_attention_mask.shape[-1]]) if visual_attention_mask is not None else None) visual_token_type_ids = (visual_token_type_ids.reshape( [-1, visual_token_type_ids.shape[-1]]) if visual_token_type_ids is not None else None) outputs = self.visual_bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, image_text_alignment=image_text_alignment, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: pooled_output = outputs[1] else: pooled_output = outputs['pooled_output'] pooled_output = self.dropout(pooled_output) logits = self.cls(pooled_output) reshaped_logits = logits.reshape([-1, num_choices]) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits, ) + outputs[2:] return ((loss, ) + output) if loss is not None else output return OrderedDict( loss=loss, logits=reshaped_logits, hidden_states=outputs["hidden_states"], attentions=outputs["attentions"], )
44.799763
178
0.598966
bf9b05faeaaaa31fd7eb82b087932b6a7df86dc8
9,678
py
Python
app/models.py
jorgegene/sis-inf-project
ed97162a828abb5c3c2013c33c6511e2ae0b6efd
[ "MIT" ]
null
null
null
app/models.py
jorgegene/sis-inf-project
ed97162a828abb5c3c2013c33c6511e2ae0b6efd
[ "MIT" ]
null
null
null
app/models.py
jorgegene/sis-inf-project
ed97162a828abb5c3c2013c33c6511e2ae0b6efd
[ "MIT" ]
null
null
null
from datetime import datetime from app import db, login from werkzeug.security import generate_password_hash, check_password_hash from flask_login import UserMixin from sqlalchemy import Column, String, Integer, Boolean, ForeignKey, Text, func @login.user_loader def load_user(id): return User.query.get(int(id)) class User(UserMixin, db.Model): __tablename__ = 'users' # Campos id = Column(Integer, primary_key=True) username = Column(String(64), index=True, unique=True) nombre = Column(String(64)) apellidos = Column(String(64)) nia = Column(String(6), index=True, unique=True) email = Column(String(120), index=True, unique=True) password_hash = Column(String(128)) tipo_usuario = Column(Integer) validated = Column(Integer) # Representación del Usuario def __repr__(self): return '<ID: {}, NIA: {}, email: {}>'.format(self.id, self.nia, self.email) def set_password(self, password): self.password_hash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password_hash, password) # Interfaz def addUser(self): db.session.add(self) db.session.commit() def removeUser(self): db.session.delete(self) db.session.commit() def updateUser(self): User.query.filter_by(id=self.id).update(dict(username=self.username, email=self.email, password_hash=self.password_hash, tipo_usuario=self.tipo_usuario)) db.session.commit() def validate(self): self.validated = True self.tipo_usuario = 2 self.updateUser() def invalidate(self): self.validated = False self.updateUser() @classmethod def getUserByUsername(cls, username): return User.query.filter_by(username=username).first() @classmethod def getUserById(cls, id): return User.query.filter_by(id=id).first() @classmethod def getUsersNotValidated(cls): return User.query.filter_by(validated=0).all() class Stat(db.Model): __tablename__ = 'stats' id = Column(Integer, primary_key=True) id_usuario = Column(Integer, unique=True) dato_estadistico_1 = Column(String(64)) dato_estadistico_2 = Column(String(64)) dato_estadistico_3 = Column(String(64)) # Representación del dato estadístico def __repr__(self): return '<id: {}, id_usuario: {}, dato_estadistico_1: {}, datos_estadistico_2: {}, datos_estadistico_3>'.format(self.id, self.id_usuario, self.dato_estadistico_1, self.dato_estadistico_2, self.dato_estadistic_3) #Interfaz def addStat(self): db.session.add(self) db.session.commit() def removeStat(self): db.session.delete(self) db.session.commit() def updateStat(self): Stat.query.filter_by(id=self.id).update(dict(dato_estadistico_1=self.dato_estadistico_1, dato_estadistico_2=self.dato_estadistico_2, dato_estadistic_3=self.dato_estadistic_3)) db.session.commit() @classmethod def getStatById(cls, id): return Stat.query.filter_by(id=id).first() @classmethod def getUsers(cls,id): return Stat.query.filter_by(id_usuario=id).first() @classmethod def getCountByDE1(cls, filter): return Stat.query.filter_by(dato_estadistico_1=filter).count() @classmethod def getCountByDE2(cls, filter): return Stat.query.filter_by(dato_estadistico_2=filter).count() @classmethod def getCountByDE3(cls, filter): return Stat.query.filter_by(dato_estadistico_3=filter).count() ####################################################### ####################################################### class Pregunta(db.Model): __tablename__ = 'preguntas' id = Column(Integer, primary_key=True) pregunta = Column(String(1024)) year = Column(Integer) def addPregunta(self): db.session.add(self) db.session.commit() class QuestionOption2(db.Model): __tablename__ = 'question_options_2' id = Column(Integer, primary_key=True) id_pregunta = Column(Integer, ForeignKey('preguntas.id')) opcion = Column(String(512)) correcta = Column(Integer) # Reperesentación de QuestionOption def __resp__(self): return '<id: {}, id_poster: {}, opcion:{}>'.format(self.id, self.id_pregunta, self.opcion) @classmethod def newOption(cls, pregunta_id, respuesta): if respuesta != "": resp = QuestionOption2(id_pregunta=pregunta_id,opcion=respuesta,correcta=0) db.session.add(resp) db.session.commit() #Interfaz def addOpcionPregunta(self): db.session.add(self) db.session.commit() def removeOpcionPregunta(self): db.session.delete(self) db.session.commit() def updateOpcionPregunta(self): QuestionOption.query.filter_by(id=self.id).update(dict(id_poster=self.id_poster, opcion=self.opcion)) db.session.commit() @classmethod def getOpcionPreguntaByPosterId(cls, id_poster): return QuestionOption.query.filter_by(id_poster=id_poster).all() ####################################################### ####################################################### class Poster(db.Model): __tablename__ = 'posters' id = Column(Integer, primary_key=True) id_usuario = Column(Integer, ForeignKey('users.id')) imagen = Column(String(1024)) titulo = Column(String(1024)) reto = Column(Text(8192)) info = Column(Text(16384)) pregunta = Column(String(1024)) respuesta_correcta = Column(Integer) corregido = Column(Integer) # Representación del poster def __repr__(self): return '<id: {}, id_usuario: {}, info: {}>'.format(self.id, self.id_usuario, self.info) #Interfaz def addPoster(self): db.session.add(self) db.session.commit() def removePoster(self): db.session.delete(self) db.session.commit() def validate(self): self.corregido = 1 self.updatePoster() def denyPoster(self): self.corregido = 2 self.updatePoster() def updatePoster(self): Poster.query.filter_by(id=self.id).update(dict(id_usuario=self.id_usuario, corregido=self.corregido, imagen=self.imagen, reto=self.reto, info=self.info, pregunta=self.pregunta, respuesta_correcta=self.respuesta_correcta)) db.session.commit() @classmethod def getPosterById(cls, id): return Poster.query.filter_by(id=id).first() @classmethod def getPosterByUserId(cls, user_id): return Poster.query.filter_by(id_usuario=user_id).all() @classmethod def getPosters(cls): return Poster.query.all() @classmethod def getPostersNotChecked(cls): return Poster.query.filter_by(corregido=0).all() @classmethod def getPostersChecked(cls): return Poster.query.filter_by(corregido=1).all() class QuestionOption(db.Model): __tablename__ = 'question_options' id = Column(Integer, primary_key=True) id_poster = Column(Integer) opcion = Column(String(512)) # Reperesentación de QuestionOption def __resp__(self): return '<id: {}, id_poster: {}, opcion:{}>'.format(self.id, self.id_poster, self.opcion) #Interfaz def addOpcionPregunta(self): db.session.add(self) db.session.commit() def removeOpcionPregunta(self): db.session.delete(self) db.session.commit() def updateOpcionPregunta(self): QuestionOption.query.filter_by(id=self.id).update(dict(id_poster=self.id_poster, opcion=self.opcion)) db.session.commit() @classmethod def getOpcionPreguntaByPosterId(cls, id_poster): return QuestionOption.query.filter_by(id_poster=id_poster).all() class UserResponse(db.Model): __tablename__ = 'user_response' id = Column(Integer, primary_key=True) id_usuario = Column(Integer, ForeignKey('users.id')) id_poster = Column(Integer, ForeignKey('posters.id')) opcion = Column(String(100)) # Reperesentación de UserResponse def __resp__(self): return '<id: {}, id_user: {}, id_poster:{}, opcion:{}>'.format(self.id, self.id_usuario, self.id_poster,self.opcion) #Interfaz def addUserResponse(self): db.session.add(self) db.session.commit() def removeUserResponse(self): db.session.delete(self) db.session.commit() def updateUserResponse(self): UserResponse.query.filter_by(id=self.id).update(dict(id_user=self.id_usuario, id_poster=self.id_poster, opcion =self.opcion)) db.session.commit() @classmethod def getUserResponseByUserId(cls, id_usuario): return UserResponse.query.filter_by(id_usuario=id_usuario).all() class UserLike(db.Model): __tablename__ = 'user_likes' id = Column(Integer, primary_key=True) id_usuario = Column(Integer, ForeignKey('users.id')) id_poster = Column(Integer) #Interfaz def likePoster(self): db.session.add(self) db.session.commit() def unlikePoster(self): db.session.delete(self) db.session.commit() @classmethod def getUserLikes(cls, id_usuario): return UserLike.query.filter_by(id_usuario=id_usuario).all() @classmethod def getPosterLikes(cls, id_poster): return UserLike.query.filter_by(id_poster=id_poster).count() @classmethod def gaveLike(cls, id_usuario, id_poster): return UserLike.query.filter_by(id_usuario=id_usuario, id_poster=id_poster).first() is not None
31.320388
229
0.660777
480947d678231989b0596f762a37d173d9b90192
3,424
py
Python
tests/anova_test.py
SakuragiYoshimasa/pystats
cf64f1a9d2f26b327a19352a272e6fb36134435e
[ "MIT" ]
1
2020-07-31T18:10:26.000Z
2020-07-31T18:10:26.000Z
tests/anova_test.py
SakuragiYoshimasa/pystats
cf64f1a9d2f26b327a19352a272e6fb36134435e
[ "MIT" ]
null
null
null
tests/anova_test.py
SakuragiYoshimasa/pystats
cf64f1a9d2f26b327a19352a272e6fb36134435e
[ "MIT" ]
null
null
null
#coding: utf-8 from pystats.anova import one_way_anova_between_subject from pystats.anova import one_way_anova_within_subject from pystats.anova import two_way_anova_between_subject from pystats.anova import two_way_anova_within_subject from pystats.anova import twawis_mat import pandas as pd from numba import jit import numpy as np ''' sample_data = { 'type': ['A','A','A','A','B','B','B','B','C','C','C','C',], 'value': [3,4,4,3,7,8,9,6,5,4,6,7] } print(one_way_anova_between_subject(pd.DataFrame(sample_data), levelCol='type', valCol='value')) sample_data = { 'type': ['A','A','A','A','B','B','B','B','C','C','C','C',], 'subject': ['1', '2', '3', '4', '1', '2', '3', '4', '1', '2', '3', '4'], 'value': [10,9,4,7,5,4,2,3,9,5,3,5] } print(one_way_anova_within_subject(pd.DataFrame(sample_data), levelCol='type', subjectCol='subject', valCol='value')) ''' ''' sample_data = pd.DataFrame({ 'levelA': ['1','1','1','1','1','1','1','1','1','1','1','1','1','1','1','2','2','2','2','2','2','2','2','2','2','2','2','2','2','2'], 'levelB': ['1','1','1','1','1','2','2','2','2','2','3','3','3','3','3','1','1','1','1','1','2','2','2','2','2','3','3','3','3','3'], 'value': [6,4,5,3,2,10,8,10,8,9,11,12,12,10,10,5,4,2,2,2,7,6,5,4,3,12,8,5,6,4] }) print(two_way_anova_between_subject(sample_data, levelACol='levelA', levelBCol='levelB', valCol='value')) ''' sample_data = { 'levelA': ['1','1','1','1','1','1','1','1','1','1','1','1','1','1','1','2','2','2','2','2','2','2','2','2','2','2','2','2','2','2'], 'levelB': ['1','1','1','1','1','2','2','2','2','2','3','3','3','3','3','1','1','1','1','1','2','2','2','2','2','3','3','3','3','3'], 'subject':['1','2','3','4','5','1','2','3','4','5','1','2','3','4','5','1','2','3','4','5','1','2','3','4','5','1','2','3','4','5'], 'value': [6.0,4.0,5.0,3.0,2.0,10.0,8.0,10.0,8.0,9.0,11.0,12.0,12.0,10.0,10.0,5.0,4.0,2.0,2.0,2.0,7.0,6.0,5.0,4.0,3.0,12.0,8.0,5.0,6.0,4.0] } #print(two_way_anova_within_subject(pd.DataFrame(sample_data), levelACol='levelA', levelBCol='levelB', subjectCol='subject', valCol='value')) import time start = time.time() for i in range(300): two_way_anova_within_subject(pd.DataFrame(sample_data), levelACol='levelA', levelBCol='levelB', subjectCol='subject', valCol='value') elapsed_time = time.time() - start print ("elapsed_time:{0}".format(elapsed_time) + "[sec]") sample_data = np.array([[6.0,4.0,5.0,3.0,2.0], [10.0,8.0,10.0,8.0,9.0], [11.0,12.0,12.0,10.0,10.0], [5.0,4.0,2.0,2.0,2.0], [7.0,6.0,5.0,4.0,3.0], [12.0,8.0,5.0,6.0,4.0]]) start = time.time() for i in range(300): twawis_mat(sample_data, 2, 3) elapsed_time = time.time() - start print ("elapsed_time:{0}".format(elapsed_time) + "[sec]") ''' import time @jit def jited(): start = time.time() for i in range(100): two_way_anova_within_subject_jit(pd.DataFrame(sample_data), levelACol='levelA', levelBCol='levelB', subjectCol='subject', valCol='value') elapsed_time = time.time() - start print ("elapsed_time:{0}".format(elapsed_time) + "[sec]") def nojited(): start = time.time() for i in range(100): two_way_anova_within_subject(pd.DataFrame(sample_data), levelACol='levelA', levelBCol='levelB', subjectCol='subject', valCol='value') elapsed_time = time.time() - start print ("elapsed_time:{0}".format(elapsed_time) + "[sec]") if __name__ == '__main__': jited() nojited() '''
45.653333
170
0.577103
3485c96527c31de535e3ed891c678d6e8fb76d97
764
py
Python
algorithms/3SumClosest/3SumClosest.py
zhyu/leetcode
3c2d85b4b7a497ceffac3e562ac1a468f1f6a4b0
[ "MIT" ]
5
2015-02-18T10:17:12.000Z
2016-11-14T19:12:21.000Z
algorithms/3SumClosest/3SumClosest.py
zhyu/leetcode
3c2d85b4b7a497ceffac3e562ac1a468f1f6a4b0
[ "MIT" ]
null
null
null
algorithms/3SumClosest/3SumClosest.py
zhyu/leetcode
3c2d85b4b7a497ceffac3e562ac1a468f1f6a4b0
[ "MIT" ]
null
null
null
class Solution: # @return an integer def threeSumClosest(self, num, target): num.sort() res = sum(num[:3]) if res > target: diff = res-target elif res < target: diff = target-res else: return res n = len(num) for i in xrange(n): j, k = i+1, n-1 while j < k: s = num[i]+num[j]+num[k] if s > target: n_diff = s-target k -= 1 elif s < target: n_diff = target-s j += 1 else: return s if n_diff < diff: res, diff = s, n_diff return res
26.344828
43
0.367801
30b2c4ea962bcc2d10befa3f436dc0dd751064a0
23,696
py
Python
pysnmp-with-texts/JUNIPER-NSM-TRAPS.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/JUNIPER-NSM-TRAPS.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/JUNIPER-NSM-TRAPS.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module JUNIPER-NSM-TRAPS (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/JUNIPER-NSM-TRAPS # Produced by pysmi-0.3.4 at Wed May 1 14:00:39 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ValueRangeConstraint, ValueSizeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsIntersection") jnxNsm, = mibBuilder.importSymbols("JUNIPER-SMI", "jnxNsm") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Unsigned32, Counter64, ObjectIdentity, Integer32, IpAddress, Counter32, ModuleIdentity, MibIdentifier, Bits, iso, Gauge32, TimeTicks, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "Unsigned32", "Counter64", "ObjectIdentity", "Integer32", "IpAddress", "Counter32", "ModuleIdentity", "MibIdentifier", "Bits", "iso", "Gauge32", "TimeTicks", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType") DateAndTime, DisplayString, TextualConvention, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "DateAndTime", "DisplayString", "TextualConvention", "TruthValue") nsmTrapInfo = ModuleIdentity((1, 3, 6, 1, 4, 1, 2636, 6, 1)) if mibBuilder.loadTexts: nsmTrapInfo.setLastUpdated('200506301100Z') if mibBuilder.loadTexts: nsmTrapInfo.setOrganization('Juniper Networks, Inc') if mibBuilder.loadTexts: nsmTrapInfo.setContactInfo(' Juniper Technical Assistance Center Juniper Networks, Inc. 1194 N. Mathilda Avenue Sunnyvale, CA 94089 E-mail: support@juniper.net') if mibBuilder.loadTexts: nsmTrapInfo.setDescription('NetScreen Manger trap definitions for NSM') nsmTrap = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 6, 0)) nsmDayID = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 1), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDayID.setStatus('current') if mibBuilder.loadTexts: nsmDayID.setDescription('The day id of the log for the specified day (encoded yyyymmdd)') nsmRecordID = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 4294967295))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmRecordID.setStatus('current') if mibBuilder.loadTexts: nsmRecordID.setDescription('The record id of the log for the specified day (nth log received)') nsmTimeReceived = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 3), DateAndTime()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmTimeReceived.setStatus('current') if mibBuilder.loadTexts: nsmTimeReceived.setDescription('Time the log was received by the Mgt-Svr') nsmTimeGenerated = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 4), DateAndTime()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmTimeGenerated.setStatus('current') if mibBuilder.loadTexts: nsmTimeGenerated.setDescription('Time the log was generated by the device') nsmDeviceDomain = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 5), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDeviceDomain.setStatus('current') if mibBuilder.loadTexts: nsmDeviceDomain.setDescription('The domain for the device that generated this log') nsmDeviceDomainVer2 = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 6), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDeviceDomainVer2.setStatus('current') if mibBuilder.loadTexts: nsmDeviceDomainVer2.setDescription('The version of the domain that contained the device that generated this log') nsmDevice = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 7), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDevice.setStatus('current') if mibBuilder.loadTexts: nsmDevice.setDescription('The device that generated this log') nsmDeviceIp = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 8), IpAddress()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDeviceIp.setStatus('current') if mibBuilder.loadTexts: nsmDeviceIp.setDescription('IP address of the device that generated this log') nsmCategory = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10))).clone(namedValues=NamedValues(("self", 0), ("config", 1), ("traffic", 2), ("alarm", 3), ("info", 4), ("predefined", 5), ("predefined1", 6), ("custom", 7), ("screen", 8), ("implicit", 9), ("profiler", 10)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmCategory.setStatus('current') if mibBuilder.loadTexts: nsmCategory.setDescription('The type of log (e.g. Info, Misc, Alarm, etc.)') nsmSubcategory = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 10), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmSubcategory.setStatus('current') if mibBuilder.loadTexts: nsmSubcategory.setDescription('Subcategory values have different semantics depending on the value of the log category.') nsmSrcZone = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 11), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmSrcZone.setStatus('current') if mibBuilder.loadTexts: nsmSrcZone.setDescription("The name of the packet-centric 'inbound' zone") nsmSrcIfName = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 12), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmSrcIfName.setStatus('current') if mibBuilder.loadTexts: nsmSrcIfName.setDescription("The name of the packet-centric 'inbound' interface") nsmSrcAddr = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 13), IpAddress()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmSrcAddr.setStatus('current') if mibBuilder.loadTexts: nsmSrcAddr.setDescription('The Source Address of the packet that generated the log') nsmSrcPort = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 14), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmSrcPort.setStatus('current') if mibBuilder.loadTexts: nsmSrcPort.setDescription('The Source Port of the packet that generated the log') nsmNatSrcAddr = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 15), IpAddress()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmNatSrcAddr.setStatus('current') if mibBuilder.loadTexts: nsmNatSrcAddr.setDescription("The NAT'ed Source Address of the packet that generated the log") nsmNatSrcPort = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 16), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmNatSrcPort.setStatus('current') if mibBuilder.loadTexts: nsmNatSrcPort.setDescription("The NAT'ed Source Port of the packet that generated the log") nsmDstZone = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 17), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDstZone.setStatus('current') if mibBuilder.loadTexts: nsmDstZone.setDescription("The name of the packet-centric 'outbound' zone") nsmDstIfName = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 18), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDstIfName.setStatus('current') if mibBuilder.loadTexts: nsmDstIfName.setDescription("The name of the packet-centric 'outbound' interface") nsmDstAddr = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 19), IpAddress()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDstAddr.setStatus('current') if mibBuilder.loadTexts: nsmDstAddr.setDescription('The Destination Address of the packet that generated the log') nsmDstPort = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 20), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmDstPort.setStatus('current') if mibBuilder.loadTexts: nsmDstPort.setDescription('The Destination Port of the packet that generated the log') nsmNatDstAddr = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 21), IpAddress()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmNatDstAddr.setStatus('current') if mibBuilder.loadTexts: nsmNatDstAddr.setDescription("The NAT'ed Destination Address of the packet that generated the log") nsmNatDstPort = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 22), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmNatDstPort.setStatus('current') if mibBuilder.loadTexts: nsmNatDstPort.setDescription("The NAT'ed Destination Port of the packet that generated the log") nsmProtocol = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 23), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 255))).clone(namedValues=NamedValues(("hopopt", 0), ("icmp", 1), ("igmp", 2), ("ggp", 3), ("ip", 4), ("st", 5), ("tcp", 6), ("cbt", 7), ("egp", 8), ("igp", 9), ("bbn-rcc-mon", 10), ("nvp-ii", 11), ("pup", 12), ("argus", 13), ("emcon", 14), ("xnet", 15), ("chaos", 16), ("udp", 17), ("mux", 18), ("dcn-meas", 19), ("hmp", 20), ("prm", 21), ("xns-idp", 22), ("trunk-1", 23), ("trunk-2", 24), ("leaf-1", 25), ("leaf-2", 26), ("rdp", 27), ("irtp", 28), ("iso-tp4", 29), ("netblt", 30), ("mfe-nsp", 31), ("merit-inp", 32), ("sep", 33), ("a3pc", 34), ("idpr-1", 35), ("xtp", 36), ("ddp", 37), ("idpr-cmt", 38), ("tp-plusplus", 39), ("il", 40), ("ipv6", 41), ("sdpr", 42), ("ipv6-route", 43), ("ipv6-frag", 44), ("idpr-2", 45), ("rsvp", 46), ("gre", 47), ("mhrp", 48), ("bn", 49), ("esp", 50), ("ah", 51), ("i-nslp", 52), ("swipe", 53), ("narp", 54), ("mobile", 55), ("tlsp", 56), ("skip", 57), ("ipv6-icmp", 58), ("ipv6-nonxt", 59), ("ipv6-opts", 60), ("ahip", 61), ("cftp", 62), ("alnp", 63), ("sat-expak", 64), ("kryptolan", 65), ("rvd", 66), ("ippc", 67), ("adfsp", 68), ("sat-mon", 69), ("visa", 70), ("ipcv", 71), ("cpnx", 72), ("cphb", 73), ("wsn", 74), ("pvp", 75), ("br-sat-mon", 76), ("sun-nd", 77), ("wb-mon", 78), ("wb-expak", 79), ("iso-ip", 80), ("vmpt", 81), ("secure-vmtp", 82), ("vines", 83), ("ttp", 84), ("nsfnet-igp", 85), ("dgp", 86), ("tcf", 87), ("eigrp", 88), ("ospfigp", 89), ("sprite-rcp", 90), ("larp", 91), ("mtp", 92), ("ax-25", 93), ("ipip", 94), ("micp", 95), ("scc-sp", 96), ("etherip", 97), ("encap", 98), ("apes", 99), ("gmtp", 100), ("ifmp", 101), ("pnni", 102), ("pim", 103), ("aris", 104), ("scps", 105), ("qnx", 106), ("a-n", 107), ("ipcomp", 108), ("snp", 109), ("compat-peer", 110), ("ipx-in-ip", 111), ("vrrp", 112), ("pgm", 113), ("hop-0", 114), ("l2tp", 115), ("ddx", 116), ("iatp", 117), ("stp", 118), ("srp", 119), ("uti", 120), ("smp", 121), ("ssm", 122), ("ptp", 123), ("isis", 124), ("fire", 125), ("crtp", 126), ("crudp", 127), ("sscopmce", 128), ("iplt", 129), ("sps", 130), ("pipe", 131), ("sctp", 132), ("fc", 133), ("rsvp-e2e-ignore", 134), ("reserved", 255)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmProtocol.setStatus('current') if mibBuilder.loadTexts: nsmProtocol.setDescription('The protocol that the packet that generated this log was using') nsmRuleDomain = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 24), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmRuleDomain.setStatus('current') if mibBuilder.loadTexts: nsmRuleDomain.setDescription('The Domain that contained the rule that generated this log') nsmRuleDomainVer = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 25), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmRuleDomainVer.setStatus('current') if mibBuilder.loadTexts: nsmRuleDomainVer.setDescription('The version of the domain that contained the rule that generated this log') nsmPolicy = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 26), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmPolicy.setStatus('current') if mibBuilder.loadTexts: nsmPolicy.setDescription('The policy in a specific version of a domain that contained the rule that generated this log') nsmRulebase = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 27), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("none", 0), ("main", 1), ("fw", 2), ("idp", 3), ("honeypot", 4), ("backdoor", 5), ("synpro", 6), ("vpn", 7), ("mpolicy", 8)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmRulebase.setStatus('current') if mibBuilder.loadTexts: nsmRulebase.setDescription('The rulebase inside the policy in a specific version of a domain that generated this log') nsmRuleNumber = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 28), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmRuleNumber.setStatus('current') if mibBuilder.loadTexts: nsmRuleNumber.setDescription('The rule in the rulebase in the policy in the specific version of a domain that generated this log') nsmAction = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 29), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("accept", 0), ("drop-packet", 1), ("drop", 2), ("close", 3), ("close-client", 4), ("close-server", 5), ("ignore", 6), ("dismiss", 7), ("not-set", 8)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmAction.setStatus('current') if mibBuilder.loadTexts: nsmAction.setDescription('The action the device performed on that packet / connection that generated this log') nsmSeverity = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 30), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7))).clone(namedValues=NamedValues(("not-set", 0), ("unused1", 1), ("info", 2), ("warning", 3), ("minor", 4), ("major", 5), ("unused2", 6), ("critical", 7)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmSeverity.setStatus('current') if mibBuilder.loadTexts: nsmSeverity.setDescription('The severity rating associated with this kind of log') nsmIsAlert = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 31), TruthValue()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmIsAlert.setStatus('current') if mibBuilder.loadTexts: nsmIsAlert.setDescription('A statement on if logs of this type are to alert the user') nsmMisc = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 32), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmMisc.setStatus('current') if mibBuilder.loadTexts: nsmMisc.setDescription('Miscellaneous information associated with the event (typically the repeat count of the event)') nsmUser = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 33), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmUser.setStatus('current') if mibBuilder.loadTexts: nsmUser.setDescription('The name of the user associated with the event') nsmApp = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 34), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmApp.setStatus('current') if mibBuilder.loadTexts: nsmApp.setDescription("The 'application' associated with this log") nsmUri = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 35), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmUri.setStatus('current') if mibBuilder.loadTexts: nsmUri.setDescription("The 'Universal Resource Indicator' associated with this log") nsmElapsedSecs = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 36), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmElapsedSecs.setStatus('current') if mibBuilder.loadTexts: nsmElapsedSecs.setDescription('For sessions, specifies how long the session lasted') nsmBytesIn = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 37), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmBytesIn.setStatus('current') if mibBuilder.loadTexts: nsmBytesIn.setDescription("For sessions, specifies the number of 'inbound' bytes") nsmBytesOut = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 38), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmBytesOut.setStatus('current') if mibBuilder.loadTexts: nsmBytesOut.setDescription("For sessions, specifies the number of 'outbound' bytes") nsmBytesTotal = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 39), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmBytesTotal.setStatus('current') if mibBuilder.loadTexts: nsmBytesTotal.setDescription('For sessions, specifies bytes-in + bytes-out') nsmPacketsIn = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 40), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmPacketsIn.setStatus('current') if mibBuilder.loadTexts: nsmPacketsIn.setDescription("For sessions, specifies the number of 'inbound' packets") nsmPacketsOut = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 41), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmPacketsOut.setStatus('current') if mibBuilder.loadTexts: nsmPacketsOut.setDescription("For sessions, specifies the number of 'outbound' packets") nsmPacketsTotal = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 42), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmPacketsTotal.setStatus('current') if mibBuilder.loadTexts: nsmPacketsTotal.setDescription('For sessions, specifies packets-in + packets-out') nsmRepeatCount = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 43), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmRepeatCount.setStatus('current') if mibBuilder.loadTexts: nsmRepeatCount.setDescription('The number of logs the device compressed into this one log') nsmHasPacketData = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 44), TruthValue()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmHasPacketData.setStatus('current') if mibBuilder.loadTexts: nsmHasPacketData.setDescription('Specifies if this log has associated packet data') nsmVarDataEnum = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 45), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45))).clone(namedValues=NamedValues(("none", 0), ("test", 1), ("ftp", 2), ("sip", 3), ("msrpc-udp", 4), ("msrpc-tcp", 5), ("portmapper", 6), ("http", 7), ("smtp", 8), ("pop3", 9), ("imap", 10), ("telnet", 11), ("rtsp", 12), ("whois", 13), ("icmp", 14), ("arp", 15), ("tcp", 16), ("dns", 17), ("finger", 18), ("ptype", 19), ("ymsg-v2", 20), ("msn-v2", 21), ("smb", 22), ("gnutella-v2", 23), ("tbd-24", 24), ("scan", 25), ("tbd-26", 26), ("tbd-27", 27), ("tbd-28", 28), ("dhcp", 29), ("tbd-30", 30), ("idp", 31), ("bwmon", 32), ("irc", 33), ("ymsg", 34), ("ident", 35), ("nntp", 36), ("aim", 37), ("rusers", 38), ("tbd-39", 39), ("gopher", 40), ("tbd-41", 41), ("msn", 42), ("gnutella", 43), ("nfs", 44), ("attalarm", 45)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmVarDataEnum.setStatus('current') if mibBuilder.loadTexts: nsmVarDataEnum.setDescription('The kind of variable data (if any) associated with this log') nsmVarData = MibScalar((1, 3, 6, 1, 4, 1, 2636, 6, 1, 46), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: nsmVarData.setStatus('current') if mibBuilder.loadTexts: nsmVarData.setDescription('Variable data') nsmTrapNotification = NotificationType((1, 3, 6, 1, 4, 1, 2636, 6, 0, 1)).setObjects(("JUNIPER-NSM-TRAPS", "nsmDayID"), ("JUNIPER-NSM-TRAPS", "nsmRecordID"), ("JUNIPER-NSM-TRAPS", "nsmTimeReceived"), ("JUNIPER-NSM-TRAPS", "nsmTimeGenerated"), ("JUNIPER-NSM-TRAPS", "nsmDeviceDomain"), ("JUNIPER-NSM-TRAPS", "nsmDeviceDomainVer2"), ("JUNIPER-NSM-TRAPS", "nsmDevice"), ("JUNIPER-NSM-TRAPS", "nsmDeviceIp"), ("JUNIPER-NSM-TRAPS", "nsmCategory"), ("JUNIPER-NSM-TRAPS", "nsmSubcategory"), ("JUNIPER-NSM-TRAPS", "nsmSrcZone"), ("JUNIPER-NSM-TRAPS", "nsmSrcIfName"), ("JUNIPER-NSM-TRAPS", "nsmSrcAddr"), ("JUNIPER-NSM-TRAPS", "nsmSrcPort"), ("JUNIPER-NSM-TRAPS", "nsmNatSrcAddr"), ("JUNIPER-NSM-TRAPS", "nsmNatSrcPort"), ("JUNIPER-NSM-TRAPS", "nsmDstZone"), ("JUNIPER-NSM-TRAPS", "nsmDstIfName"), ("JUNIPER-NSM-TRAPS", "nsmDstAddr"), ("JUNIPER-NSM-TRAPS", "nsmDstPort"), ("JUNIPER-NSM-TRAPS", "nsmNatDstAddr"), ("JUNIPER-NSM-TRAPS", "nsmNatDstPort"), ("JUNIPER-NSM-TRAPS", "nsmProtocol"), ("JUNIPER-NSM-TRAPS", "nsmRuleDomain"), ("JUNIPER-NSM-TRAPS", "nsmRuleDomainVer"), ("JUNIPER-NSM-TRAPS", "nsmPolicy"), ("JUNIPER-NSM-TRAPS", "nsmRulebase"), ("JUNIPER-NSM-TRAPS", "nsmRuleNumber"), ("JUNIPER-NSM-TRAPS", "nsmAction"), ("JUNIPER-NSM-TRAPS", "nsmSeverity"), ("JUNIPER-NSM-TRAPS", "nsmIsAlert"), ("JUNIPER-NSM-TRAPS", "nsmMisc"), ("JUNIPER-NSM-TRAPS", "nsmUser"), ("JUNIPER-NSM-TRAPS", "nsmApp"), ("JUNIPER-NSM-TRAPS", "nsmUri"), ("JUNIPER-NSM-TRAPS", "nsmElapsedSecs"), ("JUNIPER-NSM-TRAPS", "nsmBytesIn"), ("JUNIPER-NSM-TRAPS", "nsmBytesOut"), ("JUNIPER-NSM-TRAPS", "nsmBytesTotal"), ("JUNIPER-NSM-TRAPS", "nsmPacketsIn"), ("JUNIPER-NSM-TRAPS", "nsmPacketsOut"), ("JUNIPER-NSM-TRAPS", "nsmPacketsTotal"), ("JUNIPER-NSM-TRAPS", "nsmRepeatCount"), ("JUNIPER-NSM-TRAPS", "nsmHasPacketData"), ("JUNIPER-NSM-TRAPS", "nsmVarDataEnum")) if mibBuilder.loadTexts: nsmTrapNotification.setStatus('current') if mibBuilder.loadTexts: nsmTrapNotification.setDescription('A trap describing one log data.') mibBuilder.exportSymbols("JUNIPER-NSM-TRAPS", nsmSrcPort=nsmSrcPort, nsmBytesTotal=nsmBytesTotal, nsmRuleNumber=nsmRuleNumber, nsmElapsedSecs=nsmElapsedSecs, nsmBytesOut=nsmBytesOut, nsmSubcategory=nsmSubcategory, nsmNatDstPort=nsmNatDstPort, nsmMisc=nsmMisc, nsmTimeReceived=nsmTimeReceived, nsmAction=nsmAction, nsmDstPort=nsmDstPort, nsmRepeatCount=nsmRepeatCount, nsmCategory=nsmCategory, PYSNMP_MODULE_ID=nsmTrapInfo, nsmDeviceDomain=nsmDeviceDomain, nsmRecordID=nsmRecordID, nsmDeviceDomainVer2=nsmDeviceDomainVer2, nsmSrcAddr=nsmSrcAddr, nsmRuleDomain=nsmRuleDomain, nsmNatSrcPort=nsmNatSrcPort, nsmRuleDomainVer=nsmRuleDomainVer, nsmTrapInfo=nsmTrapInfo, nsmVarData=nsmVarData, nsmRulebase=nsmRulebase, nsmIsAlert=nsmIsAlert, nsmUri=nsmUri, nsmSrcZone=nsmSrcZone, nsmNatDstAddr=nsmNatDstAddr, nsmDstZone=nsmDstZone, nsmVarDataEnum=nsmVarDataEnum, nsmBytesIn=nsmBytesIn, nsmDevice=nsmDevice, nsmSeverity=nsmSeverity, nsmUser=nsmUser, nsmPacketsTotal=nsmPacketsTotal, nsmNatSrcAddr=nsmNatSrcAddr, nsmDstAddr=nsmDstAddr, nsmPacketsIn=nsmPacketsIn, nsmDstIfName=nsmDstIfName, nsmProtocol=nsmProtocol, nsmSrcIfName=nsmSrcIfName, nsmTrapNotification=nsmTrapNotification, nsmDayID=nsmDayID, nsmPacketsOut=nsmPacketsOut, nsmDeviceIp=nsmDeviceIp, nsmHasPacketData=nsmHasPacketData, nsmPolicy=nsmPolicy, nsmApp=nsmApp, nsmTrap=nsmTrap, nsmTimeGenerated=nsmTimeGenerated)
145.374233
2,839
0.722274
0505167872c618da3dc9e03fabff1e9b153ad753
31,208
py
Python
chainer_/chainercv2/models/polynet.py
yick2232/imgclsmob
fb220bff18b27d1fc6db1bac6cf69b70c2d07490
[ "MIT" ]
1
2019-11-28T10:02:58.000Z
2019-11-28T10:02:58.000Z
chainer_/chainercv2/models/polynet.py
fireoil/imgclsmob
fb220bff18b27d1fc6db1bac6cf69b70c2d07490
[ "MIT" ]
null
null
null
chainer_/chainercv2/models/polynet.py
fireoil/imgclsmob
fb220bff18b27d1fc6db1bac6cf69b70c2d07490
[ "MIT" ]
1
2019-11-20T18:47:37.000Z
2019-11-20T18:47:37.000Z
""" PolyNet for ImageNet-1K, implemented in Chainer. Original paper: 'PolyNet: A Pursuit of Structural Diversity in Very Deep Networks,' https://arxiv.org/abs/1611.05725. """ __all__ = ['PolyNet', 'polynet'] import os import chainer.functions as F import chainer.links as L from chainer import Chain from functools import partial from chainer.serializers import load_npz from .common import ConvBlock, conv1x1_block, conv3x3_block, Concurrent, ParametricSequential, ParametricConcurrent,\ SimpleSequential class PolyConv(Chain): """ PolyNet specific convolution block. A block that is used inside poly-N (poly-2, poly-3, and so on) modules. The Convolution layer is shared between all Inception blocks inside a poly-N module. BatchNorm layers are not shared between Inception blocks and therefore the number of BatchNorm layers is equal to the number of Inception blocks inside a poly-N module. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. ksize : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Stride of the convolution. pad : int or tuple/list of 2 int Padding value for convolution layer. num_blocks : int Number of blocks (BatchNorm layers). """ def __init__(self, in_channels, out_channels, ksize, stride, pad, num_blocks): super(PolyConv, self).__init__() with self.init_scope(): self.conv = L.Convolution2D( in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=True) for i in range(num_blocks): setattr(self, "bn{}".format(i + 1), L.BatchNormalization( size=out_channels, eps=1e-5)) self.activ = F.relu def __call__(self, x, index): x = self.conv(x) bn = getattr(self, "bn{}".format(index + 1)) x = bn(x) x = self.activ(x) return x def poly_conv1x1(in_channels, out_channels, num_blocks): """ 1x1 version of the PolyNet specific convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. num_blocks : int Number of blocks (BatchNorm layers). """ return PolyConv( in_channels=in_channels, out_channels=out_channels, ksize=1, stride=1, pad=0, num_blocks=num_blocks) class MaxPoolBranch(Chain): """ PolyNet specific max pooling branch block. """ def __init__(self): super(MaxPoolBranch, self).__init__() with self.init_scope(): self.pool = partial( F.max_pooling_2d, ksize=3, stride=2, pad=0, cover_all=False) def __call__(self, x): x = self.pool(x) return x class Conv1x1Branch(Chain): """ PolyNet specific convolutional 1x1 branch block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. """ def __init__(self, in_channels, out_channels): super(Conv1x1Branch, self).__init__() with self.init_scope(): self.conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels) def __call__(self, x): x = self.conv(x) return x class Conv3x3Branch(Chain): """ PolyNet specific convolutional 3x3 branch block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. """ def __init__(self, in_channels, out_channels): super(Conv3x3Branch, self).__init__() with self.init_scope(): self.conv = conv3x3_block( in_channels=in_channels, out_channels=out_channels, stride=2, pad=0) def __call__(self, x): x = self.conv(x) return x class ConvSeqBranch(Chain): """ PolyNet specific convolutional sequence branch block. Parameters: ---------- in_channels : int Number of input channels. out_channels_list : list of tuple of int List of numbers of output channels. kernel_size_list : list of tuple of int or tuple of tuple/list of 2 int List of convolution window sizes. strides_list : list of tuple of int or tuple of tuple/list of 2 int List of strides of the convolution. padding_list : list of tuple of int or tuple of tuple/list of 2 int List of padding values for convolution layers. """ def __init__(self, in_channels, out_channels_list, kernel_size_list, strides_list, padding_list): super(ConvSeqBranch, self).__init__() assert (len(out_channels_list) == len(kernel_size_list)) assert (len(out_channels_list) == len(strides_list)) assert (len(out_channels_list) == len(padding_list)) with self.init_scope(): self.conv_list = SimpleSequential() with self.conv_list.init_scope(): for i, (out_channels, kernel_size, strides, padding) in enumerate(zip( out_channels_list, kernel_size_list, strides_list, padding_list)): setattr(self.conv_list, "conv{}".format(i + 1), ConvBlock( in_channels=in_channels, out_channels=out_channels, ksize=kernel_size, stride=strides, pad=padding)) in_channels = out_channels def __call__(self, x): x = self.conv_list(x) return x class PolyConvSeqBranch(Chain): """ PolyNet specific convolutional sequence branch block with internal PolyNet specific convolution blocks. Parameters: ---------- in_channels : int Number of input channels. out_channels_list : list of tuple of int List of numbers of output channels. kernel_size_list : list of tuple of int or tuple of tuple/list of 2 int List of convolution window sizes. strides_list : list of tuple of int or tuple of tuple/list of 2 int List of strides of the convolution. padding_list : list of tuple of int or tuple of tuple/list of 2 int List of padding values for convolution layers. num_blocks : int Number of blocks for PolyConv. """ def __init__(self, in_channels, out_channels_list, kernel_size_list, strides_list, padding_list, num_blocks): super(PolyConvSeqBranch, self).__init__() assert (len(out_channels_list) == len(kernel_size_list)) assert (len(out_channels_list) == len(strides_list)) assert (len(out_channels_list) == len(padding_list)) with self.init_scope(): self.conv_list = ParametricSequential() with self.conv_list.init_scope(): for i, (out_channels, kernel_size, strides, padding) in enumerate(zip( out_channels_list, kernel_size_list, strides_list, padding_list)): setattr(self.conv_list, "conv{}".format(i + 1), PolyConv( in_channels=in_channels, out_channels=out_channels, ksize=kernel_size, stride=strides, pad=padding, num_blocks=num_blocks)) in_channels = out_channels def __call__(self, x, index): x = self.conv_list(x, index=index) return x class TwoWayABlock(Chain): """ PolyNet type Inception-A block. """ def __init__(self): super(TwoWayABlock, self).__init__() in_channels = 384 with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", ConvSeqBranch( in_channels=in_channels, out_channels_list=(32, 48, 64), kernel_size_list=(1, 3, 3), strides_list=(1, 1, 1), padding_list=(0, 1, 1))) setattr(self.branches, "branch2", ConvSeqBranch( in_channels=in_channels, out_channels_list=(32, 32), kernel_size_list=(1, 3), strides_list=(1, 1), padding_list=(0, 1))) setattr(self.branches, "branch3", Conv1x1Branch( in_channels=in_channels, out_channels=32)) self.conv = conv1x1_block( in_channels=128, out_channels=in_channels, activation=None) def __call__(self, x): x = self.branches(x) x = self.conv(x) return x class TwoWayBBlock(Chain): """ PolyNet type Inception-B block. """ def __init__(self): super(TwoWayBBlock, self).__init__() in_channels = 1152 with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", ConvSeqBranch( in_channels=in_channels, out_channels_list=(128, 160, 192), kernel_size_list=(1, (1, 7), (7, 1)), strides_list=(1, 1, 1), padding_list=(0, (0, 3), (3, 0)))) setattr(self.branches, "branch2", Conv1x1Branch( in_channels=in_channels, out_channels=192)) self.conv = conv1x1_block( in_channels=384, out_channels=in_channels, activation=None) def __call__(self, x): x = self.branches(x) x = self.conv(x) return x class TwoWayCBlock(Chain): """ PolyNet type Inception-C block. """ def __init__(self): super(TwoWayCBlock, self).__init__() in_channels = 2048 with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", ConvSeqBranch( in_channels=in_channels, out_channels_list=(192, 224, 256), kernel_size_list=(1, (1, 3), (3, 1)), strides_list=(1, 1, 1), padding_list=(0, (0, 1), (1, 0)))) setattr(self.branches, "branch2", Conv1x1Branch( in_channels=in_channels, out_channels=192)) self.conv = conv1x1_block( in_channels=448, out_channels=in_channels, activation=None) def __call__(self, x): x = self.branches(x) x = self.conv(x) return x class PolyPreBBlock(Chain): """ PolyNet type PolyResidual-Pre-B block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. num_blocks : int Number of blocks (BatchNorm layers). """ def __init__(self, num_blocks): super(PolyPreBBlock, self).__init__() in_channels = 1152 with self.init_scope(): self.branches = ParametricConcurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", PolyConvSeqBranch( in_channels=in_channels, out_channels_list=(128, 160, 192), kernel_size_list=(1, (1, 7), (7, 1)), strides_list=(1, 1, 1), padding_list=(0, (0, 3), (3, 0)), num_blocks=num_blocks)) setattr(self.branches, "branch2", poly_conv1x1( in_channels=in_channels, out_channels=192, num_blocks=num_blocks)) def __call__(self, x, index): x = self.branches(x, index=index) return x class PolyPreCBlock(Chain): """ PolyNet type PolyResidual-Pre-C block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. num_blocks : int Number of blocks (BatchNorm layers). """ def __init__(self, num_blocks): super(PolyPreCBlock, self).__init__() in_channels = 2048 with self.init_scope(): self.branches = ParametricConcurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", PolyConvSeqBranch( in_channels=in_channels, out_channels_list=(192, 224, 256), kernel_size_list=(1, (1, 3), (3, 1)), strides_list=(1, 1, 1), padding_list=(0, (0, 1), (1, 0)), num_blocks=num_blocks)) setattr(self.branches, "branch2", poly_conv1x1( in_channels=in_channels, out_channels=192, num_blocks=num_blocks)) def __call__(self, x, index): x = self.branches(x, index=index) return x def poly_res_b_block(): """ PolyNet type PolyResidual-Res-B block. """ return conv1x1_block( in_channels=384, out_channels=1152, stride=1, activation=None) def poly_res_c_block(): """ PolyNet type PolyResidual-Res-C block. """ return conv1x1_block( in_channels=448, out_channels=2048, stride=1, activation=None) class MultiResidual(Chain): """ Base class for constructing N-way modules (2-way, 3-way, and so on). Actually it is for 2-way modules. Parameters: ---------- scale : float, default 1.0 Scale value for each residual branch. res_block : Chain class Residual branch block. num_blocks : int Number of residual branches. """ def __init__(self, scale, res_block, num_blocks): super(MultiResidual, self).__init__() assert (num_blocks >= 1) self.scale = scale self.num_blocks = num_blocks with self.init_scope(): for i in range(num_blocks): setattr(self, "res_block{}".format(i + 1), res_block()) self.activ = F.relu def __call__(self, x): out = x for i in range(self.num_blocks): res_block = getattr(self, "res_block{}".format(i + 1)) out = out + self.scale * res_block(x) out = self.activ(out) return out class PolyResidual(Chain): """ The other base class for constructing N-way poly-modules. Actually it is for 3-way poly-modules. Parameters: ---------- scale : float, default 1.0 Scale value for each residual branch. res_block : Chain class Residual branch block. num_blocks : int Number of residual branches. pre_block : Chain class Preliminary block. """ def __init__(self, scale, res_block, num_blocks, pre_block): super(PolyResidual, self).__init__() assert (num_blocks >= 1) self.scale = scale self.num_blocks = num_blocks with self.init_scope(): self.pre_block = pre_block(num_blocks=num_blocks) for i in range(num_blocks): setattr(self, "res_block{}".format(i + 1), res_block()) self.activ = F.relu def __call__(self, x): out = x for index in range(self.num_blocks): x = self.pre_block(x, index) res_block = getattr(self, "res_block{}".format(index + 1)) x = res_block(x) out = out + self.scale * x x = self.activ(x) out = self.activ(out) return out class PolyBaseUnit(Chain): """ PolyNet unit base class. Parameters: ---------- two_way_scale : float Scale value for 2-way stage. two_way_block : Chain class Residual branch block for 2-way-stage. poly_scale : float, default 0.0 Scale value for 2-way stage. poly_res_block : Chain class, default None Residual branch block for poly-stage. poly_pre_block : Chain class, default None Preliminary branch block for poly-stage. """ def __init__(self, two_way_scale, two_way_block, poly_scale=0.0, poly_res_block=None, poly_pre_block=None): super(PolyBaseUnit, self).__init__() with self.init_scope(): if poly_res_block is not None: assert (poly_scale != 0.0) assert (poly_pre_block is not None) self.poly = PolyResidual( scale=poly_scale, res_block=poly_res_block, num_blocks=3, pre_block=poly_pre_block) else: assert (poly_scale == 0.0) assert (poly_pre_block is None) self.poly = None self.twoway = MultiResidual( scale=two_way_scale, res_block=two_way_block, num_blocks=2) def __call__(self, x): if self.poly is not None: x = self.poly(x) x = self.twoway(x) return x class PolyAUnit(PolyBaseUnit): """ PolyNet type A unit. Parameters: ---------- two_way_scale : float Scale value for 2-way stage. poly_scale : float Scale value for 2-way stage. """ def __init__(self, two_way_scale, poly_scale=0.0): super(PolyAUnit, self).__init__( two_way_scale=two_way_scale, two_way_block=TwoWayABlock) assert (poly_scale == 0.0) class PolyBUnit(PolyBaseUnit): """ PolyNet type B unit. Parameters: ---------- two_way_scale : float Scale value for 2-way stage. poly_scale : float Scale value for 2-way stage. """ def __init__(self, two_way_scale, poly_scale): super(PolyBUnit, self).__init__( two_way_scale=two_way_scale, two_way_block=TwoWayBBlock, poly_scale=poly_scale, poly_res_block=poly_res_b_block, poly_pre_block=PolyPreBBlock) class PolyCUnit(PolyBaseUnit): """ PolyNet type C unit. Parameters: ---------- two_way_scale : float Scale value for 2-way stage. poly_scale : float Scale value for 2-way stage. """ def __init__(self, two_way_scale, poly_scale): super(PolyCUnit, self).__init__( two_way_scale=two_way_scale, two_way_block=TwoWayCBlock, poly_scale=poly_scale, poly_res_block=poly_res_c_block, poly_pre_block=PolyPreCBlock) class ReductionAUnit(Chain): """ PolyNet type Reduction-A unit. """ def __init__(self): super(ReductionAUnit, self).__init__() in_channels = 384 with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", ConvSeqBranch( in_channels=in_channels, out_channels_list=(256, 256, 384), kernel_size_list=(1, 3, 3), strides_list=(1, 1, 2), padding_list=(0, 1, 0))) setattr(self.branches, "branch2", ConvSeqBranch( in_channels=in_channels, out_channels_list=(384,), kernel_size_list=(3,), strides_list=(2,), padding_list=(0,))) setattr(self.branches, "branch3", MaxPoolBranch()) def __call__(self, x): x = self.branches(x) return x class ReductionBUnit(Chain): """ PolyNet type Reduction-B unit. """ def __init__(self): super(ReductionBUnit, self).__init__() in_channels = 1152 with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", ConvSeqBranch( in_channels=in_channels, out_channels_list=(256, 256, 256), kernel_size_list=(1, 3, 3), strides_list=(1, 1, 2), padding_list=(0, 1, 0))) setattr(self.branches, "branch2", ConvSeqBranch( in_channels=in_channels, out_channels_list=(256, 256), kernel_size_list=(1, 3), strides_list=(1, 2), padding_list=(0, 0))) setattr(self.branches, "branch3", ConvSeqBranch( in_channels=in_channels, out_channels_list=(256, 384), kernel_size_list=(1, 3), strides_list=(1, 2), padding_list=(0, 0))) setattr(self.branches, "branch4", MaxPoolBranch()) def __call__(self, x): x = self.branches(x) return x class PolyBlock3a(Chain): """ PolyNet type Mixed-3a block. """ def __init__(self): super(PolyBlock3a, self).__init__() with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", MaxPoolBranch()) setattr(self.branches, "branch2", Conv3x3Branch( in_channels=64, out_channels=96)) def __call__(self, x): x = self.branches(x) return x class PolyBlock4a(Chain): """ PolyNet type Mixed-4a block. """ def __init__(self): super(PolyBlock4a, self).__init__() with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", ConvSeqBranch( in_channels=160, out_channels_list=(64, 96), kernel_size_list=(1, 3), strides_list=(1, 1), padding_list=(0, 0))) setattr(self.branches, "branch2", ConvSeqBranch( in_channels=160, out_channels_list=(64, 64, 64, 96), kernel_size_list=(1, (7, 1), (1, 7), 3), strides_list=(1, 1, 1, 1), padding_list=(0, (3, 0), (0, 3), 0))) def __call__(self, x): x = self.branches(x) return x class PolyBlock5a(Chain): """ PolyNet type Mixed-5a block. """ def __init__(self): super(PolyBlock5a, self).__init__() with self.init_scope(): self.branches = Concurrent() with self.branches.init_scope(): setattr(self.branches, "branch1", MaxPoolBranch()) setattr(self.branches, "branch2", Conv3x3Branch( in_channels=192, out_channels=192)) def __call__(self, x): x = self.branches(x) return x class PolyInitBlock(Chain): """ PolyNet specific initial block. Parameters: ---------- in_channels : int Number of input channels. """ def __init__(self, in_channels): super(PolyInitBlock, self).__init__() with self.init_scope(): self.conv1 = conv3x3_block( in_channels=in_channels, out_channels=32, stride=2, pad=0) self.conv2 = conv3x3_block( in_channels=32, out_channels=32, pad=0) self.conv3 = conv3x3_block( in_channels=32, out_channels=64) self.block1 = PolyBlock3a() self.block2 = PolyBlock4a() self.block3 = PolyBlock5a() def __call__(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) return x class PolyNet(Chain): """ PolyNet model from 'PolyNet: A Pursuit of Structural Diversity in Very Deep Networks,' https://arxiv.org/abs/1611.05725. Parameters: ---------- two_way_scales : list of list of floats Two way scale values for each normal unit. poly_scales : list of list of floats Three way scale values for each normal unit. dropout_rate : float, default 0.2 Fraction of the input units to drop. Must be a number between 0 and 1. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (331, 331) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. """ def __init__(self, two_way_scales, poly_scales, dropout_rate=0.2, in_channels=3, in_size=(331, 331), classes=1000): super(PolyNet, self).__init__() self.in_size = in_size self.classes = classes normal_units = [PolyAUnit, PolyBUnit, PolyCUnit] reduction_units = [ReductionAUnit, ReductionBUnit] with self.init_scope(): self.features = SimpleSequential() with self.features.init_scope(): setattr(self.features, "init_block", PolyInitBlock( in_channels=in_channels)) for i, (two_way_scales_per_stage, poly_scales_per_stage) in enumerate(zip(two_way_scales, poly_scales)): stage = SimpleSequential() with stage.init_scope(): for j, (two_way_scale, poly_scale) in enumerate(zip( two_way_scales_per_stage, poly_scales_per_stage)): if (j == 0) and (i != 0): unit = reduction_units[i - 1] setattr(stage, "unit{}".format(j + 1), unit()) else: unit = normal_units[i] setattr(stage, "unit{}".format(j + 1), unit( two_way_scale=two_way_scale, poly_scale=poly_scale)) setattr(self.features, "stage{}".format(i + 1), stage) setattr(self.features, 'final_pool', partial( F.average_pooling_2d, ksize=9, stride=1)) in_channels = 2048 self.output = SimpleSequential() with self.output.init_scope(): setattr(self.output, 'flatten', partial( F.reshape, shape=(-1, in_channels))) setattr(self.output, 'dropout', partial( F.dropout, ratio=dropout_rate)) setattr(self.output, 'fc', L.Linear( in_size=in_channels, out_size=classes)) def __call__(self, x): x = self.features(x) x = self.output(x) return x def get_polynet(model_name=None, pretrained=False, root=os.path.join("~", ".chainer", "models"), **kwargs): """ Create PolyNet model with specific parameters. Parameters: ---------- model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.chainer/models' Location for keeping the model parameters. """ two_way_scales = [ [1.000000, 0.992308, 0.984615, 0.976923, 0.969231, 0.961538, 0.953846, 0.946154, 0.938462, 0.930769], [0.000000, 0.915385, 0.900000, 0.884615, 0.869231, 0.853846, 0.838462, 0.823077, 0.807692, 0.792308, 0.776923], [0.000000, 0.761538, 0.746154, 0.730769, 0.715385, 0.700000]] poly_scales = [ [0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000], [0.000000, 0.923077, 0.907692, 0.892308, 0.876923, 0.861538, 0.846154, 0.830769, 0.815385, 0.800000, 0.784615], [0.000000, 0.769231, 0.753846, 0.738462, 0.723077, 0.707692]] net = PolyNet( two_way_scales=two_way_scales, poly_scales=poly_scales, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file load_npz( file=get_model_file( model_name=model_name, local_model_store_dir_path=root), obj=net) return net def polynet(**kwargs): """ PolyNet model from 'PolyNet: A Pursuit of Structural Diversity in Very Deep Networks,' https://arxiv.org/abs/1611.05725. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.chainer/models' Location for keeping the model parameters. """ return get_polynet(model_name="polynet", **kwargs) def _test(): import numpy as np import chainer chainer.global_config.train = False pretrained = False models = [ polynet, ] for model in models: net = model(pretrained=pretrained) weight_count = net.count_params() print("m={}, {}".format(model.__name__, weight_count)) assert (model != polynet or weight_count == 95366600) x = np.zeros((1, 3, 331, 331), np.float32) y = net(x) assert (y.shape == (1, 1000)) if __name__ == "__main__": _test()
31.747711
120
0.543002
4996c32e2369ffbf065965528818ba48c0a7a263
12,780
py
Python
mne/io/tests/test_raw.py
achilleas-k/mne-python
0078e1af13a92ab47498dd167bc5ec73be864427
[ "BSD-3-Clause" ]
null
null
null
mne/io/tests/test_raw.py
achilleas-k/mne-python
0078e1af13a92ab47498dd167bc5ec73be864427
[ "BSD-3-Clause" ]
4
2016-06-04T15:28:08.000Z
2016-12-22T14:23:13.000Z
mne/io/tests/test_raw.py
achilleas-k/mne-python
0078e1af13a92ab47498dd167bc5ec73be864427
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Generic tests that all raw classes should run.""" # # Authors: MNE Developers # Stefan Appelhoff <stefan.appelhoff@mailbox.org> # # License: BSD (3-clause) from os import path as op import math import pytest import numpy as np from numpy.testing import (assert_allclose, assert_array_almost_equal, assert_equal, assert_array_equal) from mne import concatenate_raws, create_info, Annotations from mne.annotations import _handle_meas_date from mne.datasets import testing from mne.io import read_raw_fif, RawArray, BaseRaw from mne.utils import _TempDir, catch_logging, _raw_annot from mne.io.meas_info import _get_valid_units def test_orig_units(): """Test the error handling for original units.""" # Should work fine info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg') BaseRaw(info, last_samps=[1], orig_units={'Cz': 'nV'}) # Should complain that channel Cz does not have a corresponding original # unit. with pytest.raises(ValueError, match='has no associated original unit.'): info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg') BaseRaw(info, last_samps=[1], orig_units={'not_Cz': 'nV'}) # Test that a non-dict orig_units argument raises a ValueError with pytest.raises(ValueError, match='orig_units must be of type dict'): info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg') BaseRaw(info, last_samps=[1], orig_units=True) def _test_raw_reader(reader, test_preloading=True, **kwargs): """Test reading, writing and slicing of raw classes. Parameters ---------- reader : function Function to test. test_preloading : bool Whether not preloading is implemented for the reader. If True, both cases and memory mapping to file are tested. **kwargs : Arguments for the reader. Note: Do not use preload as kwarg. Use ``test_preloading`` instead. Returns ------- raw : instance of Raw A preloaded Raw object. """ tempdir = _TempDir() rng = np.random.RandomState(0) if test_preloading: raw = reader(preload=True, **kwargs) # don't assume the first is preloaded buffer_fname = op.join(tempdir, 'buffer') picks = rng.permutation(np.arange(len(raw.ch_names) - 1))[:10] picks = np.append(picks, len(raw.ch_names) - 1) # test trigger channel bnd = min(int(round(raw.buffer_size_sec * raw.info['sfreq'])), raw.n_times) slices = [slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd), slice(3, 300), slice(None), slice(1, bnd)] if raw.n_times >= 2 * bnd: # at least two complete blocks slices += [slice(bnd, 2 * bnd), slice(bnd, bnd + 1), slice(0, bnd + 100)] other_raws = [reader(preload=buffer_fname, **kwargs), reader(preload=False, **kwargs)] for sl_time in slices: data1, times1 = raw[picks, sl_time] for other_raw in other_raws: data2, times2 = other_raw[picks, sl_time] assert_allclose(data1, data2) assert_allclose(times1, times2) else: raw = reader(**kwargs) full_data = raw._data assert raw.__class__.__name__ in repr(raw) # to test repr assert raw.info.__class__.__name__ in repr(raw.info) # gh-5604 assert _handle_meas_date(raw.info['meas_date']) >= 0 # test resetting raw raw2 = reader(**raw._init_kwargs) assert set(raw.info.keys()) == set(raw2.info.keys()) assert_array_equal(raw.times, raw2.times) # Test saving and reading out_fname = op.join(tempdir, 'test_raw.fif') raw = concatenate_raws([raw]) raw.save(out_fname, tmax=raw.times[-1], overwrite=True, buffer_size_sec=1) raw3 = read_raw_fif(out_fname) assert set(raw.info.keys()) == set(raw3.info.keys()) assert_allclose(raw3[0:20][0], full_data[0:20], rtol=1e-6, atol=1e-20) # atol is very small but > 0 assert_array_almost_equal(raw.times, raw3.times) assert not math.isnan(raw3.info['highpass']) assert not math.isnan(raw3.info['lowpass']) assert not math.isnan(raw.info['highpass']) assert not math.isnan(raw.info['lowpass']) assert raw3.info['kit_system_id'] == raw.info['kit_system_id'] # Make sure concatenation works first_samp = raw.first_samp last_samp = raw.last_samp concat_raw = concatenate_raws([raw.copy(), raw]) assert_equal(concat_raw.n_times, 2 * raw.n_times) assert_equal(concat_raw.first_samp, first_samp) assert_equal(concat_raw.last_samp - last_samp + first_samp, last_samp + 1) idx = np.where(concat_raw.annotations.description == 'BAD boundary')[0] if concat_raw.info['meas_date'] is None: expected_bad_boundary_onset = ((last_samp - first_samp) / raw.info['sfreq']) else: expected_bad_boundary_onset = raw._last_time assert_array_almost_equal(concat_raw.annotations.onset[idx], expected_bad_boundary_onset, decimal=2) if raw.info['meas_id'] is not None: for key in ['secs', 'usecs', 'version']: assert_equal(raw.info['meas_id'][key], raw3.info['meas_id'][key]) assert_array_equal(raw.info['meas_id']['machid'], raw3.info['meas_id']['machid']) assert isinstance(raw.annotations, Annotations) # Make a "soft" test on units: They have to be valid SI units as in # mne.io.meas_info.valid_units, but we accept any lower/upper case for now. valid_units = _get_valid_units() valid_units_lower = [unit.lower() for unit in valid_units] if raw._orig_units is not None: assert isinstance(raw._orig_units, dict) for ch_name, unit in raw._orig_units.items(): assert unit.lower() in valid_units_lower, ch_name return raw def _test_concat(reader, *args): """Test concatenation of raw classes that allow not preloading.""" data = None for preload in (True, False): raw1 = reader(*args, preload=preload) raw2 = reader(*args, preload=preload) raw1.append(raw2) raw1.load_data() if data is None: data = raw1[:, :][0] assert_allclose(data, raw1[:, :][0]) for first_preload in (True, False): raw = reader(*args, preload=first_preload) data = raw[:, :][0] for preloads in ((True, True), (True, False), (False, False)): for last_preload in (True, False): t_crops = raw.times[np.argmin(np.abs(raw.times - 0.5)) + [0, 1]] raw1 = raw.copy().crop(0, t_crops[0]) if preloads[0]: raw1.load_data() raw2 = raw.copy().crop(t_crops[1], None) if preloads[1]: raw2.load_data() raw1.append(raw2) if last_preload: raw1.load_data() assert_allclose(data, raw1[:, :][0]) @testing.requires_testing_data def test_time_as_index(): """Test indexing of raw times.""" raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data', 'test_raw.fif') raw = read_raw_fif(raw_fname) # Test original (non-rounding) indexing behavior orig_inds = raw.time_as_index(raw.times) assert(len(set(orig_inds)) != len(orig_inds)) # Test new (rounding) indexing behavior new_inds = raw.time_as_index(raw.times, use_rounding=True) assert_array_equal(new_inds, np.arange(len(raw.times))) @pytest.mark.parametrize('offset, origin', [ pytest.param(0, None, id='times in s. relative to first_samp (default)'), pytest.param(0, 2.0, id='times in s. relative to first_samp'), pytest.param(1, 1.0, id='times in s. relative to meas_date'), pytest.param(2, 0.0, id='absolute times in s. relative to 0')]) def test_time_as_index_ref(offset, origin): """Test indexing of raw times.""" meas_date = 1 info = create_info(ch_names=10, sfreq=10.) raw = RawArray(data=np.empty((10, 10)), info=info, first_samp=10) raw.info['meas_date'] = meas_date relative_times = raw.times inds = raw.time_as_index(relative_times + offset, use_rounding=True, origin=origin) assert_array_equal(inds, np.arange(raw.n_times)) def test_meas_date_orig_time(): """Test the relation between meas_time in orig_time.""" # meas_time is set and orig_time is set: # clips the annotations based on raw.data and resets the annotation based # on raw.info['meas_date] raw = _raw_annot(1, 1.5) assert raw.annotations.orig_time == 1 assert raw.annotations.onset[0] == 1 # meas_time is set and orig_time is None: # Consider annot.orig_time to be raw.frist_sample, clip and reset # annotations to have the raw.annotations.orig_time == raw.info['meas_date] raw = _raw_annot(1, None) assert raw.annotations.orig_time == 1 assert raw.annotations.onset[0] == 1.5 # meas_time is None and orig_time is set: # Raise error, it makes no sense to have an annotations object that we know # when was acquired and set it to a raw object that does not know when was # it acquired. with pytest.raises(RuntimeError, match='Ambiguous operation'): _raw_annot(None, 1.5) # meas_time is None and orig_time is None: # Consider annot.orig_time to be raw.first_sample and clip raw = _raw_annot(None, None) assert raw.annotations.orig_time is None assert raw.annotations.onset[0] == 0.5 assert raw.annotations.duration[0] == 0.2 def test_get_data_reject(): """Test if reject_by_annotation is working correctly.""" fs = 256 ch_names = ["C3", "Cz", "C4"] info = create_info(ch_names, sfreq=fs) raw = RawArray(np.zeros((len(ch_names), 10 * fs)), info) raw.set_annotations(Annotations(onset=[2, 4], duration=[3, 2], description="bad")) with catch_logging() as log: data = raw.get_data(reject_by_annotation="omit", verbose=True) msg = ('Omitting 1024 of 2560 (40.00%) samples, retaining 1536' + ' (60.00%) samples.') assert log.getvalue().strip() == msg assert data.shape == (len(ch_names), 1536) with catch_logging() as log: data = raw.get_data(reject_by_annotation="nan", verbose=True) msg = ('Setting 1024 of 2560 (40.00%) samples to NaN, retaining 1536' + ' (60.00%) samples.') assert log.getvalue().strip() == msg assert data.shape == (len(ch_names), 2560) # shape doesn't change assert np.isnan(data).sum() == 3072 # but NaNs are introduced instead def test_5839(): """Test concatenating raw objects with annotations.""" # Global Time 0 1 2 3 4 # . # raw_A |---------XXXXXXXXXX # annot |--------------AA # latency . 0 0 1 1 2 2 3 # . 5 0 5 0 5 0 # # raw_B . |---------YYYYYYYYYY # annot . |--------------AA # latency . 0 1 # . 5 0 # . # output |---------XXXXXXXXXXYYYYYYYYYY # annot |--------------AA---|----AA # latency . 0 0 1 1 2 2 3 # . 5 0 5 0 5 0 # EXPECTED_ONSET = [1.5, 2., 2., 2.5] EXPECTED_DURATION = [0.2, 0., 0., 0.2] EXPECTED_DESCRIPTION = ['dummy', 'BAD boundary', 'EDGE boundary', 'dummy'] def raw_factory(meas_date): raw = RawArray(data=np.empty((10, 10)), info=create_info(ch_names=10, sfreq=10., ), first_samp=10) raw.info['meas_date'] = meas_date raw.set_annotations(annotations=Annotations(onset=[.5], duration=[.2], description='dummy', orig_time=None)) return raw raw_A, raw_B = [raw_factory((x, 0)) for x in [0, 2]] raw_A.append(raw_B) assert_array_equal(raw_A.annotations.onset, EXPECTED_ONSET) assert_array_equal(raw_A.annotations.duration, EXPECTED_DURATION) assert_array_equal(raw_A.annotations.description, EXPECTED_DESCRIPTION) assert raw_A.annotations.orig_time == 0.0
40.188679
79
0.599139
4eb1f70c6816bfd7a4fd9e31e2280e858d14d1e7
208
py
Python
Models/Application.py
khatrivarun/tinder_for_jobs_py
208d42c7c283fc97f966ec7173d53c5c89651862
[ "MIT" ]
4
2020-12-04T06:56:48.000Z
2021-12-15T12:48:08.000Z
Models/Application.py
khatrivarun/tinder_for_jobs_py
208d42c7c283fc97f966ec7173d53c5c89651862
[ "MIT" ]
null
null
null
Models/Application.py
khatrivarun/tinder_for_jobs_py
208d42c7c283fc97f966ec7173d53c5c89651862
[ "MIT" ]
1
2020-05-23T08:01:31.000Z
2020-05-23T08:01:31.000Z
class Application: def __init__(self): self.application_id = None self.job_id = None self.applicant_email_id = None self.company_email_id = None self.response = ''
26
38
0.620192
20a242c1a971b9d80b2c80232b1a0ab6de606116
7,950
py
Python
test/Polynomial_tests.py
coproc/PolyPieces
35f6262e378de92147e20d8605d8247bd70ee4bb
[ "MIT" ]
null
null
null
test/Polynomial_tests.py
coproc/PolyPieces
35f6262e378de92147e20d8605d8247bd70ee4bb
[ "MIT" ]
null
null
null
test/Polynomial_tests.py
coproc/PolyPieces
35f6262e378de92147e20d8605d8247bd70ee4bb
[ "MIT" ]
null
null
null
import numbers import unittest from src.Polynomial import Polynomial as Poly TEST_CASES_CREATION = [ ('1', ([1], 'x')), (('1',['y']), ([1], 'y')), ('x', ([0, 1], 'x')), ('y', ([0, 1], 'y')), ('1-x', ([1, -1], 'x')), ('1-y', ([1, -1], 'y')), ('1-xy', ([1, ([0, -1], 'x')], 'y')), (('1-xy',['xy']), ([1, -1], 'xy')), ('(1-x)(1-y)', ([([1, -1], 'x'), ([-1, 1], 'x')], 'y')), ('(x+y+z)^2', ([([([0,0,1], 'x'), ([0,2], 'x'), 1], 'y'), ([([0,2], 'x'), 2], 'y'), 1], 'z')) ] TEST_CASES_NULLARY = { Poly.deg: [ (-1, []), (-1, [0]), ( 0, [1]), ( 1, [-1,2]), ( 2, [0,0,-1]) ], Poly._normalize: [ # univariate polys ([], []), ([], [0]), ([1], [1,0]), ([0,-1], [0,-1,0,0]), # multivariate polys: remove zero leading terms in all layers (([0, ([0,2], 'x')], 'y'), '(x^2+2xy+y^2)-x^2-y^2'), # = 2xy # multivariate polys: remove (layers with) variables with only constant terms (([([0,1], 'x'), 1], 'z'), '(x+y+z) - y') # = x + z ], Poly.allVarNames: [ ({'x'}, []), ({'x', 'y'}, 'xy'), ({'y'}, '(x+y)-x'), ({'t', 'x', 'y', 'z'}, 'z*x + yz^2+t'), ], Poly.der: [ # univariate polys ([], []), ([], [0]), ([], [1]), ([1], [0,1]), ([0,2], [0,0,1]), # multivariate polys (([0, ([0,2], 'y')], 'z'), '1+yz^2') # d(1+yz^2)/dz = 2yz ], Poly.intIndef: [ # univariate polys ([], []), ([], [0]), ([0,1], [1]), ([0,0,1], [0,2]), # multivariate polys (([0, 1, ([0,1], 'y')], 'z'), '1+2yz') # int(1+2yz)dz = z+yz^2 ] } TEST_CASES_UNARY = { Poly.deg: [ (-1, ('0', 'x')), (-1, ('0', 'y')), (0, ('1', 'x')), (0, ('1', 'y')), (1, ('x', 'x')), (0, ('x', 'y')), (0, ('y', 'x')) ], Poly.coeff: [ (0, ('0', 0)), (0, ('0', 1)), (1, ('1', 0)), (0, ('1', 1)), (0, ('x', 0)), (1, ('x', 1)), (0, ('x', 2)), (0, ('0', 0, 'x')), (0, ('0', 0, 'y')), (0, ('0', 0, 't')), (1, ('x', 1, 'x')), (0, ('x', 1, 'y')), (0, ('y', 1, 'x')), (([0,1], 'y'), ('xy', 1, 'x')), (([0,1], 'x'), ('xy', 1, 'y')), ], Poly.eval: [ (0, ('x', 0)), (1, ('x', 1)), (-1, ('x', -1)), (1, ('x^2', -1)), (0, ('x^2+x', -1)), ([0,1], ('x+y', 0)), ([2,1], ('x+y', 2)), ], Poly.subs: [ (0, ('x+y', {'x':0, 'y':0})), (5, ('x+y', {'x':2, 'y':3})), (([0,3], 'x'), ('x+y', {'y': Poly.fromString('2x')})), # 3x = (x+y)|(y=2x) (([0,3], 'y'), ('x+y', {'x': Poly.fromString('2y')})), # 3x = (x+y)|(y=2x) ], Poly.der: [ ([1], ('x', 'x')), (([], 'y'), ('x', 'y')), ([], ('y', 'x')) ], Poly.intIndef: [ ([0,1], ('1', 'x')), (([0,1], 'y'), ('1', 'y')), (([0, ([0,1], 'x')], 'y'), ('y', 'x')), (([0, ([0,1], 'x')], 'y'), ('x', 'y')), (([0, ([0,0,1], 'x')], 'y'), ('2xy', 'x')), # int(2xy)dx = x^2y (([0, 0, ([0,1], 'x')], 'y'), ('2xy', 'y')), # int(2xy)dy = xy^2 ] } # test cases with polynomial and polynomial argument TEST_CASES_BINARY = { # when substituting a polynomial for the main variable, the result will also be a polynomial Poly.eval: [ ([], ('0', 'x')), ([], ('x', '0')), ([1], ('x', '1')), (([0,1], 'x'), ('x', 'x')), (([0,1], 'x'), ('y', 'x')), (([0,1], 'y'), ('x', 'y')), (([], 't'), ('x-t', 't')), # Polynomial(0) = (x-t)(x=t) ([-1, 3, -3, 1], ('x^3', 'x-1')), ], Poly.iadd: [ ([1,0,1], ('x-1', 'x^2-x+2')), # x^2+1 = (x-1) + (x^2-x+2) (([0,1], 't'), ('0', 't')), (([([0,1], 'x'), 1],'y'), ('x', 'y')), (([([0,1], 'x'), 1],'y'), ('y', 'x')), ], Poly.isub: [ ([-3,2,-1], ('x-1', 'x^2-x+2')), # -x^2+2x-3 = (x-1) - (x^2-x+2) (([([0,1], 'x'), -1],'y'), ('x', 'y')), ], Poly.imul: [ ([], ('x', '0')), ([], ('0', 'x')), ([-1,0,1], ('x-1', 'x+1')), (([0, ([0,1], 'x')],'y'), ('x', 'y')), ], } def _createPoly(repr): if isinstance(repr, Poly): return repr if isinstance(repr, str): return Poly.fromString(repr) if isinstance(repr, tuple): return Poly(*repr) if isinstance(repr[0], list) else Poly.fromString(*repr) if isinstance(repr, list) or isinstance(repr, numbers.Number): return Poly(repr) raise TypeError('cannot create polynomial from type %s (%s)' % (type(repr), repr)) class PolynomialTests(unittest.TestCase): def _assertPolyStruct(self, polyStruct, p, depthPath=None, rootStruct=None, rootPoly=None): if depthPath is None: depthPath = [] if rootStruct is None: rootStruct = polyStruct if rootPoly is None: rootPoly = p whileMsg = (' while checking coeff %s of %s ~ %s' % (' of coeff '.join([str(d) for d in depthPath]), rootStruct, rootPoly))\ if depthPath else '' coeffsExp,varNameExp = polyStruct self.assertEqual(varNameExp, p.varName, 'testing variable in %s ~ %s%s' % (polyStruct, p, whileMsg)) self.assertEqual(len(coeffsExp), len(p.coeffs), 'testing coeff count in %s ~ %s%s (%s)' % (polyStruct, p, whileMsg, p.coeffs)) for idx,(cExp,cPoly) in enumerate(zip(coeffsExp, p.coeffs)): if isinstance(cExp, tuple) and isinstance(cPoly, Poly): self._assertPolyStruct(cExp, cPoly, [idx]+depthPath, rootStruct, rootPoly) else: self.assertEqual(cExp, cPoly, 'testing coeff %d in %s ~ %s%s' % (idx, polyStruct, p, whileMsg)) def test_creation(self): print('testing Polynomial creation: ', end='') for expr, polyStruct in TEST_CASES_CREATION: try: p = _createPoly(expr) self._assertPolyStruct(polyStruct, p) print('.', end='') except AssertionError: print('F\n', end='') raise except: print('E\n', end='') raise print() def test_nullaryMethods(self): for func,inOutData in TEST_CASES_NULLARY.items(): print('testing Polynomial.%s (nullary): ' % func.__name__, end='') for resultExp,polyRepr in inOutData: try: p = _createPoly(polyRepr) f_p = func(p) # if there is no return value, method has changed polynomial result = p if f_p is None else f_p if isinstance(result, Poly): if isinstance(resultExp, list): resultExp = (resultExp, 'x') self._assertPolyStruct(resultExp, result) else: self.assertEqual(resultExp, result, 'testing %s = (%s).%s()' % (resultExp, p, func.__name__)) print('.', end='') except AssertionError: print('F\n', end='') raise except: print('E\n', end='') raise print() def test_unaryMethods(self): for func,inOutData in TEST_CASES_UNARY.items(): print('testing Polynomial.%s (unary): ' % func.__name__, end='') for resultExp,(polyRepr,*args) in inOutData: try: p = _createPoly(polyRepr) f_p = func(p, *args) # if there is no return value, method has changed polynomial result = p if f_p is None else f_p if isinstance(result, Poly): if isinstance(resultExp, list): resultExp = (resultExp, 'x') self._assertPolyStruct(resultExp, result) else: self.assertEqual(resultExp, result, 'testing %s = (%s).%s(%s)' % (resultExp, p, func.__name__, args)) print('.', end='') except AssertionError: print('F\n', end='') raise except: print('E\n', end='') raise print() def test_binaryMethods(self): for func,inOutData in TEST_CASES_BINARY.items(): print('testing Polynomial.%s (binary): ' % func.__name__, end='') for resultExp,(polyRepr,argPolyRepr) in inOutData: try: p = _createPoly(polyRepr) pa = _createPoly(argPolyRepr) f_p = func(p, pa) # if there is no return value, method has changed polynomial result = p if f_p is None else f_p if isinstance(result, Poly): if isinstance(resultExp, list): resultExp = (resultExp, 'x') self._assertPolyStruct(resultExp, result) else: self.assertEqual(resultExp, result, 'testing %s = (%s).%s(%s)' % (resultExp, p, func.__name__, pa)) print('.', end='') except AssertionError: print('F\n', end='') raise except: print('E\n', end='') raise print() # def test_special(self): # print('testing special: ', end='') # p = _createPoly('y') # result = p.der('x') # print(result) # self._assertPolyStruct(([],'x'), result) # print()
28.597122
107
0.500126
75eedbb37841c98028724cac224a7d1d8b791851
163
py
Python
main.py
ChrisEngstrom/Py-PE-1
9302e12604ed8abbf0cdaad3c32d974b665d7914
[ "MIT" ]
null
null
null
main.py
ChrisEngstrom/Py-PE-1
9302e12604ed8abbf0cdaad3c32d974b665d7914
[ "MIT" ]
null
null
null
main.py
ChrisEngstrom/Py-PE-1
9302e12604ed8abbf0cdaad3c32d974b665d7914
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 sumOfMultiples = 0 for i in range(3, 1000): if (i % 3 == 0 or i % 5 == 0): sumOfMultiples += i print(sumOfMultiples)
14.818182
27
0.558282
8bb55b3a473e5b5a5894fda5e0c0ce9459a3913d
3,394
py
Python
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/show_off_site_backup_policy_response.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/show_off_site_backup_policy_response.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/show_off_site_backup_policy_response.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ShowOffSiteBackupPolicyResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'policy_para': 'list[GetOffSiteBackupPolicy]' } attribute_map = { 'policy_para': 'policy_para' } def __init__(self, policy_para=None): """ShowOffSiteBackupPolicyResponse - a model defined in huaweicloud sdk""" super(ShowOffSiteBackupPolicyResponse, self).__init__() self._policy_para = None self.discriminator = None if policy_para is not None: self.policy_para = policy_para @property def policy_para(self): """Gets the policy_para of this ShowOffSiteBackupPolicyResponse. 备份策略对象,包括备份类型、备份保留天数、目标区域ID和目标project ID。 :return: The policy_para of this ShowOffSiteBackupPolicyResponse. :rtype: list[GetOffSiteBackupPolicy] """ return self._policy_para @policy_para.setter def policy_para(self, policy_para): """Sets the policy_para of this ShowOffSiteBackupPolicyResponse. 备份策略对象,包括备份类型、备份保留天数、目标区域ID和目标project ID。 :param policy_para: The policy_para of this ShowOffSiteBackupPolicyResponse. :type: list[GetOffSiteBackupPolicy] """ self._policy_para = policy_para def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowOffSiteBackupPolicyResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
29.513043
84
0.591043
aca859e2f25f12a3ab7b33021b7732ed2ce39076
1,751
py
Python
script.mrknow.urlresolver/lib/urlresolver9/plugins/uploadaf.py
mrknow/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
105
2015-11-28T00:03:11.000Z
2021-05-05T20:47:42.000Z
script.mrknow.urlresolver/lib/urlresolver9/plugins/uploadaf.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
918
2015-11-28T14:12:40.000Z
2022-03-23T20:24:49.000Z
script.mrknow.urlresolver/lib/urlresolver9/plugins/uploadaf.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
111
2015-12-01T14:06:10.000Z
2020-08-01T10:44:39.000Z
""" grifthost urlresolver plugin Copyright (C) 2015 tknorris This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import re from lib import captcha_lib from lib import helpers from urlresolver9 import common from urlresolver9.resolver import UrlResolver, ResolverError MAX_TRIES = 3 class UploadAfResolver(UrlResolver): name = "upload.af" domains = ["upload.af"] pattern = '(?://|\.)(upload\.af)/([0-9a-zA-Z/]+)' def __init__(self): self.net = common.Net() def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) html = self.net.http_GET(web_url).content tries = 0 while tries < MAX_TRIES: data = helpers.get_hidden(html) data.update(captcha_lib.do_captcha(html)) html = self.net.http_POST(web_url, form_data=data).content match = re.search('href="([^"]+)[^>]*>Download<', html, re.DOTALL) if match: return match.group(1) tries += 1 raise ResolverError('Unable to resolve upload.af link. Filelink not found.') def get_url(self, host, media_id): return 'https://upload.af/%s' % (media_id)
32.425926
84
0.68418
7e16e37c2ebc8e64fa127ae390f890e4d3ec397a
7,909
py
Python
docs/conf.py
alexhouse/python-fitbark
8a665c8974829079781fb6e65fbe8b4fe3d1e5da
[ "Apache-2.0" ]
1
2019-03-12T04:48:55.000Z
2019-03-12T04:48:55.000Z
docs/conf.py
alexhouse/python-fitbark
8a665c8974829079781fb6e65fbe8b4fe3d1e5da
[ "Apache-2.0" ]
null
null
null
docs/conf.py
alexhouse/python-fitbark
8a665c8974829079781fb6e65fbe8b4fe3d1e5da
[ "Apache-2.0" ]
1
2020-07-16T07:01:51.000Z
2020-07-16T07:01:51.000Z
# -*- coding: utf-8 -*- # # Python-FitBark documentation build configuration file, created by # sphinx-quickstart on Wed Mar 14 18:51:57 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. import fitbark project = u'Python-FitBark' copyright = fitbark.__copyright__ # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = fitbark.__version__ # The full version, including alpha/beta/rc tags. release = fitbark.__release__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'classic' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Python-FitBarkdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Python-FitBark.tex', u'Python-FitBark Documentation', u'Issac Kelly, Percy Perez, Brad Pitcher', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'python-fitbark', u'Python-FitBark Documentation', [u'Alex House'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Python-FitBark', u'Python-FitBark Documentation', u'Alex House', 'Python-FitBark', 'FitBark API Python Client Implementation', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
32.020243
80
0.717158
ae163ee39500634db7bbae341bb00f08a9d7af26
3,546
py
Python
Paper/paper-export.py
dropbox/DropboxBusinessScripts
4f4c32ddd488b29e7fd16a40966761e70a758239
[ "Apache-2.0" ]
48
2015-11-09T20:05:14.000Z
2021-12-17T23:35:12.000Z
Paper/paper-export.py
dropbox/DropboxBusinessScripts
4f4c32ddd488b29e7fd16a40966761e70a758239
[ "Apache-2.0" ]
null
null
null
Paper/paper-export.py
dropbox/DropboxBusinessScripts
4f4c32ddd488b29e7fd16a40966761e70a758239
[ "Apache-2.0" ]
24
2015-11-18T16:15:18.000Z
2022-03-04T10:35:22.000Z
# File: paper-export.py # Export Paper Docs Tool # Version 1.0 # Author: Marcel Ribas - @macribas # Date: 3/31/2021 # Python script to export Paper Docs from a Dropbox account. It can export in either HTML or Markdown. # It only works in accounts that have Paper In the FileSystem (PiFS). Script checks the account for that condition. # Does not work recursively, on purpose. You need to select the folders where your Paper docs are. Saves files in the working local folder. # Once you are comfortable with running this, then you can modify it to work recursively. # Your API key needs to have Full Dropbox access and files.content.read scope. import dropbox import os # Dropbox try: dbx = dropbox.Dropbox('<YOUR_API_KEY_HERE>') # check if account has PiFS features = dbx.users_features_get_values([dropbox.users.UserFeature.paper_as_files]) pifs = features.values[0].get_paper_as_files().get_enabled() except dropbox.exceptions.AuthError: print("It was not possible to connect to your Dropbox account. Please try another token.") print("You need the files.content.read scope") quit() if not pifs: print("This account does not have Paper In The FileSystem (PiFS) enabled") quit() while True: path = input("Enter the Dropbox path for your Paper docs (<RETURN> for the root folder): ") if path.startswith('/') or not path: break; else: print("Invalid folder name, please try again.") while True: go_on = input("This process might take a while, depending on the size of the folder you are traversing. Continue (Y or N)? ") if go_on.upper() == 'Y': break; elif go_on.upper() == 'N': quit() print("Processing") # Check if folder exists try: folder = dbx.files_list_folder(path) cursor = folder.cursor except dropbox.exceptions.DropboxException: print("Could not find folder {0}".format(path)) quit() # if file is paper doc, put it in list paper_docs = [file.path_display for file in folder.entries if isinstance(file, dropbox.files.FileMetadata) if not file.is_downloadable if os.path.splitext(file.path_lower)[1] == ".paper"] while folder.has_more: print("Still working") folder = dbx.files_list_folder_continue(cursor) cursor = folder.cursor paper_docs += [file.path_display for file in folder.entries if isinstance(file, dropbox.files.FileMetadata) if not file.is_downloadable if os.path.splitext(file.path_lower)[1] == ".paper"] size = len(paper_docs) if size == 0: print("You don't have any Paper docs in this path. ") quit() else: if path: folder_name = path else: folder_name = "the root folder" print("You have {0} Paper docs in {1}.".format(size,folder_name)) while True: export = input("Do you want to export these to your computer? (Y/N) ") if export.upper() == 'Y': break; elif export.upper() == 'N': quit() print("These Paper docs will be exported to the folder where you are running this script from.") while True: format = input("Which format do you want to export as? (1) HTML or (2) Markdown? (3) to quit: ") if format == '1': export_as = ("html",".html") break elif format == '2': export_as = ("markdown",".md") break elif format == '3': quit() else: print("Invalid format") for paper_doc in paper_docs: folder, filename = os.path.split(paper_doc) basename, ext = os.path.splitext(filename) print("Exporting {0} as {1}".format(paper_doc, basename + export_as[1])) with open(basename + export_as[1], "wb") as f: metadata, res = dbx.files_export(path=paper_doc,export_format=export_as[0]) f.write(res.content) print("Export completed!")
32.833333
189
0.723632
7dcf66207cbc23910b7a4c44d7d78ced7f232cef
1,217
py
Python
dataloader/mnist.py
lucamocerino/Binary-Neural-Networks-PyTorch-1.0
aa62f5449e4f64bc821aea4d9921572e8dca8037
[ "MIT" ]
22
2020-09-15T12:59:49.000Z
2022-02-12T15:56:32.000Z
dataloader/mnist.py
lucamocerino/Binary-Neural-Networks-PyTorch-1.0
aa62f5449e4f64bc821aea4d9921572e8dca8037
[ "MIT" ]
3
2021-08-07T15:50:13.000Z
2022-01-27T09:46:19.000Z
dataloader/mnist.py
lucamocerino/Binary-Neural-Networks-PyTorch-1.0
aa62f5449e4f64bc821aea4d9921572e8dca8037
[ "MIT" ]
2
2021-07-19T06:34:55.000Z
2022-03-22T18:06:03.000Z
from torch.utils.data import DataLoader from os.path import join from torchvision.datasets import MNIST from torchvision.transforms import Compose, Resize, Normalize, ToTensor def load_train_data(batch_size=128, sampler=None): cuda = True loader_kwargs = {'num_workers': 0, 'pin_memory': True} if cuda else {} train_loader = DataLoader( MNIST(join('datasets', 'mnist'), train=True, download=True, transform=Compose([ Resize((28, 28)), ToTensor(), Normalize((0.1307,),(0.308,)), ])), batch_size=batch_size, shuffle=True, **loader_kwargs) return train_loader def load_test_data(batch_size=1000, sampler=None): cuda = True loader_kwargs = {'num_workers': 0, 'pin_memory': True} if cuda else {} test_loader = DataLoader( MNIST(join('datasets', 'mnist'), train=False, download=True, transform=Compose([ Resize((28, 28)), ToTensor(), Normalize((0.1307,),(0.308,)), ])), batch_size= batch_size, shuffle=False,sampler=sampler, **loader_kwargs) return test_loader
31.205128
79
0.590797
4f5db26a240b58b54d7c586ddff346eac69f1c1b
1,192
py
Python
src/front_end/streamlit_helpers.py
Calychas/relocation-recommendation
b6a9c5d2df49e1656af76a8402c703be52546372
[ "MIT" ]
null
null
null
src/front_end/streamlit_helpers.py
Calychas/relocation-recommendation
b6a9c5d2df49e1656af76a8402c703be52546372
[ "MIT" ]
2
2021-11-05T11:52:10.000Z
2022-01-27T23:16:53.000Z
src/front_end/streamlit_helpers.py
Calychas/relocation-recommendation
b6a9c5d2df49e1656af76a8402c703be52546372
[ "MIT" ]
null
null
null
import pydeck as pdk selectbox_options = { "price": "Mean price of offers", "price_per_m": "Mean price per m2 of offers", "area": "Mean area of offers", "count": "Number of offers" } cities_selectbox_options = { "wroclaw": "Wrocław", "gdansk": "Gdańsk", "warszawa": "Warszawa", "krakow": "Kraków", "poznan": "Poznań" } radio_buttons_options = [ (("x", "y", "z"), "Road Network + GTFS data + Functional data"), (("y", "z"), "Functional data + GTFS data"), (("x", "z"), "GTFS data + Road Network"), (("x", "y"), "Functional data + Road Network"), (("x",), "Only Road Network"), (("y",), "Only GTFS data"), (("z",), "Only Functional data") ] VIEW_STATE_ZOOM = 10 LINE_WIDTH = 0.3 LINE_COLOR = [0, 0, 0] OPACITY = 0.5 color_mapping = { "aeroway": "#F280BF", "amenity": "#FF8000", "building": "#908b86", "healthcare": "#CC0000", "historic": "#A6A64D", "landuse": "#808000", "leisure": "#80E600", "military": "#4B5320", "natural": "#33CC33", "office": "#b3aca7", "shop": "#804DFF", "sport": "#D94D4D", "tourism": "#E6BF80", "water": "#0080FF", "waterway": "#80BFFF" }
23.372549
68
0.547819
9632a1993e43759f0e5dd5fce8d6da2bff64347e
13,930
py
Python
profitability.py
slimcoin-project/slm-tools
4649327cbf80c747f1e193852f23aeeae64a72f8
[ "MIT" ]
null
null
null
profitability.py
slimcoin-project/slm-tools
4649327cbf80c747f1e193852f23aeeae64a72f8
[ "MIT" ]
null
null
null
profitability.py
slimcoin-project/slm-tools
4649327cbf80c747f1e193852f23aeeae64a72f8
[ "MIT" ]
null
null
null
# this script uses parts of the original Slimcoin code (/src/simulations/pob_difficulty.py) # (c) The Slimcoin Developers 2014-19 # MIT License from random import random as rand_num import math, argparse, datetime #constants for block types #do we need to compute also POS blocks? (their difficulty could be ignored probably) #TODO: Reward calculation #TODO: Effect of participation on short-term profitability - should only be relevant if changes sharply. POW = 0 POB = 1 POW_PROBABILITY = 0.8 POB_TARGET = 3 BURN_DECAY_RATE = 1.00000198 # original Slimcoin value. POWPOB_BLOCKS_PER_DAY = 96 GENESIS_BLOCK_DATE = datetime.date(2014, 5, 28) # day of SLM inception # default range for burn values DEFAULT_POB_RANGE = 10000 class CBlock: total_coins_burned = 0 ebc = 0 # nEffectiveBurnCoins blocks = [] def __init__(self, block_type, coins_burned=0): # be careful that blocks MUST be generated ALWAYS in strict sequential order for this to work. # self.coins_burned = 10000 * rand_num() # replaced, as we want to know what happens with different values. self.blockheight = len(CBlock.blocks) self.coins_burned = coins_burned self.type = block_type self.diff = calc_PoB_difficulty(self.coins_burned) CBlock.total_coins_burned += self.coins_burned self.total_coins_until_now = CBlock.total_coins_burned # Effective Burn Coins: burnt coins only decay on PoW blocks. # original: pindexPrev->nEffectiveBurnCoins / BURN_DECAY_RATE) + nBurnedCoins if self.type == POW: CBlock.ebc /= BURN_DECAY_RATE CBlock.ebc += self.coins_burned self.ebc = CBlock.ebc def print_self(self): print("Block: %d" % self.blockheight) if self.type == POW: print("Type: POW") elif self.type == POB: print("Type: POB") else: print("Type: Unknown") print("Coins Burned: %f" % self.coins_burned) print("Difficulty: %d" % self.diff) print("nEffectiveBurnCoins: %f" % self.ebc) print("Total Coins Burned: %f" % self.total_coins_until_now) print("-" * 30) ## tool functions for CBlock class def PoW_blocks_back(): # modified to take "blocks" value (should not be global). # calculates how many blocks back from now were PoW. blocks = CBlock.blocks nPoW = 0 i = -1 if len(blocks) == 0: return nPoW while True: if i == -1 * len(blocks) - 1 or blocks[i].type == POB: break nPoW += 1 i -= 1 return nPoW def logistic_curve(x): return (2 / (1 + math.e ** (-0.2 * x))) - 1 def calc_PoB_difficulty(cur_blk_coins_burned): #genesis block blocks = CBlock.blocks total_coins_burned = CBlock.total_coins_burned if len(blocks) == 0: return 10000 nPoW = PoW_blocks_back() offset = POB_TARGET - nPoW #offset > 0, increas diff #offset < 0, decrease diff #offset == 0, do nothing adjust = logistic_curve(offset) # TODO: Find out if 0 is the really correct value when still no coins were burnt (near genesis block). if total_coins_burned > 0: burn_adjust = cur_blk_coins_burned / total_coins_burned else: burn_adjust = 0 last_diff = blocks[-1].diff new_diff = last_diff * (1 + adjust - burn_adjust) return new_diff ## small new functions def reset_blocks(): CBlock.blocks = [] CBlock.ebc = 0 CBlock.total_coins_burned = 0 def get_days_since_inception(): today = datetime.date.today() timedelta = today - GENESIS_BLOCK_DATE return timedelta.days def randomize_burns(avg_coins_burned, pob_range=DEFAULT_POB_RANGE): # this checks the last 1000 burn transactions and only allows a high # burn tx when the average of the last blocks was lower than avg_coins_burned blockheight = len(CBlock.blocks) begin_sequence = max(0, blockheight - 1000) # cannot become negative last_1000_burns = sum([ block.coins_burned for block in CBlock.blocks[begin_sequence:blockheight] ]) rawburn = max(0, avg_coins_burned + (rand_num()-0.5) * pob_range) if last_1000_burns / (blockheight - begin_sequence) > avg_coins_burned: if rawburn > avg_coins_burned: burn_value = 0 else: burn_value = rawburn else: burn_value = rawburn if burn_value > 0: # for debugging print(blockheight, burn_value) return burn_value def print_intro(p): print("Calculating probabilities for the following scenario:") print("- Burnt amount:", p.burnt_amount) print("- nEffectiveBurnCoins:", p.neffectiveburncoins) if p.days_before and not p.blocks_before: print("- Days before burn transaction:", p.days_before) if p.days_after and not p.blocks_after: print("- Days generated after burn transaction:", p.days_after) if p.blocks_before: print("- Blocks generated before burn transaction:", p.blocks_before) if p.blocks_after: print("- Blocks generated after burn transaction:", p.blocks_after) if p.average_burn_rate: print("- Average burn rate: %f coins per PoB/PoW block." % p. average_burn_rate) if p.burn_event: print("- Another burn event of %f coins" % p.burn_event) if p.burn_event_blocks: print(" at %f blocks in the future" % p.burn_event_blocks) ## main loops def gen_fake_blocks(nBlocks, avg_coins_burned=0, pob_range=None, randomize=False, verbose=False, reset=False): # generate psuedo blocks randomly to fill the blocks list # new variable avg_coins_burned, which is the value passed to each block. if reset: reset_blocks() blocks = CBlock.blocks # genesis block # only added if this is the first function call if len(blocks) == 0: blocks.append(CBlock(POW)) for n in range(nBlocks): multi = blocks[-1].diff / blocks[0].diff if randomize: if not pob_range: pob_range = DEFAULT_POB_RANGE coins_burned = randomize_burns(avg_coins_burned, pob_range) else: coins_burned = avg_coins_burned if rand_num() < multi * POW_PROBABILITY or blocks[-1].type == POB: #make a PoW block blocks.append(CBlock(POW, coins_burned)) else: #make a PoB block blocks.append(CBlock(POB, coins_burned)) if verbose: for block in blocks: block.print_self() def create_block_sequence(blocksbefore=0, ebc=0, blocksafter=0, ownburn=0, otherburn=0, otherburnblock=None, avg_coins_burned=None, randomize=True, reset=True, verbose=False, pob_range=None): if reset: reset_blocks() # first, generate all blocks until "now". # calculate average burn from ebc (nEffectiveBurnCoins) value. # Note: Real proportion of PoB/PoW blocks seems to be around 0.77, not 0.8. if blocksbefore > 0: est_pow_blocks_before = blocksbefore * 0.77 # * POW_PROBABILITY # estimated value, real value comes after avg burn. avg_decay = BURN_DECAY_RATE ** (est_pow_blocks_before / 2) avg_burn_before = (ebc / blocksbefore) * avg_decay gen_fake_blocks(blocksbefore, avg_coins_burned=avg_burn_before) # uncomment following lines for debugging: # print(avg_burn_before) # print(est_pow_blocks_before) # powbl = len([b for b in CBlock.blocks if b.type == POW]) # allbl = len(CBlock.blocks) # print("Real proportion", powbl / allbl) # print(allbl, blocksbefore) # if avg_coins_burned is not given, then we use the value derived from nEffectiveBurnCoins we used for older blocks. if not avg_coins_burned: if avg_burn_before: avg_coins_burned = avg_burn_before else: avg_coins_burned = 0 gen_fake_blocks(1, avg_coins_burned=ownburn + avg_coins_burned, randomize=randomize, pob_range=pob_range) # blocks after: depend on otherburn/otherburnblock values if otherburn: if otherburnblock: gen_fake_blocks(otherburnblock - 1, avg_coins_burned=avg_coins_burned) blocksafter -= otherburnblock gen_fake_blocks(1, avg_coins_burned=avg_coins_burned + otherburn) gen_fake_blocks(blocksafter, avg_coins_burned=avg_coins_burned, randomize=randomize, pob_range=pob_range) if verbose: for block in CBlock.blocks: block.print_self() def calc_probabilities(ownburn_blockheight, ownburn, participation, verbose=False, printresult=True): # loop from "now" on, past blocks are not needed in this loop. expected_probabilities = [] pow_blocks_after_burn = 0 for block in CBlock.blocks[ownburn_blockheight:]: if block.type == POB: # you don't get PoB rewards for PoW blocks. total_ebc = block.ebc * participation own_ebc = ownburn / (BURN_DECAY_RATE ** pow_blocks_after_burn) probability = own_ebc / total_ebc expected_probabilities.append(probability) elif block.type == POW: pow_blocks_after_burn += 1 #only pow blocks lead to decay. if verbose: block.print_self() if block.type == POB: print("Own Effective Burnt Coins: %f" % own_ebc) print("Real Effective Burnt Coins with participation %f: %f" % (participation, total_ebc)) print("Block find probability: %f" % probability) if printresult: print("=" * 30) initial_ebc = CBlock.blocks[ownburn_blockheight-1].ebc probsum = sum(expected_probabilities) pobblocks = len(expected_probabilities) # should give the correct number after the loop print("Result for %f burnt coins at %f nEffectiveBurnCoins and %f mint participation" % (ownburn, initial_ebc, participation)) print("Expected found blocks (from %i PoB blocks)\n(sum of all probabilities): %f" % (pobblocks, probsum)) return expected_probabilities def get_probability(blocksbefore=0, ebc=0, blocksafter=0, daysbefore=None, daysafter=None, ownburn=0, otherburn=0, otherburnblock=None, avg_coins_burned=None, randomize=True, reset=True, verbose=False, pob_range=None, participation=0.2, printresult=True): if not blocksbefore: blocksbefore = POWPOB_BLOCKS_PER_DAY * daysbefore if not blocksafter: blocksafter = POWPOB_BLOCKS_PER_DAY * daysafter create_block_sequence(blocksbefore, ebc, blocksafter, ownburn, otherburn, otherburnblock, avg_coins_burned, randomize, reset=True, verbose=False, pob_range=pob_range) return calc_probabilities(ownburn_blockheight=blocksbefore + 1, ownburn=ownburn, participation=participation, verbose=verbose, printresult=printresult) def cli(): helptext_daysbefore = 'Generate blocks for X days before the burn transaction. Default is since the time of the coin inception (%s)' % GENESIS_BLOCK_DATE.strftime("%Y-%m-%d") days_since_inception = get_days_since_inception() parser = argparse.ArgumentParser(description="Profitability calculator.") parser.add_argument('burnt_amount', help='Amount of the burn transaction.', type=float) parser.add_argument('neffectiveburncoins', help='Effective burn coins at the moment of the burn.', type=float) parser.add_argument('-da', '--days-after', help='Generate blocks for X days after burn transaction. Default is one year (365 days).', type=int, default=365) parser.add_argument('-db', '--days-before', help=helptext_daysbefore, type=int, default=days_since_inception) # advanced arguments parser.add_argument('-bb', '--blocks-before', help='Generate X PoW/PoB blocks before the burn transaction. (Note: PoS blocks are ignored.)', type=int) parser.add_argument('-ba', '--blocks-after', help='Generate X PoW/PoB blocks after the burn transaction.', type=int) parser.add_argument('-e', '--burn-event', help='Add one other significant burn transaction with amount X in the future. This allows to calculate the impact of a large burn transaction.', type=float) parser.add_argument('-eb', '--burn-event-blocks', help='Blocks in the future the burn event will occur. By default, it is the next block after the own burn transaction.', type=int) parser.add_argument('-p', '--participation', help='Burning participation. Part of the coins which are effectively participating in burning (values from 0 to 1, default: 0.25).', type=float, default=0.25) parser.add_argument('-a', '--average-burn-rate', help='Average burning rate per PoW/PoB block. As a default, the average of the blocks preceding the burn transaction (derived from EffectiveBurnCoins) will be used.', type=float) parser.add_argument('-r', '--randomize', help='Add some randomness to the average burn transactions.', action='store_true') parser.add_argument('-g', '--range', help='Range for the randomness, in coins.', type=float) parser.add_argument('-v', '--verbose', help='Verbose mode. Will show all blocks with data.', action='store_true') parser.add_argument('-s', '--silent', help='Silent mode. Will only return probabilities (to use in scripts).', action='store_true') return parser.parse_args() if __name__ == "__main__": p = cli() if p.silent == False: printresult = True print_intro(p) else: printresult = False get_probability(blocksbefore=p.blocks_before, ebc=p.neffectiveburncoins, blocksafter=p.blocks_after, daysbefore=p.days_before, daysafter=p.days_after, ownburn=p.burnt_amount, otherburn=p.burn_event, otherburnblock=p.burn_event_blocks, avg_coins_burned=p.average_burn_rate, randomize=p.randomize, verbose=p.verbose, pob_range=p.range, participation=p.participation, printresult=printresult)
38.694444
393
0.684853
7b18c6191087427e04f05d2371ff5c2872c67fce
310
py
Python
spider/settings.py
JamesZBL/zhilian_spider
613879e59b0e42f4a95d41cc91c369330bf8f9ac
[ "Apache-2.0" ]
61
2018-02-13T09:12:07.000Z
2022-03-01T03:38:37.000Z
spider/settings.py
JamesZBL/zhilian_spider
613879e59b0e42f4a95d41cc91c369330bf8f9ac
[ "Apache-2.0" ]
1
2018-05-21T08:54:35.000Z
2018-05-21T08:54:35.000Z
spider/settings.py
JamesZBL/zhilian_spider
613879e59b0e42f4a95d41cc91c369330bf8f9ac
[ "Apache-2.0" ]
8
2018-05-10T05:59:39.000Z
2022-01-30T07:12:09.000Z
# -*- coding:utf-8 -*- """ @author:James Created on:18-2-12 19:43 """ # 搜索结果页 URL_RESULT = 'http://sou.zhaopin.com/jobs/searchresult.ashx' # 搜索请求参数名 # 1.职位关键字 KEY_KEYWORD = 'kw' # 2.地域范围 KEY_AREA = 'jl' # 3.页码 KYE_PAGENUM = 'p' # 关键字 VALUE_KEYWORD = 'Java' # 范围 VALUE_AREA = '全国' # 页数限制 PAGE_LIMIT = 1
11.071429
60
0.632258
07066fa386a9c539d21e191421d029d7409e3270
1,037
py
Python
orm_sqlfan/libreria/migrations/0003_auto_20191125_0515.py
rulotr/djangorm_sqlfan
4bcadd1459e5a39584bb5ad8bafaaf3993324f6a
[ "MIT" ]
2
2021-09-29T01:08:56.000Z
2022-02-14T03:34:37.000Z
orm_sqlfan/libreria/migrations/0003_auto_20191125_0515.py
rulotr/djangorm_sqlfan
4bcadd1459e5a39584bb5ad8bafaaf3993324f6a
[ "MIT" ]
4
2020-02-12T02:52:19.000Z
2021-04-08T20:46:05.000Z
orm_sqlfan/libreria/migrations/0003_auto_20191125_0515.py
rulotr/djangorm_sqlfan
4bcadd1459e5a39584bb5ad8bafaaf3993324f6a
[ "MIT" ]
null
null
null
# Generated by Django 2.2.7 on 2019-11-25 05:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('libreria', '0002_libro'), ] operations = [ migrations.AlterField( model_name='libro', name='desc_corta', field=models.CharField(default='Sin reseña', max_length=2000), ), migrations.AlterField( model_name='libro', name='fecha_publicacion', field=models.DateField(null=True), ), migrations.AlterField( model_name='libro', name='imagen', field=models.URLField(max_length=85, null=True), ), migrations.AlterField( model_name='libro', name='paginas', field=models.PositiveIntegerField(), ), migrations.AlterField( model_name='libro', name='titulo', field=models.CharField(blank=True, max_length=70), ), ]
26.589744
74
0.550627
45256f1b6aa8ee4b8a135f61bbf647d92e22babc
4,822
py
Python
UserManagement/forms.py
SkillSmart/ConferenceManagementSystem
43af08260f321d1d506755da5c1b6ce1cf95fc42
[ "MIT" ]
null
null
null
UserManagement/forms.py
SkillSmart/ConferenceManagementSystem
43af08260f321d1d506755da5c1b6ce1cf95fc42
[ "MIT" ]
null
null
null
UserManagement/forms.py
SkillSmart/ConferenceManagementSystem
43af08260f321d1d506755da5c1b6ce1cf95fc42
[ "MIT" ]
null
null
null
from django.forms import ModelForm, Form from django.contrib.auth.models import User from django.forms.models import formset_factory, modelform_factory, inlineformset_factory # Crispy Imports from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Div, Field # Profile Models from Authentication.forms import UserModelForm from .models import ExpertProfile, TeamProfile, StudentProfile, Program # Expert Attribute Models from .models import MediationExperience, NegotiationExperience # Student Attribute Models from .models import Internship, Course, Award # # Setting up the forms class UserProfileForm(ModelForm): class Meta: model = User fields = ['first_name', 'last_name', 'email'] class ExpertModelForm(ModelForm): class Meta: model = ExpertProfile exclude = ['user'] class TeamModelForm(ModelForm): class Meta: model = TeamProfile exclude = ['member_a', 'member_b', 'coach_a', 'coach_b'] fields = [] class StudentModelForm(ModelForm): class Meta: model = StudentProfile exclude = ['attendent', 'mediation_courses', 'negotiation_courses'] # Attribute Forms Student Attendents class InternshipForm(ModelForm): class Meta: model = Internship exclude = [] class CourseForm(ModelForm): class Meta: model = Course exclude=[] class AwardForm(ModelForm): class Meta: model = Award exclude = [] #------------ EXPERT PROFILE FORMS ------------------------ class MediationExperienceForm(ModelForm): class Meta: model = MediationExperience fields = ['profession', 'duration', 'cases', 'description', 'priorClients', 'placesWorked'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.form_tag = False class NegotiationExperienceForm(ModelForm): class Meta: model = NegotiationExperience fields = ['profession', 'duration', 'cases', 'description', 'priorClients', 'placesWorked'] def __init__(self, *args, ** kwargs): super().__init__(*args, **kwargs) self.form_tag = False self.helper = FormHelper() self.helper.layout = Layout() #EXPERT _ FORMSETS AND INLINE FORMSETS ProgramFormSet = inlineformset_factory(ExpertProfile, Program, exclude=[], extra=2) class ProgramFormSet_helper(FormHelper): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.form_tag = False self.layout = Layout( Div( Div( 'subject', 'startDate', 'endDate', 'institution', Field('priorClients', rows=3), Field('placesWorked', rows=3), css_class='col-sm-4' ), Div( 'title', 'description', css_class='col-sm-8', ), css_class='row experienceItem' ) ) self.render_required_fields = False NegotiationExperienceFormset = inlineformset_factory(ExpertProfile, NegotiationExperience, extra=2, exclude=[]) class NegotiationExperienceFormset_helper(FormHelper): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.form_tag = False self.layout = Layout( Div( Div( 'duration', 'cases', Field('priorClients', rows=3), Field('placesWorked', rows=3), css_class='col-sm-4' ), Div( 'profession', 'description', css_class='col-sm-8', ), css_class='row experienceItem' ) ) self.render_required_fields = False MediationExperienceFormset = inlineformset_factory(ExpertProfile, MediationExperience, extra=2, exclude=[]) class MediationExperienceFormset_helper(FormHelper): def __init__(self, *args, **kwargs): super(MediationExperienceFormset_helper, self).__init__(*args, **kwargs) self.form_tag = False self.layout = Layout( Div( Div( 'duration', 'cases', Field('priorClients', rows=3), Field('placesWorked', rows=3), css_class='col-sm-4' ), Div( 'profession', 'description', css_class='col-sm-8', ), css_class='row experienceItem' ) )
31.51634
111
0.568851
9f23c368a5e61e56857f038c087404146c627c26
25,784
py
Python
src/interface/Python/paramonte/_TabularFileContents.py
cdslaborg/paramonte
08b5ee74e1dc9045fca8fd7d94e3bbc979a3c425
[ "MIT" ]
158
2020-01-13T06:40:27.000Z
2022-03-28T03:12:03.000Z
src/interface/Python/paramonte/_TabularFileContents.py
cdslaborg/paramonte
08b5ee74e1dc9045fca8fd7d94e3bbc979a3c425
[ "MIT" ]
12
2020-10-31T22:46:10.000Z
2022-03-17T19:57:06.000Z
src/interface/Python/paramonte/_TabularFileContents.py
cdslaborg/paramonte
08b5ee74e1dc9045fca8fd7d94e3bbc979a3c425
[ "MIT" ]
18
2020-07-04T23:45:21.000Z
2021-09-14T06:52:07.000Z
#################################################################################################################################### #################################################################################################################################### #### #### MIT License #### #### ParaMonte: plain powerful parallel Monte Carlo library. #### #### Copyright (C) 2012-present, The Computational Data Science Lab #### #### This file is part of the ParaMonte library. #### #### Permission is hereby granted, free of charge, to any person obtaining a #### copy of this software and associated documentation files (the "Software"), #### to deal in the Software without restriction, including without limitation #### the rights to use, copy, modify, merge, publish, distribute, sublicense, #### and/or sell copies of the Software, and to permit persons to whom the #### Software is furnished to do so, subject to the following conditions: #### #### The above copyright notice and this permission notice shall be #### included in all copies or substantial portions of the Software. #### #### THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, #### EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF #### MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. #### IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, #### DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR #### OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE #### OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #### #### ACKNOWLEDGMENT #### #### ParaMonte is an honor-ware and its currency is acknowledgment and citations. #### As per the ParaMonte library license agreement terms, if you use any parts of #### this library for any purposes, kindly acknowledge the use of ParaMonte in your #### work (education/research/industry/development/...) by citing the ParaMonte #### library as described on this page: #### #### https://github.com/cdslaborg/paramonte/blob/main/ACKNOWLEDGMENT.md #### #################################################################################################################################### #################################################################################################################################### import numpy as np import _paramonte as pm import _CorCovMat as ccm from _AutoCorr import AutoCorr from _dfutils import getMaxLogFunc from _OutputFileContents import OutputFileContents from paramonte.vis.LineScatterPlot import LineScatterPlot from paramonte.vis.DensityPlot import DensityPlot from paramonte.vis.GridPlot import GridPlot Struct = pm.Struct newline = pm.newline #################################################################################################################################### #### TabularFileContents class #################################################################################################################################### class TabularFileContents(OutputFileContents): """ This is the **TabularFileContents** class for generating instances of the ParaMonte tabular output contents. This class is NOT meant to be directly accessed by the ParaMonte library users. It is internally used by the ParaMonte library to parse the tabular contents of the output files generated by the ParaMonte sampler routines. For example, the ParaDRAM sampler class makes calls to this class via its ``readSample()`` or ``readChain()`` or ``readMarkovChain()`` or ``readProgress()`` methods to return a list of objects of class ``TabularFileContents``. **Parameters** file The full path to the file containing the sample/chain. fileType A string containing the type of the file to be parsed. Current options include but are not limited to: ``sample``, ``chain``, ``markovChain``, ``progress`` delimiter The delimiter used in the sample/chain file, which must be provided by the user. methodName A string representing the name of the ParaMonte sampler used to call the constructor of the ``TabularFileContents`` class. parseContents If set to ``True``, the contents of the file will be parsed and stored in a component of the object named ``contents``. The default value is ``True``. reportEnabled A logical input parameter indicating whether the ParaMonte automatic guidelines to the standard output should be provided or not. The default value is ``True``. **Attributes** file The full path to the file containing the sample/chain. delimiter The delimiter used in the sample/chain file, which must be provided by the user. ndim The number of dimensions of the domain of the objective function from which the sample has been drawn. count The number of points (states) in the sample/chain file. This is essentially, the number of rows in the file minus one (representing the header line). plot A structure containing the graphics tools for the visualization of the contents of the file. df If the input file contents is structured in a format that could be read as a dataframe, then the contents of the file will be stored in the form of a pandas-library DataFrame in this property (hence called ``df``). contents If the input file contents is structured in the form of columns, then a property named ``contents`` is also added to the object. Each component of contents will named via the header of the file and will contain data from the corresponding column of the file. **Returns** tabularFileContents An object of class ``TabularFileContents``. ---------------------------------------------------------------------- """ def __init__( self , file , fileType , delimiter , methodName , parseContents = True , reportEnabled = True ): super().__init__(file, methodName, reportEnabled) markovChainRequested = fileType=="markovChain" self._isProgressFile = "progress"==fileType self._sampleLogFuncColName = "" if self._isProgressFile else "SampleLogFunc" #if "sample"==fileType: # fileSuffix = "sample" #elif fileType=="chain" or markovChainRequested: # fileSuffix = "chain" #elif self._isProgressFile: # fileSuffix = "progress" #else: # pm.abort( msg = "Internal error occurred. The input fileType is not recognized.\n" # + "Please report this error at:\n\n" # + " " + pm.website.github.issues.url # , methodName = self._methodName # , marginTop = 1 # , marginBot = 1 # ) if fileType!="sample" and fileType!="chain" and not (self._isProgressFile or markovChainRequested): pm.abort( msg = "Internal error occurred. The input fileType is not recognized.\n" + "Please report this error at:\n\n" + " " + pm.website.github.issues.url , methodName = self._methodName , marginTop = 1 , marginBot = 1 ) ############################################################################################################################ #### data ############################################################################################################################ self.delimiter = delimiter import pandas as pd self.df = pd.read_csv ( self.file , delimiter = self.delimiter , header = 0 ) if self._isProgressFile: self._offset = -1 else: self._offset = list(self.df.columns).index(self._sampleLogFuncColName) + 1 # index of the first variable self.ndim = len(self.df.columns) - self._offset self.count = len(self.df.iloc[:,1]) self.ncol = len(self.df.iloc[1,:]) if markovChainRequested: CumSumWeight = np.cumsum(self.df.iloc[:,self._offset-2].values, dtype=np.int32) if CumSumWeight[-1] != self.count: # it is indeed a compact chain #dfMarkov = pd.DataFrame( columns=list(self.df.columns), index=list(range(CumSumWeight[-1])) ) dfMarkov = np.zeros( (CumSumWeight[-1] , self.ndim+self._offset) ) istart = 0 for i in range(self.count): iend = CumSumWeight[i] #dfMarkov.iloc[istart:iend,:] = self.df.iloc[i].values dfMarkov[istart:iend,:] = self.df.iloc[i].values istart = iend columns = self.df.columns self.df = pd.DataFrame(dfMarkov) self.count = len(self.df.iloc[:,1]) self.df.columns = columns self._progress.note() if not self._isProgressFile: self._progress.note( msg = "ndim = " + str(self.ndim) + ", count = " + str(self.count), end = newline, pre = True ) # set dynamic properties if parseContents: self._progress.note( msg = "parsing file contents... ", end = newline, pre = True ) self.contents = Struct() for icol, colName in enumerate(self.df.columns): setattr ( self.contents, colName, self.df[colName] ) ############################################################################################################################ #### statistics ############################################################################################################################ if not self._isProgressFile: self.stats = Struct() #### add chain cormat self._progress.note( msg = "computing the sample correlation matrix... ", end = newline, pre = True ) self.stats.cormat = ccm.CorMat ( dataFrame = self.df , columns = range(self._offset,self._offset+self.ndim) , methodName = self._methodName , reportEnabled = self._reportEnabled , method = "pearson" ) self.stats.cormat() #### add chain covmat self._progress.note( msg = "computing the sample covariance matrix... ", end = newline, pre = True ) self.stats.covmat = ccm.CovMat ( dataFrame = self.df , columns = range(self._offset,self._offset+self.ndim) , methodName = self._methodName , reportEnabled = self._reportEnabled ) self.stats.covmat() #### add chain autocorrelation self._progress.note( msg = "computing the sample autocorrelations... ", end = newline, pre = True ) self.stats.autocorr = AutoCorr ( dataFrame = self.df , columns = range(self._offset-1,self._offset+self.ndim) , methodName = self._methodName , reportEnabled = self._reportEnabled ) self.stats.autocorr() #### add chain maxLogFunc self.stats.maxLogFunc = getMaxLogFunc(dataFrame = self.df) ############################################################################################################################ #### graphics ############################################################################################################################ self._plotTypeList = [ "line" , "scatter" , "lineScatter" ] if not self._isProgressFile: self._plotTypeList += [ "line3" , "scatter3" , "lineScatter3" , "jointplot" , "histplot" , "kdeplot1" , "kdeplot2" , "contour3" , "contourf" , "contour" , "grid" ] self._progress.note( msg = "adding the graphics tools... ", end = newline, pre = True ) self.plot = Struct() self._resetPlot(resetType="hard") self.plot.reset = self._resetPlot #self.plot.helpme = self.helpme ################################################################################################################################ #### _resetPlot ################################################################################################################################ def _resetPlot ( self , resetType = "soft" , plotNames = "all" ): """ Reset the properties of the plot to the original default settings. Use this method when you change many attributes of the plot and you want to clean up and go back to the default settings. **Parameters** resetType (optional) An optional string with possible value of ``"hard"``. If provided, the plot object will be regenerated from scratch. This includes reading the original data frame again and resetting everything. If not provided, then only the plot settings will be reset without reseting the dataFrame. plotNames (optional) An optional string value or list of string values representing the names of plots to reset. If no value is provided, then all plots will be reset. **Returns** None **Example** .. code-block:: python reset("hard") # regenerate all plots from scratch reset("hard","line3") # regenerate line3 plot from scratch reset("hard",["line","line3"]) # regenerate line and line3 plots """ requestedPlotTypeList = [] if isinstance(plotNames, str): plotTypeLower = plotNames.lower() if plotTypeLower=="all": requestedPlotTypeList = self._plotTypeList elif plotNames in self._plotTypeList: requestedPlotTypeList = [plotNames] else: self._reportWrongPlotName(plotNames) elif isinstance(plotNames, list): for plotName in plotNames: if plotName not in self._plotTypeList: self._reportWrongPlotName(plotName) else: self._reportWrongPlotName("a none-string none-list object.") resetTypeIsHard = None if isinstance(resetType, str): resetTypeIsHard = resetType.lower()=="hard" else: resetTypeIsHard = None pm.abort( msg = "The input argument resetType must be a string representing" + newline + "the type of the reset to be performed on the plots." + newline + "A list of possible plots includes: \"hard\", \"soft\"" + newline + "Here is the help for the ``reset()`` method: " + newline + newline + self._resetPlot.__doc__ , marginTop = 1 , marginBot = 1 , methodName = self._methodName ) ############################################################################################################################ #### reset plots ############################################################################################################################ for requestedPlotType in requestedPlotTypeList: plotObject = None requestedPlotTypeLower = requestedPlotType.lower() is3d = "3" in requestedPlotTypeLower isLine = "line" in requestedPlotTypeLower isScatter = "scatter" in requestedPlotTypeLower isJointplot = "jointplot" in requestedPlotTypeLower isHistplot = "histplot" in requestedPlotTypeLower isKdeplot1 = "kdeplot1" in requestedPlotTypeLower isKdeplot2 = "kdeplot2" in requestedPlotTypeLower isContourf = "contourf" in requestedPlotTypeLower isContour3 = "contour3" in requestedPlotTypeLower isContour = "contour" in requestedPlotTypeLower and not (isContourf or isContour3) isGridPlot = "grid" in requestedPlotTypeLower isLineScatterPlot = isLine or isScatter isDensityPlot = isJointplot or isHistplot or isKdeplot1 or isKdeplot2 or isContourf or isContour3 or isContour if not resetTypeIsHard: plotComponent = getattr(self, "plot") plotObject = getattr(plotComponent, requestedPlotType) plotObject._reset() ######################################################################################################################## #### reset line / scatter ######################################################################################################################## if isLineScatterPlot: if resetTypeIsHard: plotObject = LineScatterPlot( plotType = requestedPlotType , dataFrame = self.df , methodName = self._methodName , reportEnabled = self._reportEnabled , resetPlot = self._resetPlot ) plotObject.ycolumns = self.df.columns[self._offset] # :] plotObject.ccolumns = self._sampleLogFuncColName plotObject.colorbar.kws.extend = "neither" plotObject.colorbar.kws.orientation = "vertical" plotObject.colorbar.kws.spacing = "uniform" if is3d: plotObject.zcolumns = self._sampleLogFuncColName if self.ndim>1: plotObject.xcolumns = self.df.columns[self._offset] plotObject.ycolumns = self.df.columns[self._offset+1] if isLine: if isScatter: plotObject.lineCollection.enabled = False plotObject.plot.enabled = True plotObject.plot.kws.alpha = 0.2 plotObject.plot.kws.color = "grey" plotObject.plot.kws.linewidth = 0.75 else: plotObject.lineCollection.enabled = True plotObject.plot.enabled = False ######################################################################################################################## #### reset density plots: kdeplot / histplot / jointplot / contour / contourf / contour3 ######################################################################################################################## if isDensityPlot: if resetTypeIsHard: plotObject = DensityPlot( plotType = requestedPlotType , dataFrame = self.df , methodName = self._methodName , reportEnabled = self._reportEnabled , resetPlot = self._resetPlot ) plotObject.xcolumns = self.df.columns[self._offset] if not (isHistplot or isKdeplot1): if self.ndim==1: plotObject.xcolumns = self.df.columns[self._offset-1] plotObject.ycolumns = self.df.columns[self._offset] else: plotObject.ycolumns = self.df.columns[self._offset+1] ######################################################################################################################## #### reset GridPlot ######################################################################################################################## if isGridPlot: if resetTypeIsHard: plotObject = GridPlot ( plotType = requestedPlotType , dataFrame = self.df , methodName = self._methodName , reportEnabled = self._reportEnabled , resetPlot = self._resetPlot ) endColindex = np.min( [self._offset+3, self._offset+self.ndim] ) plotObject.columns = self.df.columns[self._offset-1:endColindex] plotObject.ccolumn = self._sampleLogFuncColName ######################################################################################################################## #### reset target component ######################################################################################################################## if (isLineScatterPlot or isDensityPlot) and not (plotObject._type.is3d or self._isProgressFile): xtarget = 0 # dummy if isDensityPlot: xtarget = self.df[plotObject.xcolumns].values.flatten()[self.stats.maxLogFunc.idrow] if plotObject._type.is1d: plotObject.target.value = [ xtarget, 0 ] if plotObject._type.is2d: ytarget = self.df[plotObject.ycolumns].values.flatten()[self.stats.maxLogFunc.idrow] plotObject.target.value = [ xtarget, ytarget ] if isDensityPlot and plotObject._type.is1d: plotObject.target.axhline.enabled = False if isLine or isScatter: plotObject.target.axvline.enabled = False plotObject.target.label = "maxLogFunc" ######################################################################################################################## if plotObject is not None: setattr(self.plot, requestedPlotType, plotObject) ################################################################################################################################ #### _reportWrongPlotName ################################################################################################################################ def _reportWrongPlotName( self , plotNames ): pm.abort( msg = "The input argument ``plotNames`` must be a string representing" + newline + "the name of a plot belonging to the TabularFileContents class or," + newline + "a list of such plot names. You have entered: " + plotNames + newline + "Possible plots are: " + newline + newline + newline.join(self._plotTypeList) + newline + newline + "Here is the help for the ``reset()`` method: " + newline + newline + self._resetPlot.__doc__ , marginTop = 1 , marginBot = 1 , methodName = self._methodName ) ################################################################################################################################
46.794918
132
0.446517
124f38c891599afc6d672d8572a17e4cebf5ad92
493
py
Python
application/modules/__init__.py
BaggerFast/Simple_votings
843769fa6fd2c04feb542e6b301b7b4810260d4e
[ "MIT" ]
null
null
null
application/modules/__init__.py
BaggerFast/Simple_votings
843769fa6fd2c04feb542e6b301b7b4810260d4e
[ "MIT" ]
null
null
null
application/modules/__init__.py
BaggerFast/Simple_votings
843769fa6fd2c04feb542e6b301b7b4810260d4e
[ "MIT" ]
null
null
null
from application.modules.index import MainView from application.modules.vote import VotePage from application.modules.login import LoginView from application.modules.registration import RegistrationView from application.modules.votings_list import VoteListView from application.modules.edit_vote import CreateEdiVoteView from application.modules.own_vote_list import OwnVoteListView from application.modules.remove_vote import RemoveVotePage from application.modules.user_list import UserList
49.3
61
0.890467
008f658db1cc654952e788b75771df293c0f8582
5,404
py
Python
tests/parser_original_cases.py
wapwallace/jpath_finder
5aa058507bec290aed179256cfb66364f6f4a490
[ "Apache-2.0" ]
null
null
null
tests/parser_original_cases.py
wapwallace/jpath_finder
5aa058507bec290aed179256cfb66364f6f4a490
[ "Apache-2.0" ]
null
null
null
tests/parser_original_cases.py
wapwallace/jpath_finder
5aa058507bec290aed179256cfb66364f6f4a490
[ "Apache-2.0" ]
1
2022-03-19T02:07:15.000Z
2022-03-19T02:07:15.000Z
# json_path, result_expected SORTED_CASES = ( ("$.objects.`sorted`", [["alpha", "beta", "gamma"]]), ("$.objects.`sorted`[1]", ["beta"]), ("$.objects_2.`sorted`", [["cat", "cow", "horse"]]), ("$.objects_2.`sorted`[0]", ["cat"]), ) LEN_CASES = ( ("$.objects.`len`", [3]), ("$.objects_2.`len`", [3]), ("$.objects[0].`len`", [5]), ) FILTER_CASES = ( ( "$.objects_4[?(@.cow>5)]", [{"cow": 8, "cat": 2}, {"cow": 7, "cat": 2}, {"cow": 8, "cat": 3}], ), ("$.objects_4[?(@.cow>5 & @.cat=2)]", [{"cow": 8, "cat": 2}, {"cow": 7, "cat": 2}]), ("$.objects_5[?(@.confidence>=0.5)].prediction", ["Bad"]), ( "$.objects_4[?(@.cow==8|@.cat==3)]", [{"cow": 8, "cat": 2}, {"cow": 5, "cat": 3}, {"cow": 8, "cat": 3}], ), ( "$.objects_4[?(@.cow=8 & (@.cat=2 | @.cat=3))]", [{"cow": 8, "cat": 2}, {"cow": 8, "cat": 3}], ), ("$.objects_4[?(@.dog=1|@.cat=3&@.cow=8)]", [{"cow": 8, "cat": 3}]), ("$.objects_4[?(@.cow>5&@.cat=2)]", [{"cow": 8, "cat": 2}, {"cow": 7, "cat": 2}]), ("$.items[?(@.quotas[*].limit<=21)].id", ["1000", "1001"]), ( "$.items[?(@.quotas[*].metric='SSD' & @.quotas[*].usage>0) | " "(@.quotas[*].metric='CPU' & @.quotas[*].usage>0) | " "(@..quotas[*].metric='DISKS' & @.quotas[*].usage>0)].id", ["1000", "1002"], ), ( "$.items[?(@.quotas[?((@.metric='SSD' & @.usage>0) | (@.metric='CPU' " "& @.usage>0) | (@.metric='DISKS' & @.usage>0))])].quotas[?(@.usage>4)].limit", [40960.0, 20480.0], ), ) ARITHMETIC_CASES = ( ("3 * 3", "3*3", "Operator(3,3,*)", [9]), ( "$.objects_4[0].cow * 10", "$.objects_4.[0].cow*10", "Operator(Child(Child(Child(Root(), Fields('objects_4')), " "Index(0)), Fields('cow')),10,*)", [80], ), ( "10 * $.objects_4[0].cow", "$.objects_4.[0].cow*10", "Operator(Child(Child(Child(Root(), Fields('objects_4')), " "Index(0)), Fields('cow')),10,*)", [80], ), ( "$.objects_5[0].prediction[0] * 3", "$.objects_5.[0].prediction.[0]*3", "Operator(Child(Child(Child(Child(Root(), Fields('objects_5')), " "Index(0)), Fields('prediction')), Index(0)),3,*)", ["GGG"], ), ("'foo' * 3", "foo*3", "Operator('foo',3,*)", ["foofoofoo"]), ( "($.objects_4[2].cow * 10 * $.objects_4[4].cow) + 2", "$.objects_4.[2].cow*$.objects_4.[4].cow*10+2", "Operator(Operator(Child(Child(Child(Root(), Fields('objects_4')), " "Index(2)), Fields('cow')),Operator(Child(Child(Child(Root(), " "Fields('objects_4')), Index(4)), Fields('cow')),10,*),*),2,+)", [162], ), ( "($.objects_4[4].cat * 10 * $.objects_4[4].cat) + 2", "$.objects_4.[4].cat*$.objects_4.[4].cat*10+2", "Operator(Operator(Child(Child(Child(Root(), Fields('objects_4')), " "Index(4)), Fields('cat')),Operator(Child(Child(Child(Root(), " "Fields('objects_4')), Index(4)), Fields('cat')),10,*),*),2,+)", [92], ), ("'foo' + 'bar'", "foo+bar", "Operator('foo','bar',+)", ["foobar"]), ( "$.objects_3[0].cow + '_' + $.objects_3[1].cat", "$.objects_3.[0].cow+_+$.objects_3.[1].cat", "Operator(Operator(Child(Child(Child(Root(), Fields('objects_3')), " "Index(0)), Fields('cow')),'_',+),Child(Child(Child(Root(), " "Fields('objects_3')), Index(1)), Fields('cat')),+)", ["moo_neigh"], ), ( "$.objects_3[0].cow + $.objects_3[1].cat", "$.objects_3.[0].cow+$.objects_3.[1].cat", "Operator(Child(Child(Child(Root(), Fields('objects_3')), " "Index(0)), Fields('cow')),Child(Child(Child(Root(), " "Fields('objects_3')), Index(1)), Fields('cat')),+)", ["mooneigh"], ), ( "$.objects_4[*].cow * 2", "$.objects_4.[*].cow*2", "Operator(Child(Child(Child(Root(), Fields('objects_4')), AllIndex()), Fields('cow')),2,*)", [16, 14, 4, 10, 16], ), ( "$.objects_6[*].cow * $.objects_6[*].cow", "$.objects_6.[*].cow*$.objects_6.[*].cow", "Operator(Child(Child(Child(Root(), Fields('objects_6')), " "AllIndex()), Fields('cow')),Child(Child(Child(Root(), " "Fields('objects_6')), AllIndex()), Fields('cow')),*)", [4, 1, 9], ), ( "$.objects_4[*].cow * $.objects_6[*].cow", "$.objects_4.[*].cow*$.objects_6.[*].cow", "Operator(Child(Child(Child(Root(), Fields('objects_4')), " "AllIndex()), Fields('cow')),Child(Child(Child(Root(), " "Fields('objects_6')), AllIndex()), Fields('cow')),*)", [16, 8, 24, 14, 7, 21, 4, 2, 6, 10, 5, 15, 16, 8, 24], ), ( "$.payload.metrics[?(@.name='cpu.frequency')].value * 100", "$.payload.metrics.[?(@.name=cpu.frequency)].value*100", "Operator(Child(Child(Child(Child(Root(), Fields('payload')), " "Fields('metrics')), Filter(Expression(target=Child(This(), " "Fields('name')),op='=',value='cpu.frequency'))), Fields('value')),100,*)", [160000], ), ( "$.payload.metrics[*].id", "$.payload.metrics.[*].id", "Child(Child(Child(Child(Root(), Fields('payload')), " "Fields('metrics')), AllIndex()), Fields('id'))", [1, 2], ), )
38.6
100
0.463175
a6ad18cf2645b49fa1d3bb3bf809578ad9969e85
8,672
py
Python
pyleecan/Classes/NodeMat.py
helene-t/pyleecan
8362de9b0e32b346051b38192e07f3a6974ea9aa
[ "Apache-2.0" ]
null
null
null
pyleecan/Classes/NodeMat.py
helene-t/pyleecan
8362de9b0e32b346051b38192e07f3a6974ea9aa
[ "Apache-2.0" ]
null
null
null
pyleecan/Classes/NodeMat.py
helene-t/pyleecan
8362de9b0e32b346051b38192e07f3a6974ea9aa
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """File generated according to Generator/ClassesRef/Mesh/NodeMat.csv WARNING! All changes made in this file will be lost! """ from os import linesep from logging import getLogger from ._check import set_array, check_var, raise_ from ..Functions.get_logger import get_logger from ..Functions.save import save from .Node import Node # Import all class method # Try/catch to remove unnecessary dependencies in unused method try: from ..Methods.Mesh.NodeMat.get_coord import get_coord except ImportError as error: get_coord = error try: from ..Methods.Mesh.NodeMat.get_tag import get_tag except ImportError as error: get_tag = error try: from ..Methods.Mesh.NodeMat.get_group import get_group except ImportError as error: get_group = error try: from ..Methods.Mesh.NodeMat.add_node import add_node except ImportError as error: add_node = error try: from ..Methods.Mesh.NodeMat.is_exist import is_exist except ImportError as error: is_exist = error from numpy import array, array_equal from ._check import InitUnKnowClassError class NodeMat(Node): """Class to define nodes coordinates and getter.""" VERSION = 1 # Check ImportError to remove unnecessary dependencies in unused method # cf Methods.Mesh.NodeMat.get_coord if isinstance(get_coord, ImportError): get_coord = property( fget=lambda x: raise_( ImportError("Can't use NodeMat method get_coord: " + str(get_coord)) ) ) else: get_coord = get_coord # cf Methods.Mesh.NodeMat.get_tag if isinstance(get_tag, ImportError): get_tag = property( fget=lambda x: raise_( ImportError("Can't use NodeMat method get_tag: " + str(get_tag)) ) ) else: get_tag = get_tag # cf Methods.Mesh.NodeMat.get_group if isinstance(get_group, ImportError): get_group = property( fget=lambda x: raise_( ImportError("Can't use NodeMat method get_group: " + str(get_group)) ) ) else: get_group = get_group # cf Methods.Mesh.NodeMat.add_node if isinstance(add_node, ImportError): add_node = property( fget=lambda x: raise_( ImportError("Can't use NodeMat method add_node: " + str(add_node)) ) ) else: add_node = add_node # cf Methods.Mesh.NodeMat.is_exist if isinstance(is_exist, ImportError): is_exist = property( fget=lambda x: raise_( ImportError("Can't use NodeMat method is_exist: " + str(is_exist)) ) ) else: is_exist = is_exist # save method is available in all object save = save # get_logger method is available in all object get_logger = get_logger def __init__( self, coordinate=None, nb_node=0, tag=None, delta=1e-10, init_dict=None ): """Constructor of the class. Can be use in two ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for Matrix, None will initialise the property with an empty Matrix for pyleecan type, None will call the default constructor - __init__ (init_dict = d) d must be a dictionnary wiht every properties as keys ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "coordinate" in list(init_dict.keys()): coordinate = init_dict["coordinate"] if "nb_node" in list(init_dict.keys()): nb_node = init_dict["nb_node"] if "tag" in list(init_dict.keys()): tag = init_dict["tag"] if "delta" in list(init_dict.keys()): delta = init_dict["delta"] # Initialisation by argument # coordinate can be None, a ndarray or a list set_array(self, "coordinate", coordinate) self.nb_node = nb_node # tag can be None, a ndarray or a list set_array(self, "tag", tag) self.delta = delta # Call Node init super(NodeMat, self).__init__() # The class is frozen (in Node init), for now it's impossible to # add new properties def __str__(self): """Convert this objet in a readeable string (for print)""" NodeMat_str = "" # Get the properties inherited from Node NodeMat_str += super(NodeMat, self).__str__() NodeMat_str += ( "coordinate = " + linesep + str(self.coordinate).replace(linesep, linesep + "\t") + linesep + linesep ) NodeMat_str += "nb_node = " + str(self.nb_node) + linesep NodeMat_str += ( "tag = " + linesep + str(self.tag).replace(linesep, linesep + "\t") + linesep + linesep ) NodeMat_str += "delta = " + str(self.delta) + linesep return NodeMat_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False # Check the properties inherited from Node if not super(NodeMat, self).__eq__(other): return False if not array_equal(other.coordinate, self.coordinate): return False if other.nb_node != self.nb_node: return False if not array_equal(other.tag, self.tag): return False if other.delta != self.delta: return False return True def as_dict(self): """Convert this objet in a json seriable dict (can be use in __init__) """ # Get the properties inherited from Node NodeMat_dict = super(NodeMat, self).as_dict() if self.coordinate is None: NodeMat_dict["coordinate"] = None else: NodeMat_dict["coordinate"] = self.coordinate.tolist() NodeMat_dict["nb_node"] = self.nb_node if self.tag is None: NodeMat_dict["tag"] = None else: NodeMat_dict["tag"] = self.tag.tolist() NodeMat_dict["delta"] = self.delta # The class name is added to the dict fordeserialisation purpose # Overwrite the mother class name NodeMat_dict["__class__"] = "NodeMat" return NodeMat_dict def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.coordinate = None self.nb_node = None self.tag = None self.delta = None # Set to None the properties inherited from Node super(NodeMat, self)._set_None() def _get_coordinate(self): """getter of coordinate""" return self._coordinate def _set_coordinate(self, value): """setter of coordinate""" if type(value) is list: try: value = array(value) except: pass check_var("coordinate", value, "ndarray") self._coordinate = value # Nodes coordinates # Type : ndarray coordinate = property( fget=_get_coordinate, fset=_set_coordinate, doc=u"""Nodes coordinates""" ) def _get_nb_node(self): """getter of nb_node""" return self._nb_node def _set_nb_node(self, value): """setter of nb_node""" check_var("nb_node", value, "int") self._nb_node = value # Total number of nodes # Type : int nb_node = property( fget=_get_nb_node, fset=_set_nb_node, doc=u"""Total number of nodes""" ) def _get_tag(self): """getter of tag""" return self._tag def _set_tag(self, value): """setter of tag""" if type(value) is list: try: value = array(value) except: pass check_var("tag", value, "ndarray") self._tag = value # Node tags # Type : ndarray tag = property(fget=_get_tag, fset=_set_tag, doc=u"""Node tags""") def _get_delta(self): """getter of delta""" return self._delta def _set_delta(self, value): """setter of delta""" check_var("delta", value, "float") self._delta = value # Sensibility for node searching # Type : float delta = property( fget=_get_delta, fset=_set_delta, doc=u"""Sensibility for node searching""" )
31.194245
88
0.598708
99e06670ba7b512518d5baa104472d026816177f
396
py
Python
cs4050_ws.py
jadppf/ai_ws
b58f8a08d29af7b88ff1a51c74c4f1061189f9b1
[ "MIT" ]
null
null
null
cs4050_ws.py
jadppf/ai_ws
b58f8a08d29af7b88ff1a51c74c4f1061189f9b1
[ "MIT" ]
null
null
null
cs4050_ws.py
jadppf/ai_ws
b58f8a08d29af7b88ff1a51c74c4f1061189f9b1
[ "MIT" ]
null
null
null
from time import time def FiB(n, F): if F[n] != -1: return F[n] F[n] = FiB(n-1, F) + FiB(n-2, F) return F[n] def main(): mark = time() * 1000 result = None F = [] for i in range(2, 1000): F.append(-1) F[0], F[1] = 1, 1 result = FiB(100, F) print result now = time() * 1000 diff = now - mark print 'time diff ->', diff main()
17.217391
36
0.474747
68a138299bf7eb7fc03b31a219aeb82b0556787e
8,796
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations/_load_balancer_load_balancing_rules_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations/_load_balancer_load_balancing_rules_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/aio/operations/_load_balancer_load_balancing_rules_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class LoadBalancerLoadBalancingRulesOperations: """LoadBalancerLoadBalancingRulesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, load_balancer_name: str, **kwargs ) -> AsyncIterable["_models.LoadBalancerLoadBalancingRuleListResult"]: """Gets all the load balancing rules in a load balancer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LoadBalancerLoadBalancingRuleListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_04_01.models.LoadBalancerLoadBalancingRuleListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LoadBalancerLoadBalancingRuleListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('LoadBalancerLoadBalancingRuleListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}/loadBalancingRules'} # type: ignore async def get( self, resource_group_name: str, load_balancer_name: str, load_balancing_rule_name: str, **kwargs ) -> "_models.LoadBalancingRule": """Gets the specified load balancer load balancing rule. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param load_balancing_rule_name: The name of the load balancing rule. :type load_balancing_rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: LoadBalancingRule, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_04_01.models.LoadBalancingRule :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LoadBalancingRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'loadBalancingRuleName': self._serialize.url("load_balancing_rule_name", load_balancing_rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LoadBalancingRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}/loadBalancingRules/{loadBalancingRuleName}'} # type: ignore
49.139665
216
0.676103
67eab4144c3e4f3917f805a6b2ab867a2b29e32d
3,750
py
Python
tfx/components/pusher/component.py
romeokienzler/tfx
6449173532bc35b78dbfb93aa89a688a7278ef59
[ "Apache-2.0" ]
null
null
null
tfx/components/pusher/component.py
romeokienzler/tfx
6449173532bc35b78dbfb93aa89a688a7278ef59
[ "Apache-2.0" ]
null
null
null
tfx/components/pusher/component.py
romeokienzler/tfx
6449173532bc35b78dbfb93aa89a688a7278ef59
[ "Apache-2.0" ]
1
2020-06-05T08:31:32.000Z
2020-06-05T08:31:32.000Z
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFX Pusher component definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Any, Dict, Optional, Text, Type from tfx import types from tfx.components.base import base_component from tfx.components.base import base_executor from tfx.components.pusher import executor from tfx.proto import pusher_pb2 from tfx.types import channel_utils from tfx.types import standard_artifacts from tfx.types.standard_component_specs import PusherSpec # TODO(b/133845381): Investigate other ways to keep push destination converged. class Pusher(base_component.BaseComponent): """Official TFX Pusher component. The `Pusher` component can be used to push an validated SavedModel from output of `Trainer` to tensorflow Serving (tf.serving). If the model is not blessed by `ModelValidator`, no push will happen. """ SPEC_CLASS = PusherSpec EXECUTOR_CLASS = executor.Executor def __init__( self, model_export: types.Channel, model_blessing: types.Channel, push_destination: Optional[pusher_pb2.PushDestination] = None, custom_config: Optional[Dict[Text, Any]] = None, executor_class: Optional[Type[base_executor.BaseExecutor]] = None, model_push: Optional[types.Channel] = None, name: Optional[Text] = None): """Construct a Pusher component. Args: model_export: A Channel of 'ModelExportPath' type, usually produced by Trainer component. model_blessing: A Channel of 'ModelBlessingPath' type, usually produced by ModelValidator component. push_destination: A pusher_pb2.PushDestination instance, providing info for tensorflow serving to load models. Optional if executor_class doesn't require push_destination. custom_config: A dict which contains the deployment job parameters to be passed to Google Cloud ML Engine. For the full set of parameters supported by Google Cloud ML Engine, refer to https://cloud.google.com/ml-engine/reference/rest/v1/projects.models executor_class: Optional custom python executor class. model_push: Optional output 'ModelPushPath' channel with result of push. name: Optional unique name. Necessary if multiple Pusher components are declared in the same pipeline. """ model_push = model_push or types.Channel( type=standard_artifacts.PushedModel, artifacts=[standard_artifacts.PushedModel()]) if push_destination is None and not executor_class: raise ValueError('push_destination is required unless a custom ' 'executor_class is supplied that does not require ' 'it.') spec = PusherSpec( model_export=channel_utils.as_channel(model_export), model_blessing=channel_utils.as_channel(model_blessing), push_destination=push_destination, custom_config=custom_config, model_push=model_push) super(Pusher, self).__init__(spec=spec, custom_executor_class=executor_class, name=name)
43.103448
80
0.731467
c7bfc622f24e120b68be6c2a046ab23ce94e08cb
1,269
py
Python
Part-1-Answers/4-Manipulating_Strings/4-Short_Long_Names.py
Spigot-Dev/Grok-Intro_To_Programming_Python1-2
69c64019c0424f6cc8eb326b4456a510baab7ea7
[ "MIT" ]
2
2021-11-20T11:28:22.000Z
2022-02-07T21:56:46.000Z
Part-1-Answers/4-Manipulating_Strings/4-Short_Long_Names.py
Spigot-Dev/Grok-Intro_To_Programming_Python1-2
69c64019c0424f6cc8eb326b4456a510baab7ea7
[ "MIT" ]
null
null
null
Part-1-Answers/4-Manipulating_Strings/4-Short_Long_Names.py
Spigot-Dev/Grok-Intro_To_Programming_Python1-2
69c64019c0424f6cc8eb326b4456a510baab7ea7
[ "MIT" ]
4
2021-11-20T11:28:25.000Z
2022-03-12T04:10:54.000Z
#17/02/21 #What does this code do? # This code used concepts previously explored, the code takes an input, determines the length of the input using ".len" From there, the code decides what output print, based on the length of the input. name = input("Enter your name: ") length = len(name) if length <=3: print("Hi", name,",you have a short name.") elif length >=4 and length <=8: print("Hi",name,", nice to meet you.") elif length >8: print("Hi",name,", you have a long name.") #What is happening here? # This code is a bit confusing, so lets break it down line by line. # In the first line, we take an input, and assign it to the "name" variable. This means we can call upon it later. # Then, we assign the result of len(name) to the variable "length". This just makes it easier to call later, so we're not calling len(name) whenever we need it for a condition in a loop. # We then go into our series of loops. The first statement, IF, runs only if the length is equal to or lesser than 3. # If your input doesn't apply to the first loop, we go into our first ELIF statement. This only runs if your name is between 4 and 8 characters long. # If your name is longer than 8 characters, then you run the final statement, another ELIF.
55.173913
203
0.712372
20a45e0e36f3f52007decb91ebc2d0bbb16af071
16,303
py
Python
ProjectFiles/bin/Release/2.80/scripts/addons_contrib/io_scene_cod/__init__.py
BlazesRus/Bforartists
126bdd9e47cc984fd97ba5299bfb92ec5278e754
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2019-07-08T15:51:14.000Z
2019-07-08T15:51:14.000Z
ProjectFiles/bin/Release/2.80/scripts/addons_contrib/io_scene_cod/__init__.py
BlazesRus/Bforartists
126bdd9e47cc984fd97ba5299bfb92ec5278e754
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
ProjectFiles/bin/Release/2.80/scripts/addons_contrib/io_scene_cod/__init__.py
BlazesRus/Bforartists
126bdd9e47cc984fd97ba5299bfb92ec5278e754
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> """ Blender-CoD: Blender Add-On for Call of Duty modding Version: alpha 3 Copyright (c) 2011 CoDEmanX, Flybynyt -- blender-cod@online.de http://code.google.com/p/blender-cod/ TODO - UI for xmodel and xanim import (planned for alpha 4/5) """ bl_info = { "name": "Blender-CoD - Add-On for Call of Duty modding (alpha 3)", "author": "CoDEmanX, Flybynyt", "version": (0, 3, 5), "blender": (2, 62, 0), "location": "File > Import | File > Export", "description": "Export models to *.XMODEL_EXPORT and animations to *.XANIM_EXPORT", "warning": "Alpha version, please report any bugs!", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/" "Scripts/Import-Export/Call_of_Duty_IO", "tracker_url": "https://developer.blender.org/maniphest/task/edit/form/2/", "support": "TESTING", "category": "Import-Export" } # To support reload properly, try to access a package var, if it's there, reload everything if "bpy" in locals(): import imp if "import_xmodel" in locals(): imp.reload(import_xmodel) if "export_xmodel" in locals(): imp.reload(export_xmodel) if "import_xanim" in locals(): imp.reload(import_xanim) if "export_xanim" in locals(): imp.reload(export_xanim) import bpy from bpy.props import BoolProperty, IntProperty, FloatProperty, StringProperty, EnumProperty import bpy_extras.io_utils from bpy_extras.io_utils import ExportHelper, ImportHelper import time # Planned for alpha 4/5 class ImportXmodel(bpy.types.Operator, ImportHelper): """Load a CoD XMODEL_EXPORT File""" bl_idname = "import_scene.xmodel" bl_label = "Import XMODEL_EXPORT" bl_options = {'PRESET'} filename_ext = ".XMODEL_EXPORT" filter_glob = StringProperty(default="*.XMODEL_EXPORT", options={'HIDDEN'}) #use_meshes = BoolProperty(name="Meshes", description="Import meshes", default=True) #use_armature = BoolProperty(name="Armature", description="Import Armature", default=True) #use_bind_armature = BoolProperty(name="Bind Meshes to Armature", description="Parent imported meshes to armature", default=True) #use_split_objects = BoolProperty(name="Object", description="Import OBJ Objects into Blender Objects", default=True) #use_split_groups = BoolProperty(name="Group", description="Import OBJ Groups into Blender Objects", default=True) #use_image_search = BoolProperty(name="Image Search", description="Search subdirs for any associated images (Warning, may be slow)", default=True) def execute(self, context): from . import import_xmodel start_time = time.clock() result = import_xmodel.load(self, context, **self.as_keywords(ignore=("filter_glob", "check_existing"))) if not result: self.report({'INFO'}, "Import finished in %.4f sec." % (time.clock() - start_time)) return {'FINISHED'} else: self.report({'ERROR'}, result) return {'CANCELLED'} """ def draw(self, context): layout = self.layout col = layout.column() col.prop(self, "use_meshes") col.prop(self, "use_armature") row = layout.row() row.active = self.use_meshes and self.use_armature row.prop(self, "use_bind_armature") """ @classmethod def poll(self, context): return (context.scene is not None) class ImportXanim(bpy.types.Operator, ImportHelper): """Load a CoD XANIM_EXPORT File""" bl_idname = "import_scene.xanim" bl_label = "Import XANIM_EXPORT" bl_options = {'PRESET'} filename_ext = ".XANIM_EXPORT" filter_glob = StringProperty(default="*.XANIM_EXPORT;*.NT_EXPORT", options={'HIDDEN'}) def execute(self, context): # print("Selected: " + context.active_object.name) from . import import_xanim return import_xanim.load(self, context, **self.as_keywords(ignore=("filter_glob",))) class ExportXmodel(bpy.types.Operator, ExportHelper): """Save a CoD XMODEL_EXPORT File""" bl_idname = "export_scene.xmodel" bl_label = 'Export XMODEL_EXPORT' bl_options = {'PRESET'} filename_ext = ".XMODEL_EXPORT" filter_glob = StringProperty(default="*.XMODEL_EXPORT", options={'HIDDEN'}) # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. use_version = EnumProperty( name="Format Version", description="XMODEL_EXPORT format version for export", items=(('5', "Version 5", "vCoD, CoD:UO"), ('6', "Version 6", "CoD2, CoD4, CoD5, CoD7")), default='6', ) use_selection = BoolProperty( name="Selection only", description="Export selected meshes only (object or weight paint mode)", default=False ) use_vertex_colors = BoolProperty( name="Vertex colors", description="Export vertex colors (if disabled, white color will be used)", default=True ) use_vertex_colors_alpha = BoolProperty( name="As alpha", description="Turn RGB vertex colors into grayscale (average value) and use it as alpha transparency. White is 1 (opaque), black 0 (invisible)", default=False ) use_apply_modifiers = BoolProperty( name="Apply Modifiers", description="Apply all mesh modifiers except Armature (preview resolution)", default=True ) use_armature = BoolProperty( name="Armature", description="Export bones (if disabled, only a 'tag_origin' bone will be written)", default=True ) use_vertex_cleanup = BoolProperty( name="Clean up vertices", description="Try this if you have problems converting to xmodel. Skips vertices which aren't used by any face and updates references.", default=False ) use_armature_pose = BoolProperty( name="Pose animation to models", description="Export meshes with Armature modifier applied as a series of XMODEL_EXPORT files", default=False ) use_frame_start = IntProperty( name="Start", description="First frame to export", default=1, min=0 ) use_frame_end = IntProperty( name="End", description="Last frame to export", default=250, min=0 ) use_weight_min = BoolProperty( name="Minimum bone weight", description="Try this if you get 'too small weight' errors when converting", default=False, ) use_weight_min_threshold = FloatProperty( name="Threshold", description="Smallest allowed weight (minimum value)", default=0.010097, min=0.0, max=1.0, precision=6 ) def execute(self, context): from . import export_xmodel start_time = time.clock() result = export_xmodel.save(self, context, **self.as_keywords(ignore=("filter_glob", "check_existing"))) if not result: self.report({'INFO'}, "Export finished in %.4f sec." % (time.clock() - start_time)) return {'FINISHED'} else: self.report({'ERROR'}, result) return {'CANCELLED'} # Extend ExportHelper invoke function to support dynamic default values def invoke(self, context, event): #self.use_frame_start = context.scene.frame_start self.use_frame_start = context.scene.frame_current #self.use_frame_end = context.scene.frame_end self.use_frame_end = context.scene.frame_current return super().invoke(context, event) def draw(self, context): layout = self.layout row = layout.row(align=True) row.prop(self, "use_version", expand=True) # Calculate number of selected mesh objects if context.mode in {'OBJECT', 'PAINT_WEIGHT'}: meshes_selected = len([m for m in bpy.data.objects if m.type == 'MESH' and m.select]) else: meshes_selected = 0 col = layout.column(align=True) col.prop(self, "use_selection", "Selection only (%i meshes)" % meshes_selected) col.enabled = bool(meshes_selected) col = layout.column(align=True) col.prop(self, "use_apply_modifiers") col = layout.column(align=True) col.enabled = not self.use_armature_pose if self.use_armature and self.use_armature_pose: col.prop(self, "use_armature", "Armature (disabled)") else: col.prop(self, "use_armature") if self.use_version == '6': row = layout.row(align=True) row.prop(self, "use_vertex_colors") sub = row.split() sub.active = self.use_vertex_colors sub.prop(self, "use_vertex_colors_alpha") col = layout.column(align=True) col.label("Advanced:") col = layout.column(align=True) col.prop(self, "use_vertex_cleanup") box = layout.box() col = box.column(align=True) col.prop(self, "use_armature_pose") sub = box.column() sub.active = self.use_armature_pose sub.label(text="Frame range: (%i frames)" % (abs(self.use_frame_end - self.use_frame_start) + 1)) row = sub.row(align=True) row.prop(self, "use_frame_start") row.prop(self, "use_frame_end") box = layout.box() col = box.column(align=True) col.prop(self, "use_weight_min") sub = box.column() sub.enabled = self.use_weight_min sub.prop(self, "use_weight_min_threshold") @classmethod def poll(self, context): return (context.scene is not None) class ExportXanim(bpy.types.Operator, ExportHelper): """Save a XMODEL_XANIM File""" bl_idname = "export_scene.xanim" bl_label = 'Export XANIM_EXPORT' bl_options = {'PRESET'} filename_ext = ".XANIM_EXPORT" filter_glob = StringProperty(default="*.XANIM_EXPORT", options={'HIDDEN'}) # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. use_selection = BoolProperty( name="Selection only", description="Export selected bones only (pose mode)", default=False ) use_framerate = IntProperty( name="Framerate", description="Set frames per second for export, 30 fps is commonly used.", default=24, min=1, max=100 ) use_frame_start = IntProperty( name="Start", description="First frame to export", default=1, min=0 ) use_frame_end = IntProperty( name="End", description="Last frame to export", default=250, min=0 ) use_notetrack = BoolProperty( name="Notetrack", description="Export timeline markers as notetrack nodes", default=True ) use_notetrack_format = EnumProperty( name="Notetrack format", description="Notetrack format to use. Always set 'CoD 7' for Black Ops, even if not using notetrack!", items=(('5', "CoD 5", "Separate NT_EXPORT notetrack file for 'World at War'"), ('7', "CoD 7", "Separate NT_EXPORT notetrack file for 'Black Ops'"), ('1', "all other", "Inline notetrack data for all CoD versions except WaW and BO")), default='1', ) def execute(self, context): from . import export_xanim start_time = time.clock() result = export_xanim.save(self, context, **self.as_keywords(ignore=("filter_glob", "check_existing"))) if not result: self.report({'INFO'}, "Export finished in %.4f sec." % (time.clock() - start_time)) return {'FINISHED'} else: self.report({'ERROR'}, result) return {'CANCELLED'} # Extend ExportHelper invoke function to support dynamic default values def invoke(self, context, event): self.use_frame_start = context.scene.frame_start self.use_frame_end = context.scene.frame_end self.use_framerate = round(context.scene.render.fps / context.scene.render.fps_base) return super().invoke(context, event) def draw(self, context): layout = self.layout bones_selected = 0 armature = None # Take the first armature for ob in bpy.data.objects: if ob.type == 'ARMATURE' and len(ob.data.bones) > 0: armature = ob.data # Calculate number of selected bones if in pose-mode if context.mode == 'POSE': bones_selected = len([b for b in armature.bones if b.select]) # Prepare info string armature_info = "%s (%i bones)" % (ob.name, len(armature.bones)) break else: armature_info = "Not found!" if armature: icon = 'NONE' else: icon = 'ERROR' col = layout.column(align=True) col.label("Armature: %s" % armature_info, icon) col = layout.column(align=True) col.prop(self, "use_selection", "Selection only (%i bones)" % bones_selected) col.enabled = bool(bones_selected) layout.label(text="Frame range: (%i frames)" % (abs(self.use_frame_end - self.use_frame_start) + 1)) row = layout.row(align=True) row.prop(self, "use_frame_start") row.prop(self, "use_frame_end") col = layout.column(align=True) col.prop(self, "use_framerate") # Calculate number of markers in export range frame_min = min(self.use_frame_start, self.use_frame_end) frame_max = max(self.use_frame_start, self.use_frame_end) num_markers = len([m for m in context.scene.timeline_markers if frame_max >= m.frame >= frame_min]) col = layout.column(align=True) col.prop(self, "use_notetrack", text="Notetrack (%i nodes)" % num_markers) col = layout.column(align=True) col.prop(self, "use_notetrack_format", expand=True) @classmethod def poll(self, context): return (context.scene is not None) def menu_func_xmodel_import(self, context): self.layout.operator(ImportXmodel.bl_idname, text="CoD Xmodel (.XMODEL_EXPORT)") """ def menu_func_xanim_import(self, context): self.layout.operator(ImportXanim.bl_idname, text="CoD Xanim (.XANIM_EXPORT)") """ def menu_func_xmodel_export(self, context): self.layout.operator(ExportXmodel.bl_idname, text="CoD Xmodel (.XMODEL_EXPORT)") def menu_func_xanim_export(self, context): self.layout.operator(ExportXanim.bl_idname, text="CoD Xanim (.XANIM_EXPORT)") def register(): bpy.utils.register_module(__name__) bpy.types.TOPBAR_MT_file_import.append(menu_func_xmodel_import) #bpy.types.TOPBAR_MT_file_import.append(menu_func_xanim_import) bpy.types.TOPBAR_MT_file_export.append(menu_func_xmodel_export) bpy.types.TOPBAR_MT_file_export.append(menu_func_xanim_export) def unregister(): bpy.utils.unregister_module(__name__) bpy.types.TOPBAR_MT_file_import.remove(menu_func_xmodel_import) #bpy.types.TOPBAR_MT_file_import.remove(menu_func_xanim_import) bpy.types.TOPBAR_MT_file_export.remove(menu_func_xmodel_export) bpy.types.TOPBAR_MT_file_export.remove(menu_func_xanim_export) if __name__ == "__main__": register()
34.178197
151
0.64755
22606731e7b89795764088872f3e8f825432344b
2,989
py
Python
rest_api/application.py
Krak91/haystack
7d769d8bf14a72801c695728c87f5f4eee0e9b87
[ "Apache-2.0" ]
null
null
null
rest_api/application.py
Krak91/haystack
7d769d8bf14a72801c695728c87f5f4eee0e9b87
[ "Apache-2.0" ]
null
null
null
rest_api/application.py
Krak91/haystack
7d769d8bf14a72801c695728c87f5f4eee0e9b87
[ "Apache-2.0" ]
1
2022-01-05T15:24:36.000Z
2022-01-05T15:24:36.000Z
import logging logging.basicConfig(format="%(asctime)s %(message)s", datefmt="%m/%d/%Y %I:%M:%S %p") logger = logging.getLogger(__name__) logging.getLogger("elasticsearch").setLevel(logging.WARNING) logging.getLogger("haystack").setLevel(logging.INFO) try: import uvicorn from fastapi import FastAPI, HTTPException from fastapi.routing import APIRoute from fastapi.openapi.utils import get_openapi from starlette.middleware.cors import CORSMiddleware from rest_api.controller.errors.http_error import http_error_handler from rest_api.config import ROOT_PATH from rest_api.controller.router import router as api_router except (ImportError, ModuleNotFoundError) as ie: from haystack.utils.import_utils import _optional_component_not_installed _optional_component_not_installed("rest_api", "rest", ie) def get_application() -> FastAPI: application = FastAPI(title="Haystack-API", debug=True, version="1.0.0", root_path=ROOT_PATH) # This middleware enables allow all cross-domain requests to the API from a browser. For production # deployments, it could be made more restrictive. application.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) application.add_exception_handler(HTTPException, http_error_handler) application.include_router(api_router) return application def get_openapi_specs() -> dict: """ Used to autogenerate OpenAPI specs file to use in the documentation. See `docs/_src/api/openapi/generate_openapi_specs.py` """ app = get_application() return get_openapi( title=app.title if app.title else None, version=app.version if app.version else None, openapi_version=app.openapi_version if app.openapi_version else None, description=app.description if app.description else None, routes=app.routes if app.routes else None, ) def use_route_names_as_operation_ids(app: FastAPI) -> None: """ Simplify operation IDs so that generated API clients have simpler function names (see https://fastapi.tiangolo.com/advanced/path-operation-advanced-configuration/#using-the-path-operation-function-name-as-the-operationid). The operation IDs will be the same as the route names (i.e. the python method names of the endpoints) Should be called only after all routes have been added. """ for route in app.routes: if isinstance(route, APIRoute): route.operation_id = route.name app = get_application() use_route_names_as_operation_ids(app) logger.info("Open http://127.0.0.1:8000/docs to see Swagger API Documentation.") logger.info( """ Or just try it out directly: curl --request POST --url 'http://127.0.0.1:8000/query' -H "Content-Type: application/json" --data '{"query": "Who is the father of Arya Stark?"}' """ ) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
38.320513
180
0.731683
ada8c30fab7932491efa2cf0cc39e2e470d9dad2
29,941
py
Python
tensorflow/python/framework/importer.py
JanX2/tensorflow
dd788dbbfa544c1ea4768940ac4300c22bb7e88e
[ "Apache-2.0" ]
3
2017-12-04T07:45:22.000Z
2018-04-20T06:53:17.000Z
tensorflow/python/framework/importer.py
JanX2/tensorflow
dd788dbbfa544c1ea4768940ac4300c22bb7e88e
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/importer.py
JanX2/tensorflow
dd788dbbfa544c1ea4768940ac4300c22bb7e88e
[ "Apache-2.0" ]
1
2020-05-14T06:13:24.000Z
2020-05-14T06:13:24.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A utility function for importing TensorFlow graphs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import contextlib import copy from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.python import pywrap_tensorflow as c_api from tensorflow.python.framework import c_api_util from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import function from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.util import compat from tensorflow.python.util.deprecation import deprecated_args # TODO(josh11b): SWIG the code from node_def_util instead of duplicating # the logic here. def _GetNodeAttr(node_def, attr_name): if attr_name not in node_def.attr: raise ValueError('Expected one attr with name %r in %s.' % (attr_name, str(node_def))) return node_def.attr[attr_name] def _ArgToTypesNoRef(node_def, arg_def): if arg_def.number_attr: repeats = _GetNodeAttr(node_def, arg_def.number_attr).i if arg_def.type_attr: dtype = _GetNodeAttr(node_def, arg_def.type_attr).type else: assert arg_def.type != types_pb2.DT_INVALID dtype = arg_def.type return [dtype] * repeats elif arg_def.type_attr: return [_GetNodeAttr(node_def, arg_def.type_attr).type] elif arg_def.type_list_attr: return _GetNodeAttr(node_def, arg_def.type_list_attr).list.type else: assert arg_def.type != types_pb2.DT_INVALID return [arg_def.type] def _SingleArgToTypes(node_def, arg_def): types = _ArgToTypesNoRef(node_def, arg_def) if arg_def.is_ref: return [dtypes.as_dtype(dt)._as_ref.as_datatype_enum for dt in types] # pylint: disable=protected-access return types def _ArgsToTypes(node_def, arg_list): types = [] for arg_def in arg_list: types.extend(_SingleArgToTypes(node_def, arg_def)) return types def _InputTypes(node_def, op_dict): op_def = op_dict[node_def.op] return _ArgsToTypes(node_def, op_def.input_arg) def _OutputTypes(node_def, op_dict): op_def = op_dict[node_def.op] return _ArgsToTypes(node_def, op_def.output_arg) def _IsControlInput(input_name): # Expected format: '^operation_name' (control input). return input_name.startswith('^') def _ParseTensorName(tensor_name): """Parses a tensor name into an operation name and output index. This function will canonicalize tensor names as follows: * "foo:0" -> ("foo", 0) * "foo:7" -> ("foo", 7) * "foo" -> ("foo", 0) * "foo:bar:baz" -> ValueError Args: tensor_name: The name of a tensor. Returns: A tuple containing the operation name, and the output index. Raises: ValueError: If `tensor_name' cannot be interpreted as the name of a tensor. """ components = tensor_name.split(':') if len(components) == 2: # Expected format: 'operation_name:output_index'. try: output_index = int(components[1]) except ValueError: raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,)) return components[0], output_index elif len(components) == 1: # Expected format: 'operation_name' (implicit 0th output). return components[0], 0 else: raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,)) def _CanonicalInputName(input_name): input_name = compat.as_str(input_name) if _IsControlInput(input_name): return input_name input_op_name, output_index = _ParseTensorName(input_name) return '%s:%d' % (input_op_name, output_index) def _InvalidNodeMessage(node, message): return 'graph_def is invalid at node %r: %s.' % (node.name, message) @contextlib.contextmanager def _MaybeDevice(device): """Applies the given device only if device is not None or empty.""" if device: with ops.device(device): yield else: yield def _ProcessGraphDefParam(graph_def): """Type-checks and possibly canonicalizes `graph_def`.""" if not isinstance(graph_def, graph_pb2.GraphDef): # `graph_def` could be a dynamically-created message, so try a duck-typed # approach try: old_graph_def = graph_def graph_def = graph_pb2.GraphDef() graph_def.MergeFrom(old_graph_def) except TypeError: raise TypeError('graph_def must be a GraphDef proto.') return graph_def def _ProcessInputMapParam(input_map): """Type-checks and possibly canonicalizes `input_map`.""" if input_map is None: input_map = {} else: if not (isinstance(input_map, dict) and all(isinstance(k, compat.bytes_or_text_types) for k in input_map.keys())): raise TypeError('input_map must be a dictionary mapping strings to ' 'Tensor objects.') return input_map def _ProcessReturnElementsParam(return_elements): """Type-checks and possibly canonicalizes `return_elements`.""" if return_elements is None: return None if not all(isinstance(x, compat.bytes_or_text_types) for x in return_elements): raise TypeError('return_elements must be a list of strings.') return tuple(compat.as_str(x) for x in return_elements) def _FindAttrInOpDef(attr_name, op_def): for attr_def in op_def.attr: if attr_name == attr_def.name: return attr_def return None def _ConvertInputMapValues(name, input_map): """Ensures all input map values are tensors. This should be called from inside the import name scope. Args: name: the `name` argument passed to import_graph_def input_map: the `input_map` argument passed to import_graph_def. Returns: An possibly-updated version of `input_map`. Raises: ValueError: if input map values cannot be converted due to empty name scope. """ if not all(isinstance(v, ops.Tensor) for v in input_map.values()): if name == '': # pylint: disable=g-explicit-bool-comparison raise ValueError( 'tf.import_graph_def() requires a non-empty `name` if `input_map` ' 'contains non-Tensor values. Try calling tf.convert_to_tensor() on ' '`input_map` values before calling tf.import_graph_def().') with ops.name_scope('_inputs'): input_map = {k: ops.convert_to_tensor(v) for k, v in input_map.items()} return input_map def _PopulateTFImportGraphDefOptions(options, prefix, input_map, return_elements): """Populates the TF_ImportGraphDefOptions `options`.""" c_api.TF_ImportGraphDefOptionsSetPrefix(options, prefix) for input_src, input_dst in input_map.items(): input_src = compat.as_str(input_src) if input_src.startswith('^'): src_name = compat.as_bytes(input_src[1:]) dst_op = input_dst._as_tf_output().oper # pylint: disable=protected-access c_api.TF_ImportGraphDefOptionsRemapControlDependency(options, src_name, dst_op) else: src_name, src_idx = _ParseTensorName(input_src) src_name = compat.as_str(src_name) dst_output = input_dst._as_tf_output() # pylint: disable=protected-access c_api.TF_ImportGraphDefOptionsAddInputMapping(options, src_name, src_idx, dst_output) for name in return_elements or []: if ':' in name: op_name, index = _ParseTensorName(name) op_name = compat.as_str(op_name) c_api.TF_ImportGraphDefOptionsAddReturnOutput(options, op_name, index) else: c_api.TF_ImportGraphDefOptionsAddReturnOperation(options, compat.as_str(name)) # TODO(skyewm): control dependencies def _ProcessNewOps(graph): """Processes the newly-added TF_Operations in `graph`.""" # Maps from a node to the names of the ops it's colocated with, if colocation # is specified in the attributes. colocation_pairs = {} for c_op in c_api_util.new_tf_operations(graph): # pylint: disable=protected-access new_op = graph._create_op_from_tf_operation(c_op, compute_device=False) # pylint: enable=protected-access colocation_names = _GetColocationNames(new_op) if colocation_names: colocation_pairs[new_op] = colocation_names # Don't apply this op's device function, since colocation constraints # override device functions. Note that this op's device may still be set # by the loop below. else: with _MaybeDevice(new_op.device): graph._apply_device_functions(new_op) # pylint: disable=protected-access # The following loop populates the device field of ops that are colocated # with another op. This is implied by the colocation attribute, but we # propagate the device field for completeness. for op, coloc_op_list in colocation_pairs.items(): coloc_device = None # Find any device in the list of colocated ops that have a device, if it # exists. We assume that if multiple ops have devices, they refer to the # same device. Otherwise, a runtime error will occur since the colocation # property cannot be guaranteed. # # One possible improvement is to try to check for compatibility of all # devices in this list at import time here, which would require # implementing a compatibility function for device specs in python. for coloc_op_name in coloc_op_list: try: coloc_op = graph._get_operation_by_name_unsafe(coloc_op_name) # pylint: disable=protected-access except KeyError: raise ValueError('Specified colocation to an op that ' 'does not exist during import: %s in %s' % ( coloc_op_name, op.name)) if coloc_op.device: coloc_device = pydev.DeviceSpec.from_string(coloc_op.device) break if coloc_device: op._set_device(coloc_device) # pylint: disable=protected-access def _GetColocationNames(op): """Returns names of the ops that `op` should be colocated with.""" colocation_names = [] try: class_values = op.get_attr('_class') except ValueError: # No _class attr return for val in class_values: val = compat.as_str(val) if val.startswith('loc:@'): colocation_node_name = val[len('loc:@'):] if colocation_node_name != op.name: colocation_names.append(colocation_node_name) return colocation_names def _GatherReturnElements(requested_return_elements, graph, results): """Returns the requested return elements from results. Args: requested_return_elements: list of strings of operation and tensor names graph: Graph results: wrapped TF_ImportGraphDefResults Returns: list of `Operation` and/or `Tensor` objects """ return_outputs = c_api.TF_ImportGraphDefResultsReturnOutputs(results) return_opers = c_api.TF_ImportGraphDefResultsReturnOperations(results) combined_return_elements = [] outputs_idx = 0 opers_idx = 0 for name in requested_return_elements: if ':' in name: combined_return_elements.append( graph._get_tensor_by_tf_output(return_outputs[outputs_idx])) # pylint: disable=protected-access outputs_idx += 1 else: combined_return_elements.append( graph._get_operation_by_tf_operation(return_opers[opers_idx])) # pylint: disable=protected-access opers_idx += 1 return combined_return_elements @deprecated_args(None, 'Please file an issue at ' 'https://github.com/tensorflow/tensorflow/issues if you depend' ' on this feature.', 'op_dict') def import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None, producer_op_list=None): """Imports the graph from `graph_def` into the current default `Graph`. This function provides a way to import a serialized TensorFlow [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) protocol buffer, and extract individual objects in the `GraphDef` as @{tf.Tensor} and @{tf.Operation} objects. Once extracted, these objects are placed into the current default `Graph`. See @{tf.Graph.as_graph_def} for a way to create a `GraphDef` proto. Args: graph_def: A `GraphDef` proto containing operations to be imported into the default graph. input_map: A dictionary mapping input names (as strings) in `graph_def` to `Tensor` objects. The values of the named input tensors in the imported graph will be re-mapped to the respective `Tensor` values. return_elements: A list of strings containing operation names in `graph_def` that will be returned as `Operation` objects; and/or tensor names in `graph_def` that will be returned as `Tensor` objects. name: (Optional.) A prefix that will be prepended to the names in `graph_def`. Note that this does not apply to imported function names. Defaults to `"import"`. op_dict: (Optional.) Deprecated, do not use. producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped) list of `OpDef`s used by the producer of the graph. If provided, unrecognized attrs for ops in `graph_def` that have their default value according to `producer_op_list` will be removed. This will allow some more `GraphDef`s produced by later binaries to be accepted by earlier binaries. Returns: A list of `Operation` and/or `Tensor` objects from the imported graph, corresponding to the names in `return_elements`. Raises: TypeError: If `graph_def` is not a `GraphDef` proto, `input_map` is not a dictionary mapping strings to `Tensor` objects, or `return_elements` is not a list of strings. ValueError: If `input_map`, or `return_elements` contains names that do not appear in `graph_def`, or `graph_def` is not well-formed (e.g. it refers to an unknown tensor). """ graph_def = _ProcessGraphDefParam(graph_def) input_map = _ProcessInputMapParam(input_map) return_elements = _ProcessReturnElementsParam(return_elements) op_dict = op_def_registry.get_registered_ops() if producer_op_list is None: producer_op_dict = None else: producer_op_dict = {op.name: op for op in producer_op_list.op} graph = ops.get_default_graph() if graph._c_graph: # pylint: disable=protected-access with ops.name_scope(name, 'import', input_map.values()) as scope: # Save unique prefix generated by name_scope if scope: assert scope.endswith('/') prefix = scope[:-1] else: prefix = '' # Generate any input map tensors inside name scope input_map = _ConvertInputMapValues(name, input_map) scoped_options = c_api_util.ScopedTFImportGraphDefOptions() options = scoped_options.options _PopulateTFImportGraphDefOptions(options, prefix, input_map, return_elements) with c_api_util.tf_buffer(graph_def.SerializeToString()) as serialized: try: with errors.raise_exception_on_not_ok_status() as status: results = c_api.TF_GraphImportGraphDefWithResults( graph._c_graph, serialized, options, status) # pylint: disable=protected-access except errors.InvalidArgumentError as e: # Convert to ValueError for backwards compatibility. raise ValueError(str(e)) _ProcessNewOps(graph) # TODO(skyewm): error if unused input map key if return_elements is None: return None else: return _GatherReturnElements(return_elements, graph, results) else: g = graph # Use a canonical representation for all tensor names. input_map = {_CanonicalInputName(k): v for k, v in input_map.items()} used_input_keys = set() name_to_op = {} # Add any functions defined in `graph_def` to `g` if graph_def.library and graph_def.library.function: # Copy op_dict so we don't clobber the original op_dict = copy.copy(op_dict) # pylint: disable=protected-access # Note that we do not prepend `name` to the function name. The reasoning # is that function names are similar to op definition names, which # currently do not have a scoped name or namespace scheme. functions = function._from_library(graph_def.library) for f in functions: f.add_to_graph(g) op_dict[f.name] = f.definition.signature # pylint: enable=protected-access # LINT.IfChange with ops.name_scope(name, 'import', input_map.values()) as scope: # TODO(ashankar): Should this just copy over or should it do some # more nuanced merging? For example, the graph may already have some # marked "bad versions" and we don't want to lose those because of # what's in graph_def.versions? The C++ ImporGraphDef does something # more nuanced. g.graph_def_versions.CopyFrom(graph_def.versions) input_map = _ConvertInputMapValues(name, input_map) # NOTE(mrry): We do this in two passes, because there may be a cycle in # `graph_def`. # 1. Add operations without their inputs. for node in graph_def.node: # Check to see if this op's name matches a previously seen op if node.name in name_to_op: raise ValueError('Duplicate name \'%s\' in GraphDef.' % node.name) # Set any default attr values that aren't present. if node.op not in op_dict: raise ValueError('No op named %s in defined operations.' % node.op) op_def = op_dict[node.op] for attr_def in op_def.attr: key = attr_def.name if attr_def.HasField('default_value'): value = node.attr[key] if value is None or value.WhichOneof('value') is None: node.attr[key].CopyFrom(attr_def.default_value) if producer_op_dict: # Remove any default attr values that aren't in op_def. if node.op in producer_op_dict: producer_op_def = producer_op_dict[node.op] # We make a copy of node.attr to iterate through since we # may modify node.attr inside the loop. for key in list(node.attr): if _FindAttrInOpDef(key, op_def) is None: # No attr_def in consumer, look in producer. attr_def = _FindAttrInOpDef(key, producer_op_def) if (attr_def and attr_def.HasField('default_value') and node.attr[key] == attr_def.default_value): # Unknown attr had default value in producer, delete it # so it can be understood by consumer. del node.attr[key] output_types = _OutputTypes(node, op_dict) name_to_op[node.name] = g.create_op( node.op, [], output_types, name=node.name, attrs=node.attr, compute_shapes=False, compute_device=False, op_def=op_def) # Maps from a node to the ops it is colocated with, if colocation # is specified in the attributes. colocation_pairs = collections.defaultdict(list) # 2. Add inputs to the operations. for node in graph_def.node: op = name_to_op[node.name] input_types = _InputTypes(node, op_dict) apply_device_function = True # Rewrite the colocation attributes in the graph, since the # names of new ops may have changed. for key, value in op.node_def.attr.items(): if key == '_class': class_values = value.list new_class_values = [] for class_value in class_values.s: if class_value.startswith(b'loc:@'): op_to_bind_to = class_value[5:].decode() # Find the op by its original name. if op_to_bind_to not in name_to_op: raise ValueError('Specified colocation to an op that ' 'does not exist during import: %s in %s' % ( op_to_bind_to, node.name)) original_op = name_to_op[op_to_bind_to] new_class_values.append(compat.as_bytes( 'loc:@' + original_op.name)) if op_to_bind_to != node.name: # Keep track of this mapping for a later phase. colocation_pairs[op].append(original_op) # Don't apply this op's device function, # the colocation constraint will ensure # the proper device gets assigned at runtime. apply_device_function = False else: new_class_values.append(class_value) value.list.CopyFrom(attr_value_pb2.AttrValue.ListValue( s=new_class_values)) # NOTE(mrry): We cannot use zip here because control inputs do not # appear in the list of input_types. for i, input_name in enumerate( [_CanonicalInputName(x) for x in node.input]): if _IsControlInput(input_name): # (a) Input is a control input that should be taken from an op # in "graph_def". try: source_op = name_to_op[input_name[1:]] except KeyError: raise ValueError( _InvalidNodeMessage( node, 'Control input %r not found in graph_def.' % (input_name,))) # pylint: disable=protected-access op._add_control_input(source_op) # pylint: enable=protected-access else: try: input_type = input_types[i] except IndexError: raise ValueError(_InvalidNodeMessage( node, 'More inputs specified (%r) than the op expects.' % (input_name,))) if input_name in input_map: # (b) Input should be replaced by a tensor from the caller. source_tensor = input_map[input_name] used_input_keys.add(input_name) else: # (c) Input should be taken from an op in `graph_def`. operation_name, output_index = _ParseTensorName(input_name) try: source_op = name_to_op[operation_name] source_tensor = list(source_op.values())[output_index] except (KeyError, IndexError): raise ValueError( _InvalidNodeMessage( node, 'Input tensor %r not found in graph_def.' % (input_name,))) try: # pylint: disable=protected-access op._add_input(source_tensor, dtype=input_type) # pylint: enable=protected-access except TypeError as te: raise ValueError(_InvalidNodeMessage( node, 'Input tensor %r %s' % (input_name, te))) # pylint: disable=protected-access if op._input_dtypes != input_types: raise ValueError( _InvalidNodeMessage( node, 'Input types mismatch (expected %r but got %r)' % (', '.join(dtypes.as_dtype(x).name for x in input_types), ', '.join(x.name for x in op._input_dtypes)))) # pylint: enable=protected-access if not g._is_function(op.type): # pylint: disable=protected-access # Execute shape inference for this op. # NOTE(mrry): If the graph contains a cycle, the full shape # information may not be available for this op's inputs. ops.set_shapes_for_outputs(op) # For nodes with _output_shapes set, set the output shapes. if '_output_shapes' in op.node_def.attr: for i, output in enumerate(op.outputs): dims = op.node_def.attr['_output_shapes'].list.shape[i] output_shape = tensor_shape.TensorShape( None if dims.unknown_rank else [dim.size if dim.size >= 0 else None for dim in dims.dim]) try: output.set_shape(output_shape) except ValueError as e: # If the output shape is incompatible with what is inferred # by the graph for a very specific whitelist of ops, then we # ignore this output shape. This can happen if there is a # bug in the shape function for some operation, and the # serialized graph def has the incorrect shape set when # running on a newer binary with the fixed shape function. # This is an escape hatch that allows us to correct shape # functions that are not critical to correct execution but # would cause graphs to fail if imported after correcting. # # This can be removed after 2017/03/08. if op.type in ['RandomShuffleQueue', 'PaddingFIFOQueue', 'FIFOQueue', 'PriorityQueue', 'QueueSize', 'Stack', 'Barrier', 'BarrierReadySize', 'BarrierIncompleteSize', 'HashTable', 'MutableHashTable', 'MutableHashTableOfTensors', 'Mutex', 'CuckooTable', 'IndexTable', 'WholeFileReader', 'TextLineReader', 'FixedLengthRecordReader', 'TFRecordReader', 'IdentityReader', 'LMDBReader', 'RefSwitch', 'RefEnter', 'RefNextIteration', 'RefMerge', 'RefIdentity']: pass elif op.type in [ 'ConditionalAccumulator', 'SparseConditionalAccumulator', 'Table' ]: # This can be removed after 2017/04/24. pass else: raise e del op.node_def.attr['_output_shapes'] # NOTE(mrry): We do this after configuring the inputs, because # the result of the device functions may depend on the inputs. if apply_device_function: with _MaybeDevice(node.device): g._apply_device_functions(op) # pylint: disable=protected-access # The following loop populates the device field of ops that are # colocated with another op. This is implied by the colocation # attribute, but we propagate the device field for completeness. for op, coloc_op_list in colocation_pairs.items(): coloc_device = None # Find any device in the list of colocated ops that have a # device, if it exists. We assume that if multiple ops # have devices, they refer to the same device. Otherwise, a # runtime error will occur since the colocation property # cannot be guaranteed. # # One possible improvement is to try to check for compatibility # of all devices in this list at import time here, which would # require implementing a compatibility function for device specs # in python. for coloc_op in coloc_op_list: if coloc_op.device: coloc_device = pydev.DeviceSpec.from_string(coloc_op.device) break if coloc_device: op._set_device(coloc_device) # pylint: disable=protected-access # Treat input mappings that don't appear in the graph as an error, # because they are likely to be due to a typo. def _IsImportedNodeOutput(tensor_name): operation_name, output_index = _ParseTensorName(tensor_name) try: return output_index < len(name_to_op[operation_name].outputs) except KeyError: return False absent_input_keys = [ k for k in frozenset(input_map.keys()).difference(used_input_keys) if not _IsImportedNodeOutput(k)] if absent_input_keys: raise ValueError( 'Attempted to map inputs that were not found in graph_def: [%s]' % ', '.join(absent_input_keys)) if return_elements is None: return None else: ret = [] for name in return_elements: name = compat.as_str(name) if ':' in name: try: operation_name, output_index = _ParseTensorName(name) ret.append(name_to_op[operation_name].outputs[output_index]) except (ValueError, KeyError, IndexError): raise ValueError( 'Requested return_element %r not found in graph_def.' % name) else: try: ret.append(name_to_op[name]) except KeyError: raise ValueError( 'Requested return_element %r not found in graph_def.' % name) return ret # LINT.ThenChange(//tensorflow/core/graph/graph_constructor.cc)
40.736054
109
0.654187
45ed163a1aa6637c65bd6c74b1895b8db9b1e8da
47,044
py
Python
bot3.py
banban/CreativeTradeInBot
56938229446983e91d851a3cc8e6ef2a01ace43b
[ "MIT" ]
null
null
null
bot3.py
banban/CreativeTradeInBot
56938229446983e91d851a3cc8e6ef2a01ace43b
[ "MIT" ]
null
null
null
bot3.py
banban/CreativeTradeInBot
56938229446983e91d851a3cc8e6ef2a01ace43b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # pylint: disable=C0116,W0613 # This program is dedicated to the public domain under the CC0 license. """ First, a few callback functions are defined. Then, those functions are passed to the Dispatcher and registered at their respective places. Then, the bot is started and runs until we press Ctrl-C on the command line. Usage: Example of a bot-user conversation using nested ConversationHandlers. Send /start to initiate the conversation. Press Ctrl-C on the command line or send a signal to the process to stop the bot. """ import sys import os import logging import pymongo from pymongo.message import query from bson.objectid import ObjectId import constants as C from datetime import datetime import json from ibm_watson import SpeechToTextV1 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator import logging from typing import Tuple, Dict, Any from telegram import (InlineKeyboardMarkup, InlineKeyboardButton, Update, chat) from telegram.ext import ( Updater, CommandHandler, MessageHandler, Filters, ConversationHandler, CallbackQueryHandler, CallbackContext, ) from telegram.utils import helpers #from telegram.utils.helpers import escape_markdown, helpers # Enable logging logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.WARNING ) logger = logging.getLogger(__name__) # State definitions for top level conversation SELECTING_ACTION, TRADING, EDITING, DOWNLOADING = map(chr, range(4)) # State definitions for item SELECTING_FEATURE, SELECTING_CATEGORY, TYPING, SAVING = map(chr, range(4, 8)) # Meta states STOPPING, SHOWING, REPLYING, CALLING, SEARCHING, TRACKING, PAGE_MASSAGES, PAGE_ITEMS, PREV_PAGE, NEXT_PAGE = map(chr, range(8, 18)) # Shortcut for ConversationHandler.END END = ConversationHandler.END # Different constants for editing item ( FEATURE, NAME, VALUE, DESCRIPTION, CATEGORY, #CATEGORY_VALUE, IMAGE, DOCUMENT, VOICE ) = map(chr, range(18, 26)) class Bot: # static helpers def facts_to_str(user_data: Dict[str, str]) -> str: """Helper function for formatting the gathered user info.""" excludeKeys = {PREV_PAGE, NEXT_PAGE, PAGE_MASSAGES, PAGE_ITEMS, TRADING, REPLYING, CALLING, VOICE, '_id', 'chat_id', 'Images', 'Files'} #translation_table = dict.fromkeys(map(ord, '!$*-`_()[].'), "\\") #value.translate(translation_table) facts = [f'*{key}*: `{helpers.escape_markdown(str(value), version=2)}`' for key, value in user_data.items() if key not in excludeKeys] result = "\n".join(facts).join(['\n', '\n']) #print(result) return result def facts_to_save(user_data: Dict[str, Any]) -> Dict[str, Any]: """Helper function for saving in database.""" excludeKeys = {PREV_PAGE, NEXT_PAGE, PAGE_MASSAGES, PAGE_ITEMS, TRADING, REPLYING, CALLING, VOICE, '_id'} return {x: user_data[x] for x in user_data if x not in excludeKeys} def get_value_from_string(data): #int(''.join(c for c in s if c.isdigit())) #import re #re.findall("\d+\.\d+", "Current Level: 13.4 db.") value = 0.0 if data is None: return value try: value = float(str(data).replace(',', '').replace('$', '').strip(' ')) except: pass return value # instance members def __init__(self): self.myclient = pymongo.MongoClient(C.MONGODB_CONNECTION_URL) self.botDB = self.myclient["botDB"] authenticator = IAMAuthenticator(C.IBM_KEY) self.speech_to_text = SpeechToTextV1(authenticator=authenticator) self.speech_to_text.set_service_url(C.IBM_SERVICE_URL) #InsecureRequestWarning: Unverified HTTPS request is being made to host 'api.au-syd.speech-to-text.watson.cloud.ibm.com'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/1.2 #self.speech_to_text.set_disable_ssl_verification(True) def remove_page_messages(self, update: Update, context: CallbackContext): #print("remove_page_messages") try: _chat_id = update.callback_query.message.chat_id except: _chat_id = update.message.chat_id #print("remove_page_messages: 2") chat_data = context.chat_data if PAGE_MASSAGES in chat_data and _chat_id: #print("remove_page_messages: 3") for _id in chat_data[PAGE_MASSAGES]: try: context.bot.delete_message(chat_id=_chat_id, message_id=_id) except: pass chat_data[PAGE_MASSAGES] = [] #print("remove_page_messages: 4") # Top level conversation callbacks def start(self, update: Update, context: CallbackContext) -> str: """Select an action: Adding parent/child or show data.""" #print("start") #print("update.callback_query:"+ str(bool(update.callback_query))) #print("update.message:"+ str(bool(update.message))) self.remove_page_messages(update, context) buttons = [ [ InlineKeyboardButton(text='✏️Update Item', callback_data=str(EDITING)), InlineKeyboardButton(text='ℹ️Show Item', callback_data=str(SHOWING)), ], [ InlineKeyboardButton(text=f"🔎Search & Trade", callback_data=str(SEARCHING)), InlineKeyboardButton(text=f"⛓Trades History", callback_data=str(TRACKING)), ], [ InlineKeyboardButton(text='⏹Exit Conversation', callback_data=str(END)), ], ] keyboard = InlineKeyboardMarkup(buttons) _text="To abort session, type /stop or click [Stop]." # If we're calling, don't need to send a new message if bool(update.callback_query): #print("start:CALLING") if (_text != update.callback_query.message.text): update.callback_query.answer() update.callback_query.edit_message_text(text=_text, reply_markup=keyboard) elif bool(update.message): #print("start:REPLYING") update.message.reply_text( "Hi {}, Let's trade-in!".format(update.message.from_user.first_name) ) update.message.reply_text(text=_text, reply_markup=keyboard) #print("start:redirecting") return SELECTING_ACTION def get_user_info(self, chat_id, context: CallbackContext): _chat = context.bot.get_chat(chat_id=chat_id) result = "" if (_chat.username is not None and _chat.username != "None"): result = _chat.username elif (_chat.first_name is not None and _chat.first_name != "None"): result = f"{_chat.first_name} {_chat.last_name}" else: result = str(chat_id) return result def history(self, update: Update, context: CallbackContext) -> str: #print("history of otcoming trades") self.remove_page_messages(update, context) try: chat_id = update.callback_query.message.chat_id except: chat_id = update.message.chat_id count = self.botDB["transactions"].count_documents( { "from_chat_id" : chat_id } ) trans = self.botDB["transactions"].find( { "from_chat_id" : chat_id } ) chat_data = context.chat_data user_data = context.user_data #print(f"count:{count}, offset:{offset}") buttons = [] # if (offset > 0 and offset >= PAGE_SIZE): # buttons.append(InlineKeyboardButton(text='⬅️Prev page', callback_data=str(PREV_PAGE))) # if (offset + PAGE_SIZE < count): # buttons.append(InlineKeyboardButton(text='➡️Next page', callback_data=str(NEXT_PAGE))) buttons.append(InlineKeyboardButton(text='🔙Back to main menu', callback_data=str(END))) keyboard = InlineKeyboardMarkup([buttons]) if bool(update.callback_query): _text = (f"{count} historical trade-in(s) found") if (_text != update.callback_query.message.text): update.callback_query.answer() update.callback_query.edit_message_text(text=_text, reply_markup=keyboard) transNo = 0 for tran in trans: item = self.botDB["items"].find_one({"_id": ObjectId(tran['item_id'])}) _text = "" _image_ids = "" transNo +=1 facts={'From': self.get_user_info(tran['from_chat_id'], context), 'To': self.get_user_info(tran['to_chat_id'], context), 'Trans No': str(transNo), 'Trade Date': str(tran['trans_date'])[0:16]} #"%d/%m/%y %H:%M" #facts["To owner"] = str(tran['to_chat_id']) for key, value in item.items(): facts[key] = str(value) _text = Bot.facts_to_str(facts) item_message = context.bot.send_message(chat_id=update.callback_query.message.chat_id ,text=_text #, reply_markup=InlineKeyboardMarkup([[ # InlineKeyboardButton(text='ℹ️SHOWING', callback_data=str(SAVING)) # ]]) #, reply_to_message_id=update.callback_query.message.message_id , parse_mode='MarkdownV2') #ParseMode.MARKDOWN_V2 chat_data[PAGE_MASSAGES].append(item_message.message_id) #context.bot.send_media_group(chat_id=get_chat_id(update, context), media=list) if (_image_ids != ""): for image_id in _image_ids.split('|'): if (image_id != ""): try: image_message = context.bot.send_photo(chat_id=update.callback_query.message.chat_id , reply_to_message_id=item_message.message_id , photo=image_id , caption="Attached image") chat_data[PAGE_MASSAGES].append(image_message.message_id) except: pass return TRACKING #SEARCHING is ok as well #not implemented yet def search_text_filter(self, update: Update, context: CallbackContext) -> str: chat_data = context.chat_data user_data = context.user_data return SEARCHING def search(self, update: Update, context: CallbackContext) -> str: #print("search") self.remove_page_messages(update, context) chat_data = context.chat_data user_data = context.user_data PAGE_SIZE = 5 try: chat_id = update.callback_query.message.chat_id except: chat_id = update.message.chat_id trans = self.botDB["transactions"].find( { "from_chat_id" : chat_id } , projection = { "item_id" : True } ) exsclude_preowned_items = [None] for tran in trans: exsclude_preowned_items.append(tran['item_id']) condition = {"$and": [ { "chat_id" : { "$nin": [None, chat_id] } }, #exclude currently owned item { "_id" : { "$nin": exsclude_preowned_items } } #exclude preowned items ] } #DEBIG condition = { "_id" : { "$ne": None } } count = self.botDB["items"].count_documents(condition) if PREV_PAGE not in user_data: user_data[PREV_PAGE] = 0 if PAGE_ITEMS not in user_data: user_data[PAGE_ITEMS] = {} offset = int(user_data[PREV_PAGE]) if (update.callback_query.data == PREV_PAGE): offset = offset - PAGE_SIZE elif (update.callback_query.data == NEXT_PAGE): offset = offset + PAGE_SIZE user_data[PREV_PAGE] = offset #print(f"count:{count}, offset:{offset}") buttons = [] if (offset > 0 and offset >= PAGE_SIZE): buttons.append(InlineKeyboardButton(text='⬅️Prev page', callback_data=str(PREV_PAGE))) if (offset + PAGE_SIZE < count): buttons.append(InlineKeyboardButton(text='➡️Next page', callback_data=str(NEXT_PAGE))) buttons.append(InlineKeyboardButton(text='🔙Back to main menu', callback_data=str(END))) keyboard = InlineKeyboardMarkup([buttons]) items = self.botDB["items"].find(condition).skip(offset).limit(PAGE_SIZE) if bool(update.callback_query): pagesTotal = int(count/PAGE_SIZE) if (count % PAGE_SIZE)>0: pagesTotal +=1 _text = (f"Page {int(offset/PAGE_SIZE) + 1} of {pagesTotal}. {count} item(s) found in total.") #You can type to search by text if (_text != update.callback_query.message.text): update.callback_query.answer() update.callback_query.edit_message_text(text=_text, reply_markup=keyboard) itemNo = int(offset * PAGE_SIZE) for item in items: _text = "" _image_ids = "" itemNo +=1 facts={'Item No': str(itemNo)} for key, value in item.items(): facts[key] = str(value) if (key =='Images'): _image_ids = str(value) if (key =='chat_id'): facts['Owner'] = self.get_user_info(value, context) _text = Bot.facts_to_str(facts) item_message = context.bot.send_message(chat_id=update.callback_query.message.chat_id ,text=_text , reply_markup=InlineKeyboardMarkup([[ InlineKeyboardButton(text='🛒Trade Item No: '+str(itemNo), callback_data=str(SAVING)) ]]) #, reply_to_message_id=update.callback_query.message.message_id , parse_mode='MarkdownV2') #ParseMode.MARKDOWN_V2 chat_data[PAGE_MASSAGES].append(item_message.message_id) user_data[PAGE_ITEMS][item_message.message_id] = item['_id'] #context.bot.send_media_group(chat_id=get_chat_id(update, context), media=list) if (_image_ids != ""): for image_id in _image_ids.split('|'): if (image_id != ""): try: image_message = context.bot.send_photo(chat_id=update.callback_query.message.chat_id , reply_to_message_id=item_message.message_id , photo=image_id , caption="Attached image") chat_data[PAGE_MASSAGES].append(image_message.message_id) except: pass return SEARCHING def item_details(self, update: Update, context: CallbackContext) -> str: """Pretty print gathered data.""" #print("item_details") item = self.botDB["items"].find_one({"chat_id": update.callback_query.message.chat_id}) chat_data = context.chat_data if (item is not None and update.callback_query.data == DOWNLOADING): _ids = str(item['Files']).strip('|').split('|') for file_id in _ids: if (file_id != ""): try: message = context.bot.sendDocument(chat_id=update.callback_query.message.chat_id, document=file_id, caption = 'Attached file') chat_data[PAGE_MASSAGES].append(message.message_id) except: pass return SHOWING buttons = [InlineKeyboardButton(text='🔙Back', callback_data=str(END))] if (item is None): _text='*No information yet*\. Please setup your item first' else: _text="Here is your item details:" self.remove_page_messages(update, context) facts={} for key, value in item.items(): facts[key] = str(value) if (key == 'Files'): buttons.insert(0, InlineKeyboardButton(text='💾Download', callback_data=str(DOWNLOADING))) elif (key =='Images'): _ids = str(value).strip('|').split('|') for image_id in _ids: if (image_id != ""): try: message = context.bot.send_photo(chat_id=update.callback_query.message.chat_id , reply_to_message_id=update.callback_query.message.message_id , photo=image_id , caption="Attached image") chat_data[PAGE_MASSAGES].append(message.message_id) except: pass _text += Bot.facts_to_str(facts) url = helpers.create_deep_linked_url(bot_username=context.bot.name.strip('@'), payload=f"{item['_id']}") #, group=False #https://t.me/{context.bot.name.strip('@')}?trade={item['_id']} _text += f"\nUse [▶️this link]({url}) to promote your item" keyboard = InlineKeyboardMarkup([buttons]) if bool(update.callback_query): if (_text != update.callback_query.message.text): update.callback_query.answer() update.callback_query.edit_message_text(text=_text , reply_markup=keyboard , parse_mode='MarkdownV2') #ParseMode.MARKDOWN_V2 elif bool(update.message): update.message.reply_text(text=_text , reply_markup=keyboard , parse_mode='MarkdownV2') #ParseMode.MARKDOWN_V2 #user_data[CALLING] = True return SHOWING def item_edit(self, update: Update, context: CallbackContext): #print('item_edit') edit_item_keyboard = InlineKeyboardMarkup([ [ InlineKeyboardButton(text='❕Name', callback_data=str(NAME)), InlineKeyboardButton(text='❕Value', callback_data=str(VALUE)), ], [ InlineKeyboardButton(text='Description', callback_data=str(DESCRIPTION)), InlineKeyboardButton(text='Other Category', callback_data=str(CATEGORY)), ], [ InlineKeyboardButton(text='💾Save', callback_data=str(SAVING)), InlineKeyboardButton(text='🔙Back', callback_data=str(END)), ] ]) chat_data = context.chat_data user_data = context.user_data #print ('user_data.get(CALLING):' + str(user_data.get(CALLING))) _text="Did not get chages yet :(" if bool(update.callback_query): _text = "Update your item details.\nYou can also attach photos and files" if (_text != update.callback_query.message.text): update.callback_query.answer() update.callback_query.edit_message_text(text=_text, reply_markup=edit_item_keyboard) elif bool(update.message): if VOICE in user_data: _text = "Oh, did you say this? "+ user_data[VOICE] update.message.reply_text(text=_text, reply_markup=edit_item_keyboard, parse_mode='MarkdownV2') del user_data[VOICE] else: if ('Files' in user_data and bool(update.message.document)): _text = "\nThe file will be visible for *you only* until new owner\!" reply_to_file = context.bot.send_message(chat_id=update.message.chat_id , reply_to_message_id=update.message.message_id , text=_text, parse_mode='MarkdownV2') chat_data[PAGE_MASSAGES].append(reply_to_file.message_id) elif ('Images' in user_data and bool(update.message.photo)): _text = "The photo will be visible *for all*\!" reply_to_file = context.bot.send_message(chat_id=update.message.chat_id , reply_to_message_id=update.message.message_id , text=_text, parse_mode='MarkdownV2') chat_data[PAGE_MASSAGES].append(reply_to_file.message_id) else: _text = ("Got it\! Keep changing and click *💾Save* to finish update, or *Back* to cancel and return" f"{Bot.facts_to_str(user_data)}") update.message.reply_text(text=_text, reply_markup=edit_item_keyboard, parse_mode='MarkdownV2') return SELECTING_FEATURE def regular_choice(self, update: Update, context: CallbackContext) -> int: """Ask the user for info about the selected predefined choice.""" if (update.callback_query.data == NAME): text = "Name" elif (update.callback_query.data == VALUE): text = "Value" elif (update.callback_query.data == DESCRIPTION): text = "Description" else: #Categoty text = "Unknown" #print('regular_choice:'+ text) user_data = context.user_data user_data[CATEGORY] = text update.callback_query.answer() update.callback_query.edit_message_text(f'Item {text.lower()}? Please type the value:') return TYPING def custom_choice(self, update: Update, context: CallbackContext) -> int: #print('custom_choice:'+update.callback_query.id) """Ask the user for a description of a custom category.""" update.callback_query.answer() update.callback_query.edit_message_text(text="Describe the category, for example *Colour* or *Size*", parse_mode='MarkdownV2') return SELECTING_CATEGORY def custom_text(self, update: Update, context: CallbackContext) -> int: """Ask the user for info about the selected predefined choice.""" text = update.message.text #print('custom_text:'+text) user_data = context.user_data user_data[CATEGORY] = text update.message.reply_text(f'Item {text.lower()}? Please type the value:') return TYPING def received_information(self, update: Update, context: CallbackContext) -> int: """Store info provided by user and ask for the next category.""" user_data = context.user_data text = update.message.text #print('received_information:'+ text) if CATEGORY in user_data: category = user_data[CATEGORY] user_data[category] = text del user_data[CATEGORY] #go to the start again return self.item_edit(update, context) def edit_commit(self, update: Update, context: CallbackContext) -> int: """Display the gathered info and end the conversation.""" #print("edit_commit") user_data = context.user_data if CATEGORY in user_data: del user_data[CATEGORY] facts = Bot.facts_to_save(user_data) facts['chat_id'] = update.callback_query.message.chat_id items_coll = self.botDB["items"] item = items_coll.find_one({"chat_id": facts['chat_id']}) if (item is None): inserted_item = items_coll.insert_one(facts) if (bool(inserted_item)): _id = str(inserted_item.inserted_id) update.callback_query.answer() update.callback_query.edit_message_text(text=f"The item {_id} is inserted") elif (bool(item)): _id = item['_id'] edited_item = items_coll.find_one_and_update(filter={"_id": ObjectId(_id), "chat_id": facts['chat_id']}, update={"$set": facts}, upsert=True, return_document=True) if (bool(edited_item)): update.callback_query.answer() update.callback_query.edit_message_text(text=f"👏Welldone! The item is updated and ready to trade") user_data.clear() self.remove_page_messages(update, context) return self.start(update, context) #return END def received_photo(self, update: Update, context: CallbackContext): """ bot sends image in multiple resolutions, last one is the highest one """ user_data = context.user_data chat_data = context.chat_data if 'Images' in user_data: user_data['Images'] += "|" else: user_data['Images'] = "" if update.message.photo[0].file_id not in user_data['Images']: user_data['Images'] += (update.message.photo[0].file_id).strip('|') chat_data[PAGE_MASSAGES].append(update.message.message_id) return self.item_edit(update, context) def received_voice(self, update: Update, context: CallbackContext): """ bot sends audio to IBM Speech to Text: https://cloud.ibm.com/catalog/services/speech-to-text https://cloud.ibm.com/apidocs/speech-to-text?code=python#recognize """ # print(update.message.voice) #voice_content = update.message.voice.get_file() # context.bot.get_file(update.message.voice.file_id) voice_content = update.message.voice.get_file() chat_data = context.chat_data chat_data[PAGE_MASSAGES].append(update.message.message_id) user_data = context.user_data #try: speech_recognition_results = self.speech_to_text.recognize( audio=voice_content.download_as_bytearray(), #https://cloud.ibm.com/apidocs/speech-to-text-icp?code=python content_type='audio/l16', #Audio formats (content types) word_alternatives_threshold=0.9, keywords=['name', 'value', 'description', 'category', 'save', 'back'], keywords_threshold=0.5 ).get_result() if speech_recognition_results.status_code != 200 or not speech_recognition_results: user_data[VOICE] = "Sorry, I could not hear you well :(" else: user_data[VOICE] = str(json.dumps(speech_recognition_results, indent=2)) print("VOICE"+ user_data[VOICE]) #except: # print("Unexpected voice error:", sys.exc_info()[0]) # pass return self.item_edit(update, context) def trade_command(self, update: Update, context: CallbackContext): print('trade_command') user_data = context.user_data chat_data = context.chat_data validation_error="" item_id = None if (len(context.args) <= 0): validation_error = "❌Please provide correct item id for direct trade" else: item_id = context.args[0] print('trade_command item_id:'+str(item_id)) try: if bool(update.callback_query): chat_id = update.callback_query.message.chat_id elif bool(update.message): chat_id = update.message.chat_id except: chat_id = None print('trade_command chat_id:'+str(chat_id)) item = None if (item_id != None): try: item = self.botDB["items"].find_one(filter={"_id": ObjectId(item_id)}) except: item = None if (item is None): validation_error = "❌Sorry, this item id is incorrect or not avaialable anymore!" elif (item['chat_id'] == chat_id): validation_error = "❌Sorry, this item is already owned by you" if (validation_error !=""): #print ("trade_command validation error:"+validation_error) reply_message = context.bot.send_message(chat_id=chat_id ,text=validation_error) chat_data[PAGE_MASSAGES].append(reply_message.message_id) return SEARCHING if PAGE_ITEMS not in user_data: user_data[PAGE_ITEMS] = {} self.remove_page_messages(update, context) facts={} _image_ids ="" for key, value in item.items(): facts[key] = str(value) if (key == 'Images'): _image_ids = str(value).strip('|') _text = Bot.facts_to_str(facts) if (_text != ""): _text = "Here is item details:"+ _text keyboard = InlineKeyboardMarkup([ [ InlineKeyboardButton(text='🛒Trade', callback_data=str(SAVING)), InlineKeyboardButton(text='🔙Back', callback_data=str(END)), ] ]) #print('trade_command _text:'+_text) message_id = 0 if (bool(update.callback_query) and update.callback_query.message is not None and update.callback_query.message.text != ""): print("trade_command response1") if (_text != update.callback_query.message.text): update.callback_query.answer() update.callback_query.edit_message_text(text=_text, reply_markup=keyboard, parse_mode='MarkdownV2') message_id = update.callback_query.message.message_id elif bool(update.message): print("trade_command response2") update.message.reply_text(text=_text, reply_markup=keyboard, parse_mode='MarkdownV2') message_id = update.message.message_id else: print("trade_command response3") reply_message = context.bot.send_message(chat_id=chat_id, text=_text, reply_markup=keyboard, parse_mode='MarkdownV2') chat_data[PAGE_MASSAGES].append(reply_message.message_id) message_id = reply_message.message_id if (message_id > 0 and _image_ids !=""): for image_id in _image_ids.split('|'): if (image_id != ""): image_message = context.bot.send_photo(chat_id=chat_id , reply_to_message_id=message_id , photo=_image_ids[0] , caption="Attached image") chat_data[PAGE_MASSAGES].append(image_message.message_id) user_data[PAGE_ITEMS][message_id] = item_id print("trade_command redirect:"+ item_id) return SEARCHING #self.trade_commit(update, context) def trade_commit(self, update: Update, context: CallbackContext) -> int: """Display the gathered info and end the conversation.""" print("trade_commit") user_data = context.user_data chat_data = context.chat_data self.remove_page_messages(update, context) chat_id1 = None item1 = None item2 = None message_id = None validation_error="" if PAGE_ITEMS not in user_data: user_data[PAGE_ITEMS] = {} try: if bool(update.callback_query): chat_id1 = update.callback_query.message.chat_id message_id = update.callback_query.message.message_id elif bool(update.message): chat_id1 = update.message.chat_id message_id = update.message.message_id except: chat_id1 = None print('trade_commmit chat_id:'+str(chat_id1)) items_coll = self.botDB["items"] if (chat_id1 != None): try: item1 = items_coll.find_one({"chat_id": chat_id1}) except: pass if (message_id != None): try: if message_id in user_data[PAGE_ITEMS]: item2 = items_coll.find_one(filter={"_id": ObjectId(user_data[PAGE_ITEMS][message_id])}) del user_data[PAGE_ITEMS][message_id] except: item2=None if (item1 is None): validation_error = "❌Sorry, you have no item to trade-in with others yet, please update your item first!" elif (item2 is None): validation_error = "❌Sorry, that item is not avaialable anymore!" elif (item1['_id'] == item2['_id']): validation_error = "❌Sorry, the item for trade is the same" elif (item1['chat_id'] == item2['chat_id']): validation_error = "❌Sorry, both items have the same owner" elif (Bot.get_value_from_string(item1['Value']) < Bot.get_value_from_string(item2['Value'])): validation_error = "❌Sorry, your item has lower value." else: #check if owner2 traded item1 before trade_count = self.botDB["transactions"].count_documents(filter={"item_id": item1['_id'], "from_chat_id": item2['chat_id']}) if (trade_count>0): validation_error = f"❌Sorry, Your item {item1['Name']} was already preowned by that person and can't be trade-in again" else: #check if owner1 traded item2 before trade_count = self.botDB["transactions"].count_documents(filter={"item_id": item2['_id'], "from_chat_id": item1['chat_id']}) if (trade_count>0): validation_error = f"❌Sorry, that {item2['Name']} was already preowned by you and can't be trade-in again" if (validation_error !=""): reply_message = context.bot.send_message(chat_id=item1['chat_id'] ,text=validation_error) chat_data[PAGE_MASSAGES].append(reply_message.message_id) return SEARCHING trans_coll = self.botDB["transactions"] trans1 = dict() #Dict[str, Any] trans1['trans_date'] = datetime.now() trans1['item_id'] = item1['_id'] trans1['from_chat_id'] = item1['chat_id'] trans1['to_chat_id'] = item2['chat_id'] trans2 = dict() trans2['trans_date'] = trans1['trans_date'] trans2['item_id'] = item2['_id'] trans2['from_chat_id'] = item2['chat_id'] trans2['to_chat_id'] = item1['chat_id'] #print("start multi-document transaction") #https://pymongo.readthedocs.io/en/stable/api/pymongo/client_session.html with self.myclient.start_session() as session: with session.start_transaction(): reply1 = trans_coll.insert_many([trans1, trans2], session=session) if (reply1.acknowledged==True and len(reply1.inserted_ids)==2): items_coll.find_one_and_update(filter={'_id': ObjectId(item1['_id']), 'chat_id': item1['chat_id']}, update={'$set': {'chat_id': item2['chat_id'] } }, projection = { "_id" : True }, session=session) #, upsert=True, return_document = True items_coll.find_one_and_update(filter={'_id': ObjectId(item2['_id']), 'chat_id': item2['chat_id']}, update={'$set': {'chat_id': item1['chat_id'] } }, projection = { "_id" : True }, session=session) #, upsert=True, return_document = True session.commit_transaction() #print("transaction commited") try: #try to notify owners, do not use answer/reply, parent message does not already exist _text = "👏The trade-in is done! Check your new item details by running /start command" reply_message = context.bot.send_message(chat_id=item1['chat_id'], text=_text) chat_data[PAGE_MASSAGES].append(reply_message.message_id) context.bot.send_message(chat_id=item2['chat_id'] ,text=_text) except: pass #print("end transaction") user_data.clear() #return self.start(update, context) return END def received_document(self, update: Update, context: CallbackContext): """ bot sends 1 document, calling this function multiple times """ user_data = context.user_data chat_data = context.chat_data fileType = 'Files' if update.message.document.file_name.lower().split('.')[-1] in ['jpg','jpeg','png','bmp','tiff']: fileType = 'Images' if fileType not in user_data: user_data[fileType] = "" else: user_data[fileType] += "|" if update.message.document.file_id not in user_data[fileType]: user_data[fileType] += (update.message.document.file_id).strip('|') chat_data[PAGE_MASSAGES].append(update.message.message_id) return self.item_edit(update, context) def end(self, update: Update, context: CallbackContext) -> int: """End conversation from InlineKeyboardButton.""" _chat_id = 0 try: _chat_id = update.callback_query.message.chat_id except: _chat_id = update.message.chat_id context.user_data.clear() self.remove_page_messages(update, context) if (_chat_id> 0): context.bot.send_message(chat_id = _chat_id ,text='🏁Thank you. See you next time!') return END #stop and stop_nested are similar but operates on different levels def stop(self, update: Update, context: CallbackContext) -> int: """End Conversation by command.""" context.user_data.clear() self.remove_page_messages(update, context) update.message.reply_text('🏁Okay, bye') return END def error(self, update: Update, context: CallbackContext): logger.error(f"Update: {update}; caused error: {context.error}") def handle_message(self, update: Update, context: CallbackContext): # context.bot.edit_message_text(chat_id=update.message.chat.id, # text="Here are the values of stringList", message_id=update.message.message_id, # reply_markup=makeKeyboard(), parse_mode='HTML') user_message = str(update.message.text).lower() if user_message.strip('!') in ("hello", "hi"): response = f"🤟G'Day {update.message.from_user.first_name}!" elif user_message.strip('?') in ("who are you", "who is this", "what is this"): # creative traid-in bot response = (f"🤖I am {context.bot.name}." "This marketplace allowing to trade-in items with identical (or higher) value." "Type /start to init new session, or /help for more options") else: response = "😏hmm, looks like you need some /help" update.message.reply_text(response) def help_command(self, update: Update, context: CallbackContext): #chat_id = update.message.chat_id message_id = update.message.message_id reply=update.message.reply_text( "Type one of the following commands:" "\n/start - to initiate guided session" "\n/stop - to stop conversation" "\n/trade item_id - to trade directly with advertised item" "\nThere are some rules behind the scene:" "\n-Bot represents many owners, but each owner can have only one item at the same time." "\n-Owners can advertise their items externally. Bot will process provided deep links from external redirects." "\n-Comprehensive search by pages. Owners can see details and photos of other items and choose which one to trade-in with." "\n-Private content (files) is available only after transfer item ownership to new owner." "\n-The winner is the owner with maximum number of trades in history OR acquiring highest value item." "\n-👍Good luck in your trade-in process!" ) chat_data = context.chat_data if PAGE_MASSAGES not in chat_data: chat_data[PAGE_MASSAGES] = [] chat_data[PAGE_MASSAGES].append(reply.message_id) def run(self) -> None: """Run the bot.""" # Create the Updater and pass it your bot's token. updater = Updater(C.TELEGRAM_TOKEN) # Get the dispatcher to register handlers dispatcher = updater.dispatcher # Set up top level ConversationHandler (selecting action) conv_handler = ConversationHandler( entry_points=[ #deep link start from promoted deep link like: https://t.me/CreativeTradeInBot/trade=60e91064f508f554a10a3847 CommandHandler('start', self.trade_command, Filters.regex('[a-z0-9]{24}'), pass_args=True), #normal start CommandHandler('start', self.start), ], states={ SELECTING_ACTION: [ CallbackQueryHandler(self.item_edit, pattern='^' + str(EDITING) + '$'), CallbackQueryHandler(self.item_details, pattern='^' + str(SHOWING) + '$'), CallbackQueryHandler(self.search, pattern='^' + str(SEARCHING) +"|"+ str(PREV_PAGE) +"|"+ str(NEXT_PAGE) + '$'), CallbackQueryHandler(self.history, pattern='^' + str(TRACKING) + '$'), CallbackQueryHandler(self.end, pattern='^' + str(END) + '$'), #Back button ], #these states are used by Back buttons EDITING: [CallbackQueryHandler(self.start, pattern='^' + str(SELECTING_FEATURE) + '$')], SHOWING: [ CallbackQueryHandler(self.item_details, pattern='^' + str(DOWNLOADING) + '$'), CallbackQueryHandler(self.start, pattern='^' + str(END) + '$'), #Back button ], SEARCHING:[ CallbackQueryHandler(self.search, pattern='^' + str(SEARCHING) +"|"+ str(PREV_PAGE) +"|"+ str(NEXT_PAGE) + '$'), CallbackQueryHandler(self.start, pattern='^' + str(END) + '$'), #Back button CallbackQueryHandler(self.trade_commit, pattern='^' + str(SAVING) + '$'), MessageHandler(Filters.text & ~Filters.command, self.search_text_filter), ], TRACKING:[ CallbackQueryHandler(self.start, pattern='^' + str(END) + '$'), #Back button #CallbackQueryHandler(self.ext_item_details, pattern='^' + str(SHOWING) + '$'), ], TRADING: [ CallbackQueryHandler(self.start, pattern='^' + str(END) + '$'), #Back button ], SELECTING_FEATURE: [ CallbackQueryHandler(self.regular_choice, pattern='^' + str(NAME) + '|' + str(VALUE) + '|' + str(DESCRIPTION) + '$'), CallbackQueryHandler(self.custom_choice, pattern='^' + str(CATEGORY) + '$'), CallbackQueryHandler(self.edit_commit, pattern='^' + str(SAVING) + '$'), CallbackQueryHandler(self.start, pattern='^' + str(END) + '$'), #Back button MessageHandler(Filters.photo, self.received_photo), MessageHandler(Filters.document, self.received_document), MessageHandler(Filters.voice, self.received_voice), #MessageHandler(Filters.text & ~Filters.command, self.regular_choice), ], SELECTING_CATEGORY: [ MessageHandler(Filters.text & ~Filters.command, self.custom_text), ], TYPING: [ MessageHandler(Filters.text & ~Filters.command, self.received_information), ], #SAVING:[CallbackQueryHandler(self.edit_commit, pattern='^' + str(END) + '$'),], STOPPING: [CommandHandler('start', self.start)], }, fallbacks=[ CommandHandler('stop', self.stop), ], #all entry points and state handlers must be 'CallbackQueryHandler', since no other handlers have a message context #per_message=True # tracked for every message. #per_message=False ) dispatcher.add_handler(conv_handler) #direct trading direct_trade_handler = ConversationHandler( entry_points=[CommandHandler('trade', self.trade_command, Filters.regex('[a-z0-9]{24}'), pass_args=True)], states={ SEARCHING:[ CallbackQueryHandler(self.trade_commit, pattern='^' + str(SAVING) + '$'), CallbackQueryHandler(self.start, pattern='^' + str(END) + '$'), #Back button ], STOPPING: [CommandHandler('start', self.start)], }, fallbacks=[ CommandHandler('stop', self.stop), ], ) dispatcher.add_handler(direct_trade_handler) #help handler dispatcher.add_handler(CommandHandler('stop', self.stop)) dispatcher.add_handler(CommandHandler("help", self.help_command)) #general conversation dispatcher.add_handler(MessageHandler(Filters.text, self.handle_message)) dispatcher.add_error_handler(self.error) # Run bot if C.HEROKU_APP_NAME == "": #pooling mode logger.info( "Can't detect 'HEROKU_APP_NAME' env. Running bot in pooling mode.") updater.start_polling(1) else: #webhook mode PORT = int(os.environ.get('PORT', C.HEROKU_PORT)) updater.start_webhook( listen="0.0.0.0", port=PORT, url_path=C.TELEGRAM_TOKEN, webhook_url=f"https://{C.HEROKU_APP_NAME}.herokuapp.com/{C.TELEGRAM_TOKEN}" ) # Run the bot until you press Ctrl-C or the process receives SIGINT, # SIGTERM or SIGABRT. This should be used most of the time, since # start_polling() is non-blocking and will stop the bot gracefully. updater.idle() if __name__ == '__main__': bot = Bot() bot.run()
47.138277
226
0.579351
9be5c1b26accf5f7319af5a092874e4d1c9bb5c0
537
py
Python
lhdetect2_web/users/views.py
cscenter/lhdetect2-web
aaef586b976b4a7efc9db042ed9a04773de6fcfe
[ "MIT" ]
null
null
null
lhdetect2_web/users/views.py
cscenter/lhdetect2-web
aaef586b976b4a7efc9db042ed9a04773de6fcfe
[ "MIT" ]
null
null
null
lhdetect2_web/users/views.py
cscenter/lhdetect2-web
aaef586b976b4a7efc9db042ed9a04773de6fcfe
[ "MIT" ]
null
null
null
from django.contrib.auth import login, get_user_model from django.shortcuts import render, redirect from users.forms import CustomUserCreationForm def signup(request): if request.method == 'POST': form = CustomUserCreationForm(request.POST) if form.is_valid(): user = form.save() login(request, user) return redirect('index') else: form = CustomUserCreationForm() context = { 'form': form } return render(request, 'users/signup.html', context)
24.409091
56
0.64432
3aa2088c22687b8be13dea3c9bd73ee0b954e3a0
1,236
py
Python
examples/manifold/plot_swissroll.py
MarcinKonowalczyk/scikit-learn
8b18d4cbfc3a10ce85decec292d30470c69f40d7
[ "BSD-3-Clause" ]
2
2020-11-07T02:13:22.000Z
2022-01-18T14:42:59.000Z
examples/manifold/plot_swissroll.py
MarcinKonowalczyk/scikit-learn
8b18d4cbfc3a10ce85decec292d30470c69f40d7
[ "BSD-3-Clause" ]
1
2022-01-12T13:11:21.000Z
2022-01-12T13:11:21.000Z
examples/manifold/plot_swissroll.py
MarcinKonowalczyk/scikit-learn
8b18d4cbfc3a10ce85decec292d30470c69f40d7
[ "BSD-3-Clause" ]
1
2021-11-03T09:49:02.000Z
2021-11-03T09:49:02.000Z
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D # ---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) # ---------------------------------------------------------------------- # Plot result fig = plt.figure() ax = fig.add_subplot(211, projection="3d") ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis("tight") plt.xticks([]), plt.yticks([]) plt.title("Projected data") plt.show()
25.75
79
0.602751
6bfa668d615fe87ab162cc36b90502d074b64875
19,702
py
Python
detectron2/modeling/meta_arch/Multimodal_data_fusion/SE_Rexnext_Encoder.py
dongdongdong1217/Detectron2-FC
92356ebbf52b4e39c94537af26abcf46419c8c2f
[ "Apache-2.0" ]
4
2022-01-02T07:06:58.000Z
2022-01-08T05:04:43.000Z
detectron2/modeling/meta_arch/Multimodal_data_fusion/SE_Rexnext_Encoder.py
dongdongdong1217/Detectron2-FC
92356ebbf52b4e39c94537af26abcf46419c8c2f
[ "Apache-2.0" ]
null
null
null
detectron2/modeling/meta_arch/Multimodal_data_fusion/SE_Rexnext_Encoder.py
dongdongdong1217/Detectron2-FC
92356ebbf52b4e39c94537af26abcf46419c8c2f
[ "Apache-2.0" ]
1
2022-01-02T11:46:23.000Z
2022-01-02T11:46:23.000Z
''' New for ResNeXt: 1. Wider bottleneck 2. Add group for conv2 ''' from cgi import print_directory import torch.nn as nn import math import torch import numpy as np from ..build import META_ARCH_REGISTRY from detectron2.modeling.meta_arch.Image_classification import SE_Resnext class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, num_group=32): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes*2, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes*2) self.conv2 = nn.Conv2d(planes*2, planes*2, kernel_size=3, stride=stride, padding=1, bias=False, groups=num_group) self.bn2 = nn.BatchNorm2d(planes*2) self.conv3 = nn.Conv2d(planes*2, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride if planes == 64: self.globalAvgPool = nn.AvgPool2d(56, stride=1) elif planes == 128: self.globalAvgPool = nn.AvgPool2d(28, stride=1) elif planes == 256: self.globalAvgPool = nn.AvgPool2d(14, stride=1) elif planes == 512: self.globalAvgPool = nn.AvgPool2d(7, stride=1) self.fc1 = nn.Linear(in_features=planes * 4, out_features=round(planes / 4)) self.fc2 = nn.Linear(in_features=round(planes / 4), out_features=planes * 4) self.sigmoid = nn.Sigmoid() def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) original_out = out out = self.globalAvgPool(out) out = out.view(out.size(0), -1) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) out = self.sigmoid(out) out = out.view(out.size(0), out.size(1), 1, 1) out = out * original_out out += residual out = self.relu(out) return out class SE_ResNeXt(nn.Module): def __init__(self, block, layers, num_group=32): self.inplanes = 64 super(SE_ResNeXt, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], num_group) self.layer2 = self._make_layer(block, 128, layers[1], num_group, stride=2) self.layer3 = self._make_layer(block, 256, layers[2], num_group, stride=2) self.layer4 = self._make_layer(block, 512, layers[3], num_group, stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, 512) # #自己加的 self.layer5 = nn.Conv2d(2048,512,(1,1),1,0) #self.layer6 = nn.Conv2d(256,512,(8,8),8,0) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, num_group, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, num_group=num_group)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, num_group=num_group)) return nn.Sequential(*layers) def forward(self, batch_images_tensor): #-----------------网络向前传播-------------# x = self.conv1(batch_images_tensor) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) #print("x_shape:",x.shape) #x = self.layer6(x) #print("x_shape:",x.shape) #x = self.avgpool(x) #x = x.view(x.size(0), -1) #图像数据只占一行 #x = self.fc(x) #return x.unsqueeze(1) #图像数据占4行 x = x.reshape(len(batch_images_tensor),49,512) #print("x_shape:",x.shape) return x ############################################################## # Transformer Parameters d_model = 512 # Embedding Size d_ff = 2048 # FeedForward dimension d_k = d_v = 64 # dimension of K(=Q), V n_layers = 6 # number of Encoder of Decoder Layer n_heads = 8 # number of heads in Multi-Head Attention #位置编码函数 def get_sinusoid_encoding_table(n_position, d_model): def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_model) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_model)] sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table) #Pad Mask def get_attn_pad_mask(seq_q, seq_k): ''' seq_q: [batch_size, seq_len] seq_k: [batch_size, seq_len] seq_len could be src_len or it could be tgt_len seq_len in seq_q and seq_len in seq_k maybe not equal ''' batch_size, len_q = seq_q.size() batch_size, len_k = seq_k.size() # eq(zero) is PAD token pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # [batch_size, 1, len_k], False is masked return pad_attn_mask.expand(batch_size, len_q, len_k) # [batch_size, len_q, len_k] #Subsequence Mask def get_attn_subsequence_mask(seq): ''' seq: [batch_size, tgt_len] ''' attn_shape = [seq.size(0), seq.size(1), seq.size(1)] subsequence_mask = np.triu(np.ones(attn_shape), k=1) # Upper triangular matrix subsequence_mask = torch.from_numpy(subsequence_mask).byte().cuda().long() return subsequence_mask #ScaledDotProductAttention class ScaledDotProductAttention(nn.Module): def __init__(self): super(ScaledDotProductAttention, self).__init__() def forward(self, Q, K, V, attn_mask): ''' Q: [batch_size, n_heads, len_q, d_k] K: [batch_size, n_heads, len_k, d_k] V: [batch_size, n_heads, len_v(=len_k), d_v] attn_mask: [batch_size, n_heads, seq_len, seq_len] ''' scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, len_q, len_k] scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is True. attn = nn.Softmax(dim=-1)(scores) context = torch.matmul(attn, V) # [batch_size, n_heads, len_q, d_v] return context, attn #MultiHeadAttention class MultiHeadAttention(nn.Module): def __init__(self): super(MultiHeadAttention, self).__init__() self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False) self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False) self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False) self.fc = nn.Linear(n_heads * d_v, d_model, bias=False) self.norm = nn.LayerNorm(d_model) def forward(self, input_Q, input_K, input_V, attn_mask): ''' input_Q: [batch_size, len_q, d_model] input_K: [batch_size, len_k, d_model] input_V: [batch_size, len_v(=len_k), d_model] attn_mask: [batch_size, seq_len, seq_len] ''' residual, batch_size = input_Q, input_Q.size(0) # (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W) Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # Q: [batch_size, n_heads, len_q, d_k] K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # K: [batch_size, n_heads, len_k, d_k] V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # V: [batch_size, n_heads, len_v(=len_k), d_v] attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k] context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask) context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] output = self.fc(context) # [batch_size, len_q, d_model] return self.norm(output + residual), attn # #MultiHeadAttention # class MultiHeadAttention_fuse(nn.Module): # def __init__(self): # super(MultiHeadAttention_fuse, self).__init__() # self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False) # self.W_K = nn.Linear(512, d_k * n_heads, bias=False) # self.W_V = nn.Linear(512, d_v * n_heads, bias=False) # self.fc = nn.Linear(n_heads * d_v, d_model, bias=False) # self.norm = nn.LayerNorm(d_model) # def forward(self, input_Q, input_K, input_V, attn_mask): # ''' # input_Q: [batch_size, len_q, d_model] # input_K: [batch_size, len_k, d_model] # input_V: [batch_size, len_v(=len_k), d_model] # attn_mask: [batch_size, seq_len, seq_len] # ''' # residual, batch_size = input_Q, input_Q.size(0) # add_mask = torch.zeros((batch_size,1,1)).bool().cuda() # attn_mask = torch.cat((attn_mask,add_mask),dim=2) # # (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W) # Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # Q: [batch_size, n_heads, len_q, d_k] # K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # K: [batch_size, n_heads, len_k, d_k] # V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # V: [batch_size, n_heads, len_v(=len_k), d_v] # attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] # # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k] # context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask) # context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] # output = self.fc(context) # [batch_size, len_q, d_model] # return self.norm(output + residual), attn #FeedForward Layer class PoswiseFeedForwardNet(nn.Module): def __init__(self): super(PoswiseFeedForwardNet, self).__init__() self.fc = nn.Sequential( nn.Linear(d_model, d_ff, bias=False), nn.ReLU(), nn.Linear(d_ff, d_model, bias=False) ) self.norm = nn.LayerNorm(d_model) def forward(self, inputs): ''' inputs: [batch_size, seq_len, d_model] ''' residual = inputs output = self.fc(inputs) return self.norm(output + residual) # [batch_size, seq_len, d_model] #Encoder Layer class EncoderLayer(nn.Module): def __init__(self): super(EncoderLayer, self).__init__() self.enc_self_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() def forward(self, enc_inputs, enc_self_attn_mask): ''' enc_inputs: [batch_size, src_len, d_model] enc_self_attn_mask: [batch_size, src_len, src_len] ''' # enc_outputs: [batch_size, src_len, d_model], attn: [batch_size, n_heads, src_len, src_len] enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model] return enc_outputs, attn #Encoder,src_vocab_size代表输入字典的长度 class Encoder(nn.Module): def __init__(self,src_vocab_size): super(Encoder, self).__init__() self.src_emb = nn.Embedding(src_vocab_size, d_model) #得到词嵌入 self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_vocab_size, d_model),freeze=True) #位置编码得到位置嵌入 self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) def forward(self, enc_inputs,image_output): ''' enc_inputs: [batch_size, src_len] ''' word_emb = self.src_emb(enc_inputs) # [batch_size, src_len, d_model] pos_emb = self.pos_emb(enc_inputs) # [batch_size, src_len, d_model] enc_outputs = word_emb + pos_emb enc_outputs = torch.cat((enc_outputs,image_output),dim=1) #融合过程数据和图像数据 enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # [batch_size, src_len, src_len] batch_size = enc_inputs.size(0) add_mask = torch.zeros((batch_size,35,49)).bool().cuda() enc_self_attn_mask = torch.cat((enc_self_attn_mask,add_mask),dim=2) add_mask = torch.zeros((batch_size,49,84)).bool().cuda() enc_self_attn_mask = torch.cat((enc_self_attn_mask,add_mask),dim=1) enc_self_attns = [] for layer in self.layers: # enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len] enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask) enc_self_attns.append(enc_self_attn) return enc_outputs, enc_self_attns #Decoder Layer class DecoderLayer(nn.Module): def __init__(self): super(DecoderLayer, self).__init__() self.dec_self_attn = MultiHeadAttention() self.dec_enc_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask): ''' dec_inputs: [batch_size, tgt_len, d_model] enc_outputs: [batch_size, src_len, d_model] dec_self_attn_mask: [batch_size, tgt_len, tgt_len] dec_enc_attn_mask: [batch_size, tgt_len, src_len] ''' # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len] dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask) # dec_outputs: [batch_size, tgt_len, d_model], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len] dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask) dec_outputs = self.pos_ffn(dec_outputs) # [batch_size, tgt_len, d_model] return dec_outputs, dec_self_attn, dec_enc_attn #Decoder class Decoder(nn.Module): def __init__(self,tgt_vocab_size): super(Decoder, self).__init__() self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model) self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_vocab_size, d_model),freeze=True) self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) def forward(self, dec_inputs, enc_inputs, enc_outputs): ''' dec_inputs: [batch_size, tgt_len] enc_intpus: [batch_size, src_len] enc_outputs: [batsh_size, src_len, d_model] ''' word_emb = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model] pos_emb = self.pos_emb(dec_inputs) # [batch_size, tgt_len, d_model] dec_outputs = word_emb + pos_emb dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # [batch_size, tgt_len, tgt_len] dec_self_attn_subsequent_mask = get_attn_subsequence_mask(dec_inputs) # [batch_size, tgt_len] dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0) # [batch_size, tgt_len, tgt_len] dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len] batch_size = enc_inputs.size(0) add_mask = torch.zeros((batch_size,1,49)).bool().cuda() dec_enc_attn_mask = torch.cat((dec_enc_attn_mask,add_mask),dim=2) dec_self_attns, dec_enc_attns = [], [] for layer in self.layers: # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len] dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask) dec_self_attns.append(dec_self_attn) dec_enc_attns.append(dec_enc_attn) return dec_outputs, dec_self_attns, dec_enc_attns @META_ARCH_REGISTRY.register() class Se_resnext_Encoder(nn.Module): def __init__(self,cfg): super(Se_resnext_Encoder, self).__init__() self.image_network = SE_ResNeXt(Bottleneck, [3, 4, 23, 3]).cuda() #resnext101 self.encoder = Encoder(cfg.Arguments1) self.projection = nn.Linear(d_model,cfg.Arguments2, bias=False) self.loss_fun = nn.CrossEntropyLoss(ignore_index=0) def forward(self,data): ''' enc_inputs: [batch_size, src_len] dec_inputs: [batch_size, tgt_len] ''' #------------------获取并预处理图像数据(data里面既含有image、label、width、height信息)---# batchsize = len(data) batch_images = [] for i in range(0,batchsize,1): batch_images.append(data[i]["image"]) batch_images=[image.tolist() for image in batch_images] batch_images_tensor = torch.tensor(batch_images,dtype=torch.float).cuda() #------------------获取并预处理过程数据(data里面既含有image_name、x、y信息。)------------# batch_x = [] batch_y = [] for i in range(0,batchsize,1): batch_x.append(data[i]["x"]) batch_y.append([int(float(data[i]["y"]))]) batch_x=[x.tolist() for x in batch_x] enc_inputs = torch.tensor(batch_x,dtype=torch.float).cuda().long() dec_inputs = torch.tensor(batch_y ,dtype=torch.float).cuda().long() #----------------------------网络向前推理------------------------------------# #-----------------推理SE-Resnext------------# image_output = self.image_network(batch_images_tensor) #----------------推理Transformer------------# enc_outputs, enc_self_attns = self.encoder(enc_inputs,image_output) enc_outputs = enc_outputs.mean(dim=1) #----------------------------解码生成损失函数---------------------------------# dec_logits = self.projection(enc_outputs) # dec_logits: [batch_size, tgt_len, tgt_vocab_size] outputs, enc_self_attns = dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns if self.training: loss = self.loss_fun(outputs, dec_inputs.view(-1)) return loss else: return outputs if __name__=="__main__": model = Se_resnext_Encoder() output = model() print("output:",output.shape)
43.301099
168
0.627957
14d0dfcf4cdaf6e7c845218dcb47bf7b38ac58f9
205,697
py
Python
msgraph-cli-extensions/beta/financials_beta/azext_financials_beta/vendored_sdks/financials/models/_models.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/beta/financials_beta/azext_financials_beta/vendored_sdks/financials/models/_models.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/beta/financials_beta/azext_financials_beta/vendored_sdks/financials/models/_models.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.core.exceptions import HttpResponseError import msrest.serialization class CollectionOfAccount(msrest.serialization.Model): """Collection of account. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphAccount] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphAccount]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfAccount, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfAgedAccountsPayable(msrest.serialization.Model): """Collection of agedAccountsPayable. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphAgedAccountsPayable] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphAgedAccountsPayable]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfAgedAccountsPayable, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfAgedAccountsReceivable(msrest.serialization.Model): """Collection of agedAccountsReceivable. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphAgedAccountsReceivable] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphAgedAccountsReceivable]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfAgedAccountsReceivable, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCompany(msrest.serialization.Model): """Collection of company. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCompany] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCompany]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCompany, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCompanyInformation(msrest.serialization.Model): """Collection of companyInformation. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCompanyInformation] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCompanyInformation]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCompanyInformation, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCountryRegion(msrest.serialization.Model): """Collection of countryRegion. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCountryRegion] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCountryRegion]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCountryRegion, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCurrency(msrest.serialization.Model): """Collection of currency. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCurrency] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCurrency]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCurrency, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCustomer(msrest.serialization.Model): """Collection of customer. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCustomer] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCustomer]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCustomer, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCustomerPayment(msrest.serialization.Model): """Collection of customerPayment. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCustomerPayment] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCustomerPayment]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCustomerPayment, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCustomerPayment0(msrest.serialization.Model): """Collection of customerPayment. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCustomerPayment] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCustomerPayment]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCustomerPayment0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfCustomerPaymentJournal(msrest.serialization.Model): """Collection of customerPaymentJournal. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphCustomerPaymentJournal] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphCustomerPaymentJournal]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfCustomerPaymentJournal, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfDimension(msrest.serialization.Model): """Collection of dimension. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphDimension] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphDimension]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfDimension, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfDimensionValue(msrest.serialization.Model): """Collection of dimensionValue. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphDimensionValue] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphDimensionValue]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfDimensionValue, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfDimensionValue0(msrest.serialization.Model): """Collection of dimensionValue. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphDimensionValue] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphDimensionValue]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfDimensionValue0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfEmployee(msrest.serialization.Model): """Collection of employee. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphEmployee] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphEmployee]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfEmployee, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfGeneralLedgerEntry(msrest.serialization.Model): """Collection of generalLedgerEntry. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphGeneralLedgerEntry] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphGeneralLedgerEntry]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfGeneralLedgerEntry, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfItem(msrest.serialization.Model): """Collection of item. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphItem] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphItem]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfItem, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfItemCategory(msrest.serialization.Model): """Collection of itemCategory. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphItemCategory] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphItemCategory]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfItemCategory, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfJournal(msrest.serialization.Model): """Collection of journal. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphJournal] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphJournal]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfJournal, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfJournalLine(msrest.serialization.Model): """Collection of journalLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphJournalLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphJournalLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfJournalLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfJournalLine0(msrest.serialization.Model): """Collection of journalLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphJournalLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphJournalLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfJournalLine0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPaymentMethod(msrest.serialization.Model): """Collection of paymentMethod. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPaymentMethod] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPaymentMethod]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPaymentMethod, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPaymentTerm(msrest.serialization.Model): """Collection of paymentTerm. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPaymentTerm] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPaymentTerm]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPaymentTerm, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture0(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture1(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture1, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture10(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture10, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture11(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture11, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture12(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture12, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture13(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture13, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture14(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture14, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture15(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture15, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture16(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture16, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture17(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture17, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture18(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture18, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture19(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture19, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture2(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture2, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture20(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture20, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture3(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture3, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture4(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture4, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture5(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture5, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture6(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture6, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture7(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture7, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture8(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture8, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPicture9(msrest.serialization.Model): """Collection of picture. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPicture] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPicture]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPicture9, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPurchaseInvoice(msrest.serialization.Model): """Collection of purchaseInvoice. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPurchaseInvoice] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPurchaseInvoice]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPurchaseInvoice, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPurchaseInvoiceLine(msrest.serialization.Model): """Collection of purchaseInvoiceLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPurchaseInvoiceLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPurchaseInvoiceLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPurchaseInvoiceLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfPurchaseInvoiceLine0(msrest.serialization.Model): """Collection of purchaseInvoiceLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphPurchaseInvoiceLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphPurchaseInvoiceLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfPurchaseInvoiceLine0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesCreditMemo(msrest.serialization.Model): """Collection of salesCreditMemo. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesCreditMemo] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesCreditMemo]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesCreditMemo, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesCreditMemoLine(msrest.serialization.Model): """Collection of salesCreditMemoLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesCreditMemoLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesCreditMemoLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesCreditMemoLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesCreditMemoLine0(msrest.serialization.Model): """Collection of salesCreditMemoLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesCreditMemoLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesCreditMemoLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesCreditMemoLine0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesInvoice(msrest.serialization.Model): """Collection of salesInvoice. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesInvoice] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesInvoice]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesInvoice, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesInvoiceLine(msrest.serialization.Model): """Collection of salesInvoiceLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesInvoiceLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesInvoiceLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesInvoiceLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesInvoiceLine0(msrest.serialization.Model): """Collection of salesInvoiceLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesInvoiceLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesInvoiceLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesInvoiceLine0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesOrder(msrest.serialization.Model): """Collection of salesOrder. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesOrder] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesOrder]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesOrder, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesOrderLine(msrest.serialization.Model): """Collection of salesOrderLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesOrderLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesOrderLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesOrderLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesOrderLine0(msrest.serialization.Model): """Collection of salesOrderLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesOrderLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesOrderLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesOrderLine0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesQuote(msrest.serialization.Model): """Collection of salesQuote. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesQuote] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesQuote]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesQuote, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesQuoteLine(msrest.serialization.Model): """Collection of salesQuoteLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesQuoteLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesQuoteLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesQuoteLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfSalesQuoteLine0(msrest.serialization.Model): """Collection of salesQuoteLine. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphSalesQuoteLine] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphSalesQuoteLine]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfSalesQuoteLine0, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfShipmentMethod(msrest.serialization.Model): """Collection of shipmentMethod. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphShipmentMethod] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphShipmentMethod]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfShipmentMethod, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfTaxArea(msrest.serialization.Model): """Collection of taxArea. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphTaxArea] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphTaxArea]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfTaxArea, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfTaxGroup(msrest.serialization.Model): """Collection of taxGroup. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphTaxGroup] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphTaxGroup]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfTaxGroup, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfUnitOfMeasure(msrest.serialization.Model): """Collection of unitOfMeasure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphUnitOfMeasure] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphUnitOfMeasure]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfUnitOfMeasure, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class CollectionOfVendor(msrest.serialization.Model): """Collection of vendor. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param value: :type value: list[~financials.models.MicrosoftGraphVendor] :param odata_next_link: :type odata_next_link: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'value': {'key': 'value', 'type': '[MicrosoftGraphVendor]'}, 'odata_next_link': {'key': '@odata\\.nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(CollectionOfVendor, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.value = kwargs.get('value', None) self.odata_next_link = kwargs.get('odata_next_link', None) class MicrosoftGraphEntity(msrest.serialization.Model): """entity. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param id: Read-only. :type id: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'id': {'key': 'id', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphEntity, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.id = kwargs.get('id', None) class MicrosoftGraphAccount(MicrosoftGraphEntity): """account. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param blocked: :type blocked: bool :param category: :type category: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param sub_category: :type sub_category: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'blocked': {'key': 'blocked', 'type': 'bool'}, 'category': {'key': 'category', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'sub_category': {'key': 'subCategory', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphAccount, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.blocked = kwargs.get('blocked', None) self.category = kwargs.get('category', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.sub_category = kwargs.get('sub_category', None) class MicrosoftGraphAgedAccountsPayable(MicrosoftGraphEntity): """agedAccountsPayable. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param aged_as_of_date: :type aged_as_of_date: ~datetime.date :param balance_due: :type balance_due: float :param currency_code: :type currency_code: str :param current_amount: :type current_amount: float :param name: :type name: str :param period1_amount: :type period1_amount: float :param period2_amount: :type period2_amount: float :param period3_amount: :type period3_amount: float :param period_length_filter: :type period_length_filter: str :param vendor_number: :type vendor_number: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'aged_as_of_date': {'key': 'agedAsOfDate', 'type': 'date'}, 'balance_due': {'key': 'balanceDue', 'type': 'float'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'current_amount': {'key': 'currentAmount', 'type': 'float'}, 'name': {'key': 'name', 'type': 'str'}, 'period1_amount': {'key': 'period1Amount', 'type': 'float'}, 'period2_amount': {'key': 'period2Amount', 'type': 'float'}, 'period3_amount': {'key': 'period3Amount', 'type': 'float'}, 'period_length_filter': {'key': 'periodLengthFilter', 'type': 'str'}, 'vendor_number': {'key': 'vendorNumber', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphAgedAccountsPayable, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.aged_as_of_date = kwargs.get('aged_as_of_date', None) self.balance_due = kwargs.get('balance_due', None) self.currency_code = kwargs.get('currency_code', None) self.current_amount = kwargs.get('current_amount', None) self.name = kwargs.get('name', None) self.period1_amount = kwargs.get('period1_amount', None) self.period2_amount = kwargs.get('period2_amount', None) self.period3_amount = kwargs.get('period3_amount', None) self.period_length_filter = kwargs.get('period_length_filter', None) self.vendor_number = kwargs.get('vendor_number', None) class MicrosoftGraphAgedAccountsReceivable(MicrosoftGraphEntity): """agedAccountsReceivable. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param aged_as_of_date: :type aged_as_of_date: ~datetime.date :param balance_due: :type balance_due: float :param currency_code: :type currency_code: str :param current_amount: :type current_amount: float :param customer_number: :type customer_number: str :param name: :type name: str :param period1_amount: :type period1_amount: float :param period2_amount: :type period2_amount: float :param period3_amount: :type period3_amount: float :param period_length_filter: :type period_length_filter: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'aged_as_of_date': {'key': 'agedAsOfDate', 'type': 'date'}, 'balance_due': {'key': 'balanceDue', 'type': 'float'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'current_amount': {'key': 'currentAmount', 'type': 'float'}, 'customer_number': {'key': 'customerNumber', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'period1_amount': {'key': 'period1Amount', 'type': 'float'}, 'period2_amount': {'key': 'period2Amount', 'type': 'float'}, 'period3_amount': {'key': 'period3Amount', 'type': 'float'}, 'period_length_filter': {'key': 'periodLengthFilter', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphAgedAccountsReceivable, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.aged_as_of_date = kwargs.get('aged_as_of_date', None) self.balance_due = kwargs.get('balance_due', None) self.currency_code = kwargs.get('currency_code', None) self.current_amount = kwargs.get('current_amount', None) self.customer_number = kwargs.get('customer_number', None) self.name = kwargs.get('name', None) self.period1_amount = kwargs.get('period1_amount', None) self.period2_amount = kwargs.get('period2_amount', None) self.period3_amount = kwargs.get('period3_amount', None) self.period_length_filter = kwargs.get('period_length_filter', None) class MicrosoftGraphCompany(MicrosoftGraphEntity): """company. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param business_profile_id: :type business_profile_id: str :param display_name: :type display_name: str :param name: :type name: str :param system_version: :type system_version: str :param accounts: :type accounts: list[~financials.models.MicrosoftGraphAccount] :param aged_accounts_payable: :type aged_accounts_payable: list[~financials.models.MicrosoftGraphAgedAccountsPayable] :param aged_accounts_receivable: :type aged_accounts_receivable: list[~financials.models.MicrosoftGraphAgedAccountsReceivable] :param company_information: :type company_information: list[~financials.models.MicrosoftGraphCompanyInformation] :param countries_regions: :type countries_regions: list[~financials.models.MicrosoftGraphCountryRegion] :param currencies: :type currencies: list[~financials.models.MicrosoftGraphCurrency] :param customer_payment_journals: :type customer_payment_journals: list[~financials.models.MicrosoftGraphCustomerPaymentJournal] :param customer_payments: :type customer_payments: list[~financials.models.MicrosoftGraphCustomerPayment] :param customers: :type customers: list[~financials.models.MicrosoftGraphCustomer] :param dimensions: :type dimensions: list[~financials.models.MicrosoftGraphDimension] :param dimension_values: :type dimension_values: list[~financials.models.MicrosoftGraphDimensionValue] :param employees: :type employees: list[~financials.models.MicrosoftGraphEmployee] :param general_ledger_entries: :type general_ledger_entries: list[~financials.models.MicrosoftGraphGeneralLedgerEntry] :param item_categories: :type item_categories: list[~financials.models.MicrosoftGraphItemCategory] :param items: :type items: list[~financials.models.MicrosoftGraphItem] :param journal_lines: :type journal_lines: list[~financials.models.MicrosoftGraphJournalLine] :param journals: :type journals: list[~financials.models.MicrosoftGraphJournal] :param payment_methods: :type payment_methods: list[~financials.models.MicrosoftGraphPaymentMethod] :param payment_terms: :type payment_terms: list[~financials.models.MicrosoftGraphPaymentTerm] :param picture: :type picture: list[~financials.models.MicrosoftGraphPicture] :param purchase_invoice_lines: :type purchase_invoice_lines: list[~financials.models.MicrosoftGraphPurchaseInvoiceLine] :param purchase_invoices: :type purchase_invoices: list[~financials.models.MicrosoftGraphPurchaseInvoice] :param sales_credit_memo_lines: :type sales_credit_memo_lines: list[~financials.models.MicrosoftGraphSalesCreditMemoLine] :param sales_credit_memos: :type sales_credit_memos: list[~financials.models.MicrosoftGraphSalesCreditMemo] :param sales_invoice_lines: :type sales_invoice_lines: list[~financials.models.MicrosoftGraphSalesInvoiceLine] :param sales_invoices: :type sales_invoices: list[~financials.models.MicrosoftGraphSalesInvoice] :param sales_order_lines: :type sales_order_lines: list[~financials.models.MicrosoftGraphSalesOrderLine] :param sales_orders: :type sales_orders: list[~financials.models.MicrosoftGraphSalesOrder] :param sales_quote_lines: :type sales_quote_lines: list[~financials.models.MicrosoftGraphSalesQuoteLine] :param sales_quotes: :type sales_quotes: list[~financials.models.MicrosoftGraphSalesQuote] :param shipment_methods: :type shipment_methods: list[~financials.models.MicrosoftGraphShipmentMethod] :param tax_areas: :type tax_areas: list[~financials.models.MicrosoftGraphTaxArea] :param tax_groups: :type tax_groups: list[~financials.models.MicrosoftGraphTaxGroup] :param units_of_measure: :type units_of_measure: list[~financials.models.MicrosoftGraphUnitOfMeasure] :param vendors: :type vendors: list[~financials.models.MicrosoftGraphVendor] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'business_profile_id': {'key': 'businessProfileId', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'system_version': {'key': 'systemVersion', 'type': 'str'}, 'accounts': {'key': 'accounts', 'type': '[MicrosoftGraphAccount]'}, 'aged_accounts_payable': {'key': 'agedAccountsPayable', 'type': '[MicrosoftGraphAgedAccountsPayable]'}, 'aged_accounts_receivable': {'key': 'agedAccountsReceivable', 'type': '[MicrosoftGraphAgedAccountsReceivable]'}, 'company_information': {'key': 'companyInformation', 'type': '[MicrosoftGraphCompanyInformation]'}, 'countries_regions': {'key': 'countriesRegions', 'type': '[MicrosoftGraphCountryRegion]'}, 'currencies': {'key': 'currencies', 'type': '[MicrosoftGraphCurrency]'}, 'customer_payment_journals': {'key': 'customerPaymentJournals', 'type': '[MicrosoftGraphCustomerPaymentJournal]'}, 'customer_payments': {'key': 'customerPayments', 'type': '[MicrosoftGraphCustomerPayment]'}, 'customers': {'key': 'customers', 'type': '[MicrosoftGraphCustomer]'}, 'dimensions': {'key': 'dimensions', 'type': '[MicrosoftGraphDimension]'}, 'dimension_values': {'key': 'dimensionValues', 'type': '[MicrosoftGraphDimensionValue]'}, 'employees': {'key': 'employees', 'type': '[MicrosoftGraphEmployee]'}, 'general_ledger_entries': {'key': 'generalLedgerEntries', 'type': '[MicrosoftGraphGeneralLedgerEntry]'}, 'item_categories': {'key': 'itemCategories', 'type': '[MicrosoftGraphItemCategory]'}, 'items': {'key': 'items', 'type': '[MicrosoftGraphItem]'}, 'journal_lines': {'key': 'journalLines', 'type': '[MicrosoftGraphJournalLine]'}, 'journals': {'key': 'journals', 'type': '[MicrosoftGraphJournal]'}, 'payment_methods': {'key': 'paymentMethods', 'type': '[MicrosoftGraphPaymentMethod]'}, 'payment_terms': {'key': 'paymentTerms', 'type': '[MicrosoftGraphPaymentTerm]'}, 'picture': {'key': 'picture', 'type': '[MicrosoftGraphPicture]'}, 'purchase_invoice_lines': {'key': 'purchaseInvoiceLines', 'type': '[MicrosoftGraphPurchaseInvoiceLine]'}, 'purchase_invoices': {'key': 'purchaseInvoices', 'type': '[MicrosoftGraphPurchaseInvoice]'}, 'sales_credit_memo_lines': {'key': 'salesCreditMemoLines', 'type': '[MicrosoftGraphSalesCreditMemoLine]'}, 'sales_credit_memos': {'key': 'salesCreditMemos', 'type': '[MicrosoftGraphSalesCreditMemo]'}, 'sales_invoice_lines': {'key': 'salesInvoiceLines', 'type': '[MicrosoftGraphSalesInvoiceLine]'}, 'sales_invoices': {'key': 'salesInvoices', 'type': '[MicrosoftGraphSalesInvoice]'}, 'sales_order_lines': {'key': 'salesOrderLines', 'type': '[MicrosoftGraphSalesOrderLine]'}, 'sales_orders': {'key': 'salesOrders', 'type': '[MicrosoftGraphSalesOrder]'}, 'sales_quote_lines': {'key': 'salesQuoteLines', 'type': '[MicrosoftGraphSalesQuoteLine]'}, 'sales_quotes': {'key': 'salesQuotes', 'type': '[MicrosoftGraphSalesQuote]'}, 'shipment_methods': {'key': 'shipmentMethods', 'type': '[MicrosoftGraphShipmentMethod]'}, 'tax_areas': {'key': 'taxAreas', 'type': '[MicrosoftGraphTaxArea]'}, 'tax_groups': {'key': 'taxGroups', 'type': '[MicrosoftGraphTaxGroup]'}, 'units_of_measure': {'key': 'unitsOfMeasure', 'type': '[MicrosoftGraphUnitOfMeasure]'}, 'vendors': {'key': 'vendors', 'type': '[MicrosoftGraphVendor]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphCompany, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.business_profile_id = kwargs.get('business_profile_id', None) self.display_name = kwargs.get('display_name', None) self.name = kwargs.get('name', None) self.system_version = kwargs.get('system_version', None) self.accounts = kwargs.get('accounts', None) self.aged_accounts_payable = kwargs.get('aged_accounts_payable', None) self.aged_accounts_receivable = kwargs.get('aged_accounts_receivable', None) self.company_information = kwargs.get('company_information', None) self.countries_regions = kwargs.get('countries_regions', None) self.currencies = kwargs.get('currencies', None) self.customer_payment_journals = kwargs.get('customer_payment_journals', None) self.customer_payments = kwargs.get('customer_payments', None) self.customers = kwargs.get('customers', None) self.dimensions = kwargs.get('dimensions', None) self.dimension_values = kwargs.get('dimension_values', None) self.employees = kwargs.get('employees', None) self.general_ledger_entries = kwargs.get('general_ledger_entries', None) self.item_categories = kwargs.get('item_categories', None) self.items = kwargs.get('items', None) self.journal_lines = kwargs.get('journal_lines', None) self.journals = kwargs.get('journals', None) self.payment_methods = kwargs.get('payment_methods', None) self.payment_terms = kwargs.get('payment_terms', None) self.picture = kwargs.get('picture', None) self.purchase_invoice_lines = kwargs.get('purchase_invoice_lines', None) self.purchase_invoices = kwargs.get('purchase_invoices', None) self.sales_credit_memo_lines = kwargs.get('sales_credit_memo_lines', None) self.sales_credit_memos = kwargs.get('sales_credit_memos', None) self.sales_invoice_lines = kwargs.get('sales_invoice_lines', None) self.sales_invoices = kwargs.get('sales_invoices', None) self.sales_order_lines = kwargs.get('sales_order_lines', None) self.sales_orders = kwargs.get('sales_orders', None) self.sales_quote_lines = kwargs.get('sales_quote_lines', None) self.sales_quotes = kwargs.get('sales_quotes', None) self.shipment_methods = kwargs.get('shipment_methods', None) self.tax_areas = kwargs.get('tax_areas', None) self.tax_groups = kwargs.get('tax_groups', None) self.units_of_measure = kwargs.get('units_of_measure', None) self.vendors = kwargs.get('vendors', None) class MicrosoftGraphCompanyInformation(MicrosoftGraphEntity): """companyInformation. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param address: postalAddressType. :type address: ~financials.models.MicrosoftGraphPostalAddressType :param currency_code: :type currency_code: str :param current_fiscal_year_start_date: :type current_fiscal_year_start_date: ~datetime.date :param display_name: :type display_name: str :param email: :type email: str :param fax_number: :type fax_number: str :param industry: :type industry: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param phone_number: :type phone_number: str :param picture: :type picture: bytes :param tax_registration_number: :type tax_registration_number: str :param website: :type website: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'address': {'key': 'address', 'type': 'MicrosoftGraphPostalAddressType'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'current_fiscal_year_start_date': {'key': 'currentFiscalYearStartDate', 'type': 'date'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'email': {'key': 'email', 'type': 'str'}, 'fax_number': {'key': 'faxNumber', 'type': 'str'}, 'industry': {'key': 'industry', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'picture': {'key': 'picture', 'type': 'base64'}, 'tax_registration_number': {'key': 'taxRegistrationNumber', 'type': 'str'}, 'website': {'key': 'website', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphCompanyInformation, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.address = kwargs.get('address', None) self.currency_code = kwargs.get('currency_code', None) self.current_fiscal_year_start_date = kwargs.get('current_fiscal_year_start_date', None) self.display_name = kwargs.get('display_name', None) self.email = kwargs.get('email', None) self.fax_number = kwargs.get('fax_number', None) self.industry = kwargs.get('industry', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.phone_number = kwargs.get('phone_number', None) self.picture = kwargs.get('picture', None) self.tax_registration_number = kwargs.get('tax_registration_number', None) self.website = kwargs.get('website', None) class MicrosoftGraphCountryRegion(MicrosoftGraphEntity): """countryRegion. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param address_format: :type address_format: str :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'address_format': {'key': 'addressFormat', 'type': 'str'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(MicrosoftGraphCountryRegion, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.address_format = kwargs.get('address_format', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) class MicrosoftGraphCurrency(MicrosoftGraphEntity): """currency. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param amount_decimal_places: :type amount_decimal_places: str :param amount_rounding_precision: :type amount_rounding_precision: float :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param symbol: :type symbol: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'amount_decimal_places': {'key': 'amountDecimalPlaces', 'type': 'str'}, 'amount_rounding_precision': {'key': 'amountRoundingPrecision', 'type': 'float'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'symbol': {'key': 'symbol', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphCurrency, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.amount_decimal_places = kwargs.get('amount_decimal_places', None) self.amount_rounding_precision = kwargs.get('amount_rounding_precision', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.symbol = kwargs.get('symbol', None) class MicrosoftGraphCustomer(MicrosoftGraphEntity): """customer. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param address: postalAddressType. :type address: ~financials.models.MicrosoftGraphPostalAddressType :param blocked: :type blocked: str :param currency_code: :type currency_code: str :param currency_id: :type currency_id: str :param display_name: :type display_name: str :param email: :type email: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param payment_method_id: :type payment_method_id: str :param payment_terms_id: :type payment_terms_id: str :param phone_number: :type phone_number: str :param shipment_method_id: :type shipment_method_id: str :param tax_area_display_name: :type tax_area_display_name: str :param tax_area_id: :type tax_area_id: str :param tax_liable: :type tax_liable: bool :param tax_registration_number: :type tax_registration_number: str :param type: :type type: str :param website: :type website: str :param currency: currency. :type currency: ~financials.models.MicrosoftGraphCurrency :param payment_method: paymentMethod. :type payment_method: ~financials.models.MicrosoftGraphPaymentMethod :param payment_term: paymentTerm. :type payment_term: ~financials.models.MicrosoftGraphPaymentTerm :param picture: :type picture: list[~financials.models.MicrosoftGraphPicture] :param shipment_method: shipmentMethod. :type shipment_method: ~financials.models.MicrosoftGraphShipmentMethod """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'address': {'key': 'address', 'type': 'MicrosoftGraphPostalAddressType'}, 'blocked': {'key': 'blocked', 'type': 'str'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'currency_id': {'key': 'currencyId', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'email': {'key': 'email', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'payment_method_id': {'key': 'paymentMethodId', 'type': 'str'}, 'payment_terms_id': {'key': 'paymentTermsId', 'type': 'str'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'shipment_method_id': {'key': 'shipmentMethodId', 'type': 'str'}, 'tax_area_display_name': {'key': 'taxAreaDisplayName', 'type': 'str'}, 'tax_area_id': {'key': 'taxAreaId', 'type': 'str'}, 'tax_liable': {'key': 'taxLiable', 'type': 'bool'}, 'tax_registration_number': {'key': 'taxRegistrationNumber', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'website': {'key': 'website', 'type': 'str'}, 'currency': {'key': 'currency', 'type': 'MicrosoftGraphCurrency'}, 'payment_method': {'key': 'paymentMethod', 'type': 'MicrosoftGraphPaymentMethod'}, 'payment_term': {'key': 'paymentTerm', 'type': 'MicrosoftGraphPaymentTerm'}, 'picture': {'key': 'picture', 'type': '[MicrosoftGraphPicture]'}, 'shipment_method': {'key': 'shipmentMethod', 'type': 'MicrosoftGraphShipmentMethod'}, } def __init__( self, **kwargs ): super(MicrosoftGraphCustomer, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.address = kwargs.get('address', None) self.blocked = kwargs.get('blocked', None) self.currency_code = kwargs.get('currency_code', None) self.currency_id = kwargs.get('currency_id', None) self.display_name = kwargs.get('display_name', None) self.email = kwargs.get('email', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.payment_method_id = kwargs.get('payment_method_id', None) self.payment_terms_id = kwargs.get('payment_terms_id', None) self.phone_number = kwargs.get('phone_number', None) self.shipment_method_id = kwargs.get('shipment_method_id', None) self.tax_area_display_name = kwargs.get('tax_area_display_name', None) self.tax_area_id = kwargs.get('tax_area_id', None) self.tax_liable = kwargs.get('tax_liable', None) self.tax_registration_number = kwargs.get('tax_registration_number', None) self.type = kwargs.get('type', None) self.website = kwargs.get('website', None) self.currency = kwargs.get('currency', None) self.payment_method = kwargs.get('payment_method', None) self.payment_term = kwargs.get('payment_term', None) self.picture = kwargs.get('picture', None) self.shipment_method = kwargs.get('shipment_method', None) class MicrosoftGraphCustomerPayment(MicrosoftGraphEntity): """customerPayment. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param amount: :type amount: float :param applies_to_invoice_id: :type applies_to_invoice_id: str :param applies_to_invoice_number: :type applies_to_invoice_number: str :param comment: :type comment: str :param contact_id: :type contact_id: str :param customer_id: :type customer_id: str :param customer_number: :type customer_number: str :param description: :type description: str :param document_number: :type document_number: str :param external_document_number: :type external_document_number: str :param journal_display_name: :type journal_display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param line_number: :type line_number: int :param posting_date: :type posting_date: ~datetime.date :param customer: customer. :type customer: ~financials.models.MicrosoftGraphCustomer """ _validation = { 'line_number': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'amount': {'key': 'amount', 'type': 'float'}, 'applies_to_invoice_id': {'key': 'appliesToInvoiceId', 'type': 'str'}, 'applies_to_invoice_number': {'key': 'appliesToInvoiceNumber', 'type': 'str'}, 'comment': {'key': 'comment', 'type': 'str'}, 'contact_id': {'key': 'contactId', 'type': 'str'}, 'customer_id': {'key': 'customerId', 'type': 'str'}, 'customer_number': {'key': 'customerNumber', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'document_number': {'key': 'documentNumber', 'type': 'str'}, 'external_document_number': {'key': 'externalDocumentNumber', 'type': 'str'}, 'journal_display_name': {'key': 'journalDisplayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'line_number': {'key': 'lineNumber', 'type': 'int'}, 'posting_date': {'key': 'postingDate', 'type': 'date'}, 'customer': {'key': 'customer', 'type': 'MicrosoftGraphCustomer'}, } def __init__( self, **kwargs ): super(MicrosoftGraphCustomerPayment, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.amount = kwargs.get('amount', None) self.applies_to_invoice_id = kwargs.get('applies_to_invoice_id', None) self.applies_to_invoice_number = kwargs.get('applies_to_invoice_number', None) self.comment = kwargs.get('comment', None) self.contact_id = kwargs.get('contact_id', None) self.customer_id = kwargs.get('customer_id', None) self.customer_number = kwargs.get('customer_number', None) self.description = kwargs.get('description', None) self.document_number = kwargs.get('document_number', None) self.external_document_number = kwargs.get('external_document_number', None) self.journal_display_name = kwargs.get('journal_display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.line_number = kwargs.get('line_number', None) self.posting_date = kwargs.get('posting_date', None) self.customer = kwargs.get('customer', None) class MicrosoftGraphCustomerPaymentJournal(MicrosoftGraphEntity): """customerPaymentJournal. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param balancing_account_id: :type balancing_account_id: str :param balancing_account_number: :type balancing_account_number: str :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param account: account. :type account: ~financials.models.MicrosoftGraphAccount :param customer_payments: :type customer_payments: list[~financials.models.MicrosoftGraphCustomerPayment] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'balancing_account_id': {'key': 'balancingAccountId', 'type': 'str'}, 'balancing_account_number': {'key': 'balancingAccountNumber', 'type': 'str'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, 'customer_payments': {'key': 'customerPayments', 'type': '[MicrosoftGraphCustomerPayment]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphCustomerPaymentJournal, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.balancing_account_id = kwargs.get('balancing_account_id', None) self.balancing_account_number = kwargs.get('balancing_account_number', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.account = kwargs.get('account', None) self.customer_payments = kwargs.get('customer_payments', None) class MicrosoftGraphDimension(MicrosoftGraphEntity): """dimension. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param dimension_values: :type dimension_values: list[~financials.models.MicrosoftGraphDimensionValue] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'dimension_values': {'key': 'dimensionValues', 'type': '[MicrosoftGraphDimensionValue]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphDimension, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.dimension_values = kwargs.get('dimension_values', None) class MicrosoftGraphDimensionValue(MicrosoftGraphEntity): """dimensionValue. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(MicrosoftGraphDimensionValue, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) class MicrosoftGraphEmployee(MicrosoftGraphEntity): """employee. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param address: postalAddressType. :type address: ~financials.models.MicrosoftGraphPostalAddressType :param birth_date: :type birth_date: ~datetime.date :param display_name: :type display_name: str :param email: :type email: str :param employment_date: :type employment_date: ~datetime.date :param given_name: :type given_name: str :param job_title: :type job_title: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param middle_name: :type middle_name: str :param mobile_phone: :type mobile_phone: str :param number: :type number: str :param personal_email: :type personal_email: str :param phone_number: :type phone_number: str :param statistics_group_code: :type statistics_group_code: str :param status: :type status: str :param surname: :type surname: str :param termination_date: :type termination_date: ~datetime.date :param picture: :type picture: list[~financials.models.MicrosoftGraphPicture] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'address': {'key': 'address', 'type': 'MicrosoftGraphPostalAddressType'}, 'birth_date': {'key': 'birthDate', 'type': 'date'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'email': {'key': 'email', 'type': 'str'}, 'employment_date': {'key': 'employmentDate', 'type': 'date'}, 'given_name': {'key': 'givenName', 'type': 'str'}, 'job_title': {'key': 'jobTitle', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'middle_name': {'key': 'middleName', 'type': 'str'}, 'mobile_phone': {'key': 'mobilePhone', 'type': 'str'}, 'number': {'key': 'number', 'type': 'str'}, 'personal_email': {'key': 'personalEmail', 'type': 'str'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'statistics_group_code': {'key': 'statisticsGroupCode', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'surname': {'key': 'surname', 'type': 'str'}, 'termination_date': {'key': 'terminationDate', 'type': 'date'}, 'picture': {'key': 'picture', 'type': '[MicrosoftGraphPicture]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphEmployee, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.address = kwargs.get('address', None) self.birth_date = kwargs.get('birth_date', None) self.display_name = kwargs.get('display_name', None) self.email = kwargs.get('email', None) self.employment_date = kwargs.get('employment_date', None) self.given_name = kwargs.get('given_name', None) self.job_title = kwargs.get('job_title', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.middle_name = kwargs.get('middle_name', None) self.mobile_phone = kwargs.get('mobile_phone', None) self.number = kwargs.get('number', None) self.personal_email = kwargs.get('personal_email', None) self.phone_number = kwargs.get('phone_number', None) self.statistics_group_code = kwargs.get('statistics_group_code', None) self.status = kwargs.get('status', None) self.surname = kwargs.get('surname', None) self.termination_date = kwargs.get('termination_date', None) self.picture = kwargs.get('picture', None) class MicrosoftGraphFinancials(msrest.serialization.Model): """financials. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param companies: :type companies: list[~financials.models.MicrosoftGraphCompany] """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'companies': {'key': 'companies', 'type': '[MicrosoftGraphCompany]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphFinancials, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.companies = kwargs.get('companies', None) class MicrosoftGraphGeneralLedgerEntry(MicrosoftGraphEntity): """generalLedgerEntry. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param account_id: :type account_id: str :param account_number: :type account_number: str :param credit_amount: :type credit_amount: float :param debit_amount: :type debit_amount: float :param description: :type description: str :param document_number: :type document_number: str :param document_type: :type document_type: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param posting_date: :type posting_date: ~datetime.date :param account: account. :type account: ~financials.models.MicrosoftGraphAccount """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'account_id': {'key': 'accountId', 'type': 'str'}, 'account_number': {'key': 'accountNumber', 'type': 'str'}, 'credit_amount': {'key': 'creditAmount', 'type': 'float'}, 'debit_amount': {'key': 'debitAmount', 'type': 'float'}, 'description': {'key': 'description', 'type': 'str'}, 'document_number': {'key': 'documentNumber', 'type': 'str'}, 'document_type': {'key': 'documentType', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'posting_date': {'key': 'postingDate', 'type': 'date'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, } def __init__( self, **kwargs ): super(MicrosoftGraphGeneralLedgerEntry, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.account_id = kwargs.get('account_id', None) self.account_number = kwargs.get('account_number', None) self.credit_amount = kwargs.get('credit_amount', None) self.debit_amount = kwargs.get('debit_amount', None) self.description = kwargs.get('description', None) self.document_number = kwargs.get('document_number', None) self.document_type = kwargs.get('document_type', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.posting_date = kwargs.get('posting_date', None) self.account = kwargs.get('account', None) class MicrosoftGraphItem(MicrosoftGraphEntity): """item. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param base_unit_of_measure_id: :type base_unit_of_measure_id: str :param blocked: :type blocked: bool :param display_name: :type display_name: str :param gtin: :type gtin: str :param inventory: :type inventory: float :param item_category_code: :type item_category_code: str :param item_category_id: :type item_category_id: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param price_includes_tax: :type price_includes_tax: bool :param tax_group_code: :type tax_group_code: str :param tax_group_id: :type tax_group_id: str :param type: :type type: str :param unit_cost: :type unit_cost: float :param unit_price: :type unit_price: float :param item_category: itemCategory. :type item_category: ~financials.models.MicrosoftGraphItemCategory :param picture: :type picture: list[~financials.models.MicrosoftGraphPicture] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'base_unit_of_measure_id': {'key': 'baseUnitOfMeasureId', 'type': 'str'}, 'blocked': {'key': 'blocked', 'type': 'bool'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'gtin': {'key': 'gtin', 'type': 'str'}, 'inventory': {'key': 'inventory', 'type': 'float'}, 'item_category_code': {'key': 'itemCategoryCode', 'type': 'str'}, 'item_category_id': {'key': 'itemCategoryId', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'price_includes_tax': {'key': 'priceIncludesTax', 'type': 'bool'}, 'tax_group_code': {'key': 'taxGroupCode', 'type': 'str'}, 'tax_group_id': {'key': 'taxGroupId', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'unit_cost': {'key': 'unitCost', 'type': 'float'}, 'unit_price': {'key': 'unitPrice', 'type': 'float'}, 'item_category': {'key': 'itemCategory', 'type': 'MicrosoftGraphItemCategory'}, 'picture': {'key': 'picture', 'type': '[MicrosoftGraphPicture]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphItem, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.base_unit_of_measure_id = kwargs.get('base_unit_of_measure_id', None) self.blocked = kwargs.get('blocked', None) self.display_name = kwargs.get('display_name', None) self.gtin = kwargs.get('gtin', None) self.inventory = kwargs.get('inventory', None) self.item_category_code = kwargs.get('item_category_code', None) self.item_category_id = kwargs.get('item_category_id', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.price_includes_tax = kwargs.get('price_includes_tax', None) self.tax_group_code = kwargs.get('tax_group_code', None) self.tax_group_id = kwargs.get('tax_group_id', None) self.type = kwargs.get('type', None) self.unit_cost = kwargs.get('unit_cost', None) self.unit_price = kwargs.get('unit_price', None) self.item_category = kwargs.get('item_category', None) self.picture = kwargs.get('picture', None) class MicrosoftGraphItemCategory(MicrosoftGraphEntity): """itemCategory. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(MicrosoftGraphItemCategory, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) class MicrosoftGraphJournal(MicrosoftGraphEntity): """journal. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param balancing_account_id: :type balancing_account_id: str :param balancing_account_number: :type balancing_account_number: str :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param account: account. :type account: ~financials.models.MicrosoftGraphAccount :param journal_lines: :type journal_lines: list[~financials.models.MicrosoftGraphJournalLine] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'balancing_account_id': {'key': 'balancingAccountId', 'type': 'str'}, 'balancing_account_number': {'key': 'balancingAccountNumber', 'type': 'str'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, 'journal_lines': {'key': 'journalLines', 'type': '[MicrosoftGraphJournalLine]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphJournal, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.balancing_account_id = kwargs.get('balancing_account_id', None) self.balancing_account_number = kwargs.get('balancing_account_number', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.account = kwargs.get('account', None) self.journal_lines = kwargs.get('journal_lines', None) class MicrosoftGraphJournalLine(MicrosoftGraphEntity): """journalLine. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param account_id: :type account_id: str :param account_number: :type account_number: str :param amount: :type amount: float :param comment: :type comment: str :param description: :type description: str :param document_number: :type document_number: str :param external_document_number: :type external_document_number: str :param journal_display_name: :type journal_display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param line_number: :type line_number: int :param posting_date: :type posting_date: ~datetime.date :param account: account. :type account: ~financials.models.MicrosoftGraphAccount """ _validation = { 'line_number': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'account_id': {'key': 'accountId', 'type': 'str'}, 'account_number': {'key': 'accountNumber', 'type': 'str'}, 'amount': {'key': 'amount', 'type': 'float'}, 'comment': {'key': 'comment', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'document_number': {'key': 'documentNumber', 'type': 'str'}, 'external_document_number': {'key': 'externalDocumentNumber', 'type': 'str'}, 'journal_display_name': {'key': 'journalDisplayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'line_number': {'key': 'lineNumber', 'type': 'int'}, 'posting_date': {'key': 'postingDate', 'type': 'date'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, } def __init__( self, **kwargs ): super(MicrosoftGraphJournalLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.account_id = kwargs.get('account_id', None) self.account_number = kwargs.get('account_number', None) self.amount = kwargs.get('amount', None) self.comment = kwargs.get('comment', None) self.description = kwargs.get('description', None) self.document_number = kwargs.get('document_number', None) self.external_document_number = kwargs.get('external_document_number', None) self.journal_display_name = kwargs.get('journal_display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.line_number = kwargs.get('line_number', None) self.posting_date = kwargs.get('posting_date', None) self.account = kwargs.get('account', None) class MicrosoftGraphPaymentMethod(MicrosoftGraphEntity): """paymentMethod. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(MicrosoftGraphPaymentMethod, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) class MicrosoftGraphPaymentTerm(MicrosoftGraphEntity): """paymentTerm. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param calculate_discount_on_credit_memos: :type calculate_discount_on_credit_memos: bool :param code: :type code: str :param discount_date_calculation: :type discount_date_calculation: str :param discount_percent: :type discount_percent: float :param display_name: :type display_name: str :param due_date_calculation: :type due_date_calculation: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'calculate_discount_on_credit_memos': {'key': 'calculateDiscountOnCreditMemos', 'type': 'bool'}, 'code': {'key': 'code', 'type': 'str'}, 'discount_date_calculation': {'key': 'discountDateCalculation', 'type': 'str'}, 'discount_percent': {'key': 'discountPercent', 'type': 'float'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'due_date_calculation': {'key': 'dueDateCalculation', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(MicrosoftGraphPaymentTerm, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.calculate_discount_on_credit_memos = kwargs.get('calculate_discount_on_credit_memos', None) self.code = kwargs.get('code', None) self.discount_date_calculation = kwargs.get('discount_date_calculation', None) self.discount_percent = kwargs.get('discount_percent', None) self.display_name = kwargs.get('display_name', None) self.due_date_calculation = kwargs.get('due_date_calculation', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) class MicrosoftGraphPicture(MicrosoftGraphEntity): """picture. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param content: :type content: bytes :param content_type: :type content_type: str :param height: :type height: int :param width: :type width: int """ _validation = { 'height': {'maximum': 2147483647, 'minimum': -2147483648}, 'width': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'content': {'key': 'content', 'type': 'base64'}, 'content_type': {'key': 'contentType', 'type': 'str'}, 'height': {'key': 'height', 'type': 'int'}, 'width': {'key': 'width', 'type': 'int'}, } def __init__( self, **kwargs ): super(MicrosoftGraphPicture, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.content = kwargs.get('content', None) self.content_type = kwargs.get('content_type', None) self.height = kwargs.get('height', None) self.width = kwargs.get('width', None) class MicrosoftGraphPostalAddressType(msrest.serialization.Model): """postalAddressType. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param city: :type city: str :param country_letter_code: :type country_letter_code: str :param postal_code: :type postal_code: str :param state: :type state: str :param street: :type street: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'city': {'key': 'city', 'type': 'str'}, 'country_letter_code': {'key': 'countryLetterCode', 'type': 'str'}, 'postal_code': {'key': 'postalCode', 'type': 'str'}, 'state': {'key': 'state', 'type': 'str'}, 'street': {'key': 'street', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphPostalAddressType, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.city = kwargs.get('city', None) self.country_letter_code = kwargs.get('country_letter_code', None) self.postal_code = kwargs.get('postal_code', None) self.state = kwargs.get('state', None) self.street = kwargs.get('street', None) class MicrosoftGraphPurchaseInvoice(MicrosoftGraphEntity): """purchaseInvoice. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param buy_from_address: postalAddressType. :type buy_from_address: ~financials.models.MicrosoftGraphPostalAddressType :param currency_code: :type currency_code: str :param currency_id: :type currency_id: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param due_date: :type due_date: ~datetime.date :param invoice_date: :type invoice_date: ~datetime.date :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param pay_to_address: postalAddressType. :type pay_to_address: ~financials.models.MicrosoftGraphPostalAddressType :param pay_to_contact: :type pay_to_contact: str :param pay_to_name: :type pay_to_name: str :param pay_to_vendor_id: :type pay_to_vendor_id: str :param pay_to_vendor_number: :type pay_to_vendor_number: str :param prices_include_tax: :type prices_include_tax: bool :param ship_to_address: postalAddressType. :type ship_to_address: ~financials.models.MicrosoftGraphPostalAddressType :param ship_to_contact: :type ship_to_contact: str :param ship_to_name: :type ship_to_name: str :param status: :type status: str :param total_amount_excluding_tax: :type total_amount_excluding_tax: float :param total_amount_including_tax: :type total_amount_including_tax: float :param total_tax_amount: :type total_tax_amount: float :param vendor_id: :type vendor_id: str :param vendor_invoice_number: :type vendor_invoice_number: str :param vendor_name: :type vendor_name: str :param vendor_number: :type vendor_number: str :param currency: currency. :type currency: ~financials.models.MicrosoftGraphCurrency :param purchase_invoice_lines: :type purchase_invoice_lines: list[~financials.models.MicrosoftGraphPurchaseInvoiceLine] :param vendor: vendor. :type vendor: ~financials.models.MicrosoftGraphVendor """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'buy_from_address': {'key': 'buyFromAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'currency_id': {'key': 'currencyId', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'due_date': {'key': 'dueDate', 'type': 'date'}, 'invoice_date': {'key': 'invoiceDate', 'type': 'date'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'pay_to_address': {'key': 'payToAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'pay_to_contact': {'key': 'payToContact', 'type': 'str'}, 'pay_to_name': {'key': 'payToName', 'type': 'str'}, 'pay_to_vendor_id': {'key': 'payToVendorId', 'type': 'str'}, 'pay_to_vendor_number': {'key': 'payToVendorNumber', 'type': 'str'}, 'prices_include_tax': {'key': 'pricesIncludeTax', 'type': 'bool'}, 'ship_to_address': {'key': 'shipToAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'ship_to_contact': {'key': 'shipToContact', 'type': 'str'}, 'ship_to_name': {'key': 'shipToName', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'total_amount_excluding_tax': {'key': 'totalAmountExcludingTax', 'type': 'float'}, 'total_amount_including_tax': {'key': 'totalAmountIncludingTax', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'vendor_id': {'key': 'vendorId', 'type': 'str'}, 'vendor_invoice_number': {'key': 'vendorInvoiceNumber', 'type': 'str'}, 'vendor_name': {'key': 'vendorName', 'type': 'str'}, 'vendor_number': {'key': 'vendorNumber', 'type': 'str'}, 'currency': {'key': 'currency', 'type': 'MicrosoftGraphCurrency'}, 'purchase_invoice_lines': {'key': 'purchaseInvoiceLines', 'type': '[MicrosoftGraphPurchaseInvoiceLine]'}, 'vendor': {'key': 'vendor', 'type': 'MicrosoftGraphVendor'}, } def __init__( self, **kwargs ): super(MicrosoftGraphPurchaseInvoice, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.buy_from_address = kwargs.get('buy_from_address', None) self.currency_code = kwargs.get('currency_code', None) self.currency_id = kwargs.get('currency_id', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.due_date = kwargs.get('due_date', None) self.invoice_date = kwargs.get('invoice_date', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.pay_to_address = kwargs.get('pay_to_address', None) self.pay_to_contact = kwargs.get('pay_to_contact', None) self.pay_to_name = kwargs.get('pay_to_name', None) self.pay_to_vendor_id = kwargs.get('pay_to_vendor_id', None) self.pay_to_vendor_number = kwargs.get('pay_to_vendor_number', None) self.prices_include_tax = kwargs.get('prices_include_tax', None) self.ship_to_address = kwargs.get('ship_to_address', None) self.ship_to_contact = kwargs.get('ship_to_contact', None) self.ship_to_name = kwargs.get('ship_to_name', None) self.status = kwargs.get('status', None) self.total_amount_excluding_tax = kwargs.get('total_amount_excluding_tax', None) self.total_amount_including_tax = kwargs.get('total_amount_including_tax', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.vendor_id = kwargs.get('vendor_id', None) self.vendor_invoice_number = kwargs.get('vendor_invoice_number', None) self.vendor_name = kwargs.get('vendor_name', None) self.vendor_number = kwargs.get('vendor_number', None) self.currency = kwargs.get('currency', None) self.purchase_invoice_lines = kwargs.get('purchase_invoice_lines', None) self.vendor = kwargs.get('vendor', None) class MicrosoftGraphPurchaseInvoiceLine(MicrosoftGraphEntity): """purchaseInvoiceLine. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param account_id: :type account_id: str :param amount_excluding_tax: :type amount_excluding_tax: float :param amount_including_tax: :type amount_including_tax: float :param description: :type description: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param discount_percent: :type discount_percent: float :param document_id: :type document_id: str :param expected_receipt_date: :type expected_receipt_date: ~datetime.date :param invoice_discount_allocation: :type invoice_discount_allocation: float :param item_id: :type item_id: str :param line_type: :type line_type: str :param net_amount: :type net_amount: float :param net_amount_including_tax: :type net_amount_including_tax: float :param net_tax_amount: :type net_tax_amount: float :param quantity: :type quantity: float :param sequence: :type sequence: int :param tax_code: :type tax_code: str :param tax_percent: :type tax_percent: float :param total_tax_amount: :type total_tax_amount: float :param unit_cost: :type unit_cost: float :param account: account. :type account: ~financials.models.MicrosoftGraphAccount :param item: item. :type item: ~financials.models.MicrosoftGraphItem """ _validation = { 'sequence': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'account_id': {'key': 'accountId', 'type': 'str'}, 'amount_excluding_tax': {'key': 'amountExcludingTax', 'type': 'float'}, 'amount_including_tax': {'key': 'amountIncludingTax', 'type': 'float'}, 'description': {'key': 'description', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'discount_percent': {'key': 'discountPercent', 'type': 'float'}, 'document_id': {'key': 'documentId', 'type': 'str'}, 'expected_receipt_date': {'key': 'expectedReceiptDate', 'type': 'date'}, 'invoice_discount_allocation': {'key': 'invoiceDiscountAllocation', 'type': 'float'}, 'item_id': {'key': 'itemId', 'type': 'str'}, 'line_type': {'key': 'lineType', 'type': 'str'}, 'net_amount': {'key': 'netAmount', 'type': 'float'}, 'net_amount_including_tax': {'key': 'netAmountIncludingTax', 'type': 'float'}, 'net_tax_amount': {'key': 'netTaxAmount', 'type': 'float'}, 'quantity': {'key': 'quantity', 'type': 'float'}, 'sequence': {'key': 'sequence', 'type': 'int'}, 'tax_code': {'key': 'taxCode', 'type': 'str'}, 'tax_percent': {'key': 'taxPercent', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'unit_cost': {'key': 'unitCost', 'type': 'float'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, 'item': {'key': 'item', 'type': 'MicrosoftGraphItem'}, } def __init__( self, **kwargs ): super(MicrosoftGraphPurchaseInvoiceLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.account_id = kwargs.get('account_id', None) self.amount_excluding_tax = kwargs.get('amount_excluding_tax', None) self.amount_including_tax = kwargs.get('amount_including_tax', None) self.description = kwargs.get('description', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.discount_percent = kwargs.get('discount_percent', None) self.document_id = kwargs.get('document_id', None) self.expected_receipt_date = kwargs.get('expected_receipt_date', None) self.invoice_discount_allocation = kwargs.get('invoice_discount_allocation', None) self.item_id = kwargs.get('item_id', None) self.line_type = kwargs.get('line_type', None) self.net_amount = kwargs.get('net_amount', None) self.net_amount_including_tax = kwargs.get('net_amount_including_tax', None) self.net_tax_amount = kwargs.get('net_tax_amount', None) self.quantity = kwargs.get('quantity', None) self.sequence = kwargs.get('sequence', None) self.tax_code = kwargs.get('tax_code', None) self.tax_percent = kwargs.get('tax_percent', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.unit_cost = kwargs.get('unit_cost', None) self.account = kwargs.get('account', None) self.item = kwargs.get('item', None) class MicrosoftGraphSalesCreditMemo(MicrosoftGraphEntity): """salesCreditMemo. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param billing_postal_address: postalAddressType. :type billing_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param bill_to_customer_id: :type bill_to_customer_id: str :param bill_to_customer_number: :type bill_to_customer_number: str :param bill_to_name: :type bill_to_name: str :param credit_memo_date: :type credit_memo_date: ~datetime.date :param currency_code: :type currency_code: str :param currency_id: :type currency_id: str :param customer_id: :type customer_id: str :param customer_name: :type customer_name: str :param customer_number: :type customer_number: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param due_date: :type due_date: ~datetime.date :param email: :type email: str :param external_document_number: :type external_document_number: str :param invoice_id: :type invoice_id: str :param invoice_number: :type invoice_number: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param payment_terms_id: :type payment_terms_id: str :param phone_number: :type phone_number: str :param prices_include_tax: :type prices_include_tax: bool :param salesperson: :type salesperson: str :param selling_postal_address: postalAddressType. :type selling_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param status: :type status: str :param total_amount_excluding_tax: :type total_amount_excluding_tax: float :param total_amount_including_tax: :type total_amount_including_tax: float :param total_tax_amount: :type total_tax_amount: float :param currency: currency. :type currency: ~financials.models.MicrosoftGraphCurrency :param customer: customer. :type customer: ~financials.models.MicrosoftGraphCustomer :param payment_term: paymentTerm. :type payment_term: ~financials.models.MicrosoftGraphPaymentTerm :param sales_credit_memo_lines: :type sales_credit_memo_lines: list[~financials.models.MicrosoftGraphSalesCreditMemoLine] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'billing_postal_address': {'key': 'billingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'bill_to_customer_id': {'key': 'billToCustomerId', 'type': 'str'}, 'bill_to_customer_number': {'key': 'billToCustomerNumber', 'type': 'str'}, 'bill_to_name': {'key': 'billToName', 'type': 'str'}, 'credit_memo_date': {'key': 'creditMemoDate', 'type': 'date'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'currency_id': {'key': 'currencyId', 'type': 'str'}, 'customer_id': {'key': 'customerId', 'type': 'str'}, 'customer_name': {'key': 'customerName', 'type': 'str'}, 'customer_number': {'key': 'customerNumber', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'due_date': {'key': 'dueDate', 'type': 'date'}, 'email': {'key': 'email', 'type': 'str'}, 'external_document_number': {'key': 'externalDocumentNumber', 'type': 'str'}, 'invoice_id': {'key': 'invoiceId', 'type': 'str'}, 'invoice_number': {'key': 'invoiceNumber', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'payment_terms_id': {'key': 'paymentTermsId', 'type': 'str'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'prices_include_tax': {'key': 'pricesIncludeTax', 'type': 'bool'}, 'salesperson': {'key': 'salesperson', 'type': 'str'}, 'selling_postal_address': {'key': 'sellingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'status': {'key': 'status', 'type': 'str'}, 'total_amount_excluding_tax': {'key': 'totalAmountExcludingTax', 'type': 'float'}, 'total_amount_including_tax': {'key': 'totalAmountIncludingTax', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'currency': {'key': 'currency', 'type': 'MicrosoftGraphCurrency'}, 'customer': {'key': 'customer', 'type': 'MicrosoftGraphCustomer'}, 'payment_term': {'key': 'paymentTerm', 'type': 'MicrosoftGraphPaymentTerm'}, 'sales_credit_memo_lines': {'key': 'salesCreditMemoLines', 'type': '[MicrosoftGraphSalesCreditMemoLine]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesCreditMemo, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.billing_postal_address = kwargs.get('billing_postal_address', None) self.bill_to_customer_id = kwargs.get('bill_to_customer_id', None) self.bill_to_customer_number = kwargs.get('bill_to_customer_number', None) self.bill_to_name = kwargs.get('bill_to_name', None) self.credit_memo_date = kwargs.get('credit_memo_date', None) self.currency_code = kwargs.get('currency_code', None) self.currency_id = kwargs.get('currency_id', None) self.customer_id = kwargs.get('customer_id', None) self.customer_name = kwargs.get('customer_name', None) self.customer_number = kwargs.get('customer_number', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.due_date = kwargs.get('due_date', None) self.email = kwargs.get('email', None) self.external_document_number = kwargs.get('external_document_number', None) self.invoice_id = kwargs.get('invoice_id', None) self.invoice_number = kwargs.get('invoice_number', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.payment_terms_id = kwargs.get('payment_terms_id', None) self.phone_number = kwargs.get('phone_number', None) self.prices_include_tax = kwargs.get('prices_include_tax', None) self.salesperson = kwargs.get('salesperson', None) self.selling_postal_address = kwargs.get('selling_postal_address', None) self.status = kwargs.get('status', None) self.total_amount_excluding_tax = kwargs.get('total_amount_excluding_tax', None) self.total_amount_including_tax = kwargs.get('total_amount_including_tax', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.currency = kwargs.get('currency', None) self.customer = kwargs.get('customer', None) self.payment_term = kwargs.get('payment_term', None) self.sales_credit_memo_lines = kwargs.get('sales_credit_memo_lines', None) class MicrosoftGraphSalesCreditMemoLine(MicrosoftGraphEntity): """salesCreditMemoLine. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param account_id: :type account_id: str :param amount_excluding_tax: :type amount_excluding_tax: float :param amount_including_tax: :type amount_including_tax: float :param description: :type description: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param discount_percent: :type discount_percent: float :param document_id: :type document_id: str :param invoice_discount_allocation: :type invoice_discount_allocation: float :param item_id: :type item_id: str :param line_type: :type line_type: str :param net_amount: :type net_amount: float :param net_amount_including_tax: :type net_amount_including_tax: float :param net_tax_amount: :type net_tax_amount: float :param quantity: :type quantity: float :param sequence: :type sequence: int :param shipment_date: :type shipment_date: ~datetime.date :param tax_code: :type tax_code: str :param tax_percent: :type tax_percent: float :param total_tax_amount: :type total_tax_amount: float :param unit_of_measure_id: :type unit_of_measure_id: str :param unit_price: :type unit_price: float :param account: account. :type account: ~financials.models.MicrosoftGraphAccount :param item: item. :type item: ~financials.models.MicrosoftGraphItem """ _validation = { 'sequence': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'account_id': {'key': 'accountId', 'type': 'str'}, 'amount_excluding_tax': {'key': 'amountExcludingTax', 'type': 'float'}, 'amount_including_tax': {'key': 'amountIncludingTax', 'type': 'float'}, 'description': {'key': 'description', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'discount_percent': {'key': 'discountPercent', 'type': 'float'}, 'document_id': {'key': 'documentId', 'type': 'str'}, 'invoice_discount_allocation': {'key': 'invoiceDiscountAllocation', 'type': 'float'}, 'item_id': {'key': 'itemId', 'type': 'str'}, 'line_type': {'key': 'lineType', 'type': 'str'}, 'net_amount': {'key': 'netAmount', 'type': 'float'}, 'net_amount_including_tax': {'key': 'netAmountIncludingTax', 'type': 'float'}, 'net_tax_amount': {'key': 'netTaxAmount', 'type': 'float'}, 'quantity': {'key': 'quantity', 'type': 'float'}, 'sequence': {'key': 'sequence', 'type': 'int'}, 'shipment_date': {'key': 'shipmentDate', 'type': 'date'}, 'tax_code': {'key': 'taxCode', 'type': 'str'}, 'tax_percent': {'key': 'taxPercent', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'unit_of_measure_id': {'key': 'unitOfMeasureId', 'type': 'str'}, 'unit_price': {'key': 'unitPrice', 'type': 'float'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, 'item': {'key': 'item', 'type': 'MicrosoftGraphItem'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesCreditMemoLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.account_id = kwargs.get('account_id', None) self.amount_excluding_tax = kwargs.get('amount_excluding_tax', None) self.amount_including_tax = kwargs.get('amount_including_tax', None) self.description = kwargs.get('description', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.discount_percent = kwargs.get('discount_percent', None) self.document_id = kwargs.get('document_id', None) self.invoice_discount_allocation = kwargs.get('invoice_discount_allocation', None) self.item_id = kwargs.get('item_id', None) self.line_type = kwargs.get('line_type', None) self.net_amount = kwargs.get('net_amount', None) self.net_amount_including_tax = kwargs.get('net_amount_including_tax', None) self.net_tax_amount = kwargs.get('net_tax_amount', None) self.quantity = kwargs.get('quantity', None) self.sequence = kwargs.get('sequence', None) self.shipment_date = kwargs.get('shipment_date', None) self.tax_code = kwargs.get('tax_code', None) self.tax_percent = kwargs.get('tax_percent', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.unit_of_measure_id = kwargs.get('unit_of_measure_id', None) self.unit_price = kwargs.get('unit_price', None) self.account = kwargs.get('account', None) self.item = kwargs.get('item', None) class MicrosoftGraphSalesInvoice(MicrosoftGraphEntity): """salesInvoice. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param billing_postal_address: postalAddressType. :type billing_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param bill_to_customer_id: :type bill_to_customer_id: str :param bill_to_customer_number: :type bill_to_customer_number: str :param bill_to_name: :type bill_to_name: str :param currency_code: :type currency_code: str :param currency_id: :type currency_id: str :param customer_id: :type customer_id: str :param customer_name: :type customer_name: str :param customer_number: :type customer_number: str :param customer_purchase_order_reference: :type customer_purchase_order_reference: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param due_date: :type due_date: ~datetime.date :param email: :type email: str :param external_document_number: :type external_document_number: str :param invoice_date: :type invoice_date: ~datetime.date :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param order_id: :type order_id: str :param order_number: :type order_number: str :param payment_terms_id: :type payment_terms_id: str :param phone_number: :type phone_number: str :param prices_include_tax: :type prices_include_tax: bool :param salesperson: :type salesperson: str :param selling_postal_address: postalAddressType. :type selling_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param shipment_method_id: :type shipment_method_id: str :param shipping_postal_address: postalAddressType. :type shipping_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param ship_to_contact: :type ship_to_contact: str :param ship_to_name: :type ship_to_name: str :param status: :type status: str :param total_amount_excluding_tax: :type total_amount_excluding_tax: float :param total_amount_including_tax: :type total_amount_including_tax: float :param total_tax_amount: :type total_tax_amount: float :param currency: currency. :type currency: ~financials.models.MicrosoftGraphCurrency :param customer: customer. :type customer: ~financials.models.MicrosoftGraphCustomer :param payment_term: paymentTerm. :type payment_term: ~financials.models.MicrosoftGraphPaymentTerm :param sales_invoice_lines: :type sales_invoice_lines: list[~financials.models.MicrosoftGraphSalesInvoiceLine] :param shipment_method: shipmentMethod. :type shipment_method: ~financials.models.MicrosoftGraphShipmentMethod """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'billing_postal_address': {'key': 'billingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'bill_to_customer_id': {'key': 'billToCustomerId', 'type': 'str'}, 'bill_to_customer_number': {'key': 'billToCustomerNumber', 'type': 'str'}, 'bill_to_name': {'key': 'billToName', 'type': 'str'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'currency_id': {'key': 'currencyId', 'type': 'str'}, 'customer_id': {'key': 'customerId', 'type': 'str'}, 'customer_name': {'key': 'customerName', 'type': 'str'}, 'customer_number': {'key': 'customerNumber', 'type': 'str'}, 'customer_purchase_order_reference': {'key': 'customerPurchaseOrderReference', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'due_date': {'key': 'dueDate', 'type': 'date'}, 'email': {'key': 'email', 'type': 'str'}, 'external_document_number': {'key': 'externalDocumentNumber', 'type': 'str'}, 'invoice_date': {'key': 'invoiceDate', 'type': 'date'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'order_id': {'key': 'orderId', 'type': 'str'}, 'order_number': {'key': 'orderNumber', 'type': 'str'}, 'payment_terms_id': {'key': 'paymentTermsId', 'type': 'str'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'prices_include_tax': {'key': 'pricesIncludeTax', 'type': 'bool'}, 'salesperson': {'key': 'salesperson', 'type': 'str'}, 'selling_postal_address': {'key': 'sellingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'shipment_method_id': {'key': 'shipmentMethodId', 'type': 'str'}, 'shipping_postal_address': {'key': 'shippingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'ship_to_contact': {'key': 'shipToContact', 'type': 'str'}, 'ship_to_name': {'key': 'shipToName', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'total_amount_excluding_tax': {'key': 'totalAmountExcludingTax', 'type': 'float'}, 'total_amount_including_tax': {'key': 'totalAmountIncludingTax', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'currency': {'key': 'currency', 'type': 'MicrosoftGraphCurrency'}, 'customer': {'key': 'customer', 'type': 'MicrosoftGraphCustomer'}, 'payment_term': {'key': 'paymentTerm', 'type': 'MicrosoftGraphPaymentTerm'}, 'sales_invoice_lines': {'key': 'salesInvoiceLines', 'type': '[MicrosoftGraphSalesInvoiceLine]'}, 'shipment_method': {'key': 'shipmentMethod', 'type': 'MicrosoftGraphShipmentMethod'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesInvoice, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.billing_postal_address = kwargs.get('billing_postal_address', None) self.bill_to_customer_id = kwargs.get('bill_to_customer_id', None) self.bill_to_customer_number = kwargs.get('bill_to_customer_number', None) self.bill_to_name = kwargs.get('bill_to_name', None) self.currency_code = kwargs.get('currency_code', None) self.currency_id = kwargs.get('currency_id', None) self.customer_id = kwargs.get('customer_id', None) self.customer_name = kwargs.get('customer_name', None) self.customer_number = kwargs.get('customer_number', None) self.customer_purchase_order_reference = kwargs.get('customer_purchase_order_reference', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.due_date = kwargs.get('due_date', None) self.email = kwargs.get('email', None) self.external_document_number = kwargs.get('external_document_number', None) self.invoice_date = kwargs.get('invoice_date', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.order_id = kwargs.get('order_id', None) self.order_number = kwargs.get('order_number', None) self.payment_terms_id = kwargs.get('payment_terms_id', None) self.phone_number = kwargs.get('phone_number', None) self.prices_include_tax = kwargs.get('prices_include_tax', None) self.salesperson = kwargs.get('salesperson', None) self.selling_postal_address = kwargs.get('selling_postal_address', None) self.shipment_method_id = kwargs.get('shipment_method_id', None) self.shipping_postal_address = kwargs.get('shipping_postal_address', None) self.ship_to_contact = kwargs.get('ship_to_contact', None) self.ship_to_name = kwargs.get('ship_to_name', None) self.status = kwargs.get('status', None) self.total_amount_excluding_tax = kwargs.get('total_amount_excluding_tax', None) self.total_amount_including_tax = kwargs.get('total_amount_including_tax', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.currency = kwargs.get('currency', None) self.customer = kwargs.get('customer', None) self.payment_term = kwargs.get('payment_term', None) self.sales_invoice_lines = kwargs.get('sales_invoice_lines', None) self.shipment_method = kwargs.get('shipment_method', None) class MicrosoftGraphSalesInvoiceLine(MicrosoftGraphEntity): """salesInvoiceLine. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param account_id: :type account_id: str :param amount_excluding_tax: :type amount_excluding_tax: float :param amount_including_tax: :type amount_including_tax: float :param description: :type description: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param discount_percent: :type discount_percent: float :param document_id: :type document_id: str :param invoice_discount_allocation: :type invoice_discount_allocation: float :param item_id: :type item_id: str :param line_type: :type line_type: str :param net_amount: :type net_amount: float :param net_amount_including_tax: :type net_amount_including_tax: float :param net_tax_amount: :type net_tax_amount: float :param quantity: :type quantity: float :param sequence: :type sequence: int :param shipment_date: :type shipment_date: ~datetime.date :param tax_code: :type tax_code: str :param tax_percent: :type tax_percent: float :param total_tax_amount: :type total_tax_amount: float :param unit_of_measure_id: :type unit_of_measure_id: str :param unit_price: :type unit_price: float :param account: account. :type account: ~financials.models.MicrosoftGraphAccount :param item: item. :type item: ~financials.models.MicrosoftGraphItem """ _validation = { 'sequence': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'account_id': {'key': 'accountId', 'type': 'str'}, 'amount_excluding_tax': {'key': 'amountExcludingTax', 'type': 'float'}, 'amount_including_tax': {'key': 'amountIncludingTax', 'type': 'float'}, 'description': {'key': 'description', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'discount_percent': {'key': 'discountPercent', 'type': 'float'}, 'document_id': {'key': 'documentId', 'type': 'str'}, 'invoice_discount_allocation': {'key': 'invoiceDiscountAllocation', 'type': 'float'}, 'item_id': {'key': 'itemId', 'type': 'str'}, 'line_type': {'key': 'lineType', 'type': 'str'}, 'net_amount': {'key': 'netAmount', 'type': 'float'}, 'net_amount_including_tax': {'key': 'netAmountIncludingTax', 'type': 'float'}, 'net_tax_amount': {'key': 'netTaxAmount', 'type': 'float'}, 'quantity': {'key': 'quantity', 'type': 'float'}, 'sequence': {'key': 'sequence', 'type': 'int'}, 'shipment_date': {'key': 'shipmentDate', 'type': 'date'}, 'tax_code': {'key': 'taxCode', 'type': 'str'}, 'tax_percent': {'key': 'taxPercent', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'unit_of_measure_id': {'key': 'unitOfMeasureId', 'type': 'str'}, 'unit_price': {'key': 'unitPrice', 'type': 'float'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, 'item': {'key': 'item', 'type': 'MicrosoftGraphItem'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesInvoiceLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.account_id = kwargs.get('account_id', None) self.amount_excluding_tax = kwargs.get('amount_excluding_tax', None) self.amount_including_tax = kwargs.get('amount_including_tax', None) self.description = kwargs.get('description', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.discount_percent = kwargs.get('discount_percent', None) self.document_id = kwargs.get('document_id', None) self.invoice_discount_allocation = kwargs.get('invoice_discount_allocation', None) self.item_id = kwargs.get('item_id', None) self.line_type = kwargs.get('line_type', None) self.net_amount = kwargs.get('net_amount', None) self.net_amount_including_tax = kwargs.get('net_amount_including_tax', None) self.net_tax_amount = kwargs.get('net_tax_amount', None) self.quantity = kwargs.get('quantity', None) self.sequence = kwargs.get('sequence', None) self.shipment_date = kwargs.get('shipment_date', None) self.tax_code = kwargs.get('tax_code', None) self.tax_percent = kwargs.get('tax_percent', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.unit_of_measure_id = kwargs.get('unit_of_measure_id', None) self.unit_price = kwargs.get('unit_price', None) self.account = kwargs.get('account', None) self.item = kwargs.get('item', None) class MicrosoftGraphSalesOrder(MicrosoftGraphEntity): """salesOrder. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param billing_postal_address: postalAddressType. :type billing_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param bill_to_customer_id: :type bill_to_customer_id: str :param bill_to_customer_number: :type bill_to_customer_number: str :param bill_to_name: :type bill_to_name: str :param currency_code: :type currency_code: str :param currency_id: :type currency_id: str :param customer_id: :type customer_id: str :param customer_name: :type customer_name: str :param customer_number: :type customer_number: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param email: :type email: str :param external_document_number: :type external_document_number: str :param fully_shipped: :type fully_shipped: bool :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param order_date: :type order_date: ~datetime.date :param partial_shipping: :type partial_shipping: bool :param payment_terms_id: :type payment_terms_id: str :param phone_number: :type phone_number: str :param prices_include_tax: :type prices_include_tax: bool :param requested_delivery_date: :type requested_delivery_date: ~datetime.date :param salesperson: :type salesperson: str :param selling_postal_address: postalAddressType. :type selling_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param shipping_postal_address: postalAddressType. :type shipping_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param ship_to_contact: :type ship_to_contact: str :param ship_to_name: :type ship_to_name: str :param status: :type status: str :param total_amount_excluding_tax: :type total_amount_excluding_tax: float :param total_amount_including_tax: :type total_amount_including_tax: float :param total_tax_amount: :type total_tax_amount: float :param currency: currency. :type currency: ~financials.models.MicrosoftGraphCurrency :param customer: customer. :type customer: ~financials.models.MicrosoftGraphCustomer :param payment_term: paymentTerm. :type payment_term: ~financials.models.MicrosoftGraphPaymentTerm :param sales_order_lines: :type sales_order_lines: list[~financials.models.MicrosoftGraphSalesOrderLine] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'billing_postal_address': {'key': 'billingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'bill_to_customer_id': {'key': 'billToCustomerId', 'type': 'str'}, 'bill_to_customer_number': {'key': 'billToCustomerNumber', 'type': 'str'}, 'bill_to_name': {'key': 'billToName', 'type': 'str'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'currency_id': {'key': 'currencyId', 'type': 'str'}, 'customer_id': {'key': 'customerId', 'type': 'str'}, 'customer_name': {'key': 'customerName', 'type': 'str'}, 'customer_number': {'key': 'customerNumber', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'email': {'key': 'email', 'type': 'str'}, 'external_document_number': {'key': 'externalDocumentNumber', 'type': 'str'}, 'fully_shipped': {'key': 'fullyShipped', 'type': 'bool'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'order_date': {'key': 'orderDate', 'type': 'date'}, 'partial_shipping': {'key': 'partialShipping', 'type': 'bool'}, 'payment_terms_id': {'key': 'paymentTermsId', 'type': 'str'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'prices_include_tax': {'key': 'pricesIncludeTax', 'type': 'bool'}, 'requested_delivery_date': {'key': 'requestedDeliveryDate', 'type': 'date'}, 'salesperson': {'key': 'salesperson', 'type': 'str'}, 'selling_postal_address': {'key': 'sellingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'shipping_postal_address': {'key': 'shippingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'ship_to_contact': {'key': 'shipToContact', 'type': 'str'}, 'ship_to_name': {'key': 'shipToName', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'total_amount_excluding_tax': {'key': 'totalAmountExcludingTax', 'type': 'float'}, 'total_amount_including_tax': {'key': 'totalAmountIncludingTax', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'currency': {'key': 'currency', 'type': 'MicrosoftGraphCurrency'}, 'customer': {'key': 'customer', 'type': 'MicrosoftGraphCustomer'}, 'payment_term': {'key': 'paymentTerm', 'type': 'MicrosoftGraphPaymentTerm'}, 'sales_order_lines': {'key': 'salesOrderLines', 'type': '[MicrosoftGraphSalesOrderLine]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesOrder, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.billing_postal_address = kwargs.get('billing_postal_address', None) self.bill_to_customer_id = kwargs.get('bill_to_customer_id', None) self.bill_to_customer_number = kwargs.get('bill_to_customer_number', None) self.bill_to_name = kwargs.get('bill_to_name', None) self.currency_code = kwargs.get('currency_code', None) self.currency_id = kwargs.get('currency_id', None) self.customer_id = kwargs.get('customer_id', None) self.customer_name = kwargs.get('customer_name', None) self.customer_number = kwargs.get('customer_number', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.email = kwargs.get('email', None) self.external_document_number = kwargs.get('external_document_number', None) self.fully_shipped = kwargs.get('fully_shipped', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.order_date = kwargs.get('order_date', None) self.partial_shipping = kwargs.get('partial_shipping', None) self.payment_terms_id = kwargs.get('payment_terms_id', None) self.phone_number = kwargs.get('phone_number', None) self.prices_include_tax = kwargs.get('prices_include_tax', None) self.requested_delivery_date = kwargs.get('requested_delivery_date', None) self.salesperson = kwargs.get('salesperson', None) self.selling_postal_address = kwargs.get('selling_postal_address', None) self.shipping_postal_address = kwargs.get('shipping_postal_address', None) self.ship_to_contact = kwargs.get('ship_to_contact', None) self.ship_to_name = kwargs.get('ship_to_name', None) self.status = kwargs.get('status', None) self.total_amount_excluding_tax = kwargs.get('total_amount_excluding_tax', None) self.total_amount_including_tax = kwargs.get('total_amount_including_tax', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.currency = kwargs.get('currency', None) self.customer = kwargs.get('customer', None) self.payment_term = kwargs.get('payment_term', None) self.sales_order_lines = kwargs.get('sales_order_lines', None) class MicrosoftGraphSalesOrderLine(MicrosoftGraphEntity): """salesOrderLine. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param account_id: :type account_id: str :param amount_excluding_tax: :type amount_excluding_tax: float :param amount_including_tax: :type amount_including_tax: float :param description: :type description: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param discount_percent: :type discount_percent: float :param document_id: :type document_id: str :param invoice_discount_allocation: :type invoice_discount_allocation: float :param invoiced_quantity: :type invoiced_quantity: float :param invoice_quantity: :type invoice_quantity: float :param item_id: :type item_id: str :param line_type: :type line_type: str :param net_amount: :type net_amount: float :param net_amount_including_tax: :type net_amount_including_tax: float :param net_tax_amount: :type net_tax_amount: float :param quantity: :type quantity: float :param sequence: :type sequence: int :param shipment_date: :type shipment_date: ~datetime.date :param shipped_quantity: :type shipped_quantity: float :param ship_quantity: :type ship_quantity: float :param tax_code: :type tax_code: str :param tax_percent: :type tax_percent: float :param total_tax_amount: :type total_tax_amount: float :param unit_of_measure_id: :type unit_of_measure_id: str :param unit_price: :type unit_price: float :param account: account. :type account: ~financials.models.MicrosoftGraphAccount :param item: item. :type item: ~financials.models.MicrosoftGraphItem """ _validation = { 'sequence': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'account_id': {'key': 'accountId', 'type': 'str'}, 'amount_excluding_tax': {'key': 'amountExcludingTax', 'type': 'float'}, 'amount_including_tax': {'key': 'amountIncludingTax', 'type': 'float'}, 'description': {'key': 'description', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'discount_percent': {'key': 'discountPercent', 'type': 'float'}, 'document_id': {'key': 'documentId', 'type': 'str'}, 'invoice_discount_allocation': {'key': 'invoiceDiscountAllocation', 'type': 'float'}, 'invoiced_quantity': {'key': 'invoicedQuantity', 'type': 'float'}, 'invoice_quantity': {'key': 'invoiceQuantity', 'type': 'float'}, 'item_id': {'key': 'itemId', 'type': 'str'}, 'line_type': {'key': 'lineType', 'type': 'str'}, 'net_amount': {'key': 'netAmount', 'type': 'float'}, 'net_amount_including_tax': {'key': 'netAmountIncludingTax', 'type': 'float'}, 'net_tax_amount': {'key': 'netTaxAmount', 'type': 'float'}, 'quantity': {'key': 'quantity', 'type': 'float'}, 'sequence': {'key': 'sequence', 'type': 'int'}, 'shipment_date': {'key': 'shipmentDate', 'type': 'date'}, 'shipped_quantity': {'key': 'shippedQuantity', 'type': 'float'}, 'ship_quantity': {'key': 'shipQuantity', 'type': 'float'}, 'tax_code': {'key': 'taxCode', 'type': 'str'}, 'tax_percent': {'key': 'taxPercent', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'unit_of_measure_id': {'key': 'unitOfMeasureId', 'type': 'str'}, 'unit_price': {'key': 'unitPrice', 'type': 'float'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, 'item': {'key': 'item', 'type': 'MicrosoftGraphItem'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesOrderLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.account_id = kwargs.get('account_id', None) self.amount_excluding_tax = kwargs.get('amount_excluding_tax', None) self.amount_including_tax = kwargs.get('amount_including_tax', None) self.description = kwargs.get('description', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.discount_percent = kwargs.get('discount_percent', None) self.document_id = kwargs.get('document_id', None) self.invoice_discount_allocation = kwargs.get('invoice_discount_allocation', None) self.invoiced_quantity = kwargs.get('invoiced_quantity', None) self.invoice_quantity = kwargs.get('invoice_quantity', None) self.item_id = kwargs.get('item_id', None) self.line_type = kwargs.get('line_type', None) self.net_amount = kwargs.get('net_amount', None) self.net_amount_including_tax = kwargs.get('net_amount_including_tax', None) self.net_tax_amount = kwargs.get('net_tax_amount', None) self.quantity = kwargs.get('quantity', None) self.sequence = kwargs.get('sequence', None) self.shipment_date = kwargs.get('shipment_date', None) self.shipped_quantity = kwargs.get('shipped_quantity', None) self.ship_quantity = kwargs.get('ship_quantity', None) self.tax_code = kwargs.get('tax_code', None) self.tax_percent = kwargs.get('tax_percent', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.unit_of_measure_id = kwargs.get('unit_of_measure_id', None) self.unit_price = kwargs.get('unit_price', None) self.account = kwargs.get('account', None) self.item = kwargs.get('item', None) class MicrosoftGraphSalesQuote(MicrosoftGraphEntity): """salesQuote. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param accepted_date: :type accepted_date: ~datetime.date :param billing_postal_address: postalAddressType. :type billing_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param bill_to_customer_id: :type bill_to_customer_id: str :param bill_to_customer_number: :type bill_to_customer_number: str :param bill_to_name: :type bill_to_name: str :param currency_code: :type currency_code: str :param currency_id: :type currency_id: str :param customer_id: :type customer_id: str :param customer_name: :type customer_name: str :param customer_number: :type customer_number: str :param discount_amount: :type discount_amount: float :param document_date: :type document_date: ~datetime.date :param due_date: :type due_date: ~datetime.date :param email: :type email: str :param external_document_number: :type external_document_number: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param payment_terms_id: :type payment_terms_id: str :param phone_number: :type phone_number: str :param salesperson: :type salesperson: str :param selling_postal_address: postalAddressType. :type selling_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param sent_date: :type sent_date: ~datetime.datetime :param shipment_method_id: :type shipment_method_id: str :param shipping_postal_address: postalAddressType. :type shipping_postal_address: ~financials.models.MicrosoftGraphPostalAddressType :param ship_to_contact: :type ship_to_contact: str :param ship_to_name: :type ship_to_name: str :param status: :type status: str :param total_amount_excluding_tax: :type total_amount_excluding_tax: float :param total_amount_including_tax: :type total_amount_including_tax: float :param total_tax_amount: :type total_tax_amount: float :param valid_until_date: :type valid_until_date: ~datetime.date :param currency: currency. :type currency: ~financials.models.MicrosoftGraphCurrency :param customer: customer. :type customer: ~financials.models.MicrosoftGraphCustomer :param payment_term: paymentTerm. :type payment_term: ~financials.models.MicrosoftGraphPaymentTerm :param sales_quote_lines: :type sales_quote_lines: list[~financials.models.MicrosoftGraphSalesQuoteLine] :param shipment_method: shipmentMethod. :type shipment_method: ~financials.models.MicrosoftGraphShipmentMethod """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'accepted_date': {'key': 'acceptedDate', 'type': 'date'}, 'billing_postal_address': {'key': 'billingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'bill_to_customer_id': {'key': 'billToCustomerId', 'type': 'str'}, 'bill_to_customer_number': {'key': 'billToCustomerNumber', 'type': 'str'}, 'bill_to_name': {'key': 'billToName', 'type': 'str'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'currency_id': {'key': 'currencyId', 'type': 'str'}, 'customer_id': {'key': 'customerId', 'type': 'str'}, 'customer_name': {'key': 'customerName', 'type': 'str'}, 'customer_number': {'key': 'customerNumber', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'document_date': {'key': 'documentDate', 'type': 'date'}, 'due_date': {'key': 'dueDate', 'type': 'date'}, 'email': {'key': 'email', 'type': 'str'}, 'external_document_number': {'key': 'externalDocumentNumber', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'payment_terms_id': {'key': 'paymentTermsId', 'type': 'str'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'salesperson': {'key': 'salesperson', 'type': 'str'}, 'selling_postal_address': {'key': 'sellingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'sent_date': {'key': 'sentDate', 'type': 'iso-8601'}, 'shipment_method_id': {'key': 'shipmentMethodId', 'type': 'str'}, 'shipping_postal_address': {'key': 'shippingPostalAddress', 'type': 'MicrosoftGraphPostalAddressType'}, 'ship_to_contact': {'key': 'shipToContact', 'type': 'str'}, 'ship_to_name': {'key': 'shipToName', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'total_amount_excluding_tax': {'key': 'totalAmountExcludingTax', 'type': 'float'}, 'total_amount_including_tax': {'key': 'totalAmountIncludingTax', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'valid_until_date': {'key': 'validUntilDate', 'type': 'date'}, 'currency': {'key': 'currency', 'type': 'MicrosoftGraphCurrency'}, 'customer': {'key': 'customer', 'type': 'MicrosoftGraphCustomer'}, 'payment_term': {'key': 'paymentTerm', 'type': 'MicrosoftGraphPaymentTerm'}, 'sales_quote_lines': {'key': 'salesQuoteLines', 'type': '[MicrosoftGraphSalesQuoteLine]'}, 'shipment_method': {'key': 'shipmentMethod', 'type': 'MicrosoftGraphShipmentMethod'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesQuote, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.accepted_date = kwargs.get('accepted_date', None) self.billing_postal_address = kwargs.get('billing_postal_address', None) self.bill_to_customer_id = kwargs.get('bill_to_customer_id', None) self.bill_to_customer_number = kwargs.get('bill_to_customer_number', None) self.bill_to_name = kwargs.get('bill_to_name', None) self.currency_code = kwargs.get('currency_code', None) self.currency_id = kwargs.get('currency_id', None) self.customer_id = kwargs.get('customer_id', None) self.customer_name = kwargs.get('customer_name', None) self.customer_number = kwargs.get('customer_number', None) self.discount_amount = kwargs.get('discount_amount', None) self.document_date = kwargs.get('document_date', None) self.due_date = kwargs.get('due_date', None) self.email = kwargs.get('email', None) self.external_document_number = kwargs.get('external_document_number', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.payment_terms_id = kwargs.get('payment_terms_id', None) self.phone_number = kwargs.get('phone_number', None) self.salesperson = kwargs.get('salesperson', None) self.selling_postal_address = kwargs.get('selling_postal_address', None) self.sent_date = kwargs.get('sent_date', None) self.shipment_method_id = kwargs.get('shipment_method_id', None) self.shipping_postal_address = kwargs.get('shipping_postal_address', None) self.ship_to_contact = kwargs.get('ship_to_contact', None) self.ship_to_name = kwargs.get('ship_to_name', None) self.status = kwargs.get('status', None) self.total_amount_excluding_tax = kwargs.get('total_amount_excluding_tax', None) self.total_amount_including_tax = kwargs.get('total_amount_including_tax', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.valid_until_date = kwargs.get('valid_until_date', None) self.currency = kwargs.get('currency', None) self.customer = kwargs.get('customer', None) self.payment_term = kwargs.get('payment_term', None) self.sales_quote_lines = kwargs.get('sales_quote_lines', None) self.shipment_method = kwargs.get('shipment_method', None) class MicrosoftGraphSalesQuoteLine(MicrosoftGraphEntity): """salesQuoteLine. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param account_id: :type account_id: str :param amount_excluding_tax: :type amount_excluding_tax: float :param amount_including_tax: :type amount_including_tax: float :param description: :type description: str :param discount_amount: :type discount_amount: float :param discount_applied_before_tax: :type discount_applied_before_tax: bool :param discount_percent: :type discount_percent: float :param document_id: :type document_id: str :param item_id: :type item_id: str :param line_type: :type line_type: str :param net_amount: :type net_amount: float :param net_amount_including_tax: :type net_amount_including_tax: float :param net_tax_amount: :type net_tax_amount: float :param quantity: :type quantity: float :param sequence: :type sequence: int :param tax_code: :type tax_code: str :param tax_percent: :type tax_percent: float :param total_tax_amount: :type total_tax_amount: float :param unit_of_measure_id: :type unit_of_measure_id: str :param unit_price: :type unit_price: float :param account: account. :type account: ~financials.models.MicrosoftGraphAccount :param item: item. :type item: ~financials.models.MicrosoftGraphItem """ _validation = { 'sequence': {'maximum': 2147483647, 'minimum': -2147483648}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'account_id': {'key': 'accountId', 'type': 'str'}, 'amount_excluding_tax': {'key': 'amountExcludingTax', 'type': 'float'}, 'amount_including_tax': {'key': 'amountIncludingTax', 'type': 'float'}, 'description': {'key': 'description', 'type': 'str'}, 'discount_amount': {'key': 'discountAmount', 'type': 'float'}, 'discount_applied_before_tax': {'key': 'discountAppliedBeforeTax', 'type': 'bool'}, 'discount_percent': {'key': 'discountPercent', 'type': 'float'}, 'document_id': {'key': 'documentId', 'type': 'str'}, 'item_id': {'key': 'itemId', 'type': 'str'}, 'line_type': {'key': 'lineType', 'type': 'str'}, 'net_amount': {'key': 'netAmount', 'type': 'float'}, 'net_amount_including_tax': {'key': 'netAmountIncludingTax', 'type': 'float'}, 'net_tax_amount': {'key': 'netTaxAmount', 'type': 'float'}, 'quantity': {'key': 'quantity', 'type': 'float'}, 'sequence': {'key': 'sequence', 'type': 'int'}, 'tax_code': {'key': 'taxCode', 'type': 'str'}, 'tax_percent': {'key': 'taxPercent', 'type': 'float'}, 'total_tax_amount': {'key': 'totalTaxAmount', 'type': 'float'}, 'unit_of_measure_id': {'key': 'unitOfMeasureId', 'type': 'str'}, 'unit_price': {'key': 'unitPrice', 'type': 'float'}, 'account': {'key': 'account', 'type': 'MicrosoftGraphAccount'}, 'item': {'key': 'item', 'type': 'MicrosoftGraphItem'}, } def __init__( self, **kwargs ): super(MicrosoftGraphSalesQuoteLine, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.account_id = kwargs.get('account_id', None) self.amount_excluding_tax = kwargs.get('amount_excluding_tax', None) self.amount_including_tax = kwargs.get('amount_including_tax', None) self.description = kwargs.get('description', None) self.discount_amount = kwargs.get('discount_amount', None) self.discount_applied_before_tax = kwargs.get('discount_applied_before_tax', None) self.discount_percent = kwargs.get('discount_percent', None) self.document_id = kwargs.get('document_id', None) self.item_id = kwargs.get('item_id', None) self.line_type = kwargs.get('line_type', None) self.net_amount = kwargs.get('net_amount', None) self.net_amount_including_tax = kwargs.get('net_amount_including_tax', None) self.net_tax_amount = kwargs.get('net_tax_amount', None) self.quantity = kwargs.get('quantity', None) self.sequence = kwargs.get('sequence', None) self.tax_code = kwargs.get('tax_code', None) self.tax_percent = kwargs.get('tax_percent', None) self.total_tax_amount = kwargs.get('total_tax_amount', None) self.unit_of_measure_id = kwargs.get('unit_of_measure_id', None) self.unit_price = kwargs.get('unit_price', None) self.account = kwargs.get('account', None) self.item = kwargs.get('item', None) class MicrosoftGraphShipmentMethod(MicrosoftGraphEntity): """shipmentMethod. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(MicrosoftGraphShipmentMethod, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) class MicrosoftGraphTaxArea(MicrosoftGraphEntity): """taxArea. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param tax_type: :type tax_type: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'tax_type': {'key': 'taxType', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphTaxArea, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.tax_type = kwargs.get('tax_type', None) class MicrosoftGraphTaxGroup(MicrosoftGraphEntity): """taxGroup. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param tax_type: :type tax_type: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'tax_type': {'key': 'taxType', 'type': 'str'}, } def __init__( self, **kwargs ): super(MicrosoftGraphTaxGroup, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.tax_type = kwargs.get('tax_type', None) class MicrosoftGraphUnitOfMeasure(MicrosoftGraphEntity): """unitOfMeasure. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: :type code: str :param display_name: :type display_name: str :param international_standard_code: :type international_standard_code: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'international_standard_code': {'key': 'internationalStandardCode', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(MicrosoftGraphUnitOfMeasure, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs.get('code', None) self.display_name = kwargs.get('display_name', None) self.international_standard_code = kwargs.get('international_standard_code', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) class MicrosoftGraphVendor(MicrosoftGraphEntity): """vendor. :param id: Read-only. :type id: str :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param address: postalAddressType. :type address: ~financials.models.MicrosoftGraphPostalAddressType :param balance: :type balance: float :param blocked: :type blocked: str :param currency_code: :type currency_code: str :param currency_id: :type currency_id: str :param display_name: :type display_name: str :param email: :type email: str :param last_modified_date_time: :type last_modified_date_time: ~datetime.datetime :param number: :type number: str :param payment_method_id: :type payment_method_id: str :param payment_terms_id: :type payment_terms_id: str :param phone_number: :type phone_number: str :param tax_liable: :type tax_liable: bool :param tax_registration_number: :type tax_registration_number: str :param website: :type website: str :param currency: currency. :type currency: ~financials.models.MicrosoftGraphCurrency :param payment_method: paymentMethod. :type payment_method: ~financials.models.MicrosoftGraphPaymentMethod :param payment_term: paymentTerm. :type payment_term: ~financials.models.MicrosoftGraphPaymentTerm :param picture: :type picture: list[~financials.models.MicrosoftGraphPicture] """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'additional_properties': {'key': '', 'type': '{object}'}, 'address': {'key': 'address', 'type': 'MicrosoftGraphPostalAddressType'}, 'balance': {'key': 'balance', 'type': 'float'}, 'blocked': {'key': 'blocked', 'type': 'str'}, 'currency_code': {'key': 'currencyCode', 'type': 'str'}, 'currency_id': {'key': 'currencyId', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'email': {'key': 'email', 'type': 'str'}, 'last_modified_date_time': {'key': 'lastModifiedDateTime', 'type': 'iso-8601'}, 'number': {'key': 'number', 'type': 'str'}, 'payment_method_id': {'key': 'paymentMethodId', 'type': 'str'}, 'payment_terms_id': {'key': 'paymentTermsId', 'type': 'str'}, 'phone_number': {'key': 'phoneNumber', 'type': 'str'}, 'tax_liable': {'key': 'taxLiable', 'type': 'bool'}, 'tax_registration_number': {'key': 'taxRegistrationNumber', 'type': 'str'}, 'website': {'key': 'website', 'type': 'str'}, 'currency': {'key': 'currency', 'type': 'MicrosoftGraphCurrency'}, 'payment_method': {'key': 'paymentMethod', 'type': 'MicrosoftGraphPaymentMethod'}, 'payment_term': {'key': 'paymentTerm', 'type': 'MicrosoftGraphPaymentTerm'}, 'picture': {'key': 'picture', 'type': '[MicrosoftGraphPicture]'}, } def __init__( self, **kwargs ): super(MicrosoftGraphVendor, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.address = kwargs.get('address', None) self.balance = kwargs.get('balance', None) self.blocked = kwargs.get('blocked', None) self.currency_code = kwargs.get('currency_code', None) self.currency_id = kwargs.get('currency_id', None) self.display_name = kwargs.get('display_name', None) self.email = kwargs.get('email', None) self.last_modified_date_time = kwargs.get('last_modified_date_time', None) self.number = kwargs.get('number', None) self.payment_method_id = kwargs.get('payment_method_id', None) self.payment_terms_id = kwargs.get('payment_terms_id', None) self.phone_number = kwargs.get('phone_number', None) self.tax_liable = kwargs.get('tax_liable', None) self.tax_registration_number = kwargs.get('tax_registration_number', None) self.website = kwargs.get('website', None) self.currency = kwargs.get('currency', None) self.payment_method = kwargs.get('payment_method', None) self.payment_term = kwargs.get('payment_term', None) self.picture = kwargs.get('picture', None) class OdataError(msrest.serialization.Model): """OdataError. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param error: Required. :type error: ~financials.models.OdataErrorMain """ _validation = { 'error': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'error': {'key': 'error', 'type': 'OdataErrorMain'}, } def __init__( self, **kwargs ): super(OdataError, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.error = kwargs['error'] class OdataErrorDetail(msrest.serialization.Model): """OdataErrorDetail. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: Required. :type code: str :param message: Required. :type message: str :param target: :type target: str """ _validation = { 'code': {'required': True}, 'message': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, } def __init__( self, **kwargs ): super(OdataErrorDetail, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs['code'] self.message = kwargs['message'] self.target = kwargs.get('target', None) class OdataErrorMain(msrest.serialization.Model): """OdataErrorMain. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, object] :param code: Required. :type code: str :param message: Required. :type message: str :param target: :type target: str :param details: :type details: list[~financials.models.OdataErrorDetail] :param innererror: The structure of this object is service-specific. :type innererror: dict[str, object] """ _validation = { 'code': {'required': True}, 'message': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[OdataErrorDetail]'}, 'innererror': {'key': 'innererror', 'type': '{object}'}, } def __init__( self, **kwargs ): super(OdataErrorMain, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.code = kwargs['code'] self.message = kwargs['message'] self.target = kwargs.get('target', None) self.details = kwargs.get('details', None) self.innererror = kwargs.get('innererror', None)
40.523444
122
0.657973
9872875f0a5646f5b4b10ff772ce86f3387e1b48
1,487
py
Python
bottomline/blweb/migrations/0014_auto_20210801_1041.py
mcm219/BottomLine
db82eef403c79bffa3864c4db6bc336632abaca5
[ "MIT" ]
null
null
null
bottomline/blweb/migrations/0014_auto_20210801_1041.py
mcm219/BottomLine
db82eef403c79bffa3864c4db6bc336632abaca5
[ "MIT" ]
1
2021-06-14T02:20:40.000Z
2021-06-14T02:20:40.000Z
bottomline/blweb/migrations/0014_auto_20210801_1041.py
mcm219/BottomLine
db82eef403c79bffa3864c4db6bc336632abaca5
[ "MIT" ]
null
null
null
# Generated by Django 3.2.2 on 2021-08-01 14:41 from django.db import migrations, models import django.db.models.deletion import localflavor.us.models class Migration(migrations.Migration): dependencies = [ ('blweb', '0013_vehiclemodel_price'), ] operations = [ migrations.CreateModel( name='Address', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('street', models.CharField(help_text='The street address e.g. 123 Main St.', max_length=200)), ('zip_code', localflavor.us.models.USZipCodeField(help_text='The address Zip Code', max_length=10)), ('state', localflavor.us.models.USStateField(help_text='The address state e.g. PA', max_length=2)), ], ), migrations.AddField( model_name='profile', name='dealer_make', field=models.ForeignKey(blank=True, default=None, help_text='The vehicle make associated with this dealer', null=True, on_delete=django.db.models.deletion.CASCADE, to='blweb.vehiclemake'), ), migrations.AddField( model_name='profile', name='address', field=models.ForeignKey(blank=True, default=None, help_text='The US mailing address associated with this account (optional)', null=True, on_delete=django.db.models.deletion.CASCADE, to='blweb.address'), ), ]
42.485714
214
0.642233
9cac18c28843e38f98de5b660b74ef30f236c707
1,483
py
Python
show_hit_progress.py
lwj5/simple-amt
9af304f2dda3da818158c21554ede4f9fae0a89d
[ "MIT" ]
null
null
null
show_hit_progress.py
lwj5/simple-amt
9af304f2dda3da818158c21554ede4f9fae0a89d
[ "MIT" ]
null
null
null
show_hit_progress.py
lwj5/simple-amt
9af304f2dda3da818158c21554ede4f9fae0a89d
[ "MIT" ]
null
null
null
import argparse from collections import Counter import simpleamt if __name__ == "__main__": parser = argparse.ArgumentParser(parents=[simpleamt.get_parent_parser()]) args = parser.parse_args() mtc = simpleamt.get_mturk_connection_from_args(args) if args.hit_ids_file is None: parser.error("Must specify hit_ids_file") with open(args.hit_ids_file, "r") as f: hit_ids = [line.strip() for line in f] counter = Counter() for idx, hit_id in enumerate(hit_ids): print("Checking HIT {} ({}/{})".format(hit_id, idx + 1, len(hit_ids))) try: hit = mtc.get_hit(HITId=hit_id)["HIT"] except Exception as e: print("Can't find hit id: %s" % (hit_id)) print(e) continue total = int(hit["MaxAssignments"]) completed = 0 paginator = mtc.get_paginator("list_assignments_for_hit") for a_page in paginator.paginate( HITId=hit_id, PaginationConfig={"PageSize": 100} ): for a in a_page["Assignments"]: if a["AssignmentStatus"] in [ "Submitted", "Approved", "Rejected", ]: completed += 1 print("Completed {}/{}".format(completed, total)) counter.update([(completed, total)]) for (completed, total), count in counter.most_common(): print("%d / %d: %d" % (completed, total, count))
32.955556
78
0.570465
013276f989e61e727520bee99b95f211af35cfe6
394
py
Python
sdk/eventhub/azure-mgmt-eventhub/azure/mgmt/eventhub/models.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/eventhub/azure-mgmt-eventhub/azure/mgmt/eventhub/models.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/eventhub/azure-mgmt-eventhub/azure/mgmt/eventhub/models.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from .v2017_04_01.models import * from .v2021_11_01.models import *
43.777778
76
0.474619
5473b109f4d8004bc0b2a03199414788d9e81138
2,598
py
Python
epimargin/smoothing.py
dilawar/epimargin
0261117cb29dd233600d8f0410d79c93ba261fd3
[ "MIT" ]
6
2021-06-19T14:01:10.000Z
2021-12-31T23:49:34.000Z
epimargin/smoothing.py
dilawar/epimargin
0261117cb29dd233600d8f0410d79c93ba261fd3
[ "MIT" ]
34
2020-04-26T05:50:39.000Z
2020-06-17T14:02:32.000Z
epimargin/smoothing.py
dilawar/epimargin
0261117cb29dd233600d8f0410d79c93ba261fd3
[ "MIT" ]
5
2021-05-26T16:35:15.000Z
2021-09-10T02:20:34.000Z
from typing import Optional, Sequence import numpy as np from scipy.signal import convolve, filtfilt, iirnotch from statsmodels.nonparametric.smoothers_lowess import lowess as sm_lowess # supported kernels for convolution smoothing kernels = { "hanning" : np.hanning, "hamming" : np.hamming, "bartlett" : np.bartlett, "blackman" : np.blackman, "uniform" : np.ones } def notched_smoothing(window: int = 7): """ Removes weekly and twice-weekly periodicity before convolving a time-reversed padded signal with a uniform moving average window""" fs, f0, Q = 1, 1/7, 1 b1, a1 = iirnotch(f0, Q, fs) b2, a2 = iirnotch(2*f0, 2*Q, fs) # Frequency response b = convolve(b1, b2) a = convolve(a1, a2) kernel = np.ones(window)/window def smooth(data: Sequence[float]): notched = filtfilt(b, a, data) return convolve(np.concatenate([notched, notched[:-window-1:-1]]), kernel, mode="same")[:-window] return smooth def notch_filter(): """ implements a notch filter with notches at 1/week and 2/week; assuming input signal sampling rate is 1/week""" fs, f0, Q = 1, 1/7, 1 b1, a1 = iirnotch(f0, Q, fs) b2, a2 = iirnotch(2*f0, 2*Q, fs) # Frequency response b = convolve(b1, b2) a = convolve(a1, a2) def filter_(data: Sequence[float]): return filtfilt(b, a, data) return filter_ def convolution(key: str = "hamming", window: int = 7): """ entry point for all convolution operations """ kernel = kernels[key](window) def smooth(data: Sequence[float]): # pad the data with time reversal windows of signal at ends since all kernels here are apodizing padded = np.r_[data[window-1:0:-1], data, data[-2:-window-1:-1]] return np.convolve(kernel/kernel.sum(), padded, mode="valid")[:-window+1] return smooth def box_filter_local(window: int = 5, local_smoothing: Optional[int] = 3): """ implement a box filter smoother with additional LOWESS-like smoothing for data points at the end of the timeseries""" def smooth(data: Sequence[float]): smoothed = np.convolve(data, np.ones(window)/window, mode='same') if local_smoothing and len(data) > (local_smoothing + 1): for i in range(local_smoothing-1, 0, -1): smoothed[-i] = np.mean(data[-i-local_smoothing+1: -i+1 if i > 1 else None]) return smoothed return smooth def lowess(**kwargs): """ wrapper over statsmodels lowess implementation to return a callable """ return lambda data: sm_lowess(data, list(range(len(data))), **kwargs)
40.59375
139
0.661663
499aa282bc2ac7e50326970dd562407916ebda4d
7,928
py
Python
ck/repo/module/model.r/module.py
santosh653/ck
f09b836df48598aff4db241b52c37899a73eb569
[ "BSD-3-Clause" ]
480
2015-02-04T16:07:43.000Z
2021-08-17T13:47:53.000Z
ck/repo/module/model.r/module.py
santosh653/ck
f09b836df48598aff4db241b52c37899a73eb569
[ "BSD-3-Clause" ]
166
2015-02-05T16:03:52.000Z
2021-08-16T14:21:58.000Z
ck/repo/module/model.r/module.py
santosh653/ck
f09b836df48598aff4db241b52c37899a73eb569
[ "BSD-3-Clause" ]
62
2015-02-05T17:21:14.000Z
2021-09-05T10:24:53.000Z
# # Collective Knowledge (Unified modeling using R) # # See CK LICENSE.txt for licensing details # See CK COPYRIGHT.txt for copyright details # # Developer: Grigori Fursin # cfg={} # Will be updated by CK (meta description of this module) work={} # Will be updated by CK (temporal data) ck=None # Will be updated by CK (initialized CK kernel) # Local settings ############################################################################## # Initialize module def init(i): """ Input: {} Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ return {'return':0} ############################################################################## # build model def build(i): """ Input: { model_name - model name (model_file) - model output file, otherwise generated as tmp file features_table - features table (in experiment module format) features_keys - features flat keys characteristics_table - characteristics table (in experiment module format) characteristics_keys - characteristics flat keys (keep_temp_files) - if 'yes', keep temp files } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 model_input_file - temp input file (csv) - can be deleted if not keep_temp_files model_file - output model file } """ import tempfile import os o=i.get('out','') mn=i['model_name'] mf=i.get('model_file','') mf1=i['model_file']+'.r.obj' mf4=i['model_file']+'.r.ft.txt' ftable=i['features_table'] fkeys=i['features_keys'] ctable=i['characteristics_table'] ckeys=i['characteristics_keys'] lftable=len(ftable) lctable=len(ctable) # Enumerate features s='' fk=1 for fx in sorted(fkeys): # Needed to be sorted s+='V'+str(fk)+') '+fx s+='\n' fk+=1 if s!='': r=ck.save_text_file({'text_file':mf4, 'string':s}) if r['return']>0: return r if o=='con': ck.out('*******************************************************') ck.out('Feature key convertion:') ck.out('') ck.out(s) if lftable!=lctable: return {'return':1, 'error':'length of feature table ('+str(lftable)+') is not the same as length of characteristics table ('+str(lctable)+')'} # if len(ckeys)>1: # return {'return':1, 'error':'currently we support only modeling for 1 characteristic'} ktf=i.get('keep_temp_files','') # First convert to CSV for R *********************************** # Prepare common table from features and characteristics dim=[] for q in range(0, lftable): vv=[] for v in ftable[q]: vv.append(v) for v in ctable[q]: vv.append(v) dim.append(vv) # Prepare common keys keys=[] for q in fkeys: keys.append(q) for q in ckeys: keys.append(q) # Prepare temporary CSV file if ktf=='yes' and mf!='': fn1=mf+'.build.in.csv' else: fd1, fn1=tempfile.mkstemp(suffix='.tmp', prefix='ck-') os.close(fd1) os.remove(fn1) if ktf=='yes' and o=='con': ck.out('') ck.out(' Temporary CSV file = '+fn1) ck.out('') ii={'action':'convert_table_to_csv', 'module_uoa':cfg['module_deps']['experiment'], 'table':dim, 'keys':keys, 'file_name':fn1, 'csv_no_header':'yes', 'csv_separator':';', 'csv_decimal_mark':'.' } r=ck.access(ii) if r['return']>0: return r # Prepare (temporary) out model file fn2=mf if fn2=='' or i.get('web','')=='yes': fd2, fn2=tempfile.mkstemp(suffix='.tmp', prefix='ck-') os.close(fd2) os.remove(fn2) else: fn2=mf1 if os.path.isfile(fn2): os.remove(fn2) # Calling R p=work['path'] model_code=cfg['model_code_build'].replace('$#model_name#$',mn) pmc=os.path.join(p, model_code) cmd='R --vanilla --args '+fn1+' '+fn2+' < '+pmc os.system(cmd) if ktf=='yes' and o=='con': ck.out('') ck.out(' Executed command:') ck.out(cmd) ck.out('') if ktf!='yes' and os.path.isfile(fn1): os.remove(fn1) if not os.path.isfile(fn2): if ktf=='yes' and o=='con': ck.out('') ck.out(' Temporary input CSV file = '+fn1) ck.out('') return {'return':1, 'error':'model was not created'} return {'return':0, 'model_input_file':fn1, 'model_file':fn2} ############################################################################## # validate model def validate(i): """ Input: { model_name - model name: earth lm nnet party randomforest rpart svm model_file - file with model (object) code features_table - features table (in experiment module format) features_keys - features flat keys (keep_temp_files) - if 'yes', keep temp files } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 prediction_table - experiment table with predictions } """ import tempfile import os import csv import sys mn=i['model_name'] mf=i['model_file'] mf1=i['model_file']+'.r.obj' ftable=i['features_table'] fkeys=i['features_keys'] ktf=i.get('keep_temp_files','') lftable=len(ftable) # First convert to CSV for R *********************************** # Prepare temporary CSV file if ktf=='yes': fn1=mf+'.validate.in.csv' else: fd1, fn1=tempfile.mkstemp(suffix='.tmp', prefix='ck-') os.close(fd1) os.remove(fn1) ii={'action':'convert_table_to_csv', 'module_uoa':cfg['module_deps']['experiment'], 'table':ftable, 'keys':fkeys, 'file_name':fn1, 'csv_no_header':'yes', 'csv_separator':';', 'csv_decimal_mark':'.' } r=ck.access(ii) if r['return']>0: return r # Prepare temporary out file if ktf=='yes': fn2=mf+'.validate.out.csv' if os.path.isfile(fn2): os.remove(fn2) else: fd2, fn2=tempfile.mkstemp(suffix='.tmp', prefix='ck-') os.close(fd2) os.remove(fn2) # Calling R p=work['path'] model_code=cfg['model_code_predict'].replace('$#model_name#$',mn) pmc=os.path.join(p, model_code) cmd='R --vanilla --args '+mf1+' '+fn1+' '+fn2+' < '+pmc print (cmd) os.system(cmd) if ktf!='yes' and os.path.isfile(fn1): os.remove(fn1) if not os.path.isfile(fn2): return {'return':1, 'error':'output prediction file was not created'} # Parse CSV and convert to experiment format # Read predictions pr=[] f=open(fn2, 'r') c=csv.DictReader(f, delimiter=',') for a in c: k=list(a.keys()) if len(k)>0: pr.append([a[k[1]]]) f.close() if ktf!='yes': os.remove(fn2) return {'return':0, 'prediction_table':pr}
26.783784
150
0.489279
85aa8921074f7531d10fa6077c12e33c5d237543
5,445
py
Python
anchore_manager/cli/utils.py
roachmd/anchore-engine
521d6796778139a95f51542670714205c2735a81
[ "Apache-2.0" ]
null
null
null
anchore_manager/cli/utils.py
roachmd/anchore-engine
521d6796778139a95f51542670714205c2735a81
[ "Apache-2.0" ]
null
null
null
anchore_manager/cli/utils.py
roachmd/anchore-engine
521d6796778139a95f51542670714205c2735a81
[ "Apache-2.0" ]
null
null
null
import os import re import sys import copy import json import time import yaml import urllib import logging import dateutil.parser from prettytable import PrettyTable, PLAIN_COLUMNS from collections import OrderedDict #from textwrap import fill import anchore_engine.db.entities.common from anchore_engine.subsys import logger _logger = logging.getLogger(__name__) def setup_config(cli_opts): ret = { 'jsonmode':False, 'debug':False, 'configdir': '/config' } settings = {} # load environment if present try: for e in ['ANCHORE_CLI_JSON', 'ANCHORE_CLI_DEBUG', 'ANCHORE_CONFIG_DIR']: if e in os.environ: settings[e] = os.environ[e] except Exception as err: raise err # load cmdline options try: if cli_opts['json']: settings['ANCHORE_CLI_JSON'] = "y" if cli_opts['debug']: settings['ANCHORE_CLI_DEBUG'] = "y" if cli_opts['configdir']: settings['ANCHORE_CONFIG_DIR'] = cli_opts['configdir'] except Exception as err: raise err try: if 'ANCHORE_CLI_JSON' in settings: if settings['ANCHORE_CLI_JSON'].lower() == 'y': ret['jsonmode'] = True if 'ANCHORE_CLI_DEBUG' in settings: if settings['ANCHORE_CLI_DEBUG'].lower() == 'y': ret['debug'] = True if 'ANCHORE_CONFIG_DIR' in settings: ret['configdir'] = settings['ANCHORE_CONFIG_DIR'] except Exception as err: raise err return(ret) def format_error_output(config, op, params, payload): try: errdata = json.loads(str(payload)) except: errdata = {'message': str(payload)} if config['jsonmode']: ret = json.dumps(errdata, indent=4, sort_keys=True) return(ret) obuf = "" try: outdict = OrderedDict() if 'message' in errdata: outdict['Error'] = str(errdata['message']) if 'httpcode' in errdata: outdict['HTTP Code'] = str(errdata['httpcode']) if 'detail' in errdata and errdata['detail']: outdict['Detail'] = str(errdata['detail']) for k in outdict.keys(): obuf = obuf + k + ": " + outdict[k] + "\n" except Exception as err: obuf = str(payload) ret = obuf return(ret) def doexit(ecode): try: sys.stdout.close() except: pass try: sys.stderr.close() except: pass sys.exit(ecode) def make_db_params(db_connect=None, db_use_ssl=False, db_timeout=30, db_connect_timeout=120, db_pool_size=30, db_pool_max_overflow=100): db_connect_args = { 'timeout': db_timeout, 'ssl': db_use_ssl, 'connect_timeout': db_connect_timeout, } ret = { 'db_connect': db_connect, 'db_connect_args': db_connect_args, 'db_pool_size': db_pool_size, 'db_pool_max_overflow': db_pool_max_overflow, } return(ret) def connect_database(config, db_params, db_retries=1): logger.info("DB params: {}".format(json.dumps(db_params))) rc = anchore_engine.db.entities.common.do_connect(db_params) logger.info("DB connection configured: {}".format(str(rc))) db_connected = False last_db_connect_err = "" for i in range(0, int(db_retries)): logger.info("DB attempting to connect...") try: rc = anchore_engine.db.entities.common.test_connection() logger.info("DB connected: {}".format(str(rc))) db_connected = True break except Exception as err: last_db_connect_err = str(err) if db_retries > 1: logger.warn("DB connection failed, retrying - exception: {}".format(str(last_db_connect_err))) time.sleep(5) if not db_connected: raise Exception("DB connection failed - exception: " + str(last_db_connect_err)) def init_database(upgrade_module=None, localconfig=None, do_db_compatibility_check=False): code_versions = db_versions = None if upgrade_module: try: if do_db_compatibility_check and "do_db_compatibility_check" in dir(upgrade_module): logger.info("DB compatibility check: running...") upgrade_module.do_db_compatibility_check() logger.info("DB compatibility check success") else: logger.info("DB compatibility check: skipping...") except Exception as err: raise err try: code_versions, db_versions = upgrade_module.get_versions() if code_versions and not db_versions: logger.info("DB not initialized: initializing tables...") upgrade_module.do_create_tables() upgrade_module.do_db_bootstrap(localconfig=localconfig) upgrade_module.do_version_update(db_versions, code_versions) code_versions, db_versions = upgrade_module.get_versions() except Exception as err: raise err try: if localconfig and "do_db_post_actions" in dir(upgrade_module): logger.info("DB post actions: running...") upgrade_module.do_db_post_actions(localconfig=localconfig) except Exception as err: raise err return(code_versions, db_versions)
30.589888
136
0.612489
7668594c353183d7d86fa02f82c3baeb777acfb2
1,106
py
Python
madtornado/ancient/module/syncMemcached.py
SystemLight/madtornado
707ee156c33facd7050449f9fccef44f1c302b19
[ "MIT" ]
8
2020-04-12T13:53:13.000Z
2022-01-11T15:31:31.000Z
madtornado/ancient/module/syncMemcached.py
SystemLight/Mad_tornado3
707ee156c33facd7050449f9fccef44f1c302b19
[ "MIT" ]
null
null
null
madtornado/ancient/module/syncMemcached.py
SystemLight/Mad_tornado3
707ee156c33facd7050449f9fccef44f1c302b19
[ "MIT" ]
null
null
null
from ..conf import parser import memcache import json option = parser.options("cache") print("[syncMemcached] is imported.") class Component: def __init__(self): self.memcachedClient = None self.over_time = option["over_time"] self.server_list = json.loads(option["server_list"]) def __enter__(self): self.on() return self def __exit__(self, exc_type, exc_val, exc_tb): self.off() def __getitem__(self, item): return self.memcachedClient.get(item) def __setitem__(self, key, value): return self.memcachedClient.set(key, value, self.over_time) def __delitem__(self, key): return self.memcachedClient.delete(key) def on(self) -> None: self.memcachedClient = memcache.Client(self.server_list, debug=False) def off(self) -> None: if self.memcachedClient: self.memcachedClient.disconnect_all() self.memcachedClient = None def spe_set(self, key: str, value: str, over_time: int) -> int: return self.memcachedClient.set(key, value, over_time)
25.136364
77
0.65642
e9859a7024632033cf3b04e15f2e07da44c6d801
12,971
py
Python
model.py
dastratakos/CS-221-Final-Project
18849d547c939c5470bb80fcc76842a7e1d42577
[ "Apache-2.0" ]
1
2021-05-07T10:03:46.000Z
2021-05-07T10:03:46.000Z
model.py
dastratakos/Optimized-Task-Scheduling
18849d547c939c5470bb80fcc76842a7e1d42577
[ "Apache-2.0" ]
null
null
null
model.py
dastratakos/Optimized-Task-Scheduling
18849d547c939c5470bb80fcc76842a7e1d42577
[ "Apache-2.0" ]
null
null
null
''' file: model.py authors: Kento Perera, Timothy Sah, and Dean Stratakos date: December 1, 2019 ---------- This file contains our implementations of Value Iteration and Q-learning for our CS 221 Project. We borrowed code structure from blackjack/submission.py ''' import util, math, random, csv, timeit from collections import defaultdict from util import ValueIteration from itertools import combinations ''' class: RacquetsMDP ---------- Defines the MDP for the racquet stringing problem. ''' class RacquetsMDP(util.MDP): ''' function: __init__ ---------- Constructor for the RacquetsMDP class. numRacquets: number of racquets that can be string in a day file: a string that is the name of the CSV data file numDays: number of days to consider data: tuple of racquet job request data separated by day ''' def __init__(self, numRacquets, file, numDays): self.numRacquets = numRacquets self.data = self.readFile(file) self.numDays = min(numDays, len(self.data)) ''' function: readFile ---------- Parses an input CSV file and stores the contents in self.data file: a string that is the name of the CSV data file returns data, which is a tuple of lists; day[i] is a list representing the racquet requests for day i + 1 as a list of tuples; day[i][j] is a tuple representing the (j + 1)th racquet request on day i + 1 ''' def readFile(self, file): f = open(file, 'r') # to read the file fileReader = csv.reader(f) data = [] day = [] currDate = 0 for lineNum, row in enumerate(fileReader): daysUntilDue = (1 * (row[2] == 'Exp')) + (3 * (row[2] == 'Std')) reqType = row[2] # to build request string if row[1] == 'True': reqType += 'SMT' # to build request string else: reqType += 'Reg' # to build request string if lineNum == 0: continue elif lineNum == 1: day.append((reqType, daysUntilDue)) currDate = row[3] else: if row[3] == currDate: day.append((reqType, daysUntilDue)) else: data.append(day) day = [] day.append((reqType, daysUntilDue)) currDate = row[3] data.append(day) print(data) return data ''' function: startState ---------- The start state contains a tuple of the racquets at the start of Day 1 and an integer indicating that the state is at the start of Day 1. ''' def startState(self): return ((tuple(self.data[0]), 1)) ''' function: actions ---------- Return a list of lists representing actions possible from |state|. One action is a list of racquets that represent picking any self.numRacquets (or fewer) racquets to string for the current day. ''' def actions(self, state): if state == (): return [0] if len(state[0]) < self.numRacquets: # all racquets can be strung for that day return [state[0]] # return list of all racquets # otherwise, there are more racquets to string that can be strung for that day return set(combinations(state[0], self.numRacquets)) ''' function: succAndProbReward ---------- Given a |state| and |action|, returns a list of (newState, prob, reward) tuples corresponding to the states reachable from |state| when taking |action|. If |state| is an end state, returns an empty list []. ''' def succAndProbReward(self, state, action, bounded=True, bound=7): # end state when we have processed the last day if state[1] == self.numDays + 1: return [] racquets = list(state[0]) # remove racquets based on the action and compute reward of stringing those racquets for racquet in action: racquets.remove(racquet) # decrement days until due for remaining racquets for i in range(len(racquets)): racquet = racquets[i] racquets[i] = (racquet[0], racquet[1] - 1) # add new racquets for next day if state[1] <= len(self.data) - 1: for racquet in self.data[state[1]]: # sets upper bound if too many requests built up if bounded and len(racquets) >= self.numRacquets + bound: break racquets.append(racquet) racquets.sort(key = lambda x: x[0] + str(x[1])) # compute reward in $ # $20 penalty if racquet will be overdue # $10 penalty if racquet will be overdue in following day # if requests are same type, then break the tie by assigning slightly higher reward for stringing the older one reward = 0 for racquet in action: if racquet[0] == 'SpdReg': reward += 40 elif racquet[0] == 'ExpReg': reward += (30 + (1 - racquet[1]) * .01) elif racquet[0] == 'StdReg': reward += (20 + (3 - racquet[1]) * .01) elif racquet[0] == 'SpdSMT': reward += 18 elif racquet[0] == 'ExpSMT': reward += (18 + (1 - racquet[1]) * .01) elif racquet[0] == 'StdSMT': reward += (18 + (3 - racquet[1])*.01) # penalize unstrung racquets if they are overdue today or tomorrow for racquet in racquets: if (racquet[1] < 0): reward += (20 * racquet[1]) if (racquet[1] - 1 < 0): reward += (10 * racquet[1] - 1) return [((tuple(racquets), state[1] + 1), 1, reward)] ''' function: discount ---------- Sets the discount factor. ''' def discount(self): return 1.0 ''' function: identityFeatureExtractor ---------- Returns a single-element list containing a binary (indicator) feature for the existence of the (racquets, action) pair. Provides no generalization. ''' def identityFeatureExtractor(state, action): featureKey = (tuple(state[0]), action) featureValue = 1 return featureKey, featureValue ''' class: QLearningAlgorithm ---------- Defines the Q-learning algorithm. More information in util.RLAlgorithm. ''' class QLearningAlgorithm(util.RLAlgorithm): ''' function: __init__ ---------- Construtor for QLearningAlgorithm. actions: a function that takes a state and returns a list of actions. discount: a number between 0 and 1, which determines the discount factor featureExtractor: a function that takes a state and action and returns a list of (feature name, feature value) pairs. explorationProb: the epsilon value indicating how frequently the policy returns a random action ''' # def __init__(self, actions, discount, featureExtractor=identityFeatureExtractor, explorationProb=0.2): def __init__(self, actions, discount, featureExtractor=identityFeatureExtractor, explorationProb=0.2): self.actions = actions self.discount = discount self.featureExtractor = featureExtractor self.explorationProb = explorationProb self.weights = defaultdict(float) self.numIters = 0 self.qStarActions = defaultdict(list) ''' function: getQ ---------- Returns the Q function associated with the weights and features ''' def getQ(self, state, action): score = 0.0 f, v = self.featureExtractor(state, action) score += self.weights[tuple(f)] * v return score ''' function: getAction ---------- This algorithm will produce an action given a state. Here we use the epsilon-greedy algorithm: with probability |explorationProb|, take a random action. ''' def getAction(self, state): self.numIters += 1 if random.random() < self.explorationProb: return random.choice(list(self.actions(state))) else: return max((self.getQ(state, action), action) for action in self.actions(state))[1] ''' function: getStepSize ---------- Returns the step size to update the weights. ''' def getStepSize(self): return 1.0 / math.sqrt(self.numIters) ''' function: incorporateFeedback ---------- This function is called by util.py with (s, a, r, s'), which is used to update |weights|. ''' def incorporateFeedback(self, state, action, reward, newState): target = reward if newState is not None: qOpt = [self.getQ(newState, action) for action in self.actions(newState)] target += self.discount * max(qOpt) prediction = self.getQ(state, action) name, value = self.featureExtractor(state, action) self.weights[name] -= self.getStepSize() * (prediction - target) * value ''' function: updateExplorationProb ---------- This function is called by util.py with the current trial number and the total trials, which is used to update the exploration probability (epsilon). ''' def updateExplorationProb(self, trialNum, totalTrials): # return # Uncomment this for constant exploration probability self.explorationProb -= self.explorationProb/(totalTrials) * trialNum # Uncomment this for epsilon-decreasing exploration probability # self.explorationProb -= self.explorationProb/(totalTrials * 5) * trialNum # Another version of epsilon-decreasing exploration probability ''' function: testValueIteration ---------- Test function for Value Iteration. ''' def testValueIteration(mdp): valueIter = ValueIteration() # implemented in util.py valueIter.solve(mdp, .001) states = sorted(valueIter.pi, key=lambda x: len(x)) # sorted by state space print('valueIter.pi:') for elem in sorted(valueIter.pi): print(elem, '\t:\t', valueIter.pi[elem]) return valueIter ''' function: testQLearning ---------- Test function for Q-Learning. ''' def testQLearning(mdp, printPolicy=False): qLearn = QLearningAlgorithm(mdp.actions, mdp.discount()) rewards = util.simulate(mdp, qLearn, 500) print('-'*30, 'Data collection for bar graphs', '-'*30) print(' Dataset: data/training_data_TEST2.csv') print(' Epsilon: Decreasing, 0.2') print(' Episodes: 500') print(' ---Average reward: ', sum(rewards)/len(rewards)) print(' ---Max reward (converged value): ', max(rewards)) # for i in range(0,300,25): # print('Average reward, episodes %d - %d: %d' %(i, i+25, sum(rewards[i:i+25]) / 25)) qLearn.explorationProb = 0 if printPolicy: print('qLearn.qStarActions:') for elem in sorted(qLearn.qStarActions): print(elem, '\t:\t', qLearn.qStarActions[elem]) return qLearn ''' function: compareResults ---------- Compares the results of Value Iteration and Q-Learning. ''' def compareResults(valueIter, qLearn): diff = 0.0 for state in valueIter.pi: if qLearn.qStarActions[state] != [] and valueIter.pi[state] != qLearn.qStarActions[state][0]: diff += 1 elif qLearn.qStarActions[state] != [] and valueIter.pi[state] == qLearn.qStarActions[state][0]: print('Same policy mapping \n\t STATE---', state, '\n\t\t--- to action ---', valueIter.pi[state]) print('Number of different policy instructions: ', diff) print('Length of pi_valueIter: ', len(valueIter.pi)) print('Length of pi_QStar: ', len(qLearn.qStarActions)) print('Difference over length of pi_valueIter:', diff / len(valueIter.pi)) print('Difference over length of pi_QStar:', diff / len(qLearn.qStarActions)) ''' function: main ---------- Initializes an MDP and runs appropriate algorithms. ''' def main(): start = timeit.default_timer() valueIteration = False qLearning = True # mdp = RacquetsMDP(4, 'test_data_save.csv', 6) # mdp = RacquetsMDP(15, 'data/training_data.csv', 10) # mdp = RacquetsMDP(13, 'data/training_data_small.csv', 6) # mdp = RacquetsMDP(13, 'data/training_data_big.csv', 6) # mdp = RacquetsMDP(13, 'data/training_data_2019-12-12_1842.csv', 8) # mdp = RacquetsMDP(13, 'data/training_data_TEST2.csv', 6) mdp = RacquetsMDP(13, 'data/training_data_TEST2.csv', 6) if valueIteration: valueIter = testValueIteration(mdp) if qLearning: qLearn = testQLearning(mdp) if valueIteration and qLearning: compareResults(valueIter, qLearn) stop = timeit.default_timer() print('\nTime:', stop - start, 'sec') if __name__ == '__main__': main()
37.488439
147
0.606507
5669ffb60a370e57ca3397e642b47ac397e6e11b
2,410
py
Python
layers.py
Shinkai125/KerasForTextClassfication
ed3d04c5c58d1dfb3f79b83ba704dd486616f0e4
[ "MIT" ]
null
null
null
layers.py
Shinkai125/KerasForTextClassfication
ed3d04c5c58d1dfb3f79b83ba704dd486616f0e4
[ "MIT" ]
null
null
null
layers.py
Shinkai125/KerasForTextClassfication
ed3d04c5c58d1dfb3f79b83ba704dd486616f0e4
[ "MIT" ]
null
null
null
""" @file: layers.py.py @time: 2020-12-02 19:32:42 """ from tensorflow.keras.layers import Layer from tensorflow.keras import initializers, regularizers, constraints from tensorflow.keras import backend as K class Attention(Layer): """ Custom Keras attention layer Reference: https://www.kaggle.com/qqgeogor/keras-lstm-attention-glove840b-lb-0-043 """ def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.bias = bias self.step_dim = step_dim self.features_dim = None super(Attention, self).__init__(**kwargs) self.param_W = { 'initializer': initializers.get('glorot_uniform'), 'name': '{}_W'.format(self.name), 'regularizer': regularizers.get(W_regularizer), 'constraint': constraints.get(W_constraint) } self.W = None self.param_b = { 'initializer': 'zero', 'name': '{}_b'.format(self.name), 'regularizer': regularizers.get(b_regularizer), 'constraint': constraints.get(b_constraint) } self.b = None def build(self, input_shape): assert len(input_shape) == 3 self.features_dim = input_shape[-1] self.W = self.add_weight(shape=(input_shape[-1],), **self.param_W) if self.bias: self.b = self.add_weight(shape=(input_shape[1],), **self.param_b) self.built = True def compute_mask(self, input, input_mask=None): return None def call(self, x, mask=None): step_dim = self.step_dim features_dim = self.features_dim eij = K.reshape( K.dot(K.reshape(x, (-1, features_dim)), K.reshape(self.W, (features_dim, 1))), (-1, step_dim)) if self.bias: eij += self.b eij = K.tanh(eij) a = K.exp(eij) if mask is not None: a *= K.cast(mask, K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) a = K.expand_dims(a) weighted_input = x * a return K.sum(weighted_input, axis=1) def compute_output_shape(self, input_shape): return input_shape[0], self.features_dim
29.753086
90
0.576763
81664dc77f4f6bb2cf9d0b73b35ac744a3dc4481
5,610
py
Python
test/Java/JAR.py
bdbaddog/scons-gh-migrate
c76589c83ec00650a2d07dce79fc6dc5ca6465fb
[ "MIT" ]
1
2015-11-04T22:22:10.000Z
2015-11-04T22:22:10.000Z
test/Java/JAR.py
bdbaddog/scons-gh-migrate
c76589c83ec00650a2d07dce79fc6dc5ca6465fb
[ "MIT" ]
null
null
null
test/Java/JAR.py
bdbaddog/scons-gh-migrate
c76589c83ec00650a2d07dce79fc6dc5ca6465fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import os import TestSCons _python_ = TestSCons._python_ test = TestSCons.TestSCons() test.write('myjar.py', r""" import sys args = sys.argv[1:] while args: a = args[0] if a == 'cf': out = args[1] args = args[1:] else: break args = args[1:] outfile = open(out, 'wb') for file in args: infile = open(file, 'rb') for l in infile.readlines(): if l[:7] != '/*jar*/': outfile.write(l) sys.exit(0) """) test.write('SConstruct', """ env = Environment(tools = ['jar'], JAR = r'%(_python_)s myjar.py') env.Jar(target = 'test1.jar', source = 'test1.class') """ % locals()) test.write('test1.class', """\ test1.class /*jar*/ line 3 """) test.run(arguments = '.', stderr = None) test.must_match('test1.jar', "test1.class\nline 3\n") if os.path.normcase('.class') == os.path.normcase('.CLASS'): test.write('SConstruct', """ env = Environment(tools = ['jar'], JAR = r'%(_python_)s myjar.py') env.Jar(target = 'test2.jar', source = 'test2.CLASS') """ % locals()) test.write('test2.CLASS', """\ test2.CLASS /*jar*/ line 3 """) test.run(arguments = '.', stderr = None) test.must_match('test2.jar', "test2.CLASS\nline 3\n") test.write('myjar2.py', r""" import sys f=open(sys.argv[2], 'wb') f.write(" ".join(sys.argv[1:])) f.write("\n") f.close() sys.exit(0) """) test.write('SConstruct', """ env = Environment(tools = ['jar'], JAR = r'%(_python_)s myjar2.py', JARFLAGS='cvf') env.Jar(target = 'classes.jar', source = [ 'testdir/bar.class', 'foo.mf' ], TESTDIR='testdir', JARCHDIR='$TESTDIR') """ % locals()) test.subdir('testdir') test.write([ 'testdir', 'bar.class' ], 'foo') test.write('foo.mf', """Manifest-Version : 1.0 blah blah blah """) test.run(arguments='classes.jar') test.must_match('classes.jar', 'cvfm classes.jar foo.mf -C testdir bar.class\n') where_javac, java_version = test.java_where_javac() where_jar = test.java_where_jar() test.write("wrapper.py", """\ import os import sys open('%s', 'ab').write("wrapper.py %%s\\n" %% " ".join(sys.argv[1:])) os.system(" ".join(sys.argv[1:])) """ % test.workpath('wrapper.out').replace('\\', '\\\\')) test.write('SConstruct', """ foo = Environment(tools = ['javac', 'jar'], JAVAC = r'%(where_javac)s', JAR = r'%(where_jar)s') jar = foo.Dictionary('JAR') bar = foo.Clone(JAR = r'%(_python_)s wrapper.py ' + jar) foo.Java(target = 'classes', source = 'com/sub/foo') bar.Java(target = 'classes', source = 'com/sub/bar') foo.Jar(target = 'foo', source = 'classes/com/sub/foo') bar.Jar(target = 'bar', source = 'classes/com/sub/bar') """ % locals()) test.subdir('com', ['com', 'sub'], ['com', 'sub', 'foo'], ['com', 'sub', 'bar']) test.write(['com', 'sub', 'foo', 'Example1.java'], """\ package com.sub.foo; public class Example1 { public static void main(String[] args) { } } """) test.write(['com', 'sub', 'foo', 'Example2.java'], """\ package com.sub.foo; public class Example2 { public static void main(String[] args) { } } """) test.write(['com', 'sub', 'foo', 'Example3.java'], """\ package com.sub.foo; public class Example3 { public static void main(String[] args) { } } """) test.write(['com', 'sub', 'bar', 'Example4.java'], """\ package com.sub.bar; public class Example4 { public static void main(String[] args) { } } """) test.write(['com', 'sub', 'bar', 'Example5.java'], """\ package com.sub.bar; public class Example5 { public static void main(String[] args) { } } """) test.write(['com', 'sub', 'bar', 'Example6.java'], """\ package com.sub.bar; public class Example6 { public static void main(String[] args) { } } """) test.run(arguments = '.') expected_wrapper_out = "wrapper.py %(where_jar)s cf bar.jar classes/com/sub/bar\n" expected_wrapper_out = expected_wrapper_out.replace('/', os.sep) test.must_match('wrapper.out', expected_wrapper_out % locals()) test.must_exist('foo.jar') test.must_exist('bar.jar') test.up_to_date(arguments = '.') test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
22.086614
82
0.612834
2573e05a44a918e37ca1ae9fbe409ed7f18a2379
9,217
py
Python
app.py
jmewes/epages-beyond-payment-app
d610483fd016c38444bc634e4535c59a2f99f7f3
[ "MIT" ]
null
null
null
app.py
jmewes/epages-beyond-payment-app
d610483fd016c38444bc634e4535c59a2f99f7f3
[ "MIT" ]
3
2022-03-07T17:37:31.000Z
2022-03-08T08:39:38.000Z
app.py
jmewes/epages-beyond-payment-app
d610483fd016c38444bc634e4535c59a2f99f7f3
[ "MIT" ]
1
2018-12-13T09:29:59.000Z
2018-12-13T09:29:59.000Z
# -*- coding: utf-8 -*- ''' Author: Oliver Zscheyge Description: Web app that generates beautiful order documents for ePages Beyond shops. ''' import os import logging import random from urllib.parse import urlencode, urlparse, unquote from flask import Flask, render_template, request, Response, abort, escape, jsonify from app_installations import AppInstallations, PostgresAppInstallations from shops import Shop, PostgresShops, get_shop_id from payment_method_definitions import create_payment_method import payments from signers import sign app = Flask(__name__) APP_INSTALLATIONS = None SHOPS = None CLIENT_SECRET = '' DEFAULT_HOSTNAME = '' LOGGER = logging.getLogger('app') AUTO_INSTALLED_PAYMENT_METHOD_DEFINITIONS = [ 'beautiful-test-payment-embedded', 'beautiful-test-payment-embedded-selection', 'beautiful-test-payment-capture-on-demand' ] @app.route('/') def root(): if DEFAULT_HOSTNAME != '': return render_template('index.html', installed=True, hostname=DEFAULT_HOSTNAME) return render_template('index.html', installed=False) @app.route('/<hostname>') def root_hostname(hostname): return render_template('index.html', installed=True, hostname=hostname) @app.route('/callback') def callback(): args = request.args return_url = args.get('return_url') access_token_url = args.get('access_token_url') api_url = args.get('api_url') code = args.get('code') signature = unquote(args.get('signature')) APP_INSTALLATIONS.retrieve_token_from_auth_code(api_url, code, access_token_url, signature) hostname = urlparse(api_url).hostname installation = get_installation(hostname) created_payment_methods = _auto_create_payment_methods(installation) _get_and_store_shop_id(installation) return render_template('callback_result.html', return_url=return_url, created_payment_methods=created_payment_methods) def _auto_create_payment_methods(installation): created_payment_methods = [] for pmd_name in AUTO_INSTALLED_PAYMENT_METHOD_DEFINITIONS: status = create_payment_method(installation, pmd_name) created_payment_methods.append({ 'status_code': status, 'payment_method_definition_name': pmd_name }) print('Created payment method for %s in shop %s with status %i' % (pmd_name, installation.hostname, status)) return created_payment_methods def _get_and_store_shop_id(installation): shop_id = get_shop_id(installation) shop = Shop(shop_id, installation.hostname) SHOPS.create_or_update_shop(shop) @app.route('/merchants/<shop_id>') def merchant_account_status(shop_id): print('Serving always ready merchant account status') return jsonify({ 'ready' : True, 'details' : { 'primaryEmail' : 'example@b.c' } }) @app.route('/payments', methods=['POST']) def create_payment(): print('Creating payment with paymentNote') return jsonify({ 'paymentNote': 'Please transfer the money using the reference %s to the account %s' % (generate_id(), generate_id()), }) @app.route('/embedded-payments', methods=['POST']) def create_embedded_payment(): app_hostname = urlparse(request.url_root).hostname payload = request.get_json(force=True) shop = payload.get('shop', {}).get('name', '') shop_id = payload.get('shopId', '') payment_id = payload.get('paymentId', '') signature = sign('%s:%s' % (shop_id, payment_id), CLIENT_SECRET) params = { 'paymentId': payment_id, 'signature': signature, 'shop': shop, 'shopId': shop_id } embeddedApprovalUri = 'https://%s/embedded-payment-approval?%s' % (app_hostname, urlencode(params)) print('Created embedded payment for shop %s' % shop) return jsonify({ 'embeddedApprovalUri': embeddedApprovalUri }) @app.route('/embedded-payment-approval') def embedded_payment_approval(): args = request.args payment_id = unquote(args.get('paymentId', '')) signature = unquote(args.get('signature', '')) shop = unquote(args.get('shop', '')) shop_id = unquote(args.get('shopId', '')) approve_uri = '/payments/%s/approve' % payment_id cancel_uri = '/payments/%s/cancel' % payment_id if _validate_signature(signature, shop_id, payment_id): return render_template('embedded_payment_approval.html', state='PENDING', signature=signature, shop=shop, shop_id=shop_id, approve_uri=approve_uri, cancel_uri=cancel_uri) return render_template('embedded_payment_approval.html', state='ERROR') def _validate_signature(signature_to_validate, shop_id, payment_id): expected_signature = sign('%s:%s' % (shop_id, payment_id), CLIENT_SECRET) match = signature_to_validate == expected_signature print('Validated signatures: %s | %s | match: %s' % (signature_to_validate, expected_signature, str(match))) return match @app.route('/payments/<payment_id>/approve', methods=['POST']) def approve_payment(payment_id): ''' Currently only needed for embedded payments ''' print('Approving payment %s' % payment_id) shop_id = request.form.get('shop_id', '') signature = request.form.get('signature', '') shop = SHOPS.get_shop(shop_id) installation = get_installation(shop.hostname) if _validate_signature(signature, shop_id, payment_id): return_uri = payments.approve_payment(installation, payment_id) return render_template('embedded_payment_approval.html', state='APPROVED', return_uri=return_uri) return render_template('embedded_payment_approval.html', state='ERROR') @app.route('/payments/<payment_id>/cancel', methods=['POST']) def cancel_payment(payment_id): ''' Currently only needed for embedded payments ''' print('Canceling payment %s' % payment_id) shop_id = request.form.get('shop_id', '') signature = request.form.get('signature', '') shop = SHOPS.get_shop(shop_id) installation = get_installation(shop.hostname) if _validate_signature(signature, shop_id, payment_id): return_uri = payments.cancel_payment(installation, payment_id) return render_template('embedded_payment_approval.html', state='CANCELED', return_uri=return_uri) return render_template('embedded_payment_approval.html', state='ERROR') @app.route('/payments/<payment_id>/capture', methods=['POST']) def capture_payment(payment_id): print('Capturing payment %s' % payment_id) return jsonify({ 'paymentStatus' : 'CAPTURED', }) def generate_id(): return ''.join(random.choice('ABCDEFGHJKLMNPQRSTUVWXYZ23456789') for _ in range(8)) @app.before_request def limit_open_proxy_requests(): '''Security measure to prevent: http://serverfault.com/questions/530867/baidu-in-nginx-access-log http://security.stackexchange.com/questions/41078/url-from-another-domain-in-my-access-log http://serverfault.com/questions/115827/why-does-apache-log-requests-to-get-http-www-google-com-with-code-200 http://stackoverflow.com/questions/22251038/how-to-limit-flask-dev-server-to-only-one-visiting-ip-address ''' if not is_allowed_request(): print('Someone is messing with us:') print(request.url_root) print(request) abort(403) def is_allowed_request(): url = request.url_root return '.herokuapp.com' in url or \ '.ngrok.io' in url or \ 'localhost:8080' in url or \ '127.0.0' in url or \ '0.0.0.0:80' in url def get_installation(hostname): installation = APP_INSTALLATIONS.get_installation(hostname) if not installation: raise ShopNotKnown(hostname) return installation @app.errorhandler(404) def page_not_found(e): return '<h1>404 File Not Found! :(</h1>', 404 class ShopNotKnown(Exception): def __init__(self, hostname): super() self.hostname = hostname @app.errorhandler(ShopNotKnown) def shop_not_known(e): return render_template('index.html', installed=False, error_message='App not installed for the requested shop with hostname %s' % e.hostname) @app.errorhandler(Exception) def all_exception_handler(error): LOGGER.exception(error) return 'Error', 500 def init(): global APP_INSTALLATIONS global SHOPS global DEFAULT_HOSTNAME global CLIENT_SECRET CLIENT_ID = os.environ.get('CLIENT_ID', '') CLIENT_SECRET = os.environ.get('CLIENT_SECRET', '') print('Initialize PostgresAppInstallations') APP_INSTALLATIONS = PostgresAppInstallations(os.environ.get('DATABASE_URL'), CLIENT_ID, CLIENT_SECRET) APP_INSTALLATIONS.create_schema() print('Initialize PostgresShops') SHOPS = PostgresShops(os.environ.get('DATABASE_URL')) SHOPS.create_schema() init() if __name__ == '__main__': app.run()
34.781132
145
0.683303
afa9aade0f670cafe2342de0687a2bf1e4f85a79
486
py
Python
src/paper/migrations/0077_paper_edited_file_extract.py
ResearchHub/ResearchHub-Backend-Open
d36dca33afae2d442690694bb2ab17180d84bcd3
[ "MIT" ]
18
2021-05-20T13:20:16.000Z
2022-02-11T02:40:18.000Z
src/paper/migrations/0077_paper_edited_file_extract.py
ResearchHub/ResearchHub-Backend-Open
d36dca33afae2d442690694bb2ab17180d84bcd3
[ "MIT" ]
109
2021-05-21T20:14:23.000Z
2022-03-31T20:56:10.000Z
src/paper/migrations/0077_paper_edited_file_extract.py
ResearchHub/ResearchHub-Backend-Open
d36dca33afae2d442690694bb2ab17180d84bcd3
[ "MIT" ]
4
2021-05-17T13:47:53.000Z
2022-02-12T10:48:21.000Z
# Generated by Django 2.2 on 2021-03-03 00:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('paper', '0076_paper_pdf_file_extract'), ] operations = [ migrations.AddField( model_name='paper', name='edited_file_extract', field=models.FileField(blank=True, default=None, max_length=512, null=True, upload_to='uploads/papers/%Y/%m/%d/edited_extract'), ), ]
25.578947
140
0.63786
4df318add8e40fb947867a3d0f312a6646e69e57
3,464
py
Python
couchdb/database.py
mqzry/pycouchdb
1592b1b501e6e2dea3009a83e9c937da70b49af8
[ "MIT" ]
null
null
null
couchdb/database.py
mqzry/pycouchdb
1592b1b501e6e2dea3009a83e9c937da70b49af8
[ "MIT" ]
10
2016-08-02T17:24:05.000Z
2016-09-06T17:06:06.000Z
couchdb/database.py
mqzry/pycouchdb
1592b1b501e6e2dea3009a83e9c937da70b49af8
[ "MIT" ]
null
null
null
from .document import Document from requests import codes import logging class Database: def __init__(self, server, name): self.name = name self.server = server self.session = server.session self.session.add_part_to_prefix(name) def exists(self): return self.head() def head(self): """Check existence of a database. :param self.name: name of database. :return: whether this database exists. :rtype: boolean """ r = self.session.head() return r.status_code == codes.ok def get(self): r = self.session.get() if r.status_code == codes.ok: return r.json() else: return None def put(self): r = self.session.put() if r.status_code == codes.created: return True else: info = r.json() logging.info('Tried to create {0} but {1} happend because {2}' .format(self.name, info['error'], info['reason'])) return False def delete(self): r = self.session.delete(self.name) if r.status_code == codes.ok: return True elif r.status_code == codes.bad_request: logging.info('Failed attempt to delete database {0}. The request url {1} is not valid.'.format(self.name, r.url) + 'Probably a invalid database name or forgotten document id by accident.') elif r.status_code == codes.not_found: logging.info('Failed attempt to delete database {0}. It does not exist.'.format(self.name)) elif r.status_code == codes.unauthorized: logging.info('Failed attempt to delete database {0}. CouchDB Server Administrator privileges required.'.format(self.name)) return False def post(self, doc, full_commit=None, batch=None): query_params = {} if batch is not None: query_params['batch'] = batch request_headers = {} if full_commit is not None: request_headers['X-Couch-Full-Commit'] = full_commit r = self.session.post(json=doc, params=query_params, headers=request_headers) body = r.json() if r.status_code == codes.ok: return Document(self, body['id'], body['rev']) elif r.status_code == codes.created: return Document(self, body['id'], body['rev']) elif r.status_code == codes.bad_request: return False elif r.status_code == codes.unauthorized: return False elif r.status_code == codes.not_found: return False elif r.status_code == codes.conflict: return False def query(self, method, params=None): response = self.session.get(self.db_url + method, params=params, auth=(self.user, self.password)) return response.url def put_bulk(self, docs): response = self.session.post(self.db_url + '_bulk_docs', json={'docs': docs}, auth=(self.user, self.password)) return response.json() def get_bulk(self, ids): str_ids = [str for id in ids] response = self.session.post(self.db_url + '_all_docs', json={'keys': str_ids}, auth=(self.user, self.password)) return response.json()
35.346939
134
0.568129
6556abfa0393649f9a79992dffd48f6c9c0ed3bb
28,513
py
Python
tests/dedupe_test.py
tvtongerloo/django-DefectDojo
77f241afd7773a95a73621fcc60971263885337a
[ "BSD-3-Clause" ]
1
2021-01-19T17:25:57.000Z
2021-01-19T17:25:57.000Z
tests/dedupe_test.py
tvtongerloo/django-DefectDojo
77f241afd7773a95a73621fcc60971263885337a
[ "BSD-3-Clause" ]
null
null
null
tests/dedupe_test.py
tvtongerloo/django-DefectDojo
77f241afd7773a95a73621fcc60971263885337a
[ "BSD-3-Clause" ]
null
null
null
from selenium.webdriver.support.ui import Select from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException import unittest import sys import os from base_test_class import BaseTestCase, on_exception_html_source_logger from product_test import ProductTest import time import logging logger = logging.getLogger(__name__) dir_path = os.path.dirname(os.path.realpath(__file__)) class DedupeTest(BaseTestCase): # -------------------------------------------------------------------------------------------------------- # Initialization # -------------------------------------------------------------------------------------------------------- def setUp(self): super().setUp() self.relative_path = dir_path = os.path.dirname(os.path.realpath(__file__)) def check_nb_duplicates(self, expected_number_of_duplicates): logger.debug("checking duplicates...") driver = self.driver retries = 0 for i in range(0, 18): time.sleep(5) # wait bit for celery dedupe task which can be slow on travis self.goto_all_findings_list(driver) dupe_count = 0 # iterate over the rows of the findings table and concatenates all columns into td.text trs = driver.find_elements_by_xpath('//*[@id="open_findings"]/tbody/tr') for row in trs: concatRow = ' '.join([td.text for td in row.find_elements_by_xpath(".//td")]) # print(concatRow) if '(DUPE)' and 'Duplicate' in concatRow: dupe_count += 1 if (dupe_count != expected_number_of_duplicates): logger.debug("duplicate count mismatch, let's wait a bit for the celery dedupe task to finish and try again (5s)") else: break if (dupe_count != expected_number_of_duplicates): findings_table = driver.find_element_by_id('open_findings') print(findings_table.get_attribute('innerHTML')) self.assertEqual(dupe_count, expected_number_of_duplicates) @on_exception_html_source_logger def test_enable_deduplication(self): logger.debug("enabling deduplication...") driver = self.driver driver.get(self.base_url + 'system_settings') if not driver.find_element_by_id('id_enable_deduplication').is_selected(): driver.find_element_by_xpath('//*[@id="id_enable_deduplication"]').click() # save settings driver.find_element_by_css_selector("input.btn.btn-primary").click() # check if it's enabled after reload driver.get(self.base_url + 'system_settings') self.assertTrue(driver.find_element_by_id('id_enable_deduplication').is_selected()) @on_exception_html_source_logger def test_delete_findings(self): logger.debug("removing previous findings...") driver = self.driver driver.get(self.base_url + "finding?page=1") if self.element_exists_by_id("no_findings"): text = driver.find_element_by_id("no_findings").text if 'No findings found.' in text: return driver.find_element_by_id("select_all").click() driver.find_element_by_css_selector("i.fa.fa-trash").click() try: WebDriverWait(driver, 1).until(EC.alert_is_present(), 'Timed out waiting for PA creation ' + 'confirmation popup to appear.') driver.switch_to.alert.accept() except TimeoutException: self.fail('Confirmation dialogue not shown, cannot delete previous findings') text = None if self.element_exists_by_id("no_findings"): text = driver.find_element_by_id("no_findings").text self.assertTrue('No findings found.' in text) # check that user was redirect back to url where it came from based on return_url self.assertTrue(driver.current_url.endswith('page=1')) # -------------------------------------------------------------------------------------------------------- # Same scanner deduplication - Deduplication on engagement # Test deduplication for Bandit SAST scanner # -------------------------------------------------------------------------------------------------------- @on_exception_html_source_logger # noqa: E301 def test_add_path_test_suite(self): logger.debug("Same scanner deduplication - Deduplication on engagement - static. Creating tests...") # Create engagement driver = self.driver self.goto_product_overview(driver) driver.find_element_by_class_name("pull-left").click() driver.find_element_by_link_text("Add New Engagement").click() driver.find_element_by_id("id_name").send_keys("Dedupe Path Test") driver.find_element_by_xpath('//*[@id="id_deduplication_on_engagement"]').click() driver.find_element_by_name("_Add Tests").click() self.assertTrue(self.is_success_message_present(text='Engagement added successfully.')) # Add the tests # Test 1 driver.find_element_by_id("id_title").send_keys("Path Test 1") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Bandit Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_name("_Add Another Test").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) # Test 2 driver.find_element_by_id("id_title").send_keys("Path Test 2") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Bandit Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_css_selector("input.btn.btn-primary").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) @on_exception_html_source_logger def test_import_path_tests(self): logger.debug("importing reports...") # First test driver = self.driver self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Path Test").click() driver.find_element_by_partial_link_text("Path Test 1").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() # active and verified: driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_path_1.json") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) # Second test self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Path Test").click() driver.find_element_by_partial_link_text("Path Test 2").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_path_2.json") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) @on_exception_html_source_logger def test_check_path_status(self): # comparing tests/dedupe_scans/dedupe_path_1.json and tests/dedupe_scans/dedupe_path_2.json # Counts the findings that have on the same line "(DUPE)" (in the title) and "Duplicate" (marked as duplicate by DD) # We have imported 3 findings twice, but one only is a duplicate because for the 2 others, we have changed either the line number or the file_path self.check_nb_duplicates(1) # -------------------------------------------------------------------------------------------------------- # Same scanner deduplication - Deduplication on engagement # Test deduplication for Immuniweb dynamic scanner # -------------------------------------------------------------------------------------------------------- @on_exception_html_source_logger def test_add_endpoint_test_suite(self): logger.debug("Same scanner deduplication - Deduplication on engagement - dynamic. Creating tests...") # Create engagement driver = self.driver self.goto_product_overview(driver) driver.find_element_by_class_name("pull-left").click() driver.find_element_by_link_text("Add New Engagement").click() driver.find_element_by_id("id_name").send_keys("Dedupe Endpoint Test") driver.find_element_by_xpath('//*[@id="id_deduplication_on_engagement"]').click() driver.find_element_by_name("_Add Tests").click() self.assertTrue(self.is_success_message_present(text='Engagement added successfully.')) # Add the tests # Test 1 driver.find_element_by_id("id_title").send_keys("Endpoint Test 1") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Immuniweb Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_name("_Add Another Test").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) # Test 2 driver.find_element_by_id("id_title").send_keys("Endpoint Test 2") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Immuniweb Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_css_selector("input.btn.btn-primary").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) @on_exception_html_source_logger def test_import_endpoint_tests(self): logger.debug("Importing reports...") # First test : Immuniweb Scan (dynamic) driver = self.driver self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Endpoint Test").click() driver.find_element_by_partial_link_text("Endpoint Test 1").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() # active and verified driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_endpoint_1.xml") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) # Second test : Immuniweb Scan (dynamic) self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Endpoint Test").click() driver.find_element_by_partial_link_text("Endpoint Test 2").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() # active and verified driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_endpoint_2.xml") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) @on_exception_html_source_logger def test_check_endpoint_status(self): # comparing dedupe_endpoint_1.xml and dedupe_endpoint_2.xml # Counts the findings that have on the same line "(DUPE)" (in the title) and "Duplicate" (marked as duplicate by DD) # We have imported 3 findings twice, but one only is a duplicate because for the 2 others, we have changed either (the URL) or (the name and cwe) self.check_nb_duplicates(1) @on_exception_html_source_logger def test_add_same_eng_test_suite(self): logger.debug("Test different scanners - same engagement - dynamic; Adding tests on the same engagement...") # Create engagement driver = self.driver self.goto_product_overview(driver) driver.find_element_by_class_name("pull-left").click() driver.find_element_by_link_text("Add New Engagement").click() driver.find_element_by_id("id_name").send_keys("Dedupe Same Eng Test") driver.find_element_by_xpath('//*[@id="id_deduplication_on_engagement"]').click() driver.find_element_by_name("_Add Tests").click() self.assertTrue(self.is_success_message_present(text='Engagement added successfully.')) # Add the tests # Test 1 driver.find_element_by_id("id_title").send_keys("Same Eng Test 1") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Immuniweb Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_name("_Add Another Test").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) # Test 2 driver.find_element_by_id("id_title").send_keys("Same Eng Test 2") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Generic Findings Import") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_css_selector("input.btn.btn-primary").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) @on_exception_html_source_logger def test_import_same_eng_tests(self): logger.debug("Importing reports") # First test : Immuniweb Scan (dynamic) driver = self.driver self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Same Eng Test").click() driver.find_element_by_partial_link_text("Same Eng Test 1").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_endpoint_1.xml") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) # Second test : Generic Findings Import with Url (dynamic) self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Same Eng Test").click() driver.find_element_by_partial_link_text("Same Eng Test 2").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_cross_1.csv") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) @on_exception_html_source_logger def test_check_same_eng_status(self): # comparing dedupe_endpoint_1.xml and dedupe_endpoint_2.xml # Counts the findings that have on the same line "(DUPE)" (in the title) and "Duplicate" (marked as duplicate by DD) # We have imported 3 findings twice, but one only is a duplicate because for the 2 others, we have changed either (the URL) or (the name and cwe) self.check_nb_duplicates(1) # -------------------------------------------------------------------------------------------------------- # Same scanner deduplication - Deduplication on engagement # Test deduplication for Checkmarx SAST Scan with custom hash_code computation # Upon import, Checkmarx Scan aggregates on : categories, cwe, name, sinkFilename # That test shows that the custom hash_code (excluding line number, see settings.py) # makes it possible to detect the duplicate even if the line number has changed (which will occur in a normal software lifecycle) # -------------------------------------------------------------------------------------------------------- def test_add_path_test_suite_checkmarx_scan(self): logger.debug("Same scanner deduplication - Deduplication on engagement. Test dedupe on checkmarx aggregated with custom hash_code computation") # Create engagement driver = self.driver self.goto_product_overview(driver) driver.find_element_by_class_name("pull-left").click() driver.find_element_by_link_text("Add New Engagement").click() driver.find_element_by_id("id_name").send_keys("Dedupe on hash_code only") driver.find_element_by_xpath('//*[@id="id_deduplication_on_engagement"]').click() driver.find_element_by_name("_Add Tests").click() self.assertTrue(self.is_success_message_present(text='Engagement added successfully.')) # Add the tests # Test 1 driver.find_element_by_id("id_title").send_keys("Path Test 1") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Checkmarx Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_name("_Add Another Test").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) # Test 2 driver.find_element_by_id("id_title").send_keys("Path Test 2") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Checkmarx Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_css_selector("input.btn.btn-primary").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) def test_import_path_tests_checkmarx_scan(self): # First test driver = self.driver self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe on hash_code only").click() driver.find_element_by_partial_link_text("Path Test 1").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() # os.path.realpath makes the path canonical driver.find_element_by_id('id_file').send_keys(os.path.realpath(self.relative_path + "/dedupe_scans/multiple_findings.xml")) driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 2 findings were processed')) # Second test self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe on hash_code only").click() driver.find_element_by_partial_link_text("Path Test 2").click() driver.find_element_by_id("dropdownMenu1").click() driver.find_element_by_link_text("Re-Upload Scan").click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(os.path.realpath(self.relative_path + "/dedupe_scans/multiple_findings_line_changed.xml")) driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 2 findings were processed')) def test_check_path_status_checkmarx_scan(self): # After aggregation, it's only two findings. Both are duplicates even though the line number has changed # because we ignore the line number when computing the hash_code for this scanner # (so that findings keep being found as duplicate even if the code changes slightly) self.check_nb_duplicates(2) # -------------------------------------------------------------------------------------------------------- # Cross scanners deduplication - product-wide deduplication # Test deduplication for Generic Findings Import with URL (dynamic) vs Immuniweb dynamic scanner # -------------------------------------------------------------------------------------------------------- def test_add_cross_test_suite(self): logger.debug("Cross scanners deduplication dynamic; generic finding vs immuniweb. Creating tests...") # Create generic engagement driver = self.driver self.goto_product_overview(driver) driver.find_element_by_class_name("pull-left").click() driver.find_element_by_link_text("Add New Engagement").click() driver.find_element_by_id("id_name").send_keys("Dedupe Generic Test") # driver.find_element_by_xpath('//*[@id="id_deduplication_on_engagement"]').click() driver.find_element_by_name("_Add Tests").click() self.assertTrue(self.is_success_message_present(text='Engagement added successfully.')) # Test driver.find_element_by_id("id_title").send_keys("Generic Test") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Generic Findings Import") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_css_selector("input.btn.btn-primary").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) # Create immuniweb engagement self.goto_product_overview(driver) driver.find_element_by_class_name("pull-left").click() driver.find_element_by_link_text("Add New Engagement").click() driver.find_element_by_id("id_name").send_keys("Dedupe Immuniweb Test") # driver.find_element_by_xpath('//*[@id="id_deduplication_on_engagement"]').click() driver.find_element_by_name("_Add Tests").click() self.assertTrue(self.is_success_message_present(text='Engagement added successfully.')) # Test driver.find_element_by_id("id_title").send_keys("Immuniweb Test") Select(driver.find_element_by_id("id_test_type")).select_by_visible_text("Immuniweb Scan") Select(driver.find_element_by_id("id_environment")).select_by_visible_text("Development") driver.find_element_by_css_selector("input.btn.btn-primary").click() self.assertTrue(self.is_success_message_present(text='Test added successfully')) def test_import_cross_test(self): logger.debug("Importing findings...") # First test : Immuniweb Scan (dynamic) driver = self.driver self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Immuniweb Test").click() driver.find_element_by_partial_link_text("Immuniweb Test").click() driver.find_element_by_css_selector("b.fa.fa-ellipsis-v").click() driver.find_element_by_link_text("Re-Upload Scan Results").click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_endpoint_1.xml") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) # Second test : generic scan with url (dynamic) self.goto_active_engagements_overview(driver) driver.find_element_by_partial_link_text("Dedupe Generic Test").click() driver.find_element_by_partial_link_text("Generic Test").click() driver.find_element_by_css_selector("b.fa.fa-ellipsis-v").click() driver.find_element_by_link_text("Re-Upload Scan Results").click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[3]/div/div').click() driver.find_element_by_xpath('//*[@id="base-content"]/form/div[4]/div/div').click() driver.find_element_by_id('id_file').send_keys(self.relative_path + "/dedupe_scans/dedupe_cross_1.csv") driver.find_elements_by_css_selector("button.btn.btn-primary")[1].click() self.assertTrue(self.is_success_message_present(text='a total of 3 findings were processed')) def test_check_cross_status(self): self.check_nb_duplicates(1) def add_dedupe_tests_to_suite(suite): suite.addTest(BaseTestCase('test_login')) suite.addTest(ProductTest('test_create_product')) suite.addTest(DedupeTest('test_enable_deduplication')) # Test same scanners - same engagement - static - dedupe suite.addTest(DedupeTest('test_delete_findings')) suite.addTest(DedupeTest('test_add_path_test_suite')) suite.addTest(DedupeTest('test_import_path_tests')) suite.addTest(DedupeTest('test_check_path_status')) # Test same scanners - same engagement - dynamic - dedupe suite.addTest(DedupeTest('test_delete_findings')) suite.addTest(DedupeTest('test_add_endpoint_test_suite')) suite.addTest(DedupeTest('test_import_endpoint_tests')) suite.addTest(DedupeTest('test_check_endpoint_status')) # Test different scanners - same engagement - dynamic - dedupe suite.addTest(DedupeTest('test_delete_findings')) suite.addTest(DedupeTest('test_add_same_eng_test_suite')) suite.addTest(DedupeTest('test_import_same_eng_tests')) suite.addTest(DedupeTest('test_check_same_eng_status')) # Test same scanners - same engagement - static - dedupe with custom hash_code suite.addTest(DedupeTest('test_delete_findings')) suite.addTest(DedupeTest('test_add_path_test_suite_checkmarx_scan')) suite.addTest(DedupeTest('test_import_path_tests_checkmarx_scan')) suite.addTest(DedupeTest('test_check_path_status_checkmarx_scan')) # Test different scanners - different engagement - dynamic - dedupe suite.addTest(DedupeTest('test_delete_findings')) suite.addTest(DedupeTest('test_add_cross_test_suite')) suite.addTest(DedupeTest('test_import_cross_test')) suite.addTest(DedupeTest('test_check_cross_status')) # Clean up suite.addTest(ProductTest('test_delete_product')) return suite def suite(): suite = unittest.TestSuite() add_dedupe_tests_to_suite(suite) suite.addTest(DedupeTest('enable_jira')) suite.addTest(DedupeTest('enable_github')) # block mode no longer needed, so good to actually test in non block mode so celery does the dedupe # suite.addTest(DedupeTest('enable_block_execution')) add_dedupe_tests_to_suite(suite) return suite if __name__ == "__main__": runner = unittest.TextTestRunner(descriptions=True, failfast=True, verbosity=2) ret = not runner.run(suite()).wasSuccessful() BaseTestCase.tearDownDriver() sys.exit(ret)
56.127953
154
0.692316
00ed71b8fb74f17634f10c9ea4f9d985d8316e81
1,991
py
Python
plugins/fortinet_fortigate/unit_test/test_get_policies.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
null
null
null
plugins/fortinet_fortigate/unit_test/test_get_policies.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
null
null
null
plugins/fortinet_fortigate/unit_test/test_get_policies.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
null
null
null
import sys import os from unittest import TestCase from icon_fortinet_fortigate.actions.get_policies import GetPolicies from icon_fortinet_fortigate.actions.get_policies.schema import Input, Output from unit_test.util import Util from unittest.mock import patch from parameterized import parameterized from insightconnect_plugin_runtime.exceptions import PluginException sys.path.append(os.path.abspath("../")) @patch("requests.Session.request", side_effect=Util.mocked_requests) class TestGetPolicies(TestCase): @classmethod def setUpClass(cls) -> None: cls.action = Util.default_connector(GetPolicies()) @parameterized.expand( [ [ "get_policies", "Test Policy", { "policies": [ { "policyid": 1, "q_origin_key": 1, "name": "Test Policy", "uuid": "6193559a-6862-51ea-44ce-e27594b8536a", "srcintf": [{"name": "port1", "q_origin_key": "port1"}], "dstintf": [{"name": "port1", "q_origin_key": "port1"}], "srcaddr": [{"name": "Test Group", "q_origin_key": "Test Group"}], "dstaddr": [{"name": "Test Group", "q_origin_key": "Test Group"}], "action": "accept", "service": [{"name": "ALL", "q_origin_key": "ALL"}], } ], }, ], [ "get_policies_invalid_name", "Invalid Policy", { "policies": [], }, ], ] ) def test_get_policies(self, mock_request, name, name_filter, expected): actual = self.action.run({Input.NAME_FILTER: name_filter}) self.assertEqual(actual, expected)
36.2
94
0.503265
55cb5c5a725eba316b3c81a2220c2aae35ced440
1,067
py
Python
ding/entry/tests/test_serial_entry_sqil.py
youngzhou1999/DI-engine
7e9e4e88a02c0fcf1a6399272b09f1dd7595e845
[ "Apache-2.0" ]
null
null
null
ding/entry/tests/test_serial_entry_sqil.py
youngzhou1999/DI-engine
7e9e4e88a02c0fcf1a6399272b09f1dd7595e845
[ "Apache-2.0" ]
null
null
null
ding/entry/tests/test_serial_entry_sqil.py
youngzhou1999/DI-engine
7e9e4e88a02c0fcf1a6399272b09f1dd7595e845
[ "Apache-2.0" ]
null
null
null
import pytest import torch from copy import deepcopy from ding.entry import serial_pipeline from ding.entry.serial_entry_sqil import serial_pipeline_sqil from dizoo.classic_control.cartpole.config.cartpole_sql_config import cartpole_sql_config, cartpole_sql_create_config from dizoo.classic_control.cartpole.config.cartpole_sqil_config import cartpole_sqil_config, cartpole_sqil_create_config @pytest.mark.unittest def test_sqil(): expert_policy_state_dict_path = './expert_policy.pth' config = [deepcopy(cartpole_sql_config), deepcopy(cartpole_sql_create_config)] expert_policy = serial_pipeline(config, seed=0) torch.save(expert_policy.collect_mode.state_dict(), expert_policy_state_dict_path) config = [deepcopy(cartpole_sqil_config), deepcopy(cartpole_sqil_create_config)] config[0].policy.collect.demonstration_info_path = expert_policy_state_dict_path config[0].policy.learn.update_per_collect = 1 try: serial_pipeline_sqil(config, seed=0, max_iterations=1) except Exception: assert False, "pipeline fail"
44.458333
120
0.818182
72fb59ce9d38d8974e58cfff028b0d4334b87320
10,709
py
Python
cms/utils/conf.py
rspeed/django-cms-contrib
c5fbbea191646ab922b5ff6f89a1de6baa648e7f
[ "BSD-3-Clause" ]
null
null
null
cms/utils/conf.py
rspeed/django-cms-contrib
c5fbbea191646ab922b5ff6f89a1de6baa648e7f
[ "BSD-3-Clause" ]
null
null
null
cms/utils/conf.py
rspeed/django-cms-contrib
c5fbbea191646ab922b5ff6f89a1de6baa648e7f
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from functools import update_wrapper import os from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.translation import ugettext_lazy as _ from django.utils.six.moves.urllib.parse import urljoin from cms import constants __all__ = ['get_cms_setting'] class VERIFIED: pass # need a unique identifier for CMS_LANGUAGES def default(name): def decorator(wrapped): def wrapper(): if hasattr(settings, name): return getattr(settings, name) return wrapped() update_wrapper(wrapper, wrapped) return wrapped return decorator DEFAULTS = { 'TEMPLATE_INHERITANCE': True, 'DEFAULT_X_FRAME_OPTIONS': constants.X_FRAME_OPTIONS_INHERIT, 'TOOLBAR_SIMPLE_STRUCTURE_MODE': True, 'PLACEHOLDER_CONF': {}, 'PERMISSION': False, # Whether to use raw ID lookups for users when PERMISSION is True 'RAW_ID_USERS': False, 'PUBLIC_FOR': 'all', 'APPHOOKS': [], 'TOOLBARS': [], 'SITE_CHOICES_CACHE_KEY': 'CMS:site_choices', 'PAGE_CHOICES_CACHE_KEY': 'CMS:page_choices', 'MEDIA_PATH': 'cms/', 'PAGE_MEDIA_PATH': 'cms_page_media/', 'TITLE_CHARACTER': '+', 'PAGE_CACHE': True, 'PLACEHOLDER_CACHE': True, 'PLUGIN_CACHE': True, 'CACHE_PREFIX': 'cms-', 'PLUGIN_PROCESSORS': [], 'PLUGIN_CONTEXT_PROCESSORS': [], 'UNIHANDECODE_VERSION': None, 'UNIHANDECODE_DECODERS': ['ja', 'zh', 'kr', 'vn', 'diacritic'], 'UNIHANDECODE_DEFAULT_DECODER': 'diacritic', 'MAX_PAGE_PUBLISH_REVERSIONS': 10, 'MAX_PAGE_HISTORY_REVERSIONS': 15, 'TOOLBAR_ANONYMOUS_ON': True, 'TOOLBAR_URL__EDIT_ON': 'edit', 'TOOLBAR_URL__EDIT_OFF': 'edit_off', 'TOOLBAR_URL__BUILD': 'structure', 'TOOLBAR_URL__DISABLE': 'toolbar_off', 'ADMIN_NAMESPACE': 'admin', 'APP_NAME': None, 'TOOLBAR_HIDE': False, 'INTERNAL_IPS': [], 'REQUEST_IP_RESOLVER': 'cms.utils.request_ip_resolvers.default_request_ip_resolver', 'PAGE_WIZARD_DEFAULT_TEMPLATE': constants.TEMPLATE_INHERITANCE_MAGIC, 'PAGE_WIZARD_CONTENT_PLUGIN': 'TextPlugin', 'PAGE_WIZARD_CONTENT_PLUGIN_BODY': 'body', 'PAGE_WIZARD_CONTENT_PLACEHOLDER': None, # Use first placeholder it finds. } def get_cache_durations(): """ Returns the setting: CMS_CACHE_DURATIONS or the defaults. """ return getattr(settings, 'CMS_CACHE_DURATIONS', { 'menus': 60 * 60, 'content': 60, 'permissions': 60 * 60, }) @default('CMS_MEDIA_ROOT') def get_media_root(): return os.path.join(settings.MEDIA_ROOT, get_cms_setting('MEDIA_PATH')) @default('CMS_MEDIA_URL') def get_media_url(): return urljoin(settings.MEDIA_URL, get_cms_setting('MEDIA_PATH')) @default('CMS_TOOLBAR_URL__EDIT_ON') def get_toolbar_url__edit_on(): return get_cms_setting('TOOLBAR_URL__EDIT_ON') @default('CMS_TOOLBAR_URL__EDIT_OFF') def get_toolbar_url__edit_off(): return get_cms_setting('TOOLBAR_URL__EDIT_OFF') @default('CMS_TOOLBAR_URL__BUILD') def get_toolbar_url__structure(): return get_cms_setting('TOOLBAR_URL__BUILD') @default('CMS_TOOLBAR_URL__DISABLE') def get_toolbar_url__disable(): return get_cms_setting('TOOLBAR_URL__DISABLE') def get_templates(): from cms.utils.django_load import load_from_file if getattr(settings, 'CMS_TEMPLATES_DIR', False): tpldir = getattr(settings, 'CMS_TEMPLATES_DIR', False) # CMS_TEMPLATES_DIR can either be a string poiting to the templates directory # or a dictionary holding 'site: template dir' entries if isinstance(tpldir, dict): tpldir = tpldir[settings.SITE_ID] # We must extract the relative path of CMS_TEMPLATES_DIR to the neares # valid templates directory. Here we mimick what the filesystem and # app_directories template loaders do prefix = '' # Relative to TEMPLATE['DIRS'] for filesystem loader path = [template['DIRS'][0] for template in settings.TEMPLATES] for basedir in path: if tpldir.find(basedir) == 0: prefix = tpldir.replace(basedir + os.sep, '') break # Relative to 'templates' directory that app_directory scans if not prefix: components = tpldir.split(os.sep) try: prefix = os.path.join(*components[components.index('templates') + 1:]) except ValueError: # If templates is not found we use the directory name as prefix # and hope for the best prefix = os.path.basename(tpldir) config_path = os.path.join(tpldir, '__init__.py') # Try to load templates list and names from the template module # If module file is not present skip configuration and just dump the filenames as templates if os.path.isfile(config_path): template_module = load_from_file(config_path) templates = [(os.path.join(prefix, data[0].strip()), data[1]) for data in template_module.TEMPLATES.items()] else: templates = list((os.path.join(prefix, tpl), tpl) for tpl in os.listdir(tpldir)) else: templates = list(getattr(settings, 'CMS_TEMPLATES', [])) if get_cms_setting('TEMPLATE_INHERITANCE'): templates.append((constants.TEMPLATE_INHERITANCE_MAGIC, _('Inherit the template of the nearest ancestor'))) return templates def _ensure_languages_settings(languages): valid_language_keys = ['code', 'name', 'fallbacks', 'hide_untranslated', 'redirect_on_fallback', 'public'] required_language_keys = ['code', 'name'] simple_defaults = ['public', 'redirect_on_fallback', 'hide_untranslated'] if not isinstance(languages, dict): raise ImproperlyConfigured( "CMS_LANGUAGES must be a dictionary with site IDs and 'default'" " as keys. Please check the format.") defaults = languages.pop('default', {}) default_fallbacks = defaults.get('fallbacks') needs_fallbacks = [] for key in defaults: if key not in valid_language_keys: raise ImproperlyConfigured("CMS_LANGUAGES has an invalid property in the default properties: %s" % key) for key in simple_defaults: if key not in defaults: defaults[key] = True for site, language_list in languages.items(): if site != hash(site): raise ImproperlyConfigured( "CMS_LANGUAGES can only be filled with integers (site IDs) and 'default'" " for default values. %s is not a valid key." % site) for language_object in language_list: for required_key in required_language_keys: if required_key not in language_object: raise ImproperlyConfigured("CMS_LANGUAGES has a language which is missing the required key %r " "in site %r" % (key, site)) language_code = language_object['code'] for key in language_object: if key not in valid_language_keys: raise ImproperlyConfigured( "CMS_LANGUAGES has invalid key %r in language %r in site %r" % (key, language_code, site) ) if 'fallbacks' not in language_object: if default_fallbacks: language_object['fallbacks'] = default_fallbacks else: needs_fallbacks.append((site, language_object)) for key in simple_defaults: if key not in language_object: language_object[key] = defaults[key] site_fallbacks = {} for site, language_object in needs_fallbacks: if site not in site_fallbacks: site_fallbacks[site] = [lang['code'] for lang in languages[site] if lang['public']] language_object['fallbacks'] = [lang_code for lang_code in site_fallbacks[site] if lang_code != language_object['code']] languages['default'] = defaults languages[VERIFIED] = True # this will be busted by @override_settings and cause a re-check return languages def get_languages(): if settings.SITE_ID != hash(settings.SITE_ID): raise ImproperlyConfigured( "SITE_ID must be an integer" ) if not settings.USE_I18N: return _ensure_languages_settings( {settings.SITE_ID: [{'code': settings.LANGUAGE_CODE, 'name': settings.LANGUAGE_CODE}]}) if settings.LANGUAGE_CODE not in dict(settings.LANGUAGES): raise ImproperlyConfigured( 'LANGUAGE_CODE "%s" must have a matching entry in LANGUAGES' % settings.LANGUAGE_CODE ) languages = getattr(settings, 'CMS_LANGUAGES', { settings.SITE_ID: [{'code': code, 'name': _(name)} for code, name in settings.LANGUAGES] }) if VERIFIED in languages: return languages return _ensure_languages_settings(languages) def get_unihandecode_host(): host = getattr(settings, 'CMS_UNIHANDECODE_HOST', None) if not host: return host if host.endswith('/'): return host else: return host + '/' COMPLEX = { 'CACHE_DURATIONS': get_cache_durations, 'MEDIA_ROOT': get_media_root, 'MEDIA_URL': get_media_url, # complex because not prefixed by CMS_ 'TEMPLATES': get_templates, 'LANGUAGES': get_languages, 'UNIHANDECODE_HOST': get_unihandecode_host, 'CMS_TOOLBAR_URL__EDIT_ON': get_toolbar_url__edit_on, 'CMS_TOOLBAR_URL__EDIT_OFF': get_toolbar_url__edit_off, 'CMS_TOOLBAR_URL__BUILD': get_toolbar_url__structure, 'CMS_TOOLBAR_URL__DISABLE': get_toolbar_url__disable, } DEPRECATED_CMS_SETTINGS = { # Old CMS_WIZARD_* settings to be removed in v3.5.0 'PAGE_WIZARD_DEFAULT_TEMPLATE': 'WIZARD_DEFAULT_TEMPLATE', 'PAGE_WIZARD_CONTENT_PLUGIN': 'WIZARD_CONTENT_PLUGIN', 'PAGE_WIZARD_CONTENT_PLUGIN_BODY': 'WIZARD_CONTENT_PLUGIN_BODY', 'PAGE_WIZARD_CONTENT_PLACEHOLDER': 'WIZARD_CONTENT_PLACEHOLDER', } def get_cms_setting(name): if name in COMPLEX: return COMPLEX[name]() elif name in DEPRECATED_CMS_SETTINGS: new_setting = 'CMS_%s' % name old_setting = 'CMS_%s' % DEPRECATED_CMS_SETTINGS[name] return getattr(settings, new_setting, getattr(settings, old_setting, DEFAULTS[name])) return getattr(settings, 'CMS_%s' % name, DEFAULTS[name]) def get_site_id(site): from django.contrib.sites.models import Site if isinstance(site, Site): return site.id try: return int(site) except (TypeError, ValueError): pass return settings.SITE_ID
36.301695
120
0.66953
ce1be3cf2f9052b4b6f7c4642d8d92cf96422f23
22,579
py
Python
bs_seeker2-align.py
huboqiang/BSseeker2
385f88cf78b3efced75798c00f0e7185ac064047
[ "MIT" ]
null
null
null
bs_seeker2-align.py
huboqiang/BSseeker2
385f88cf78b3efced75798c00f0e7185ac064047
[ "MIT" ]
null
null
null
bs_seeker2-align.py
huboqiang/BSseeker2
385f88cf78b3efced75798c00f0e7185ac064047
[ "MIT" ]
1
2021-11-01T03:21:47.000Z
2021-11-01T03:21:47.000Z
#!/usr/bin/env python from optparse import OptionParser, OptionGroup import re import tempfile from bs_align import output from bs_align.bs_pair_end import * from bs_align.bs_single_end import * from bs_align.bs_rrbs import * import os #import re #from bs_utils.utils import * if __name__ == '__main__': parser = OptionParser(usage="Usage: %prog {-i <single> | -1 <mate1> -2 <mate2>} -g <genome.fa> [options]") # option group 1 opt_group = OptionGroup(parser, "For single end reads") opt_group.add_option("-i", "--input", type="string", dest="infilename",help="Input read file (FORMAT: sequences, qseq, fasta, fastq). Ex: read.fa or read.fa.gz", metavar="INFILE") parser.add_option_group(opt_group) # option group 2 opt_group = OptionGroup(parser, "For pair end reads") opt_group.add_option("-1", "--input_1", type="string", dest="infilename_1",help="Input read file, mate 1 (FORMAT: sequences, qseq, fasta, fastq)", metavar="FILE") opt_group.add_option("-2", "--input_2", type="string", dest="infilename_2",help="Input read file, mate 2 (FORMAT: sequences, qseq, fasta, fastq)", metavar="FILE") opt_group.add_option("-I", "--minins",type = "int",dest = "min_insert_size", help="The minimum insert size for valid paired-end alignments [Default: %default]", default = 0) opt_group.add_option("-X", "--maxins",type = "int",dest = "max_insert_size", help="The maximum insert size for valid paired-end alignments [Default: %default]", default = 500) parser.add_option_group(opt_group) # option group 3 opt_group = OptionGroup(parser, "Reduced Representation Bisulfite Sequencing Options") opt_group.add_option("-r", "--rrbs", action="store_true", dest="rrbs", default = False, help = 'Map reads to the Reduced Representation genome') opt_group.add_option("-c", "--cut-site", type="string",dest="cut_format", help="Cutting sites of restriction enzyme. Ex: MspI(C-CGG), Mael:(C-TAG), double-enzyme MspI&Mael:(C-CGG,C-TAG). [Default: %default]", metavar="pattern", default = "C-CGG") opt_group.add_option("-L", "--low", type = "int", dest="rrbs_low_bound", help="Lower bound of fragment length (excluding C-CGG ends) [Default: %default]", default = 20) opt_group.add_option("-U", "--up", type = "int", dest="rrbs_up_bound", help="Upper bound of fragment length (excluding C-CGG ends) [Default: %default]", default = 500) parser.add_option_group(opt_group) # option group 4 opt_group = OptionGroup(parser, "General options") opt_group.add_option("-t", "--tag", type="string", dest="taginfo",help="[Y]es for undirectional lib, [N]o for directional [Default: %default]", metavar="TAG", default = 'N') opt_group.add_option("-s","--start_base",type = "int",dest = "cutnumber1", help="The first cycle of the read to be mapped [Default: %default]", default = 1) opt_group.add_option("-e","--end_base",type = "int",dest = "cutnumber2", help="The last cycle of the read to be mapped [Default: %default]", default = 200) opt_group.add_option("-a", "--adapter", type="string", dest="adapter_file",help="Input text file of your adaptor sequences (to be trimmed from the 3'end of the reads, ). " "Input one seq for dir. lib., twon seqs for undir. lib. One line per sequence. " "Only the first 10bp will be used", metavar="FILE", default = '') opt_group.add_option("--am",type = "int",dest = "adapter_mismatch", help="Number of mismatches allowed in adapter [Default: %default]", default = 0) opt_group.add_option("-g", "--genome", type="string", dest="genome",help="Name of the reference genome (should be the same as \"-f\" in bs_seeker2-build.py ) [ex. chr21_hg18.fa]") opt_group.add_option("-m", "--mismatches",type = "float", dest="no_mismatches",help="Number(>=1)/Percentage([0, 1)) of mismatches in one read. Ex: 4 (allow 4 mismatches) or 0.04 (allow 4% mismatches) [Default: %default]", default = 4) opt_group.add_option("--aligner", dest="aligner",help="Aligner program for short reads mapping: " + ', '.join(supported_aligners) + " [Default: %default]", metavar="ALIGNER", default = BOWTIE) opt_group.add_option("-p", "--path", dest="aligner_path", help="Path to the aligner program. Detected: " +' '*70+ '\t'.join(('%s: %s '+' '*70) % (al, aligner_path[al]) for al in sorted(supported_aligners)), metavar="PATH" ) opt_group.add_option("-d", "--db", type="string", dest="dbpath",help="Path to the reference genome library (generated in preprocessing genome) [Default: %default]" , metavar="DBPATH", default = reference_genome_path) opt_group.add_option("-l", "--split_line",type = "int", dest="no_split",help="Number of lines per split (the read file will be split into small files for mapping. The result will be merged. [Default: %default]", default = 4000000, metavar="INT") opt_group.add_option("-o", "--output", type="string", dest="outfilename",help="The name of output file [INFILE.bs(se|pe|rrbs)]", metavar="OUTFILE") opt_group.add_option("-f", "--output-format", type="string", dest="output_format",help="Output format: "+', '.join(output.formats)+" [Default: %default]", metavar="FORMAT", default = output.BAM) opt_group.add_option("--no-header", action="store_true", dest="no_SAM_header",help="Suppress SAM header lines [Default: %default]", default = False) try: opt_group.add_option("--temp_dir", type="string", dest="temp_dir",help="The path to your temporary directory [Detected: %default]", metavar="PATH", default = os.environ["TMPDIR"]) except: opt_group.add_option("--temp_dir", type="string", dest="temp_dir",help="The path to your temporary directory [Detected: %default]", metavar="PATH", default = tempfile.gettempdir()) opt_group.add_option("--XS",type = "string", dest="XS_filter",help="Filter definition for tag XS, format X,Y. X=0.8 and y=5 indicate that for one read, if #(mCH sites)/#(all CH sites)>0.8 and #(mCH sites)>5, then tag XS=1; or else tag XS=0. [Default: %default]", default = "0.5,5") # added by weilong opt_group.add_option("-M", "--multiple-hit", metavar="FileName", type="string", dest="Output_multiple_hit", default = None, help = 'File to store reads with multiple-hits') opt_group.add_option("-u", "--unmapped", metavar="FileName", type="string", dest="Output_unmapped_hit", default = None, help = 'File to store unmapped reads') opt_group.add_option("-v", "--version", action="store_true", dest="version",help="show version of BS-Seeker2", metavar="version", default = False) parser.add_option_group(opt_group) # option group 5 opt_group = OptionGroup(parser, "Aligner Options", "You may specify any additional options for the aligner. You just have to prefix them with " + ', '.join('%s for %s' % (aligner_options_prefixes[aligner], aligner) for aligner in supported_aligners)+ ', and BS-Seeker2 will pass them on. For example: --bt-p 4 will increase the number of threads for bowtie to 4, ' '--bt--tryhard will instruct bowtie to try as hard as possible to find valid alignments when they exist, and so on. ') parser.add_option_group(opt_group) #---------------------------------------------------------------- # separate aligner options from BS Seeker options aligner_options = {} bs_seeker_options = [] i = 1 while i < len(sys.argv): arg = sys.argv[i] m = re.match(r'^%s' % '|'.join('(%s)'% aligner_options_prefixes[al] for al in supported_aligners), arg) if m: a_opt = arg.replace(m.group(0),'-',1) aligner_options[a_opt] = [] while i + 1 < len(sys.argv) and sys.argv[i+1][0] != '-': aligner_options[a_opt].append(sys.argv[i+1]) i += 1 if len(aligner_options[a_opt]) == 0: # if it is a key-only option aligner_options[a_opt] = True else: bs_seeker_options.append(arg) i += 1 (options, args) = parser.parse_args(args = bs_seeker_options) # if no options were given by the user, print help and exit if len(sys.argv) == 1: parser.print_help() exit(0) if options.version : show_version() exit (-1) else : show_version() # check parameters # input read files if options.infilename and (options.infilename_1 or options.infilename_2): error('-i and [-1|-2] options are exclusive. You should use only one of them.') if not (options.infilename or (options.infilename_1 and options.infilename_2)): error('You should set either -i or -1 and -2 options.') # Calculate the length of read if options.infilename : read_file = options.infilename elif options.infilename_1 : read_file = options.infilename_1 else : error('You should at least specify -i or -1 options.') try : if read_file.endswith(".gz") : # support input file ending with ".gz" read_inf = gzip.open(read_file, "rb") else : read_inf=open(read_file,"r") except IOError : print "[Error] Cannot open input file : %s" % read_file exit(-1) oneline = read_inf.readline() oneline = read_inf.readline() # get the second line read_len = min(len(oneline), (options.cutnumber2-options.cutnumber1)) read_inf.close() # mismatch allowed: bowtie 1,build-in parameter '-m'; bowtie 2, post-filter paramter # mismatch should no greater than the read length no_mismatches = float(options.no_mismatches) if (no_mismatches < 1) : int_no_mismatches=int(no_mismatches * read_len) else : int_no_mismatches=int(no_mismatches) str_no_mismatches=str(options.no_mismatches) # pass to specific mode # -t, directional / un-directional library asktag=str(options.taginfo).upper() if asktag not in 'YN': error('-t option should be either Y or N, not %s' % asktag) # -a if options.aligner not in supported_aligners: error('-a option should be: %s' % ' ,'.join(supported_aligners)+'.') # path for aligner aligner_exec = os.path.expanduser( os.path.join(options.aligner_path or aligner_path[options.aligner], options.aligner) ) # -g if options.genome is None: error('-g is a required option') genome = os.path.split(options.genome)[1] genome_subdir = genome # try to guess the location of the reference genome for RRBS if options.rrbs: if options.rrbs_low_bound and options.rrbs_up_bound: if options.cut_format == "C-CGG" : genome_subdir += '_rrbs_%d_%d' % (options.rrbs_low_bound, options.rrbs_up_bound) else : genome_subdir += '_rrbs_%s_%d_%d' % ( re.sub(",","-",re.sub("-", "", options.cut_format)), options.rrbs_low_bound, options.rrbs_up_bound) else: possible_refs = filter(lambda dir: dir.startswith(genome+'_rrbs_'), os.listdir(options.dbpath)) if len(possible_refs) == 1: genome_subdir = possible_refs[0] else: error('Cannot localize unambiguously the reference genome for RRBS. ' 'Please, specify the options \"--low\" and \"--up\" that you used at the index-building step.\n' 'Possible choices are:\n' + '\n'.join([pr.split('_rrbs_')[-1].replace('_',', ') for pr in possible_refs])) db_path = os.path.expanduser(os.path.join(options.dbpath, genome_subdir + '_' + options.aligner)) if not os.path.isdir(db_path): error('Index DIR \"' + genome_subdir + '..\" cannot be found in ' + options.dbpath +'.\n\tPlease run the bs_seeker2-build.py ' 'to create it with the correct parameters for -g, -r, --low, --up and --aligner.') # default aligner options aligner_options_defaults = { BOWTIE : { '-e' : 40*int_no_mismatches, '--nomaqround' : True, '--norc' : True, #'-k' : 2, # -k=2; report two best hits, and filter by error rates '--quiet' : True, '--best' : True, # '--suppress' : '2,5,6', '--sam' : True, '--sam-nohead' : True, '-p' : 2 }, BOWTIE2 : { #'-M' : 5, '--norc' : True, '--quiet' : True, '-p' : 2, '--sam-nohead' : True, # run bowtie2 in local mode by default '--local' : '--end-to-end' not in aligner_options, #'--mm' : True, #'-k' : 2 }, SOAP : { '-v' : int_no_mismatches, '-p' : 2, '-r' : 2, '-M' : 4 }, RMAP : { '-M' : 2 # to do # control for only mapping on + strand } } if '--end-to-end' not in aligner_options: aligner_options_defaults[BOWTIE2].update({'-D' : 50}) #aligner_options_defaults[BOWTIE2].update({'-D' : 50, '-R': 3, '-N': 0, '-L': 15, '-i' : 'S,1,0.50'}) else: aligner_options_defaults[BOWTIE2].update({'-D' : 50, '-L': 15, '--score-min': 'L,-0.6,-0.6' }) aligner_options = dict(aligner_options_defaults[options.aligner], **aligner_options) aligner_options_string = lambda : ' %s ' % (' '.join(opt_key + (' ' + ' '.join(map(str,opt_val)) # join all values if the value is an array if type(opt_val) is list else ('' if type(opt_val) is bool and opt_val # output an empty string if it is a key-only option else ' ' +str(opt_val)) # output the value if it is a single value ) for opt_key, opt_val in aligner_options.iteritems() if opt_val not in [None, False])) # tmp_path = (options.outfilename or options.infilename or options.infilename_1) +'-'+ options.aligner+ '-TMP' # clear_dir(tmp_path) options.output_format = options.output_format.lower() if options.output_format not in output.formats: error('Output format should be one of: ' + ', '.join(output.formats)) if options.outfilename: outfilename = options.outfilename logfilename = outfilename elif options.infilename is not None: logfilename = options.infilename+'_'+ ('rr' if options.rrbs else '') + 'bsse' outfilename = logfilename + '.' + options.output_format else: logfilename = options.infilename_1+'_'+ ('rr' if options.rrbs else '') + 'bspe' outfilename = logfilename + '.' + options.output_format outfilename = os.path.expanduser(outfilename) logfilename = os.path.expanduser(logfilename) outfile = output.outfile(outfilename, options.output_format, deserialize(os.path.join(db_path, 'refname')), ' '.join(sys.argv), options.no_SAM_header) open_log(logfilename+'.bs_seeker2_log') aligner_title = options.aligner if options.aligner == BOWTIE2 : if '--end-to-end' in aligner_options : aligner_title = aligner_title + "-e2e" else: aligner_title = aligner_title + "-local" if options.aligner == BOWTIE : logm("Mode: Bowtie") elif options.aligner == BOWTIE2 : if '--end-to-end' not in aligner_options : logm("Mode: Bowtie2, local alignment") else : logm("Mode: Bowtie2, end-to-end alignment") tmp_path = tempfile.mkdtemp(prefix='bs_seeker2_%s_-%s-TMP-' % (os.path.split(outfilename)[1], aligner_title ), dir = options.temp_dir) (XS_x, XS_y) = options.XS_filter.split(",") XS_pct = float(XS_x) XS_count = int(XS_y) logm('Filter for tag XS: #(mCH)/#(all CH)>%.2f%% and #(mCH)>%d' % (XS_pct*100, XS_count)) logm('Temporary directory: %s' % tmp_path) logm('Reduced Representation Bisulfite Sequencing: %s' % str(options.rrbs)) if options.infilename is not None: logm('Single end') aligner_command = aligner_exec + aligner_options_string() + \ { BOWTIE : ' -k 2 %(reference_genome)s -f %(input_file)s %(output_file)s', BOWTIE2 : ' -k 2 -x %(reference_genome)s -f -U %(input_file)s -S %(output_file)s', SOAP : ' -D %(reference_genome)s.fa.index -o %(output_file)s -a %(input_file)s', RMAP : ' -c %(reference_genome)s.fa -o %(output_file)s %(input_file)s' }[options.aligner] logm ('Aligner command: %s' % aligner_command) # single end reads if options.rrbs: # RRBS scan bs_rrbs(options.infilename, asktag, options.adapter_file, options.cutnumber1, options.cutnumber2, options.no_split, str_no_mismatches, aligner_command, db_path, tmp_path, outfile, XS_pct, XS_count, options.adapter_mismatch, options.Output_multiple_hit, options.Output_unmapped_hit, options.cut_format ) else: # Normal single end scan bs_single_end( options.infilename, asktag, options.adapter_file, options.cutnumber1, options.cutnumber2, options.no_split, str_no_mismatches, aligner_command, db_path, tmp_path, outfile, XS_pct, XS_count, options.adapter_mismatch, options.Output_multiple_hit, options.Output_unmapped_hit ) else: logm('Pair end') # pair end specific default options aligner_options = dict({BOWTIE: {'--fr' : True, '-X' : options.max_insert_size, '-I' : options.min_insert_size if options.min_insert_size > 0 else None, '-a' : True # "-k 2" in bowtie would not report the best two }, BOWTIE2 : { '--fr' : True, '-X' : options.max_insert_size, '-I' : options.min_insert_size if options.min_insert_size > 0 else None, '--no-discordant' : True, '--no-mixed' : True, '-k' : 2 }, SOAP: { '-x' : options.max_insert_size, '-m' : options.min_insert_size if options.min_insert_size > 0 else 100 }}[options.aligner], # integrating 'rmappe' is different from others **aligner_options) aligner_command = aligner_exec + aligner_options_string() + \ { BOWTIE : ' %(reference_genome)s -f -1 %(input_file_1)s -2 %(input_file_2)s %(output_file)s', BOWTIE2 : ' -x %(reference_genome)s -f -1 %(input_file_1)s -2 %(input_file_2)s -S %(output_file)s', SOAP : ' -D %(reference_genome)s.fa.index -o %(output_file)s -a %(input_file_1)s -b %(input_file_2)s -2 %(output_file)s.unpaired' #, # RMAP : # rmappe, also paste two inputs into one file. }[options.aligner] logm('Aligner command: %s' % aligner_command) if '--end-to-end' not in aligner_options: aligner_options_defaults[BOWTIE2].update({'-D' : 50}) else: aligner_options_defaults[BOWTIE2].update({'-D' : 50, '-L': 15, '--score-min': 'L,-0.6,-0.6' }) bs_pair_end(options.infilename_1, options.infilename_2, asktag, options.adapter_file, options.cutnumber1, options.cutnumber2, options.no_split, str_no_mismatches, aligner_command, db_path, tmp_path, outfile, XS_pct, XS_count, options.adapter_mismatch, options.Output_multiple_hit, options.Output_unmapped_hit ) outfile.close()
56.166667
304
0.538642
05bdc090c8242089b86e8fc4740f72cec85f402d
4,629
py
Python
tests/test_connector.py
zzx4998/Python-Honeypot
78d4258bdaaacf8f0b54349f8d00c560eb6de704
[ "Apache-2.0" ]
1
2021-05-02T12:16:21.000Z
2021-05-02T12:16:21.000Z
tests/test_connector.py
zzx4998/Python-Honeypot
78d4258bdaaacf8f0b54349f8d00c560eb6de704
[ "Apache-2.0" ]
3
2021-07-28T01:25:31.000Z
2022-03-29T22:10:45.000Z
tests/test_connector.py
zzx4998/Python-Honeypot
78d4258bdaaacf8f0b54349f8d00c560eb6de704
[ "Apache-2.0" ]
1
2021-06-24T17:22:08.000Z
2021-06-24T17:22:08.000Z
import unittest import time from datetime import datetime from multiprocessing import Queue from database.connector import (credential_events, data_events, honeypot_events, insert_to_credential_events_collection, insert_to_events_data_collection, insert_to_honeypot_events_queue, insert_to_network_events_queue, network_events, push_events_queues_to_database) from database.datatypes import (CredentialEvent, EventData, HoneypotEvent, NetworkEvent) class TestConnector(unittest.TestCase): def test_push_event_queues_to_db(self): """ Test pushing Honeypot and network events from queues to database. """ honeypot_event = HoneypotEvent( ip_dest="11.22.33.44", port_dest=80, ip_src="12.23.34.45", port_src=1010, protocol='TCP', module_name="http/basic_auth_weak_password", machine_name="stockholm_server_1" ) network_event = NetworkEvent( ip_dest="13.14.15.16", port_dest=8090, ip_src="22.33.44.55", port_src=1100, protocol='UDP', machine_name="stockholm_server_1" ) honeypot_events_queue = Queue() network_events_queue = Queue() # Insert events to queues insert_to_honeypot_events_queue(honeypot_event, honeypot_events_queue) insert_to_network_events_queue(network_event, network_events_queue) push_events_queues_to_database(honeypot_events_queue, network_events_queue) # Find the records in the DB honeypot_record = honeypot_events.find_one(honeypot_event.__dict__) network_record = network_events.find_one(network_event.__dict__) # wait for queue to be empty time.sleep(5) # Compare the record found in the DB with the one pushed self.assertEqual(honeypot_record["ip_src"], honeypot_event.ip_src) self.assertEqual(honeypot_record["ip_dest"], honeypot_event.ip_dest) self.assertEqual(network_record["ip_src"], network_event.ip_src) self.assertEqual(network_record["ip_dest"], network_event.ip_dest) # Delete test events from the database honeypot_events.delete_one(honeypot_event.__dict__) network_events.delete_one(network_event.__dict__) def test_insert_to_credential_events(self): """ Test the data insertion to the credential_events collection """ credential_event = CredentialEvent( ip="88.99.11.22", username="admin", password="password", module_name="http/basic_auth_weak_password", date=datetime.now().strftime("%Y-%m-%d %H:%M:%S") ) insert_to_credential_events_collection(credential_event) # Find the record in the DB credential_record = credential_events.find_one( credential_event.__dict__ ) # Compare the record found in the DB with the one pushed self.assertEqual( credential_record["ip"], credential_event.ip ) self.assertEqual( credential_record["username"], credential_event.username ) self.assertEqual( credential_record["password"], credential_event.password ) # Delete test events from the database # credential_events.delete_one(credential_event.__dict__) def test_insert_events_data(self): """ Test the data insertion to the events_data collection """ event_data = EventData( ip="55.66.77.88", module_name="ics/veeder_root_guardian_ast", date=datetime.now(), data="Test Data" ) insert_to_events_data_collection(event_data) # Find the record in the DB event_record_data = data_events.find_one(event_data.__dict__) # Compare the record found in the DB with the one pushed self.assertEqual(event_record_data["ip"], event_data.ip) self.assertEqual( event_record_data["data"], event_data.data ) data_events.delete_one(event_data.__dict__) if __name__ == '__main__': unittest.main()
32.829787
83
0.605962
88b42ded4a5a32c4b7c77580ae7b5b4384062a5e
3,350
py
Python
bin/tumor_vis1.py
rheiland/pc4fury
41ef56afcfdfc7931fd1b82450f36fd33dfc7697
[ "BSD-3-Clause" ]
null
null
null
bin/tumor_vis1.py
rheiland/pc4fury
41ef56afcfdfc7931fd1b82450f36fd33dfc7697
[ "BSD-3-Clause" ]
null
null
null
bin/tumor_vis1.py
rheiland/pc4fury
41ef56afcfdfc7931fd1b82450f36fd33dfc7697
[ "BSD-3-Clause" ]
null
null
null
from pyMCDS_cells import pyMCDS_cells import numpy as np from fury import window, actor, ui #mcds = pyMCDS_cells('output00000001.xml','data') #mcds = pyMCDS_cells('output00000001.xml','.') # 23123 cells mcds = pyMCDS_cells('output00000001.xml','../tmpdir') # 23123 cells #mcds = pyMCDS_cells('output00000006.xml','../tmpdir') # 23123 cells print('time=',mcds.get_time()) print(mcds.data['discrete_cells'].keys()) #Out[7]: dict_keys(['ID', 'position_x', 'position_y', 'position_z', 'total_volume', 'cell_type', 'cycle_model', 'current_phase', 'elapsed_time_in_phase', 'nuclear_volume', 'cytoplasmic_volume', 'fluid_fraction', 'calcified_fraction', 'orientation_x', 'orientation_y', 'orientation_z', 'polarity', 'migration_speed', 'motility_vector_x', 'motility_vector_y', 'motility_vector_z', 'migration_bias', 'motility_bias_direction_x', 'motility_bias_direction_y', 'motility_bias_direction_z', 'persistence_time', 'motility_reserved', 'oncoprotein', 'elastic_coefficient', 'kill_rate', 'attachment_lifetime', 'attachment_rate']) # http://www.mathcancer.org/blog/paraview-for-physicell-part-1/ # The following lines assign an integer to represent # a color, defined in a Color Map. # sval = 0 # immune cells are yellow? # if val[5,idx] == 1: # [5]=cell_type # sval = 1 # lime green # if (val[6,idx] == 6) or (val[6,idx] == 7): # sval = 0 # if val[7,idx] == 100: # [7]=current_phase # sval = 3 # apoptotic: red # if val[7,idx] > 100 and val[7,idx] < 104: # sval = 2 # necrotic: brownish ncells = len(mcds.data['discrete_cells']['ID']) print('num cells = ',ncells) #xyz = np.empty((ncells,3)) xyz = np.zeros((ncells,3)) xyz[:,0] = mcds.data['discrete_cells']['position_x'] xyz[:,1] = mcds.data['discrete_cells']['position_y'] xyz[:,2] = mcds.data['discrete_cells']['position_z'] #xyz = np.random.rand((ncells,3)) #xyz[:,] # sphere V = 4/3 * pi * r^3 # r3 = V * 0.75 / pi # r = np.cbrt(r3) cell_radii = mcds.data['discrete_cells']['total_volume'] * 0.75 / np.pi cell_radii = np.cbrt(cell_radii) cell_type = mcds.data['discrete_cells']['cell_type'] print('cell_type min, max= ',cell_type.min(),cell_type.max()) #print(cell_type) #cd8 = np.where(cell_type == 3.0) #print('# cd8, macrophage, neutrophil = ',len(cd8[0]), len(macrophage[0]), len(neutrophil[0]) ) # Loop over all output files and store times and counts of cell types #num_cd8 = np.zeros(n) #num_neut = np.zeros(n) rgb = np.zeros((ncells,3)) rgb[:,0] = 1 rgb[:,1] = 1 rgb[:,2] = 0 cell_phase = mcds.data['discrete_cells']['current_phase'] print('cell_phase min, max= ',cell_phase.min(),cell_phase.max()) # e.g., 14.0 100.0 for idx in range(ncells): if cell_phase[idx] == 100.0: rgb[idx,1] = 0 #----------------------------- scene = window.Scene() # https://fury.gl/latest/reference/fury.actor.html?highlight=sphere#fury.actor.sphere colors = (1,0,0) #sphere_actor = actor.sphere(centers=xyz, colors=colors, radii=1.0) #sphere_actor = actor.sphere(centers=xyz, colors=colors, radii=cell_radii) sphere_actor = actor.sphere(centers=xyz, colors=rgb, radii=cell_radii) scene.add(sphere_actor) showm = window.ShowManager(scene, size=(800, 800), reset_camera=True, order_transparent=False) showm.initialize() showm.start() ## window.record(showm.scene, size=(900, 768), out_path="viz_timer.png")
40.853659
618
0.682388
3773d4de7f8e30dc59d6dfe6149aadc64f5e778b
300
py
Python
tests/context.py
cxz/klaws
7f072e46a5f7d263b7e059d21591f776c4c7991b
[ "MIT" ]
null
null
null
tests/context.py
cxz/klaws
7f072e46a5f7d263b7e059d21591f776c4c7991b
[ "MIT" ]
null
null
null
tests/context.py
cxz/klaws
7f072e46a5f7d263b7e059d21591f776c4c7991b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) #import sample #httpretty doesnt work with proxy for v in ['HTTP_PROXY', 'HTTPS_PROXY', 'http_proxy', 'https_proxy']: if v in os.environ: del os.environ[v]
23.076923
82
0.666667
f6c63c358cbf2da400ebc025d9f82d75f7ea05fe
9,660
py
Python
modules/text/language_model/bert-base-chinese/module.py
eepgxxy/PaddleHub
b2b6278f8a1f704994ef36474570bab0e0dbe6c0
[ "Apache-2.0" ]
2
2020-12-02T07:29:14.000Z
2021-11-12T11:13:31.000Z
modules/text/language_model/bert-base-chinese/module.py
dwuping/PaddleHub
9a3b23295947e22149cc85c17cb4cf23c03f9e06
[ "Apache-2.0" ]
null
null
null
modules/text/language_model/bert-base-chinese/module.py
dwuping/PaddleHub
9a3b23295947e22149cc85c17cb4cf23c03f9e06
[ "Apache-2.0" ]
1
2020-12-03T07:14:34.000Z
2020-12-03T07:14:34.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Union, Tuple import os from paddle.dataset.common import DATA_HOME import paddle import paddle.nn as nn import paddle.nn.functional as F from paddlehub import BertTokenizer from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel from paddlehub.module.module import moduleinfo, serving from paddlehub.utils.log import logger from paddlehub.utils.utils import download @moduleinfo( name="bert-base-chinese", version="2.0.0", summary= "bert_chinese_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters. The module is executed as paddle.dygraph.", author="paddlepaddle", author_email="", type="nlp/semantic_model") class Bert(nn.Layer): """ Bert model """ def __init__( self, task=None, load_checkpoint=None, label_map=None, ): super(Bert, self).__init__() # TODO(zhangxuefei): add token_classification task if task == 'sequence_classification': self.model = BertForSequenceClassification.from_pretrained( pretrained_model_name_or_path='bert-base-chinese') self.criterion = paddle.nn.loss.CrossEntropyLoss() self.metric = paddle.metric.Accuracy(name='acc_accumulation') elif task is None: self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-base-chinese') else: raise RuntimeError("Unknown task %s, task should be sequence_classification" % task) self.task = task self.label_map = label_map if load_checkpoint is not None and os.path.isfile(load_checkpoint): state_dict = paddle.load(load_checkpoint) self.set_state_dict(state_dict) logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint)) def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None): result = self.model(input_ids, token_type_ids, position_ids, attention_mask) if self.task is not None: logits = result probs = F.softmax(logits, axis=1) if labels is not None: loss = self.criterion(logits, labels) correct = self.metric.compute(probs, labels) acc = self.metric.update(correct) return probs, loss, acc return probs else: sequence_output, pooled_output = result return sequence_output, pooled_output def get_vocab_path(self): """ Gets the path of the module vocabulary path. """ save_path = os.path.join(DATA_HOME, 'bert-base-chinese', 'bert-base-chinese-vocab.txt') if not os.path.exists(save_path) or not os.path.isfile(save_path): url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-chinese-vocab.txt" download(url, os.path.join(DATA_HOME, 'bert-base-chinese')) return save_path def get_tokenizer(self, tokenize_chinese_chars=True): """ Gets the tokenizer that is customized for this module. Args: tokenize_chinese_chars (:obj: bool , defaults to :obj: True): Whether to tokenize chinese characters or not. Returns: tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module. """ return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path()) def training_step(self, batch: List[paddle.Tensor], batch_idx: int): """ One step for training, which should be called as forward computation. Args: batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed, such as input_ids, sent_ids, pos_ids, input_mask and labels. batch_idx(int): The index of batch. Returns: results(:obj: Dict) : The model outputs, such as loss and metrics. """ predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2]) return {'loss': avg_loss, 'metrics': {'acc': acc}} def validation_step(self, batch: List[paddle.Tensor], batch_idx: int): """ One step for validation, which should be called as forward computation. Args: batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed, such as input_ids, sent_ids, pos_ids, input_mask and labels. batch_idx(int): The index of batch. Returns: results(:obj: Dict) : The model outputs, such as metrics. """ predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2]) return {'metrics': {'acc': acc}} def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False): """ Predicts the data labels. Args: data (obj:`List(str)`): The processed data whose each element is the raw text. max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`): If set to a number, will limit the total sequence returned so that it has a maximum length. batch_size(obj:`int`, defaults to 1): The number of batch. use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not. Returns: results(obj:`list`): All the predictions labels. """ # TODO(zhangxuefei): add task token_classification task predict. if self.task not in ['sequence_classification']: raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task) paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu') tokenizer = self.get_tokenizer() examples = [] for text in data: if len(text) == 1: encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len) elif len(text) == 2: encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len) else: raise RuntimeError( 'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text)) examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids'])) def _batchify_fn(batch): input_ids = [entry[0] for entry in batch] segment_ids = [entry[1] for entry in batch] return input_ids, segment_ids # Seperates data into some batches. batches = [] one_batch = [] for example in examples: one_batch.append(example) if len(one_batch) == batch_size: batches.append(one_batch) one_batch = [] if one_batch: # The last batch whose size is less than the config batch_size setting. batches.append(one_batch) results = [] self.eval() for batch in batches: input_ids, segment_ids = _batchify_fn(batch) input_ids = paddle.to_tensor(input_ids) segment_ids = paddle.to_tensor(segment_ids) # TODO(zhangxuefei): add task token_classification postprocess after prediction. if self.task == 'sequence_classification': probs = self(input_ids, segment_ids) idx = paddle.argmax(probs, axis=1).numpy() idx = idx.tolist() labels = [self.label_map[i] for i in idx] results.extend(labels) return results @serving def get_embedding(self, texts, use_gpu=False): if self.task is not None: raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task) paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu') tokenizer = self.get_tokenizer() results = [] for text in texts: if len(text) == 1: encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False) elif len(text) == 2: encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False) else: raise RuntimeError( 'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text)) input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0) segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0) sequence_output, pooled_output = self(input_ids, segment_ids) sequence_output = sequence_output.squeeze(0) pooled_output = pooled_output.squeeze(0) results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist())) return results
43.513514
127
0.636232
1e747e7073596f5734524cf96a58ab1cec0aa7e5
3,420
py
Python
tensorforce/core/baselines/network_baseline.py
bettermanlu/tensorforce
b045da9f048897842bcecebfa30bcb94703b07fd
[ "Apache-2.0" ]
1
2019-12-21T03:31:33.000Z
2019-12-21T03:31:33.000Z
tensorforce/core/baselines/network_baseline.py
jesuscast/tensorforce-clone
524976f9cdbeebb01eb88c77ae842dbe4c4a1f36
[ "Apache-2.0" ]
null
null
null
tensorforce/core/baselines/network_baseline.py
jesuscast/tensorforce-clone
524976f9cdbeebb01eb88c77ae842dbe4c4a1f36
[ "Apache-2.0" ]
1
2019-12-21T03:31:39.000Z
2019-12-21T03:31:39.000Z
# Copyright 2017 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import print_function from __future__ import division import tensorflow as tf from tensorforce.core.networks import Linear, Network from tensorforce.core.baselines import Baseline class NetworkBaseline(Baseline): """ Baseline based on a TensorForce network, used when parameters are shared between the value function and the baseline. """ def __init__(self, network_spec, scope='network-baseline', summary_labels=()): """ Network baseline. Args: network_spec: Network specification dict """ self.network = Network.from_spec( spec=network_spec, kwargs=dict(summary_labels=summary_labels) ) assert len(self.network.internal_inputs()) == 0 self.linear = Linear(size=1, bias=0.0, scope='prediction') super(NetworkBaseline, self).__init__(scope, summary_labels) def tf_predict(self, states, update): embedding = self.network.apply(x=states, internals=(), update=update) prediction = self.linear.apply(x=embedding) return tf.squeeze(input=prediction, axis=1) def tf_regularization_loss(self): """ Creates the TensorFlow operations for the baseline regularization loss. Returns: Regularization loss tensor """ regularization_loss = super(NetworkBaseline, self).tf_regularization_loss() if regularization_loss is None: losses = list() else: losses = [regularization_loss] regularization_loss = self.network.regularization_loss() if regularization_loss is not None: losses.append(regularization_loss) regularization_loss = self.linear.regularization_loss() if regularization_loss is not None: losses.append(regularization_loss) if len(losses) > 0: return tf.add_n(inputs=losses) else: return None def get_variables(self, include_non_trainable=False): baseline_variables = super(NetworkBaseline, self).get_variables(include_non_trainable=include_non_trainable) network_variables = self.network.get_variables(include_non_trainable=include_non_trainable) layer_variables = self.linear.get_variables(include_non_trainable=include_non_trainable) return baseline_variables + network_variables + layer_variables def get_summaries(self): baseline_summaries = super(NetworkBaseline, self).get_summaries() network_summaries = self.network.get_summaries() layer_summaries = self.linear.get_summaries() return baseline_summaries + network_summaries + layer_summaries
36.382979
116
0.690351
1e9bc646a2ddcdc4d8ab4c0887b52dc9337b83e2
4,121
py
Python
old/visualizer/mzn_visualize.py
SirChri/square-grid-tiling-shapes
a8c3865b4c321d0ebcbfedbe03743a2162e4dca6
[ "Apache-2.0" ]
null
null
null
old/visualizer/mzn_visualize.py
SirChri/square-grid-tiling-shapes
a8c3865b4c321d0ebcbfedbe03743a2162e4dca6
[ "Apache-2.0" ]
null
null
null
old/visualizer/mzn_visualize.py
SirChri/square-grid-tiling-shapes
a8c3865b4c321d0ebcbfedbe03743a2162e4dca6
[ "Apache-2.0" ]
null
null
null
from cgitb import text import sys, json, re, subprocess, os, shutil solver = sys.argv[1] mainfile = sys.argv[2] inputfile = sys.argv[3] out_filepath = sys.argv[4] if len(sys.argv) > 4 else None file_path = os.path.abspath(os.path.dirname(__file__)) if not out_filepath: out_filepath = os.path.join(file_path, 'output.html') basedir = os.path.dirname(os.path.abspath(out_filepath)) os.makedirs(basedir, exist_ok=True) shutil.copyfile(os.path.join(file_path, 'static.css'), basedir+"/static.css") bashCommand = 'minizinc "{}" "{}" -O2 --solver {} --time-limit 300000 -p12 -f --output-mode json -s --soln-separator "" --search-complete-msg "OPTIMUM"'.format(mainfile, inputfile, solver) process = subprocess.Popen(bashCommand, shell=True, stdout=subprocess.PIPE) output, error = process.communicate() output = output.decode('utf-8') jsondata = re.sub(r'^\%.*\n?|^\"\"|^OPTIMUM', '', output, flags=re.MULTILINE).strip() statsdata = {} if error: print("an error has eccurred: {}".format(error)) exit(1) optimum_found = False for line in output.splitlines(): if(line.strip() == 'OPTIMUM'): optimum_found = True if(line.startswith("%%%mzn-stat: ")): line = line.replace("%%%mzn-stat: ", "") key = line.split("=")[0] val = line.split("=")[1] statsdata[key] = val #output vis_output = {} #put some data into the output vis_output["opt"] = optimum_found ## Input file read textarea_input = "" with open(inputfile, "r") as text_file: textarea_input += '<textarea disabled="disabled" class="input-textarea">' for x in text_file: if x.strip().replace(" ", "").startswith("n="): vis_output["n"] = re.findall('\d+', x)[0] elif x.strip().replace(" ", "").startswith("l="): vis_output["l"] = re.findall('\d+', x)[0] elif x.strip().replace(" ", "").startswith("r="): vis_output["r"] = re.findall('\d+', x)[0] elif x.strip().replace(" ", "").startswith("s="): vis_output["s"] = re.findall('\d+', x)[0] elif x.strip().replace(" ", "").startswith("f="): vis_output["f"] = re.findall('\d+', x)[0] textarea_input += x textarea_input += '</textarea>' ## Data handling n = 0 div_items = "" if jsondata != "=====UNKNOWN=====" and jsondata != "" and jsondata != "=====ERROR=====": data = json.loads(jsondata) vis_output["cost"] = data["obj"] else: print(vis_output) exit(1) ## Time vis_output["time"] = 0 stats = "<ul>" for key in statsdata: if key == "flatTime" or key == "solveTime": vis_output["time"] += float(statsdata[key]) value = statsdata[key] stats += "<li><b>"+key+"</b>: "+str(value)+"</li>" stats += "<li>Optimum found: "+str(optimum_found)+"</li>" stats += "</ul>" for arr in data["Board"]: n = len(arr) for j in arr: val = j["e"] general_cls = val.lower()[0] div_items += '<div class="'+general_cls+' '+val.lower()+'"></div>' out_content = """ <html> <head> <title>Output</title> <link rel="stylesheet" href="static.css"> <style> .grid { display: grid; grid-template-rows: repeat("""+str(n)+""", 1fr); grid-template-columns: repeat("""+str(n)+""", 1fr); gap: 0px; /*margin-top: 60px;*/ height: 95%; } </style> </head> <body> <div class="body"> <div class="split left"> <div class="program-instance"> <h2>Program instance</h2> """+textarea_input+""" </div> <div class="sol-statistics"> <h2>Solution statistics</h2> """+stats+""" </div> </div> <div class="split right"> <div class="grid"> """+div_items+""" </div> </div> </div> </body> </html> """ with open(out_filepath, "w") as text_file: text_file.write(out_content) print(vis_output)
29.862319
188
0.542101
75c2ce18b0c40005f4b2277b2dcbfaed18a55175
4,596
py
Python
kubernetes_asyncio/client/models/v1_non_resource_rule.py
olitheolix/kubernetes_asyncio
344426793e4e4b653bcd8e4a29c6fa4766e1fff7
[ "Apache-2.0" ]
1
2020-03-25T01:24:27.000Z
2020-03-25T01:24:27.000Z
kubernetes_asyncio/client/models/v1_non_resource_rule.py
olitheolix/kubernetes_asyncio
344426793e4e4b653bcd8e4a29c6fa4766e1fff7
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1_non_resource_rule.py
olitheolix/kubernetes_asyncio
344426793e4e4b653bcd8e4a29c6fa4766e1fff7
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1.10.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class V1NonResourceRule(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'non_resource_ur_ls': 'list[str]', 'verbs': 'list[str]' } attribute_map = { 'non_resource_ur_ls': 'nonResourceURLs', 'verbs': 'verbs' } def __init__(self, non_resource_ur_ls=None, verbs=None): # noqa: E501 """V1NonResourceRule - a model defined in Swagger""" # noqa: E501 self._non_resource_ur_ls = None self._verbs = None self.discriminator = None if non_resource_ur_ls is not None: self.non_resource_ur_ls = non_resource_ur_ls self.verbs = verbs @property def non_resource_ur_ls(self): """Gets the non_resource_ur_ls of this V1NonResourceRule. # noqa: E501 NonResourceURLs is a set of partial urls that a user should have access to. *s are allowed, but only as the full, final step in the path. \"*\" means all. # noqa: E501 :return: The non_resource_ur_ls of this V1NonResourceRule. # noqa: E501 :rtype: list[str] """ return self._non_resource_ur_ls @non_resource_ur_ls.setter def non_resource_ur_ls(self, non_resource_ur_ls): """Sets the non_resource_ur_ls of this V1NonResourceRule. NonResourceURLs is a set of partial urls that a user should have access to. *s are allowed, but only as the full, final step in the path. \"*\" means all. # noqa: E501 :param non_resource_ur_ls: The non_resource_ur_ls of this V1NonResourceRule. # noqa: E501 :type: list[str] """ self._non_resource_ur_ls = non_resource_ur_ls @property def verbs(self): """Gets the verbs of this V1NonResourceRule. # noqa: E501 Verb is a list of kubernetes non-resource API verbs, like: get, post, put, delete, patch, head, options. \"*\" means all. # noqa: E501 :return: The verbs of this V1NonResourceRule. # noqa: E501 :rtype: list[str] """ return self._verbs @verbs.setter def verbs(self, verbs): """Sets the verbs of this V1NonResourceRule. Verb is a list of kubernetes non-resource API verbs, like: get, post, put, delete, patch, head, options. \"*\" means all. # noqa: E501 :param verbs: The verbs of this V1NonResourceRule. # noqa: E501 :type: list[str] """ if verbs is None: raise ValueError("Invalid value for `verbs`, must not be `None`") # noqa: E501 self._verbs = verbs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1NonResourceRule): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.916667
178
0.596606
d8fee0180da20afe120b4fe30d12d9d3122cfcd8
982
py
Python
pylava/lint/pylava_radon.py
exKAZUu/pylava
1a42d0522fc2bb04f2849ac5544e9b1da8f7e298
[ "MIT" ]
76
2018-08-17T11:08:09.000Z
2018-10-01T16:36:50.000Z
pylava/lint/pylava_radon.py
exKAZUu/pylava
1a42d0522fc2bb04f2849ac5544e9b1da8f7e298
[ "MIT" ]
5
2018-12-05T09:36:40.000Z
2020-10-01T19:43:26.000Z
pylava/lint/pylava_radon.py
exKAZUu/pylava
1a42d0522fc2bb04f2849ac5544e9b1da8f7e298
[ "MIT" ]
7
2018-12-05T05:17:53.000Z
2021-09-27T09:05:06.000Z
from radon.visitors import ComplexityVisitor from radon.complexity import add_inner_blocks from pylava.lint import Linter as Abstract class Linter(Abstract): """Radon runner.""" @staticmethod def run(path, code=None, params=None, ignore=None, select=None, **meta): """Check code with Radon. :return list: List of errors. """ complexity = params.get('complexity', 10) no_assert = params.get('no_assert', False) show_closures = params.get('show_closures', False) visitor = ComplexityVisitor.from_code(code, no_assert=no_assert) blocks = visitor.blocks if show_closures: blocks = add_inner_blocks(blocks) return [ {'lnum': block.lineno, 'col': block.col_offset, 'type': 'R', 'number': 'R709', 'text': 'R701: %s is too complex %d' % (block.name, block.complexity)} for block in visitor.blocks if block.complexity > complexity ]
30.6875
90
0.632383
ef80afb27f29b9a8709627f30bbeef41d653912c
15,785
py
Python
pytorch_lightning/utilities/model_summary.py
AI-App/PyTorch-Lightning
ca9b25db80f08a3b9a3c448048949ec1adb845ba
[ "Apache-2.0" ]
15,666
2020-01-14T07:16:15.000Z
2022-03-31T23:22:26.000Z
pytorch_lightning/utilities/model_summary.py
AI-App/PyTorch-Lightning
ca9b25db80f08a3b9a3c448048949ec1adb845ba
[ "Apache-2.0" ]
9,140
2020-01-14T03:10:42.000Z
2022-03-31T19:57:09.000Z
pytorch_lightning/utilities/model_summary.py
AI-App/PyTorch-Lightning
ca9b25db80f08a3b9a3c448048949ec1adb845ba
[ "Apache-2.0" ]
2,340
2020-01-14T06:45:32.000Z
2022-03-31T22:57:07.000Z
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import logging from collections import OrderedDict from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch import torch.nn as nn from torch import Tensor from torch.utils.hooks import RemovableHandle import pytorch_lightning as pl from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_8 from pytorch_lightning.utilities.warnings import WarningCache log = logging.getLogger(__name__) warning_cache = WarningCache() PARAMETER_NUM_UNITS = [" ", "K", "M", "B", "T"] UNKNOWN_SIZE = "?" class LayerSummary: """Summary class for a single layer in a :class:`~pytorch_lightning.core.lightning.LightningModule`. It collects the following information: - Type of the layer (e.g. Linear, BatchNorm1d, ...) - Input shape - Output shape - Number of parameters The input and output shapes are only known after the example input array was passed through the model. Example:: >>> model = torch.nn.Conv2d(3, 8, 3) >>> summary = LayerSummary(model) >>> summary.num_parameters 224 >>> summary.layer_type 'Conv2d' >>> output = model(torch.rand(1, 3, 5, 5)) >>> summary.in_size [1, 3, 5, 5] >>> summary.out_size [1, 8, 3, 3] Args: module: A module to summarize """ def __init__(self, module: nn.Module) -> None: super().__init__() self._module = module self._hook_handle = self._register_hook() self._in_size: Optional[Union[str, List]] = None self._out_size: Optional[Union[str, List]] = None def __del__(self) -> None: self.detach_hook() def _register_hook(self) -> Optional[RemovableHandle]: """Registers a hook on the module that computes the input- and output size(s) on the first forward pass. If the hook is called, it will remove itself from the from the module, meaning that recursive models will only record their input- and output shapes once. Registering hooks on :class:`~torch.jit.ScriptModule` is not supported. Return: A handle for the installed hook, or ``None`` if registering the hook is not possible. """ def hook(_: nn.Module, inp: Any, out: Any) -> None: if len(inp) == 1: inp = inp[0] self._in_size = parse_batch_shape(inp) self._out_size = parse_batch_shape(out) assert self._hook_handle is not None self._hook_handle.remove() handle = None if not isinstance(self._module, torch.jit.ScriptModule): handle = self._module.register_forward_hook(hook) return handle def detach_hook(self) -> None: """Removes the forward hook if it was not already removed in the forward pass. Will be called after the summary is created. """ if self._hook_handle is not None: self._hook_handle.remove() @property def in_size(self) -> Union[str, List]: return self._in_size or UNKNOWN_SIZE @property def out_size(self) -> Union[str, List]: return self._out_size or UNKNOWN_SIZE @property def layer_type(self) -> str: """Returns the class name of the module.""" return str(self._module.__class__.__name__) @property def num_parameters(self) -> int: """Returns the number of parameters in this module.""" return sum(np.prod(p.shape) if not _is_lazy_weight_tensor(p) else 0 for p in self._module.parameters()) class ModelSummary: """Generates a summary of all layers in a :class:`~pytorch_lightning.core.lightning.LightningModule`. Args: model: The model to summarize (also referred to as the root module). max_depth: Maximum depth of modules to show. Use -1 to show all modules or 0 to show no summary. Defaults to 1. The string representation of this summary prints a table with columns containing the name, type and number of parameters for each layer. The root module may also have an attribute ``example_input_array`` as shown in the example below. If present, the root module will be called with it as input to determine the intermediate input- and output shapes of all layers. Supported are tensors and nested lists and tuples of tensors. All other types of inputs will be skipped and show as `?` in the summary table. The summary will also display `?` for layers not used in the forward pass. Example:: >>> import pytorch_lightning as pl >>> class LitModel(pl.LightningModule): ... ... def __init__(self): ... super().__init__() ... self.net = nn.Sequential(nn.Linear(256, 512), nn.BatchNorm1d(512)) ... self.example_input_array = torch.zeros(10, 256) # optional ... ... def forward(self, x): ... return self.net(x) ... >>> model = LitModel() >>> ModelSummary(model, max_depth=1) # doctest: +NORMALIZE_WHITESPACE | Name | Type | Params | In sizes | Out sizes ------------------------------------------------------------ 0 | net | Sequential | 132 K | [10, 256] | [10, 512] ------------------------------------------------------------ 132 K Trainable params 0 Non-trainable params 132 K Total params 0.530 Total estimated model params size (MB) >>> ModelSummary(model, max_depth=-1) # doctest: +NORMALIZE_WHITESPACE | Name | Type | Params | In sizes | Out sizes -------------------------------------------------------------- 0 | net | Sequential | 132 K | [10, 256] | [10, 512] 1 | net.0 | Linear | 131 K | [10, 256] | [10, 512] 2 | net.1 | BatchNorm1d | 1.0 K | [10, 512] | [10, 512] -------------------------------------------------------------- 132 K Trainable params 0 Non-trainable params 132 K Total params 0.530 Total estimated model params size (MB) """ def __init__(self, model: "pl.LightningModule", max_depth: int = 1) -> None: self._model = model if not isinstance(max_depth, int) or max_depth < -1: raise ValueError(f"`max_depth` can be -1, 0 or > 0, got {max_depth}.") self._max_depth = max_depth self._layer_summary = self.summarize() # 1 byte -> 8 bits # TODO: how do we compute precision_megabytes in case of mixed precision? precision = self._model.precision if isinstance(self._model.precision, int) else 32 self._precision_megabytes = (precision / 8.0) * 1e-6 @property def named_modules(self) -> List[Tuple[str, nn.Module]]: mods: List[Tuple[str, nn.Module]] if self._max_depth == 0: mods = [] elif self._max_depth == 1: # the children are the top-level modules mods = list(self._model.named_children()) else: mods = self._model.named_modules() mods = list(mods)[1:] # do not include root module (LightningModule) return mods @property def layer_names(self) -> List[str]: return list(self._layer_summary.keys()) @property def layer_types(self) -> List[str]: return [layer.layer_type for layer in self._layer_summary.values()] @property def in_sizes(self) -> List: return [layer.in_size for layer in self._layer_summary.values()] @property def out_sizes(self) -> List: return [layer.out_size for layer in self._layer_summary.values()] @property def param_nums(self) -> List[int]: return [layer.num_parameters for layer in self._layer_summary.values()] @property def total_parameters(self) -> int: return sum(p.numel() if not _is_lazy_weight_tensor(p) else 0 for p in self._model.parameters()) @property def trainable_parameters(self) -> int: return sum( p.numel() if not _is_lazy_weight_tensor(p) else 0 for p in self._model.parameters() if p.requires_grad ) @property def model_size(self) -> float: # todo: seems it does not work with quantized models - it returns 0.0 return self.total_parameters * self._precision_megabytes def summarize(self) -> Dict[str, LayerSummary]: summary = OrderedDict((name, LayerSummary(module)) for name, module in self.named_modules) if self._model.example_input_array is not None: self._forward_example_input() for layer in summary.values(): layer.detach_hook() if self._max_depth >= 1: # remove summary entries with depth > max_depth for k in [k for k in summary if k.count(".") >= self._max_depth]: del summary[k] return summary def _forward_example_input(self) -> None: """Run the example input through each layer to get input- and output sizes.""" model = self._model trainer = self._model.trainer input_ = model.example_input_array input_ = model._apply_batch_transfer_handler(input_) mode = model.training model.eval() if trainer is not None: forward_context = trainer.precision_plugin.forward_context() else: forward_context = contextlib.nullcontext() with torch.no_grad(), forward_context: # let the model hooks collect the input- and output shapes if isinstance(input_, (list, tuple)): model(*input_) elif isinstance(input_, dict): model(**input_) else: model(input_) model.train(mode) # restore mode of module def _get_summary_data(self) -> List[Tuple[str, List[str]]]: """Makes a summary listing with: Layer Name, Layer Type, Number of Parameters, Input Sizes, Output Sizes, Model Size """ arrays = [ (" ", list(map(str, range(len(self._layer_summary))))), ("Name", self.layer_names), ("Type", self.layer_types), ("Params", list(map(get_human_readable_count, self.param_nums))), ] if self._model.example_input_array is not None: arrays.append(("In sizes", [str(x) for x in self.in_sizes])) arrays.append(("Out sizes", [str(x) for x in self.out_sizes])) return arrays def __str__(self) -> str: arrays = self._get_summary_data() total_parameters = self.total_parameters trainable_parameters = self.trainable_parameters model_size = self.model_size return _format_summary_table(total_parameters, trainable_parameters, model_size, *arrays) def __repr__(self) -> str: return str(self) def parse_batch_shape(batch: Any) -> Union[str, List]: if hasattr(batch, "shape"): return list(batch.shape) if isinstance(batch, (list, tuple)): shape = [parse_batch_shape(el) for el in batch] return shape return UNKNOWN_SIZE def _format_summary_table( total_parameters: int, trainable_parameters: int, model_size: float, *cols: Tuple[str, List[str]], ) -> str: """Takes in a number of arrays, each specifying a column in the summary table, and combines them all into one big string defining the summary table that are nicely formatted.""" n_rows = len(cols[0][1]) n_cols = 1 + len(cols) # Get formatting width of each column col_widths = [] for c in cols: col_width = max(len(str(a)) for a in c[1]) if n_rows else 0 col_width = max(col_width, len(c[0])) # minimum length is header length col_widths.append(col_width) # Formatting s = "{:<{}}" total_width = sum(col_widths) + 3 * n_cols header = [s.format(c[0], l) for c, l in zip(cols, col_widths)] # Summary = header + divider + Rest of table summary = " | ".join(header) + "\n" + "-" * total_width for i in range(n_rows): line = [] for c, l in zip(cols, col_widths): line.append(s.format(str(c[1][i]), l)) summary += "\n" + " | ".join(line) summary += "\n" + "-" * total_width summary += "\n" + s.format(get_human_readable_count(trainable_parameters), 10) summary += "Trainable params" summary += "\n" + s.format(get_human_readable_count(total_parameters - trainable_parameters), 10) summary += "Non-trainable params" summary += "\n" + s.format(get_human_readable_count(total_parameters), 10) summary += "Total params" summary += "\n" + s.format(get_formatted_model_size(model_size), 10) summary += "Total estimated model params size (MB)" return summary def get_formatted_model_size(total_model_size: float) -> str: return f"{total_model_size:,.3f}" def get_human_readable_count(number: int) -> str: """Abbreviates an integer number with K, M, B, T for thousands, millions, billions and trillions, respectively. Examples: >>> get_human_readable_count(123) '123 ' >>> get_human_readable_count(1234) # (one thousand) '1.2 K' >>> get_human_readable_count(2e6) # (two million) '2.0 M' >>> get_human_readable_count(3e9) # (three billion) '3.0 B' >>> get_human_readable_count(4e14) # (four hundred trillion) '400 T' >>> get_human_readable_count(5e15) # (more than trillion) '5,000 T' Args: number: a positive integer number Return: A string formatted according to the pattern described above. """ assert number >= 0 labels = PARAMETER_NUM_UNITS num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1) num_groups = int(np.ceil(num_digits / 3)) num_groups = min(num_groups, len(labels)) # don't abbreviate beyond trillions shift = -3 * (num_groups - 1) number = number * (10 ** shift) index = num_groups - 1 if index < 1 or number >= 100: return f"{int(number):,d} {labels[index]}" return f"{number:,.1f} {labels[index]}" def _is_lazy_weight_tensor(p: Tensor) -> bool: if _TORCH_GREATER_EQUAL_1_8: from torch.nn.parameter import UninitializedParameter if isinstance(p, UninitializedParameter): warning_cache.warn( "A layer with UninitializedParameter was found. " "Thus, the total number of parameters detected may be inaccurate." ) return True return False def summarize(lightning_module: "pl.LightningModule", max_depth: int = 1) -> ModelSummary: """Summarize the LightningModule specified by `lightning_module`. Args: lightning_module: `LightningModule` to summarize. max_depth: The maximum depth of layer nesting that the summary will include. A value of 0 turns the layer summary off. Default: 1. Return: The model summary object """ return ModelSummary(lightning_module, max_depth=max_depth)
36.370968
115
0.621603
2f5df0c790ee2784450581ef84c4ca7332b2988a
1,204
py
Python
test/test_ezsignfolder_request.py
ezmaxinc/eZmax-SDK-python
6794b8001abfb7d9ae18a3b87aba164839b925a0
[ "MIT" ]
null
null
null
test/test_ezsignfolder_request.py
ezmaxinc/eZmax-SDK-python
6794b8001abfb7d9ae18a3b87aba164839b925a0
[ "MIT" ]
null
null
null
test/test_ezsignfolder_request.py
ezmaxinc/eZmax-SDK-python
6794b8001abfb7d9ae18a3b87aba164839b925a0
[ "MIT" ]
null
null
null
""" eZmax API Definition (Full) This API expose all the functionnalities for the eZmax and eZsign applications. # noqa: E501 The version of the OpenAPI document: 1.1.7 Contact: support-api@ezmax.ca Generated by: https://openapi-generator.tech """ import sys import unittest import eZmaxApi from eZmaxApi.model.field_e_ezsignfolder_sendreminderfrequency import FieldEEzsignfolderSendreminderfrequency from eZmaxApi.model.field_pki_ezsigntsarequirement_id import FieldPkiEzsigntsarequirementID globals()['FieldEEzsignfolderSendreminderfrequency'] = FieldEEzsignfolderSendreminderfrequency globals()['FieldPkiEzsigntsarequirementID'] = FieldPkiEzsigntsarequirementID from eZmaxApi.model.ezsignfolder_request import EzsignfolderRequest class TestEzsignfolderRequest(unittest.TestCase): """EzsignfolderRequest unit test stubs""" def setUp(self): pass def tearDown(self): pass def testEzsignfolderRequest(self): """Test EzsignfolderRequest""" # FIXME: construct object with mandatory attributes with example values # model = EzsignfolderRequest() # noqa: E501 pass if __name__ == '__main__': unittest.main()
29.365854
109
0.76495
c896dace3efae624ad31366bf4a3bade77421bbf
121
py
Python
1007_Difference.py
DiegoC386/EJERCICIOS-URI
b2e12b6420ea16a9060726b988ea1b35cbf312c2
[ "MIT" ]
null
null
null
1007_Difference.py
DiegoC386/EJERCICIOS-URI
b2e12b6420ea16a9060726b988ea1b35cbf312c2
[ "MIT" ]
null
null
null
1007_Difference.py
DiegoC386/EJERCICIOS-URI
b2e12b6420ea16a9060726b988ea1b35cbf312c2
[ "MIT" ]
null
null
null
A=int(input()) B=int(input()) C=int(input()) D=int(input()) DIFERENCA=((A*B)-(C*D)) print("DIFERENCA = " +str(DIFERENCA))
20.166667
37
0.619835
26e113a5c2af03b8922fc30fe3c6f745cff39476
3,376
py
Python
lib/googlecloudsdk/command_lib/compute/reservations/util.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/compute/reservations/util.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
11
2020-02-29T02:51:12.000Z
2022-03-30T23:20:08.000Z
lib/googlecloudsdk/command_lib/compute/reservations/util.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
1
2020-07-25T18:17:57.000Z
2020-07-25T18:17:57.000Z
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utility functions to consturct compute reservations message.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals def MakeReservationMessageFromArgs(messages, args, allocation_ref): accelerators = MakeGuestAccelerators(messages, getattr(args, 'accelerator', None)) local_ssds = MakeLocalSsds(messages, getattr(args, 'local_ssd', None)) specific_reservation = MakeSpecificSKUReservationMessage( messages, args.vm_count, accelerators, local_ssds, args.machine_type, args.min_cpu_platform) return MakeReservationMessage( messages, allocation_ref.Name(), specific_reservation, args.require_specific_reservation, allocation_ref.zone) def MakeGuestAccelerators(messages, accelerator_configs): """Constructs the repeated accelerator message objects.""" if accelerator_configs is None: return [] accelerators = [] for a in accelerator_configs: m = messages.AcceleratorConfig( acceleratorCount=a['count'], acceleratorType=a['type']) accelerators.append(m) return accelerators def MakeLocalSsds(messages, ssd_configs): """Constructs the repeated local_ssd message objects.""" if ssd_configs is None: return [] local_ssds = [] disk_msg = ( messages .AllocationSpecificSKUAllocationAllocatedInstancePropertiesReservedDisk) interface_msg = disk_msg.InterfaceValueValuesEnum for s in ssd_configs: if s['interface'].upper() == 'NVME': interface = interface_msg.NVME else: interface = interface_msg.SCSI m = disk_msg(diskSizeGb=s['size'], interface=interface) local_ssds.append(m) return local_ssds def MakeSpecificSKUReservationMessage(messages, vm_count, accelerators, local_ssds, machine_type, min_cpu_platform): """Constructs a single specific sku reservation message object.""" prop_msgs = ( messages.AllocationSpecificSKUAllocationReservedInstanceProperties) return messages.AllocationSpecificSKUReservation( count=vm_count, instanceProperties=prop_msgs( guestAccelerators=accelerators, localSsds=local_ssds, machineType=machine_type, minCpuPlatform=min_cpu_platform)) def MakeReservationMessage(messages, reservation_name, specific_reservation, require_specific_reservation, reservation_zone): """Constructs a single allocation message object.""" return messages.Reservation( name=reservation_name, specificReservation=specific_reservation, specificReservationRequired=require_specific_reservation, zone=reservation_zone)
35.914894
78
0.732227
de2bc6cc6daf7c9ce1854dd74615ad760ad6ab3e
17,765
py
Python
lib/cogs/mapdatabase.py
JLpython-py/Among-Us-Bot
edaedd5e820ed23b6d300070086084890ecf1ed5
[ "MIT" ]
4
2021-02-07T05:02:02.000Z
2021-06-19T04:36:59.000Z
lib/cogs/mapdatabase.py
JLpython-py/AmongUs-MapBot
edaedd5e820ed23b6d300070086084890ecf1ed5
[ "MIT" ]
15
2020-12-13T00:59:08.000Z
2021-01-24T20:01:25.000Z
lib/cogs/mapdatabase.py
JLpython-py/Among-Us-Bot
edaedd5e820ed23b6d300070086084890ecf1ed5
[ "MIT" ]
1
2020-12-12T14:50:20.000Z
2020-12-12T14:50:20.000Z
#! python3 # mapdatabase.py """ ============================================================================== MIT License Copyright (c) 2020 Jacob Lee Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ============================================================================== """ import asyncio import os import re import sqlite3 import discord from discord.ext import commands class MapDatabase(commands.Cog): """ Allows member to explore available information in Among Us """ def __init__(self, bot): self.bot = bot self.arship_parser = DatabaseParser(self.bot.airship, self.bot) self.mira_hq_parser = DatabaseParser(self.bot.mirahq, self.bot) self.polus_parser = DatabaseParser(self.bot.polus, self.bot) self.the_skeld_parser = DatabaseParser(self.bot.theskeld, self.bot) def commands_locked(self, ctx): """ Checks if commands are locked for member """ voicechannelcontrol = self.bot.get_cog("VoiceChannelControl") return voicechannelcontrol.check_commands(ctx) @commands.group( name="Airship", case_insensitive=True, pass_context=True, aliases=["A"] ) async def airship(self, ctx): """ Command group to parse Airship database """ if self.commands_locked(ctx): raise commands.CheckFailure if ctx.invoked_subcommand is None: await ctx.send("Invalid Airship command passed") @airship.group( name="retrieve", case_insensitive=True, pass_context=True, aliases=["r"] ) async def airship_retrieve(self, ctx, category, option): """ Retrieves option for category in Airship database """ await self.arship_parser.retrieve(ctx, category, option) @airship.group( name="browse", case_insensitive=True, pass_context=True, aliases=["search", "b", "s"] ) async def airship_browse(self, ctx, category): """ Allows member to browse data stored in Airship database """ await self.arship_parser.browse(ctx, category) @airship.group( name="listopts", case_insensitive=True, pass_context=True, aliases=["ls"] ) async def airship_listopts(self, ctx, category): """ Returns a list of options in Airship database for category """ await self.arship_parser.listopts(ctx, category) @commands.group( name="MIRAHQ", case_insensitive=True, pass_context=True, aliases=["MIRA", "MH"] ) async def mira_hq(self, ctx): """ Command group to parse MIRA HQ database """ if self.commands_locked(ctx): raise commands.CheckFailure if ctx.invoked_subcommand is None: await ctx.send("Invalid MIRA HQ command passed") @mira_hq.group( name="retrieve", case_insensitive=True, pass_context=True, aliases=["r"] ) async def mirahq_retrieve(self, ctx, category, option): """ Retrieves option for category in MIRA HQ database """ await self.mira_hq_parser.retrieve(ctx, category, option) @mira_hq.group( name="browse", case_insensitive=True, pass_context=True, aliases=["search", "b", "s"] ) async def mirahq_browse(self, ctx, category): """ Allows member to browse data stored in Airship database """ await self.mira_hq_parser.browse(ctx, category) @mira_hq.group( name="listopts", case_insensitive=True, pass_context=True, aliases=["ls"] ) async def mirahq_listopts(self, ctx, category): """ Returns a list of options for category in MIRA HQ database """ await self.mira_hq_parser.listopts(ctx, category) @commands.group( name="Polus", case_insensitive=True, pass_context=True, aliases=["P"] ) async def polus(self, ctx): """ Command group to parse Polus database """ if self.commands_locked(ctx): raise commands.CheckFailure if ctx.invoked_subcommand is None: await ctx.send("Invalid Polus command passed") @polus.group( name="retrieve", case_insensitive=True, pass_context=True, aliases=["r"] ) async def polus_retrieve(self, ctx, category, option): """ Retrieves option for category in Polus database """ await self.polus_parser.retrieve(ctx, category, option) @polus.group( name="browse", case_insensitive=True, pass_context=True, aliases=["search", "b", "s"] ) async def polus_browse(self, ctx, category): """ Allows member to browse data stored in Polus database """ await self.polus_parser.browse(ctx, category) @polus.group( name="listopts", case_insensitive=True, pass_context=True, aliases=["ls"] ) async def polus_listopts(self, ctx, category): """ Returns a list of options for category in Polus database """ await self.polus_parser.listopts(ctx, category) @commands.group( name="TheSkeld", case_insensitive=True, pass_context=True, aliases=["Skeld", "TS"] ) async def the_skeld(self, ctx): """ Command group to parse The Skeld database """ if self.commands_locked(ctx): raise commands.CheckFailure if ctx.invoked_subcommand is None: await ctx.send("Invalid The Skeld command passed") @the_skeld.group( name="retrieve", case_insensitive=True, pass_context=True, aliases=["r"] ) async def theskeld_retrieve(self, ctx, category, option): """ Retrieves option for category in The Skeld database """ await self.the_skeld_parser.retrieve(ctx, category, option) @the_skeld.group( name="browse", case_insensitive=True, pass_context=True, aliases=["search", "b", "s"] ) async def theskeld_browse(self, ctx, category): """ Allows member to browse data stored in The Skeld database """ await self.the_skeld_parser.browse(ctx, category) @the_skeld.group( name="listopts", case_insensitive=True, pass_context=True, aliases=["ls"] ) async def theskeld_listopts(self, ctx, category): """ Returns a list of options for category in The Skeld database """ await self.the_skeld_parser.listopts(ctx, category) @airship.error @mira_hq.error @polus.error @the_skeld.error async def locked_commands_error(self, ctx, error): """ Handles failed check in command group Occurrence: - Member is in a voice channel which has been claimed - Member in control of voice channel locks MapDatabase commands - Member attempted to invoke a MapDatabase command """ if isinstance(error, commands.CheckFailure): message = await ctx.channel.send( "`MapDatabase` commands are locked." ) await ctx.message.delete() await asyncio.sleep(10) await message.delete() class DatabaseParser: """ Parses SQLite databases in data/db """ def __init__(self, database, bot): self.database = database self.bot = bot async def retrieve(self, ctx, category, option): """ Retrieve a specific option from a category of options """ # Create query to retrieve data from database category, option = category.lower(), option.title() query = f""" SELECT * FROM {category} WHERE name=? """ # Try to retrieve data, columns from database try: content = self.database.read_query(query, option) columns = self.database.read_columns() except sqlite3.OperationalError: await ctx.channel.send(f"`{category}` is not valid.") return # Zip columns and content into a dictionary data = dict(zip(columns, content[0])) if not data: await ctx.channel.send("No results found.") # Construct embed to send data embed = discord.Embed( title=f"{category.title()}: {option}", color=0xff0000 ) # Add each column of data as embed field for item in data: embed.add_field(name=item.title(), value=data[item]) # Set footer to command group name embed.set_footer(text=ctx.command.full_parent_name) # Set embed image corresponding image in data/ image_name = f"{data['name']}.png" image_path = os.path.join( "data", ctx.command.full_parent_name.lower(), category, image_name ) image = discord.File(image_path, image_name) embed.set_image(url=f"attachment://{image_name}") # Send constructed embed await ctx.channel.send(file=image, embed=embed) async def browse(self, ctx, category): """ Allow member to scroll through options for category of map """ # Create query to retrieve data from database category = category.lower() query = f""" SELECT * FROM {category} """ # Try to retrieve data, columns from database try: content = self.database.read_query(query) columns = self.database.read_columns() except sqlite3.OperationalError: await ctx.channel.send(f"`{category}` is not valid.") return # Create nested dictionary of columns zipped with rows data = { d["name"]: d for d in [dict(zip(columns, c)) for c in content] } data = dict(sorted(data.items())) # Generate a specified embed for member to scroll data with embed, image = scrolling_embed( ctx.command.full_parent_name, category, data ) # Send generated embed with appropriate reactions message = await send_with_reactions(ctx, embed, image) # Continuously check for and handle member input while True: # Handle member reactions try: payload = await self.bot.wait_for( "raw_reaction_add", timeout=30.0, check=lambda p: p.member.id == ctx.author.id ) if payload.emoji.name in [ u'\u23ee', u'\u23ea', u'\u25c0', u'\u25b6', u'\u23e9', u'\u23ed' ]: await self.scroll(payload, data) elif payload.emoji.name == u'\u2714': await self.retrieve_from_search(payload, data) elif payload.emoji.name == u'\u274c': await self.delete_search(payload) # Break loop when member times out except asyncio.TimeoutError: break # Clear all reactions from and delete message await message.clear_reactions() await message.delete() async def listopts(self, ctx, category): """ List all options for a category of map """ # Create query to retrieve data from database category = category.lower() query = f""" SELECT * FROM {category} """ # Try to retrieve data from database try: content = self.database.read_query(query) except sqlite3.OperationalError: await ctx.channel.send(f"`{category}` is not valid.") return # Construct embed to send data embed = discord.Embed( title=category.title(), color=0xff0000, description='\n'.join(sorted([f"-{r[0]}" for r in content])) ) # Set embed footer to command group name embed.set_footer(text=ctx.command.full_parent_name) # Send constructed embed await ctx.channel.send(embed=embed) async def retrieve_from_search(self, payload, data): """ Retrieve data for current option of embed """ # Process information in payload channel = self.bot.get_channel(payload.channel_id) message = await channel.fetch_message(payload.message_id) embed = message.embeds[0] # Create regular expressions to parse embed footer_regex = re.compile( r"(Airship|MIRAHQ|Polus|TheSkeld)", re.IGNORECASE ) title_regex = re.compile(r"^(.*): (.*)") # Get name of map from embed footer mapname = footer_regex.search(embed.footer.text).group(1) # Get category and option from embed title category = title_regex.search(embed.title).group(1) option = title_regex.search(embed.title).group(2) # Construct embed to send data embed = discord.Embed( title=f"{category}: {option}", color=0xff0000 ) # Add each column of data as embed field for item in data[option]: embed.add_field( name=item.title(), value=data[option][item] ) # Set footer to name of map (command group name) embed.set_footer(text=mapname) # Set image to the corresponding image in data/ image_name = f"{option}.png" image_path = os.path.join( 'data', mapname.lower(), category.lower(), image_name ) image = discord.File(image_path, image_name) embed.set_image(url=f"attachment://{image_name}") # Send constructed embed await channel.send(file=image, embed=embed) # Delete original message await message.delete() async def scroll(self, payload, data): """ Scroll embed from search command based on the emoji used """ # Process information in payload channel = self.bot.get_channel(payload.channel_id) message = await channel.fetch_message(payload.message_id) embed = message.embeds[0] # Create regular expressions to parse embed footer_regex = re.compile( r"(Airship|MIRAHQ|Polus|TheSkeld)", re.IGNORECASE ) title_regex = re.compile( r"^(.*): (.*)" ) # Get name of map from embed footer mapname = footer_regex.search(embed.footer.text).group(1) # Get category and option from title category = title_regex.search(embed.title).group(1) option = title_regex.search(embed.title).group(2) # Get current index index = list(data).index(option) # Get new index based on emoji used scroll = { u'\u23ee': 0, u'\u23ea': index - 5, u'\u25c0': index - 1, u'\u25b6': index + 1, u'\u23e9': index + 5, u'\u23ed': -1} index = scroll.get(payload.emoji.name) % len(data) # Re-generate embed with new data embed = scrolling_embed( mapname, category, data, index=index )[0] # Edit original message with new embed await message.edit(embed=embed) await message.remove_reaction(payload.emoji, payload.member) async def delete_search(self, payload): """ Delete embed from search command """ # Process information in payload channel = self.bot.get_channel(payload.channel_id) message = await channel.fetch_message(payload.message_id) # Delete message await message.delete() def scrolling_embed(mapname, category, data, *, index=0): """ Creates an embed to allow member to browser data with """ # Get current option data option_data = list(data.values())[index] # Construct embed to send data embed = discord.Embed( title=f"{category.title()}: {option_data['name']}", color=0xff0000 ) # Set embed footer to name of map and current page embed.set_footer( text=f"{mapname}: Page {index+1}/{len(data)}" ) # Add each column of data as embed field for item in option_data: embed.add_field( name=item.title(), value=option_data[item] ) # Set embed image to map logo image_name = f"{mapname.lower()}.png" image_path = os.path.join('data', image_name) image = discord.File(image_path, image_name) embed.set_image(url=f"attachment://{image_name}") # Return constructed embed and image return embed, image async def send_with_reactions(ctx, embed, image): """ Sends message with reactions for member to browse data with """ # Send embed and image message = await ctx.channel.send( embed=embed, file=image ) # Add scroll control reactions reactions = [ u'\u23ee', u'\u23ea', u'\u25c0', u'\u25b6', u'\u23e9', u'\u23ed', u'\u2714', u'\u274c' ] for rxn in reactions: await message.add_reaction(rxn) # Return message for future reference return message def setup(bot): """ Adds MapDatabase cog """ bot.add_cog(MapDatabase(bot))
36.107724
78
0.62139
4efb5f6d769af4effcdbd8bb3d963ec85f195258
2,018
py
Python
lib/ExtraFM.py
KanHatakeyama/anneal_project2
e9b5e776f4ac1d202b952c9b6fb4ffaee833441d
[ "MIT" ]
null
null
null
lib/ExtraFM.py
KanHatakeyama/anneal_project2
e9b5e776f4ac1d202b952c9b6fb4ffaee833441d
[ "MIT" ]
null
null
null
lib/ExtraFM.py
KanHatakeyama/anneal_project2
e9b5e776f4ac1d202b952c9b6fb4ffaee833441d
[ "MIT" ]
null
null
null
from scipy.sparse import csr_matrix from pyfm import pylibfm import numpy as np from numba import jit from ScaleRegressor import ScaleRegressor default_model = pylibfm.FM(task="regression", num_iter=30, initial_learning_rate=10**-3, num_factors=10, verbose=False ) class ExtraFM: def __init__(self, model=None): if model is None: model = default_model self.model = model def fit(self, X, y): sparse_X = csr_matrix(X.astype("double")) self.model.fit(sparse_X, y) # self.qubo=calc_qubo(self.model.v,self.model.v[0].shape[0],self.model.v.shape[0])+np.diag(self.model.w) # calc offset self.b = self.model.predict(csr_matrix( np.zeros(X[0].shape[0]).astype("double"))) # self.y_max=max(y) self.y_max = 0 # self.y_max=max(y) self.y_min = 0 def predict(self, X): y = self.original_predict(X, reg_mode=False) # print(X.shape,y.shape) y = -np.log((1-y)/y) # fill nan nan_ids = np.where(y == np.inf) y[nan_ids] = self.y_max nan_ids = np.where(y == -np.inf) y[nan_ids] = self.y_min return y def original_predict(self, X, reg_mode=True): if reg_mode: self.model.fm_fast.task = 0 else: self.model.fm_fast.task = 1 sparse_X = csr_matrix(X.astype("double")) return self.model.predict(sparse_X) @jit def calc_qubo(v, dim1, dim2): qubo = np.zeros((dim1, dim1)) for k in range(dim2): for i in range(dim1): for j in range(i): val = v[k][j]*v[k][i] qubo[j, i] += val return qubo class FMRegressor(ScaleRegressor): def fit(self, X, y): X = csr_matrix(X).astype(np.double) return super().fit(X, y) def predict(self, X): X = csr_matrix(X).astype(np.double) return super().predict(X)
26.552632
112
0.558474
9fa58e88f8a32d124b5ccb2ed5b367496fa2361c
1,169
py
Python
py12/py12-packages/parts/servo.py
hiro345g/raspi_magazine_201612_toku1
5947a1c864f9844bb8da955e1b8331553546bba6
[ "MIT" ]
null
null
null
py12/py12-packages/parts/servo.py
hiro345g/raspi_magazine_201612_toku1
5947a1c864f9844bb8da955e1b8331553546bba6
[ "MIT" ]
null
null
null
py12/py12-packages/parts/servo.py
hiro345g/raspi_magazine_201612_toku1
5947a1c864f9844bb8da955e1b8331553546bba6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import wiringpi class Servo: """ SG90サーボモーター用クラス """ PWM_CLOCK = 375 def __init__(self, pin): """ 初期化メソッド """ self.pin = pin # GPIOピン self._degree = 0 # 角度の初期値 # wiringpiの初期化 # wiringpi.wiringPiSetupGpio() は __init__.py で実行済み wiringpi.pinMode(self.pin, wiringpi.PWM_OUTPUT) wiringpi.pwmSetMode(0) wiringpi.pwmSetRange(1024) wiringpi.pwmSetClock(self.PWM_CLOCK) def _set_position(self, degree): """ 角度を度数で受け取って指定位置まで回転 0より小さい値は0、180より大きい値は180へ修正 """ d = degree if degree < 0: d = 0 elif 180 < degree: d = 180 value = int(26 + (48 * d) / 90) wiringpi.pwmWrite(self.pin, value) def min(self): self.value = -1 def max(self): self.value = 1 def mid(self): self.value = 0 @property def value(self): return self._degree @value.setter def value(self, value): self._degree = (value + 1) * 90 self._set_position(self._degree) @value.deleter def value(self): del self._degree
22.056604
58
0.551754
a51ba3445e1519c5012f4e9d09682f4328a89043
81
py
Python
utils_bot/typing.py
cleoold/sendo-erika
61dcc6d7e01a59e3f454a90e3b3094eb571ff312
[ "MIT" ]
14
2019-05-28T19:44:38.000Z
2022-01-07T19:59:18.000Z
utils_bot/typing.py
cleoold/sendo-erika
61dcc6d7e01a59e3f454a90e3b3094eb571ff312
[ "MIT" ]
12
2019-06-29T17:11:05.000Z
2021-07-23T07:00:27.000Z
utils_bot/typing.py
cleoold/sendo-erika
61dcc6d7e01a59e3f454a90e3b3094eb571ff312
[ "MIT" ]
5
2019-12-12T13:50:16.000Z
2021-01-22T04:10:51.000Z
from typing import * T = TypeVar('T') def depreciated(f: T) -> T: return f
11.571429
27
0.604938
366d9f7725b435ea671eca1ce264918227124466
8,118
py
Python
pennylane/ops/qubit/observables.py
ral9000/pennylane
0afbd155d044730af546c6d90cef9d01f931632d
[ "Apache-2.0" ]
null
null
null
pennylane/ops/qubit/observables.py
ral9000/pennylane
0afbd155d044730af546c6d90cef9d01f931632d
[ "Apache-2.0" ]
null
null
null
pennylane/ops/qubit/observables.py
ral9000/pennylane
0afbd155d044730af546c6d90cef9d01f931632d
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This submodule contains the discrete-variable quantum observables, excepting the Pauli gates and Hadamard gate in ``non_parametric_ops.py``. """ from scipy.sparse import coo_matrix import numpy as np import pennylane as qml from pennylane.operation import AllWires, AnyWires, Observable from pennylane.wires import Wires from .matrix_ops import QubitUnitary class Hermitian(Observable): r"""Hermitian(A, wires) An arbitrary Hermitian observable. For a Hermitian matrix :math:`A`, the expectation command returns the value .. math:: \braket{A} = \braketT{\psi}{\cdots \otimes I\otimes A\otimes I\cdots}{\psi} where :math:`A` acts on the requested wires. If acting on :math:`N` wires, then the matrix :math:`A` must be of size :math:`2^N\times 2^N`. **Details:** * Number of wires: Any * Number of parameters: 1 * Gradient recipe: None Args: A (array): square hermitian matrix wires (Sequence[int] or int): the wire(s) the operation acts on """ num_wires = AnyWires num_params = 1 par_domain = "A" grad_method = "F" _eigs = {} def label(self, decimals=None, base_label=None): return super().label(decimals=decimals, base_label=base_label or "𝓗") @classmethod def _matrix(cls, *params): A = np.asarray(params[0]) if A.shape[0] != A.shape[1]: raise ValueError("Observable must be a square matrix.") if not np.allclose(A, A.conj().T): raise ValueError("Observable must be Hermitian.") return A @property def eigendecomposition(self): """Return the eigendecomposition of the matrix specified by the Hermitian observable. This method uses pre-stored eigenvalues for standard observables where possible and stores the corresponding eigenvectors from the eigendecomposition. It transforms the input operator according to the wires specified. Returns: dict[str, array]: dictionary containing the eigenvalues and the eigenvectors of the Hermitian observable """ Hmat = self.matrix Hkey = tuple(Hmat.flatten().tolist()) if Hkey not in Hermitian._eigs: w, U = np.linalg.eigh(Hmat) Hermitian._eigs[Hkey] = {"eigvec": U, "eigval": w} return Hermitian._eigs[Hkey] @property def eigvals(self): """Return the eigenvalues of the specified Hermitian observable. This method uses pre-stored eigenvalues for standard observables where possible and stores the corresponding eigenvectors from the eigendecomposition. Returns: array: array containing the eigenvalues of the Hermitian observable """ return self.eigendecomposition["eigval"] def diagonalizing_gates(self): """Return the gate set that diagonalizes a circuit according to the specified Hermitian observable. This method uses pre-stored eigenvalues for standard observables where possible and stores the corresponding eigenvectors from the eigendecomposition. Returns: list: list containing the gates diagonalizing the Hermitian observable """ return [QubitUnitary(self.eigendecomposition["eigvec"].conj().T, wires=list(self.wires))] class SparseHamiltonian(Observable): r"""SparseHamiltonian(H) A Hamiltonian represented directly as a sparse matrix in coordinate list (COO) format. .. warning:: ``SparseHamiltonian`` observables can only be used to return expectation values. Variances and samples are not supported. .. note:: Note that the ``SparseHamiltonian`` observable should not be used with a subset of wires. **Details:** * Number of wires: All * Number of parameters: 1 * Gradient recipe: None Args: H (coo_matrix): a sparse matrix in SciPy coordinate list (COO) format with dimension :math:`(2^n, 2^n)`, where :math:`n` is the number of wires """ num_wires = AllWires num_params = 1 par_domain = None grad_method = None def label(self, decimals=None, base_label=None): return super().label(decimals=decimals, base_label=base_label or "𝓗") @classmethod def _matrix(cls, *params): A = params[0] if not isinstance(A, coo_matrix): raise TypeError("Observable must be a scipy sparse coo_matrix.") return A def diagonalizing_gates(self): return [] class Projector(Observable): r"""Projector(basis_state, wires) Observable corresponding to the computational basis state projector :math:`P=\ket{i}\bra{i}`. The expectation of this observable returns the value .. math:: |\langle \psi | i \rangle |^2 corresponding to the probability of measuring the quantum state in the :math:`i` -th eigenstate of the specified :math:`n` qubits. For example, the projector :math:`\ket{11}\bra{11}` , or in integer notation :math:`\ket{3}\bra{3}`, is created by ``basis_state=np.array([1, 1])``. **Details:** * Number of wires: Any * Number of parameters: 1 * Gradient recipe: None Args: basis_state (tensor-like): binary input of shape ``(n, )`` wires (Iterable): wires that the projector acts on """ num_wires = AnyWires num_params = 1 par_domain = "A" def __init__(self, basis_state, wires, do_queue=True): wires = Wires(wires) shape = qml.math.shape(basis_state) if len(shape) != 1: raise ValueError(f"Basis state must be one-dimensional; got shape {shape}.") n_basis_state = shape[0] if n_basis_state != len(wires): raise ValueError( f"Basis state must be of length {len(wires)}; got length {n_basis_state}." ) basis_state = list(qml.math.toarray(basis_state)) if not set(basis_state).issubset({0, 1}): raise ValueError(f"Basis state must only consist of 0s and 1s; got {basis_state}") super().__init__(basis_state, wires=wires, do_queue=do_queue) def label(self, decimals=None, base_label=None): r"""A customizable string representation of the operator. Args: decimals=None (int): If ``None``, no parameters are included. Else, specifies how to round the parameters. base_label=None (str): overwrite the non-parameter component of the label Returns: str: label to use in drawings **Example:** >>> qml.Projector([0, 1,0], wires=(0,1,2)).label() '|010⟩⟨010|' """ if base_label is not None: return base_label basis_string = "".join(str(int(i)) for i in self.parameters[0]) return f"|{basis_string}⟩⟨{basis_string}|" @classmethod def _eigvals(cls, *params): """Eigenvalues of the specific projector operator. Returns: array: eigenvalues of the projector observable in the computational basis """ w = np.zeros(2 ** len(params[0])) idx = int("".join(str(i) for i in params[0]), 2) w[idx] = 1 return w def diagonalizing_gates(self): """Return the gate set that diagonalizes a circuit according to the specified Projector observable. Returns: list: list containing the gates diagonalizing the projector observable """ return []
32.342629
152
0.65324
849eb395ee3a9a83c72f052127d5f2e7a3112951
515
py
Python
vtkdatawidgets/_version.py
batearedcollie/jupyter-vtk-datawidgets
cf1013d71eaba49f32a6b6c280314bafdc56cb12
[ "BSD-3-Clause" ]
null
null
null
vtkdatawidgets/_version.py
batearedcollie/jupyter-vtk-datawidgets
cf1013d71eaba49f32a6b6c280314bafdc56cb12
[ "BSD-3-Clause" ]
null
null
null
vtkdatawidgets/_version.py
batearedcollie/jupyter-vtk-datawidgets
cf1013d71eaba49f32a6b6c280314bafdc56cb12
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Simula Research Laboratory. # Distributed under the terms of the Modified BSD License. version_info = (0, 1, 0, 'dev') __version__ = ".".join(map(str, version_info)) # The version of the attribute spec that this package # implements. This is the value used in # _model_module_version/_view_module_version. # # Update this value when attributes are added/removed from # the widget models, or if the serialized format changes. EXTENSION_SPEC_VERSION = '1.0.0'
30.294118
58
0.75534
b842f14385fc0d76697e1b4b6fe7367de7aa8b0c
11,462
py
Python
pybind/nos/v7_1_0/ssh_sa/ssh/client/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v7_1_0/ssh_sa/ssh/client/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v7_1_0/ssh_sa/ssh/client/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class client(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-sec-services - based on the path /ssh-sa/ssh/client. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__cipher','__mac','__key_exchange',) _yang_name = 'client' _rest_name = 'client' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__key_exchange = YANGDynClass(base=unicode, is_leaf=True, yang_name="key-exchange", rest_name="key-exchange", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Key-exchange algorithm', u'cli-full-command': None, u'callpoint': u'ssh_client_kex_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) self.__mac = YANGDynClass(base=unicode, is_leaf=True, yang_name="mac", rest_name="mac", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure MAC algorithm(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_mac_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) self.__cipher = YANGDynClass(base=unicode, is_leaf=True, yang_name="cipher", rest_name="cipher", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Cipher(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_cipher_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'ssh-sa', u'ssh', u'client'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'ssh', u'client'] def _get_cipher(self): """ Getter method for cipher, mapped from YANG variable /ssh_sa/ssh/client/cipher (string) """ return self.__cipher def _set_cipher(self, v, load=False): """ Setter method for cipher, mapped from YANG variable /ssh_sa/ssh/client/cipher (string) If this variable is read-only (config: false) in the source YANG file, then _set_cipher is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cipher() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=unicode, is_leaf=True, yang_name="cipher", rest_name="cipher", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Cipher(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_cipher_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """cipher must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=unicode, is_leaf=True, yang_name="cipher", rest_name="cipher", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Cipher(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_cipher_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True)""", }) self.__cipher = t if hasattr(self, '_set'): self._set() def _unset_cipher(self): self.__cipher = YANGDynClass(base=unicode, is_leaf=True, yang_name="cipher", rest_name="cipher", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Cipher(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_cipher_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) def _get_mac(self): """ Getter method for mac, mapped from YANG variable /ssh_sa/ssh/client/mac (string) """ return self.__mac def _set_mac(self, v, load=False): """ Setter method for mac, mapped from YANG variable /ssh_sa/ssh/client/mac (string) If this variable is read-only (config: false) in the source YANG file, then _set_mac is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_mac() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=unicode, is_leaf=True, yang_name="mac", rest_name="mac", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure MAC algorithm(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_mac_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """mac must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=unicode, is_leaf=True, yang_name="mac", rest_name="mac", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure MAC algorithm(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_mac_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True)""", }) self.__mac = t if hasattr(self, '_set'): self._set() def _unset_mac(self): self.__mac = YANGDynClass(base=unicode, is_leaf=True, yang_name="mac", rest_name="mac", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure MAC algorithm(s)', u'cli-full-command': None, u'callpoint': u'ssh_client_mac_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) def _get_key_exchange(self): """ Getter method for key_exchange, mapped from YANG variable /ssh_sa/ssh/client/key_exchange (string) """ return self.__key_exchange def _set_key_exchange(self, v, load=False): """ Setter method for key_exchange, mapped from YANG variable /ssh_sa/ssh/client/key_exchange (string) If this variable is read-only (config: false) in the source YANG file, then _set_key_exchange is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_key_exchange() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=unicode, is_leaf=True, yang_name="key-exchange", rest_name="key-exchange", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Key-exchange algorithm', u'cli-full-command': None, u'callpoint': u'ssh_client_kex_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """key_exchange must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=unicode, is_leaf=True, yang_name="key-exchange", rest_name="key-exchange", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Key-exchange algorithm', u'cli-full-command': None, u'callpoint': u'ssh_client_kex_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True)""", }) self.__key_exchange = t if hasattr(self, '_set'): self._set() def _unset_key_exchange(self): self.__key_exchange = YANGDynClass(base=unicode, is_leaf=True, yang_name="key-exchange", rest_name="key-exchange", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure Key-exchange algorithm', u'cli-full-command': None, u'callpoint': u'ssh_client_kex_cp'}}, namespace='urn:brocade.com:mgmt:brocade-sec-services', defining_module='brocade-sec-services', yang_type='string', is_config=True) cipher = __builtin__.property(_get_cipher, _set_cipher) mac = __builtin__.property(_get_mac, _set_mac) key_exchange = __builtin__.property(_get_key_exchange, _set_key_exchange) _pyangbind_elements = {'cipher': cipher, 'mac': mac, 'key_exchange': key_exchange, }
59.388601
493
0.719159
a203e0cb1c20538785456563c9637f3bf7cda63e
505
py
Python
summer_coding/22_generate_parentheses.py
Taewan-P/LeetCode_Repository
0e6a91c892fd406a2629b416f37dc6a989875fde
[ "MIT" ]
null
null
null
summer_coding/22_generate_parentheses.py
Taewan-P/LeetCode_Repository
0e6a91c892fd406a2629b416f37dc6a989875fde
[ "MIT" ]
null
null
null
summer_coding/22_generate_parentheses.py
Taewan-P/LeetCode_Repository
0e6a91c892fd406a2629b416f37dc6a989875fde
[ "MIT" ]
null
null
null
class Solution: def generateParenthesis(self, n: int) -> List[str]: result = [] def generate(l,r,s): if l < r: return if r == n: result.append(s) return if l < n: generate(l+1, r, s + "(") if r < n: generate(l, r+1, s + ")") generate(0,0,"") return result
24.047619
55
0.310891
84e12d396addcde6767815b707c4d0f59d77d081
464
py
Python
MC-MPC/scripts/tests.py
Anna-Kuosmanen/DAGChainer
2e095e30dd9b158563c05d088443d6b548eeb870
[ "MIT" ]
9
2018-04-18T12:48:49.000Z
2022-03-23T20:53:30.000Z
MC-MPC/scripts/tests.py
Anna-Kuosmanen/DAGChainer
2e095e30dd9b158563c05d088443d6b548eeb870
[ "MIT" ]
null
null
null
MC-MPC/scripts/tests.py
Anna-Kuosmanen/DAGChainer
2e095e30dd9b158563c05d088443d6b548eeb870
[ "MIT" ]
3
2019-04-10T13:02:47.000Z
2022-03-23T20:54:02.000Z
import solvers TEST_GRAPH_NAME = "test_graph" def test_sum(k, n, m): solvers.generate_k_path_graph(k, n , m, TEST_GRAPH_NAME) decomposed_sum = solvers.solve_with_decomposition(TEST_GRAPH_NAME) normal_sum = solvers.solve_without_decomposition(TEST_GRAPH_NAME) print decomposed_sum print normal_sum if( decomposed_sum != normal_sum): print "Test failed" return 0 print "Test passed." return 1 #for i in range(1, 10): test_sum(2, 3, 10)
21.090909
68
0.747845
99057610d96ed8ad1d3db6e7923d7615f1e5c3d2
3,919
py
Python
oscar/lib/python2.7/site-packages/pip/vcs/bazaar.py
sainjusajan/django-oscar
466e8edc807be689b0a28c9e525c8323cc48b8e1
[ "BSD-3-Clause" ]
null
null
null
oscar/lib/python2.7/site-packages/pip/vcs/bazaar.py
sainjusajan/django-oscar
466e8edc807be689b0a28c9e525c8323cc48b8e1
[ "BSD-3-Clause" ]
null
null
null
oscar/lib/python2.7/site-packages/pip/vcs/bazaar.py
sainjusajan/django-oscar
466e8edc807be689b0a28c9e525c8323cc48b8e1
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import import logging import os import tempfile # TODO: Get this into six.moves.urllib.parse try: from urllib import parse as urllib_parse except ImportError: import urlparse as urllib_parse from pip.utils import rmtree, display_path from pip.vcs import vcs, VersionControl from pip.download import path_to_url logger = logging.getLogger(__name__) class Bazaar(VersionControl): name = 'bzr' dirname = '.bzr' repo_name = 'branch' schemes = ( 'bzr', 'bzr+http', 'bzr+https', 'bzr+ssh', 'bzr+sftp', 'bzr+ftp', 'bzr+lp', ) def __init__(self, url=None, *args, **kwargs): super(Bazaar, self).__init__(url, *args, **kwargs) # Python >= 2.7.4, 3.3 doesn't have uses_fragment or non_hierarchical # Register lp but do not expose as a scheme to support bzr+lp. if getattr(urllib_parse, 'uses_fragment', None): urllib_parse.uses_fragment.extend(['lp']) urllib_parse.non_hierarchical.extend(['lp']) def export(self, location): """ Export the Bazaar repository at the url to the destination location """ temp_dir = tempfile.mkdtemp('-export', 'pip-') self.unpack(temp_dir) if os.path.exists(location): # Remove the location to make sure Bazaar can export it correctly rmtree(location) try: self.run_command(['export', location], cwd=temp_dir, show_stdout=False) finally: rmtree(temp_dir) def switch(self, dest, url, rev_options): self.run_command(['switch', url], cwd=dest) def update(self, dest, rev_options): self.run_command(['pull', '-q'] + rev_options, cwd=dest) def obtain(self, dest): url, rev = self.get_url_rev() if rev: rev_options = ['-r', rev] rev_display = ' (to revision %s)' % rev else: rev_options = [] rev_display = '' if self.check_destination(dest, url, rev_options, rev_display): logger.info( 'Checking out %s%s to %s', url, rev_display, display_path(dest), ) self.run_command(['branch', '-q'] + rev_options + [url, dest]) def get_url_rev(self): # hotfix the URL scheme after removing bzr+ from bzr+ssh:// readd it url, rev = super(Bazaar, self).get_url_rev() if url.startswith('ssh://'): url = 'bzr+' + url return url, rev def get_url(self, location): urls = self.run_command(['info'], show_stdout=False, cwd=location) for line in urls.splitlines(): line = line.strip() for x in ('checkout of branch: ', 'parent branch: '): if line.startswith(x): repo = line.split(x)[1] if self._is_local_repository(repo): return path_to_url(repo) return repo return None def get_revision(self, location): revision = self.run_command( ['revno'], show_stdout=False, cwd=location) return revision.splitlines()[-1] def get_src_requirement(self, dist, location): repo = self.get_url(location) if not repo: return None if not repo.lower().startswith('bzr:'): repo = 'bzr+' + repo egg_project_name = dist.egg_name().split('-', 1)[0] current_rev = self.get_revision(location) return '%s@%s#egg=%s' % (repo, current_rev, egg_project_name) def check_version(self, dest, rev_options): """Always assume the versions don't match""" return False vcs.register(Bazaar)
33.495726
78
0.560857
9857e91815e3dd666ec94d4dd1d0f69f368b494e
3,056
py
Python
tinys3/tests/test_list_request.py
CloudKilat/tinys3
32c023ead540c0764250d181e8176ff41540e1c8
[ "MIT" ]
null
null
null
tinys3/tests/test_list_request.py
CloudKilat/tinys3
32c023ead540c0764250d181e8176ff41540e1c8
[ "MIT" ]
null
null
null
tinys3/tests/test_list_request.py
CloudKilat/tinys3
32c023ead540c0764250d181e8176ff41540e1c8
[ "MIT" ]
1
2018-08-17T12:55:43.000Z
2018-08-17T12:55:43.000Z
# -*- coding: utf-8 -*- import datetime import unittest from flexmock import flexmock from tinys3.request_factory import ListRequest from tinys3 import Connection class TestNonUploadRequests(unittest.TestCase): def setUp(self): self.conn = Connection("TEST_ACCESS_KEY", "TEST_SECRET_KEY", tls=True) self.r = ListRequest(self.conn, 'prefix', 'bucket') self.adapter = flexmock() flexmock(self.r).should_receive('adapter').and_return(self.adapter) files = [""" <Contents> <Key>prefix/file1</Key> <LastModified>2013-10-31T15:38:32.000Z</LastModified> <ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag> <Size>0</Size> <StorageClass>STANDARD</StorageClass> </Contents> """, """ <Contents> <Key>prefix/file2</Key> <LastModified>2014-06-16T15:58:56.000Z</LastModified> <ETag>&quot;31ed785816f1162fca532cbc80b27266&quot;</ETag> <Size>581708</Size> <StorageClass>STANDARD</StorageClass> </Contents> """] parsed_files = [{ 'etag': 'd41d8cd98f00b204e9800998ecf8427e', 'key': 'prefix/file1', 'last_modified': datetime.datetime(2013, 10, 31, 15, 38, 32), 'size': 0, 'storage_class': 'STANDARD', }, { 'etag': '31ed785816f1162fca532cbc80b27266', 'key': 'prefix/file2', 'last_modified': datetime.datetime(2014, 6, 16, 15, 58, 56), 'size': 581708, 'storage_class': 'STANDARD', }] def setup_adapter(self, marker, files, truncated): self.adapter.should_receive('get').with_args( 'https://s3.amazonaws.com/bucket/', auth=self.conn.auth, params={'prefix': 'prefix', 'marker': marker}, ).and_return(flexmock( raise_for_status=lambda: None, content=""" <?xml version="1.0" encoding="UTF-8"?> <ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Name>bucket</Name> <Prefix>prefix</Prefix> <Marker>{0}</Marker> <MaxKeys>1000</MaxKeys> <IsTruncated>{1}</IsTruncated> {2} </ListBucketResult> """.format( marker, 'true' if truncated else 'false', files, ).strip().encode('utf-8'), )).once() def test_simple_list_request(self): """ Test the generation of a list request """ self.setup_adapter('', '\n'.join(self.files), False) self.assertEquals(list(self.r.run()), self.parsed_files) def test_chained_list_requests(self): """ Test the generation of a more complex list request """ self.setup_adapter('', self.files[0], True) self.setup_adapter('prefix/file1', self.files[1], False) self.assertEquals(list(self.r.run()), self.parsed_files)
34.727273
82
0.561518
9f3196947c3e13cafe0adca1331aa619377c2f6c
11,218
py
Python
util/job_launching/get_stats.py
kiliakis/gpgpu-sim_simulations
cbd8fa40d5716d18639f81a344d16cc9a3729df1
[ "BSD-2-Clause" ]
null
null
null
util/job_launching/get_stats.py
kiliakis/gpgpu-sim_simulations
cbd8fa40d5716d18639f81a344d16cc9a3729df1
[ "BSD-2-Clause" ]
null
null
null
util/job_launching/get_stats.py
kiliakis/gpgpu-sim_simulations
cbd8fa40d5716d18639f81a344d16cc9a3729df1
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python from optparse import OptionParser import re import os import subprocess import sys import common import math import yaml import csv # this_directory = os.path.dirname(os.path.realpath(__file__)) + "/" #*********************************************************-- # main script start #*********************************************************-- this_directory = os.path.dirname(os.path.realpath(__file__)) + "/" help_str = "There are 3 ways to use this file" +\ " 1) Specify a sim_name: \"-N <the-name>\"\n" +\ " If you do this, then the job launching logfiles" +\ " will be searched for the most recent sim_name job launch." +\ " Those specific output files will be parsed." +\ " 2) Specify a logfile: \"-l <the-file>\"\n" +\ " If you do this, then the jobs in the specific logfile will be parsed" +\ " If no options are specified, then it basically defaults to the -l" +\ " option using the latest logfile." # " 3) Specify a configs yml: \"-y <the-yaml>\"\n"+\ # " The \"configs\" and \"benchmark\" lists in the yaml are parsed."+\ # " The most recent runs of these bench+config options are searched.\n"+\ parser = OptionParser(usage=help_str) parser = OptionParser() parser.add_option("-l", "--logfile", dest="logfile", help="The logfile the status is based on. " + "By default, we will base it on the latest simulations launched.\n" + "specify \"all\" to use all the simulation logfiles in the directory", default="") parser.add_option("-r", "--run_dir", dest="run_dir", help="The directory where the benchmark/config directories exist.", default="") parser.add_option("-N", "--sim_name", dest="sim_name", help="If you are launchign run_simulations.py with the \"-N\" option" + " then you can run ./job_status.py with \"-N\" and it will" + " give you the status of the latest run with that name." + " if you want older runs from this name, then just point it directly at the" + " logfile with \"-l\"", default="") parser.add_option("-c", "--configs_yml", dest="configs_yml", default="", help="If this option is specified, then sim_name and logfile are ignored." + "Instead, the output files that will be parsed will") parser.add_option("-a", "--apps_yml", dest="apps_yml", default="", help="If this option is specified, then sim_name and logfile are ignored." + "Instead, the output files that will be parsed will") # parser.add_option("-b", "--simulator_build", dest="simulator_build", default="", # help="If you only want data from a particular build of the simulator, specify this flag.") parser.add_option("-s", "--stats_yml", dest="stats_yml", default="", help="The yaml file that defines the stats you want to collect." + " by default it uses stats/example_stats.yml") # parser.add_option("-f", "--file", dest="file", default="stdout", # help="Print to the stdout or save to file.") parser.add_option("-f", "--file", dest="file", action="store_true", help="Print to the stdout or save to file.") (options, args) = parser.parse_args() options.logfile = options.logfile.strip() options.run_dir = options.run_dir.strip() options.sim_name = options.sim_name.strip() if not options.file: options.file = "stdout" else: temp = options.logfile.split('sim_log.')[1].split('.txt')[0] options.file = '{}results/csvfiles/stats-{}.csv'.format(this_directory, temp) # options.file = options.file.strip() cuda_version = common.get_cuda_version() options.run_dir = common.dir_option_test(options.run_dir, this_directory + ("../../sim_run_%s/" % cuda_version), this_directory) if not os.path.isdir(options.run_dir): exit(options.run_dir + " does not exist - specify the run directory where the benchmark/config dirs exist") options.stats_yml = common.file_option_test(options.stats_yml, os.path.join(this_directory, "stats", "example_stats.yml"), this_directory) options.configs_yml = common.file_option_test( options.configs_yml, "", this_directory) options.apps_yml = common.file_option_test(options.apps_yml, "", this_directory) stat_map = {} configs = set() apps_and_args = set() specific_jobIds = {} stats_to_pull = {} stats_yaml = yaml.load(open(options.stats_yml)) stats = {} for stat in stats_yaml['collect']: stats_to_pull[stat] = re.compile(stats_yaml['collect'][stat]) if options.configs_yml != "" and options.apps_yml != "": for app in common.parse_app_yml(options.apps_yml): a, b, exe_name, args_list = app for args in args_list: apps_and_args.add(os.path.join(exe_name, re.sub( r"[^a-z^A-Z^0-9]", "_", args.strip()))) for config, params, gpuconf_file in common.parse_config_yml(options.configs_yml): configs.add(config) else: # This code gets the logfiles to pull the stats from if you are using the "-l" or "-N" option parsed_logfiles = [] logfiles_directory = this_directory + "../job_launching/logfiles/" if options.logfile == "": if not os.path.exists(logfiles_directory): exit("No logfile specified and the default logfile directory cannot be found") all_logfiles = [os.path.join(logfiles_directory, f) for f in os.listdir(logfiles_directory) if(re.match(r'sim_log.*', f))] if len(all_logfiles) == 0: exit("ERROR - No Logfiles in " + logfiles_directory) if options.sim_name != "": named_sim = [] for logf in all_logfiles: match_str = r".*\/sim_log\.{0}\..*".format(options.sim_name) if re.match(match_str, logf): named_sim.append(logf) if len(named_sim) == 0: exit("Could not find logfiles for job with the name \"{0}\"".format( options.sim_name)) all_logfiles = named_sim parsed_logfiles.append(max(all_logfiles, key=os.path.getmtime)) elif options.logfile == "all": parsed_logfiles = [os.path.join(logfiles_directory, f) for f in os.listdir(logfiles_directory) if(re.match(r'sim_log.*\.latest', f))] else: parsed_logfiles.append(common.file_option_test( options.logfile, "", this_directory)) # print "Using logfiles " + str(parsed_logfiles) for logfile in parsed_logfiles: if not os.path.isfile(logfile): exit("Cannot open Logfile " + logfile) with open(logfile) as f: for line in f: time, jobId, app, args, config, jobname = line.split() configs.add(config) app_and_args = os.path.join(app, args) apps_and_args.add(app_and_args) specific_jobIds[config + app_and_args] = jobId for app_and_args in apps_and_args: for config in configs: # now get the right output file output_dir = os.path.join(options.run_dir, app_and_args, config) if not os.path.isdir(output_dir): print("WARNING the outputdir " + output_dir + " does not exist") continue if config + app_and_args in specific_jobIds: jobId = specific_jobIds[config + app_and_args] outfile = os.path.join(output_dir, app_and_args.replace( "/", "-") + "." + "o" + jobId) else: all_outfiles = [os.path.join(output_dir, f) for f in os.listdir(output_dir) if(re.match(r'.*\.o[0-9]+', f))] outfile = max(all_outfiles, key=os.path.getmtime) stat_found = set() if not os.path.isfile(outfile): print "WARNING - " + outfile + " does not exist" continue # Do a quick 100-line pass to get the GPGPU-Sim Version number MAX_LINES = 100 count = 0 for line in open(outfile).readlines(): count += 1 if count >= MAX_LINES: break build_match = re.match(".*\[build\s+(.*)\].*", line) if build_match: stat_map[app_and_args + config + "GPGPU-Sim-build"] = build_match.group(1) break # Only go up for 10000 lines looking for stuff MAX_LINES = 100000 count = 0 for line in reversed(open(outfile).readlines()): count += 1 if count >= MAX_LINES: break # pull out some stats for stat_name, token in stats_to_pull.iteritems(): if stat_name in stat_found: continue existance_test = token.search(line.rstrip()) if existance_test != None: stat_found.add(stat_name) number = existance_test.group(1).strip() # if app_and_args + config + stat_name not in stat_map: # stat_map[app_and_args + config + stat_name] = [] # stat_map[app_and_args + config + stat_name].append(number) stat_map[app_and_args + config + stat_name] = number if len(stat_found) == len(stats_to_pull): break rows = [['app_and_args', 'config', 'metric', 'num_kernels', 'valuelist']] for appargs in apps_and_args: for config in configs: for stat_name in stats_to_pull: row = [appargs, config, stat_name] if appargs + config + stat_name in stat_map: row.append(1) row.append(stat_map[appargs + config + stat_name]) else: row += ['0', 'nan'] rows.append(row) if options.file != 'stdout': with open(options.file, 'w') as f: writer = csv.writer(f, delimiter='\t') writer.writerows(rows) else: for r in rows: print '{:<25.25}\t{:<20.20}\t{:<20.20}\t{:<4}\t{:<50.50}'.format(*r) # else: # print header # print rows # After collection, spew out the tables # DIVISION = "-" * 100 # csv_str = "" # # Just adding this in here since it is a special case and is not parsed like # # everything else, because you need to read from the beginning not the end # stats_to_pull["GPGPU-Sim-build"] = "" # for stat_name in stats_to_pull: # csv_str += DIVISION + "\n" # csv_str += stat_name + "," # for config in configs: # csv_str += config + "," # csv_str += "\n" # for appargs in apps_and_args: # csv_str += appargs + "," # for config in configs: # if appargs + config + stat_name in stat_map: # csv_str += stat_map[appargs + config + stat_name] + "," # else: # csv_str += "NA," # csv_str += "\n" # csv_str += "\n" # print csv_str
42.492424
122
0.580496
9daf9ffd93c109545d68a60cc75ca7bfad124397
1,083
py
Python
numba/ocl/tests/oclpy/test_idiv.py
SPIRV/NUMBA
6b93f44c923e7bf8cd9f95cc5188bba3aea4e75d
[ "BSD-2-Clause", "MIT" ]
4
2017-06-30T14:22:30.000Z
2021-01-11T16:47:23.000Z
numba/ocl/tests/oclpy/test_idiv.py
SPIRV/NUMBA
6b93f44c923e7bf8cd9f95cc5188bba3aea4e75d
[ "BSD-2-Clause", "MIT" ]
1
2017-12-21T23:31:59.000Z
2017-12-29T16:56:05.000Z
numba/ocl/tests/oclpy/test_idiv.py
SPIRV/NUMBA
6b93f44c923e7bf8cd9f95cc5188bba3aea4e75d
[ "BSD-2-Clause", "MIT" ]
null
null
null
from __future__ import print_function, division, absolute_import import numpy as np from numba import ocl, float32, float64, int32 from numba.ocl.testing import unittest class TestOclIDiv(unittest.TestCase): def test_inplace_div(self): @ocl.jit('(float32[:,:], int32, int32)') def div(grid, l_x, l_y): for x in range(l_x): for y in range(l_y): grid[x, y] /= 2.0 x = np.ones((2, 2), dtype=np.float32) grid = ocl.to_device(x) div(grid, 2, 2) y = grid.copy_to_host() self.assertTrue(np.all(y == 0.5)) def test_inplace_div_double(self): @ocl.jit('(float64[:, :], int32, int32)') def div_double(grid, l_x, l_y): for x in range(l_x): for y in range(l_y): grid[x, y] /= 2.0 x = np.ones((2, 2), dtype=np.float64) grid = ocl.to_device(x) div_double(grid, 2, 2) y = grid.copy_to_host() self.assertTrue(np.all(y == 0.5)) if __name__ == '__main__': unittest.main()
27.075
64
0.551247
812e887bc2d4396d07bf34fb1f219c44d9c81004
5,544
py
Python
src/transformers/models/cpm/tokenization_cpm.py
dctelus/transformers
6786cbc4b14ebff0ac59c768cadd109391db9a08
[ "Apache-2.0" ]
8,028
2018-11-05T15:19:44.000Z
2019-07-16T09:14:59.000Z
src/transformers/models/cpm/tokenization_cpm.py
arron1227/transformers
b18dfd95e1f60ae65a959a7b255fc06522170d1b
[ "Apache-2.0" ]
731
2018-11-05T21:35:52.000Z
2019-07-16T09:51:26.000Z
src/transformers/models/cpm/tokenization_cpm.py
arron1227/transformers
b18dfd95e1f60ae65a959a7b255fc06522170d1b
[ "Apache-2.0" ]
2,106
2018-11-05T15:29:15.000Z
2019-07-16T08:51:57.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes.""" from ...utils import logging from ..xlnet.tokenization_xlnet import XLNetTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class CpmTokenizer(XLNetTokenizer): """Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models.""" def __init__(self, *args, **kwargs): """ Construct a CPM tokenizer. Based on [Jieba](https://pypi.org/project/jieba/) and [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`): Additional special tokens used by the tokenizer. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ super().__init__(*args, **kwargs) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) self.jieba = jieba self.translator = str.maketrans(" \n", "\u2582\u2583") def _tokenize(self, text, *args, **kwargs): text = [x.translate(self.translator) for x in self.jieba.cut(text, cut_all=False)] text = " ".join(text) return super()._tokenize(text, *args, **kwargs) def _decode(self, *args, **kwargs): text = super()._decode(*args, **kwargs) text = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n") return text
47.793103
119
0.633478
833016b1eca4fdc2d889cef89e39d1fc4fa992a1
25,740
py
Python
language-modelling/transformer_xl_wt2/pytorch/train.py
ischlag/Fast-Weight-Memory-public
64c077f02ec320ec535cb66db3600453e1ef445f
[ "MIT" ]
17
2021-01-17T02:13:15.000Z
2021-12-12T13:55:33.000Z
language-modelling/transformer_xl_wt2/pytorch/train.py
ischlag/Fast-Weight-Memory-public
64c077f02ec320ec535cb66db3600453e1ef445f
[ "MIT" ]
null
null
null
language-modelling/transformer_xl_wt2/pytorch/train.py
ischlag/Fast-Weight-Memory-public
64c077f02ec320ec535cb66db3600453e1ef445f
[ "MIT" ]
5
2021-03-08T16:10:38.000Z
2022-01-04T14:42:16.000Z
# coding: utf-8 import argparse import time import math import os, sys import itertools import numpy as np import torch import torch.nn as nn import torch.optim as optim from data_utils import get_lm_corpus from mem_transformer import MemTransformerLM from utils.exp_utils import create_exp_dir from utils.data_parallel import BalancedDataParallel parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model') parser.add_argument('--data', type=str, default='../data/wikitext-103', help='location of the data corpus') parser.add_argument('--dataset', type=str, default='wt103', choices=['wt103', 'lm1b', 'enwik8', 'text8'], help='dataset name') parser.add_argument('--n_layer', type=int, default=12, help='number of total layers') parser.add_argument('--n_head', type=int, default=10, help='number of heads') parser.add_argument('--d_head', type=int, default=50, help='head dimension') parser.add_argument('--d_embed', type=int, default=-1, help='embedding dimension') parser.add_argument('--d_model', type=int, default=500, help='model dimension') parser.add_argument('--d_inner', type=int, default=1000, help='inner dimension in FF') parser.add_argument('--dropout', type=float, default=0.0, help='global dropout rate') parser.add_argument('--dropoute', type=float, default=0.1, help='Discrete input embedding dropout rate.') parser.add_argument('--dropouto', type=float, default=0.1, help='Output dropout rate.') parser.add_argument('--dropouti', type=float, default=0.1, help='Input embedding dropout rate.') parser.add_argument('--dropatt', type=float, default=0.0, help='attention probability dropout rate') parser.add_argument('--init', default='normal', type=str, help='parameter initializer to use.') parser.add_argument('--emb_init', default='normal', type=str, help='parameter initializer to use.') parser.add_argument('--init_range', type=float, default=0.1, help='parameters initialized by U(-init_range, init_range)') parser.add_argument('--emb_init_range', type=float, default=0.01, help='parameters initialized by U(-init_range, init_range)') parser.add_argument('--init_std', type=float, default=0.02, help='parameters initialized by N(0, init_std)') parser.add_argument('--proj_init_std', type=float, default=0.01, help='parameters initialized by N(0, init_std)') parser.add_argument('--optim', default='adam', type=str, choices=['adam', 'sgd', 'adagrad'], help='optimizer to use.') parser.add_argument('--lr', type=float, default=0.00025, help='initial learning rate (0.00025|5 for adam|sgd)') parser.add_argument('--mom', type=float, default=0.0, help='momentum for sgd') parser.add_argument('--scheduler', default='cosine', type=str, choices=['cosine', 'inv_sqrt', 'dev_perf', 'constant'], help='lr scheduler to use.') parser.add_argument('--warmup_step', type=int, default=0, help='upper epoch limit') parser.add_argument('--decay_rate', type=float, default=0.5, help='decay factor when ReduceLROnPlateau is used') parser.add_argument('--lr_min', type=float, default=0.0, help='minimum learning rate during annealing') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--clip_nonemb', action='store_true', help='only clip the gradient of non-embedding params') parser.add_argument('--max_step', type=int, default=100000, help='upper epoch limit') parser.add_argument('--batch_size', type=int, default=60, help='batch size') parser.add_argument('--batch_chunk', type=int, default=1, help='split batch into chunks to save memory') parser.add_argument('--tgt_len', type=int, default=70, help='number of tokens to predict') parser.add_argument('--eval_tgt_len', type=int, default=50, help='number of tokens to predict for evaluation') parser.add_argument('--ext_len', type=int, default=0, help='length of the extended context') parser.add_argument('--mem_len', type=int, default=0, help='length of the retained previous heads') parser.add_argument('--not_tied', action='store_true', help='do not tie the word embedding and softmax weights') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--adaptive', action='store_true', help='use adaptive softmax') parser.add_argument('--div_val', type=int, default=1, help='divident value for adapative input and softmax') parser.add_argument('--pre_lnorm', action='store_true', help='apply LayerNorm to the input instead of the output') parser.add_argument('--varlen', action='store_true', help='use variable length') parser.add_argument('--multi_gpu', action='store_true', help='use multiple GPU') parser.add_argument('--log-interval', type=int, default=200, help='report interval') parser.add_argument('--eval-interval', type=int, default=500, help='evaluation interval') parser.add_argument('--work-dir', default='LM-TFM', type=str, help='experiment directory.') parser.add_argument('--restart', action='store_true', help='restart training from the saved checkpoint') parser.add_argument('--restart_dir', type=str, default='', help='restart dir') parser.add_argument('--debug', action='store_true', help='run in debug mode (do not create exp dir)') parser.add_argument('--same_length', action='store_true', help='use the same attn length for all tokens') parser.add_argument('--attn_type', type=int, default=0, help='attention type. 0 for ours, 1 for Shaw et al,' '2 for Vaswani et al, 3 for Al Rfou et al.') parser.add_argument('--clamp_len', type=int, default=-1, help='use the same pos embeddings after clamp_len') parser.add_argument('--eta_min', type=float, default=0.0, help='min learning rate for cosine scheduler') parser.add_argument('--gpu0_bsz', type=int, default=-1, help='batch size on gpu 0') parser.add_argument('--max_eval_steps', type=int, default=-1, help='max eval steps') parser.add_argument('--sample_softmax', type=int, default=-1, help='number of samples in sampled softmax') parser.add_argument('--patience', type=int, default=0, help='patience') parser.add_argument('--finetune_v2', action='store_true', help='finetune v2') parser.add_argument('--finetune_v3', action='store_true', help='finetune v3') parser.add_argument('--fp16', action='store_true', help='Run in pseudo-fp16 mode (fp16 storage fp32 math).') parser.add_argument('--static-loss-scale', type=float, default=1, help='Static loss scale, positive power of 2 values can ' 'improve fp16 convergence.') parser.add_argument('--dynamic-loss-scale', action='store_true', help='Use dynamic loss scaling. If supplied, this argument' ' supersedes --static-loss-scale.') parser.add_argument('--wdecay', type=float, default=1.2e-6, help='weight decay applied to all weights') args = parser.parse_args() print(args) args.tied = not args.not_tied if args.d_embed < 0: args.d_embed = args.d_model assert args.ext_len >= 0, 'extended context length must be non-negative' assert args.batch_size % args.batch_chunk == 0 args.work_dir = '{}-{}-{}'.format(args.work_dir, args.dataset, args.seed) #args.work_dir = os.path.join(args.work_dir, time.strftime('%Y%m%d-%H%M%S')) logging = create_exp_dir(args.work_dir, debug=args.debug) # Set the random seed manually for reproducibility. np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print('WARNING: You have a CUDA device, so you should probably run with --cuda') else: torch.cuda.manual_seed_all(args.seed) # Validate `--fp16` option if args.fp16: if not args.cuda: print('WARNING: --fp16 requires --cuda, ignoring --fp16 option') args.fp16 = False else: try: from apex.fp16_utils import FP16_Optimizer except: print('WARNING: apex not installed, ignoring --fp16 option') args.fp16 = False device = torch.device('cuda' if args.cuda else 'cpu') ############################################################################### # Load data ############################################################################### corpus = get_lm_corpus(args.data, args.dataset) ntokens = len(corpus.vocab) args.n_token = ntokens eval_batch_size = 10 tr_iter = corpus.get_iterator('train', args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) va_iter = corpus.get_iterator('valid', eval_batch_size, args.eval_tgt_len, device=device, ext_len=args.ext_len) te_iter = corpus.get_iterator('test', eval_batch_size, args.eval_tgt_len, device=device, ext_len=args.ext_len) # adaptive softmax / embedding cutoffs, tie_projs = [], [False] if args.adaptive: assert args.dataset in ['wt103', 'lm1b'] if args.dataset == 'wt103': cutoffs = [20000, 40000, 200000] tie_projs += [True] * len(cutoffs) elif args.dataset == 'lm1b': cutoffs = [60000, 100000, 640000] tie_projs += [False] * len(cutoffs) ############################################################################### # Build the model ############################################################################### def init_weight(weight): if args.init == 'uniform': nn.init.uniform_(weight, -args.init_range, args.init_range) #nn.init.xavier_uniform(weight)#, -args.init_range, args.init_range) elif args.init == 'normal': nn.init.normal_(weight, 0.0, args.init_std) #nn.init.xavier_normal(weight)#, -args.init_range, args.init_range) def init_bias(bias): nn.init.constant_(bias, 0.0) def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: if hasattr(m, 'weight') and m.weight is not None: init_weight(m.weight) if hasattr(m, 'bias') and m.bias is not None: init_bias(m.bias) elif classname.find('AdaptiveEmbedding') != -1: if hasattr(m, 'emb_projs'): for i in range(len(m.emb_projs)): if m.emb_projs[i] is not None: nn.init.normal_(m.emb_projs[i], 0.0, args.proj_init_std) elif classname.find('Embedding') != -1: if hasattr(m, 'weight'): init_weight(m.weight) elif classname.find('ProjectedAdaptiveLogSoftmax') != -1: if hasattr(m, 'cluster_weight') and m.cluster_weight is not None: init_weight(m.cluster_weight) if hasattr(m, 'cluster_bias') and m.cluster_bias is not None: init_bias(m.cluster_bias) if hasattr(m, 'out_projs'): for i in range(len(m.out_projs)): if m.out_projs[i] is not None: nn.init.normal_(m.out_projs[i], 0.0, args.proj_init_std) elif classname.find('LayerNorm') != -1: if hasattr(m, 'weight'): nn.init.normal_(m.weight, 1.0, args.init_std) if hasattr(m, 'bias') and m.bias is not None: init_bias(m.bias) elif classname.find('TransformerLM') != -1: if hasattr(m, 'r_emb'): init_weight(m.r_emb) if hasattr(m, 'r_w_bias'): init_weight(m.r_w_bias) if hasattr(m, 'r_r_bias'): init_weight(m.r_r_bias) if hasattr(m, 'r_bias'): init_bias(m.r_bias) # CHANGE 9 elif classname.find('RelPartialLearnableDecoderLayer') != -1: for layer in m.pos_ff.CoreNet.modules(): if hasattr(layer, 'weight'): init_weight(layer.weight) if hasattr(layer, 'bias'): init_bias(layer.bias) def update_dropout(m): classname = m.__class__.__name__ if classname.find('Dropout') != -1: if hasattr(m, 'p'): m.p = args.dropout def update_dropatt(m): if hasattr(m, 'dropatt'): m.dropatt.p = args.dropatt def init_all_weights(model): for name, module in model.named_modules(): if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight.data) print(module.weight.shape) if hasattr(module, 'bias'): module.weight.data.zero_() else: print(type(module)) if args.restart: with open(os.path.join(args.restart_dir, 'model.pt'), 'rb') as f: model = torch.load(f) if not args.fp16: model = model.float() model.apply(update_dropout) model.apply(update_dropatt) else: model = MemTransformerLM(ntokens, args.n_layer, args.n_head, args.d_model, args.d_head, args.d_inner, args.dropout, args.dropatt, tie_weight=args.tied, d_embed=args.d_embed, div_val=args.div_val, tie_projs=tie_projs, pre_lnorm=args.pre_lnorm, tgt_len=args.tgt_len, ext_len=args.ext_len, mem_len=args.mem_len, cutoffs=cutoffs, same_length=args.same_length, attn_type=args.attn_type, clamp_len=args.clamp_len, sample_softmax=args.sample_softmax, dropoute=args.dropoute, dropouti=args.dropouti, dropouto=args.dropouto) model.apply(weights_init) model.word_emb.apply(weights_init) # ensure embedding init is not overridden by out_layer in case of weight sharing #init_all_weights(model) args.n_all_param = sum([p.nelement() for p in model.parameters()]) args.n_nonemb_param = sum([p.nelement() for p in model.layers.parameters()]) if args.fp16: model = model.half() if args.multi_gpu: model = model.to(device) if args.gpu0_bsz >= 0: para_model = BalancedDataParallel(args.gpu0_bsz // args.batch_chunk, model, dim=1).to(device) else: para_model = nn.DataParallel(model, dim=1).to(device) else: para_model = model.to(device) #### optimizer if args.optim.lower() == 'sgd': if args.sample_softmax > 0: dense_params, sparse_params = [], [] for param in model.parameters(): if param.size() == model.word_emb.weight.size(): sparse_params.append(param) else: dense_params.append(param) optimizer_sparse = optim.SGD(sparse_params, lr=args.lr * 2) optimizer = optim.SGD(dense_params, lr=args.lr, momentum=args.mom) else: optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.mom) elif args.optim.lower() == 'adam': if args.sample_softmax > 0: dense_params, sparse_params = [], [] for param in model.parameters(): if param.size() == model.word_emb.weight.size(): sparse_params.append(param) else: dense_params.append(param) # CHANGE 10 optimizer_sparse = optim.SparseAdam(sparse_params, lr=args.lr, weight_decay=args.wdecay) optimizer = optim.Adam(dense_params, lr=args.lr, weight_decay=args.wdecay) else: # CHANGE 10 optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wdecay) elif args.optim.lower() == 'adagrad': optimizer = optim.Adagrad(model.parameters(), lr=args.lr) #### scheduler if args.scheduler == 'cosine': # here we do not set eta_min to lr_min to be backward compatible # because in previous versions eta_min is default to 0 # rather than the default value of lr_min 1e-6 scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.max_step, eta_min=args.eta_min) # should use eta_min arg if args.sample_softmax > 0: scheduler_sparse = optim.lr_scheduler.CosineAnnealingLR(optimizer_sparse, args.max_step, eta_min=args.eta_min) # should use eta_min arg elif args.scheduler == 'inv_sqrt': # originally used for Transformer (in Attention is all you need) def lr_lambda(step): # return a multiplier instead of a learning rate if step == 0 and args.warmup_step == 0: return 1. else: return 1. / (step ** 0.5) if step > args.warmup_step \ else step / (args.warmup_step ** 1.5) scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) elif args.scheduler == 'dev_perf': scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min) if args.sample_softmax > 0: scheduler_sparse = optim.lr_scheduler.ReduceLROnPlateau(optimizer_sparse, factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min) elif args.scheduler == 'constant': pass if args.cuda and args.fp16: # If args.dynamic_loss_scale is False, static_loss_scale will be used. # If args.dynamic_loss_scale is True, it will take precedence over static_loss_scale. optimizer = FP16_Optimizer(optimizer, static_loss_scale = args.static_loss_scale, dynamic_loss_scale = args.dynamic_loss_scale, dynamic_loss_args = {'init_scale': 2 ** 16}) if args.restart: if os.path.exists(os.path.join(args.restart_dir, 'optimizer.pt')): with open(os.path.join(args.restart_dir, 'optimizer.pt'), 'rb') as f: opt_state_dict = torch.load(f) optimizer.load_state_dict(opt_state_dict) else: print('Optimizer was not saved. Start from scratch.') logging('=' * 100) for k, v in args.__dict__.items(): logging(' - {} : {}'.format(k, v)) logging('=' * 100) logging('#params = {}'.format(args.n_all_param)) logging('#non emb params = {}'.format(args.n_nonemb_param)) ############################################################################### # Training code ############################################################################### def evaluate(eval_iter): # Turn on evaluation mode which disables dropout. model.eval() # If the model does not use memory at all, make the ext_len longer. # Otherwise, make the mem_len longer and keep the ext_len the same. if args.mem_len == 0: model.reset_length(args.eval_tgt_len, args.ext_len+args.tgt_len-args.eval_tgt_len, args.mem_len) else: model.reset_length(args.eval_tgt_len, args.ext_len, args.mem_len+args.tgt_len-args.eval_tgt_len) # Evaluation total_len, total_loss = 0, 0. with torch.no_grad(): mems = tuple() for i, (data, target, seq_len) in enumerate(eval_iter): if args.max_eval_steps > 0 and i >= args.max_eval_steps: break ret = model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.mean() total_loss += seq_len * loss.float().item() total_len += seq_len # Switch back to the training mode model.reset_length(args.tgt_len, args.ext_len, args.mem_len) model.train() return total_loss / total_len def train(): # Turn on training mode which enables dropout. global train_step, train_loss, best_val_loss, eval_start_time, log_start_time model.train() if args.batch_chunk > 1: mems = [tuple() for _ in range(args.batch_chunk)] else: mems = tuple() train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter for batch, (data, target, seq_len) in enumerate(train_iter): model.zero_grad() if args.batch_chunk > 1: data_chunks = torch.chunk(data, args.batch_chunk, 1) target_chunks = torch.chunk(target, args.batch_chunk, 1) for i in range(args.batch_chunk): data_i = data_chunks[i].contiguous() target_i = target_chunks[i].contiguous() ret = para_model(data_i, target_i, *mems[i]) loss, mems[i] = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) / args.batch_chunk if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() else: ret = para_model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() if args.fp16: optimizer.clip_master_grads(args.clip) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() if args.sample_softmax > 0: optimizer_sparse.step() # step-wise learning rate annealing train_step += 1 if args.scheduler in ['cosine', 'constant', 'dev_perf']: # linear warmup stage if train_step < args.warmup_step: curr_lr = args.lr * train_step / args.warmup_step optimizer.param_groups[0]['lr'] = curr_lr if args.sample_softmax > 0: optimizer_sparse.param_groups[0]['lr'] = curr_lr * 2 else: if args.scheduler == 'cosine': scheduler.step(train_step) if args.sample_softmax > 0: scheduler_sparse.step(train_step) elif args.scheduler == 'inv_sqrt': scheduler.step(train_step) if train_step % args.log_interval == 0: cur_loss = train_loss / args.log_interval elapsed = time.time() - log_start_time log_str = '| epoch {:3d} step {:>8d} | {:>6d} batches | lr {:.3g} ' \ '| ms/batch {:5.2f} | loss {:5.2f}'.format( epoch, train_step, batch+1, optimizer.param_groups[0]['lr'], elapsed * 1000 / args.log_interval, cur_loss) if args.dataset in ['enwik8', 'text8']: log_str += ' | bpc {:9.5f}'.format(cur_loss / math.log(2)) else: log_str += ' | ppl {:9.3f}'.format(math.exp(cur_loss)) logging(log_str) train_loss = 0 log_start_time = time.time() if train_step % args.eval_interval == 0: val_loss = evaluate(va_iter) logging('-' * 100) log_str = '| Eval {:3d} at step {:>8d} | time: {:5.2f}s ' \ '| valid loss {:5.2f}'.format( train_step // args.eval_interval, train_step, (time.time() - eval_start_time), val_loss) if args.dataset in ['enwik8', 'text8']: log_str += ' | bpc {:9.5f}'.format(val_loss / math.log(2)) else: log_str += ' | valid ppl {:9.3f}'.format(math.exp(val_loss)) logging(log_str) logging('-' * 100) # Save the model if the validation loss is the best we've seen so far. if not best_val_loss or val_loss < best_val_loss: if not args.debug: with open(os.path.join(args.work_dir, 'model.pt'), 'wb') as f: torch.save(model, f) with open(os.path.join(args.work_dir, 'optimizer.pt'), 'wb') as f: torch.save(optimizer.state_dict(), f) best_val_loss = val_loss # dev-performance based learning rate annealing if args.scheduler == 'dev_perf': scheduler.step(val_loss) if args.sample_softmax > 0: scheduler_sparse.step(val_loss) eval_start_time = time.time() if train_step == args.max_step: break # Loop over epochs. train_step = 0 train_loss = 0 best_val_loss = None log_start_time = time.time() eval_start_time = time.time() # At any point you can hit Ctrl + C to break out of training early. try: for epoch in itertools.count(start=1): train() if train_step == args.max_step: logging('-' * 100) logging('End of training') break except KeyboardInterrupt: logging('-' * 100) logging('Exiting from training early') # Load the best saved model. with open(os.path.join(args.work_dir, 'model.pt'), 'rb') as f: model = torch.load(f) para_model = model.to(device) # Run on test data. test_loss = evaluate(te_iter) logging('=' * 100) if args.dataset in ['enwik8', 'text8']: logging('| End of training | test loss {:5.2f} | test bpc {:9.5f}'.format( test_loss, test_loss / math.log(2))) else: logging('| End of training | test loss {:5.2f} | test ppl {:9.3f}'.format( test_loss, math.exp(test_loss))) logging('=' * 100)
43.260504
119
0.60303
d57eb1e52078dad25298e38865c5509ca6248dd2
385
py
Python
CursoEmVideo-Python3-Mundo2/desafio050.py
martinsnathalia/Python
0cabf894dc9c0d0307bd1136831e011580b497c5
[ "MIT" ]
null
null
null
CursoEmVideo-Python3-Mundo2/desafio050.py
martinsnathalia/Python
0cabf894dc9c0d0307bd1136831e011580b497c5
[ "MIT" ]
null
null
null
CursoEmVideo-Python3-Mundo2/desafio050.py
martinsnathalia/Python
0cabf894dc9c0d0307bd1136831e011580b497c5
[ "MIT" ]
null
null
null
# Desenvolva um programa que leia seis números inteiros e mostre a soma apenas daqueles que forem pares. Se o valor digitado for ímpar, desconsidere-o. soma = 0 cont = 0 for c in range (1,7): num = int(input('Digite o {}º número: '.format(c))) if num % 2 == 0: soma = soma+num cont += 1 print('Você informou {} números pares e a soma é {}.'.format(cont,soma))
35
151
0.649351
97c0d567de696daa42bcc20d0ee228d630d59d21
3,267
py
Python
2.GiantBook/MyUnionFind.py
VladAlexandruIlie/FoundationsOfComputing
939d3338d114ed4bbd54b922e6fcfbd7b770b201
[ "MIT" ]
null
null
null
2.GiantBook/MyUnionFind.py
VladAlexandruIlie/FoundationsOfComputing
939d3338d114ed4bbd54b922e6fcfbd7b770b201
[ "MIT" ]
null
null
null
2.GiantBook/MyUnionFind.py
VladAlexandruIlie/FoundationsOfComputing
939d3338d114ed4bbd54b922e6fcfbd7b770b201
[ "MIT" ]
null
null
null
class MyUnionFind: """ This is an implementation of the union-find data structure - see module documentation for more info. This implementation uses quick find. Initializing a data structure with n sites takes linear time. Afterwards, the find, connected, and count operations take constant time but the union operation takes linear time. For additional documentation, see Section 1.5 of Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. """ def __init__(self, n): """ Initializes an empty union-find data structure with n sites, 0 through n-1. Each site is initially in its own component. :param n: the number of sites """ self._count = n self._id = list(range(n)) self._isolates = n self._biggestComponent = 0 def _validate(self, p): # validate that p is a valid index n = len(self._id) if p < 0 or p >= n: raise ValueError('index {} is not between 0 and {}'.format(p, n)) def union(self, p, q): """ Merges the component containing site p with the component containing site q. :param p: the integer representing one site :param q: the integer representing the other site """ self._validate(p) self._validate(q) p_id = self._id[p] # needed for correctness q_id = self._id[q] # to reduce the number of array accesses # p and q are already in the same component if p_id == q_id: return #print(p, p_id, self.isIsolated(p)) #print(q, q_id, self.isIsolated(q)) if p_id == p and self.isIsolated(p) == 1: self._isolates -= 1 if q_id == q and self.isIsolated(q) == 1: self._isolates -= 1 size = 1 for i in range(len(self._id)): if self._id[i] == p_id: size += 1 self._id[i] = q_id else: if self._id[i] == q_id: size += 1 if size > self._biggestComponent: self._biggestComponent = size self._count -= 1 def isIsolated(self, p): for i in range(len(self._id)): if self._id[i] == self._id[p] and i != p: return 0 return 1 def find(self, p): """ Returns the component identifier for the component containing site p. :param p: the integer representing one site :return: the component identifier for the component containing site p """ self._validate(p) return self._id[p] def connected(self, p, q): """ Returns true if the two sites are in the same component. :param p: the integer representing one site :param q: the integer representing the other site :return: true if the two sites p and q are in the same component; false otherwise """ self._validate(p) self._validate(q) return self._id[p] == self._id[q] def count(self): return self._count
33.336735
114
0.549434
aa57d4790afac3a75db22de654f43dd4f142b24a
135,529
py
Python
netbox/dcim/tests/test_api.py
habalux/netbox
dd7249d2ef09a8f09139c228b8186683237ad3ee
[ "Apache-2.0" ]
2
2019-03-11T12:34:06.000Z
2021-04-22T12:55:04.000Z
netbox/dcim/tests/test_api.py
habalux/netbox
dd7249d2ef09a8f09139c228b8186683237ad3ee
[ "Apache-2.0" ]
2
2021-09-08T00:50:06.000Z
2022-01-13T01:06:14.000Z
netbox/dcim/tests/test_api.py
habalux/netbox
dd7249d2ef09a8f09139c228b8186683237ad3ee
[ "Apache-2.0" ]
1
2021-05-11T07:10:44.000Z
2021-05-11T07:10:44.000Z
from django.urls import reverse from netaddr import IPNetwork from rest_framework import status from circuits.models import Circuit, CircuitTermination, CircuitType, Provider from dcim.constants import * from dcim.models import ( Cable, ConsolePort, ConsolePortTemplate, ConsoleServerPort, ConsoleServerPortTemplate, Device, DeviceBay, DeviceBayTemplate, DeviceRole, DeviceType, FrontPort, Interface, InterfaceTemplate, Manufacturer, InventoryItem, Platform, PowerPort, PowerPortTemplate, PowerOutlet, PowerOutletTemplate, Rack, RackGroup, RackReservation, RackRole, RearPort, Region, Site, VirtualChassis, ) from ipam.models import IPAddress, VLAN from extras.models import Graph, GRAPH_TYPE_INTERFACE, GRAPH_TYPE_SITE from utilities.testing import APITestCase from virtualization.models import Cluster, ClusterType class RegionTest(APITestCase): def setUp(self): super().setUp() self.region1 = Region.objects.create(name='Test Region 1', slug='test-region-1') self.region2 = Region.objects.create(name='Test Region 2', slug='test-region-2') self.region3 = Region.objects.create(name='Test Region 3', slug='test-region-3') def test_get_region(self): url = reverse('dcim-api:region-detail', kwargs={'pk': self.region1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.region1.name) def test_list_regions(self): url = reverse('dcim-api:region-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_regions_brief(self): url = reverse('dcim-api:region-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'name', 'slug', 'url'] ) def test_create_region(self): data = { 'name': 'Test Region 4', 'slug': 'test-region-4', } url = reverse('dcim-api:region-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Region.objects.count(), 4) region4 = Region.objects.get(pk=response.data['id']) self.assertEqual(region4.name, data['name']) self.assertEqual(region4.slug, data['slug']) def test_create_region_bulk(self): data = [ { 'name': 'Test Region 4', 'slug': 'test-region-4', }, { 'name': 'Test Region 5', 'slug': 'test-region-5', }, { 'name': 'Test Region 6', 'slug': 'test-region-6', }, ] url = reverse('dcim-api:region-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Region.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_region(self): data = { 'name': 'Test Region X', 'slug': 'test-region-x', } url = reverse('dcim-api:region-detail', kwargs={'pk': self.region1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Region.objects.count(), 3) region1 = Region.objects.get(pk=response.data['id']) self.assertEqual(region1.name, data['name']) self.assertEqual(region1.slug, data['slug']) def test_delete_region(self): url = reverse('dcim-api:region-detail', kwargs={'pk': self.region1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Region.objects.count(), 2) class SiteTest(APITestCase): def setUp(self): super().setUp() self.region1 = Region.objects.create(name='Test Region 1', slug='test-region-1') self.region2 = Region.objects.create(name='Test Region 2', slug='test-region-2') self.site1 = Site.objects.create(region=self.region1, name='Test Site 1', slug='test-site-1') self.site2 = Site.objects.create(region=self.region1, name='Test Site 2', slug='test-site-2') self.site3 = Site.objects.create(region=self.region1, name='Test Site 3', slug='test-site-3') def test_get_site(self): url = reverse('dcim-api:site-detail', kwargs={'pk': self.site1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.site1.name) def test_get_site_graphs(self): self.graph1 = Graph.objects.create( type=GRAPH_TYPE_SITE, name='Test Graph 1', source='http://example.com/graphs.py?site={{ obj.slug }}&foo=1' ) self.graph2 = Graph.objects.create( type=GRAPH_TYPE_SITE, name='Test Graph 2', source='http://example.com/graphs.py?site={{ obj.slug }}&foo=2' ) self.graph3 = Graph.objects.create( type=GRAPH_TYPE_SITE, name='Test Graph 3', source='http://example.com/graphs.py?site={{ obj.slug }}&foo=3' ) url = reverse('dcim-api:site-graphs', kwargs={'pk': self.site1.pk}) response = self.client.get(url, **self.header) self.assertEqual(len(response.data), 3) self.assertEqual(response.data[0]['embed_url'], 'http://example.com/graphs.py?site=test-site-1&foo=1') def test_list_sites(self): url = reverse('dcim-api:site-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_sites_brief(self): url = reverse('dcim-api:site-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'name', 'slug', 'url'] ) def test_create_site(self): data = { 'name': 'Test Site 4', 'slug': 'test-site-4', 'region': self.region1.pk, 'status': SITE_STATUS_ACTIVE, } url = reverse('dcim-api:site-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Site.objects.count(), 4) site4 = Site.objects.get(pk=response.data['id']) self.assertEqual(site4.name, data['name']) self.assertEqual(site4.slug, data['slug']) self.assertEqual(site4.region_id, data['region']) def test_create_site_bulk(self): data = [ { 'name': 'Test Site 4', 'slug': 'test-site-4', 'region': self.region1.pk, 'status': SITE_STATUS_ACTIVE, }, { 'name': 'Test Site 5', 'slug': 'test-site-5', 'region': self.region1.pk, 'status': SITE_STATUS_ACTIVE, }, { 'name': 'Test Site 6', 'slug': 'test-site-6', 'region': self.region1.pk, 'status': SITE_STATUS_ACTIVE, }, ] url = reverse('dcim-api:site-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Site.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_site(self): data = { 'name': 'Test Site X', 'slug': 'test-site-x', 'region': self.region2.pk, } url = reverse('dcim-api:site-detail', kwargs={'pk': self.site1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Site.objects.count(), 3) site1 = Site.objects.get(pk=response.data['id']) self.assertEqual(site1.name, data['name']) self.assertEqual(site1.slug, data['slug']) self.assertEqual(site1.region_id, data['region']) def test_delete_site(self): url = reverse('dcim-api:site-detail', kwargs={'pk': self.site1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Site.objects.count(), 2) class RackGroupTest(APITestCase): def setUp(self): super().setUp() self.site1 = Site.objects.create(name='Test Site 1', slug='test-site-1') self.site2 = Site.objects.create(name='Test Site 2', slug='test-site-2') self.rackgroup1 = RackGroup.objects.create(site=self.site1, name='Test Rack Group 1', slug='test-rack-group-1') self.rackgroup2 = RackGroup.objects.create(site=self.site1, name='Test Rack Group 2', slug='test-rack-group-2') self.rackgroup3 = RackGroup.objects.create(site=self.site1, name='Test Rack Group 3', slug='test-rack-group-3') def test_get_rackgroup(self): url = reverse('dcim-api:rackgroup-detail', kwargs={'pk': self.rackgroup1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.rackgroup1.name) def test_list_rackgroups(self): url = reverse('dcim-api:rackgroup-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_rackgroups_brief(self): url = reverse('dcim-api:rackgroup-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'name', 'slug', 'url'] ) def test_create_rackgroup(self): data = { 'name': 'Test Rack Group 4', 'slug': 'test-rack-group-4', 'site': self.site1.pk, } url = reverse('dcim-api:rackgroup-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(RackGroup.objects.count(), 4) rackgroup4 = RackGroup.objects.get(pk=response.data['id']) self.assertEqual(rackgroup4.name, data['name']) self.assertEqual(rackgroup4.slug, data['slug']) self.assertEqual(rackgroup4.site_id, data['site']) def test_create_rackgroup_bulk(self): data = [ { 'name': 'Test Rack Group 4', 'slug': 'test-rack-group-4', 'site': self.site1.pk, }, { 'name': 'Test Rack Group 5', 'slug': 'test-rack-group-5', 'site': self.site1.pk, }, { 'name': 'Test Rack Group 6', 'slug': 'test-rack-group-6', 'site': self.site1.pk, }, ] url = reverse('dcim-api:rackgroup-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(RackGroup.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_rackgroup(self): data = { 'name': 'Test Rack Group X', 'slug': 'test-rack-group-x', 'site': self.site2.pk, } url = reverse('dcim-api:rackgroup-detail', kwargs={'pk': self.rackgroup1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(RackGroup.objects.count(), 3) rackgroup1 = RackGroup.objects.get(pk=response.data['id']) self.assertEqual(rackgroup1.name, data['name']) self.assertEqual(rackgroup1.slug, data['slug']) self.assertEqual(rackgroup1.site_id, data['site']) def test_delete_rackgroup(self): url = reverse('dcim-api:rackgroup-detail', kwargs={'pk': self.rackgroup1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(RackGroup.objects.count(), 2) class RackRoleTest(APITestCase): def setUp(self): super().setUp() self.rackrole1 = RackRole.objects.create(name='Test Rack Role 1', slug='test-rack-role-1', color='ff0000') self.rackrole2 = RackRole.objects.create(name='Test Rack Role 2', slug='test-rack-role-2', color='00ff00') self.rackrole3 = RackRole.objects.create(name='Test Rack Role 3', slug='test-rack-role-3', color='0000ff') def test_get_rackrole(self): url = reverse('dcim-api:rackrole-detail', kwargs={'pk': self.rackrole1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.rackrole1.name) def test_list_rackroles(self): url = reverse('dcim-api:rackrole-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_rackroles_brief(self): url = reverse('dcim-api:rackrole-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'name', 'slug', 'url'] ) def test_create_rackrole(self): data = { 'name': 'Test Rack Role 4', 'slug': 'test-rack-role-4', 'color': 'ffff00', } url = reverse('dcim-api:rackrole-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(RackRole.objects.count(), 4) rackrole1 = RackRole.objects.get(pk=response.data['id']) self.assertEqual(rackrole1.name, data['name']) self.assertEqual(rackrole1.slug, data['slug']) self.assertEqual(rackrole1.color, data['color']) def test_create_rackrole_bulk(self): data = [ { 'name': 'Test Rack Role 4', 'slug': 'test-rack-role-4', 'color': 'ffff00', }, { 'name': 'Test Rack Role 5', 'slug': 'test-rack-role-5', 'color': 'ffff00', }, { 'name': 'Test Rack Role 6', 'slug': 'test-rack-role-6', 'color': 'ffff00', }, ] url = reverse('dcim-api:rackrole-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(RackRole.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_rackrole(self): data = { 'name': 'Test Rack Role X', 'slug': 'test-rack-role-x', 'color': 'ffff00', } url = reverse('dcim-api:rackrole-detail', kwargs={'pk': self.rackrole1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(RackRole.objects.count(), 3) rackrole1 = RackRole.objects.get(pk=response.data['id']) self.assertEqual(rackrole1.name, data['name']) self.assertEqual(rackrole1.slug, data['slug']) self.assertEqual(rackrole1.color, data['color']) def test_delete_rackrole(self): url = reverse('dcim-api:rackrole-detail', kwargs={'pk': self.rackrole1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(RackRole.objects.count(), 2) class RackTest(APITestCase): def setUp(self): super().setUp() self.site1 = Site.objects.create(name='Test Site 1', slug='test-site-1') self.site2 = Site.objects.create(name='Test Site 2', slug='test-site-2') self.rackgroup1 = RackGroup.objects.create(site=self.site1, name='Test Rack Group 1', slug='test-rack-group-1') self.rackgroup2 = RackGroup.objects.create(site=self.site2, name='Test Rack Group 2', slug='test-rack-group-2') self.rackrole1 = RackRole.objects.create(name='Test Rack Role 1', slug='test-rack-role-1', color='ff0000') self.rackrole2 = RackRole.objects.create(name='Test Rack Role 2', slug='test-rack-role-2', color='00ff00') self.rack1 = Rack.objects.create( site=self.site1, group=self.rackgroup1, role=self.rackrole1, name='Test Rack 1', u_height=42, ) self.rack2 = Rack.objects.create( site=self.site1, group=self.rackgroup1, role=self.rackrole1, name='Test Rack 2', u_height=42, ) self.rack3 = Rack.objects.create( site=self.site1, group=self.rackgroup1, role=self.rackrole1, name='Test Rack 3', u_height=42, ) def test_get_rack(self): url = reverse('dcim-api:rack-detail', kwargs={'pk': self.rack1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.rack1.name) def test_get_rack_units(self): url = reverse('dcim-api:rack-units', kwargs={'pk': self.rack1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 42) def test_list_racks(self): url = reverse('dcim-api:rack-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_racks_brief(self): url = reverse('dcim-api:rack-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['display_name', 'id', 'name', 'url'] ) def test_create_rack(self): data = { 'name': 'Test Rack 4', 'site': self.site1.pk, 'group': self.rackgroup1.pk, 'role': self.rackrole1.pk, } url = reverse('dcim-api:rack-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Rack.objects.count(), 4) rack4 = Rack.objects.get(pk=response.data['id']) self.assertEqual(rack4.name, data['name']) self.assertEqual(rack4.site_id, data['site']) self.assertEqual(rack4.group_id, data['group']) self.assertEqual(rack4.role_id, data['role']) def test_create_rack_bulk(self): data = [ { 'name': 'Test Rack 4', 'site': self.site1.pk, 'group': self.rackgroup1.pk, 'role': self.rackrole1.pk, }, { 'name': 'Test Rack 5', 'site': self.site1.pk, 'group': self.rackgroup1.pk, 'role': self.rackrole1.pk, }, { 'name': 'Test Rack 6', 'site': self.site1.pk, 'group': self.rackgroup1.pk, 'role': self.rackrole1.pk, }, ] url = reverse('dcim-api:rack-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Rack.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_rack(self): data = { 'name': 'Test Rack X', 'site': self.site2.pk, 'group': self.rackgroup2.pk, 'role': self.rackrole2.pk, } url = reverse('dcim-api:rack-detail', kwargs={'pk': self.rack1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Rack.objects.count(), 3) rack1 = Rack.objects.get(pk=response.data['id']) self.assertEqual(rack1.name, data['name']) self.assertEqual(rack1.site_id, data['site']) self.assertEqual(rack1.group_id, data['group']) self.assertEqual(rack1.role_id, data['role']) def test_delete_rack(self): url = reverse('dcim-api:rack-detail', kwargs={'pk': self.rack1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Rack.objects.count(), 2) class RackReservationTest(APITestCase): def setUp(self): super().setUp() self.site1 = Site.objects.create(name='Test Site 1', slug='test-site-1') self.rack1 = Rack.objects.create(site=self.site1, name='Test Rack 1') self.rackreservation1 = RackReservation.objects.create( rack=self.rack1, units=[1, 2, 3], user=self.user, description='Reservation #1', ) self.rackreservation2 = RackReservation.objects.create( rack=self.rack1, units=[4, 5, 6], user=self.user, description='Reservation #2', ) self.rackreservation3 = RackReservation.objects.create( rack=self.rack1, units=[7, 8, 9], user=self.user, description='Reservation #3', ) def test_get_rackreservation(self): url = reverse('dcim-api:rackreservation-detail', kwargs={'pk': self.rackreservation1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['id'], self.rackreservation1.pk) def test_list_rackreservations(self): url = reverse('dcim-api:rackreservation-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_rackreservation(self): data = { 'rack': self.rack1.pk, 'units': [10, 11, 12], 'user': self.user.pk, 'description': 'Fourth reservation', } url = reverse('dcim-api:rackreservation-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(RackReservation.objects.count(), 4) rackreservation4 = RackReservation.objects.get(pk=response.data['id']) self.assertEqual(rackreservation4.rack_id, data['rack']) self.assertEqual(rackreservation4.units, data['units']) self.assertEqual(rackreservation4.user_id, data['user']) self.assertEqual(rackreservation4.description, data['description']) def test_create_rackreservation_bulk(self): data = [ { 'rack': self.rack1.pk, 'units': [10, 11, 12], 'user': self.user.pk, 'description': 'Reservation #4', }, { 'rack': self.rack1.pk, 'units': [13, 14, 15], 'user': self.user.pk, 'description': 'Reservation #5', }, { 'rack': self.rack1.pk, 'units': [16, 17, 18], 'user': self.user.pk, 'description': 'Reservation #6', }, ] url = reverse('dcim-api:rackreservation-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(RackReservation.objects.count(), 6) self.assertEqual(response.data[0]['description'], data[0]['description']) self.assertEqual(response.data[1]['description'], data[1]['description']) self.assertEqual(response.data[2]['description'], data[2]['description']) def test_update_rackreservation(self): data = { 'rack': self.rack1.pk, 'units': [10, 11, 12], 'user': self.user.pk, 'description': 'Modified reservation', } url = reverse('dcim-api:rackreservation-detail', kwargs={'pk': self.rackreservation1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(RackReservation.objects.count(), 3) rackreservation1 = RackReservation.objects.get(pk=response.data['id']) self.assertEqual(rackreservation1.units, data['units']) self.assertEqual(rackreservation1.description, data['description']) def test_delete_rackreservation(self): url = reverse('dcim-api:rackreservation-detail', kwargs={'pk': self.rackreservation1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(RackReservation.objects.count(), 2) class ManufacturerTest(APITestCase): def setUp(self): super().setUp() self.manufacturer1 = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.manufacturer2 = Manufacturer.objects.create(name='Test Manufacturer 2', slug='test-manufacturer-2') self.manufacturer3 = Manufacturer.objects.create(name='Test Manufacturer 3', slug='test-manufacturer-3') def test_get_manufacturer(self): url = reverse('dcim-api:manufacturer-detail', kwargs={'pk': self.manufacturer1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.manufacturer1.name) def test_list_manufacturers(self): url = reverse('dcim-api:manufacturer-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_manufacturers_brief(self): url = reverse('dcim-api:manufacturer-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'name', 'slug', 'url'] ) def test_create_manufacturer(self): data = { 'name': 'Test Manufacturer 4', 'slug': 'test-manufacturer-4', } url = reverse('dcim-api:manufacturer-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Manufacturer.objects.count(), 4) manufacturer4 = Manufacturer.objects.get(pk=response.data['id']) self.assertEqual(manufacturer4.name, data['name']) self.assertEqual(manufacturer4.slug, data['slug']) def test_create_manufacturer_bulk(self): data = [ { 'name': 'Test Manufacturer 4', 'slug': 'test-manufacturer-4', }, { 'name': 'Test Manufacturer 5', 'slug': 'test-manufacturer-5', }, { 'name': 'Test Manufacturer 6', 'slug': 'test-manufacturer-6', }, ] url = reverse('dcim-api:manufacturer-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Manufacturer.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_manufacturer(self): data = { 'name': 'Test Manufacturer X', 'slug': 'test-manufacturer-x', } url = reverse('dcim-api:manufacturer-detail', kwargs={'pk': self.manufacturer1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Manufacturer.objects.count(), 3) manufacturer1 = Manufacturer.objects.get(pk=response.data['id']) self.assertEqual(manufacturer1.name, data['name']) self.assertEqual(manufacturer1.slug, data['slug']) def test_delete_manufacturer(self): url = reverse('dcim-api:manufacturer-detail', kwargs={'pk': self.manufacturer1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Manufacturer.objects.count(), 2) class DeviceTypeTest(APITestCase): def setUp(self): super().setUp() self.manufacturer1 = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.manufacturer2 = Manufacturer.objects.create(name='Test Manufacturer 2', slug='test-manufacturer-2') self.devicetype1 = DeviceType.objects.create( manufacturer=self.manufacturer1, model='Test Device Type 1', slug='test-device-type-1' ) self.devicetype2 = DeviceType.objects.create( manufacturer=self.manufacturer1, model='Test Device Type 2', slug='test-device-type-2' ) self.devicetype3 = DeviceType.objects.create( manufacturer=self.manufacturer1, model='Test Device Type 3', slug='test-device-type-3' ) def test_get_devicetype(self): url = reverse('dcim-api:devicetype-detail', kwargs={'pk': self.devicetype1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['model'], self.devicetype1.model) def test_list_devicetypes(self): url = reverse('dcim-api:devicetype-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_devicetypes_brief(self): url = reverse('dcim-api:devicetype-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['display_name', 'id', 'manufacturer', 'model', 'slug', 'url'] ) def test_create_devicetype(self): data = { 'manufacturer': self.manufacturer1.pk, 'model': 'Test Device Type 4', 'slug': 'test-device-type-4', } url = reverse('dcim-api:devicetype-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceType.objects.count(), 4) devicetype4 = DeviceType.objects.get(pk=response.data['id']) self.assertEqual(devicetype4.manufacturer_id, data['manufacturer']) self.assertEqual(devicetype4.model, data['model']) self.assertEqual(devicetype4.slug, data['slug']) def test_create_devicetype_bulk(self): data = [ { 'manufacturer': self.manufacturer1.pk, 'model': 'Test Device Type 4', 'slug': 'test-device-type-4', }, { 'manufacturer': self.manufacturer1.pk, 'model': 'Test Device Type 5', 'slug': 'test-device-type-5', }, { 'manufacturer': self.manufacturer1.pk, 'model': 'Test Device Type 6', 'slug': 'test-device-type-6', }, ] url = reverse('dcim-api:devicetype-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceType.objects.count(), 6) self.assertEqual(response.data[0]['model'], data[0]['model']) self.assertEqual(response.data[1]['model'], data[1]['model']) self.assertEqual(response.data[2]['model'], data[2]['model']) def test_update_devicetype(self): data = { 'manufacturer': self.manufacturer2.pk, 'model': 'Test Device Type X', 'slug': 'test-device-type-x', } url = reverse('dcim-api:devicetype-detail', kwargs={'pk': self.devicetype1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(DeviceType.objects.count(), 3) devicetype1 = DeviceType.objects.get(pk=response.data['id']) self.assertEqual(devicetype1.manufacturer_id, data['manufacturer']) self.assertEqual(devicetype1.model, data['model']) self.assertEqual(devicetype1.slug, data['slug']) def test_delete_devicetype(self): url = reverse('dcim-api:devicetype-detail', kwargs={'pk': self.devicetype1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(DeviceType.objects.count(), 2) class ConsolePortTemplateTest(APITestCase): def setUp(self): super().setUp() self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.consoleporttemplate1 = ConsolePortTemplate.objects.create( device_type=self.devicetype, name='Test CP Template 1' ) self.consoleporttemplate2 = ConsolePortTemplate.objects.create( device_type=self.devicetype, name='Test CP Template 2' ) self.consoleporttemplate3 = ConsolePortTemplate.objects.create( device_type=self.devicetype, name='Test CP Template 3' ) def test_get_consoleporttemplate(self): url = reverse('dcim-api:consoleporttemplate-detail', kwargs={'pk': self.consoleporttemplate1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.consoleporttemplate1.name) def test_list_consoleporttemplates(self): url = reverse('dcim-api:consoleporttemplate-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_consoleporttemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test CP Template 4', } url = reverse('dcim-api:consoleporttemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsolePortTemplate.objects.count(), 4) consoleporttemplate4 = ConsolePortTemplate.objects.get(pk=response.data['id']) self.assertEqual(consoleporttemplate4.device_type_id, data['device_type']) self.assertEqual(consoleporttemplate4.name, data['name']) def test_create_consoleporttemplate_bulk(self): data = [ { 'device_type': self.devicetype.pk, 'name': 'Test CP Template 4', }, { 'device_type': self.devicetype.pk, 'name': 'Test CP Template 5', }, { 'device_type': self.devicetype.pk, 'name': 'Test CP Template 6', }, ] url = reverse('dcim-api:consoleporttemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsolePortTemplate.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_consoleporttemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test CP Template X', } url = reverse('dcim-api:consoleporttemplate-detail', kwargs={'pk': self.consoleporttemplate1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(ConsolePortTemplate.objects.count(), 3) consoleporttemplate1 = ConsolePortTemplate.objects.get(pk=response.data['id']) self.assertEqual(consoleporttemplate1.name, data['name']) def test_delete_consoleporttemplate(self): url = reverse('dcim-api:consoleporttemplate-detail', kwargs={'pk': self.consoleporttemplate1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(ConsolePortTemplate.objects.count(), 2) class ConsoleServerPortTemplateTest(APITestCase): def setUp(self): super().setUp() self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.consoleserverporttemplate1 = ConsoleServerPortTemplate.objects.create( device_type=self.devicetype, name='Test CSP Template 1' ) self.consoleserverporttemplate2 = ConsoleServerPortTemplate.objects.create( device_type=self.devicetype, name='Test CSP Template 2' ) self.consoleserverporttemplate3 = ConsoleServerPortTemplate.objects.create( device_type=self.devicetype, name='Test CSP Template 3' ) def test_get_consoleserverporttemplate(self): url = reverse('dcim-api:consoleserverporttemplate-detail', kwargs={'pk': self.consoleserverporttemplate1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.consoleserverporttemplate1.name) def test_list_consoleserverporttemplates(self): url = reverse('dcim-api:consoleserverporttemplate-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_consoleserverporttemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test CSP Template 4', } url = reverse('dcim-api:consoleserverporttemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsoleServerPortTemplate.objects.count(), 4) consoleserverporttemplate4 = ConsoleServerPortTemplate.objects.get(pk=response.data['id']) self.assertEqual(consoleserverporttemplate4.device_type_id, data['device_type']) self.assertEqual(consoleserverporttemplate4.name, data['name']) def test_create_consoleserverporttemplate_bulk(self): data = [ { 'device_type': self.devicetype.pk, 'name': 'Test CSP Template 4', }, { 'device_type': self.devicetype.pk, 'name': 'Test CSP Template 5', }, { 'device_type': self.devicetype.pk, 'name': 'Test CSP Template 6', }, ] url = reverse('dcim-api:consoleserverporttemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsoleServerPortTemplate.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_consoleserverporttemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test CSP Template X', } url = reverse('dcim-api:consoleserverporttemplate-detail', kwargs={'pk': self.consoleserverporttemplate1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(ConsoleServerPortTemplate.objects.count(), 3) consoleserverporttemplate1 = ConsoleServerPortTemplate.objects.get(pk=response.data['id']) self.assertEqual(consoleserverporttemplate1.name, data['name']) def test_delete_consoleserverporttemplate(self): url = reverse('dcim-api:consoleserverporttemplate-detail', kwargs={'pk': self.consoleserverporttemplate1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(ConsoleServerPortTemplate.objects.count(), 2) class PowerPortTemplateTest(APITestCase): def setUp(self): super().setUp() self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.powerporttemplate1 = PowerPortTemplate.objects.create( device_type=self.devicetype, name='Test PP Template 1' ) self.powerporttemplate2 = PowerPortTemplate.objects.create( device_type=self.devicetype, name='Test PP Template 2' ) self.powerporttemplate3 = PowerPortTemplate.objects.create( device_type=self.devicetype, name='Test PP Template 3' ) def test_get_powerporttemplate(self): url = reverse('dcim-api:powerporttemplate-detail', kwargs={'pk': self.powerporttemplate1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.powerporttemplate1.name) def test_list_powerporttemplates(self): url = reverse('dcim-api:powerporttemplate-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_powerporttemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test PP Template 4', } url = reverse('dcim-api:powerporttemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerPortTemplate.objects.count(), 4) powerporttemplate4 = PowerPortTemplate.objects.get(pk=response.data['id']) self.assertEqual(powerporttemplate4.device_type_id, data['device_type']) self.assertEqual(powerporttemplate4.name, data['name']) def test_create_powerporttemplate_bulk(self): data = [ { 'device_type': self.devicetype.pk, 'name': 'Test PP Template 4', }, { 'device_type': self.devicetype.pk, 'name': 'Test PP Template 5', }, { 'device_type': self.devicetype.pk, 'name': 'Test PP Template 6', }, ] url = reverse('dcim-api:powerporttemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerPortTemplate.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_powerporttemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test PP Template X', } url = reverse('dcim-api:powerporttemplate-detail', kwargs={'pk': self.powerporttemplate1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(PowerPortTemplate.objects.count(), 3) powerporttemplate1 = PowerPortTemplate.objects.get(pk=response.data['id']) self.assertEqual(powerporttemplate1.name, data['name']) def test_delete_powerporttemplate(self): url = reverse('dcim-api:powerporttemplate-detail', kwargs={'pk': self.powerporttemplate1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(PowerPortTemplate.objects.count(), 2) class PowerOutletTemplateTest(APITestCase): def setUp(self): super().setUp() self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.poweroutlettemplate1 = PowerOutletTemplate.objects.create( device_type=self.devicetype, name='Test PO Template 1' ) self.poweroutlettemplate2 = PowerOutletTemplate.objects.create( device_type=self.devicetype, name='Test PO Template 2' ) self.poweroutlettemplate3 = PowerOutletTemplate.objects.create( device_type=self.devicetype, name='Test PO Template 3' ) def test_get_poweroutlettemplate(self): url = reverse('dcim-api:poweroutlettemplate-detail', kwargs={'pk': self.poweroutlettemplate1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.poweroutlettemplate1.name) def test_list_poweroutlettemplates(self): url = reverse('dcim-api:poweroutlettemplate-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_poweroutlettemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test PO Template 4', } url = reverse('dcim-api:poweroutlettemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerOutletTemplate.objects.count(), 4) poweroutlettemplate4 = PowerOutletTemplate.objects.get(pk=response.data['id']) self.assertEqual(poweroutlettemplate4.device_type_id, data['device_type']) self.assertEqual(poweroutlettemplate4.name, data['name']) def test_create_poweroutlettemplate_bulk(self): data = [ { 'device_type': self.devicetype.pk, 'name': 'Test PO Template 4', }, { 'device_type': self.devicetype.pk, 'name': 'Test PO Template 5', }, { 'device_type': self.devicetype.pk, 'name': 'Test PO Template 6', }, ] url = reverse('dcim-api:poweroutlettemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerOutletTemplate.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_poweroutlettemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test PO Template X', } url = reverse('dcim-api:poweroutlettemplate-detail', kwargs={'pk': self.poweroutlettemplate1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(PowerOutletTemplate.objects.count(), 3) poweroutlettemplate1 = PowerOutletTemplate.objects.get(pk=response.data['id']) self.assertEqual(poweroutlettemplate1.name, data['name']) def test_delete_poweroutlettemplate(self): url = reverse('dcim-api:poweroutlettemplate-detail', kwargs={'pk': self.poweroutlettemplate1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(PowerOutletTemplate.objects.count(), 2) class InterfaceTemplateTest(APITestCase): def setUp(self): super().setUp() self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.interfacetemplate1 = InterfaceTemplate.objects.create( device_type=self.devicetype, name='Test Interface Template 1' ) self.interfacetemplate2 = InterfaceTemplate.objects.create( device_type=self.devicetype, name='Test Interface Template 2' ) self.interfacetemplate3 = InterfaceTemplate.objects.create( device_type=self.devicetype, name='Test Interface Template 3' ) def test_get_interfacetemplate(self): url = reverse('dcim-api:interfacetemplate-detail', kwargs={'pk': self.interfacetemplate1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.interfacetemplate1.name) def test_list_interfacetemplates(self): url = reverse('dcim-api:interfacetemplate-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_interfacetemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test Interface Template 4', } url = reverse('dcim-api:interfacetemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(InterfaceTemplate.objects.count(), 4) interfacetemplate4 = InterfaceTemplate.objects.get(pk=response.data['id']) self.assertEqual(interfacetemplate4.device_type_id, data['device_type']) self.assertEqual(interfacetemplate4.name, data['name']) def test_create_interfacetemplate_bulk(self): data = [ { 'device_type': self.devicetype.pk, 'name': 'Test Interface Template 4', }, { 'device_type': self.devicetype.pk, 'name': 'Test Interface Template 5', }, { 'device_type': self.devicetype.pk, 'name': 'Test Interface Template 6', }, ] url = reverse('dcim-api:interfacetemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(InterfaceTemplate.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_interfacetemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test Interface Template X', } url = reverse('dcim-api:interfacetemplate-detail', kwargs={'pk': self.interfacetemplate1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(InterfaceTemplate.objects.count(), 3) interfacetemplate1 = InterfaceTemplate.objects.get(pk=response.data['id']) self.assertEqual(interfacetemplate1.name, data['name']) def test_delete_interfacetemplate(self): url = reverse('dcim-api:interfacetemplate-detail', kwargs={'pk': self.interfacetemplate1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(InterfaceTemplate.objects.count(), 2) class DeviceBayTemplateTest(APITestCase): def setUp(self): super().setUp() self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.devicebaytemplate1 = DeviceBayTemplate.objects.create( device_type=self.devicetype, name='Test Device Bay Template 1' ) self.devicebaytemplate2 = DeviceBayTemplate.objects.create( device_type=self.devicetype, name='Test Device Bay Template 2' ) self.devicebaytemplate3 = DeviceBayTemplate.objects.create( device_type=self.devicetype, name='Test Device Bay Template 3' ) def test_get_devicebaytemplate(self): url = reverse('dcim-api:devicebaytemplate-detail', kwargs={'pk': self.devicebaytemplate1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.devicebaytemplate1.name) def test_list_devicebaytemplates(self): url = reverse('dcim-api:devicebaytemplate-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_devicebaytemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test Device Bay Template 4', } url = reverse('dcim-api:devicebaytemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceBayTemplate.objects.count(), 4) devicebaytemplate4 = DeviceBayTemplate.objects.get(pk=response.data['id']) self.assertEqual(devicebaytemplate4.device_type_id, data['device_type']) self.assertEqual(devicebaytemplate4.name, data['name']) def test_create_devicebaytemplate_bulk(self): data = [ { 'device_type': self.devicetype.pk, 'name': 'Test Device Bay Template 4', }, { 'device_type': self.devicetype.pk, 'name': 'Test Device Bay Template 5', }, { 'device_type': self.devicetype.pk, 'name': 'Test Device Bay Template 6', }, ] url = reverse('dcim-api:devicebaytemplate-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceBayTemplate.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_devicebaytemplate(self): data = { 'device_type': self.devicetype.pk, 'name': 'Test Device Bay Template X', } url = reverse('dcim-api:devicebaytemplate-detail', kwargs={'pk': self.devicebaytemplate1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(DeviceBayTemplate.objects.count(), 3) devicebaytemplate1 = DeviceBayTemplate.objects.get(pk=response.data['id']) self.assertEqual(devicebaytemplate1.name, data['name']) def test_delete_devicebaytemplate(self): url = reverse('dcim-api:devicebaytemplate-detail', kwargs={'pk': self.devicebaytemplate1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(DeviceBayTemplate.objects.count(), 2) class DeviceRoleTest(APITestCase): def setUp(self): super().setUp() self.devicerole1 = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.devicerole2 = DeviceRole.objects.create( name='Test Device Role 2', slug='test-device-role-2', color='00ff00' ) self.devicerole3 = DeviceRole.objects.create( name='Test Device Role 3', slug='test-device-role-3', color='0000ff' ) def test_get_devicerole(self): url = reverse('dcim-api:devicerole-detail', kwargs={'pk': self.devicerole1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.devicerole1.name) def test_list_deviceroles(self): url = reverse('dcim-api:devicerole-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_deviceroles_brief(self): url = reverse('dcim-api:devicerole-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'name', 'slug', 'url'] ) def test_create_devicerole(self): data = { 'name': 'Test Device Role 4', 'slug': 'test-device-role-4', 'color': 'ffff00', } url = reverse('dcim-api:devicerole-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceRole.objects.count(), 4) devicerole4 = DeviceRole.objects.get(pk=response.data['id']) self.assertEqual(devicerole4.name, data['name']) self.assertEqual(devicerole4.slug, data['slug']) self.assertEqual(devicerole4.color, data['color']) def test_create_devicerole_bulk(self): data = [ { 'name': 'Test Device Role 4', 'slug': 'test-device-role-4', 'color': 'ffff00', }, { 'name': 'Test Device Role 5', 'slug': 'test-device-role-5', 'color': 'ffff00', }, { 'name': 'Test Device Role 6', 'slug': 'test-device-role-6', 'color': 'ffff00', }, ] url = reverse('dcim-api:devicerole-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceRole.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_devicerole(self): data = { 'name': 'Test Device Role X', 'slug': 'test-device-role-x', 'color': '00ffff', } url = reverse('dcim-api:devicerole-detail', kwargs={'pk': self.devicerole1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(DeviceRole.objects.count(), 3) devicerole1 = DeviceRole.objects.get(pk=response.data['id']) self.assertEqual(devicerole1.name, data['name']) self.assertEqual(devicerole1.slug, data['slug']) self.assertEqual(devicerole1.color, data['color']) def test_delete_devicerole(self): url = reverse('dcim-api:devicerole-detail', kwargs={'pk': self.devicerole1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(DeviceRole.objects.count(), 2) class PlatformTest(APITestCase): def setUp(self): super().setUp() self.platform1 = Platform.objects.create(name='Test Platform 1', slug='test-platform-1') self.platform2 = Platform.objects.create(name='Test Platform 2', slug='test-platform-2') self.platform3 = Platform.objects.create(name='Test Platform 3', slug='test-platform-3') def test_get_platform(self): url = reverse('dcim-api:platform-detail', kwargs={'pk': self.platform1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.platform1.name) def test_list_platforms(self): url = reverse('dcim-api:platform-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_platforms_brief(self): url = reverse('dcim-api:platform-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'name', 'slug', 'url'] ) def test_create_platform(self): data = { 'name': 'Test Platform 4', 'slug': 'test-platform-4', } url = reverse('dcim-api:platform-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Platform.objects.count(), 4) platform4 = Platform.objects.get(pk=response.data['id']) self.assertEqual(platform4.name, data['name']) self.assertEqual(platform4.slug, data['slug']) def test_create_platform_bulk(self): data = [ { 'name': 'Test Platform 4', 'slug': 'test-platform-4', }, { 'name': 'Test Platform 5', 'slug': 'test-platform-5', }, { 'name': 'Test Platform 6', 'slug': 'test-platform-6', }, ] url = reverse('dcim-api:platform-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Platform.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_platform(self): data = { 'name': 'Test Platform X', 'slug': 'test-platform-x', } url = reverse('dcim-api:platform-detail', kwargs={'pk': self.platform1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Platform.objects.count(), 3) platform1 = Platform.objects.get(pk=response.data['id']) self.assertEqual(platform1.name, data['name']) self.assertEqual(platform1.slug, data['slug']) def test_delete_platform(self): url = reverse('dcim-api:platform-detail', kwargs={'pk': self.platform1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Platform.objects.count(), 2) class DeviceTest(APITestCase): def setUp(self): super().setUp() self.site1 = Site.objects.create(name='Test Site 1', slug='test-site-1') self.site2 = Site.objects.create(name='Test Site 2', slug='test-site-2') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype1 = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.devicetype2 = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 2', slug='test-device-type-2' ) self.devicerole1 = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.devicerole2 = DeviceRole.objects.create( name='Test Device Role 2', slug='test-device-role-2', color='00ff00' ) cluster_type = ClusterType.objects.create(name='Test Cluster Type 1', slug='test-cluster-type-1') self.cluster1 = Cluster.objects.create(name='Test Cluster 1', type=cluster_type) self.device1 = Device.objects.create( device_type=self.devicetype1, device_role=self.devicerole1, name='Test Device 1', site=self.site1, cluster=self.cluster1 ) self.device2 = Device.objects.create( device_type=self.devicetype1, device_role=self.devicerole1, name='Test Device 2', site=self.site1, cluster=self.cluster1 ) self.device3 = Device.objects.create( device_type=self.devicetype1, device_role=self.devicerole1, name='Test Device 3', site=self.site1, cluster=self.cluster1 ) def test_get_device(self): url = reverse('dcim-api:device-detail', kwargs={'pk': self.device1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.device1.name) self.assertEqual(response.data['device_role']['id'], self.devicerole1.pk) self.assertEqual(response.data['cluster']['id'], self.cluster1.pk) def test_list_devices(self): url = reverse('dcim-api:device-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_devices_brief(self): url = reverse('dcim-api:device-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['display_name', 'id', 'name', 'url'] ) def test_create_device(self): data = { 'device_type': self.devicetype1.pk, 'device_role': self.devicerole1.pk, 'name': 'Test Device 4', 'site': self.site1.pk, 'cluster': self.cluster1.pk, } url = reverse('dcim-api:device-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Device.objects.count(), 4) device4 = Device.objects.get(pk=response.data['id']) self.assertEqual(device4.device_type_id, data['device_type']) self.assertEqual(device4.device_role_id, data['device_role']) self.assertEqual(device4.name, data['name']) self.assertEqual(device4.site.pk, data['site']) self.assertEqual(device4.cluster.pk, data['cluster']) def test_create_device_bulk(self): data = [ { 'device_type': self.devicetype1.pk, 'device_role': self.devicerole1.pk, 'name': 'Test Device 4', 'site': self.site1.pk, }, { 'device_type': self.devicetype1.pk, 'device_role': self.devicerole1.pk, 'name': 'Test Device 5', 'site': self.site1.pk, }, { 'device_type': self.devicetype1.pk, 'device_role': self.devicerole1.pk, 'name': 'Test Device 6', 'site': self.site1.pk, }, ] url = reverse('dcim-api:device-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Device.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_device(self): interface = Interface.objects.create(name='Test Interface 1', device=self.device1) ip4_address = IPAddress.objects.create(address=IPNetwork('192.0.2.1/24'), interface=interface) ip6_address = IPAddress.objects.create(address=IPNetwork('2001:db8::1/64'), interface=interface) data = { 'device_type': self.devicetype2.pk, 'device_role': self.devicerole2.pk, 'name': 'Test Device X', 'site': self.site2.pk, 'primary_ip4': ip4_address.pk, 'primary_ip6': ip6_address.pk, } url = reverse('dcim-api:device-detail', kwargs={'pk': self.device1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Device.objects.count(), 3) device1 = Device.objects.get(pk=response.data['id']) self.assertEqual(device1.device_type_id, data['device_type']) self.assertEqual(device1.device_role_id, data['device_role']) self.assertEqual(device1.name, data['name']) self.assertEqual(device1.site.pk, data['site']) self.assertEqual(device1.primary_ip4.pk, data['primary_ip4']) self.assertEqual(device1.primary_ip6.pk, data['primary_ip6']) def test_delete_device(self): url = reverse('dcim-api:device-detail', kwargs={'pk': self.device1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Device.objects.count(), 2) class ConsolePortTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') devicetype = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=site ) self.consoleport1 = ConsolePort.objects.create(device=self.device, name='Test Console Port 1') self.consoleport2 = ConsolePort.objects.create(device=self.device, name='Test Console Port 2') self.consoleport3 = ConsolePort.objects.create(device=self.device, name='Test Console Port 3') def test_get_consoleport(self): url = reverse('dcim-api:consoleport-detail', kwargs={'pk': self.consoleport1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.consoleport1.name) def test_list_consoleports(self): url = reverse('dcim-api:consoleport-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_consoleports_brief(self): url = reverse('dcim-api:consoleport-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['cable', 'connection_status', 'device', 'id', 'name', 'url'] ) def test_create_consoleport(self): data = { 'device': self.device.pk, 'name': 'Test Console Port 4', } url = reverse('dcim-api:consoleport-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsolePort.objects.count(), 4) consoleport4 = ConsolePort.objects.get(pk=response.data['id']) self.assertEqual(consoleport4.device_id, data['device']) self.assertEqual(consoleport4.name, data['name']) def test_create_consoleport_bulk(self): data = [ { 'device': self.device.pk, 'name': 'Test Console Port 4', }, { 'device': self.device.pk, 'name': 'Test Console Port 5', }, { 'device': self.device.pk, 'name': 'Test Console Port 6', }, ] url = reverse('dcim-api:consoleport-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsolePort.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_consoleport(self): consoleserverport = ConsoleServerPort.objects.create(device=self.device, name='Test CS Port 1') data = { 'device': self.device.pk, 'name': 'Test Console Port X', } url = reverse('dcim-api:consoleport-detail', kwargs={'pk': self.consoleport1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(ConsolePort.objects.count(), 3) consoleport1 = ConsolePort.objects.get(pk=response.data['id']) self.assertEqual(consoleport1.name, data['name']) def test_delete_consoleport(self): url = reverse('dcim-api:consoleport-detail', kwargs={'pk': self.consoleport1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(ConsolePort.objects.count(), 2) class ConsoleServerPortTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') devicetype = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=site ) self.consoleserverport1 = ConsoleServerPort.objects.create(device=self.device, name='Test CS Port 1') self.consoleserverport2 = ConsoleServerPort.objects.create(device=self.device, name='Test CS Port 2') self.consoleserverport3 = ConsoleServerPort.objects.create(device=self.device, name='Test CS Port 3') def test_get_consoleserverport(self): url = reverse('dcim-api:consoleserverport-detail', kwargs={'pk': self.consoleserverport1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.consoleserverport1.name) def test_list_consoleserverports(self): url = reverse('dcim-api:consoleserverport-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_consoleserverports_brief(self): url = reverse('dcim-api:consoleserverport-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['cable', 'connection_status', 'device', 'id', 'name', 'url'] ) def test_create_consoleserverport(self): data = { 'device': self.device.pk, 'name': 'Test CS Port 4', } url = reverse('dcim-api:consoleserverport-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsoleServerPort.objects.count(), 4) consoleserverport4 = ConsoleServerPort.objects.get(pk=response.data['id']) self.assertEqual(consoleserverport4.device_id, data['device']) self.assertEqual(consoleserverport4.name, data['name']) def test_create_consoleserverport_bulk(self): data = [ { 'device': self.device.pk, 'name': 'Test CS Port 4', }, { 'device': self.device.pk, 'name': 'Test CS Port 5', }, { 'device': self.device.pk, 'name': 'Test CS Port 6', }, ] url = reverse('dcim-api:consoleserverport-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(ConsoleServerPort.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_consoleserverport(self): data = { 'device': self.device.pk, 'name': 'Test CS Port X', } url = reverse('dcim-api:consoleserverport-detail', kwargs={'pk': self.consoleserverport1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(ConsoleServerPort.objects.count(), 3) consoleserverport1 = ConsoleServerPort.objects.get(pk=response.data['id']) self.assertEqual(consoleserverport1.name, data['name']) def test_delete_consoleserverport(self): url = reverse('dcim-api:consoleserverport-detail', kwargs={'pk': self.consoleserverport1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(ConsoleServerPort.objects.count(), 2) class PowerPortTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') devicetype = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=site ) self.powerport1 = PowerPort.objects.create(device=self.device, name='Test Power Port 1') self.powerport2 = PowerPort.objects.create(device=self.device, name='Test Power Port 2') self.powerport3 = PowerPort.objects.create(device=self.device, name='Test Power Port 3') def test_get_powerport(self): url = reverse('dcim-api:powerport-detail', kwargs={'pk': self.powerport1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.powerport1.name) def test_list_powerports(self): url = reverse('dcim-api:powerport-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_powerports_brief(self): url = reverse('dcim-api:powerport-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['cable', 'connection_status', 'device', 'id', 'name', 'url'] ) def test_create_powerport(self): data = { 'device': self.device.pk, 'name': 'Test Power Port 4', } url = reverse('dcim-api:powerport-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerPort.objects.count(), 4) powerport4 = PowerPort.objects.get(pk=response.data['id']) self.assertEqual(powerport4.device_id, data['device']) self.assertEqual(powerport4.name, data['name']) def test_create_powerport_bulk(self): data = [ { 'device': self.device.pk, 'name': 'Test Power Port 4', }, { 'device': self.device.pk, 'name': 'Test Power Port 5', }, { 'device': self.device.pk, 'name': 'Test Power Port 6', }, ] url = reverse('dcim-api:powerport-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerPort.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_powerport(self): poweroutlet = PowerOutlet.objects.create(device=self.device, name='Test Power Outlet 1') data = { 'device': self.device.pk, 'name': 'Test Power Port X', } url = reverse('dcim-api:powerport-detail', kwargs={'pk': self.powerport1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(PowerPort.objects.count(), 3) powerport1 = PowerPort.objects.get(pk=response.data['id']) self.assertEqual(powerport1.name, data['name']) def test_delete_powerport(self): url = reverse('dcim-api:powerport-detail', kwargs={'pk': self.powerport1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(PowerPort.objects.count(), 2) class PowerOutletTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') devicetype = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=site ) self.poweroutlet1 = PowerOutlet.objects.create(device=self.device, name='Test Power Outlet 1') self.poweroutlet2 = PowerOutlet.objects.create(device=self.device, name='Test Power Outlet 2') self.poweroutlet3 = PowerOutlet.objects.create(device=self.device, name='Test Power Outlet 3') def test_get_poweroutlet(self): url = reverse('dcim-api:poweroutlet-detail', kwargs={'pk': self.poweroutlet1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.poweroutlet1.name) def test_list_poweroutlets(self): url = reverse('dcim-api:poweroutlet-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_poweroutlets_brief(self): url = reverse('dcim-api:poweroutlet-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['cable', 'connection_status', 'device', 'id', 'name', 'url'] ) def test_create_poweroutlet(self): data = { 'device': self.device.pk, 'name': 'Test Power Outlet 4', } url = reverse('dcim-api:poweroutlet-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerOutlet.objects.count(), 4) poweroutlet4 = PowerOutlet.objects.get(pk=response.data['id']) self.assertEqual(poweroutlet4.device_id, data['device']) self.assertEqual(poweroutlet4.name, data['name']) def test_create_poweroutlet_bulk(self): data = [ { 'device': self.device.pk, 'name': 'Test Power Outlet 4', }, { 'device': self.device.pk, 'name': 'Test Power Outlet 5', }, { 'device': self.device.pk, 'name': 'Test Power Outlet 6', }, ] url = reverse('dcim-api:poweroutlet-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(PowerOutlet.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_poweroutlet(self): data = { 'device': self.device.pk, 'name': 'Test Power Outlet X', } url = reverse('dcim-api:poweroutlet-detail', kwargs={'pk': self.poweroutlet1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(PowerOutlet.objects.count(), 3) poweroutlet1 = PowerOutlet.objects.get(pk=response.data['id']) self.assertEqual(poweroutlet1.name, data['name']) def test_delete_poweroutlet(self): url = reverse('dcim-api:poweroutlet-detail', kwargs={'pk': self.poweroutlet1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(PowerOutlet.objects.count(), 2) class InterfaceTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') devicetype = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=site ) self.interface1 = Interface.objects.create(device=self.device, name='Test Interface 1') self.interface2 = Interface.objects.create(device=self.device, name='Test Interface 2') self.interface3 = Interface.objects.create(device=self.device, name='Test Interface 3') self.vlan1 = VLAN.objects.create(name="Test VLAN 1", vid=1) self.vlan2 = VLAN.objects.create(name="Test VLAN 2", vid=2) self.vlan3 = VLAN.objects.create(name="Test VLAN 3", vid=3) def test_get_interface(self): url = reverse('dcim-api:interface-detail', kwargs={'pk': self.interface1.pk}) response = self.client.get(url, **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['name'], self.interface1.name) def test_get_interface_graphs(self): self.graph1 = Graph.objects.create( type=GRAPH_TYPE_INTERFACE, name='Test Graph 1', source='http://example.com/graphs.py?interface={{ obj.name }}&foo=1' ) self.graph2 = Graph.objects.create( type=GRAPH_TYPE_INTERFACE, name='Test Graph 2', source='http://example.com/graphs.py?interface={{ obj.name }}&foo=2' ) self.graph3 = Graph.objects.create( type=GRAPH_TYPE_INTERFACE, name='Test Graph 3', source='http://example.com/graphs.py?interface={{ obj.name }}&foo=3' ) url = reverse('dcim-api:interface-graphs', kwargs={'pk': self.interface1.pk}) response = self.client.get(url, **self.header) self.assertEqual(len(response.data), 3) self.assertEqual(response.data[0]['embed_url'], 'http://example.com/graphs.py?interface=Test Interface 1&foo=1') def test_list_interfaces(self): url = reverse('dcim-api:interface-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_interfaces_brief(self): url = reverse('dcim-api:interface-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['cable', 'connection_status', 'device', 'id', 'name', 'url'] ) def test_create_interface(self): data = { 'device': self.device.pk, 'name': 'Test Interface 4', } url = reverse('dcim-api:interface-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Interface.objects.count(), 4) interface4 = Interface.objects.get(pk=response.data['id']) self.assertEqual(interface4.device_id, data['device']) self.assertEqual(interface4.name, data['name']) def test_create_interface_with_802_1q(self): data = { 'device': self.device.pk, 'name': 'Test Interface 4', 'mode': IFACE_MODE_TAGGED, 'untagged_vlan': self.vlan3.id, 'tagged_vlans': [self.vlan1.id, self.vlan2.id], } url = reverse('dcim-api:interface-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Interface.objects.count(), 4) self.assertEqual(response.data['device']['id'], data['device']) self.assertEqual(response.data['name'], data['name']) self.assertEqual(response.data['untagged_vlan']['id'], data['untagged_vlan']) self.assertEqual([v['id'] for v in response.data['tagged_vlans']], data['tagged_vlans']) def test_create_interface_bulk(self): data = [ { 'device': self.device.pk, 'name': 'Test Interface 4', }, { 'device': self.device.pk, 'name': 'Test Interface 5', }, { 'device': self.device.pk, 'name': 'Test Interface 6', }, ] url = reverse('dcim-api:interface-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Interface.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_create_interface_802_1q_bulk(self): data = [ { 'device': self.device.pk, 'name': 'Test Interface 4', 'mode': IFACE_MODE_TAGGED, 'untagged_vlan': self.vlan2.id, 'tagged_vlans': [self.vlan1.id], }, { 'device': self.device.pk, 'name': 'Test Interface 5', 'mode': IFACE_MODE_TAGGED, 'untagged_vlan': self.vlan2.id, 'tagged_vlans': [self.vlan1.id], }, { 'device': self.device.pk, 'name': 'Test Interface 6', 'mode': IFACE_MODE_TAGGED, 'untagged_vlan': self.vlan2.id, 'tagged_vlans': [self.vlan1.id], }, ] url = reverse('dcim-api:interface-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Interface.objects.count(), 6) for i in range(0, 3): self.assertEqual(response.data[i]['name'], data[i]['name']) self.assertEqual([v['id'] for v in response.data[i]['tagged_vlans']], data[i]['tagged_vlans']) self.assertEqual(response.data[i]['untagged_vlan']['id'], data[i]['untagged_vlan']) def test_update_interface(self): lag_interface = Interface.objects.create( device=self.device, name='Test LAG Interface', form_factor=IFACE_FF_LAG ) data = { 'device': self.device.pk, 'name': 'Test Interface X', 'lag': lag_interface.pk, } url = reverse('dcim-api:interface-detail', kwargs={'pk': self.interface1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Interface.objects.count(), 4) interface1 = Interface.objects.get(pk=response.data['id']) self.assertEqual(interface1.name, data['name']) self.assertEqual(interface1.lag_id, data['lag']) def test_delete_interface(self): url = reverse('dcim-api:interface-detail', kwargs={'pk': self.interface1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Interface.objects.count(), 2) class DeviceBayTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype1 = DeviceType.objects.create( manufacturer=manufacturer, model='Parent Device Type', slug='parent-device-type', subdevice_role=SUBDEVICE_ROLE_PARENT ) self.devicetype2 = DeviceType.objects.create( manufacturer=manufacturer, model='Child Device Type', slug='child-device-type', subdevice_role=SUBDEVICE_ROLE_CHILD ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.parent_device = Device.objects.create( device_type=self.devicetype1, device_role=devicerole, name='Parent Device 1', site=site ) self.child_device = Device.objects.create( device_type=self.devicetype2, device_role=devicerole, name='Child Device 1', site=site ) self.devicebay1 = DeviceBay.objects.create(device=self.parent_device, name='Test Device Bay 1') self.devicebay2 = DeviceBay.objects.create(device=self.parent_device, name='Test Device Bay 2') self.devicebay3 = DeviceBay.objects.create(device=self.parent_device, name='Test Device Bay 3') def test_get_devicebay(self): url = reverse('dcim-api:devicebay-detail', kwargs={'pk': self.devicebay1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.devicebay1.name) def test_list_devicebays(self): url = reverse('dcim-api:devicebay-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_list_devicebays_brief(self): url = reverse('dcim-api:devicebay-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['device', 'id', 'name', 'url'] ) def test_create_devicebay(self): data = { 'device': self.parent_device.pk, 'name': 'Test Device Bay 4', 'installed_device': self.child_device.pk, } url = reverse('dcim-api:devicebay-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceBay.objects.count(), 4) devicebay4 = DeviceBay.objects.get(pk=response.data['id']) self.assertEqual(devicebay4.device_id, data['device']) self.assertEqual(devicebay4.name, data['name']) self.assertEqual(devicebay4.installed_device_id, data['installed_device']) def test_create_devicebay_bulk(self): data = [ { 'device': self.parent_device.pk, 'name': 'Test Device Bay 4', }, { 'device': self.parent_device.pk, 'name': 'Test Device Bay 5', }, { 'device': self.parent_device.pk, 'name': 'Test Device Bay 6', }, ] url = reverse('dcim-api:devicebay-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(DeviceBay.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_devicebay(self): data = { 'device': self.parent_device.pk, 'name': 'Test Device Bay X', 'installed_device': self.child_device.pk, } url = reverse('dcim-api:devicebay-detail', kwargs={'pk': self.devicebay1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(DeviceBay.objects.count(), 3) devicebay1 = DeviceBay.objects.get(pk=response.data['id']) self.assertEqual(devicebay1.name, data['name']) self.assertEqual(devicebay1.installed_device_id, data['installed_device']) def test_delete_devicebay(self): url = reverse('dcim-api:devicebay-detail', kwargs={'pk': self.devicebay1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(DeviceBay.objects.count(), 2) class InventoryItemTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=site ) self.inventoryitem1 = InventoryItem.objects.create(device=self.device, name='Test Inventory Item 1') self.inventoryitem2 = InventoryItem.objects.create(device=self.device, name='Test Inventory Item 2') self.inventoryitem3 = InventoryItem.objects.create(device=self.device, name='Test Inventory Item 3') def test_get_inventoryitem(self): url = reverse('dcim-api:inventoryitem-detail', kwargs={'pk': self.inventoryitem1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['name'], self.inventoryitem1.name) def test_list_inventoryitems(self): url = reverse('dcim-api:inventoryitem-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_inventoryitem(self): data = { 'device': self.device.pk, 'parent': self.inventoryitem1.pk, 'name': 'Test Inventory Item 4', 'manufacturer': self.manufacturer.pk, } url = reverse('dcim-api:inventoryitem-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(InventoryItem.objects.count(), 4) inventoryitem4 = InventoryItem.objects.get(pk=response.data['id']) self.assertEqual(inventoryitem4.device_id, data['device']) self.assertEqual(inventoryitem4.parent_id, data['parent']) self.assertEqual(inventoryitem4.name, data['name']) self.assertEqual(inventoryitem4.manufacturer_id, data['manufacturer']) def test_create_inventoryitem_bulk(self): data = [ { 'device': self.device.pk, 'parent': self.inventoryitem1.pk, 'name': 'Test Inventory Item 4', 'manufacturer': self.manufacturer.pk, }, { 'device': self.device.pk, 'parent': self.inventoryitem1.pk, 'name': 'Test Inventory Item 5', 'manufacturer': self.manufacturer.pk, }, { 'device': self.device.pk, 'parent': self.inventoryitem1.pk, 'name': 'Test Inventory Item 6', 'manufacturer': self.manufacturer.pk, }, ] url = reverse('dcim-api:inventoryitem-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(InventoryItem.objects.count(), 6) self.assertEqual(response.data[0]['name'], data[0]['name']) self.assertEqual(response.data[1]['name'], data[1]['name']) self.assertEqual(response.data[2]['name'], data[2]['name']) def test_update_inventoryitem(self): data = { 'device': self.device.pk, 'parent': self.inventoryitem1.pk, 'name': 'Test Inventory Item X', 'manufacturer': self.manufacturer.pk, } url = reverse('dcim-api:inventoryitem-detail', kwargs={'pk': self.inventoryitem1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(InventoryItem.objects.count(), 3) inventoryitem1 = InventoryItem.objects.get(pk=response.data['id']) self.assertEqual(inventoryitem1.device_id, data['device']) self.assertEqual(inventoryitem1.parent_id, data['parent']) self.assertEqual(inventoryitem1.name, data['name']) self.assertEqual(inventoryitem1.manufacturer_id, data['manufacturer']) def test_delete_inventoryitem(self): url = reverse('dcim-api:inventoryitem-detail', kwargs={'pk': self.inventoryitem1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(InventoryItem.objects.count(), 2) class CableTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site 1', slug='test-site-1') self.manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') devicetype = DeviceType.objects.create( manufacturer=self.manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device1 = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=site ) self.device2 = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 2', site=site ) for device in [self.device1, self.device2]: for i in range(0, 10): Interface(device=device, form_factor=IFACE_FF_1GE_FIXED, name='eth{}'.format(i)).save() self.cable1 = Cable( termination_a=self.device1.interfaces.get(name='eth0'), termination_b=self.device2.interfaces.get(name='eth0'), label='Test Cable 1' ) self.cable1.save() self.cable2 = Cable( termination_a=self.device1.interfaces.get(name='eth1'), termination_b=self.device2.interfaces.get(name='eth1'), label='Test Cable 2' ) self.cable2.save() self.cable3 = Cable( termination_a=self.device1.interfaces.get(name='eth2'), termination_b=self.device2.interfaces.get(name='eth2'), label='Test Cable 3' ) self.cable3.save() def test_get_cable(self): url = reverse('dcim-api:cable-detail', kwargs={'pk': self.cable1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['id'], self.cable1.pk) def test_list_cables(self): url = reverse('dcim-api:cable-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 3) def test_create_cable(self): interface_a = self.device1.interfaces.get(name='eth3') interface_b = self.device2.interfaces.get(name='eth3') data = { 'termination_a_type': 'dcim.interface', 'termination_a_id': interface_a.pk, 'termination_b_type': 'dcim.interface', 'termination_b_id': interface_b.pk, 'status': CONNECTION_STATUS_PLANNED, 'label': 'Test Cable 4', } url = reverse('dcim-api:cable-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Cable.objects.count(), 4) cable4 = Cable.objects.get(pk=response.data['id']) self.assertEqual(cable4.termination_a, interface_a) self.assertEqual(cable4.termination_b, interface_b) self.assertEqual(cable4.status, data['status']) self.assertEqual(cable4.label, data['label']) def test_create_cable_bulk(self): data = [ { 'termination_a_type': 'dcim.interface', 'termination_a_id': self.device1.interfaces.get(name='eth3').pk, 'termination_b_type': 'dcim.interface', 'termination_b_id': self.device2.interfaces.get(name='eth3').pk, 'label': 'Test Cable 4', }, { 'termination_a_type': 'dcim.interface', 'termination_a_id': self.device1.interfaces.get(name='eth4').pk, 'termination_b_type': 'dcim.interface', 'termination_b_id': self.device2.interfaces.get(name='eth4').pk, 'label': 'Test Cable 5', }, { 'termination_a_type': 'dcim.interface', 'termination_a_id': self.device1.interfaces.get(name='eth5').pk, 'termination_b_type': 'dcim.interface', 'termination_b_id': self.device2.interfaces.get(name='eth5').pk, 'label': 'Test Cable 6', }, ] url = reverse('dcim-api:cable-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Cable.objects.count(), 6) self.assertEqual(response.data[0]['label'], data[0]['label']) self.assertEqual(response.data[1]['label'], data[1]['label']) self.assertEqual(response.data[2]['label'], data[2]['label']) def test_update_cable(self): data = { 'label': 'Test Cable X', 'status': CONNECTION_STATUS_CONNECTED, } url = reverse('dcim-api:cable-detail', kwargs={'pk': self.cable1.pk}) response = self.client.patch(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(Cable.objects.count(), 3) cable1 = Cable.objects.get(pk=response.data['id']) self.assertEqual(cable1.status, data['status']) self.assertEqual(cable1.label, data['label']) def test_delete_cable(self): url = reverse('dcim-api:cable-detail', kwargs={'pk': self.cable1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(Cable.objects.count(), 2) class ConnectionTest(APITestCase): def setUp(self): super().setUp() self.site = Site.objects.create( name='Test Site 1', slug='test-site-1' ) manufacturer = Manufacturer.objects.create( name='Test Manufacturer 1', slug='test-manufacturer-1' ) devicetype = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) devicerole = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.device1 = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 1', site=self.site ) self.device2 = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Device 2', site=self.site ) self.panel1 = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Panel 1', site=self.site ) self.panel2 = Device.objects.create( device_type=devicetype, device_role=devicerole, name='Test Panel 2', site=self.site ) def test_create_direct_console_connection(self): consoleport1 = ConsolePort.objects.create( device=self.device1, name='Test Console Port 1' ) consoleserverport1 = ConsoleServerPort.objects.create( device=self.device2, name='Test Console Server Port 1' ) data = { 'termination_a_type': 'dcim.consoleport', 'termination_a_id': consoleport1.pk, 'termination_b_type': 'dcim.consoleserverport', 'termination_b_id': consoleserverport1.pk, } url = reverse('dcim-api:cable-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Cable.objects.count(), 1) cable = Cable.objects.get(pk=response.data['id']) consoleport1 = ConsolePort.objects.get(pk=consoleport1.pk) consoleserverport1 = ConsoleServerPort.objects.get(pk=consoleserverport1.pk) self.assertEqual(cable.termination_a, consoleport1) self.assertEqual(cable.termination_b, consoleserverport1) self.assertEqual(consoleport1.cable, cable) self.assertEqual(consoleserverport1.cable, cable) self.assertEqual(consoleport1.connected_endpoint, consoleserverport1) self.assertEqual(consoleserverport1.connected_endpoint, consoleport1) def test_create_patched_console_connection(self): consoleport1 = ConsolePort.objects.create( device=self.device1, name='Test Console Port 1' ) consoleserverport1 = ConsoleServerPort.objects.create( device=self.device2, name='Test Console Server Port 1' ) rearport1 = RearPort.objects.create( device=self.panel1, name='Test Rear Port 1', type=PORT_TYPE_8P8C ) frontport1 = FrontPort.objects.create( device=self.panel1, name='Test Front Port 1', type=PORT_TYPE_8P8C, rear_port=rearport1 ) rearport2 = RearPort.objects.create( device=self.panel2, name='Test Rear Port 2', type=PORT_TYPE_8P8C ) frontport2 = FrontPort.objects.create( device=self.panel2, name='Test Front Port 2', type=PORT_TYPE_8P8C, rear_port=rearport2 ) url = reverse('dcim-api:cable-list') cables = [ # Console port to panel1 front { 'termination_a_type': 'dcim.consoleport', 'termination_a_id': consoleport1.pk, 'termination_b_type': 'dcim.frontport', 'termination_b_id': frontport1.pk, }, # Panel1 rear to panel2 rear { 'termination_a_type': 'dcim.rearport', 'termination_a_id': rearport1.pk, 'termination_b_type': 'dcim.rearport', 'termination_b_id': rearport2.pk, }, # Panel2 front to console server port { 'termination_a_type': 'dcim.frontport', 'termination_a_id': frontport2.pk, 'termination_b_type': 'dcim.consoleserverport', 'termination_b_id': consoleserverport1.pk, }, ] for data in cables: response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) cable = Cable.objects.get(pk=response.data['id']) self.assertEqual(cable.termination_a.cable, cable) self.assertEqual(cable.termination_b.cable, cable) consoleport1 = ConsolePort.objects.get(pk=consoleport1.pk) consoleserverport1 = ConsoleServerPort.objects.get(pk=consoleserverport1.pk) self.assertEqual(consoleport1.connected_endpoint, consoleserverport1) self.assertEqual(consoleserverport1.connected_endpoint, consoleport1) def test_create_direct_power_connection(self): powerport1 = PowerPort.objects.create( device=self.device1, name='Test Power Port 1' ) poweroutlet1 = PowerOutlet.objects.create( device=self.device2, name='Test Power Outlet 1' ) data = { 'termination_a_type': 'dcim.powerport', 'termination_a_id': powerport1.pk, 'termination_b_type': 'dcim.poweroutlet', 'termination_b_id': poweroutlet1.pk, } url = reverse('dcim-api:cable-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Cable.objects.count(), 1) cable = Cable.objects.get(pk=response.data['id']) powerport1 = PowerPort.objects.get(pk=powerport1.pk) poweroutlet1 = PowerOutlet.objects.get(pk=poweroutlet1.pk) self.assertEqual(cable.termination_a, powerport1) self.assertEqual(cable.termination_b, poweroutlet1) self.assertEqual(powerport1.cable, cable) self.assertEqual(poweroutlet1.cable, cable) self.assertEqual(powerport1.connected_endpoint, poweroutlet1) self.assertEqual(poweroutlet1.connected_endpoint, powerport1) # Note: Power connections via patch ports are not supported. def test_create_direct_interface_connection(self): interface1 = Interface.objects.create( device=self.device1, name='Test Interface 1' ) interface2 = Interface.objects.create( device=self.device2, name='Test Interface 2' ) data = { 'termination_a_type': 'dcim.interface', 'termination_a_id': interface1.pk, 'termination_b_type': 'dcim.interface', 'termination_b_id': interface2.pk, } url = reverse('dcim-api:cable-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Cable.objects.count(), 1) cable = Cable.objects.get(pk=response.data['id']) interface1 = Interface.objects.get(pk=interface1.pk) interface2 = Interface.objects.get(pk=interface2.pk) self.assertEqual(cable.termination_a, interface1) self.assertEqual(cable.termination_b, interface2) self.assertEqual(interface1.cable, cable) self.assertEqual(interface2.cable, cable) self.assertEqual(interface1.connected_endpoint, interface2) self.assertEqual(interface2.connected_endpoint, interface1) def test_create_patched_interface_connection(self): interface1 = Interface.objects.create( device=self.device1, name='Test Interface 1' ) interface2 = Interface.objects.create( device=self.device2, name='Test Interface 2' ) rearport1 = RearPort.objects.create( device=self.panel1, name='Test Rear Port 1', type=PORT_TYPE_8P8C ) frontport1 = FrontPort.objects.create( device=self.panel1, name='Test Front Port 1', type=PORT_TYPE_8P8C, rear_port=rearport1 ) rearport2 = RearPort.objects.create( device=self.panel2, name='Test Rear Port 2', type=PORT_TYPE_8P8C ) frontport2 = FrontPort.objects.create( device=self.panel2, name='Test Front Port 2', type=PORT_TYPE_8P8C, rear_port=rearport2 ) url = reverse('dcim-api:cable-list') cables = [ # Interface1 to panel1 front { 'termination_a_type': 'dcim.interface', 'termination_a_id': interface1.pk, 'termination_b_type': 'dcim.frontport', 'termination_b_id': frontport1.pk, }, # Panel1 rear to panel2 rear { 'termination_a_type': 'dcim.rearport', 'termination_a_id': rearport1.pk, 'termination_b_type': 'dcim.rearport', 'termination_b_id': rearport2.pk, }, # Panel2 front to interface2 { 'termination_a_type': 'dcim.frontport', 'termination_a_id': frontport2.pk, 'termination_b_type': 'dcim.interface', 'termination_b_id': interface2.pk, }, ] for data in cables: response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) cable = Cable.objects.get(pk=response.data['id']) self.assertEqual(cable.termination_a.cable, cable) self.assertEqual(cable.termination_b.cable, cable) interface1 = Interface.objects.get(pk=interface1.pk) interface2 = Interface.objects.get(pk=interface2.pk) self.assertEqual(interface1.connected_endpoint, interface2) self.assertEqual(interface2.connected_endpoint, interface1) def test_create_direct_circuittermination_connection(self): provider = Provider.objects.create( name='Test Provider 1', slug='test-provider-1' ) circuittype = CircuitType.objects.create( name='Test Circuit Type 1', slug='test-circuit-type-1' ) circuit = Circuit.objects.create( provider=provider, type=circuittype, cid='Test Circuit 1' ) interface1 = Interface.objects.create( device=self.device1, name='Test Interface 1' ) circuittermination1 = CircuitTermination.objects.create( circuit=circuit, term_side='A', site=self.site, port_speed=10000 ) data = { 'termination_a_type': 'dcim.interface', 'termination_a_id': interface1.pk, 'termination_b_type': 'circuits.circuittermination', 'termination_b_id': circuittermination1.pk, } url = reverse('dcim-api:cable-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(Cable.objects.count(), 1) cable = Cable.objects.get(pk=response.data['id']) interface1 = Interface.objects.get(pk=interface1.pk) circuittermination1 = CircuitTermination.objects.get(pk=circuittermination1.pk) self.assertEqual(cable.termination_a, interface1) self.assertEqual(cable.termination_b, circuittermination1) self.assertEqual(interface1.cable, cable) self.assertEqual(circuittermination1.cable, cable) self.assertEqual(interface1.connected_endpoint, circuittermination1) self.assertEqual(circuittermination1.connected_endpoint, interface1) def test_create_patched_circuittermination_connection(self): provider = Provider.objects.create( name='Test Provider 1', slug='test-provider-1' ) circuittype = CircuitType.objects.create( name='Test Circuit Type 1', slug='test-circuit-type-1' ) circuit = Circuit.objects.create( provider=provider, type=circuittype, cid='Test Circuit 1' ) interface1 = Interface.objects.create( device=self.device1, name='Test Interface 1' ) circuittermination1 = CircuitTermination.objects.create( circuit=circuit, term_side='A', site=self.site, port_speed=10000 ) rearport1 = RearPort.objects.create( device=self.panel1, name='Test Rear Port 1', type=PORT_TYPE_8P8C ) frontport1 = FrontPort.objects.create( device=self.panel1, name='Test Front Port 1', type=PORT_TYPE_8P8C, rear_port=rearport1 ) rearport2 = RearPort.objects.create( device=self.panel2, name='Test Rear Port 2', type=PORT_TYPE_8P8C ) frontport2 = FrontPort.objects.create( device=self.panel2, name='Test Front Port 2', type=PORT_TYPE_8P8C, rear_port=rearport2 ) url = reverse('dcim-api:cable-list') cables = [ # Interface to panel1 front { 'termination_a_type': 'dcim.interface', 'termination_a_id': interface1.pk, 'termination_b_type': 'dcim.frontport', 'termination_b_id': frontport1.pk, }, # Panel1 rear to panel2 rear { 'termination_a_type': 'dcim.rearport', 'termination_a_id': rearport1.pk, 'termination_b_type': 'dcim.rearport', 'termination_b_id': rearport2.pk, }, # Panel2 front to circuit termination { 'termination_a_type': 'dcim.frontport', 'termination_a_id': frontport2.pk, 'termination_b_type': 'circuits.circuittermination', 'termination_b_id': circuittermination1.pk, }, ] for data in cables: response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) cable = Cable.objects.get(pk=response.data['id']) self.assertEqual(cable.termination_a.cable, cable) self.assertEqual(cable.termination_b.cable, cable) interface1 = Interface.objects.get(pk=interface1.pk) circuittermination1 = CircuitTermination.objects.get(pk=circuittermination1.pk) self.assertEqual(interface1.connected_endpoint, circuittermination1) self.assertEqual(circuittermination1.connected_endpoint, interface1) class ConnectedDeviceTest(APITestCase): def setUp(self): super().setUp() self.site1 = Site.objects.create(name='Test Site 1', slug='test-site-1') self.site2 = Site.objects.create(name='Test Site 2', slug='test-site-2') manufacturer = Manufacturer.objects.create(name='Test Manufacturer 1', slug='test-manufacturer-1') self.devicetype1 = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 1', slug='test-device-type-1' ) self.devicetype2 = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type 2', slug='test-device-type-2' ) self.devicerole1 = DeviceRole.objects.create( name='Test Device Role 1', slug='test-device-role-1', color='ff0000' ) self.devicerole2 = DeviceRole.objects.create( name='Test Device Role 2', slug='test-device-role-2', color='00ff00' ) self.device1 = Device.objects.create( device_type=self.devicetype1, device_role=self.devicerole1, name='TestDevice1', site=self.site1 ) self.device2 = Device.objects.create( device_type=self.devicetype1, device_role=self.devicerole1, name='TestDevice2', site=self.site1 ) self.interface1 = Interface.objects.create(device=self.device1, name='eth0') self.interface2 = Interface.objects.create(device=self.device2, name='eth0') cable = Cable(termination_a=self.interface1, termination_b=self.interface2) cable.save() def test_get_connected_device(self): url = reverse('dcim-api:connected-device-list') response = self.client.get(url + '?peer_device=TestDevice2&peer_interface=eth0', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(response.data['name'], self.device1.name) class VirtualChassisTest(APITestCase): def setUp(self): super().setUp() site = Site.objects.create(name='Test Site', slug='test-site') manufacturer = Manufacturer.objects.create(name='Test Manufacturer', slug='test-manufacturer') device_type = DeviceType.objects.create( manufacturer=manufacturer, model='Test Device Type', slug='test-device-type' ) device_role = DeviceRole.objects.create( name='Test Device Role', slug='test-device-role', color='ff0000' ) # Create 9 member Devices with 12 interfaces each self.device1 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch1', site=site ) self.device2 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch2', site=site ) self.device3 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch3', site=site ) self.device4 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch4', site=site ) self.device5 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch5', site=site ) self.device6 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch6', site=site ) self.device7 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch7', site=site ) self.device8 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch8', site=site ) self.device9 = Device.objects.create( device_type=device_type, device_role=device_role, name='StackSwitch9', site=site ) for i in range(0, 13): Interface.objects.create(device=self.device1, name='1/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device2, name='2/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device3, name='3/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device4, name='1/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device5, name='2/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device6, name='3/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device7, name='1/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device8, name='2/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) for i in range(0, 13): Interface.objects.create(device=self.device9, name='3/{}'.format(i), form_factor=IFACE_FF_1GE_FIXED) # Create two VirtualChassis with three members each self.vc1 = VirtualChassis.objects.create(master=self.device1, domain='test-domain-1') Device.objects.filter(pk=self.device2.pk).update(virtual_chassis=self.vc1, vc_position=2) Device.objects.filter(pk=self.device3.pk).update(virtual_chassis=self.vc1, vc_position=3) self.vc2 = VirtualChassis.objects.create(master=self.device4, domain='test-domain-2') Device.objects.filter(pk=self.device5.pk).update(virtual_chassis=self.vc2, vc_position=2) Device.objects.filter(pk=self.device6.pk).update(virtual_chassis=self.vc2, vc_position=3) def test_get_virtualchassis(self): url = reverse('dcim-api:virtualchassis-detail', kwargs={'pk': self.vc1.pk}) response = self.client.get(url, **self.header) self.assertEqual(response.data['domain'], self.vc1.domain) def test_list_virtualchassis(self): url = reverse('dcim-api:virtualchassis-list') response = self.client.get(url, **self.header) self.assertEqual(response.data['count'], 2) def test_list_virtualchassis_brief(self): url = reverse('dcim-api:virtualchassis-list') response = self.client.get('{}?brief=1'.format(url), **self.header) self.assertEqual( sorted(response.data['results'][0]), ['id', 'master', 'url'] ) def test_create_virtualchassis(self): data = { 'master': self.device7.pk, 'domain': 'test-domain-3', } url = reverse('dcim-api:virtualchassis-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(VirtualChassis.objects.count(), 3) vc3 = VirtualChassis.objects.get(pk=response.data['id']) self.assertEqual(vc3.master.pk, data['master']) self.assertEqual(vc3.domain, data['domain']) # Verify that the master device was automatically assigned to the VC self.assertTrue(Device.objects.filter(pk=vc3.master.pk, virtual_chassis=vc3.pk).exists()) def test_create_virtualchassis_bulk(self): data = [ { 'master': self.device7.pk, 'domain': 'test-domain-3', }, { 'master': self.device8.pk, 'domain': 'test-domain-4', }, { 'master': self.device9.pk, 'domain': 'test-domain-5', }, ] url = reverse('dcim-api:virtualchassis-list') response = self.client.post(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_201_CREATED) self.assertEqual(VirtualChassis.objects.count(), 5) for i in range(0, 3): self.assertEqual(response.data[i]['master']['id'], data[i]['master']) self.assertEqual(response.data[i]['domain'], data[i]['domain']) def test_update_virtualchassis(self): data = { 'master': self.device2.pk, 'domain': 'test-domain-x', } url = reverse('dcim-api:virtualchassis-detail', kwargs={'pk': self.vc1.pk}) response = self.client.put(url, data, format='json', **self.header) self.assertHttpStatus(response, status.HTTP_200_OK) self.assertEqual(VirtualChassis.objects.count(), 2) vc1 = VirtualChassis.objects.get(pk=response.data['id']) self.assertEqual(vc1.master.pk, data['master']) self.assertEqual(vc1.domain, data['domain']) def test_delete_virtualchassis(self): url = reverse('dcim-api:virtualchassis-detail', kwargs={'pk': self.vc1.pk}) response = self.client.delete(url, **self.header) self.assertHttpStatus(response, status.HTTP_204_NO_CONTENT) self.assertEqual(VirtualChassis.objects.count(), 1) # Verify that all VC members have had their VC-related fields nullified for d in [self.device1, self.device2, self.device3]: self.assertTrue( Device.objects.filter(pk=d.pk, virtual_chassis=None, vc_position=None, vc_priority=None) )
38.601253
120
0.617728
9af97033112294a73bebe93464a5f9fac08290b1
1,478
py
Python
src/roboy_hand/gesture_recognition/train/xml_to_csv.py
Roboy/ss18_hand
3a4b3524fe653478c8a31e62b593708fdeebef70
[ "BSD-3-Clause" ]
1
2018-07-07T21:43:05.000Z
2018-07-07T21:43:05.000Z
src/roboy_hand/gesture_recognition/train/xml_to_csv.py
Roboy/ss18_hand
3a4b3524fe653478c8a31e62b593708fdeebef70
[ "BSD-3-Clause" ]
null
null
null
src/roboy_hand/gesture_recognition/train/xml_to_csv.py
Roboy/ss18_hand
3a4b3524fe653478c8a31e62b593708fdeebef70
[ "BSD-3-Clause" ]
2
2018-05-02T15:30:49.000Z
2020-09-13T12:23:45.000Z
import os import glob import pandas as pd import xml.etree.ElementTree as ET def xml_to_csv(path): xml_list = [] gesture_names = ['fist', 'one', 'pinky', 'loser', 'two', 'three', 'horn', 'rockNroll', 'five', 'ok'] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): # P1_G1_0 file_name = root.find('filename').text.split('_') # G1 gesture_name = file_name[1] # 1 gesture_id = int(gesture_name[1:]) - 1 value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), gesture_names[gesture_id], int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) print (value) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def main(): for directory in ['train', 'test']: image_path = os.path.join(os.getcwd(), 'images/{}'.format(directory)) xml_df = xml_to_csv(image_path) xml_df.to_csv('data/{}_labels.csv'.format(directory), index=None) main()
32.844444
104
0.521651
2c436e20987f1a9ab4b3f42d63e59edc26b03492
2,272
py
Python
PyObjCTest/test_nsinvocation.py
linuxfood/pyobjc-framework-Cocoa-test
3475890f165ab26a740f13d5afe4c62b4423a140
[ "MIT" ]
null
null
null
PyObjCTest/test_nsinvocation.py
linuxfood/pyobjc-framework-Cocoa-test
3475890f165ab26a740f13d5afe4c62b4423a140
[ "MIT" ]
null
null
null
PyObjCTest/test_nsinvocation.py
linuxfood/pyobjc-framework-Cocoa-test
3475890f165ab26a740f13d5afe4c62b4423a140
[ "MIT" ]
null
null
null
import Foundation from PyObjCTools.TestSupport import TestCase class TestNSInvocation(TestCase): def test_dummy(self): value = Foundation.NSMutableArray.arrayWithArray_([1, 2, 3]) invocation = Foundation.NSInvocation.invocationWithMethodSignature_( value.methodSignatureForSelector_("count") ) invocation.setSelector_("count") invocation.setTarget_(value) invocation.invoke() v = invocation.getReturnValue_(None) self.assertIsInstance(v, int) self.assertEqual(v, 3) invocation = Foundation.NSInvocation.invocationWithMethodSignature_( value.methodSignatureForSelector_("addObject:") ) invocation.setSelector_("addObject:") invocation.setTarget_(value) invocation.setArgument_atIndex_(b"hello".decode("ascii"), 2) v = invocation.getArgument_atIndex_(None, 2) self.assertEqual(v, b"hello".decode("ascii")) invocation.invoke() self.assertEqual(value.count(), 4) def testMethods(self): self.assertResultIsBOOL(Foundation.NSInvocation.argumentsRetained) def testNoUnsupported(self): self.assertNotHasAttr(Foundation, "NSObjCValue") self.assertNotHasAttr(Foundation, "NSObjCNoType") self.assertNotHasAttr(Foundation, "NSObjCVoidType") self.assertNotHasAttr(Foundation, "NSObjCCharType") self.assertNotHasAttr(Foundation, "NSObjCShortType") self.assertNotHasAttr(Foundation, "NSObjCLongType") self.assertNotHasAttr(Foundation, "NSObjCLonglongType") self.assertNotHasAttr(Foundation, "NSObjCFloatType") self.assertNotHasAttr(Foundation, "NSObjCDoubleType") self.assertNotHasAttr(Foundation, "NSObjCBoolType") self.assertNotHasAttr(Foundation, "NSObjCSelectorType") self.assertNotHasAttr(Foundation, "NSObjCObjectType") self.assertNotHasAttr(Foundation, "NSObjCStructType") self.assertNotHasAttr(Foundation, "NSObjCPointerType") self.assertNotHasAttr(Foundation, "NSObjCStringType") self.assertNotHasAttr(Foundation, "NSObjCArrayType") self.assertNotHasAttr(Foundation, "NSObjCUnionType") self.assertNotHasAttr(Foundation, "NSObjCBitfield")
42.074074
76
0.712148
adfe13c9edfffc4836b45d212f3c7c39c92aa089
498
py
Python
web/transaction/models.py
vshagur/wallet-rest-api
0d8c09c52f0c86a1f36f12949d9733caa0db7ff0
[ "MIT" ]
null
null
null
web/transaction/models.py
vshagur/wallet-rest-api
0d8c09c52f0c86a1f36f12949d9733caa0db7ff0
[ "MIT" ]
null
null
null
web/transaction/models.py
vshagur/wallet-rest-api
0d8c09c52f0c86a1f36f12949d9733caa0db7ff0
[ "MIT" ]
null
null
null
from django.db import models from wallet.models import Wallet class Transaction(models.Model): comment = models.TextField( null=False, blank=True, max_length=1024, ) balance = models.DecimalField( null=False, max_digits=12, decimal_places=2, ) wallet = models.ForeignKey( Wallet, on_delete=models.CASCADE, ) datetime = models.DateTimeField( auto_now_add=True, auto_created=True, )
18.444444
36
0.608434
b665ece82721a41654015a35bf62a7fcc39dbe9d
441
py
Python
core/migrations/0010_auto_20180928_1104.py
CobwebOrg/cobweb-django
14241326860620dbaa64f7eefc6d4b393f80d23c
[ "MIT" ]
7
2017-09-14T18:52:58.000Z
2020-05-18T21:01:20.000Z
core/migrations/0010_auto_20180928_1104.py
CobwebOrg/cobweb-django
14241326860620dbaa64f7eefc6d4b393f80d23c
[ "MIT" ]
151
2017-09-14T18:46:02.000Z
2022-02-10T09:18:44.000Z
core/migrations/0010_auto_20180928_1104.py
CobwebOrg/cobweb-django
14241326860620dbaa64f7eefc6d4b393f80d23c
[ "MIT" ]
1
2017-10-29T19:37:29.000Z
2017-10-29T19:37:29.000Z
# Generated by Django 2.1.1 on 2018-09-28 18:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0009_auto_20180917_1115'), ] operations = [ migrations.AlterField( model_name='organization', name='slug', field=models.SlugField(help_text='Choose a Cobweb URL for your organization.', unique=True), ), ]
23.210526
104
0.621315
871db85e3c75b5c13403ad72ba0e24de827e66c6
5,642
py
Python
foscam_poll.py
eagleco/udi-camera-poly
d761fe1033a7b5d294cb73438d5d8ccfbf9dbd37
[ "MIT" ]
null
null
null
foscam_poll.py
eagleco/udi-camera-poly
d761fe1033a7b5d294cb73438d5d8ccfbf9dbd37
[ "MIT" ]
null
null
null
foscam_poll.py
eagleco/udi-camera-poly
d761fe1033a7b5d294cb73438d5d8ccfbf9dbd37
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # # Basic script to send UDP requests looking for foscam cameras. # import os import socket import sys import time import select from struct import unpack,pack from camera_funcs import get_valid_node_name TIMEOUT = 6 # Run for 30 seconds max. PING_INTERVAL = 2 # Once every 5 seconds PING_PORT_NUMBER = 10000 PING_MSG_SIZE = 130 # ftp://109.108.88.53/Nadzor/FOSCAM/SDK%20CGI/MJPEG%20CGI%20SDK/MJPEG%20CGI%20SDK/Ipcamera%20device%20search%20protocol.pdf SEARCH_REQUEST = pack('>4sH?8sll4s', b'MO_I', 0, 0, b'', 67108864, 0, b'') def foscam_poll(logger=None,verbose=False): clients = [] clients_by_addr = {} # Create UDP socket sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # Ask operating system to let us do broadcasts from socket sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) # Bind UDP socket to local port so we can receive pings sock.bind(('',0)) # Was, PING_PORT_NUMBER, but sender can be any open port. # Use timeout sock.settimeout(PING_INTERVAL) main_timeout = time.time() + TIMEOUT responses = {} while time.time() < main_timeout: # Broadcast our beacon if logger is not None: logger.info("Pinging for Foscam's") sock.sendto(SEARCH_REQUEST, 0, ("255.255.255.255", PING_PORT_NUMBER)) ping_timeout = time.time() + PING_INTERVAL while time.time() < ping_timeout: # Listen for a response with timeout addr = None try: msg, (addr, uport) = sock.recvfrom(PING_MSG_SIZE) # Someone answered our ping, store it. if addr not in responses: if logger is not None: logger.info("Saving response from %s:%s" % (addr,uport)) responses[addr] = msg except socket.timeout: if logger is not None: logger.debug("No more reponses") sock.close() if logger is not None: logger.debug("All done looking") for addr, msg in iter(responses.items()): if logger is not None: logger.debug("Response from: %s" % (addr)) if verbose: logger.debug("msg=%s" % msg) if msg == SEARCH_REQUEST: if logger is not None: logger.debug("ignore my echo") elif len(msg) == 88 or len(msg) == 121 or len(msg) == 129: if len(msg) == 88: upk = unpack('>23s13s21s4I4b4b4bH?',msg) (header, id, name, ip_i, mask_i, gateway_i, dns_i, r1, r2, r3, r4, s1, s2, s3, s4, a1, a2, a3, a4, port, dhcp) = upk type = "" mtype = "MJPEG" elif len(msg) == 121: # I can't find documentation for the last 19 and 14 bytes, but the 14 seems to # be a string that indicates what type of camera A=HD and b=H.264 # I see this for my FI9828P V2 upk = unpack('>23s13s21s4I4b4b4bH?19s14s',msg) (header, id, name, ip_i, mask_i, gateway_i, dns_i, r1, r2, r3, r4, s1, s2, s3, s4, a1, a2, a3, a4, port, dhcp, unknown, type) = upk mtype = "HD2" elif len(msg) == 129: # And this has has another 8 bytes at the end? I see this on my FI9826P V2 upk = unpack('>23s13s21s4I4b4b4bH?19s14s8s',msg) (header, id, name, ip_i, mask_i, gateway_i, dns_i, r1, r2, r3, r4, s1, s2, s3, s4, a1, a2, a3, a4, port, dhcp, unknown1, type, unknown2) = upk mtype = "HD2" if verbose and logger is not None: logger.debug(upk) #type = type.decode() id = id.decode() name = name.decode() client = { 'type': type,#rstrip(b'\x00'), 'mtype': mtype, 'id': id.rstrip('\x00'), 'name': get_valid_node_name(name.rstrip('\x00')), 'ip': socket.inet_ntoa(pack('!I',ip_i)), 'port': port, 'mask': socket.inet_ntoa(pack('!I',mask_i)), 'gateway': socket.inet_ntoa(pack('!I',gateway_i)), 'dns': socket.inet_ntoa(pack('!I',dns_i)), 'reserve': "%d.%d.%d.%d" % (r1, r2, r3, r4), 'sys': "%d.%d.%d.%d" % (s1, s2, s3, s4), 'app': "%d.%d.%d.%d" % (a1, a2, a3, a4), 'dhcp': dhcp, 'reserve_a': (r1, r2, r3, r4), 'sys_a': (s1, s2, s3, s4), 'app_a': (a1, a2, a3, a4), } if logger is not None: logger.info("Foscam Info: %s" % (client)) clients.append(client) else: if logger is not None: logger.debug("Ignoring message of size " + str(len(msg))) return clients if __name__ == '__main__': import logging import sys # Create our logger logger = logging.getLogger('foscam_poll') logger.setLevel(logging.DEBUG) # create console handler ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(ch) verbose = False if (len(sys.argv) > 1 and sys.argv[1] == "-v"): verbose = True foscam_poll(logger,verbose)
38.380952
158
0.542184
50dfa79079457225271ab03d1ae821e8f18a36d9
38,749
py
Python
skopt/space/space.py
teffland/scikit-optimize
b02c90e22e45fc69b0587dff601621b540e2579f
[ "BSD-3-Clause" ]
null
null
null
skopt/space/space.py
teffland/scikit-optimize
b02c90e22e45fc69b0587dff601621b540e2579f
[ "BSD-3-Clause" ]
null
null
null
skopt/space/space.py
teffland/scikit-optimize
b02c90e22e45fc69b0587dff601621b540e2579f
[ "BSD-3-Clause" ]
null
null
null
import numbers import numpy as np import yaml from scipy.stats.distributions import randint from scipy.stats.distributions import rv_discrete from scipy.stats.distributions import uniform from sklearn.utils import check_random_state from sklearn.utils.fixes import sp_version from .transformers import CategoricalEncoder from .transformers import StringEncoder from .transformers import LabelEncoder from .transformers import Normalize from .transformers import Identity from .transformers import LogN from .transformers import Pipeline # helper class to be able to print [1, ..., 4] instead of [1, '...', 4] class _Ellipsis: def __repr__(self): return '...' def _transpose_list_array(x): """Transposes a list matrix """ n_dims = len(x) assert n_dims > 0 n_samples = len(x[0]) rows = [None] * n_samples for i in range(n_samples): r = [None] * n_dims for j in range(n_dims): r[j] = x[j][i] rows[i] = r return rows def check_dimension(dimension, transform=None): """Turn a provided dimension description into a dimension object. Checks that the provided dimension falls into one of the supported types. For a list of supported types, look at the documentation of ``dimension`` below. If ``dimension`` is already a ``Dimension`` instance, return it. Parameters ---------- dimension : Dimension Search space Dimension. Each search dimension can be defined either as - a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer` dimensions), - a `(lower_bound, upper_bound, "prior")` tuple (for `Real` dimensions), - as a list of categories (for `Categorical` dimensions), or - an instance of a `Dimension` object (`Real`, `Integer` or `Categorical`). transform : "identity", "normalize", "string", "label", "onehot" optional - For `Categorical` dimensions, the following transformations are supported. - "onehot" (default) one-hot transformation of the original space. - "label" integer transformation of the original space - "string" string transformation of the original space. - "identity" same as the original space. - For `Real` and `Integer` dimensions, the following transformations are supported. - "identity", (default) the transformed space is the same as the original space. - "normalize", the transformed space is scaled to be between 0 and 1. Returns ------- dimension : Dimension Dimension instance. """ if isinstance(dimension, Dimension): return dimension if not isinstance(dimension, (list, tuple, np.ndarray)): raise ValueError("Dimension has to be a list or tuple.") # A `Dimension` described by a single value is assumed to be # a `Categorical` dimension. This can be used in `BayesSearchCV` # to define subspaces that fix one value, e.g. to choose the # model type, see "sklearn-gridsearchcv-replacement.py" # for examples. if len(dimension) == 1: return Categorical(dimension, transform=transform) if len(dimension) == 2: if any([isinstance(d, (str, bool)) or isinstance(d, np.bool_) for d in dimension]): return Categorical(dimension, transform=transform) elif all([isinstance(dim, numbers.Integral) for dim in dimension]): return Integer(*dimension, transform=transform) elif any([isinstance(dim, numbers.Real) for dim in dimension]): return Real(*dimension, transform=transform) else: raise ValueError("Invalid dimension {}. Read the documentation for" " supported types.".format(dimension)) if len(dimension) == 3: if (any([isinstance(dim, int) for dim in dimension[:2]]) and dimension[2] in ["uniform", "log-uniform"]): return Integer(*dimension, transform=transform) elif (any([isinstance(dim, (float, int)) for dim in dimension[:2]]) and dimension[2] in ["uniform", "log-uniform"]): return Real(*dimension, transform=transform) else: return Categorical(dimension, transform=transform) if len(dimension) == 4: if (any([isinstance(dim, int) for dim in dimension[:2]]) and dimension[2] == "log-uniform" and isinstance(dimension[3], int)): return Integer(*dimension, transform=transform) elif (any([isinstance(dim, (float, int)) for dim in dimension[:2]]) and dimension[2] == "log-uniform" and isinstance(dimension[3], int)): return Real(*dimension, transform=transform) if len(dimension) > 3: return Categorical(dimension, transform=transform) raise ValueError("Invalid dimension {}. Read the documentation for " "supported types.".format(dimension)) class Dimension(object): """Base class for search space dimensions.""" prior = None def rvs(self, n_samples=1, random_state=None): """Draw random samples. Parameters ---------- n_samples : int or None The number of samples to be drawn. random_state : int, RandomState instance, or None (default) Set random state to something other than None for reproducible results. """ rng = check_random_state(random_state) samples = self._rvs.rvs(size=n_samples, random_state=rng) return self.inverse_transform(samples) def transform(self, X): """Transform samples form the original space to a warped space.""" return self.transformer.transform(X) def inverse_transform(self, Xt): """Inverse transform samples from the warped space back into the original space. """ return self.transformer.inverse_transform(Xt) def set_transformer(self): raise NotImplementedError @property def size(self): return 1 @property def transformed_size(self): return 1 @property def bounds(self): raise NotImplementedError @property def is_constant(self): raise NotImplementedError @property def transformed_bounds(self): raise NotImplementedError @property def name(self): return self._name @name.setter def name(self, value): if isinstance(value, str) or value is None: self._name = value else: raise ValueError("Dimension's name must be either string or None.") def _uniform_inclusive(loc=0.0, scale=1.0): # like scipy.stats.distributions but inclusive of `high` # XXX scale + 1. might not actually be a float after scale if # XXX scale is very large. return uniform(loc=loc, scale=np.nextafter(scale, scale + 1.)) class Real(Dimension): """Search space dimension that can take on any real value. Parameters ---------- low : float Lower bound (inclusive). high : float Upper bound (inclusive). prior : "uniform" or "log-uniform", default="uniform" Distribution to use when sampling random points for this dimension. - If `"uniform"`, points are sampled uniformly between the lower and upper bounds. - If `"log-uniform"`, points are sampled uniformly between `log(lower, base)` and `log(upper, base)` where log has base `base`. base : int The logarithmic base to use for a log-uniform prior. - Default 10, otherwise commonly 2. transform : "identity", "normalize", optional The following transformations are supported. - "identity", (default) the transformed space is the same as the original space. - "normalize", the transformed space is scaled to be between 0 and 1. name : str or None Name associated with the dimension, e.g., "learning rate". dtype : str or dtype, default=np.float float type which will be used in inverse_transform, can be float. """ def __init__(self, low, high, prior="uniform", base=10, transform=None, name=None, dtype=np.float): if high <= low: raise ValueError("the lower bound {} has to be less than the" " upper bound {}".format(low, high)) self.low = low self.high = high self.prior = prior self.base = base self.log_base = np.log10(base) self.name = name self.dtype = dtype self._rvs = None self.transformer = None self.transform_ = transform if isinstance(self.dtype, str) and self.dtype\ not in ['float', 'float16', 'float32', 'float64']: raise ValueError("dtype must be 'float', 'float16', 'float32'" "or 'float64'" " got {}".format(self.dtype)) elif isinstance(self.dtype, type) and self.dtype\ not in [float, np.float, np.float16, np.float32, np.float64]: raise ValueError("dtype must be float, np.float" " got {}".format(self.dtype)) if prior not in ("uniform", "log-uniform"): raise ValueError("prior must be `uniform` or `log-uniform`" ", got {}".format(prior)) if transform is None: transform = "identity" self.set_transformer(transform) def set_transformer(self, transform="identitiy"): """Define rvs and transformer spaces. Parameters ---------- transform : str Can be 'normalize' or 'identity' """ self.transform_ = transform if self.transform_ not in ["normalize", "identity"]: raise ValueError("transform should be 'normalize' or 'identity'" " got {}".format(self.transform_)) # XXX: The _rvs is for sampling in the transformed space. # The rvs on Dimension calls inverse_transform on the points sampled # using _rvs if self.transform_ == "normalize": # set upper bound to next float after 1. to make the numbers # inclusive of upper edge self._rvs = _uniform_inclusive(0., 1.) if self.prior == "uniform": self.transformer = Pipeline( [Identity(), Normalize(self.low, self.high)]) else: self.transformer = Pipeline( [LogN(self.base), Normalize(np.log10(self.low) / self.log_base, np.log10(self.high) / self.log_base)] ) else: if self.prior == "uniform": self._rvs = _uniform_inclusive(self.low, self.high - self.low) self.transformer = Identity() else: self._rvs = _uniform_inclusive( np.log10(self.low) / self.log_base, np.log10(self.high) / self.log_base - np.log10(self.low) / self.log_base) self.transformer = LogN(self.base) def __eq__(self, other): return (type(self) is type(other) and np.allclose([self.low], [other.low]) and np.allclose([self.high], [other.high]) and self.prior == other.prior and self.transform_ == other.transform_) def __repr__(self): return "Real(low={}, high={}, prior='{}', transform='{}')".format( self.low, self.high, self.prior, self.transform_) def inverse_transform(self, Xt): """Inverse transform samples from the warped space back into the original space. """ inv_transform = super(Real, self).inverse_transform(Xt) if isinstance(inv_transform, list): inv_transform = np.array(inv_transform) inv_transform = np.clip(inv_transform, self.low, self.high).astype(self.dtype) if self.dtype == float or self.dtype == 'float': # necessary, otherwise the type is converted to a numpy type return getattr(inv_transform, "tolist", lambda: value)() else: return inv_transform @property def bounds(self): return (self.low, self.high) @property def is_constant(self): return self.low == self.high def __contains__(self, point): if isinstance(point, list): point = np.array(point) return self.low <= point <= self.high @property def transformed_bounds(self): if self.transform_ == "normalize": return 0.0, 1.0 else: if self.prior == "uniform": return self.low, self.high else: return np.log10(self.low), np.log10(self.high) def distance(self, a, b): """Compute distance between point `a` and `b`. Parameters ---------- a : float First point. b : float Second point. """ if not (a in self and b in self): raise RuntimeError("Can only compute distance for values within " "the space, not %s and %s." % (a, b)) return abs(a - b) class Integer(Dimension): """Search space dimension that can take on integer values. Parameters ---------- low : int Lower bound (inclusive). high : int Upper bound (inclusive). prior : "uniform" or "log-uniform", default="uniform" Distribution to use when sampling random integers for this dimension. - If `"uniform"`, integers are sampled uniformly between the lower and upper bounds. - If `"log-uniform"`, integers are sampled uniformly between `log(lower, base)` and `log(upper, base)` where log has base `base`. base : int The logarithmic base to use for a log-uniform prior. - Default 10, otherwise commonly 2. transform : "identity", "normalize", optional The following transformations are supported. - "identity", (default) the transformed space is the same as the original space. - "normalize", the transformed space is scaled to be between 0 and 1. name : str or None Name associated with dimension, e.g., "number of trees". dtype : str or dtype, default=np.int64 integer type which will be used in inverse_transform, can be int, np.int16, np.uint32, np.int32, np.int64 (default). When set to int, `inverse_transform` returns a list instead of a numpy array """ def __init__(self, low, high, prior="uniform", base=10, transform=None, name=None, dtype=np.int64): if high <= low: raise ValueError("the lower bound {} has to be less than the" " upper bound {}".format(low, high)) self.low = low self.high = high self.prior = prior self.base = base self.log_base = np.log10(base) self.name = name self.dtype = dtype self.transform_ = transform self._rvs = None self.transformer = None if isinstance(self.dtype, str) and self.dtype\ not in ['int', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64']: raise ValueError("dtype must be 'int', 'int8', 'int16'," "'int32', 'int64', 'uint8'," "'uint16', 'uint32', or" "'uint64', but got {}".format(self.dtype)) elif isinstance(self.dtype, type) and self.dtype\ not in [int, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]: raise ValueError("dtype must be 'int', 'np.int8', 'np.int16'," "'np.int32', 'np.int64', 'np.uint8'," "'np.uint16', 'np.uint32', or" "'np.uint64', but got {}".format(self.dtype)) if prior not in ("uniform", "log-uniform"): raise ValueError("prior must be `uniform` or `log-uniform`" ", got {}".format(prior)) if transform is None: transform = "identity" self.set_transformer(transform) def set_transformer(self, transform="identitiy"): """Define _rvs and transformer spaces. Parameters ---------- transform : str Can be 'normalize' or 'identity' """ self.transform_ = transform if transform not in ["normalize", "identity"]: raise ValueError("transform should be 'normalize' or 'identity'" " got {}".format(self.transform_)) if self.transform_ == "normalize": self._rvs = _uniform_inclusive(0.0, 1.0) if self.prior == "uniform": self.transformer = Pipeline( [Identity(), Normalize(self.low, self.high, is_int=True)]) else: self.transformer = Pipeline( [LogN(self.base), Normalize(np.log10(self.low) / self.log_base, np.log10(self.high) / self.log_base)] ) else: if self.prior == "uniform": self._rvs = randint(self.low, self.high + 1) self.transformer = Identity() else: self._rvs = _uniform_inclusive( np.log10(self.low) / self.log_base, np.log10(self.high) / self.log_base - np.log10(self.low) / self.log_base) self.transformer = LogN(self.base) def __eq__(self, other): return (type(self) is type(other) and np.allclose([self.low], [other.low]) and np.allclose([self.high], [other.high])) def __repr__(self): return "Integer(low={}, high={}, prior='{}', transform='{}')".format( self.low, self.high, self.prior, self.transform_) def inverse_transform(self, Xt): """Inverse transform samples from the warped space back into the original space. """ # The concatenation of all transformed dimensions makes Xt to be # of type float, hence the required cast back to int. inv_transform = super(Integer, self).inverse_transform(Xt) if isinstance(inv_transform, list): inv_transform = np.array(inv_transform) inv_transform = np.clip(inv_transform, self.low, self.high) if self.dtype == int or self.dtype == 'int': # necessary, otherwise the type is converted to a numpy type return getattr(np.round(inv_transform).astype(self.dtype), "tolist", lambda: value)() else: return np.round(inv_transform).astype(self.dtype) @property def bounds(self): return (self.low, self.high) @property def is_constant(self): return self.low == self.high def __contains__(self, point): if isinstance(point, list): point = np.array(point) return self.low <= point <= self.high @property def transformed_bounds(self): if self.transform_ == "normalize": return 0., 1. else: return (self.low, self.high) def distance(self, a, b): """Compute distance between point `a` and `b`. Parameters ---------- a : int First point. b : int Second point. """ if not (a in self and b in self): raise RuntimeError("Can only compute distance for values within " "the space, not %s and %s." % (a, b)) return abs(a - b) class Categorical(Dimension): """Search space dimension that can take on categorical values. Parameters ---------- categories : list, shape=(n_categories,) Sequence of possible categories. prior : list, shape=(categories,), default=None Prior probabilities for each category. By default all categories are equally likely. transform : "onehot", "string", "identity", "label", default="onehot" - "identity", the transformed space is the same as the original space. - "string", the transformed space is a string encoded representation of the original space. - "label", the transformed space is a label encoded representation (integer) of the original space. - "onehot", the transformed space is a one-hot encoded representation of the original space. name : str or None Name associated with dimension, e.g., "colors". """ def __init__(self, categories, prior=None, transform=None, name=None): self.categories = tuple(categories) self.name = name if transform is None: transform = "onehot" self.transform_ = transform self.transformer = None self._rvs = None self.prior = prior if prior is None: self.prior_ = np.tile(1. / len(self.categories), len(self.categories)) else: self.prior_ = prior self.set_transformer(transform) def set_transformer(self, transform="onehot"): """Define _rvs and transformer spaces. Parameters ---------- transform : str Can be 'normalize', 'onehot', 'string', 'label', or 'identity' """ self.transform_ = transform if transform not in ["identity", "onehot", "string", "normalize", "label"]: raise ValueError("Expected transform to be 'identity', 'string'," "'label' or 'onehot' got {}".format(transform)) if transform == "onehot": self.transformer = CategoricalEncoder() self.transformer.fit(self.categories) elif transform == "string": self.transformer = StringEncoder() self.transformer.fit(self.categories) elif transform == "label": self.transformer = LabelEncoder() self.transformer.fit(self.categories) elif transform == "normalize": self.transformer = Pipeline( [LabelEncoder(list(self.categories)), Normalize(0, len(self.categories) - 1, is_int=True)]) else: self.transformer = Identity() self.transformer.fit(self.categories) if transform == "normalize": self._rvs = _uniform_inclusive(0.0, 1.0) else: # XXX check that sum(prior) == 1 self._rvs = rv_discrete( values=(range(len(self.categories)), self.prior_) ) def __eq__(self, other): return (type(self) is type(other) and self.categories == other.categories and np.allclose(self.prior_, other.prior_)) def __repr__(self): if len(self.categories) > 7: cats = self.categories[:3] + (_Ellipsis(),) + self.categories[-3:] else: cats = self.categories if self.prior is not None and len(self.prior) > 7: prior = self.prior[:3] + [_Ellipsis()] + self.prior[-3:] else: prior = self.prior return "Categorical(categories={}, prior={})".format(cats, prior) def inverse_transform(self, Xt): """Inverse transform samples from the warped space back into the original space. """ # The concatenation of all transformed dimensions makes Xt to be # of type float, hence the required cast back to int. inv_transform = super(Categorical, self).inverse_transform(Xt) if isinstance(inv_transform, list): inv_transform = np.array(inv_transform) return inv_transform def rvs(self, n_samples=None, random_state=None): choices = self._rvs.rvs(size=n_samples, random_state=random_state) if isinstance(choices, numbers.Integral): return self.categories[choices] elif self.transform_ == "normalize" and isinstance(choices, float): return self.inverse_transform([(choices)]) elif self.transform_ == "normalize": return self.inverse_transform(list(choices)) else: return [self.categories[c] for c in choices] @property def transformed_size(self): if self.transform_ == "onehot": size = len(self.categories) # when len(categories) == 2, CategoricalEncoder outputs a # single value return size if size != 2 else 1 return 1 @property def bounds(self): return self.categories @property def is_constant(self): return len(self.categories) <= 1 def __contains__(self, point): return point in self.categories @property def transformed_bounds(self): if self.transformed_size == 1: return 0.0, 1.0 else: return [(0.0, 1.0) for i in range(self.transformed_size)] def distance(self, a, b): """Compute distance between category `a` and `b`. As categories have no order the distance between two points is one if a != b and zero otherwise. Parameters ---------- a : category First category. b : category Second category. """ if not (a in self and b in self): raise RuntimeError("Can only compute distance for values within" " the space, not {} and {}.".format(a, b)) return 1 if a != b else 0 class Space(object): """Initialize a search space from given specifications. Parameters ---------- dimensions : list, shape=(n_dims,) List of search space dimensions. Each search dimension can be defined either as - a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer` dimensions), - a `(lower_bound, upper_bound, "prior")` tuple (for `Real` dimensions), - as a list of categories (for `Categorical` dimensions), or - an instance of a `Dimension` object (`Real`, `Integer` or `Categorical`). .. note:: The upper and lower bounds are inclusive for `Integer` dimensions. """ def __init__(self, dimensions): self.dimensions = [check_dimension(dim) for dim in dimensions] def __eq__(self, other): return all([a == b for a, b in zip(self.dimensions, other.dimensions)]) def __repr__(self): if len(self.dimensions) > 31: dims = self.dimensions[:15] + [_Ellipsis()] + self.dimensions[-15:] else: dims = self.dimensions return "Space([{}])".format(',\n '.join(map(str, dims))) def __iter__(self): return iter(self.dimensions) @property def dimension_names(self): """ Names of all the dimensions in the search-space. """ index = 0 names = [] for dim in self.dimensions: if dim.name is None: names.append("X_%d" % index) else: names.append(dim.name) index += 1 return names @property def is_real(self): """ Returns true if all dimensions are Real """ return all([isinstance(dim, Real) for dim in self.dimensions]) @classmethod def from_yaml(cls, yml_path, namespace=None): """Create Space from yaml configuration file Parameters ---------- yml_path : str Full path to yaml configuration file, example YaML below: Space: - Integer: low: -5 high: 5 - Categorical: categories: - a - b - Real: low: 1.0 high: 5.0 prior: log-uniform namespace : str, default=None Namespace within configuration file to use, will use first namespace if not provided Returns ------- space : Space Instantiated Space object """ with open(yml_path, 'rb') as f: config = yaml.safe_load(f) dimension_classes = {'real': Real, 'integer': Integer, 'categorical': Categorical} # Extract space options for configuration file if isinstance(config, dict): if namespace is None: options = next(iter(config.values())) else: options = config[namespace] elif isinstance(config, list): options = config else: raise TypeError('YaML does not specify a list or dictionary') # Populate list with Dimension objects dimensions = [] for option in options: key = next(iter(option.keys())) # Make configuration case insensitive dimension_class = key.lower() values = {k.lower(): v for k, v in option[key].items()} if dimension_class in dimension_classes: # Instantiate Dimension subclass and add it to the list dimension = dimension_classes[dimension_class](**values) dimensions.append(dimension) space = cls(dimensions=dimensions) return space def rvs(self, n_samples=1, random_state=None): """Draw random samples. The samples are in the original space. They need to be transformed before being passed to a model or minimizer by `space.transform()`. Parameters ---------- n_samples : int, default=1 Number of samples to be drawn from the space. random_state : int, RandomState instance, or None (default) Set random state to something other than None for reproducible results. Returns ------- points : list of lists, shape=(n_points, n_dims) Points sampled from the space. """ rng = check_random_state(random_state) # Draw columns = [] for dim in self.dimensions: columns.append(dim.rvs(n_samples=n_samples, random_state=rng)) # Transpose return _transpose_list_array(columns) def set_transformer(self, transform): """Sets the transformer of all dimension objects to `transform` Parameters ---------- transform : str or list of str Sets all transformer,, when `transform` is a string. Otherwise, transform must be a list with strings with the same length as `dimensions` """ # Transform for j in range(self.n_dims): if isinstance(transform, list): self.dimensions[j].set_transformer(transform[j]) else: self.dimensions[j].set_transformer(transform) def set_transformer_by_type(self, transform, dim_type): """Sets the transformer of `dim_type` objects to `transform` Parameters ---------- transform : str Sets all transformer of type `dim_type` to `transform` dim_type : type Can be `skopt.space.Real`, `skopt.space.Integer` or `skopt.space.Categorical` """ # Transform for j in range(self.n_dims): if isinstance(self.dimensions[j], dim_type): self.dimensions[j].set_transformer(transform) def get_transformer(self): """Returns all transformers as list""" return [self.dimensions[j].transform_ for j in range(self.n_dims)] def transform(self, X): """Transform samples from the original space into a warped space. Note: this transformation is expected to be used to project samples into a suitable space for numerical optimization. Parameters ---------- X : list of lists, shape=(n_samples, n_dims) The samples to transform. Returns ------- Xt : array of floats, shape=(n_samples, transformed_n_dims) The transformed samples. """ # Pack by dimension columns = [] for dim in self.dimensions: columns.append([]) for i in range(len(X)): for j in range(self.n_dims): columns[j].append(X[i][j]) # Transform for j in range(self.n_dims): columns[j] = self.dimensions[j].transform(columns[j]) # Repack as an array Xt = np.hstack([np.asarray(c).reshape((len(X), -1)) for c in columns]) return Xt def inverse_transform(self, Xt): """Inverse transform samples from the warped space back to the original space. Parameters ---------- Xt : array of floats, shape=(n_samples, transformed_n_dims) The samples to inverse transform. Returns ------- X : list of lists, shape=(n_samples, n_dims) The original samples. """ # Inverse transform columns = [] start = 0 Xt = np.asarray(Xt) for j in range(self.n_dims): dim = self.dimensions[j] offset = dim.transformed_size if offset == 1: columns.append(dim.inverse_transform(Xt[:, start])) else: columns.append( dim.inverse_transform(Xt[:, start:start + offset])) start += offset # Transpose return _transpose_list_array(columns) @property def n_dims(self): """The dimensionality of the original space.""" return len(self.dimensions) @property def transformed_n_dims(self): """The dimensionality of the warped space.""" return sum([dim.transformed_size for dim in self.dimensions]) @property def bounds(self): """The dimension bounds, in the original space.""" b = [] for dim in self.dimensions: if dim.size == 1: b.append(dim.bounds) else: b.extend(dim.bounds) return b def __contains__(self, point): """Check that `point` is within the bounds of the space.""" for component, dim in zip(point, self.dimensions): if component not in dim: return False return True def __getitem__(self, dimension_names): """ Lookup and return the search-space dimension with the given name. This allows for dict-like lookup of dimensions, for example: `space['foo']` returns the dimension named 'foo' if it exists, otherwise `None` is returned. It also allows for lookup of a list of dimension-names, for example: `space[['foo', 'bar']]` returns the two dimensions named 'foo' and 'bar' if they exist. Parameters ---------- dimension_names : str or list(str) Name of a single search-space dimension (str). List of names for search-space dimensions (list(str)). Returns ------- dims tuple (index, Dimension), list(tuple(index, Dimension)), \ (None, None) A single search-space dimension with the given name, or a list of search-space dimensions with the given names. """ def _get(dimension_name): """Helper-function for getting a single dimension.""" index = 0 # Get the index of the search-space dimension using its name. for dim in self.dimensions: if dimension_name == dim.name: return (index, dim) elif dimension_name == index: return (index, dim) index += 1 return (None, None) if isinstance(dimension_names, (str, int)): # Get a single search-space dimension. dims = _get(dimension_name=dimension_names) elif isinstance(dimension_names, (list, tuple)): # Get a list of search-space dimensions. # Note that we do not check whether the names are really strings. dims = [_get(dimension_name=name) for name in dimension_names] else: msg = "Dimension name should be either string or" \ "list of strings, but got {}." raise ValueError(msg.format(type(dimension_names))) return dims @property def transformed_bounds(self): """The dimension bounds, in the warped space.""" b = [] for dim in self.dimensions: if dim.transformed_size == 1: b.append(dim.transformed_bounds) else: b.extend(dim.transformed_bounds) return b @property def is_categorical(self): """Space contains exclusively categorical dimensions""" return all([isinstance(dim, Categorical) for dim in self.dimensions]) @property def is_partly_categorical(self): """Space contains any categorical dimensions""" return any([isinstance(dim, Categorical) for dim in self.dimensions]) @property def n_constant_dimensions(self): """Returns the number of constant dimensions which have zero degree of freedom, e.g. an Integer dimensions with (0., 0.) as bounds. """ n = 0 for dim in self.dimensions: if dim.is_constant: n += 1 return n def distance(self, point_a, point_b): """Compute distance between two points in this space. Parameters ---------- point_a : array First point. point_b : array Second point. """ distance = 0. for a, b, dim in zip(point_a, point_b, self.dimensions): distance += dim.distance(a, b) return distance
33.901137
79
0.569511
bc873de95e9a7a08c1d0d11f58604f77ca65ae9c
2,637
py
Python
lib/models/online/classifier/features.py
sunshuofeng/TracKit
bf9d09aed7d7b8e01ccfc40a67653aa0666c868d
[ "MIT" ]
null
null
null
lib/models/online/classifier/features.py
sunshuofeng/TracKit
bf9d09aed7d7b8e01ccfc40a67653aa0666c868d
[ "MIT" ]
null
null
null
lib/models/online/classifier/features.py
sunshuofeng/TracKit
bf9d09aed7d7b8e01ccfc40a67653aa0666c868d
[ "MIT" ]
null
null
null
import torch from torch import nn import torch.nn.functional as F from torchvision.models.resnet import BasicBlock, Bottleneck from lib.models.online.layers.normalization import InstanceL2Norm from lib.models.online.layers.transform import InterpCat def residual_basic_block(feature_dim=256, num_blocks=1, l2norm=True, final_conv=False, norm_scale=1.0, out_dim=None, interp_cat=False): """Construct a network block based on the BasicBlock used in ResNet 18 and 34.""" if out_dim is None: out_dim = feature_dim feat_layers = [] if interp_cat: feat_layers.append(InterpCat()) for i in range(num_blocks): odim = feature_dim if i < num_blocks - 1 + int(final_conv) else out_dim feat_layers.append(BasicBlock(feature_dim, odim)) if final_conv: feat_layers.append(nn.Conv2d(feature_dim, out_dim, kernel_size=3, padding=1, bias=False)) if l2norm: feat_layers.append(InstanceL2Norm(scale=norm_scale)) return nn.Sequential(*feat_layers) def residual_basic_block_pool(feature_dim=256, num_blocks=1, l2norm=True, final_conv=False, norm_scale=1.0, out_dim=None, pool=True): """Construct a network block based on the BasicBlock used in ResNet.""" if out_dim is None: out_dim = feature_dim feat_layers = [] for i in range(num_blocks): odim = feature_dim if i < num_blocks - 1 + int(final_conv) else out_dim feat_layers.append(BasicBlock(feature_dim, odim)) if final_conv: feat_layers.append(nn.Conv2d(feature_dim, out_dim, kernel_size=3, padding=1, bias=False)) if pool: feat_layers.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) if l2norm: feat_layers.append(InstanceL2Norm(scale=norm_scale)) return nn.Sequential(*feat_layers) def residual_bottleneck(feature_dim=256, num_blocks=1, l2norm=True, final_conv=False, norm_scale=1.0, out_dim=None, interp_cat=False): """Construct a network block based on the Bottleneck block used in ResNet.""" if out_dim is None: out_dim = feature_dim feat_layers = [] if interp_cat: feat_layers.append(InterpCat()) for i in range(num_blocks): planes = feature_dim if i < num_blocks - 1 + int(final_conv) else out_dim // 4 feat_layers.append(Bottleneck(4*feature_dim, planes)) if final_conv: feat_layers.append(nn.Conv2d(4*feature_dim, out_dim, kernel_size=3, padding=1, bias=False)) if l2norm: feat_layers.append(InstanceL2Norm(scale=norm_scale)) return nn.Sequential(*feat_layers)
42.532258
121
0.6989
3dfd9e6bed87f2c8692f66191d250e39ae4ffe32
311
py
Python
main.py
ramanveerji/PlateInfo
397ba8e60383d69de00684e2487daf2c25be9d69
[ "MIT" ]
1
2021-06-06T23:22:40.000Z
2021-06-06T23:22:40.000Z
main.py
ramanveerji/PlateInfo
397ba8e60383d69de00684e2487daf2c25be9d69
[ "MIT" ]
null
null
null
main.py
ramanveerji/PlateInfo
397ba8e60383d69de00684e2487daf2c25be9d69
[ "MIT" ]
2
2021-06-06T23:22:32.000Z
2021-08-11T20:11:35.000Z
from pyrogram import Client, idle from configs import API_ID, API_HASH, TOKEN import asyncio async def main(): await client.start() await idle() client = Client("bot", API_ID, API_HASH, bot_token=TOKEN, plugins=dict(root="plugins")) loop = asyncio.get_event_loop() loop.run_until_complete(main())
19.4375
87
0.73955
7519555675bc53473ccd84e5cde96edbcfad1f1b
25,964
py
Python
geoportal/c2cgeoportal_geoportal/__init__.py
ponceta/c2cgeoportal
06f17346a561f8509fd7a732760c19e859d0ed02
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
geoportal/c2cgeoportal_geoportal/__init__.py
ponceta/c2cgeoportal
06f17346a561f8509fd7a732760c19e859d0ed02
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
geoportal/c2cgeoportal_geoportal/__init__.py
ponceta/c2cgeoportal
06f17346a561f8509fd7a732760c19e859d0ed02
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2011-2019, Camptocamp SA # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # The views and conclusions contained in the software and documentation are those # of the authors and should not be interpreted as representing official policies, # either expressed or implied, of the FreeBSD Project. import time import logging import os import binascii from urllib.parse import urlsplit import c2cwsgiutils import re import simplejson as json from socket import gethostbyname, gaierror from ipcalc import IP, Network from Crypto.Cipher import AES import importlib import zope.event.classhandler from pyramid.config import Configurator from pyramid_mako import add_mako_renderer from pyramid.interfaces import IStaticURLInfo from pyramid.httpexceptions import HTTPException import pyramid.security from papyrus.renderers import GeoJSON from c2cgeoportal_geoportal.lib.xsd import XSD import c2cwsgiutils.db import c2cwsgiutils.index from c2cwsgiutils.health_check import HealthCheck from sqlalchemy.orm import Session import c2cgeoportal_commons.models import c2cgeoportal_geoportal.views from c2cgeoportal_geoportal.lib import dbreflection, caching, \ C2CPregenerator, MultiDomainStaticURLInfo, checker, check_collector LOG = logging.getLogger(__name__) # Header predicate to accept only JSON content # OL/cgxp are not setting the correct content type for JSON. We have to accept # XML as well even though JSON is actually send. JSON_CONTENT_TYPE = "Content-Type:application/(?:json|xml)" class DecimalJSON: def __call__(self, info): def _render(value, system): ret = json.dumps(value, use_decimal=True) request = system.get("request") if request is not None: request.response.content_type = "application/json" return ret return _render INTERFACE_TYPE_NGEO = "ngeo" def add_interface( config, interface_name="desktop", interface_type=INTERFACE_TYPE_NGEO, default=False, **kwargs ): # pragma: no cover del interface_type # unused route = "/" if default else "/{0!s}".format(interface_name) add_interface_ngeo( config, route_name=interface_name, route=route, renderer="/{0!s}.html".format(interface_name), **kwargs ) def add_interface_ngeo(config, route_name, route, renderer=None, permission=None): # pragma: no cover # Cannot be at the header to do not load the model too early from c2cgeoportal_geoportal.views.entry import Entry config.add_route(route_name, route, request_method="GET") config.add_view( Entry, attr="get_ngeo_index_vars", route_name=route_name, renderer=renderer, permission=permission ) # permalink theme: recover the theme for generating custom viewer.js url config.add_route( "{}theme".format(route_name), "{}{}theme/{{themes}}".format(route, "" if route[-1] == "/" else "/"), request_method="GET", ) config.add_view( Entry, attr="get_ngeo_index_vars", route_name="{}theme".format(route_name), renderer=renderer, permission=permission ) def add_admin_interface(config): if config.get_settings().get('enable_admin_interface', False): config.add_request_method( # pylint: disable=not-callable lambda request: c2cgeoportal_commons.models.DBSession(), 'dbsession', reify=True ) config.add_view(c2cgeoportal_geoportal.views.add_ending_slash, 'add_ending_slash') config.add_route('add_ending_slash', '/admin', request_method='GET') config.include('c2cgeoportal_admin', route_prefix='/admin') def locale_negotiator(request): lang = request.params.get("lang") if lang is None: lang = request.cookies.get('_LOCALE_') else: request.response.set_cookie('_LOCALE_', lang) if lang is None: # if best_match returns None then use the default_locale_name configuration variable return request.accept_language.best_match( request.registry.settings.get("available_locale_names"), default_match=request.registry.settings.get("default_locale_name")) return lang def _match_url_start(reference, value): """ Checks that the val URL starts like the ref URL. """ reference_parts = reference.rstrip("/").split("/") value_parts = value[0:len(reference_parts)] return reference_parts == value_parts def is_valid_referer(request, settings=None): if request.referer is not None: referer = urlsplit(request.referer)._replace(query="", fragment="").geturl().rstrip("/").split("/") if settings is None: settings = request.registry.settings list_ = settings.get("authorized_referers", []) return any(_match_url_start(e, referer) for e in list_) else: return True def create_get_user_from_request(settings): def get_user_from_request(request, username=None): """ Return the User object for the request. Return ``None`` if: * user is anonymous * it does not exist in the database * the referer is invalid """ from c2cgeoportal_commons.models import DBSession from c2cgeoportal_commons.models.static import User try: if "auth" in request.params: auth_enc = request.params.get("auth") if auth_enc is not None: urllogin = request.registry.settings.get("urllogin", {}) aeskey = urllogin.get("aes_key") if aeskey is None: # pragma: nocover raise Exception("urllogin is not configured") now = int(time.time()) data = binascii.unhexlify(auth_enc.encode('ascii')) nonce = data[0:16] tag = data[16:32] ciphertext = data[32:] cipher = AES.new(aeskey.encode("ascii"), AES.MODE_EAX, nonce) auth = json.loads(cipher.decrypt_and_verify(ciphertext, tag).decode("utf-8")) if "t" in auth and "u" in auth and "p" in auth: timestamp = int(auth["t"]) if now < timestamp and request.registry.validate_user( request, auth["u"], auth["p"] ): headers = pyramid.security.remember(request, auth["u"]) request.response.headerlist.extend(headers) except Exception as e: LOG.error("URL login error: %s.", e, exc_info=True) if not hasattr(request, "is_valid_referer"): request.is_valid_referer = is_valid_referer(request, settings) if not request.is_valid_referer: LOG.debug("Invalid referer for %s: %s", request.path_qs, repr(request.referer)) return None if not hasattr(request, "user_"): request.user_ = None if username is None: username = request.authenticated_userid if username is not None: # We know we will need the role object of the # user so we use joined loading request.user_ = DBSession.query(User) \ .filter_by(username=username) \ .first() return request.user_ return get_user_from_request def set_user_validator(config, user_validator): """ Call this function to register a user validator function. The validator function is passed three arguments: ``request``, ``username``, and ``password``. The function should return the user name if the credentials are valid, and ``None`` otherwise. The validator should not do the actual authentication operation by calling ``remember``, this is handled by the ``login`` view. """ def register(): config.registry.validate_user = user_validator config.action("user_validator", register) def default_user_validator(request, username, password): """ Validate the username/password. This is c2cgeoportal's default user validator. Return None if we are anonymous, the string to remember otherwise. """ del request # unused from c2cgeoportal_commons.models import DBSession from c2cgeoportal_commons.models.static import User user = DBSession.query(User).filter_by(username=username).first() if user is None: LOG.info('Unknow user "%s" tried to log in', username) return None if user.deactivated: LOG.info('Deactivated user "%s" tried to log in', username) return None if user.expired(): LOG.info('Expired user %s tried to log in', username) return None if not user.validate_password(password): LOG.info('User "%s" tried to log in with bad credentials', username) return None return username class OgcproxyRoutePredicate: """ Serve as a custom route predicate function for ogcproxy. We do not want the OGC proxy to be used to reach the app's mapserv script. We just return False if the url includes "mapserv". It is rather drastic, but works for us. """ def __init__(self, val, config): del val # unused del config # unused self.private_networks = [ Network("127.0.0.0/8"), Network("10.0.0.0/8"), Network("172.16.0.0/12"), Network("192.168.0.0/16"), ] def __call__(self, context, request): url = request.params.get("url") if url is None: return False parts = urlsplit(url) try: ip = IP(gethostbyname(parts.netloc)) except gaierror as e: LOG.info("Unable to get host name for %s: %s", url, e) return False for net in self.private_networks: if ip in net: return False return True @staticmethod def phash(): # pragma: no cover return "" class MapserverproxyRoutePredicate: """ Serve as a custom route predicate function for mapserverproxy. If the hide_capabilities setting is set and is true then we want to return 404s on GetCapabilities requests.""" def __init__(self, val, config): pass def __call__(self, context, request): hide_capabilities = request.registry.settings.get("hide_capabilities") if not hide_capabilities: return True params = dict( (k.lower(), v.lower()) for k, v in request.params.items() ) return "request" not in params or params["request"] != "getcapabilities" @staticmethod def phash(): return "" def add_cors_route(config, pattern, service): """ Add the OPTIONS route and view need for services supporting CORS. """ def view(request): # pragma: no cover from c2cgeoportal_geoportal.lib.caching import set_common_headers, NO_CACHE return set_common_headers(request, service, NO_CACHE) name = pattern + "_options" config.add_route(name, pattern, request_method="OPTIONS") config.add_view(view, route_name=name) def error_handler(http_exception, request): # pragma: no cover """ View callable for handling all the exceptions that are not already handled. """ LOG.warning("%s returned status code %s", request.url, http_exception.status_code) return caching.set_common_headers( request, "error", caching.NO_CACHE, http_exception, vary=True ) def call_hook(settings, name, *args, **kwargs): hooks = settings.get("hooks", {}) hook = hooks.get(name) if hook is None: return parts = hook.split(".") module = importlib.import_module(".".join(parts[0:-1])) function_ = getattr(module, parts[-1]) function_(*args, **kwargs) def includeme(config: pyramid.config.Configurator): """ This function returns a Pyramid WSGI application. """ settings = config.get_settings() config.include("c2cgeoportal_commons") call_hook(settings, "after_settings", settings) get_user_from_request = create_get_user_from_request(settings) config.add_request_method(get_user_from_request, name="user", property=True) config.add_request_method(get_user_from_request, name="get_user") # Configure 'locale' dir as the translation dir for c2cgeoportal app config.add_translation_dirs("c2cgeoportal_geoportal:locale/") config.include('c2cwsgiutils.pyramid.includeme') health_check = HealthCheck(config) # Initialise DBSessions init_dbsessions(settings, config, health_check) # Initialize the dbreflection module dbreflection.init() checker.init(config, health_check) check_collector.init(config, health_check) # dogpile.cache configuration if 'cache' in settings: caching.init_region(settings['cache']) from c2cgeoportal_commons.models.main import InvalidateCacheEvent @zope.event.classhandler.handler(InvalidateCacheEvent) def handle(event: InvalidateCacheEvent): # pylint: disable=unused-variable del event caching.invalidate_region() # Register a tween to get back the cache buster path. if 'cache_path' not in config.get_settings(): config.get_settings()['cache_path'] = ['static'] config.add_tween("c2cgeoportal_geoportal.lib.cacheversion.CachebusterTween") config.add_tween("c2cgeoportal_geoportal.lib.webpack.WebpackTween") config.add_tween("c2cgeoportal_geoportal.lib.headers.HeadersTween") # Bind the mako renderer to other file extensions add_mako_renderer(config, ".html") add_mako_renderer(config, ".js") # Add the "geojson" renderer config.add_renderer("geojson", GeoJSON()) # Add decimal json renderer config.add_renderer("decimaljson", DecimalJSON()) # Add the "xsd" renderer config.add_renderer("xsd", XSD( include_foreign_keys=True )) # Add the set_user_validator directive, and set a default user validator config.add_directive("set_user_validator", set_user_validator) config.set_user_validator(default_user_validator) config.add_route('dynamic', '/dynamic.json', request_method="GET") if settings.get("ogcproxy_enable", False): # pragma: no cover # Add an OGCProxy view config.add_route_predicate("ogc_server", OgcproxyRoutePredicate) config.add_route( "ogcproxy", "/ogcproxy", ogc_server=True ) config.add_view("papyrus_ogcproxy.views:ogcproxy", route_name="ogcproxy") # Add routes to the mapserver proxy config.add_route_predicate("mapserverproxy", MapserverproxyRoutePredicate) config.add_route( "mapserverproxy", "/mapserv_proxy", mapserverproxy=True, pregenerator=C2CPregenerator(role=True), ) # Add route to the tinyows proxy config.add_route( "tinyowsproxy", "/tinyows_proxy", pregenerator=C2CPregenerator(role=True), ) # Add routes to the entry view class config.add_route("base", "/", static=True) config.add_route("loginform", "/login.html", request_method="GET") add_cors_route(config, "/login", "login") config.add_route("login", "/login", request_method="POST") add_cors_route(config, "/logout", "login") config.add_route("logout", "/logout", request_method="GET") add_cors_route(config, "/loginchange", "login") config.add_route("loginchange", "/loginchange", request_method="POST") add_cors_route(config, "/loginresetpassword", "login") config.add_route("loginresetpassword", "/loginresetpassword", request_method="POST") add_cors_route(config, "/loginuser", "login") config.add_route("loginuser", "/loginuser", request_method="GET") config.add_route("testi18n", "/testi18n.html", request_method="GET") config.add_route("apijs", "/api.js", request_method="GET") config.add_route("xapijs", "/xapi.js", request_method="GET") config.add_route("apihelp", "/apihelp.html", request_method="GET") config.add_route("xapihelp", "/xapihelp.html", request_method="GET") config.add_route( "themes", "/themes", request_method="GET", pregenerator=C2CPregenerator(role=True), ) config.add_route("invalidate", "/invalidate", request_method="GET") # Print proxy routes config.add_route("printproxy", "/printproxy", request_method="HEAD") add_cors_route(config, "/printproxy/*all", "print") config.add_route( "printproxy_capabilities", "/printproxy/capabilities.json", request_method="GET", pregenerator=C2CPregenerator(role=True), ) config.add_route( "printproxy_report_create", "/printproxy/report.{format}", request_method="POST", header=JSON_CONTENT_TYPE ) config.add_route( "printproxy_status", "/printproxy/status/{ref}.json", request_method="GET" ) config.add_route( "printproxy_cancel", "/printproxy/cancel/{ref}", request_method="DELETE" ) config.add_route( "printproxy_report_get", "/printproxy/report/{ref}", request_method="GET" ) # Full-text search routes add_cors_route(config, "/fulltextsearch", "fulltextsearch") config.add_route("fulltextsearch", "/fulltextsearch") # Access to raster data add_cors_route(config, "/raster", "raster") config.add_route("raster", "/raster", request_method="GET") add_cors_route(config, "/profile.{ext}", "profile") config.add_route("profile.csv", "/profile.csv", request_method="POST") config.add_route("profile.json", "/profile.json", request_method="POST") # Shortener add_cors_route(config, "/short/create", "shortener") config.add_route("shortener_create", "/short/create", request_method="POST") config.add_route("shortener_get", "/s/{ref}", request_method="GET") # Geometry processing config.add_route("difference", "/difference", request_method="POST") # PDF report tool config.add_route("pdfreport", "/pdfreport/{layername}/{ids}", request_method="GET") # Add routes for the "layers" web service add_cors_route(config, "/layers/*all", "layers") config.add_route( "layers_count", "/layers/{layer_id:\\d+}/count", request_method="GET" ) config.add_route( "layers_metadata", "/layers/{layer_id:\\d+}/md.xsd", request_method="GET", pregenerator=C2CPregenerator(role=True), ) config.add_route( "layers_read_many", "/layers/{layer_id:\\d+,?(\\d+,)*\\d*$}", request_method="GET") # supports URLs like /layers/1,2,3 config.add_route( "layers_read_one", "/layers/{layer_id:\\d+}/{feature_id}", request_method="GET") config.add_route( "layers_create", "/layers/{layer_id:\\d+}", request_method="POST", header=JSON_CONTENT_TYPE) config.add_route( "layers_update", "/layers/{layer_id:\\d+}/{feature_id}", request_method="PUT", header=JSON_CONTENT_TYPE) config.add_route( "layers_delete", "/layers/{layer_id:\\d+}/{feature_id}", request_method="DELETE") config.add_route( "layers_enumerate_attribute_values", "/layers/{layer_name}/values/{field_name}", request_method="GET", pregenerator=C2CPregenerator(), ) # There is no view corresponding to that route, it is to be used from # mako templates to get the root of the "layers" web service config.add_route("layers_root", "/layers", request_method="HEAD") # Resource proxy (load external url, useful when loading non https content) config.add_route("resourceproxy", "/resourceproxy", request_method="GET") # Dev config.add_route("dev", "/dev/*path", request_method="GET") # Used memory in caches add_cors_route(config, "/memory", "memory") config.add_route("memory", "/memory", request_method="GET") # Scan view decorator for adding routes config.scan(ignore=[ "c2cgeoportal_geoportal.lib", "c2cgeoportal_geoportal.scaffolds", "c2cgeoportal_geoportal.scripts" ]) if "subdomains" in settings: # pragma: no cover config.registry.registerUtility( MultiDomainStaticURLInfo(), IStaticURLInfo) add_admin_interface(config) # Add the project static view with cache buster from c2cgeoportal_geoportal.lib.cacheversion import version_cache_buster package = config.get_settings()["package"] config.add_static_view( name="static", path="{}_geoportal:static".format(package), cache_max_age=int(config.get_settings()["default_max_age"]), ) config.add_cache_buster("{}_geoportal:static".format(package), version_cache_buster) # Add the project static view without cache buster config.add_static_view( name="static-ngeo", path="{}_geoportal:static-ngeo".format(package), cache_max_age=int(config.get_settings()["default_max_age"]), ) # Handles the other HTTP errors raised by the views. Without that, # the client receives a status=200 without content. config.add_view(error_handler, context=HTTPException) c2cwsgiutils.index.additional_title = '<div class="row"><div class="col-lg-3"><h2>GeoMapFish</h2>' \ '</div><div class="col-lg">' c2cwsgiutils.index.additional_auth.extend([ '<a href="../tiles/admin/">TileCloud chain admin</a><br>', '<a href="../invalidate">Invalidate the cache</a><br>', '<a href="../memory">Memory status</a>', ]) if config.get_settings().get('enable_admin_interface', False): c2cwsgiutils.index.additional_noauth.append('<a href="../admin/">Admin</a><br>') c2cwsgiutils.index.additional_noauth.append( '</div></div><div class="row"><div class="col-lg-3"><h3>Interfaces</h3></div><div class="col-lg">' ) c2cwsgiutils.index.additional_noauth.append('<a href="../">Default</a><br>') for interface in config.get_settings().get("interfaces", []): if interface != config.get_settings().get("default_interface"): c2cwsgiutils.index.additional_noauth.append( '<p><a href="../{interface}">{interface}</a><br>'.format( interface=interface ) ) c2cwsgiutils.index.additional_noauth.append('<a href="../apihelp.html">API help</a><br>') c2cwsgiutils.index.additional_noauth.append('</div></div><hr>') def init_dbsessions(settings: dict, config: Configurator, health_check: HealthCheck = None) -> None: db_chooser = settings.get('db_chooser', {}) master_paths = [re.compile(i.replace('//', '/')) for i in db_chooser.get('master', [])] slave_paths = [re.compile(i.replace('//', '/')) for i in db_chooser.get('slave', [])] slave_prefix = 'sqlalchemy_slave' if 'sqlalchemy_slave.url' in settings else None c2cgeoportal_commons.models.DBSession, rw_bind, _ = c2cwsgiutils.db.setup_session( config, 'sqlalchemy', slave_prefix, force_master=master_paths, force_slave=slave_paths) c2cgeoportal_commons.models.Base.metadata.bind = rw_bind c2cgeoportal_commons.models.DBSessions['dbsession'] = c2cgeoportal_commons.models.DBSession for dbsession_name, dbsession_config in settings.get('dbsessions', {}).items(): # pragma: nocover c2cgeoportal_commons.models.DBSessions[dbsession_name] = \ c2cwsgiutils.db.create_session(config, dbsession_name, **dbsession_config) c2cgeoportal_commons.models.Base.metadata.clear() from c2cgeoportal_commons.models import main if health_check is not None: for name, session in c2cgeoportal_commons.models.DBSessions.items(): if name == 'dbsession': health_check.add_db_session_check(session, at_least_one_model=main.Theme) alembic_ini = os.path.join(os.path.abspath(os.path.curdir), 'alembic.ini') if os.path.exists(alembic_ini): health_check.add_alembic_check(session, alembic_ini_path=alembic_ini, name='main', version_schema=settings['schema']) health_check.add_alembic_check(session, alembic_ini_path=alembic_ini, name='static', version_schema=settings['schema_static']) else: # pragma: no cover def check(session_: Session) -> None: session_.execute('SELECT 1') health_check.add_db_session_check(session, query_cb=check)
38.984985
107
0.669619
a2eef0d32530a2a3bb7630878bddb31c835d7b76
4,694
py
Python
benchmark/startQiskit_QC3268.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_QC3268.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_QC3268.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=52 import cirq import qiskit from qiskit import IBMQ from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=24 prog.cz(input_qubit[0],input_qubit[3]) # number=25 prog.h(input_qubit[3]) # number=26 prog.h(input_qubit[3]) # number=21 prog.cz(input_qubit[0],input_qubit[3]) # number=22 prog.h(input_qubit[3]) # number=23 prog.h(input_qubit[3]) # number=27 prog.cz(input_qubit[0],input_qubit[3]) # number=28 prog.h(input_qubit[3]) # number=29 prog.h(input_qubit[3]) # number=37 prog.cz(input_qubit[0],input_qubit[3]) # number=38 prog.h(input_qubit[3]) # number=39 prog.h(input_qubit[3]) # number=43 prog.cz(input_qubit[0],input_qubit[3]) # number=44 prog.h(input_qubit[3]) # number=45 prog.x(input_qubit[3]) # number=41 prog.h(input_qubit[3]) # number=46 prog.cz(input_qubit[0],input_qubit[3]) # number=47 prog.h(input_qubit[3]) # number=48 prog.h(input_qubit[3]) # number=33 prog.cz(input_qubit[0],input_qubit[3]) # number=34 prog.h(input_qubit[3]) # number=35 prog.h(input_qubit[3]) # number=49 prog.cz(input_qubit[0],input_qubit[3]) # number=50 prog.h(input_qubit[3]) # number=51 prog.rx(-0.364424747816416,input_qubit[3]) # number=36 prog.y(input_qubit[3]) # number=20 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.cx(input_qubit[0],input_qubit[3]) # number=12 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=19 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational == True)) sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_QC3268.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
35.832061
165
0.65637
3c511bd5b9c90216b04470c8b0d489686fa19f48
6,361
py
Python
lib/galaxy/webapps/galaxy/api/tool_dependencies.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
2
2017-10-23T14:44:12.000Z
2018-01-14T10:37:28.000Z
lib/galaxy/webapps/galaxy/api/tool_dependencies.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
30
2016-10-20T15:35:12.000Z
2018-10-02T15:59:54.000Z
lib/galaxy/webapps/galaxy/api/tool_dependencies.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
7
2016-11-03T19:11:01.000Z
2020-05-11T14:23:52.000Z
""" API operations allowing clients to manage tool dependencies. """ import logging from galaxy.tools.deps import views from galaxy.web import ( _future_expose_api as expose_api, require_admin ) from galaxy.web.base.controller import BaseAPIController log = logging.getLogger(__name__) class ToolDependenciesAPIController(BaseAPIController): def __init__(self, app): super(ToolDependenciesAPIController, self).__init__(app) self._view = views.DependencyResolversView(app) @expose_api @require_admin def index(self, trans, **kwd): """ GET /api/dependency_resolvers """ return self._view.index() @expose_api @require_admin def show(self, trans, id): """ GET /api/dependency_resolvers/<id> """ return self._view.show(id) @expose_api @require_admin def update(self, trans): """ PUT /api/dependency_resolvers Reload tool dependency resolution configuration. """ return self._view.reload() @expose_api @require_admin def resolver_dependency(self, trans, id, **kwds): """ GET /api/dependency_resolvers/{index}/dependency Resolve described requirement against specified dependency resolver. :type index: int :param index: index of the dependency resolver :type kwds: dict :param kwds: dictionary structure containing extra parameters :type name: str :param name: name of the requirement to find a dependency for (required) :type version: str :param version: version of the requirement to find a dependency for (required) :type exact: bool :param exact: require an exact match to specify requirement (do not discard version information to resolve dependency). :rtype: dict :returns: a dictified description of the dependency, with attribute ``dependency_type: None`` if no match was found. """ return self._view.resolver_dependency(id, **kwds) @expose_api @require_admin def install_dependency(self, trans, id=None, **kwds): """ POST /api/dependency_resolvers/{index}/dependency Install described requirement against specified dependency resolver. :type index: int :param index: index of the dependency resolver :type kwds: dict :param kwds: dictionary structure containing extra parameters :type name: str :param name: name of the requirement to find a dependency for (required) :type version: str :param version: version of the requirement to find a dependency for (required) :type exact: bool :param exact: require an exact match to specify requirement (do not discard version information to resolve dependency). :rtype: dict :returns: a dictified description of the dependency, with attribute ``dependency_type: None`` if no match was found. """ self._view.install_dependency(id, **kwds) return self._view.manager_dependency(**kwds) @expose_api @require_admin def manager_dependency(self, trans, **kwds): """ GET /api/dependency_resolvers/dependency Resolve described requirement against all dependency resolvers, returning the match with highest priority. :type index: int :param index: index of the dependency resolver :type kwds: dict :param kwds: dictionary structure containing extra parameters :type name: str :param name: name of the requirement to find a dependency for (required) :type version: str :param version: version of the requirement to find a dependency for (required) :type exact: bool :param exact: require an exact match to specify requirement (do not discard version information to resolve dependency). :rtype: dict :returns: a dictified description of the dependency, with type: None if no match was found. """ return self._view.manager_dependency(**kwds) @expose_api @require_admin def resolver_requirements(self, trans, id, **kwds): """ GET /api/dependency_resolvers/{index}/requirements Find all "simple" requirements that could be resolved "exactly" by this dependency resolver. The dependency resolver must implement ListDependencyResolver. :type index: int :param index: index of the dependency resolver :rtype: dict :returns: a dictified description of the requirement that could be resolved. """ return self._view.resolver_requirements(id) @expose_api @require_admin def manager_requirements(self, trans, **kwds): """ GET /api/dependency_resolvers/requirements Find all "simple" requirements that could be resolved "exactly" by all dependency resolvers that support this operation. :type index: int :param index: index of the dependency resolver :rtype: dict :returns: a dictified description of the requirement that could be resolved (keyed on 'requirement') and the index of the corresponding resolver (keyed on 'index'). """ return self._view.manager_requirements() @expose_api @require_admin def clean(self, trans, id=None, **kwds): """ POST /api/dependency_resolvers/{index}/clean Cleans up intermediate files created by resolvers during the dependency installation. :type index: int :param index: index of the dependency resolver :rtype: dict :returns: a dictified description of the requirement that could be resolved (keyed on 'requirement') and the index of the corresponding resolver (keyed on 'index'). """ return self._view.clean(id, **kwds)
34.570652
88
0.620972
f8b9f8e1eddf48c78bb87f560f1cb093016aeb03
2,289
py
Python
serpens/validators.py
noverde/serpens
36ee126eb6f9ca2793ac49934fe207a5916f3848
[ "MIT" ]
null
null
null
serpens/validators.py
noverde/serpens
36ee126eb6f9ca2793ac49934fe207a5916f3848
[ "MIT" ]
11
2020-11-26T10:41:07.000Z
2021-11-09T20:19:44.000Z
serpens/validators.py
noverde/serpens
36ee126eb6f9ca2793ac49934fe207a5916f3848
[ "MIT" ]
2
2021-11-28T15:15:42.000Z
2022-01-17T13:48:20.000Z
import re from typing import List, Tuple def validate_cpf(cpf: str) -> bool: if not cpf.isdigit() or len(cpf) != 11 or len(set(cpf)) == 1: return False def _validate_digit(numbers: List[int], index: int) -> bool: values = zip(numbers[0:index], range(index + 1, 1, -1)) sum_of_products = sum(a * b for a, b in values) expected = (sum_of_products * 10 % 11) % 10 return numbers[index] == expected numbers = tuple(map(int, cpf)) ninth = _validate_digit(numbers, 9) tenth = _validate_digit(numbers, 10) return ninth and tenth def validate_cnpj(cnpj: str) -> bool: if not cnpj.isdigit() or len(cnpj) != 14 or cnpj == cnpj[::-1]: return False def _digit(multiplicands: Tuple[int], multipliers: Tuple[int]) -> int: result = sum(a * b for a, b in zip(multiplicands, multipliers)) remainder = result % 11 digit = 0 if remainder < 2 else 11 - remainder return digit numbers = tuple(map(int, cnpj)) multiplicands1 = numbers[:-2] multipliers1 = (5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2) digit1 = _digit(multiplicands1, multipliers1) multiplicands2 = numbers[:-2] + (digit1,) multipliers2 = (6, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2) digit2 = _digit(multiplicands2, multipliers2) return numbers[-2:] == (digit1, digit2) def validate_email(email: str) -> bool: if "@" not in email: return False user, domain = email.rsplit("@", 1) user_pattern = ( r"(^[-!#$%&'*+/=?^`{}|~\w]+(\.[-!#$%&'*+/=?^`{}|~\w]+)*\Z" r'|^"([\001-\010\013\014\016-\037!#-\[\]-\177]' r'|\\[\001-\011\013\014\016-\177])*"\Z)' ) if not re.match(user_pattern, user, flags=re.I | re.U): return False if domain == "localhost": return True domain_pattern = ( r"(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+" r"(?:[A-Z]{2,6}|[A-Z0-9-]{2,})\Z" r"|^\[(25[0-5]|2[0-4]\d|[0-1]?\d?\d)" r"(\.(25[0-5]|2[0-4]\d|[0-1]?\d?\d)){3}\]\Z" ) if not re.match(domain_pattern, domain, flags=re.I | re.U): return False return True def validate_mobile_number(number: str) -> bool: match = re.match(r"^(?!(.)\1{10})[1-9]{2}9\d{8}$", number) return match is not None
28.974684
74
0.548274
dedc021e5e7e12553246f559a7cca975ca06efe3
859
py
Python
backend/core/urls.py
enoscar/maiden
e22efd024df4707533e86943f4f412e32e831577
[ "MIT" ]
null
null
null
backend/core/urls.py
enoscar/maiden
e22efd024df4707533e86943f4f412e32e831577
[ "MIT" ]
6
2021-03-10T17:04:11.000Z
2021-09-22T18:58:32.000Z
backend/core/urls.py
enoscar/maiden
e22efd024df4707533e86943f4f412e32e831577
[ "MIT" ]
1
2020-11-17T20:23:00.000Z
2020-11-17T20:23:00.000Z
"""core URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('api/admin/', admin.site.urls), path('api/auth/', include('authentication.urls')), path('api/main/', include('main.urls')), ]
35.791667
77
0.698487
5850ff6cfad6f6d4031188376a5ea429f54077d9
101
py
Python
main_api.py
norrisng/FcomServer
7d0be9e6a2c22bd0e42a5af397fb17c3b5c139b6
[ "MIT" ]
4
2018-12-11T03:09:10.000Z
2021-05-21T18:36:54.000Z
main_api.py
1989car/FcomServer
1c5afb0eeb9de8afd5d4981202d16980030c09ed
[ "MIT" ]
12
2018-10-26T05:47:14.000Z
2019-05-17T22:05:47.000Z
main_api.py
norrisng/FcomServer
7d0be9e6a2c22bd0e42a5af397fb17c3b5c139b6
[ "MIT" ]
1
2019-05-30T13:13:05.000Z
2019-05-30T13:13:05.000Z
from api.message_api import app if __name__ == "__main__": app.run(host='0.0.0.0', debug=False)
20.2
40
0.683168
3e6624ff88a6e327c06df4319feeff07c7425a6f
1,928
py
Python
JZ/JZ25.py
lpuls/leetcode
00e0ea28ed056c01a1e117e70f5560ada1cd8bcc
[ "MIT" ]
null
null
null
JZ/JZ25.py
lpuls/leetcode
00e0ea28ed056c01a1e117e70f5560ada1cd8bcc
[ "MIT" ]
null
null
null
JZ/JZ25.py
lpuls/leetcode
00e0ea28ed056c01a1e117e70f5560ada1cd8bcc
[ "MIT" ]
null
null
null
# _*_coding:utf-8_*_ class RandomListNode: def __init__(self, x): self.label = x self.next = None self.random = None class Solution: # 返回 RandomListNode def Clone(self, pHead): if None is pHead: return None temp = dict() node = pHead new_list = None new_list_node = None while None is not node: if None is new_list_node: new_list = RandomListNode(node.label) new_list_node = new_list else: new_node = RandomListNode(node.label) new_list_node.next = new_node new_list_node = new_list_node.next temp[node] = node.random node = node.next node = pHead new_list_node = new_list while None is not node: new_list_node.random = temp[node] new_list_node = new_list_node.next node = node.next return new_list def spawn(node_value, node_random): if len(node_value) <= 0: return None result = list() for item in node_value: result.append(RandomListNode(item)) for index, item in enumerate(node_random): if item >= 0: result[index].random = result[item] for index, item in enumerate(result): if index + 1 >= len(result): item.next = None else: item.next = result[index + 1] return result[0] def show(list_node): head = list_node while head: print(head.label, end='\t') head = head.next print('') s = Solution() case = [ spawn([1, 2, 3, 4, 5], [2, 4, 1, 3, 0]), spawn([1, 2, 3, 4, 5], [2, 4, 1, 3, -1]), spawn([1, 2, 3, 4, 5], [-1, -1, -1, -1, -1]) ] for item in case: result = s.Clone(item) print(item, result) show(item) show(result) print('')
22.418605
53
0.52749