hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
8d4fdfe20025b0e5daa5a835dc6c99f6fc1fb9bb
1,069
py
Python
vlp/loader_utils.py
ChenYutongTHU/VLP
0a52c7d5444c880bb56d89a409aca229bde8a96f
[ "Apache-2.0" ]
null
null
null
vlp/loader_utils.py
ChenYutongTHU/VLP
0a52c7d5444c880bb56d89a409aca229bde8a96f
[ "Apache-2.0" ]
null
null
null
vlp/loader_utils.py
ChenYutongTHU/VLP
0a52c7d5444c880bb56d89a409aca229bde8a96f
[ "Apache-2.0" ]
null
null
null
from random import randint, shuffle from random import random as rand import pickle import json from collections import namedtuple import torch import torch.nn as nn import unicodedata from multiprocessing import Lock def get_random_word(vocab_words): i = randint(0, len(vocab_words)-1) return vocab_words[i] def batch_list_to_batch_tensors(batch): #[(info, (...)), (info, (...))] batch_tensors = [] info_batch = [d[0] for d in batch] data_batch = [d[1] for d in batch] for x in zip(*data_batch): if isinstance(x[0], torch.Tensor): batch_tensors.append(torch.stack(x)) else: batch_tensors.append(torch.tensor(x, dtype=torch.long)) return info_batch, batch_tensors class Pipeline(): """ Pre-process Pipeline Class : callable """ def __init__(self): super().__init__() self.mask_same_word = None self.skipgram_prb = None self.skipgram_size = None def __call__(self, instance): raise NotImplementedError
26.725
73
0.647334
d634afdc1f105bb4fcc8082ae0d0d27e255d718f
1,957
py
Python
tests/test_02_app/test_simple_app.py
sondrelg/uvicorn-gunicorn-docker
ddd38797d6a9ca820bd8b3134a0398ef3df8877a
[ "MIT" ]
null
null
null
tests/test_02_app/test_simple_app.py
sondrelg/uvicorn-gunicorn-docker
ddd38797d6a9ca820bd8b3134a0398ef3df8877a
[ "MIT" ]
null
null
null
tests/test_02_app/test_simple_app.py
sondrelg/uvicorn-gunicorn-docker
ddd38797d6a9ca820bd8b3134a0398ef3df8877a
[ "MIT" ]
null
null
null
import os import time from pathlib import Path import docker import requests from docker.client import DockerClient from ..utils import ( CONTAINER_NAME, IMAGE_NAME, generate_dockerfile_content, get_config, get_logs, get_response_text2, remove_previous_container, ) client = docker.from_env() def verify_container(container: DockerClient, response_text: str) -> None: config_data = get_config(container) assert config_data['workers_per_core'] == 1 assert config_data['host'] == '0.0.0.0' assert config_data['port'] == '80' assert config_data['loglevel'] == 'info' assert config_data['workers'] >= 2 assert config_data['bind'] == '0.0.0.0:80' logs = get_logs(container) assert 'Checking for script in /app/prestart.sh' in logs assert 'Running script /app/prestart.sh' in logs assert 'Running inside /app/prestart.sh, you could add migrations to this file' in logs response = requests.get('http://127.0.0.1:8000') assert response.text == response_text def test_simple_app() -> None: name = os.getenv('NAME', '') dockerfile_content = generate_dockerfile_content(name) dockerfile = 'Dockerfile' response_text = get_response_text2() sleep_time = int(os.getenv('SLEEP_TIME', 1)) remove_previous_container(client) test_path = Path(__file__) path = test_path.parent / 'simple_app' dockerfile_path = path / dockerfile dockerfile_path.write_text(dockerfile_content) client.images.build(path=str(path), dockerfile=dockerfile, tag=IMAGE_NAME) container = client.containers.run(IMAGE_NAME, name=CONTAINER_NAME, ports={'80': '8000'}, detach=True) time.sleep(sleep_time) verify_container(container, response_text) container.stop() # Test that everything works after restarting too container.start() time.sleep(sleep_time) verify_container(container, response_text) container.stop() container.remove()
32.616667
105
0.718447
4b6648131ce2ac67964a548bf5a76cd5ee797ac9
1,905
py
Python
caffe/zz_experimental/mnist-gpu/model/test_predict.py
PipelineAI/models
d8df07877aa8b10ce9b84983bb440af75e84dca7
[ "Apache-2.0" ]
44
2017-11-17T06:19:05.000Z
2021-11-03T06:00:56.000Z
caffe/zz_experimental/mnist-cpu/model/test_predict.py
PipelineAI/models
d8df07877aa8b10ce9b84983bb440af75e84dca7
[ "Apache-2.0" ]
3
2018-08-09T14:28:17.000Z
2018-09-10T03:32:42.000Z
caffe/zz_experimental/mnist-cpu/model/test_predict.py
PipelineAI/models
d8df07877aa8b10ce9b84983bb440af75e84dca7
[ "Apache-2.0" ]
21
2017-11-18T15:12:12.000Z
2020-08-15T07:08:33.000Z
import pipeline_invoke json_bytes = b'{"image": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,150,238,254,255,237,150,150,225,161,221,203,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,66,146,253,253,253,253,253,253,253,253,253,253,253,173,0,0,0,0,0,0,0,0,0,0,0,0,0,140,251,253,253,178,114,114,114,114,114,114,167,253,253,154,0,0,0,0,0,0,0,0,0,0,0,12,84,240,253,248,170,28,0,0,0,0,0,0,90,253,250,90,0,0,0,0,0,0,0,0,0,0,10,129,226,253,235,128,0,0,0,0,0,0,0,8,188,253,190,0,0,0,0,0,0,0,0,0,0,0,56,250,253,246,98,0,0,0,0,0,0,0,0,76,243,234,100,0,0,0,0,0,0,0,0,0,0,0,185,253,248,44,0,0,0,0,0,0,0,0,34,245,253,95,0,0,0,0,0,0,0,0,0,0,0,0,69,187,87,0,0,0,0,0,0,0,0,22,164,253,223,63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,247,253,85,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,47,230,253,184,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,145,253,241,43,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,57,250,253,206,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,253,253,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,105,251,248,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68,226,253,180,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,233,253,205,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,189,253,240,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,110,253,253,109,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,47,242,253,159,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,43,198,228,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}' print(pipeline_invoke.invoke(json_bytes))
317.5
1,837
0.576378
d010d3bc1854d58cc950439ce52ce40a45e7a39d
6,229
py
Python
demo/demo_app/admin.py
patpro28/semantic-admin
1c56dc03f33837661065f5bf226bf2e6a500aff8
[ "MIT" ]
null
null
null
demo/demo_app/admin.py
patpro28/semantic-admin
1c56dc03f33837661065f5bf226bf2e6a500aff8
[ "MIT" ]
null
null
null
demo/demo_app/admin.py
patpro28/semantic-admin
1c56dc03f33837661065f5bf226bf2e6a500aff8
[ "MIT" ]
null
null
null
from django.conf import settings from django.contrib import admin from django.contrib.admin import ModelAdmin as DefaultModelAdmin from django.contrib.admin import StackedInline as DefaultStackedInline from django.contrib.admin import TabularInline as DefaultTabularInline from django.contrib.auth.models import Group, User from django.db.models import Count from django.urls import reverse from django.utils.html import format_html from django.utils.safestring import mark_safe from semantic_admin import ( SemanticModelAdmin, SemanticStackedInline, SemanticTabularInline, ) from taggit.models import Tag from .filters import PersonFilter from .models import Favorite, Person, Picture try: from django.utils.translation import gettext_lazy as _ # Django >= 4 except ImportError: from django.utils.translation import ugettext_lazy as _ admin.site.unregister(User) admin.site.unregister(Group) admin.site.unregister(Tag) if "semantic_admin" in settings.INSTALLED_APPS: ModelAdmin = SemanticModelAdmin StackedInline = SemanticStackedInline TabularInline = SemanticTabularInline else: ModelAdmin = DefaultModelAdmin StackedInline = DefaultStackedInline TabularInline = DefaultTabularInline def html5_picture(obj, css=""): name = str(obj) img = obj.get_img(css=css) html = f"{img}<em>{name}</em>" return format_html(mark_safe(html)) class PictureStackedInline(StackedInline): model = Picture fields = ( ("date_and_time", "tags"), "inline_picture", "is_color", ) readonly_fields = ("inline_picture",) show_change_link = True extra = 0 def inline_picture(self, obj): return html5_picture(obj, css="large rounded") inline_picture.short_description = _("picture").capitalize() # type: ignore def has_add_permission(self, request, obj=None): return False class PersonFavoriteTabularInline(TabularInline): model = Favorite autocomplete_fields = fields = ("picture",) extra = 0 @admin.register(Person) class PersonAdmin(ModelAdmin): search_fields = ("name",) filter_class = PersonFilter list_display = ("name", "birthday", "list_friends", "list_favorites") list_editable = ("birthday",) fieldsets = ( (None, {"fields": (("name", "birthday"),)}), (_("extra").capitalize(), {"fields": (("slug", "url", "email"),)}), (None, {"fields": ("friends",)}), ) prepopulated_fields = {"slug": ("name",)} autocomplete_fields = ("friends",) list_per_page = 10 actions = ("send_friend_request",) inlines = (PictureStackedInline, PersonFavoriteTabularInline) def list_friends(self, obj): friends = [] for friend in obj.friends.all(): url = reverse("admin:demo_app_person_change", args=(friend.pk,)) a = f"<a href={url}>{friend.name}</a>" friends.append(a) html = ", ".join(friends) return format_html(mark_safe(html)) list_friends.short_description = _("friends").capitalize() # type: ignore def list_favorites(self, obj): favorites = [] for favorite in obj.favorites.all(): picture = favorite.picture name = str(picture) url = reverse("admin:demo_app_picture_change", args=(picture.pk,)) img = picture.get_img(css="tiny rounded") a = f"<a href={url}>{img}<em>{name}</em></a>" favorites.append(a) html = "".join(favorites) return format_html(mark_safe(html)) list_favorites.short_description = _("favorites").capitalize() # type: ignore def send_friend_request(self, request, queryset): msg = _("You are now friends with {friends}.") format_dict = {"friends": ", ".join((obj.name for obj in queryset))} self.message_user(request, msg.format(**format_dict)) def get_queryset(self, request): queryset = super().get_queryset(request) return queryset.prefetch_related("friends", "favorites__picture") class PictureFavoriteTabularInline(TabularInline): model = Favorite autocomplete_fields = fields = ("person",) extra = 0 @admin.register(Picture) class PictureAdmin(ModelAdmin): search_fields = ("tags__name",) list_filter = ("person",) list_display = ( "list_picture", "person", "date_and_time", "is_color", "has_favorites", ) list_editable = ( "person", "date_and_time", "is_color", ) fields = ( ("date_and_time", "tags", "is_color"), "detail_picture", ) readonly_fields = ( "list_picture", "person_changelink", "has_favorites", "detail_picture", ) date_hierarchy = "date_and_time" list_per_page = 10 inlines = (PictureFavoriteTabularInline,) def list_picture(self, obj): return html5_picture(obj, css="medium rounded") list_picture.short_description = _("picture").capitalize() # type: ignore list_picture.admin_order_field = "date_and_time" # type: ignore def detail_picture(self, obj): return html5_picture(obj, css="large rounded") detail_picture.short_description = _("picture").capitalize() # type: ignore def person_changelink(self, obj): url = reverse("admin:demo_app_person_change", args=(obj.pk,)) a = f"<a href={url}>{obj.person.name}</a>" return format_html(mark_safe(a)) person_changelink.short_description = _("person").capitalize() # type: ignore person_changelink.admin_order_field = "person" # type: ignore def has_favorites(self, obj): return obj.total_favorites > 1 has_favorites.short_description = _("has favorites").capitalize() # type: ignore has_favorites.admin_order_field = "total_favorites" has_favorites.boolean = True # type: ignore def has_add_permission(self, request): return False def get_queryset(self, request): queryset = super().get_queryset(request) queryset = queryset.select_related("person") queryset = queryset.prefetch_related("tags") return queryset.annotate(total_favorites=Count("favorites"))
31.780612
85
0.668968
fc7f278969273dff1b5adcd4acbdfd9d88351e79
7,831
py
Python
finrl/commands/list_commands.py
solazu/FinRL-Library
6cfe00933c16fc8a74efc9fb3d9cfa1b3bf296ea
[ "MIT" ]
1
2021-07-18T13:31:55.000Z
2021-07-18T13:31:55.000Z
finrl/commands/list_commands.py
solazu/FinRL-Library
6cfe00933c16fc8a74efc9fb3d9cfa1b3bf296ea
[ "MIT" ]
null
null
null
finrl/commands/list_commands.py
solazu/FinRL-Library
6cfe00933c16fc8a74efc9fb3d9cfa1b3bf296ea
[ "MIT" ]
null
null
null
import csv import logging import sys from collections import OrderedDict from pathlib import Path from typing import Any, Dict, List import rapidjson from colorama import Fore, Style from colorama import init as colorama_init from tabulate import tabulate from finrl.config import setup_utils_configuration from finrl.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES from finrl.exceptions import OperationalException from finrl.exchange import available_exchanges, ccxt_exchanges, market_is_active from finrl.misc import plural from finrl.resolvers import ExchangeResolver from finrl.state import RunMode logger = logging.getLogger(__name__) """ TODO MAKE LIST AGENTS, LIST MODELS, LIST ENVIRONMENTS ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"] ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"] ARGS_LIST_PAIRS = ["exchange", "print_list", "list_pairs_print_json", "print_one_column", "print_csv", "base_currencies", "quote_currencies", "list_pairs_all"] ARGS_TEST_PAIRLIST = ["config", "quote_currencies", "print_one_column", "list_pairs_print_json"] """ def start_list_exchanges(args: Dict[str, Any]) -> None: """ Print available exchanges :param args: Cli args from Arguments() :return: None """ exchanges = ccxt_exchanges() if args['list_exchanges_all'] else available_exchanges() if args['print_one_column']: print('\n'.join(exchanges)) else: if args['list_exchanges_all']: print(f"All exchanges supported by the ccxt library: {', '.join(exchanges)}") else: print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}") def _print_objs_tabular(objs: List, print_colorized: bool) -> None: if print_colorized: colorama_init(autoreset=True) red = Fore.RED yellow = Fore.YELLOW reset = Style.RESET_ALL else: red = '' yellow = '' reset = '' names = [s['name'] for s in objs] objss_to_print = [{ 'name': s['name'] if s['name'] else "--", 'location': s['location'].name, 'status': (red + "LOAD FAILED" + reset if s['class'] is None else "OK" if names.count(s['name']) == 1 else yellow + "DUPLICATE NAME" + reset) } for s in objs] print(tabulate(objss_to_print, headers='keys', tablefmt='psql', stralign='right')) def start_list_timeframes(args: Dict[str, Any]) -> None: """ Print ticker intervals (timeframes) available on Exchange """ config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE) # Do not use timeframe set in the config config['timeframe'] = None # Init exchange exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False) if args['print_one_column']: print('\n'.join(exchange.timeframes)) else: print(f"Timeframes available for the exchange `{exchange.name}`: " f"{', '.join(exchange.timeframes)}") def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None: """ Print pairs/markets on the exchange :param args: Cli args from Arguments() :param pairs_only: if True print only pairs, otherwise print all instruments (markets) :return: None """ config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE) # Init exchange exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False) # By default only active pairs/markets are to be shown active_only = not args.get('list_pairs_all', False) base_currencies = args.get('base_currencies', []) quote_currencies = args.get('quote_currencies', []) try: pairs = exchange.get_markets(base_currencies=base_currencies, quote_currencies=quote_currencies, pairs_only=pairs_only, active_only=active_only) # Sort the pairs/markets by symbol pairs = OrderedDict(sorted(pairs.items())) except Exception as e: raise OperationalException(f"Cannot get markets. Reason: {e}") from e else: summary_str = ((f"Exchange {exchange.name} has {len(pairs)} ") + ("active " if active_only else "") + (plural(len(pairs), "pair" if pairs_only else "market")) + (f" with {', '.join(base_currencies)} as base " f"{plural(len(base_currencies), 'currency', 'currencies')}" if base_currencies else "") + (" and" if base_currencies and quote_currencies else "") + (f" with {', '.join(quote_currencies)} as quote " f"{plural(len(quote_currencies), 'currency', 'currencies')}" if quote_currencies else "")) headers = ["Id", "Symbol", "Base", "Quote", "Active", *(['Is pair'] if not pairs_only else [])] tabular_data = [] for _, v in pairs.items(): tabular_data.append({'Id': v['id'], 'Symbol': v['symbol'], 'Base': v['base'], 'Quote': v['quote'], 'Active': market_is_active(v), **({'Is pair': exchange.market_is_tradable(v)} if not pairs_only else {})}) if (args.get('print_one_column', False) or args.get('list_pairs_print_json', False) or args.get('print_csv', False)): # Print summary string in the log in case of machine-readable # regular formats. logger.info(f"{summary_str}.") else: # Print empty string separating leading logs and output in case of # human-readable formats. print() if len(pairs): if args.get('print_list', False): # print data as a list, with human-readable summary print(f"{summary_str}: {', '.join(pairs.keys())}.") elif args.get('print_one_column', False): print('\n'.join(pairs.keys())) elif args.get('list_pairs_print_json', False): print(rapidjson.dumps(list(pairs.keys()), default=str)) elif args.get('print_csv', False): writer = csv.DictWriter(sys.stdout, fieldnames=headers) writer.writeheader() writer.writerows(tabular_data) else: # print data as a table, with the human-readable summary print(f"{summary_str}:") print(tabulate(tabular_data, headers='keys', tablefmt='psql', stralign='right')) elif not (args.get('print_one_column', False) or args.get('list_pairs_print_json', False) or args.get('print_csv', False)): print(f"{summary_str}.") def start_show_trades(args: Dict[str, Any]) -> None: """ Show trades """ import json from freqtrade.persistence import Trade, init_db config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE) if 'db_url' not in config: raise OperationalException("--db-url is required for this command.") logger.info(f'Using DB: "{config["db_url"]}"') init_db(config['db_url'], clean_open_orders=False) tfilter = [] if config.get('trade_ids'): tfilter.append(Trade.id.in_(config['trade_ids'])) trades = Trade.get_trades(tfilter).all() logger.info(f"Printing {len(trades)} Trades: ") if config.get('print_json', False): print(json.dumps([trade.to_json() for trade in trades], indent=4)) else: for trade in trades: print(trade)
38.014563
97
0.607585
e4b2b587c9b3d29673d783aeb832e4b6ce1e1d55
6,191
py
Python
pytorch/benchmark.py
mingfeima/convnet-benchmarks
e07c4814cc9ca1fdcbda1ff3ea4fcb386ed7691a
[ "MIT" ]
4
2018-10-30T08:15:00.000Z
2021-03-08T03:44:20.000Z
pytorch/benchmark.py
mingfeima/convnet-benchmarks
e07c4814cc9ca1fdcbda1ff3ea4fcb386ed7691a
[ "MIT" ]
null
null
null
pytorch/benchmark.py
mingfeima/convnet-benchmarks
e07c4814cc9ca1fdcbda1ff3ea4fcb386ed7691a
[ "MIT" ]
5
2018-04-04T23:30:10.000Z
2020-12-08T06:34:03.000Z
import argparse import torch from torch.autograd import Variable import torch.nn as nn import torchvision.models as models import torch.optim as optim import time import subprocess from collections import OrderedDict from mobilenet import MobileNetV2 models.__dict__['mobilenet_v2'] = MobileNetV2 from shufflenet import ShuffleNet models.__dict__['shufflenet'] = ShuffleNet from unet2d import UNet models.__dict__['unet'] = UNet from unet3d import UNet3D models.__dict__['unet3d'] = UNet3D archs = OrderedDict() archs['alexnet'] = [128, 3, 224, 224] archs['vgg11'] = [64, 3, 224, 224] archs['inception_v3'] = [32, 3, 299, 299] archs['resnet50'] = [128, 3, 224, 224] archs['squeezenet1_0'] = [128, 3, 224, 224] archs['densenet121'] = [32, 3, 224, 224] archs['mobilenet_v2'] = [128, 3, 224, 224] archs['shufflenet'] = [128, 3, 224, 224] archs['unet'] = [32, 3, 128, 128] archs['unet3d'] = [6, 4, 64, 64, 64] archs_list = list(archs.keys()) steps = 10 # nb of steps in loop to average perf nDryRuns = 5 # nb of warmup steps def benchmark(): # benchmark settings parser = argparse.ArgumentParser(description='PyTorch Convnet Benchmark') parser.add_argument('--arch', action='store', default='all', choices=archs_list + ['all'], help='model name can be specified. all is default.' ) parser.add_argument('--no-cuda', action='store_true', default=False, help='disable CUDA') parser.add_argument('--inference', action='store_true', default=False, help='run inference only') parser.add_argument('--single-batch-size', action='store_true', default=False, help='single batch size') parser.add_argument('--print-iteration-time', action='store_true', default=False, help='print iteration time') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() arch_dict = {args.arch: archs[args.arch]} if args.arch in archs_list else archs # by huiming, support one or all models. if args.cuda: import torch.backends.cudnn as cudnn cudnn.benchmark = True cudnn.deterministic = True kernel = 'cudnn' p = subprocess.check_output('nvidia-smi --query-gpu=name --format=csv', shell=True) device_name = str(p).split('\\n')[1] else: kernel = 'nn' p = subprocess.check_output('cat /proc/cpuinfo | grep name | head -n 1', shell = True) device_name = str(p).split(':')[1][:-3] print('Running on device: %s' % (device_name)) def _time(): if args.cuda: torch.cuda.synchronize() return time.time() for arch, sizes in arch_dict.items(): if arch == 'unet3d': batch_size, c, d, h, w = sizes[0], sizes[1], sizes[2], sizes[3], sizes[4] batch_size = 1 if args.single_batch_size else batch_size print('ModelType: %s, Kernels: %s Input shape: %dx%dx%dx%dx%d' % (arch, kernel, batch_size, c, d, h, w)) data_ = torch.randn(batch_size, c, d, h, w) else: batch_size, c, h, w = sizes[0], sizes[1], sizes[2], sizes[3] batch_size = 64 if arch is 'resnet50' and args.inference else batch_size batch_size = 1 if args.single_batch_size else batch_size print('ModelType: %s, Kernels: %s Input shape: %dx%dx%dx%d' % (arch, kernel, batch_size, c, h, w)) data_ = torch.randn(batch_size, c, h, w) target_ = torch.arange(1, batch_size + 1).long() net = models.__dict__[arch]() # no need to load pre-trained weights for dummy data optimizer = optim.SGD(net.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() if args.cuda: data_, target_ = data_.cuda(), target_.cuda() net.cuda() criterion = criterion.cuda() if args.inference: net.eval() else: net.train() net.aux_logits = False data, target = Variable(data_), Variable(target_) for i in range(nDryRuns): optimizer.zero_grad() # zero the gradient buffers output = net(data) if not args.inference: loss = output.sum() / 1e6 if 'unet' in arch else criterion(output, target) loss.backward() optimizer.step() # Does the update time_fwd, time_bwd, time_upt = 0, 0, 0 for i in range(steps): optimizer.zero_grad() # zero the gradient buffers t1 = _time() output = net(data) t2 = _time() if not args.inference: loss = output.sum() / 1e6 if 'unet' in arch else criterion(output, target) loss.backward() t3 = _time() optimizer.step() # Does the update t4 = _time() time_fwd = time_fwd + (t2 - t1) if args.print_iteration_time: print("%-30s %d: %10.2f ms" % ('forward iteration', i, (t2-t1)*1000)) if not args.inference: time_bwd = time_bwd + (t3 - t2) time_upt = time_upt + (t4 - t3) time_fwd_avg = time_fwd / steps * 1000 time_bwd_avg = time_bwd / steps * 1000 time_upt_avg = time_upt / steps * 1000 # update not included! time_total = time_fwd_avg + time_bwd_avg print("%-30s %10s %10.2f (ms) %10.2f (imgs/s)" % (kernel, ':forward:', time_fwd_avg, batch_size*1000/time_fwd_avg )) print("%-30s %10s %10.2f (ms)" % (kernel, ':backward:', time_bwd_avg)) print("%-30s %10s %10.2f (ms)" % (kernel, ':update:', time_upt_avg)) print("%-30s %10s %10.2f (ms) %10.2f (imgs/s)" % (kernel, ':total:', time_total, batch_size*1000/time_total )) if __name__ == '__main__': benchmark()
38.216049
125
0.563237
5e63443df00e14c24301191da60e0407fe86bdde
10,928
py
Python
detectron2/modeling/meta_arch/rcnn.py
katport/detectron2_fork
bcb21146ae4360543681d1fa3b60820f3a142703
[ "Apache-2.0" ]
null
null
null
detectron2/modeling/meta_arch/rcnn.py
katport/detectron2_fork
bcb21146ae4360543681d1fa3b60820f3a142703
[ "Apache-2.0" ]
3
2021-06-08T22:00:44.000Z
2022-01-13T03:01:49.000Z
detectron2/modeling/meta_arch/rcnn.py
katport/detectron2_fork
bcb21146ae4360543681d1fa3b60820f3a142703
[ "Apache-2.0" ]
1
2020-08-18T16:44:41.000Z
2020-08-18T16:44:41.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import numpy as np import torch from torch import nn from detectron2.structures import ImageList # from detectron2.utils.events import get_event_storage from detectron2.utils.logger import log_first_n from ..backbone import build_backbone from ..postprocessing import detector_postprocess from ..proposal_generator import build_proposal_generator from ..roi_heads import build_roi_heads from .build import META_ARCH_REGISTRY __all__ = ["GeneralizedRCNN", "ProposalNetwork"] @META_ARCH_REGISTRY.register() class GeneralizedRCNN(nn.Module): """ Generalized R-CNN. Any models that contains the following three components: 1. Per-image feature extraction (aka backbone) 2. Region proposal generation 3. Per-region feature extraction and prediction """ def __init__(self, cfg): super().__init__() self.backbone = build_backbone(cfg) self.proposal_generator = build_proposal_generator(cfg, self.backbone.output_shape()) self.roi_heads = build_roi_heads(cfg, self.backbone.output_shape()) self.vis_period = cfg.VIS_PERIOD self.input_format = cfg.INPUT.FORMAT assert len(cfg.MODEL.PIXEL_MEAN) == len(cfg.MODEL.PIXEL_STD) self.register_buffer("pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1)) self.register_buffer("pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1)) @property def device(self): return self.pixel_mean.device def visualize_training(self, batched_inputs, proposals): """ A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer # storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"].cpu().numpy() assert img.shape[0] == 3, "Images should have 3 channels." if self.input_format == "BGR": img = img[::-1, :, :] img = img.transpose(1, 2, 0) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = "Left: GT bounding boxes; Right: Predicted proposals" # storage.put_image(vis_name, vis_img) break # only visualize one image in a batch def forward(self, batched_inputs): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if not self.training: return self.inference(batched_inputs) images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"] for x in batched_inputs] #.to(self.device) elif "targets" in batched_inputs[0]: log_first_n( logging.WARN, "'targets' in the model inputs is now renamed to 'instances'!", n=10 ) gt_instances = [x["targets"] for x in batched_inputs] # .to(self.device) else: gt_instances = None print ('grcnn: ', images.tensor) features = self.backbone(images.tensor) if self.proposal_generator: proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"] for x in batched_inputs] #.to(self.device) proposal_losses = {} _, detector_losses = self.roi_heads(images, features, proposals, gt_instances) # if self.vis_period > 0: # storage = get_event_storage() # if storage.iter % self.vis_period == 0: # self.visualize_training(batched_inputs, proposals) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses def inference(self, batched_inputs, detected_instances=None, do_postprocess=True): """ Run inference on the given inputs. Args: batched_inputs (list[dict]): same as in :meth:`forward` detected_instances (None or list[Instances]): if not None, it contains an `Instances` object per image. The `Instances` object contains "pred_boxes" and "pred_classes" which are known boxes in the image. The inference will then skip the detection of bounding boxes, and only predict other per-ROI outputs. do_postprocess (bool): whether to apply post-processing on the outputs. Returns: same as in :meth:`forward`. """ assert not self.training images = self.preprocess_image(batched_inputs) features = self.backbone(images.tensor) if detected_instances is None: if self.proposal_generator: proposals, _ = self.proposal_generator(images, features, None) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"] for x in batched_inputs] #.to(self.device) results, _ = self.roi_heads(images, features, proposals, None) else: detected_instances = [x for x in detected_instances] #.to(self.device) results = self.roi_heads.forward_with_given_boxes(features, detected_instances) if do_postprocess: return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes) else: return results def preprocess_image(self, batched_inputs): """ Normalize, pad and batch the input images. """ images = [x["image"] for x in batched_inputs] #.to(self.device) images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) return images @staticmethod def _postprocess(instances, batched_inputs, image_sizes): """ Rescale the output instances to the target size. """ # note: private function; subject to changes processed_results = [] for results_per_image, input_per_image, image_size in zip( instances, batched_inputs, image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results @META_ARCH_REGISTRY.register() class ProposalNetwork(nn.Module): def __init__(self, cfg): super().__init__() self.backbone = build_backbone(cfg) self.proposal_generator = build_proposal_generator(cfg, self.backbone.output_shape()) self.register_buffer("pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1)) self.register_buffer("pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1)) @property def device(self): return self.pixel_mean.device def forward(self, batched_inputs): """ Args: Same as in :class:`GeneralizedRCNN.forward` Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "proposals" whose value is a :class:`Instances` with keys "proposal_boxes" and "objectness_logits". """ images = [x["image"] for x in batched_inputs] #.to(self.device) images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) features = self.backbone(images.tensor) if "instances" in batched_inputs[0]: gt_instances = [x["instances"] for x in batched_inputs] #.to(self.device) elif "targets" in batched_inputs[0]: log_first_n( logging.WARN, "'targets' in the model inputs is now renamed to 'instances'!", n=10 ) gt_instances = [x["targets"] for x in batched_inputs] #.to(self.device) else: gt_instances = None proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) # In training, the proposals are not useful at all but we generate them anyway. # This makes RPN-only models about 5% slower. if self.training: return proposal_losses processed_results = [] for results_per_image, input_per_image, image_size in zip( proposals, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"proposals": r}) return processed_results
41.869732
98
0.632778
9826fef4c76b1083a2283bda6dd7ee5adf3518ec
792
py
Python
mathgenerator/funcs/algebra/compound_interest.py
Sankari-K/mathgenerator
712c74fbe34fe594c4c0f7e3b3057b01d85112ba
[ "MIT" ]
40
2020-10-14T17:29:51.000Z
2020-11-01T04:41:03.000Z
mathgenerator/funcs/algebra/compound_interest.py
Sankari-K/mathgenerator
712c74fbe34fe594c4c0f7e3b3057b01d85112ba
[ "MIT" ]
209
2020-10-14T15:32:08.000Z
2020-11-03T19:08:19.000Z
mathgenerator/funcs/algebra/compound_interest.py
Sankari-K/mathgenerator
712c74fbe34fe594c4c0f7e3b3057b01d85112ba
[ "MIT" ]
179
2020-10-14T15:36:55.000Z
2020-10-29T19:26:16.000Z
from .__init__ import * def gen_func(maxPrinciple=10000, maxRate=10, maxTime=10, format='string'): p = random.randint(1000, maxPrinciple) r = random.randint(1, maxRate) n = random.randint(1, maxTime) a = round(p * (1 + r / 100)**n, 2) if format == 'string': problem = "Compound interest for a principle amount of " + \ str(p) + " dollars, " + str(r) + \ "% rate of interest and for a time period of " + \ str(n) + " year is = " return problem, str(a) elif format == 'latex': return "Latex unavailable" else: return p, r, n, a compound_interest = Generator( "Compound Interest", 78, gen_func, ["maxPrinciple=10000", "maxRate=10", "maxTime=10"])
28.285714
68
0.549242
d1435ef66cce84ce01356b167a74a3108f29751f
1,181
py
Python
packages/pyright-internal/src/tests/samples/loops1.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
packages/pyright-internal/src/tests/samples/loops1.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
packages/pyright-internal/src/tests/samples/loops1.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
# This sample tests the type checker's ability to handle type # inferences within loop constructs. def bar(a: list): pass def func1(): data = None for x in [2, 3]: if not data: data = [1, 2] else: # This should not generate an error because the # type checker should be able to determine that # data must be a list at this point in the code. bar(data) else: # This should generate an error because the # type checker should be able to determine that # data must contain None at this point. bar(data) x = 20 + 20 def func2(): data = None while x: if not data: data = [1, 2] else: # This should not generate an error because the # type checker should be able to determine that # data must be a list at this point in the code. bar(data) else: # This should generate an error because the # type checker should be able to determine that # data must contain None at this point. bar(data)
25.673913
62
0.547841
54dca9c5e51da97d36c90831dec0705403c2655e
2,907
py
Python
row_opt_manual.py
VietHTran/math-checker
872bf3c172c2aee81c875bf37c55bf618135c3cb
[ "MIT" ]
null
null
null
row_opt_manual.py
VietHTran/math-checker
872bf3c172c2aee81c875bf37c55bf618135c3cb
[ "MIT" ]
null
null
null
row_opt_manual.py
VietHTran/math-checker
872bf3c172c2aee81c875bf37c55bf618135c3cb
[ "MIT" ]
null
null
null
from fractions import Fraction def printMatrix(m): for i in range(len(m)): for j in range(len(m[0])): print(m[i][j], end="\t") print() def getFraction(message): while True: rawInp = input(message) try: if "/" in rawInp: # Fraction inp = rawInp.split("/") num = int(inp[0]) den = int(inp[1]) return Fraction(num, den) else: return Fraction(int(rawInp), 1) except: print("Error: Invalid Input") continue def getRowNum(message, matrix): length = len(matrix) while True: rawInp = input(message) try: inp = int(rawInp) if inp >= 0 and inp <= length: return inp - 1 else: print("Error: Index out of range") continue except: print("Error: Invalid Input") continue def cloneMatrix(matrix): clone = [] for row in matrix: holder = [] for num in row: holder.append(Fraction(num)) clone.append(holder) return clone rows = int(input("Matrix row: ")) columns = int(input("Matrix column: ")) matrix = [] for i in range(rows): holder = [] for j in range(columns): holder.append(getFraction("matrix[%d][%d]: " %(i,j))) matrix.append(holder) print("Input matrix: ") printMatrix(matrix) savedMatrix = [cloneMatrix(matrix)] ind = 1 opt = "" while True: opt = input("Swap[w], Sum[s], Times[t], Undo[u] or Exit[x]: ") if opt == "w": row1 = getRowNum("Row 1 (1-based): ", matrix) row2 = getRowNum("Row 2 (1-based): ", matrix) matrix[row1], matrix[row2] = matrix[row2], matrix[row1] ind += 1 savedMatrix.append(cloneMatrix(matrix)) printMatrix(matrix) elif opt == "s": x = getFraction("Enter coeff: ") row1 = getRowNum("Row multiplied (1-based): ", matrix) row2 = getRowNum("Row changed (1-based): ", matrix) for i in range(len(matrix[0])): matrix[row2][i] = matrix[row2][i] + (x * matrix[row1][i]) ind += 1 savedMatrix.append(cloneMatrix(matrix)) printMatrix(matrix) elif opt == "t": x = getFraction("Enter coeff: ") row1 = getRowNum("Row added (1-based): ", matrix) for i in range(len(matrix[0])): matrix[row1][i] = x * matrix[row1][i] ind += 1 savedMatrix.append(cloneMatrix(matrix)) printMatrix(matrix) elif opt == "u": if ind == 1: print("Already at oldest change") else: savedMatrix.pop() ind -= 1 matrix = cloneMatrix(savedMatrix[-1]) printMatrix(matrix) elif opt == "x": break else: print("Error: Unrecognize command")
27.951923
69
0.519436
9864e11ded76f7ff8ed81b9e4adf9fcdd0d1a480
120,842
py
Python
python_etl/CMS_SynPuf_ETL_CDM_v5.py
CPHI-TVHS/ETL-CMS
51044ceea7ddd14d02275e2796f62f454016e238
[ "Apache-2.0" ]
null
null
null
python_etl/CMS_SynPuf_ETL_CDM_v5.py
CPHI-TVHS/ETL-CMS
51044ceea7ddd14d02275e2796f62f454016e238
[ "Apache-2.0" ]
null
null
null
python_etl/CMS_SynPuf_ETL_CDM_v5.py
CPHI-TVHS/ETL-CMS
51044ceea7ddd14d02275e2796f62f454016e238
[ "Apache-2.0" ]
null
null
null
import csv,os,os.path,sys from time import strftime from collections import OrderedDict import argparse import dotenv import math from constants import OMOP_CONSTANTS, OMOP_MAPPING_RECORD, BENEFICIARY_SUMMARY_RECORD, OMOP_CONCEPT_RECORD, OMOP_CONCEPT_RELATIONSHIP_RECORD from utility_classes import Table_ID_Values from beneficiary import Beneficiary from FileControl import FileControl from SynPufFiles import PrescriptionDrug, InpatientClaim, OutpatientClaim, CarrierClaim from datetime import date import calendar # ------------------------ # TODO: polish for updating to OHDSI (doc strings, testing, comments, pylint, etc) # # ------------------------ # ------------------------ # This python script creates the OMOP CDM v5 tables from the CMS SynPuf (Synthetic Public Use Files). # ------------------------ # # Input Required: # OMOP Vocabulary v5 Concept file. Remember to run: java -jar cpt4.jar (appends CPT4 concepts from concept_cpt4.csv to CONCEPT.csv) # BASE_OMOP_INPUT_DIRECTORY / CONCEPT.csv # / CONCEPT_RELATIONSHIP.csv # # # SynPuf data files # BASE_SYNPUF_INPUT_DIRECTORY # / DE1_0_2008_Beneficiary_Summary_File_Sample_<sample_number>.csv # / DE1_0_2009_Beneficiary_Summary_File_Sample_<sample_number>.csv # / DE1_0_2010_Beneficiary_Summary_File_Sample_<sample_number>.csv # / DE1_0_2008_to_2010_Carrier_Claims_Sample_<sample_number>_A.csv # / DE1_0_2008_to_2010_Carrier_Claims_Sample_<sample_number>_B.csv # / DE1_0_2008_to_2010_Inpatient_Claims_Sample_<sample_number>_B.csv # / DE1_0_2008_to_2010_Outpatient_Claims_Sample_<sample_number>_B.csv # / DE1_0_2008_to_2010_Prescription_Drug_Events_Sample_<sample_number>_B.csv # # Output Produced: # Last-used concept_IDs for CDM v5 tables # BASE_OUTPUT_DIRECTORY / etl_synpuf_last_table_ids.txt # / npi_provider_id.txt # / provider_id_care_site.txt # / location_dictionary.csv # # SynPuf Beneficiary Files with year prefix # BASE_SYNPUF_INPUT_DIRECTORY # / DE1_0_comb_Beneficiary_Summary_File_Sample_<sample_number>.csv # / DE1_0_comb_Beneficiary_Summary_File_Sample_<sample_number>.csv.srt # / DE1_0_2008_to_2010_Carrier_Claims_Sample_<sample_number>.csv.srt # / DE1_0_2008_to_2010_Inpatient_Claims_Sample_<sample_number>.csv.srt # / DE1_0_2008_to_2010_Outpatient_Claims_Sample_<sample_number>.csv.srt # / DE1_0_2008_to_2010_Prescription_Drug_Events_Sample_<sample_number>.csv.srt # # # OMOP CDM v5 Tables # BASE_OUTPUT_DIRECTORY / care_site_<sample_number>.csv # / condition_occurrence_<sample_number>.csv # / death_<sample_number>.csv # / device_cost_<sample_number>.csv # / device_exposure_<sample_number>.csv # / drug_cost_<sample_number>.csv # / drug_exposure_<sample_number>.csv # / location_<sample_number>.csv # / measurement_occurrence_<sample_number>.csv # / observation_<sample_number>.csv # / observation_period_<sample_number>.csv # / payer_plan_period_<sample_number>.csv # / person_<sample_number>.csv # / procedure_cost_<sample_number>.csv # / procedure_occurrence_<sample_number>.csv # / provider_<sample_number>.csv # / specimen_<sample_number>.csv # / visit_cost_<sample_number>.csv # / visit_occurrence_<sample_number>.csv # # # ** Various debug and log files # # ------------------------ # ------------------------ # 2015-02-05 C. Dougherty Created # # 2016-06-17 Christophe Lambert, Praveen Kumar, Amritansh -- University of New Mexico -- Major overhaul # ------------------------ dotenv.load_dotenv(".env") # ----------------------------------- # - Configuration # ----------------------------------- # --------------------------------- # Edit your .env file to change which directories to use in the ETL process # Path to the directory where control files should be saved (input/output BASE_ETL_CONTROL_DIRECTORY = os.environ['BASE_ETL_CONTROL_DIRECTORY'] # Path to the directory containing the downloaded SynPUF files BASE_SYNPUF_INPUT_DIRECTORY = os.environ['BASE_SYNPUF_INPUT_DIRECTORY'] # Path to the directory containing the OMOP Vocabulary v5 files (can be downloaded from http://www.ohdsi.org/web/athena/) BASE_OMOP_INPUT_DIRECTORY = os.environ['BASE_OMOP_INPUT_DIRECTORY'] # Path to the directory where CDM-compatible CSV files should be saved BASE_OUTPUT_DIRECTORY = os.environ['BASE_OUTPUT_DIRECTORY'] # SynPUF dir format. I've seen DE1_{0} and DE_{0} as different prefixes for the name of the directory containing a slice of SynPUF data SYNPUF_DIR_FORMAT = os.environ['SYNPUF_DIR_FORMAT'] DESTINATION_FILE_DRUG = 'drug' DESTINATION_FILE_CONDITION = 'condition' DESTINATION_FILE_PROCEDURE = 'procedure' DESTINATION_FILE_OBSERVATION = 'observation' DESTINATION_FILE_MEASUREMENT = 'measurement' DESTINATION_FILE_DEVICE = 'device' DESTINATION_FILE_VISIT = 'visit' class SourceCodeConcept(object): def __init__(self, source_concept_code, source_concept_id, target_concept_id, destination_file): self.source_concept_code = source_concept_code self.source_concept_id = source_concept_id self.target_concept_id = target_concept_id self.destination_file = destination_file # ----------------------------------- # Globals # ----------------------------------- file_control = None table_ids = None source_code_concept_dict = {} # stores source and target concept ids + destination file concept_relationship_dict = {} # stores the source concept id and its mapped target concept id person_location_dict = {} # stores location_id for a given state + county current_stats_filename = '' #This was used to detect death via ICD9 codes, but since death information is #listed in the beneficiary file, we will not use. Plus this isn't even a complete list #icd9_codes_death = ['761.6', '798', '798.0', '798.1', '798.2','798.9', '799.9', 'E913.0','E913.1','E913.2','E913.3','E913.8','E913.9', 'E978'] provider_id_care_site_id = {} # sotres care site id for a provider_num(institution) visit_id_list = set() # stores unique visit ids written to visit occurrence file visit_occurrence_ids = OrderedDict() # stores visit ids generated by determine_visits function npi_provider_id = {} # stores provider id for an npi #------------------------------------------------------------------------------- # SSA codes for Puerto Rico('40') and Virgin Islands ('48') have not been added # to the following dictionary. SSA code '54' is for others where others= # PUERTO RICO, VIRGIN ISLANDS, AFRICA, ASIA OR CALIFORNIA; INSTITUTIONAL PROVIDER # OF SERVICES (IPS) ONLY, CANADA & ISLANDS, CENTRAL AMERICA AND WEST INDIES, # EUROPE, MEXICO, OCEANIA, PHILIPPINES, SOUTH AMERICA, U.S. POSSESSIONS, AMERICAN # SAMOA, GUAM, SAIPAN OR NORTHERN MARIANAS, TEXAS; INSTITUTIONAL PROVIDER OF SERVICES # (IPS) ONLY, NORTHERN MARIANAS, GUAM, UNKNOWN. #------------------------------------------------------------------------------- SSA_state_codes = { '01':'AL', '02':'AK', '03':'AZ', '04':'AR', '05':'CA', '06':'CO', '07':'CT', '08':'DE', '09':'DC', '10':'FL', '11':'GA', '12':'HI', '13':'ID', '14':'IL', '15':'IN', '16':'IA', '17':'KS', '18':'KY', '19':'LA', '20':'ME', '21':'MD', '22':'MA', '23':'MI', '24':'MN', '25':'MS', '26':'MO', '27':'MT', '28':'NE', '29':'NV', '30':'NH', '31':'NJ', '32':'NM', '33':'NY', '34':'NC', '35':'ND', '36':'OH', '37':'OK', '38':'OR', '39':'PA', '41':'RI', '42':'SC', '43':'SD', '44':'TN', '45':'TX', '46':'UT', '47':'VT', '49':'VA', '50':'WA', '51':'WV', '52':'WI', '53':'WY', '54':'54'} domain_destination_file_list = { 'Condition' : DESTINATION_FILE_CONDITION, 'Condition/Meas' : DESTINATION_FILE_MEASUREMENT, 'Condition/Obs' : DESTINATION_FILE_OBSERVATION, 'Condition/Procedure' : DESTINATION_FILE_PROCEDURE, 'Device' : DESTINATION_FILE_DEVICE, 'Device/Obs' : DESTINATION_FILE_OBSERVATION, 'Device/Procedure' : DESTINATION_FILE_PROCEDURE, 'Drug' : DESTINATION_FILE_DRUG, 'Measurement' : DESTINATION_FILE_MEASUREMENT, 'Meas/Procedure' : DESTINATION_FILE_PROCEDURE, 'Obs/Procedure' : DESTINATION_FILE_PROCEDURE, 'Observation' : DESTINATION_FILE_OBSERVATION, 'Procedure' : DESTINATION_FILE_PROCEDURE, 'Visit' : DESTINATION_FILE_VISIT } # ----------------------------------- # get timestamp # ----------------------------------- def get_timestamp(): return strftime("%Y-%m-%d %H:%M:%S") # ----------------------------------- # TODO: use standard python logger... # ----------------------------------- def log_stats(msg): print msg global current_stats_filename with open(current_stats_filename,'a') as fout: fout.write('[{0}]{1}\n'.format(get_timestamp(),msg)) # ----------------------------------- # format date in YYYYMMDD # ----------------------------------- def get_date_YYYY_MM_DD(date_YYYYMMDD): if len(date_YYYYMMDD) == 0: return '' return '{0}-{1}-{2}'.format(date_YYYYMMDD[0:4], date_YYYYMMDD[4:6], date_YYYYMMDD[6:8]) # ----------------------------------------------------------------------------------------------------- # Each provider_num (institution) has a unique care_site_id. It is generated by the following code by # adding 1 to previous care_site_id. # ------------------------------------------------------------------------------------------------------- def get_CareSite(provider_num): global table_ids if provider_num not in provider_id_care_site_id: provider_id_care_site_id[provider_num] = [table_ids.last_care_site_id,0] table_ids.last_care_site_id += 1 return provider_id_care_site_id[provider_num][0] # ------------------------------------------------------------------------- # A unique provider_id for each npi is generated by adding 1 to the previous provider_id # -------------------------------------------------------------------------- def get_Provider(npi): global table_ids if npi not in npi_provider_id: npi_provider_id[npi] = [table_ids.last_provider_id,0] table_ids.last_provider_id += 1 return npi_provider_id[npi][0] # -------------------------------------------------------------------------------------------------- # A unique location id for each unique combination of state+county is generated by adding 1 to # the previous location id # ------------------------------------------------------------------------------------------------ def get_location_id(state_county): global table_ids if state_county not in person_location_dict: person_location_dict[state_county] = [table_ids.last_location_id,0] table_ids.last_location_id += 1 return person_location_dict[state_county][0] # ----------------------------------- # This function produces dictionaries that give mappings between SynPUF codes and OMOP concept_ids # ----------------------------------- def build_maps(): log_stats('-'*80) log_stats('build_maps starting...') #-------------------------------------------------------------------------------------- # load existing person_location_dict. v5 # It populates the dictionary with the existing data so that the subsequent run of this # program doesn't generate the duplicate location_id. #-------------------------------------------------------------------------------------- recs_in = 0 global table_ids global person_location_dict location_dict_file = os.path.join(BASE_ETL_CONTROL_DIRECTORY,"location_dictionary.txt") if os.path.exists(location_dict_file): log_stats('reading existing location_dict_file ->' + location_dict_file) with open(location_dict_file,'r') as fin: for rec in fin: recs_in += 1 flds = (rec[:-1]).split('\t') if len(flds) == 2: state_county = flds[0] location_id = flds[1] location_id = location_id.lstrip('[').rstrip(']').split(',') #convert string to list as the file data is string location_id = [int(location_id[0]), int(location_id[1])] # convert the data in the list to integer person_location_dict[state_county] = location_id log_stats('done, recs_in={0}, len person_location_dict={1}'.format(recs_in, len(person_location_dict))) else: log_stats('No existing location_dict_file found (looked for ->' + location_dict_file + ')') #---------------- # load existing provider_id_care_site_id. # It populates the dictionary with the existing data so that the subsequent run of this # program doesn't generate the duplicate care_site_id. #---------------- recs_in = 0 global table_ids global provider_id_care_site_id provider_id_care_site_file = os.path.join(BASE_ETL_CONTROL_DIRECTORY,'provider_id_care_site.txt') if os.path.exists(provider_id_care_site_file): log_stats('reading existing provider_id_care_site_file ->' + provider_id_care_site_file) with open(provider_id_care_site_file,'r') as fin: for rec in fin: recs_in += 1 flds = (rec[:-1]).split('\t') if len(flds) == 2: provider_num = flds[0] care_site_id = flds[1] care_site_id = care_site_id.lstrip('[').rstrip(']').split(',') #convert string to list as the file data is string care_site_id = [int(care_site_id[0]), int(care_site_id[1])] # convert the data in the list to integer provider_id_care_site_id[provider_num] = care_site_id log_stats('done, recs_in={0}, len provider_id_care_site_id={1}'.format(recs_in, len(provider_id_care_site_id))) else: log_stats('No existing provider_id_care_site_file found (looked for ->' + provider_id_care_site_file + ')') #---------------- # load existing npi_provider_id # It populates the dictionary with the existing data so that the subsequent run of this # program doesn't generate the duplicate provider_id. #---------------- recs_in = 0 global npi_provider_id npi_provider_id_file = os.path.join(BASE_ETL_CONTROL_DIRECTORY,'npi_provider_id.txt') if os.path.exists(npi_provider_id_file): log_stats('reading existing npi_provider_id_file ->' + npi_provider_id_file) with open(npi_provider_id_file,'r') as fin: for rec in fin: recs_in += 1 flds = (rec[:-1]).split('\t') if len(flds) == 2: npi = flds[0] provider_id = flds[1] provider_id = provider_id.lstrip('[').rstrip(']').split(',') #convert string to list as the file data is string provider_id = [int(provider_id[0]), int(provider_id[1])] # convert the data in the list to integer npi_provider_id[npi] = provider_id log_stats('done, recs_in={0}, len npi_provider_id={1}'.format(recs_in, len(npi_provider_id_file))) else: log_stats('No existing npi_provider_id_file found (looked for ->' + npi_provider_id_file + ')') #---------------- # Load the OMOP v5 Concept file to build the source code to conceptID xref. # NOTE: This version of the flat file had embedded newlines. This code handles merging the split # records. This may not be needed when the final OMOP v5 Concept file is produced. #---------------- omop_concept_relationship_debug_file = os.path.join(BASE_OUTPUT_DIRECTORY,'concept_relationship_debug_log.txt') omop_concept_relationship_file = os.path.join(BASE_OMOP_INPUT_DIRECTORY,'CONCEPT_RELATIONSHIP.csv') omop_concept_debug_file = os.path.join(BASE_OUTPUT_DIRECTORY,'concept_debug_log.txt') omop_concept_file = os.path.join(BASE_OMOP_INPUT_DIRECTORY,'CONCEPT.csv') recs_in = 0 recs_skipped = 0 log_stats('Reading omop_concept_relationship_file -> ' + omop_concept_relationship_file) log_stats('Writing to log file -> ' + omop_concept_relationship_debug_file) with open(omop_concept_relationship_file,'r') as fin, \ open(omop_concept_relationship_debug_file, 'w') as fout_log: fin.readline() #skip header for rec in fin: recs_in += 1 if recs_in % 100000 == 0: print 'omop concept relationship recs=',recs_in flds = (rec[:-1]).split('\t') if len(flds) == OMOP_CONCEPT_RELATIONSHIP_RECORD.fieldCount: concept_id1 = flds[OMOP_CONCEPT_RELATIONSHIP_RECORD.CONCEPT_ID_1] concept_id2 = flds[OMOP_CONCEPT_RELATIONSHIP_RECORD.CONCEPT_ID_2] relationship_id = flds[OMOP_CONCEPT_RELATIONSHIP_RECORD.RELATIONSHIP_ID] invalid_reason = flds[OMOP_CONCEPT_RELATIONSHIP_RECORD.INVALID_REASON] if concept_id1 != '' and concept_id2 != '' and relationship_id == "Maps to" and invalid_reason == '': if concept_relationship_dict.has_key(concept_id1): # one concept id might have several mapping, so values are stored as list concept_relationship_dict[concept_id1].append(concept_id2) else: concept_relationship_dict[concept_id1] = [concept_id2] else: recs_skipped = recs_skipped + 1 log_stats('Done, omop concept recs_in = ' + str(recs_in)) log_stats('recs_skipped = ' + str(recs_skipped)) log_stats('len source_code_concept_dict = ' + str(len(source_code_concept_dict))) recs_in = 0 recs_skipped = 0 merged_recs=0 recs_checked=0 #TODO: there is an overlap of 41 2-character codes that are the same between CPT4 and HCPCS, #but map to different OMOP concepts. Need to determine which should prevail. Whichever prevails should call one of the next 2 code blocks first. log_stats('Reading omop_concept_file -> ' + omop_concept_file) log_stats('Writing to log file -> ' + omop_concept_debug_file) #First pass to obtain domain ids of concepts domain_dict = {} with open(omop_concept_file,'r') as fin: fin.readline() for rec in fin: flds = (rec[:-1]).split('\t') if len(flds) == OMOP_CONCEPT_RECORD.fieldCount: concept_id = flds[OMOP_CONCEPT_RECORD.CONCEPT_ID] domain_id = flds[OMOP_CONCEPT_RECORD.DOMAIN_ID] domain_dict[concept_id] = domain_id print "loaded domain dict with this many records: ", len(domain_dict) with open(omop_concept_file,'r') as fin, \ open(omop_concept_debug_file, 'w') as fout_log: # open(omop_concept_file_mini, 'w') as fout_mini: fin.readline() #skip header for rec in fin: recs_in += 1 if recs_in % 100000 == 0: print 'omop concept recs=',recs_in flds = (rec[:-1]).split('\t') if len(flds) == OMOP_CONCEPT_RECORD.fieldCount: concept_id = flds[OMOP_CONCEPT_RECORD.CONCEPT_ID] concept_code = original_concept_code = flds[OMOP_CONCEPT_RECORD.CONCEPT_CODE].replace(".","") vocabulary_id = flds[OMOP_CONCEPT_RECORD.VOCABULARY_ID] if vocabulary_id == OMOP_CONSTANTS.CPT4_VOCABULARY_ID: vocabulary_id = OMOP_CONSTANTS.HCPCS_VOCABULARY_ID if(vocabulary_id in [OMOP_CONSTANTS.ICD_9_DIAGNOSIS_VOCAB_ID,OMOP_CONSTANTS.ICD_9_PROCEDURES_VOCAB_ID]): vocabulary_id = OMOP_CONSTANTS.ICD_9_VOCAB_ID domain_id = flds[OMOP_CONCEPT_RECORD.DOMAIN_ID] invalid_reason = flds[OMOP_CONCEPT_RECORD.INVALID_REASON] status = '' if concept_id != '': if vocabulary_id in [OMOP_CONSTANTS.ICD_9_VOCAB_ID, OMOP_CONSTANTS.HCPCS_VOCABULARY_ID, OMOP_CONSTANTS.NDC_VOCABULARY_ID]: recs_checked += 1 if not concept_relationship_dict.has_key(concept_id): destination_file = domain_destination_file_list[domain_id] if( vocabulary_id == OMOP_CONSTANTS.ICD_9_VOCAB_ID): status = "No map from ICD9 code, or code invalid for " + concept_id recs_skipped += 1 if( vocabulary_id == OMOP_CONSTANTS.HCPCS_VOCABULARY_ID): status = "No self map from OMOP (HCPCS/CPT4) to OMOP (HCPCS/CPT4) or code invalid for " + concept_id recs_skipped += 1 if( vocabulary_id == OMOP_CONSTANTS.NDC_VOCABULARY_ID): status = "No map from OMOP (NCD) to OMOP (RxNorm) or code invalid for " + concept_id recs_skipped += 1 source_code_concept_dict[vocabulary_id,concept_code] = [SourceCodeConcept(concept_code, concept_id, "0", destination_file)] else: source_code_concept_dict[vocabulary_id,concept_code] = [] for concept in concept_relationship_dict[concept_id]: destination_file = domain_destination_file_list[domain_dict[concept]] source_code_concept_dict[vocabulary_id,concept_code].append(SourceCodeConcept(concept_code, concept_id, concept, destination_file)) if status != '': fout_log.write(status + ': \t') # for fld in line: fout_log.write(fld + '\t') fout_log.write(rec + '\n') log_stats('Done, omop concept recs_in = ' + str(recs_in)) log_stats('recs_checked = ' + str(recs_checked)) log_stats('recs_skipped = ' + str(recs_skipped)) log_stats('merged_recs = ' + str(merged_recs)) log_stats('len source_code_concept_dict = ' + str(len(source_code_concept_dict))) #--------------------------- # ----------------------------------- # write the provider_num(institution) + care_site_id to provider_id_care_site.txt file. # write the npi + provider_id to npi_provider_id.txt file. # the data from these two files are loaded to dictionaries before processing the input # records to make sure that the duplicate records are not written to care_site and provider files. # ----------------------------------- def persist_lookup_tables(): recs_out = 0 location_dict_file = os.path.join(BASE_ETL_CONTROL_DIRECTORY,'location_dictionary.txt') log_stats('writing location_dict_file ->' + location_dict_file) with open(location_dict_file,'w') as fout: for state_county, location_id in person_location_dict.items(): fout.write('{0}\t{1}\n'.format(state_county, location_id)) recs_out += 1 log_stats('done, recs_out={0}, len person_location_dict={1}'.format(recs_out, len(person_location_dict))) recs_out = 0 provider_id_care_site_file = os.path.join(BASE_ETL_CONTROL_DIRECTORY,'provider_id_care_site.txt') log_stats('writing provider_id_care_site_file ->' + provider_id_care_site_file) with open(provider_id_care_site_file,'w') as fout: for provider_num, care_site_id in provider_id_care_site_id.items(): fout.write('{0}\t{1}\n'.format(provider_num, care_site_id)) recs_out += 1 log_stats('done, recs_out={0}, len provider_id_care_site_id={1}'.format(recs_out, len(provider_id_care_site_id))) recs_out = 0 npi_provider_id_file = os.path.join(BASE_ETL_CONTROL_DIRECTORY,'npi_provider_id.txt') log_stats('writing npi_provider_id_file ->' + npi_provider_id_file) with open(npi_provider_id_file,'w') as fout: for npi, provider_id in npi_provider_id.items(): fout.write('{0}\t{1}\n'.format(npi, provider_id)) recs_out += 1 log_stats('done, recs_out={0}, len npi_provider_id={1}'.format(recs_out, len(npi_provider_id))) # ------------------------------------------------------------------------------------------------------------------------ # Logic to determine visits. visit_dates is used to determine the start and end date of observation period for a beneficiary. # visit_occurrence_ids keeps track of unique visits. # ------------------------------------------------------------------------------------------------------------------------- def determine_visits(bene): # each unique date gets a visit id visit_id = table_ids.last_visit_occurrence_id #For death records just track dates for purpose of observation_period yd = bene.LatestYearData() if yd is not None and yd.BENE_DEATH_DT != '': bene.visit_dates[yd.BENE_DEATH_DT] = visit_id #For prescription records just track dates for purpose of observation_period for raw_rec in bene.prescription_records: rec = PrescriptionDrug(raw_rec) if rec.SRVC_DT == '': continue bene.visit_dates[rec.SRVC_DT] = visit_id #For inpatient records, if same patient, same date range, and same provider institution number, is same visit for raw_rec in bene.inpatient_records: rec = InpatientClaim(raw_rec) if rec.CLM_FROM_DT == '': continue if not visit_occurrence_ids.has_key((rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.PRVDR_NUM)): bene.visit_dates[rec.CLM_FROM_DT] = visit_id bene.visit_dates[rec.CLM_THRU_DT] = visit_id visit_occurrence_ids[rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.PRVDR_NUM] = visit_id visit_id+=1 #For outpatient records, if same patient, same date range, and same provider institution number, is same visit for raw_rec in bene.outpatient_records: rec = OutpatientClaim(raw_rec) if rec.CLM_FROM_DT == '': continue if not visit_occurrence_ids.has_key((rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.PRVDR_NUM)): bene.visit_dates[rec.CLM_FROM_DT] = visit_id bene.visit_dates[rec.CLM_THRU_DT] = visit_id visit_occurrence_ids[rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.PRVDR_NUM] = visit_id visit_id+=1 #For carrier claims, if same patient, same date range, and same institution tax number, is same visit for raw_rec in bene.carrier_records: rec = CarrierClaim(raw_rec) if rec.CLM_FROM_DT == '': continue if not visit_occurrence_ids.has_key((rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.TAX_NUM)): bene.visit_dates[rec.CLM_FROM_DT] = visit_id bene.visit_dates[rec.CLM_THRU_DT] = visit_id visit_occurrence_ids[rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.TAX_NUM] = visit_id visit_id+=1 table_ids.last_visit_occurrence_id = visit_id #store the last_visit_occurrence_id # ----------------------------------- # CDM v5 Person - Write person records # ----------------------------------- def write_person_record(beneficiary): person_fd = file_control.get_Descriptor('person') yd = beneficiary.LatestYearData() if yd is None: return person_fd.write('{0},'.format(beneficiary.person_id)) # person_id if int(yd.BENE_SEX_IDENT_CD) == 1: # gender_concept_id person_fd.write('{0},'.format(OMOP_CONSTANTS.GENDER_MALE)) elif int(yd.BENE_SEX_IDENT_CD) == 2: person_fd.write('{0},'.format(OMOP_CONSTANTS.GENDER_FEMALE)) else: person_fd.write('0,') person_fd.write('{0},'.format(yd.BENE_BIRTH_DT[0:4])) # year_of_birth person_fd.write('{0},'.format(yd.BENE_BIRTH_DT[4:6])) # month_of_birth person_fd.write('{0},'.format(yd.BENE_BIRTH_DT[6:8])) # day_of_birth person_fd.write(',') # time_of_birth #print ("yd.BENE_RACE_CD: " + str(yd.BENE_RACE_CD)) if int(yd.BENE_RACE_CD) == 1: #White # race_concept_id and ethnicity_concept_id person_fd.write('{0},'.format(OMOP_CONSTANTS.RACE_WHITE)) person_fd.write('{0},'.format(OMOP_CONSTANTS.ETHNICITY_NON_HISPANIC)) elif int(yd.BENE_RACE_CD) == 2: #Black person_fd.write('{0},'.format(OMOP_CONSTANTS.RACE_BLACK)) person_fd.write('{0},'.format(OMOP_CONSTANTS.ETHNICITY_NON_HISPANIC)) elif int(yd.BENE_RACE_CD) == 3: #Others person_fd.write('{0},'.format(OMOP_CONSTANTS.RACE_OTHER)) person_fd.write('{0},'.format(OMOP_CONSTANTS.ETHNICITY_NON_HISPANIC)) elif int(yd.BENE_RACE_CD) == 5: #Hispanic person_fd.write('{0},'.format(OMOP_CONSTANTS.RACE_NON_WHITE)) person_fd.write('{0},'.format(OMOP_CONSTANTS.ETHNICITY_HISPANIC)) else: person_fd.write('0,') person_fd.write('0,') #write person records to the person file state_county = str(beneficiary.SP_STATE_CODE) + '-' + str(beneficiary.BENE_COUNTY_CD) current_location_id = get_location_id(state_county) # get the location id for the given pair of state & county person_fd.write('{0},'.format(current_location_id)) # location_id person_fd.write(',') # provider_id person_fd.write(',') # care_site_id person_fd.write('{0},'.format(beneficiary.DESYNPUF_ID)) # person_source_value person_fd.write('{0},'.format(yd.BENE_SEX_IDENT_CD)) # gender_source_value person_fd.write(',') # gender_source_concept_id person_fd.write('{0},'.format(yd.BENE_RACE_CD)) # race_source_value person_fd.write(',') # race_source_concept_id person_fd.write('{0},'.format(yd.BENE_RACE_CD)) # ethnicity_source_value #person_fd.write('') # ethnicity_source_concept_id person_fd.write('\n') person_fd.increment_recs_written(1) # ---------------------------------------------------- # Write payer plan period records for each beneficiary # ---------------------------------------------------- def write_payer_plan_period_record(beneficiary): payer_plan_period_fd = file_control.get_Descriptor('payer_plan_period') plan_source_value_list = ["Medicare Part A", "Medicare Part B", "HMO", "Medicare Part D"] ppyd = beneficiary.PayerPlanPerioYearDict() # for all 3 years, get the number of months for each plan if not bool(ppyd): return # dictionary is empty else: ''' for k,v in ppyd.iteritems(): if k[1] == 'BENE_HI_CVRAGE_TOT_MONS': #plan A planA[k[0]] = v if k[1] == 'BENE_SMI_CVRAGE_TOT_MONS': #plan B planB[k[0]] = v if k[1] == 'BENE_HMO_CVRAGE_TOT_MONS': #HMO hmo[k[0]] = v if k[1] == 'PLAN_CVRG_MOS_NUM': #plan D planD[k[0]] = v ''' for plan_source_value in plan_source_value_list: if plan_source_value == "Medicare Part A": nd = {k[0]:v for k,v in ppyd.iteritems() if k[1] == 'BENE_HI_CVRAGE_TOT_MONS'} # new dictionary with year as key and value as val payer_plan_period_dates = get_payer_plan_period_date_list(nd) for i in range(len(payer_plan_period_dates)): payer_plan_period_start_date = payer_plan_period_dates[i][0] payer_plan_period_end_date = payer_plan_period_dates[i][1] plan_source_value = "Medicare Part A" write_to_payer_plan_period_file(payer_plan_period_fd, beneficiary.person_id, payer_plan_period_start_date, payer_plan_period_end_date, plan_source_value) elif plan_source_value == "Medicare Part B": nd = {k[0]:v for k,v in ppyd.iteritems() if k[1] == 'BENE_SMI_CVRAGE_TOT_MONS'} # new dictionary with year as key and value as val payer_plan_period_dates = get_payer_plan_period_date_list(nd) for i in range(len(payer_plan_period_dates)): payer_plan_period_start_date = payer_plan_period_dates[i][0] payer_plan_period_end_date = payer_plan_period_dates[i][1] plan_source_value = "Medicare Part B" write_to_payer_plan_period_file(payer_plan_period_fd, beneficiary.person_id, payer_plan_period_start_date, payer_plan_period_end_date, plan_source_value) elif plan_source_value == "Medicare Part D": nd = {k[0]:v for k,v in ppyd.iteritems() if k[1] == 'PLAN_CVRG_MOS_NUM'} # new dictionary with year as key and value as val payer_plan_period_dates = get_payer_plan_period_date_list(nd) for i in range(len(payer_plan_period_dates)): payer_plan_period_start_date = payer_plan_period_dates[i][0] payer_plan_period_end_date = payer_plan_period_dates[i][1] plan_source_value = "Medicare Part D" write_to_payer_plan_period_file(payer_plan_period_fd, beneficiary.person_id, payer_plan_period_start_date, payer_plan_period_end_date, plan_source_value) elif plan_source_value == "HMO": nd = {k[0]:v for k,v in ppyd.iteritems() if k[1] == 'BENE_HMO_CVRAGE_TOT_MONS'} # new dictionary with year as key and value as val payer_plan_period_dates = get_payer_plan_period_date_list(nd) for i in range(len(payer_plan_period_dates)): payer_plan_period_start_date = payer_plan_period_dates[i][0] payer_plan_period_end_date = payer_plan_period_dates[i][1] plan_source_value = "HMO" write_to_payer_plan_period_file(payer_plan_period_fd, beneficiary.person_id, payer_plan_period_start_date, payer_plan_period_end_date, plan_source_value) #------------------------------------------------------ # write payer plan period data to the file #-------------------------------------------------------- def write_to_payer_plan_period_file(payer_plan_period_fd, person_id, payer_plan_period_start_date, payer_plan_period_end_date, plan_source_value): payer_plan_period_fd.write('{0},'.format(table_ids.last_payer_plan_period_id)) # payer_plan_period_id payer_plan_period_fd.write('{0},'.format(person_id)) # person_id payer_plan_period_fd.write('{0},'.format(payer_plan_period_start_date)) # payer_plan_period_start_date payer_plan_period_fd.write('{0},'.format(payer_plan_period_end_date)) # payer_plan_period_end_date payer_plan_period_fd.write(',') # payer_source_value payer_plan_period_fd.write('{0},'.format(plan_source_value)) # plan_source_value payer_plan_period_fd.write('') # family_source_value payer_plan_period_fd.write('\n') payer_plan_period_fd.increment_recs_written(1) table_ids.last_payer_plan_period_id += 1 #---------------------------------------------------------------- # generate the list of payer_plan_period start date and end date. # date_list will be in this format date_list = [(d1,d2),(d1,d2)] #----------------------------------------------------------------- def get_payer_plan_period_date_list(plan): date_list = [] # check if any year is missing. If yes, add that year. This will prevent dictionary keyError at runtime. for year in ['2008','2009','2010']: if year not in plan: plan[year] = 0 # determine the start and end date for payer plan period if plan['2008'] == 12 and plan['2009'] == 12 and plan['2010'] == 12: payer_plan_period_start_date = '2008-01-01' payer_plan_period_end_date = '2010-12-31' date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) elif plan['2008'] == 12 and plan['2009'] == 12 and plan['2010'] < 12: payer_plan_period_start_date = '2008-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2009,12,31), plan['2010']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) elif plan['2008'] == 12 and plan['2009'] < 12 and plan['2010'] == 12: payer_plan_period_start_date = '2008-01-01' payer_plan_period_end_date = '2008-12-31' date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) if plan['2009'] > 0: payer_plan_period_start_date = '2009-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2009,01,01), plan['2009']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) payer_plan_period_start_date = '2010-01-01' payer_plan_period_end_date = '2010-12-31' date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) elif plan['2008'] == 12 and plan['2009'] < 12 and plan['2010'] < 12: payer_plan_period_start_date = '2008-01-01' payer_plan_period_end_date = '2008-12-31' date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) if plan['2009'] > 0: payer_plan_period_start_date = '2009-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2009,01,01), plan['2009']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) if plan['2010'] > 0: payer_plan_period_start_date = '2010-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2010,01,01), plan['2010']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) elif plan['2008'] < 12 and plan['2009'] == 12 and plan['2010'] == 12: if plan['2008'] == 0: payer_plan_period_start_date = '2009-01-01' else: payer_plan_period_start_date = get_payer_plan_period_date(date(2008,12,31), -1*plan['2008']) payer_plan_period_end_date = '2010-12-31' date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) elif plan['2008'] < 12 and plan['2009'] == 12 and plan['2010'] < 12: if plan['2008'] == 0: payer_plan_period_start_date = '2009-01-01' else: payer_plan_period_start_date = get_payer_plan_period_date(date(2008,12,31), -1*plan['2008']) payer_plan_period_end_date = get_payer_plan_period_date(date(2009,12,31), plan['2010']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) elif plan['2008'] < 12 and plan['2009'] < 12 and plan['2010'] == 12: if plan['2008'] > 0: payer_plan_period_start_date = '2008-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2008,01,01), plan['2008']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) if plan['2009'] > 0: payer_plan_period_start_date = '2009-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2009,01,01), plan['2009']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) payer_plan_period_start_date = '2010-01-01' payer_plan_period_end_date = '2010-12-31' date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) elif plan['2008'] < 12 and plan['2009'] < 12 and plan['2010'] < 12: if plan['2008'] > 0: payer_plan_period_start_date = '2008-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2008,01,01), plan['2008']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) if plan['2009'] > 0: payer_plan_period_start_date = '2009-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2009,01,01), plan['2009']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) if plan['2010'] > 0: payer_plan_period_start_date = '2010-01-01' payer_plan_period_end_date = get_payer_plan_period_date(date(2010,01,01), plan['2010']) date_list.append((payer_plan_period_start_date, payer_plan_period_end_date)) return date_list #--------------------------------------------------------------------- # use the start/end date and number of months(delta) to calculate the # end/start date #-------------------------------------------------------------------- def get_payer_plan_period_date(date, delta): m, y = (date.month+delta) % 12, date.year + ((date.month)+delta-1) // 12 # calculate new month and year if m == 0: m = 12 d = min(date.day, calendar.monthrange(y, m)[1]) # get the last date of the month return date.replace(day=d,month=m, year=y) # return the new date # ----------------------------------- # Write Location records # ----------------------------------- def write_location_record(beneficiary): state_county = str(beneficiary.SP_STATE_CODE) + '-' + str(beneficiary.BENE_COUNTY_CD) current_location_id = get_location_id(state_county) # get the location id for the given pair of state & county idx = person_location_dict[state_county][1] if idx == 0: location_fd = file_control.get_Descriptor('location') location_fd.write('{0},'.format(current_location_id)) # location_id location_fd.write(',') location_fd.write(',') location_fd.write(',') try: location_fd.write('{0},'.format(SSA_state_codes[beneficiary.SP_STATE_CODE])) # state_code - if SSA code is present in the dictionary except: location_fd.write('{0},'.format(beneficiary.SP_STATE_CODE)) # if SSA code is not present in the dictionary location_fd.write(',') if len(beneficiary.SP_STATE_CODE) == 1: # convert to 2 bytes beneficiary.SP_STATE_CODE = '0' + str(beneficiary.SP_STATE_CODE) if len(beneficiary.BENE_COUNTY_CD) == 1: # convert to 3 bytes beneficiary.BENE_COUNTY_CD = '00' + str(beneficiary.BENE_COUNTY_CD) elif len(beneficiary.BENE_COUNTY_CD) == 2: # convert to 3 bytes beneficiary.BENE_COUNTY_CD = '0' + str(beneficiary.BENE_COUNTY_CD) local_county_code = str(beneficiary.SP_STATE_CODE) + str(beneficiary.BENE_COUNTY_CD) location_fd.write('{0},'.format(local_county_code)) # county_code location_fd.write('{0}'.format(beneficiary.LOCATION_ID)) # location_source_value location_fd.write('\n') location_fd.increment_recs_written(1) person_location_dict[state_county] = [person_location_dict[state_county][0],1] # change the status to written # ----------------------------------- # Observation Period # ----------------------------------- def write_observation_period_records(beneficiary): #There are beneficiaries who are listed but have no activity, so we generate no observation period if len(beneficiary.visit_dates) == 0: return obs_period_fd = file_control.get_Descriptor('observation_period') start_date = min(beneficiary.visit_dates.keys()) end_date = max(beneficiary.visit_dates.keys()) obs_period_fd.write('{0},'.format(table_ids.last_observation_period_id)) obs_period_fd.write('{0},'.format(beneficiary.person_id)) obs_period_fd.write('{0},'.format(start_date)) obs_period_fd.write('{0},'.format(end_date)) obs_period_fd.write('{0}'.format(OMOP_CONSTANTS.OBS_PERIOD_ENROLLED_INSURANCE)) obs_period_fd.write('\n') obs_period_fd.increment_recs_written(1) table_ids.last_observation_period_id += 1 # ----------------------------------- # Death Record # ----------------------------------- def write_death_records(death_fd, beneficiary, death_type_concept_id, cause_source_concept_id): yd = beneficiary.LatestYearData() if yd is not None and yd.BENE_DEATH_DT != '': # if year data for BENE_DEATH_DT is not available, don't write to death file. death_fd.write('{0},'.format(beneficiary.person_id)) death_fd.write('{0},'.format(get_date_YYYY_MM_DD(yd.BENE_DEATH_DT))) death_fd.write('{0},'.format(death_type_concept_id)) death_fd.write(',') # cause_concept_id death_fd.write(',') # cause_source_value death_fd.write('{0}'.format(cause_source_concept_id)) death_fd.write('\n') death_fd.increment_recs_written(1) # ----------------------------------- # Drug Exposure # ----------------------------------- def write_drug_exposure(drug_exp_fd, person_id, drug_concept_id, start_date, drug_type_concept_id, quantity, days_supply, drug_source_concept_id, drug_source_value, provider_id, visit_occurrence_id): drug_exp_fd.write('{0},'.format(table_ids.last_drug_exposure_id)) drug_exp_fd.write('{0},'.format(person_id)) drug_exp_fd.write('{0},'.format(drug_concept_id)) drug_exp_fd.write('{0},'.format(get_date_YYYY_MM_DD(start_date))) # drug_exposure_start_date drug_exp_fd.write(',') # drug_exposure_end_date drug_exp_fd.write('{0},'.format(drug_type_concept_id)) drug_exp_fd.write(',') # stop_reason drug_exp_fd.write(',') # refills if quantity is None: drug_exp_fd.write(',') else: drug_exp_fd.write('{0},'.format(float(quantity))) if days_supply is None: drug_exp_fd.write(',') else: drug_exp_fd.write('{0},'.format(days_supply)) drug_exp_fd.write(',') # sig drug_exp_fd.write(',') # route_concept_id drug_exp_fd.write(',') # effective_drug_dose drug_exp_fd.write(',') # dose_unit_concept_ id drug_exp_fd.write(',') # lot_number drug_exp_fd.write('{0},'.format(provider_id)) # provider_id drug_exp_fd.write('{0},'.format(visit_occurrence_id)) drug_exp_fd.write('{0},'.format(drug_source_value)) drug_exp_fd.write('{0},'.format(drug_source_concept_id)) drug_exp_fd.write(',') # route_source_value #drug_exp_fd.write('') # dose_unit_source_value drug_exp_fd.write('\n') drug_exp_fd.increment_recs_written(1) table_ids.last_drug_exposure_id += 1 # ----------------------------------- # Device Exposure # ----------------------------------- def write_device_exposure(device_fd, person_id, device_concept_id, start_date, end_date, device_type_concept_id, device_source_value, device_source_concept_id, provider_id, visit_occurrence_id): device_fd.write('{0},'.format(table_ids.last_device_exposure_id)) device_fd.write('{0},'.format(person_id)) device_fd.write('{0},'.format(device_concept_id)) device_fd.write('{0},'.format(get_date_YYYY_MM_DD(start_date))) device_fd.write('{0},'.format(get_date_YYYY_MM_DD(end_date))) device_fd.write('{0},'.format(device_type_concept_id)) device_fd.write(',') # unique_device_id device_fd.write(',') # quantity device_fd.write('{0},'.format(provider_id)) # provider_id device_fd.write('{0},'.format(visit_occurrence_id)) device_fd.write('{0},'.format(device_source_value)) device_fd.write('{0}'.format(device_source_concept_id)) device_fd.write('\n') device_fd.increment_recs_written(1) table_ids.last_device_exposure_id += 1 # ----------------------------------- # Prescription Drug File -> Drug Exposure; Drug Cost # ----------------------------------- def write_drug_records(beneficiary): drug_exp_fd = file_control.get_Descriptor('drug_exposure') drug_cost_fd = file_control.get_Descriptor('drug_cost') for raw_rec in beneficiary.prescription_records: rec = PrescriptionDrug(raw_rec) if rec.SRVC_DT == '': continue ndc_code = rec.PROD_SRVC_ID if (OMOP_CONSTANTS.NDC_VOCABULARY_ID,ndc_code) in source_code_concept_dict: #In practice we do not see multiple mappings of drugs, but in principle it could happen for sccd in source_code_concept_dict[OMOP_CONSTANTS.NDC_VOCABULARY_ID,ndc_code]: drug_source_concept_id = sccd.source_concept_id drug_concept_id = sccd.target_concept_id write_drug_exposure(drug_exp_fd, beneficiary.person_id, drug_concept_id=drug_concept_id, start_date=rec.SRVC_DT, drug_type_concept_id=OMOP_CONSTANTS.DRUG_TYPE_PRESCRIPTION, quantity=rec.QTY_DSPNSD_NUM, days_supply=rec.DAYS_SUPLY_NUM, drug_source_concept_id=drug_source_concept_id, drug_source_value=ndc_code, provider_id="", visit_occurrence_id="") else: #These are for any NDC codes not in CONCEPT.csv dline = 'DrugRecords--- ' + 'Unmapped NDC code: ' + str(ndc_code) + ' DESYNPUF_ID: ' + rec.DESYNPUF_ID + '\n' unmapped_log.write(dline) write_drug_exposure(drug_exp_fd, beneficiary.person_id, drug_concept_id="0", start_date=rec.SRVC_DT, drug_type_concept_id=OMOP_CONSTANTS.DRUG_TYPE_PRESCRIPTION, quantity=rec.QTY_DSPNSD_NUM, days_supply=rec.DAYS_SUPLY_NUM, drug_source_concept_id="0", drug_source_value=ndc_code, provider_id="", visit_occurrence_id="") #---------------------- # drug cost -- only written once, even if (doesn't happen now) NDC code maps to multiple RxNorm drugs #---------------------- current_drug_exposure_id = table_ids.last_drug_exposure_id - 1 #subtracted 1 as drug_exposure function added 1 to last_drug_exposure_id drug_cost_fd.write('{0},'.format(table_ids.last_drug_cost_id)) drug_cost_fd.write('{0},'.format(current_drug_exposure_id)) drug_cost_fd.write('{0},'.format(OMOP_CONSTANTS.CURRENCY_US_DOLLAR)) drug_cost_fd.write(',') # paid_copay drug_cost_fd.write('{0},'.format(rec.PTNT_PAY_AMT)) # paid_coinsurance drug_cost_fd.write(',') # paid_toward_deductible drug_cost_fd.write(',') # paid_by_payer drug_cost_fd.write(',') # paid_by_coordination_of_benefits drug_cost_fd.write('{0},'.format(rec.PTNT_PAY_AMT)) # total_out_of_pocket # drug_cost_fd.write('{0},'.format(rec.TOT_RX_CST_AMT)) # total_paid # drug_cost_fd.write(',') # ingredient_cost drug_cost_fd.write(',') # dispensing_fee drug_cost_fd.write(',') # average_wholesale_price #drug_cost_fd.write('') # payer_plan_period_id ##### At moment we do not have payer_plan_period implemented, as we have no payer plan information. drug_cost_fd.write('\n') drug_cost_fd.increment_recs_written(1) table_ids.last_drug_cost_id += 1 # ----------------------------------- # Provider file # ----------------------------------- def write_provider_record(provider_fd, npi, provider_id, care_site_id, provider_source_value): if not provider_id: return idx = npi_provider_id[npi][1] if idx == 0: provider_fd.write('{0},'.format(provider_id)) provider_fd.write(',') # provider_name provider_fd.write('{0},'.format(npi)) provider_fd.write(',') # dea provider_fd.write(',') provider_fd.write('{0},'.format(care_site_id)) provider_fd.write(',') # year_of_birth provider_fd.write(',') # gender_concept_id provider_fd.write('{0},'.format(provider_source_value)) # provider_source_value provider_fd.write(',') # specialty_source_value provider_fd.write(',') # specialty_source_concept_id provider_fd.write(',') # gender_source_value #provider_fd.write('') # gender_source_concept_id provider_fd.write('\n') provider_fd.increment_recs_written(1) npi_provider_id[npi] = [npi_provider_id[npi][0],1] #set index to 1 to mark provider_id written # ----------------------------------- # Condition Occurence file # - Added provider_id # ----------------------------------- def write_condition_occurrence(cond_occur_fd, person_id, condition_concept_id, from_date, thru_date, condition_type_concept_id, provider_id, condition_source_value, condition_source_concept_id, visit_occurrence_id): cond_occur_fd.write('{0},'.format(table_ids.last_condition_occurrence_id)) cond_occur_fd.write('{0},'.format(person_id)) cond_occur_fd.write('{0},'.format(condition_concept_id)) cond_occur_fd.write('{0},'.format(get_date_YYYY_MM_DD(from_date))) cond_occur_fd.write('{0},'.format(get_date_YYYY_MM_DD(thru_date))) cond_occur_fd.write('{0},'.format(condition_type_concept_id)) cond_occur_fd.write(',') # stop_reason cond_occur_fd.write('{0},'.format(provider_id)) # provider_id cond_occur_fd.write('{0},'.format(visit_occurrence_id)) cond_occur_fd.write('{0},'.format(condition_source_value)) cond_occur_fd.write('{0}'.format(condition_source_concept_id)) cond_occur_fd.write('\n') cond_occur_fd.increment_recs_written(1) table_ids.last_condition_occurrence_id += 1 # ----------------------------------- # - Added this new function to # create Visit Occurence file # ----------------------------------- def write_visit_occurrence(visit_occur_fd, person_id, visit_concept_id, visit_occurrence_id, care_site_id, visit_source_concept_id, from_date, thru_date, visit_type_concept_id, provider_id, visit_source_value): visit_occur_fd.write('{0},'.format(visit_occurrence_id)) visit_occur_fd.write('{0},'.format(person_id)) visit_occur_fd.write('{0},'.format(visit_concept_id)) visit_occur_fd.write('{0},'.format(get_date_YYYY_MM_DD(from_date))) visit_occur_fd.write(',') # visit_start_time visit_occur_fd.write('{0},'.format(get_date_YYYY_MM_DD(thru_date))) visit_occur_fd.write(',') # visit_end_time visit_occur_fd.write('{0},'.format(visit_type_concept_id)) visit_occur_fd.write('{0},'.format(provider_id)) # provider_id visit_occur_fd.write('{0},'.format(care_site_id)) # care_site_id visit_occur_fd.write('{0},'.format(visit_source_value)) #visit_occur_fd.write('') # visit_source_concept_id visit_occur_fd.write('\n') visit_occur_fd.increment_recs_written(1) # ----------------------------------- # Procedure Occurence file # ----------------------------------- def write_procedure_occurrence(proc_occur_fd, person_id, procedure_concept_id, from_date, procedure_type_concept_id,provider_id,modifier_concept_id, procedure_source_value, procedure_source_concept_id, visit_occurrence_id): proc_occur_fd.write('{0},'.format(table_ids.last_procedure_occurrence_id)) proc_occur_fd.write('{0},'.format(person_id)) proc_occur_fd.write('{0},'.format(procedure_concept_id)) proc_occur_fd.write('{0},'.format(get_date_YYYY_MM_DD(from_date))) # procedure_date proc_occur_fd.write('{0},'.format(procedure_type_concept_id)) proc_occur_fd.write(',') # modifier_concept_id proc_occur_fd.write(',') # quantity proc_occur_fd.write('{0},'.format(provider_id)) # provider_id proc_occur_fd.write('{0},'.format(visit_occurrence_id)) proc_occur_fd.write('{0},'.format(procedure_source_value)) proc_occur_fd.write('{0},'.format(procedure_source_concept_id)) #proc_occur_fd.write('') # qualifier_source_value proc_occur_fd.write('\n') proc_occur_fd.increment_recs_written(1) table_ids.last_procedure_occurrence_id += 1 # ----------------------------------- # Measurement file # ----------------------------------- def write_measurement(measurement_fd, person_id, measurement_concept_id, measurement_date, measurement_type_concept_id, measurement_source_value, measurement_source_concept_id, provider_id, visit_occurrence_id): measurement_fd.write('{0},'.format(table_ids.last_measurement_id)) measurement_fd.write('{0},'.format(person_id)) measurement_fd.write('{0},'.format(measurement_concept_id)) measurement_fd.write('{0},'.format(get_date_YYYY_MM_DD(measurement_date))) measurement_fd.write(',') # measurement_time measurement_fd.write('{0},'.format(measurement_type_concept_id)) measurement_fd.write(',') # operator_concept_id measurement_fd.write(',') # value_as_number measurement_fd.write('0,') # value_as_concept_id measurement_fd.write(',') # unit_concept_id measurement_fd.write(',') # range_low measurement_fd.write(',') # range_high measurement_fd.write('{0},'.format(provider_id)) # provider_id measurement_fd.write('{0},'.format(visit_occurrence_id)) measurement_fd.write('{0},'.format(measurement_source_value)) measurement_fd.write('{0},'.format(measurement_source_concept_id)) measurement_fd.write(',') # unit_source_value #measurement_fd.write('') # value_source_value measurement_fd.write('\n') measurement_fd.increment_recs_written(1) table_ids.last_measurement_id += 1 # ----------------------------------- # Observation file # ----------------------------------- def write_observation(observation_fd, person_id, observation_concept_id,provider_id, observation_date, observation_type_concept_id, observation_source_value, observation_source_concept_id, visit_occurrence_id): observation_fd.write('{0},'.format(table_ids.last_observation_id)) observation_fd.write('{0},'.format(person_id)) observation_fd.write('{0},'.format(observation_concept_id)) observation_fd.write('{0},'.format(get_date_YYYY_MM_DD(observation_date))) observation_fd.write(',') # observation_time observation_fd.write('{0},'.format(observation_type_concept_id)) observation_fd.write(',') # value_as_number observation_fd.write(',') # value_as_string observation_fd.write('0,') # value_as_concept_id observation_fd.write(',') # qualifier_concept_id observation_fd.write(',') # unit_concept_id observation_fd.write('{0},'.format(provider_id)) # provider_id observation_fd.write('{0},'.format(visit_occurrence_id)) observation_fd.write('{0},'.format(observation_source_value)) observation_fd.write('{0},'.format(observation_source_concept_id)) observation_fd.write(',') # unit_source_value #observation_fd.write('') # qualifier_source_value observation_fd.write('\n') observation_fd.increment_recs_written(1) table_ids.last_observation_id += 1 # ----------------------------------- # Write to Care Site file # ----------------------------------- def write_care_site(care_site_fd, care_site_id, place_of_service_concept_id, care_site_source_value, place_of_service_source_value): if not care_site_id: return idx = provider_id_care_site_id[care_site_source_value][1] if idx == 0: care_site_fd.write('{0},'.format(care_site_id)) care_site_fd.write(',') # care_site_name care_site_fd.write('{0},'.format(place_of_service_concept_id)) care_site_fd.write(',') # location_id care_site_fd.write('{0},'.format(care_site_source_value)) care_site_fd.write('{0}'.format(place_of_service_source_value)) care_site_fd.write('\n') care_site_fd.increment_recs_written(1) provider_id_care_site_id[care_site_source_value] = [provider_id_care_site_id[care_site_source_value][0],1] # change index to 1 to mark it written # ----------------------------------- # From Inpatient Records: # --> Visit Occurrence # --> Visit Cost # --> Procedure Occurrence # --> Drug Exposure # --> Device Exposure # --> Condition Occurrence # --> Measurement Occurrence # --> Observation # --> Care Site # --> Provider # ----------------------------------- def process_inpatient_records(beneficiary): drug_exp_fd = file_control.get_Descriptor('drug_exposure') drug_cost_fd = file_control.get_Descriptor('drug_cost') proc_occur_fd = file_control.get_Descriptor('procedure_occurrence') proc_cost_fd = file_control.get_Descriptor('procedure_cost') cond_occur_fd = file_control.get_Descriptor('condition_occurrence') death_fd = file_control.get_Descriptor('death') care_site_fd = file_control.get_Descriptor('care_site') provider_fd = file_control.get_Descriptor('provider') measurement_fd = file_control.get_Descriptor('measurement_occurrence') observation_fd = file_control.get_Descriptor('observation') device_fd = file_control.get_Descriptor('device_exposure') visit_occur_fd = file_control.get_Descriptor('visit_occurrence') visit_cost_fd = file_control.get_Descriptor('visit_cost') # location_fd = file_control.get_Descriptor('location') for raw_rec in beneficiary.inpatient_records: rec = InpatientClaim(raw_rec) if rec.CLM_FROM_DT == '': continue # initialize both care_site_id and provider_id to null as some institution might not have PRVDR_NUM and some NPI might be null. care_site_id = "" provider_id = "" # --get care_site_id (a unique number generated by the program) for the given institution (PRVDR_NUM) if rec.PRVDR_NUM != '': provider_number = rec.PRVDR_NUM care_site_id = get_CareSite(provider_number) write_care_site(care_site_fd, care_site_id, place_of_service_concept_id=OMOP_CONSTANTS.INPATIENT_PLACE_OF_SERVICE, care_site_source_value=rec.PRVDR_NUM, place_of_service_source_value=OMOP_CONSTANTS.INPATIENT_PLACE_OF_SERVICE_SOURCE) #-- get provider_id (a unique number generated by the program) for the given NPI. Each NPI will have its own provider_id for npi in (rec.AT_PHYSN_NPI, rec.OP_PHYSN_NPI, rec.OT_PHYSN_NPI): if npi != '': provider_id = get_Provider(npi) write_provider_record(provider_fd, npi, provider_id, care_site_id, rec.AT_PHYSN_NPI) #-- get visit id. Person id + CLM_FROM_DT + CLM_THRU_DT + institution number(PRVDR_NUM) make the key for a particular visit current_visit_id = visit_occurrence_ids[rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.PRVDR_NUM] for (vocab,code) in ([(OMOP_CONSTANTS.ICD_9_VOCAB_ID, x) for x in rec.ICD9_DGNS_CD_list] + [(OMOP_CONSTANTS.ICD_9_VOCAB_ID,x) for x in rec.ICD9_PRCDR_CD_list] + [(OMOP_CONSTANTS.HCPCS_VOCABULARY_ID, x) for x in rec.HCPCS_CD_list]): if rec.CLM_FROM_DT != '': if (vocab,code) in source_code_concept_dict: for sccd in source_code_concept_dict[vocab,code]: target_concept_id = sccd.target_concept_id source_concept_id = sccd.source_concept_id destination_file = sccd.destination_file if destination_file == DESTINATION_FILE_PROCEDURE: write_procedure_occurrence(proc_occur_fd, beneficiary.person_id, procedure_concept_id=target_concept_id, from_date=rec.CLM_FROM_DT, procedure_type_concept_id=OMOP_CONSTANTS.INPAT_PROCEDURE_1ST_POSITION, procedure_source_value=code, procedure_source_concept_id=source_concept_id, provider_id=provider_id, modifier_concept_id=0, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_CONDITION: write_condition_occurrence(cond_occur_fd,beneficiary.person_id, condition_concept_id=target_concept_id, from_date=rec.CLM_FROM_DT, thru_date=rec.CLM_THRU_DT, condition_type_concept_id=OMOP_CONSTANTS.INPAT_CONDITION_1ST_POSITION, condition_source_value=code, condition_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_DRUG: write_drug_exposure(drug_exp_fd, beneficiary.person_id, drug_concept_id=target_concept_id, start_date=rec.CLM_FROM_DT, drug_type_concept_id=OMOP_CONSTANTS.DRUG_TYPE_PRESCRIPTION, quantity=None, days_supply=None, drug_source_value=code, drug_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_MEASUREMENT: write_measurement(measurement_fd, beneficiary.person_id, measurement_concept_id=target_concept_id, measurement_date=rec.CLM_FROM_DT, measurement_type_concept_id=OMOP_CONSTANTS.MEASUREMENT_DERIVED_VALUE, measurement_source_value=code, measurement_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_OBSERVATION: write_observation(observation_fd, beneficiary.person_id, observation_concept_id=target_concept_id, observation_date=rec.CLM_FROM_DT, observation_type_concept_id=OMOP_CONSTANTS.OBSERVATION_CHIEF_COMPLAINT, observation_source_value=code, observation_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_DEVICE: write_device_exposure(device_fd, beneficiary.person_id, device_concept_id=target_concept_id, start_date=rec.CLM_FROM_DT, end_date=rec.CLM_THRU_DT, device_type_concept_id=OMOP_CONSTANTS.DEVICE_INFERRED_PROCEDURE_CLAIM, device_source_value=code, device_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) #-- Write each unique visit to visit_occurrence file. if current_visit_id not in visit_id_list: write_visit_occurrence(visit_occur_fd,beneficiary.person_id, visit_concept_id=OMOP_CONSTANTS.INPAT_VISIT_CONCEPT_ID, from_date=rec.CLM_FROM_DT, thru_date=rec.CLM_THRU_DT, visit_type_concept_id=OMOP_CONSTANTS.INPAT_VISIT_1ST_POSITION, visit_source_value=rec.CLM_ID, visit_source_concept_id=source_concept_id, care_site_id=care_site_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) visit_id_list.add(current_visit_id) else: dfile = 'Inpatient--- unmapped ' + str(vocab) + ' code: ' + str(code) + ' DESYNPUF_ID: ' + rec.DESYNPUF_ID + '\n' unmapped_log.write(dfile) #-- care site / provider # ----------------------------------- # From Outpatient Records: # --> Visit Occurrence # --> Visit Cost # --> Procedure Occurrence # --> Drug Exposure # --> Device Exposure # --> Device Exposure Cost # --> Condition Occurrence # --> Measurement Occurrence # --> Observation # --> Care Site # --> Provider # ----------------------------------- def process_outpatient_records(beneficiary): drug_exp_fd = file_control.get_Descriptor('drug_exposure') drug_cost_fd = file_control.get_Descriptor('drug_cost') proc_occur_fd = file_control.get_Descriptor('procedure_occurrence') proc_cost_fd = file_control.get_Descriptor('procedure_cost') cond_occur_fd = file_control.get_Descriptor('condition_occurrence') death_fd = file_control.get_Descriptor('death') care_site_fd = file_control.get_Descriptor('care_site') provider_fd = file_control.get_Descriptor('provider') measurement_fd = file_control.get_Descriptor('measurement_occurrence') observation_fd = file_control.get_Descriptor('observation') device_fd = file_control.get_Descriptor('device_exposure') visit_occur_fd = file_control.get_Descriptor('visit_occurrence') visit_cost_fd = file_control.get_Descriptor('visit_cost') for raw_rec in beneficiary.outpatient_records: rec = OutpatientClaim(raw_rec) if rec.CLM_FROM_DT == '': continue # initialize both care_site_id and provider_id to null as some institution might not have PRVDR_NUM and some NPI might be null. care_site_id = "" provider_id = "" #-- get care_site_id (a unique number generated by the program) for the given institution (PRVDR_NUM) if rec.PRVDR_NUM != '': provider_number = rec.PRVDR_NUM care_site_id = get_CareSite(provider_number) write_care_site(care_site_fd, care_site_id, place_of_service_concept_id=OMOP_CONSTANTS.OUTPATIENT_PLACE_OF_SERVICE, care_site_source_value=rec.PRVDR_NUM, place_of_service_source_value=OMOP_CONSTANTS.OUTPATIENT_PLACE_OF_SERVICE_SOURCE) #-- get provider_id (a unique number generated by the program) for the given NPI. Each NPI will have its own provider_id for npi in (rec.AT_PHYSN_NPI, rec.OP_PHYSN_NPI, rec.OT_PHYSN_NPI): if npi != '': provider_id = get_Provider(npi) write_provider_record(provider_fd, npi, provider_id, care_site_id, rec.AT_PHYSN_NPI) #-- get visit id. Person id + CLM_FROM_DT + CLM_THRU_DT + institution number(PRVDR_NUM) make the key for a particular visit current_visit_id = visit_occurrence_ids[rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.PRVDR_NUM] for (vocab,code) in ( ([] if rec.ADMTNG_ICD9_DGNS_CD == "" else [(OMOP_CONSTANTS.ICD_9_VOCAB_ID,rec.ADMTNG_ICD9_DGNS_CD)]) + [(OMOP_CONSTANTS.ICD_9_VOCAB_ID,x) for x in rec.ICD9_DGNS_CD_list] + [(OMOP_CONSTANTS.ICD_9_VOCAB_ID,x) for x in rec.ICD9_PRCDR_CD_list] + [(OMOP_CONSTANTS.HCPCS_VOCABULARY_ID,x) for x in rec.HCPCS_CD_list]): if rec.CLM_FROM_DT != '': if (vocab,code) in source_code_concept_dict: for sccd in source_code_concept_dict[vocab,code]: target_concept_id = sccd.target_concept_id source_concept_id = sccd.source_concept_id destination_file = sccd.destination_file if destination_file == DESTINATION_FILE_PROCEDURE: write_procedure_occurrence(proc_occur_fd, beneficiary.person_id, procedure_concept_id=target_concept_id, from_date=rec.CLM_FROM_DT, procedure_type_concept_id=OMOP_CONSTANTS.OUTPAT_PROCEDURE_1ST_POSITION, procedure_source_value=code, procedure_source_concept_id=source_concept_id, provider_id=provider_id, modifier_concept_id=0, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_CONDITION: write_condition_occurrence(cond_occur_fd,beneficiary.person_id, condition_concept_id=target_concept_id, from_date=rec.CLM_FROM_DT, thru_date=rec.CLM_THRU_DT, condition_type_concept_id=OMOP_CONSTANTS.OUTPAT_CONDITION_1ST_POSITION, condition_source_value=code, condition_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_DRUG: write_drug_exposure(drug_exp_fd, beneficiary.person_id, drug_concept_id=target_concept_id, start_date=rec.CLM_FROM_DT, drug_type_concept_id=OMOP_CONSTANTS.DRUG_TYPE_PRESCRIPTION, quantity=None, days_supply=None, drug_source_value=code, drug_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_MEASUREMENT: write_measurement(measurement_fd, beneficiary.person_id, measurement_concept_id=target_concept_id, measurement_date=rec.CLM_FROM_DT, measurement_type_concept_id=OMOP_CONSTANTS.MEASUREMENT_DERIVED_VALUE, measurement_source_value=code, measurement_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_OBSERVATION: write_observation(observation_fd, beneficiary.person_id, observation_concept_id=target_concept_id, observation_date=rec.CLM_FROM_DT, observation_type_concept_id=OMOP_CONSTANTS.OBSERVATION_CHIEF_COMPLAINT, observation_source_value=code, observation_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_DEVICE: write_device_exposure(device_fd, beneficiary.person_id, device_concept_id=target_concept_id, start_date=rec.CLM_FROM_DT, end_date=rec.CLM_THRU_DT, device_type_concept_id=OMOP_CONSTANTS.DEVICE_INFERRED_PROCEDURE_CLAIM, device_source_value=code, device_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) #-- Write each unique visit to visit_occurrence file. if current_visit_id not in visit_id_list: write_visit_occurrence(visit_occur_fd,beneficiary.person_id, visit_concept_id=OMOP_CONSTANTS.OUTPAT_VISIT_CONCEPT_ID, from_date=rec.CLM_FROM_DT, thru_date=rec.CLM_THRU_DT, visit_type_concept_id=OMOP_CONSTANTS.OUTPAT_VISIT_1ST_POSITION, visit_source_value=rec.CLM_ID, visit_source_concept_id=source_concept_id, care_site_id=care_site_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) visit_id_list.add(current_visit_id) else: dfile = 'Outpatient--- unmapped ' + str(vocab) + ' code: ' + str(code) + ' DESYNPUF_ID: ' + rec.DESYNPUF_ID + '\n' unmapped_log.write(dfile) # ----------------------------------- # From Carrier Claims Records: # --> Visit Occurrence # --> Visit Cost # --> Procedure Occurrence # --> Drug Exposure # --> Device Exposure # --> Device Exposure Cost # --> Condition Occurrence # --> Measurement Occurrence # --> Observation # --> Care Site # --> Provider # ----------------------------------- def process_carrier_records(beneficiary): drug_exp_fd = file_control.get_Descriptor('drug_exposure') drug_cost_fd = file_control.get_Descriptor('drug_cost') proc_occur_fd = file_control.get_Descriptor('procedure_occurrence') proc_cost_fd = file_control.get_Descriptor('procedure_cost') cond_occur_fd = file_control.get_Descriptor('condition_occurrence') death_fd = file_control.get_Descriptor('death') care_site_fd = file_control.get_Descriptor('care_site') provider_fd = file_control.get_Descriptor('provider') measurement_fd = file_control.get_Descriptor('measurement_occurrence') observation_fd = file_control.get_Descriptor('observation') device_fd = file_control.get_Descriptor('device_exposure') visit_occur_fd = file_control.get_Descriptor('visit_occurrence') visit_cost_fd = file_control.get_Descriptor('visit_cost') for raw_rec in beneficiary.carrier_records: rec = CarrierClaim(raw_rec) if rec.CLM_FROM_DT == '': continue # initialize both care_site_id and provider_id to null as some institution might not have PRVDR_NUM and some NPI might be null. care_site_id = "" provider_id = "" #-- get care_site_id (a unique number generated by the program) for the given TAX_NUM for cc_line in rec.CarrierClaimLine_list: # initialize both care_site_id and provider_id to null as some institution might not have PRVDR_NUM and some NPI might be null. care_site_id = '' provider_id = '' if cc_line.TAX_NUM != '': save_TAX_NUM = cc_line.TAX_NUM care_site_id = get_CareSite(cc_line.TAX_NUM) write_care_site(care_site_fd, care_site_id, place_of_service_concept_id=OMOP_CONSTANTS.CARRIER_CLAIMS_PLACE_OF_SERVICE, care_site_source_value=cc_line.TAX_NUM, place_of_service_source_value=OMOP_CONSTANTS.CARRIER_CLAIMS_PLACE_OF_SERVICE_SOURCE) #-- get provider_id (a unique number generated by the program) for the given NPI. Each NPI will have its own provider_id if cc_line.PRF_PHYSN_NPI != '': npi = cc_line.PRF_PHYSN_NPI provider_id = get_Provider(npi) write_provider_record(provider_fd, npi, provider_id, care_site_id, cc_line.PRF_PHYSN_NPI) #-- get visit id. Person id + CLM_FROM_DT + CLM_THRU_DT + TAX_NUM make the key for a particular visit current_visit_id = visit_occurrence_ids[rec.DESYNPUF_ID,rec.CLM_FROM_DT,rec.CLM_THRU_DT,rec.TAX_NUM] for (vocab,code) in ([(OMOP_CONSTANTS.ICD_9_VOCAB_ID,x) for x in rec.ICD9_DGNS_CD_list] + [(OMOP_CONSTANTS.HCPCS_VOCABULARY_ID, x) for x in rec.HCPCS_CD_list] + [(OMOP_CONSTANTS.ICD_9_VOCAB_ID, x) for x in rec.LINE_ICD9_DGNS_CD_list]): if rec.CLM_FROM_DT != '': if (vocab,code) in source_code_concept_dict: for sccd in source_code_concept_dict[vocab,code]: target_concept_id = sccd.target_concept_id source_concept_id = sccd.source_concept_id destination_file = sccd.destination_file if destination_file == DESTINATION_FILE_PROCEDURE: write_procedure_occurrence(proc_occur_fd, beneficiary.person_id, procedure_concept_id=target_concept_id, from_date=rec.CLM_FROM_DT, procedure_type_concept_id=OMOP_CONSTANTS.OUTPAT_PROCEDURE_1ST_POSITION, procedure_source_value=code, procedure_source_concept_id=source_concept_id, provider_id=provider_id, modifier_concept_id=0, visit_occurrence_id=current_visit_id) #-- procedure cost. If there is an entry in procedure occurence, then only procedure cost should be updated. current_procedure_occurence_id = table_ids.last_procedure_occurrence_id - 1 # after writing procedure occurence, id is increased by 1 and hence subtracted 1 to get the same id. for cc_line in rec.CarrierClaimLine_list: if cc_line.has_nonzero_amount(): proc_cost_fd.write('{0},'.format(table_ids.last_procedure_cost_id)) proc_cost_fd.write('{0},'.format(current_procedure_occurence_id)) proc_cost_fd.write('{0},'.format(OMOP_CONSTANTS.CURRENCY_US_DOLLAR)) # currency_concept_id proc_cost_fd.write(',') # paid_copay proc_cost_fd.write('{0},'.format(cc_line.LINE_COINSRNC_AMT)) # paid_coinsurance proc_cost_fd.write('{0},'.format(cc_line.LINE_BENE_PTB_DDCTBL_AMT)) # paid_toward_deductible proc_cost_fd.write('{0},'.format(cc_line.LINE_NCH_PMT_AMT)) # paid_by_payer proc_cost_fd.write('{0},'.format(cc_line.LINE_BENE_PRMRY_PYR_PD_AMT)) # paid_by_coordination_benefits amt = 0 try: amt = float(cc_line.LINE_BENE_PTB_DDCTBL_AMT) + float(cc_line.LINE_COINSRNC_AMT) except: pass proc_cost_fd.write('{0:2},'.format(amt)) # total_out_of_pocket proc_cost_fd.write('{0},'.format(cc_line.LINE_ALOWD_CHRG_AMT)) # total_paid proc_cost_fd.write(',') # revenue_code_concept_id ## ## need to lookup ## proc_cost_fd.write(',') # payer_plan_period_id Changed to space as payer_plan_period file is not created #proc_cost_fd.write('') # revenue_code_source_value proc_cost_fd.write('\n') proc_cost_fd.increment_recs_written(1) table_ids.last_procedure_cost_id += 1 elif destination_file == DESTINATION_FILE_CONDITION: write_condition_occurrence(cond_occur_fd,beneficiary.person_id, condition_concept_id=target_concept_id, from_date=rec.CLM_FROM_DT, thru_date=rec.CLM_THRU_DT, condition_type_concept_id=OMOP_CONSTANTS.OUTPAT_CONDITION_1ST_POSITION, condition_source_value=code, condition_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_DRUG: write_drug_exposure(drug_exp_fd, beneficiary.person_id, drug_concept_id=target_concept_id, start_date=rec.CLM_FROM_DT, drug_type_concept_id=OMOP_CONSTANTS.DRUG_TYPE_PRESCRIPTION, quantity=None, days_supply=None, drug_source_value=code, drug_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_MEASUREMENT: write_measurement(measurement_fd, beneficiary.person_id, measurement_concept_id=target_concept_id, measurement_date=rec.CLM_FROM_DT, measurement_type_concept_id=OMOP_CONSTANTS.MEASUREMENT_DERIVED_VALUE, measurement_source_value=code, measurement_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_OBSERVATION: write_observation(observation_fd, beneficiary.person_id, observation_concept_id=target_concept_id, observation_date=rec.CLM_FROM_DT, observation_type_concept_id=OMOP_CONSTANTS.OBSERVATION_CHIEF_COMPLAINT, observation_source_value=code, observation_source_concept_id=source_concept_id, provider_id=provider_id, # visit_occurrence_id=current_visit_id) elif destination_file == DESTINATION_FILE_DEVICE: write_device_exposure(device_fd, beneficiary.person_id, device_concept_id=target_concept_id, start_date=rec.CLM_FROM_DT, end_date=rec.CLM_THRU_DT, device_type_concept_id=OMOP_CONSTANTS.DEVICE_INFERRED_PROCEDURE_CLAIM, device_source_value=code, device_source_concept_id=source_concept_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) #-- Write each unique visit to visit_occurrence file. if current_visit_id not in visit_id_list: write_visit_occurrence(visit_occur_fd,beneficiary.person_id, visit_concept_id=OMOP_CONSTANTS.CARRIER_CLAIMS_VISIT_CONCEPT_ID, from_date=rec.CLM_FROM_DT, thru_date=rec.CLM_THRU_DT, visit_type_concept_id=OMOP_CONSTANTS.CARRIER_CLAIMS_VISIT_1ST_POSITION, visit_source_value=rec.CLM_ID, visit_source_concept_id=source_concept_id, care_site_id=care_site_id, provider_id=provider_id, visit_occurrence_id=current_visit_id) visit_id_list.add(current_visit_id) else: dfile = 'CarrierClaim--- unmapped ' + str(vocab) + ' code: ' + str(code) + ' DESYNPUF_ID: ' + rec.DESYNPUF_ID + '\n' unmapped_log.write(dfile) #--------------------------------- def write_header_records(): headers = { 'person' : 'person_id,gender_concept_id,year_of_birth,month_of_birth,day_of_birth,time_of_birth,race_concept_id,ethnicity_concept_id,' 'location_id,provider_id,care_site_id,person_source_value,gender_source_value,gender_source_concept_id,race_source_value,' 'race_source_concept_id,ethnicity_source_value,ethnicity_source_concept_id', 'observation': 'observation_id,person_id,observation_concept_id,observation_date,observation_time,observation_type_concept_id,value_as_number,' 'value_as_string,value_as_concept_id,qualifier_concept_id,unit_concept_id,provider_id,visit_occurrence_id,observation_source_value,' 'observation_source_concept_id,unit_source_value,qualifier_source_value', 'observation_period': 'observation_period_id,person_id,observation_period_start_date,observation_period_end_date,period_type_concept_id', 'specimen': 'specimen_id,person_id,specimen_concept_id,specimen_type_concept_id,specimen_date,specimen_time,quantity,' 'unit_concept_id,anatomic_site_concept_id,disease_status_concept_id,specimen_source_id,specimen_source_value,unit_source_value,' 'anatomic_site_source_value,disease_status_source_value', 'death': 'person_id,death_date,death_type_concept_id,cause_concept_id,cause_source_value,cause_source_concept_id', 'visit_occurrence': 'visit_occurrence_id,person_id,visit_concept_id,visit_start_date,visit_start_time,visit_end_date,visit_end_time,' 'visit_type_concept_id,provider_id,care_site_id,visit_source_value,visit_source_concept_id', 'visit_cost': 'visit_cost_id,visit_occurrence_id,currency_concept_id,paid_copay,paid_coinsurance,paid_toward_deductible,' 'paid_by_payer,paid_by_coordination_benefits,total_out_of_pocket,total_paid,payer_plan_period_id', 'condition_occurrence': 'condition_occurrence_id,person_id,condition_concept_id,condition_start_date,condition_end_date,condition_type_concept_id,' 'stop_reason,provider_id,visit_occurrence_id,condition_source_value,condition_source_concept_id', 'procedure_occurrence': 'procedure_occurrence_id,person_id,procedure_concept_id,procedure_date,procedure_type_concept_id,modifier_concept_id,' 'quantity,provider_id,visit_occurrence_id,procedure_source_value,procedure_source_concept_id,qualifier_source_value', 'procedure_cost': 'procedure_cost_id,procedure_occurrence_id,currency_concept_id,paid_copay,paid_coinsurance,paid_toward_deductible,' 'paid_by_payer,paid_by_coordination_benefits,total_out_of_pocket,total_paid,revenue_code_concept_id,payer_plan_period_id,revenue_code_source_value', 'drug_exposure': 'drug_exposure_id,person_id,drug_concept_id,drug_exposure_start_date,drug_exposure_end_date,drug_type_concept_id,' 'stop_reason,refills,quantity,days_supply,sig,route_concept_id,effective_drug_dose,dose_unit_concept_id,' 'lot_number,provider_id,visit_occurrence_id,drug_source_value,drug_source_concept_id,route_source_value,dose_unit_source_value', 'drug_cost': 'drug_cost_id,drug_exposure_id,currency_concept_id,paid_copay,paid_coinsurance,paid_toward_deductible,paid_by_payer,paid_by_coordination_of_benefits,' 'total_out_of_pocket,total_paid,ingredient_cost,dispensing_fee,average_wholesale_price,payer_plan_period_id', 'device_exposure': 'device_exposure_id,person_id,device_concept_id,device_exposure_start_date,device_exposure_end_date,device_type_concept_id,' 'unique_device_id,quantity,provider_id,visit_occurrence_id,device_source_value,device_source_concept_id', 'device_cost': 'device_cost_id,device_exposure_id,currency_concept_id,paid_copay,paid_coinsurance,paid_toward_deductible,' 'paid_by_payer,paid_by_coordination_benefits,total_out_of_pocket,total_paid,payer_plan_period_id', 'measurement_occurrence': 'measurement_id,person_id,measurement_concept_id,measurement_date,measurement_time,measurement_type_concept_id,operator_concept_id,' 'value_as_number,value_as_concept_id,unit_concept_id,range_low,range_high,provider_id,visit_occurrence_id,measurement_source_value,' 'measurement_source_concept_id,unit_source_value,value_source_value', 'location': 'location_id,address_1,address_2,city,state,zip,county,location_source_value', 'care_site': 'care_site_id,care_site_name,place_of_service_concept_id,location_id,care_site_source_value,place_of_service_source_value', 'provider': 'provider_id,provider_name,NPI,DEA,specialty_concept_id,care_site_id,year_of_birth,gender_concept_id,provider_source_value,' 'specialty_source_value,specialty_source_concept_id,gender_source_value,gender_source_concept_id', 'payer_plan_period': 'payer_plan_period_id,person_id,payer_plan_period_start_date,payer_plan_period_end_date,payer_source_value,' 'plan_source_value,family_source_value', } for token in sorted(file_control.descriptor_list(which='output')): fd = file_control.get_Descriptor(token) fd.write(headers[token] + '\n') fd.increment_recs_written(1) #--------------------------------- #Dead code #--------------------------------- ''' def dump_beneficiary_records(fout, rec): fout.write('-'*80+'\n') for rec in ben.carrier_records: fout.write('[carrier] {0}\n'.format(rec)) cc = CarrierClaim(rec) fout.write('[CarrierClaim]\n') fout.write('\t CLM_ID ={0}\n'.format(cc.CLM_ID)) fout.write('\t CLM_FROM_DT ={0}\n'.format(cc.CLM_FROM_DT)) fout.write('\t CLM_THRU_DT ={0}\n'.format(cc.CLM_THRU_DT)) for cd in cc.ICD9_DGNS_CD_list: fout.write('\t\t {0} \n'.format(cd)) for ix,line in enumerate(cc.CarrierClaimLine_list): fout.write('\t\t' + str(ix) + ' ' + '-'*30+'\n') fout.write('\t\t PRF_PHYSN_NPI ={0} \n'.format(line.PRF_PHYSN_NPI)) fout.write('\t\t TAX_NUM ={0} \n'.format(line.TAX_NUM)) fout.write('\t\t HCPCS_CD ={0} \n'.format(line.HCPCS_CD)) fout.write('\t\t LINE_NCH_PMT_AMT ={0} \n'.format(line.LINE_NCH_PMT_AMT)) fout.write('\t\t LINE_BENE_PTB_DDCTBL_AMT ={0} \n'.format(line.LINE_BENE_PTB_DDCTBL_AMT)) fout.write('\t\t LINE_BENE_PRMRY_PYR_PD_AMT ={0} \n'.format(line.LINE_BENE_PRMRY_PYR_PD_AMT)) fout.write('\t\t LINE_COINSRNC_AMT ={0} \n'.format(line.LINE_COINSRNC_AMT)) fout.write('\t\t LINE_ALOWD_CHRG_AMT ={0} \n'.format(line.LINE_ALOWD_CHRG_AMT)) fout.write('\t\t LINE_PRCSG_IND_CD ={0} \n'.format(line.LINE_PRCSG_IND_CD)) fout.write('\t\t LINE_ICD9_DGNS_CD ={0} \n'.format(line.LINE_ICD9_DGNS_CD)) for rec in ben.inpatient_records: fout.write('[inpatient] {0}\n'.format(rec)) ip = InpatientClaim(rec) fout.write('[InpatientClaim]\n') fout.write('\t CLM_ID ={0}\n'.format(ip.CLM_ID)) fout.write('\t SEGMENT ={0}\n'.format(ip.SEGMENT)) fout.write('\t CLM_FROM_DT ={0}\n'.format(ip.CLM_FROM_DT)) fout.write('\t ICD9_DGNS_CD_list \n') for cd in ip.ICD9_DGNS_CD_list: fout.write('\t\t {0} \n'.format(cd)) for rec in ben.outpatient_records: fout.write('[outpatient] {0}\n'.format(rec)) op = OutpatientClaim(rec) fout.write('[OutpatientClaim]\n') fout.write('\t CLM_ID ={0}\n'.format(op.CLM_ID)) fout.write('\t SEGMENT ={0}\n'.format(op.SEGMENT)) fout.write('\t CLM_FROM_DT ={0}\n'.format(op.CLM_FROM_DT)) fout.write('\t ICD9_DGNS_CD_list \n') for cd in op.ICD9_DGNS_CD_list: fout.write('\t\t {0} \n'.format(cd)) for rec in ben.prescription_records: fout.write('[prescription] {0}\n'.format(rec)) rx = PrescriptionDrug(rec) fout.write('[PrescriptionDrug]\n') fout.write('\t PDE_ID ={0}\n'.format(rx.PDE_ID)) fout.write('\t SRVC_DT ={0}\n'.format(rx.SRVC_DT)) fout.write('\t PROD_SRVC_ID ={0}\n'.format(rx.PROD_SRVC_ID)) fout.write('\t QTY_DSPNSD_NUM ={0}\n'.format(rx.QTY_DSPNSD_NUM)) fout.write('\t DAYS_SUPLY_NUM ={0}\n'.format(rx.DAYS_SUPLY_NUM)) fout.write('\t PTNT_PAY_AMT ={0}\n'.format(rx.PTNT_PAY_AMT)) fout.write('\t TOT_RX_CST_AMT ={0}\n'.format(rx.TOT_RX_CST_AMT)) ''' def process_beneficiary(bene): bene.LoadClaimData(file_control) write_person_record(bene) write_payer_plan_period_record(bene) write_location_record(bene) determine_visits(bene) write_observation_period_records(bene) write_death_records(file_control.get_Descriptor('death'), bene, death_type_concept_id=OMOP_CONSTANTS.DEATH_TYPE_PAYER_ENR_STATUS, cause_source_concept_id=0) write_drug_records(bene) process_inpatient_records(bene) process_outpatient_records(bene) process_carrier_records(bene) file_control.flush_all() #--------------------------------- #Dead code #--------------------------------- ''' def dump_source_concept_codes(): rec_types = {'icd9':0, 'icd9proc':0, 'hcpcs':0, 'cpt':0, 'ndc':0} recs_in = recs_out = 0 code_file_out = os.path.join(BASE_OUTPUT_DIRECTORY, 'codes_1.txt') icd9_codes = {} hcpcs_codes = {} cpt_codes = {} ndc_codes = {} with open(code_file_out, 'w') as fout_codes: def write_code_rec(DESYNPUF_ID, record_number, record_type, code_type, code_value): fout_codes.write("{0},{1},{2},{3},{4}\n".format(DESYNPUF_ID, record_number, record_type, code_type, code_value)) rec_types[code_type] += 1 def check_carrier_claims(): global recs_in global recs_out with open('/Data/OHDSI/CMS_SynPuf/DE1_1/DE1_0_2008_to_2010_Carrier_Claims_Sample_1AB.csv.srt','rU') as fin: for raw_rec in fin: recs_in += 1 if recs_in % 50000 == 0: print 'carrier-claims, recs_in=', recs_in # print '[{0}] {1}'.format(recs_in, rec[:-1]) # fout_codes.write('[{0}] {1}\n'.format(recs_in, raw_rec[:-1])) # if recs_in > 100: break if "DESYNPUF_ID" in raw_rec: continue rec = CarrierClaim((raw_rec[:-1]).split(',')) for src_code in rec.ICD9_DGNS_CD_list: if src_code in icd9_codes: icd9_codes[src_code] += 1 else: icd9_codes[src_code] = 1 fout_codes.write("{0},{1},cc,icd9-1,{2}\n".format(rec.DESYNPUF_ID, recs_in, src_code)) recs_out += 1 rec_types['icd9'] += 1 for src_code in rec.HCPCS_CD_list: if src_code in hcpcs_codes: hcpcs_codes[src_code] += 1 else: hcpcs_codes[src_code] = 1 fout_codes.write("{0},{1},cc,hcpcs,{2}\n".format(rec.DESYNPUF_ID, recs_in, src_code)) recs_out += 1 rec_types['hcpcs'] += 1 for src_code in rec.LINE_ICD9_DGNS_CD_list: if src_code in icd9_codes: icd9_codes[src_code] += 1 else: icd9_codes[src_code] = 1 fout_codes.write("{0},{1},cc,icd9,{2}\n".format(rec.DESYNPUF_ID, recs_in, src_code)) recs_out += 1 rec_types['icd9'] += 1 fout_codes.flush() def check_inpatient_claims(): global recs_in global recs_out with open('/Data/OHDSI/CMS_SynPuf/DE1_1/DE1_0_2008_to_2010_Inpatient_Claims_Sample_1.csv','rU') as fin: record_type = 'ip' for raw_rec in fin: recs_in += 1 if recs_in % 10000 == 0: print 'inpatient-claims, recs_in=', recs_in # print '[{0}] {1}'.format(recs_in, rec[:-1]) # fout_codes.write('[{0}] {1}\n'.format(recs_in, raw_rec[:-1])) # if recs_in > 100: break if "DESYNPUF_ID" in raw_rec: continue rec = InpatientClaim((raw_rec[:-1]).split(',')) for src_code in rec.ICD9_DGNS_CD_list: if src_code in icd9_codes: icd9_codes[src_code] += 1 else: icd9_codes[src_code] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='icd9', code_value=src_code) recs_out += 1 for src_code in rec.HCPCS_CD_list: if src_code in hcpcs_codes: hcpcs_codes[src_code] += 1 else: hcpcs_codes[src_code] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='hcpcs', code_value=src_code) recs_out += 1 for src_code in rec.ICD9_PRCDR_CD_list: if src_code in icd9_codes: icd9_codes[src_code] += 1 else: icd9_codes[src_code] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='icd9proc', code_value=src_code) recs_out += 1 def check_outpatient_claims(): global recs_in global recs_out with open('/Data/OHDSI/CMS_SynPuf/DE1_1/DE1_0_2008_to_2010_Outpatient_Claims_Sample_1.csv','rU') as fin: record_type = 'op' for raw_rec in fin: recs_in += 1 if recs_in % 10000 == 0: print 'outpatient-claims, recs_in=', recs_in # print '[{0}] {1}'.format(recs_in, rec[:-1]) # fout_codes.write('[{0}] {1}\n'.format(recs_in, raw_rec[:-1])) # if recs_in > 100: break if "DESYNPUF_ID" in raw_rec: continue rec = OutpatientClaim((raw_rec[:-1]).split(',')) for src_code in rec.ICD9_DGNS_CD_list: if src_code in icd9_codes: icd9_codes[src_code] += 1 else: icd9_codes[src_code] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='icd9', code_value=src_code) recs_out += 1 for src_code in rec.HCPCS_CD_list: if src_code in hcpcs_codes: hcpcs_codes[src_code] += 1 else: hcpcs_codes[src_code] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='hcpcs', code_value=src_code) recs_out += 1 for src_code in rec.ICD9_PRCDR_CD_list: if src_code in icd9_codes: icd9_codes[src_code] += 1 else: icd9_codes[src_code] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='icd9proc', code_value=src_code) recs_out += 1 if len(rec.ADMTNG_ICD9_DGNS_CD) > 0: src_code = rec.ADMTNG_ICD9_DGNS_CD if src_code in icd9_codes: icd9_codes[src_code] += 1 else: icd9_codes[src_code] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='icd9', code_value=src_code) recs_out += 1 def check_prescription_drug(): global recs_in global recs_out with open('/Data/OHDSI/CMS_SynPuf/DE1_1/DE1_0_2008_to_2010_Prescription_Drug_Events_Sample_1.csv','rU') as fin: record_type = 'rx' for raw_rec in fin: recs_in += 1 if recs_in % 10000 == 0: print 'prescription-drugs, recs_in=', recs_in # print '[{0}] {1}'.format(recs_in, rec[:-1]) # fout_codes.write('[{0}] {1}\n'.format(recs_in, raw_rec[:-1])) # if recs_in > 100: break if "DESYNPUF_ID" in raw_rec: continue rec = PrescriptionDrug((raw_rec[:-1]).split(',')) if len(rec.PROD_SRVC_ID) > 0: ndc = rec.PROD_SRVC_ID if ndc in ndc_codes: ndc_codes[ndc] += 1 else: ndc_codes[ndc] = 1 write_code_rec(rec.DESYNPUF_ID, recs_in, record_type, code_type='ndc', code_value=ndc) recs_out += 1 check_carrier_claims() check_inpatient_claims() check_outpatient_claims() check_prescription_drug() code_summary_file = os.path.join(BASE_OUTPUT_DIRECTORY, 'code_summary.txt') with open(code_summary_file, 'w') as fout: for label, dct in [ ('ndc', ndc_codes), ('hcpcs', hcpcs_codes), ('cpt', cpt_codes), ('icd9', icd9_codes)]: for code, recs in dct.items(): fout.write("{0},{1},{2}\n".format(label, code, recs)) print '--done: recs-in=',recs_in,', out=', recs_out for type, count in rec_types.items(): print type,count ''' #--------------------------------- # start of the program #--------------------------------- if __name__ == '__main__': if not os.path.exists(BASE_OUTPUT_DIRECTORY): os.makedirs(BASE_OUTPUT_DIRECTORY) if not os.path.exists(BASE_ETL_CONTROL_DIRECTORY): os.makedirs(BASE_ETL_CONTROL_DIRECTORY) parser = argparse.ArgumentParser(description='Enter Sample Number') parser.add_argument('sample_number', type=int, default=1) args = parser.parse_args() current_sample_number = args.sample_number SAMPLE_RANGE = [current_sample_number] current_stats_filename = os.path.join(BASE_OUTPUT_DIRECTORY,'etl_stats.txt_{0}'.format(current_sample_number)) if os.path.exists(current_stats_filename): os.unlink(current_stats_filename) log_stats('CMS_ETL starting') log_stats('BASE_SYNPUF_INPUT_DIRECTORY =' + BASE_SYNPUF_INPUT_DIRECTORY) log_stats('BASE_OUTPUT_DIRECTORY =' + BASE_OUTPUT_DIRECTORY) log_stats('BASE_ETL_CONTROL_DIRECTORY =' + BASE_ETL_CONTROL_DIRECTORY) file_control = FileControl(BASE_SYNPUF_INPUT_DIRECTORY, BASE_OUTPUT_DIRECTORY, SYNPUF_DIR_FORMAT, current_sample_number) file_control.delete_all_output() print '-'*80 print '-- all files present....' print '-'*80 #Set up initial identifier counters table_ids = Table_ID_Values() table_ids_filename = os.path.join(BASE_ETL_CONTROL_DIRECTORY, 'etl_synpuf_last_table_ids.txt') if os.path.exists(table_ids_filename): table_ids.Load(table_ids_filename, log_stats) # Build mappings between SynPUF codes and OMOP Vocabulary concept_ids build_maps() bene_dump_filename = os.path.join(BASE_OUTPUT_DIRECTORY,'beneficiary_dump_{0}.txt'.format(current_sample_number)) omop_unmapped_code_file = os.path.join(BASE_ETL_CONTROL_DIRECTORY,'unmapped_code_log.txt') unmapped_log = open(omop_unmapped_code_file, 'a+') # Build the object to manage access to all the files write_header_records() with open(bene_dump_filename,'w') as fout: beneficiary_fd = file_control.get_Descriptor('beneficiary') log_stats('-'*80) log_stats('reading beneficiary file -> '+ beneficiary_fd.complete_pathname) log_stats('last_person_id starting value -> ' + str(table_ids.last_person_id)) recs_in = 0 rec = '' save_DESYNPUF_ID = '' unique_DESYNPUF_ID_count = 0 bene = None try: with beneficiary_fd.open() as fin: # Skip header record rec = fin.readline() for rec in fin: recs_in += 1 if recs_in % 10000 == 0: print 'beneficiary recs_in: ', recs_in rec = rec.split(',') DESYNPUF_ID = rec[BENEFICIARY_SUMMARY_RECORD.DESYNPUF_ID] SP_STATE_CODE = rec[BENEFICIARY_SUMMARY_RECORD.SP_STATE_CODE] BENE_COUNTY_CD = rec[BENEFICIARY_SUMMARY_RECORD.BENE_COUNTY_CD] # count on this header record field being in every file if '"DESYNPUF_ID"' in rec: continue # check for bene break if DESYNPUF_ID != save_DESYNPUF_ID: if not bene is None: process_beneficiary(bene) unique_DESYNPUF_ID_count += 1 save_DESYNPUF_ID = DESYNPUF_ID bene = Beneficiary(DESYNPUF_ID, table_ids.last_person_id, SP_STATE_CODE, BENE_COUNTY_CD) table_ids.last_person_id += 1 #accumulate for the current bene bene.AddYearData(rec) if not bene is None: process_beneficiary(bene) except BaseException: print '** ERROR reading beneficiary file, record number ', recs_in, '\n record-> ', rec raise beneficiary_fd.increment_recs_read(recs_in) log_stats('last_person_id ending value -> ' + str(table_ids.last_person_id)) log_stats('Done: total records read ={0}, unique IDs={1}'.format(recs_in, unique_DESYNPUF_ID_count)) file_control.close_all() #- save look up tables & last-used-ids persist_lookup_tables() table_ids.Save(table_ids_filename) log_stats('CMS_ETL done') log_stats('Input Records------') for token in sorted(file_control.descriptor_list(which='input')): fd = file_control.get_Descriptor(token) log_stats('\tFile: {0:50}, records_read={1:10}'.format(fd.token, fd.records_read)) log_stats('Output Records------') for token in sorted(file_control.descriptor_list(which='output')): fd = file_control.get_Descriptor(token) if fd.records_written > 1: log_stats('\tFile: {0:50}, records_written={1:10}'.format(fd.token, fd.records_written)) print '** done **'
57.298246
212
0.573882
733fc63b5b68e86f5afad72da038cb88dff6e91e
2,244
py
Python
aria_plugin/executor.py
cloudify-cosmo/-cloudify-aria-plugin
5b51019f0981ecec31f684983db71cf4dbb76b9a
[ "Apache-2.0" ]
1
2018-02-21T22:40:01.000Z
2018-02-21T22:40:01.000Z
aria_plugin/executor.py
cloudify-cosmo/-cloudify-aria-plugin
5b51019f0981ecec31f684983db71cf4dbb76b9a
[ "Apache-2.0" ]
null
null
null
aria_plugin/executor.py
cloudify-cosmo/-cloudify-aria-plugin
5b51019f0981ecec31f684983db71cf4dbb76b9a
[ "Apache-2.0" ]
null
null
null
######## # Copyright (c) 2017 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. from threading import Thread from aria.orchestrator import execution_preparer from aria.orchestrator.workflows.core import engine from aria.orchestrator.workflows.executor import process from aria.cli import logger from .exceptions import AriaWorkflowError def execute(env, workflow_name): ctx = execution_preparer.ExecutionPreparer( env.model_storage, env.resource_storage, env.plugin_manager, env.service, workflow_name ).prepare() eng = engine.Engine( process.ProcessExecutor(env.plugin_manager, strict_loading=False) ) # Since we want a live log feed, we need to execute the workflow # while simultaneously printing the logs into the CFY logger. This Thread # executes the workflow, while the main process thread writes the logs. thread = Thread(target=eng.execute, kwargs=dict(ctx=ctx)) thread.start() log_iterator = logger.ModelLogIterator(env.model_storage, ctx.execution.id) while thread.is_alive(): for log in log_iterator: leveled_log = getattr(env.ctx_logger, log.level.lower()) leveled_log(log) if log.traceback: leveled_log(log.traceback) thread.join(0.1) aria_execution = ctx.execution if aria_execution.status != aria_execution.SUCCEEDED: raise AriaWorkflowError( 'ARIA workflow {aria_execution.workflow_name} was not successful\n' 'status: {aria_execution.status}\n' 'error message: {aria_execution.error}' .format(aria_execution=aria_execution))
36.193548
79
0.707219
1b821c0a87f883a884e75b6bd5fdd4121c509db8
248
py
Python
bettercache/urls.py
ironfroggy/django-better-cache
5350e8c646cef1c1ca74eab176f856ddd9eaf5c3
[ "MIT" ]
2
2015-07-03T09:11:12.000Z
2019-10-20T18:37:46.000Z
bettercache/urls.py
ironfroggy/django-better-cache
5350e8c646cef1c1ca74eab176f856ddd9eaf5c3
[ "MIT" ]
4
2016-02-04T04:17:44.000Z
2021-06-10T20:22:46.000Z
bettercache/urls.py
ironfroggy/django-better-cache
5350e8c646cef1c1ca74eab176f856ddd9eaf5c3
[ "MIT" ]
null
null
null
from django.conf.urls.defaults import patterns, include, url # Uncomment the next two lines to enable the admin: # from django.contrib import admin # admin.autodiscover() urlpatterns = patterns('', url(r'', 'bettercache.views.cache_view'), )
24.8
60
0.741935
f9e8e60714f7c20219239cfa03972299cfd3d9cd
4,094
py
Python
test/integration/test_types.py
motey/py2neo
2e46bbf4d622f53282e796ffc521fc4bc6d0b60d
[ "Apache-2.0" ]
545
2017-01-06T07:27:01.000Z
2021-06-10T01:08:23.000Z
test/integration/test_types.py
motey/py2neo
2e46bbf4d622f53282e796ffc521fc4bc6d0b60d
[ "Apache-2.0" ]
370
2016-12-25T15:47:37.000Z
2021-06-17T06:09:43.000Z
test/integration/test_types.py
motey/py2neo
2e46bbf4d622f53282e796ffc521fc4bc6d0b60d
[ "Apache-2.0" ]
133
2016-12-21T19:39:28.000Z
2021-05-26T14:26:02.000Z
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2011-2021, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging.version import Version from interchange.geo import CartesianPoint, WGS84Point from interchange.time import Date, Time, DateTime, Duration from pytest import skip from py2neo.data import Node def test_null(graph): i = None o = graph.evaluate("RETURN $x", x=i) assert o is i def test_true(graph): i = True o = graph.evaluate("RETURN $x", x=i) assert o is i def test_false(graph): i = False o = graph.evaluate("RETURN $x", x=i) assert o is i def test_int(graph): for i in range(-128, 128): o = graph.evaluate("RETURN $x", x=i) assert o == i def test_float(graph): for i in range(-128, 128): f = float(i) + 0.5 o = graph.evaluate("RETURN $x", x=f) assert o == f def test_string(graph): i = u"hello, world" o = graph.evaluate("RETURN $x", x=i) assert o == i def test_bytes(graph): i = bytearray([65, 66, 67]) o = graph.evaluate("RETURN $x", x=i) # The values are coerced to bytearray before comparison # as HTTP does not support byte parameters, instead # coercing such values to lists of integers. assert bytearray(o) == bytearray(i) def test_list(graph): i = [65, 66, 67] o = graph.evaluate("RETURN $x", x=i) assert o == i def test_dict(graph): i = {"one": 1, "two": 2} o = graph.evaluate("RETURN $x", x=i) assert o == i def test_node(graph): i = Node("Person", name="Alice") o = graph.evaluate("CREATE (a:Person {name: 'Alice'}) RETURN a") assert o.labels == i.labels assert dict(o) == dict(i) def test_relationship(graph): o = graph.evaluate("CREATE ()-[r:KNOWS {since: 1999}]->() RETURN r") assert type(o).__name__ == "KNOWS" assert dict(o) == {"since": 1999} def test_path(graph): o = graph.evaluate("CREATE p=(:Person {name: 'Alice'})-[:KNOWS]->(:Person {name: 'Bob'}) RETURN p") assert len(o) == 1 assert o.start_node.labels == {"Person"} assert dict(o.start_node) == {"name": "Alice"} assert type(o.relationships[0]).__name__ == "KNOWS" assert o.end_node.labels == {"Person"} assert dict(o.end_node) == {"name": "Bob"} def skip_if_no_temporal_support(graph): connector = graph.service.connector if graph.service.kernel_version < Version("3.4"): skip("Temporal type tests are only valid for Neo4j 3.4+") if connector.profile.protocol != "bolt": skip("Temporal type tests are only valid for Bolt connectors") def test_date(graph): skip_if_no_temporal_support(graph) i = Date(2014, 8, 6) o = graph.evaluate("RETURN $x", x=i) assert o == i def test_time(graph): skip_if_no_temporal_support(graph) i = Time(12, 34, 56.789) o = graph.evaluate("RETURN $x", x=i) assert o == i def test_date_time(graph): skip_if_no_temporal_support(graph) i = DateTime(2014, 8, 6, 12, 34, 56.789) o = graph.evaluate("RETURN $x", x=i) assert o == i def test_duration(graph): skip_if_no_temporal_support(graph) i = Duration(months=1, days=2, seconds=3) o = graph.evaluate("RETURN $x", x=i) assert o == i def test_cartesian_point(graph): skip_if_no_temporal_support(graph) i = CartesianPoint((12.34, 56.78)) o = graph.evaluate("RETURN $x", x=i) assert o == i def test_wgs84_point(graph): skip_if_no_temporal_support(graph) i = WGS84Point((12.34, 56.78)) o = graph.evaluate("RETURN $x", x=i) assert o == i
25.748428
103
0.646556
5272ee425faaa0b0d3c7d69bd0a15cfdbf91612a
3,420
py
Python
b3j0f/conf/parser/resolver/lang/py.py
b3j0f/configuration
18dd6d5d6560f9b202793739e2330a2181163511
[ "MIT" ]
3
2016-02-18T18:58:24.000Z
2017-03-14T08:40:01.000Z
b3j0f/conf/parser/resolver/lang/py.py
b3j0f/configuration
18dd6d5d6560f9b202793739e2330a2181163511
[ "MIT" ]
1
2016-02-18T15:27:35.000Z
2016-04-02T10:36:43.000Z
b3j0f/conf/parser/resolver/lang/py.py
b3j0f/configuration
18dd6d5d6560f9b202793739e2330a2181163511
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # -------------------------------------------------------------------- # The MIT License (MIT) # # Copyright (c) 2015 Jonathan Labéjof <jonathan.labejof@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # -------------------------------------------------------------------- """python expression resolver.""" __all__ = ['resolvepy'] from b3j0f.utils.runtime import safe_eval from b3j0f.utils.path import lookup from re import compile as re_compile, sub from ..registry import register from ..core import ( DEFAULT_BESTEFFORT, DEFAULT_SAFE, DEFAULT_TOSTR, DEFAULT_SCOPE ) MISSING_NAME = r'\'(?P<name>\w+)\'' MISSING_NAME_REGEX = re_compile(MISSING_NAME) MISSING_VARIABLE = r'(?P<name>(\w+\.)*{0}(\.\w+)*)' def genrepl(scope): """Replacement function with specific scope.""" def repl(match): """Internal replacement function.""" name = match.group('name') value = lookup(name, scope=scope) result = name.replace('.', '_') scope[result] = value return result return repl @register('py') @register('python') def resolvepy( expr, safe=DEFAULT_SAFE, tostr=DEFAULT_TOSTR, scope=DEFAULT_SCOPE, besteffort=DEFAULT_BESTEFFORT ): """Resolve input expression. :param str expr: configuration expression to resolve in this language. :param bool safe: safe run execution context (True by default). :param bool tostr: format the result. :param dict scope: execution scope (contains references to expression objects). :param bool besteffort: try to resolve unknown variable name with execution runtime.""" result = None _eval = safe_eval if safe else eval _expr = expr scope = {} if scope is None else scope.copy() while True: try: result = _eval(_expr, scope) except (AttributeError, NameError) as nex: if not besteffort: raise arg = nex.args[0] missing = MISSING_NAME_REGEX.findall(arg)[-1] try: _expr = sub( MISSING_VARIABLE.format(missing), genrepl(scope=scope), _expr ) except ImportError: raise nex else: break if tostr: result = str(result) return result
28.264463
79
0.633918
d273bb8e5920b5c3eb8fbb5b56d51f816f31ba7a
120
py
Python
bids/grabbids/__init__.py
raamana/pybids
431cc5db1720cb911b8b64dab59db7f9ada23469
[ "MIT" ]
null
null
null
bids/grabbids/__init__.py
raamana/pybids
431cc5db1720cb911b8b64dab59db7f9ada23469
[ "MIT" ]
1
2019-07-10T11:51:56.000Z
2019-07-10T11:51:56.000Z
bids/grabbids/__init__.py
raamana/pybids
431cc5db1720cb911b8b64dab59db7f9ada23469
[ "MIT" ]
null
null
null
from .bids_layout import BIDSLayout from .bids_validator import BIDSValidator __all__ = ["BIDSLayout", "BIDSValidator"]
30
41
0.816667
0f62d9c8dfd4c92ddd934e4047c5fecb9bd22793
2,977
py
Python
dataset/generate_synthetic.py
The-RunningSnail/FactorGCN-PyTorch
8e926689273cb1b2002c062f1787f4167eae61bd
[ "MIT" ]
39
2020-10-05T13:31:01.000Z
2022-03-13T09:25:21.000Z
dataset/generate_synthetic.py
The-RunningSnail/FactorGCN-PyTorch
8e926689273cb1b2002c062f1787f4167eae61bd
[ "MIT" ]
1
2021-07-23T15:04:09.000Z
2021-07-23T15:04:09.000Z
dataset/generate_synthetic.py
The-RunningSnail/FactorGCN-PyTorch
8e926689273cb1b2002c062f1787f4167eae61bd
[ "MIT" ]
6
2020-11-23T03:32:47.000Z
2021-12-26T06:28:51.000Z
import os, collections import networkx as nx import numpy as np import torch, dgl import random, pickle class synthetic_graph_cls: # generate several graphs with different paterns and union them # labels is whether the union graph contains speicific pattern def __init__(self, args): self.args = args self.saved_file = f'./data/synthetic/synthetic_graph_cls_data_{args.num_factors}.pkl' os.makedirs(os.path.dirname(self.saved_file), exist_ok=True) def gen_union_graph(self, graph_size=15, num_graph=20000): if os.path.isfile(self.saved_file): print(f"load synthetic graph cls data from {self.saved_file}") with open(self.saved_file, 'rb') as f: return pickle.load(f) graph_list = synthetic_graph_cls.get_graph_list(self.args.num_factors) samples = [] for _ in range(num_graph): union_adj = np.zeros((graph_size, graph_size)) factor_adjs = [] labels = np.zeros((1, len(graph_list))) id_index = list(range(len(graph_list))) random.shuffle(id_index) for i in range((len(id_index)+1)//2): # get random half adj id = id_index[i] labels[0, id] = 1 single_adj = graph_list[id] padded_adj = np.zeros((graph_size, graph_size)) padded_adj[:single_adj.shape[0], :single_adj.shape[0]] = single_adj random_index = np.arange(padded_adj.shape[0]) np.random.shuffle(random_index) padded_adj = padded_adj[random_index] padded_adj = padded_adj[:, random_index] union_adj += padded_adj factor_adjs.append((padded_adj, id)) g = dgl.DGLGraph() g.from_networkx(nx.DiGraph(union_adj)) g = dgl.transform.add_self_loop(g) g.ndata['feat'] = torch.tensor(union_adj) labels = torch.tensor(labels) samples.append((g, labels, factor_adjs)) with open(self.saved_file, 'wb') as f: pickle.dump(samples, f) print(f"dataset saved to {self.saved_file}") return samples @staticmethod def get_graph_list(num_factors): graph_list = [] # 2, 3 bipartite graph g = nx.turan_graph(n=5, r=2) graph_list.append(nx.to_numpy_array(g)) g = nx.house_x_graph() graph_list.append(nx.to_numpy_array(g)) g = nx.balanced_tree(r=3, h=2) graph_list.append(nx.to_numpy_array(g)) g = nx.grid_2d_graph(m=3, n=3) graph_list.append(nx.to_numpy_array(g)) g = nx.hypercube_graph(n=3) graph_list.append(nx.to_numpy_array(g)) g = nx.octahedral_graph() graph_list.append(nx.to_numpy_array(g)) return graph_list[:num_factors]
35.86747
93
0.586161
0e6a7e3681627f95f521a45e505d7f11c7d8fc90
1,995
py
Python
bigip-decode.py
yuboliu/f5-bigip-decode
deb945309c1f5e8c1705ed7de1cf1fee6de9b1c1
[ "MIT" ]
2
2021-04-10T18:17:29.000Z
2022-01-31T16:32:47.000Z
bigip-decode.py
yuboliu/f5-bigip-decode
deb945309c1f5e8c1705ed7de1cf1fee6de9b1c1
[ "MIT" ]
null
null
null
bigip-decode.py
yuboliu/f5-bigip-decode
deb945309c1f5e8c1705ed7de1cf1fee6de9b1c1
[ "MIT" ]
1
2021-09-29T00:41:32.000Z
2021-09-29T00:41:32.000Z
#!/usr/bin/env python3 from optparse import OptionParser from sys import exit # Decodes F5 BigIP cookies # Based on instructions at https://support.f5.com/csp/article/K6917 # Usage: bigip-decode.py -c 0000000000.00000.000 # Where -c is the F5 BigIP cookie # October 2020, Ken Mininger, kmininger@us.ibm.com def get_port(c_port) -> str: # convert the second part of the cookie to hex hh_port = (hex((int(c_port)))) # reverse the byte order r_port = reverse_bytes(hh_port) # turn it back into a hex number r_port2 = "{0}".format((r_port.replace('0x', ''))) return str(int(r_port2, 16)) def get_host(c_host) -> str: # convert the first part of the cookie to hex hh_host = (hex((int(c_host)))[2:]) # reverse the byte order r_host = reverse_bytes(hh_host) # make a list of pairs of bytes from above dh_host = [r_host[i:i + 2] for i in range(0, len(r_host), 2)] # convert those reversed bytes to decimal xhosts = [int(dh_host[pos], 16) for pos in range(len(dh_host))] # print out the ip address return '.'.join([str(octet) for octet in xhosts]) def reverse_bytes(payload) -> str: return "".join(reversed([payload[i:i + 2] for i in range(0, len(payload), 2)])) def main(): parser = OptionParser() parser.add_option("-c", "--cookie", type="string") (options, args) = parser.parse_args() if not options.cookie: parser.error("Cookie not provided. Please provide the F5 BigIP cookie.") exit(1) # initial value of cookie cookie = options.cookie # echo the cookie print("F5 BigIP cookie: ", cookie) # split the cookie into 2 parts, splitting at the '.' and ignoring the right-most value [c_host, c_port] = cookie.split('.')[:2] host = get_host(c_host) port = get_port(c_port) print("Decoded cookie (IP address:Port): {0}".format(str(":".join([host, port])))) if __name__ == '__main__': main()
33.25
92
0.637594
3e35c9440dedf6c4b781474469b5a60024d8da05
26,553
py
Python
wandb/wandb_run.py
guysmoilov/client
28b818c5302e935ba269b9d4480e97903c28b8b2
[ "MIT" ]
null
null
null
wandb/wandb_run.py
guysmoilov/client
28b818c5302e935ba269b9d4480e97903c28b8b2
[ "MIT" ]
null
null
null
wandb/wandb_run.py
guysmoilov/client
28b818c5302e935ba269b9d4480e97903c28b8b2
[ "MIT" ]
null
null
null
import datetime import logging import os import socket import json import yaml import fnmatch import tempfile import shutil import glob from sentry_sdk import configure_scope from . import env import wandb from wandb import history from wandb import jsonlfile from wandb import summary from wandb import meta from wandb import typedtable from wandb import util from wandb.core import termlog from wandb import data_types from wandb.file_pusher import FilePusher from wandb.apis import InternalApi, CommError from wandb.wandb_config import Config import six from six.moves import input from six.moves import urllib import atexit import sys from watchdog.utils.dirsnapshot import DirectorySnapshot RESUME_FNAME = 'wandb-resume.json' HISTORY_FNAME = 'wandb-history.jsonl' EVENTS_FNAME = 'wandb-events.jsonl' CONFIG_FNAME = 'config.yaml' USER_CONFIG_FNAME = 'config.json' SUMMARY_FNAME = 'wandb-summary.json' METADATA_FNAME = 'wandb-metadata.json' DESCRIPTION_FNAME = 'description.md' class Run(object): def __init__(self, run_id=None, mode=None, dir=None, group=None, job_type=None, config=None, sweep_id=None, storage_id=None, description=None, resume=None, program=None, args=None, wandb_dir=None, tags=None, name=None, notes=None, api=None): """Create a Run. Arguments: description (str): This is the old, deprecated style of description: the run's name followed by a newline, followed by multiline notes. """ # self.storage_id is "id" in GQL. self.storage_id = storage_id # self.id is "name" in GQL. self.id = run_id if run_id else util.generate_id() # self._name is "display_name" in GQL. self._name = None self.notes = None self.resume = resume if resume else 'never' self.mode = mode if mode else 'run' self.group = group self.job_type = job_type self.pid = os.getpid() self.resumed = False # we set resume when history is first accessed if api: if api.current_run_id and api.current_run_id != self.id: raise RuntimeError('Api object passed to run {} is already being used by run {}'.format( self.id, api.current_run_id)) else: api.set_current_run_id(self.id) self._api = api if dir is None: self._dir = run_dir_path(self.id, dry=self.mode == 'dryrun') else: self._dir = os.path.abspath(dir) self._mkdir() # self.name and self.notes used to be combined into a single field. # Now if name and notes don't have their own values, we get them from # self._name_and_description, but we don't update description.md # if they're changed. This is to discourage relying on self.description # and self._name_and_description so that we can drop them later. # # This needs to be set before name and notes because name and notes may # influence it. They have higher precedence. self._name_and_description = None if description: wandb.termwarn('Run.description is deprecated. Please use wandb.init(notes="long notes") instead.') self._name_and_description = description elif os.path.exists(self.description_path): with open(self.description_path) as d_file: self._name_and_description = d_file.read() if name is not None: self.name = name if notes is not None: self.notes = notes self.program = program if not self.program: try: import __main__ self.program = __main__.__file__ except (ImportError, AttributeError): # probably `python -c`, an embedded interpreter or something self.program = '<python with no main file>' self.args = args if self.args is None: self.args = sys.argv[1:] self.wandb_dir = wandb_dir with configure_scope() as scope: self.project = self.api.settings("project") scope.set_tag("project", self.project) scope.set_tag("entity", self.entity) try: scope.set_tag("url", self.get_url(self.api, network=False)) # TODO: Move this somewhere outside of init except CommError: pass if self.resume == "auto": util.mkdir_exists_ok(wandb.wandb_dir()) resume_path = os.path.join(wandb.wandb_dir(), RESUME_FNAME) with open(resume_path, "w") as f: f.write(json.dumps({"run_id": self.id})) if config is None: self.config = Config() else: self.config = config # socket server, currently only available in headless mode self.socket = None self.tags = tags if tags else [] self.sweep_id = sweep_id self._history = None self._events = None self._summary = None self._meta = None self._run_manager = None self._jupyter_agent = None @property def api(self): if self._api is None: self._api = InternalApi() self._api.set_current_run_id(self.id) return self._api @property def entity(self): return self.api.settings('entity') @entity.setter def entity(self, entity): self.api.set_setting("entity", entity) @property def path(self): # TODO: theres an edge case where self.entity is None return "/".join([str(self.entity), self.project_name(), self.id]) def _init_jupyter_agent(self): from wandb.jupyter import JupyterAgent self._jupyter_agent = JupyterAgent() def _stop_jupyter_agent(self): self._jupyter_agent.stop() def send_message(self, options): """ Sends a message to the wandb process changing the policy of saved files. This is primarily used internally by wandb.save """ if not options.get("save_policy") and not options.get("tensorboard"): raise ValueError( "Only configuring save_policy and tensorboard is supported") if self.socket: # In the user process self.socket.send(options) elif self._jupyter_agent: # Running in jupyter self._jupyter_agent.start() if options.get("save_policy"): self._jupyter_agent.rm.update_user_file_policy( options["save_policy"]) elif options.get("tensorboard"): self._jupyter_agent.rm.start_tensorboard_watcher( options["tensorboard"]["logdir"], options["tensorboard"]["save"]) elif self._run_manager: # Running in the wandb process, used for tfevents saving if options.get("save_policy"): self._run_manager.update_user_file_policy( options["save_policy"]) else: wandb.termerror( "wandb.init hasn't been called, can't configure run") @classmethod def from_environment_or_defaults(cls, environment=None): """Create a Run object taking values from the local environment where possible. The run ID comes from WANDB_RUN_ID or is randomly generated. The run mode ("dryrun", or "run") comes from WANDB_MODE or defaults to "dryrun". The run directory comes from WANDB_RUN_DIR or is generated from the run ID. The Run will have a .config attribute but its run directory won't be set by default. """ if environment is None: environment = os.environ run_id = environment.get(env.RUN_ID) resume = environment.get(env.RESUME) storage_id = environment.get(env.RUN_STORAGE_ID) mode = environment.get(env.MODE) api = InternalApi(environ=environment) disabled = api.disabled() if not mode and disabled: mode = "dryrun" elif disabled and mode != "dryrun": wandb.termwarn( "WANDB_MODE is set to run, but W&B was disabled. Run `wandb on` to remove this message") elif disabled: wandb.termlog( 'W&B is disabled in this directory. Run `wandb on` to enable cloud syncing.') group = environment.get(env.RUN_GROUP) job_type = environment.get(env.JOB_TYPE) run_dir = environment.get(env.RUN_DIR) sweep_id = environment.get(env.SWEEP_ID) program = environment.get(env.PROGRAM) description = environment.get(env.DESCRIPTION) name = environment.get(env.NAME) notes = environment.get(env.NOTES) args = env.get_args(env=environment) wandb_dir = env.get_dir(env=environment) tags = env.get_tags(env=environment) # TODO(adrian): should pass environment into here as well. config = Config.from_environment_or_defaults() run = cls(run_id, mode, run_dir, group, job_type, config, sweep_id, storage_id, program=program, description=description, args=args, wandb_dir=wandb_dir, tags=tags, name=name, notes=notes, resume=resume, api=api) return run @classmethod def from_directory(cls, directory, project=None, entity=None, run_id=None, api=None, ignore_globs=None): api = api or InternalApi() run_id = run_id or util.generate_id() run = Run(run_id=run_id, dir=directory) run_name = None project_from_meta = None snap = DirectorySnapshot(directory) meta = next((p for p in snap.paths if METADATA_FNAME in p), None) if meta: meta = json.load(open(meta)) run_name = meta.get("name") project_from_meta = meta.get("project") project = project or project_from_meta or api.settings( "project") or run.auto_project_name(api=api) if project is None: raise ValueError("You must specify project") api.set_current_run_id(run_id) api.set_setting("project", project) if entity: api.set_setting("entity", entity) res = api.upsert_run(name=run_id, project=project, entity=entity, display_name=run_name) entity = res["project"]["entity"]["name"] wandb.termlog("Syncing {} to:".format(directory)) try: wandb.termlog(res["displayName"] + " " + run.get_url(api)) except CommError as e: wandb.termwarn(e.message) file_api = api.get_file_stream_api() file_api.start() paths = [os.path.relpath(abs_path, directory) for abs_path in snap.paths if os.path.isfile(abs_path)] if ignore_globs: paths = set(paths) for g in ignore_globs: paths = paths - set(fnmatch.filter(paths, g)) paths = list(paths) run_update = {"id": res["id"]} tfevents = sorted([p for p in snap.paths if ".tfevents." in p]) history = next((p for p in snap.paths if HISTORY_FNAME in p), None) event = next((p for p in snap.paths if EVENTS_FNAME in p), None) config = next((p for p in snap.paths if CONFIG_FNAME in p), None) user_config = next( (p for p in snap.paths if USER_CONFIG_FNAME in p), None) summary = next((p for p in snap.paths if SUMMARY_FNAME in p), None) if history: wandb.termlog("Uploading history metrics") file_api.stream_file(history) snap.paths.remove(history) elif len(tfevents) > 0: from wandb import tensorflow as wbtf wandb.termlog("Found tfevents file, converting...") summary = {} for path in tfevents: filename = os.path.basename(path) namespace = path.replace(filename, "").replace(directory, "").strip(os.sep) summary.update(wbtf.stream_tfevents(path, file_api, run, namespace=namespace)) for path in glob.glob(os.path.join(directory, "media/**/*"), recursive=True): if os.path.isfile(path): paths.append(path) else: wandb.termerror( "No history or tfevents files found, only syncing files") if event: file_api.stream_file(event) snap.paths.remove(event) if config: run_update["config"] = util.load_yaml( open(config)) elif user_config: # TODO: half backed support for config.json run_update["config"] = {k: {"value": v} for k, v in six.iteritems(user_config)} if isinstance(summary, dict): #TODO: summary should already have data_types converted here... run_update["summary_metrics"] = util.json_dumps_safer(summary) elif summary: run_update["summary_metrics"] = open(summary).read() if meta: if meta.get("git"): run_update["commit"] = meta["git"].get("commit") run_update["repo"] = meta["git"].get("remote") if meta.get("host"): run_update["host"] = meta["host"] run_update["program_path"] = meta["program"] run_update["job_type"] = meta.get("jobType") run_update["notes"] = meta.get("notes") else: run_update["host"] = run.host wandb.termlog("Updating run and uploading files") api.upsert_run(**run_update) pusher = FilePusher(api) for k in paths: path = os.path.abspath(os.path.join(directory, k)) pusher.update_file(k, path) pusher.file_changed(k, path) pusher.finish() pusher.print_status() file_api.finish(0) # Remove temporary media images generated from tfevents if history is None and os.path.exists(os.path.join(directory, "media")): shutil.rmtree(os.path.join(directory, "media")) wandb.termlog("Finished!") return run def auto_project_name(self, api): # if we're in git, set project name to git repo name + relative path within repo root_dir = api.git.root_dir if root_dir is None: return None repo_name = os.path.basename(root_dir) program = self.program if program is None: return repo_name if not os.path.isabs(program): program = os.path.join(os.curdir, program) prog_dir = os.path.dirname(os.path.abspath(program)) if not prog_dir.startswith(root_dir): return repo_name project = repo_name sub_path = os.path.relpath(prog_dir, root_dir) if sub_path != '.': project += '-' + sub_path return project.replace(os.sep, '_') def save(self, id=None, program=None, summary_metrics=None, num_retries=None, api=None): api = api or self.api project = api.settings('project') if project is None: project = self.auto_project_name(api) upsert_result = api.upsert_run(id=id or self.storage_id, name=self.id, commit=api.git.last_commit, project=project, entity=self.entity, group=self.group, tags=self.tags if len( self.tags) > 0 else None, config=self.config.as_dict(), description=self._name_and_description, host=self.host, program_path=program or self.program, repo=api.git.remote_url, sweep_name=self.sweep_id, display_name=self._name, notes=self.notes, summary_metrics=summary_metrics, job_type=self.job_type, num_retries=num_retries) self.storage_id = upsert_result['id'] self.name = upsert_result.get('displayName') return upsert_result def set_environment(self, environment=None): """Set environment variables needed to reconstruct this object inside a user scripts (eg. in `wandb.init()`). """ if environment is None: environment = os.environ environment[env.RUN_ID] = self.id environment[env.RESUME] = self.resume if self.storage_id: environment[env.RUN_STORAGE_ID] = self.storage_id environment[env.MODE] = self.mode environment[env.RUN_DIR] = self.dir if self.group: environment[env.RUN_GROUP] = self.group if self.job_type: environment[env.JOB_TYPE] = self.job_type if self.wandb_dir: environment[env.DIR] = self.wandb_dir if self.sweep_id is not None: environment[env.SWEEP_ID] = self.sweep_id if self.program is not None: environment[env.PROGRAM] = self.program if self.args is not None: environment[env.ARGS] = json.dumps(self.args) if self._name_and_description is not None: environment[env.DESCRIPTION] = self._name_and_description if self._name is not None: environment[env.NAME] = self._name if self.notes is not None: environment[env.NOTES] = self.notes if len(self.tags) > 0: environment[env.TAGS] = ",".join(self.tags) return environment def _mkdir(self): util.mkdir_exists_ok(self._dir) def project_name(self, api=None): api = api or self.api return api.settings('project') or self.auto_project_name(api) or "uncategorized" def _generate_query_string(self, api, params=None): """URL encodes dictionary of params""" params = params or {} if str(api.settings().get('anonymous', 'false')) == 'true': params['apiKey'] = api.api_key if not params: return "" return '?' + urllib.parse.urlencode(params) def _load_entity(self, api, network): if not api.api_key: raise CommError("Can't find API key, run wandb login or set WANDB_API_KEY") entity = api.settings('entity') if network: if api.settings('entity') is None: viewer = api.viewer() if viewer.get('entity'): api.set_setting('entity', viewer['entity']) entity = api.settings('entity') if not entity: # This can happen on network failure raise CommError("Can't connect to network to query entity from API key") return entity def get_project_url(self, api=None, network=None, params=None): """Generate a url for a project. If network is false and entity isn't specified in the environment raises wandb.apis.CommError """ params = params or {} api = api or self.api self._load_entity(api, network) return "{base}/{entity}/{project}{query_string}".format( base=api.app_url, entity=urllib.parse.quote_plus(api.settings('entity')), project=urllib.parse.quote_plus(self.project_name(api)), query_string=self._generate_query_string(api, params) ) def get_sweep_url(self, api=None, network=None, params=None): """Generate a url for a sweep. If network is false and entity isn't specified in the environment raises wandb.apis.CommError Returns: string - url if the run is part of a sweep None - if the run is not part of the sweep """ params = params or {} api = api or self.api self._load_entity(api, network) sweep_id = self.sweep_id if sweep_id is None: return return "{base}/{entity}/{project}/sweeps/{sweepid}{query_string}".format( base=api.app_url, entity=urllib.parse.quote_plus(api.settings('entity')), project=urllib.parse.quote_plus(self.project_name(api)), sweepid=urllib.parse.quote_plus(sweep_id), query_string=self._generate_query_string(api, params) ) def get_url(self, api=None, network=True, params=None): """Generate a url for a run. If network is false and entity isn't specified in the environment raises wandb.apis.CommError """ params = params or {} api = api or self.api self._load_entity(api, network) return "{base}/{entity}/{project}/runs/{run}{query_string}".format( base=api.app_url, entity=urllib.parse.quote_plus(api.settings('entity')), project=urllib.parse.quote_plus(self.project_name(api)), run=urllib.parse.quote_plus(self.id), query_string=self._generate_query_string(api, params) ) def upload_debug(self): """Uploads the debug log to cloud storage""" if os.path.exists(self.log_fname): pusher = FilePusher(self.api) pusher.update_file("wandb-debug.log", self.log_fname) pusher.file_changed("wandb-debug.log", self.log_fname) pusher.finish() def __repr__(self): try: return "W&B Run: %s" % self.get_url() except CommError as e: return "W&B Error: %s" % e.message @property def name(self): if self._name is not None: return self._name elif self._name_and_description is not None: return self._name_and_description.split("\n")[0] else: return None @name.setter def name(self, name): self._name = name if self._name_and_description is not None: parts = self._name_and_description.split("\n", 1) parts[0] = name self._name_and_description = "\n".join(parts) @property def description(self): wandb.termwarn('Run.description is deprecated. Please use run.notes instead.') if self._name_and_description is None: self._name_and_description = '' parts = self._name_and_description.split("\n", 1) if len(parts) > 1: return parts[1] else: return "" @description.setter def description(self, desc): wandb.termwarn('Run.description is deprecated. Please use wandb.init(notes="long notes") instead.') if self._name_and_description is None: self._name_and_description = self._name or "" parts = self._name_and_description.split("\n", 1) if len(parts) == 1: parts.append("") parts[1] = desc self._name_and_description = "\n".join(parts) with open(self.description_path, 'w') as d_file: d_file.write(self._name_and_description) @property def host(self): return os.environ.get(env.HOST, socket.gethostname()) @property def dir(self): return self._dir @property def log_fname(self): # TODO: we started work to log to a file in the run dir, but it had issues. # For now all logs goto the same place. return util.get_log_file_path() def enable_logging(self): """Enable logging to the global debug log. This adds a run_id to the log, in case of muliple processes on the same machine. Currently no way to disable logging after it's enabled. """ handler = logging.FileHandler(self.log_fname) handler.setLevel(logging.INFO) run_id = self.id class WBFilter(logging.Filter): def filter(self, record): record.run_id = run_id return True formatter = logging.Formatter( '%(asctime)s %(levelname)-7s %(threadName)-10s:%(process)d [%(run_id)s:%(filename)s:%(funcName)s():%(lineno)s] %(message)s') handler.setFormatter(formatter) handler.addFilter(WBFilter()) root = logging.getLogger() root.addHandler(handler) @property def summary(self): if self._summary is None: self._summary = summary.FileSummary(self) return self._summary @property def has_summary(self): return self._summary or os.path.exists(os.path.join(self._dir, summary.SUMMARY_FNAME)) def _history_added(self, row): self.summary.update(row, overwrite=False) @property def history(self): if self._history is None: jupyter_callback = self._jupyter_agent.start if self._jupyter_agent else None self._history = history.History( self, add_callback=self._history_added, jupyter_callback=jupyter_callback) if self._history._steps > 0: self.resumed = True return self._history @property def step(self): return self.history._steps @property def has_history(self): return self._history or os.path.exists(os.path.join(self._dir, HISTORY_FNAME)) @property def events(self): if self._events is None: self._events = jsonlfile.JsonlEventsFile(EVENTS_FNAME, self._dir) return self._events @property def has_events(self): return self._events or os.path.exists(os.path.join(self._dir, EVENTS_FNAME)) @property def description_path(self): return os.path.join(self.dir, DESCRIPTION_FNAME) def close_files(self): """Close open files to avoid Python warnings on termination: Exception ignored in: <_io.FileIO name='wandb/dryrun-20180130_144602-9vmqjhgy/wandb-history.jsonl' mode='wb' closefd=True> ResourceWarning: unclosed file <_io.TextIOWrapper name='wandb/dryrun-20180130_144602-9vmqjhgy/wandb-history.jsonl' mode='w' encoding='UTF-8'> """ if self._events is not None: self._events.close() self._events = None if self._history is not None: self._history.close() self._history = None def run_dir_path(run_id, dry=False): if dry: prefix = 'dryrun' else: prefix = 'run' time_str = datetime.datetime.utcnow().strftime('%Y%m%d_%H%M%S') return os.path.join(wandb.wandb_dir(), '{}-{}-{}'.format(prefix, time_str, run_id))
38.371387
149
0.605732
081416cdd9ec6e602a5004e331d88def2e2e4b0d
4,467
py
Python
rsvp/__init__.py
sundeep-co-in/rsvp
28f7a31607609264cf76892d0902daabee88274f
[ "Apache-2.0" ]
1
2018-10-13T14:51:10.000Z
2018-10-13T14:51:10.000Z
rsvp/__init__.py
sundeep-co-in/rsvp
28f7a31607609264cf76892d0902daabee88274f
[ "Apache-2.0" ]
1
2018-08-24T10:27:29.000Z
2018-08-24T10:27:29.000Z
rsvp/__init__.py
sundeep-co-in/rsvp
28f7a31607609264cf76892d0902daabee88274f
[ "Apache-2.0" ]
null
null
null
# RSVP Main File from uuid import uuid4 from rsvp.helpers import RSVP_Helpers from rsvp.constants import MEMBER_KEYS from rsvp.exceptions import EXCEPTION_MESSAGES MEMBERS_KEY = 'event_members' helpers = RSVP_Helpers() store_file_name = '' def _locate_file(event_id): all_files = helpers.get_all_store_files() required_file = [file for file in all_files if event_id in file] if isinstance(required_file, list) and len(required_file) > 0: return required_file[0] return '' def create_rsvp_store(*source, **event_details): """ Creates a new RSVP store object :param source: Source details - rsvp_source string :param event_details: Event detail kwargs - event_slug slug - event_name string - event_description string - event_start_date datetime - event_end_date datetime - event_members list :return: event_id uuid as string """ if not isinstance(source, (list, tuple)) and len(source) > 0: raise Exception(EXCEPTION_MESSAGES['SOURCE_NOT_FOUND']) rsvp_source = source[0] if not event_details.get('event_slug'): raise Exception(EXCEPTION_MESSAGES['EVENT_SLUG_NOT_FOUND']) if not event_details.get('event_start_date'): raise Exception(EXCEPTION_MESSAGES['START_DATE_NOT_FOUND']) event_id = uuid4() event_master_dict = dict() event_master_dict['event_id'] = str(event_id) event_master_dict['event_source'] = rsvp_source event_master_dict['event_slug'] = event_details['event_slug'] event_master_dict['event_name'] = event_details.get('event_name') event_master_dict['event_description'] = event_details.get('event_description') event_master_dict['event_start_date'] = str(event_details['event_start_date']) event_master_dict['event_end_date'] = str(event_details.get('event_end_date')) event_master_dict[MEMBERS_KEY] = event_details.get('event_members', []) store_file_name = str(event_id) + '.' + event_details['event_slug'] if helpers.save_rsvp(store_file_name, event_master_dict): return str(event_id) return def delete_rsvp_store(event_id): """ Deletes RSVP store file :param event_id: uuid as string :return: boolean """ file_to_delete = _locate_file(event_id) if file_to_delete and helpers.delete_store_file(file_to_delete): return True return False def add_members(event_id, members): """ Add members to event :param event_id: uuid as string :param members: list of names (string) :return: boolean """ file_to_append = _locate_file(event_id) event_data = helpers.load_file_data(file_to_append) member_keys_dict = {key: False for key in MEMBER_KEYS} members_list = [{member: member_keys_dict} for member in members] event_data[MEMBERS_KEY].extend(members_list) if helpers.save_rsvp(file_to_append, event_data): return True return False def adjust_rsvp_state(event_id, members, **states): """ Set rsvp for members for an event :param event_id: uuid as string :param members: list :param states: dict example {'in_queue_waiting': true} :return: boolean """ file_to_update = _locate_file(event_id) event_data = helpers.load_file_data(file_to_update) for member_rsvp in event_data.get(MEMBERS_KEY, []): member = [m for m in members if member_rsvp.get(m)] if member and len(member) == 1: member = member[0] new_state = {i: states.get(i, j) for i, j in member_rsvp[member].items()} member_index = event_data[MEMBERS_KEY].index(member_rsvp) event_data[MEMBERS_KEY].pop(member_index) event_data[MEMBERS_KEY].insert( member_index, {member: new_state} ) if helpers.save_rsvp(file_to_update, event_data): return True return False def get_rsvp_state(event_id, members): """ Get rsvp for members for an event :param event_id: uuid as string :param members: list :return: list of dict """ members_rsvp = [] file_to_update = _locate_file(event_id) event_data = helpers.load_file_data(file_to_update) members_data = event_data.get(MEMBERS_KEY, []) if members_data: [members_rsvp.append(member) for member in members_data if list(member)[0] in members] return members_rsvp
33.840909
94
0.687486
731db9861765d20f2d87a6d4d9497180e037c365
7,733
py
Python
vspk/v5_0/nupolicyobjectgroup.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
19
2016-03-07T12:34:22.000Z
2020-06-11T11:09:02.000Z
vspk/v5_0/nupolicyobjectgroup.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
40
2016-06-13T15:36:54.000Z
2020-11-10T18:14:43.000Z
vspk/v5_0/nupolicyobjectgroup.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
15
2016-06-10T22:06:01.000Z
2020-12-15T18:37:42.000Z
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc, 2017 Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .fetchers import NUMetadatasFetcher from .fetchers import NUGlobalMetadatasFetcher from .fetchers import NUNSGatewaysFetcher from bambou import NURESTObject class NUPolicyObjectGroup(NURESTObject): """ Represents a PolicyObjectGroup in the VSD Notes: Policy Object Groups are a collection of existing Network Services Gateways. These groups can be used in routing policies for domain links. """ __rest_name__ = "policyobjectgroup" __resource_name__ = "policyobjectgroups" ## Constants CONST_TYPE_NSGATEWAY = "NSGateway" CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL" CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE" def __init__(self, **kwargs): """ Initializes a PolicyObjectGroup instance Notes: You can specify all parameters while calling this methods. A special argument named `data` will enable you to load the object from a Python dictionary Examples: >>> policyobjectgroup = NUPolicyObjectGroup(id=u'xxxx-xxx-xxx-xxx', name=u'PolicyObjectGroup') >>> policyobjectgroup = NUPolicyObjectGroup(data=my_dict) """ super(NUPolicyObjectGroup, self).__init__() # Read/Write Attributes self._name = None self._last_updated_by = None self._description = None self._entity_scope = None self._external_id = None self._type = None self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="description", remote_name="description", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL']) self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True) self.expose_attribute(local_name="type", remote_name="type", attribute_type=str, is_required=False, is_unique=False, choices=[u'NSGateway']) # Fetchers self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.ns_gateways = NUNSGatewaysFetcher.fetcher_with_object(parent_object=self, relationship="member") self._compute_args(**kwargs) # Properties @property def name(self): """ Get name value. Notes: Name of the Policy Object Group """ return self._name @name.setter def name(self, value): """ Set name value. Notes: Name of the Policy Object Group """ self._name = value @property def last_updated_by(self): """ Get last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ return self._last_updated_by @last_updated_by.setter def last_updated_by(self, value): """ Set last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ self._last_updated_by = value @property def description(self): """ Get description value. Notes: Description of the Policy Object Group """ return self._description @description.setter def description(self, value): """ Set description value. Notes: Description of the Policy Object Group """ self._description = value @property def entity_scope(self): """ Get entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ return self._entity_scope @entity_scope.setter def entity_scope(self, value): """ Set entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ self._entity_scope = value @property def external_id(self): """ Get external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ return self._external_id @external_id.setter def external_id(self, value): """ Set external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ self._external_id = value @property def type(self): """ Get type value. Notes: Type of the Policy Object Group """ return self._type @type.setter def type(self, value): """ Set type value. Notes: Type of the Policy Object Group """ self._type = value
29.515267
175
0.617742
01cb2e482ec4faaa186deff4faaad63504f2727e
1,804
py
Python
src/awkward/_v2/types/unknowntype.py
douglasdavis/awkward-1.0
f00775803a5568efb0a8e2dae3b1a4f23228fa40
[ "BSD-3-Clause" ]
2
2019-09-12T03:07:23.000Z
2019-09-27T05:32:07.000Z
src/awkward/_v2/types/unknowntype.py
douglasdavis/awkward-1.0
f00775803a5568efb0a8e2dae3b1a4f23228fa40
[ "BSD-3-Clause" ]
1
2019-09-26T17:57:45.000Z
2019-09-26T17:57:45.000Z
src/awkward/_v2/types/unknowntype.py
douglasdavis/awkward-1.0
f00775803a5568efb0a8e2dae3b1a4f23228fa40
[ "BSD-3-Clause" ]
null
null
null
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE import awkward as ak from awkward._v2.types.type import Type from awkward._v2.forms.form import _parameters_equal class UnknownType(Type): def __init__(self, parameters=None, typestr=None): if parameters is not None and not isinstance(parameters, dict): raise ak._v2._util.error( TypeError( "{} 'parameters' must be of type dict or None, not {}".format( type(self).__name__, repr(parameters) ) ) ) if typestr is not None and not ak._util.isstr(typestr): raise ak._v2._util.error( TypeError( "{} 'typestr' must be of type string or None, not {}".format( type(self).__name__, repr(typestr) ) ) ) self._parameters = parameters self._typestr = typestr def _str(self, indent, compact): if self._typestr is not None: out = [self._typestr] else: params = self._str_parameters() if params is None: out = ["unknown"] else: out = ["unknown[", params, "]"] return [self._str_categorical_begin()] + out + [self._str_categorical_end()] def __repr__(self): args = self._repr_args() return "{}({})".format(type(self).__name__, ", ".join(args)) def __eq__(self, other): if isinstance(other, UnknownType): return self._typestr == other._typestr and _parameters_equal( self._parameters, other._parameters, only_array_record=True ) else: return False
34.037736
87
0.545455
f5661a30fef62119aa23529ecd7be6f30cf45f55
9,230
py
Python
lib/streamlit/elements/write.py
ChangHoon-Sung/streamlit
83e0b80d2fa13e29e83d092a9fc4d946460bbf73
[ "Apache-2.0" ]
1
2022-03-14T07:55:33.000Z
2022-03-14T07:55:33.000Z
lib/streamlit/elements/write.py
ChangHoon-Sung/streamlit
83e0b80d2fa13e29e83d092a9fc4d946460bbf73
[ "Apache-2.0" ]
1
2022-03-15T04:05:17.000Z
2022-03-15T04:05:17.000Z
lib/streamlit/elements/write.py
ChangHoon-Sung/streamlit
83e0b80d2fa13e29e83d092a9fc4d946460bbf73
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2022 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json as json import types from typing import cast, Any, List, Tuple, Type import numpy as np import streamlit from streamlit import type_util from streamlit.errors import StreamlitAPIException from streamlit.state import AutoSessionState # Special methods: HELP_TYPES = ( types.BuiltinFunctionType, types.BuiltinMethodType, types.FunctionType, types.MethodType, types.ModuleType, ) # type: Tuple[Type[Any], ...] class WriteMixin: def write(self, *args, **kwargs): """Write arguments to the app. This is the Swiss Army knife of Streamlit commands: it does different things depending on what you throw at it. Unlike other Streamlit commands, write() has some unique properties: 1. You can pass in multiple arguments, all of which will be written. 2. Its behavior depends on the input types as follows. 3. It returns None, so its "slot" in the App cannot be reused. Parameters ---------- *args : any One or many objects to print to the App. Arguments are handled as follows: - write(string) : Prints the formatted Markdown string, with support for LaTeX expression and emoji shortcodes. See docs for st.markdown for more. - write(data_frame) : Displays the DataFrame as a table. - write(error) : Prints an exception specially. - write(func) : Displays information about a function. - write(module) : Displays information about the module. - write(dict) : Displays dict in an interactive widget. - write(mpl_fig) : Displays a Matplotlib figure. - write(altair) : Displays an Altair chart. - write(keras) : Displays a Keras model. - write(graphviz) : Displays a Graphviz graph. - write(plotly_fig) : Displays a Plotly figure. - write(bokeh_fig) : Displays a Bokeh figure. - write(sympy_expr) : Prints SymPy expression using LaTeX. - write(htmlable) : Prints _repr_html_() for the object if available. - write(obj) : Prints str(obj) if otherwise unknown. unsafe_allow_html : bool This is a keyword-only argument that defaults to False. By default, any HTML tags found in strings will be escaped and therefore treated as pure text. This behavior may be turned off by setting this argument to True. That said, *we strongly advise against it*. It is hard to write secure HTML, so by using this argument you may be compromising your users' security. For more information, see: https://github.com/streamlit/streamlit/issues/152 **Also note that `unsafe_allow_html` is a temporary measure and may be removed from Streamlit at any time.** If you decide to turn on HTML anyway, we ask you to please tell us your exact use case here: https://discuss.streamlit.io/t/96 . This will help us come up with safe APIs that allow you to do what you want. Example ------- Its basic use case is to draw Markdown-formatted text, whenever the input is a string: >>> write('Hello, *World!* :sunglasses:') .. output:: https://share.streamlit.io/streamlit/docs/main/python/api-examples-source/text.write1.py height: 150px As mentioned earlier, `st.write()` also accepts other data formats, such as numbers, data frames, styled data frames, and assorted objects: >>> st.write(1234) >>> st.write(pd.DataFrame({ ... 'first column': [1, 2, 3, 4], ... 'second column': [10, 20, 30, 40], ... })) .. output:: https://share.streamlit.io/streamlit/docs/main/python/api-examples-source/text.write2.py height: 350px Finally, you can pass in multiple arguments to do things like: >>> st.write('1 + 1 = ', 2) >>> st.write('Below is a DataFrame:', data_frame, 'Above is a dataframe.') .. output:: https://share.streamlit.io/streamlit/docs/main/python/api-examples-source/text.write3.py height: 410px Oh, one more thing: `st.write` accepts chart objects too! For example: >>> import pandas as pd >>> import numpy as np >>> import altair as alt >>> >>> df = pd.DataFrame( ... np.random.randn(200, 3), ... columns=['a', 'b', 'c']) ... >>> c = alt.Chart(df).mark_circle().encode( ... x='a', y='b', size='c', color='c', tooltip=['a', 'b', 'c']) >>> >>> st.write(c) .. output:: https://share.streamlit.io/streamlit/docs/main/python/api-examples-source/charts.vega_lite_chart.py height: 300px """ string_buffer = [] # type: List[str] unsafe_allow_html = kwargs.get("unsafe_allow_html", False) # This bans some valid cases like: e = st.empty(); e.write("a", "b"). # BUT: 1) such cases are rare, 2) this rule is easy to understand, # and 3) this rule should be removed once we have st.container() if not self.dg._is_top_level and len(args) > 1: raise StreamlitAPIException( "Cannot replace a single element with multiple elements.\n\n" "The `write()` method only supports multiple elements when " "inserting elements rather than replacing. That is, only " "when called as `st.write()` or `st.sidebar.write()`." ) def flush_buffer(): if string_buffer: self.dg.markdown( " ".join(string_buffer), unsafe_allow_html=unsafe_allow_html, ) string_buffer[:] = [] for arg in args: # Order matters! if isinstance(arg, str): string_buffer.append(arg) elif type_util.is_dataframe_like(arg): flush_buffer() if len(np.shape(arg)) > 2: self.dg.text(arg) else: self.dg.dataframe(arg) elif isinstance(arg, Exception): flush_buffer() self.dg.exception(arg) elif isinstance(arg, HELP_TYPES): flush_buffer() self.dg.help(arg) elif type_util.is_altair_chart(arg): flush_buffer() self.dg.altair_chart(arg) elif type_util.is_type(arg, "matplotlib.figure.Figure"): flush_buffer() self.dg.pyplot(arg) elif type_util.is_plotly_chart(arg): flush_buffer() self.dg.plotly_chart(arg) elif type_util.is_type(arg, "bokeh.plotting.figure.Figure"): flush_buffer() self.dg.bokeh_chart(arg) elif type_util.is_graphviz_chart(arg): flush_buffer() self.dg.graphviz_chart(arg) elif type_util.is_sympy_expession(arg): flush_buffer() self.dg.latex(arg) elif type_util.is_keras_model(arg): from tensorflow.python.keras.utils import vis_utils flush_buffer() dot = vis_utils.model_to_dot(arg) self.dg.graphviz_chart(dot.to_string()) elif isinstance(arg, (dict, list, AutoSessionState)): flush_buffer() self.dg.json(arg) elif type_util.is_namedtuple(arg): flush_buffer() self.dg.json(json.dumps(arg._asdict())) elif type_util.is_pydeck(arg): flush_buffer() self.dg.pydeck_chart(arg) elif inspect.isclass(arg): flush_buffer() self.dg.text(arg) elif hasattr(arg, "_repr_html_"): self.dg.markdown( arg._repr_html_(), unsafe_allow_html=True, ) else: string_buffer.append("`%s`" % str(arg).replace("`", "\\`")) flush_buffer() @property def dg(self) -> "streamlit.delta_generator.DeltaGenerator": """Get our DeltaGenerator.""" return cast("streamlit.delta_generator.DeltaGenerator", self)
38.458333
111
0.576598
6bb69f25b25676e66ff170792737f4acbc9e5093
7,356
py
Python
herders/api_filters.py
marknach/swarfarm
326dcf8290ea4ef4a1832d574db5fc3eeefe39dd
[ "Apache-2.0" ]
null
null
null
herders/api_filters.py
marknach/swarfarm
326dcf8290ea4ef4a1832d574db5fc3eeefe39dd
[ "Apache-2.0" ]
8
2021-06-04T23:58:22.000Z
2022-03-12T00:47:56.000Z
herders/api_filters.py
hixio-mh/swarfarm
f30f1526566d305e11c216d1730f2af99d53b91d
[ "Apache-2.0" ]
null
null
null
import django_filters from django.contrib.auth.models import User from django.db.models import Q from bestiary.models import Monster, Skill, SkillEffect, LeaderSkill, ScalingStat from .models import MonsterInstance, MonsterTag, RuneInstance, Team class SummonerFilter(django_filters.FilterSet): class Meta: model = User fields = { 'username': ['exact'], 'summoner__server': ['exact'] } class MonsterInstanceFilter(django_filters.FilterSet): monster = django_filters.NumberFilter() monster__name = django_filters.CharFilter(method='filter_monster__name') tags__pk = django_filters.ModelMultipleChoiceFilter(queryset=MonsterTag.objects.all(), to_field_name='pk', conjoined=True) monster__element = django_filters.MultipleChoiceFilter(choices=Monster.ELEMENT_CHOICES) monster__archetype = django_filters.MultipleChoiceFilter(choices=Monster.ARCHETYPE_CHOICES) monster__awaken_level = django_filters.MultipleChoiceFilter(choices=Monster.AWAKEN_CHOICES) priority = django_filters.MultipleChoiceFilter(choices=MonsterInstance.PRIORITY_CHOICES) monster__leader_skill__attribute = django_filters.MultipleChoiceFilter(choices=LeaderSkill.ATTRIBUTE_CHOICES) monster__leader_skill__area = django_filters.MultipleChoiceFilter(choices=LeaderSkill.AREA_CHOICES) monster__skills__scaling_stats__pk = django_filters.ModelMultipleChoiceFilter(queryset=ScalingStat.objects.all(), to_field_name='pk', conjoined=True) monster__skills__skill_effect__pk = django_filters.ModelMultipleChoiceFilter(queryset=SkillEffect.objects.all(), method='filter_monster__skills__skill_effect__pk') monster__skills__passive = django_filters.BooleanFilter(method='filter_monster_skills_passive') effects_logic = django_filters.BooleanFilter(method='filter_effects_logic') monster__fusion_food = django_filters.BooleanFilter(method='filter_monster__fusion_food') class Meta: model = MonsterInstance fields = { 'monster': ['exact'], 'monster__name': ['exact'], 'tags__pk': ['exact'], 'stars': ['gte', 'lte'], 'level': ['gte', 'lte'], 'monster__element': ['exact'], 'monster__archetype': ['exact'], 'priority': ['exact'], 'monster__awaken_level': ['exact'], 'monster__leader_skill__attribute': ['exact'], 'monster__leader_skill__area': ['exact'], 'monster__skills__skill_effect__pk': ['exact'], 'monster__skills__scaling_stats__pk': ['exact'], 'monster__skills__passive': ['exact'], 'effects_logic': ['exact'], 'fodder': ['exact'], 'in_storage': ['exact'], 'monster__fusion_food': ['exact'], } def filter_monster__name(self, queryset, name, value): if value: return queryset.filter(monster__name__istartswith=value) else: return queryset def filter_monster__fusion_food(self, queryset, name, value): if value: return queryset.filter(monster__fusion_food=True).exclude(ignore_for_fusion=True) else: return queryset.filter(Q(monster__fusion_food=False) | Q(ignore_for_fusion=True)) def filter_monster__skills__skill_effect__pk(self, queryset, name, value): old_filtering = self.form.cleaned_data.get('effects_logic', False) stat_scaling = self.form.cleaned_data.get('monster__skills__scaling_stats__pk', []) passive = self.form.cleaned_data.get('monster__skills__passive', None) if old_filtering: # Filter if any skill on the monster has the designated fields for effect in value: queryset = queryset.filter(monster__skills__skill_effect=effect) for pk in stat_scaling: queryset = queryset.filter(monster__skills__scaling_stats=pk) if passive is not None: queryset = queryset.filter( monster__skills__passive=passive, ) return queryset.distinct() else: # Filter effects based on effects of each individual skill. This ensures a monster will not show up unless it has # the desired effects on the same skill rather than across any skills. skills = Skill.objects.all() for effect in value: skills = skills.filter(skill_effect=effect) for pk in stat_scaling: skills = skills.filter(scaling_stats=pk) if passive is not None: skills = skills.filter( passive=passive, ) return queryset.filter(monster__skills__in=skills).distinct() def filter_effects_logic(self, queryset, name, value): # This field is just used to alter the logic of skill effect filter and is used in filter_monster__skills__skill_effect__pk() return queryset class RuneInstanceFilter(django_filters.FilterSet): type = django_filters.MultipleChoiceFilter(choices=RuneInstance.TYPE_CHOICES) slot = django_filters.MultipleChoiceFilter(choices=((1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6))) quality = django_filters.MultipleChoiceFilter(choices=RuneInstance.QUALITY_CHOICES) original_quality = django_filters.MultipleChoiceFilter(choices=RuneInstance.QUALITY_CHOICES) main_stat = django_filters.MultipleChoiceFilter(choices=RuneInstance.STAT_CHOICES) innate_stat = django_filters.MultipleChoiceFilter(choices=RuneInstance.STAT_CHOICES) substats = django_filters.MultipleChoiceFilter(choices=RuneInstance.STAT_CHOICES, method='filter_substats') substat_logic = django_filters.BooleanFilter(method='filter_substat_logic') assigned_to = django_filters.BooleanFilter(method='filter_assigned_to') class Meta: model = RuneInstance fields = { 'type': ['exact'], 'level': ['exact', 'lte', 'lt', 'gte', 'gt'], 'stars': ['exact', 'lte', 'lt', 'gte', 'gt'], 'slot': ['exact'], 'quality': ['exact'], 'original_quality': ['exact'], 'ancient': ['exact'], 'assigned_to': ['exact'], 'main_stat': ['exact'], 'innate_stat': ['exact'], 'marked_for_sale': ['exact'], 'has_grind': ['exact', 'lte', 'lt', 'gte', 'gt'], 'has_gem': ['exact'], } def filter_substats(self, queryset, name, value): any_substat = self.form.cleaned_data.get('substat_logic', False) if len(value): if any_substat: return queryset.filter(substats__overlap=value) else: return queryset.filter(substats__contains=value) else: return queryset def filter_substat_logic(self, queryset, name, value): # This field is just used to alter the logic of substat filter return queryset def filter_assigned_to(self, queryset, name, value): return queryset.filter(assigned_to__isnull=not value) class TeamFilter(django_filters.FilterSet): class Meta: model = Team fields = { 'name': ['exact', 'istartswith', 'icontains'], 'description': ['icontains'] }
43.785714
167
0.664628
75f2f30c452a8f8013f5d70b90ae1fe65e7a8db5
2,224
py
Python
addons14/account_financial_report/report/vat_report_xlsx.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-06-10T14:59:13.000Z
2021-06-10T14:59:13.000Z
addons14/account_financial_report/report/vat_report_xlsx.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
null
null
null
addons14/account_financial_report/report/vat_report_xlsx.py
odoochain/addons_oca
55d456d798aebe16e49b4a6070765f206a8885ca
[ "MIT" ]
1
2021-04-09T09:44:44.000Z
2021-04-09T09:44:44.000Z
# Copyright 2018 Forest and Biomass Romania # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl.html). from odoo import _, models class VATReportXslx(models.AbstractModel): _name = "report.a_f_r.report_vat_report_xlsx" _description = "Vat Report XLSX Report" _inherit = "report.account_financial_report.abstract_report_xlsx" def _get_report_name(self, report, data): company_id = data.get("company_id", False) report_name = _("Vat Report") if company_id: company = self.env["res.company"].browse(company_id) suffix = " - {} - {}".format(company.name, company.currency_id.name) report_name = report_name + suffix return report_name def _get_report_columns(self, report): return { 0: {"header": _("Code"), "field": "code", "width": 5}, 1: {"header": _("Name"), "field": "name", "width": 100}, 2: {"header": _("Net"), "field": "net", "type": "amount", "width": 14}, 3: {"header": _("Tax"), "field": "tax", "type": "amount", "width": 14}, } def _get_report_filters(self, report): return [ [_("Date from"), report.date_from.strftime("%d/%m/%Y")], [_("Date to"), report.date_to.strftime("%d/%m/%Y")], [ _("Based on"), _("Tax Tags") if report.based_on == "taxtags" else _("Tax Groups"), ], ] def _get_col_count_filter_name(self): return 0 def _get_col_count_filter_value(self): return 2 def _generate_report_content(self, workbook, report, data): res_data = self.env[ "report.account_financial_report.vat_report" ]._get_report_values(report, data) vat_report = res_data["vat_report"] tax_detail = res_data["tax_detail"] # For each tax_tag tax_group self.write_array_header() for tag_or_group in vat_report: # Write taxtag line self.write_line_from_dict(tag_or_group) # For each tax if detail taxes if tax_detail: for tax in tag_or_group["taxes"]: self.write_line_from_dict(tax)
36.459016
83
0.584532
08db1eb58faeb587ebdd0ebd550110abb1010be3
2,825
py
Python
tdda/constraints/db/detect.py
Daniel-Mietchen/tdda
98718ec3b4b253bba3b575d4b10a14a6d70576b8
[ "MIT" ]
232
2016-09-17T11:56:52.000Z
2022-03-18T23:13:41.000Z
tdda/constraints/db/detect.py
Daniel-Mietchen/tdda
98718ec3b4b253bba3b575d4b10a14a6d70576b8
[ "MIT" ]
28
2016-11-14T04:04:22.000Z
2022-03-08T22:16:30.000Z
tdda/constraints/db/detect.py
Daniel-Mietchen/tdda
98718ec3b4b253bba3b575d4b10a14a6d70576b8
[ "MIT" ]
30
2016-09-17T11:57:32.000Z
2022-03-29T10:57:16.000Z
# -*- coding: utf-8 -*- """ Support for database constraint detection from the command-line tool """ from __future__ import division from __future__ import print_function USAGE = ''' Parameters: * table is one of: - a database table name - a schema-qualified table name of the form schema.table - a database table name qualified by database type, of the form dbtype:table or dbtype:schema.table * constraints.tdda is a JSON .tdda file constaining constraints. * detection output file is not implemented yet. ''' import argparse import os import sys from tdda import __version__ from tdda.constraints.flags import detect_parser, detect_flags from tdda.constraints.db.constraints import detect_db_table from tdda.constraints.db.drivers import (database_connection, parse_table_name, database_arg_parser, database_arg_flags) def detect_database_table_from_file(table, constraints_path, conn=None, dbtype=None, db=None, host=None, port=None, user=None, password=None, **kwargs): """ detect using the given database table, against constraints in the .tdda file specified. Not implemented """ (table, dbtype) = parse_table_name(table, dbtype) db = database_connection(table=table, conn=conn, dbtype=dbtype, db=db, host=host, port=port, user=user, password=password) print(detect_db_table(dbtype, db, table, constraints_path, **kwargs)) def get_detect_params(args): parser = database_arg_parser(detect_parser, USAGE) parser.add_argument('table', nargs=1, help='database table name') parser.add_argument('constraints', nargs=1, help='constraints file to verify against') parser.add_argument('outpath', nargs='?', help='file to write detection results to') params = {} flags = database_arg_flags(detect_flags, parser, args, params) params['table'] = flags.table[0] if flags.table else None params['constraints_path'] = (flags.constraints[0] if flags.constraints else None) params['outpath'] = flags.outpath return params class DatabaseDetector: def __init__(self, argv, verbose=False): self.argv = argv self.verbose = verbose def detect(self): params = get_detect_params(self.argv[1:]) detect_database_table_from_file(**params) def main(argv): if len(argv) > 1 and argv[1] in ('-v', '--version'): print(__version__) sys.exit(0) v = DatabaseDetector(argv) v.detect() if __name__ == '__main__': main(sys.argv)
30.376344
79
0.633628
59639b603fcb1ed3fd5adad9404bbda4f99dc191
8,593
py
Python
src/power_forecast/functions.py
fserrey/eolo-project
f1c157b8c0675343534424ee8df82a2e1f2e6a2b
[ "MIT" ]
1
2021-12-14T22:57:23.000Z
2021-12-14T22:57:23.000Z
src/power_forecast/functions.py
fserrey/eolo-project
f1c157b8c0675343534424ee8df82a2e1f2e6a2b
[ "MIT" ]
null
null
null
src/power_forecast/functions.py
fserrey/eolo-project
f1c157b8c0675343534424ee8df82a2e1f2e6a2b
[ "MIT" ]
null
null
null
import os from os import listdir import numpy as np import pandas as pd from datetime import datetime, timedelta import json import xgboost as xgb import matplotlib as plt import folium from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor #from power_forecast.pickle_save_load import to_pickle import webbrowser def get_date(base_dir): new_time = [] for file in listdir(base_dir): file_path = f'{base_dir}/{file}' match=file.split("_")[1] date = pd.to_datetime(match, format = "%Y%m%d%H").strftime('%d/%m/%Y') time = (datetime.strptime(match, "%Y%m%d%H") + timedelta(hours=6)).strftime('%H:%M') new_time.append(date + " " + time) return new_time def get_variables(base_dir, var_list, diccionario, nz=26): d3_var = ["HGTprs", "CLWMRprs", "RHprs","Velprs","UGRDprs","VGRDprs","TMPprs"] d2_var = ["HGTsfc", "MSLETmsl", "PWATclm", "RH2m", "Vel100m", "UGRD100m", "VGRD100m", "Vel80m", "UGRD80m", "VGRD80m", "Vel10m", "UGRD10m", "VGRD10m", "GUSTsfc", "TMPsfc", "TMP2m", "no4LFTXsfc", "CAPEsfc", "SPFH2m", "SPFH80m"] lst = [] for file in listdir(base_dir): file_path = f'{base_dir}/{file}' e_file = [] for key, value in diccionario.items(): if key in set(var_list).intersection(d3_var): #d3_var: corte = value[0] + int(((value[1])/26)*nz) e_file.append(np.fromfile(file_path, dtype=np.float32)[value[0]:corte]) elif key in set(var_list).intersection(d2_var):#d2_var: e_file.append(np.fromfile(file_path, dtype=np.float32)[value[0]:value[1]]) lst.append(e_file) return lst def setup_x(dataframe): """Flat variables values for model training""" dataframe.reset_index(level=0, inplace=True) row_list =[] for index, rows in dataframe.iterrows(): my_list = [rows.RHprs, rows.Velprs, rows.TMPprs, rows.Vel100m, rows.Vel80m,rows.TMPsfc, rows.SPFH80m] row_list.append(my_list) a = [np.concatenate(row_list[i]) for i in range(len(row_list))] train_ = pd.DataFrame(a, index=dataframe["index"]) return train_ def get_var(main_dic, list_var, nz=26): """This function provides the selected variables in a nested dictionary with the given array and level (consider that each level is around 50m heigth). Output is given as dictionary :rtype: object """ dict_final = {} size_3d = 13*9*nz print("Now, we get the variables we want") for datetime_key in main_dic: # iteración sobre las keys de 1º nivel res = [] for var in list_var: # compruebo que la variable que saco está en mi lista if var in main_dic.get(datetime_key).get("var_3d").keys(): # compruebo que esa variable está en las de 2º nivel array_3d = main_dic[datetime_key]["var_3d"][var]["data"] # Asigno el array del value de 4º nivel a una variable arr_3d_nz = [] for j in range(0,len(array_3d), size_3d): res.extend(array_3d[j: j+size_3d]) for var in list_var: if var in main_dic.get(datetime_key).get("var_2d").keys(): array_2d = main_dic[datetime_key]["var_2d"][var]["data"] res.extend(array_2d) #for i in range(len(main_dic.keys())): dict_final.update({datetime_key:res}) return dict_final def get_X(dataframe): meteo = dataframe meteo.reset_index(level=0, inplace=True) meteo["date"] = pd.to_datetime(meteo['index'], format='%d/%m/%Y %H:%M') meteo = meteo.sort_values(by='date',ascending=True) meteo = meteo.set_index("date").sort_index().loc[:'31/12/2016 00:00'] meteo = meteo[[x for x in meteo.columns if x != 'index']] return meteo def setting_X(dictionary): meteo_df = pd.DataFrame(dictionary).T meteo_df.reset_index(level=0, inplace=True) meteo_df["date"]=pd.to_datetime(meteo_df['index'], format='%d/%m/%Y %H:%M') meteo_df=meteo_df.sort_values(by='date',ascending=True) meteo_df=meteo_df.set_index("date").sort_index().loc[:'31/12/2016 00:00'] meteo_df=meteo_df[[x for x in meteo_df.columns if x != 'index']] return meteo_df def setting_y(csv_file): power_df = pd.read_csv(csv_file) power_df['date'] = pd.to_datetime(power_df['date'], format='%d/%m/%Y %H:%M') power_df = power_df.sort_values(by='date',ascending=True) power_df=power_df.set_index("date").sort_index().loc[:'31/12/2016 00:00'] return power_df def objetivo(space): clf = xgb.XGBRegressor(n_estimators =int(space['n_estimators']), learning_rate = space['learning_rate'], max_depth = int(space['max_depth']), min_child_weight = space['min_child_weight'], subsample = space['subsample'], gamma = space['gamma'], reg_lambda = space['reg_lambda'], objective='reg:squarederror') eval_set=[(X_train, y_train), (X_test, y_test)] clf.fit(X_train, y_train, eval_set=eval_set, eval_metric="rmse", verbose=False) y_pred = clf.predict(X_test) rmse = mean_squared_error(y_test, y_pred)**(0.5) return {'loss':rmse, 'status': STATUS_OK } def get_vvel(base_dir): """This function gives you the values of all Velocity at 100m height as pandas data frame """ content = [] filenames = [] filenames.append(get_date(base_dir)) for file in os.listdir(base_dir): file_path = f'{base_dir}/{file}' filenames.append(file) content.append(np.fromfile(file_path, dtype=np.float32)[21762:21879]) return pd.DataFrame(data=content) def plotting_feature_importance(importance, model): """Plot the feature importances of the forest""" std = np.std([modelo.feature_importances_ for modelo in model.estimators_], axis=0) index = np.argsort(feten) plt.figure(figsize=(15, 15)) plt.title("Feature importances") plt.barh(range(X_train.values.shape[1]), feten[index], color="r", xerr=std[index], align="center") plt.yticks(range(X_train.values.shape[1]), index) plt.ylim([-1, X_train.values.shape[1]]) return plt.show() def estimate_coord_plot(feten): lon_res = 13 lat_res = 9 nz = 26 lat_step = 0.5 lon_step = 0.5 lat_start = 44 lat_end = lat_start + lat_step * (lat_res - 1) # calculas lat final lon_start = -123 lon_end = lon_start + lon_step * (lon_res -1) # calculas lon final - con esto puedes construir mesh lat = np.linspace(start=lat_start, stop=lat_end, endpoint=lat_end, num=lat_res) lon = np.linspace(start=lon_start, stop=lon_end, endpoint=lon_end, num=lon_res) # lon, lat = np.meshgrid(lon, lat) Z = feten.reshape(lat_res, lon_res) ptos = np.hstack((lat.reshape((lat.size,1)), lon.reshape((lon.size,1)))) fig = plt.figure(figsize=(12, 10)) im = plt.pcolormesh(lat, lon, Z) # Asignas valores a su posición en el mapa return plt.colorbar(mappable=im) def get_location(feten): lon_res = 13 lat_res = 9 nz = 26 lat_step = 0.5 lon_step = 0.5 lat_start = 44 lat_end = lat_start + lat_step * (lat_res - 1) # calculas lat final lon_start = -123 lon_end = lon_start + lon_step * (lon_res -1) # calculas lon final - con esto puedes construir mesh lat = np.linspace(start=lat_start, stop=lat_end, endpoint=lat_end, num=lat_res) lon = np.linspace(start=lon_start, stop=lon_end, endpoint=lon_end, num=lon_res) lon, lat = np.meshgrid(lon, lat) Z = feten.reshape(lat_res, lon_res) point = Z.argmax() ptos = np.hstack((lat.reshape((lat.size,1)), lon.reshape((lon.size,1)))) max_z_position = Z.argmax() coordinates = list(ptos[point]) return coordinates def drawing_map(result_point, radio=False, distance=False): m = folium.Map( location=[(lat_start + lat_end) / 2, (lon_start + lon_end) / 2, ], zoom_start=7, tiles='Stamen Terrain' ) tooltip = 'I am here!' if radio == True | distance == True: folium.CircleMarker(location = [45.58163, -120.15285], radius = 100, popup = ' FRI ').add_to(m) folium.PolyLine(locations = [(result_point), (45.18163, -120.15285)], line_opacity = 0.5).add_to(m) folium.Marker([45.18163, -120.15285], popup='<b>Condon WindFarm</b>', tooltip=tooltip).add_to(m) folium.Marker(result_point, popup='<i>Result</i>', tooltip=tooltip).add_to(m) return m
35.655602
107
0.641918
b30a258bd6425fa19eea2221956891d085c9fe1b
413
py
Python
2020/test/test_day9.py
terezaif/adventofcode
67601f79a3b01d71434ef0236387ffd5ab7dca0f
[ "MIT" ]
4
2020-12-06T13:11:59.000Z
2021-12-15T11:34:34.000Z
2020/test/test_day9.py
terezaif/adventofcode
67601f79a3b01d71434ef0236387ffd5ab7dca0f
[ "MIT" ]
null
null
null
2020/test/test_day9.py
terezaif/adventofcode
67601f79a3b01d71434ef0236387ffd5ab7dca0f
[ "MIT" ]
1
2021-12-02T16:32:50.000Z
2021-12-02T16:32:50.000Z
from days.day9 import get_first_number from days.day9 import get_list_ends from utils.reading_data import get_int_input_array input = get_int_input_array(path="2020/test/data/day9.txt") def test_get_count(): expected = 127 actual = get_first_number(5, input) assert expected == actual def test_get_count_2(): expected = 62 actual = get_list_ends(127, input) assert expected == actual
22.944444
59
0.750605
612b9155d03f3c7f61e8d863730ebe89f6a6a3a5
1,013
py
Python
video/models.py
JisunParkRea/djangotube_tutorial
c173f624da4aee7252c99f0852789f06b4bff4c7
[ "MIT" ]
2
2020-12-07T04:49:32.000Z
2021-04-12T04:46:09.000Z
video/models.py
JisunParkRea/djangotube_tutorial
c173f624da4aee7252c99f0852789f06b4bff4c7
[ "MIT" ]
4
2020-04-28T07:54:02.000Z
2021-09-22T18:52:46.000Z
video/models.py
JisunParkRea/djangotube_tutorial
c173f624da4aee7252c99f0852789f06b4bff4c7
[ "MIT" ]
1
2020-04-28T07:42:27.000Z
2020-04-28T07:42:27.000Z
from django.conf import settings from django.db import models class Video(models.Model): class Category(models.TextChoices): Music = 'music' Movie = 'movie' Drama = 'drama' Comedy = 'comedy' Information = 'info' Daily = 'daily' Beauty = 'beauty' Art = 'art' Book = 'book' Sport = 'sport' Food = 'food' author = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) title = models.CharField(max_length=100) video_key = models.CharField(max_length=12) likes_user = models.ManyToManyField(settings.AUTH_USER_MODEL, blank=True, related_name='likes_user') upload_date = models.DateTimeField(auto_now_add=True, null=True) # first created date category = models.TextField(choices=Category.choices, blank=True) class Meta: ordering = ['-upload_date'] def count_likes_user(self): return self.likes_user.count() def __str__(self): return self.title
29.794118
104
0.655479
aa2da3d00fb9e037b4bb23b49c7b7ac2054d9b03
4,106
py
Python
test/functional/feature_minchainwork.py
VaderCoinProject/vadercoin
b513c794b014d40e5aad281dd1f54845c46d216c
[ "MIT" ]
null
null
null
test/functional/feature_minchainwork.py
VaderCoinProject/vadercoin
b513c794b014d40e5aad281dd1f54845c46d216c
[ "MIT" ]
null
null
null
test/functional/feature_minchainwork.py
VaderCoinProject/vadercoin
b513c794b014d40e5aad281dd1f54845c46d216c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Vadercoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test logic for setting nMinimumChainWork on command line. Nodes don't consider themselves out of "initial block download" until their active chain has more work than nMinimumChainWork. Nodes don't download blocks from a peer unless the peer's best known block has more work than nMinimumChainWork. While in initial block download, nodes won't relay blocks to their peers, so test that this parameter functions as intended by verifying that block relay only succeeds past a given node once its nMinimumChainWork has been exceeded. """ import time from test_framework.test_framework import VadercoinTestFramework from test_framework.util import assert_equal # 2 hashes required per regtest block (with no difficulty adjustment) REGTEST_WORK_PER_BLOCK = 2 class MinimumChainWorkTest(VadercoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], ["-minimumchainwork=0x65"], ["-minimumchainwork=0x65"]] self.node_min_work = [0, 101, 101] def setup_network(self): # This test relies on the chain setup being: # node0 <- node1 <- node2 # Before leaving IBD, nodes prefer to download blocks from outbound # peers, so ensure that we're mining on an outbound peer and testing # block relay to inbound peers. self.setup_nodes() for i in range(self.num_nodes-1): self.connect_nodes(i+1, i) def run_test(self): # Start building a chain on node0. node2 shouldn't be able to sync until node1's # minchainwork is exceeded starting_chain_work = REGTEST_WORK_PER_BLOCK # Genesis block's work self.log.info("Testing relay across node %d (minChainWork = %d)", 1, self.node_min_work[1]) starting_blockcount = self.nodes[2].getblockcount() num_blocks_to_generate = int((self.node_min_work[1] - starting_chain_work) / REGTEST_WORK_PER_BLOCK) self.log.info("Generating %d blocks on node0", num_blocks_to_generate) hashes = self.nodes[0].generatetoaddress(num_blocks_to_generate, self.nodes[0].get_deterministic_priv_key().address) self.log.info("Node0 current chain work: %s", self.nodes[0].getblockheader(hashes[-1])['chainwork']) # Sleep a few seconds and verify that node2 didn't get any new blocks # or headers. We sleep, rather than sync_blocks(node0, node1) because # it's reasonable either way for node1 to get the blocks, or not get # them (since they're below node1's minchainwork). time.sleep(3) self.log.info("Verifying node 2 has no more blocks than before") self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) # Node2 shouldn't have any new headers yet, because node1 should not # have relayed anything. assert_equal(len(self.nodes[2].getchaintips()), 1) assert_equal(self.nodes[2].getchaintips()[0]['height'], 0) assert self.nodes[1].getbestblockhash() != self.nodes[0].getbestblockhash() assert_equal(self.nodes[2].getblockcount(), starting_blockcount) self.log.info("Generating one more block") self.nodes[0].generatetoaddress(1, self.nodes[0].get_deterministic_priv_key().address) self.log.info("Verifying nodes are all synced") # Because nodes in regtest are all manual connections (eg using # addnode), node1 should not have disconnected node0. If not for that, # we'd expect node1 to have disconnected node0 for serving an # insufficient work chain, in which case we'd need to reconnect them to # continue the test. self.sync_all() self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) if __name__ == '__main__': MinimumChainWorkTest().main()
45.120879
108
0.698003
5a27514d3ca08d3797946bc9e86882294446f79d
13,040
py
Python
views/web/dustWeb/WebPage.py
twatteynelinear/dustlink_sierra
9dac02d4fdfdee240a8a9da2e6abc2d7fda3443b
[ "BSD-3-Clause" ]
4
2016-09-07T05:46:20.000Z
2020-05-31T21:34:27.000Z
views/web/dustWeb/WebPage.py
twatteynelinear/dustlink_sierra
9dac02d4fdfdee240a8a9da2e6abc2d7fda3443b
[ "BSD-3-Clause" ]
null
null
null
views/web/dustWeb/WebPage.py
twatteynelinear/dustlink_sierra
9dac02d4fdfdee240a8a9da2e6abc2d7fda3443b
[ "BSD-3-Clause" ]
6
2015-01-22T10:14:24.000Z
2020-05-31T21:34:30.000Z
import logging class NullHandler(logging.Handler): def emit(self, record): pass log = logging.getLogger('WebPage') log.setLevel(logging.ERROR) log.addHandler(NullHandler()) import os import urllib import web from viz import Viz, \ VizBanner TEMPLATE_PATH = os.path.join('templates') LOOK_AND_FEEL = 'dust' class WebPage(object): DESIGN_ONE_COLUMN = 'one_column' DESIGN_TWO_COLUMNS = 'two_columns' DESIGN_ALL = [DESIGN_ONE_COLUMN,DESIGN_TWO_COLUMNS] LAYOUT_HORIZONTAL = 'horizontal' LAYOUT_VERTICAL = 'vertical' LAYOUT_ALL = [LAYOUT_HORIZONTAL,LAYOUT_VERTICAL] def __init__(self,webServer,url,title,webHandler,hidden=False): # store params self.webServer = webServer self.url = url self.title = title self.webHandler = webHandler self.hidden = hidden # local variables self.children = [] #======================== public ========================================== def createPage(self,username=None, currentPath=[], design=DESIGN_TWO_COLUMNS, layout=LAYOUT_VERTICAL, visualizations=[]): ''' \brief Create a full HTML page, ready to be sent back to the client. \param[in] username The username associated with this client's session. This can be used to display the username in the page. \param[in] currentPath Path of the resulting page. \param[in] design The design of the page, i.e. "look-and-feel" to expect. This can translate in different templates. Must be an element of DESIGN_ALL. \param[in] layout The layout of the page, i.e. how the visualizations are arranged inside the page. Must be an element of LAYOUT_ALL. \param[in] visualizations List of visualizations this page must contain. Each visualization must be of type Viz. ''' # filter errors assert (not username) or isinstance(username,str) assert isinstance(currentPath,list) for p in currentPath: assert isinstance(p,str) assert design in self.DESIGN_ALL assert layout in self.LAYOUT_ALL assert isinstance(visualizations,list) for v in visualizations: assert isinstance(v,Viz.Viz) # add a banner visualizations += [ VizBanner.VizBanner( webServer = self.webServer, username = username, resourcePath = ['banner'], ), ] # get the pageTitle from the current path pageTitle = self.webServer.getPageTitle(currentPath) # get the template corresponding to the design webtemplate = web.template.frender( os.path.join( TEMPLATE_PATH, LOOK_AND_FEEL, '{0}.html'.format(design) ) ) # create the logFrameCode from the username logFrameCode = self._buildLoginFrame(username) # get the libraries from the visualizations libraries = [] for v in visualizations: libraries += v.getLibraries() libraries = list(set(libraries)) # remove duplicates # re-arrange library order to deal with dependencies for lib in [Viz.Viz.LIBRARY_JQUERY]: if lib in libraries: # remove libraries.remove(lib) # put at front libraries.insert(0,lib) for lib in [Viz.Viz.LIBRARY_RAPHAEL,Viz.Viz.LIBRARY_MORRIS]: if lib in libraries: # remove libraries.remove(lib) # put at end libraries.append(lib) # create unique ID for each visualization uniqueId = {} for v in visualizations: uniqueId[v] = 'id'+str(self.webServer.getUniqueNumber()) # create the headerCode from the visualizations headerElems = [] for l in libraries: headerElems += ['<script type="text/javascript" src="{0}"></script>'.format(l)] for v in visualizations: headerElems += [v.getHeaderCode(uniqueId[v])] headerCode = '\n'.join(headerElems) # get page level documentation pathCopy = list(currentPath) pathCopyLast = len(pathCopy) - 1 if pathCopyLast >= 0 and pathCopy[pathCopyLast].startswith("_"): pathCopy[pathCopyLast] = '*' pathTuple = tuple(pathCopy) documentation = self.webServer.getDocumentation().getDocHTML(pathTuple, "page") # create the bodyCode from the visualizations bodyElems = [] for v in visualizations: bodyElems += [v.getBodyCode(uniqueId[v])] bodyCode = self._layoutElems(bodyElems,layout) renderedPage = webtemplate ( pageTitle = pageTitle, hierarchy = self.webServer.getUrlHierarchy(), currentPath = currentPath, logFrameCode = logFrameCode, headerCode = headerCode, bodyCode = bodyCode, documentation = documentation, ) return renderedPage def registerPage(self,newChild): # filter error assert isinstance(newChild,WebPage) # add to children self.children.append(newChild) def getUrlHierarchy(self,parentPath=[]): assert not self.url.count('/') newParentPath = parentPath+[self.url] classUrl = newParentPath if len(classUrl) and not classUrl[0]: classUrl = classUrl[1:] returnVal = {} returnVal['url'] = self.urlListToString(newParentPath) returnVal['title'] = self.title returnVal['class'] = self.webServer.getDocumentation().getClass(classUrl) returnVal['children'] = [c.getUrlHierarchy(newParentPath) for c in self.children if not c.hidden] return returnVal def getPageTitle(self,path): # filter errors assert isinstance(path,list) for p in path: assert isinstance(p,(str,unicode)) if len(path)>0: if path[0].startswith('_'): return urllib.unquote(urllib.unquote(path[0][1:])) else: for c in self.children: urlElems = self.urlStringTolist(c.url) if path[0]==urlElems[0]: return c.getPageTitle(path[1:]) return 'unknown 1' elif len(path)==0: return self.title else: return 'unknown 2' def getHandlerNameToHandlerClass(self,parentUrl=''): assert not parentUrl.count('/') assert not self.url.count('/') returnVal = {} # add my webHandler returnVal[self.webHandler.__name__] = self.webHandler # add my children's mapping for child in self.children: returnVal = dict(returnVal.items() + child.getHandlerNameToHandlerClass().items()) return returnVal def getMappingUrlToHandlerName(self,parentUrl=''): ''' \brief Return the mapping between URL's and webHandler's This method returns a tuple, where URL's are in the odd positions and webHandler in the even positions, e.g.: ( '', 'rootHandler', 'level1', 'level1Handler', 'level1/level2','level2Handler', ) This structure can be used directly by a web.py server. ''' assert not parentUrl.count('/') assert not self.url.count('/') returnVal = [] # add me returnVal += [self.urlListToString([parentUrl,self.url], trailingSlashOption=True), self.webHandler.__name__] returnVal += [self.urlListToString([parentUrl,self.url,'json','(.*)'],trailingSlashOption=True), self.webHandler.__name__] # add my children's mapping for child in self.children: returnVal += child.getMappingUrlToHandlerName(parentUrl=self.url) # return a tuple return tuple(returnVal) #======================== private ========================================= def _buildLoginFrame(self,username): if username in [self.webServer.defaultUsername]: output = [] output += ["<form action=\"/login\" method=\"POST\">"] output += [" <table id=\"login\">"] output += [" <tr>"] output += [" <td>Username:</td>"] output += [" <td><input type=\"text\" name=\"username\"/></td>"] output += [" <td>Password:</td>"] output += [" <td><input type=\"password\" name=\"password\"/></td>"] output += [" <td><input type=\"hidden\" name=\"action\" value=\"login\"/></td>"] output += [" <td><input type=\"submit\" value=\"LOGIN\"/></td>"] output += [" </tr>"] output += [" </table>"] output += ["</form>"] return '\n'.join(output) else: output = [] output += ["<form action=\"/login\" method=\"POST\">"] output += [" <table>"] output += [" <tr>"] output += [" <td>You are logged in as <b>{0}</b>.</td>".format(username)] output += [" <td><input type=\"hidden\" name=\"action\" value=\"logout\"></td>"] output += [" <td><input type=\"submit\" value=\"LOGOUT\"></td>"] output += [" </tr>"] output += [" </table>"] output += ["</form>"] return '\n'.join(output) def _layoutElems(self,elems,layout): # filter errors assert isinstance(elems,list) for e in elems: assert isinstance(e,str) assert layout in self.LAYOUT_ALL returnVal = [] # returnVal += ['<table>'] if layout in [self.LAYOUT_HORIZONTAL]: # returnVal += ['<tr>'] for e in elems: # returnVal += ['<td>'] returnVal += [e] # returnVal += ['</td>'] # returnVal += ['</tr>'] elif layout in [self.LAYOUT_VERTICAL]: for e in elems: # returnVal += ['<tr>'] # returnVal += ['<td>'] returnVal += [e] # returnVal += ['</td>'] # returnVal += ['</tr>'] else: raise SystemError('unexpected layout {0}'.format(layout)) # returnVal += ['</table>'] return '\n'.join(returnVal) @classmethod def urlListToString(self,urlList,trailingSlashOption=False): # remove empty elements from urlList urlList = [u for u in urlList if u] returnVal = [] if urlList: returnVal += ['/'] returnVal += ['/'.join(urlList)] if trailingSlashOption: returnVal += ['/?'] return ''.join(returnVal) @classmethod def urlStringTolist(self,urlString): # filter errors assert isinstance(urlString,(str,unicode)) # split into elements urlList = urlString.split('/') # remove empty elements (can happen with e.g. trailing slash) urlList = [u for u in urlList if u] # convert elements to string (can be unicode) urlList = [str(u) for u in urlList] return urlList
38.017493
108
0.486887
3c6ee1de0fc4651c5a4a56fab3106ac42dd99391
7,467
py
Python
core/utils.py
uktrade/export-wins-data
46caa444812e89abe504bec8c15aa7f7ba1a247e
[ "MIT" ]
5
2016-09-12T12:52:45.000Z
2020-03-24T14:43:13.000Z
core/utils.py
uktrade/export-wins-data
46caa444812e89abe504bec8c15aa7f7ba1a247e
[ "MIT" ]
435
2016-10-18T12:51:39.000Z
2021-06-09T17:22:08.000Z
core/utils.py
uktrade/export-wins-data
46caa444812e89abe504bec8c15aa7f7ba1a247e
[ "MIT" ]
2
2016-12-06T10:37:21.000Z
2017-02-22T17:27:43.000Z
from functools import lru_cache import boto3 import itertools from collections import defaultdict from operator import itemgetter from typing import List, MutableMapping from django.conf import settings from rest_framework.fields import ( BooleanField, CharField, ChoiceField, DateField, DecimalField, EmailField, IntegerField, UUIDField, ) from extended_choices import Choices import yaml from django.core.serializers import base from django.db import DEFAULT_DB_ALIAS, transaction def filter_key(dict_, key_to_remove): return {k: v for k, v in dict_.items() if k != key_to_remove} def group_by_key(l: List[MutableMapping], key: str, flatten: bool = False) -> MutableMapping: """ :param l: list of dicts .e.g [{'a': 1, 'b': 1}, {'b': 2, 'a': 2}] :param dict_key: the dict key to group by :return: a dict with keys and an object or list of objects in the format: {1: [{'b': 1}], 2: [{'b': 2}]} or if flatten=True {1: {'b': 1}, 2: {'b': 2}} """ key_getter = itemgetter(key) l.sort(key=key_getter) groups = defaultdict(list) for group, vals in itertools.groupby(l, key=key_getter): groups[group] = [filter_key(data, key) for data in vals] return {k: v[0] if flatten else v for k, v in groups.items()} def getitem_or_default(l, idx, default=None): """ gets the item at position idx or returns the default value :param list: list of things :param idx: position :param default: optional default value :return: thing at index idx or default """ try: return l[idx] except IndexError: return default class TrackedSupersetChoices(Choices): """ Same as a normal Choices object except subsets have access to their superset. """ def add_subset(self, name, constants): super(TrackedSupersetChoices, self).add_subset(name, constants) subset = getattr(self, name) subset.superset = self def get_bucket_credentials(bucket_id): """Get S3 credentials for bucket id.""" if bucket_id not in settings.DOCUMENT_BUCKETS: raise Exception(f'Bucket "{bucket_id}" not configured.') return settings.DOCUMENT_BUCKETS[bucket_id] def get_bucket_name(bucket_id): """Get bucket name for given bucket id.""" return get_bucket_credentials(bucket_id)['bucket'] @lru_cache() def get_s3_client_for_bucket(bucket_id): """Get S3 client for bucket id.""" credentials = get_bucket_credentials(bucket_id) return boto3.client( 's3', aws_access_key_id=credentials['aws_access_key_id'], aws_secret_access_key=credentials['aws_secret_access_key'], region_name=credentials['aws_region'], config=boto3.session.Config(signature_version='s3v4'), ) def parse_bool(value): """Parses a boolean value from a string.""" return _parse_value(value, BooleanField()) def parse_date(value): """Parses a date from a string.""" return _parse_value(value, DateField()) def parse_decimal(value, max_digits=19, decimal_places=2): """Parses a decimal from a string.""" return _parse_value(value, DecimalField(max_digits, decimal_places)) def parse_email(value): """Parses an email address from a string.""" return _parse_value(value, EmailField(), blank_value='') def parse_uuid(value): """Parses a UUID from a string.""" return _parse_value(value, UUIDField()) def parse_int(value): """Parses a integer from a string.""" return _parse_value(value, IntegerField()) def parse_uuid_list(value): """Parses a comma-separated list of UUIDs from a string.""" return _parse_list(value, UUIDField()) def parse_int_list(value): """Parses a comma-separated list of Integers from a string.""" return _parse_list(value, IntegerField()) def parse_choice(value, choices, blank_value=''): """Parses and validates a value from a list of choices.""" return _parse_value(value, ChoiceField(choices=choices), blank_value=blank_value) def parse_limited_string(value, max_length=settings.CHAR_FIELD_MAX_LENGTH): """Parses/validates a string.""" return _parse_value(value, CharField(max_length=max_length), blank_value='') def _parse_value(value, field, blank_value=None): if not value or value.lower().strip() == 'null': return blank_value field.run_validation(value) return field.to_internal_value(value) def _parse_list(value, field): """Parses a comma-separated list of UUIDs from a string.""" if not value or value.lower().strip() == 'null': return [] return [field.to_internal_value(item) for item in value.split(',')] def _build_model_data(model, obj_pk, fields_data, using): data = {} # Handle each field for (field_name, field_value) in fields_data.items(): field = model._meta.get_field(field_name) # Handle many-to-many relations if field.many_to_many: raise NotImplementedError('Many-to-many fields not supported') # Handle one-to-many relations if field.one_to_many: raise NotImplementedError('One-to-many fields not supported') # Handle fk fields if field.many_to_one: try: value = base.deserialize_fk_value(field, field_value, using, False) except Exception as exc: raise base.DeserializationError.WithData( exc, model._meta.model_name, obj_pk, field_value, ) from exc data[field.attname] = value # Handle all other fields else: try: data[field.name] = field.to_python(field_value) except Exception as exc: raise base.DeserializationError.WithData( exc, model._meta.model_name, obj_pk, field_value, ) from exc return data def _load_data_in_migration(apps, object_list, using=DEFAULT_DB_ALIAS): for list_item in object_list: obj_pk = list_item.get('pk') assert obj_pk, 'pk field required' model_label = list_item['model'] model = apps.get_model(model_label) fields_data = list_item['fields'] model_data = _build_model_data(model, obj_pk, fields_data, using) model.objects.update_or_create(pk=obj_pk, defaults=model_data) @transaction.atomic def load_yaml_data_in_migration(apps, fixture_file_path): """ Loads the content of the yaml file `fixture_file_path` into the database. This is similar to `loaddata` but: - it's safe to be used in migrations - it does not change the fields that are not present in the yaml Motivation: Calling `loaddata` from a data migration makes django use the latest version of the models instead of the version at the time of that particular migration. This causes problems e.g. adding a new field to a model which had a data migration in the past is okay but migrating from zero fails as the model in loaddata (the latest) has a field that did not exist at that migration time. Limitations: - Many-to-many fields are not supported yet - all items in the yaml have to include a pk field """ with open(fixture_file_path, 'rb') as fixture: object_list = yaml.safe_load(fixture) _load_data_in_migration(apps, object_list)
32.04721
93
0.673229
93c263901e353879fbc21b83c93ffe91df26ff55
1,071
py
Python
templates/database/redis/actions.py
Jumpscale/ays9
63bd414ff06372ba885c55eec528f427e63bcbe1
[ "Apache-2.0" ]
4
2017-06-07T08:10:06.000Z
2017-11-10T02:20:38.000Z
templates/database/redis/actions.py
Jumpscale/ays9
63bd414ff06372ba885c55eec528f427e63bcbe1
[ "Apache-2.0" ]
242
2017-05-18T10:51:48.000Z
2019-09-18T15:09:47.000Z
templates/database/redis/actions.py
Jumpscale/ays9
63bd414ff06372ba885c55eec528f427e63bcbe1
[ "Apache-2.0" ]
5
2017-06-16T15:43:25.000Z
2017-09-29T12:48:06.000Z
def install(job): service = job.service prefab = service.executor.prefab prefab.db.redis.install() prefab.db.redis.start( name=service.name, ip=service.model.data.host if service.model.data.host != '' else None, port=service.model.data.port, unixsocket=service.model.data.unixsocket if service.model.data.unixsocket != '' else None, maxram=service.model.data.maxram, appendonly=service.model.data.appendonly) def start(job): service = job.service prefab = service.executor.prefab prefab.db.redis.install() prefab.db.redis.start( name=service.name, ip=service.model.data.host if service.model.data.host != '' else None, port=service.model.data.port, unixsocket=service.model.data.unixsocket if service.model.data.unixsocket != '' else None, maxram=service.model.data.maxram, appendonly=service.model.data.appendonly) def stop(job): service = job.service prefab = service.executor.prefab prefab.db.redis.stop(job.service.name)
32.454545
98
0.678805
8849d08969a60fff74a267de881e4271829b479b
975
py
Python
magpie/polar/radial.py
knaidoo29/magpie
efab3c2666aab2c928ca12a631758bc1b43c149c
[ "MIT" ]
null
null
null
magpie/polar/radial.py
knaidoo29/magpie
efab3c2666aab2c928ca12a631758bc1b43c149c
[ "MIT" ]
null
null
null
magpie/polar/radial.py
knaidoo29/magpie
efab3c2666aab2c928ca12a631758bc1b43c149c
[ "MIT" ]
null
null
null
import numpy as np def cumulative_radial(redges, f, sigma=None): """Returns the cumulative radial profile and errors if errors are given. Parameters ---------- redges : array Edges of the radial bins. f : array Radial profile. sigma : array, optional Radial errors. Returns ------- cumulative_f : array Cumulative radial profile. cumulative_sigma : array If sigma is given then the cumulative errors are computed. """ area = np.pi*(redges[1:]**2. - redges[:-1]**2.) f_area = area*f cumulative_f = np.zeros(len(redges)) cumulative_f[1:] = np.cumsum(f_area) if sigma is not None: cumulative_var = np.zeros(len(redges)) var_area = (area*sigma)**2. cumulative_var[1:] = np.cumsum(var_area) cumulative_sigma = np.sqrt(cumulative_var) if sigma is None: return cumulative_f else: return cumulative_f, cumulative_sigma
27.083333
76
0.620513
022b58fcc72ada5befe8cf9f8514fa8c52ca86af
198
py
Python
__main__.py
macph/easement-curve
e1657682db3bc5b8d59a1fb06816732b784d8314
[ "MIT" ]
1
2019-05-31T03:24:40.000Z
2019-05-31T03:24:40.000Z
__main__.py
macph/easement-curve
e1657682db3bc5b8d59a1fb06816732b784d8314
[ "MIT" ]
null
null
null
__main__.py
macph/easement-curve
e1657682db3bc5b8d59a1fb06816732b784d8314
[ "MIT" ]
null
null
null
# MIT License, copyright Ewan Macpherson, 2016; see LICENCE in root directory # Main script for package. import ec.tk def main(argv=None): ec.tk.main() if __name__ == '__main__': main()
16.5
77
0.691919
fe5286ba813dafe65c9a1327c40063bf91d92c1d
4,331
py
Python
homeassistant/components/lock/__init__.py
VirtualL/home-assistant
301829d02be8d865ab46c8901ac046d060849320
[ "Apache-2.0" ]
null
null
null
homeassistant/components/lock/__init__.py
VirtualL/home-assistant
301829d02be8d865ab46c8901ac046d060849320
[ "Apache-2.0" ]
3
2021-09-08T03:34:57.000Z
2022-03-12T00:59:48.000Z
homeassistant/components/lock/__init__.py
VirtualL/home-assistant
301829d02be8d865ab46c8901ac046d060849320
[ "Apache-2.0" ]
null
null
null
"""Component to interface with locks that can be controlled remotely.""" from datetime import timedelta import functools as ft import logging import voluptuous as vol from homeassistant.loader import bind_hass from homeassistant.helpers.entity_component import EntityComponent from homeassistant.helpers.entity import Entity from homeassistant.helpers.config_validation import ( # noqa PLATFORM_SCHEMA, PLATFORM_SCHEMA_BASE) import homeassistant.helpers.config_validation as cv from homeassistant.const import ( ATTR_CODE, ATTR_CODE_FORMAT, ATTR_ENTITY_ID, STATE_LOCKED, STATE_UNLOCKED, SERVICE_LOCK, SERVICE_UNLOCK, SERVICE_OPEN) from homeassistant.components import group ATTR_CHANGED_BY = 'changed_by' DOMAIN = 'lock' DEPENDENCIES = ['group'] SCAN_INTERVAL = timedelta(seconds=30) ENTITY_ID_ALL_LOCKS = group.ENTITY_ID_FORMAT.format('all_locks') ENTITY_ID_FORMAT = DOMAIN + '.{}' GROUP_NAME_ALL_LOCKS = 'all locks' MIN_TIME_BETWEEN_SCANS = timedelta(seconds=10) LOCK_SERVICE_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.comp_entity_ids, vol.Optional(ATTR_CODE): cv.string, }) # Bitfield of features supported by the lock entity SUPPORT_OPEN = 1 _LOGGER = logging.getLogger(__name__) PROP_TO_ATTR = { 'changed_by': ATTR_CHANGED_BY, 'code_format': ATTR_CODE_FORMAT, } @bind_hass def is_locked(hass, entity_id=None): """Return if the lock is locked based on the statemachine.""" entity_id = entity_id or ENTITY_ID_ALL_LOCKS return hass.states.is_state(entity_id, STATE_LOCKED) async def async_setup(hass, config): """Track states and offer events for locks.""" component = hass.data[DOMAIN] = EntityComponent( _LOGGER, DOMAIN, hass, SCAN_INTERVAL, GROUP_NAME_ALL_LOCKS) await component.async_setup(config) component.async_register_entity_service( SERVICE_UNLOCK, LOCK_SERVICE_SCHEMA, 'async_unlock' ) component.async_register_entity_service( SERVICE_LOCK, LOCK_SERVICE_SCHEMA, 'async_lock' ) component.async_register_entity_service( SERVICE_OPEN, LOCK_SERVICE_SCHEMA, 'async_open' ) return True async def async_setup_entry(hass, entry): """Set up a config entry.""" return await hass.data[DOMAIN].async_setup_entry(entry) async def async_unload_entry(hass, entry): """Unload a config entry.""" return await hass.data[DOMAIN].async_unload_entry(entry) class LockDevice(Entity): """Representation of a lock.""" @property def changed_by(self): """Last change triggered by.""" return None @property def code_format(self): """Regex for code format or None if no code is required.""" return None @property def is_locked(self): """Return true if the lock is locked.""" return None def lock(self, **kwargs): """Lock the lock.""" raise NotImplementedError() def async_lock(self, **kwargs): """Lock the lock. This method must be run in the event loop and returns a coroutine. """ return self.hass.async_add_job(ft.partial(self.lock, **kwargs)) def unlock(self, **kwargs): """Unlock the lock.""" raise NotImplementedError() def async_unlock(self, **kwargs): """Unlock the lock. This method must be run in the event loop and returns a coroutine. """ return self.hass.async_add_job(ft.partial(self.unlock, **kwargs)) def open(self, **kwargs): """Open the door latch.""" raise NotImplementedError() def async_open(self, **kwargs): """Open the door latch. This method must be run in the event loop and returns a coroutine. """ return self.hass.async_add_job(ft.partial(self.open, **kwargs)) @property def state_attributes(self): """Return the state attributes.""" state_attr = {} for prop, attr in PROP_TO_ATTR.items(): value = getattr(self, prop) if value is not None: state_attr[attr] = value return state_attr @property def state(self): """Return the state.""" locked = self.is_locked if locked is None: return None return STATE_LOCKED if locked else STATE_UNLOCKED
27.762821
78
0.684369
1b76632e6550e2dcf9f235692734d3c37f41ec4b
820
py
Python
backend/blog/model/base.py
o8oo8o/blog
2a6f44f86469bfbb472dfd1bec4238587d8402bf
[ "MIT" ]
null
null
null
backend/blog/model/base.py
o8oo8o/blog
2a6f44f86469bfbb472dfd1bec4238587d8402bf
[ "MIT" ]
null
null
null
backend/blog/model/base.py
o8oo8o/blog
2a6f44f86469bfbb472dfd1bec4238587d8402bf
[ "MIT" ]
null
null
null
#!/usr/bin/evn python3 # coding=utf-8 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy.orm.query import Query from util.config import Config __CONF = Config() def all_data(self): """ # 猴子补丁,增加Query对象all_data 方法返回字典 """ field = tuple([f["name"] for f in self.column_descriptions]) all_info = self.all() result_data = [] for item in all_info: result_data.append(dict(zip(field, item))) return result_data setattr(Query, "all_data", all_data) # 创建数据库连接引擎 engine = create_engine( __CONF.get_db_url(), echo=__CONF.get_conf("orm")["sql_echo"], pool_pre_ping=True ) # 自己创建的model需要继承这个类 Base = declarative_base(engine) # 数据库连接session session = sessionmaker(engine)()
21.025641
64
0.721951
ba7807ed700a19a55fc0d6e6c1306790912363b1
2,324
py
Python
setup.py
vgiralt/djangosaml2
6571a03a139d6806da7d65201902499eeddffde9
[ "Apache-2.0" ]
null
null
null
setup.py
vgiralt/djangosaml2
6571a03a139d6806da7d65201902499eeddffde9
[ "Apache-2.0" ]
null
null
null
setup.py
vgiralt/djangosaml2
6571a03a139d6806da7d65201902499eeddffde9
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2011-2012 Yaco Sistemas <lgs@yaco.es> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import codecs import os from setuptools import setup, find_packages def read(*rnames): return codecs.open(os.path.join(os.path.dirname(__file__), *rnames), encoding='utf-8').read() setup( name='djangosaml2', version='1.0.0', description='pysaml2 integration for Django', long_description=read('README.rst'), classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Web Environment", "Framework :: Django", "Framework :: Django :: 3.0", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: WSGI", "Topic :: Security", "Topic :: Software Development :: Libraries :: Application Frameworks", ], keywords="django,pysaml2,sso,saml2,federated authentication,authentication", author="Yaco Sistemas and independent contributors", author_email="lgs@yaco.es", maintainer="Jozef Knaperek", url="https://github.com/knaperek/djangosaml2", download_url="https://pypi.org/project/djangosaml2/", license='Apache 2.0', packages=find_packages(exclude=["tests", "tests.*"]), include_package_data=True, zip_safe=False, install_requires=[ 'defusedxml>=0.4.1', 'Django>=2.2,<4', 'pysaml2>=5.3.0', ], tests_require=[ # Provides assert_called_once. 'mock', ] )
34.686567
97
0.652754
c96ef2a72953f0a9467a023231b0382d4332c67b
263
py
Python
tests/base.py
satchkat/warm-transfer-flask
0fee723f11f17cd816417c4e51e4aec08d1263cb
[ "MIT" ]
3
2016-04-28T21:54:22.000Z
2019-02-04T05:02:47.000Z
tests/base.py
satchkat/warm-transfer-flask
0fee723f11f17cd816417c4e51e4aec08d1263cb
[ "MIT" ]
202
2016-05-03T18:20:07.000Z
2022-03-31T06:28:13.000Z
tests/base.py
satchkat/warm-transfer-flask
0fee723f11f17cd816417c4e51e4aec08d1263cb
[ "MIT" ]
6
2016-04-28T21:54:27.000Z
2022-03-11T20:12:11.000Z
from unittest import TestCase from warm_transfer_flask import app, db class BaseTestCase(TestCase): def setUp(self): self.client = app.test_client() db.create_all() def tearDown(self): db.session.remove() db.drop_all()
18.785714
39
0.657795
806e762a7f4feef020f2cbcda59168b42de7382d
997
py
Python
defs.py
zaabjuda/test_chat_server
96db615223d4a1548629d70b31b3eb7e89dd5ff6
[ "MIT" ]
null
null
null
defs.py
zaabjuda/test_chat_server
96db615223d4a1548629d70b31b3eb7e89dd5ff6
[ "MIT" ]
null
null
null
defs.py
zaabjuda/test_chat_server
96db615223d4a1548629d70b31b3eb7e89dd5ff6
[ "MIT" ]
null
null
null
# coding=utf-8 __author__ = "Dmitry Zhiltsov" __copyright__ = "Copyright 2015, Dmitry Zhiltsov" from enum import Enum, unique from strictdict import StrictDict from strictdict import fields as f from strictdict.api import optlist, opt supported_commands = {'JOIN': '_join_room', 'LEFT': '_leave_room', 'LOGIN': '_login', 'QUIT': '_quit'} @unique class ChatErrorState(Enum): user_exist = 1 room_not_found = 2 command_not_found = 3 command_syntax_failed = 4 room_name_invalid = 5 unknow_error = 100 serialize_error = 101 protocol_error = 102 class ChatMessage(StrictDict): msg = f.String(required=True) channel = f.String(required=True) args = optlist(f.String) class ChatDataResponse(ChatMessage): author = f.String(required=False) class ChatErrorResponse(StrictDict): error = f.Int(required=True) msg = f.String(required=False) class ChatResponse(StrictDict): data = opt(ChatDataResponse) error = opt(ChatErrorResponse)
22.659091
102
0.72317
71bd85b2ec7b7b5f34af914c2668e942334dd3db
5,432
py
Python
test/functional/rpc_mn_basic.py
aentan/ain
1d6db33159de1c8c7930d29a0ab0902f42b728c1
[ "MIT" ]
null
null
null
test/functional/rpc_mn_basic.py
aentan/ain
1d6db33159de1c8c7930d29a0ab0902f42b728c1
[ "MIT" ]
null
null
null
test/functional/rpc_mn_basic.py
aentan/ain
1d6db33159de1c8c7930d29a0ab0902f42b728c1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Copyright (c) DeFi Foundation # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the masternodes RPC. - verify basic MN creation and resign """ from test_framework.test_framework import BitcoinTestFramework from test_framework.authproxy import JSONRPCException from test_framework.util import assert_equal, \ connect_nodes_bi import pprint import time class MasternodesRpcBasicTest (BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.setup_clean_chain = True def run_test(self): pprint.PrettyPrinter(indent=4) assert_equal(len(self.nodes[0].mn_list()), 4) self.nodes[0].generate(100) time.sleep(2) self.sync_blocks() # Stop node #2 for future revert self.stop_node(2) # CREATION: #======================== collateral0 = self.nodes[0].getnewaddress("", "legacy") # Fail to create: Insufficient funds (not matured coins) try: idnode0 = self.nodes[0].mn_create([], { # "operatorAuthAddress": operator0, "collateralAddress": collateral0 }) except JSONRPCException as e: errorString = e.error['message'] assert("Insufficient funds" in errorString) # Create node0 self.nodes[0].generate(1) idnode0 = self.nodes[0].mn_create([], { # "operatorAuthAddress": operator0, "collateralAddress": collateral0 }) # Create and sign (only) collateral spending tx spendTx = self.nodes[0].createrawtransaction([{'txid':idnode0, 'vout':1}],[{collateral0:9.999}]) signedTx = self.nodes[0].signrawtransactionwithwallet(spendTx) assert_equal(signedTx['complete'], True) # Try to spend collateral of mempooled mn_create tx try: self.nodes[0].sendrawtransaction(signedTx['hex']) except JSONRPCException as e: errorString = e.error['message'] assert("mn-collateral-locked-in-mempool," in errorString) self.nodes[0].generate(1) # At this point, mn was created assert_equal(self.nodes[0].mn_list([idnode0], False), { idnode0: "created"} ) self.sync_blocks(self.nodes[0:2]) # Stop node #1 for future revert self.stop_node(1) # Try to spend locked collateral again try: self.nodes[0].sendrawtransaction(signedTx['hex']) except JSONRPCException as e: errorString = e.error['message'] assert("mn-collateral-locked," in errorString) # RESIGNING: #======================== # Fail to resign: Forget to place params in config try: self.nodes[0].mn_resign([], idnode0) except JSONRPCException as e: errorString = e.error['message'] assert("You are not the owner" in errorString) # Restart with new params, but have no money on ownerauth address self.restart_node(0, extra_args=['-masternode_owner='+collateral0]) self.nodes[0].generate(1) # to broke "initial block downloading" try: self.nodes[0].mn_resign([], idnode0) except JSONRPCException as e: errorString = e.error['message'] assert("Can't find any UTXO's" in errorString) # Funding auth address and successful resign fundingTx = self.nodes[0].sendtoaddress(collateral0, 1) self.nodes[0].generate(1) resignTx = self.nodes[0].mn_resign([], idnode0) self.nodes[0].generate(1) assert_equal(self.nodes[0].mn_list()[idnode0]['status'], "created, resigned") # Spend unlocked collateral # This checks two cases at once: # 1) Finally, we should not fail on accept to mempool # 2) But we don't mine blocks after it, so, after chain reorg (on 'REVERTING'), we should not fail: tx should be removed from mempool! self.nodes[0].generate(12) sendedTxHash = self.nodes[0].sendrawtransaction(signedTx['hex']) # Don't mine here, check mempool after reorg! # self.nodes[0].generate(1) # REVERTING: #======================== # Revert resign! self.start_node(1) self.nodes[1].generate(20) # Check that collateral spending tx is still in the mempool assert_equal(sendedTxHash, self.nodes[0].getrawmempool()[0]) connect_nodes_bi(self.nodes, 0, 1) self.sync_blocks(self.nodes[0:2]) # Check that collateral spending tx was deleted # print ("CreateTx", idnode0) # print ("ResignTx", resignTx) # print ("FundingTx", fundingTx) # print ("SpendTx", sendedTxHash) assert_equal(self.nodes[0].getrawmempool(), [fundingTx, resignTx]) assert_equal(self.nodes[0].mn_list()[idnode0]['status'], "active") # Revert creation! self.start_node(2) self.nodes[2].generate(25) connect_nodes_bi(self.nodes, 0, 2) self.sync_blocks(self.nodes[0:3]) assert_equal(len(self.nodes[0].mn_list()), 4) assert_equal(self.nodes[0].getrawmempool(), [idnode0, fundingTx, resignTx]) if __name__ == '__main__': MasternodesRpcBasicTest ().main ()
35.736842
142
0.621686
56fbd6858779ec7a95e2649a991ee5e03a8337e6
34,797
py
Python
broadlink/__init__.py
jfacevedo80/python-broadlink
2bed9fbdcbee19229ed5bec20851ac21713c1691
[ "MIT" ]
1
2018-06-06T00:34:08.000Z
2018-06-06T00:34:08.000Z
broadlink/__init__.py
jfacevedo80/python-broadlink
2bed9fbdcbee19229ed5bec20851ac21713c1691
[ "MIT" ]
null
null
null
broadlink/__init__.py
jfacevedo80/python-broadlink
2bed9fbdcbee19229ed5bec20851ac21713c1691
[ "MIT" ]
null
null
null
#!/usr/bin/python from datetime import datetime try: from Crypto.Cipher import AES except ImportError as e: import pyaes import time import random import socket import sys import threading import codecs def gendevice(devtype, host, mac): devices = { sp1: [0], sp2: [ 0x2711, # SP2 0x2719, 0x7919, 0x271a, 0x791a, # Honeywell SP2 0x2720, # SPMini 0x753e, # SP3 0x7D00, # OEM branded SP3 0x947a, 0x9479, # SP3S 0x2728, # SPMini2 0x2733, 0x273e, # OEM branded SPMini 0x7530, 0x7918, # OEM branded SPMini2 0x2736 # SPMiniPlus ], rm: [ 0x2712, # RM2 0x2737, # RM Mini 0x273d, # RM Pro Phicomm 0x2783, # RM2 Home Plus 0x277c, # RM2 Home Plus GDT 0x272a, # RM2 Pro Plus 0x2787, # RM2 Pro Plus2 0x279d, # RM2 Pro Plus3 0x27a9, # RM2 Pro Plus_300 0x278b, # RM2 Pro Plus BL 0x2797, # RM2 Pro Plus HYC 0x27a1, # RM2 Pro Plus R1 0x27a6, # RM2 Pro PP 0x278f # RM Mini Shate ], a1: [0x2714], # A1 mp1: [ 0x4EB5, # MP1 0x4EF7 # Honyar oem mp1 ], hysen: [0x4EAD], # Hysen controller S1C: [0x2722], # S1 (SmartOne Alarm Kit) dooya: [0x4E4D] # Dooya DT360E (DOOYA_CURTAIN_V2) } # Look for the class associated to devtype in devices [deviceClass] = [dev for dev in devices if devtype in devices[dev]] or [None] if deviceClass is None: return device(host=host, mac=mac, devtype=devtype) return deviceClass(host=host, mac=mac, devtype=devtype) def discover(timeout=None, local_ip_address=None): if local_ip_address is None: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 53)) # connecting to a UDP address doesn't send packets local_ip_address = s.getsockname()[0] address = local_ip_address.split('.') cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) cs.bind((local_ip_address, 0)) port = cs.getsockname()[1] starttime = time.time() devices = [] timezone = int(time.timezone / -3600) packet = bytearray(0x30) year = datetime.now().year if timezone < 0: packet[0x08] = 0xff + timezone - 1 packet[0x09] = 0xff packet[0x0a] = 0xff packet[0x0b] = 0xff else: packet[0x08] = timezone packet[0x09] = 0 packet[0x0a] = 0 packet[0x0b] = 0 packet[0x0c] = year & 0xff packet[0x0d] = year >> 8 packet[0x0e] = datetime.now().minute packet[0x0f] = datetime.now().hour subyear = str(year)[2:] packet[0x10] = int(subyear) packet[0x11] = datetime.now().isoweekday() packet[0x12] = datetime.now().day packet[0x13] = datetime.now().month packet[0x18] = int(address[0]) packet[0x19] = int(address[1]) packet[0x1a] = int(address[2]) packet[0x1b] = int(address[3]) packet[0x1c] = port & 0xff packet[0x1d] = port >> 8 packet[0x26] = 6 checksum = 0xbeaf for i in range(len(packet)): checksum += packet[i] checksum = checksum & 0xffff packet[0x20] = checksum & 0xff packet[0x21] = checksum >> 8 cs.sendto(packet, ('255.255.255.255', 80)) if timeout is None: response = cs.recvfrom(1024) responsepacket = bytearray(response[0]) host = response[1] mac = responsepacket[0x3a:0x40] devtype = responsepacket[0x34] | responsepacket[0x35] << 8 return gendevice(devtype, host, mac) else: while (time.time() - starttime) < timeout: cs.settimeout(timeout - (time.time() - starttime)) try: response = cs.recvfrom(1024) except socket.timeout: return devices responsepacket = bytearray(response[0]) host = response[1] devtype = responsepacket[0x34] | responsepacket[0x35] << 8 mac = responsepacket[0x3a:0x40] dev = gendevice(devtype, host, mac) devices.append(dev) return devices class device: def __init__(self, host, mac, devtype, timeout=10): self.host = host self.mac = mac self.devtype = devtype self.timeout = timeout self.count = random.randrange(0xffff) self.key = bytearray([ 0x09, 0x76, 0x28, 0x34, 0x3f, 0xe9, 0x9e, 0x23, 0x76, 0x5c, 0x15, 0x13, 0xac, 0xcf, 0x8b, 0x02 ]) self.iv = bytearray([ 0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28, 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58 ]) self.id = bytearray([0, 0, 0, 0]) self.cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) self.cs.bind(('', 0)) self.type = "Unknown" self.lock = threading.Lock() if 'pyaes' in globals(): self.encrypt = self.encrypt_pyaes self.decrypt = self.decrypt_pyaes else: self.encrypt = self.encrypt_pycrypto self.decrypt = self.decrypt_pycrypto def encrypt_pyaes(self, payload): aes = pyaes.AESModeOfOperationCBC(self.key, iv=bytes(self.iv)) return b"".join([ aes.encrypt(bytes(payload[i:i + 16])) for i in range(0, len(payload), 16) ]) def decrypt_pyaes(self, payload): aes = pyaes.AESModeOfOperationCBC(self.key, iv=bytes(self.iv)) return b"".join([ aes.decrypt(bytes(payload[i:i + 16])) for i in range(0, len(payload), 16) ]) def encrypt_pycrypto(self, payload): aes = AES.new(bytes(self.key), AES.MODE_CBC, bytes(self.iv)) return aes.encrypt(bytes(payload)) def decrypt_pycrypto(self, payload): aes = AES.new(bytes(self.key), AES.MODE_CBC, bytes(self.iv)) return aes.decrypt(bytes(payload)) def auth(self): payload = bytearray(0x50) payload[0x04] = 0x31 payload[0x05] = 0x31 payload[0x06] = 0x31 payload[0x07] = 0x31 payload[0x08] = 0x31 payload[0x09] = 0x31 payload[0x0a] = 0x31 payload[0x0b] = 0x31 payload[0x0c] = 0x31 payload[0x0d] = 0x31 payload[0x0e] = 0x31 payload[0x0f] = 0x31 payload[0x10] = 0x31 payload[0x11] = 0x31 payload[0x12] = 0x31 payload[0x1e] = 0x01 payload[0x2d] = 0x01 payload[0x30] = ord('T') payload[0x31] = ord('e') payload[0x32] = ord('s') payload[0x33] = ord('t') payload[0x34] = ord(' ') payload[0x35] = ord(' ') payload[0x36] = ord('1') response = self.send_packet(0x65, payload) payload = self.decrypt(response[0x38:]) if not payload: return False key = payload[0x04:0x14] if len(key) % 16 != 0: return False self.id = payload[0x00:0x04] self.key = key return True def get_type(self): return self.type def send_packet(self, command, payload): self.count = (self.count + 1) & 0xffff packet = bytearray(0x38) packet[0x00] = 0x5a packet[0x01] = 0xa5 packet[0x02] = 0xaa packet[0x03] = 0x55 packet[0x04] = 0x5a packet[0x05] = 0xa5 packet[0x06] = 0xaa packet[0x07] = 0x55 packet[0x24] = 0x2a packet[0x25] = 0x27 packet[0x26] = command packet[0x28] = self.count & 0xff packet[0x29] = self.count >> 8 packet[0x2a] = self.mac[0] packet[0x2b] = self.mac[1] packet[0x2c] = self.mac[2] packet[0x2d] = self.mac[3] packet[0x2e] = self.mac[4] packet[0x2f] = self.mac[5] packet[0x30] = self.id[0] packet[0x31] = self.id[1] packet[0x32] = self.id[2] packet[0x33] = self.id[3] # pad the payload for AES encryption if len(payload) > 0: numpad = (len(payload) // 16 + 1) * 16 payload = payload.ljust(numpad, b"\x00") checksum = 0xbeaf for i in range(len(payload)): checksum += payload[i] checksum = checksum & 0xffff payload = self.encrypt(payload) packet[0x34] = checksum & 0xff packet[0x35] = checksum >> 8 for i in range(len(payload)): packet.append(payload[i]) checksum = 0xbeaf for i in range(len(packet)): checksum += packet[i] checksum = checksum & 0xffff packet[0x20] = checksum & 0xff packet[0x21] = checksum >> 8 starttime = time.time() with self.lock: while True: try: self.cs.sendto(packet, self.host) self.cs.settimeout(1) response = self.cs.recvfrom(2048) break except socket.timeout: if (time.time() - starttime) > self.timeout: raise return bytearray(response[0]) class mp1(device): def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "MP1" def set_power_mask(self, sid_mask, state): """Sets the power state of the smart power strip.""" packet = bytearray(16) packet[0x00] = 0x0d packet[0x02] = 0xa5 packet[0x03] = 0xa5 packet[0x04] = 0x5a packet[0x05] = 0x5a packet[0x06] = 0xb2 + ((sid_mask << 1) if state else sid_mask) packet[0x07] = 0xc0 packet[0x08] = 0x02 packet[0x0a] = 0x03 packet[0x0d] = sid_mask packet[0x0e] = sid_mask if state else 0 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) def set_power(self, sid, state): """Sets the power state of the smart power strip.""" sid_mask = 0x01 << (sid - 1) return self.set_power_mask(sid_mask, state) def check_power_raw(self): """Returns the power state of the smart power strip in raw format.""" packet = bytearray(16) packet[0x00] = 0x0a packet[0x02] = 0xa5 packet[0x03] = 0xa5 packet[0x04] = 0x5a packet[0x05] = 0x5a packet[0x06] = 0xae packet[0x07] = 0xc0 packet[0x08] = 0x01 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: payload = self.decrypt(bytes(response[0x38:])) if type(payload[0x4]) == int: state = payload[0x0e] else: state = ord(payload[0x0e]) return state def check_power(self): """Returns the power state of the smart power strip.""" state = self.check_power_raw() data = {} data['s1'] = bool(state & 0x01) data['s2'] = bool(state & 0x02) data['s3'] = bool(state & 0x04) data['s4'] = bool(state & 0x08) return data class sp1(device): def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "SP1" def set_power(self, state): packet = bytearray(4) packet[0] = state self.send_packet(0x66, packet) class sp2(device): def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "SP2" def set_power(self, state): """Sets the power state of the smart plug.""" packet = bytearray(16) packet[0] = 2 if self.check_nightlight(): packet[4] = 3 if state else 2 else: packet[4] = 1 if state else 0 self.send_packet(0x6a, packet) def set_nightlight(self, state): """Sets the night light state of the smart plug""" packet = bytearray(16) packet[0] = 2 if self.check_power(): packet[4] = 3 if state else 1 else: packet[4] = 2 if state else 0 self.send_packet(0x6a, packet) def check_power(self): """Returns the power state of the smart plug.""" packet = bytearray(16) packet[0] = 1 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: payload = self.decrypt(bytes(response[0x38:])) if type(payload[0x4]) == int: if payload[0x4] == 1 or payload[0x4] == 3: state = True else: state = False else: if ord(payload[0x4]) == 1 or ord(payload[0x4]) == 3: state = True else: state = False return state def check_nightlight(self): """Returns the power state of the smart plug.""" packet = bytearray(16) packet[0] = 1 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: payload = self.decrypt(bytes(response[0x38:])) if type(payload[0x4]) == int: if payload[0x4] == 2 or payload[0x4] == 3: state = True else: state = False else: if ord(payload[0x4]) == 2 or ord(payload[0x4]) == 3: state = True else: state = False return state def get_energy(self): packet = bytearray([8, 0, 254, 1, 5, 1, 0, 0, 0, 45]) response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: payload = self.decrypt(bytes(response[0x38:])) if type(payload[0x07]) == int: energy = int(hex(payload[0x07] * 256 + payload[0x06]) [2:]) + int(hex(payload[0x05])[2:]) / 100.0 else: energy = int( hex(ord(payload[0x07]) * 256 + ord(payload[0x06])) [2:]) + int(hex(ord(payload[0x05]))[2:]) / 100.0 return energy class a1(device): def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "A1" def check_sensors(self): packet = bytearray(16) packet[0] = 1 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: data = {} payload = self.decrypt(bytes(response[0x38:])) if type(payload[0x4]) == int: data['temperature'] = (payload[0x4] * 10 + payload[0x5]) / 10.0 data['humidity'] = (payload[0x6] * 10 + payload[0x7]) / 10.0 light = payload[0x8] air_quality = payload[0x0a] noise = payload[0xc] else: data['temperature'] = ( ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0 data['humidity'] = ( ord(payload[0x6]) * 10 + ord(payload[0x7])) / 10.0 light = ord(payload[0x8]) air_quality = ord(payload[0x0a]) noise = ord(payload[0xc]) if light == 0: data['light'] = 'dark' elif light == 1: data['light'] = 'dim' elif light == 2: data['light'] = 'normal' elif light == 3: data['light'] = 'bright' else: data['light'] = 'unknown' if air_quality == 0: data['air_quality'] = 'excellent' elif air_quality == 1: data['air_quality'] = 'good' elif air_quality == 2: data['air_quality'] = 'normal' elif air_quality == 3: data['air_quality'] = 'bad' else: data['air_quality'] = 'unknown' if noise == 0: data['noise'] = 'quiet' elif noise == 1: data['noise'] = 'normal' elif noise == 2: data['noise'] = 'noisy' else: data['noise'] = 'unknown' return data def check_sensors_raw(self): packet = bytearray(16) packet[0] = 1 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: data = {} payload = self.decrypt(bytes(response[0x38:])) if type(payload[0x4]) == int: data['temperature'] = (payload[0x4] * 10 + payload[0x5]) / 10.0 data['humidity'] = (payload[0x6] * 10 + payload[0x7]) / 10.0 data['light'] = payload[0x8] data['air_quality'] = payload[0x0a] data['noise'] = payload[0xc] else: data['temperature'] = ( ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0 data['humidity'] = ( ord(payload[0x6]) * 10 + ord(payload[0x7])) / 10.0 data['light'] = ord(payload[0x8]) data['air_quality'] = ord(payload[0x0a]) data['noise'] = ord(payload[0xc]) return data class rm(device): def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "RM2" def check_data(self): packet = bytearray(16) packet[0] = 4 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: payload = self.decrypt(bytes(response[0x38:])) return payload[0x04:] def send_data(self, data): packet = bytearray([0x02, 0x00, 0x00, 0x00]) packet += data self.send_packet(0x6a, packet) def enter_learning(self): packet = bytearray(16) packet[0] = 3 self.send_packet(0x6a, packet) def check_temperature(self): packet = bytearray(16) packet[0] = 1 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: payload = self.decrypt(bytes(response[0x38:])) if type(payload[0x4]) == int: temp = (payload[0x4] * 10 + payload[0x5]) / 10.0 else: temp = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0 return temp # For legacy compatibility - don't use this class rm2(rm): def __init__(self): device.__init__(self, None, None, None) def discover(self): dev = discover() self.host = dev.host self.mac = dev.mac class hysen(device): def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "Hysen heating controller" # Send a request # input_payload should be a bytearray, usually 6 bytes, e.g. bytearray([0x01,0x06,0x00,0x02,0x10,0x00]) # Returns decrypted payload # New behaviour: raises a ValueError if the device response indicates an error or CRC check fails # The function prepends length (2 bytes) and appends CRC def send_request(self, input_payload): from PyCRC.CRC16 import CRC16 crc = CRC16(modbus_flag=True).calculate(bytes(input_payload)) # first byte is length, +2 for CRC16 request_payload = bytearray([len(input_payload) + 2, 0x00]) request_payload.extend(input_payload) # append CRC request_payload.append(crc & 0xFF) request_payload.append((crc >> 8) & 0xFF) # send to device response = self.send_packet(0x6a, request_payload) # check for error err = response[0x22] | (response[0x23] << 8) if err: raise ValueError('broadlink_response_error', err) response_payload = bytearray(self.decrypt(bytes(response[0x38:]))) # experimental check on CRC in response (first 2 bytes are len, and trailing bytes are crc) response_payload_len = response_payload[0] if response_payload_len + 2 > len(response_payload): raise ValueError('hysen_response_error', 'first byte of response is not length') crc = CRC16(modbus_flag=True).calculate( bytes(response_payload[2:response_payload_len])) if (response_payload[response_payload_len] == crc & 0xFF) and ( response_payload[response_payload_len + 1] == (crc >> 8) & 0xFF): return response_payload[2:response_payload_len] else: raise ValueError('hysen_response_error', 'CRC check on response failed') # Get current room temperature in degrees celsius def get_temp(self): payload = self.send_request( bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08])) return payload[0x05] / 2.0 # Get current external temperature in degrees celsius def get_external_temp(self): payload = self.send_request( bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08])) return payload[18] / 2.0 # Get full status (including timer schedule) def get_full_status(self): payload = self.send_request( bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x16])) data = {} data['remote_lock'] = payload[3] & 1 data['power'] = payload[4] & 1 data['active'] = (payload[4] >> 4) & 1 data['temp_manual'] = (payload[4] >> 6) & 1 data['room_temp'] = (payload[5] & 255) / 2.0 data['thermostat_temp'] = (payload[6] & 255) / 2.0 data['auto_mode'] = payload[7] & 15 data['loop_mode'] = (payload[7] >> 4) & 15 data['sensor'] = payload[8] data['osv'] = payload[9] data['dif'] = payload[10] data['svh'] = payload[11] data['svl'] = payload[12] data['room_temp_adj'] = ((payload[13] << 8) + payload[14]) / 2.0 if data['room_temp_adj'] > 32767: data['room_temp_adj'] = 32767 - data['room_temp_adj'] data['fre'] = payload[15] data['poweron'] = payload[16] data['unknown'] = payload[17] data['external_temp'] = (payload[18] & 255) / 2.0 data['hour'] = payload[19] data['min'] = payload[20] data['sec'] = payload[21] data['dayofweek'] = payload[22] weekday = [] for i in range(0, 6): weekday.append({ 'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0 }) data['weekday'] = weekday weekend = [] for i in range(6, 8): weekend.append({ 'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0 }) data['weekend'] = weekend return data # Change controller mode # auto_mode = 1 for auto (scheduled/timed) mode, 0 for manual mode. # Manual mode will activate last used temperature. In typical usage call set_temp to activate manual control and set temp. # loop_mode refers to index in [ "12345,67", "123456,7", "1234567" ] # E.g. loop_mode = 0 ("12345,67") means Saturday and Sunday follow the "weekend" schedule # loop_mode = 2 ("1234567") means every day (including Saturday and Sunday) follows the "weekday" schedule # The sensor command is currently experimental def set_mode(self, auto_mode, loop_mode, sensor=0): mode_byte = ((loop_mode + 1) << 4) + auto_mode # print 'Mode byte: 0x'+ format(mode_byte, '02x') self.send_request( bytearray([0x01, 0x06, 0x00, 0x02, mode_byte, sensor])) # Advanced settings # Sensor mode (SEN) sensor = 0 for internal sensor, 1 for external sensor, 2 for internal control temperature, external limit temperature. Factory default: 0. # Set temperature range for external sensor (OSV) osv = 5..99. Factory default: 42C # Deadzone for floor temprature (dIF) dif = 1..9. Factory default: 2C # Upper temperature limit for internal sensor (SVH) svh = 5..99. Factory default: 35C # Lower temperature limit for internal sensor (SVL) svl = 5..99. Factory default: 5C # Actual temperature calibration (AdJ) adj = -0.5. Prescision 0.1C # Anti-freezing function (FrE) fre = 0 for anti-freezing function shut down, 1 for anti-freezing function open. Factory default: 0 # Power on memory (POn) poweron = 0 for power on memory off, 1 for power on memory on. Factory default: 0 def set_advanced(self, loop_mode, sensor, osv, dif, svh, svl, adj, fre, poweron): input_payload = bytearray([ 0x01, 0x10, 0x00, 0x02, 0x00, 0x05, 0x0a, loop_mode, sensor, osv, dif, svh, svl, (int(adj * 2) >> 8 & 0xff), (int(adj * 2) & 0xff), fre, poweron ]) self.send_request(input_payload) # For backwards compatibility only. Prefer calling set_mode directly. Note this function invokes loop_mode=0 and sensor=0. def switch_to_auto(self): self.set_mode(auto_mode=1, loop_mode=0) def switch_to_manual(self): self.set_mode(auto_mode=0, loop_mode=0) # Set temperature for manual mode (also activates manual mode if currently in automatic) def set_temp(self, temp): self.send_request( bytearray([0x01, 0x06, 0x00, 0x01, 0x00, int(temp * 2)])) # Set device on(1) or off(0), does not deactivate Wifi connectivity. Remote lock disables control by buttons on thermostat. def set_power(self, power=1, remote_lock=0): self.send_request( bytearray([0x01, 0x06, 0x00, 0x00, remote_lock, power])) # set time on device # n.b. day=1 is Monday, ..., day=7 is Sunday def set_time(self, hour, minute, second, day): self.send_request( bytearray([ 0x01, 0x10, 0x00, 0x08, 0x00, 0x02, 0x04, hour, minute, second, day ])) # Set timer schedule # Format is the same as you get from get_full_status. # weekday is a list (ordered) of 6 dicts like: # {'start_hour':17, 'start_minute':30, 'temp': 22 } # Each one specifies the thermostat temp that will become effective at start_hour:start_minute # weekend is similar but only has 2 (e.g. switch on in morning and off in afternoon) def set_schedule(self, weekday, weekend): # Begin with some magic values ... input_payload = bytearray([0x01, 0x10, 0x00, 0x0a, 0x00, 0x0c, 0x18]) # Now simply append times/temps # weekday times for i in range(0, 6): input_payload.append(weekday[i]['start_hour']) input_payload.append(weekday[i]['start_minute']) # weekend times for i in range(0, 2): input_payload.append(weekend[i]['start_hour']) input_payload.append(weekend[i]['start_minute']) # weekday temperatures for i in range(0, 6): input_payload.append(int(weekday[i]['temp'] * 2)) # weekend temperatures for i in range(0, 2): input_payload.append(int(weekend[i]['temp'] * 2)) self.send_request(input_payload) S1C_SENSORS_TYPES = { 0x31: 'Door Sensor', # 49 as hex 0x91: 'Key Fob', # 145 as hex, as serial on fob corpse 0x21: 'Motion Sensor' # 33 as hex } class S1C(device): def __init__(self, *a, **kw): device.__init__(self, *a, **kw) self.type = 'S1C' def get_sensors_status(self): packet = bytearray(16) packet[0] = 0x06 # 0x06 - get sensors info, 0x07 - probably add sensors response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: aes = AES.new(bytes(self.key), AES.MODE_CBC, bytes(self.iv)) payload = aes.decrypt(bytes(response[0x38:])) if payload: count = payload[0x4] sensors = payload[0x6:] sensors_a = [ bytearray(sensors[i * 83:(i + 1) * 83]) for i in range(len(sensors) // 83) ] sens_res = {} for sens in sensors_a: status = ord(chr(sens[0])) _name = str(bytes(sens[4:26]).decode()) _order = ord(chr(sens[1])) _type = ord(chr(sens[3])) _serial = bytes(codecs.encode(sens[26:30], "hex")).decode() type_str = S1C_SENSORS_TYPES.get(_type, 'Unknown') r = { 'status': status, 'name': _name.strip('\x00'), 'type': type_str, 'order': _order, 'serial': _serial, } if r['serial'] != '00000000': sens_res[r['serial']]=r result = {'count': count, 'sensors': sens_res} return result else: raise ValueError('broadlink_response_error', err) def get_alarm_status(self): packet = bytearray(16) packet[0] = 0x12 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: aes = AES.new(bytes(self.key), AES.MODE_CBC, bytes(self.iv)) payload = aes.decrypt(bytes(response[0x38:])) status = payload[4] return status else: raise ValueError('broadlink_response_error', err) def get_trigger_status(self): packet = bytearray(16) packet[0] = 0x10 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: aes = AES.new(bytes(self.key), AES.MODE_CBC, bytes(self.iv)) payload = aes.decrypt(bytes(response[0x38:])) triggered = False for i in range(payload[4]): if payload[i * 2 + 4] == 1: triggered = True return triggered else: raise ValueError('broadlink_response_error', err) # Set alarm status # state = 0 disarm. # state = 1 part_arm. # state = 2 full_arm. # notification_sound = True Message notification sound. # alarm_sound = True AlarmSound def set_alarm_status(self, state, notification_sound=None, alarm_sound=None): packet = bytearray(16) packet[0] = 0x11 if state==2: # full_arm packet[4]=0x02 elif state==1: # part_arm: packet[4]=0x01 elif state==0: # disarm: packet[4]=0x00 if notification_sound is not None: packet[13] = 0x02 if alarm_sound is not None: packet[10] = 0x01 response = self.send_packet(0x6a, packet) # check for error err = response[0x22] | (response[0x23] << 8) if err: raise ValueError('broadlink_response_error', err) class dooya(device): def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "Dooya DT360E" def _send(self, magic1, magic2): packet = bytearray(16) packet[0] = 0x09 packet[2] = 0xbb packet[3] = magic1 packet[4] = magic2 packet[9] = 0xfa packet[10] = 0x44 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err == 0: payload = self.decrypt(bytes(response[0x38:])) return ord(payload[4]) def open(self): return self._send(0x01, 0x00) def close(self): return self._send(0x02, 0x00) def stop(self): return self._send(0x03, 0x00) def get_percentage(self): return self._send(0x06, 0x5d) def set_percentage_and_wait(self, new_percentage): current = self.get_percentage() if current > new_percentage: self.close() while current is not None and current > new_percentage: time.sleep(0.2) current = self.get_percentage() elif current < new_percentage: self.open() while current is not None and current < new_percentage: time.sleep(0.2) current = self.get_percentage() self.stop() # Setup a new Broadlink device via AP Mode. Review the README to see how to enter AP Mode. # Only tested with Broadlink RM3 Mini (Blackbean) def setup(ssid, password, security_mode): # Security mode options are (0 - none, 1 = WEP, 2 = WPA1, 3 = WPA2, 4 = WPA1/2) payload = bytearray(0x88) payload[0x26] = 0x14 # This seems to always be set to 14 # Add the SSID to the payload ssid_start = 68 ssid_length = 0 for letter in ssid: payload[(ssid_start + ssid_length)] = ord(letter) ssid_length += 1 # Add the WiFi password to the payload pass_start = 100 pass_length = 0 for letter in password: payload[(pass_start + pass_length)] = ord(letter) pass_length += 1 payload[0x84] = ssid_length # Character length of SSID payload[0x85] = pass_length # Character length of password payload[0x86] = security_mode # Type of encryption (00 - none, 01 = WEP, 02 = WPA1, 03 = WPA2, 04 = WPA1/2) checksum = 0xbeaf for i in range(len(payload)): checksum += payload[i] checksum = checksum & 0xffff payload[0x20] = checksum & 0xff # Checksum 1 position payload[0x21] = checksum >> 8 # Checksum 2 position sock = socket.socket( socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.sendto(payload, ('255.255.255.255', 80))
35.113017
162
0.548179
ad51165eb42d56b612bf7bfb91631d9e3f410837
70,275
py
Python
clarifai_grpc/grpc/api/status/status_code_pb2.py
olga-clarifai/clarifai-python-grpc
c1d45ea965f781de5ccf682b142049c7628d0480
[ "Apache-2.0" ]
null
null
null
clarifai_grpc/grpc/api/status/status_code_pb2.py
olga-clarifai/clarifai-python-grpc
c1d45ea965f781de5ccf682b142049c7628d0480
[ "Apache-2.0" ]
null
null
null
clarifai_grpc/grpc/api/status/status_code_pb2.py
olga-clarifai/clarifai-python-grpc
c1d45ea965f781de5ccf682b142049c7628d0480
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: proto/clarifai/api/status/status_code.proto from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='proto/clarifai/api/status/status_code.proto', package='clarifai.api.status', syntax='proto3', serialized_options=b'\n\034com.clarifai.grpc.api.statusP\001Zvgithub.com/Clarifai/clarifai-go-grpc/proto/clarifai/api/github.com/Clarifai/clarifai-go-grpc/proto/clarifai/api/status\242\002\004CAIP', serialized_pb=b'\n+proto/clarifai/api/status/status_code.proto\x12\x13\x63larifai.api.status*\xe4\x46\n\nStatusCode\x12\x08\n\x04ZERO\x10\x00\x12\x0c\n\x07SUCCESS\x10\x90N\x12\x11\n\x0cMIXED_STATUS\x10\x9aN\x12\x0c\n\x07\x46\x41ILURE\x10\xa4N\x12\x0e\n\tTRY_AGAIN\x10\xaeN\x12\x14\n\x0fNOT_IMPLEMENTED\x10\xb8N\x12\x18\n\x13\x43ONN_ACCOUNT_ISSUES\x10\xf8U\x12\x1b\n\x12\x43ONN_TOKEN_INVALID\x10\xf9U\x1a\x02\x08\x01\x12\x1d\n\x18\x43ONN_CREDENTIALS_INVALID\x10\xfaU\x12\x1d\n\x18\x43ONN_EXCEED_HOURLY_LIMIT\x10\xfbU\x12\x1e\n\x19\x43ONN_EXCEED_MONTHLY_LIMIT\x10\xfcU\x12\x13\n\x0e\x43ONN_THROTTLED\x10\xfdU\x12\x18\n\x13\x43ONN_EXCEEDS_LIMITS\x10\xfeU\x12\x1d\n\x18\x43ONN_INSUFFICIENT_SCOPES\x10\xffU\x12\x15\n\x10\x43ONN_KEY_INVALID\x10\x80V\x12\x17\n\x12\x43ONN_KEY_NOT_FOUND\x10\x81V\x12\x1c\n\x17\x43ONN_BAD_REQUEST_FORMAT\x10\xdcV\x12\x18\n\x13\x43ONN_DOES_NOT_EXIST\x10\xddV\x12\x19\n\x14\x43ONN_INVALID_REQUEST\x10\xdeV\x12\x1c\n\x17\x43ONN_METHOD_NOT_ALLOWED\x10\xdfV\x12\x19\n\x14\x43ONN_NO_GDPR_CONSENT\x10\xe0V\x12\x1e\n\x19\x43ONN_AUTH_METHOD_DISABLED\x10\xc0W\x12\x13\n\rMODEL_TRAINED\x10\xec\xa4\x01\x12\x14\n\x0eMODEL_TRAINING\x10\xed\xa4\x01\x12\x15\n\x0fMODEL_UNTRAINED\x10\xee\xa4\x01\x12\x1f\n\x19MODEL_QUEUED_FOR_TRAINING\x10\xef\xa4\x01\x12\x15\n\x0fMODEL_UPLOADING\x10\xf0\xa4\x01\x12\x1c\n\x16MODEL_UPLOADING_FAILED\x10\xf1\xa4\x01\x12\x1c\n\x16MODEL_TRAINING_NO_DATA\x10\xf6\xa4\x01\x12!\n\x1bMODEL_TRAINING_NO_POSITIVES\x10\xf7\xa4\x01\x12*\n$MODEL_TRAINING_ONE_VS_N_SINGLE_CLASS\x10\xf8\xa4\x01\x12\x1e\n\x18MODEL_TRAINING_TIMED_OUT\x10\xf9\xa4\x01\x12\"\n\x1cMODEL_TRAINING_WAITING_ERROR\x10\xfa\xa4\x01\x12\"\n\x1cMODEL_TRAINING_UNKNOWN_ERROR\x10\xfb\xa4\x01\x12&\n\x1cMODEL_TRAINING_MSG_REDELIVER\x10\xfc\xa4\x01\x1a\x02\x08\x01\x12&\n MODEL_TRAINING_INSUFFICIENT_DATA\x10\xfd\xa4\x01\x12#\n\x1dMODEL_TRAINING_INVALID_PARAMS\x10\xfe\xa4\x01\x12\x34\n.MODEL_TRAINING_INVALID_DATA_TOLERANCE_EXCEEDED\x10\xff\xa4\x01\x12\x1a\n\x14MODEL_MODIFY_SUCCESS\x10\x9e\xa5\x01\x12\x1a\n\x14MODEL_MODIFY_PENDING\x10\x9f\xa5\x01\x12\x19\n\x13MODEL_MODIFY_FAILED\x10\xa0\xa5\x01\x12\x1a\n\x14MODEL_DOES_NOT_EXIST\x10\xd0\xa5\x01\x12\x1d\n\x17MODEL_PERMISSION_DENIED\x10\xd1\xa5\x01\x12\x1c\n\x16MODEL_INVALID_ARGUMENT\x10\xd2\xa5\x01\x12\x1b\n\x15MODEL_INVALID_REQUEST\x10\xd3\xa5\x01\x12\x15\n\x0fMODEL_EVALUATED\x10\xb4\xa6\x01\x12\x16\n\x10MODEL_EVALUATING\x10\xb5\xa6\x01\x12\x19\n\x13MODEL_NOT_EVALUATED\x10\xb6\xa6\x01\x12!\n\x1bMODEL_QUEUED_FOR_EVALUATION\x10\xb7\xa6\x01\x12 \n\x1aMODEL_EVALUATION_TIMED_OUT\x10\xbe\xa6\x01\x12$\n\x1eMODEL_EVALUATION_WAITING_ERROR\x10\xbf\xa6\x01\x12$\n\x1eMODEL_EVALUATION_UNKNOWN_ERROR\x10\xc0\xa6\x01\x12\x1d\n\x17MODEL_PREDICTION_FAILED\x10\xc1\xa6\x01\x12(\n\x1eMODEL_EVALUATION_MSG_REDELIVER\x10\xc2\xa6\x01\x1a\x02\x08\x01\x12\"\n\x1cMODEL_EVALUATION_NEED_LABELS\x10\xc3\xa6\x01\x12\"\n\x1cMODEL_EVALUATION_NEED_INPUTS\x10\xc4\xa6\x01\x12\x1d\n\x17MODEL_DEPLOYMENT_FAILED\x10\xe6\xa6\x01\x12\x15\n\x0fMODEL_DEPLOYING\x10\xe7\xa6\x01\x12!\n\x1bMODEL_QUEUED_FOR_DEPLOYMENT\x10\xe8\xa6\x01\x12\x18\n\x12MODEL_NOT_DEPLOYED\x10\xe9\xa6\x01\x12&\n MODEL_REFERENCE_INVALID_ARGUMENT\x10\x98\xa7\x01\x12*\n$MODEL_EXAMPLE_INPUT_INVALID_ARGUMENT\x10\xac\xa7\x01\x12 \n\x1aWORKFLOW_NO_MATCHING_INPUT\x10\xf1\xab\x01\x12$\n\x1eWORKFLOW_REQUIRE_TRAINED_MODEL\x10\xf2\xab\x01\x12\x18\n\x12WORKFLOW_DUPLICATE\x10\xd4\xac\x01\x12!\n\x1bWORKFLOW_UNSUPPORTED_FORMAT\x10\xd5\xac\x01\x12\x1d\n\x17WORKFLOW_DOES_NOT_EXIST\x10\xd6\xac\x01\x12 \n\x1aWORKFLOW_PERMISSION_DENIED\x10\xd7\xac\x01\x12\x1f\n\x19WORKFLOW_INVALID_ARGUMENT\x10\xd8\xac\x01\x12\x1d\n\x17WORKFLOW_INVALID_RECIPE\x10\xd9\xac\x01\x12\x1f\n\x19WORKFLOW_INVALID_TEMPLATE\x10\xda\xac\x01\x12\x1c\n\x16WORKFLOW_INVALID_GRAPH\x10\xdb\xac\x01\x12\x1f\n\x19WORKFLOW_INTERNAL_FAILURE\x10\xdc\xac\x01\x12\x1e\n\x18WORKFLOW_INVALID_REQUEST\x10\xd7\xb3\x01\x12\x1d\n\x17WORKFLOW_MODIFY_SUCCESS\x10\x86\xad\x01\x12\x1d\n\x17WORKFLOW_MODIFY_PENDING\x10\x87\xad\x01\x12\x1c\n\x16WORKFLOW_MODIFY_FAILED\x10\x88\xad\x01\x12\x1d\n\x17WORKFLOW_REINDEX_FAILED\x10\x89\xad\x01\x12\x1c\n\x16\x43ONCEPT_MODIFY_SUCCESS\x10\xee\xb4\x01\x12\x1c\n\x16\x43ONCEPT_MODIFY_PENDING\x10\xef\xb4\x01\x12\x1b\n\x15\x43ONCEPT_MODIFY_FAILED\x10\xf0\xb4\x01\x12\x18\n\x12\x41NNOTATION_SUCCESS\x10\xd6\xbc\x01\x12\x18\n\x12\x41NNOTATION_PENDING\x10\xd7\xbc\x01\x12\x17\n\x11\x41NNOTATION_FAILED\x10\xd8\xbc\x01\x12\x1f\n\x19\x41NNOTATION_UNKNOWN_STATUS\x10\xda\xbc\x01\x12!\n\x1b\x41NNOTATION_INVALID_ARGUMENT\x10\xdb\xbc\x01\x12\"\n\x1c\x41NNOTATION_PERMISSION_DENIED\x10\xdc\xbc\x01\x12 \n\x1a\x41NNOTATION_AWAITING_REVIEW\x10\xdd\xbc\x01\x12*\n$ANNOTATION_AWAITING_CONSENSUS_REVIEW\x10\xdf\xbc\x01\x12\x1e\n\x18\x41NNOTATION_REVIEW_DENIED\x10\xde\xbc\x01\x12\x1f\n\x19\x41NNOTATION_MODIFY_SUCCESS\x10\xba\xbd\x01\x12\x1f\n\x19\x41NNOTATION_MODIFY_PENDING\x10\xbb\xbd\x01\x12\x1e\n\x18\x41NNOTATION_MODIFY_FAILED\x10\xbc\xbd\x01\x12&\n METADATA_INVALID_PATCH_ARGUMENTS\x10\xc4\xc2\x01\x12\x1c\n\x16METADATA_PARSING_ISSUE\x10\xc5\xc2\x01\x12!\n\x1bMETADATA_MANIPULATION_ISSUE\x10\xc6\xc2\x01\x12\x1c\n\x16TRAINER_JOB_STATE_NONE\x10\xa8\xc3\x01\x12\x1e\n\x18TRAINER_JOB_STATE_QUEUED\x10\xa9\xc3\x01\x12\x1f\n\x19TRAINER_JOB_STATE_RUNNING\x10\xaa\xc3\x01\x12 \n\x1aTRAINER_JOB_STATE_COMPLETE\x10\xab\xc3\x01\x12\x1d\n\x17TRAINER_JOB_STATE_ERROR\x10\xac\xc3\x01\x12\x17\n\x11\x44\x41TA_DUMP_SUCCESS\x10\xbe\xc4\x01\x12\x17\n\x11\x44\x41TA_DUMP_PENDING\x10\xbf\xc4\x01\x12\x16\n\x10\x44\x41TA_DUMP_FAILED\x10\xc0\xc4\x01\x12\x1b\n\x15\x44\x41TA_DUMP_IN_PROGRESS\x10\xc1\xc4\x01\x12\x17\n\x11\x44\x41TA_DUMP_NO_DATA\x10\xc2\xc4\x01\x12\x1d\n\x17\x41PP_DUPLICATION_SUCCESS\x10\xf0\xc4\x01\x12\x1c\n\x16\x41PP_DUPLICATION_FAILED\x10\xf1\xc4\x01\x12\x1d\n\x17\x41PP_DUPLICATION_PENDING\x10\xf2\xc4\x01\x12!\n\x1b\x41PP_DUPLICATION_IN_PROGRESS\x10\xf3\xc4\x01\x12%\n\x1f\x41PP_DUPLICATION_INVALID_REQUEST\x10\xf4\xc4\x01\x12\x1c\n\x16INPUT_DOWNLOAD_SUCCESS\x10\xb0\xea\x01\x12\x1c\n\x16INPUT_DOWNLOAD_PENDING\x10\xb1\xea\x01\x12\x1b\n\x15INPUT_DOWNLOAD_FAILED\x10\xb2\xea\x01\x12 \n\x1aINPUT_DOWNLOAD_IN_PROGRESS\x10\xb3\xea\x01\x12 \n\x1aINPUT_STATUS_UPDATE_FAILED\x10\xb4\xea\x01\x12\x19\n\x13INPUT_DELETE_FAILED\x10\xb5\xea\x01\x12\x15\n\x0fINPUT_DUPLICATE\x10\x94\xeb\x01\x12\x1e\n\x18INPUT_UNSUPPORTED_FORMAT\x10\x95\xeb\x01\x12\x1a\n\x14INPUT_DOES_NOT_EXIST\x10\x96\xeb\x01\x12\x1d\n\x17INPUT_PERMISSION_DENIED\x10\x97\xeb\x01\x12\x1c\n\x16INPUT_INVALID_ARGUMENT\x10\x98\xeb\x01\x12\x16\n\x10INPUT_OVER_LIMIT\x10\x99\xeb\x01\x12\x17\n\x11INPUT_INVALID_URL\x10\x9a\xeb\x01\x12\x1a\n\x14INPUT_MODIFY_SUCCESS\x10\xf8\xeb\x01\x12\x1a\n\x14INPUT_MODIFY_PENDING\x10\xf9\xeb\x01\x12\x19\n\x13INPUT_MODIFY_FAILED\x10\xfb\xeb\x01\x12\x1f\n\x19INPUT_STORAGE_HOST_FAILED\x10\x82\xec\x01\x12\x1d\n\x17\x41LL_INPUT_INVALID_BYTES\x10\xdc\xec\x01\x12\x1b\n\x15INPUT_CLUSTER_SUCCESS\x10\xc0\xed\x01\x12\x1b\n\x15INPUT_CLUSTER_PENDING\x10\xc1\xed\x01\x12\x1a\n\x14INPUT_CLUSTER_FAILED\x10\xc2\xed\x01\x12\x1f\n\x19INPUT_CLUSTER_IN_PROGRESS\x10\xc3\xed\x01\x12\x1b\n\x15INPUT_REINDEX_SUCCESS\x10\xa4\xee\x01\x12\x1b\n\x15INPUT_REINDEX_PENDING\x10\xa5\xee\x01\x12\x1a\n\x14INPUT_REINDEX_FAILED\x10\xa6\xee\x01\x12\x1f\n\x19INPUT_REINDEX_IN_PROGRESS\x10\xa7\xee\x01\x12\"\n\x1cINPUT_VIDEO_DOWNLOAD_SUCCESS\x10\x98\xf2\x01\x12\"\n\x1cINPUT_VIDEO_DOWNLOAD_PENDING\x10\x99\xf2\x01\x12!\n\x1bINPUT_VIDEO_DOWNLOAD_FAILED\x10\x9a\xf2\x01\x12\x1b\n\x15INPUT_VIDEO_DUPLICATE\x10\xfc\xf2\x01\x12$\n\x1eINPUT_VIDEO_UNSUPPORTED_FORMAT\x10\xfd\xf2\x01\x12 \n\x1aINPUT_VIDEO_DOES_NOT_EXIST\x10\xfe\xf2\x01\x12#\n\x1dINPUT_VIDEO_PERMISSION_DENIED\x10\xff\xf2\x01\x12\"\n\x1cINPUT_VIDEO_INVALID_ARGUMENT\x10\x80\xf3\x01\x12\x1c\n\x16INPUT_VIDEO_OVER_LIMIT\x10\x81\xf3\x01\x12\x1d\n\x17INPUT_VIDEO_INVALID_URL\x10\x82\xf3\x01\x12 \n\x1aINPUT_VIDEO_MODIFY_SUCCESS\x10\xe0\xf3\x01\x12 \n\x1aINPUT_VIDEO_MODIFY_PENDING\x10\xe1\xf3\x01\x12\x1f\n\x19INPUT_VIDEO_MODIFY_FAILED\x10\xe3\xf3\x01\x12%\n\x1fINPUT_VIDEO_STORAGE_HOST_FAILED\x10\xea\xf3\x01\x12$\n\x1e\x41LL_INPUT_VIDEOS_INVALID_BYTES\x10\xc4\xf4\x01\x12\x1d\n\x17INPUT_CONNECTION_FAILED\x10\xbc\xb8\x02\x12&\n REQUEST_DISABLED_FOR_MAINTENANCE\x10\xbd\xb8\x02\x12+\n%INPUT_WRITES_DISABLED_FOR_MAINTENANCE\x10\xbe\xb8\x02\x12\x1b\n\x15INPUT_INVALID_REQUEST\x10\xbf\xb8\x02\x12\x1d\n\x17PREDICT_INVALID_REQUEST\x10\xc1\xb8\x02\x12\x1c\n\x16SEARCH_INVALID_REQUEST\x10\xc2\xb8\x02\x12\x1e\n\x18\x43ONCEPTS_INVALID_REQUEST\x10\xc3\xb8\x02\x12\x1b\n\x15STATS_INVALID_REQUEST\x10\xc4\xb8\x02\x12\x1c\n\x16\x44\x41TABASE_DUPLICATE_KEY\x10\xca\xb8\x02\x12 \n\x1a\x44\x41TABASE_STATEMENT_TIMEOUT\x10\xcb\xb8\x02\x12$\n\x1e\x44\x41TABASE_INVALID_ROWS_AFFECTED\x10\xcc\xb8\x02\x12 \n\x1a\x44\x41TABASE_DEADLOCK_DETECTED\x10\xcd\xb8\x02\x12\x18\n\x12\x44\x41TABASE_FAIL_TASK\x10\xce\xb8\x02\x12&\n DATABASE_FAIL_TO_GET_CONNECTIONS\x10\xcf\xb8\x02\x12\x1f\n\x19\x44\x41TABASE_TOO_MANY_CLIENTS\x10\xd0\xb8\x02\x12\"\n\x1c\x44\x41TABASE_CONSTRAINT_VIOLATED\x10\xd1\xb8\x02\x12\x1f\n\x19\x41SYNC_WORKER_MULTI_ERRORS\x10\xd4\xb8\x02\x12\x1c\n\x16RPC_REQUEST_QUEUE_FULL\x10\xde\xb8\x02\x12\x1c\n\x16RPC_SERVER_UNAVAILABLE\x10\xdf\xb8\x02\x12\x19\n\x13RPC_REQUEST_TIMEOUT\x10\xe0\xb8\x02\x12#\n\x1dRPC_MAX_MESSAGE_SIZE_EXCEEDED\x10\xe1\xb8\x02\x12\x12\n\x0cRPC_CANCELED\x10\xe3\xb8\x02\x12\x18\n\x12RPC_UNKNOWN_METHOD\x10\xe4\xb8\x02\x12\x1e\n\x18REQUEST_CANCELED_BY_USER\x10\xe5\xb8\x02\x12\x1e\n\x18\x43LUSTER_INTERNAL_FAILURE\x10\xa0\xd0\x02\x12\x1f\n\x19\x45XTERNAL_CONNECTION_ERROR\x10\xe2\xb8\x02\x12\x16\n\x10QUEUE_CONN_ERROR\x10\xa8\xc0\x02\x12!\n\x1bQUEUE_CLOSE_REQUEST_TIMEOUT\x10\xaa\xc0\x02\x12\x17\n\x11QUEUE_CONN_CLOSED\x10\xab\xc0\x02\x12\x1f\n\x19QUEUE_PUBLISH_ACK_TIMEOUT\x10\xac\xc0\x02\x12\x19\n\x13QUEUE_PUBLISH_ERROR\x10\xad\xc0\x02\x12 \n\x1aQUEUE_SUBSCRIPTION_TIMEOUT\x10\xae\xc0\x02\x12\x1e\n\x18QUEUE_SUBSCRIPTION_ERROR\x10\xaf\xc0\x02\x12\x1e\n\x18QUEUE_MARSHALLING_FAILED\x10\xb0\xc0\x02\x12 \n\x1aQUEUE_UNMARSHALLING_FAILED\x10\xb1\xc0\x02\x12\'\n!QUEUE_MAX_MSG_REDELIVERY_EXCEEDED\x10\xb2\xc0\x02\x12\x17\n\x11QUEUE_ACK_FAILURE\x10\xb3\xc0\x02\x12\x13\n\rSQS_OVERLIMIT\x10\x8c\xc1\x02\x12 \n\x1aSQS_INVALID_RECEIPT_HANDLE\x10\x8d\xc1\x02\x12\x11\n\x0bSQS_UNKNOWN\x10\x8e\xc1\x02\x12\x1d\n\x17SEARCH_INTERNAL_FAILURE\x10\xf9\xcf\x02\x12\x1f\n\x19SEARCH_PROJECTION_FAILURE\x10\xfa\xcf\x02\x12\x1f\n\x19SEARCH_PREDICTION_FAILURE\x10\xfb\xcf\x02\x12\'\n!SEARCH_BY_NOT_FULLY_INDEXED_INPUT\x10\xfc\xcf\x02\x12 \n\x1aSAVED_SEARCH_MODIFY_FAILED\x10\xfd\xcf\x02\x12\x17\n\x11\x45VALUATION_QUEUED\x10\xdc\xd0\x02\x12\x1c\n\x16\x45VALUATION_IN_PROGRESS\x10\xdd\xd0\x02\x12\x18\n\x12\x45VALUATION_SUCCESS\x10\xde\xd0\x02\x12(\n\"EVALUATION_FAILED_TO_RETRIEVE_DATA\x10\xdf\xd0\x02\x12!\n\x1b\x45VALUATION_INVALID_ARGUMENT\x10\xe0\xd0\x02\x12\x17\n\x11\x45VALUATION_FAILED\x10\xe1\xd0\x02\x12\x18\n\x12\x45VALUATION_PENDING\x10\xe2\xd0\x02\x12\x1a\n\x14\x45VALUATION_TIMED_OUT\x10\xe3\xd0\x02\x12!\n\x1b\x45VALUATION_UNEXPECTED_ERROR\x10\xe4\xd0\x02\x12\x16\n\x10\x45VALUATION_MIXED\x10\xe5\xd0\x02\x12\x18\n\x12STRIPE_EVENT_ERROR\x10\xe1\xd7\x02\x12\x10\n\nCACHE_MISS\x10\xc9\xdf\x02\x12&\n REDIS_SCRIPT_EXITED_WITH_FAILURE\x10\xca\xdf\x02\x12\x16\n\x10REDIS_STREAM_ERR\x10\xcb\xdf\x02\x12\x18\n\x12REDIS_NO_CONSUMERS\x10\xcc\xdf\x02\x12\x1a\n\x14REDIS_STREAM_BACKOFF\x10\xcd\xdf\x02\x12\x18\n\x12SIGNUP_EVENT_ERROR\x10\xb1\xe7\x02\x12\x14\n\x0eSIGNUP_FLAGGED\x10\xb2\xe7\x02\x12\x1a\n\x14\x46ILETYPE_UNSUPPORTED\x10\xb3\xe7\x02\x12\x1f\n\x19\x41PP_COUNT_INVALID_MESSAGE\x10\x99\xef\x02\x12\'\n!APP_COUNT_UPDATE_INCREMENT_FAILED\x10\x9a\xef\x02\x12\x1e\n\x18\x41PP_COUNT_REBUILD_FAILED\x10\x9b\xef\x02\x12 \n\x1a\x41PP_COUNT_INTERNAL_FAILURE\x10\x9c\xef\x02\x12\x17\n\x11MP_DOWNLOAD_ERROR\x10\xfd\xef\x02\x12\x1a\n\x14MP_RESOLVE_DNS_ERROR\x10\xfe\xef\x02\x12)\n#MP_DOWNLOAD_MAX_SIZE_EXCEEDED_ERROR\x10\xff\xef\x02\x12\x1b\n\x15MP_IMAGE_DECODE_ERROR\x10\x80\xf0\x02\x12\x19\n\x13MP_INVALID_ARGUMENT\x10\x81\xf0\x02\x12\x1f\n\x19MP_IMAGE_PROCESSING_ERROR\x10\x82\xf0\x02\x12\x19\n\x13\x44\x41TATIER_CONN_ERROR\x10\xe1\xf0\x02\x12\x17\n\x11USER_CONSENT_FACE\x10\xd1\x86\x03\x12\x14\n\x0eWORKER_MISSING\x10\xb8\x8e\x03\x12\x13\n\rWORKER_ACTIVE\x10\xb9\x8e\x03\x12\x15\n\x0fWORKER_INACTIVE\x10\xba\x8e\x03\x12\x17\n\x11\x43OLLECTOR_MISSING\x10\xa0\x96\x03\x12\x16\n\x10\x43OLLECTOR_ACTIVE\x10\xa1\x96\x03\x12\x18\n\x12\x43OLLECTOR_INACTIVE\x10\xa2\x96\x03\x12!\n\x1b\x43OLLECTOR_POST_INPUT_FAILED\x10\xa3\x96\x03\x12*\n$SSO_IDENTITY_PROVIDER_DOES_NOT_EXIST\x10\x89\x9e\x03\x12\x16\n\x10TASK_IN_PROGRESS\x10\xf1\xa5\x03\x12\x0f\n\tTASK_DONE\x10\xf2\xa5\x03\x12\x12\n\x0cTASK_WONT_DO\x10\xf3\xa5\x03\x12\"\n\x1cTASK_ADD_ANNOTATIONS_FAILURE\x10\xf5\xa5\x03\x12\x13\n\rTASK_CONFLICT\x10\xd4\xa6\x03\x12\x1a\n\x14TASK_NOT_IMPLEMENTED\x10\xd5\xa6\x03\x12\x12\n\x0cTASK_MISSING\x10\xd6\xa6\x03\x12\x19\n\x13LABEL_ORDER_PENDING\x10\xd9\xad\x03\x12\x1d\n\x17LABEL_ORDER_IN_PROGRESS\x10\xda\xad\x03\x12\x19\n\x13LABEL_ORDER_SUCCESS\x10\xdb\xad\x03\x12\x1a\n\x14LABEL_ORDER_CANCELED\x10\xdc\xad\x03\x12\x14\n\x0eLICENSE_ACTIVE\x10\xe0\xd4\x03\x12\x1c\n\x16LICENSE_DOES_NOT_EXIST\x10\xe1\xd4\x03\x12\x19\n\x13LICENSE_NEED_UPDATE\x10\xe2\xd4\x03\x12\x15\n\x0fLICENSE_EXPIRED\x10\xe3\xd4\x03\x12\x15\n\x0fLICENSE_REVOKED\x10\xe4\xd4\x03\x12\x15\n\x0fLICENSE_DELETED\x10\xe5\xd4\x03\x12\x1d\n\x17LICENSE_VOLUME_EXCEEDED\x10\xe6\xd4\x03\x12!\n\x1bPASSWORD_VALIDATION_SUCCESS\x10\xc8\xdc\x03\x12 \n\x1aPASSWORD_VALIDATION_FAILED\x10\xc9\xdc\x03\x12%\n\x1fPASSWORDPOLICY_INVALID_ARGUMENT\x10\xca\xdc\x03\x12\"\n\x1c\x46\x45\x41TUREFLAG_CONFIG_NOT_FOUND\x10\xb0\xe4\x03\x12\"\n\x1c\x46\x45\x41TUREFLAG_INVALID_ARGUMENT\x10\xb1\xe4\x03\x12\x19\n\x13\x46\x45\x41TUREFLAG_BLOCKED\x10\xb2\xe4\x03\x12\x19\n\x13MAINTENANCE_SUCCESS\x10\x98\xec\x03\x12\x18\n\x12MAINTENANCE_FAILED\x10\x99\xec\x03\x12\x1d\n\x17\x44\x41TASET_VERSION_PENDING\x10\x85\xf4\x03\x12!\n\x1b\x44\x41TASET_VERSION_IN_PROGRESS\x10\x8a\xf4\x03\x12\x1b\n\x15\x44\x41TASET_VERSION_READY\x10\x8f\xf4\x03\x12\x1d\n\x17\x44\x41TASET_VERSION_FAILURE\x10\x94\xf4\x03\x12&\n DATASET_VERSION_UNEXPECTED_ERROR\x10\x99\xf4\x03\x12\x10\n\nJOB_QUEUED\x10\x80\xf4\x03\x12\x11\n\x0bJOB_RUNNING\x10\x81\xf4\x03\x12\x13\n\rJOB_COMPLETED\x10\x82\xf4\x03\x12\x10\n\nJOB_FAILED\x10\x83\xf4\x03\x12\x1c\n\x16\x41UTH_MISSING_IDP_ASSOC\x10\xe8\xfb\x03\x12\x1b\n\x15INTERNAL_SERVER_ISSUE\x10\xd4\xfd\x05\x12\x1d\n\x17INTERNAL_FETCHING_ISSUE\x10\xd5\xfd\x05\x12\x1d\n\x17INTERNAL_DATABASE_ISSUE\x10\xd6\xfd\x05\x12!\n\x1bINTERNAL_UNEXPECTED_TIMEOUT\x10\xd9\xfd\x05\x12\x1c\n\x16INTERNAL_UNEXPECTED_V1\x10\xda\xfd\x05\x12\x1f\n\x19INTERNAL_UNEXPECTED_PANIC\x10\xdb\xfd\x05\x12\x1f\n\x19INTERNAL_UNEXPECTED_SPIRE\x10\xdc\xfd\x05\x12 \n\x1aINTERNAL_REDIS_UNAVAILABLE\x10\xdd\xfd\x05\x12!\n\x1bINTERNAL_RESOURCE_EXHAUSTED\x10\xde\xfd\x05\x12\"\n\x1cINTERNAL_REDIS_UNCATEGORIZED\x10\xdf\xfd\x05\x12 \n\x1aINTERNAL_AWS_UNCATEGORIZED\x10\xe0\xfd\x05\x12\"\n\x1cINTERNAL_AZURE_UNCATEGORIZED\x10\xe1\xfd\x05\x12\x18\n\x12\x43ONN_UNCATEGORIZED\x10\xb9\x85\x06\x12\x19\n\x13MODEL_UNCATEGORIZED\x10\xba\x85\x06\x12\x19\n\x13INPUT_UNCATEGORIZED\x10\xbb\x85\x06\x12\x1e\n\x18\x41NNOTATION_UNCATEGORIZED\x10\xbc\x85\x06\x12\x1b\n\x15\x42ILLING_UNCATEGORIZED\x10\xbd\x85\x06\x12\x1c\n\x16INTERNAL_UNCATEGORIZED\x10\xc1\x85\x06\x12\x11\n\x0b\x42\x41\x44_REQUEST\x10\xa0\xc2\x05\x12\x12\n\x0cSERVER_ERROR\x10\x84\xc3\x05\"\x08\x08\xe8\x81\x02\x10\xe8\x81\x02\"\x08\x08\xe9\x81\x02\x10\xe9\x81\x02\"\x08\x08\xea\x81\x02\x10\xea\x81\x02\"\x08\x08\xcc\x82\x02\x10\xcc\x82\x02\"\x08\x08\xcd\x82\x02\x10\xcd\x82\x02\"\x08\x08\xce\x82\x02\x10\xce\x82\x02\"\x08\x08\xcf\x82\x02\x10\xcf\x82\x02\"\x08\x08\xd0\x82\x02\x10\xd0\x82\x02\"\x08\x08\xd1\x82\x02\x10\xd1\x82\x02\"\x08\x08\xd2\x82\x02\x10\xd2\x82\x02\"\x08\x08\xb0\x83\x02\x10\xb0\x83\x02\"\x08\x08\xb1\x83\x02\x10\xb1\x83\x02\"\x08\x08\xb3\x83\x02\x10\xb3\x83\x02\"\x08\x08\xba\x83\x02\x10\xba\x83\x02\"\x08\x08\xbb\xb8\x02\x10\xbb\xb8\x02\"\x08\x08\xd2\xb8\x02\x10\xd2\xb8\x02\"\x08\x08\xd3\xb8\x02\x10\xd3\xb8\x02\"\x08\x08\xf0\xc1\x02\x10\xf0\xc1\x02\"\x08\x08\xf1\xc1\x02\x10\xf1\xc1\x02\"\x08\x08\xf2\xc1\x02\x10\xf2\xc1\x02\"\x08\x08\xf3\xc1\x02\x10\xf3\xc1\x02\"\x08\x08\xf4\xc1\x02\x10\xf4\xc1\x02\x42\x9f\x01\n\x1c\x63om.clarifai.grpc.api.statusP\x01Zvgithub.com/Clarifai/clarifai-go-grpc/proto/clarifai/api/github.com/Clarifai/clarifai-go-grpc/proto/clarifai/api/status\xa2\x02\x04\x43\x41IPb\x06proto3' ) _STATUSCODE = _descriptor.EnumDescriptor( name='StatusCode', full_name='clarifai.api.status.StatusCode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='ZERO', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SUCCESS', index=1, number=10000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MIXED_STATUS', index=2, number=10010, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FAILURE', index=3, number=10020, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TRY_AGAIN', index=4, number=10030, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NOT_IMPLEMENTED', index=5, number=10040, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_ACCOUNT_ISSUES', index=6, number=11000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_TOKEN_INVALID', index=7, number=11001, serialized_options=b'\010\001', type=None), _descriptor.EnumValueDescriptor( name='CONN_CREDENTIALS_INVALID', index=8, number=11002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_EXCEED_HOURLY_LIMIT', index=9, number=11003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_EXCEED_MONTHLY_LIMIT', index=10, number=11004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_THROTTLED', index=11, number=11005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_EXCEEDS_LIMITS', index=12, number=11006, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_INSUFFICIENT_SCOPES', index=13, number=11007, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_KEY_INVALID', index=14, number=11008, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_KEY_NOT_FOUND', index=15, number=11009, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_BAD_REQUEST_FORMAT', index=16, number=11100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_DOES_NOT_EXIST', index=17, number=11101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_INVALID_REQUEST', index=18, number=11102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_METHOD_NOT_ALLOWED', index=19, number=11103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_NO_GDPR_CONSENT', index=20, number=11104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_AUTH_METHOD_DISABLED', index=21, number=11200, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINED', index=22, number=21100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING', index=23, number=21101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_UNTRAINED', index=24, number=21102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_QUEUED_FOR_TRAINING', index=25, number=21103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_UPLOADING', index=26, number=21104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_UPLOADING_FAILED', index=27, number=21105, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_NO_DATA', index=28, number=21110, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_NO_POSITIVES', index=29, number=21111, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_ONE_VS_N_SINGLE_CLASS', index=30, number=21112, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_TIMED_OUT', index=31, number=21113, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_WAITING_ERROR', index=32, number=21114, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_UNKNOWN_ERROR', index=33, number=21115, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_MSG_REDELIVER', index=34, number=21116, serialized_options=b'\010\001', type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_INSUFFICIENT_DATA', index=35, number=21117, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_INVALID_PARAMS', index=36, number=21118, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_TRAINING_INVALID_DATA_TOLERANCE_EXCEEDED', index=37, number=21119, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_MODIFY_SUCCESS', index=38, number=21150, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_MODIFY_PENDING', index=39, number=21151, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_MODIFY_FAILED', index=40, number=21152, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_DOES_NOT_EXIST', index=41, number=21200, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_PERMISSION_DENIED', index=42, number=21201, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_INVALID_ARGUMENT', index=43, number=21202, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_INVALID_REQUEST', index=44, number=21203, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATED', index=45, number=21300, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATING', index=46, number=21301, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_NOT_EVALUATED', index=47, number=21302, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_QUEUED_FOR_EVALUATION', index=48, number=21303, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATION_TIMED_OUT', index=49, number=21310, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATION_WAITING_ERROR', index=50, number=21311, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATION_UNKNOWN_ERROR', index=51, number=21312, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_PREDICTION_FAILED', index=52, number=21313, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATION_MSG_REDELIVER', index=53, number=21314, serialized_options=b'\010\001', type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATION_NEED_LABELS', index=54, number=21315, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EVALUATION_NEED_INPUTS', index=55, number=21316, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_DEPLOYMENT_FAILED', index=56, number=21350, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_DEPLOYING', index=57, number=21351, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_QUEUED_FOR_DEPLOYMENT', index=58, number=21352, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_NOT_DEPLOYED', index=59, number=21353, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_REFERENCE_INVALID_ARGUMENT', index=60, number=21400, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_EXAMPLE_INPUT_INVALID_ARGUMENT', index=61, number=21420, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_NO_MATCHING_INPUT', index=62, number=22001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_REQUIRE_TRAINED_MODEL', index=63, number=22002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_DUPLICATE', index=64, number=22100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_UNSUPPORTED_FORMAT', index=65, number=22101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_DOES_NOT_EXIST', index=66, number=22102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_PERMISSION_DENIED', index=67, number=22103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_INVALID_ARGUMENT', index=68, number=22104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_INVALID_RECIPE', index=69, number=22105, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_INVALID_TEMPLATE', index=70, number=22106, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_INVALID_GRAPH', index=71, number=22107, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_INTERNAL_FAILURE', index=72, number=22108, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_INVALID_REQUEST', index=73, number=22999, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_MODIFY_SUCCESS', index=74, number=22150, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_MODIFY_PENDING', index=75, number=22151, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_MODIFY_FAILED', index=76, number=22152, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKFLOW_REINDEX_FAILED', index=77, number=22153, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONCEPT_MODIFY_SUCCESS', index=78, number=23150, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONCEPT_MODIFY_PENDING', index=79, number=23151, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONCEPT_MODIFY_FAILED', index=80, number=23152, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_SUCCESS', index=81, number=24150, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_PENDING', index=82, number=24151, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_FAILED', index=83, number=24152, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_UNKNOWN_STATUS', index=84, number=24154, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_INVALID_ARGUMENT', index=85, number=24155, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_PERMISSION_DENIED', index=86, number=24156, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_AWAITING_REVIEW', index=87, number=24157, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_AWAITING_CONSENSUS_REVIEW', index=88, number=24159, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_REVIEW_DENIED', index=89, number=24158, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_MODIFY_SUCCESS', index=90, number=24250, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_MODIFY_PENDING', index=91, number=24251, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_MODIFY_FAILED', index=92, number=24252, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='METADATA_INVALID_PATCH_ARGUMENTS', index=93, number=24900, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='METADATA_PARSING_ISSUE', index=94, number=24901, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='METADATA_MANIPULATION_ISSUE', index=95, number=24902, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TRAINER_JOB_STATE_NONE', index=96, number=25000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TRAINER_JOB_STATE_QUEUED', index=97, number=25001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TRAINER_JOB_STATE_RUNNING', index=98, number=25002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TRAINER_JOB_STATE_COMPLETE', index=99, number=25003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TRAINER_JOB_STATE_ERROR', index=100, number=25004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DUMP_SUCCESS', index=101, number=25150, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DUMP_PENDING', index=102, number=25151, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DUMP_FAILED', index=103, number=25152, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DUMP_IN_PROGRESS', index=104, number=25153, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DUMP_NO_DATA', index=105, number=25154, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_DUPLICATION_SUCCESS', index=106, number=25200, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_DUPLICATION_FAILED', index=107, number=25201, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_DUPLICATION_PENDING', index=108, number=25202, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_DUPLICATION_IN_PROGRESS', index=109, number=25203, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_DUPLICATION_INVALID_REQUEST', index=110, number=25204, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_DOWNLOAD_SUCCESS', index=111, number=30000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_DOWNLOAD_PENDING', index=112, number=30001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_DOWNLOAD_FAILED', index=113, number=30002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_DOWNLOAD_IN_PROGRESS', index=114, number=30003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_STATUS_UPDATE_FAILED', index=115, number=30004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_DELETE_FAILED', index=116, number=30005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_DUPLICATE', index=117, number=30100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_UNSUPPORTED_FORMAT', index=118, number=30101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_DOES_NOT_EXIST', index=119, number=30102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_PERMISSION_DENIED', index=120, number=30103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_INVALID_ARGUMENT', index=121, number=30104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_OVER_LIMIT', index=122, number=30105, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_INVALID_URL', index=123, number=30106, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_MODIFY_SUCCESS', index=124, number=30200, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_MODIFY_PENDING', index=125, number=30201, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_MODIFY_FAILED', index=126, number=30203, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_STORAGE_HOST_FAILED', index=127, number=30210, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ALL_INPUT_INVALID_BYTES', index=128, number=30300, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_CLUSTER_SUCCESS', index=129, number=30400, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_CLUSTER_PENDING', index=130, number=30401, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_CLUSTER_FAILED', index=131, number=30402, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_CLUSTER_IN_PROGRESS', index=132, number=30403, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_REINDEX_SUCCESS', index=133, number=30500, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_REINDEX_PENDING', index=134, number=30501, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_REINDEX_FAILED', index=135, number=30502, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_REINDEX_IN_PROGRESS', index=136, number=30503, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_DOWNLOAD_SUCCESS', index=137, number=31000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_DOWNLOAD_PENDING', index=138, number=31001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_DOWNLOAD_FAILED', index=139, number=31002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_DUPLICATE', index=140, number=31100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_UNSUPPORTED_FORMAT', index=141, number=31101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_DOES_NOT_EXIST', index=142, number=31102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_PERMISSION_DENIED', index=143, number=31103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_INVALID_ARGUMENT', index=144, number=31104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_OVER_LIMIT', index=145, number=31105, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_INVALID_URL', index=146, number=31106, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_MODIFY_SUCCESS', index=147, number=31200, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_MODIFY_PENDING', index=148, number=31201, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_MODIFY_FAILED', index=149, number=31203, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_VIDEO_STORAGE_HOST_FAILED', index=150, number=31210, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ALL_INPUT_VIDEOS_INVALID_BYTES', index=151, number=31300, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_CONNECTION_FAILED', index=152, number=39996, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='REQUEST_DISABLED_FOR_MAINTENANCE', index=153, number=39997, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_WRITES_DISABLED_FOR_MAINTENANCE', index=154, number=39998, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_INVALID_REQUEST', index=155, number=39999, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PREDICT_INVALID_REQUEST', index=156, number=40001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SEARCH_INVALID_REQUEST', index=157, number=40002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONCEPTS_INVALID_REQUEST', index=158, number=40003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='STATS_INVALID_REQUEST', index=159, number=40004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_DUPLICATE_KEY', index=160, number=40010, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_STATEMENT_TIMEOUT', index=161, number=40011, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_INVALID_ROWS_AFFECTED', index=162, number=40012, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_DEADLOCK_DETECTED', index=163, number=40013, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_FAIL_TASK', index=164, number=40014, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_FAIL_TO_GET_CONNECTIONS', index=165, number=40015, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_TOO_MANY_CLIENTS', index=166, number=40016, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATABASE_CONSTRAINT_VIOLATED', index=167, number=40017, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ASYNC_WORKER_MULTI_ERRORS', index=168, number=40020, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RPC_REQUEST_QUEUE_FULL', index=169, number=40030, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RPC_SERVER_UNAVAILABLE', index=170, number=40031, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RPC_REQUEST_TIMEOUT', index=171, number=40032, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RPC_MAX_MESSAGE_SIZE_EXCEEDED', index=172, number=40033, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RPC_CANCELED', index=173, number=40035, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='RPC_UNKNOWN_METHOD', index=174, number=40036, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='REQUEST_CANCELED_BY_USER', index=175, number=40037, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CLUSTER_INTERNAL_FAILURE', index=176, number=43040, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EXTERNAL_CONNECTION_ERROR', index=177, number=40034, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_CONN_ERROR', index=178, number=41000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_CLOSE_REQUEST_TIMEOUT', index=179, number=41002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_CONN_CLOSED', index=180, number=41003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_PUBLISH_ACK_TIMEOUT', index=181, number=41004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_PUBLISH_ERROR', index=182, number=41005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_SUBSCRIPTION_TIMEOUT', index=183, number=41006, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_SUBSCRIPTION_ERROR', index=184, number=41007, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_MARSHALLING_FAILED', index=185, number=41008, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_UNMARSHALLING_FAILED', index=186, number=41009, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_MAX_MSG_REDELIVERY_EXCEEDED', index=187, number=41010, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='QUEUE_ACK_FAILURE', index=188, number=41011, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SQS_OVERLIMIT', index=189, number=41100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SQS_INVALID_RECEIPT_HANDLE', index=190, number=41101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SQS_UNKNOWN', index=191, number=41102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SEARCH_INTERNAL_FAILURE', index=192, number=43001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SEARCH_PROJECTION_FAILURE', index=193, number=43002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SEARCH_PREDICTION_FAILURE', index=194, number=43003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SEARCH_BY_NOT_FULLY_INDEXED_INPUT', index=195, number=43004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SAVED_SEARCH_MODIFY_FAILED', index=196, number=43005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_QUEUED', index=197, number=43100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_IN_PROGRESS', index=198, number=43101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_SUCCESS', index=199, number=43102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_FAILED_TO_RETRIEVE_DATA', index=200, number=43103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_INVALID_ARGUMENT', index=201, number=43104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_FAILED', index=202, number=43105, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_PENDING', index=203, number=43106, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_TIMED_OUT', index=204, number=43107, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_UNEXPECTED_ERROR', index=205, number=43108, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='EVALUATION_MIXED', index=206, number=43109, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='STRIPE_EVENT_ERROR', index=207, number=44001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CACHE_MISS', index=208, number=45001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='REDIS_SCRIPT_EXITED_WITH_FAILURE', index=209, number=45002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='REDIS_STREAM_ERR', index=210, number=45003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='REDIS_NO_CONSUMERS', index=211, number=45004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='REDIS_STREAM_BACKOFF', index=212, number=45005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SIGNUP_EVENT_ERROR', index=213, number=46001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SIGNUP_FLAGGED', index=214, number=46002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FILETYPE_UNSUPPORTED', index=215, number=46003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_COUNT_INVALID_MESSAGE', index=216, number=47001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_COUNT_UPDATE_INCREMENT_FAILED', index=217, number=47002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_COUNT_REBUILD_FAILED', index=218, number=47003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APP_COUNT_INTERNAL_FAILURE', index=219, number=47004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MP_DOWNLOAD_ERROR', index=220, number=47101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MP_RESOLVE_DNS_ERROR', index=221, number=47102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MP_DOWNLOAD_MAX_SIZE_EXCEEDED_ERROR', index=222, number=47103, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MP_IMAGE_DECODE_ERROR', index=223, number=47104, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MP_INVALID_ARGUMENT', index=224, number=47105, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MP_IMAGE_PROCESSING_ERROR', index=225, number=47106, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATATIER_CONN_ERROR', index=226, number=47201, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='USER_CONSENT_FACE', index=227, number=50001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKER_MISSING', index=228, number=51000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKER_ACTIVE', index=229, number=51001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WORKER_INACTIVE', index=230, number=51002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='COLLECTOR_MISSING', index=231, number=52000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='COLLECTOR_ACTIVE', index=232, number=52001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='COLLECTOR_INACTIVE', index=233, number=52002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='COLLECTOR_POST_INPUT_FAILED', index=234, number=52003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SSO_IDENTITY_PROVIDER_DOES_NOT_EXIST', index=235, number=53001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TASK_IN_PROGRESS', index=236, number=54001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TASK_DONE', index=237, number=54002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TASK_WONT_DO', index=238, number=54003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TASK_ADD_ANNOTATIONS_FAILURE', index=239, number=54005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TASK_CONFLICT', index=240, number=54100, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TASK_NOT_IMPLEMENTED', index=241, number=54101, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TASK_MISSING', index=242, number=54102, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LABEL_ORDER_PENDING', index=243, number=55001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LABEL_ORDER_IN_PROGRESS', index=244, number=55002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LABEL_ORDER_SUCCESS', index=245, number=55003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LABEL_ORDER_CANCELED', index=246, number=55004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LICENSE_ACTIVE', index=247, number=60000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LICENSE_DOES_NOT_EXIST', index=248, number=60001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LICENSE_NEED_UPDATE', index=249, number=60002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LICENSE_EXPIRED', index=250, number=60003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LICENSE_REVOKED', index=251, number=60004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LICENSE_DELETED', index=252, number=60005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LICENSE_VOLUME_EXCEEDED', index=253, number=60006, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PASSWORD_VALIDATION_SUCCESS', index=254, number=61000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PASSWORD_VALIDATION_FAILED', index=255, number=61001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PASSWORDPOLICY_INVALID_ARGUMENT', index=256, number=61002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEATUREFLAG_CONFIG_NOT_FOUND', index=257, number=62000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEATUREFLAG_INVALID_ARGUMENT', index=258, number=62001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEATUREFLAG_BLOCKED', index=259, number=62002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MAINTENANCE_SUCCESS', index=260, number=63000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MAINTENANCE_FAILED', index=261, number=63001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATASET_VERSION_PENDING', index=262, number=64005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATASET_VERSION_IN_PROGRESS', index=263, number=64010, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATASET_VERSION_READY', index=264, number=64015, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATASET_VERSION_FAILURE', index=265, number=64020, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATASET_VERSION_UNEXPECTED_ERROR', index=266, number=64025, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='JOB_QUEUED', index=267, number=64000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='JOB_RUNNING', index=268, number=64001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='JOB_COMPLETED', index=269, number=64002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='JOB_FAILED', index=270, number=64003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AUTH_MISSING_IDP_ASSOC', index=271, number=65000, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_SERVER_ISSUE', index=272, number=98004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_FETCHING_ISSUE', index=273, number=98005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_DATABASE_ISSUE', index=274, number=98006, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_UNEXPECTED_TIMEOUT', index=275, number=98009, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_UNEXPECTED_V1', index=276, number=98010, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_UNEXPECTED_PANIC', index=277, number=98011, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_UNEXPECTED_SPIRE', index=278, number=98012, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_REDIS_UNAVAILABLE', index=279, number=98013, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_RESOURCE_EXHAUSTED', index=280, number=98014, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_REDIS_UNCATEGORIZED', index=281, number=98015, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_AWS_UNCATEGORIZED', index=282, number=98016, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_AZURE_UNCATEGORIZED', index=283, number=98017, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONN_UNCATEGORIZED', index=284, number=99001, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODEL_UNCATEGORIZED', index=285, number=99002, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INPUT_UNCATEGORIZED', index=286, number=99003, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ANNOTATION_UNCATEGORIZED', index=287, number=99004, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BILLING_UNCATEGORIZED', index=288, number=99005, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTERNAL_UNCATEGORIZED', index=289, number=99009, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BAD_REQUEST', index=290, number=90400, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SERVER_ERROR', index=291, number=90500, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=69, serialized_end=9129, ) _sym_db.RegisterEnumDescriptor(_STATUSCODE) StatusCode = enum_type_wrapper.EnumTypeWrapper(_STATUSCODE) ZERO = 0 SUCCESS = 10000 MIXED_STATUS = 10010 FAILURE = 10020 TRY_AGAIN = 10030 NOT_IMPLEMENTED = 10040 CONN_ACCOUNT_ISSUES = 11000 CONN_TOKEN_INVALID = 11001 CONN_CREDENTIALS_INVALID = 11002 CONN_EXCEED_HOURLY_LIMIT = 11003 CONN_EXCEED_MONTHLY_LIMIT = 11004 CONN_THROTTLED = 11005 CONN_EXCEEDS_LIMITS = 11006 CONN_INSUFFICIENT_SCOPES = 11007 CONN_KEY_INVALID = 11008 CONN_KEY_NOT_FOUND = 11009 CONN_BAD_REQUEST_FORMAT = 11100 CONN_DOES_NOT_EXIST = 11101 CONN_INVALID_REQUEST = 11102 CONN_METHOD_NOT_ALLOWED = 11103 CONN_NO_GDPR_CONSENT = 11104 CONN_AUTH_METHOD_DISABLED = 11200 MODEL_TRAINED = 21100 MODEL_TRAINING = 21101 MODEL_UNTRAINED = 21102 MODEL_QUEUED_FOR_TRAINING = 21103 MODEL_UPLOADING = 21104 MODEL_UPLOADING_FAILED = 21105 MODEL_TRAINING_NO_DATA = 21110 MODEL_TRAINING_NO_POSITIVES = 21111 MODEL_TRAINING_ONE_VS_N_SINGLE_CLASS = 21112 MODEL_TRAINING_TIMED_OUT = 21113 MODEL_TRAINING_WAITING_ERROR = 21114 MODEL_TRAINING_UNKNOWN_ERROR = 21115 MODEL_TRAINING_MSG_REDELIVER = 21116 MODEL_TRAINING_INSUFFICIENT_DATA = 21117 MODEL_TRAINING_INVALID_PARAMS = 21118 MODEL_TRAINING_INVALID_DATA_TOLERANCE_EXCEEDED = 21119 MODEL_MODIFY_SUCCESS = 21150 MODEL_MODIFY_PENDING = 21151 MODEL_MODIFY_FAILED = 21152 MODEL_DOES_NOT_EXIST = 21200 MODEL_PERMISSION_DENIED = 21201 MODEL_INVALID_ARGUMENT = 21202 MODEL_INVALID_REQUEST = 21203 MODEL_EVALUATED = 21300 MODEL_EVALUATING = 21301 MODEL_NOT_EVALUATED = 21302 MODEL_QUEUED_FOR_EVALUATION = 21303 MODEL_EVALUATION_TIMED_OUT = 21310 MODEL_EVALUATION_WAITING_ERROR = 21311 MODEL_EVALUATION_UNKNOWN_ERROR = 21312 MODEL_PREDICTION_FAILED = 21313 MODEL_EVALUATION_MSG_REDELIVER = 21314 MODEL_EVALUATION_NEED_LABELS = 21315 MODEL_EVALUATION_NEED_INPUTS = 21316 MODEL_DEPLOYMENT_FAILED = 21350 MODEL_DEPLOYING = 21351 MODEL_QUEUED_FOR_DEPLOYMENT = 21352 MODEL_NOT_DEPLOYED = 21353 MODEL_REFERENCE_INVALID_ARGUMENT = 21400 MODEL_EXAMPLE_INPUT_INVALID_ARGUMENT = 21420 WORKFLOW_NO_MATCHING_INPUT = 22001 WORKFLOW_REQUIRE_TRAINED_MODEL = 22002 WORKFLOW_DUPLICATE = 22100 WORKFLOW_UNSUPPORTED_FORMAT = 22101 WORKFLOW_DOES_NOT_EXIST = 22102 WORKFLOW_PERMISSION_DENIED = 22103 WORKFLOW_INVALID_ARGUMENT = 22104 WORKFLOW_INVALID_RECIPE = 22105 WORKFLOW_INVALID_TEMPLATE = 22106 WORKFLOW_INVALID_GRAPH = 22107 WORKFLOW_INTERNAL_FAILURE = 22108 WORKFLOW_INVALID_REQUEST = 22999 WORKFLOW_MODIFY_SUCCESS = 22150 WORKFLOW_MODIFY_PENDING = 22151 WORKFLOW_MODIFY_FAILED = 22152 WORKFLOW_REINDEX_FAILED = 22153 CONCEPT_MODIFY_SUCCESS = 23150 CONCEPT_MODIFY_PENDING = 23151 CONCEPT_MODIFY_FAILED = 23152 ANNOTATION_SUCCESS = 24150 ANNOTATION_PENDING = 24151 ANNOTATION_FAILED = 24152 ANNOTATION_UNKNOWN_STATUS = 24154 ANNOTATION_INVALID_ARGUMENT = 24155 ANNOTATION_PERMISSION_DENIED = 24156 ANNOTATION_AWAITING_REVIEW = 24157 ANNOTATION_AWAITING_CONSENSUS_REVIEW = 24159 ANNOTATION_REVIEW_DENIED = 24158 ANNOTATION_MODIFY_SUCCESS = 24250 ANNOTATION_MODIFY_PENDING = 24251 ANNOTATION_MODIFY_FAILED = 24252 METADATA_INVALID_PATCH_ARGUMENTS = 24900 METADATA_PARSING_ISSUE = 24901 METADATA_MANIPULATION_ISSUE = 24902 TRAINER_JOB_STATE_NONE = 25000 TRAINER_JOB_STATE_QUEUED = 25001 TRAINER_JOB_STATE_RUNNING = 25002 TRAINER_JOB_STATE_COMPLETE = 25003 TRAINER_JOB_STATE_ERROR = 25004 DATA_DUMP_SUCCESS = 25150 DATA_DUMP_PENDING = 25151 DATA_DUMP_FAILED = 25152 DATA_DUMP_IN_PROGRESS = 25153 DATA_DUMP_NO_DATA = 25154 APP_DUPLICATION_SUCCESS = 25200 APP_DUPLICATION_FAILED = 25201 APP_DUPLICATION_PENDING = 25202 APP_DUPLICATION_IN_PROGRESS = 25203 APP_DUPLICATION_INVALID_REQUEST = 25204 INPUT_DOWNLOAD_SUCCESS = 30000 INPUT_DOWNLOAD_PENDING = 30001 INPUT_DOWNLOAD_FAILED = 30002 INPUT_DOWNLOAD_IN_PROGRESS = 30003 INPUT_STATUS_UPDATE_FAILED = 30004 INPUT_DELETE_FAILED = 30005 INPUT_DUPLICATE = 30100 INPUT_UNSUPPORTED_FORMAT = 30101 INPUT_DOES_NOT_EXIST = 30102 INPUT_PERMISSION_DENIED = 30103 INPUT_INVALID_ARGUMENT = 30104 INPUT_OVER_LIMIT = 30105 INPUT_INVALID_URL = 30106 INPUT_MODIFY_SUCCESS = 30200 INPUT_MODIFY_PENDING = 30201 INPUT_MODIFY_FAILED = 30203 INPUT_STORAGE_HOST_FAILED = 30210 ALL_INPUT_INVALID_BYTES = 30300 INPUT_CLUSTER_SUCCESS = 30400 INPUT_CLUSTER_PENDING = 30401 INPUT_CLUSTER_FAILED = 30402 INPUT_CLUSTER_IN_PROGRESS = 30403 INPUT_REINDEX_SUCCESS = 30500 INPUT_REINDEX_PENDING = 30501 INPUT_REINDEX_FAILED = 30502 INPUT_REINDEX_IN_PROGRESS = 30503 INPUT_VIDEO_DOWNLOAD_SUCCESS = 31000 INPUT_VIDEO_DOWNLOAD_PENDING = 31001 INPUT_VIDEO_DOWNLOAD_FAILED = 31002 INPUT_VIDEO_DUPLICATE = 31100 INPUT_VIDEO_UNSUPPORTED_FORMAT = 31101 INPUT_VIDEO_DOES_NOT_EXIST = 31102 INPUT_VIDEO_PERMISSION_DENIED = 31103 INPUT_VIDEO_INVALID_ARGUMENT = 31104 INPUT_VIDEO_OVER_LIMIT = 31105 INPUT_VIDEO_INVALID_URL = 31106 INPUT_VIDEO_MODIFY_SUCCESS = 31200 INPUT_VIDEO_MODIFY_PENDING = 31201 INPUT_VIDEO_MODIFY_FAILED = 31203 INPUT_VIDEO_STORAGE_HOST_FAILED = 31210 ALL_INPUT_VIDEOS_INVALID_BYTES = 31300 INPUT_CONNECTION_FAILED = 39996 REQUEST_DISABLED_FOR_MAINTENANCE = 39997 INPUT_WRITES_DISABLED_FOR_MAINTENANCE = 39998 INPUT_INVALID_REQUEST = 39999 PREDICT_INVALID_REQUEST = 40001 SEARCH_INVALID_REQUEST = 40002 CONCEPTS_INVALID_REQUEST = 40003 STATS_INVALID_REQUEST = 40004 DATABASE_DUPLICATE_KEY = 40010 DATABASE_STATEMENT_TIMEOUT = 40011 DATABASE_INVALID_ROWS_AFFECTED = 40012 DATABASE_DEADLOCK_DETECTED = 40013 DATABASE_FAIL_TASK = 40014 DATABASE_FAIL_TO_GET_CONNECTIONS = 40015 DATABASE_TOO_MANY_CLIENTS = 40016 DATABASE_CONSTRAINT_VIOLATED = 40017 ASYNC_WORKER_MULTI_ERRORS = 40020 RPC_REQUEST_QUEUE_FULL = 40030 RPC_SERVER_UNAVAILABLE = 40031 RPC_REQUEST_TIMEOUT = 40032 RPC_MAX_MESSAGE_SIZE_EXCEEDED = 40033 RPC_CANCELED = 40035 RPC_UNKNOWN_METHOD = 40036 REQUEST_CANCELED_BY_USER = 40037 CLUSTER_INTERNAL_FAILURE = 43040 EXTERNAL_CONNECTION_ERROR = 40034 QUEUE_CONN_ERROR = 41000 QUEUE_CLOSE_REQUEST_TIMEOUT = 41002 QUEUE_CONN_CLOSED = 41003 QUEUE_PUBLISH_ACK_TIMEOUT = 41004 QUEUE_PUBLISH_ERROR = 41005 QUEUE_SUBSCRIPTION_TIMEOUT = 41006 QUEUE_SUBSCRIPTION_ERROR = 41007 QUEUE_MARSHALLING_FAILED = 41008 QUEUE_UNMARSHALLING_FAILED = 41009 QUEUE_MAX_MSG_REDELIVERY_EXCEEDED = 41010 QUEUE_ACK_FAILURE = 41011 SQS_OVERLIMIT = 41100 SQS_INVALID_RECEIPT_HANDLE = 41101 SQS_UNKNOWN = 41102 SEARCH_INTERNAL_FAILURE = 43001 SEARCH_PROJECTION_FAILURE = 43002 SEARCH_PREDICTION_FAILURE = 43003 SEARCH_BY_NOT_FULLY_INDEXED_INPUT = 43004 SAVED_SEARCH_MODIFY_FAILED = 43005 EVALUATION_QUEUED = 43100 EVALUATION_IN_PROGRESS = 43101 EVALUATION_SUCCESS = 43102 EVALUATION_FAILED_TO_RETRIEVE_DATA = 43103 EVALUATION_INVALID_ARGUMENT = 43104 EVALUATION_FAILED = 43105 EVALUATION_PENDING = 43106 EVALUATION_TIMED_OUT = 43107 EVALUATION_UNEXPECTED_ERROR = 43108 EVALUATION_MIXED = 43109 STRIPE_EVENT_ERROR = 44001 CACHE_MISS = 45001 REDIS_SCRIPT_EXITED_WITH_FAILURE = 45002 REDIS_STREAM_ERR = 45003 REDIS_NO_CONSUMERS = 45004 REDIS_STREAM_BACKOFF = 45005 SIGNUP_EVENT_ERROR = 46001 SIGNUP_FLAGGED = 46002 FILETYPE_UNSUPPORTED = 46003 APP_COUNT_INVALID_MESSAGE = 47001 APP_COUNT_UPDATE_INCREMENT_FAILED = 47002 APP_COUNT_REBUILD_FAILED = 47003 APP_COUNT_INTERNAL_FAILURE = 47004 MP_DOWNLOAD_ERROR = 47101 MP_RESOLVE_DNS_ERROR = 47102 MP_DOWNLOAD_MAX_SIZE_EXCEEDED_ERROR = 47103 MP_IMAGE_DECODE_ERROR = 47104 MP_INVALID_ARGUMENT = 47105 MP_IMAGE_PROCESSING_ERROR = 47106 DATATIER_CONN_ERROR = 47201 USER_CONSENT_FACE = 50001 WORKER_MISSING = 51000 WORKER_ACTIVE = 51001 WORKER_INACTIVE = 51002 COLLECTOR_MISSING = 52000 COLLECTOR_ACTIVE = 52001 COLLECTOR_INACTIVE = 52002 COLLECTOR_POST_INPUT_FAILED = 52003 SSO_IDENTITY_PROVIDER_DOES_NOT_EXIST = 53001 TASK_IN_PROGRESS = 54001 TASK_DONE = 54002 TASK_WONT_DO = 54003 TASK_ADD_ANNOTATIONS_FAILURE = 54005 TASK_CONFLICT = 54100 TASK_NOT_IMPLEMENTED = 54101 TASK_MISSING = 54102 LABEL_ORDER_PENDING = 55001 LABEL_ORDER_IN_PROGRESS = 55002 LABEL_ORDER_SUCCESS = 55003 LABEL_ORDER_CANCELED = 55004 LICENSE_ACTIVE = 60000 LICENSE_DOES_NOT_EXIST = 60001 LICENSE_NEED_UPDATE = 60002 LICENSE_EXPIRED = 60003 LICENSE_REVOKED = 60004 LICENSE_DELETED = 60005 LICENSE_VOLUME_EXCEEDED = 60006 PASSWORD_VALIDATION_SUCCESS = 61000 PASSWORD_VALIDATION_FAILED = 61001 PASSWORDPOLICY_INVALID_ARGUMENT = 61002 FEATUREFLAG_CONFIG_NOT_FOUND = 62000 FEATUREFLAG_INVALID_ARGUMENT = 62001 FEATUREFLAG_BLOCKED = 62002 MAINTENANCE_SUCCESS = 63000 MAINTENANCE_FAILED = 63001 DATASET_VERSION_PENDING = 64005 DATASET_VERSION_IN_PROGRESS = 64010 DATASET_VERSION_READY = 64015 DATASET_VERSION_FAILURE = 64020 DATASET_VERSION_UNEXPECTED_ERROR = 64025 JOB_QUEUED = 64000 JOB_RUNNING = 64001 JOB_COMPLETED = 64002 JOB_FAILED = 64003 AUTH_MISSING_IDP_ASSOC = 65000 INTERNAL_SERVER_ISSUE = 98004 INTERNAL_FETCHING_ISSUE = 98005 INTERNAL_DATABASE_ISSUE = 98006 INTERNAL_UNEXPECTED_TIMEOUT = 98009 INTERNAL_UNEXPECTED_V1 = 98010 INTERNAL_UNEXPECTED_PANIC = 98011 INTERNAL_UNEXPECTED_SPIRE = 98012 INTERNAL_REDIS_UNAVAILABLE = 98013 INTERNAL_RESOURCE_EXHAUSTED = 98014 INTERNAL_REDIS_UNCATEGORIZED = 98015 INTERNAL_AWS_UNCATEGORIZED = 98016 INTERNAL_AZURE_UNCATEGORIZED = 98017 CONN_UNCATEGORIZED = 99001 MODEL_UNCATEGORIZED = 99002 INPUT_UNCATEGORIZED = 99003 ANNOTATION_UNCATEGORIZED = 99004 BILLING_UNCATEGORIZED = 99005 INTERNAL_UNCATEGORIZED = 99009 BAD_REQUEST = 90400 SERVER_ERROR = 90500 DESCRIPTOR.enum_types_by_name['StatusCode'] = _STATUSCODE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DESCRIPTOR._options = None _STATUSCODE.values_by_name["CONN_TOKEN_INVALID"]._options = None _STATUSCODE.values_by_name["MODEL_TRAINING_MSG_REDELIVER"]._options = None _STATUSCODE.values_by_name["MODEL_EVALUATION_MSG_REDELIVER"]._options = None # @@protoc_insertion_point(module_scope)
46.508934
16,348
0.761395
56aba217a3bafda6c785589e697410e21f1d8096
35,395
py
Python
electrum/util.py
exofoundation/EXOS-Electrum
89e00bc4a1c5f5cb48f9aa5ef77dd1a9bcad9da5
[ "MIT" ]
5
2019-05-15T16:11:21.000Z
2021-02-20T14:12:20.000Z
electrum/util.py
exofoundation/EXOS-Electrum
89e00bc4a1c5f5cb48f9aa5ef77dd1a9bcad9da5
[ "MIT" ]
38
2019-04-29T21:15:22.000Z
2021-12-04T18:36:28.000Z
electrum/util.py
exofoundation/EXOS-Electrum
89e00bc4a1c5f5cb48f9aa5ef77dd1a9bcad9da5
[ "MIT" ]
5
2019-04-25T17:35:49.000Z
2021-08-12T19:50:41.000Z
# Electrum - lightweight Bitcoin client # Copyright (C) 2011 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import binascii import os, sys, re, json from collections import defaultdict, OrderedDict from typing import NamedTuple, Union, TYPE_CHECKING, Tuple, Optional, Callable, Any from datetime import datetime import decimal from decimal import Decimal import traceback import urllib import threading import hmac import stat from locale import localeconv import asyncio import urllib.request, urllib.parse, urllib.error import builtins import json import time from typing import NamedTuple, Optional import ssl import platform import aiohttp from aiohttp_socks import SocksConnector, SocksVer from aiorpcx import TaskGroup import certifi from .i18n import _ from .logging import get_logger, Logger if TYPE_CHECKING: from .network import Network from .interface import Interface from .simple_config import SimpleConfig _logger = get_logger(__name__) def inv_dict(d): return {v: k for k, v in d.items()} ca_path = certifi.where() base_units = {'EXOS':8, 'mEXOS':5, 'uEXOS':2, 'exo':0} base_units_inverse = inv_dict(base_units) base_units_list = ['EXOS', 'mEXOS', 'uEXOS', 'exo'] # list(dict) does not guarantee order DECIMAL_POINT_DEFAULT = 8 # EXOS class UnknownBaseUnit(Exception): pass def decimal_point_to_base_unit_name(dp: int) -> str: # e.g. 8 -> "EXOS" try: return base_units_inverse[dp] except KeyError: raise UnknownBaseUnit(dp) from None def base_unit_name_to_decimal_point(unit_name: str) -> int: # e.g. "EXOS" -> 8 try: return base_units[unit_name] except KeyError: raise UnknownBaseUnit(unit_name) from None class NotEnoughFunds(Exception): def __str__(self): return _("Insufficient funds") class NoDynamicFeeEstimates(Exception): def __str__(self): return _('Dynamic fee estimates not available') class InvalidPassword(Exception): def __str__(self): return _("Incorrect password") class FileImportFailed(Exception): def __init__(self, message=''): self.message = str(message) def __str__(self): return _("Failed to import from file.") + "\n" + self.message class FileExportFailed(Exception): def __init__(self, message=''): self.message = str(message) def __str__(self): return _("Failed to export to file.") + "\n" + self.message class WalletFileException(Exception): pass class BitcoinException(Exception): pass class UserFacingException(Exception): """Exception that contains information intended to be shown to the user.""" # Throw this exception to unwind the stack like when an error occurs. # However unlike other exceptions the user won't be informed. class UserCancelled(Exception): '''An exception that is suppressed from the user''' pass # note: this is not a NamedTuple as then its json encoding cannot be customized class Satoshis(object): __slots__ = ('value',) def __new__(cls, value): self = super(Satoshis, cls).__new__(cls) self.value = value return self def __repr__(self): return 'Satoshis(%d)'%self.value def __str__(self): return format_satoshis(self.value) + " EXOS" def __eq__(self, other): return self.value == other.value def __ne__(self, other): return not (self == other) # note: this is not a NamedTuple as then its json encoding cannot be customized class Fiat(object): __slots__ = ('value', 'ccy') def __new__(cls, value: Optional[Decimal], ccy: str): self = super(Fiat, cls).__new__(cls) self.ccy = ccy if not isinstance(value, (Decimal, type(None))): raise TypeError(f"value should be Decimal or None, not {type(value)}") self.value = value return self def __repr__(self): return 'Fiat(%s)'% self.__str__() def __str__(self): if self.value is None or self.value.is_nan(): return _('No Data') else: return "{:.2f}".format(self.value) def to_ui_string(self): if self.value is None or self.value.is_nan(): return _('No Data') else: return "{:.2f}".format(self.value) + ' ' + self.ccy def __eq__(self, other): if self.ccy != other.ccy: return False if isinstance(self.value, Decimal) and isinstance(other.value, Decimal) \ and self.value.is_nan() and other.value.is_nan(): return True return self.value == other.value def __ne__(self, other): return not (self == other) class MyEncoder(json.JSONEncoder): def default(self, obj): # note: this does not get called for namedtuples :( https://bugs.python.org/issue30343 from .transaction import Transaction if isinstance(obj, Transaction): return obj.as_dict() if isinstance(obj, Satoshis): return str(obj) if isinstance(obj, Fiat): return str(obj) if isinstance(obj, Decimal): return str(obj) if isinstance(obj, datetime): return obj.isoformat(' ')[:-3] if isinstance(obj, set): return list(obj) return super().default(obj) class ThreadJob(Logger): """A job that is run periodically from a thread's main loop. run() is called from that thread's context. """ def __init__(self): Logger.__init__(self) def run(self): """Called periodically from the thread""" pass class DebugMem(ThreadJob): '''A handy class for debugging GC memory leaks''' def __init__(self, classes, interval=30): ThreadJob.__init__(self) self.next_time = 0 self.classes = classes self.interval = interval def mem_stats(self): import gc self.logger.info("Start memscan") gc.collect() objmap = defaultdict(list) for obj in gc.get_objects(): for class_ in self.classes: if isinstance(obj, class_): objmap[class_].append(obj) for class_, objs in objmap.items(): self.logger.info(f"{class_.__name__}: {len(objs)}") self.logger.info("Finish memscan") def run(self): if time.time() > self.next_time: self.mem_stats() self.next_time = time.time() + self.interval class DaemonThread(threading.Thread, Logger): """ daemon thread that terminates cleanly """ LOGGING_SHORTCUT = 'd' def __init__(self): threading.Thread.__init__(self) Logger.__init__(self) self.parent_thread = threading.currentThread() self.running = False self.running_lock = threading.Lock() self.job_lock = threading.Lock() self.jobs = [] def add_jobs(self, jobs): with self.job_lock: self.jobs.extend(jobs) def run_jobs(self): # Don't let a throwing job disrupt the thread, future runs of # itself, or other jobs. This is useful protection against # malformed or malicious server responses with self.job_lock: for job in self.jobs: try: job.run() except Exception as e: self.logger.exception('') def remove_jobs(self, jobs): with self.job_lock: for job in jobs: self.jobs.remove(job) def start(self): with self.running_lock: self.running = True return threading.Thread.start(self) def is_running(self): with self.running_lock: return self.running and self.parent_thread.is_alive() def stop(self): with self.running_lock: self.running = False def on_stop(self): if 'ANDROID_DATA' in os.environ: import jnius jnius.detach() self.logger.info("jnius detach") self.logger.info("stopped") def print_stderr(*args): args = [str(item) for item in args] sys.stderr.write(" ".join(args) + "\n") sys.stderr.flush() def print_msg(*args): # Stringify args args = [str(item) for item in args] sys.stdout.write(" ".join(args) + "\n") sys.stdout.flush() def json_encode(obj): try: s = json.dumps(obj, sort_keys = True, indent = 4, cls=MyEncoder) except TypeError: s = repr(obj) return s def json_decode(x): try: return json.loads(x, parse_float=Decimal) except: return x # taken from Django Source Code def constant_time_compare(val1, val2): """Return True if the two strings are equal, False otherwise.""" return hmac.compare_digest(to_bytes(val1, 'utf8'), to_bytes(val2, 'utf8')) # decorator that prints execution time _profiler_logger = _logger.getChild('profiler') def profiler(func): def do_profile(args, kw_args): name = func.__qualname__ t0 = time.time() o = func(*args, **kw_args) t = time.time() - t0 _profiler_logger.debug(f"{name} {t:,.4f}") return o return lambda *args, **kw_args: do_profile(args, kw_args) def android_data_dir(): import jnius PythonActivity = jnius.autoclass('org.kivy.android.PythonActivity') return PythonActivity.mActivity.getFilesDir().getPath() + '/data' def ensure_sparse_file(filename): # On modern Linux, no need to do anything. # On Windows, need to explicitly mark file. if os.name == "nt": try: os.system('fsutil sparse setflag "{}" 1'.format(filename)) except Exception as e: _logger.info(f'error marking file {filename} as sparse: {e}') def get_headers_dir(config): return config.path def assert_datadir_available(config_path): path = config_path if os.path.exists(path): return else: raise FileNotFoundError( 'EXOS-Electrum datadir does not exist. Was it deleted while running?' + '\n' + 'Should be at {}'.format(path)) def assert_file_in_datadir_available(path, config_path): if os.path.exists(path): return else: assert_datadir_available(config_path) raise FileNotFoundError( 'Cannot find file but datadir is there.' + '\n' + 'Should be at {}'.format(path)) def standardize_path(path): return os.path.normcase(os.path.realpath(os.path.abspath(path))) def get_new_wallet_name(wallet_folder: str) -> str: i = 1 while True: filename = "wallet_%d" % i if filename in os.listdir(wallet_folder): i += 1 else: break return filename def assert_bytes(*args): """ porting helper, assert args type """ try: for x in args: assert isinstance(x, (bytes, bytearray)) except: print('assert bytes failed', list(map(type, args))) raise def assert_str(*args): """ porting helper, assert args type """ for x in args: assert isinstance(x, str) def to_string(x, enc) -> str: if isinstance(x, (bytes, bytearray)): return x.decode(enc) if isinstance(x, str): return x else: raise TypeError("Not a string or bytes like object") def to_bytes(something, encoding='utf8') -> bytes: """ cast string to bytes() like object, but for python2 support it's bytearray copy """ if isinstance(something, bytes): return something if isinstance(something, str): return something.encode(encoding) elif isinstance(something, bytearray): return bytes(something) else: raise TypeError("Not a string or bytes like object") bfh = bytes.fromhex def bh2u(x: bytes) -> str: """ str with hex representation of a bytes-like object >>> x = bytes((1, 2, 10)) >>> bh2u(x) '01020A' """ return x.hex() def user_dir(): if 'ANDROID_DATA' in os.environ: return android_data_dir() elif os.name == 'posix': return os.path.join(os.environ["HOME"], ".exos-electrum") elif "APPDATA" in os.environ: return os.path.join(os.environ["APPDATA"], "EXOS-Electrum") elif "LOCALAPPDATA" in os.environ: return os.path.join(os.environ["LOCALAPPDATA"], "EXOS-Electrum") else: #raise Exception("No home directory found in environment variables.") return def resource_path(*parts): return os.path.join(pkg_dir, *parts) # absolute path to python package folder of electrum ("lib") pkg_dir = os.path.split(os.path.realpath(__file__))[0] def is_valid_email(s): regexp = r"[^@]+@[^@]+\.[^@]+" return re.match(regexp, s) is not None def is_hash256_str(text: Any) -> bool: if not isinstance(text, str): return False if len(text) != 64: return False return is_hex_str(text) def is_hex_str(text: Any) -> bool: if not isinstance(text, str): return False try: bytes.fromhex(text) except: return False return True def is_non_negative_integer(val) -> bool: try: val = int(val) if val >= 0: return True except: pass return False def chunks(items, size: int): """Break up items, an iterable, into chunks of length size.""" if size < 1: raise ValueError(f"size must be positive, not {repr(size)}") for i in range(0, len(items), size): yield items[i: i + size] def format_satoshis_plain(x, decimal_point = 8): """Display a satoshi amount scaled. Always uses a '.' as a decimal point and has no thousands separator""" scale_factor = pow(10, decimal_point) return "{:.8f}".format(Decimal(x) / scale_factor).rstrip('0').rstrip('.') DECIMAL_POINT = localeconv()['decimal_point'] def format_satoshis(x, num_zeros=0, decimal_point=8, precision=None, is_diff=False, whitespaces=False): if x is None: return 'unknown' if precision is None: precision = decimal_point # format string decimal_format = "." + str(precision) if precision > 0 else "" if is_diff: decimal_format = '+' + decimal_format # initial result scale_factor = pow(10, decimal_point) if not isinstance(x, Decimal): x = Decimal(x).quantize(Decimal('1E-8')) result = ("{:" + decimal_format + "f}").format(x / scale_factor) if "." not in result: result += "." result = result.rstrip('0') # extra decimal places integer_part, fract_part = result.split(".") if len(fract_part) < num_zeros: fract_part += "0" * (num_zeros - len(fract_part)) result = integer_part + DECIMAL_POINT + fract_part # leading/trailing whitespaces if whitespaces: result += " " * (decimal_point - len(fract_part)) result = " " * (15 - len(result)) + result return result FEERATE_PRECISION = 1 # num fractional decimal places for exo/byte fee rates _feerate_quanta = Decimal(10) ** (-FEERATE_PRECISION) def format_fee_satoshis(fee, *, num_zeros=0, precision=None): if precision is None: precision = FEERATE_PRECISION num_zeros = min(num_zeros, FEERATE_PRECISION) # no more zeroes than available prec return format_satoshis(fee, num_zeros=num_zeros, decimal_point=0, precision=precision) def quantize_feerate(fee): """Strip exo/byte fee rate of excess precision.""" if fee is None: return None return Decimal(fee).quantize(_feerate_quanta, rounding=decimal.ROUND_HALF_DOWN) def timestamp_to_datetime(timestamp): if timestamp is None: return None return datetime.fromtimestamp(timestamp) def format_time(timestamp): date = timestamp_to_datetime(timestamp) return date.isoformat(' ')[:-3] if date else _("Unknown") # Takes a timestamp and returns a string with the approximation of the age def age(from_date, since_date = None, target_tz=None, include_seconds=False): if from_date is None: return "Unknown" from_date = datetime.fromtimestamp(from_date) if since_date is None: since_date = datetime.now(target_tz) td = time_difference(from_date - since_date, include_seconds) return td + " ago" if from_date < since_date else "in " + td def time_difference(distance_in_time, include_seconds): #distance_in_time = since_date - from_date distance_in_seconds = int(round(abs(distance_in_time.days * 86400 + distance_in_time.seconds))) distance_in_minutes = int(round(distance_in_seconds/60)) if distance_in_minutes <= 1: if include_seconds: for remainder in [5, 10, 20]: if distance_in_seconds < remainder: return "less than %s seconds" % remainder if distance_in_seconds < 40: return "half a minute" elif distance_in_seconds < 60: return "less than a minute" else: return "1 minute" else: if distance_in_minutes == 0: return "less than a minute" else: return "1 minute" elif distance_in_minutes < 45: return "%s minutes" % distance_in_minutes elif distance_in_minutes < 90: return "about 1 hour" elif distance_in_minutes < 1440: return "about %d hours" % (round(distance_in_minutes / 60.0)) elif distance_in_minutes < 2880: return "1 day" elif distance_in_minutes < 43220: return "%d days" % (round(distance_in_minutes / 1440)) elif distance_in_minutes < 86400: return "about 1 month" elif distance_in_minutes < 525600: return "%d months" % (round(distance_in_minutes / 43200)) elif distance_in_minutes < 1051200: return "about 1 year" else: return "over %d years" % (round(distance_in_minutes / 525600)) mainnet_block_explorers = { 'BlockEXOS': ('https://blockexplorer.exos.to/#exos/', {'tx': 'transactions/', 'addr': 'addresses/'}), 'cryptoID.info': ('https://chainz.cryptoid.info/exos/', {'tx': 'tx.dws?', 'addr': 'address.dws?'}), 'system default': ('blockchain:/', {'tx': 'tx/', 'addr': 'address/'}), } testnet_block_explorers = { 'BlockEXOS': ('https://blockexplorer.exos.to/#/texos/', {'tx': 'transactions/', 'addr': 'addresses/'}), 'system default': ('blockchain://0000059bb2c2048493efcb0f1a034972b3ce4089d54c93b69aaab212fb369887/', {'tx': 'tx/', 'addr': 'address/'}), } def block_explorer_info(): from . import constants return mainnet_block_explorers if not constants.net.TESTNET else testnet_block_explorers def block_explorer(config: 'SimpleConfig') -> str: from . import constants default_ = 'BlockEXOS' be_key = config.get('block_explorer', default_) be = block_explorer_info().get(be_key) return be_key if be is not None else default_ def block_explorer_tuple(config: 'SimpleConfig') -> Optional[Tuple[str, dict]]: return block_explorer_info().get(block_explorer(config)) def block_explorer_URL(config: 'SimpleConfig', kind: str, item: str) -> Optional[str]: be_tuple = block_explorer_tuple(config) if not be_tuple: return explorer_url, explorer_dict = be_tuple kind_str = explorer_dict.get(kind) if kind_str is None: return url_parts = [explorer_url, kind_str, item] return ''.join(url_parts) # URL decode #_ud = re.compile('%([0-9a-hA-H]{2})', re.MULTILINE) #urldecode = lambda x: _ud.sub(lambda m: chr(int(m.group(1), 16)), x) class InvalidBitcoinURI(Exception): pass def parse_URI(uri: str, on_pr: Callable = None, *, loop=None) -> dict: """Raises InvalidBitcoinURI on malformed URI.""" from . import bitcoin from .bitcoin import COIN if not isinstance(uri, str): raise InvalidBitcoinURI(f"expected string, not {repr(uri)}") if ':' not in uri: if not bitcoin.is_address(uri): raise InvalidBitcoinURI("Not an EXOS address") return {'address': uri} u = urllib.parse.urlparse(uri) if u.scheme != 'exos': raise InvalidBitcoinURI("Not an EXOS URI") address = u.path # python for android fails to parse query if address.find('?') > 0: address, query = u.path.split('?') pq = urllib.parse.parse_qs(query) else: pq = urllib.parse.parse_qs(u.query) for k, v in pq.items(): if len(v) != 1: raise InvalidBitcoinURI(f'Duplicate Key: {repr(k)}') out = {k: v[0] for k, v in pq.items()} if address: if not bitcoin.is_address(address): raise InvalidBitcoinURI(f"Invalid EXOS address: {address}") out['address'] = address if 'amount' in out: am = out['amount'] try: m = re.match(r'([0-9.]+)X([0-9])', am) if m: k = int(m.group(2)) - 8 amount = Decimal(m.group(1)) * pow( Decimal(10) , k) else: amount = Decimal(am) * COIN out['amount'] = int(amount) except Exception as e: raise InvalidBitcoinURI(f"failed to parse 'amount' field: {repr(e)}") from e if 'message' in out: out['message'] = out['message'] out['memo'] = out['message'] if 'time' in out: try: out['time'] = int(out['time']) except Exception as e: raise InvalidBitcoinURI(f"failed to parse 'time' field: {repr(e)}") from e if 'exp' in out: try: out['exp'] = int(out['exp']) except Exception as e: raise InvalidBitcoinURI(f"failed to parse 'exp' field: {repr(e)}") from e if 'sig' in out: try: out['sig'] = bh2u(bitcoin.base_decode(out['sig'], None, base=58)) except Exception as e: raise InvalidBitcoinURI(f"failed to parse 'sig' field: {repr(e)}") from e r = out.get('r') sig = out.get('sig') name = out.get('name') if on_pr and (r or (name and sig)): @log_exceptions async def get_payment_request(): from . import paymentrequest as pr if name and sig: s = pr.serialize_request(out).SerializeToString() request = pr.PaymentRequest(s) else: request = await pr.get_payment_request(r) if on_pr: on_pr(request) loop = loop or asyncio.get_event_loop() asyncio.run_coroutine_threadsafe(get_payment_request(), loop) return out def create_bip21_uri(addr, amount_sat: Optional[int], message: Optional[str], *, extra_query_params: Optional[dict] = None) -> str: from . import bitcoin if not bitcoin.is_address(addr): return "" if extra_query_params is None: extra_query_params = {} query = [] if amount_sat: query.append('amount=%s'%format_satoshis_plain(amount_sat)) if message: query.append('message=%s'%urllib.parse.quote(message)) for k, v in extra_query_params.items(): if not isinstance(k, str) or k != urllib.parse.quote(k): raise Exception(f"illegal key for URI: {repr(k)}") v = urllib.parse.quote(v) query.append(f"{k}={v}") p = urllib.parse.ParseResult(scheme='exos', netloc='', path=addr, params='', query='&'.join(query), fragment='') return str(urllib.parse.urlunparse(p)) # Python bug (http://bugs.python.org/issue1927) causes raw_input # to be redirected improperly between stdin/stderr on Unix systems #TODO: py3 def raw_input(prompt=None): if prompt: sys.stdout.write(prompt) return builtin_raw_input() builtin_raw_input = builtins.input builtins.input = raw_input def parse_json(message): # TODO: check \r\n pattern n = message.find(b'\n') if n==-1: return None, message try: j = json.loads(message[0:n].decode('utf8')) except: j = None return j, message[n+1:] def setup_thread_excepthook(): """ Workaround for `sys.excepthook` thread bug from: http://bugs.python.org/issue1230540 Call once from the main thread before creating any threads. """ init_original = threading.Thread.__init__ def init(self, *args, **kwargs): init_original(self, *args, **kwargs) run_original = self.run def run_with_except_hook(*args2, **kwargs2): try: run_original(*args2, **kwargs2) except Exception: sys.excepthook(*sys.exc_info()) self.run = run_with_except_hook threading.Thread.__init__ = init def send_exception_to_crash_reporter(e: BaseException): sys.excepthook(type(e), e, e.__traceback__) def versiontuple(v): return tuple(map(int, (v.split(".")))) def import_meta(path, validater, load_meta): try: with open(path, 'r', encoding='utf-8') as f: d = validater(json.loads(f.read())) load_meta(d) #backwards compatibility for JSONDecodeError except ValueError: _logger.exception('') raise FileImportFailed(_("Invalid JSON code.")) except BaseException as e: _logger.exception('') raise FileImportFailed(e) def export_meta(meta, fileName): try: with open(fileName, 'w+', encoding='utf-8') as f: json.dump(meta, f, indent=4, sort_keys=True) except (IOError, os.error) as e: _logger.exception('') raise FileExportFailed(e) def make_dir(path, allow_symlink=True): """Make directory if it does not yet exist.""" if not os.path.exists(path): if not allow_symlink and os.path.islink(path): raise Exception('Dangling link: ' + path) os.mkdir(path) os.chmod(path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) def log_exceptions(func): """Decorator to log AND re-raise exceptions.""" assert asyncio.iscoroutinefunction(func), 'func needs to be a coroutine' async def wrapper(*args, **kwargs): self = args[0] if len(args) > 0 else None try: return await func(*args, **kwargs) except asyncio.CancelledError as e: raise except BaseException as e: mylogger = self.logger if hasattr(self, 'logger') else _logger try: mylogger.exception(f"Exception in {func.__name__}: {repr(e)}") except BaseException as e2: print(f"logging exception raised: {repr(e2)}... orig exc: {repr(e)} in {func.__name__}") raise return wrapper def ignore_exceptions(func): """Decorator to silently swallow all exceptions.""" assert asyncio.iscoroutinefunction(func), 'func needs to be a coroutine' async def wrapper(*args, **kwargs): try: return await func(*args, **kwargs) except BaseException as e: pass return wrapper class TxMinedInfo(NamedTuple): height: int # height of block that mined tx conf: Optional[int] = None # number of confirmations (None means unknown) timestamp: Optional[int] = None # timestamp of block that mined tx txpos: Optional[int] = None # position of tx in serialized block header_hash: Optional[str] = None # hash of block that mined tx def make_aiohttp_session(proxy: Optional[dict], headers=None, timeout=None): if headers is None: headers = {'User-Agent': 'Electrum'} if timeout is None: timeout = aiohttp.ClientTimeout(total=30) elif isinstance(timeout, (int, float)): timeout = aiohttp.ClientTimeout(total=timeout) alt_context = ssl.create_default_context(purpose=ssl.Purpose.SERVER_AUTH, cafile=ca_path) ssl_context = SSLContextSafe.get_context(alt_context=alt_context) if proxy: connector = SocksConnector( socks_ver=SocksVer.SOCKS5 if proxy['mode'] == 'socks5' else SocksVer.SOCKS4, host=proxy['host'], port=int(proxy['port']), username=proxy.get('user', None), password=proxy.get('password', None), rdns=True, ssl=ssl_context, ) else: connector = aiohttp.TCPConnector(ssl=ssl_context) return aiohttp.ClientSession(headers=headers, timeout=timeout, connector=connector) class SilentTaskGroup(TaskGroup): def spawn(self, *args, **kwargs): # don't complain if group is already closed. if self._closed: raise asyncio.CancelledError() return super().spawn(*args, **kwargs) class NetworkJobOnDefaultServer(Logger): """An abstract base class for a job that runs on the main network interface. Every time the main interface changes, the job is restarted, and some of its internals are reset. """ def __init__(self, network: 'Network'): Logger.__init__(self) asyncio.set_event_loop(network.asyncio_loop) self.network = network self.interface = None # type: Interface self._restart_lock = asyncio.Lock() self._reset() asyncio.run_coroutine_threadsafe(self._restart(), network.asyncio_loop) network.register_callback(self._restart, ['default_server_changed']) def _reset(self): """Initialise fields. Called every time the underlying server connection changes. """ self.group = SilentTaskGroup() async def _start(self, interface: 'Interface'): self.interface = interface await interface.group.spawn(self._start_tasks) async def _start_tasks(self): """Start tasks in self.group. Called every time the underlying server connection changes. """ raise NotImplementedError() # implemented by subclasses async def stop(self): self.network.unregister_callback(self._restart) await self._stop() async def _stop(self): await self.group.cancel_remaining() @log_exceptions async def _restart(self, *args): interface = self.network.interface if interface is None: return # we should get called again soon async with self._restart_lock: await self._stop() self._reset() await self._start(interface) @property def session(self): s = self.interface.session assert s is not None return s def create_and_start_event_loop() -> Tuple[asyncio.AbstractEventLoop, asyncio.Future, threading.Thread]: def on_exception(loop, context): """Suppress spurious messages it appears we cannot control.""" SUPPRESS_MESSAGE_REGEX = re.compile('SSL handshake|Fatal read error on|' 'SSL error in data received') message = context.get('message') if message and SUPPRESS_MESSAGE_REGEX.match(message): return loop.default_exception_handler(context) loop = asyncio.get_event_loop() loop.set_exception_handler(on_exception) # loop.set_debug(1) stopping_fut = asyncio.Future() loop_thread = threading.Thread(target=loop.run_until_complete, args=(stopping_fut,), name='EventLoop') loop_thread.start() return loop, stopping_fut, loop_thread class OrderedDictWithIndex(OrderedDict): """An OrderedDict that keeps track of the positions of keys. Note: very inefficient to modify contents, except to add new items. """ def __init__(self): super().__init__() self._key_to_pos = {} self._pos_to_key = {} def _recalc_index(self): self._key_to_pos = {key: pos for (pos, key) in enumerate(self.keys())} self._pos_to_key = {pos: key for (pos, key) in enumerate(self.keys())} def pos_from_key(self, key): return self._key_to_pos[key] def value_from_pos(self, pos): key = self._pos_to_key[pos] return self[key] def popitem(self, *args, **kwargs): ret = super().popitem(*args, **kwargs) self._recalc_index() return ret def move_to_end(self, *args, **kwargs): ret = super().move_to_end(*args, **kwargs) self._recalc_index() return ret def clear(self): ret = super().clear() self._recalc_index() return ret def pop(self, *args, **kwargs): ret = super().pop(*args, **kwargs) self._recalc_index() return ret def update(self, *args, **kwargs): ret = super().update(*args, **kwargs) self._recalc_index() return ret def __delitem__(self, *args, **kwargs): ret = super().__delitem__(*args, **kwargs) self._recalc_index() return ret def __setitem__(self, key, *args, **kwargs): is_new_key = key not in self ret = super().__setitem__(key, *args, **kwargs) if is_new_key: pos = len(self) - 1 self._key_to_pos[key] = pos self._pos_to_key[pos] = key return ret def multisig_type(wallet_type): '''If wallet_type is mofn multi-sig, return [m, n], otherwise return None.''' if not wallet_type: return None match = re.match(r'(\d+)of(\d+)', wallet_type) if match: match = [int(x) for x in match.group(1, 2)] return match class SSLContextSafe: @classmethod def get_context(self, alt_context: ssl.SSLContext=None) -> ssl.SSLContext: """ Returns a known path for cert trust store on platforms with known issues validating certificate chains, or other """ context = alt_context if sys.platform == 'darwin': context = ssl.SSLContext() context.verify_mode = ssl.CERT_REQUIRED context.check_hostname = True v, _, _ = platform.mac_ver() v = float('.'.join(v.split('.')[:2])) if v >= 10.12: if os.path.exists('/private/etc/ssl/cert.pem'): context.load_verify_locations(cafile='/private/etc/ssl/cert.pem') else: context.load_verify_locations(cafile=certifi.where()) return context
31.130167
116
0.627942
2ebbd40b43347112ed0f71e67a530f2e3667aaaa
5,375
py
Python
meet_connect.py
kanishk-mahor/meetConnect
952d6cc1ab4478a7afa8b4c6e4383b2608d6f918
[ "MIT" ]
null
null
null
meet_connect.py
kanishk-mahor/meetConnect
952d6cc1ab4478a7afa8b4c6e4383b2608d6f918
[ "MIT" ]
null
null
null
meet_connect.py
kanishk-mahor/meetConnect
952d6cc1ab4478a7afa8b4c6e4383b2608d6f918
[ "MIT" ]
null
null
null
# ====================================================================================================================== # Copyright (C) 2021 Kanishk Mahor - All rights reserved # ======================================================================================== # Notice: All Rights Reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # ====================================================================================================================== import datetime import warnings import time import re import sched import win32com.client # -------------------- # pip install selenium from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait # --------------------- # pip install pywinauto from pywinauto.keyboard import send_keys from pywinauto.timings import wait_until_passes from pywinauto.application import Application # ------------------------------------------------------------------------------------------------ # Chrome webbrowser driver path :you can download from https://chromedriver.chromium.org/downloads PATH = "C:/Program Files/chromedriver.exe" # -------------------------- # creating schedule instance schedule = sched.scheduler(time.time, time.sleep) # ---------------------------------- # Outlook calender API to get events def get_calender(): outlook = win32com.client.Dispatch( 'Outlook.Application').GetNamespace('MAPI') calender = outlook.getDefaultFolder(9).Items # Including recurring events calender.Sort('[Start]') # ----------today date----------- today = datetime.datetime.today() begin = today.date().strftime("%d/%m/%Y") # -------tomorrow date from today---------- tomorrow = datetime.timedelta(days=1)+today end = tomorrow.date().strftime("%d/%m/%Y") # -------------restrict calender events to today only --------------- restriction = "[Start] >= '" + begin + "' AND [END] <= '" + end + "'" calender = calender.Restrict(restriction) events = {'Start': [], 'Subject': [], 'Body': []} for a in calender: events['Start'].append((a.start).strftime("%H:%M")) events['Subject'].append(a.Subject) events['Body'].append(a.body) return events # ---------------------------- # join metting at metting time def join(calender_return, current_time): # ----List if all todays meeting----- meet = list(calender_return['Start']) # ----index of current meeting---- to_join = meet.index(current_time) # -extracting body content of current meeting- link1 = list(calender_return['Body'])[to_join] # -------------------------Parsing url from body----------------------- link_to_go = re.search("(?P<url>https?://[^\\s]+)", link1).group("url") link_to_go = link_to_go[:-1] # wait for one minute before joing meeting time.sleep(60) # -Handelling the handshake errors- options = webdriver.ChromeOptions() options.add_argument('--ignore-certificate-errors') options.add_argument('--ignore-ssl-errors') options.add_experimental_option('excludeSwitches', ['enable-logging']) # ---------creating webdriver instance---------- driver = webdriver.Chrome(PATH, options=options) # opening link in webbrowser driver.get(link_to_go) app_chrome = Application().connect( title_re='.*Start Your Meeting.*') app_chrome_window = app_chrome.window(title_re='.*Start Your Meeting.*') if app_chrome_window.exists(): app_chrome_window.set_focus() # wait till the link get loaded WebDriverWait(driver, 60) # Open Meeting in Window app send_keys("{LEFT}") send_keys("{ENTER}") # ----------------------------------------------------------------------------------------------------------- # Workaround is needed to open meeting in browser if app is not installed or dont want to open in window app # ----------------------------------------------------------------------------------------------------------- # -----------handelling warnings if any ------------- warnings.simplefilter('ignore', category=UserWarning) # --------Connect to cisco webex meetng app---------- try: app = wait_until_passes(10, 1, lambda: Application().connect( title_re=".*Meetings")) app_window = app.window(title_re=".*Meetings") # Close chrome tab and connect to meeting once app is connected if app_window.exists(): app_window.set_focus() time.sleep(7) send_keys("{ENTER}") send_keys("{ENTER}") driver.close() except Exception as e: print( f"{type(e).__name__} at line {e.__traceback__.tb_lineno} of {__file__}: {e}") # Scheduling outlook calender events for 15 minutes schedule.enter(900, 1, get_calender, ()) while(1): schedule.run() cal = get_calender() meet = list(cal['Start']) nowTime = datetime.datetime.now().strftime("%H:%M") if nowTime in meet: try: join(cal, nowTime) cal = {} except Exception as e: print( f"{type(e).__name__} at line {e.__traceback__.tb_lineno} of {__file__}: {e}")
35.361842
120
0.546233
dee5d07e33ad1532159bba22f133ba65e292ade6
46,052
py
Python
3DLSCPTR/db/apollosim.py
liuruijin17/3DLSCPTR
271ec46187f1674049c88457dbdd38fc299c723a
[ "BSD-3-Clause" ]
13
2021-04-12T11:13:18.000Z
2022-03-30T01:53:08.000Z
3DLSCPTR/db/apollosim.py
liuruijin17/3DLSCP
271ec46187f1674049c88457dbdd38fc299c723a
[ "BSD-3-Clause" ]
1
2021-12-10T08:49:49.000Z
2021-12-11T09:04:37.000Z
3DLSCPTR/db/apollosim.py
liuruijin17/3DLSCP
271ec46187f1674049c88457dbdd38fc299c723a
[ "BSD-3-Clause" ]
4
2021-04-14T14:31:47.000Z
2022-02-16T05:30:09.000Z
import sys import json import os import numpy as np import pickle import cv2 from PIL import Image, ImageOps import matplotlib.pyplot as plt import matplotlib matplotlib.use('TkAgg') from mpl_toolkits.mplot3d import Axes3D from tabulate import tabulate from torchvision.transforms import ToTensor import torchvision.transforms.functional as F from copy import deepcopy from scipy.interpolate import interp1d import imgaug.augmenters as iaa from imgaug.augmenters import Resize from imgaug.augmentables.lines import LineString, LineStringsOnImage from db.detection import DETECTION from config import system_configs from db.tools import eval_3D_lane RED = (0, 0, 255) GREEN = (0, 255, 0) BLUE = (255, 0, 0) DARK_GREEN = (115, 181, 34) YELLOW = (0, 255, 255) ORANGE = (0, 165, 255) PURPLE = (255, 0, 255) PINK = (180, 105, 255) CYAN = (255, 128, 0) CHOCOLATE = (30, 105, 210) PEACHPUFF = (185, 218, 255) STATEGRAY = (255, 226, 198) GT_COLOR = [PINK, CYAN, ORANGE, YELLOW, BLUE] PRED_COLOR = [RED, GREEN, DARK_GREEN, PURPLE, CHOCOLATE, PEACHPUFF, STATEGRAY] PRED_HIT_COLOR = GREEN PRED_MISS_COLOR = RED IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]) IMAGENET_STD = np.array([0.229, 0.224, 0.225]) class APOLLOSIM(DETECTION): def __init__(self, db_config, split, is_eval=False, is_resample=True, is_predcam=False): super(APOLLOSIM, self).__init__(db_config) data_dir = system_configs.data_dir # result_dir = system_configs.result_dir cache_dir = system_configs.cache_dir max_lanes = system_configs.max_lanes self.metric = 'default' self.is_resample = is_resample print('is_resample: {}'.format(is_resample)) inp_h, inp_w = db_config['input_size'] # define image pre-processor # self.totensor = transforms.ToTensor() # self.normalize = transforms.Normalize(args.vgg_mean, args.vgg_std) # self.data_aug = data_aug # False # dataset parameters # dataset_name = 'standard' # illus_chg/rare_subset/standard self.dataset_name = system_configs.dataset_name # illus_chg self.no_3d = False self.no_centerline = True self.h_org = 1080 self.w_org = 1920 self.org_h = 1080 self.org_w = 1920 self.h_crop = 0 self.crop_y = 0 # parameters related to service network self.h_net = inp_h self.w_net = inp_w self.resize_h = inp_h self.resize_w = inp_w self.ipm_h = 208 self.ipm_w = 128 self.top_view_region = np.array([[-10, 103], [10, 103], [-10, 3], [10, 3]]) self.K = np.array([[2015., 0., 960.], [0., 2015., 540.], [0., 0., 1.]]) self.H_crop_ipm = self.homography_crop_resize([self.h_org, self.w_org], self.h_crop, [self.h_net, self.w_net]) self.H_crop_im = self.homography_crop_resize([self.h_org, self.w_org], self.h_crop, [self.h_org, self.w_org]) # org2resized+cropped self.H_ipm2g = cv2.getPerspectiveTransform( np.float32([[0, 0], [self.ipm_w - 1, 0], [0, self.ipm_h - 1], [self.ipm_w - 1, self.ipm_h - 1]]), np.float32(self.top_view_region)) self.fix_cam = False x_min = self.top_view_region[0, 0] # -10 x_max = self.top_view_region[1, 0] # 10 self.x_min = x_min # -10 self.x_max = x_max # 10 self.anchor_y_steps = [ 5, 10, 15, 20, 30, 40, 50, 60, 80, 100] self.y_min = self.top_view_region[2, 1] self.y_max = self.top_view_region[0, 1] if self.is_resample: self.gflatYnorm = self.anchor_y_steps[-1] self.gflatZnorm = 10 self.gflatXnorm = 30 else: self.gflatYnorm = 200 self.gflatZnorm = 1 self.gflatXnorm = 20 self.pitch = 3 # pitch angle of camera to ground in centi degree self.cam_height = 1.55 # height of camera in meters self.batch_size = system_configs.batch_size if self.no_centerline: # False self.num_types = 1 else: self.num_types = 3 if self.is_resample: self.sample_hz = 1 else: self.sample_hz = 4 self._split = split self._dataset = { "train": ['train'], "test": ['test'], "sub_train": ['sub_train'], "validation": ['validation'] }[self._split] self.root = os.path.join(data_dir, 'Apollo_Sim_3D_Lane_Release') data_dir = os.path.join(self.root, 'data_splits', self.dataset_name) if self.root is None: raise Exception('Please specify the root directory') self.img_w, self.img_h = self.h_org, self.w_org # apollo sim original image resolution self.max_2dlanes = 0 self.max_gflatlanes = 0 self.max_3dlanes = 0 self.max_2dpoints = 0 self.max_gflatpoints = 0 self.max_3dpoints = 0 self.X3d, self.Y3d, self.Z3d = [0, 0], [0, 0], [0, 0] self.Xgflat, self.Ygflat = [0, 0], [0, 0] self.normalize = True self.to_tensor = ToTensor() self.aug_chance = 0.9090909090909091 self._image_file = [] self.augmentations = [{'name': 'Affine', 'parameters': {'rotate': (-10, 10)}}, {'name': 'HorizontalFlip', 'parameters': {'p': 0.5}}, {'name': 'CropToFixedSize', 'parameters': {'height': 972, 'width': 1728}}] # Force max_lanes, used when evaluating testing with models trained on other datasets # if max_lanes is not None: # self.max_lanes = max_lanes self.anno_files = [os.path.join(data_dir, path + '.json') for path in self._dataset] self._data = "apollosim" self._mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32) self._std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32) self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571], dtype=np.float32) self._eig_vec = np.array([ [-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938] ], dtype=np.float32) self._cat_ids = [ 0 ] # 0 car self._classes = { ind + 1: cat_id for ind, cat_id in enumerate(self._cat_ids) } self._coco_to_class_map = { value: key for key, value in self._classes.items() } self._cache_file = os.path.join(cache_dir, "apollosim_{}.pkl".format(self._dataset)) if self.augmentations is not None: augmentations = [getattr(iaa, aug['name'])(**aug['parameters']) for aug in self.augmentations] # add augmentation transformations = iaa.Sequential([Resize({'height': inp_h, 'width': inp_w})]) self.transform = iaa.Sequential([iaa.Sometimes(then_list=augmentations, p=self.aug_chance), transformations]) if is_eval: self._load_eval_data() else: self._load_data() self._db_inds = np.arange(len(self._image_ids)) def _load_data(self, debug_lane=False): print("loading from cache file: {}".format(self._cache_file)) if not os.path.exists(self._cache_file): print("No cache file found...") self._extract_data() self._transform_annotations() if debug_lane: pass else: with open(self._cache_file, "wb") as f: pickle.dump([self._annotations, self._image_ids, self._image_file, self.max_2dlanes, self.max_3dlanes, self.max_gflatlanes, self.max_2dpoints, self.max_3dpoints, self.max_gflatpoints, self.X3d, self.Y3d, self.Z3d, self.Xgflat, self.Ygflat], f) else: with open(self._cache_file, "rb") as f: (self._annotations, self._image_ids, self._image_file, self.max_2dlanes, self.max_3dlanes, self.max_gflatlanes, self.max_2dpoints, self.max_3dpoints, self.max_gflatpoints, self.X3d, self.Y3d, self.Z3d, self.Xgflat, self.Ygflat) = pickle.load(f) assert self.max_2dlanes == self.max_3dlanes assert self.max_3dlanes == self.max_gflatlanes assert self.max_2dpoints == self.max_3dpoints assert self.max_3dpoints == self.max_gflatpoints print('{}.max_2dlanes: {}\n' '{}.max_3dlanes: {}\n' '{}.max_gflatlanes: {}\n' '{}.max_2dpoints: {}\n' '{}.max_3dpoints: {}\n' '{}.max_gflatpoints: {}\n' '{}.X3d: {}\n' '{}.Y3d: {}\n' '{}.Z3d: {}\n' '{}.Xgflat: {}\n' '{}.Ygflat: {}'.format(self.dataset_name, self.max_2dlanes, self.dataset_name, self.max_3dlanes, self.dataset_name, self.max_gflatlanes, self.dataset_name, self.max_2dpoints, self.dataset_name, self.max_3dpoints, self.dataset_name, self.max_gflatpoints, self.dataset_name, self.X3d, self.dataset_name, self.Y3d, self.dataset_name, self.Z3d, self.dataset_name, self.Xgflat, self.dataset_name, self.Ygflat)) def _extract_data(self): image_id = 0 max_2dlanes, max_3dlanes, max_gflatlanes = 0, 0, 0 self._old_annotations = {} for anno_file in self.anno_files: with open(anno_file, 'r') as anno_obj: for line in anno_obj: info_dict = json.loads(line) # dict_keys(['raw_file', 'cam_height', 'cam_pitch', # 'centerLines', 'laneLines', 'centerLines_visibility', 'laneLines_visibility']) gt_lane_pts = info_dict['laneLines'] if len(gt_lane_pts) < 1: continue gt_lane_visibility = info_dict['laneLines_visibility'] image_path = os.path.join(self.root, info_dict['raw_file']) assert os.path.exists(image_path), '{:s} not exist'.format(image_path) # if not self.fix_cam: gt_cam_height = info_dict['cam_height'] gt_cam_pitch = info_dict['cam_pitch'] P_g2im = self.projection_g2im(gt_cam_pitch, gt_cam_height, self.K) # used for x=PX (3D to 2D) H_g2im = self.homograpthy_g2im(gt_cam_pitch, gt_cam_height, self.K) H_im2g = np.linalg.inv(H_g2im) P_g2gflat = np.matmul(H_im2g, P_g2im) aug_mat = np.identity(3, dtype=np.float) gt_lanes = [] # org_gt_lanes = [] for i, lane in enumerate(gt_lane_pts): # A GT lane can be either 2D or 3D # if a GT lane is 3D, the height is intact from 3D GT, so keep it intact here too closest_point = lane[0] remotest_point = lane[-1] sampled_points = lane[1:-1:self.sample_hz] sampled_points.insert(0, closest_point) sampled_points.append(remotest_point) lane = np.array(sampled_points) # lane = np.array(lane[::self.sample_hz]) closest_viz = gt_lane_visibility[i][0] remotest_viz = gt_lane_visibility[i][-1] sampled_viz = gt_lane_visibility[i][1:-1:self.sample_hz] sampled_viz.insert(0, closest_viz) sampled_viz.append(remotest_viz) lane_visibility = np.array(sampled_viz) # lane_visibility = np.array(gt_lane_visibility[i][::self.sample_hz]) # prune gt lanes by visibility labels pruned_lane = self.prune_3d_lane_by_visibility(lane, lane_visibility) # prune out-of-range points are necessary before transformation -30~30 pruned_lane = self.prune_3d_lane_by_range(pruned_lane, 3*self.x_min, 3*self.x_max) # Resample if self.is_resample: if pruned_lane.shape[0] < 2: continue # Above code resample 3D points # print(pruned_lane.shape) pruned_lane = self.make_lane_y_mono_inc(pruned_lane) # print(pruned_lane.shape) if pruned_lane.shape[0] < 2: continue x_values, z_values, visibility_vec = self.resample_laneline_in_y(pruned_lane, self.anchor_y_steps, out_vis=True) x_values = x_values[visibility_vec] z_values = z_values[visibility_vec] y_values = np.array(self.anchor_y_steps)[visibility_vec] pruned_lane = np.stack([x_values, y_values, z_values], axis=-1) # print(pruned_lane.shape);exit() if pruned_lane.shape[0] > 1: gt_lanes.append(pruned_lane) # save the gt 3d lanes gt_3dlanes = deepcopy(gt_lanes) # convert 3d lanes to flat ground space x_bar y_bar Z (meter i think) self.convert_lanes_3d_to_gflat(gt_lanes, P_g2gflat) gflatlanes = [] real_gt_3dlanes = [] for i in range(len(gt_lanes)): gflatlane = gt_lanes[i] gt_3dlane = gt_3dlanes[i] valid_indices = np.logical_and(np.logical_and(gflatlane[:, 1] > 0, gflatlane[:, 1] < 200), np.logical_and(gflatlane[:, 0] > 3 * self.x_min, gflatlane[:, 0] < 3 * self.x_max)) gflatlane = gflatlane[valid_indices, ...] gt_3dlane = gt_3dlane[valid_indices, ...] if gflatlane.shape[0] < 2 or np.sum(np.logical_and(gflatlane[:, 0] > self.x_min, gflatlane[:, 0] < self.x_max)) < 2: continue gflatlanes.append(gflatlane) real_gt_3dlanes.append(gt_3dlane) P_gt = np.matmul(self.H_crop_im, H_g2im) P_gt = np.matmul(aug_mat, P_gt) lanes = [] for i in range(len(gflatlanes)): gflatlane = gflatlanes[i] x_2d, y_2d = self.homographic_transformation(P_gt, gflatlane[:, 0], gflatlane[:, 1]) assert gflatlane.shape[0] == x_2d.shape[0] assert x_2d.shape[0] == y_2d.shape[0] # lanes.append([(x, y) for (x, y) in zip(x_2d, y_2d) if x >= 0]) lanes.append([(x, y) for (x, y) in zip(x_2d, y_2d)]) lanes = [lane for lane in lanes if len(lane) > 0] if not len(lanes): continue self._image_file.append(image_path) self._image_ids.append(image_id) max_2dlanes = max(max_2dlanes, len(lanes)) self.max_2dlanes = max_2dlanes max_gflatlanes = max(max_gflatlanes, len(gflatlanes)) self.max_gflatlanes = max_gflatlanes max_3dlanes = max(max_3dlanes, len(real_gt_3dlanes)) self.max_3dlanes = max_3dlanes self.max_2dpoints = max(self.max_2dpoints, max([len(l) for l in lanes])) self.max_gflatpoints = max(self.max_gflatpoints, max([len(l) for l in gflatlanes])) self.max_3dpoints = max(self.max_3dpoints, max([len(l) for l in real_gt_3dlanes])) self.X3d[1] = max(self.X3d[1], max([np.max(l[:, 0]) for l in real_gt_3dlanes])) self.X3d[0] = min(self.X3d[0], min([np.min(l[:, 0]) for l in real_gt_3dlanes])) self.Y3d[1] = max(self.Y3d[1], max([np.max(l[:, 1]) for l in real_gt_3dlanes])) self.Y3d[0] = min(self.Y3d[0], min([np.min(l[:, 1]) for l in real_gt_3dlanes])) self.Z3d[1] = max(self.Z3d[1], max([np.max(l[:, 2]) for l in real_gt_3dlanes])) self.Z3d[0] = min(self.Z3d[0], min([np.min(l[:, 2]) for l in real_gt_3dlanes])) self.Xgflat[1] = max(self.Xgflat[1], max([np.max(l[:, 0]) for l in gflatlanes])) self.Xgflat[0] = min(self.Xgflat[0], min([np.min(l[:, 0]) for l in gflatlanes])) self.Ygflat[1] = max(self.Ygflat[1], max([np.max(l[:, 1]) for l in gflatlanes])) self.Ygflat[0] = min(self.Ygflat[0], min([np.min(l[:, 1]) for l in gflatlanes])) self._old_annotations[image_id] = { 'path': image_path, 'gt_2dlanes': lanes, 'gt_3dlanes': real_gt_3dlanes, 'gt_gflatlanes': gflatlanes, 'aug': False, 'relative_path': info_dict['raw_file'], 'gt_camera_pitch': gt_cam_pitch, 'gt_camera_height': gt_cam_height, 'json_line': info_dict, } image_id += 1 def _transform_annotation(self, anno, img_wh=None): if img_wh is None: img_h = self._get_img_heigth(anno['path']) img_w = self._get_img_width(anno['path']) else: img_w, img_h = img_wh gt_2dlanes = anno['gt_2dlanes'] gt_gflatlanes = anno['gt_gflatlanes'] gt_3dlanes = anno['gt_3dlanes'] assert len(gt_2dlanes) == len(gt_gflatlanes) assert len(gt_3dlanes) == len(gt_gflatlanes) categories = anno['categories'] if 'categories' in anno else [1] * len(gt_2dlanes) gt_2dlanes = zip(gt_2dlanes, categories) # 1+2+(2*self.max_2dpoints)+2+(2*self.max_2dpoints)+(3*self.max_2dpoints) # c|2d_1|2d_2|u_2d|v_2d|3d_1|3d_2|3d_X|3d_Y|3d_Z|gflat_X|gflat_Y|gflat_Z lanes = np.ones((self.max_2dlanes, 1+2+self.max_2dpoints*2), dtype=np.float32) * -1e5 lanes3d = np.ones((self.max_2dlanes, 2+self.max_2dpoints*3), dtype=np.float32) * -1e5 lanesgflat = np.ones((self.max_2dlanes, self.max_2dpoints*3), dtype=np.float32) * -1e5 lanes[:, 0] = 0 laneflags = np.ones((self.max_2dlanes, self.max_2dpoints), dtype=np.float32) * -1e-5 # old_lanes = sorted(old_lanes, key=lambda x: x[0][0][0]) for lane_pos, (lane, category) in enumerate(gt_2dlanes): lower, upper = lane[0][1], lane[-1][1] xs = np.array([p[0] for p in lane]) / img_w ys = np.array([p[1] for p in lane]) / img_h lanes[lane_pos, 0] = category lanes[lane_pos, 1] = lower / img_h lanes[lane_pos, 2] = upper / img_h lanes[lane_pos, 1+2:1+2+len(xs)] = xs lanes[lane_pos, (1+2+self.max_2dpoints):(1+2+self.max_2dpoints+len(ys))] = ys laneflags[lane_pos, :len(xs)] = 1. gt_3dlane = gt_3dlanes[lane_pos] assert len(lane) == len(gt_3dlane) lower, upper = gt_3dlane[0][1], gt_3dlane[-1][1] Xs = np.array([p[0] for p in gt_3dlane]) / self.gflatXnorm Ys = np.array([p[1] for p in gt_3dlane]) / self.gflatYnorm Zs = np.array([p[2] for p in gt_3dlane]) / self.gflatZnorm lanes3d[lane_pos, 0] = lower / self.gflatYnorm lanes3d[lane_pos, 1] = upper / self.gflatYnorm lanes3d[lane_pos, 2:(2+len(Xs))] = Xs lanes3d[lane_pos, (2+self.max_3dpoints):(2+self.max_3dpoints+len(Ys))] = Ys lanes3d[lane_pos, (2+self.max_3dpoints*2):(2+self.max_3dpoints*2+len(Zs))] = Zs gflatlane = gt_gflatlanes[lane_pos] assert len(lane) == len(gflatlane) gflat_Xs = np.array([p[0] for p in gflatlane]) / self.gflatXnorm gflat_Ys = np.array([p[1] for p in gflatlane]) / self.gflatYnorm gflat_Zs = np.array([p[2] for p in gflatlane]) / self.gflatZnorm lanesgflat[lane_pos, :len(gflat_Xs)] = gflat_Xs lanesgflat[lane_pos, self.max_gflatpoints:(self.max_gflatpoints+len(gflat_Ys))] = gflat_Ys lanesgflat[lane_pos, self.max_gflatpoints*2:(self.max_gflatpoints*2+len(gflat_Ys))] = gflat_Zs lanes = np.concatenate([lanes, lanes3d, lanesgflat], axis=-1) new_anno = { 'path': anno['path'], 'gt_2dgflatlabels': lanes, 'gt_2dgflatflags': laneflags, 'old_anno': anno, 'categories': [cat for _, cat in gt_2dlanes], 'gt_camera_pitch': anno['gt_camera_pitch'], 'gt_camera_height': anno['gt_camera_height'], } return new_anno def _transform_annotations(self): print('Now transforming annotations...') self._annotations = {} for image_id, old_anno in self._old_annotations.items(): self._annotations[image_id] = self._transform_annotation(old_anno) def _load_eval_data(self): self._extact_eval_data() self._transform_eval_annotations() def _extact_eval_data(self): image_id = 0 self._old_annotations = {} for anno_file in self.anno_files: with open(anno_file, 'r') as anno_obj: for line in anno_obj: info_dict = json.loads(line) # dict_keys(['raw_file', 'cam_height', 'cam_pitch', # 'centerLines', 'laneLines', 'centerLines_visibility', 'laneLines_visibility']) image_path = os.path.join(self.root, info_dict['raw_file']) gt_cam_height = info_dict['cam_height'] gt_cam_pitch = info_dict['cam_pitch'] assert os.path.exists(image_path), '{:s} not exist'.format(image_path) self._image_file.append(image_path) self._image_ids.append(image_id) self._old_annotations[image_id] = { 'path': image_path, 'aug': False, 'relative_path': info_dict['raw_file'], 'json_line': info_dict, 'gt_camera_pitch': gt_cam_pitch, 'gt_camera_height': gt_cam_height, } image_id += 1 def _transform_eval_annotation(self, anno): new_anno = { 'path': anno['path'], 'old_anno': anno, 'gt_camera_pitch': anno['gt_camera_pitch'], 'gt_camera_height': anno['gt_camera_height'], } return new_anno def _transform_eval_annotations(self): print('Now transforming EVALEVALEVAL annotations...') self._annotations = {} for image_id, old_anno in self._old_annotations.items(): self._annotations[image_id] = self._transform_eval_annotation(old_anno) def __getitem__(self, idx, transform=False): # I think this part is only used when testing item = self._annotations[idx] img = cv2.imread(item['path']) gt_2dflatlabels = item['gt_2dgflatlabels'] gt_2dgflatflags = item['gt_2dgflatflags'] gt_camera_pitch = item['gt_camera_pitch'] gt_camera_height = item['gt_camera_height'] if transform: raise NotImplementedError return (img, gt_2dflatlabels, gt_2dgflatflags, gt_camera_pitch, gt_camera_height, idx) def pred2lanes(self, path, pred, y_samples, camera_height): ys = np.array(y_samples) / self.gflatYnorm lanes = [] probs = [] for lane in pred: if lane[1] == 0: continue # pred_height = lane[-2] # pred_height = lane[-2] # pred_pitch = lane[-1] lane_xsys = lane[6:6+4] lane_zsys = lane[10:10+4] X_pred = np.polyval(lane_xsys, ys) * self.gflatXnorm Z_pred = np.polyval(lane_zsys, ys) * self.gflatZnorm valid_indices = (ys > lane[4]) & (ys < lane[5]) if np.sum(valid_indices) < 2: continue X_pred = X_pred[valid_indices] Y_pred = ys[valid_indices] * self.gflatYnorm Z_pred = Z_pred[valid_indices] # X_pred, Y_pred = self.transform_lane_gflat2g(camera_height, X_pred, Y_pred, Z_pred) lanes.append(np.stack([X_pred, Y_pred, Z_pred], axis=-1).tolist()) probs.append(float(lane[0])) return lanes, probs def pred2apollosimformat(self, idx, pred, runtime): runtime *= 1000. # s to ms old_anno = self._annotations[idx]['old_anno'] # path = old_anno['path'] relative_path = old_anno['relative_path'] json_line = old_anno['json_line'] gt_camera_height = old_anno['gt_camera_height'] gt_camera_pitch = old_anno['gt_camera_pitch'] pred_cam_height = pred[0, -2] pred_cam_pitch = pred[0, -1] self.mae_height += np.abs(pred_cam_height - gt_camera_height) self.mae_pitch += np.abs(pred_cam_pitch - gt_camera_pitch) # print(gt_camera_height, gt_camera_pitch) # print(pred[:, -2:]) # y_samples = self.anchor_y_steps # y_samples = list((np.linspace(0, 1., num=100) * 200.)) y_samples = list((np.linspace(self.top_view_region[2, 1]/self.gflatYnorm, self.top_view_region[0, 1]/self.gflatYnorm, num=100) * self.gflatYnorm)) pred_lanes, prob_lanes = self.pred2lanes(relative_path, pred, y_samples, gt_camera_height) json_line["laneLines"] = pred_lanes json_line["laneLines_prob"] = prob_lanes json_line["pred_cam_height"] = pred_cam_height json_line["pred_cam_pitch"] = pred_cam_pitch return json_line def save_apollosim_predictions(self, predictions, runtimes, filename): self.mae_height = 0 self.mae_pitch = 0 with open(filename, 'w') as jsonFile: for idx in range(len(predictions)): json_line = self.pred2apollosimformat(idx, predictions[idx], runtimes[idx]) json.dump(json_line, jsonFile) jsonFile.write('\n') print('Height(m):\t{}'.format(self.mae_height / len(predictions))) print('Pitch(o):\t{}'.format(self.mae_pitch / len(predictions) * 180 / np.pi)) def eval(self, exp_dir, predictions, runtimes, label=None, only_metrics=False): # raise NotImplementedError pred_filename = 'apollosim_{}_{}_predictions_{}.json'.format(self.dataset_name, self.split, label) pred_filename = os.path.join(exp_dir, pred_filename) self.save_apollosim_predictions(predictions, runtimes, pred_filename) if self.metric == 'default': evaluator = eval_3D_lane.LaneEval(self) eval_stats_pr = evaluator.bench_one_submit_varying_probs(pred_filename, self.anno_files[0]) max_f_prob = eval_stats_pr['max_F_prob_th'] eval_stats = evaluator.bench_one_submit(pred_filename, self.anno_files[0], prob_th=max_f_prob) print("Metrics: AP, F-score, x error (close), x error (far), z error (close), z error (far)") print("Laneline:{:.3}, {:.3}, {:.3}, {:.3}, {:.3}, {:.3}".format( eval_stats_pr['laneline_AP'], eval_stats[0], eval_stats[3], eval_stats[4], eval_stats[5], eval_stats[6])) result = { 'AP': eval_stats_pr['laneline_AP'], 'F-score': eval_stats[0], 'x error (close)': eval_stats[3], 'x error (far)': eval_stats[4], 'z error (close)': eval_stats[5], 'z error (far)': eval_stats[6] } # print("Centerline:{:.3}, {:.3}, {:.3}, {:.3}, {:.3}, {:.3}".format( # eval_stats_pr['centerline_AP'], eval_stats[7], eval_stats[10], eval_stats[11], eval_stats[12], eval_stats[13])) elif self.metric == 'ours': raise NotImplementedError if not only_metrics: filename = 'apollosim_{}_{}_eval_result_{}.json'.format(self.dataset_name, self.split, label) with open(os.path.join(exp_dir, filename), 'w') as out_file: json.dump(result, out_file) return eval_stats def detections(self, ind): image_id = self._image_ids[ind] item = self._annotations[image_id] return item def __len__(self): return len(self._annotations) def _to_float(self, x): return float("{:.2f}".format(x)) def class_name(self, cid): cat_id = self._classes[cid] return cat_id def _get_img_heigth(self, path): return 1080 def _get_img_width(self, path): return 1920 def draw_annotation(self, idx, pred=None, img=None, cls_pred=None): if img is None: # raise NotImplementedError img, gt_2dflatlabels, gt_2dgflatflags, gt_camera_pitch, gt_camera_height, _ = \ self.__getitem__(idx, transform=False) # Tensor to opencv image img = img.permute(1, 2, 0).numpy() # Unnormalize if self.normalize: img = img * np.array(IMAGENET_STD) + np.array(IMAGENET_MEAN) img = (img * 255).astype(np.uint8) else: img = (img - np.min(img)) / (np.max(img) - np.min(img)) _, gt_2dflatlabels, gt_2dgflatflags, gt_camera_pitch, gt_camera_height, _ = \ self.__getitem__(idx, transform=False) img = (img * 255).astype(np.uint8) img_h, img_w, _ = img.shape img_canvas = deepcopy(img) K = self.K aug_mat = np.identity(3, dtype=np.float) H_g2im = self.homograpthy_g2im(gt_camera_pitch, gt_camera_height, K) H_im2ipm = np.linalg.inv(np.matmul(self.H_crop_ipm, np.matmul(H_g2im, self.H_ipm2g))) H_im2ipm = np.matmul(H_im2ipm, np.linalg.inv(aug_mat)) P_g2im = self.projection_g2im(gt_camera_pitch, gt_camera_height, self.K) # used for x=PX (3D to 2D) # H_g2im = self.homograpthy_g2im(gt_cam_pitch, gt_cam_height, self.K) H_im2g = np.linalg.inv(H_g2im) P_g2gflat = np.matmul(H_im2g, P_g2im) ipm_canvas = deepcopy(img) im_ipm = cv2.warpPerspective(ipm_canvas / 255., H_im2ipm, (self.ipm_w, self.ipm_h)) im_ipm = np.clip(im_ipm, 0, 1) ipm_laneline = im_ipm.copy() H_g2ipm = np.linalg.inv(self.H_ipm2g) for i, lane in enumerate(gt_2dflatlabels): # lane = lane[3:] # remove conf, upper and lower positions seq_len = len(lane-5) // 8 xs = lane[3:3+seq_len][gt_2dgflatflags[i] > 0] ys = lane[3+seq_len:3+seq_len*2][gt_2dgflatflags[i] > 0] ys = ys[xs >= 0].astype(np.int) xs = xs[xs >= 0].astype(np.int) # for p in zip(xs, ys): # p = (int(p[0] * img_w), int(p[1] * img_h)) # img_canvas = cv2.circle(img_canvas, p, 5, color=(0, 0, 255), thickness=-1) for p in range(1, ys.shape[0]): img_canvas = cv2.line(img_canvas, (xs[p - 1], ys[p - 1]), (xs[p], ys[p]), [0, 0, 1], 2) gflatlane = lane[5+seq_len*5:] gflatXs = gflatlane[:seq_len][gt_2dgflatflags[i] > 0] * self.gflatXnorm gflatYs = gflatlane[seq_len:seq_len*2][gt_2dgflatflags[i] > 0] * self.gflatYnorm x_ipm, y_ipm = self.homographic_transformation(H_g2ipm, gflatXs, gflatYs) x_ipm = x_ipm.astype(np.int) y_ipm = y_ipm.astype(np.int) for k in range(1, x_ipm.shape[0]): ipm_laneline = cv2.line(ipm_laneline, (x_ipm[k - 1], y_ipm[k - 1]), (x_ipm[k], y_ipm[k]), [0, 0, 1], 2) # ipm_laneline = cv2.circle(ipm_laneline, (x_ipm[k], y_ipm[k]), 5, color=(255, 0, 0), thickness=-1) ipm_laneline = (ipm_laneline * 255).astype(np.uint8) # cv2.imshow('fff', ipm_laneline) # cv2.waitKey(0) # exit() if pred is None: print('Why') return img_canvas, ipm_laneline P_gt = np.matmul(self.H_crop_im, H_g2im) P_gt = np.matmul(aug_mat, P_gt) pred = pred[pred[:, 1].astype(int) == 1] matches, accs, _ = self.get_metrics(pred, idx) for i, lane in enumerate(pred): lower, upper = lane[4], lane[5] zlane = lane[10:14] lane = lane[6:10] # remove upper, lower positions ys = np.linspace(lower, upper, num=100) xs = np.polyval(lane, ys) zs = np.polyval(zlane, ys) pred_ys = ys * self.gflatYnorm pred_xs = xs * self.gflatXnorm pred_zs = zs * self.gflatZnorm pred_xs, pred_ys = self.projective_transformation(P_g2gflat, pred_xs, pred_ys, pred_zs) valid_indices = np.logical_and(np.logical_and(pred_ys > 0, pred_ys < 200), np.logical_and(pred_xs > 3 * self.x_min, pred_xs < 3 * self.x_max)) pred_xs = pred_xs[valid_indices] pred_ys = pred_ys[valid_indices] if pred_xs.shape[0] < 2 or np.sum(np.logical_and(pred_xs > self.x_min, pred_xs < self.x_max)) < 2: continue pred_ipm_xs, pred_ipm_ys = self.homographic_transformation(H_g2ipm, pred_xs, pred_ys) pred_ipm_xs = pred_ipm_xs.astype(np.int) pred_ipm_ys = pred_ipm_ys.astype(np.int) for k in range(1, pred_ipm_xs.shape[0]): ipm_laneline = cv2.line(ipm_laneline, (pred_ipm_xs[k - 1], pred_ipm_ys[k - 1]), (pred_ipm_xs[k], pred_ipm_ys[k]), [255, 0, 0], 2) pred_x2d, pred_y2d = self.homographic_transformation(P_gt, pred_xs, pred_ys) pred_x2d = (pred_x2d * self.w_net / self.w_org).astype(np.int) pred_y2d = (pred_y2d * self.h_net / self.h_org).astype(np.int) for k in range(1, pred_x2d.shape[0]): img_canvas = cv2.line(img_canvas, (pred_x2d[k - 1], pred_y2d[k - 1]), (pred_x2d[k], pred_y2d[k]), [255, 0, 0], 2) return img_canvas, ipm_laneline def draw_3dannotation(self, idx, pred=None, img=None, cls_pred=None): # _, _, draw_gt_xsys, draw_gt_zsys, draw_gt_flags, \ # draw_gt_camera_pitch, draw_gt_camera_height, draw_gtground_3dlanes, _ = self.__getitem__(idx) _, gt_2dflatlabels, gt_2dgflatflags, gt_camera_pitch, gt_camera_height, _ = \ self.__getitem__(idx, transform=False) img, ipm_img = img fig = plt.figure() ax1 = fig.add_subplot(231) ax1.imshow(img) ax2 = fig.add_subplot(232) ax2.imshow(ipm_img) ax = fig.add_subplot(233, projection='3d') for i in range(gt_2dflatlabels.shape[0]): lane = gt_2dflatlabels[i] seq_len = len(lane-5) // 8 lane3D = lane[5+2*seq_len:5+5*seq_len] Xs = lane3D[:seq_len][gt_2dgflatflags[i] > 0] * self.gflatXnorm Ys = lane3D[seq_len:seq_len * 2][gt_2dgflatflags[i] > 0] * self.gflatYnorm Zs = lane3D[seq_len * 2:seq_len * 3][gt_2dgflatflags[i] > 0] * self.gflatYnorm ax.plot(Xs, Ys, Zs, color=[0, 0, 1]) if pred is None: ax.set_xlabel('x axis') ax.set_ylabel('y axis') ax.set_zlabel('z axis') bottom, top = ax.get_zlim() ax.set_xlim(-20, 20) ax.set_ylim(0, 100) ax.set_zlim(min(bottom, -1), max(top, 1)) plt.show() print('why') return plt pred = pred[pred[:, 1].astype(int) == 1] matches, accs, _ = self.get_metrics(pred, idx) for i, lane in enumerate(pred): # lane = lane[1:] # remove conf lower, upper = lane[4], lane[5] zlane = lane[10:14] lane = lane[6:10] # remove upper, lower positions ys = np.linspace(lower, upper, num=100) xs = np.polyval(lane, ys) zs = np.polyval(zlane, ys) pred_ys = ys * self.gflatYnorm pred_xs = xs * self.gflatXnorm pred_zs = zs * self.gflatZnorm ax.plot(pred_xs, pred_ys, pred_zs, color=[1, 0, 0]) ax.set_xlabel('x axis') ax.set_ylabel('y axis') ax.set_zlabel('z axis') bottom, top = ax.get_zlim() ax.set_xlim(-20, 20) ax.set_ylim(0, 100) ax.set_zlim(min(bottom, -1), max(top, 1)) # ax.set_zlim(-0.1, 0.1) # ax.set_zlim(bottom, top) return plt def get_metrics(self, lanes, idx): # Placeholders return [1] * len(lanes), [1] * len(lanes), None def lane_to_linestrings(self, lanes): lines = [] for lane in lanes: lines.append(LineString(lane)) return lines def linestrings_to_lanes(self, lines): lanes = [] for line in lines: lanes.append(line.coords) return lanes def homography_crop_resize(self, org_img_size, crop_y, resize_img_size): """ compute the homography matrix transform original image to cropped and resized image :param org_img_size: [org_h, org_w] :param crop_y: :param resize_img_size: [resize_h, resize_w] :return: """ # transform original image region to network input region ratio_x = resize_img_size[1] / org_img_size[1] ratio_y = resize_img_size[0] / (org_img_size[0] - crop_y) H_c = np.array([[ratio_x, 0, 0], [0, ratio_y, -ratio_y * crop_y], [0, 0, 1]]) return H_c def projection_g2im(self, cam_pitch, cam_height, K): P_g2c = np.array([[1, 0, 0, 0], [0, np.cos(np.pi / 2 + cam_pitch), -np.sin(np.pi / 2 + cam_pitch), cam_height], [0, np.sin(np.pi / 2 + cam_pitch), np.cos(np.pi / 2 + cam_pitch), 0]]) P_g2im = np.matmul(K, P_g2c) return P_g2im def homograpthy_g2im(self, cam_pitch, cam_height, K): # transform top-view region to original image region R_g2c = np.array([[1, 0, 0], [0, np.cos(np.pi / 2 + cam_pitch), -np.sin(np.pi / 2 + cam_pitch)], [0, np.sin(np.pi / 2 + cam_pitch), np.cos(np.pi / 2 + cam_pitch)]]) H_g2im = np.matmul(K, np.concatenate([R_g2c[:, 0:2], [[0], [cam_height], [0]]], 1)) return H_g2im def prune_3d_lane_by_visibility(self, lane_3d, visibility): lane_3d = lane_3d[visibility > 0, ...] return lane_3d def prune_3d_lane_by_range(self, lane_3d, x_min, x_max): # TODO: solve hard coded range later # remove points with y out of range # 3D label may miss super long straight-line with only two points: Not have to be 200, gt need a min-step # 2D dataset requires this to rule out those points projected to ground, but out of meaningful range lane_3d = lane_3d[np.logical_and(lane_3d[:, 1] > 0, lane_3d[:, 1] < 200), ...] # remove lane points out of x range lane_3d = lane_3d[np.logical_and(lane_3d[:, 0] > x_min, lane_3d[:, 0] < x_max), ...] return lane_3d def convert_lanes_3d_to_gflat(self, lanes, P_g2gflat): """ Convert a set of lanes from 3D ground coordinates [X, Y, Z], to IPM-based flat ground coordinates [x_gflat, y_gflat, Z] :param lanes: a list of N x 3 numpy arrays recording a set of 3d lanes :param P_g2gflat: projection matrix from 3D ground coordinates to frat ground coordinates :return: """ # TODO: this function can be simplified with the derived formula for lane in lanes: # convert gt label to anchor label lane_gflat_x, lane_gflat_y = self.projective_transformation(P_g2gflat, lane[:, 0], lane[:, 1], lane[:, 2]) lane[:, 0] = lane_gflat_x lane[:, 1] = lane_gflat_y def projective_transformation(self, Matrix, x, y, z): """ Helper function to transform coordinates defined by transformation matrix Args: Matrix (multi dim - array): 3x4 projection matrix x (array): original x coordinates y (array): original y coordinates z (array): original z coordinates """ ones = np.ones((1, len(z))) coordinates = np.vstack((x, y, z, ones)) trans = np.matmul(Matrix, coordinates) x_vals = trans[0, :] / trans[2, :] y_vals = trans[1, :] / trans[2, :] return x_vals, y_vals def homographic_transformation(self, Matrix, x, y): """ Helper function to transform coordinates defined by transformation matrix Args: Matrix (multi dim - array): 3x3 homography matrix x (array): original x coordinates y (array): original y coordinates """ ones = np.ones((1, len(y))) coordinates = np.vstack((x, y, ones)) trans = np.matmul(Matrix, coordinates) x_vals = trans[0, :] / trans[2, :] y_vals = trans[1, :] / trans[2, :] return x_vals, y_vals def transform_lane_gflat2g(self, h_cam, X_gflat, Y_gflat, Z_g): """ Given X coordinates in flat ground space, Y coordinates in flat ground space, and Z coordinates in real 3D ground space with projection matrix from 3D ground to flat ground, compute real 3D coordinates X, Y in 3D ground space. :param P_g2gflat: a 3 X 4 matrix transforms lane form 3d ground x,y,z to flat ground x, y :param X_gflat: X coordinates in flat ground space :param Y_gflat: Y coordinates in flat ground space :param Z_g: Z coordinates in real 3D ground space :return: """ X_g = X_gflat - X_gflat * Z_g / h_cam Y_g = Y_gflat - Y_gflat * Z_g / h_cam return X_g, Y_g def make_lane_y_mono_inc(self, lane): """ Due to lose of height dim, projected lanes to flat ground plane may not have monotonically increasing y. This function trace the y with monotonically increasing y, and output a pruned lane :param lane: :return: """ idx2del = [] max_y = lane[0, 1] for i in range(1, lane.shape[0]): # hard-coded a smallest step, so the far-away near horizontal tail can be pruned if lane[i, 1] <= max_y + 3: idx2del.append(i) else: max_y = lane[i, 1] lane = np.delete(lane, idx2del, 0) return lane def resample_laneline_in_y(self, input_lane, y_steps, out_vis=False): """ Interpolate x, z values at each anchor grid, including those beyond the range of input lnae y range :param input_lane: N x 2 or N x 3 ndarray, one row for a point (x, y, z-optional). It requires y values of input lane in ascending order :param y_steps: a vector of steps in y :param out_vis: whether to output visibility indicator which only depends on input y range :return: """ # at least two points are included assert (input_lane.shape[0] >= 2) y_min = np.min(input_lane[:, 1]) - 5 y_max = np.max(input_lane[:, 1]) + 5 if input_lane.shape[1] < 3: input_lane = np.concatenate([input_lane, np.zeros([input_lane.shape[0], 1], dtype=np.float32)], axis=1) f_x = interp1d(input_lane[:, 1], input_lane[:, 0], fill_value="extrapolate") f_z = interp1d(input_lane[:, 1], input_lane[:, 2], fill_value="extrapolate") x_values = f_x(y_steps) z_values = f_z(y_steps) if out_vis: output_visibility = np.logical_and(y_steps >= y_min, y_steps <= y_max) return x_values, z_values, output_visibility return x_values, z_values class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj)
44.797665
154
0.554742
a563a1bf3254f5d17e2f7617707b1760e76b6a5c
2,426
py
Python
tests/h/models/token_test.py
discodavey/h
7bff8478b3a5b936de82ac9fcd89b355f4afd3aa
[ "MIT" ]
1
2018-03-09T02:15:16.000Z
2018-03-09T02:15:16.000Z
tests/h/models/token_test.py
discodavey/h
7bff8478b3a5b936de82ac9fcd89b355f4afd3aa
[ "MIT" ]
16
2018-03-14T21:23:46.000Z
2019-04-29T18:55:28.000Z
tests/h/models/token_test.py
discodavey/h
7bff8478b3a5b936de82ac9fcd89b355f4afd3aa
[ "MIT" ]
1
2021-03-12T09:45:04.000Z
2021-03-12T09:45:04.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import datetime import pytest from h.models import Token @pytest.mark.usefixtures('security') class TestToken(object): def test_ttl_is_none_if_token_has_no_expires(self): assert Token().ttl is None def test_ttl_when_token_does_expire(self): expires = datetime.datetime.utcnow() + datetime.timedelta(hours=1) token = Token(expires=expires) assert 0 < token.ttl < 3601 def test_expired_is_false_if_expires_is_in_the_future(self): expires = datetime.datetime.utcnow() + datetime.timedelta(hours=1) token = Token(expires=expires) assert token.expired is False def test_expired_is_false_if_expires_is_none(self): token = Token(expires=None) assert token.expired is False def test_expired_is_true_if_expires_is_in_the_past(self): expires = datetime.datetime.utcnow() - datetime.timedelta(hours=1) token = Token(expires=expires) assert token.expired is True def test_refresh_token_expired_is_false_if_in_future(self): refresh_token_expires = datetime.datetime.utcnow() + datetime.timedelta(hours=1) token = Token(refresh_token_expires=refresh_token_expires) assert token.refresh_token_expired is False def test_refresh_token_expired_is_false_if_none(self): token = Token(refresh_token_expires=None) assert token.refresh_token_expired is False def test_refresh_token_expired_is_true_if_in_past(self): refresh_token_expires = datetime.datetime.utcnow() - datetime.timedelta(hours=1) token = Token(refresh_token_expires=refresh_token_expires) assert token.refresh_token_expired is True @pytest.fixture def security(self, patch): security = patch('h.models.token.security') class TestTokenGenerator(object): """Return "TOKEN_1", then "TOKEN_2" and so on.""" def __init__(self): self.i = 1 self.generated_tokens = [] def __call__(self): self.generated_tokens.append("TOKEN_" + str(self.i)) self.i += 1 return self.generated_tokens[-1] security.token_urlsafe.side_effect = TestTokenGenerator() return security def one_hour_from_now(): return datetime.datetime.now() + datetime.timedelta(hours=1)
30.708861
88
0.691261
d207b34e5fd1def9ef38630375e1d3d31a433c2e
3,809
py
Python
aperturedb/VideoLoader.py
aperture-data/aperturedb-python
186ae09a474df8e2d90ecdc7ba81e81879cef3ea
[ "Apache-2.0" ]
1
2022-01-12T17:46:20.000Z
2022-01-12T17:46:20.000Z
aperturedb/VideoLoader.py
aperture-data/aperturedb-python
186ae09a474df8e2d90ecdc7ba81e81879cef3ea
[ "Apache-2.0" ]
11
2021-07-14T16:54:05.000Z
2022-03-30T14:34:34.000Z
aperturedb/VideoLoader.py
aperture-data/aperturedb-python
186ae09a474df8e2d90ecdc7ba81e81879cef3ea
[ "Apache-2.0" ]
null
null
null
import math import time from threading import Thread import numpy as np import cv2 from aperturedb import Status from aperturedb import ParallelLoader from aperturedb import CSVParser HEADER_PATH = "filename" PROPERTIES = "properties" CONSTRAINTS = "constraints" class VideoGeneratorCSV(CSVParser.CSVParser): ''' ApertureDB Video Data loader. Expects a csv file with the following columns: filename,PROP_NAME_1, ... PROP_NAME_N,constraint_PROP1 Example csv file: filename,id,label,constaint_id /home/user/file1.jpg,321423532,dog,321423532 /home/user/file2.jpg,42342522,cat,4234252 ... ''' def __init__(self, filename, check_video=True): super().__init__(filename) self.check_video = check_video self.props_keys = [x for x in self.header[1:] if not x.startswith(CSVParser.CONTRAINTS_PREFIX)] self.constraints_keys = [x for x in self.header[1:] if x.startswith(CSVParser.CONTRAINTS_PREFIX) ] def __getitem__(self, idx): filename = self.df.loc[idx, HEADER_PATH] data = {} video_ok, video = self.load_video(filename) if not video_ok: print("Error loading video: " + filename ) raise Exception("Error loading video: " + filename ) data["video_blob"] = video properties = self.parse_properties(self.df, idx) constraints = self.parse_constraints(self.df, idx) if properties: data[PROPERTIES] = properties if constraints: data[CONSTRAINTS] = constraints return data def load_video(self, filename): if self.check_video: try: a = cv2.VideoCapture(filename) if a.isOpened() == False: print("Video reading Error:", filename) except: print("Video Error:", filename) try: fd = open(filename, "rb") buff = fd.read() fd.close() return True, buff except: print("Video Error:", filename) return False, None def validate(self): self.header = list(self.df.columns.values) if self.header[0] != HEADER_PATH: raise Exception("Error with CSV file field: filename. Must be first field") class VideoLoader(ParallelLoader.ParallelLoader): ''' ApertureDB Video Loader. This class is to be used in combination with a "generator". The generator must be an iterable object that generated "image_data" elements: image_data = { "properties": properties, "constraints": constraints, "operations": operations, "video_blob": (bytes), } ''' def __init__(self, db, dry_run=False): super().__init__(db, dry_run=dry_run) self.type = "video" def generate_batch(self, video_data): q = [] blobs = [] for data in video_data: ai = { "AddVideo": { } } if "properties" in data: ai["AddVideo"]["properties"] = data["properties"] if "constraints" in data: ai["AddVideo"]["if_not_found"] = data["constraints"] if "operations" in data: ai["AddVideo"]["operations"] = data["operations"] if "format" in data: ai["AddVideo"]["format"] = data["format"] if "video_blob" not in data or len(data["video_blob"]) == 0: print("WARNING: Skipping empty video.") continue blobs.append(data["video_blob"]) q.append(ai) return q, blobs
27.014184
109
0.568916
3241cd1971c92649e5ef2bd7a1b441ce7ca81947
81
py
Python
day01/t01/apps.py
lin8979/newrep01
d0d7e157d522c2e83d1976a35d6a815c9e7e4257
[ "Apache-2.0" ]
null
null
null
day01/t01/apps.py
lin8979/newrep01
d0d7e157d522c2e83d1976a35d6a815c9e7e4257
[ "Apache-2.0" ]
null
null
null
day01/t01/apps.py
lin8979/newrep01
d0d7e157d522c2e83d1976a35d6a815c9e7e4257
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class T01Config(AppConfig): name = 't01'
13.5
33
0.728395
88ab855574de3a169c332b1b42f6309b0e31bacd
16,680
py
Python
ZConfig/tests/test_loader.py
derFreitag/ZConfig
276cae67e983f7c92ccfaf337327b950061b223e
[ "ZPL-2.1" ]
7
2016-06-20T20:23:14.000Z
2021-04-09T03:28:48.000Z
ZConfig/tests/test_loader.py
derFreitag/ZConfig
276cae67e983f7c92ccfaf337327b950061b223e
[ "ZPL-2.1" ]
64
2015-07-15T23:03:18.000Z
2021-09-09T07:54:16.000Z
ZConfig/tests/test_loader.py
derFreitag/ZConfig
276cae67e983f7c92ccfaf337327b950061b223e
[ "ZPL-2.1" ]
8
2015-04-03T06:42:24.000Z
2021-09-15T04:40:25.000Z
############################################################################## # # Copyright (c) 2002, 2003, 2018 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Tests of ZConfig.loader classes and helper functions.""" import os.path import sys import tempfile import unittest import ZConfig import ZConfig.loader import ZConfig.url from ZConfig._compat import NStringIO as StringIO from ZConfig._compat import urllib2 from ZConfig.tests.support import CONFIG_BASE, TestHelper myfile = os.path.abspath(__file__) LIBRARY_DIR = os.path.join(os.path.dirname(myfile), "library") class LoaderTestCase(TestHelper, unittest.TestCase): def test_open_resource_non_ascii(self): # Files are decoded using utf-8 on open loader = ZConfig.loader.SchemaLoader() url = ZConfig.url.urljoin(CONFIG_BASE, "non-ascii.txt") with loader.openResource(url) as stream: val = stream.read() self.assertEqual( val, u'# -*-coding: utf-8; mode: conf-*-\n' u'This file contains a snowman, U+2603: \u2603\n' ) def test_schema_caching(self): loader = ZConfig.loader.SchemaLoader() url = ZConfig.url.urljoin(CONFIG_BASE, "simple.xml") schema1 = loader.loadURL(url) schema2 = loader.loadURL(url) self.assertIs(schema1, schema2) def test_simple_import_with_cache(self): loader = ZConfig.loader.SchemaLoader() url1 = ZConfig.url.urljoin(CONFIG_BASE, "library.xml") schema1 = loader.loadURL(url1) sio = StringIO("<schema>" " <import src='library.xml'/>" " <section type='type-a' name='section'/>" "</schema>") url2 = ZConfig.url.urljoin(CONFIG_BASE, "stringio") schema2 = loader.loadFile(sio, url2) self.assertTrue(schema1.gettype("type-a") is schema2.gettype("type-a")) def test_schema_loader_source_errors(self): loader = ZConfig.loader.SchemaLoader() self.assertRaisesRegex(ZConfig.SchemaError, "illegal schema component name", loader.schemaComponentSource, '', None) self.assertRaisesRegex(ZConfig.SchemaError, "illegal schema component name", loader.schemaComponentSource, 'foo..bar', None) def test_config_loader_abstract_schema(self): class MockSchema(object): _abstract = True def isabstract(self): return self._abstract def gettype(self, _t): return self self.assertRaisesRegex(ZConfig.SchemaError, "abstract type", ZConfig.loader.ConfigLoader, MockSchema()) s = MockSchema() s._abstract = False loader = ZConfig.loader.ConfigLoader(s) s._abstract = True self.assertRaisesRegex(ZConfig.ConfigurationError, "cannot match abstract section", loader.startSection, None, None, None) def test_simple_import_using_prefix(self): self.load_schema_text("""\ <schema prefix='ZConfig.tests.library'> <import package='.thing'/> </schema> """) def test_import_errors(self): # must specify exactly one of package or src self.assertRaises(ZConfig.SchemaError, ZConfig.loadSchemaFile, StringIO("<schema><import/></schema>")) self.assertRaises(ZConfig.SchemaError, ZConfig.loadSchemaFile, StringIO("<schema>" " <import src='library.xml'" " package='ZConfig'/>" "</schema>")) # cannot specify src and file self.assertRaises(ZConfig.SchemaError, ZConfig.loadSchemaFile, StringIO("<schema>" " <import src='library.xml'" " file='other.xml'/>" "</schema>")) # cannot specify module as package sio = StringIO("<schema>" " <import package='ZConfig.tests.test_loader'/>" "</schema>") with self.assertRaises(ZConfig.SchemaResourceError) as ctx: ZConfig.loadSchemaFile(sio) e = ctx.exception self.assertEqual(e.filename, "component.xml") self.assertEqual(e.package, "ZConfig.tests.test_loader") self.assertTrue(e.path is None) # make sure the str() doesn't raise an unexpected exception str(e) def test_import_from_package(self): loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.widget'/>" "</schema>") schema = loader.loadFile(sio) self.assertTrue(schema.gettype("widget-a") is not None) def test_import_from_package_with_file(self): loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.widget'" " file='extra.xml' />" "</schema>") schema = loader.loadFile(sio) self.assertTrue(schema.gettype("extra-type") is not None) def test_import_from_package_extra_directory(self): loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.thing'" " file='extras.xml' />" "</schema>") schema = loader.loadFile(sio) self.assertTrue(schema.gettype("extra-thing") is not None) def test_import_from_package_with_missing_file(self): loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.widget'" " file='notthere.xml' />" "</schema>") with self.assertRaises(ZConfig.SchemaResourceError) as ctx: loader.loadFile(sio) e = ctx.exception self.assertEqual(e.filename, "notthere.xml") self.assertEqual(e.package, "ZConfig.tests.library.widget") self.assertTrue(e.path) # make sure the str() doesn't raise an unexpected exception str(e) def test_import_from_package_with_directory_file(self): loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.widget'" " file='really/notthere.xml' />" "</schema>") self.assertRaises(ZConfig.SchemaError, loader.loadFile, sio) def test_import_two_components_one_package(self): loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.widget' />" " <import package='ZConfig.tests.library.widget'" " file='extra.xml' />" "</schema>") schema = loader.loadFile(sio) schema.gettype("widget-a") schema.gettype("extra-type") def test_import_component_twice_1(self): # Make sure we can import a component twice from a schema. # This is most likely to occur when the component is imported # from each of two other components, or from the top-level # schema and a component. loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.widget' />" " <import package='ZConfig.tests.library.widget' />" "</schema>") schema = loader.loadFile(sio) schema.gettype("widget-a") def test_import_component_twice_2(self): # Make sure we can import a component from a config file even # if it has already been imported from the schema. loader = ZConfig.loader.SchemaLoader() sio = StringIO("<schema>" " <import package='ZConfig.tests.library.widget' />" "</schema>") schema = loader.loadFile(sio) loader = ZConfig.loader.ConfigLoader(schema) sio = StringIO("%import ZConfig.tests.library.widget") loader.loadFile(sio) def test_urlsplit_urlunsplit(self): # Extracted from Python's test.test_urlparse module: samples = [ ('http://www.python.org', ('http', 'www.python.org', '', '', '', ''), ('http', 'www.python.org', '', '', '')), ('http://www.python.org#abc', ('http', 'www.python.org', '', '', '', 'abc'), ('http', 'www.python.org', '', '', 'abc')), ('http://www.python.org/#abc', ('http', 'www.python.org', '/', '', '', 'abc'), ('http', 'www.python.org', '/', '', 'abc')), ("http://a/b/c/d;p?q#f", ('http', 'a', '/b/c/d', 'p', 'q', 'f'), ('http', 'a', '/b/c/d;p', 'q', 'f')), ('file:///tmp/junk.txt', ('file', '', '/tmp/junk.txt', '', '', ''), ('file', '', '/tmp/junk.txt', '', '')), ] for url, parsed, split in samples: result = ZConfig.url.urlsplit(url) self.assertEqual(result, split) result2 = ZConfig.url.urlunsplit(result) self.assertEqual(result2, url) def test_file_url_normalization(self): self.assertEqual( ZConfig.url.urlnormalize("file:/abc/def"), "file:///abc/def") self.assertEqual( ZConfig.url.urlunsplit(("file", "", "/abc/def", "", "")), "file:///abc/def") self.assertEqual( ZConfig.url.urljoin("file:/abc/", "def"), "file:///abc/def") self.assertEqual( ZConfig.url.urldefrag("file:/abc/def#frag"), ("file:///abc/def", "frag")) def test_url_from_file(self): class MockFile(object): name = 'path' self.assertEqual('file://', ZConfig.loader._url_from_file(MockFile)[:7]) def test_isPath(self): assertTrue = self.assertTrue isPath = ZConfig.loader.SchemaLoader().isPath assertTrue(isPath("abc")) assertTrue(isPath("abc/def")) assertTrue(isPath("/abc")) assertTrue(isPath("/abc/def")) assertTrue(isPath(r"\abc")) assertTrue(isPath(r"\abc\def")) assertTrue(isPath(r"c:\abc\def")) assertTrue(isPath("/ab:cd")) assertTrue(isPath(r"\ab:cd")) assertTrue(isPath("long name with spaces")) assertTrue(isPath("long name:with spaces")) assertTrue(not isPath("ab:cd")) assertTrue(not isPath("http://www.example.com/")) assertTrue(not isPath("http://www.example.com/sample.conf")) assertTrue(not isPath("file:///etc/zope/zope.conf")) assertTrue(not isPath("file:///c|/foo/bar.conf")) class TestNonExistentResources(unittest.TestCase): # XXX Not sure if this is the best approach for these. These # tests make sure that the error reported by ZConfig for missing # resources is handled in a consistent way. Since ZConfig uses # urllib2.urlopen() for opening all resources, what we do is # replace that function with one that always raises an exception. # Since urllib2.urlopen() can raise either IOError or OSError # (depending on the version of Python), we run test for each # exception. urllib2.urlopen() is restored after running the # test. def setUp(self): self.urllib2_urlopen = urllib2.urlopen urllib2.urlopen = self.fake_urlopen def tearDown(self): urllib2.urlopen = self.urllib2_urlopen def fake_urlopen(self, url): raise self.error() def test_nonexistent_file_ioerror(self): self.error = IOError self.check_nonexistent_file() def test_nonexistent_file_oserror(self): self.error = OSError self.check_nonexistent_file() def check_nonexistent_file(self): fn = tempfile.mktemp() schema = ZConfig.loadSchemaFile(StringIO("<schema/>")) self.assertRaises(ZConfig.ConfigurationError, ZConfig.loadSchema, fn) self.assertRaises(ZConfig.ConfigurationError, ZConfig.loadConfig, schema, fn) self.assertRaises(ZConfig.ConfigurationError, ZConfig.loadConfigFile, schema, StringIO("%include " + fn)) self.assertRaises(ZConfig.ConfigurationError, ZConfig.loadSchema, "http://www.zope.org/no-such-document/") self.assertRaises(ZConfig.ConfigurationError, ZConfig.loadConfig, schema, "http://www.zope.org/no-such-document/") class TestResourcesInZip(unittest.TestCase): def setUp(self): self.old_path = sys.path[:] # now add our sample EGG to sys.path: zipfile = os.path.join(os.path.dirname(myfile), "foosample.zip") sys.path.append(zipfile) def tearDown(self): sys.path[:] = self.old_path def test_zip_import_component_from_schema(self): sio = StringIO(''' <schema> <abstracttype name="something"/> <import package="foo.sample"/> <section name="*" attribute="something" type="something" /> </schema> ''') schema = ZConfig.loadSchemaFile(sio) t = schema.gettype("sample") self.assertFalse(t.isabstract()) def test_zip_import_component_from_config(self): sio = StringIO(''' <schema> <abstracttype name="something"/> <section name="*" attribute="something" type="something" /> </schema> ''') schema = ZConfig.loadSchemaFile(sio) value = ''' %import foo.sample <sample> data value </sample> ''' sio = StringIO(value) config, _ = ZConfig.loadConfigFile(schema, sio) self.assertEqual(config.something.data, "| value |") sio = StringIO(value) with self.assertRaises(ZConfig.ConfigurationSyntaxError): ZConfig.loadConfigFile(schema, sio, overrides=["sample/data=othervalue"]) class TestOpenPackageResource(TestHelper, unittest.TestCase): magic_name = 'not a valid import name' def setUp(self): sys.modules[self.magic_name] = self def tearDown(self): del sys.modules[self.magic_name] def test_package_loader_resource_error(self): class MockLoader(object): pass self.__loader__ = MockLoader() self.__path__ = ['dir'] self.assertRaisesRegex(ZConfig.SchemaResourceError, "error opening schema component", ZConfig.loader.openPackageResource, self.magic_name, 'a path') # Now with an empty path self.__path__ = [] self.assertRaisesRegex(ZConfig.SchemaResourceError, "schema component not found", ZConfig.loader.openPackageResource, self.magic_name, 'a path') def test_resource(self): r = ZConfig.loader.Resource(self, None) self.assertEqual(self.magic_name, r.magic_name)
39.15493
79
0.553477
2ebe9d67c0136daffe640a54236cbb8804a1cace
123
py
Python
pdb_use.py
edgells/python-commons
38c0aa0ec10304a4147ea231c92c9e34da462052
[ "MIT" ]
null
null
null
pdb_use.py
edgells/python-commons
38c0aa0ec10304a4147ea231c92c9e34da462052
[ "MIT" ]
null
null
null
pdb_use.py
edgells/python-commons
38c0aa0ec10304a4147ea231c92c9e34da462052
[ "MIT" ]
null
null
null
import pdb def make_pdb(): pdb.set_trace() print("I Don`t have time") if __name__ == '__main__': make_pdb()
12.3
30
0.617886
1f8073ceccf44ae06d2db0db92e48a6175987bd5
3,247
py
Python
siuba/tests/test_sql_verbs.py
tmastny/siuba
7a234bc6d03b7ad3ba6054c8899fd27ccb7f05aa
[ "MIT" ]
831
2019-07-25T12:41:18.000Z
2022-03-31T14:47:27.000Z
siuba/tests/test_sql_verbs.py
tmastny/siuba
7a234bc6d03b7ad3ba6054c8899fd27ccb7f05aa
[ "MIT" ]
295
2019-04-23T17:32:16.000Z
2022-03-29T23:19:44.000Z
siuba/tests/test_sql_verbs.py
tmastny/siuba
7a234bc6d03b7ad3ba6054c8899fd27ccb7f05aa
[ "MIT" ]
42
2019-04-23T17:17:42.000Z
2022-03-31T14:36:07.000Z
from siuba.sql import group_by, mutate, LazyTbl, collect from siuba.siu import _ from siuba.sql.translate import funcs from sqlalchemy import sql from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey from sqlalchemy import create_engine from pandas.testing import assert_frame_equal import pytest metadata = MetaData() users = Table('users', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('fullname', String), ) addresses = Table('addresses', metadata, Column('id', Integer, primary_key=True), Column('user_id', None, ForeignKey('users.id')), Column('email_address', String, nullable=False) ) @pytest.fixture(scope = "module") def db(): engine = create_engine('sqlite:///:memory:', echo=False) metadata.create_all(engine) conn = engine.connect() ins = users.insert().values(name='jack', fullname='Jack Jones') result = conn.execute(ins) ins = users.insert() conn.execute(ins, id=2, name='wendy', fullname='Wendy Williams') yield conn # LazyTbl --------------------------------------------------------------------- def test_lazy_tbl_table_string(db): tbl = LazyTbl(db, 'addresses') tbl.tbl.columns.user_id def test_lazy_tbl_manual_columns(db): tbl = LazyTbl(db, 'addresses', columns = ('user_id', 'wrong_name')) tbl.tbl.columns.wrong_name tbl.tbl.columns.user_id with pytest.raises(AttributeError): tbl.tbl.columns.email_address # SqlFunctionLookupError ------------------------------------------------------ from siuba import _ from siuba.sql import arrange, filter, mutate, summarize, SqlFunctionLookupError from siuba.siu import strip_symbolic def test_lazy_tbl_shape_call_error(db): tbl = LazyTbl(db, 'addresses') call = strip_symbolic(_.id.asdkfjsdf()) with pytest.raises(SqlFunctionLookupError) as err: tbl.shape_call(call) # suppresses context for shorter stack trace assert err.__suppress_context__ == True # TODO: remove these old tests? should be redundant =========================== # mutate ---------------------------------------------------------------------- def test_sql_mutate(db): tbl = LazyTbl(db, addresses, funcs = funcs) f = mutate(user_id2 = _.user_id + 1) out1 = tbl >> f >> collect() out2 = tbl >> collect() >> f assert_frame_equal(out1, out2) # group_by -------------------------------------------------------------------- @pytest.mark.parametrize("group_vars", [ ["id",], # string syntax ["id", "user_id"], # string syntax multiple [_.id], # _ syntax [_.id, _.user_id], # _ syntax multiple ]) def test_sql_group_by(db, group_vars): tbl = LazyTbl(db, addresses, funcs = funcs) group_by(tbl, *group_vars) @pytest.mark.parametrize("group_var, error", [ (_.id + 1, NotImplementedError), # complex expressions (_.notacol, KeyError) # missing columns ]) def tets_sql_group_by_fail(db, group_var, error): tbl = LazyTbl(db, addresses, funcs = funcs) with pytest.raises(error): group_by(tbl, group_var)
28.991071
80
0.603326
b85c501f39565191047830c073cff51e4f12c68c
2,405
py
Python
cohesity_management_sdk/models/one_drive_info.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-09-24T17:35:53.000Z
2022-03-25T08:08:47.000Z
cohesity_management_sdk/models/one_drive_info.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-03-29T19:32:29.000Z
2022-01-03T23:16:45.000Z
cohesity_management_sdk/models/one_drive_info.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
16
2019-02-27T06:54:12.000Z
2021-11-16T18:10:24.000Z
# -*- coding: utf-8 -*- # Copyright 2021 Cohesity Inc. import cohesity_management_sdk.models.one_drive_item class OneDriveInfo(object): """Implementation of the 'OneDriveInfo' model. Specifies OneDrive details with the items which need to be restored. Attributes: drive_id (string): Specifies the Id of the Drive. drive_item_list (list of OneDriveItem): Specifies the Drive items such as files/folders. restore_entire_drive (bool): Specifies whether entire drive is to be restored. This should be set to false if specific drive items are to be restored within 'DriveItemList'. """ # Create a mapping from Model property names to API property names _names = { "drive_id":'driveId', "drive_item_list":'driveItemList', "restore_entire_drive":'restoreEntireDrive' } def __init__(self, drive_id=None, drive_item_list=None, restore_entire_drive=None): """Constructor for the OneDriveInfo class""" # Initialize members of the class self.drive_id = drive_id self.drive_item_list = drive_item_list self.restore_entire_drive = restore_entire_drive @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary drive_id = dictionary.get('driveId') drive_item_list = None if dictionary.get('driveItemList') != None: drive_item_list = list() for structure in dictionary.get('driveItemList'): drive_item_list.append(cohesity_management_sdk.models.one_drive_item.OneDriveItem.from_dictionary(structure)) restore_entire_drive = dictionary.get('restoreEntireDrive') # Return an object of this model return cls(drive_id, drive_item_list, restore_entire_drive)
32.945205
125
0.642827
c29c12c49ea95e3601cdf3c72fe91ceba0bf13a1
10,896
py
Python
loss/CurricularNCE_loss.py
Feezhen/Contrastive-learning
9f7fc760c24ede2ffc485009ed787652551d0266
[ "MIT" ]
1
2021-12-27T08:39:05.000Z
2021-12-27T08:39:05.000Z
loss/CurricularNCE_loss.py
Feezhen/Contrastive-learning
9f7fc760c24ede2ffc485009ed787652551d0266
[ "MIT" ]
null
null
null
loss/CurricularNCE_loss.py
Feezhen/Contrastive-learning
9f7fc760c24ede2ffc485009ed787652551d0266
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import numpy as np import os import math import sys sys.path.append('../') import params class CurricularNCE_loss(nn.Module): ''' NCE Loss with Curricular ''' def __init__(self, gamma, keep_weight, T=0.07, m = 0.5, mlp=False): """ K: queue size; number of negative keys (default: 65536) m: moco momentum of updating key encoder (default: 0.999) T: softmax temperature (default: 0.07) """ super(CurricularNCE_loss, self).__init__() self.gamma = gamma self.keep_weight = keep_weight self.T = T self.m = m self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.threshold = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m self.register_buffer('t', torch.zeros(1)) self.alpha = 0.1 self.weight_valid = False self.weight_valid_threshold = 0.8 self.weight_scale = 5.0 self.loss = 0 @torch.no_grad() def del_tensor_ele(self, tensor, dim, index): """ Delete an element from tensor tensor: source tensor dim: The dimension in which the element resides index: the index of the element """ return tensor[torch.arange(tensor.size(dim))!=index] @torch.no_grad() def get_negatives(self, feature1, feature2, labels, index): """ get negative samples from batch """ neg_sample1 = feature1 neg_sample2 = feature2 for j in range(0, labels.shape[0]): if labels[j] == labels[index]: neg_sample1 = self.del_tensor_ele(tensor=neg_sample1, dim=0, index=j) neg_sample2 = self.del_tensor_ele(tensor=neg_sample2, dim=0, index=j) neg_samples = torch.cat([neg_sample1, neg_sample2], dim=0) add_tensor = torch.zeros(1,neg_samples.shape[1]).cuda() while neg_samples.shape[0] < (labels.shape[0]-1)*2: add_tensor[0] = neg_samples[np.random.randint(0, neg_samples.shape[0])] neg_samples = torch.cat([neg_samples, add_tensor], dim=0) return neg_samples def forward(self, feature1, feature2, labels): feature1 = nn.functional.normalize(feature1, dim=1) feature2 = nn.functional.normalize(feature2, dim=1) batch_size = feature1.shape[0] #特征相似度 similarity = torch.einsum('nc,kc->nk', [feature1, feature2])#nan similarity = similarity.clamp(-1, 1) with torch.no_grad(): origin_similarity = similarity.clone() #对比学习正负样本对标签 labels_temp = labels.unsqueeze(1) pos_labels = torch.eq(labels_temp, labels_temp.T).long().cuda()#正样本label neg_labels = torch.eq(pos_labels, 0).long().cuda() pos_labels_mask = (pos_labels == 1) target_similarity = similarity[pos_labels_mask] #区分出正样本cos with torch.no_grad(): self.t = target_similarity.mean() * self.alpha + (1-self.alpha) * self.t if self.t > self.weight_valid_threshold and self.weight_valid == False: self.weight_valid = True print('CurricularNCE_loss weight valid' .center(30, '-')) print(f't is now {self.t}'.center(30, '-')); if self.weight_valid: #开始使用focal权重 weight_pos = pos_labels.clone().float().cuda()#正样本mask weight_neg = neg_labels.clone().float().cuda() weight_pos *= self.keep_weight #label乘以倍数 weight_neg *= self.keep_weight # 相似度和label的乘积 sim_pos = torch.mul(similarity, pos_labels) sim_neg = torch.mul(similarity, neg_labels) # 正负样本困难度(权重) diff_pos = pos_labels - sim_pos diff_neg = sim_neg diff_neg = diff_neg.clamp(0, 1) # 正负样本权重 diff_pos = torch.pow(diff_pos, self.gamma) #exponent小数没有问题 diff_neg = torch.pow(diff_neg, self.gamma) # diff_pos = torch.mul(diff_pos, pos_labels)#保证diff对应好正负样本 diff_pos += weight_pos diff_neg += weight_neg # diff_pos *= self.weight_scale # diff_neg *= self.weight_scale sin_theta = torch.sqrt(1.0 - torch.pow(target_similarity, 2)) cos_theta_m = target_similarity*self.cos_m - sin_theta*self.sin_m final_target_similarity = torch.where(target_similarity > self.threshold, cos_theta_m, target_similarity-self.mm) #确保单调递减 similarity[pos_labels_mask] = final_target_similarity #把正样本位置变成cos_theta_m target_similarity_per_row = torch.mul(similarity, pos_labels).sum(dim=1) pos_labels_per_row = pos_labels.sum(dim=1) target_similarity_per_row = (target_similarity_per_row / pos_labels_per_row).view(-1, 1) #每行的正样本cos_theta_m均值 # sin_theta_per_row = torch.sqrt(1.0 - torch.pow(target_similarity_per_row, 2)) # cos_theta_m_per_row = target_similarity_per_row*self.cos_m - sin_theta_per_row*self.sin_m mask = similarity > target_similarity_per_row #困难样本 # final_target_similarity = torch.where(target_similarity > self.threshold, cos_theta_m, target_similarity-self.mm) hard_example = similarity[mask] #困难样本 similarity[mask] = hard_example * (self.t + hard_example) #负样本cos similarity[pos_labels_mask] = final_target_similarity #正样本cos logits = similarity / self.T logits = torch.exp(logits) if self.weight_valid: logit_pos = torch.mul(logits, diff_pos).sum(dim=1) logit_neg = torch.mul(logits, diff_neg).sum(dim=1) else: logit_pos = torch.mul(logits, pos_labels).sum(dim=1) logit_neg = torch.mul(logits, neg_labels).sum(dim=1) self.loss = -torch.log((logit_pos) / (logit_neg + logit_pos)).sum() / batch_size# - torch.log((d_pos.sum() / torch.sum(pos_labels == 1)).pow(2)) return self.loss#, self.t class CurricularNCE_loss2(nn.Module): """ NCE loss. By gqc """ def __init__(self, gamma, keep_weight, T=0.07, mlp=False): """ K: queue size; number of negative keys (default: 65536) m: moco momentum of updating key encoder (default: 0.999) T: softmax temperature (default: 0.07) """ super(CurricularNCE_loss2, self).__init__() self.gamma = gamma self.T = T self.register_buffer('t', torch.zeros(1)) self.alpha = 0.01 self.loss = 0 self.sigmoid = nn.Sigmoid() self.keep_weight = 0 # self.relu = nn.ReLU(inplace=False) @torch.no_grad() def del_tensor_ele(self, tensor, dim, index): """ Delete an element from tensor tensor: source tensor dim: The dimension in which the element resides index: the index of the element """ return tensor[torch.arange(tensor.size(dim))!=index] @torch.no_grad() def get_negatives(self, feature1, feature2, labels, index): """ get negative samples from batch """ neg_sample1 = feature1 neg_sample2 = feature2 for j in range(0, labels.shape[0]): if labels[j] == labels[index]: neg_sample1 = self.del_tensor_ele(tensor=neg_sample1, dim=0, index=j) neg_sample2 = self.del_tensor_ele(tensor=neg_sample2, dim=0, index=j) neg_samples = torch.cat([neg_sample1, neg_sample2], dim=0) add_tensor = torch.zeros(1,neg_samples.shape[1]).cuda() while neg_samples.shape[0] < (labels.shape[0]-1)*2: add_tensor[0] = neg_samples[np.random.randint(0, neg_samples.shape[0])] neg_samples = torch.cat([neg_samples, add_tensor], dim=0) return neg_samples # ''' def forward(self, feature1, feature2, labels): """ Input: feature1: a batch of query images features feature2: a batch of key images features labels: a batch of positive labels Output: logits, targets """ feature1 = nn.functional.normalize(feature1, dim=1) feature2 = nn.functional.normalize(feature2, dim=1) batch_size = feature1.shape[0] #特征相似度 similarity = torch.einsum('nc,kc->nk', [feature1, feature2])#nan similarity = similarity.clamp(-1, 1) logits = similarity / self.T logits = torch.exp(logits) #这也是nan labels_temp = labels.unsqueeze(1) pos_labels = torch.eq(labels_temp, labels_temp.T).long().cuda()#正样本label neg_labels = torch.eq(pos_labels, 0).long().cuda() pos_labels_mask = (pos_labels == 1) target_similarity = similarity[pos_labels_mask] #区分出正样本cos with torch.no_grad(): #计算正样本cos分数 self.t = target_similarity.mean() * self.alpha + (1-self.alpha) * self.t self.keep_weight = torch.ones(1).cuda() - self.t mask_pos = pos_labels.clone().float().cuda()#正样本mask mask_neg = neg_labels.clone().float().cuda() mask_pos *= self.keep_weight #label乘以倍数 mask_neg *= self.keep_weight # self.loss = criteria(logits, new_labels) # 相似度和label的乘积 sim_pos = torch.mul(similarity, pos_labels) sim_neg = torch.mul(similarity, neg_labels) # 正负样本困难度(权重) diff_pos = pos_labels - sim_pos diff_neg = sim_neg diff_neg = diff_neg.clamp(0, 1) # 正负样本权重 diff_pos = torch.pow(diff_pos, self.gamma) #exponent小数没有问题 diff_neg = torch.pow(diff_neg, self.gamma) # diff_pos = torch.mul(diff_pos, pos_labels)#保证diff对应好正负样本 # diff_neg = torch.mul(diff_neg, neg_labels) diff_pos += mask_pos diff_neg += mask_neg # pri l_pos = torch.mul(logits, diff_pos).sum(dim=1) #+ float(1e-8) l_neg = torch.mul(logits, diff_neg).sum(dim=1) #+ float(1e-8) self.loss = -torch.log((l_pos) / (l_neg + l_pos)).sum() / batch_size# - torch.log((d_pos.sum() / torch.sum(pos_labels == 1)).pow(2)) return self.loss, self.keep_weight if __name__ == '__main__': args = params.get_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu # loss = NCE_Loss().cuda() loss = CurricularNCE_loss2(gamma=1, keep_weight=0, T=0.1).cuda() feature1 = torch.tensor([[1.,2.,3.], [1.,-9.,3.], [3.,2.,-3.]]).cuda() feature2 = torch.tensor([[1.,2.,4.], [1.,-9.,6.], [4.,2.,-3.]]).cuda() label = torch.tensor([1, 2, 3]).cuda() outloss, keep_wei = loss(feature1, feature2, label) print(outloss)
41.272727
153
0.596366
95dfdbd40ffee46635f691e95e8d83c02de23b8e
14,225
py
Python
ansible-container/openshift-deploy/roles/ansible.kubernetes-modules/library/openshift_v1_user.py
LeHack/Docker-network-research
62a57a6d723d8701a6d045a07a5abd2bd844a409
[ "Beerware" ]
4
2017-06-03T20:46:07.000Z
2017-12-19T02:15:00.000Z
ansible-container/k8s-deploy/roles/ansible.kubernetes-modules/library/openshift_v1_user.py
LeHack/Docker-network-research
62a57a6d723d8701a6d045a07a5abd2bd844a409
[ "Beerware" ]
1
2017-06-03T20:32:37.000Z
2017-06-03T20:32:37.000Z
ansible-container/openshift-deploy/roles/ansible.kubernetes-modules/library/openshift_v1_user.py
LeHack/Docker-network-research
62a57a6d723d8701a6d045a07a5abd2bd844a409
[ "Beerware" ]
null
null
null
#!/usr/bin/env python from ansible.module_utils.openshift_common import OpenShiftAnsibleModule, OpenShiftAnsibleException DOCUMENTATION = ''' module: openshift_v1_user short_description: OpenShift User description: - Manage the lifecycle of a user object. Supports check mode, and attempts to to be idempotent. version_added: 2.3.0 author: OpenShift (@openshift) options: annotations: description: - Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. type: dict api_key: description: - Token used to connect to the API. cert_file: description: - Path to a certificate used to authenticate with the API. type: path context: description: - The name of a context found in the Kubernetes config file. debug: description: - Enable debug output from the OpenShift helper. Logging info is written to KubeObjHelper.log default: false type: bool force: description: - If set to C(True), and I(state) is C(present), an existing object will updated, and lists will be replaced, rather than merged. default: false type: bool full_name: description: - FullName is the full name of user groups: description: - Groups specifies group names this user is a member of. This field is deprecated and will be removed in a future release. Instead, create a Group object containing the name of this User. type: list host: description: - Provide a URL for acessing the Kubernetes API. identities: description: - Identities are the identities associated with this user type: list key_file: description: - Path to a key file used to authenticate with the API. type: path kubeconfig: description: - Path to an existing Kubernetes config file. If not provided, and no other connection options are provided, the openshift client will attempt to load the default configuration file from I(~/.kube/config.json). type: path labels: description: - Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. type: dict name: description: - Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. namespace: description: - Namespace defines the space within each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty. Must be a DNS_LABEL. Cannot be updated. password: description: - Provide a password for connecting to the API. Use in conjunction with I(username). resource_definition: description: - Provide the YAML definition for the object, bypassing any modules parameters intended to define object attributes. type: dict src: description: - Provide a path to a file containing the YAML definition of the object. Mutually exclusive with I(resource_definition). type: path ssl_ca_cert: description: - Path to a CA certificate used to authenticate with the API. type: path state: description: - Determines if an object should be created, patched, or deleted. When set to C(present), the object will be created, if it does not exist, or patched, if parameter values differ from the existing object's attributes, and deleted, if set to C(absent). A patch operation results in merging lists and updating dictionaries, with lists being merged into a unique set of values. If a list contains a dictionary with a I(name) or I(type) attribute, a strategic merge is performed, where individual elements with a matching I(name_) or I(type) are merged. To force the replacement of lists, set the I(force) option to C(True). default: present choices: - present - absent username: description: - Provide a username for connecting to the API. verify_ssl: description: - Whether or not to verify the API server's SSL certificates. type: bool requirements: - openshift == 1.0.0-snapshot ''' EXAMPLES = ''' ''' RETURN = ''' api_version: type: string description: Requested API version user: type: complex returned: when I(state) = C(present) contains: api_version: description: - APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. type: str full_name: description: - FullName is the full name of user type: str groups: description: - Groups specifies group names this user is a member of. This field is deprecated and will be removed in a future release. Instead, create a Group object containing the name of this User. type: list contains: str identities: description: - Identities are the identities associated with this user type: list contains: str kind: description: - Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. type: str metadata: description: - Standard object's metadata. type: complex contains: annotations: description: - Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. type: complex contains: str, str cluster_name: description: - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request. type: str creation_timestamp: description: - CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC. Populated by the system. Read-only. Null for lists. type: complex contains: {} deletion_grace_period_seconds: description: - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only. type: int deletion_timestamp: description: - DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field. Once set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested. Populated by the system when a graceful deletion is requested. Read-only. type: complex contains: {} finalizers: description: - Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. type: list contains: str generate_name: description: - GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server. If this field is specified and the generated name exists, the server will NOT return a 409 - instead, it will either return 201 Created or 500 with Reason ServerTimeout indicating a unique name could not be found in the time allotted, and the client should retry (optionally after the time indicated in the Retry-After header). Applied only if Name is not specified. type: str generation: description: - A sequence number representing a specific generation of the desired state. Populated by the system. Read-only. type: int labels: description: - Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. type: complex contains: str, str name: description: - Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. type: str namespace: description: - Namespace defines the space within each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty. Must be a DNS_LABEL. Cannot be updated. type: str owner_references: description: - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller. type: list contains: api_version: description: - API version of the referent. type: str controller: description: - If true, this reference points to the managing controller. type: bool kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str uid: description: - UID of the referent. type: str resource_version: description: - An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources. Populated by the system. Read-only. Value must be treated as opaque by clients and . type: str self_link: description: - SelfLink is a URL representing this object. Populated by the system. Read-only. type: str uid: description: - UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations. Populated by the system. Read-only. type: str ''' def main(): try: module = OpenShiftAnsibleModule('user', 'V1') except OpenShiftAnsibleException as exc: # The helper failed to init, so there is no module object. All we can do is raise the error. raise Exception(exc.message) try: module.execute_module() except OpenShiftAnsibleException as exc: module.fail_json(msg="Module failed!", error=str(exc)) if __name__ == '__main__': main()
42.462687
100
0.665308
542a8ccfc0ccbf8bcb884f32af2a58046a62f54e
2,510
py
Python
ThunkLibs/Generators/libXfixes.py
phire/FEX
a721257cdd787bd641875ca8e138809aaad17e0c
[ "MIT" ]
null
null
null
ThunkLibs/Generators/libXfixes.py
phire/FEX
a721257cdd787bd641875ca8e138809aaad17e0c
[ "MIT" ]
null
null
null
ThunkLibs/Generators/libXfixes.py
phire/FEX
a721257cdd787bd641875ca8e138809aaad17e0c
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from ThunkHelpers import * lib("libXfixes") fn("const char* XFixesGetCursorName(Display*, Cursor, Atom*)") fn("int XFixesQueryExtension(Display*, int*, int*)") fn("int XFixesQueryVersion(Display*, int*, int*)") fn("int XFixesVersion()") fn("PointerBarrier XFixesCreatePointerBarrier(Display*, Window, int, int, int, int, int, int, int*)") fn("void XFixesChangeCursorByName(Display*, Cursor, const char*)") fn("void XFixesChangeCursor(Display*, Cursor, Cursor)") fn("void XFixesChangeSaveSet(Display*, Window, int, int, int)") fn("void XFixesCopyRegion(Display*, XserverRegion, XserverRegion)") fn("void XFixesDestroyPointerBarrier(Display*, PointerBarrier)") fn("void XFixesDestroyRegion(Display*, XserverRegion)") fn("void XFixesExpandRegion(Display*, XserverRegion, XserverRegion, unsigned int, unsigned int, unsigned int, unsigned int)") fn("void XFixesHideCursor(Display*, Window)") fn("void XFixesIntersectRegion(Display*, XserverRegion, XserverRegion, XserverRegion)") fn("void XFixesInvertRegion(Display*, XserverRegion, XRectangle*, XserverRegion)") fn("void XFixesRegionExtents(Display*, XserverRegion, XserverRegion)") fn("void XFixesSelectCursorInput(Display*, Window, long unsigned int)") fn("void XFixesSelectSelectionInput(Display*, Window, Atom, long unsigned int)") fn("void XFixesSetCursorName(Display*, Cursor, const char*)") fn("void XFixesSetGCClipRegion(Display*, GC, int, int, XserverRegion)") fn("void XFixesSetPictureClipRegion(Display*, XID, int, int, XserverRegion)") fn("void XFixesSetRegion(Display*, XserverRegion, XRectangle*, int)") fn("void XFixesSetWindowShapeRegion(Display*, Window, int, int, int, XserverRegion)") fn("void XFixesShowCursor(Display*, Window)") fn("void XFixesSubtractRegion(Display*, XserverRegion, XserverRegion, XserverRegion)") fn("void XFixesTranslateRegion(Display*, XserverRegion, int, int)") fn("void XFixesUnionRegion(Display*, XserverRegion, XserverRegion, XserverRegion)") fn("XFixesCursorImage* XFixesGetCursorImage(Display*)") fn("XRectangle* XFixesFetchRegionAndBounds(Display*, XserverRegion, int*, XRectangle*)") fn("XRectangle* XFixesFetchRegion(Display*, XserverRegion, int*)") fn("XserverRegion XFixesCreateRegion(Display*, XRectangle*, int)") fn("XserverRegion XFixesCreateRegionFromBitmap(Display*, Pixmap)") fn("XserverRegion XFixesCreateRegionFromGC(Display*, GC)") fn("XserverRegion XFixesCreateRegionFromPicture(Display*, XID)") fn("XserverRegion XFixesCreateRegionFromWindow(Display*, Window, int)") Generate()
58.372093
125
0.786056
a82781a981feb2ab404af24debbc2711b15a0355
7,713
py
Python
gui/stdio.py
stashpayio/electrum-stash
a04e1fde408196e547cf80f8ce9d9391133bd865
[ "MIT" ]
null
null
null
gui/stdio.py
stashpayio/electrum-stash
a04e1fde408196e547cf80f8ce9d9391133bd865
[ "MIT" ]
null
null
null
gui/stdio.py
stashpayio/electrum-stash
a04e1fde408196e547cf80f8ce9d9391133bd865
[ "MIT" ]
null
null
null
from decimal import Decimal _ = lambda x:x #from i18n import _ from electrum_dash import WalletStorage, Wallet from electrum_dash.util import format_satoshis, set_verbosity from electrum_dash.bitcoin import is_valid, COIN, TYPE_ADDRESS from electrum_dash.network import filter_protocol import sys, getpass, datetime # minimal fdisk like gui for console usage # written by rofl0r, with some bits stolen from the text gui (ncurses) class ElectrumGui: def __init__(self, config, daemon, plugins): self.config = config self.network = daemon.network storage = WalletStorage(config.get_wallet_path()) if not storage.file_exists: print "Wallet not found. try 'electrum-dash create'" exit() if storage.is_encrypted(): password = getpass.getpass('Password:', stream=None) storage.decrypt(password) self.done = 0 self.last_balance = "" set_verbosity(False) self.str_recipient = "" self.str_description = "" self.str_amount = "" self.str_fee = "" self.wallet = Wallet(storage) self.wallet.start_threads(self.network) self.contacts = self.wallet.contacts self.network.register_callback(self.on_network, ['updated', 'banner']) self.commands = [_("[h] - displays this help text"), \ _("[i] - display transaction history"), \ _("[o] - enter payment order"), \ _("[p] - print stored payment order"), \ _("[s] - send stored payment order"), \ _("[r] - show own receipt addresses"), \ _("[c] - display contacts"), \ _("[b] - print server banner"), \ _("[q] - quit") ] self.num_commands = len(self.commands) def on_network(self, event, *args): if event == 'updated': self.updated() elif event == 'banner': self.print_banner() def main_command(self): self.print_balance() c = raw_input("enter command: ") if c == "h" : self.print_commands() elif c == "i" : self.print_history() elif c == "o" : self.enter_order() elif c == "p" : self.print_order() elif c == "s" : self.send_order() elif c == "r" : self.print_addresses() elif c == "c" : self.print_contacts() elif c == "b" : self.print_banner() elif c == "n" : self.network_dialog() elif c == "e" : self.settings_dialog() elif c == "q" : self.done = 1 else: self.print_commands() def updated(self): s = self.get_balance() if s != self.last_balance: print(s) self.last_balance = s return True def print_commands(self): self.print_list(self.commands, "Available commands") def print_history(self): width = [20, 40, 14, 14] delta = (80 - sum(width) - 4)/3 format_str = "%"+"%d"%width[0]+"s"+"%"+"%d"%(width[1]+delta)+"s"+"%" \ + "%d"%(width[2]+delta)+"s"+"%"+"%d"%(width[3]+delta)+"s" b = 0 messages = [] for item in self.wallet.get_history(): tx_hash, confirmations, value, timestamp, balance = item if confirmations: try: time_str = datetime.datetime.fromtimestamp(timestamp).isoformat(' ')[:-3] except Exception: time_str = "unknown" else: time_str = 'unconfirmed' label = self.wallet.get_label(tx_hash) messages.append( format_str%( time_str, label, format_satoshis(value, whitespaces=True), format_satoshis(balance, whitespaces=True) ) ) self.print_list(messages[::-1], format_str%( _("Date"), _("Description"), _("Amount"), _("Balance"))) def print_balance(self): print(self.get_balance()) def get_balance(self): if self.wallet.network.is_connected(): if not self.wallet.up_to_date: msg = _( "Synchronizing..." ) else: c, u, x = self.wallet.get_balance() msg = _("Balance")+": %f "%(Decimal(c) / COIN) if u: msg += " [%f unconfirmed]"%(Decimal(u) / COIN) if x: msg += " [%f unmatured]"%(Decimal(x) / COIN) else: msg = _( "Not connected" ) return(msg) def print_contacts(self): messages = map(lambda x: "%20s %45s "%(x[0], x[1][1]), self.contacts.items()) self.print_list(messages, "%19s %25s "%("Key", "Value")) def print_addresses(self): messages = map(lambda addr: "%30s %30s "%(addr, self.wallet.labels.get(addr,"")), self.wallet.get_addresses()) self.print_list(messages, "%19s %25s "%("Address", "Label")) def print_order(self): print("send order to " + self.str_recipient + ", amount: " + self.str_amount \ + "\nfee: " + self.str_fee + ", desc: " + self.str_description) def enter_order(self): self.str_recipient = raw_input("Pay to: ") self.str_description = raw_input("Description : ") self.str_amount = raw_input("Amount: ") self.str_fee = raw_input("Fee: ") def send_order(self): self.do_send() def print_banner(self): for i, x in enumerate( self.wallet.network.banner.split('\n') ): print( x ) def print_list(self, list, firstline): self.maxpos = len(list) if not self.maxpos: return print(firstline) for i in range(self.maxpos): msg = list[i] if i < len(list) else "" print(msg) def main(self): while self.done == 0: self.main_command() def do_send(self): if not is_valid(self.str_recipient): print(_('Invalid Dash address')) return try: amount = int(Decimal(self.str_amount) * COIN) except Exception: print(_('Invalid Amount')) return try: fee = int(Decimal(self.str_fee) * COIN) except Exception: print(_('Invalid Fee')) return if self.wallet.use_encryption: password = self.password_dialog() if not password: return else: password = None c = "" while c != "y": c = raw_input("ok to send (y/n)?") if c == "n": return try: tx = self.wallet.mktx([(TYPE_ADDRESS, self.str_recipient, amount)], password, self.config, fee) except Exception as e: print(str(e)) return if self.str_description: self.wallet.labels[tx.hash()] = self.str_description print(_("Please wait...")) status, msg = self.network.broadcast(tx) if status: print(_('Payment sent.')) #self.do_clear() #self.update_contacts_tab() else: print(_('Error')) def network_dialog(self): print("use 'electrum-dash setconfig server/proxy' to change your network settings") return True def settings_dialog(self): print("use 'electrum-dash setconfig' to change your settings") return True def password_dialog(self): return getpass.getpass() # XXX unused def run_receive_tab(self, c): #if c == 10: # out = self.run_popup('Address', ["Edit label", "Freeze", "Prioritize"]) return def run_contacts_tab(self, c): pass
33.103004
147
0.543757
d41dc2e596e6c6de44b2706bf4178151afc1d314
3,356
py
Python
stevedore/tests/test_named.py
jaraco/stevedore
8846a3f24a65df82f48d724b3b49b8ac8f135dcd
[ "Apache-2.0" ]
133
2015-01-29T20:10:51.000Z
2022-03-11T18:29:01.000Z
stevedore/tests/test_named.py
jaraco/stevedore
8846a3f24a65df82f48d724b3b49b8ac8f135dcd
[ "Apache-2.0" ]
4
2016-01-05T20:56:25.000Z
2021-08-30T06:16:31.000Z
virtual/lib/python3.6/site-packages/stevedore/tests/test_named.py
Mercy-Njoroge/blog
404336fb0fc8d172ddde8b744042cb3f37d89c65
[ "MIT" ]
39
2015-04-29T11:05:00.000Z
2021-12-02T16:55:51.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from stevedore import named from stevedore.tests import utils class TestNamed(utils.TestCase): def test_named(self): em = named.NamedExtensionManager( 'stevedore.test.extension', names=['t1'], invoke_on_load=True, invoke_args=('a',), invoke_kwds={'b': 'B'}, ) actual = em.names() self.assertEqual(actual, ['t1']) def test_enabled_before_load(self): # Set up the constructor for the FauxExtension to cause an # AssertionError so the test fails if the class is instantiated, # which should only happen if it is loaded before the name of the # extension is compared against the names that should be loaded by # the manager. init_name = 'stevedore.tests.test_extension.FauxExtension.__init__' with mock.patch(init_name) as m: m.side_effect = AssertionError em = named.NamedExtensionManager( 'stevedore.test.extension', # Look for an extension that does not exist so the # __init__ we mocked should never be invoked. names=['no-such-extension'], invoke_on_load=True, invoke_args=('a',), invoke_kwds={'b': 'B'}, ) actual = em.names() self.assertEqual(actual, []) def test_extensions_listed_in_name_order(self): # Since we don't know the "natural" order of the extensions, run # the test both ways: if the sorting is broken, one of them will # fail em = named.NamedExtensionManager( 'stevedore.test.extension', names=['t1', 't2'], name_order=True ) actual = em.names() self.assertEqual(actual, ['t1', 't2']) em = named.NamedExtensionManager( 'stevedore.test.extension', names=['t2', 't1'], name_order=True ) actual = em.names() self.assertEqual(actual, ['t2', 't1']) def test_load_fail_ignored_when_sorted(self): em = named.NamedExtensionManager( 'stevedore.test.extension', names=['e1', 't2', 'e2', 't1'], name_order=True, invoke_on_load=True, invoke_args=('a',), invoke_kwds={'b': 'B'}, ) actual = em.names() self.assertEqual(['t2', 't1'], actual) em = named.NamedExtensionManager( 'stevedore.test.extension', names=['e1', 't1'], name_order=False, invoke_on_load=True, invoke_args=('a',), invoke_kwds={'b': 'B'}, ) actual = em.names() self.assertEqual(['t1'], actual)
35.702128
76
0.585221
63b789dc7a8daa83faf04efd18070a3d7726e98a
2,209
py
Python
unitypack/environment.py
garysheffield19/123
f7aff28ec5cc75383a9ffc20390a6f3afa6197f8
[ "MIT" ]
null
null
null
unitypack/environment.py
garysheffield19/123
f7aff28ec5cc75383a9ffc20390a6f3afa6197f8
[ "MIT" ]
null
null
null
unitypack/environment.py
garysheffield19/123
f7aff28ec5cc75383a9ffc20390a6f3afa6197f8
[ "MIT" ]
1
2019-09-04T06:32:02.000Z
2019-09-04T06:32:02.000Z
import os from urllib.parse import urlparse from .asset import Asset from .assetbundle import AssetBundle class UnityEnvironment: def __init__(self, base_path=""): self.bundles = {} self.assets = {} self.base_path = base_path def __repr__(self): return "%s(base_path=%r)" % (self.__class__.__name__, self.base_path) def load(self, file): for bundle in self.bundles.values(): if os.path.abspath(file.name) == os.path.abspath(bundle.path): return bundle ret = AssetBundle(self) ret.load(file) self.bundles[ret.name.lower()] = ret for asset in ret.assets: self.assets[asset.name.lower()] = asset return ret def discover(self, name): for bundle in list(self.bundles.values()): dirname = os.path.dirname(os.path.abspath(bundle.path)) for filename in os.listdir(dirname): basename = os.path.splitext(os.path.basename(filename))[0] if name.lower() == "cab-" + basename.lower(): f = open(os.path.join(dirname, filename), "rb") self.load(f) def get_asset_by_filename(self, name): if name not in self.assets: path = os.path.join(self.base_path, name) if os.path.exists(path): f = open(path, "rb") self.assets[name] = Asset.from_file(f) else: self.discover(name) self.populate_assets() if name not in self.assets: raise KeyError("No such asset: %r" % (name)) return self.assets[name] def populate_assets(self): for bundle in self.bundles.values(): for asset in bundle.assets: asset_name = asset.name.lower() if asset_name not in self.assets: self.assets[asset_name] = asset def get_asset(self, url): if not url: return None u = urlparse(url) if u.scheme == "archive": archive, name = os.path.split(u.path.lstrip("/").lower()) else: raise NotImplementedError("Unsupported scheme: %r" % (u.scheme)) if archive not in self.bundles: self.discover(archive) # Still didn't find it? Give up... if archive not in self.bundles: raise NotImplementedError("Cannot find %r in %r" % (archive, self.bundles)) bundle = self.bundles[archive] for asset in bundle.assets: if asset.name.lower() == name: return asset raise KeyError("No such asset: %r" % (name))
27.962025
79
0.67904
b351a96e183c27d48268200ac0b0edf131a3d8ff
3,094
py
Python
Finder/gitfinder.py
cyal1/GitTools
13b6f917cb9dec73019a04d6f866507018760de3
[ "MIT" ]
null
null
null
Finder/gitfinder.py
cyal1/GitTools
13b6f917cb9dec73019a04d6f866507018760de3
[ "MIT" ]
null
null
null
Finder/gitfinder.py
cyal1/GitTools
13b6f917cb9dec73019a04d6f866507018760de3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ''' Finder is part of https://github.com/internetwache/GitTools Developed and maintained by @gehaxelt from @internetwache Use at your own risk. Usage might be illegal in certain circumstances. Only for educational purposes! ''' import argparse from functools import partial from multiprocessing import Pool from urllib.request import urlopen from urllib.error import HTTPError, URLError import sys import requests import ssl import encodings.idna from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) def findgitrepo(output_file, domains): domain = ".".join(encodings.idna.ToASCII(label).decode("ascii") for label in domains.strip().split(".")) # try: # # Try to download http://target.tld/.git/HEAD # with urlopen(''.join(['http://', domain, '/.git/HEAD']), context=ssl._create_unverified_context(), timeout=5) as response: # answer = response.read(200).decode('utf-8', 'ignore') # except HTTPError: # return # except URLError: # return # except OSError: # return # except ConnectionResetError: # return # except ValueError: # return # except (KeyboardInterrupt, SystemExit): # raise try: resp = requests.get(domain+"/.git/HEAD",verify=False,timeout=5,headers={"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36"}) except: return # Check if refs/heads is in the file # print(domain,resp.text) if 'refs/heads' not in resp.text: return # Write match to output_file # print(domain) with open(output_file, 'a') as file_handle: file_handle.write(''.join([domain, '\n'])) print(''.join(['[*] Found: ', domain])) def read_file(filename): with open(filename) as file: return file.readlines() def main(): print(""" ########### # Finder is part of https://github.com/internetwache/GitTools # # Developed and maintained by @gehaxelt from @internetwache # # Use at your own risk. Usage might be illegal in certain circumstances. # Only for educational purposes! ########### """) # Parse arguments parser = argparse.ArgumentParser() parser.add_argument('-i', '--inputfile', default='input.txt', help='input file') parser.add_argument('-o', '--outputfile', default='output.txt', help='output file') parser.add_argument('-t', '--threads', default=200, help='threads') args = parser.parse_args() domain_file = args.inputfile output_file = args.outputfile try: max_processes = int(args.threads) except ValueError as err: sys.exit(err) try: domains = read_file(domain_file) except FileNotFoundError as err: sys.exit(err) fun = partial(findgitrepo, output_file) print("Scanning...") with Pool(processes=max_processes) as pool: pool.map(fun, domains) print("Finished") if __name__ == '__main__': main()
29.466667
217
0.670976
88efc69abdd4fe2ac5a529ebb1706d46ff6aab7d
803
py
Python
zdemo/manage.py
chenkaifeng-Li/test2
9c246ac746f65c7aad0c365e7e3f157ee566cc4b
[ "MIT" ]
null
null
null
zdemo/manage.py
chenkaifeng-Li/test2
9c246ac746f65c7aad0c365e7e3f157ee566cc4b
[ "MIT" ]
null
null
null
zdemo/manage.py
chenkaifeng-Li/test2
9c246ac746f65c7aad0c365e7e3f157ee566cc4b
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "zdemo.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
34.913043
77
0.641345
d1cba41f2744297c73cafc3f78fd7cc2ebb34aeb
1,280
py
Python
ssha512/__init__.py
michzimny/django-ssha512-hasher
7229f1643175cca60895f97780ecda472cb4c278
[ "MIT" ]
null
null
null
ssha512/__init__.py
michzimny/django-ssha512-hasher
7229f1643175cca60895f97780ecda472cb4c278
[ "MIT" ]
null
null
null
ssha512/__init__.py
michzimny/django-ssha512-hasher
7229f1643175cca60895f97780ecda472cb4c278
[ "MIT" ]
null
null
null
from django.utils.crypto import get_random_string from django.utils.translation import ugettext_noop as _ from django.contrib.auth.hashers import BasePasswordHasher import base64 import hashlib class SSHA512PasswordHasher(BasePasswordHasher): algorithm = "ssha512" def salt(self): return get_random_string(8) def encode(self, password, salt): salt = str(salt) base64_encoded = base64.encodestring(hashlib.sha512(password + salt).digest() + salt).replace('\n', '') return 'ssha512${SSHA512}' + base64_encoded def verify(self, password, encoded): password = str(password) encoded = str(encoded) algorithm, data = encoded.split('$', 2) assert algorithm == self.algorithm assert data.startswith('{SSHA512}') base64_decoded = base64.decodestring(data[9:]) assert len(base64_decoded) == 72 hashed_password_plus_salt = base64_decoded[:64] salt = base64_decoded[64:] return hashlib.sha512(password + salt).digest() == hashed_password_plus_salt def safe_summary(self, encoded): algorithm, data = encoded.split('$', 2) assert algorithm == self.algorithm return OrderedDict([ (_('algorithm'), algorithm), ])
33.684211
111
0.667969
41864424141f04b4657ea19325de2ebe78dcb330
2,401
py
Python
conf.py
NishithP2004/pslab-documentation
a1fff773b0f78fe59c3b5be6a6391d87c3a3ccda
[ "Apache-2.0" ]
null
null
null
conf.py
NishithP2004/pslab-documentation
a1fff773b0f78fe59c3b5be6a6391d87c3a3ccda
[ "Apache-2.0" ]
null
null
null
conf.py
NishithP2004/pslab-documentation
a1fff773b0f78fe59c3b5be6a6391d87c3a3ccda
[ "Apache-2.0" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import sphinx_material # -- Project information ----------------------------------------------------- project = 'PSLab' html_title = 'Home' copyright = '2019, FOSSASIA' author = 'FOSSASIA' master_doc = 'index' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['m2r', 'sphinx_material'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_material' # Get the them path html_theme_path = sphinx_material.html_theme_path() # Register the required helpers for the html context html_context = sphinx_material.get_html_context() # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_sidebars = { "**": ["globaltoc.html", "localtoc.html", "searchbox.html"] } html_theme_options = { # Set the color and the accent color 'color_primary': 'red', 'color_accent': 'red', 'nav_title': 'Pocket Science Labs Documentation', } html_css_files = [ 'css/styles.css' ]
32.445946
79
0.67222
cbff01f34c97b2895d5f23d11763955da14e813e
828
py
Python
Python/ques3.py
achintya219/Autumn-of-Automation
b88abc1946e9d5e7476637f97fba2591f5a1fd77
[ "MIT" ]
null
null
null
Python/ques3.py
achintya219/Autumn-of-Automation
b88abc1946e9d5e7476637f97fba2591f5a1fd77
[ "MIT" ]
null
null
null
Python/ques3.py
achintya219/Autumn-of-Automation
b88abc1946e9d5e7476637f97fba2591f5a1fd77
[ "MIT" ]
null
null
null
import math class Complex(object): def __init__(self, real, imag=0.0): self.real = real self.imag = imag def add(self, other): return Complex(self.real + other.real, self.imag + other.imag) def sub(self, other): return Complex(self.real - other.real, self.imag - other.imag) def mul(self, other): return Complex(self.real*other.real - self.imag*other.imag, self.imag*other.real + self.real*other.imag) def magnitude(self): return math.sqrt(self.real*self.real + self.imag*self.imag) def conjugate(self): return Complex(self.real, -self.imag) def display(self): if self.imag >= 0: print(self.real,"+",self.imag,"i\n") else: print(self.real,self.imag,"i\n") a = Complex(1,2) a.display() a.conjugate().display() b = Complex(2, -3) b.display() c = b.add(a) c.display() d = b.mul(a) d.display()
22.378378
106
0.676329
30f67b613988a53e4c7ffbb01d4d1658489a621c
3,040
py
Python
pgAdmin/pgadmin4/web/pgadmin/browser/server_groups/servers/databases/schemas/functions/tests/test_get_supported_functions.py
WeilerWebServices/PostgreSQL
ae594ed077bebbad1be3c1d95c38b7c2c2683e8c
[ "PostgreSQL" ]
null
null
null
pgAdmin/pgadmin4/web/pgadmin/browser/server_groups/servers/databases/schemas/functions/tests/test_get_supported_functions.py
WeilerWebServices/PostgreSQL
ae594ed077bebbad1be3c1d95c38b7c2c2683e8c
[ "PostgreSQL" ]
null
null
null
pgAdmin/pgadmin4/web/pgadmin/browser/server_groups/servers/databases/schemas/functions/tests/test_get_supported_functions.py
WeilerWebServices/PostgreSQL
ae594ed077bebbad1be3c1d95c38b7c2c2683e8c
[ "PostgreSQL" ]
null
null
null
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2020, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import json import uuid from unittest.mock import patch from pgadmin.browser.server_groups.servers.databases.tests import utils as \ database_utils from pgadmin.utils.route import BaseTestGenerator from regression.python_test_utils import test_utils as utils from . import utils as funcs_utils from .. import FunctionView class FunctionGetSupportedFunctionsTestCase(BaseTestGenerator): """ This class get supported functions. """ scenarios = [ ( 'Fetch Function supported functions', dict( url='/browser/function/get_support_functions/', is_positive_test=True, mocking_required=False, mock_data={}, expected_data={ "status_code": 200 }, ), ), ( 'Fetch Function support functions fail', dict( url='/browser/function/get_support_functions/', is_positive_test=False, mocking_required=True, mock_data={ "function_name": 'pgadmin.utils.driver.psycopg2.' 'connection.Connection.execute_2darray', "return_value": "(False, 'Mocked Internal Server Error " "while get supported function')" }, expected_data={ "status_code": 500 } ), ) ] def get_supported_functions(self): response = self.tester.get( self.url + str(utils.SERVER_GROUP) + '/' + str(self.server_id) + '/' + str(self.db_id) + '/' + str(self.schema_id) + '/', content_type='html/json' ) return response def runTest(self): """ This function will get function nodes under schema. """ if self.server_information['server_version'] < 120000: message = "Supported functions are not supported by PG/EPAS " \ "< 120000." self.skipTest(message) super(FunctionGetSupportedFunctionsTestCase, self).runTest() self = funcs_utils.set_up(self) if self.is_positive_test: response = self.get_supported_functions() else: with patch(self.mock_data["function_name"], return_value=eval(self.mock_data["return_value"])): response = self.get_supported_functions() self.assertEqual(response.status_code, self.expected_data['status_code']) # Disconnect the database database_utils.disconnect_database(self, self.server_id, self.db_id)
35.348837
77
0.543421
431687560731b473c575d44918197b4549723f83
16,012
py
Python
log_casp_act/model_796.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_casp_act/model_796.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_casp_act/model_796.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('ParpC') Monomer('Xiap', ['Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('C6A', ['C8pro']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 199000.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('C6A_0', 0.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('C6A_obs', C6A()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(ParpC(), ParpC_0) Initial(Xiap(Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(C6A(C8pro=None), C6A_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6pro(C3A=None), C6pro_0)
84.273684
614
0.812266
2f1de9089e99ecc9383d05e98c8b1809316655ce
155
py
Python
cefiro_customizations/cefiro_customizations/doctype/bundle_transfer/test_bundle_transfer.py
saeedkola/cefiro_customizations
e7fcf92afaae37fb7d8abd49cdbd6328d18b9abb
[ "MIT" ]
null
null
null
cefiro_customizations/cefiro_customizations/doctype/bundle_transfer/test_bundle_transfer.py
saeedkola/cefiro_customizations
e7fcf92afaae37fb7d8abd49cdbd6328d18b9abb
[ "MIT" ]
null
null
null
cefiro_customizations/cefiro_customizations/doctype/bundle_transfer/test_bundle_transfer.py
saeedkola/cefiro_customizations
e7fcf92afaae37fb7d8abd49cdbd6328d18b9abb
[ "MIT" ]
null
null
null
# Copyright (c) 2021, Element Labs and Contributors # See license.txt # import frappe import unittest class TestBundleTransfer(unittest.TestCase): pass
17.222222
51
0.787097
7ff8000e77b5f0de86830657f810d8b4c71e15f6
581
py
Python
pyleecan/Methods/Mesh/MeshMat/get_node.py
tobsen2code/pyleecan
5b1ded9e389e0c79ed7b7c878b6e939f2d9962e9
[ "Apache-2.0" ]
95
2019-01-23T04:19:45.000Z
2022-03-17T18:22:10.000Z
pyleecan/Methods/Mesh/MeshMat/get_node.py
ecs-kev/pyleecan
1faedde4b24acc6361fa1fdd4e980eaec4ca3a62
[ "Apache-2.0" ]
366
2019-02-20T07:15:08.000Z
2022-03-31T13:37:23.000Z
pyleecan/Methods/Mesh/MeshMat/get_node.py
ecs-kev/pyleecan
1faedde4b24acc6361fa1fdd4e980eaec4ca3a62
[ "Apache-2.0" ]
74
2019-01-24T01:47:31.000Z
2022-02-25T05:44:42.000Z
# -*- coding: utf-8 -*- def get_node(self, indices=None): """Return a matrix of nodes coordinates. Parameters ---------- self : Mesh an Mesh object indices : list Indices of the targeted nodes. If None, return all. is_indice: bool Option to return the nodes indices (useful for unsorted Returns ------- coordinates: ndarray nodes coordinates indices : ndarray nodes indices """ if indices is None: return self.node.coordinate else: return self.node.get_coord(indices)
20.75
63
0.597246
f1c6b2d97621ee5bb2c1041801e6c73bb58d6289
17,002
py
Python
Lib/test/test_zipapp.py
dignissimus/cpython
17357108732c731d6ed4f2bd123ee6ba1ff6891b
[ "0BSD" ]
null
null
null
Lib/test/test_zipapp.py
dignissimus/cpython
17357108732c731d6ed4f2bd123ee6ba1ff6891b
[ "0BSD" ]
2
2021-12-01T15:01:15.000Z
2022-02-24T06:16:48.000Z
Lib/test/test_zipapp.py
sthagen/python-cpython
dfd438dfb2a0e299cd6ab166f203dfe9740868ae
[ "0BSD" ]
null
null
null
"""Test harness for the zipapp module.""" import io import pathlib import stat import sys import tempfile import unittest import zipapp import zipfile from test.support import requires_zlib from test.support import os_helper from unittest.mock import patch class ZipAppTest(unittest.TestCase): """Test zipapp module functionality.""" def setUp(self): tmpdir = tempfile.TemporaryDirectory() self.addCleanup(tmpdir.cleanup) self.tmpdir = pathlib.Path(tmpdir.name) def test_create_archive(self): # Test packing a directory. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target)) self.assertTrue(target.is_file()) def test_create_archive_with_pathlib(self): # Test packing a directory using Path objects for source and target. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(source, target) self.assertTrue(target.is_file()) def test_create_archive_with_subdirs(self): # Test packing a directory includes entries for subdirectories. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() (source / 'foo').mkdir() (source / 'bar').mkdir() (source / 'foo' / '__init__.py').touch() target = io.BytesIO() zipapp.create_archive(str(source), target) target.seek(0) with zipfile.ZipFile(target, 'r') as z: self.assertIn('foo/', z.namelist()) self.assertIn('bar/', z.namelist()) def test_create_sorted_archive(self): # Test that zipapps order their files by name source = self.tmpdir / 'source' source.mkdir() (source / 'zed.py').touch() (source / 'bin').mkdir() (source / 'bin' / 'qux').touch() (source / 'bin' / 'baz').touch() (source / '__main__.py').touch() target = io.BytesIO() zipapp.create_archive(str(source), target) target.seek(0) with zipfile.ZipFile(target, 'r') as zf: self.assertEqual(zf.namelist(), ["__main__.py", "bin/", "bin/baz", "bin/qux", "zed.py"]) def test_create_archive_with_filter(self): # Test packing a directory and using filter to specify # which files to include. def skip_pyc_files(path): return path.suffix != '.pyc' source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() (source / 'test.py').touch() (source / 'test.pyc').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(source, target, filter=skip_pyc_files) with zipfile.ZipFile(target, 'r') as z: self.assertIn('__main__.py', z.namelist()) self.assertIn('test.py', z.namelist()) self.assertNotIn('test.pyc', z.namelist()) def test_create_archive_filter_exclude_dir(self): # Test packing a directory and using a filter to exclude a # subdirectory (ensures that the path supplied to include # is relative to the source location, as expected). def skip_dummy_dir(path): return path.parts[0] != 'dummy' source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() (source / 'test.py').touch() (source / 'dummy').mkdir() (source / 'dummy' / 'test2.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(source, target, filter=skip_dummy_dir) with zipfile.ZipFile(target, 'r') as z: self.assertEqual(len(z.namelist()), 2) self.assertIn('__main__.py', z.namelist()) self.assertIn('test.py', z.namelist()) def test_create_archive_default_target(self): # Test packing a directory to the default name. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() zipapp.create_archive(str(source)) expected_target = self.tmpdir / 'source.pyz' self.assertTrue(expected_target.is_file()) @requires_zlib() def test_create_archive_with_compression(self): # Test packing a directory into a compressed archive. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() (source / 'test.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(source, target, compressed=True) with zipfile.ZipFile(target, 'r') as z: for name in ('__main__.py', 'test.py'): self.assertEqual(z.getinfo(name).compress_type, zipfile.ZIP_DEFLATED) def test_no_main(self): # Test that packing a directory with no __main__.py fails. source = self.tmpdir / 'source' source.mkdir() (source / 'foo.py').touch() target = self.tmpdir / 'source.pyz' with self.assertRaises(zipapp.ZipAppError): zipapp.create_archive(str(source), str(target)) def test_main_and_main_py(self): # Test that supplying a main argument with __main__.py fails. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' with self.assertRaises(zipapp.ZipAppError): zipapp.create_archive(str(source), str(target), main='pkg.mod:fn') def test_main_written(self): # Test that the __main__.py is written correctly. source = self.tmpdir / 'source' source.mkdir() (source / 'foo.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), main='pkg.mod:fn') with zipfile.ZipFile(str(target), 'r') as z: self.assertIn('__main__.py', z.namelist()) self.assertIn(b'pkg.mod.fn()', z.read('__main__.py')) def test_main_only_written_once(self): # Test that we don't write multiple __main__.py files. # The initial implementation had this bug; zip files allow # multiple entries with the same name source = self.tmpdir / 'source' source.mkdir() # Write 2 files, as the original bug wrote __main__.py # once for each file written :-( # See http://bugs.python.org/review/23491/diff/13982/Lib/zipapp.py#newcode67Lib/zipapp.py:67 # (line 67) (source / 'foo.py').touch() (source / 'bar.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), main='pkg.mod:fn') with zipfile.ZipFile(str(target), 'r') as z: self.assertEqual(1, z.namelist().count('__main__.py')) def test_main_validation(self): # Test that invalid values for main are rejected. source = self.tmpdir / 'source' source.mkdir() target = self.tmpdir / 'source.pyz' problems = [ '', 'foo', 'foo:', ':bar', '12:bar', 'a.b.c.:d', '.a:b', 'a:b.', 'a:.b', 'a:silly name' ] for main in problems: with self.subTest(main=main): with self.assertRaises(zipapp.ZipAppError): zipapp.create_archive(str(source), str(target), main=main) def test_default_no_shebang(self): # Test that no shebang line is written to the target by default. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target)) with target.open('rb') as f: self.assertNotEqual(f.read(2), b'#!') def test_custom_interpreter(self): # Test that a shebang line with a custom interpreter is written # correctly. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), interpreter='python') with target.open('rb') as f: self.assertEqual(f.read(2), b'#!') self.assertEqual(b'python\n', f.readline()) def test_pack_to_fileobj(self): # Test that we can pack to a file object. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = io.BytesIO() zipapp.create_archive(str(source), target, interpreter='python') self.assertTrue(target.getvalue().startswith(b'#!python\n')) def test_read_shebang(self): # Test that we can read the shebang line correctly. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), interpreter='python') self.assertEqual(zipapp.get_interpreter(str(target)), 'python') def test_read_missing_shebang(self): # Test that reading the shebang line of a file without one returns None. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target)) self.assertEqual(zipapp.get_interpreter(str(target)), None) def test_modify_shebang(self): # Test that we can change the shebang of a file. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), interpreter='python') new_target = self.tmpdir / 'changed.pyz' zipapp.create_archive(str(target), str(new_target), interpreter='python2.7') self.assertEqual(zipapp.get_interpreter(str(new_target)), 'python2.7') def test_write_shebang_to_fileobj(self): # Test that we can change the shebang of a file, writing the result to a # file object. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), interpreter='python') new_target = io.BytesIO() zipapp.create_archive(str(target), new_target, interpreter='python2.7') self.assertTrue(new_target.getvalue().startswith(b'#!python2.7\n')) def test_read_from_pathobj(self): # Test that we can copy an archive using a pathlib.Path object # for the source. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target1 = self.tmpdir / 'target1.pyz' target2 = self.tmpdir / 'target2.pyz' zipapp.create_archive(source, target1, interpreter='python') zipapp.create_archive(target1, target2, interpreter='python2.7') self.assertEqual(zipapp.get_interpreter(target2), 'python2.7') def test_read_from_fileobj(self): # Test that we can copy an archive using an open file object. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' temp_archive = io.BytesIO() zipapp.create_archive(str(source), temp_archive, interpreter='python') new_target = io.BytesIO() temp_archive.seek(0) zipapp.create_archive(temp_archive, new_target, interpreter='python2.7') self.assertTrue(new_target.getvalue().startswith(b'#!python2.7\n')) def test_remove_shebang(self): # Test that we can remove the shebang from a file. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), interpreter='python') new_target = self.tmpdir / 'changed.pyz' zipapp.create_archive(str(target), str(new_target), interpreter=None) self.assertEqual(zipapp.get_interpreter(str(new_target)), None) def test_content_of_copied_archive(self): # Test that copying an archive doesn't corrupt it. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = io.BytesIO() zipapp.create_archive(str(source), target, interpreter='python') new_target = io.BytesIO() target.seek(0) zipapp.create_archive(target, new_target, interpreter=None) new_target.seek(0) with zipfile.ZipFile(new_target, 'r') as z: self.assertEqual(set(z.namelist()), {'__main__.py'}) # (Unix only) tests that archives with shebang lines are made executable @unittest.skipIf(sys.platform == 'win32', 'Windows does not support an executable bit') @os_helper.skip_unless_working_chmod def test_shebang_is_executable(self): # Test that an archive with a shebang line is made executable. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), interpreter='python') self.assertTrue(target.stat().st_mode & stat.S_IEXEC) @unittest.skipIf(sys.platform == 'win32', 'Windows does not support an executable bit') def test_no_shebang_is_not_executable(self): # Test that an archive with no shebang line is not made executable. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(str(source), str(target), interpreter=None) self.assertFalse(target.stat().st_mode & stat.S_IEXEC) class ZipAppCmdlineTest(unittest.TestCase): """Test zipapp module command line API.""" def setUp(self): tmpdir = tempfile.TemporaryDirectory() self.addCleanup(tmpdir.cleanup) self.tmpdir = pathlib.Path(tmpdir.name) def make_archive(self): # Test that an archive with no shebang line is not made executable. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() target = self.tmpdir / 'source.pyz' zipapp.create_archive(source, target) return target def test_cmdline_create(self): # Test the basic command line API. source = self.tmpdir / 'source' source.mkdir() (source / '__main__.py').touch() args = [str(source)] zipapp.main(args) target = source.with_suffix('.pyz') self.assertTrue(target.is_file()) def test_cmdline_copy(self): # Test copying an archive. original = self.make_archive() target = self.tmpdir / 'target.pyz' args = [str(original), '-o', str(target)] zipapp.main(args) self.assertTrue(target.is_file()) def test_cmdline_copy_inplace(self): # Test copying an archive in place fails. original = self.make_archive() target = self.tmpdir / 'target.pyz' args = [str(original), '-o', str(original)] with self.assertRaises(SystemExit) as cm: zipapp.main(args) # Program should exit with a non-zero return code. self.assertTrue(cm.exception.code) def test_cmdline_copy_change_main(self): # Test copying an archive doesn't allow changing __main__.py. original = self.make_archive() target = self.tmpdir / 'target.pyz' args = [str(original), '-o', str(target), '-m', 'foo:bar'] with self.assertRaises(SystemExit) as cm: zipapp.main(args) # Program should exit with a non-zero return code. self.assertTrue(cm.exception.code) @patch('sys.stdout', new_callable=io.StringIO) def test_info_command(self, mock_stdout): # Test the output of the info command. target = self.make_archive() args = [str(target), '--info'] with self.assertRaises(SystemExit) as cm: zipapp.main(args) # Program should exit with a zero return code. self.assertEqual(cm.exception.code, 0) self.assertEqual(mock_stdout.getvalue(), "Interpreter: <none>\n") def test_info_error(self): # Test the info command fails when the archive does not exist. target = self.tmpdir / 'dummy.pyz' args = [str(target), '--info'] with self.assertRaises(SystemExit) as cm: zipapp.main(args) # Program should exit with a non-zero return code. self.assertTrue(cm.exception.code) if __name__ == "__main__": unittest.main()
40.2891
100
0.617574
bd25f6f4b4b916dc3222f74041417db0b4ef15ea
754
py
Python
test_tokens.py
yeoedward/Robost-Fill
f8bbf7546732bc7e8412b53f0267e7c8b82e135e
[ "MIT" ]
16
2018-12-18T05:01:23.000Z
2022-02-23T17:14:55.000Z
test_tokens.py
yeoedward/Robost-Fill
f8bbf7546732bc7e8412b53f0267e7c8b82e135e
[ "MIT" ]
null
null
null
test_tokens.py
yeoedward/Robost-Fill
f8bbf7546732bc7e8412b53f0267e7c8b82e135e
[ "MIT" ]
6
2019-09-19T19:49:44.000Z
2021-07-06T13:01:04.000Z
from unittest import TestCase from sample import sample_program, sample_string from tokens import build_token_tables class TestTokens(TestCase): def test_total_num_tokens(self): token_tables = build_token_tables() expected_num_tokens = 1118 self.assertEqual(expected_num_tokens, len(token_tables.token_op_table)) self.assertEqual(expected_num_tokens, len(token_tables.op_token_table)) def test_token_table_coverage_smoke_test(self): token_tables = build_token_tables() num_samples = 1000 for _ in range(num_samples): sample_program(10).to_tokens(token_tables.op_token_table) for char in sample_string(30): token_tables.string_token_table[char]
32.782609
79
0.732095
d37113b9dd37eaeca35d3cb367ea9c3f91a78a17
1,384
py
Python
extraPackages/matplotlib-3.0.3/examples/userdemo/colormap_normalizations_bounds.py
dolboBobo/python3_ios
877f8c2c5890f26292ddd14909bea62a04fe2889
[ "BSD-3-Clause" ]
130
2018-02-03T10:25:54.000Z
2022-03-25T22:27:22.000Z
extraPackages/matplotlib-3.0.2/examples/userdemo/colormap_normalizations_bounds.py
spacetime314/python3_ios
e149f1bc2e50046c8810f83dae7739a8dea939ee
[ "BSD-3-Clause" ]
9
2018-12-14T07:31:42.000Z
2020-12-09T20:29:28.000Z
extraPackages/matplotlib-3.0.2/examples/userdemo/colormap_normalizations_bounds.py
spacetime314/python3_ios
e149f1bc2e50046c8810f83dae7739a8dea939ee
[ "BSD-3-Clause" ]
64
2018-04-25T08:51:57.000Z
2022-01-29T14:13:57.000Z
""" ============================== Colormap Normalizations Bounds ============================== Demonstration of using norm to map colormaps onto data in non-linear ways. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors N = 100 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 ''' BoundaryNorm: For this one you provide the boundaries for your colors, and the Norm puts the first color in between the first pair, the second color between the second pair, etc. ''' fig, ax = plt.subplots(3, 1, figsize=(8, 8)) ax = ax.flatten() # even bounds gives a contour-like effect bounds = np.linspace(-1, 1, 10) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) pcm = ax[0].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r') fig.colorbar(pcm, ax=ax[0], extend='both', orientation='vertical') # uneven bounds changes the colormapping: bounds = np.array([-0.25, -0.125, 0, 0.5, 1]) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) pcm = ax[1].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r') fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical') pcm = ax[2].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z)) fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical') plt.show()
30.755556
74
0.634393
60320c83a4bbf7da4064d8d1005ba43c1020228f
2,324
py
Python
25_vendor_terms.py
dionisiotorres/import_scripts
14e12c6874e1277b4ad4cdbe46f6b454b43c2aec
[ "Unlicense" ]
null
null
null
25_vendor_terms.py
dionisiotorres/import_scripts
14e12c6874e1277b4ad4cdbe46f6b454b43c2aec
[ "Unlicense" ]
null
null
null
25_vendor_terms.py
dionisiotorres/import_scripts
14e12c6874e1277b4ad4cdbe46f6b454b43c2aec
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import csv from xmlrpc import client as xmlrpclib import multiprocessing as mp from scriptconfig import URL, DB, UID, PSW, WORKERS def update_vendor_terms(pid, data_pool, write_ids, error_ids): sock = xmlrpclib.ServerProxy(URL, allow_none=True) while data_pool: try: data = data_pool.pop() code = data.get('TERM-CODE') vals = {'name': data.get('TERM-DESC').strip(), 'note': data.get('TERM-DESC').strip(), 'active': True, 'order_type': 'purchase', 'code': code, 'discount_per': data.get('TERM-DISC-PCT', 0), 'due_days': data.get('TERM-DISC-DAYS', 0), } res = write_ids.get(code, []) if res: sock.execute(DB, UID, PSW, 'account.payment.term', 'write', res, vals) print(pid, 'UPDATE - VENDOR TERM', res) else: vals['line_ids'] = [(0, 0, {'type': 'balance', 'days': int(data.get('TERM-DAYS-DUE', 0) or 0)})] res = sock.execute(DB, UID, PSW, 'account.payment.term', 'create', vals) print(pid, 'CREATE - VENDOR TERM', res) if not data_pool: break except: break def sync_terms(): manager = mp.Manager() data_pool = manager.list() error_ids = manager.list() write_ids = manager.dict() process_Q = [] fp = open('files/aplterm1.csv', 'r') csv_reader = csv.DictReader(fp) for vals in csv_reader: data_pool.append(vals) fp.close() domain = [('order_type', '=', 'purchase')] sock = xmlrpclib.ServerProxy(URL, allow_none=True) res = sock.execute(DB, UID, PSW, 'account.payment.term', 'search_read', domain, ['id', 'code']) write_ids = {term['code']: term['id'] for term in res} res = None term_codes = None for i in range(WORKERS): pid = "Worker-%d" % (i + 1) worker = mp.Process(name=pid, target=update_vendor_terms, args=(pid, data_pool, write_ids, error_ids)) process_Q.append(worker) worker.start() for worker in process_Q: worker.join() if __name__ == "__main__": # PARTNER sync_terms()
29.417722
112
0.547762
ed387b57bc6b4918dab295fa4c8f4c2d1a021253
5,197
py
Python
src/config/ocio/Python/rv_ocio_setup.py
umediayvr/rvtools
7fbb986746e70cbec34d83b5a3b08659c3a462bb
[ "MIT" ]
2
2018-05-28T20:59:29.000Z
2020-06-26T19:16:45.000Z
src/config/ocio/Python/rv_ocio_setup.py
umediayvr/rvtools
7fbb986746e70cbec34d83b5a3b08659c3a462bb
[ "MIT" ]
null
null
null
src/config/ocio/Python/rv_ocio_setup.py
umediayvr/rvtools
7fbb986746e70cbec34d83b5a3b08659c3a462bb
[ "MIT" ]
2
2018-07-10T15:03:26.000Z
2020-12-09T08:59:04.000Z
import rv import os import PyOpenColorIO as OCIO from ingestor.ExpressionEvaluator import ExpressionEvaluator # Convenience functions to set the values in the specific nodes def setInt(node, prop, value): """Set an int property.""" propertyName = '{node}.{prop}'.format(node=node, prop=prop) rv.commands.setIntProperty(propertyName, [value], True) def getInt(node, prop): """Get an int property.""" propertyName = '{node}.{prop}'.format(node=node, prop=prop) return rv.commands.getIntProperty(propertyName, 0, 1)[0] def setFloat(node, prop, value): """Set a float property.""" propertyName = '{node}.{prop}'.format(node=node, prop=prop) rv.commands.setFloatProperty(propertyName, [float(value)], True) def getFloat(node, prop): """Get a float property.""" propertyName = '{node}.{prop}'.format(node=node, prop=prop) return rv.commands.getFloatProperty(propertyName, 0, 1)[0] def getString(node, prop): """Get a string property.""" propertyName = '{node}.{prop}'.format(node=node, prop=prop) return rv.commands.getStringProperty(propertyName, 0, 1)[0] def setString(node, prop, value): """Set a string property.""" propertyName = '{node}.{prop}'.format(node=node, prop=prop) rv.commands.setStringProperty(propertyName, [value], True) def setComponent(node, prop, value): """Set a component property.""" for k, v in value.items(): component = '{node}.{prop}.{key}'.format(node=node, prop=prop, key=k) if not rv.commands.propertyExists(component): rv.commands.newProperty(component, rv.commands.StringType, 1) keyProperty = '{prop}.{key}'.format(prop=prop, key=k) setString(node, keyProperty, v) def groupMemberOfType(node, memberType): """Get a group member of specific type.""" for n in rv.commands.nodesInGroup(node): if rv.commands.nodeType(n) == memberType: return n return None def ocio_config_from_media(*args, **kwargs): """ Override the original 'ocio_config_from_media' from the 'ocio_source_setup' plugin. This functions sets the open color io config file. It resolves the path base on the loaded file. """ media = rv.commands.sources()[0][0] config_file = ExpressionEvaluator.run('rfindpath', 'config/OCIO/config.ocio', media) return OCIO.Config.CreateFromFile(config_file) def ocio_node_from_media(config, node, default, media=None, _=None): """ Override the original 'ocio_node_from_media' from the 'ocio_source_setup' plugin. This function sets the usage of the views and color spaces in RV. RVDisplayPipelineGroup - Viewer setup RVLinearizePipelineGroup - Color space setup RVLookPipelineGroup - Look setup """ result = [{"nodeType": d, "context": {}, "properties": {}} for d in default] nodeType = rv.commands.nodeType(node) if (nodeType == "RVDisplayPipelineGroup"): # The display is always the color viewer, the color space in the ocio will set the final color space media = rv.commands.sources()[0][0] sg, _, projectName = getDataFromMedia(media) sgProject = sg.find_one( 'Project', [['name', 'is', projectName]], ['sg_rvcolorspaceviewer'] ) viewer = str(sgProject['sg_rvcolorspaceviewer']) display = config.getDefaultDisplay() result = [ { "nodeType": "OCIODisplay", "context": {}, "properties": { "ocio.function": "display", "ocio_display.view": viewer, "ocio_display.display": display } } ] elif (nodeType == "RVLinearizePipelineGroup"): if not media: return result sg, _, projectName = getDataFromMedia(media) # This is not the right way to do it, but in the future we will have the ids instead of the names sgProject = sg.find_one( 'Project', [['name', 'is', projectName]], ['sg_showcolorspacestudio', 'sg_showcolorspaceclient'] ) # Color space in colorSpaceStudio = str(sgProject['sg_showcolorspacestudio']) # Color space out colorSpaceClient = str(sgProject['sg_showcolorspaceclient']) result = [ { "nodeType": "OCIOFile", "context": {}, "properties": { "ocio.function": "color", "ocio.inColorSpace": colorSpaceStudio, "ocio_color.outColorSpace": colorSpaceClient } } ] elif (nodeType == "RVLookPipelineGroup"): # We don't need to set the looks for so we can bypass this method (leave it to know it's a possiblity) pass return result def getDataFromMedia(media): """ Get the shotgun session, shotname and project name base on the loaded file. """ from ushotgun import Session sg = Session.get() shotName = os.path.basename(media).split('_')[0] projectName = shotName.split('-')[0] return (sg, shotName, projectName)
33.529032
110
0.622859
d230585d56e6bbb18e8b4c6a3a46a356a5fe720e
802
py
Python
polymorphism_and_abstraction/exercise/04_wild_farm/project/animals/birds.py
Galchov/python-oop
1bf7c51ac2c605bae11b08df7edd4341e20a1b39
[ "MIT" ]
null
null
null
polymorphism_and_abstraction/exercise/04_wild_farm/project/animals/birds.py
Galchov/python-oop
1bf7c51ac2c605bae11b08df7edd4341e20a1b39
[ "MIT" ]
null
null
null
polymorphism_and_abstraction/exercise/04_wild_farm/project/animals/birds.py
Galchov/python-oop
1bf7c51ac2c605bae11b08df7edd4341e20a1b39
[ "MIT" ]
null
null
null
from project.animals.animal import Bird class Owl(Bird): def __init__(self, name, weight, wing_size): super().__init__(name, weight, wing_size) def make_sound(self): return "Hoot Hoot" def feed(self, food): food_type = type(food).__name__ animal_type = type(self).__name__ if food_type == "Meat": self.food_eaten += food.quantity self.weight += food.quantity * 0.25 else: return f"{animal_type} does not eat {food_type}!" class Hen(Bird): def __init__(self, name, weight, wing_size): super().__init__(name, weight, wing_size) def make_sound(self): return "Cluck" def feed(self, food): self.food_eaten += food.quantity self.weight += food.quantity * 0.35
25.870968
61
0.609726
fcf5815868eb3669d4753c83febb5073ad144e43
3,640
py
Python
bitbox/script.py
lightswarm124/bitbox-py
67ee0d216e2630fd44dba83b5233f33c315dd30b
[ "MIT" ]
null
null
null
bitbox/script.py
lightswarm124/bitbox-py
67ee0d216e2630fd44dba83b5233f33c315dd30b
[ "MIT" ]
null
null
null
bitbox/script.py
lightswarm124/bitbox-py
67ee0d216e2630fd44dba83b5233f33c315dd30b
[ "MIT" ]
null
null
null
class Script: def opcodes(): codes = { "OP_FALSE": 0, "OP_0": 0, "OP_PUSHDATA1": 76, "OP_PUSHDATA2": 77, "OP_PUSHDATA4": 78, "OP_1NEGATE": 79, "OP_RESERVED": 80, "OP_TRUE": 81, "OP_1": 81, "OP_2": 82, "OP_3": 83, "OP_4": 84, "OP_5": 85, "OP_6": 86, "OP_7": 87, "OP_8": 88, "OP_9": 89, "OP_10": 90, "OP_11": 91, "OP_12": 92, "OP_13": 93, "OP_14": 94, "OP_15": 95, "OP_16": 96, "OP_NOP": 97, "OP_VER": 98, "OP_IF": 99, "OP_NOTIF": 100, "OP_VERIF": 101, "OP_VERNOTIF": 102, "OP_ELSE": 103, "OP_ENDIF": 104, "OP_VERIFY": 105, "OP_RETURN": 106, "OP_TOALTSTACK": 107, "OP_FROMALTSTACK": 108, "OP_2DROP": 109, "OP_2DUP": 110, "OP_3DUP": 111, "OP_2OVER": 112, "OP_2ROT": 113, "OP_2SWAP": 114, "OP_IFDUP": 115, "OP_DEPTH": 116, "OP_DROP": 117, "OP_DUP": 118, "OP_NIP": 119, "OP_OVER": 120, "OP_PICK": 121, "OP_ROLL": 122, "OP_ROT": 123, "OP_SWAP": 124, "OP_TUCK": 125, "OP_CAT": 126, "OP_SPLIT": 127, "OP_NUM2BIN": 128, "OP_BIN2NUM": 129, "OP_SIZE": 130, "OP_INVERT": 131, "OP_AND": 132, "OP_OR": 133, "OP_XOR": 134, "OP_EQUAL": 135, "OP_EQUALVERIFY": 136, "OP_RESERVED1": 137, "OP_RESERVED2": 138, "OP_1ADD": 139, "OP_1SUB": 140, "OP_2MUL": 141, "OP_2DIV": 142, "OP_NEGATE": 143, "OP_ABS": 144, "OP_NOT": 145, "OP_0NOTEQUAL": 146, "OP_ADD": 147, "OP_SUB": 148, "OP_MUL": 149, "OP_DIV": 150, "OP_MOD": 151, "OP_LSHIFT": 152, "OP_RSHIFT": 153, "OP_BOOLAND": 154, "OP_BOOLOR": 155, "OP_NUMEQUAL": 156, "OP_NUMEQUALVERIFY": 157, "OP_NUMNOTEQUAL": 158, "OP_LESSTHAN": 159, "OP_GREATERTHAN": 160, "OP_LESSTHANOREQUAL": 161, "OP_GREATERTHANOREQUAL": 162, "OP_MIN": 163, "OP_MAX": 164, "OP_WITHIN": 165, "OP_RIPEMD160": 166, "OP_SHA1": 167, "OP_SHA256": 168, "OP_HASH160": 169, "OP_HASH256": 170, "OP_CODESEPARATOR": 171, "OP_CHECKSIG": 172, "OP_CHECKSIGVERIFY": 173, "OP_CHECKMULTISIG": 174, "OP_CHECKMULTISIGVERIFY": 175, "OP_NOP1": 176, "OP_NOP2": 177, "OP_CHECKLOCKTIMEVERIFY": 177, "OP_NOP3": 178, "OP_CHECKSEQUENCEVERIFY": 178, "OP_NOP4": 179, "OP_NOP5": 180, "OP_NOP6": 181, "OP_NOP7": 182, "OP_NOP8": 183, "OP_NOP9": 184, "OP_NOP10": 185, "OP_CHECKDATASIG": 186, "OP_CHECKDATASIGVERIFY": 187, "OP_PUBKEYHASH": 253, "OP_PUBKEY": 254, "OP_INVALIDOPCODE": 255 } return codes
28.888889
42
0.392308
9ee97c332de00ad5c63db196075481889e5b4702
9,291
py
Python
python/surf/protocols/clink/_ClinkTop.py
lsst-camera-daq/surf
e43b926507c1670fd511bc23f6c61d261100fcb4
[ "BSD-3-Clause-LBNL" ]
134
2017-02-22T18:07:00.000Z
2022-03-21T16:12:23.000Z
python/surf/protocols/clink/_ClinkTop.py
lsst-camera-daq/surf
e43b926507c1670fd511bc23f6c61d261100fcb4
[ "BSD-3-Clause-LBNL" ]
251
2017-04-26T23:42:42.000Z
2022-03-03T18:48:43.000Z
python/surf/protocols/clink/_ClinkTop.py
lsst-camera-daq/surf
e43b926507c1670fd511bc23f6c61d261100fcb4
[ "BSD-3-Clause-LBNL" ]
38
2017-02-21T21:15:03.000Z
2022-02-06T00:22:37.000Z
#----------------------------------------------------------------------------- # Title : PyRogue CameraLink module #----------------------------------------------------------------------------- # Description: # PyRogue CameraLink module #----------------------------------------------------------------------------- # This file is part of the 'SLAC Firmware Standard Library'. It is subject to # the license terms in the LICENSE.txt file found in the top-level directory # of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of the 'SLAC Firmware Standard Library', including this file, may be # copied, modified, propagated, or distributed except according to the terms # contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import pyrogue as pr import surf.protocols.clink class ClinkTop(pr.Device): def __init__( self, serial = [None,None], camType = [None,None], **kwargs): super().__init__(**kwargs) ############################## # Variables ############################## self.add(pr.RemoteVariable( name = "ChanCount", description = "Supported channels", offset = 0x00, bitSize = 4, bitOffset = 0x00, mode = "RO", )) self.add(pr.RemoteVariable( name = "RstPll", description = "Camera link channel PLL reset", offset = 0x04, bitSize = 1, bitOffset = 0, mode = "RW", hidden = True, )) @self.command(description="toggles Camera link channel PLL reset",) def ResetPll(): self.RstPll.set(0x1) self.RstPll.set(0x0) self.add(pr.RemoteCommand( name = "ResetFsm", description = "Camera link channel FSM reset", offset = 0x04, bitSize = 1, bitOffset = 1, function = pr.BaseCommand.toggle, )) self.add(pr.RemoteCommand( name = "CntRst", description = "", offset = 0x04, bitSize = 1, bitOffset = 2, function = pr.BaseCommand.toggle, )) self.add(pr.RemoteVariable( name = "LinkLockedA", description = "Camera link channel locked status", offset = 0x10, bitSize = 1, bitOffset = 0, base = pr.Bool, pollInterval = 1, mode = "RO", )) self.add(pr.RemoteVariable( name = "LinkLockedB", description = "Camera link channel locked status", offset = 0x10, bitSize = 1, bitOffset = 1, base = pr.Bool, pollInterval = 1, mode = "RO", )) self.add(pr.RemoteVariable( name = "LinkLockedC", description = "Camera link channel locked status", offset = 0x10, bitSize = 1, bitOffset = 2, base = pr.Bool, pollInterval = 1, mode = "RO", )) self.add(pr.RemoteVariable( name = "LinkLockedCntA", description = "Camera link channel locked status counter", offset = 0x10, bitSize = 8, bitOffset = 8, disp = '{}', mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "LinkLockedCntB", description = "Camera link channel locked status counter", offset = 0x10, bitSize = 8, bitOffset = 16, disp = '{}', mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "LinkLockedCntC", description = "Camera link channel locked status counter", offset = 0x10, bitSize = 8, bitOffset = 24, disp = '{}', mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "ShiftCountA", description = "Shift count for channel", offset = 0x14, bitSize = 3, bitOffset = 0, mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "ShiftCountB", description = "Shift count for channel", offset = 0x14, bitSize = 3, bitOffset = 8, mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "ShiftCountC", description = "Shift count for channel", offset = 0x14, bitSize = 3, bitOffset = 16, mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "DelayA", description = "Precision delay for channel A", offset = 0x18, bitSize = 5, bitOffset = 0, mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "DelayB", description = "Precision delay for channel B", offset = 0x18, bitSize = 5, bitOffset = 8, mode = "RO", pollInterval = 1, )) self.add(pr.RemoteVariable( name = "DelayC", description = "Precision delay for channel C", offset = 0x18, bitSize = 5, bitOffset = 16, mode = "RO", pollInterval = 1, )) self.addRemoteVariables( name = "ClkInFreq", description = "Clock Input Freq", offset = 0x01C, bitSize = 32, bitOffset = 0, units = 'Hz', disp = '{:d}', mode = "RO", pollInterval = 1, number = 3, stride = 4, ) self.addRemoteVariables( name = "ClinkClkFreq", description = "CameraLink Clock Freq", offset = 0x028, bitSize = 32, bitOffset = 0, units = 'Hz', disp = '{:d}', mode = "RO", pollInterval = 1, number = 3, stride = 4, ) for i in range(2): if camType[i] is not None: self.add(surf.protocols.clink.ClinkChannel( name = f'Ch[{i}]', offset = 0x100+(i*0x100), serial = serial[i], camType = camType[i], # expand = False, )) for i in range(3): self.add(surf.protocols.clink.ClockManager( name = f'Pll[{i}]', offset = 0x1000+(i*0x1000), type = 'MMCME2', expand = False, )) for i in range(3): self.add(pr.LocalVariable( name = f'PllConfig[{i}]', description = 'Sets the PLL to a known set of configurations', mode = 'RW', value = '', )) def hardReset(self): super().hardReset() self.ResetPll() self.CntRst() def initialize(self): super().initialize() # Hold the PLL in reset before configuration self.RstPll.set(0x1) # Loop through the PLL modules for i in range(3): # Check for 85 MHz configuration if (self.PllConfig[i].get() == '85MHz'): self.Pll[i].Config85MHz() # Check for 80 MHz configuration if (self.PllConfig[i].get() == '80MHz'): # Same config as 85 MHz self.Pll[i].Config85MHz() # Check for 40 MHz configuration if (self.PllConfig[i].get() == '40MHz'): self.Pll[i].Config40MHz() # Check for 25 MHz configuration if (self.PllConfig[i].get() == '25MHz'): self.Pll[i].Config25MHz() # Release the reset after configuration self.RstPll.set(0x0) # Reset all the counters self.CntRst() def countReset(self): super().countReset() self.CntRst()
31.818493
79
0.409644
e64724bb1a31695df56c164b73319ac234e1323a
2,121
py
Python
tigrillo/analysis/optim_analysis.py
gabs48/tigrillo
663f7407808bb8101edebec02fb0cd81c59ad2f1
[ "MIT" ]
5
2018-10-22T21:28:44.000Z
2020-09-03T07:01:36.000Z
tigrillo/analysis/optim_analysis.py
gabs48/tigrillo
663f7407808bb8101edebec02fb0cd81c59ad2f1
[ "MIT" ]
null
null
null
tigrillo/analysis/optim_analysis.py
gabs48/tigrillo
663f7407808bb8101edebec02fb0cd81c59ad2f1
[ "MIT" ]
1
2020-02-01T15:12:38.000Z
2020-02-01T15:12:38.000Z
#!/usr/bin/python3 """ This script opens a windows to analyze various properties of the optimization results """ import configparser from tigrillo.core.control import * from tigrillo.core.optim import * __author__ = "Gabriel Urbain" __copyright__ = "Copyright 2017, Human Brain Projet, SP10" __license__ = "MIT" __version__ = "1.0" __maintainer__ = "Gabriel Urbain" __email__ = "gabriel.urbain@ugent.be" __status__ = "Research" __date__ = "July 3rd, 2017" class OptimAnalysis: def __init__(self): self.result_folder = None self.config = None self.phys = None self.sim_time = None self.cont = None self.score = None def load(self, folder): self.result_folder = folder # Retrieve config file self.config = configparser.ConfigParser() self.config.read(self.result_folder + "config.conf") self.config.set('Physics', 'rendering', "True") # TODO: stop taking the first pipe result by default param = ast.literal_eval(self.config.get("Experiment", "pipe"))[0] self.phys = eval(param["phys"])(self.config) self.sim_time = param["time"] self.cont = eval(param["ctrl"])(self.config) def simulate(self): # Init self.cont.load(self.result_folder + "/best_cont.pkl") self.score = Score(self.phys, self.cont, self.config) self.score.start() t_init = time.time() # Run self.phys.start_sim() self.cont.run(self.sim_time, self.phys) # Stop self.score.stop() st = self.score.final_time t_fin = time.time() self.phys.stop_sim() rt = t_fin - t_init # Get score score = self.score.get_score() print("Simulation finished with score = {0:.3f}".format(score) + " (rt = {0:.2f}s; ".format(rt) + "st = {0:.2f}s; ".format(st) + "acc: {0:.2f}X)".format(st/rt)) if __name__ == '__main__': an = OptimAnalysis() an.load("/home/gabs48/tigrillo/data/results/20170703-165722/") an.simulate()
24.662791
85
0.60396
fbca7fd6418f9dac16902cffed18d2a7d336f351
211
py
Python
JPS_SHIP_CRAWLER/ship/spiders/config.py
mdhillmancmcl/TheWorldAvatar-CMCL-Fork
011aee78c016b76762eaf511c78fabe3f98189f4
[ "MIT" ]
21
2021-03-08T01:58:25.000Z
2022-03-09T15:46:16.000Z
JPS_SHIP_CRAWLER/ship/spiders/config.py
mdhillmancmcl/TheWorldAvatar-CMCL-Fork
011aee78c016b76762eaf511c78fabe3f98189f4
[ "MIT" ]
63
2021-05-04T15:05:30.000Z
2022-03-23T14:32:29.000Z
JPS_SHIP_CRAWLER/ship/spiders/config.py
mdhillmancmcl/TheWorldAvatar-CMCL-Fork
011aee78c016b76762eaf511c78fabe3f98189f4
[ "MIT" ]
15
2021-03-08T07:52:03.000Z
2022-03-29T04:46:20.000Z
station_list_url = 'http://www.aishub.net/stations?Station%5BSID%5D=&Station%5Bstatus%5D=0&Station%5Buptime%5D=&Station%5BCOUNTRY%5D=singapore&Station%5BLOCATION%5D=&Station%5BCOUNT%5D=&Station%5BDISTINCT%5D=';
105.5
210
0.805687
ab3039af86afe5670ccf9d95fbe57c39314c6616
10,698
py
Python
sdks/python/apache_beam/runners/dataflow/native_io/iobase.py
davidtime/beam
f2d19fdf7118a08d222f0028753a58347e6352fd
[ "Apache-2.0" ]
null
null
null
sdks/python/apache_beam/runners/dataflow/native_io/iobase.py
davidtime/beam
f2d19fdf7118a08d222f0028753a58347e6352fd
[ "Apache-2.0" ]
null
null
null
sdks/python/apache_beam/runners/dataflow/native_io/iobase.py
davidtime/beam
f2d19fdf7118a08d222f0028753a58347e6352fd
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Dataflow native sources and sinks. For internal use only; no backwards-compatibility guarantees. """ # pytype: skip-file from __future__ import absolute_import import logging from builtins import object from apache_beam import pvalue from apache_beam.io import iobase from apache_beam.transforms import ptransform from apache_beam.transforms.display import HasDisplayData _LOGGER = logging.getLogger(__name__) def _dict_printable_fields(dict_object, skip_fields): """Returns a list of strings for the interesting fields of a dict.""" return ['%s=%r' % (name, value) for name, value in dict_object.items() # want to output value 0 but not None nor [] if (value or value == 0) and name not in skip_fields] _minor_fields = ['coder', 'key_coder', 'value_coder', 'config_bytes', 'elements', 'append_trailing_newlines', 'strip_trailing_newlines', 'compression_type'] class NativeSource(iobase.SourceBase): """A source implemented by Dataflow service. This class is to be only inherited by sources natively implemented by Cloud Dataflow service, hence should not be sub-classed by users. This class is deprecated and should not be used to define new sources. """ def reader(self): """Returns a NativeSourceReader instance associated with this source.""" raise NotImplementedError def is_bounded(self): return True def __repr__(self): return '<{name} {vals}>'.format( name=self.__class__.__name__, vals=', '.join(_dict_printable_fields(self.__dict__, _minor_fields))) class NativeSourceReader(object): """A reader for a source implemented by Dataflow service.""" def __enter__(self): """Opens everything necessary for a reader to function properly.""" raise NotImplementedError def __exit__(self, exception_type, exception_value, traceback): """Cleans up after a reader executed.""" raise NotImplementedError def __iter__(self): """Returns an iterator over all the records of the source.""" raise NotImplementedError @property def returns_windowed_values(self): """Returns whether this reader returns windowed values.""" return False def get_progress(self): """Returns a representation of how far the reader has read. Returns: A SourceReaderProgress object that gives the current progress of the reader. """ def request_dynamic_split(self, dynamic_split_request): """Attempts to split the input in two parts. The two parts are named the "primary" part and the "residual" part. The current 'NativeSourceReader' keeps processing the primary part, while the residual part will be processed elsewhere (e.g. perhaps on a different worker). The primary and residual parts, if concatenated, must represent the same input as the current input of this 'NativeSourceReader' before this call. The boundary between the primary part and the residual part is specified in a framework-specific way using 'DynamicSplitRequest' e.g., if the framework supports the notion of positions, it might be a position at which the input is asked to split itself (which is not necessarily the same position at which it *will* split itself); it might be an approximate fraction of input, or something else. This function returns a 'DynamicSplitResult', which encodes, in a framework-specific way, the information sufficient to construct a description of the resulting primary and residual inputs. For example, it might, again, be a position demarcating these parts, or it might be a pair of fully-specified input descriptions, or something else. After a successful call to 'request_dynamic_split()', subsequent calls should be interpreted relative to the new primary. Args: dynamic_split_request: A 'DynamicSplitRequest' describing the split request. Returns: 'None' if the 'DynamicSplitRequest' cannot be honored (in that case the input represented by this 'NativeSourceReader' stays the same), or a 'DynamicSplitResult' describing how the input was split into a primary and residual part. """ _LOGGER.debug( 'SourceReader %r does not support dynamic splitting. Ignoring dynamic ' 'split request: %r', self, dynamic_split_request) class ReaderProgress(object): """A representation of how far a NativeSourceReader has read.""" def __init__(self, position=None, percent_complete=None, remaining_time=None, consumed_split_points=None, remaining_split_points=None): self._position = position if percent_complete is not None: percent_complete = float(percent_complete) if percent_complete < 0 or percent_complete > 1: raise ValueError( 'The percent_complete argument was %f. Must be in range [0, 1].' % percent_complete) self._percent_complete = percent_complete self._remaining_time = remaining_time self._consumed_split_points = consumed_split_points self._remaining_split_points = remaining_split_points @property def position(self): """Returns progress, represented as a ReaderPosition object.""" return self._position @property def percent_complete(self): """Returns progress, represented as a percentage of total work. Progress range from 0.0 (beginning, nothing complete) to 1.0 (end of the work range, entire WorkItem complete). Returns: Progress represented as a percentage of total work. """ return self._percent_complete @property def remaining_time(self): """Returns progress, represented as an estimated time remaining.""" return self._remaining_time @property def consumed_split_points(self): return self._consumed_split_points @property def remaining_split_points(self): return self._remaining_split_points class ReaderPosition(object): """A representation of position in an iteration of a 'NativeSourceReader'.""" def __init__(self, end=None, key=None, byte_offset=None, record_index=None, shuffle_position=None, concat_position=None): """Initializes ReaderPosition. A ReaderPosition may get instantiated for one of these position types. Only one of these should be specified. Args: end: position is past all other positions. For example, this may be used to represent the end position of an unbounded range. key: position is a string key. byte_offset: position is a byte offset. record_index: position is a record index shuffle_position: position is a base64 encoded shuffle position. concat_position: position is a 'ConcatPosition'. """ self.end = end self.key = key self.byte_offset = byte_offset self.record_index = record_index self.shuffle_position = shuffle_position if concat_position is not None: assert isinstance(concat_position, ConcatPosition) self.concat_position = concat_position class ConcatPosition(object): """A position that encapsulate an inner position and an index. This is used to represent the position of a source that encapsulate several other sources. """ def __init__(self, index, position): """Initializes ConcatPosition. Args: index: index of the source currently being read. position: inner position within the source currently being read. """ if position is not None: assert isinstance(position, ReaderPosition) self.index = index self.position = position class DynamicSplitRequest(object): """Specifies how 'NativeSourceReader.request_dynamic_split' should split. """ def __init__(self, progress): assert isinstance(progress, ReaderProgress) self.progress = progress class DynamicSplitResult(object): pass class DynamicSplitResultWithPosition(DynamicSplitResult): def __init__(self, stop_position): assert isinstance(stop_position, ReaderPosition) self.stop_position = stop_position class NativeSink(HasDisplayData): """A sink implemented by Dataflow service. This class is to be only inherited by sinks natively implemented by Cloud Dataflow service, hence should not be sub-classed by users. """ def writer(self): """Returns a SinkWriter for this source.""" raise NotImplementedError def __repr__(self): return '<{name} {vals}>'.format( name=self.__class__.__name__, vals=_dict_printable_fields(self.__dict__, _minor_fields)) class NativeSinkWriter(object): """A writer for a sink implemented by Dataflow service.""" def __enter__(self): """Opens everything necessary for a writer to function properly.""" raise NotImplementedError def __exit__(self, exception_type, exception_value, traceback): """Cleans up after a writer executed.""" raise NotImplementedError @property def takes_windowed_values(self): """Returns whether this writer takes windowed values.""" return False def Write(self, o): # pylint: disable=invalid-name """Writes a record to the sink associated with this writer.""" raise NotImplementedError class _NativeWrite(ptransform.PTransform): """A PTransform for writing to a Dataflow native sink. These are sinks that are implemented natively by the Dataflow service and hence should not be updated by users. These sinks are processed using a Dataflow native write transform. Applying this transform results in a ``pvalue.PDone``. """ def __init__(self, sink): """Initializes a Write transform. Args: sink: Sink to use for the write """ super(_NativeWrite, self).__init__() self.sink = sink def expand(self, pcoll): self._check_pcollection(pcoll) return pvalue.PDone(pcoll.pipeline)
32.320242
79
0.724434
a5bfbd61d94ed6526fbbe50a1f7b0dc9943c0c4a
2,452
py
Python
.history/Missions_to_Mars/scrape_mars_20200809054709.py
ermiasgelaye/web-scraping-challenge
f99c3436dfb0169595c46dae7733d90e21385cc6
[ "ADSL" ]
null
null
null
.history/Missions_to_Mars/scrape_mars_20200809054709.py
ermiasgelaye/web-scraping-challenge
f99c3436dfb0169595c46dae7733d90e21385cc6
[ "ADSL" ]
null
null
null
.history/Missions_to_Mars/scrape_mars_20200809054709.py
ermiasgelaye/web-scraping-challenge
f99c3436dfb0169595c46dae7733d90e21385cc6
[ "ADSL" ]
2
2020-11-02T08:12:16.000Z
2021-05-17T21:45:42.000Z
# Dependencies import numpy as np import pandas as pd from bs4 import BeautifulSoup as bs import requests from splinter import Browser import re # Initialize browser def init_browser(): executable_path = {"executable_path": "/usr/local/bin/chromedriver"} #executable_path = {'executable_path': 'chromedriver.exe'} return Browser("chrome", **executable_path, headless=False) def scrape(): browser = init_browser() url = 'https://mars.nasa.gov/news/' browser.visit(url) html = browser.html soup = bs(html, 'html.parser') news_title = soup.find('div', class_='content_title').text news_p = soup.find('div', class_='article_teaser_body').text url = 'https://www.jpl.nasa.gov/spaceimages/' browser.visit(url) html = browser.html soup = bs(html, 'html.parser') base_url = 'https://www.jpl.nasa.gov' image_url = soup.find("a", class_="button fancybox")["data-fancybox-href"] featured_image_url = base_url + image_url url = 'https://twitter.com/marswxreport?lang=en' url = 'https://space-facts.com/mars/' browser.visit(url) tables = pd.read_html(url) facts_df = tables[0] facts_df.columns = ['Fact', 'Value'] facts_df['Fact'] = facts_df['Fact'].str.replace(':', '') facts_df.reset_index(drop=True, inplace=True) facts_html = facts_df.to_html() url = 'https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' browser.visit(url) html = browser.html soup = bs(html, 'html.parser') results = soup.find_all('div', class_="description") base_url = 'https://astrogeology.usgs.gov/' sites = [] for result in results: link = result.find('a', class_="itemLink product-item") link_text = link['href'] hemispheres_url = base_url + link_text sites.append(hemispheres_url) hemispheres = [] for site in sites: browser.visit(site) html = browser.html soup = bs(html, 'html.parser') title = soup.find('h2', class_="title").text.strip() url = soup.find_all('a', target="_blank", href=True)[0]['href'] hemispheres.append({"title": title, "img_url": url}) output = { "news_title": news_title, "news_p": news_p, "featured_image_url": featured_image_url, "mars_weather": mars_weather, "facts_html": facts_html, "hemispheres": hemispheres } return output
31.844156
96
0.64845
6ea1e9bc1dae59265c3bb727c6a5d8fbd4626270
1,075
py
Python
packages/python/plotly/plotly/validators/pointcloud/marker/border/__init__.py
sgn/plotly.py
587075c9f5a57a3dd60b03b2d47d925fbbb9b9b6
[ "MIT" ]
3
2020-02-04T21:39:20.000Z
2020-11-17T19:07:07.000Z
packages/python/plotly/plotly/validators/pointcloud/marker/border/__init__.py
sgn/plotly.py
587075c9f5a57a3dd60b03b2d47d925fbbb9b9b6
[ "MIT" ]
12
2020-06-06T01:22:26.000Z
2022-03-12T00:13:42.000Z
packages/python/plotly/plotly/validators/pointcloud/marker/border/__init__.py
sgn/plotly.py
587075c9f5a57a3dd60b03b2d47d925fbbb9b9b6
[ "MIT" ]
17
2019-11-21T14:11:29.000Z
2019-11-21T15:26:23.000Z
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="color", parent_name="pointcloud.marker.border", **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", False), edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class ArearatioValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="arearatio", parent_name="pointcloud.marker.border", **kwargs ): super(ArearatioValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), max=kwargs.pop("max", 1), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs )
31.617647
87
0.622326
1cb83d8492d49f024338a77abed5c29547304b8d
5,264
py
Python
playbooks/files/rax-maas/plugins/swift-dispersion.py
JCallicoat/rpc-maas
879bab6623339c99c288acf9191b445fe1ea1fa2
[ "Apache-2.0" ]
31
2015-01-03T10:30:56.000Z
2019-06-23T22:21:24.000Z
playbooks/files/rax-maas/plugins/swift-dispersion.py
JCallicoat/rpc-maas
879bab6623339c99c288acf9191b445fe1ea1fa2
[ "Apache-2.0" ]
457
2015-01-01T15:58:47.000Z
2021-06-10T12:04:11.000Z
playbooks/files/rax-maas/plugins/swift-dispersion.py
JCallicoat/rpc-maas
879bab6623339c99c288acf9191b445fe1ea1fa2
[ "Apache-2.0" ]
65
2015-03-02T02:39:59.000Z
2021-12-22T21:57:01.000Z
#!/usr/bin/env python3 # Copyright 2014, Rackspace US, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import re import subprocess import maas_common # Example output:: # $ swift-dispersion-report --container-only # > Queried 3 containers for dispersion reporting, 0s, 0 retries # > 100.00% of container copies found (6 of 6) # > Sample represents 1.17% of the container partition space # $ swift-dispersion-report --object-only # > Queried 2 objects for dispersion reporting, 0s, 0 retries # > There were 2 partitions missing 0 copy. # > 100.00% of object copies found (10 of 10) # > Sample represents 0.78% of the object partition space PARSE_RE = re.compile( # First line of both types of output r"Queried (?P<num_objects>\d+) \w+ for dispersion reporting, " r"(?P<seconds>\d+)s, (?P<retries>\d+) retries\s+" # Second line if working with object output only r"(?:There were (?P<num_partitions>\d+) partitions? missing " r"(?P<partition_copies>\d+) cop(y|ies)\.?\s+)?" # Second line for containers, third for objects r"(?P<percent>\d+\.\d+)% of \w+ copies found \((?P<copies_found>\d+) of " r"(?P<total_copies>\d+)\)\s+" # Last line for both types r"Sample represents (?P<partition_percent>\d+.\d+)% of the \w+ " r"partition space" ) def generate_report(on): """Report on either object or container dispersion. :param str on: Either "object" or "container" :returns: string of ouptut """ if on not in {'object', 'container'}: return '' call = ['swift-dispersion-report', '--%s-only' % on] return subprocess.check_output(call) def print_metrics(report_for, match): group = match.groupdict() for (k, v) in group.items(): if v is None: # This happens for container output. The named "num_partitions" # and "partition_copies" groups end up in the dictionary with # value None so we need to ignore them when they are found. continue if k.endswith('percent'): metric_type = 'double' else: metric_type = 'uint64' # Add units when we can unit = 's' if k == 'seconds' else None maas_common.metric('{0}_{1}'.format(report_for, k), metric_type, v, unit) def main(): # It's easier to parse the output if we make them independent reports # If we simply use swift-dispersion-report then we'll have both outputs # one after the other and we'll likely have a bad time. try: object_out = generate_report('object') object_match = PARSE_RE.search(object_out) except OSError: # If the subprocess call returns anything other than exit code 0. # we should probably error out too. maas_common.status_err('Could not access object dispersion report', m_name='maas_swift') try: container_out = generate_report('container') container_match = PARSE_RE.search(container_out) except OSError: # If the subprocess call returns anything other than exit code 0. # we should probably error out too. maas_common.status_err('Could not access container dispersion report', m_name='maas_swift') if not (object_match and container_match): maas_common.status_err('Could not parse dispersion report output', m_name='maas_swift') maas_common.status_ok(m_name='maas_swift') print_metrics('object', object_match) print_metrics('container', container_match) # Example output:: # $ python swift-dispersion.py # > status okay # > metric object_retries uint64 0 # > metric object_seconds uint64 0 s # > metric object_num_partitions uint64 2 # > metric object_num_objects uint64 2 # > metric object_percent double 100.00 # > metric object_copies_found uint64 10 # > metric object_partition_copies uint64 0 # > metric object_partition_percent double 0.78 # > metric object_total_copies uint64 10 # > metric container_retries uint64 0 # > metric container_seconds uint64 0 s # > metric container_num_objects uint64 3 # > metric container_percent double 100.00 # > metric container_copies_found uint64 6 # > metric container_partition_percent double 1.17 # > metric container_total_copies uint64 6 if __name__ == '__main__': parser = argparse.ArgumentParser(description='Swift dispersion check') parser.add_argument('--telegraf-output', action='store_true', default=False, help='Set the output format to telegraf') args = parser.parse_args() with maas_common.print_output(print_telegraf=args.telegraf_output): main()
37.333333
78
0.673822
e6929e7fdc2939d38fdb11c94e9a2998565e9a63
6,838
py
Python
mneext/resample.py
maosenGao/openmiir-rl-2016
d2e5744b1fa503a896994d8a70b3ca45d521db14
[ "BSD-3-Clause" ]
null
null
null
mneext/resample.py
maosenGao/openmiir-rl-2016
d2e5744b1fa503a896994d8a70b3ca45d521db14
[ "BSD-3-Clause" ]
null
null
null
mneext/resample.py
maosenGao/openmiir-rl-2016
d2e5744b1fa503a896994d8a70b3ca45d521db14
[ "BSD-3-Clause" ]
null
null
null
__author__ = 'sstober' import logging log = logging.getLogger(__name__) from mne import pick_types import numpy as np import librosa import mne ## old interface from mne/filter.py: # def resample(self, sfreq, npad=100, window='boxcar', # stim_picks=None, n_jobs=1, verbose=None): def fast_resample_mne(raw, sfreq, stim_picks=None, preserve_events=True, res_type='sinc_best', verbose=None): """Resample data channels. Resamples all channels. The data of the Raw object is modified inplace. The Raw object has to be constructed using preload=True (or string). WARNING: The intended purpose of this function is primarily to speed up computations (e.g., projection calculation) when precise timing of events is not required, as downsampling raw data effectively jitters trigger timings. It is generally recommended not to epoch downsampled data, but instead epoch and then downsample, as epoching downsampled data jitters triggers. Parameters ---------- raw : nme raw object Raw data to filter. sfreq : float New sample rate to use. stim_picks : array of int | None Stim channels. These channels are simply subsampled or supersampled (without applying any filtering). This reduces resampling artifacts in stim channels, but may lead to missing triggers. If None, stim channels are automatically chosen usingzded mne. pick_types(raw.info, meg=False, stim=True, exclude=[]). res_type : str If `scikits.samplerate` is installed, :func:`librosa.core.resample` will use ``res_type``. (Chooae between 'sinc_fastest', 'sinc_medium' and 'sinc_best' for the desired speed-vs-quality trade-off.) Otherwise, it will fall back on `scipy.signal.resample` verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. Notes ----- For some data, it may be more accurate to use npad=0 to reduce artifacts. This is dataset dependent -- check your data! """ self = raw # this keeps the mne code intact if not self.preload: raise RuntimeError('Can only resample preloaded data') sfreq = float(sfreq) o_sfreq = float(self.info['sfreq']) offsets = np.concatenate(([0], np.cumsum(self._raw_lengths))) new_data = list() # set up stim channel processing if stim_picks is None: stim_picks = pick_types(self.info, meg=False, ref_meg=False, stim=True, exclude=[]) stim_picks = np.asanyarray(stim_picks) ### begin new code: save events in each stim channel ### if preserve_events: stim_events = dict() for sp in stim_picks: stim_channel_name = raw.ch_names[sp] if verbose: log.info('Saving events for stim channel "{}" (#{})'.format(stim_channel_name, sp)) stim_events[sp] = mne.find_events(raw, stim_channel=stim_channel_name, shortest_event=0, verbose=verbose) ### end new code: save events in each stim channel ### ratio = sfreq / o_sfreq for ri in range(len(self._raw_lengths)): data_chunk = self._data[:, offsets[ri]:offsets[ri + 1]] ### begin changed code ### # new_data.append(resample(data_chunk, sfreq, o_sfreq, npad, # n_jobs=n_jobs)) # if verbose: log.info('Resampling {} channels from {} Hz to {} Hz ...' .format(len(data_chunk), o_sfreq, sfreq)) new_data_chunk = list() for i, channel in enumerate(data_chunk): if verbose: log.info('Processing channel #{}'.format(i)) # TODO: this could easily be parallelized new_data_chunk.append(librosa.resample(channel, o_sfreq, sfreq, res_type=res_type)) new_data_chunk = np.vstack(new_data_chunk) if verbose: log.debug('data shape after resampling: {}'.format(new_data_chunk.shape)) new_data.append(new_data_chunk) ### end changed code ### new_ntimes = new_data[ri].shape[1] # Now deal with the stim channels. In empirical testing, it was # faster to resample all channels (above) and then replace the # stim channels than it was to only resample the proper subset # of channels and then use np.insert() to restore the stims # figure out which points in old data to subsample # protect against out-of-bounds, which can happen (having # one sample more than expected) due to padding stim_inds = np.minimum(np.floor(np.arange(new_ntimes) / ratio).astype(int), data_chunk.shape[1] - 1) for sp in stim_picks: new_data[ri][sp] = data_chunk[[sp]][:, stim_inds] self._first_samps[ri] = int(self._first_samps[ri] * ratio) self._last_samps[ri] = self._first_samps[ri] + new_ntimes - 1 self._raw_lengths[ri] = new_ntimes # adjust affected variables self._data = np.concatenate(new_data, axis=1) self.info['sfreq'] = sfreq self._update_times() ### begin new code: restore save events in each stim channel ### if preserve_events: for sp in stim_picks: raw._data[sp,:].fill(0) # delete data in stim channel if verbose: stim_channel_name = raw.ch_names[sp] log.info('Restoring events for stim channel "{}" (#{})'.format(stim_channel_name, sp)) # scale onset times for event in stim_events[sp]: onset = int(np.floor(event[0] * ratio)) event_id = event[2] if raw._data[sp,onset] > 0: log.warn('! event collision at {}: old={} new={}. Using onset+1'.format( onset, raw._data[sp,onset], event_id)) raw._data[sp,onset+1] = event_id else: raw._data[sp,onset] = event_id ### end new code: save events in each stim channel ### def resample_mne_events(events, o_sfreq, sfreq, fix_collisions=True): ratio = sfreq / o_sfreq resampled_events = list() for event in events: onset = int(np.floor(event[0] * ratio)) event_id = event[2] if fix_collisions and \ len(resampled_events) > 0 and \ resampled_events[-1][0] == onset: log.warn('! event collision at {}: old={} new={}. Using onset+1'.format( onset, resampled_events[-1][0], event_id)) onset += 1 resampled_events.append([onset, 0, event_id]) return np.asarray(resampled_events)
39.988304
220
0.615531
2c88d567b72761a63c9f89ef87dca0c527f736f4
6,708
py
Python
tests/python/contrib/test_ethosn/infrastructure.py
mwillsey/incubator-tvm
e02dc69fef294eb73dd65d18949ed9e108f60cda
[ "Apache-2.0" ]
2
2020-04-17T02:25:16.000Z
2020-11-25T11:39:43.000Z
tests/python/contrib/test_ethosn/infrastructure.py
mwillsey/incubator-tvm
e02dc69fef294eb73dd65d18949ed9e108f60cda
[ "Apache-2.0" ]
3
2020-04-20T15:37:55.000Z
2020-05-13T05:34:28.000Z
tests/python/contrib/test_ethosn/infrastructure.py
mwillsey/incubator-tvm
e02dc69fef294eb73dd65d18949ed9e108f60cda
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Expose Ethos test functions to the Python front end""" from __future__ import absolute_import, print_function import tvm from tvm import relay from tvm.contrib import util, graph_runtime, download from tvm.relay.testing import run_opt_pass from enum import Enum from hashlib import md5 from itertools import zip_longest, combinations import numpy as np from PIL import Image import os from . import _infrastructure from tvm.relay.op.contrib import get_pattern_table def make_module(func, params): func = relay.Function(relay.analysis.free_vars(func), func) if params: relay.build_module.bind_params_by_name(func, params) return tvm.IRModule.from_expr(func) def make_ethosn_composite(ethosn_expr, name): vars = relay.analysis.free_vars(ethosn_expr) func = relay.Function([relay.Var("a")], ethosn_expr) func = func.with_attr("Composite", name) call = relay.Call(func, vars) return call def make_ethosn_partition(ethosn_expr): # Create an Ethos-N global function mod = tvm.IRModule({}) vars = relay.analysis.free_vars(ethosn_expr) func = relay.Function(vars, ethosn_expr) func = func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Compiler", "ethos-n") func = func.with_attr("global_symbol", "ethos-n_0") g1 = relay.GlobalVar("ethos-n_0") mod[g1] = func # These are the vars to call the Ethos-N partition with more_vars = relay.analysis.free_vars(ethosn_expr) # Call the Ethos-N partition in main call_fn1 = g1(*more_vars) mod["main"] = relay.Function(more_vars, call_fn1) return mod def get_host_op_count(mod): class Counter(tvm.relay.ExprVisitor): def __init__(self): super().__init__() self.count = 0 def visit_call(self, call): if isinstance(call.op, tvm.ir.Op): self.count += 1 super().visit_call(call) c = Counter() c.visit(mod["main"]) return c.count def build(mod, params, npu=True, expected_host_ops=0, npu_partitions=1): relay.backend.compile_engine.get().clear() with tvm.transform.PassContext( opt_level=3, config={"relay.ext.ethos-n.options": {"variant": 0}} ): with tvm.target.Target("llvm"): if npu: f = relay.build_module.bind_params_by_name(mod["main"], params) mod = tvm.IRModule() mod["main"] = f pattern = get_pattern_table("ethos-n") mod = relay.transform.MergeComposite(pattern)(mod) mod = relay.transform.AnnotateTarget("ethos-n")(mod) mod = relay.transform.MergeCompilerRegions()(mod) mod = relay.transform.PartitionGraph()(mod) host_op_count = get_host_op_count(mod) assert ( host_op_count == expected_host_ops ), "Got {} host operators, expected {}".format(host_op_count, expected_host_ops) partition_count = 0 for global_var in mod.get_global_vars(): if "ethos-n" in global_var.name_hint: partition_count += 1 assert ( npu_partitions == partition_count ), "Got {} ethos-n partitions, expected {}".format(partition_count, npu_partitions) return relay.build(mod, params=params) def run(graph, lib, params, inputs, outputs, npu=True): # Export and load lib to confirm this works lib_name = "mod.so" temp = util.tempdir() lib_path = temp.relpath(lib_name) lib.export_library(lib_path) lib = tvm.runtime.load_module(lib_path) module = graph_runtime.create(graph, lib, tvm.cpu()) module.set_input(**inputs) module.set_input(**params) module.run() out = [module.get_output(i) for i in range(outputs)] if not npu: inference_result(0, out) return out def build_and_run( mod, inputs, outputs, params, ctx=tvm.cpu(), npu=True, expected_host_ops=0, npu_partitions=1 ): graph, lib, params = build(mod, params, npu, expected_host_ops, npu_partitions) return run(graph, lib, params, inputs, outputs, npu) def verify(answers, atol, rtol=1e-07, verify_saturation=True): """Compare the array of answers. Each entry is a list of outputs""" if len(answers) < 2: print("No results to compare: expected at least two, found ", len(answers)) for answer in zip_longest(*answers): for outs in combinations(answer, 2): if verify_saturation: assert ( np.count_nonzero(outs[0].asnumpy() == 255) < 0.25 * outs[0].asnumpy().size ), "Output is saturated: {}".format(outs[0]) assert ( np.count_nonzero(outs[0].asnumpy() == 0) < 0.25 * outs[0].asnumpy().size ), "Output is saturated: {}".format(outs[0]) tvm.testing.assert_allclose(outs[0].asnumpy(), outs[1].asnumpy(), rtol=rtol, atol=atol) def inference_result(checksum, outputs): """Set the expected results of an Ethos inference, if the testing infrastructure is available. This assumes that the entire graph was offloaded to the neural processor.""" if tvm.get_global_func("relay.ethos-n.test.infra.inference_result", True): return _infrastructure.inference_result(checksum, *outputs) return False def test_error(mod, params, err_msg): caught = None with tvm.transform.PassContext(opt_level=3): with tvm.target.Target("llvm"): try: relay.build(mod, params) except tvm.error.TVMError as e: caught = e.args[0] finally: relay.backend.compile_engine.get().clear() assert caught is not None assert err_msg in caught, caught
37.266667
99
0.654293
8c2d7028355b301571cf41d7edf76f95d5f01c48
3,728
py
Python
examples/scripts/create-model.py
danieljtait/PyBaMM
f9d6143770e4a01099f06e3574142424730f731a
[ "BSD-3-Clause" ]
null
null
null
examples/scripts/create-model.py
danieljtait/PyBaMM
f9d6143770e4a01099f06e3574142424730f731a
[ "BSD-3-Clause" ]
null
null
null
examples/scripts/create-model.py
danieljtait/PyBaMM
f9d6143770e4a01099f06e3574142424730f731a
[ "BSD-3-Clause" ]
null
null
null
# This script is intended to be a stripped back version of the # 'examples/notebooks/create-model.ipnb' so for more details please see # that notebook import pybamm import numpy as np import matplotlib.pyplot as plt # 1. Initialise model ------------------------------------------------------------------ model = pybamm.BaseModel() # 2. Define parameters and variables --------------------------------------------------- # dimensional parameters k_dim = pybamm.Parameter("Reaction rate constant") L_0_dim = pybamm.Parameter("Initial thickness") V_hat_dim = pybamm.Parameter("Partial molar volume") c_inf_dim = pybamm.Parameter("Bulk electrolyte solvent concentration") def D_dim(cc): return pybamm.FunctionParameter("Diffusivity", cc) # dimensionless parameters k = k_dim * L_0_dim / D_dim(c_inf_dim) V_hat = V_hat_dim * c_inf_dim def D(cc): c_dim = c_inf_dim * cc return D_dim(c_dim) / D_dim(c_inf_dim) # variables x = pybamm.SpatialVariable("x", domain="SEI layer", coord_sys="cartesian") c = pybamm.Variable("Solvent concentration", domain="SEI layer") L = pybamm.Variable("SEI thickness") # 3. State governing equations --------------------------------------------------------- R = k * pybamm.BoundaryValue(c, "left") # SEI reaction flux N = -(1 / L) * D(c) * pybamm.grad(c) # solvent flux dcdt = (V_hat * R) * pybamm.inner(x / L, pybamm.grad(c)) - (1 / L) * pybamm.div( N ) # solvent concentration governing equation dLdt = V_hat * R # SEI thickness governing equation model.rhs = {c: dcdt, L: dLdt} # add to model # 4. State boundary conditions --------------------------------------------------------- D_left = pybamm.BoundaryValue( D(c), "left" ) # pybamm requires BoundaryValue(D(c)) and not D(BoundaryValue(c)) grad_c_left = L * R / D_left # left bc c_right = pybamm.Scalar(1) # right bc # add to model model.boundary_conditions = { c: {"left": (grad_c_left, "Neumann"), "right": (c_right, "Dirichlet")} } # 5. State initial conditions ---------------------------------------------------------- model.initial_conditions = {c: pybamm.Scalar(1), L: pybamm.Scalar(1)} # 6. State output variables ------------------------------------------------------------ model.variables = { "SEI thickness": L, "SEI growth rate": dLdt, "Solvent concentration": c, "SEI thickness [m]": L_0_dim * L, "SEI growth rate [m/s]": (D_dim(c_inf_dim) / L_0_dim) * dLdt, "Solvent concentration [mols/m^3]": c_inf_dim * c, } "--------------------------------------------------------------------------------------" "Using the model" # define geometry geometry = { "SEI layer": {"primary": {x: {"min": pybamm.Scalar(0), "max": pybamm.Scalar(1)}}} } # diffusivity function def Diffusivity(cc): return cc * 10 ** (-5) # parameter values (not physically based, for example only!) param = pybamm.ParameterValues( { "Reaction rate constant": 20, "Initial thickness": 1e-6, "Partial molar volume": 10, "Bulk electrolyte solvent concentration": 1, "Diffusivity": Diffusivity, } ) # process model and geometry param.process_model(model) param.process_geometry(geometry) # mesh and discretise submesh_types = {"SEI layer": pybamm.Uniform1DSubMesh} var_pts = {x: 50} mesh = pybamm.Mesh(geometry, submesh_types, var_pts) spatial_methods = {"SEI layer": pybamm.FiniteVolume()} disc = pybamm.Discretisation(mesh, spatial_methods) disc.process_model(model) # solve solver = pybamm.ScipySolver() t = np.linspace(0, 1, 100) solution = solver.solve(model, t) # Extract output variables L_out = solution["SEI thickness"] # plot plt.plot(solution.t, L_out(solution.t)) plt.xlabel("Time") plt.ylabel("SEI thickness") plt.show()
29.824
88
0.615075
086aecb9c81314f3f17fd7c0d05638929f70b88e
2,421
py
Python
hierarchy_pos.py
fvalle1/tree_plotter
b3a2f7ce89d5ab928d8a8e6627c5eb158559cf85
[ "WTFPL" ]
null
null
null
hierarchy_pos.py
fvalle1/tree_plotter
b3a2f7ce89d5ab928d8a8e6627c5eb158559cf85
[ "WTFPL" ]
null
null
null
hierarchy_pos.py
fvalle1/tree_plotter
b3a2f7ce89d5ab928d8a8e6627c5eb158559cf85
[ "WTFPL" ]
null
null
null
import networkx as nx import random def hierarchy_pos(G, root=None, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5): ''' From Joel's answer at https://stackoverflow.com/a/29597209/2966723. Licensed under Creative Commons Attribution-Share Alike If the graph is a tree this will return the positions to plot this in a hierarchical layout. G: the graph (must be a tree) root: the root node of current branch - if the tree is directed and this is not given, the root will be found and used - if the tree is directed and this is given, then the positions will be just for the descendants of this node. - if the tree is undirected and not given, then a random choice will be used. width: horizontal space allocated for this branch - avoids overlap with other branches vert_gap: gap between levels of hierarchy vert_loc: vertical location of root xcenter: horizontal location of root ''' if not nx.is_tree(G): raise TypeError('cannot use hierarchy_pos on a graph that is not a tree') if root is None: if isinstance(G, nx.DiGraph): root = next(iter(nx.topological_sort(G))) #allows back compatibility with nx version 1.11 else: root = random.choice(list(G.nodes)) def _hierarchy_pos(G, root, width=1., vert_gap = 0.2, vert_loc = 0, xcenter = 0.5, pos = None, parent = None): ''' see hierarchy_pos docstring for most arguments pos: a dict saying where all nodes go if they have been assigned parent: parent of this branch. - only affects it if non-directed ''' if pos is None: pos = {root:(xcenter,vert_loc)} else: pos[root] = (xcenter, vert_loc) children = list(G.neighbors(root)) if not isinstance(G, nx.DiGraph) and parent is not None: children.remove(parent) if len(children)!=0: dx = width/len(children) nextx = xcenter - width/2 - dx/2 for child in children: nextx += dx pos = _hierarchy_pos(G,child, width = dx, vert_gap = vert_gap, vert_loc = vert_loc-vert_gap, xcenter=nextx, pos=pos, parent = root) return pos return _hierarchy_pos(G, root, width, vert_gap, vert_loc, xcenter)
35.602941
114
0.618753
0bc7dd4a3e6e6dc772dc5e9a3a8d2a78848bc70a
4,295
py
Python
quarty/src/quarty/server/__main__.py
quartictech/platform
d9f535f21d38fa836ec691d86ea2b2c610320757
[ "BSD-3-Clause" ]
3
2017-11-07T21:49:39.000Z
2019-08-08T20:59:02.000Z
quarty/src/quarty/server/__main__.py
quartictech/platform
d9f535f21d38fa836ec691d86ea2b2c610320757
[ "BSD-3-Clause" ]
1
2021-06-05T08:00:37.000Z
2021-06-05T08:00:37.000Z
quarty/src/quarty/server/__main__.py
quartictech/platform
d9f535f21d38fa836ec691d86ea2b2c610320757
[ "BSD-3-Clause" ]
2
2018-01-09T10:49:48.000Z
2019-11-27T09:18:17.000Z
import tempfile import logging import json from concurrent.futures import CancelledError import aiohttp import aiohttp.web from quarty.common import initialise_repo, install_requirements, evaluate_pipeline, execute_pipeline from quarty.utils import QuartyException, PipelineException logging.basicConfig(level=logging.INFO) log = logging.getLogger(__name__) class States: START = 0 INITIALISE = 1 EVALUATE = 2 EXECUTE = 3 def send_message(ws, msg_type, **kwargs): j = {"type": msg_type} j.update(kwargs) ws.send_str(json.dumps(j)) def progress_message(ws, message): send_message(ws, "progress", message=message) def log_message(ws, stream, line): send_message(ws, "log", stream=stream, line=str(line)) def result_message(ws, result): send_message(ws, "result", result=result) def error_message(ws, error): send_message(ws, "error", detail=error) def assert_state(state, *expected): if state not in set(expected): raise QuartyException("Expected state {} but is {}".format( " | ".join(expected), state)) async def initialise(build_path, repo_url, repo_commit, ws): progress_message(ws, "Initialising repository") config = await initialise_repo(repo_url, repo_commit, build_path) progress_message(ws, "Installing requirements") await install_requirements(build_path) result_message(ws, None) return config async def evaluate(config, build_path, ws): result = await evaluate_pipeline(config["pipeline_directory"], build_path, lambda l: log_message(ws, "stdout", l), lambda l: log_message(ws, "stderr", l)) result_message(ws, result) async def execute(config, build_path, step, namespace, api_token, ws): # pylint: disable=too-many-arguments await execute_pipeline(config["pipeline_directory"], build_path, step, namespace, api_token, lambda l: log_message(ws, "stdout", l), lambda l: log_message(ws, "stderr", l)) result_message(ws, None) async def decode_message(raw_msg): if raw_msg.type == aiohttp.WSMsgType.TEXT: return json.loads(raw_msg.data) else: raise QuartyException("Error") async def websocket_handler(request): logging.info("Registering websocket connection") ws = aiohttp.web.WebSocketResponse() await ws.prepare(request) state = States.START config = None build_path = tempfile.mkdtemp() try: async for raw_msg in ws: log.info("Received message: %s", raw_msg) msg = await decode_message(raw_msg) if msg["type"] == "initialise": assert_state(state, States.START) repo_url = msg["repo_url"] repo_commit = msg["repo_commit"] config = await initialise(build_path, repo_url, repo_commit, ws) log.info(config) state = States.INITIALISE log.info("done") elif msg["type"] == "evaluate": assert_state(state, States.INITIALISE) await evaluate(config, build_path, ws) state = States.EVALUATE elif msg["type"] == "execute": assert_state(state, States.EVALUATE, States.EXECUTE) step = msg["step"] namespace = msg["namespace"] api_token = msg["api_token"] await execute(config, build_path, step, namespace, api_token, ws) state = States.EXECUTE except PipelineException as e: log.exception("Exception while running pipeline") error_message(ws, e.args[0]) except CancelledError: pass except (QuartyException, Exception) as e: # pylint: disable=broad-except log.exception("Something strange happened") error_message(ws, "Quarty exception: {}".format(e)) finally: log.info("Closing WebSocket connection") await ws.close() return ws app = aiohttp.web.Application() app.router.add_get("/", websocket_handler) aiohttp.web.run_app(app, port=8080)
35.495868
108
0.623283
c645eabc6c887771d4c4e7c2ecfb05cf89f7da6a
6,113
py
Python
ui_extensions/api_extension/views.py
gamethis/cloudbolt-forge
f2e240d4a52483c0c1a738c539969ebd10663c68
[ "Apache-2.0" ]
null
null
null
ui_extensions/api_extension/views.py
gamethis/cloudbolt-forge
f2e240d4a52483c0c1a738c539969ebd10663c68
[ "Apache-2.0" ]
null
null
null
ui_extensions/api_extension/views.py
gamethis/cloudbolt-forge
f2e240d4a52483c0c1a738c539969ebd10663c68
[ "Apache-2.0" ]
null
null
null
from __future__ import unicode_literals from datetime import datetime from django.db.models import Q from django.utils.translation import ugettext as _ from rest_framework.exceptions import PermissionDenied from rest_framework.response import Response from rest_framework import status from rest_framework import viewsets from api.decorators import link from api.exceptions import APIException from rest_framework.decorators import api_view from api.viewsets import CloudBoltViewSet, ImportExportViewsetMixin, action_return, dict_return from api.v2.viewsets import ResourceHandlerViewSet, SetEnabledMixin from resourcehandlers.models import ResourceHandler from resources.models import Resource from utilities.logger import ThreadLogger from resourcehandlers.serializers import ResourceHandlerSerializer from api.v2.pagination import ResourceHandlerPagination from extensions.views import admin_extension from django.shortcuts import render from utilities.permissions import cbadmin_required logger = ThreadLogger(__name__) @admin_extension(title="API Extension") def apiextensions(request, *args, **kwargs): return render(request, "api_extension/templates/api.html") class ResourceHandlerViewSetExtend(ResourceHandlerViewSet, SetEnabledMixin, ImportExportViewsetMixin): def __init__(self, id, request): self.id = id self.request = request model = ResourceHandler serializer_class = ResourceHandlerSerializer pagination_class = ResourceHandlerPagination #@cbadmin_required @link(methods=['post']) def set_template_creds(self, *args, **kwargs): """ Endpoint for Setting Credentials on Template with an option sshkey, to the RH. Single POST: { "template": "{{template_name}}", "user-name": "{{user_name}}", "password": "{{password}}", "ssh-key":"{{ssh_key}}" } Array POST: [{ "template": "{{template_name}}", "user-name": "{{user_name}}", "password": "{{password}}", "ssh-key":"{{ssh_key}}" }, { "template": "{{template_name}}", }] """ resp = {} rh = ResourceHandler.objects.get(id=self.id) handler = rh.cast() if not handler.can_import_templates_api: raise APIException(_('Bad Request: Invalid Resource Handler'), code=400, details=_('API endpoint is not currently supported for this resource handler.')) profile = self.request.get_user_profile() if not profile.is_cbadmin: raise PermissionDenied( _("This action requires 'CB Admin' or 'Super Admin' privileges.")) combined_requests = self._verify_api_template_creds_json(self.request.data) all_reqs = [] for req_template, req_username, req_password, req_sshkey in combined_requests: logger.info(f"Attempting to set credentials on {req_template}") template = handler.os_build_attributes.filter( template_name=req_template).first().cast() logger.info(template) logger.info(dir(template)) if template: template.password = req_password template.username = req_username template.save() handler.save() message = f"Template Credentials updated for {template}." resp['message'] = message resp['status_code'] = 200 all_reqs.append(resp) else: message = f"Template {req_template} Not Found" resp['message'] = message resp['status_code'] = 400 all_reqs.append(resp) overall = {} overall['message'] = f"Template Credentials updated for {template}." overall['status_code'] = 200 for resp in all_reqs: if resp['status_code'] != 200: overall['status_code'] = resp['status_code'] overall['message'] = resp['message'] return Response(overall, status=overall['status_code']) def _verify_api_template_creds_json(self, request_data): """ Validate incoming POST request data and create pairs of templates and os_builds to import to a specific resource handler. """ logger.info("Confirming Payload for set-template-creds") if not isinstance(request_data, list): request_data = [ request_data] requested_templates, requested_usernames, requested_passwords, requested_sshkeys = [], [], [], [] for template in request_data: requested_template = template.get('template', None) requested_username = template.get('user-name', None) requested_password = template.get('password', None) requested_sshkey = template.get('ssh-key', None) if requested_sshkey == '': requested_sshkey = None logger.info(requested_sshkey) if requested_template in requested_templates: raise APIException(_('Bad Request: Duplicate Names'), code=400, details=_("'template' and 'os_build' must be assigned unique values for each entry in POST request")) else: requested_templates.append(requested_template) requested_usernames.append(requested_username) requested_passwords.append(requested_password) requested_sshkeys.append(requested_sshkey) return zip(requested_templates, requested_usernames, requested_passwords, requested_sshkeys) @api_view(['POST']) def set_template_creds(request, id, *args, **kwargs): rh = ResourceHandlerViewSetExtend(id=id, request=request) resp = rh.set_template_creds() return resp #Sample Payloads #{ # "template": "templatename", # "user-name": "myuser", # "password": "mytemplatepassword" #} #
39.954248
121
0.640602
e14521d271f1a06b4f2f89e2656b097180745512
19,736
py
Python
frappe/translate.py
vCentre/vB062506-frappe
fa095e260b7993ad924ca771d23ba707a782c25b
[ "MIT" ]
null
null
null
frappe/translate.py
vCentre/vB062506-frappe
fa095e260b7993ad924ca771d23ba707a782c25b
[ "MIT" ]
null
null
null
frappe/translate.py
vCentre/vB062506-frappe
fa095e260b7993ad924ca771d23ba707a782c25b
[ "MIT" ]
1
2018-03-22T02:28:59.000Z
2018-03-22T02:28:59.000Z
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals """ frappe.translate ~~~~~~~~~~~~~~~~ Translation tools for frappe """ import frappe, os, re, codecs, json from frappe.utils.jinja import render_include from frappe.utils import strip from jinja2 import TemplateError import itertools, operator def guess_language(lang_list=None): """Set `frappe.local.lang` from HTTP headers at beginning of request""" lang_codes = frappe.request.accept_languages.values() if not lang_codes: return frappe.local.lang guess = None if not lang_list: lang_list = get_all_languages() or [] for l in lang_codes: code = l.strip() if code in lang_list or code == "en": guess = code break # check if parent language (pt) is setup, if variant (pt-BR) if "-" in code: code = code.split("-")[0] if code in lang_list: guess = code break return guess or frappe.local.lang def get_user_lang(user=None): """Set frappe.local.lang from user preferences on session beginning or resumption""" if not user: user = frappe.session.user # via cache lang = frappe.cache().hget("lang", user) if not lang: # if defined in user profile user_lang = frappe.db.get_value("User", user, "language") if user_lang and user_lang!="Loading...": lang = get_lang_dict().get(user_lang, user_lang) or frappe.local.lang else: default_lang = frappe.db.get_default("lang") lang = default_lang or frappe.local.lang frappe.cache().hset("lang", user, lang or "en") return lang def set_default_language(language): """Set Global default language""" lang = get_lang_dict().get(language, language) frappe.db.set_default("lang", lang) frappe.local.lang = lang def get_all_languages(): """Returns all language codes ar, ch etc""" return [a.split()[0] for a in get_lang_info()] def get_lang_dict(): """Returns all languages in dict format, full name is the key e.g. `{"english":"en"}`""" return dict([[a[1], a[0]] for a in [a.split(None, 1) for a in get_lang_info()]]) def get_language_from_code(lang): return dict(a.split(None, 1) for a in get_lang_info()).get(lang) def get_lang_info(): """Returns a listified version of `apps/languages.txt`""" return frappe.cache().get_value("langinfo", lambda:frappe.get_file_items(os.path.join(frappe.local.sites_path, "languages.txt"))) def get_dict(fortype, name=None): """Returns translation dict for a type of object. :param fortype: must be one of `doctype`, `page`, `report`, `include`, `jsfile`, `boot` :param name: name of the document for which assets are to be returned. """ fortype = fortype.lower() cache = frappe.cache() asset_key = fortype + ":" + (name or "-") translation_assets = cache.hget("translation_assets", frappe.local.lang) or {} if not asset_key in translation_assets: if fortype=="doctype": messages = get_messages_from_doctype(name) elif fortype=="page": messages = get_messages_from_page(name) elif fortype=="report": messages = get_messages_from_report(name) elif fortype=="include": messages = get_messages_from_include_files() elif fortype=="jsfile": messages = get_messages_from_file(name) elif fortype=="boot": messages = get_messages_from_include_files() messages += frappe.db.sql("select 'DocType:', name from tabDocType") messages += frappe.db.sql("select 'Role:', name from tabRole") messages += frappe.db.sql("select 'Module:', name from `tabModule Def`") translation_assets[asset_key] = make_dict_from_messages(messages) translation_assets[asset_key].update(get_dict_from_hooks(fortype, name)) cache.hset("translation_assets", frappe.local.lang, translation_assets) return translation_assets[asset_key] def get_dict_from_hooks(fortype, name): translated_dict = {} hooks = frappe.get_hooks("get_translated_dict") for (hook_fortype, fortype_name) in hooks: if hook_fortype == fortype and fortype_name == name: for method in hooks[(hook_fortype, fortype_name)]: translated_dict.update(frappe.get_attr(method)()) return translated_dict def add_lang_dict(code): """Extracts messages and returns Javascript code snippet to be appened at the end of the given script :param code: Javascript code snippet to which translations needs to be appended.""" messages = extract_messages_from_code(code) messages = [message for pos, message in messages] code += "\n\n$.extend(frappe._messages, %s)" % json.dumps(make_dict_from_messages(messages)) return code def make_dict_from_messages(messages, full_dict=None): """Returns translated messages as a dict in Language specified in `frappe.local.lang` :param messages: List of untranslated messages """ out = {} if full_dict==None: full_dict = get_full_dict(frappe.local.lang) for m in messages: if m[1] in full_dict: out[m[1]] = full_dict[m[1]] return out def get_lang_js(fortype, name): """Returns code snippet to be appended at the end of a JS script. :param fortype: Type of object, e.g. `DocType` :param name: Document name """ return "\n\n$.extend(frappe._messages, %s)" % json.dumps(get_dict(fortype, name)) def get_full_dict(lang): """Load and return the entire translations dictionary for a language from :meth:`frape.cache` :param lang: Language Code, e.g. `hi` """ if not lang or lang == "en": return {} if not frappe.local.lang_full_dict: frappe.local.lang_full_dict = frappe.cache().hget("lang_full_dict", lang) if not frappe.local.lang_full_dict: frappe.local.lang_full_dict = load_lang(lang) # cache lang frappe.cache().hset("lang_full_dict", lang, frappe.local.lang_full_dict) # get user specific transaltion data user_translations = get_user_translations(lang) if user_translations: frappe.local.lang_full_dict.update(user_translations) return frappe.local.lang_full_dict def load_lang(lang, apps=None): """Combine all translations from `.csv` files in all `apps`""" out = {} for app in (apps or frappe.get_all_apps(True)): path = os.path.join(frappe.get_pymodule_path(app), "translations", lang + ".csv") out.update(get_translation_dict_from_file(path, lang, app)) return out def get_translation_dict_from_file(path, lang, app): """load translation dict from given path""" cleaned = {} if os.path.exists(path): csv_content = read_csv_file(path) for item in csv_content: if len(item)==3: # with file and line numbers cleaned[item[1]] = strip(item[2]) elif len(item)==2: cleaned[item[0]] = strip(item[1]) else: raise Exception("Bad translation in '{app}' for language '{lang}': {values}".format( app=app, lang=lang, values=repr(item).encode("utf-8") )) return cleaned def get_user_translations(lang): out = frappe.cache().hget('lang_user_translations', lang) if not out: out = {} for fields in frappe.get_all('Translation', fields= ["source_name", "target_name"],filters={'language_code': lang}): out.update({fields.source_name: fields.target_name}) frappe.cache().hset('lang_user_translations', lang, out) return out # def get_user_translation_key(): # return 'lang_user_translations:{0}'.format(frappe.local.site) def clear_cache(): """Clear all translation assets from :meth:`frappe.cache`""" cache = frappe.cache() cache.delete_key("langinfo") cache.delete_key("lang_full_dict") cache.delete_key("translation_assets") def get_messages_for_app(app): """Returns all messages (list) for a specified `app`""" messages = [] modules = ", ".join(['"{}"'.format(m.title().replace("_", " ")) \ for m in frappe.local.app_modules[app]]) # doctypes if modules: for name in frappe.db.sql_list("""select name from tabDocType where module in ({})""".format(modules)): messages.extend(get_messages_from_doctype(name)) # pages for name, title in frappe.db.sql("""select name, title from tabPage where module in ({})""".format(modules)): messages.append((None, title or name)) messages.extend(get_messages_from_page(name)) # reports for name in frappe.db.sql_list("""select tabReport.name from tabDocType, tabReport where tabReport.ref_doctype = tabDocType.name and tabDocType.module in ({})""".format(modules)): messages.append((None, name)) messages.extend(get_messages_from_report(name)) for i in messages: if not isinstance(i, tuple): raise Exception # app_include_files messages.extend(get_all_messages_from_js_files(app)) # server_messages messages.extend(get_server_messages(app)) return deduplicate_messages(messages) def get_messages_from_doctype(name): """Extract all translatable messages for a doctype. Includes labels, Python code, Javascript code, html templates""" messages = [] meta = frappe.get_meta(name) messages = [meta.name, meta.module] if meta.description: messages.append(meta.description) # translations of field labels, description and options for d in meta.get("fields"): messages.extend([d.label, d.description]) if d.fieldtype=='Select' and d.options: options = d.options.split('\n') if not "icon" in options[0]: messages.extend(options) # translations of roles for d in meta.get("permissions"): if d.role: messages.append(d.role) messages = [message for message in messages if message] messages = [('DocType: ' + name, message) for message in messages if is_translatable(message)] # extract from js, py files doctype_file_path = frappe.get_module_path(meta.module, "doctype", meta.name, meta.name) messages.extend(get_messages_from_file(doctype_file_path + ".js")) messages.extend(get_messages_from_file(doctype_file_path + "_list.js")) messages.extend(get_messages_from_file(doctype_file_path + "_list.html")) messages.extend(get_messages_from_file(doctype_file_path + "_calendar.js")) return messages def get_messages_from_page(name): """Returns all translatable strings from a :class:`frappe.core.doctype.Page`""" return _get_messages_from_page_or_report("Page", name) def get_messages_from_report(name): """Returns all translatable strings from a :class:`frappe.core.doctype.Report`""" report = frappe.get_doc("Report", name) messages = _get_messages_from_page_or_report("Report", name, frappe.db.get_value("DocType", report.ref_doctype, "module")) # TODO position here! if report.query: messages.extend([(None, message) for message in re.findall('"([^:,^"]*):', report.query) if is_translatable(message)]) messages.append((None,report.report_name)) return messages def _get_messages_from_page_or_report(doctype, name, module=None): if not module: module = frappe.db.get_value(doctype, name, "module") doc_path = frappe.get_module_path(module, doctype, name) messages = get_messages_from_file(os.path.join(doc_path, frappe.scrub(name) +".py")) if os.path.exists(doc_path): for filename in os.listdir(doc_path): if filename.endswith(".js") or filename.endswith(".html"): messages += get_messages_from_file(os.path.join(doc_path, filename)) return messages def get_server_messages(app): """Extracts all translatable strings (tagged with :func:`frappe._`) from Python modules inside an app""" messages = [] for basepath, folders, files in os.walk(frappe.get_pymodule_path(app)): for dontwalk in (".git", "public", "locale"): if dontwalk in folders: folders.remove(dontwalk) for f in files: if f.endswith(".py") or f.endswith(".html") or f.endswith(".js"): messages.extend(get_messages_from_file(os.path.join(basepath, f))) return messages def get_messages_from_include_files(app_name=None): """Returns messages from js files included at time of boot like desk.min.js for desk and web""" messages = [] for file in (frappe.get_hooks("app_include_js", app_name=app_name) or []) + (frappe.get_hooks("web_include_js", app_name=app_name) or []): messages.extend(get_messages_from_file(os.path.join(frappe.local.sites_path, file))) return messages def get_all_messages_from_js_files(app_name=None): """Extracts all translatable strings from app `.js` files""" messages = [] for app in ([app_name] if app_name else frappe.get_installed_apps()): if os.path.exists(frappe.get_app_path(app, "public")): for basepath, folders, files in os.walk(frappe.get_app_path(app, "public")): if "frappe/public/js/lib" in basepath: continue for fname in files: if fname.endswith(".js") or fname.endswith(".html"): messages.extend(get_messages_from_file(os.path.join(basepath, fname))) return messages def get_messages_from_file(path): """Returns a list of transatable strings from a code file :param path: path of the code file """ apps_path = get_bench_dir() if os.path.exists(path): with open(path, 'r') as sourcefile: return [(os.path.relpath(" +".join([path, str(pos)]), apps_path), message) for pos, message in extract_messages_from_code(sourcefile.read(), path.endswith(".py"))] else: # print "Translate: {0} missing".format(os.path.abspath(path)) return [] def extract_messages_from_code(code, is_py=False): """Extracts translatable srings from a code file :param code: code from which translatable files are to be extracted :param is_py: include messages in triple quotes e.g. `_('''message''')`""" try: code = render_include(code) except TemplateError: # Exception will occur when it encounters John Resig's microtemplating code pass messages = [] messages += [(m.start(), m.groups()[0]) for m in re.compile('_\("([^"]*)"').finditer(code)] messages += [(m.start(), m.groups()[0]) for m in re.compile("_\('([^']*)'").finditer(code)] if is_py: messages += [(m.start(), m.groups()[0]) for m in re.compile('_\("{3}([^"]*)"{3}.*\)').finditer(code)] messages = [(pos, message) for pos, message in messages if is_translatable(message)] return pos_to_line_no(messages, code) def is_translatable(m): if re.search("[a-z]", m) and not m.startswith("icon-") and not m.endswith("px") and not m.startswith("eval:"): return True return False def pos_to_line_no(messages, code): ret = [] messages = sorted(messages, key=lambda x: x[0]) newlines = [m.start() for m in re.compile('\\n').finditer(code)] line = 1 newline_i = 0 for pos, message in messages: while newline_i < len(newlines) and pos > newlines[newline_i]: line+=1 newline_i+= 1 ret.append((line, message)) return ret def read_csv_file(path): """Read CSV file and return as list of list :param path: File path""" from csv import reader with codecs.open(path, 'r', 'utf-8') as msgfile: data = msgfile.read() # for japanese! #wtf data = data.replace(chr(28), "").replace(chr(29), "") data = reader([r.encode('utf-8') for r in data.splitlines()]) newdata = [[unicode(val, 'utf-8') for val in row] for row in data] return newdata def write_csv_file(path, app_messages, lang_dict): """Write translation CSV file. :param path: File path, usually `[app]/translations`. :param app_messages: Translatable strings for this app. :param lang_dict: Full translated dict. """ app_messages.sort(lambda x,y: cmp(x[1], y[1])) from csv import writer with open(path, 'wb') as msgfile: w = writer(msgfile, lineterminator='\n') for p, m in app_messages: t = lang_dict.get(m, '') # strip whitespaces t = re.sub('{\s?([0-9]+)\s?}', "{\g<1>}", t) w.writerow([p.encode('utf-8') if p else '', m.encode('utf-8'), t.encode('utf-8')]) def get_untranslated(lang, untranslated_file, get_all=False): """Returns all untranslated strings for a language and writes in a file :param lang: Language code. :param untranslated_file: Output file path. :param get_all: Return all strings, translated or not.""" clear_cache() apps = frappe.get_all_apps(True) messages = [] untranslated = [] for app in apps: messages.extend(get_messages_for_app(app)) messages = deduplicate_messages(messages) def escape_newlines(s): return (s.replace("\\\n", "|||||") .replace("\\n", "||||") .replace("\n", "|||")) if get_all: print str(len(messages)) + " messages" with open(untranslated_file, "w") as f: for m in messages: # replace \n with ||| so that internal linebreaks don't get split f.write((escape_newlines(m[1]) + os.linesep).encode("utf-8")) else: full_dict = get_full_dict(lang) for m in messages: if not full_dict.get(m[1]): untranslated.append(m[1]) if untranslated: print str(len(untranslated)) + " missing translations of " + str(len(messages)) with open(untranslated_file, "w") as f: for m in untranslated: # replace \n with ||| so that internal linebreaks don't get split f.write((escape_newlines(m) + os.linesep).encode("utf-8")) else: print "all translated!" def update_translations(lang, untranslated_file, translated_file): """Update translations from a source and target file for a given language. :param lang: Language code (e.g. `en`). :param untranslated_file: File path with the messages in English. :param translated_file: File path with messages in language to be updated.""" clear_cache() full_dict = get_full_dict(lang) def restore_newlines(s): return (s.replace("|||||", "\\\n") .replace("| | | | |", "\\\n") .replace("||||", "\\n") .replace("| | | |", "\\n") .replace("|||", "\n") .replace("| | |", "\n")) translation_dict = {} for key, value in zip(frappe.get_file_items(untranslated_file, ignore_empty_lines=False), frappe.get_file_items(translated_file, ignore_empty_lines=False)): # undo hack in get_untranslated translation_dict[restore_newlines(key)] = restore_newlines(value) full_dict.update(translation_dict) for app in frappe.get_all_apps(True): write_translations_file(app, lang, full_dict) def import_translations(lang, path): """Import translations from file in standard format""" clear_cache() full_dict = get_full_dict(lang) full_dict.update(get_translation_dict_from_file(path, lang, 'import')) for app in frappe.get_all_apps(True): write_translations_file(app, lang, full_dict) def rebuild_all_translation_files(): """Rebuild all translation files: `[app]/translations/[lang].csv`.""" for lang in get_all_languages(): for app in frappe.get_all_apps(): write_translations_file(app, lang) def write_translations_file(app, lang, full_dict=None, app_messages=None): """Write a translation file for a given language. :param app: `app` for which translations are to be written. :param lang: Language code. :param full_dict: Full translated language dict (optional). :param app_messages: Source strings (optional). """ if not app_messages: app_messages = get_messages_for_app(app) if not app_messages: return tpath = frappe.get_pymodule_path(app, "translations") frappe.create_folder(tpath) write_csv_file(os.path.join(tpath, lang + ".csv"), app_messages, full_dict or get_full_dict(lang)) def send_translations(translation_dict): """Append translated dict in `frappe.local.response`""" if "__messages" not in frappe.local.response: frappe.local.response["__messages"] = {} frappe.local.response["__messages"].update(translation_dict) def deduplicate_messages(messages): ret = [] op = operator.itemgetter(1) messages = sorted(messages, key=op) for k, g in itertools.groupby(messages, op): ret.append(g.next()) return ret def get_bench_dir(): return os.path.join(frappe.__file__, '..', '..', '..', '..') def rename_language(old_name, new_name): language_in_system_settings = frappe.db.get_single_value("System Settings", "language") if language_in_system_settings == old_name: frappe.db.set_value("System Settings", "System Settings", "language", new_name) frappe.db.sql("""update `tabUser` set language=%(new_name)s where language=%(old_name)s""", { "old_name": old_name, "new_name": new_name })
33.337838
139
0.717825
d0ca2f215e9a7b41c18af1455ca67199fcb8bedf
1,777
py
Python
seleniumwire/thirdparty/mitmproxy/net/http/user_agents.py
KozminMoci/selenium-wire
063c44ab42ac5e53e28c8a8c49c9ae7036bd878b
[ "MIT" ]
24,939
2015-01-01T17:13:21.000Z
2022-03-31T17:50:04.000Z
seleniumwire/thirdparty/mitmproxy/net/http/user_agents.py
KozminMoci/selenium-wire
063c44ab42ac5e53e28c8a8c49c9ae7036bd878b
[ "MIT" ]
3,655
2015-01-02T12:31:43.000Z
2022-03-31T20:24:57.000Z
seleniumwire/thirdparty/mitmproxy/net/http/user_agents.py
KozminMoci/selenium-wire
063c44ab42ac5e53e28c8a8c49c9ae7036bd878b
[ "MIT" ]
3,712
2015-01-06T06:47:06.000Z
2022-03-31T10:33:27.000Z
""" A small collection of useful user-agent header strings. These should be kept reasonably current to reflect common usage. """ # pylint: line-too-long # A collection of (name, shortcut, string) tuples. UASTRINGS = [ ("android", "a", "Mozilla/5.0 (Linux; U; Android 4.1.1; en-gb; Nexus 7 Build/JRO03D) AFL/01.04.02"), # noqa ("blackberry", "l", "Mozilla/5.0 (BlackBerry; U; BlackBerry 9900; en) AppleWebKit/534.11+ (KHTML, like Gecko) Version/7.1.0.346 Mobile Safari/534.11+"), # noqa ("bingbot", "b", "Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"), # noqa ("chrome", "c", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1"), # noqa ("firefox", "f", "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:14.0) Gecko/20120405 Firefox/14.0a1"), # noqa ("googlebot", "g", "Googlebot/2.1 (+http://www.googlebot.com/bot.html)"), # noqa ("ie9", "i", "Mozilla/5.0 (Windows; U; MSIE 9.0; WIndows NT 9.0; en-US)"), # noqa ("ipad", "p", "Mozilla/5.0 (iPad; CPU OS 5_1 like Mac OS X) AppleWebKit/534.46 (KHTML, like Gecko) Version/5.1 Mobile/9B176 Safari/7534.48.3"), # noqa ("iphone", "h", "Mozilla/5.0 (iPhone; CPU iPhone OS 4_2_1 like Mac OS X) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148a Safari/6533.18.5"), # noqa ("safari", "s", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/534.55.3 (KHTML, like Gecko) Version/5.1.3 Safari/534.53.10"), # noqa ] def get_by_shortcut(s): """ Retrieve a user agent entry by shortcut. """ for i in UASTRINGS: if s == i[1]: return i
34.843137
158
0.597074
32c77b8124e1fdd117e3a8f678cc84f4a39cddf2
4,251
py
Python
dace/libraries/mpi/nodes/wait.py
jnice-81/dace
5211794a2d17b7189037ac485ab0b292fb02aa0d
[ "BSD-3-Clause" ]
227
2019-03-15T23:39:06.000Z
2022-03-30T07:49:08.000Z
dace/libraries/mpi/nodes/wait.py
jnice-81/dace
5211794a2d17b7189037ac485ab0b292fb02aa0d
[ "BSD-3-Clause" ]
834
2019-07-31T22:49:31.000Z
2022-03-28T14:01:32.000Z
dace/libraries/mpi/nodes/wait.py
jnice-81/dace
5211794a2d17b7189037ac485ab0b292fb02aa0d
[ "BSD-3-Clause" ]
64
2019-03-19T05:40:37.000Z
2022-03-11T15:02:42.000Z
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace.library import dace.properties import dace.sdfg.nodes from dace.transformation.transformation import ExpandTransformation from .. import environments from dace import dtypes @dace.library.expansion class ExpandWaitMPI(ExpandTransformation): environments = [environments.mpi.MPI] @staticmethod def expansion(node, parent_state, parent_sdfg, n=None, **kwargs): req, status = node.validate(parent_sdfg, parent_state) code = f""" MPI_Status _s; MPI_Wait(_request, &_s); _stat_tag = _s.MPI_TAG; _stat_source = _s.MPI_SOURCE; """ tasklet = dace.sdfg.nodes.Tasklet(node.name, node.in_connectors, node.out_connectors, code, language=dace.dtypes.Language.CPP) conn = tasklet.in_connectors conn = { c: (dtypes.pointer(dtypes.opaque("MPI_Request")) if c == '_request' else t) for c, t in conn.items() } tasklet.in_connectors = conn return tasklet @dace.library.node class Wait(dace.sdfg.nodes.LibraryNode): # Global properties implementations = { "MPI": ExpandWaitMPI, } default_implementation = "MPI" # Object fields n = dace.properties.SymbolicProperty(allow_none=True, default=None) def __init__(self, name, *args, **kwargs): super().__init__(name, *args, inputs={"_request"}, outputs={"_stat_tag", "_stat_source"}, **kwargs) def validate(self, sdfg, state): """ :return: req, status """ req, status = None, None for e in state.in_edges(self): if e.dst_conn == "_request": req = sdfg.arrays[e.data.data] for e in state.out_edges(self): if e.src_conn == "_status": status = sdfg.arrays[e.data.data] return req, status @dace.library.expansion class ExpandWaitallPure(ExpandTransformation): """ Naive backend-agnostic expansion of Waitall. """ environments = [] @staticmethod def expansion(node, parent_state, parent_sdfg, n=None, **kwargs): raise (NotImplementedError) @dace.library.expansion class ExpandWaitallMPI(ExpandTransformation): environments = [environments.mpi.MPI] @staticmethod def expansion(node, parent_state, parent_sdfg, n=None, **kwargs): count = node.validate(parent_sdfg, parent_state) code = f""" MPI_Status _s[{count}]; MPI_Waitall({count}, _request, _s); """ tasklet = dace.sdfg.nodes.Tasklet(node.name, node.in_connectors, node.out_connectors, code, language=dace.dtypes.Language.CPP) conn = tasklet.in_connectors conn = { c: (dtypes.pointer(dtypes.opaque("MPI_Request")) if c == '_request' else t) for c, t in conn.items() } tasklet.in_connectors = conn return tasklet @dace.library.node class Waitall(dace.sdfg.nodes.LibraryNode): # Global properties implementations = { "MPI": ExpandWaitallMPI, } default_implementation = "MPI" # Object fields n = dace.properties.SymbolicProperty(allow_none=True, default=None) def __init__(self, name, *args, **kwargs): super().__init__(name, *args, inputs={"_request"}, outputs={}, **kwargs) def validate(self, sdfg, state): """ :return: req, status """ count = None for e in state.in_edges(self): if e.dst_conn == "_request": count = e.data.subset.num_elements() if not count: raise ValueError( "At least 1 request object must be passed to Waitall") return count
29.317241
80
0.554928
316c8109fa8ed4190b84c8d097dc33afbbe6f22f
9,230
py
Python
python/model/vae.py
VAlex22/ND_VAE
38fecb46e51bbbe7a365e9a70eaa8dad629c7ef5
[ "BSD-3-Clause" ]
7
2018-07-16T03:52:38.000Z
2021-09-06T09:32:14.000Z
python/model/vae.py
VAlex22/ND_VAE
38fecb46e51bbbe7a365e9a70eaa8dad629c7ef5
[ "BSD-3-Clause" ]
null
null
null
python/model/vae.py
VAlex22/ND_VAE
38fecb46e51bbbe7a365e9a70eaa8dad629c7ef5
[ "BSD-3-Clause" ]
2
2020-06-03T12:56:15.000Z
2021-03-09T18:17:21.000Z
# ############### Variational Autoencoder #################### # This is an adapted implementation of vae for novelty detection from # https://github.com/Lasagne/Recipes/blob/master/examples/variational_autoencoder/variational_autoencoder.py import time import lasagne as nn import numpy as np import theano import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams from util import get_model_params, get_training_params, model_path from python.model import TrainData # ##################### Custom layer for middle of VAE ###################### # This layer takes the mu and sigma (both DenseLayers) and combines them with # a random vector epsilon to sample values for a multivariate Gaussian class GaussianSampleLayer(nn.layers.MergeLayer): def __init__(self, mu, logsigma, rng=None, **kwargs): self.rng = rng if rng else RandomStreams(nn.random.get_rng().randint(1, 2147462579)) super(GaussianSampleLayer, self).__init__([mu, logsigma], **kwargs) def get_output_shape_for(self, input_shapes): return input_shapes[0] def get_output_for(self, inputs, deterministic=False, **kwargs): mu, logsigma = inputs shape = (self.input_shapes[0][0] or inputs[0].shape[0], self.input_shapes[0][1] or inputs[0].shape[1]) if deterministic: return mu return mu + T.exp(logsigma) * self.rng.normal(shape) # ############################## Build Model ################################# # encoder has #depth hidden layer, where we get mu and sigma for Z given an inp X # continuous decoder has #depth hidden layer, where we get reconstruction for X given Z def build_vae(inputvar, n_channels, depth, z_dim, n_hid_first, L=5): """ :param inputvar: :param n_channels: number of channels in the input vector :param depth: depth of the encoder and decoder of the VAE :param z_dim: dimensionality of the latent space :param n_hid_first: number of neurons in the first hidden layer of the encoder. For each respective layer of the encoder number of layers is twice less than the number of layers in the previous layer. Decoder is symmetric to the encoder. :param L: number of samples from latent space to compute output values :return: """ # encoder l = nn.layers.InputLayer(shape=(None, n_channels), input_var=inputvar, name='input') # encoder hidden layers for i in range(depth): num_units = int(n_hid_first / (2 ** i)) l = nn.layers.DenseLayer(l, num_units=num_units, nonlinearity=nn.nonlinearities.rectify, name='enc_hid' + str(i)) l_enc_mean = nn.layers.DenseLayer(l, num_units=z_dim, nonlinearity=None, name='enc_mu') l_enc_logsigma = nn.layers.DenseLayer(l, num_units=z_dim, nonlinearity=None, name='enc_logsigma') # decoder l_dec = {} l_dec_mean_list = [] l_dec_logsigma_list = [] l_x_list = [] # tie the weights of all L versions so they are the "same" layer W_dec_hid = [None] * depth b_dec_hid = [None] * depth W_dec_mean = None b_dec_mean = None W_dec_ls = None b_dec_ls = None for i in range(L): l_dec[0] = GaussianSampleLayer(l_enc_mean, l_enc_logsigma, name='Z') for j in range(depth): num_units = int(n_hid_first / (2 ** (depth - i - 1))) l_dec[j+1] = nn.layers.DenseLayer(l_dec[j], num_units=num_units, nonlinearity=nn.nonlinearities.rectify, W=nn.init.GlorotUniform() if W_dec_hid[j] is None else W_dec_hid[j], b=nn.init.Constant(0.) if b_dec_hid[j] is None else b_dec_hid[j], name='dec_hid' + str(j)) l_dec_mu = nn.layers.DenseLayer(l_dec[depth], num_units=n_channels, nonlinearity=None, W=nn.init.GlorotUniform() if W_dec_mean is None else W_dec_mean, b=nn.init.Constant(0) if b_dec_mean is None else b_dec_mean, name='dec_mu') # relu_shift is for numerical stability - if training data has any # dimensions where stdev=0, allowing logsigma to approach -inf # will cause the loss function to become NAN. So we set the limit # stdev >= exp(-1 * relu_shift) relu_shift = 10 l_dec_logsigma = nn.layers.DenseLayer(l_dec[depth], num_units=n_channels, nonlinearity=lambda a: T.nnet.relu(a+relu_shift)-relu_shift, W=nn.init.GlorotUniform() if W_dec_ls is None else W_dec_ls, b=nn.init.Constant(0) if b_dec_ls is None else b_dec_ls, name='dec_logsigma') l_x = GaussianSampleLayer(l_dec_mu, l_dec_logsigma, name='dec_output') l_dec_mean_list.append(l_dec_mu) l_dec_logsigma_list.append(l_dec_logsigma) l_x_list.append(l_x) if W_dec_mean is None: for j in range(depth): W_dec_hid[j] = l_dec[j+1].W b_dec_hid[j] = l_dec[j+1].b W_dec_mean = l_dec_mu.W b_dec_mean = l_dec_mu.b W_dec_ls = l_dec_logsigma.W b_dec_ls = l_dec_logsigma.b l_x = nn.layers.ElemwiseSumLayer(l_x_list, coeffs=1. / L, name='x') return l_enc_mean, l_enc_logsigma, l_dec_mean_list, l_dec_logsigma_list, l_x_list, l_x def log_likelihood(tgt, mu, ls): return T.sum(-(np.float32(0.5 * np.log(2 * np.pi)) + ls) - 0.5 * T.sqr(tgt - mu) / T.exp(2 * ls)) def train_network(model): n_channels, depth, z_dim, n_hid_first, lam, L = get_model_params(model) batch_size, num_epochs, learning_rate = get_training_params(model) data = TrainData(batch_size) input_var = T.matrix('inputs') # Create VAE model l_z_mean, l_z_logsigma, l_x_mean_list, l_x_logsigma_list, l_x_list, l_x = \ build_vae(input_var, n_channels=n_channels, depth=depth, z_dim=z_dim, n_hid_first=n_hid_first, L=L) def build_loss(deterministic): layer_outputs = nn.layers.get_output([l_z_mean, l_z_logsigma] + l_x_mean_list + l_x_logsigma_list, deterministic=deterministic) z_mean = layer_outputs[0] z_ls = layer_outputs[1] x_mean = layer_outputs[2: 2 + L] x_logsigma = layer_outputs[2 + L : 2 + 2 * L] # Loss function: - log p(x|z) + KL_div kl_div = lam * 0.5 * T.sum(T.exp(2 * z_ls) + T.sqr(z_mean) - 1 - 2 * z_ls) logpxz = sum(log_likelihood(input_var.flatten(2), mu, ls) for mu, ls in zip(x_mean, x_logsigma)) / L prediction = x_mean[0] if deterministic else T.sum(x_mean, axis=0) / L loss = -logpxz + kl_div return loss, prediction loss, _ = build_loss(deterministic=False) test_loss, test_prediction = build_loss(deterministic=True) # ADAM updates params = nn.layers.get_all_params(l_x, trainable=True) updates = nn.updates.adam(loss, params, learning_rate=learning_rate) train_fn = theano.function([input_var], loss, updates=updates) val_fn = theano.function([input_var], test_loss) previous_val_err_1 = float('inf') previous_val_err_2 = float('inf') for epoch in range(num_epochs): train_err = 0.0 epoch_size = 0 start_time = time.time() for i in range(data.train_size): batch = data.next_batch() this_err = train_fn(batch) train_err += this_err epoch_size += batch.shape[0] print("Epoch {} of {} took {:.3f}s".format( epoch + 1, num_epochs, time.time() - start_time)) print("training loss: {:.6f}".format(train_err / epoch_size)) val_err = 0.0 val_size = 0 test_data = data.validation_data() for i in range(data.validation_size): err = val_fn(test_data[i]) val_err += err val_size += test_data[i].shape[0] print("validation loss: {:.6f}".format(val_err / val_size)) # early stopping if val_err > previous_val_err_1 and val_err > previous_val_err_2: break else: previous_val_err_2 = previous_val_err_1 previous_val_err_1 = val_err # save the parameters so they can be loaded for next time np.savez(model_path(model) + str(epoch), *nn.layers.get_all_param_values(l_x)) # output samples samples = data.validation_samples() pred_fn = theano.function([input_var], test_prediction) X_pred = pred_fn(samples) for i in range(len(samples)): print(samples[i] - X_pred[i]) if __name__ == '__main__': train_network(1)
42.534562
113
0.59805
1682dde2d515a11c601f955324225a74e69edced
317
py
Python
individual_1.py
Alexander-fix/lab7-python3
ea448d7d04d4bc63c94bf89e684933663a3d6e3a
[ "MIT" ]
null
null
null
individual_1.py
Alexander-fix/lab7-python3
ea448d7d04d4bc63c94bf89e684933663a3d6e3a
[ "MIT" ]
null
null
null
individual_1.py
Alexander-fix/lab7-python3
ea448d7d04d4bc63c94bf89e684933663a3d6e3a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- if __name__ == '__main__': with open('text.txt', 'r') as f: text = f.read() # Разбить текст на слова. words = text.split(" ") for i in range(1, len(words), 2): words[i], words[i - 1] = words[i - 1], words[i] print(' '.join(words))
22.642857
55
0.523659
149001c7af5e0b37eeff1cd4f70143b9dffd9397
5,437
py
Python
meiduo_mall/meiduo_mall/apps/orders/serializers.py
dienoe/django_demo
bd8201fcc663533123efba9b1b4eee823a288bab
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/orders/serializers.py
dienoe/django_demo
bd8201fcc663533123efba9b1b4eee823a288bab
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/orders/serializers.py
dienoe/django_demo
bd8201fcc663533123efba9b1b4eee823a288bab
[ "MIT" ]
null
null
null
from django.db import transaction from django_redis import get_redis_connection from rest_framework import serializers from goods.models import SKU from orders.models import OrderInfo, OrderGoods from django.utils import timezone from decimal import Decimal import logging logger=logging.getLogger('django') class CartSKUSerializer(serializers.ModelSerializer): """ 购物车商品数据序列化器 """ count = serializers.IntegerField(label='数量') class Meta: model = SKU fields = ('id', 'name', 'default_image_url', 'price', 'count') class OrderSettlementSerializer(serializers.Serializer): """ 订单结算数据序列化器 """ freight = serializers.DecimalField(label='运费', max_digits=10, decimal_places=2) skus = CartSKUSerializer(many=True) class SaveOrderSerializer(serializers.ModelSerializer): """ 保存订单序列化器 """ class Meta: model = OrderInfo fields = ('order_id', 'address', 'pay_method') read_only_fields = ('order_id',) extra_kwargs = { 'address': { 'write_only': True }, 'pay_method': { 'required': True } } # 判断商品的库存 def create(self, validated_data): """ 保存订单 :param validated_data: :return: """ # 获取用户对象 suer user=self.context['request'].user # 生成订单编号 order_id # 20180702150101 9位用户id order_id=timezone.now().strftime('%Y%m%d%H%M%S')+('%09d'%user.id) address=validated_data['address'] pay_method=validated_data['pay_method'] # 查询购物车 redis sku_id count selected redis_conn = get_redis_connection('cart') # hash 商品数量 redis_cart_dict = redis_conn.hgetall('cart_%s' % user.id) # 勾选商品 redis_cart_selected = redis_conn.smembers('cart_selected_%s' % user.id) cart = {} # cart={ # 勾选商品信息 # sku_id:count # } for sku_id in redis_cart_selected: cart[int(sku_id)] = int(redis_cart_dict[sku_id]) if not cart: raise serializers.ValidationError('没有需要结算的商品') # 创建事务 开启一个事务 with transaction.atomic(): # 创建保存点 save_id=transaction.savepoint() try: # 保存订单 # datetime-->str strftime # str --> datetime strptime # 创建订单基本信息表记录 OrderInfo order=OrderInfo.objects.create( order_id=order_id, user=user, address=address, total_count=0, total_amount=Decimal('0'), freight=Decimal('10.00'), pay_method=pay_method, status=OrderInfo.ORDER_STATUS_ENUM['UNSEND'] if pay_method == OrderInfo.PAY_METHODS_ENUM['CASH'] else OrderInfo.ORDER_STATUS_ENUM['UNPAID'] ) # 查询商品数据库 获取商品数据(库存) sku_id_list = cart.keys() # sku_obj_list = SKU.objects.filter(id__in=sku_id_list) # 遍历需要结算的商品数据 for sku_id in sku_id_list: while True: # 查询商品最新的库存信息 sku=SKU.objects.get(id=sku_id) # 用户需要购买的数量 sku_count=cart[sku.id] origin_stock=sku.stock origin_sales=sku.sales # 判断库存 if sku.stock<sku_count: # 回滚到保存点 transaction.savepoint_rollback(save_id) raise serializers.ValidationError('商品%s库存不足'%sku.name) # 库存减少 销量增加 # sku.stock-=sku_count # sku.sales+=sku_count # sku.save() new_stock=origin_stock-sku_count new_sales=origin_stock+sku_count # update返回受影响的行数 result=SKU.objects.filter(id=sku.id,stock=origin_stock).update(stock=new_stock,sales=new_sales) if result==0: # 表示更新失败,有人抢了商品 # 结束本次while循环进行下一次while循环 continue order.total_count+=sku_count order.total_amount+=(sku.price*sku_count) # 创建订单商品信息表记录 OrderGoods OrderGoods.objects.create( order=order, sku=sku, count=sku_count, price=sku.price, ) # 跳出while 循环 进行for循环 break order.save() except serializers.ValidationError: raise except Exception as e: logging.error(e) transaction.savepoint_rollback(save_id) else: transaction.savepoint_commit(save_id) # 删除购物车中已结算的商品 pl=redis_conn.pipeline() # hash pl.hdel('cart_%s'%user.id,*redis_cart_selected) # set pl.srem('cart_selected_%s'%user.id,*redis_cart_selected) pl.execute() # 返回OrderInfo对象 return order
33.561728
121
0.506529
742f9020fa3fe1c925479cbc30e19635e5098b17
2,689
py
Python
bindings/python/ensmallen/datasets/kgobo/mco.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/kgobo/mco.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/kgobo/mco.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph MCO. The graph is automatically retrieved from the KGOBO repository. References --------------------- Please cite the following if you use the data: ```bib @misc{kgobo, title = "KG-OBO", year = "2021", author = "{Reese, Justin and Caufield, Harry}", howpublished = {\\url{https://github.com/Knowledge-Graph-Hub/kg-obo}}, note = {Online; accessed 14 September 2021} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def MCO( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/kgobo", version: str = "2019-05-15", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the MCO graph. The graph is automatically retrieved from the KGOBO repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "2019-05-15" The version of the graph to retrieve. The available versions are: - 2019-05-15 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of MCO graph. References --------------------- Please cite the following if you use the data: ```bib @misc{kgobo, title = "KG-OBO", year = "2021", author = "{Reese, Justin and Caufield, Harry}", howpublished = {\\url{https://github.com/Knowledge-Graph-Hub/kg-obo}}, note = {Online; accessed 14 September 2021} } ``` """ return AutomaticallyRetrievedGraph( graph_name="MCO", repository="kgobo", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
27.721649
73
0.628115
afb2ef78e71d424e0e021ea27b52afe6bbdec690
7,707
py
Python
venv/lib/python3.7/site-packages/datalad/plugin/export_archive.py
emmetaobrien/dats-validator
fb25f97a32119c2bce4eb50dc080a93d5ee77141
[ "MIT" ]
null
null
null
venv/lib/python3.7/site-packages/datalad/plugin/export_archive.py
emmetaobrien/dats-validator
fb25f97a32119c2bce4eb50dc080a93d5ee77141
[ "MIT" ]
null
null
null
venv/lib/python3.7/site-packages/datalad/plugin/export_archive.py
emmetaobrien/dats-validator
fb25f97a32119c2bce4eb50dc080a93d5ee77141
[ "MIT" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """export a dataset as a compressed TAR/ZIP archive""" __docformat__ = 'restructuredtext' from datalad.interface.base import Interface from datalad.interface.base import build_doc from datalad.support import path @build_doc class ExportArchive(Interface): """Export the content of a dataset as a TAR/ZIP archive. """ from datalad.support.param import Parameter from datalad.distribution.dataset import datasetmethod from datalad.interface.utils import eval_results from datalad.distribution.dataset import EnsureDataset from datalad.support.constraints import EnsureNone, EnsureStr _params_ = dict( dataset=Parameter( args=("-d", "--dataset"), doc=""""specify the dataset to export. If no dataset is given, an attempt is made to identify the dataset based on the current working directory.""", constraints=EnsureDataset() | EnsureNone()), filename=Parameter( args=("filename",), metavar="PATH", nargs='?', doc="""File name of the generated TAR archive. If no file name is given the archive will be generated in the current directory and will be named: datalad_<dataset_uuid>.(tar.*|zip). To generate that file in a different directory, provide an existing directory as the file name.""", constraints=EnsureStr() | EnsureNone()), archivetype=Parameter( args=("-t", "--archivetype"), metavar="tar|zip", doc="""Type of archive to generate.""", constraints=EnsureStr()), compression=Parameter( args=("-c", "--compression"), metavar="gz|bz2|", doc="""Compression method to use. 'bz2' is not supported for ZIP archives. No compression is used when an empty string is given.""", constraints=EnsureStr()), missing_content=Parameter( args=("--missing-content",), metavar="error|continue|ignore", doc="""By default, any discovered file with missing content will result in an error and the export is aborted. Setting this to 'continue' will issue warnings instead of failing on error. The value 'ignore' will only inform about problem at the 'debug' log level. The latter two can be helpful when generating a TAR archive from a dataset where some file content is not available locally.""", constraints=EnsureStr()), ) @staticmethod @datasetmethod(name='export_archive') @eval_results def __call__(dataset, filename=None, archivetype='tar', compression='gz', missing_content='error'): import os import tarfile import zipfile from mock import patch from os.path import join as opj, dirname, normpath, isabs import os.path as op from datalad.distribution.dataset import require_dataset from datalad.utils import file_basename from datalad.support.annexrepo import AnnexRepo from datalad.dochelpers import exc_str import logging lgr = logging.getLogger('datalad.plugin.export_archive') dataset = require_dataset(dataset, check_installed=True, purpose='export archive') repo = dataset.repo committed_date = repo.get_commit_date() # could be used later on to filter files by some criterion def _filter_tarinfo(ti): # Reset the date to match the one of the last commit, not from the # filesystem since git doesn't track those at all # TODO: use the date of the last commit when any particular # file was changed -- would be the most kosher yoh thinks to the # degree of our abilities ti.mtime = committed_date return ti tar_args = dict(recursive=False, filter=_filter_tarinfo) file_extension = '.{}{}'.format( archivetype, '{}{}'.format( '.' if compression else '', compression) if archivetype == 'tar' else '') default_filename = "datalad_{.id}".format(dataset) if filename is None: filename = default_filename # in current directory elif path.exists(filename) and path.isdir(filename): filename = path.join(filename, default_filename) # under given directory if not filename.endswith(file_extension): filename += file_extension root = dataset.path # use dir inside matching the output filename # TODO: could be an option to the export plugin allowing empty value # for no leading dir leading_dir = file_basename(filename) # workaround for inability to pass down the time stamp with patch('time.time', return_value=committed_date), \ tarfile.open(filename, "w:{}".format(compression)) \ if archivetype == 'tar' \ else zipfile.ZipFile( filename, 'w', zipfile.ZIP_STORED if not compression else zipfile.ZIP_DEFLATED) \ as archive: add_method = archive.add if archivetype == 'tar' else archive.write repo_files = sorted(repo.get_indexed_files()) if isinstance(repo, AnnexRepo): annexed = repo.is_under_annex( repo_files, allow_quick=True, batch=True) # remember: returns False for files in Git! has_content = repo.file_has_content( repo_files, allow_quick=True, batch=True) else: annexed = [False] * len(repo_files) has_content = [True] * len(repo_files) for i, rpath in enumerate(repo_files): fpath = opj(root, rpath) if annexed[i]: if not has_content[i]: if missing_content in ('ignore', 'continue'): (lgr.warning if missing_content == 'continue' else lgr.debug)( 'File %s has no content available, skipped', fpath) continue else: raise IOError('File %s has no content available' % fpath) # resolve to possible link target if op.islink(fpath): link_target = os.readlink(fpath) if not isabs(link_target): link_target = normpath(opj(dirname(fpath), link_target)) fpath = link_target # name in the archive aname = normpath(opj(leading_dir, rpath)) add_method( fpath, arcname=aname, **(tar_args if archivetype == 'tar' else {})) if not isabs(filename): filename = opj(os.getcwd(), filename) yield dict( status='ok', path=filename, type='file', action='export_archive', logger=lgr) __datalad_plugin__ = ExportArchive
42.816667
90
0.571429
12461a20c49e49a72b37ce8985e3c44e15760a49
1,104
py
Python
data.py
Qlanowski/rangle
53299209e5e1fb9ce1c9eed4cf44ac34684dba02
[ "MIT" ]
null
null
null
data.py
Qlanowski/rangle
53299209e5e1fb9ce1c9eed4cf44ac34684dba02
[ "MIT" ]
null
null
null
data.py
Qlanowski/rangle
53299209e5e1fb9ce1c9eed4cf44ac34684dba02
[ "MIT" ]
null
null
null
# %% # Drawing points on images import json import cv2 # ann_path = "ann/val_image.json" # img_dir ="val_img" ann_path = "ann/train_image.json" img_dir ="train_img" #%% with open(ann_path) as json_val_ann: images = json.load(json_val_ann) def id_to_image(id): return str(id).zfill(12) + ".jpg" for filename in os.listdir(img_dir): img_ann = [i for i in images if id_to_image(i["image_id"])==filename][0] img = cv2.imread(f"{img_dir}/{filename}") for person in img_ann["people"]: p = person["keypoints"] for i in range(int(len(p)/3)): s = 2 cv2.rectangle(img, (p[i*3]-s, p[i*3+1]-s), (p[i*3]+s, p[i*3+1]+s), (255,0,0), 2) font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (p[i*3]+s,p[i*3+1]+s) fontScale = 1 fontColor = (255,255,255) lineType = 2 cv2.putText(img,str(i+1), bottomLeftCornerOfText, font, fontScale, fontColor, lineType) cv2.imshow('image',img) cv2.waitKey(0) # %%
30.666667
92
0.556159
93e98194a420a0d86df51defec5d637580d7d983
9,940
py
Python
django/conf/locale/__init__.py
kix/django
5262a288df07daa050a0e17669c3f103f47a8640
[ "BSD-3-Clause" ]
3
2015-10-14T09:13:48.000Z
2021-01-01T06:31:25.000Z
django/conf/locale/__init__.py
kix/django
5262a288df07daa050a0e17669c3f103f47a8640
[ "BSD-3-Clause" ]
1
2016-02-19T00:22:18.000Z
2016-02-19T00:22:18.000Z
django/conf/locale/__init__.py
kix/django
5262a288df07daa050a0e17669c3f103f47a8640
[ "BSD-3-Clause" ]
1
2015-10-14T09:13:48.000Z
2015-10-14T09:13:48.000Z
from __future__ import unicode_literals LANG_INFO = { 'ar': { 'bidi': True, 'code': 'ar', 'name': 'Arabic', 'name_local': '\u0627\u0644\u0639\u0631\u0628\u064a\u0651\u0629', }, 'az': { 'bidi': True, 'code': 'az', 'name': 'Azerbaijani', 'name_local': 'az\u0259rbaycan dili', }, 'bg': { 'bidi': False, 'code': 'bg', 'name': 'Bulgarian', 'name_local': '\u0431\u044a\u043b\u0433\u0430\u0440\u0441\u043a\u0438', }, 'bn': { 'bidi': False, 'code': 'bn', 'name': 'Bengali', 'name_local': '\u09ac\u09be\u0982\u09b2\u09be', }, 'bs': { 'bidi': False, 'code': 'bs', 'name': 'Bosnian', 'name_local': 'bosanski', }, 'ca': { 'bidi': False, 'code': 'ca', 'name': 'Catalan', 'name_local': 'catal\xe0', }, 'cs': { 'bidi': False, 'code': 'cs', 'name': 'Czech', 'name_local': '\u010desky', }, 'cy': { 'bidi': False, 'code': 'cy', 'name': 'Welsh', 'name_local': 'Cymraeg', }, 'da': { 'bidi': False, 'code': 'da', 'name': 'Danish', 'name_local': 'Dansk', }, 'de': { 'bidi': False, 'code': 'de', 'name': 'German', 'name_local': 'Deutsch', }, 'el': { 'bidi': False, 'code': 'el', 'name': 'Greek', 'name_local': '\u0395\u03bb\u03bb\u03b7\u03bd\u03b9\u03ba\u03ac', }, 'en': { 'bidi': False, 'code': 'en', 'name': 'English', 'name_local': 'English', }, 'en-gb': { 'bidi': False, 'code': 'en-gb', 'name': 'British English', 'name_local': 'British English', }, 'eo': { 'bidi': False, 'code': 'eo', 'name': 'Esperanto', 'name_local': 'Esperanto', }, 'es': { 'bidi': False, 'code': 'es', 'name': 'Spanish', 'name_local': 'espa\xf1ol', }, 'es-ar': { 'bidi': False, 'code': 'es-ar', 'name': 'Argentinian Spanish', 'name_local': 'espa\xf1ol de Argentina', }, 'es-mx': { 'bidi': False, 'code': 'es-mx', 'name': 'Mexican Spanish', 'name_local': 'espa\xf1ol de Mexico', }, 'es-ni': { 'bidi': False, 'code': 'es-ni', 'name': 'Nicaraguan Spanish', 'name_local': 'espa\xf1ol de Nicaragua', }, 'et': { 'bidi': False, 'code': 'et', 'name': 'Estonian', 'name_local': 'eesti', }, 'eu': { 'bidi': False, 'code': 'eu', 'name': 'Basque', 'name_local': 'Basque', }, 'fa': { 'bidi': True, 'code': 'fa', 'name': 'Persian', 'name_local': '\u0641\u0627\u0631\u0633\u06cc', }, 'fi': { 'bidi': False, 'code': 'fi', 'name': 'Finnish', 'name_local': 'suomi', }, 'fr': { 'bidi': False, 'code': 'fr', 'name': 'French', 'name_local': 'Fran\xe7ais', }, 'fy-nl': { 'bidi': False, 'code': 'fy-nl', 'name': 'Frisian', 'name_local': 'Frisian', }, 'ga': { 'bidi': False, 'code': 'ga', 'name': 'Irish', 'name_local': 'Gaeilge', }, 'gl': { 'bidi': False, 'code': 'gl', 'name': 'Galician', 'name_local': 'galego', }, 'he': { 'bidi': True, 'code': 'he', 'name': 'Hebrew', 'name_local': '\u05e2\u05d1\u05e8\u05d9\u05ea', }, 'hi': { 'bidi': False, 'code': 'hi', 'name': 'Hindi', 'name_local': 'Hindi', }, 'hr': { 'bidi': False, 'code': 'hr', 'name': 'Croatian', 'name_local': 'Hrvatski', }, 'hu': { 'bidi': False, 'code': 'hu', 'name': 'Hungarian', 'name_local': 'Magyar', }, 'id': { 'bidi': False, 'code': 'id', 'name': 'Indonesian', 'name_local': 'Bahasa Indonesia', }, 'is': { 'bidi': False, 'code': 'is', 'name': 'Icelandic', 'name_local': '\xcdslenska', }, 'it': { 'bidi': False, 'code': 'it', 'name': 'Italian', 'name_local': 'italiano', }, 'ja': { 'bidi': False, 'code': 'ja', 'name': 'Japanese', 'name_local': '\u65e5\u672c\u8a9e', }, 'ka': { 'bidi': False, 'code': 'ka', 'name': 'Georgian', 'name_local': '\u10e5\u10d0\u10e0\u10d7\u10e3\u10da\u10d8', }, 'kk': { 'bidi': False, 'code': 'kk', 'name': 'Kazakh', 'name_local': '\u049a\u0430\u0437\u0430\u049b', }, 'km': { 'bidi': False, 'code': 'km', 'name': 'Khmer', 'name_local': 'Khmer', }, 'kn': { 'bidi': False, 'code': 'kn', 'name': 'Kannada', 'name_local': 'Kannada', }, 'ko': { 'bidi': False, 'code': 'ko', 'name': 'Korean', 'name_local': '\ud55c\uad6d\uc5b4', }, 'lt': { 'bidi': False, 'code': 'lt', 'name': 'Lithuanian', 'name_local': 'Lithuanian', }, 'lv': { 'bidi': False, 'code': 'lv', 'name': 'Latvian', 'name_local': 'latvie\u0161u', }, 'mk': { 'bidi': False, 'code': 'mk', 'name': 'Macedonian', 'name_local': '\u041c\u0430\u043a\u0435\u0434\u043e\u043d\u0441\u043a\u0438', }, 'ml': { 'bidi': False, 'code': 'ml', 'name': 'Malayalam', 'name_local': 'Malayalam', }, 'mn': { 'bidi': False, 'code': 'mn', 'name': 'Mongolian', 'name_local': 'Mongolian', }, 'nb': { 'bidi': False, 'code': 'nb', 'name': 'Norwegian Bokmal', 'name_local': 'Norsk (bokm\xe5l)', }, 'ne': { 'bidi': False, 'code': 'ne', 'name': 'Nepali', 'name_local': '\u0928\u0947\u092a\u093e\u0932\u0940', }, 'nl': { 'bidi': False, 'code': 'nl', 'name': 'Dutch', 'name_local': 'Nederlands', }, 'nn': { 'bidi': False, 'code': 'nn', 'name': 'Norwegian Nynorsk', 'name_local': 'Norsk (nynorsk)', }, 'no': { 'bidi': False, 'code': 'no', 'name': 'Norwegian', 'name_local': 'Norsk', }, 'pa': { 'bidi': False, 'code': 'pa', 'name': 'Punjabi', 'name_local': 'Punjabi', }, 'pl': { 'bidi': False, 'code': 'pl', 'name': 'Polish', 'name_local': 'polski', }, 'pt': { 'bidi': False, 'code': 'pt', 'name': 'Portuguese', 'name_local': 'Portugu\xeas', }, 'pt-br': { 'bidi': False, 'code': 'pt-br', 'name': 'Brazilian Portuguese', 'name_local': 'Portugu\xeas Brasileiro', }, 'ro': { 'bidi': False, 'code': 'ro', 'name': 'Romanian', 'name_local': 'Rom\xe2n\u0103', }, 'ru': { 'bidi': False, 'code': 'ru', 'name': 'Russian', 'name_local': '\u0420\u0443\u0441\u0441\u043a\u0438\u0439', }, 'sk': { 'bidi': False, 'code': 'sk', 'name': 'Slovak', 'name_local': 'slovensk\xfd', }, 'sl': { 'bidi': False, 'code': 'sl', 'name': 'Slovenian', 'name_local': 'Sloven\u0161\u010dina', }, 'sq': { 'bidi': False, 'code': 'sq', 'name': 'Albanian', 'name_local': 'Albanian', }, 'sr': { 'bidi': False, 'code': 'sr', 'name': 'Serbian', 'name_local': '\u0441\u0440\u043f\u0441\u043a\u0438', }, 'sr-latn': { 'bidi': False, 'code': 'sr-latn', 'name': 'Serbian Latin', 'name_local': 'srpski (latinica)', }, 'sv': { 'bidi': False, 'code': 'sv', 'name': 'Swedish', 'name_local': 'Svenska', }, 'sw': { 'bidi': False, 'code': 'sw', 'name': 'Swahili', 'name_local': 'Kiswahili', }, 'ta': { 'bidi': False, 'code': 'ta', 'name': 'Tamil', 'name_local': '\u0ba4\u0bae\u0bbf\u0bb4\u0bcd', }, 'te': { 'bidi': False, 'code': 'te', 'name': 'Telugu', 'name_local': '\u0c24\u0c46\u0c32\u0c41\u0c17\u0c41', }, 'th': { 'bidi': False, 'code': 'th', 'name': 'Thai', 'name_local': 'Thai', }, 'tr': { 'bidi': False, 'code': 'tr', 'name': 'Turkish', 'name_local': 'T\xfcrk\xe7e', }, 'tt': { 'bidi': False, 'code': 'tt', 'name': 'Tatar', 'name_local': '\u0422\u0430\u0442\u0430\u0440\u0447\u0430', }, 'uk': { 'bidi': False, 'code': 'uk', 'name': 'Ukrainian', 'name_local': '\u0423\u043a\u0440\u0430\u0457\u043d\u0441\u044c\u043a\u0430', }, 'ur': { 'bidi': False, 'code': 'ur', 'name': 'Urdu', 'name_local': '\u0627\u0631\u062f\u0648', }, 'vi': { 'bidi': False, 'code': 'vi', 'name': 'Vietnamese', 'name_local': 'Vietnamese', }, 'zh-cn': { 'bidi': False, 'code': 'zh-cn', 'name': 'Simplified Chinese', 'name_local': '\u7b80\u4f53\u4e2d\u6587', }, 'zh-tw': { 'bidi': False, 'code': 'zh-tw', 'name': 'Traditional Chinese', 'name_local': '\u7e41\u9ad4\u4e2d\u6587', } }
22.745995
85
0.407143
028d10a7e14884573ed681964defc25a2dcdf1d3
8,028
py
Python
maskrcnn_benchmark/config/paths_catalog.py
lzrobots/dgmn
515476b5c6a07dcc3b7a4d2243c541377624bb33
[ "MIT" ]
54
2020-06-14T15:45:01.000Z
2022-03-26T07:25:46.000Z
maskrcnn_benchmark/config/paths_catalog.py
lzrobots/dgmn
515476b5c6a07dcc3b7a4d2243c541377624bb33
[ "MIT" ]
3
2020-06-16T09:13:13.000Z
2021-05-10T03:26:30.000Z
maskrcnn_benchmark/config/paths_catalog.py
lzrobots/dgmn
515476b5c6a07dcc3b7a4d2243c541377624bb33
[ "MIT" ]
10
2020-07-02T14:22:23.000Z
2022-03-23T02:13:41.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Centralized catalog of paths.""" import os class DatasetCatalog(object): DATA_DIR = "datasets" DATASETS = { "coco_2017_train": { "img_dir": "coco/train2017", "ann_file": "coco/annotations/instances_train2017.json" }, "coco_2017_val": { "img_dir": "coco/val2017", "ann_file": "coco/annotations/instances_val2017.json" }, "coco_2017_test": { "img_dir": "coco/test2017", "ann_file": "coco/annotations/image_info_test-dev2017.json", }, "coco_2014_train": { "img_dir": "coco/train2014", "ann_file": "coco/annotations/instances_train2014.json" }, "coco_2014_val": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/instances_val2014.json" }, "coco_2014_minival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/instances_minival2014.json" }, "coco_2014_valminusminival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/instances_valminusminival2014.json" }, "keypoints_coco_2014_train": { "img_dir": "coco/train2014", "ann_file": "coco/annotations/person_keypoints_train2014.json", }, "keypoints_coco_2014_val": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/person_keypoints_val2014.json" }, "keypoints_coco_2014_minival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/person_keypoints_minival2014.json", }, "keypoints_coco_2014_valminusminival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/person_keypoints_valminusminival2014.json", }, "voc_2007_train": { "data_dir": "voc/VOC2007", "split": "train" }, "voc_2007_train_cocostyle": { "img_dir": "voc/VOC2007/JPEGImages", "ann_file": "voc/VOC2007/Annotations/pascal_train2007.json" }, "voc_2007_val": { "data_dir": "voc/VOC2007", "split": "val" }, "voc_2007_val_cocostyle": { "img_dir": "voc/VOC2007/JPEGImages", "ann_file": "voc/VOC2007/Annotations/pascal_val2007.json" }, "voc_2007_test": { "data_dir": "voc/VOC2007", "split": "test" }, "voc_2007_test_cocostyle": { "img_dir": "voc/VOC2007/JPEGImages", "ann_file": "voc/VOC2007/Annotations/pascal_test2007.json" }, "voc_2012_train": { "data_dir": "voc/VOC2012", "split": "train" }, "voc_2012_train_cocostyle": { "img_dir": "voc/VOC2012/JPEGImages", "ann_file": "voc/VOC2012/Annotations/pascal_train2012.json" }, "voc_2012_val": { "data_dir": "voc/VOC2012", "split": "val" }, "voc_2012_val_cocostyle": { "img_dir": "voc/VOC2012/JPEGImages", "ann_file": "voc/VOC2012/Annotations/pascal_val2012.json" }, "voc_2012_test": { "data_dir": "voc/VOC2012", "split": "test" # PASCAL VOC2012 doesn't made the test annotations available, so there's no json annotation }, "cityscapes_fine_instanceonly_seg_train_cocostyle": { "img_dir": "cityscapes/images", "ann_file": "cityscapes/annotations/instancesonly_filtered_gtFine_train.json" }, "cityscapes_fine_instanceonly_seg_val_cocostyle": { "img_dir": "cityscapes/images", "ann_file": "cityscapes/annotations/instancesonly_filtered_gtFine_val.json" }, "cityscapes_fine_instanceonly_seg_test_cocostyle": { "img_dir": "cityscapes/images", "ann_file": "cityscapes/annotations/instancesonly_filtered_gtFine_test.json" } } @staticmethod def get(name): if "coco" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( root=os.path.join(data_dir, attrs["img_dir"]), ann_file=os.path.join(data_dir, attrs["ann_file"]), ) return dict( factory="COCODataset", args=args, ) elif "voc" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( data_dir=os.path.join(data_dir, attrs["data_dir"]), split=attrs["split"], ) return dict( factory="PascalVOCDataset", args=args, ) raise RuntimeError("Dataset not available: {}".format(name)) class ModelCatalog(object): S3_C2_DETECTRON_URL = "https://dl.fbaipublicfiles.com/detectron" C2_IMAGENET_MODELS = { "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", "MSRA/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl", "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", "MSRA/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl", "FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", } C2_DETECTRON_SUFFIX = "output/train/{}coco_2014_train%3A{}coco_2014_valminusminival/generalized_rcnn/model_final.pkl" C2_DETECTRON_MODELS = { "35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW", "35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I", "35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7", "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ", "35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB", "35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC", "35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT", "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI", "37129812/e2e_mask_rcnn_X-152-32x8d-FPN-IN5k_1.44x": "09_35_36.8pzTQKYK", # keypoints "37697547/e2e_keypoint_rcnn_R-50-FPN_1x": "08_42_54.kdzV35ao" } @staticmethod def get(name): if name.startswith("Caffe2Detectron/COCO"): return ModelCatalog.get_c2_detectron_12_2017_baselines(name) if name.startswith("ImageNetPretrained"): return ModelCatalog.get_c2_imagenet_pretrained(name) raise RuntimeError("model not present in the catalog {}".format(name)) @staticmethod def get_c2_imagenet_pretrained(name): prefix = ModelCatalog.S3_C2_DETECTRON_URL name = name[len("ImageNetPretrained/"):] name = ModelCatalog.C2_IMAGENET_MODELS[name] url = "/".join([prefix, name]) return url @staticmethod def get_c2_detectron_12_2017_baselines(name): # Detectron C2 models are stored following the structure # prefix/<model_id>/2012_2017_baselines/<model_name>.yaml.<signature>/suffix # we use as identifiers in the catalog Caffe2Detectron/COCO/<model_id>/<model_name> prefix = ModelCatalog.S3_C2_DETECTRON_URL dataset_tag = "keypoints_" if "keypoint" in name else "" suffix = ModelCatalog.C2_DETECTRON_SUFFIX.format(dataset_tag, dataset_tag) # remove identification prefix name = name[len("Caffe2Detectron/COCO/"):] # split in <model_id> and <model_name> model_id, model_name = name.split("/") # parsing to make it match the url address from the Caffe2 models model_name = "{}.yaml".format(model_name) signature = ModelCatalog.C2_DETECTRON_MODELS[name] unique_name = ".".join([model_name, signature]) url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix]) return url
40.341709
121
0.603886
2e8dca3fecc706ec031acbddef451f0e7ff24c87
505
py
Python
RegEx/re-search.py
tverma332/python3
544c4ec9c726c37293c8da5799f50575cc50852d
[ "MIT" ]
3
2022-03-28T09:10:08.000Z
2022-03-29T10:47:56.000Z
RegEx/re-search.py
tverma332/python3
544c4ec9c726c37293c8da5799f50575cc50852d
[ "MIT" ]
1
2022-03-27T11:52:58.000Z
2022-03-27T11:52:58.000Z
RegEx/re-search.py
tverma332/python3
544c4ec9c726c37293c8da5799f50575cc50852d
[ "MIT" ]
null
null
null
# re.search() = It looks throughout the entire string and returns the first match import re text = "This is for python3 and there are two mahor vers python2 and python3 in future python4" my_pat = r'\bpython\d?\b' match_ob = re.search(my_pat , text) if match_ob : print(f"Match from your pattern : {match_ob.group()}") print(f"Starting Index : {match_ob.start()}") print(f"Ending Index : {match_ob.end() - 1}") print(f"Length : {match_ob.end() - match_ob.start()}") else : print("No match found")
31.5625
95
0.70297