hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
364b600d3ef5acf33fe924e1359281a6bf39ef53
1,862
py
Python
psltdsim/plot/__init__.py
thadhaines/PSLTDSim
1bc598f3733c1369c164f54249e5f7757e6bf466
[ "MIT" ]
null
null
null
psltdsim/plot/__init__.py
thadhaines/PSLTDSim
1bc598f3733c1369c164f54249e5f7757e6bf466
[ "MIT" ]
null
null
null
psltdsim/plot/__init__.py
thadhaines/PSLTDSim
1bc598f3733c1369c164f54249e5f7757e6bf466
[ "MIT" ]
null
null
null
#import sys #if sys.version_info[0] > 2: # import matplotlib.pyplot as plt # The above doesn't seem to perform as desired, as a result # each function handles own import of matplotlib... from .sysPePmF import sysPePmF from .sysPePmFLoad import sysPePmFLoad from .sysPQVF import sysPQVF from .sysPLQF import sysPLQF from .sysVmVa import sysVmVa from .sysLoad import sysLoad from .sysPQgen import sysPQgen from .allGenDynamics import allGenDynamics from .oneGenDynamics import oneGenDynamics from .sysPemLQF import sysPemLQF from .BAplots01 import BAplots01 from .BAplots02 import BAplots02 from .BAplots02detail import BAplots02detail from .BAgovU import BAgovU from .ValveTravel import ValveTravel from .ValveTravel00 import ValveTravel00 from .ValveTravel01 import ValveTravel01 from .AreaLosses import AreaLosses from .SACE import SACE from .ACE2dist import ACE2dist from .sysF import sysF from .Pload import Pload from .PloadIEEE import PloadIEEE from .sysFcomp import sysFcomp from .genDynamicsComp import genDynamicsComp from .AreaRunningValveTravel import AreaRunningValveTravel from .BAALtest import BAALtest from .branchMW import branchMW from .branchMW2 import branchMW2 from .branchMW3 import branchMW3 from .AreaPLoad import AreaPLoad from .AreaPe import AreaPe from .AreaPm import AreaPm from .sysShunt import sysShunt from .branchMVAR import branchMVAR from .sysBranchMVAR import sysBranchMVAR from .sysShuntV import sysShuntV from .sysShuntMVAR import sysShuntMVAR from .sysPePmFLoad2 import sysPePmFLoad2 from .sysH import sysH from .sysVmVAR import sysVmVAR from .sysFcomp2 import sysFcomp2 from .sysPgenComp import sysPgenComp from .sysPmComp import sysPmComp from .sysPeComp import sysPeComp from .sysPe import sysPe from .areaPL import areaPL from .PloadIEEE2 import PloadIEEE2 from .genDynamicsComp2 import genDynamicsComp2
26.6
59
0.833512
5cc19a3a98ab3c6710fc4842e7e1a8b3b0add251
806
py
Python
setup.py
slinghq/sling
710b2743d43b6378c10f7c58e004257e53b164f6
[ "Apache-2.0" ]
6
2015-12-07T13:14:15.000Z
2021-05-27T10:17:35.000Z
setup.py
slinghq/sling
710b2743d43b6378c10f7c58e004257e53b164f6
[ "Apache-2.0" ]
null
null
null
setup.py
slinghq/sling
710b2743d43b6378c10f7c58e004257e53b164f6
[ "Apache-2.0" ]
3
2015-12-07T12:25:27.000Z
2015-12-07T13:14:47.000Z
from setuptools import setup with open('requirements.txt', 'r') as f: install_requires = [l.strip() for l in f.readlines()] setup( name='sling', version='0.1.1', url='https://github.com/slinghq/sling', license='Apache', author='SlingHQ', author_email='support@slinghq.com', install_requires=install_requires, packages=['sling', 'sling.core', 'sling.ext'], platforms='any', include_package_data=True, zip_safe=False, classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Environment :: Web Environment', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
27.793103
71
0.631514
bdfdea8bc5af91e69f7f82f1455e0b3563088123
17,551
py
Python
cvpods/structures/interval.py
WFDetector/WFDetection
b16d35b3a3a5de62de9e0bac83eccd21b6358b53
[ "Apache-2.0" ]
null
null
null
cvpods/structures/interval.py
WFDetector/WFDetection
b16d35b3a3a5de62de9e0bac83eccd21b6358b53
[ "Apache-2.0" ]
null
null
null
cvpods/structures/interval.py
WFDetector/WFDetection
b16d35b3a3a5de62de9e0bac83eccd21b6358b53
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Modified by WFDetection, Inc. and its affiliates. All Rights Reserved import math from enum import IntEnum, unique from typing import Iterator, List, Tuple, Union import numpy as np import torch from torchvision.ops.boxes import box_area from cvpods.layers import cat # _RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray] _RawIntervalType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray] # @unique # class BoxMode(IntEnum): # """ # Enum of different ways to represent a box. # Attributes: # XYXY_ABS: (x0, y0, x1, y1) in absolute floating points coordinates. # The coordinates in range [0, width or height]. # XYWH_ABS: (x0, y0, w, h) in absolute floating points coordinates. # XYXY_REL: (x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image. # XYWH_REL: (x0, y0, w, h) in range [0, 1]. They are relative to the size of the image. # XYWHA_ABS: (xc, yc, w, h, a) in absolute floating points coordinates. # (xc, yc) is the center of the rotated box, and the angle a is in degrees ccw. # """ # XYXY_ABS = 0 # XYWH_ABS = 1 # XYXY_REL = 2 # XYWH_REL = 3 # XYWHA_ABS = 4 # @staticmethod # def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType: # """ # Args: # box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5 # from_mode, to_mode (BoxMode) # Returns: # The converted box of the same type. # """ # if from_mode == to_mode: # return box # original_type = type(box) # is_numpy = isinstance(box, np.ndarray) # single_box = isinstance(box, (list, tuple)) # if single_box: # assert len(box) == 4 or len(box) == 5, ( # "BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor," # " where k == 4 or 5" # ) # arr = torch.tensor(box)[None, :] # else: # # avoid modifying the input box # if is_numpy: # arr = torch.from_numpy(np.asarray(box)).clone() # else: # arr = box.clone() # assert to_mode.value not in [ # BoxMode.XYXY_REL, # BoxMode.XYWH_REL, # ] and from_mode.value not in [ # BoxMode.XYXY_REL, # BoxMode.XYWH_REL, # ], "Relative mode not yet supported!" # if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS: # assert ( # arr.shape[-1] == 5 # ), "The last dimension of input shape must be 5 for XYWHA format" # original_dtype = arr.dtype # arr = arr.double() # w = arr[:, 2] # h = arr[:, 3] # a = arr[:, 4] # c = torch.abs(torch.cos(a * math.pi / 180.0)) # s = torch.abs(torch.sin(a * math.pi / 180.0)) # # This basically computes the horizontal bounding rectangle of the rotated box # new_w = c * w + s * h # new_h = c * h + s * w # # convert center to top-left corner # arr[:, 0] -= new_w / 2.0 # arr[:, 1] -= new_h / 2.0 # # bottom-right corner # arr[:, 2] = arr[:, 0] + new_w # arr[:, 3] = arr[:, 1] + new_h # arr = arr[:, :4].to(dtype=original_dtype) # elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS: # original_dtype = arr.dtype # arr = arr.double() # arr[:, 0] += arr[:, 2] / 2.0 # arr[:, 1] += arr[:, 3] / 2.0 # angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype) # arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype) # else: # if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS: # arr[:, 2] += arr[:, 0] # arr[:, 3] += arr[:, 1] # elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS: # arr[:, 2] -= arr[:, 0] # arr[:, 3] -= arr[:, 1] # else: # raise NotImplementedError( # "Conversion from BoxMode {} to {} is not supported yet".format( # from_mode, to_mode # ) # ) # if single_box: # return original_type(arr.flatten()) # if is_numpy: # return arr.numpy() # else: # return arr @unique class IntervalMode(IntEnum): """ Enum of different ways to represent a Interval. Attributes: XX_ABS: (x0, x1) in absolute floating points coordinates. The coordinates in range [0, length]. XW_ABS: (x0, w) in absolute floating points coordinates. """ XX_ABS = 0 XW_ABS = 1 @staticmethod def convert(interval: _RawIntervalType, from_mode: "IntervalMode", to_mode: "IntervalMode") -> _RawIntervalType: """ Args: Interval: can be a k-tuple, k-list or an Nxk array/tensor, where k = 2 from_mode, to_mode (IntervalMode) Returns: The converted interval of the same type. """ if from_mode == to_mode: return interval original_type = type(interval) is_numpy = isinstance(interval, np.ndarray) single_interval = isinstance(interval, (list, tuple)) if single_interval: assert len(interval) == 2, ( "IntervalMode.convert takes either a k-tuple/list or an Nxk array/tensor," " where k == 2" ) arr = torch.tensor(interval)[None, :] else: # avoid modifying the input box if is_numpy: arr = torch.from_numpy(np.asarray(interval)).clone() else: arr = interval.clone() # assert to_mode.value not in [ # IntervalMode.XX_ABS, # IntervalMode.XW_ABS, # ] and from_mode.value not in [ # IntervalMode.XX_ABS, # IntervalMode.XW_ABS, # ], "Relative mode not yet supported!" # if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS: # assert ( # arr.shape[-1] == 5 # ), "The last dimension of input shape must be 5 for XYWHA format" # original_dtype = arr.dtype # arr = arr.double() # w = arr[:, 2] # h = arr[:, 3] # a = arr[:, 4] # c = torch.abs(torch.cos(a * math.pi / 180.0)) # s = torch.abs(torch.sin(a * math.pi / 180.0)) # # This basically computes the horizontal bounding rectangle of the rotated box # new_w = c * w + s * h # new_h = c * h + s * w # # convert center to top-left corner # arr[:, 0] -= new_w / 2.0 # arr[:, 1] -= new_h / 2.0 # # bottom-right corner # arr[:, 2] = arr[:, 0] + new_w # arr[:, 3] = arr[:, 1] + new_h # arr = arr[:, :4].to(dtype=original_dtype) # elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS: # original_dtype = arr.dtype # arr = arr.double() # arr[:, 0] += arr[:, 2] / 2.0 # arr[:, 1] += arr[:, 3] / 2.0 # angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype) # arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype) # else: if to_mode == IntervalMode.XX_ABS and from_mode == IntervalMode.XW_ABS: # center_position = arr[:, 0] # length = arr[:, 1] arr[:, 0] = arr[:, 0] - arr[:, 1] / 2 #start_pos arr[:, 1] = arr[:, 0] + arr[:, 1] #end_pos elif from_mode == IntervalMode.XX_ABS and to_mode == IntervalMode.XW_ABS: arr[:, 1] -= arr[:, 0] # length arr[:, 0] = arr[:, 0] + arr[:, 1] / 2 # center_pos else: raise NotImplementedError( "Conversion from BoxMode {} to {} is not supported yet".format( from_mode, to_mode ) ) if single_interval: return original_type(arr.flatten()) if is_numpy: return arr.numpy() else: return arr class Intervales: """ This structure stores a list of intervales as a Nx2 torch.Tensor. It supports some common methods about intervales (`length`, `clip`, `nonempty`, etc), and also behaves like a Tensor (support indexing, `to(device)`, `.device`, and iteration over all intervales) Attributes: tensor(torch.Tensor): float matrix of Nx2. """ # IntervalSizeType = Union[List[int], Tuple[int, int]] IntervalSizeType = int def __init__(self, tensor: torch.Tensor): """ Args: tensor (Tensor[float]): a Nx2 matrix. Each row is (x1, x2). """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) if tensor.numel() == 0: tensor = torch.zeros(0, 4, dtype=torch.float32, device=device) assert tensor.dim() == 2 and tensor.size(-1) == 2, tensor.size() self.tensor = tensor def clone(self) -> "Intervales": """ Clone the Intervales. Returns: Intervales """ return Intervales(self.tensor.clone()) def to(self, device: str) -> "Intervales": return Intervales(self.tensor.to(device)) def length(self) -> torch.Tensor: """ Computes the length of all the intervales. Returns: torch.Tensor: a vector with lengths of each interval. """ interval = self.tensor length = interval[:, 1] - interval[:, 0] return length def clip(self, interval_size: IntervalSizeType) -> None: """ Clip (in place) the intervales by limiting x coordinates to the range [0, length] and y coordinates to the range [0, length]. Args: interval_size (): The clipping interval's size. """ assert torch.isfinite(self.tensor).all(), "Box tensor contains infinite or NaN!" w = interval_size self.tensor[:, 0].clamp_(min=0, max=w) self.tensor[:, 1].clamp_(min=0, max=w) def nonempty(self, threshold: int = 0) -> torch.Tensor: """ Find intervales that are non-empty. A interval is considered empty, if its length is no larger than threshold. Returns: Tensor: a binary vector which represents whether each interval is empty (False) or non-empty (True). """ interval = self.tensor lengths = interval[:, 1] - interval[:, 0] keep = lengths > threshold return keep def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "Intervales": """ Returns: Intervales: Create a new :class:`Intervales` by indexing. The following usage are allowed: 1. `new_intervales = intervales[3]`: return a `intervales` which contains only one interval. 2. `new_intervales = intervales[2:10]`: return a slice of intervales. 3. `new_intervales = intervales[vector]`, where vector is a torch.BoolTensor with `length = len(intervales)`. Nonzero elements in the vector will be selected. Note that the returned Intervales might share storage with this Intervales, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return Intervales(self.tensor[item].view(1, -1)) b = self.tensor[item] assert b.dim() == 2, "Indexing on Boxes with {} failed to return a matrix!".format(item) return Intervales(b) def __len__(self) -> int: return self.tensor.shape[0] def __repr__(self) -> str: return "Intervales(" + str(self.tensor) + ")" def inside_Interval(self, interval_size: IntervalSizeType, boundary_threshold: int = 0) -> torch.Tensor: """ Args: interval_size (length): Size of the reference interval. boundary_threshold (int): Intervales that extend beyond the reference interval boundary by more than boundary_threshold are considered "outside". Returns: a binary vector, indicating whether each interval is inside the reference interval. """ length = interval_size inds_inside = ( (self.tensor[..., 0] >= -boundary_threshold) & (self.tensor[..., 1] < length + boundary_threshold) ) return inds_inside def get_centers(self) -> torch.Tensor: """ Returns: The interval centers in a Nx1 array of (x). """ return (self.tensor[:, 1] + self.tensor[:, 0]) / 2 def scale(self, scale: float) -> None: """ Scale the interval with scaling factors """ self.tensor[:, :] *= scale # self.tensor[:, 1::2] *= scale_y @classmethod def cat(cls, intervales_list: List["Intervales"]) -> "Intervales": """ Concatenates a list of Intervales into a single Intervales Arguments: intervales_list (list[Intervales]) Returns: Intervales: the concatenated Boxes """ assert isinstance(intervales_list, (list, tuple)) assert all(isinstance(interval, Intervales) for interval in intervales_list) if len(intervales_list) == 0: return cls(torch.empty(0)) cat_intervales = type(intervales_list[0])(cat([b.tensor for b in intervales_list], dim=0)) return cat_intervales @property def device(self) -> torch.device: return self.tensor.device def __iter__(self) -> Iterator[torch.Tensor]: """ Yield a interval as a Tensor of shape (2,) at a time. """ yield from self.tensor # added for DETR # TODO @wangfeng02, use BoxMode instead and provide a better func # def box_cxcywh_to_xyxy(x): # x_c, y_c, w, h = x.unbind(-1) # b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] # return torch.stack(b, dim=-1) def interval_cxw_to_xx(x): x_c, w= x.unbind(-1) b = [(x_c - 0.5 * w), (x_c + 0.5 * w)] return torch.stack(b, dim=-1) # def box_xyxy_to_cxcywh(x): # x0, y0, x1, y1 = x.unbind(-1) # b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] # return torch.stack(b, dim=-1) def interval_xx_to_cxcyw(x): x0, x1 = x.unbind(-1) b = [(x0 + x1) / 2, (x1 - x0)] return torch.stack(b, dim=-1) def interval_length(intervales): """ Computes the area of a set of bounding intervales, which are specified by its (x1,x2) coordinates. Arguments: intervales (Tensor[N, 2]): intervales for which the area will be computed. They are expected to be in (x1, x2) format Returns: length (Tensor[N]): length for each interval """ return intervales[:, 1] - intervales[:, 0] def generalized_interval_iou_trace(intervales1, intervales2): """ Generalized IoU from https://giou.stanford.edu/ The intervales should be in [x0, x1] format Returns a [N, M] pairwise matrix, where N = len(intervales1) and M = len(intervales2) """ # degenerate intervales gives inf / nan results # so do an early check assert (intervales1[:, 1] >= intervales1[:, 0]).all() assert (intervales2[:, 1] >= intervales2[:, 0]).all() # vallina interval iou # modified from torchvision to also return the union length1 = interval_length(intervales1) length2 = interval_area(intervales2) l = torch.max(intervales1[:, None, 0], intervales2[:, 0]) # [N,M] r = torch.min(intervales1[:, None, 1], intervales2[:, 1]) # [N,M] w = (r - l).clamp(min=0) # [N,M] inter = w # [N,M] union = length1[:, None] + length2 - inter iou = inter / union # iou, union = box_iou(boxes1, boxes2) l2 = torch.min(intervales1[:, None, 0], intervales2[:, 0]) r2 = torch.max(intervales1[:, None, 1], intervales2[:, 1]) w2 = (r2 - l2).clamp(min=0) # [N,M] # area = wh[:, :, 0] * wh[:, :, 1] return iou - (w2 - union) / w2 def masks_to_boxes(masks): """ Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = masks * x.unsqueeze(0) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = masks * y.unsqueeze(0) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1)
35.172345
116
0.554555
71bdc6deee698f930927648a21778017faa54c8a
6,349
py
Python
geotrek/api/mobile/serializers/trekking.py
GeotrekCE/Geotrek-admin
efcc7a6c2ccb6aee6b299b22f33f236dd8a23d91
[ "BSD-2-Clause" ]
50
2016-10-19T23:01:21.000Z
2022-03-28T08:28:34.000Z
geotrek/api/mobile/serializers/trekking.py
GeotrekCE/Geotrek-admin
efcc7a6c2ccb6aee6b299b22f33f236dd8a23d91
[ "BSD-2-Clause" ]
1,422
2016-10-27T10:39:40.000Z
2022-03-31T13:37:10.000Z
geotrek/api/mobile/serializers/trekking.py
GeotrekCE/Geotrek-admin
efcc7a6c2ccb6aee6b299b22f33f236dd8a23d91
[ "BSD-2-Clause" ]
46
2016-10-27T10:59:10.000Z
2022-03-22T15:55:56.000Z
import os from django.conf import settings from rest_framework import serializers from rest_framework_gis import serializers as geo_serializers from geotrek.api.mobile.serializers.tourism import InformationDeskSerializer from geotrek.api.v2.functions import Transform, Length, StartPoint, EndPoint from geotrek.zoning.models import City, District if 'geotrek.trekking' in settings.INSTALLED_APPS: from geotrek.trekking import models as trekking_models class POIListSerializer(geo_serializers.GeoFeatureModelSerializer): pictures = serializers.SerializerMethodField(read_only=True) geometry = geo_serializers.GeometryField(read_only=True, precision=7, source='geom2d_transformed') type = serializers.ReadOnlyField(source='type.pk') def get_pictures(self, obj): if not obj.resized_pictures: return [] root_pk = self.context.get('root_pk') or obj.pk return obj.serializable_pictures_mobile(root_pk) class Meta: model = trekking_models.POI id_field = 'pk' geo_field = 'geometry' fields = ( 'id', 'pk', 'pictures', 'name', 'description', 'type', 'geometry', ) class TrekBaseSerializer(geo_serializers.GeoFeatureModelSerializer): cities = serializers.SerializerMethodField(read_only=True) districts = serializers.SerializerMethodField(read_only=True) length = serializers.SerializerMethodField(read_only=True) departure_city = serializers.SerializerMethodField(read_only=True) def get_cities(self, obj): qs = City.objects.filter(published=True) cities = qs.filter(geom__intersects=(obj.geom, 0)) return cities.values_list('code', flat=True) def get_departure_city(self, obj): qs = City.objects.filter(published=True) if obj.start_point: city = qs.filter(geom__covers=(obj.start_point, 0)).first() if city: return city.code return None def get_length(self, obj): return round(obj.length_2d_m, 1) def get_districts(self, obj): qs = District.objects.filter(published=True) districts = qs.filter(geom__intersects=(obj.geom, 0)) return [district.pk for district in districts] class Meta: model = trekking_models.Trek id_field = 'pk' geo_field = 'geometry' class TrekListSerializer(TrekBaseSerializer): first_picture = serializers.SerializerMethodField(read_only=True) geometry = geo_serializers.GeometryField(read_only=True, precision=7, source='start_point', ) def get_first_picture(self, obj): root_pk = self.context.get('root_pk') or obj.pk return obj.resized_picture_mobile(root_pk) class Meta(TrekBaseSerializer.Meta): fields = ( 'id', 'pk', 'first_picture', 'name', 'departure', 'accessibilities', 'route', 'departure_city', 'difficulty', 'practice', 'themes', 'length', 'geometry', 'districts', 'cities', 'duration', 'ascent', 'descent', ) class TrekDetailSerializer(TrekBaseSerializer): geometry = geo_serializers.GeometryField(read_only=True, precision=7, source='geom2d_transformed') pictures = serializers.SerializerMethodField(read_only=True) arrival_city = serializers.SerializerMethodField(read_only=True) information_desks = serializers.SerializerMethodField() parking_location = serializers.SerializerMethodField(read_only=True) profile = serializers.SerializerMethodField(read_only=True) points_reference = serializers.SerializerMethodField() children = serializers.SerializerMethodField() def get_pictures(self, obj): root_pk = self.context.get('root_pk') or obj.pk return obj.serializable_pictures_mobile(root_pk) def get_children(self, obj): children = obj.children.all().annotate(length_2d_m=Length('geom'), start_point=Transform(StartPoint('geom'), settings.API_SRID), end_point=Transform(EndPoint('geom'), settings.API_SRID)) serializer_children = TrekListSerializer(children, many=True, context={'root_pk': obj.pk}) return serializer_children.data def get_points_reference(self, obj): if not obj.points_reference: return None return obj.points_reference.transform(settings.API_SRID, clone=True).coords def get_parking_location(self, obj): if not obj.parking_location: return None return obj.parking_location.transform(settings.API_SRID, clone=True).coords def get_arrival_city(self, obj): qs = City.objects.all() if obj.end_point: city = qs.filter(geom__covers=(obj.end_point, 0)).first() if city: return city.code return None def get_information_desks(self, obj): return [ InformationDeskSerializer(information_desk, context={'root_pk': obj.pk}).data for information_desk in obj.information_desks.all() ] def get_profile(self, obj): root_pk = self.context.get('root_pk') or obj.pk return os.path.join("/", str(root_pk), settings.MEDIA_URL.lstrip('/'), obj.get_elevation_chart_url_png()) class Meta(TrekBaseSerializer.Meta): auto_bbox = True fields = ( 'id', 'pk', 'name', 'slug', 'accessibilities', 'description_teaser', 'cities', 'profile', 'description', 'departure', 'arrival', 'duration', 'access', 'advised_parking', 'advice', 'difficulty', 'length', 'ascent', 'descent', 'route', 'labels', 'parking_location', 'min_elevation', 'max_elevation', 'themes', 'networks', 'practice', 'difficulty', 'geometry', 'pictures', 'information_desks', 'cities', 'departure_city', 'arrival_city', 'points_reference', 'districts', 'ambiance', 'children', )
46.007246
118
0.633643
a7fb9ab62109a0d2ace16fc3c2987865620fb899
28,596
py
Python
dashboard/dashboard/add_point.py
ravitejavalluri/catapult
246a39a82c2213d913a96fff020a263838dc76e6
[ "BSD-3-Clause" ]
null
null
null
dashboard/dashboard/add_point.py
ravitejavalluri/catapult
246a39a82c2213d913a96fff020a263838dc76e6
[ "BSD-3-Clause" ]
null
null
null
dashboard/dashboard/add_point.py
ravitejavalluri/catapult
246a39a82c2213d913a96fff020a263838dc76e6
[ "BSD-3-Clause" ]
1
2020-07-24T05:13:01.000Z
2020-07-24T05:13:01.000Z
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """URL endpoint to allow Buildbot slaves to post data to the dashboard.""" import copy import json import logging import math import re from google.appengine.api import datastore_errors from google.appengine.api import taskqueue from google.appengine.ext import ndb from dashboard import math_utils from dashboard import post_data_handler from dashboard.common import datastore_hooks from dashboard.models import graph_data _TASK_QUEUE_NAME = 'new-points-queue' # Number of rows to process per task queue task. This limits the task size # and execution time (Limits: 100KB object size and 10 minutes execution time). _TASK_QUEUE_SIZE = 32 # Max length for a Row property name. _MAX_COLUMN_NAME_LENGTH = 25 # Maximum length of a value for a string property. _STRING_COLUMN_MAX_LENGTH = 400 # Maximum number of properties for a Row. _MAX_NUM_COLUMNS = 30 # Maximum length for a test path. This limit is required because the test path # used as the string ID for TestContainer (the parent in the datastore for Row # entities), and datastore imposes a maximum string ID length. _MAX_TEST_PATH_LENGTH = 500 class BadRequestError(Exception): """An error indicating that a 400 response status should be returned.""" pass class AddPointHandler(post_data_handler.PostDataHandler): """URL endpoint to post data to the dashboard.""" def post(self): """Validates data parameter and add task to queue to process points. The row data comes from a "data" parameter, which is a JSON encoding of a list of dictionaries, each of which represents one performance result (one point in a graph) and associated data. [ { "master": "ChromiumPerf", "bot": "xp-release-dual-core", "test": "dromaeo/dom/modify", "revision": 123456789, "value": 24.66, "error": 2.33, "units": "ms", "supplemental_columns": { "d_median": 24234.12, "d_mean": 23.553, "r_webkit": 423340, ... }, ... }, ... ] In general, the required fields are "master", "bot", "test" (which together form the test path which identifies the series that this point belongs to), and "revision" and "value", which are the X and Y values for the point. This API also supports the Dashboard JSON v1.0 format (go/telemetry-json), the first producer of which is Telemetry. Telemetry provides lightweight serialization of values it produces, as JSON. If a dashboard JSON object is passed, it will be a single dict rather than a list, with the test, value, error, and units fields replaced by a chart_data field containing a Chart JSON dict (see design doc, and example below). Dashboard JSON v1.0 is processed by converting it into rows (which can be viewed as Dashboard JSON v0). { "master": "ChromiumPerf", <other row fields>, "chart_data": { "foo": { "bar": { "type": "scalar", "name": "foo.bar", "units": "ms", "value": 4.2, }, "summary": { "type": "list_of_scalar_values", "name": "foo", "units": "ms", "values": [4.2, 5.7, 6.8], "std": 1.30512, }, }, } Request parameters: data: JSON encoding of a list of dictionaries. Outputs: Empty 200 response with if successful, 200 response with warning message if optional data is invalid, 403 response with error message if sender IP is not white-listed, 400 response with error message if required data is invalid. 500 with error message otherwise. """ datastore_hooks.SetPrivilegedRequest() if not self._CheckIpAgainstWhitelist(): # TODO(qyearsley): Add test coverage. See catapult:#1346. return data_str = self.request.get('data') if not data_str: # TODO(qyearsley): Add test coverage. See catapult:#1346. self.ReportError('Missing "data" parameter.', status=400) return self.AddData(data_str) def AddData(self, data_str): try: data = json.loads(data_str) except ValueError: self.ReportError('Invalid JSON string.', status=400) return logging.info('Received data: %s', data) try: if type(data) is dict: if data.get('chart_data'): data = _DashboardJsonToRawRows(data) if not data: return # No data to add, bail out. else: self.ReportError( 'Data should be a list of rows or a Dashboard JSON v1.0 dict.', status=400) return if data: # We only need to validate the row ID for one point, since all points # being handled by this upload should have the same row ID. test_map = _ConstructTestPathMap(data) _ValidateRowId(data[0], test_map) for row_dict in data: _ValidateRowDict(row_dict) _AddTasks(data) except BadRequestError as error: # If any of the data was invalid, abort immediately and return an error. self.ReportError(error.message, status=400) def _DashboardJsonToRawRows(dash_json_dict): """Formats a Dashboard JSON dict as a list of row dicts. For the dashboard to begin accepting the Telemetry Dashboard JSON format as per go/telemetry-json, this function chunks a Dashboard JSON literal into rows and passes the resulting list to _AddTasks. Args: dash_json_dict: A dashboard JSON v1.0 dict. Returns: A list of dicts, each of which represents a point. Raises: AssertionError: The given argument wasn't a dict. BadRequestError: The content of the input wasn't valid. """ assert type(dash_json_dict) is dict # A Dashboard JSON dict should at least have all charts coming from the # same master, bot and rev. It can contain multiple charts, however. if not dash_json_dict.get('master'): raise BadRequestError('No master name given.') if not dash_json_dict.get('bot'): raise BadRequestError('No bot name given.') if not dash_json_dict.get('point_id'): raise BadRequestError('No point_id number given.') if not dash_json_dict.get('chart_data'): raise BadRequestError('No chart data given.') test_suite_name = _TestSuiteName(dash_json_dict) chart_data = dash_json_dict.get('chart_data', {}) charts = chart_data.get('charts', {}) if not charts: return [] # No charts implies no data to add. # Links to about:tracing traces are listed under 'trace'; if they # exist copy them to a separate dictionary and delete from the chartjson # so that we don't try to process them as data points. tracing_links = None if 'trace' in charts: tracing_links = charts['trace'].copy() del charts['trace'] row_template = _MakeRowTemplate(dash_json_dict) benchmark_description = chart_data.get('benchmark_description', '') trace_rerun_options = dict(chart_data.get('trace_rerun_options', [])) is_ref = bool(dash_json_dict.get('is_ref')) rows = [] for chart in charts: for trace in charts[chart]: # Need to do a deep copy here so we don't copy a_tracing_uri data. row = copy.deepcopy(row_template) specific_vals = _FlattenTrace( test_suite_name, chart, trace, charts[chart][trace], is_ref, tracing_links, benchmark_description) # Telemetry may validly produce rows that represent a value of NaN. To # avoid getting into messy situations with alerts, we do not add such # rows to be processed. if not (math.isnan(specific_vals['value']) or math.isnan(specific_vals['error'])): if specific_vals['tracing_uri']: row['supplemental_columns']['a_tracing_uri'] = specific_vals[ 'tracing_uri'] if trace_rerun_options: row['supplemental_columns']['a_trace_rerun_options'] = ( trace_rerun_options) row.update(specific_vals) rows.append(row) return rows def _TestSuiteName(dash_json_dict): """Extracts a test suite name from Dashboard JSON. The dashboard JSON may contain a field "test_suite_name". If this is not present or it is None, the dashboard will fall back to using "benchmark_name" in the "chart_data" dict. """ if dash_json_dict.get('test_suite_name'): return dash_json_dict['test_suite_name'] try: return dash_json_dict['chart_data']['benchmark_name'] except KeyError as e: raise BadRequestError('Could not find test suite name. ' + e.message) def _AddTasks(data): """Puts tasks on queue for adding data. Args: data: A list of dictionaries, each of which represents one point. """ task_list = [] for data_sublist in _Chunk(data, _TASK_QUEUE_SIZE): task_list.append(taskqueue.Task( url='/add_point_queue', params={'data': json.dumps(data_sublist)})) queue = taskqueue.Queue(_TASK_QUEUE_NAME) for task_sublist in _Chunk(task_list, taskqueue.MAX_TASKS_PER_ADD): # Calling get_result waits for all tasks to be added. It's possible that # this is different, and maybe faster, than just calling queue.add. queue.add_async(task_sublist).get_result() def _Chunk(items, chunk_size): """Breaks a long list into sub-lists of a particular size.""" chunks = [] for i in range(0, len(items), chunk_size): chunks.append(items[i:i + chunk_size]) return chunks def _MakeRowTemplate(dash_json_dict): """Produces a template for rows created from a Dashboard JSON v1.0 dict. _DashboardJsonToRawRows adds metadata fields to every row that it creates. These include things like master, bot, point ID, versions, and other supplementary data. This method produces a dict containing this metadata to which row-specific information (like value and error) can be added. Some metadata needs to be transformed to conform to the v0 format, and this method is also responsible for that transformation. Some validation is deferred until after the input is converted to a list of row dicts, since revision format correctness is checked on a per-point basis. Args: dash_json_dict: A dashboard JSON v1.0 dict. Returns: A dict containing data to include in each row dict that is created from |dash_json_dict|. """ row_template = dash_json_dict.copy() del row_template['chart_data'] del row_template['point_id'] row_template['revision'] = dash_json_dict['point_id'] annotations = row_template['supplemental'] versions = row_template['versions'] del row_template['supplemental'] del row_template['versions'] row_template['supplemental_columns'] = {} supplemental = row_template['supplemental_columns'] for annotation in annotations: supplemental['a_' + annotation] = annotations[annotation] for version in versions: supplemental['r_' + version] = versions[version] return row_template def _FlattenTrace(test_suite_name, chart_name, trace_name, trace, is_ref=False, tracing_links=None, benchmark_description=''): """Takes a trace dict from dashboard JSON and readies it for display. Traces can be either scalars or lists; if scalar we take the value directly; if list we average the values and compute their standard deviation. We also extract fields that are normally part of v0 row dicts that are uploaded using add_point but are actually part of traces in the v1.0 format. Args: test_suite_name: The name of the test suite (benchmark). chart_name: The name of the chart to which this trace belongs. trace_name: The name of the passed trace. trace: A trace dict extracted from a dashboard JSON chart. is_ref: A boolean which indicates whether this trace comes from a reference build. tracing_links: A dictionary mapping trace names to about:tracing trace urls in cloud storage benchmark_description: A string documenting the benchmark suite to which this trace belongs. Returns: A dict containing units, value, and error for this trace. Raises: BadRequestError: The data wasn't valid. """ if '@@' in chart_name: tir_label, chart_name = chart_name.split('@@') chart_name = chart_name + '/' + tir_label value, error = _ExtractValueAndError(trace) # If there is a link to an about:tracing trace in cloud storage for this # test trace_name, cache it. tracing_uri = None if (tracing_links and trace_name in tracing_links and 'cloud_url' in tracing_links[trace_name]): tracing_uri = tracing_links[trace_name]['cloud_url'].replace('\\/', '/') trace_name = _EscapeName(trace_name) if trace_name == 'summary': subtest_name = chart_name else: subtest_name = chart_name + '/' + trace_name name = test_suite_name + '/' + subtest_name if trace_name == 'summary' and is_ref: name += '/ref' elif trace_name != 'summary' and is_ref: name += '_ref' row_dict = { 'test': name, 'value': value, 'error': error, 'units': trace['units'], 'tracing_uri': tracing_uri, 'benchmark_description': benchmark_description, } if 'improvement_direction' in trace: improvement_direction_str = trace['improvement_direction'] if improvement_direction_str is None: raise BadRequestError('improvement_direction must not be None') row_dict['higher_is_better'] = _ImprovementDirectionToHigherIsBetter( improvement_direction_str) return row_dict def _ExtractValueAndError(trace): """Returns the value and measure of error from a chartjson trace dict. Args: trace: A dict that has one "result" from a performance test, e.g. one "value" in a Telemetry test, with the keys "trace_type", "value", etc. Returns: A pair (value, error) where |value| is a float and |error| is some measure of variance used to show error bars; |error| could be None. Raises: BadRequestError: Data format was invalid. """ trace_type = trace.get('type') if trace_type == 'scalar': value = trace.get('value') if value is None and trace.get('none_value_reason'): return float('nan'), 0 try: return float(value), 0 except: raise BadRequestError('Expected scalar value, got: %r' % value) if trace_type == 'list_of_scalar_values': values = trace.get('values') if not isinstance(values, list) and values is not None: # Something else (such as a single scalar, or string) was given. raise BadRequestError('Expected list of scalar values, got: %r' % values) if not values or None in values: # None was included or values is None; this is not an error if there # is a reason. if trace.get('none_value_reason'): return float('nan'), float('nan') raise BadRequestError('Expected list of scalar values, got: %r' % values) if not all(_IsNumber(v) for v in values): raise BadRequestError('Non-number found in values list: %r' % values) value = math_utils.Mean(values) std = trace.get('std') if std is not None: error = std else: error = math_utils.StandardDeviation(values) return value, error if trace_type == 'histogram': return _GeomMeanAndStdDevFromHistogram(trace) raise BadRequestError('Invalid value type in chart object: %r' % trace_type) def _IsNumber(v): return isinstance(v, float) or isinstance(v, int) or isinstance(v, long) def _EscapeName(name): """Escapes a trace name so it can be stored in a row. Args: name: A string representing a name. Returns: An escaped version of the name. """ return re.sub(r'[\:|=/#&,]', '_', name) def _GeomMeanAndStdDevFromHistogram(histogram): """Generates the geom. mean and std. dev. for a histogram. A histogram is a collection of numerical buckets with associated counts; a bucket can either represent a number of instances of a single value ('low'), or from within a range of values (in which case 'high' will specify the upper bound). We compute the statistics by treating the histogram analogously to a list of individual values, where the counts tell us how many of each value there are. Args: histogram: A histogram dict with a list 'buckets' of buckets. Returns: The geometric mean and standard deviation of the given histogram. """ # Note: This code comes originally from # build/scripts/common/chromium_utils.py and was used initially for # processing histogram results on the buildbot side previously. if 'buckets' not in histogram: # TODO(qyearsley): Add test coverage. See catapult:#1346. return 0.0, 0.0 count = 0 sum_of_logs = 0 for bucket in histogram['buckets']: if 'high' in bucket: bucket['mean'] = (bucket['low'] + bucket['high']) / 2.0 else: # TODO(qyearsley): Add test coverage. See catapult:#1346. bucket['mean'] = bucket['low'] if bucket['mean'] > 0: sum_of_logs += math.log(bucket['mean']) * bucket['count'] count += bucket['count'] if count == 0: return 0.0, 0.0 sum_of_squares = 0 geom_mean = math.exp(sum_of_logs / count) for bucket in histogram['buckets']: if bucket['mean'] > 0: sum_of_squares += (bucket['mean'] - geom_mean) ** 2 * bucket['count'] return geom_mean, math.sqrt(sum_of_squares / count) def _ImprovementDirectionToHigherIsBetter(improvement_direction_str): """Converts an improvement direction string to a higher_is_better boolean. Args: improvement_direction_str: a string, either 'up' or 'down'. Returns: A boolean expressing the appropriate higher_is_better value. Raises: BadRequestError: if improvement_direction_str is invalid. """ # If improvement_direction is provided, we want to use it. Otherwise, by not # providing it we'll fall back to unit-info.json # TODO(eakuefner): Fail instead of falling back after fixing crbug.com/459450. if improvement_direction_str == 'up': return True elif improvement_direction_str == 'down': return False else: raise BadRequestError('Invalid improvement direction string: ' + improvement_direction_str) def _ConstructTestPathMap(row_dicts): """Makes a mapping from test paths to last added revision.""" last_added_revision_keys = [] for row in row_dicts: if not ('master' in row and 'bot' in row and 'test' in row): continue path = '%s/%s/%s' % (row['master'], row['bot'], row['test'].strip('/')) if len(path) > _MAX_TEST_PATH_LENGTH: continue last_added_revision_keys.append(ndb.Key('LastAddedRevision', path)) try: last_added_revision_entities = ndb.get_multi(last_added_revision_keys) except datastore_errors.BadRequestError: # TODO(qyearsley): Add test coverage. See catapult:#1346. logging.warn('Datastore BadRequestError when getting %s', repr(last_added_revision_keys)) return {} return {r.key.string_id(): r.revision for r in last_added_revision_entities if r is not None} def _ValidateRowDict(row): """Checks all fields in the input dictionary. Args: row: A dictionary which represents one point. Raises: BadRequestError: The input was not valid. """ required_fields = ['master', 'bot', 'test'] for field in required_fields: if field not in row: raise BadRequestError('No "%s" field in row dict.' % field) _ValidateMasterBotTest(row['master'], row['bot'], row['test']) GetAndValidateRowProperties(row) def _ValidateMasterBotTest(master, bot, test): """Validates the master, bot, and test properties of a row dict.""" # Trailing and leading slashes in the test name are ignored. # The test name must consist of at least a test suite plus sub-test. test = test.strip('/') if '/' not in test: raise BadRequestError('Test name must have more than one part.') if len(test.split('/')) > graph_data.MAX_TEST_ANCESTORS: raise BadRequestError('Invalid test name: %s' % test) # The master and bot names have just one part. if '/' in master or '/' in bot: raise BadRequestError('Illegal slash in master or bot name.') _ValidateTestPath('%s/%s/%s' % (master, bot, test)) def _ValidateTestPath(test_path): """Checks whether all the parts of the test path are valid.""" # A test with a test path length over the max key length shouldn't be # created, since the test path is used in TestContainer keys. if len(test_path) > _MAX_TEST_PATH_LENGTH: raise BadRequestError('Test path too long: %s' % test_path) # Stars are reserved for test path patterns, so they can't be used in names. if '*' in test_path: raise BadRequestError('Illegal asterisk in test name.') for name in test_path.split('/'): _ValidateTestPathPartName(name) def _ValidateTestPathPartName(name): """Checks whether a Master, Bot or TestMetadata name is OK.""" # NDB Datastore doesn't allow key names to start and with "__" and "__". if name.startswith('__') and name.endswith('__'): raise BadRequestError( 'Invalid name: "%s". Names cannot start and end with "__".' % name) def _ValidateRowId(row_dict, test_map): """Checks whether the ID for a Row is OK. Args: row_dict: A dictionary with new point properties, including "revision". test_map: A dictionary mapping test paths to the last previously added revision for each test. Raises: BadRequestError: The revision is not acceptable for some reason. """ row_id = GetAndValidateRowId(row_dict) # Get the last added revision number for this test. master, bot, test = row_dict['master'], row_dict['bot'], row_dict['test'] test_path = '%s/%s/%s' % (master, bot, test) last_row_id = test_map.get(test_path) if not last_row_id: # Could be first point in test. logging.warning('Test %s has no last added revision entry.', test_path) return allow_jump = ( master.endswith('Internal') or (master.endswith('QA') and bot.startswith('release-tests-'))) if not _IsAcceptableRowId(row_id, last_row_id, allow_jump=allow_jump): raise BadRequestError( 'Invalid ID (revision) %d; compared to previous ID %s, it was larger ' 'or smaller by too much.' % (row_id, last_row_id)) def _IsAcceptableRowId(row_id, last_row_id, allow_jump=False): """Checks whether the given row id (aka revision) is not too large or small. For each data series (i.e. TestMetadata entity), we assume that row IDs are monotonically increasing. On a given chart, points are sorted by these row IDs. This way, points can arrive out of order but still be shown correctly in the chart. However, sometimes a bot might start to use a different *type* of row ID; for example it might change from revision numbers or build numbers to timestamps, or from timestamps to build numbers. This causes a lot of problems, including points being put out of order. If a sender of data actually wants to switch to a different type of row ID, it would be much cleaner for them to start sending it under a new chart name. Args: row_id: The proposed Row entity id (usually sent as "revision") last_row_id: The previous Row id, or None if there were none previous. Returns: True if acceptable, False otherwise. """ if last_row_id is None: # TODO(qyearsley): Add test coverage. See catapult:#1346. return True if row_id <= 0: # TODO(qyearsley): Add test coverage. See catapult:#1346. return False # Too big of a decrease. if row_id < 0.5 * last_row_id: return False # TODO(perezju): We temporarily allow for a big jump on special cased bots, # while we migrate from using commit position to timestamp as row id. # The jump is only allowed into a timestamp falling within Aug-Dec 2016. # This special casing should be removed after finishing the migration. if allow_jump and 1470009600 < row_id < 1483228800: return True # Too big of an increase. if row_id > 2 * last_row_id: return False return True def GetAndValidateRowId(row_dict): """Returns the integer ID for a new Row. This method is also responsible for validating the input fields related to making the new row ID. Args: row_dict: A dictionary obtained from the input JSON. Returns: An integer row ID. Raises: BadRequestError: The input wasn't formatted properly. """ if 'revision' not in row_dict: raise BadRequestError('Required field "revision" missing.') try: return int(row_dict['revision']) except (ValueError, TypeError): raise BadRequestError('Bad value for "revision", should be numerical.') def GetAndValidateRowProperties(row): """From the object received, make a dictionary of properties for a Row. This includes the default "value" and "error" columns as well as all supplemental columns, but it doesn't include "revision", and it doesn't include input fields that are properties of the parent TestMetadata, such as "units". This method is responsible for validating all properties that are to be properties of the new Row. Args: row: A dictionary obtained from the input JSON. Returns: A dictionary of the properties and property values to set when creating a Row. This will include "value" and "error" as well as all supplemental columns. Raises: BadRequestError: The properties weren't formatted correctly. """ columns = {} # Value and error must be floating point numbers. if 'value' not in row: raise BadRequestError('No "value" given.') try: columns['value'] = float(row['value']) except (ValueError, TypeError): raise BadRequestError('Bad value for "value", should be numerical.') if 'error' in row: try: error = float(row['error']) columns['error'] = error except (ValueError, TypeError): logging.warn('Bad value for "error".') columns.update(_GetSupplementalColumns(row)) return columns def _GetSupplementalColumns(row): """Gets a dict of supplemental columns. If any columns are invalid, a warning is logged and they just aren't included, but no exception is raised. Individual rows may specify up to _MAX_NUM_COLUMNS extra data, revision, and annotation columns. These columns must follow formatting rules for their type. Invalid columns are dropped with an error log, but the valid data will still be graphed. Args: row: A dict, possibly with the key "supplemental_columns", the value of which should be a dict. Returns: A dict of valid supplemental columns. """ columns = {} for (name, value) in row.get('supplemental_columns', {}).iteritems(): # Don't allow too many columns if len(columns) == _MAX_NUM_COLUMNS: logging.warn('Too many columns, some being dropped.') break value = _CheckSupplementalColumn(name, value) if value: columns[name] = value return columns def _CheckSupplementalColumn(name, value): """Returns a possibly modified value for a supplemental column, or None.""" # Check length of column name. name = str(name) if len(name) > _MAX_COLUMN_NAME_LENGTH: logging.warn('Supplemental column name too long.') return None # The column name has a prefix which indicates type of value. if name[:2] not in ('d_', 'r_', 'a_'): logging.warn('Bad column name "%s", invalid prefix.', name) return None # The d_ prefix means "data column", intended to hold numbers. if name.startswith('d_'): try: value = float(value) except (ValueError, TypeError): logging.warn('Bad value for column "%s", should be numerical.', name) return None # The r_ prefix means "revision", and the value should look like a number, # a version number, or a git commit hash. if name.startswith('r_'): revision_patterns = [ r'^\d+$', r'^\d+\.\d+\.\d+\.\d+$', r'^[A-Fa-f0-9]{40}$', ] if (not value or len(str(value)) > _STRING_COLUMN_MAX_LENGTH or not any(re.match(p, str(value)) for p in revision_patterns)): logging.warn('Bad value for revision column "%s".', name) return None value = str(value) if name.startswith('a_'): # Annotation column, should be a short string. if len(str(value)) > _STRING_COLUMN_MAX_LENGTH: logging.warn('Value for "%s" too long, max length is %d.', name, _STRING_COLUMN_MAX_LENGTH) return None return value
34.328932
80
0.693279
f3221580408becc6230fc52b93ac6a7f52761013
558
py
Python
December-14/python_Nilesh2000.py
Nilesh2000/A-December-of-Algorithms-2019
da92ef23b473d083fea48f102fd46646b604342a
[ "MIT" ]
null
null
null
December-14/python_Nilesh2000.py
Nilesh2000/A-December-of-Algorithms-2019
da92ef23b473d083fea48f102fd46646b604342a
[ "MIT" ]
null
null
null
December-14/python_Nilesh2000.py
Nilesh2000/A-December-of-Algorithms-2019
da92ef23b473d083fea48f102fd46646b604342a
[ "MIT" ]
null
null
null
# Author - Nilesh D # December 14 - A Wordplay with Vowels and Consonants def subString(s, n): vowel = ['a', 'e', 'i', 'o', 'u'] scoreA = scoreB = 0 for i in range(n): for len in range(i+1, n+1): subsStr = s[i: len] if subsStr[0] in vowel: scoreA += 1 else: scoreB += 1 if scoreA > scoreB: print("The winner is A with", scoreA, "points") else: print("The winner is B with", scoreB, "points.") s = input("Enter string: ") subString(s, len(s))
24.26087
56
0.507168
432acc41c7f52ec3d4c5e581a080ea3b9dec9355
24,548
py
Python
as3/parser.py
eigenein/python-as3
323b58fd19359842332a1b045857f793cd124aa3
[ "MIT" ]
1
2019-05-27T11:25:18.000Z
2019-05-27T11:25:18.000Z
as3/parser.py
eigenein/python-as3
323b58fd19359842332a1b045857f793cd124aa3
[ "MIT" ]
null
null
null
as3/parser.py
eigenein/python-as3
323b58fd19359842332a1b045857f793cd124aa3
[ "MIT" ]
null
null
null
from __future__ import annotations from collections import deque from typing import Any, Callable, Deque, Dict, Iterable, Iterator, List, NoReturn, Optional, Set, Tuple from as3 import ast_, interpreter from as3.enums import TokenType from as3.exceptions import ASSyntaxError from as3.interpreter import undefined from as3.scanner import Token class Parser: def __init__(self, tokens: Iterable[Token], filename: str) -> None: self.tokens = Peekable(filter_tokens(tokens)) self.filename = filename # Rules. # ------------------------------------------------------------------------------------------------------------------ def parse_script(self) -> ast_.Block: """ Parse *.as script. """ body: List[ast_.AST] = [] while self.tokens: # FIXME: allow package at any level. body.append(self.switch({TokenType.PACKAGE: self.parse_package}, else_=self.parse_statement)) return ast_.Block(body=body) def parse_package(self) -> ast_.AST: self.expect(TokenType.PACKAGE) if self.tokens.is_type(TokenType.IDENTIFIER): # TODO: for now just consume the name because we'll use the directory structure instead. for _ in self.parse_qualified_name(): pass return self.parse_statement_or_code_block() def parse_class(self) -> ast_.Class: # Definition. self.parse_modifiers() # noinspection PyArgumentList node = ast_.Class(token=self.expect(TokenType.CLASS, TokenType.INTERFACE)) node.name = self.expect(TokenType.IDENTIFIER).value if self.tokens.skip(TokenType.EXTENDS): node.base = self.parse_primary_expression() if self.tokens.skip(TokenType.IMPLEMENTS): # Skip interfaces. self.parse_primary_expression() # Body. self.expect(TokenType.CURLY_BRACKET_OPEN) while not self.tokens.skip(TokenType.CURLY_BRACKET_CLOSE): # Parse definition. modifiers = self.parse_modifiers() statement: ast_.AST = self.switch({ TokenType.CONST: self.parse_variable_definition, TokenType.FUNCTION: self.parse_function_definition, TokenType.SEMICOLON: self.parse_semicolon, TokenType.VAR: self.parse_variable_definition, }) if isinstance(statement, ast_.Function) and statement.name == node.name: node.constructor = statement elif isinstance(statement, ast_.Variable): node.variables.append(statement) return node def parse_modifiers(self) -> Set[TokenType]: modifiers: Set[TokenType] = set() if self.tokens.skip(TokenType.OVERRIDE): modifiers.add(TokenType.OVERRIDE) visibility_token = self.tokens.skip( TokenType.PUBLIC, TokenType.PRIVATE, TokenType.PROTECTED, TokenType.INTERNAL) if visibility_token: modifiers.add(visibility_token.type_) if self.tokens.skip(TokenType.STATIC): modifiers.add(TokenType.STATIC) return modifiers def parse_statement_or_code_block(self) -> ast_.AST: return self.switch({TokenType.CURLY_BRACKET_OPEN: self.parse_code_block}, else_=self.parse_statement) def parse_statement(self) -> ast_.AST: node = self.switch({ TokenType.BREAK: self.parse_break, TokenType.CLASS: self.parse_class, TokenType.FOR: self.parse_for, TokenType.FUNCTION: self.parse_function_definition, TokenType.IF: self.parse_if, TokenType.IMPORT: self.parse_import, TokenType.PRIVATE: self.parse_class, TokenType.PROTECTED: self.parse_class, TokenType.PUBLIC: self.parse_class, TokenType.RETURN: self.parse_return, TokenType.SEMICOLON: self.parse_semicolon, TokenType.STATIC: self.parse_class, TokenType.THROW: self.parse_throw, TokenType.TRY: self.parse_try, TokenType.VAR: self.parse_variable_definition, TokenType.WHILE: self.parse_while, }, else_=self.parse_expression_statement) return node def parse_code_block(self) -> ast_.Block: # noinspection PyArgumentList node = ast_.Block(token=self.expect(TokenType.CURLY_BRACKET_OPEN)) while not self.tokens.skip(TokenType.CURLY_BRACKET_CLOSE): node.body.append(self.parse_statement_or_code_block()) return node def parse_expression_statement(self) -> ast_.AST: node = self.parse_expression() self.tokens.skip(TokenType.SEMICOLON) return node def parse_qualified_name(self) -> Iterable[str]: """ Parse qualified name and return its parts. """ yield self.expect(TokenType.IDENTIFIER).value while self.tokens.skip(TokenType.DOT): yield self.expect(TokenType.IDENTIFIER).value def parse_import(self) -> ast_.AST: import_token = self.expect(TokenType.IMPORT) args = [] while True: token = self.expect(TokenType.IDENTIFIER, TokenType.MULTIPLY) args.append(AST.string(token, token.value).node) if not self.tokens.skip(TokenType.DOT): break self.tokens.skip(TokenType.SEMICOLON) return AST \ .name(import_token, constants.import_key) \ .call(import_token, args) \ .expr() \ .node def parse_if(self) -> ast_.If: # noinspection PyArgumentList node = ast_.If(token=self.expect(TokenType.IF)) self.expect(TokenType.PARENTHESIS_OPEN) node.test = self.parse_assignment_expression() self.expect(TokenType.PARENTHESIS_CLOSE) node.positive = self.parse_statement_or_code_block() if self.tokens.skip(TokenType.ELSE): node.negative = self.parse_statement_or_code_block() return node def parse_variable_definition(self) -> ast_.Variable: token = self.expect(TokenType.VAR, TokenType.CONST) name_token = self.expect(TokenType.IDENTIFIER) value: ast_.AST = ast_.Literal(value=self.parse_type_annotation()) if self.tokens.skip(TokenType.ASSIGN): value = self.parse_assignment_expression() # noinspection PyArgumentList return ast_.Variable(token=token, name=name_token.value, value=value) def parse_type_annotation(self) -> Any: """ Parse type annotation and return its _default value_. https://www.adobe.com/devnet/actionscript/learning/as3-fundamentals/data-types.html """ if self.tokens.skip(TokenType.COLON): return self.parse_type() return undefined def parse_type(self) -> Any: if self.tokens.skip(TokenType.MULTIPLY): return undefined if self.tokens.skip(TokenType.VOID): return None # Standard types. identifier_token = self.expect(TokenType.IDENTIFIER) if identifier_token.value == 'Boolean': return False if identifier_token.value in ('int', 'uint', 'Number'): return 0 # `None` for other standard types and all user classes. Skip the rest of the annotation. while True: if not self.tokens.skip(TokenType.DOT): break if not self.tokens.skip(TokenType.IDENTIFIER): self.expect(TokenType.LESS) self.parse_type() self.expect(TokenType.GREATER) return None def parse_semicolon(self) -> ast_.Block: # noinspection PyArgumentList return ast_.Block(token=self.expect(TokenType.SEMICOLON)) def parse_return(self) -> ast_.Return: # noinspection PyArgumentList node = ast_.Return(token=self.expect(TokenType.RETURN)) if not self.tokens.skip(TokenType.SEMICOLON): node.value = self.parse_assignment_expression() return node def parse_function_definition(self) -> ast_.Function: # noinspection PyArgumentList node = ast_.Function(token=self.expect(TokenType.FUNCTION)) is_property = self.tokens.skip(TokenType.GET) is not None # TODO node.name = self.expect(TokenType.IDENTIFIER).value self.expect(TokenType.PARENTHESIS_OPEN) while not self.tokens.skip(TokenType.PARENTHESIS_CLOSE): node.parameter_names.append(self.expect(TokenType.IDENTIFIER).value) default_value: ast_.AST = ast_.Literal(value=self.parse_type_annotation()) if self.tokens.skip(TokenType.ASSIGN): default_value = self.parse_assignment_expression() node.defaults.append(default_value) self.tokens.skip(TokenType.COMMA) node.default_return_value = self.parse_type_annotation() node.body = self.parse_statement_or_code_block() return node def parse_break(self) -> ast_.Break: # noinspection PyArgumentList return ast_.Break(token=self.expect(TokenType.BREAK)) def parse_while(self) -> ast_.While: token = self.expect(TokenType.WHILE) self.expect(TokenType.PARENTHESIS_OPEN) test = self.parse_assignment_expression() self.expect(TokenType.PARENTHESIS_CLOSE) body = self.parse_statement_or_code_block() # noinspection PyArgumentList return ast_.While(token=token, test=test, body=body) def parse_try(self) -> ast_.TryFinally: # noinspection PyArgumentList node = ast_.TryFinally(token=self.expect(TokenType.TRY)) node.body = self.parse_statement_or_code_block() while self.tokens.is_type(TokenType.CATCH): # noinspection PyArgumentList except_node = ast_.Except(token=next(self.tokens)) self.expect(TokenType.PARENTHESIS_OPEN) except_node.variable_name = self.expect(TokenType.IDENTIFIER).value self.expect(TokenType.COLON) if not self.tokens.skip(TokenType.MULTIPLY): except_node.exception_type = self.parse_assignment_expression() self.expect(TokenType.PARENTHESIS_CLOSE) except_node.body = self.parse_statement_or_code_block() node.excepts.append(except_node) if self.tokens.skip(TokenType.FINALLY): node.finally_ = self.parse_statement_or_code_block() return node def parse_throw(self) -> ast_.Throw: token = self.expect(TokenType.THROW) value = self.parse_assignment_expression() # noinspection PyArgumentList return ast_.Throw(token=token, value=value) def parse_for(self) -> ast_.AbstractFor: token = self.expect(TokenType.FOR) ast_class = ast_.ForEach if self.tokens.skip(TokenType.EACH) else ast_.For self.expect(TokenType.PARENTHESIS_OPEN) self.expect(TokenType.VAR) variable_name = self.expect(TokenType.IDENTIFIER).value self.expect(TokenType.IN) value = self.parse_assignment_expression() self.expect(TokenType.PARENTHESIS_CLOSE) body = self.parse_statement_or_code_block() return ast_class(token=token, variable_name=variable_name, value=value, body=body) # Expression rules. # Methods are ordered according to reversed precedence. # https://www.adobe.com/devnet/actionscript/learning/as3-fundamentals/operators.html#articlecontentAdobe_numberedheader_1 # ------------------------------------------------------------------------------------------------------------------ def parse_expression(self) -> ast_.AST: return self.parse_label() def parse_label(self) -> ast_.AST: # For the sake of simplicity any expression is allowed as a label. # Again, for the sake of simplicity any label is translated to `null`. left = self.parse_assignment_expression() if self.tokens.is_type(TokenType.COLON): # noinspection PyArgumentList return ast_.Literal(token=next(self.tokens), value=None) return left def parse_assignment_expression(self) -> ast_.AST: return self.parse_binary_operations( self.parse_conditional_expression, TokenType.ASSIGN, TokenType.ASSIGN_ADD, ) # def parse_non_assignment_expression(self) -> ast.AST: # return self.parse_conditional_expression() def parse_conditional_expression(self) -> ast_.AST: node = self.parse_logical_or_expression() if self.tokens.is_type(TokenType.QUESTION_MARK): token = next(self.tokens) positive = self.parse_conditional_expression() self.expect(TokenType.COLON) negative = self.parse_conditional_expression() # noinspection PyArgumentList node = ast_.If(token=token, test=node, positive=positive, negative=negative) return node def parse_logical_or_expression(self) -> ast_.AST: return self.parse_binary_operations(self.parse_logical_and_expression, TokenType.LOGICAL_OR) def parse_logical_and_expression(self) -> ast_.AST: return self.parse_binary_operations(self.parse_bitwise_xor, TokenType.LOGICAL_AND) def parse_bitwise_xor(self) -> ast_.AST: return self.parse_binary_operations(self.parse_equality_expression, TokenType.BITWISE_XOR) def parse_equality_expression(self) -> ast_.AST: return self.parse_binary_operations( self.parse_relational_expression, TokenType.EQUALS, TokenType.NOT_EQUALS, ) def parse_relational_expression(self) -> ast_.AST: return self.parse_binary_operations( self.parse_additive_expression, TokenType.AS, TokenType.GREATER, TokenType.GREATER_OR_EQUAL, TokenType.IN, TokenType.IS, TokenType.LESS, TokenType.LESS_OR_EQUAL, ) def parse_additive_expression(self) -> ast_.AST: return self.parse_binary_operations(self.parse_multiplicative_expression, TokenType.PLUS, TokenType.MINUS) def parse_multiplicative_expression(self) -> ast_.AST: return self.parse_binary_operations( self.parse_unary_expression, TokenType.MULTIPLY, TokenType.DIVIDE, TokenType.PERCENT, ) def parse_unary_expression(self) -> ast_.AST: if self.tokens.is_type(*interpreter.unary_operations): token = next(self.tokens) # noinspection PyArgumentList return ast_.UnaryOperation(token=token, value=self.parse_unary_expression()) return self.parse_postfix() def parse_postfix(self) -> ast_.AST: left = self.parse_primary_expression() while self.tokens.is_type(*interpreter.postfix_operations): # noinspection PyArgumentList left = ast_.PostfixOperation(token=next(self.tokens), value=left) return left def parse_primary_expression(self) -> ast_.AST: left = self.parse_terminal_or_parenthesized() cases = { TokenType.BRACKET_OPEN: self.parse_subscript, TokenType.DOT: self.parse_attribute_expression, TokenType.PARENTHESIS_OPEN: self.parse_call_expression, } while self.tokens.is_type(*cases): left = self.switch(cases, left=left) return left def parse_attribute_expression(self, left: ast_.AST) -> ast_.AST: token = self.expect(TokenType.DOT) name: str = self.expect(TokenType.IDENTIFIER).value # noinspection PyArgumentList return ast_.Property(token=token, value=left, item=ast_.Literal(value=name)) def parse_call_expression(self, left: ast_.AST) -> ast_.AST: # noinspection PyArgumentList node = ast_.Call(token=self.expect(TokenType.PARENTHESIS_OPEN), value=left) while not self.tokens.skip(TokenType.PARENTHESIS_CLOSE): node.arguments.append(self.parse_assignment_expression()) self.tokens.skip(TokenType.COMMA) return node def parse_subscript(self, left: ast_.AST) -> ast_.AST: token = self.expect(TokenType.BRACKET_OPEN) item = self.parse_assignment_expression() self.expect(TokenType.BRACKET_CLOSE) # noinspection PyArgumentList return ast_.Property(token=token, value=left, item=item) def parse_terminal_or_parenthesized(self) -> ast_.AST: # noinspection PyArgumentList return self.switch({ TokenType.BRACKET_OPEN: self.parse_compound_literal, TokenType.CURLY_BRACKET_OPEN: self.parse_map_literal, TokenType.FALSE: lambda: ast_.Literal(token=next(self.tokens), value=False), TokenType.IDENTIFIER: lambda: ast_.Name.from_(next(self.tokens)), TokenType.NEW: self.parse_new, TokenType.NULL: lambda: ast_.Literal(token=next(self.tokens), value=None), TokenType.NUMBER: lambda: ast_.Literal.from_(next(self.tokens)), TokenType.PARENTHESIS_OPEN: self.parse_parenthesized_expression, TokenType.STRING: lambda: ast_.Literal.from_(next(self.tokens)), TokenType.SUPER: self.parse_super_expression, TokenType.THIS: lambda: ast_.Name.from_(next(self.tokens)), TokenType.TRUE: lambda: ast_.Literal(token=next(self.tokens), value=True), TokenType.UNDEFINED: lambda: ast_.Literal(token=next(self.tokens), value=undefined), }) def parse_parenthesized_expression(self) -> ast_.AST: self.expect(TokenType.PARENTHESIS_OPEN) inner = self.parse_assignment_expression() self.expect(TokenType.PARENTHESIS_CLOSE) return inner def parse_super_expression(self) -> ast_.AST: super_token = self.expect(TokenType.SUPER) builder = AST.identifier(super_token).call(super_token) if self.tokens.is_type(TokenType.PARENTHESIS_OPEN): # Call super constructor. Return `super().__init__` and let `parse_call_expression` do its job. return self.parse_call_expression(builder.attribute(super_token, constants.init_name).node) if self.tokens.is_type(TokenType.DOT): # Call super method. Return `super()` and let `parse_attribute_expression` do its job. return self.parse_attribute_expression(builder.node) self.raise_syntax_error(TokenType.PARENTHESIS_OPEN, TokenType.DOT) def parse_new(self) -> ast_.AST: # noinspection PyArgumentList node = ast_.New(token=self.expect(TokenType.NEW)) # Skip generic parameter before literal. if self.tokens.skip(TokenType.LESS): self.parse_type() self.expect(TokenType.GREATER) return self.parse_terminal_or_parenthesized() # Actual constructor. node.value = self.parse_terminal_or_parenthesized() # Skip yet another generic parameter. if self.tokens.skip(TokenType.DOT): self.expect(TokenType.LESS) self.parse_type() self.expect(TokenType.GREATER) # Parse the call. self.expect(TokenType.PARENTHESIS_OPEN) while not self.tokens.skip(TokenType.PARENTHESIS_CLOSE): node.arguments.append(self.parse_assignment_expression()) self.tokens.skip(TokenType.COMMA) return node def parse_compound_literal(self) -> ast_.AST: token = self.expect(TokenType.BRACKET_OPEN) value: List[ast_.AST] = [] while not self.tokens.skip(TokenType.BRACKET_CLOSE): value.append(self.parse_assignment_expression()) self.tokens.skip(TokenType.COMMA) # noinspection PyArgumentList return ast_.CompoundLiteral(token=token, value=value) def parse_map_literal(self) -> ast_.AST: token = self.expect(TokenType.CURLY_BRACKET_OPEN) map_value: List[Tuple[ast_.AST, ast_.AST]] = [] while not self.tokens.skip(TokenType.CURLY_BRACKET_CLOSE): key = self.parse_assignment_expression() self.expect(TokenType.COLON) value = self.parse_assignment_expression() map_value.append((key, value)) self.tokens.skip(TokenType.COMMA) # noinspection PyArgumentList return ast_.MapLiteral(token=token, value=map_value) # Expression rule helpers. # ------------------------------------------------------------------------------------------------------------------ def parse_binary_operations(self, child_parser: Callable[[], ast_.AST], *types: TokenType) -> ast_.AST: node = child_parser() while self.tokens.is_type(*types): token = next(self.tokens) # noinspection PyArgumentList node = ast_.BinaryOperation(token=token, left=node, right=child_parser()) return node # Parser helpers. # ------------------------------------------------------------------------------------------------------------------ TParser = Callable[..., ast_.AST] def switch(self, cases: Dict[TokenType, TParser], else_: Optional[TParser] = None, **kwargs) -> ast_.AST: """ Behaves like a `switch` (`case`) operator and tries to match the current token against specified token types. If match is found, then the corresponding parser is called. Otherwise, `else_` is called if defined. Otherwise, `default` is returned if defined. Otherwise, syntax error is raised. """ try: parser = cases[self.tokens.peek().type_] except (StopIteration, KeyError): if else_: return else_(**kwargs) self.raise_syntax_error(*cases.keys()) else: return parser(**kwargs) def expect(self, *types: TokenType) -> Token: """ Check the current token type, return it and advance. Raise syntax error if the current token has an unexpected type. """ if self.tokens.is_type(*types): return next(self.tokens) self.raise_syntax_error(*types) def raise_syntax_error(self, *expected_types: TokenType) -> NoReturn: """ Raise syntax error with the list of expected types in the message. """ types_string = ', '.join(type_.name for type_ in expected_types) try: token = self.tokens.peek() except StopIteration: raise_syntax_error(f'unexpected end of file, expected one of: {types_string}', filename=self.filename) else: raise_syntax_error( f'unexpected {token.type_.name} "{token.value}", expected one of: {types_string}', location=token, filename=self.filename, ) class Peekable(Iterable[Token]): def __init__(self, iterable: Iterable[Token]) -> None: self.iterator = iter(iterable) self.cache: Deque[Token] = deque() def __iter__(self) -> Iterator[Token]: return self def __next__(self) -> Token: self.peek() return self.cache.popleft() def __bool__(self): try: self.peek() except StopIteration: return False else: return True def peek(self) -> Token: if not self.cache: self.cache.append(next(self.iterator)) return self.cache[0] def is_type(self, *types: TokenType) -> bool: """ Check the current token type. """ try: return self.peek().type_ in types except StopIteration: return False def skip(self, *types: TokenType) -> Optional[Token]: """ Check the current token type and skip it if matches. """ if self.is_type(*types): return next(self) return None def filter_tokens(tokens: Iterable[Token]) -> Iterable[Token]: return (token for token in tokens if token.type_ != TokenType.COMMENT) def raise_syntax_error(message: str, location: Optional[Token] = None, filename: str = None) -> NoReturn: """ Raise syntax error and provide some help message. """ if filename: message = f'{filename}: {message}' if location: raise ASSyntaxError(f'{message} at line {location.line_number} position {location.position}') else: raise ASSyntaxError(f'{message}')
41.39629
125
0.641885
baa8e5419574c2e6c66a0be895c5b955916d1136
3,294
py
Python
crystalpy/tests/util/StokesVectorTest.py
oasys-kit/crystalpy
4852851c622ef914844178577dea4075e92cd8dd
[ "MIT" ]
null
null
null
crystalpy/tests/util/StokesVectorTest.py
oasys-kit/crystalpy
4852851c622ef914844178577dea4075e92cd8dd
[ "MIT" ]
null
null
null
crystalpy/tests/util/StokesVectorTest.py
oasys-kit/crystalpy
4852851c622ef914844178577dea4075e92cd8dd
[ "MIT" ]
null
null
null
""" Unittest for StokesVector class. """ import unittest import numpy as np from numpy.testing import assert_array_almost_equal from crystalpy.util.StokesVector import StokesVector class StokesVectorTest(unittest.TestCase): def setUp(self): self.element_list = [0.78177969457877930, 0.22595711869558588, 0.28797567756487550, 0.58551861060989900] self.stokes_vector = StokesVector(self.element_list) def testConstructor(self): self.assertIsInstance(self.stokes_vector, StokesVector) self.assertEqual(self.stokes_vector.s0, 0.78177969457877930) self.assertEqual(self.stokes_vector.s1, 0.22595711869558588) self.assertEqual(self.stokes_vector.s2, 0.28797567756487550) self.assertEqual(self.stokes_vector.s3, 0.58551861060989900) def testGetArray(self): array1 = self.stokes_vector.components() array2 = self.stokes_vector.getList() self.assertEqual(type(array1), np.ndarray) self.assertEqual(type(array2), list) np.testing.assert_array_equal(array1, np.asarray(self.element_list)) self.assertListEqual(array2, self.element_list) def testPolarizationDegree(self): pol_deg = self.stokes_vector.circularPolarizationDegree() self.assertEqual(type(pol_deg), float) self.assertAlmostEqual(pol_deg, 0.7489560226111716) def test_operator_equal(self): stokes_vector1 = self.stokes_vector stokes_vector2 = StokesVector([0.7817796945787793, 0.22595711869558588, 0.2879756775648755, 0.585518610609899]) # without final zeros stokes_vector3 = StokesVector([round(0.78177969457877930, 6), round(0.22595711869558588, 6), round(0.28797567756487550, 6), round(0.58551861060989900, 6)]) # rounded float self.assertTrue(stokes_vector1 == stokes_vector1) # identity self.assertTrue(stokes_vector1 == stokes_vector2) self.assertFalse(stokes_vector1 == stokes_vector3) def test_operator_not_equal(self): stokes_vector1 = self.stokes_vector stokes_vector2 = StokesVector([0.7817796945787793, 0.22595711869558588, 0.2879756775648755, 0.585518610609899]) # without final zeros stokes_vector3 = StokesVector([round(0.78177969457877930, 6), round(0.22595711869558588, 6), round(0.28797567756487550, 6), round(0.58551861060989900, 6)]) # rounded float self.assertFalse(stokes_vector1 != stokes_vector1) self.assertFalse(stokes_vector1 != stokes_vector2) self.assertTrue(stokes_vector1 != stokes_vector3) def testDuplicate(self): v1 = StokesVector([1,2,3,4]) v2 = v1.duplicate() self.assertTrue(v1 == v2) v1.setFromValues(0,2,3,4) self.assertFalse(v1 == v2)
41.175
87
0.603825
ea73d795a7c662240fdc6da80ce19265608f08fc
19,216
py
Python
inna/quantizer/quantize_caffe.py
caoqichun/inspur-inna
0848ec5db3c04aa8e2b65caff8095dd3ac4040ca
[ "Apache-2.0" ]
null
null
null
inna/quantizer/quantize_caffe.py
caoqichun/inspur-inna
0848ec5db3c04aa8e2b65caff8095dd3ac4040ca
[ "Apache-2.0" ]
null
null
null
inna/quantizer/quantize_caffe.py
caoqichun/inspur-inna
0848ec5db3c04aa8e2b65caff8095dd3ac4040ca
[ "Apache-2.0" ]
null
null
null
# uncompyle6 version 3.3.1 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.7.1 (default, Dec 14 2018, 19:28:38) # [GCC 7.3.0] # Embedded file name: ./xfdnn/tools/quantize/quantize_caffe.py # Compiled at: 2018-10-13 08:25:54 import numpy as np, google.protobuf.text_format as tfmt, caffe from quantize_base import * #import matplotlib.pyplot as plt class Caffe: _net = None _net_parameter = None _deploy_model = None _weights = None _dims = None def __init__(self, deploy_model, weights): self._deploy_model = deploy_model self._weights = weights self._net, self._net_parameter = self.declare_network(deploy_model, weights) blob_dict = self._net.blobs first_key = blob_dict.keys()[0] first_blob = blob_dict[first_key] self._dims = first_blob.data.shape self._input = first_key useGpu = False if useGpu: caffe.set_mode_gpu() else: caffe.set_mode_cpu() def getNetwork(self): return ( self._net, self._net_parameter) def declareTransformer(self, transpose, channel_swap, raw_scale, mean_value, input_scale, dims): self._transformer = caffe.io.Transformer({self._input: self._net.blobs[self._input].data.shape}) self._transformer.set_transpose(self._input, transpose) self._transformer.set_channel_swap(self._input, channel_swap) self._transformer.set_raw_scale(self._input, raw_scale) self._transformer.set_mean(self._input, mean_value) self._transformer.set_input_scale(self._input, input_scale) def initializeBatch(self, calibration_size, calibration_filenames, calibration_indices): dims = list(self._dims[-3:]) self._net.blobs[self._input].reshape(calibration_size, *dims) for i in range(calibration_size): print ('Adding', calibration_filenames[calibration_indices[i]], 'to calibration batch.') data = caffe.io.load_image(calibration_filenames[calibration_indices[i]]) self._net.blobs[self._input].data[i] = self._transformer.preprocess(self._input, data) def declare_network(self, deploy_model, weights): net = caffe.Net(deploy_model, weights, caffe.TEST) net_parameter = caffe.proto.caffe_pb2.NetParameter() return ( net, net_parameter) def executeCalibration(self, bitwidths, deploy_model, quant_params): net, net_parameter = self.getNetwork() bw_layer_in_global = bitwidths[0] bw_params_global = bitwidths[1] bw_layer_out_global = bitwidths[2] quant_layers = [] with open(deploy_model, 'r') as (f): tfmt.Merge(f.read(), net_parameter) for name, layer in net.layer_dict.items(): print '-' * 80 print 'Processing layer %d of %d' % (list(net._layer_names).index(name), len(list(net._layer_names))) print 'Layer Name:' + name + ' Type:' + layer.type print ('Inputs:', str(net.bottom_names[name]) + ', Outputs:', str(net.top_names[name])) if layer.type in ('Input', 'Data'): print ('input/data quantization!') q = QuantizeInputCaffe(self, name, layer.type, bw_layer_out_global, quant_params) q.preProcess() q.execute() q.postProcess() elif layer.type in ('Convolution', ): print ('convolution quantization!') q = QuantizeConvolutionCaffe(self, name, layer.type, bw_layer_out_global, bw_params_global, quant_params) q.preProcess() q.execute() q.postProcess() quant_layers.append((name, layer.type)) elif layer.type in ('InnerProduct', ): quantize_inner_product(name, net, quant_params, bw_params_global, bw_layer_out_global) quant_layers.append((name, layer.type)) elif layer.type in ('ReLU', ): #quantize_relu and quantize_relu_KL are the same functions. quantize_relu_withoutKL(name, net, quant_params, bw_layer_out_global) elif layer.type in ('Pooling', ): quantize_pooling(name, net, quant_params) elif layer.type in ('LRN', ): quantize_lrn(name, net, quant_params) elif layer.type in ('Dropout', ): quantize_dropout(name, net, quant_params) elif layer.type in ('Split', ): quantize_split(name, net, quant_params) elif layer.type in ('Concat', ): quantize_concat(name, net, quant_params, bw_layer_out_global) elif layer.type in ('Eltwise', ): quantize_eltwise_bottom(name, net, quant_params) elif layer.type in ('Softmax', 'SoftmaxWithLoss'): print 'Passing' else: print 'Error: Quantization of ' + layer.type + ' is not yet supported' return quant_layers class LayerExecute: _nodename = None _layertype = None def __init__(self, nodename, layertype): self._nodename = nodename self._layertype = layertype def preProcess(self): pass def execute(self): pass def postProcess(self): pass class LayerExecuteCaffe(LayerExecute): _topname = None _quant_params = None _net = None _bitwidth = None def __init__(self, caffeobj, nodename, layertype, bitwidth, quant_params): LayerExecute.__init__(self, nodename, layertype) self._net = caffeobj.getNetwork()[0] self._topname = self._net.top_names[nodename][0] self._bitwidth = bitwidth self._quant_params = quant_params class QuantizeInputCaffe(LayerExecuteCaffe): def __init__(self, caffeobj, nodename, layertype, bitwidth, quant_params): LayerExecuteCaffe.__init__(self, caffeobj, nodename, layertype, bitwidth, quant_params) def preProcess(self): pass def execute(self): self._net.forward(start=self._nodename, end=self._nodename) def postProcess(self): print 'Quantizing layer output...' threshold = np.float64(254.00) self._quant_params.bw_layer_out[self._nodename] = self._bitwidth self._quant_params.th_layer_out[self._nodename] = threshold print ( 'bw_layer_out: ', self._quant_params.bw_layer_out[self._nodename]) print ('th_layer_out: ', self._quant_params.th_layer_out[self._nodename]) class QuantizeConvolutionCaffe(LayerExecuteCaffe): _botname = None _bitwidth_params = None def __init__(self, caffeobj, nodename, layertype, bitwidth, bitwidth_params, quant_params): LayerExecuteCaffe.__init__(self, caffeobj, nodename, layertype, bitwidth, quant_params) self._botname = self._net.bottom_names[self._nodename][0] self._bitwidth_params = bitwidth_params def preProcess(self): print ( 'Quantizing conv input layer ...', self._topname) bitwidth = self._quant_params.bw_layer_out[self._botname] threshold = self._quant_params.th_layer_out[self._botname] self._quant_params.bw_layer_in[self._nodename] = bitwidth self._quant_params.th_layer_in[self._nodename] = threshold print 'Quantizing conv weights for layer %s...' % self._nodename bitwidth = self._bitwidth_params threshold = ThresholdWeights_per_layer(self._net.params[self._nodename][0].data, bitwidth) #threshold = ThresholdWeights_KL(self._net.params[self._nodename][0].data, bitwidth) #per channel #threshold = ThresholdWeights(self._net.params[self._nodename][0].data, bitwidth) self._quant_params.bw_params[self._nodename] = bitwidth self._quant_params.th_params[self._nodename] = threshold self._net.params[self._nodename][0].data[:] = QuantizeWeights_per_layer(threshold, bitwidth, self._net.params[self._nodename][0].data[:]) #self._net.params[self._nodename][0].data[:] = QuantizeWeights(threshold, bitwidth, self._net.params[self._nodename][0].data[:]) def execute(self): self._net.forward(start=self._nodename, end=self._nodename) def postProcess(self): data = self._net.blobs[self._nodename].data[...] maxValue = np.abs(data).max() minValue = np.min(data) print('max of convolution:', maxValue) threshold = ThresholdLayerOutputs(data, self._bitwidth) #####plot histogram hist, bin_edges = np.histogram(data, 2048, range=(0, maxValue), density=True) hist = hist / np.sum(hist) cumsum = np.cumsum(hist) index = np.arange(len(bin_edges)-1) plt.figure() plt.bar(bin_edges[0:len(bin_edges)-1], cumsum) histName = self._nodename + '.png' plt.savefig(histName) ##### self._quant_params.bw_layer_out[self._nodename] = self._bitwidth self._quant_params.th_layer_out[self._nodename] = threshold print ( 'bw_layer_in: ', self._quant_params.bw_layer_in[self._nodename]) print ('th_layer_in: ', self._quant_params.th_layer_in[self._nodename]) print ( 'bw_layer_out: ', self._quant_params.bw_layer_out[self._nodename]) print ('th_layer_out: ', self._quant_params.th_layer_out[self._nodename]) def quantize_inner_product(name, net, quant_params, bw_params_global, bw_layer_out_global): topname = net.top_names[name][0] botname = net.bottom_names[name][0] data = net.blobs[botname].data[...] bitwidth = quant_params.bw_layer_out[botname] threshold = quant_params.th_layer_out[botname] quant_params.bw_layer_in[topname] = bitwidth quant_params.th_layer_in[topname] = threshold #delete 2019/7/15 #net.blobs[botname].data[:] = Float2Fixed2Float(data, bitwidth, threshold, np.round) data = net.params[name][0].data[...] bitwidth = bw_params_global threshold = ThresholdWeights_per_layer(data, bitwidth) #lly per layer #threshold = ThresholdWeights(data, bitwidth) #per channels quant_params.bw_params[topname] = bitwidth quant_params.th_params[topname] = threshold #per-channel #for i in range(len(quant_params.th_params[topname])): # net.params[name][0].data[i] = Float2Fixed2Float(data[i], bitwidth, threshold[i], np.round) net.forward(start=name, end=name) data = net.blobs[topname].data[...] bitwidth = bw_layer_out_global threshold = ThresholdLayerOutputs(data, bitwidth) quant_params.bw_layer_out[topname] = bitwidth quant_params.th_layer_out[topname] = threshold print ( 'bw_layer_in: ', quant_params.bw_layer_in[topname]) print ('th_layer_in: ', quant_params.th_layer_in[topname]) print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) def quantize_relu(name, net, quant_params, bw_layer_out_global): topname = net.top_names[name][0] botname = net.bottom_names[name][0] net.forward(start=botname, end=name) net.forward(start=name, end=name) data = net.blobs[topname].data[...] maxValue = np.max(abs(data)) print('max of relu:', maxValue) bitwidth = bw_layer_out_global threshold = ThresholdLayerOutputs(data, bitwidth) #KL quant_params.bw_layer_out[topname] = bitwidth quant_params.th_layer_out[topname] = threshold print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) def quantize_relu_withoutKL(name, net, quant_params, bw_layer_out_global): topname = net.top_names[name][0] print('topname:', topname) botname = net.bottom_names[name][0] print('botname:', botname) net.forward(start=botname, end=name) net.forward(start=name, end=name) quant_params.bw_layer_out[topname] = bw_layer_out_global quant_params.th_layer_out[topname] = quant_params.th_layer_out[botname] print('bw_layer_out:', quant_params.bw_layer_out[topname]) print('th_layer_out:', quant_params.th_layer_out[topname]) def quantize_pooling(name, net, quant_params): topname = net.top_names[name][0] botname = net.bottom_names[name][0] data = net.blobs[botname].data[...] bitwidth = quant_params.bw_layer_out[botname] threshold = quant_params.th_layer_out[botname] quant_params.bw_layer_in[topname] = bitwidth quant_params.th_layer_in[topname] = threshold net.forward(start=name, end=name) data = net.blobs[topname].data[...] bitwidth = quant_params.bw_layer_in[topname] threshold = quant_params.th_layer_in[topname] quant_params.bw_layer_out[topname] = bitwidth quant_params.th_layer_out[topname] = threshold print ( 'bw_layer_in: ', quant_params.bw_layer_in[topname]) print ('th_layer_in: ', quant_params.th_layer_in[topname]) print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) def quantize_lrn(name, net, quant_params): topname = net.top_names[name][0] botname = net.bottom_names[name][0] data = net.blobs[botname].data[...] bitwidth = quant_params.bw_layer_out[botname] threshold = quant_params.th_layer_out[botname] quant_params.bw_layer_in[topname] = bitwidth quant_params.th_layer_in[topname] = threshold net.forward(start=name, end=name) data = net.blobs[topname].data[...] bitwidth = quant_params.bw_layer_in[topname] threshold = quant_params.th_layer_in[topname] quant_params.bw_layer_out[topname] = bitwidth quant_params.th_layer_out[topname] = threshold print ( 'bw_layer_in: ', quant_params.bw_layer_in[topname]) print ('th_layer_in: ', quant_params.th_layer_in[topname]) print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) def quantize_dropout(name, net, quant_params): topname = net.top_names[name][0] botname = net.bottom_names[name][0] data = net.blobs[botname].data[...] bitwidth = quant_params.bw_layer_out[botname] threshold = quant_params.th_layer_out[botname] quant_params.bw_layer_in[topname] = bitwidth quant_params.th_layer_in[topname] = threshold net.forward(start=name, end=name) data = net.blobs[topname].data[...] bitwidth = quant_params.bw_layer_in[topname] threshold = quant_params.th_layer_in[topname] quant_params.bw_layer_out[topname] = bitwidth quant_params.th_layer_out[topname] = threshold print ( 'bw_layer_in: ', quant_params.bw_layer_in[topname]) print ('th_layer_in: ', quant_params.th_layer_in[topname]) print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) def quantize_split(name, net, quant_params): topname = net.top_names[name][0] botname = net.bottom_names[name][0] for i in range(len(net.top_names[name])): topnamei = net.top_names[name][i] quant_params.bw_layer_in[topnamei] = quant_params.bw_layer_out[botname] quant_params.th_layer_in[topnamei] = quant_params.th_layer_out[botname] net.forward(start=name, end=name) for i in range(len(net.top_names[name])): topnamei = net.top_names[name][i] quant_params.bw_layer_out[topnamei] = quant_params.bw_layer_in[topnamei] quant_params.th_layer_out[topnamei] = quant_params.th_layer_in[topnamei] print ('bw_layer_in: ', quant_params.bw_layer_in[topname]) print ('th_layer_in: ', quant_params.th_layer_in[topname]) print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) def quantize_concat(name, net, quant_params, bw_layer_out_global): topname = net.top_names[name][0] botname = net.bottom_names[name][0] for bottom_name in net.bottom_names[name]: start_name = list((bottom_name in net.top_names[name] and name for name, layer in net.layer_dict.items()))[0] end_name = list((bottom_name in net.top_names[name] and name for name, layer in net.layer_dict.items()))[-1] net.forward(start=start_name, end=end_name) net.forward(start=name, end=name) data = net.blobs[topname].data[...] bitwidth = bw_layer_out_global threshold = ThresholdLayerOutputs(data, bitwidth) quant_params.bw_layer_out[topname] = bitwidth quant_params.th_layer_out[topname] = threshold #net.blobs[topname].data[:] = Float2Fixed2Float(data, bitwidth, threshold, np.round) quant_params.bw_layer_in[topname] = quant_params.bw_layer_out[topname] quant_params.th_layer_in[topname] = quant_params.th_layer_out[topname] for bottom_name in net.bottom_names[name]: quant_params.bw_layer_out[net.top_names[bottom_name][0]] = quant_params.bw_layer_in[topname] quant_params.th_layer_out[net.top_names[bottom_name][0]] = quant_params.th_layer_in[topname] print ('bw_layer_in: ', quant_params.bw_layer_in[topname]) print ('th_layer_in: ', quant_params.th_layer_in[topname]) print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) # this method is right. def quantize_eltwise_bottom(name, net, quant_params): topname = net.top_names[name][0] botname = net.bottom_names[name][0] bitwidth = quant_params.bw_layer_out[botname] threshold = quant_params.th_layer_out[botname] for i in range(1, len(net.bottom_names[name])): bitwidth = np.maximum(bitwidth, quant_params.bw_layer_out[net.bottom_names[name][i]]) threshold = np.maximum(threshold, quant_params.th_layer_out[net.bottom_names[name][i]]) quant_params.bw_layer_in[topname] = bitwidth quant_params.th_layer_in[topname] = threshold for i in range(0, len(net.bottom_names[name])): quant_params.th_layer_out[net.bottom_names[name][i]] = threshold for i in range(0, len(net.bottom_names[name])): net.blobs[net.bottom_names[name][i]].data[:] = QuantizeThresholdBlob(net.blobs[net.bottom_names[name][i]].data[:], bitwidth, threshold) net.forward(start=name, end=name) quant_params.bw_layer_out[topname] = bitwidth quant_params.th_layer_out[topname] = threshold print ( 'bw_layer_in: ', quant_params.bw_layer_in[topname]) print ('th_layer_in: ', quant_params.th_layer_in[topname]) print ( 'bw_layer_out: ', quant_params.bw_layer_out[topname]) print ('th_layer_out: ', quant_params.th_layer_out[topname]) def quantize_softmax(name, net, quant_params): topname = net.top_names[name][0] botname = net.bottom_names[name][0] data = net.blobs[botname].data[...] bw_layer_in[topname] = bw_layer_out[botname] th_layer_in[topname] = th_layer_out[botname] net.forward(start=name, end=name) # okay decompiling quantize_caffe.pyc
41.956332
145
0.680579
e199256c0db2cc90feb17bcd534c2e32fb2b6c90
14,831
py
Python
workbench/tools/history.py
matthiask/workbench
f09dfd3f4d946c1091b6c1e96940d56335a736a3
[ "MIT" ]
15
2020-09-02T22:17:34.000Z
2022-02-01T20:09:10.000Z
workbench/tools/history.py
matthiask/workbench
f09dfd3f4d946c1091b6c1e96940d56335a736a3
[ "MIT" ]
18
2020-01-08T15:28:26.000Z
2022-02-28T02:46:41.000Z
workbench/tools/history.py
matthiask/workbench
f09dfd3f4d946c1091b6c1e96940d56335a736a3
[ "MIT" ]
8
2020-09-29T08:00:24.000Z
2022-01-16T11:58:19.000Z
from collections import namedtuple from decimal import Decimal from django.db import models from django.http import Http404 from django.urls import reverse from django.utils import dateparse from django.utils.html import conditional_escape, format_html, mark_safe from django.utils.text import capfirst from django.utils.translation import gettext as _ from workbench.accounts.features import FEATURES from workbench.accounts.models import Team, User from workbench.awt.models import Absence, Employment, VacationDaysOverride, Year from workbench.contacts.models import ( EmailAddress, Organization, Person, PhoneNumber, PostalAddress, ) from workbench.credit_control.models import CreditEntry from workbench.deals.models import Contribution, Deal, Value, ValueType from workbench.expenses.models import ExpenseReport from workbench.invoices.models import ( Invoice, ProjectedInvoice, RecurringInvoice, Service as InvoiceService, ) from workbench.logbook.models import Break, LoggedCost, LoggedHours from workbench.offers.models import Offer from workbench.planning.models import ( ExternalWork, Milestone, PlannedWork, PublicHoliday, ) from workbench.projects.models import Campaign, Project, Service as ProjectService from workbench.reporting.models import CostCenter from workbench.tools.formats import local_date_format # This is an object which __contains__ everything EVERYTHING = type("c", (), {"__contains__": lambda *a: True})() Change = namedtuple("Change", "changes created_at pretty_user_name values version") def default_if_none(value, default): return default if value is None else value class Prettifier: def __init__(self): self._flatchoices = {} self._prettified_instances = {} def handle_bool(self, values, field): value = values.get(field.attname) if value in {True, "t"}: values[field.attname] = True return _("yes") elif value in {False, "f"}: values[field.attname] = False return _("no") elif value is None: values[field.attname] = None return _("<no value>") return value def handle_choice(self, values, field): if field not in self._flatchoices: self._flatchoices[field] = { str(key): (key, value) for key, value in field.flatchoices } value = values.get(field.attname) if value in self._flatchoices[field]: key, value = self._flatchoices[field][value] values[field.attname] = key return default_if_none(value, _("<no value>")) def handle_date(self, values, field): value = values.get(field.attname) if value is None: return _("<no value>") dt = dateparse.parse_datetime(value) or dateparse.parse_date(value) if dt: values[field.attname] = dt return local_date_format(dt) return value def handle_decimal(self, values, field): value = values.get(field.attname) if value: value = Decimal(value) values[field.attname] = value return default_if_none(value, _("<no value>")) def handle_related_model(self, values, field): value = values.get(field.attname) if value is None: return _("<no value>") model = field.related_model key = (model, value) if key in self._prettified_instances: values[field.attname] = self._prettified_instances[key][0] return self._prettified_instances[key][1] queryset = model._default_manager.all() instance = None try: instance = queryset.get(pk=value) pretty = str(instance) except model.DoesNotExist: pretty = _("Deleted %s instance") % model._meta.verbose_name else: values[field.attname] = instance if model in HISTORY: pretty = format_html( '<a href="{}" data-toggle="ajaxmodal">{}</a>', reverse("history", args=(model._meta.db_table, "id", value)), pretty, ) self._prettified_instances[key] = (instance, pretty) return pretty def format(self, values, field): value = values.get(field.attname) if field.choices: return self.handle_choice(values, field) if field.related_model: return self.handle_related_model(values, field) if isinstance(field, (models.BooleanField, models.NullBooleanField)): return self.handle_bool(values, field) if isinstance(field, models.DateField): return self.handle_date(values, field) if isinstance(field, models.DecimalField): return self.handle_decimal(values, field) return default_if_none(value, _("<no value>")) def changes(model, fields, actions): changes = [] if not actions: return changes users = {u.pk: u.get_full_name() for u in User.objects.all()} users[0] = _("<anonymous>") fields = [ f for f in model._meta.get_fields() if hasattr(f, "attname") and not f.primary_key and f.name in fields ] prettifier = Prettifier() for action in actions: if action.action == "I": values = action.row_data version_changes = [ mark_safe( _("Initial value of '%(field)s' was '%(current)s'.") % { "field": conditional_escape(capfirst(f.verbose_name)), "current": conditional_escape(prettifier.format(values, f)), } ) for f in fields if f.attname in values ] elif action.action == "U": values = action.changed_fields or {} version_changes = [ mark_safe( _("New value of '%(field)s' was '%(current)s'.") % { "field": conditional_escape(capfirst(f.verbose_name)), "current": conditional_escape(prettifier.format(values, f)), } ) for f in fields if f.attname in values ] else: # Deletion or truncation values = action.row_data version_changes = [ mark_safe( _("Final value of '%(field)s' was '%(current)s'.") % { "field": conditional_escape(capfirst(f.verbose_name)), "current": conditional_escape(prettifier.format(values, f)), } ) for f in fields if f.attname in values ] if version_changes: changes.append( Change( changes=version_changes, created_at=action.created_at, pretty_user_name=users.get(action.user_id) or action.user_name, values={ f.attname: values.get(f.attname) for f in fields if f.attname in values }, version=action, ) ) return changes def _accounts_user_cfg(user): fields = { "email", "is_active", "is_admin", "_short_name", "_full_name", "language", "working_time_model", "planning_hours_per_day", "person", "_features", "date_of_employment", } related = [ (Employment, "user_id"), (VacationDaysOverride, "user_id"), (Absence, "user_id"), ] if user.features[FEATURES.PLANNING]: related.extend([(PlannedWork, "user_id")]) return {"fields": fields, "related": related} def _credit_control_creditentry_cfg(user): if not user.features[FEATURES.CONTROLLING]: raise Http404 return { "fields": { "ledger", "reference_number", "value_date", "total", "payment_notice", "invoice", "notes", } } def _deals_contribution_cfg(user): if not user.features[FEATURES.DEALS]: raise Http404 return { "fields": EVERYTHING, "related": [(Value, "deal_id")], } def _deals_deal_cfg(user): if not user.features[FEATURES.DEALS]: raise Http404 return { "fields": EVERYTHING, "related": [(Value, "deal_id"), (Contribution, "deal_id")], } def _deals_value_cfg(user): if not user.features[FEATURES.DEALS]: raise Http404 return {"fields": EVERYTHING} def _deals_valuetype_cfg(user): if not user.features[FEATURES.DEALS]: raise Http404 return {"fields": EVERYTHING} def _invoices_invoice_cfg(user): if not user.features[FEATURES.CONTROLLING]: raise Http404 return { "fields": EVERYTHING, "related": [(CreditEntry, "invoice_id")], } def _invoices_service_cfg(user): if not user.features[FEATURES.CONTROLLING]: raise Http404 return {"fields": EVERYTHING} def _invoices_recurringinvoice_cfg(user): if not user.features[FEATURES.CONTROLLING]: raise Http404 return {"fields": EVERYTHING} def _invoices_projectedinvoice_cfg(user): if ( not user.features[FEATURES.CONTROLLING] or not user.features[FEATURES.PROJECTED_INVOICES] ): raise Http404 return {"fields": EVERYTHING} def _logbook_loggedcost_cfg(user): fields = { "service", "created_at", "created_by", "rendered_on", "rendered_by", "cost", "third_party_costs", "description", } if user.features[FEATURES.CONTROLLING]: fields |= {"invoice_service", "archived_at"} if user.features[FEATURES.EXPENSES]: fields |= {"expense_report", "are_expenses"} if user.features[FEATURES.FOREIGN_CURRENCIES]: fields |= {"expense_currency", "expense_cost"} return {"fields": fields} def _logbook_loggedhours_cfg(user): fields = { "service", "created_at", "created_by", "rendered_on", "rendered_by", "hours", "description", } if user.features[FEATURES.CONTROLLING]: fields |= {"invoice_service", "archived_at"} return {"fields": fields} def _offers_offer_cfg(user): fields = { "created_at", "project", "offered_on", "closed_on", "work_completed_on", "title", "description", "owned_by", "status", "postal_address", } if user.features[FEATURES.CONTROLLING]: fields |= WITH_TOTAL return {"fields": fields} def _projects_campaign_cfg(user): if not user.features[FEATURES.CAMPAIGNS]: raise Http404 return { "fields": {"customer", "title", "description", "owned_by"}, "related": [(Project, "campaign_id")], } def _projects_project_cfg(user): fields = { "customer", "contact", "title", "description", "owned_by", "type", "created_at", "closed_on", } related = [] if user.features[FEATURES.CONTROLLING]: related.extend( [ (Offer, "project_id"), (Invoice, "project_id"), (ProjectService, "project_id"), ] ) fields |= {"flat_rate"} if user.features[FEATURES.CAMPAIGNS]: fields |= {"campaign"} if user.features[FEATURES.LABOR_COSTS]: fields |= {"cost_center"} if user.features[FEATURES.PLANNING]: fields |= {"suppress_planning_update_mails"} related.append((PlannedWork, "project_id")) if user.features[FEATURES.PROJECTED_INVOICES]: related.append((ProjectedInvoice, "project_id")) return {"fields": fields, "related": related} def _projects_service_cfg(user): fields = { "created_at", "title", "description", "service_hours", "project", "offer", "allow_logging", "is_optional", } if user.features[FEATURES.CONTROLLING]: fields |= { "service_cost", "effort_type", "effort_rate", "effort_hours", "cost", "third_party_costs", } if user.features[FEATURES.GLASSFROG]: fields |= {"role"} return {"fields": fields} def _reporting_costcenter_cfg(user): if not user.features[FEATURES.LABOR_COSTS]: raise Http404 return {"fields": {"title"}} WITH_TOTAL = { "subtotal", "discount", "liable_to_vat", "total_excl_tax", "tax_rate", "total", "show_service_details", } HISTORY = { User: _accounts_user_cfg, Team: {"fields": EVERYTHING}, Absence: {"fields": EVERYTHING}, Year: {"fields": EVERYTHING}, CreditEntry: _credit_control_creditentry_cfg, Contribution: _deals_contribution_cfg, Deal: _deals_deal_cfg, Value: _deals_value_cfg, ValueType: _deals_valuetype_cfg, ExpenseReport: { "fields": EVERYTHING, "related": [(LoggedCost, "expense_report_id")], }, Employment: { "fields": { "user", "date_from", "date_until", "percentage", "vacation_weeks", "notes", } }, VacationDaysOverride: {"fields": EVERYTHING}, EmailAddress: {"fields": EVERYTHING}, PhoneNumber: {"fields": EVERYTHING}, PostalAddress: {"fields": EVERYTHING}, Organization: {"fields": EVERYTHING, "related": [(Person, "organization_id")]}, Person: { "fields": EVERYTHING, "related": [ (PhoneNumber, "person_id"), (EmailAddress, "person_id"), (PostalAddress, "person_id"), ], }, Invoice: _invoices_invoice_cfg, InvoiceService: _invoices_service_cfg, RecurringInvoice: _invoices_recurringinvoice_cfg, ProjectedInvoice: _invoices_projectedinvoice_cfg, Break: {"fields": EVERYTHING}, LoggedCost: _logbook_loggedcost_cfg, LoggedHours: _logbook_loggedhours_cfg, Offer: _offers_offer_cfg, PlannedWork: {"fields": EVERYTHING}, ExternalWork: {"fields": EVERYTHING}, PublicHoliday: {"fields": EVERYTHING}, Milestone: {"fields": EVERYTHING}, Campaign: _projects_campaign_cfg, Project: _projects_project_cfg, ProjectService: _projects_service_cfg, CostCenter: _reporting_costcenter_cfg, }
28.466411
84
0.586744
08ebe5a877519505b833e19db4b5523a088dcf6b
3,321
py
Python
scikit-learn-weighted_kde/doc/tutorial/machine_learning_map/svg2imagemap.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
1
2021-11-26T12:22:13.000Z
2021-11-26T12:22:13.000Z
scikit-learn-weighted_kde/doc/tutorial/machine_learning_map/svg2imagemap.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
null
null
null
scikit-learn-weighted_kde/doc/tutorial/machine_learning_map/svg2imagemap.py
RTHMaK/git-squash-master
76c4c8437dd18114968e69a698f4581927fcdabf
[ "BSD-2-Clause" ]
null
null
null
#!/usr/local/bin/python """ This script converts a subset of SVG into an HTML imagemap Note *subset*. It only handles <path> elements, for which it only pays attention to the M and L commands. Futher, it only notices the "translate" transform. It was written to generate the examples in the documentation for maphilight, and thus is very squarely aimed at handling several SVG maps from wikipedia. It *assumes* that all the <path>s it will need are inside a <g>. Any <path> outside of a <g> will be ignored. It takes several possible arguments, in the form: $ svn2imagemap.py FILENAME [x y [group1 group2 ... groupN]] FILENAME must be the name of an SVG file. All other arguments are optional. x and y, if present, are the dimensions of the image you'll be creating from the SVG. If not present, it assumes the values of the width and height attributes in the SVG file. group1 through groupN are group ids. If only want particular groups used, enter their ids here and all others will be ignored. """ import os import re import sys import xml.dom.minidom import parse_path if len(sys.argv) == 1: sys.exit("svn2imagemap.py FILENAME [x y [group1 group2 ... groupN]]") if not os.path.exists(sys.argv[1]): sys.exit("Input file does not exist") x, y, groups = None, None, None if len(sys.argv) >= 3: x = float(sys.argv[2]) y = float(sys.argv[3]) if len(sys.argv) > 3: groups = sys.argv[4:] svg_file = xml.dom.minidom.parse(sys.argv[1]) svg = svg_file.getElementsByTagName('svg')[0] raw_width = float(svg.getAttribute('width')) raw_height = float(svg.getAttribute('height')) width_ratio = x and (x / raw_width) or 1 height_ratio = y and (y / raw_height) or 1 if groups: elements = [g for g in svg.getElementsByTagName('g') if (g.hasAttribute('id') and g.getAttribute('id') in groups)] elements.extend([p for p in svg.getElementsByTagName('path') if (p.hasAttribute('id') and p.getAttribute('id') in groups)]) else: elements = svg.getElementsByTagName('g') parsed_groups = {} for e in elements: paths = [] if e.nodeName == 'g': for path in e.getElementsByTagName('path'): points = parse_path.get_points(path.getAttribute('d')) for pointset in points: paths.append([path.getAttribute('id'), pointset]) else: points = parse_path.get_points(e.getAttribute('d')) for pointset in points: paths.append([e.getAttribute('id'), pointset]) if e.hasAttribute('transform'): print e.getAttribute('id'), e.getAttribute('transform') for transform in re.findall(r'(\w+)\((-?\d+.?\d*),(-?\d+.?\d*)\)', e.getAttribute('transform')): if transform[0] == 'translate': x_shift = float(transform[1]) y_shift = float(transform[2]) for path in paths: path[1] = [(p[0] + x_shift, p[1] + y_shift) for p in path[1]] parsed_groups[e.getAttribute('id')] = paths out = [] for g in parsed_groups: for path in parsed_groups[g]: out.append('<area href="#" title="%s" shape="poly" coords="%s"></area>' % (path[0], ', '.join([("%d,%d" % (p[0]*width_ratio, p[1]*height_ratio)) for p in path[1]]))) outfile = open(sys.argv[1].replace('.svg', '.html'), 'w') outfile.write('\n'.join(out))
36.494505
127
0.654321
b738e722eea2039e1054bd77151aa37c95f7a1a3
281
py
Python
saleor/cart/context_processors.py
jdruiter/saleor
9393ac20bd3e82c8ec1f17f6e47e3d7379f20419
[ "BSD-3-Clause" ]
null
null
null
saleor/cart/context_processors.py
jdruiter/saleor
9393ac20bd3e82c8ec1f17f6e47e3d7379f20419
[ "BSD-3-Clause" ]
1
2022-02-10T14:46:00.000Z
2022-02-10T14:46:00.000Z
saleor/cart/context_processors.py
jdruiter/saleor
9393ac20bd3e82c8ec1f17f6e47e3d7379f20419
[ "BSD-3-Clause" ]
null
null
null
"""Cart-related context processors.""" from __future__ import unicode_literals from .utils import get_cart_from_request def cart_counter(request): """Expose the number of items in cart.""" cart = get_cart_from_request(request) return {'cart_counter': cart.quantity}
25.545455
45
0.754448
f53865e6de0f342a514dac42793b599e5aa63069
3,184
py
Python
tests/test_static_graph.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
1,389
2019-06-11T03:29:20.000Z
2022-03-29T18:25:43.000Z
tests/test_static_graph.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
232
2019-06-21T06:52:10.000Z
2022-03-29T08:20:31.000Z
tests/test_static_graph.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
229
2019-06-20T12:13:58.000Z
2022-03-25T12:04:48.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import os import numpy as np import paddle import pgl import paddle.nn as nn import pgl.nn as gnn import pgl.nn.functional as F import paddle.static as static class GNNModel(nn.Layer): def __init__(self, input_size, output_size, num_layers=3): super(GNNModel, self).__init__() self.conv_fn = nn.LayerList() self.conv_fn.append(gnn.GCNConv(input_size, output_size)) for i in range(num_layers - 1): self.conv_fn.append(gnn.GCNConv(output_size, output_size)) self.pool_fn = gnn.GraphPool("sum") def forward(self, num_nodes, edges, feature): graph = pgl.Graph(num_nodes=num_nodes, edges=edges) for fn in self.conv_fn: feature = fn(graph, feature) output = self.pool_fn(graph, feature) return output class StaticGraphOpTest(unittest.TestCase): def test_static_graph(self): path = './tmp' dim = 100 # Load DyGraph Model paddle.disable_static() num_nodes = 5 edges = [(0, 1), (1, 2), (3, 4)] nfeat = np.random.randn(num_nodes, dim).astype("float32") model = GNNModel(dim, 10) out = model( paddle.to_tensor(num_nodes), paddle.to_tensor(edges), paddle.to_tensor(nfeat)) out = out.numpy() paddle.save(model.state_dict(), os.path.join(path, "static_gnn.pdparam")) paddle.enable_static() # Run Static Fisrt model2 = GNNModel(dim, 10) input_num_nodes = static.data( name='num_nodes', shape=[-1], dtype='int32') input_edges = static.data(name='edges', shape=[-1, 2], dtype='int32') input_feature = static.data( name="feature", shape=[-1, dim], dtype="float32") output = model2(input_num_nodes, input_edges, input_feature) place = paddle.CPUPlace() exe = static.Executor(place) exe.run(static.default_startup_program()) prog = static.default_main_program() state_dict = paddle.load(os.path.join(path, "static_gnn.pdparam")) model2.set_state_dict(state_dict) feed_dict = { "num_nodes": num_nodes, "edges": np.array( edges, dtype="int32"), "feature": nfeat.astype("float32"), } out2 = exe.run(prog, feed=feed_dict, fetch_list=[output])[0] eps = np.sum((out2 - out)**2) self.assertTrue(eps < 1e-5) import shutil shutil.rmtree(path) if __name__ == "__main__": unittest.main()
31.215686
77
0.633794
e870bfceb35044841df9ce2bd8f04ca7be6d8b8d
2,352
py
Python
blockchain.py
mmz-001/simple-blockchain
e7f3e10791a1597bae14d4bee9261f644d75587f
[ "MIT" ]
null
null
null
blockchain.py
mmz-001/simple-blockchain
e7f3e10791a1597bae14d4bee9261f644d75587f
[ "MIT" ]
null
null
null
blockchain.py
mmz-001/simple-blockchain
e7f3e10791a1597bae14d4bee9261f644d75587f
[ "MIT" ]
null
null
null
import hashlib from datetime import datetime class Blockchain: def __init__(self): self.chain = [] self.current_tx = [] # Add the genesis block the the Blockchain self.chain.append(self.genesis_block) @property def genesis_block(self): """The first block in the Blockchain.""" block = { "index": 0, "timestamp": "0", "txs": "[]", "nonce": 634, "prev_hash": 0 } return block def create_block(self, nonce=0): """Create a new block.""" block = { "index": self.last_block["index"] + 1, "timestamp": str(datetime.now()), "txs": str(self.current_tx), "nonce": nonce, "prev_hash": self.hash(self.chain[-1]) } # Reset current list of transactions self.current_tx.clear() return block def new_tx(self, sender, recipient, amount): """Create a new transaction.""" self.current_tx.append({ "sender": sender, "recipient": recipient, "amount": amount }) return self.last_block["index"] + 1 @staticmethod def hash(block): """Return the SHA-256 hash of a Block.""" return hashlib.sha256(str(block).encode()).hexdigest() @property def last_block(self): """Return the last block in the chain.""" return self.chain[-1] def proof(self, block): """Proof of work algorithm.""" nonce = 0 while not self.valid_proof(block): block["nonce"] = nonce nonce += 1 self.chain.append(block) return nonce @staticmethod def valid_proof(block): """Validates the proof: Checks whether hash of the block contains 3 leading zeros.""" return Blockchain.hash(block)[:3] == "000" if __name__ == "__main__": blockchain = Blockchain() # Create a new transaction. blockchain.new_tx("Alice", "Bob", 5) # Mine a block. new_block = blockchain.create_block() blockchain.proof(new_block) # Print the current Blockchain. print(*blockchain.chain, sep="\n")
21
94
0.522109
47681fb1482c398fffac920b0b5d12390cca7713
9,245
py
Python
Scripts/etasteadyfv.py
dbcooney/Protocell_Paper_Code
8ae4ae3b6487905c18e5fdf5d5f48756cb7b0134
[ "BSD-3-Clause" ]
null
null
null
Scripts/etasteadyfv.py
dbcooney/Protocell_Paper_Code
8ae4ae3b6487905c18e5fdf5d5f48756cb7b0134
[ "BSD-3-Clause" ]
null
null
null
Scripts/etasteadyfv.py
dbcooney/Protocell_Paper_Code
8ae4ae3b6487905c18e5fdf5d5f48756cb7b0134
[ "BSD-3-Clause" ]
null
null
null
""" Script used to generate Figures B.1 and B.2, comparing the analytically calculated steady states for the fast-dimer and fast-slow dimorphic models with the states achieved after a large number of steps under numerical finite volume simulations of the same models. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cmap import scipy.integrate as spi import os from matplotlib import rc rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) """ This argument toggles between simulating dynamics on the fast-slow or fast-dimer edges of the simplex. """ #edge = "FD" edge = "FS" lamb1 = 8. lamb2 = 16. lamb3 = 32. lamb4 =64. lamb5 = 128. """ Introducing protocell-level replication rates for fast-slow and fast-dimer edges. """ def GFS(x,eta): return x - eta * (x ** 2.) def GFD(x,eta): return 0.5 * (x - 0.5 * eta * (x ** 2.)) def GFS_j(j,N,eta): return 0.5 * (1.0 / N) * (2.0 * j + 1.) - (eta / 3.) * (1.0 / (N**2.)) * (3.0 * (j ** 2.) + 3.0 * j + 1.) def GFD_j(j,N,eta): return 0.25 * (1. / N) * (2.0 * j + 1.) - (eta / 12.) * (1.0 / (N**2.)) * (3.0 * (j ** 2.) + 3.0 * j + 1.) """ Formulas for analyically calculated steady state densities. """ def fast_dimer_density(x,lamb,eta,s,theta): lamb_tilde = (lamb * (2. + s)) / ((s + 1.) ** 2.) return (x ** ( lamb_tilde * 0.5 * (1.0 - 0.5 * eta) - theta - 1.0)) * ((1.0 - x)**(theta - 1.0)) * (np.exp(-(0.25 * lamb_tilde * eta * x))) def fast_slow_density(x,lamb,eta,s,theta): return (x ** ( (lamb / s) * (1.0 - eta) - theta - 1.0)) * ((1.0 - x)**(theta - 1.0)) * (np.exp(-(lamb * eta * x)/s)) def steady_density(x,lamb,eta,s,theta,edge): if edge == "FD": return fast_dimer_density(x,lamb,eta,s,theta) if edge == "FS": return fast_slow_density(x,lamb,eta,s,theta) N = 400 time_step = 0.003 #time_length for FS edge time_length = 5000 #time_length for FD edge #time_length = 3000 eta = 0.67 s = 1. theta = 1. GFSvec = np.vectorize(GFS) GFS_jvec = np.vectorize(GFS_j) GFDvec = np.vectorize(GFD) GFD_jvec = np.vectorize(GFD_j) index_holder = np.zeros(N) for j in range(N): index_holder[j] = j """ Formulating discretized versions of a family of initial densities. """ def theta_init(j,N,theta): return N ** (1.0 - theta) * (((N - j) ** theta) - ((N - j - 1.0) ** theta) ) theta_vec = np.vectorize(theta_init) f_j = np.ones(N) f_j = theta_vec(index_holder,N,1.0) """ Formulating fluxes between volume boundaries for FS and FD models. """ def above_fluxFS(j,N,s): return ((j+1.0) / N) * (1.0 - (j+1.0) / N) * s def above_fluxFD(j,N,s): return ((j+1.0) / N) * (1.0 - (j+1.0) / N) * (s + 1. / (2. + s)) def below_fluxFS(j,N,s): return (np.float(j) / N) * (1.0 - (np.float(j)) / N) * s def below_fluxFD(j,N,s): return (np.float(j) / N) * (1.0 - (np.float(j)) / N) * (s + 1. / (2. + s)) above_fluxFS_vec = np.vectorize(above_fluxFS) below_fluxFS_vec = np.vectorize(below_fluxFS) above_fluxFD_vec = np.vectorize(above_fluxFD) below_fluxFD_vec = np.vectorize(below_fluxFD) """ Characterizing impact of within-protocell dynamics for finite volume discretization. """ def within_group(f,N,s,index_holder,edge): left_roll = np.roll(f,-1) left_roll[-1] = 0. right_roll = np.roll(f,1) right_roll[0] = 0. if edge == "FS": flux_in = above_fluxFS_vec(index_holder,N,s) * left_roll flux_out = below_fluxFS_vec(index_holder,N,s) * f elif edge == "FD": flux_in = above_fluxFD_vec(index_holder,N,s) * left_roll flux_out = below_fluxFD_vec(index_holder,N,s) * f return N * (flux_in - flux_out) """ Effect of protocell-level competition on multilevel finite volume dynamics. """ def righthand(f,G,N): return f * (G - (1.0/N) * np.dot(f,G)) peak_holder = [float(np.argmax(f_j))/N] """ Setting up finite volume simulations for five different values of relative selection strength $\lambda$. """ f_j1 = theta_vec(index_holder,N,1.0) f_j2 = theta_vec(index_holder,N,1.0) f_j3 = theta_vec(index_holder,N,1.0) f_j4 = theta_vec(index_holder,N,1.0) f_j5 = theta_vec(index_holder,N,1.0) """ Running the five stes of finite-volume simulations. """ for time in range(time_length): if edge == "FS": between_group_effect1 = righthand(f_j1,GFS_jvec(index_holder,N,eta),N) between_group_effect2 = righthand(f_j2,GFS_jvec(index_holder,N,eta),N) between_group_effect3 = righthand(f_j3,GFS_jvec(index_holder,N,eta),N) between_group_effect4 = righthand(f_j4,GFS_jvec(index_holder,N,eta),N) between_group_effect5 = righthand(f_j5,GFS_jvec(index_holder,N,eta),N) elif edge == "FD": between_group_effect1 = righthand(f_j1,GFD_jvec(index_holder,N,eta),N) between_group_effect2 = righthand(f_j2,GFD_jvec(index_holder,N,eta),N) between_group_effect3 = righthand(f_j3,GFD_jvec(index_holder,N,eta),N) between_group_effect4 = righthand(f_j4,GFD_jvec(index_holder,N,eta),N) between_group_effect5 = righthand(f_j5,GFD_jvec(index_holder,N,eta),N) within_group_effect1 = within_group(f_j1,N,s,index_holder,edge) within_group_effect2 = within_group(f_j2,N,s,index_holder,edge) within_group_effect3 = within_group(f_j3,N,s,index_holder,edge) within_group_effect4 = within_group(f_j4,N,s,index_holder,edge) within_group_effect5 = within_group(f_j5,N,s,index_holder,edge) righthandside1 = lamb1 * between_group_effect1 + within_group_effect1 righthandside2 = lamb2 * between_group_effect2 + within_group_effect2 righthandside3 = lamb3 * between_group_effect3 + within_group_effect3 righthandside4 = lamb4 * between_group_effect4 + within_group_effect4 righthandside5 = lamb5 * between_group_effect5 + within_group_effect5 f_j1 = f_j1 + time_step * righthandside1 f_j2 = f_j2 + time_step * righthandside2 f_j3 = f_j3 + time_step * righthandside3 f_j4 = f_j4 + time_step * righthandside4 f_j5 = f_j5 + time_step * righthandside5 print (1.0 / N) * np.sum(f_j1) peak_holder.append(float(np.argmax(f_j1))/N) """ Plotting the states achieved from the five sets of finite volume simulations after the prescribed number of time steps. """ plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),f_j1, color = plt.cm.YlOrRd(0.2), lw = 6., label = r"$\lambda = 8$") plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),f_j2, color = plt.cm.YlOrRd(0.4), lw = 6., label = r"$\lambda = 16$") plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),f_j3, color = plt.cm.YlOrRd(0.6), lw = 6., label = r"$\lambda = 32$") plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),f_j4, color = plt.cm.YlOrRd(0.8), lw = 6., label = r"$\lambda = 64$") plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),f_j5, color = plt.cm.YlOrRd(1.0), lw = 6., label = r"$\lambda = 128$") """ Plotting the analytically calculated steady states for the same values of the relative selection strength $\lambda$ as used in the finite volume simulations. """ lamb1_steady = steady_density(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb1,eta,s,1.,edge) lamb1_norm = lamb1_steady / spi.simps(lamb1_steady,np.arange(0.5/N,1.0+0.5/N,1.0/N)) plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb1_norm, color =plt.cm.YlOrRd(0.2), lw = 8., ls = '--') lamb2_steady = steady_density(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb2,eta,s,1.,edge) lamb2_norm = lamb2_steady / spi.simps(lamb2_steady,np.arange(0.5/N,1.0+0.5/N,1.0/N)) plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb2_norm, color =plt.cm.YlOrRd(0.4), lw = 8., ls = '--') lamb3_steady = steady_density(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb3,eta,s,1.,edge) lamb3_norm = lamb3_steady / spi.simps(lamb3_steady,np.arange(0.5/N,1.0+0.5/N,1.0/N)) plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb3_norm, color =plt.cm.YlOrRd(0.6), lw = 8., ls = '--') lamb4_steady = steady_density(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb4,eta,s,1.,edge) lamb4_norm = lamb4_steady / spi.simps(lamb4_steady,np.arange(0.5/N,1.0+0.5/N,1.0/N)) plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb4_norm, color =plt.cm.YlOrRd(0.8), lw = 8., ls = '--') lamb5_steady = steady_density(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb5,eta,s,1.,edge) lamb5_norm = lamb5_steady / spi.simps(lamb5_steady,np.arange(0.5/N,1.0+0.5/N,1.0/N)) plt.plot(np.arange(0.5/N,1.0+0.5/N,1.0/N),lamb5_norm, color =plt.cm.YlOrRd(1.), lw = 8., ls = '--') if eta == 0.67: plt.axvline(x = 0.75, ls = '--', lw = 6., color = 'k', alpha = 0.8) plt.annotate(r"Optimal Composition $x^*_{FS}$", xy = (0.7,8.),rotation = 90., fontsize = 20.) plt.axis([0.,1.0,0.,10.]) plt.legend(loc = "upper left", prop = {"size":16}) if edge == "FS": plt.xlabel(r"Fraction of Slow Replicators $x$", fontsize = 24., labelpad = 10.) plt.ylabel(r"Density of Groups $f(t,x)$", fontsize = 24.) elif edge == "FD": plt.xlabel(r"Fraction of Dimer Replicators $z$", fontsize = 24.,labelpad = 10.) plt.ylabel(r"Density of Groups $g(t,z)$", fontsize = 24.) plt.tight_layout() script_folder = os.getcwd() protocell_folder = os.path.dirname(script_folder) if edge == "FS" and eta == 0.67: plt.savefig(protocell_folder + "/Figures/fvfsghostdensity.png") elif edge == "FS" and eta == 0.33: plt.savefig(protocell_folder + "/Figures/fvfsnoghostdensity.png") elif edge == "FD" and eta == 1.: plt.savefig(protocell_folder + "/Figures/fvfddensity.png") plt.show()
30.919732
141
0.674202
086bb4c46858895d54d08a8b0f1c3218dfdde3b9
378
py
Python
exercises1-115/d115 - Criando um menu.py
renankalfa/Curso_em_Video
d9012e7f8c87fcc0ea27082279da234364f7e9a8
[ "MIT" ]
3
2022-01-08T23:16:07.000Z
2022-01-17T14:11:25.000Z
exercises1-115/d115 - Criando um menu.py
renankalfa/Curso_em_Video
d9012e7f8c87fcc0ea27082279da234364f7e9a8
[ "MIT" ]
null
null
null
exercises1-115/d115 - Criando um menu.py
renankalfa/Curso_em_Video
d9012e7f8c87fcc0ea27082279da234364f7e9a8
[ "MIT" ]
null
null
null
from d115.visuais import * from d115.tratamento import * from d115.bancodedados import * while True: menu('Pessoas cadastradas', 'Cadastrar Pessoa', 'Encerrar Programa') option = testaoption(input('\033[33mSua opção: \033[m')) if option == 1: mostrarcadastradas() if option == 2: armazenar() if option == 3: encerrar() break
25.2
72
0.634921
298e1191c06271831d4f1dd6f591995ac16a5a5e
5,337
py
Python
validation/emulation/experiments/linear-gpolka.p4app/test/latency_test_var/gpolka-fabric_bw10/heatmap_latency.py
nerds-ufes/G-PolKA
9c6bd42167bc333f6421a751c93a88c00841def9
[ "Apache-2.0", "MIT" ]
null
null
null
validation/emulation/experiments/linear-gpolka.p4app/test/latency_test_var/gpolka-fabric_bw10/heatmap_latency.py
nerds-ufes/G-PolKA
9c6bd42167bc333f6421a751c93a88c00841def9
[ "Apache-2.0", "MIT" ]
null
null
null
validation/emulation/experiments/linear-gpolka.p4app/test/latency_test_var/gpolka-fabric_bw10/heatmap_latency.py
nerds-ufes/G-PolKA
9c6bd42167bc333f6421a751c93a88c00841def9
[ "Apache-2.0", "MIT" ]
null
null
null
import numpy as np import matplotlib import matplotlib.pyplot as plt from numpy import genfromtxt # X n_of_hops = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # X pkt_sizes = ["64", "128", "256", "512", "1024", "1300"] pkt_sizes.reverse() array = [] def get_values(p_size): values_ping = [] for n in range(0, 10): f_name = "{f}/{n}/a1_{n}".format(f=p_size, n=n) print(f_name) values = [] with open(f_name) as f: for line in f: values.append(float(line)) values_ping.append(np.mean(values)) return values_ping def fill_array(): for p_size in pkt_sizes: print("Experiment: {}".format(p_size)) array.append(get_values(p_size=p_size)) def heatmap(data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="", **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Parameters ---------- data A 2D numpy array of shape (N, M). row_labels A list or array of length N with the labels for the rows. col_labels A list or array of length M with the labels for the columns. ax A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If not provided, use current axes or create a new one. Optional. cbar_kw A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional. cbarlabel The label for the colorbar. Optional. **kwargs All other arguments are forwarded to `imshow`. """ if not ax: ax = plt.gca() # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") # We want to show all ticks... ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) # ... and label them with the respective list entries. ax.set_xticklabels(col_labels) ax.set_yticklabels(row_labels) # Let the horizontal axes labeling appear on top. ax.tick_params(top=False, bottom=True, labeltop=False, labelbottom=True) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=0, ha="center", rotation_mode="anchor") # Turn spines off and create white grid. for edge, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(np.arange(data.shape[1] + 1) - 0.5, minor=True) ax.set_yticks(np.arange(data.shape[0] + 1) - 0.5, minor=True) ax.grid(which="minor", color="w", linestyle="-", linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar def annotate_heatmap( im, data=None, valfmt="{x:.2f}", textcolors=("black", "white"), threshold=None, **textkw ): """ A function to annotate a heatmap. Parameters ---------- im The AxesImage to be labeled. data Data used to annotate. If None, the image's data is used. Optional. valfmt The format of the annotations inside the heatmap. This should either use the string format method, e.g. "$ {x:.2f}", or be a `matplotlib.ticker.Formatter`. Optional. textcolors A pair of colors. The first is used for values below a threshold, the second for those above. Optional. threshold Value in data units according to which the colors from textcolors are applied. If None (the default) uses the middle of the colormap as separation. Optional. **kwargs All other arguments are forwarded to each call to `text` used to create the text labels. """ if not isinstance(data, (list, np.ndarray)): data = im.get_array() # Normalize the threshold to the images color range. if threshold is not None: threshold = im.norm(threshold) else: threshold = im.norm(data.max()) / 2.0 # Set default alignment to center, but allow it to be # overwritten by textkw. kw = dict(horizontalalignment="center", verticalalignment="center") kw.update(textkw) # Get the formatter in case a string is supplied if isinstance(valfmt, str): valfmt = matplotlib.ticker.StrMethodFormatter(valfmt) # Loop over the data and create a `Text` for each "pixel". # Change the text's color depending on the data. texts = [] for i in range(data.shape[0]): for j in range(data.shape[1]): kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)]) text = im.axes.text(j, i, valfmt(data[i, j], None), **kw) texts.append(text) return texts fill_array() array = np.array(array) print(array) fig, ax = plt.subplots() im, cbar = heatmap( array, pkt_sizes, n_of_hops, ax=ax, cmap="Blues", cbarlabel="Latency Bound [ms]" ) texts = annotate_heatmap(im, valfmt="{x:.2f}") fig.tight_layout() plt.ylabel("Packet Size (bytes)") plt.xlabel("Number of hops") plt.savefig( "latencymap.pdf", dpi=300, format="pdf", # bbox_extra_artists=(lgd,), bbox_inches="tight", ) plt.show()
29.983146
88
0.610455
c9b774b167b67ab29dc1375cdb73b0ed8f0d856e
12,464
py
Python
PyU4V/tests/unit_tests/test_pyu4v_requests.py
SiSTm1/PyU4V
ce9784fc5f8192024cfa42509b8d45583b83f01d
[ "MIT" ]
19
2020-01-06T12:02:25.000Z
2021-12-14T06:50:04.000Z
PyU4V/tests/unit_tests/test_pyu4v_requests.py
SiSTm1/PyU4V
ce9784fc5f8192024cfa42509b8d45583b83f01d
[ "MIT" ]
53
2019-12-17T17:26:44.000Z
2022-02-03T12:28:34.000Z
PyU4V/tests/unit_tests/test_pyu4v_requests.py
SiSTm1/PyU4V
ce9784fc5f8192024cfa42509b8d45583b83f01d
[ "MIT" ]
13
2019-01-24T17:10:05.000Z
2019-12-09T06:33:21.000Z
# Copyright (c) 2020 Dell Inc. or its subsidiaries. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """test_pyu4v_requests.py.""" import json import platform import requests import testtools from unittest import mock from PyU4V import rest_requests from PyU4V.tests.unit_tests import pyu4v_common_data as pcd from PyU4V.tests.unit_tests import pyu4v_fakes as pf from PyU4V.utils import constants from PyU4V.utils import exception class PyU4VRestRequestsTest(testtools.TestCase): """Testing Unisphere REST requests.""" def setUp(self): """Setup.""" super(PyU4VRestRequestsTest, self).setUp() self.data = pcd.CommonData() pyu4v_version = constants.PYU4V_VERSION python_version = platform.python_version() sys_platform = platform.system() sys_platform_release = platform.release() self.ua_details = ( 'PyU4V/{pv} ({plat}; version {rel}) Python {python}'.format( pv=pyu4v_version, plat=sys_platform, rel=sys_platform_release, python=python_version)) self.app_type = 'PyU4V-{v}'.format(v=pyu4v_version) self.rest = rest_requests.RestRequests( username='smc', password='smc', verify=False, base_url='http://10.10.10.10:8443/univmax/restapi', interval=1, retries=3) def test_rest_requests_init(self): """Test class RestRequests __init__.""" self.assertEqual(self.rest.username, 'smc') self.assertEqual(self.rest.password, 'smc') self.assertFalse(self.rest.verify_ssl) self.assertEqual(self.rest.base_url, 'http://10.10.10.10:8443/univmax/restapi') self.assertEqual(self.rest.interval, 1) self.assertEqual(self.rest.retries, 3) self.assertEqual(self.rest.timeout, 120) ref_headers = {'content-type': 'application/json', 'accept': 'application/json', 'application-type': None, 'user-agent': self.ua_details} self.assertEqual(self.rest.headers, ref_headers) self.assertIsInstance(self.rest.session, type(requests.session())) def test_establish_rest_session(self): """Test establish REST session.""" ref_headers = {'content-type': 'application/json', 'accept': 'application/json', 'application-type': 'test_app', 'user-agent': self.ua_details} temp_rest = rest_requests.RestRequests( username='smc', password='smc', verify=False, base_url='http://10.10.10.10:8443/univmax/restapi', interval=1, retries=3, application_type='test_app') self.assertEqual(ref_headers, temp_rest.session.headers) self.assertEqual('smc', temp_rest.session.auth.username) self.assertEqual('smc', temp_rest.session.auth.password) self.assertEqual(False, temp_rest.session.verify) def test_establish_rest_session_with_headers(self): """Test establish_rest_session with headers.""" ref_headers = {'test_headers': True} session = self.rest.establish_rest_session(headers=ref_headers) self.assertEqual(ref_headers, session.headers) def test_rest_request(self): """Test REST request success.""" with mock.patch.object( self.rest.session, 'request', return_value=pf.FakeResponse( 200, self.data.server_version)) as mock_request: response, sc = self.rest.rest_request('/fake_uri', 'GET') mock_request.assert_called_once_with( method='GET', timeout=120, url='http://10.10.10.10:8443/univmax/restapi/fake_uri') self.assertEqual(200, sc) self.assertEqual(self.data.server_version, response) def test_rest_request_params(self): """Test REST request with parameters.""" with mock.patch.object( self.rest.session, 'request', return_value=pf.FakeResponse( 200, self.data.server_version)) as mock_request: request_params = {'param': 'test'} response, sc = self.rest.rest_request( '/fake_uri', 'GET', params=request_params, timeout=500) mock_request.assert_called_once_with( method='GET', timeout=500, params=request_params, url='http://10.10.10.10:8443/univmax/restapi/fake_uri') self.assertEqual(200, sc) self.assertEqual(self.data.server_version, response) def test_rest_request_object(self): """Test REST request with object.""" with mock.patch.object( self.rest.session, 'request', return_value=pf.FakeResponse( 200, self.data.server_version)) as mock_request: request_object = {'param': 'test'} response, sc = self.rest.rest_request( '/fake_uri', 'GET', request_object=request_object) mock_request.assert_called_once_with( method='GET', timeout=120, data=json.dumps(request_object, sort_keys=True, indent=4), url='http://10.10.10.10:8443/univmax/restapi/fake_uri') self.assertEqual(200, sc) self.assertEqual(self.data.server_version, response) def test_rest_request_no_session(self): """Test REST requests, no existing session available.""" with mock.patch.object( self.rest, 'establish_rest_session', return_value=pf.FakeRequestsSession()) as mck_sesh: self.rest.session = None __, __ = self.rest.rest_request('/fake_uri', 'GET', timeout=0.1) mck_sesh.assert_called_once() def test_rest_request_value_error(self): """Test REST request value error no response.""" with mock.patch.object(self.rest.session, 'request', return_value=pf.FakeResponse(500, None)): response, sc = self.rest.rest_request('/fake_uri', 'GET') self.assertEqual(500, sc) self.assertIsNone(response) def test_rest_request_value_error_no_status_code(self): """Test REST request value error no response or status code.""" with mock.patch.object(self.rest.session, 'request', return_value=pf.FakeResponse(None, None)): response, sc = self.rest.rest_request('/fake_uri', 'GET') self.assertIsNone(sc) self.assertIsNone(response) def test_close_session(self): """Test close REST session.""" with mock.patch.object(self.rest.session, 'close') as mck_close: self.rest.close_session() mck_close.assert_called_once() def test_rest_request_timeout_exception(self): """Test REST timeout exception scenario.""" self.rest.session = pf.FakeRequestsSession() sc, msg = self.rest.rest_request('/fake_url', 'TIMEOUT') self.assertIsNone(sc) self.assertIsNone(msg) def test_rest_request_connection_exception(self): """Test REST HTTP error exception scenario.""" self.rest.session = pf.FakeRequestsSession() self.assertRaises(requests.exceptions.HTTPError, self.rest.rest_request, '/fake_url', 'HTTPERROR') def test_rest_request_ssl_exception(self): """Test REST SSL exception scenario.""" self.rest.session = pf.FakeRequestsSession() self.assertRaises(requests.exceptions.SSLError, self.rest.rest_request, '/fake_url', 'SSLERROR') def test_rest_request_other_exception(self): """Test REST other exception scenario.""" self.rest.session = pf.FakeRequestsSession() self.assertRaises(exception.VolumeBackendAPIException, self.rest.rest_request, '/fake_url', 'EXCEPTION') def test_file_transfer_request_download(self): """Test file_transfer_request download request.""" with mock.patch.object( self.rest, 'establish_rest_session', return_value=pf.FakeRequestsSession()) as mck_est: response, sc = self.rest.file_transfer_request( method=constants.POST, uri='/system/settings/importfile', download=True, r_obj={'test_req': True}) mck_est.assert_called_once_with(headers={ constants.CONTENT_TYPE: constants.APP_JSON, constants.ACCEPT: constants.APP_OCT, constants.USER_AGENT: rest_requests.ua_details, constants.APP_TYPE: self.rest.headers.get( 'application-type')}) self.assertEqual(200, sc) self.assertEqual('OK', response.raw.reason) def test_file_transfer_request_upload(self): """Test file_transfer_request download request.""" with mock.patch.object( self.rest, 'establish_rest_session', return_value=pf.FakeRequestsSession()) as mck_est: response, sc = self.rest.file_transfer_request( method=constants.POST, uri='/system/settings/exportfile', upload=True, form_data={'test_req': True}) mck_est.assert_called_once_with(headers={ constants.ACCEPT_ENC: constants.APP_MPART, constants.USER_AGENT: rest_requests.ua_details, constants.APP_TYPE: self.rest.headers.get( 'application-type')}) self.assertEqual(200, sc) self.assertEqual('OK', response.raw.reason) def test_file_transfer_request_download_upload_exception(self): """Test file_transfer_request exc download and upload both set.""" self.assertRaises( exception.InvalidInputException, self.rest.file_transfer_request, method=constants.POST, uri='/fake', download=True, upload=True) def test_file_transfer_request_timeout_exception(self): """Test file_transfer timeout exception scenario.""" with mock.patch.object( self.rest, 'establish_rest_session', side_effect=requests.Timeout): resp, sc = self.rest.file_transfer_request( method=constants.POST, uri='/fake', download=True) self.assertIsNone(resp) self.assertIsNone(sc) def test_file_transfer_request_ssl_exception(self): """Test file_transfer SSL error exception scenario.""" with mock.patch.object( self.rest, 'establish_rest_session', side_effect=requests.exceptions.SSLError): self.assertRaises( requests.exceptions.SSLError, self.rest.file_transfer_request, method=constants.POST, uri='/fake', download=True) def test_file_transfer_request_connection_exception(self): """Test file_transfer HTTP error exception scenario.""" with mock.patch.object( self.rest, 'establish_rest_session', side_effect=requests.exceptions.HTTPError): self.assertRaises( requests.exceptions.HTTPError, self.rest.file_transfer_request, method=constants.POST, uri='/fake', download=True) def test_file_transfer_request_other_exception(self): """Test file_transfer HTTP error exception scenario.""" with mock.patch.object( self.rest, 'establish_rest_session', side_effect=exception.VolumeBackendAPIException): self.assertRaises( exception.VolumeBackendAPIException, self.rest.file_transfer_request, method=constants.POST, uri='/fake', download=True)
44.99639
77
0.628931
ec730f1c6e3d36bec5d0c6144bd9479bc3560a7c
7,064
py
Python
astrality/tests/actions/test_copy_action.py
JakobGM/Astrality
72935b616f9a6a2e9254e9cd9319b525c596e8f0
[ "MIT" ]
111
2018-03-19T12:56:35.000Z
2022-02-05T11:19:04.000Z
astrality/tests/actions/test_copy_action.py
JakobGM/Astrality
72935b616f9a6a2e9254e9cd9319b525c596e8f0
[ "MIT" ]
120
2018-02-22T11:23:08.000Z
2021-03-25T22:13:47.000Z
astrality/tests/actions/test_copy_action.py
JakobGM/Astrality
72935b616f9a6a2e9254e9cd9319b525c596e8f0
[ "MIT" ]
7
2018-04-06T14:28:33.000Z
2020-03-18T20:25:59.000Z
"""Tests for astrality.actions.CopyAction.""" from pathlib import Path from astrality.actions import CopyAction from astrality.persistence import CreatedFiles def test_null_object_pattern(): """Copy actions without options should do nothing.""" copy_action = CopyAction( options={}, directory=Path('/'), replacer=lambda x: x, context_store={}, creation_store=CreatedFiles().wrapper_for(module='test'), ) copy_action.execute() def test_if_dry_run_is_respected(create_temp_files, caplog): """When dry_run is True, the copy action should only be logged.""" content, target = create_temp_files(2) content.write_text('content') target.write_text('target') copy_action = CopyAction( options={'content': str(content), 'target': str(target)}, directory=Path('/'), replacer=lambda x: x, context_store={}, creation_store=CreatedFiles().wrapper_for(module='test'), ) caplog.clear() result = copy_action.execute(dry_run=True) # We should still return the copy pair assert result == {content: target} # We should log what would have been done assert 'SKIPPED:' in caplog.record_tuples[0][2] assert str(content) in caplog.record_tuples[0][2] assert str(target) in caplog.record_tuples[0][2] # But we should not copy the file under a dry run assert target.read_text() == 'target' def test_copy_action_using_all_parameters(tmpdir): """All three parameters should be respected.""" temp_dir = Path(tmpdir) / 'content' temp_dir.mkdir() target = Path(tmpdir) / 'target' target.mkdir() file1 = temp_dir / 'file1' file1.write_text('file1 content') file2 = temp_dir / 'file2' file2.write_text('file2 content') recursive_dir = temp_dir / 'recursive' recursive_dir.mkdir() file3 = temp_dir / 'recursive' / 'file3' file3.write_text('file3 content') copy_options = { 'content': str(temp_dir), 'target': str(target), 'include': r'file(\d)', } copy_action = CopyAction( options=copy_options, directory=temp_dir, replacer=lambda x: x, context_store={}, creation_store=CreatedFiles().wrapper_for(module='test'), ) copy_action.execute() assert (target / '1').read_text() == file1.read_text() assert (target / '2').read_text() == file2.read_text() assert (target / 'recursive' / '3').read_text() == file3.read_text() assert copy_action.copied_files == { file1: {target / '1'}, file2: {target / '2'}, file3: {target / 'recursive' / '3'}, } assert file1 in copy_action def test_copying_without_renaming(tmpdir): """When include is not given, keep copy name.""" temp_dir = Path(tmpdir) / 'content' temp_dir.mkdir() target = Path(tmpdir) / 'target' target.mkdir() file1 = temp_dir / 'file1' file1.touch() file2 = temp_dir / 'file2' file2.touch() recursive_dir = temp_dir / 'recursive' recursive_dir.mkdir() file3 = temp_dir / 'recursive' / 'file3' file3.touch() copy_options = { 'content': str(temp_dir), 'target': str(target), } copy_action = CopyAction( options=copy_options, directory=temp_dir, replacer=lambda x: x, context_store={}, creation_store=CreatedFiles().wrapper_for(module='test'), ) copy_action.execute() assert (target / 'file1').read_text() == file1.read_text() assert (target / 'file2').read_text() == file2.read_text() assert (target / 'recursive' / 'file3').read_text() == file3.read_text() def test_copying_file_to_directory(tmpdir): """If copying from directory to file, place file in directory.""" temp_dir = Path(tmpdir) / 'content' temp_dir.mkdir() target = Path(tmpdir) / 'target' target.mkdir() file1 = temp_dir / 'file1' file1.touch() copy_options = { 'content': str(file1), 'target': str(target), 'include': r'file1', } copy_action = CopyAction( options=copy_options, directory=temp_dir, replacer=lambda x: x, context_store={}, creation_store=CreatedFiles().wrapper_for(module='test'), ) copy_action.execute() assert (target / 'file1').read_text() == file1.read_text() def test_setting_permissions_on_target_copy(tmpdir): """If permissions is provided, use it for the target.""" temp_dir = Path(tmpdir) / 'content' temp_dir.mkdir() target = Path(tmpdir) / 'target' target.mkdir() file1 = temp_dir / 'file1' file1.touch() file1.chmod(0o770) copy_options = { 'content': str(file1), 'target': str(target), 'include': r'file1', 'permissions': '777', } copy_action = CopyAction( options=copy_options, directory=temp_dir, replacer=lambda x: x, context_store={}, creation_store=CreatedFiles().wrapper_for(module='test'), ) copy_action.execute() assert ((target / 'file1').stat().st_mode & 0o000777) == 0o777 def test_backup_of_copy_target(create_temp_files): """Overwritten copy targets should be backed up.""" target, content = create_temp_files(2) # This file is the original and should be backed up target.write_text('original') # This is the new content copied to target content.write_text('new') copy_options = { 'content': str(content.name), 'target': str(target), } copy_action = CopyAction( options=copy_options, directory=content.parent, replacer=lambda x: x, context_store={}, creation_store=CreatedFiles().wrapper_for(module='test'), ) # We replace the content by executing the action copy_action.execute() assert target.read_text() == 'new' # And when cleaning up the module, the backup should be restored CreatedFiles().cleanup(module='test') assert target.read_text() == 'original' def test_cleanup_of_created_directory(create_temp_files, tmpdir): """Created directories should be cleaned up.""" tmpdir = Path(tmpdir) [content] = create_temp_files(1) # The target requires a new directory to be created directory = tmpdir / 'dir' target = directory / 'target.tmp' # Execute copy action copy_options = { 'content': str(content.name), 'target': str(target), } created_files = CreatedFiles().wrapper_for(module='test') copy_action = CopyAction( options=copy_options, directory=content.parent, replacer=lambda x: x, context_store={}, creation_store=created_files, ) copy_action.execute() # The directory should now be created and persisted assert directory.is_dir() assert directory in created_files.creation_store # And it should be deleted on cleanup created_files.creation_store.cleanup(module='test') assert not directory.is_dir()
27.920949
76
0.640006
42507b93018771630b9ea8a6ebbffbe1c5861e1a
608
py
Python
{{cookiecutter.repo_name}}/{{cookiecutter.package_name}}/test/test_pyspark_entrypoint.py
daniel-cortez-stevenson/cookiecutter-pyspark-cloud
5a8818e086f810f66627862a0a0fa2e1741ae5a7
[ "Apache-2.0" ]
3
2020-05-06T20:01:34.000Z
2021-07-14T17:19:43.000Z
{{cookiecutter.repo_name}}/{{cookiecutter.package_name}}/test/test_pyspark_entrypoint.py
daniel-cortez-stevenson/cookiecutter-pyspark-aws-emr
5a8818e086f810f66627862a0a0fa2e1741ae5a7
[ "Apache-2.0" ]
1
2020-05-07T03:42:05.000Z
2020-05-26T18:02:22.000Z
{{cookiecutter.repo_name}}/{{cookiecutter.package_name}}/test/test_pyspark_entrypoint.py
daniel-cortez-stevenson/cookiecutter-pyspark-aws-emr
5a8818e086f810f66627862a0a0fa2e1741ae5a7
[ "Apache-2.0" ]
2
2020-10-29T21:34:52.000Z
2021-12-28T12:53:12.000Z
""" Copyright 2020 Daniel Cortez Stevenson Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ def test_placeholder(): pass
30.4
72
0.779605
e087519151d90f5a9e6050272ff806461c9d5cca
26,307
py
Python
scripts/db/budget/budggosql12.py
CCLab/Raw-Salad
1ec028985e2b910aca31302fb57ed0677778756e
[ "BSD-3-Clause" ]
null
null
null
scripts/db/budget/budggosql12.py
CCLab/Raw-Salad
1ec028985e2b910aca31302fb57ed0677778756e
[ "BSD-3-Clause" ]
null
null
null
scripts/db/budget/budggosql12.py
CCLab/Raw-Salad
1ec028985e2b910aca31302fb57ed0677778756e
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import getpass import os import optparse import csv import psycopg2 import psycopg2.extras import simplejson as json from ConfigParser import ConfigParser #----------------------------- def get_db_connect(fullpath, dbtype): connect_dict= {} defaults= { 'basedir': fullpath } cfg= ConfigParser(defaults) cfg.read(fullpath) connect_dict['host']= cfg.get(dbtype,'host') connect_dict['port']= cfg.getint(dbtype,'port') connect_dict['database']= cfg.get(dbtype,'database') connect_dict['username']= cfg.get(dbtype,'username') try: connect_dict['password']= cfg.get(dbtype,'password') except: connect_dict['password']= None return connect_dict #----------------------------- def execute_sql(statement, connection): cur = connection.cursor() success= True try: cur.execute(statement) except Exception, e: success= False print 'Cannot execute statement!: %r\n %s\n' % (statement, e) return success #----------------------------- def create_table(connection, schema, mode, clean_act): connection.set_isolation_level(psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT) # not to do COMMIT after every insert/update cur = connection.cursor() print '... creating', mode, "table - reading schema" table_name= schema[mode]['name'] # dict of aliases -> document keys in db colmn_name= schema[mode]['columns'] # dict of aliases -> document keys in db create_table_stat= 'CREATE TABLE '+ table_name +' (' order_list= [int(k) for k in colmn_name.keys()] order_list.sort() for curr_key in order_list: create_table_stat= create_table_stat + colmn_name[str(curr_key)]['name'] + ' ' + colmn_name[str(curr_key)]['type'] + ', ' create_table_stat= create_table_stat.rstrip(', ')+')' if clean_act: try: cur.execute('DROP TABLE '+table_name) except: pass # no table with that name - nothing to delete success= True try: cur.execute(create_table_stat) print "... table", table_name, "successfully created" except Exception, e: success= False print 'Cannot create table:\n %s' % e return success, table_name #----------------------------- def db_insert(data_bulk, db, collname, clean_first=False): collect= db[collname] if clean_first: collect.remove() collect.insert(data_bulk) return collect.find().count() #----------------------------- def sort_format(src): """ format 1-2-3... to 0001-0002-0003... src should be convertable to int """ src_list= src.split('-') res_list= [] for elm in src_list: res_list.append('%04d' % int(elm)) res= '-'.join(res_list) return res #----------------------------- def fill_work_table(curr_year, temp_tbl, work_tbl, connection): # filling out sql table select_statement= "SELECT * FROM %s ORDER BY %s" % (temp_tbl, '_id') dict_cur= connection.cursor(cursor_factory=psycopg2.extras.DictCursor) dict_cur.execute(select_statement) rows = dict_cur.fetchall() for row in rows: # FUNKCJA: level 'a', node NULL if row['test_f']: idef= row['numer'] idef_sort= sort_format(idef) funk_type_name= row['funkcja_zadanie_podzadanie'].split('.', 2) curr_funkcja= row['numer'] leaf= False # 'funkcja' has children v_total= row['ogolem'] v_nation= row['budzet_panstwa'] v_eu= row['budzet_srodkow_europejskich'] if v_total != 0: v_proc_eu= round(float(v_eu) / float(v_total) * 100, 2) #percentage v_proc_nation= round(float(v_nation) / float(v_total) * 100, 2) if row['numer'] == '9999': idef_sort= row['numer'] elem_type= 'Total' elem_name= row['funkcja_zadanie_podzadanie'].strip().decode('utf-8') leaf= True # in case of grand total it's the last level (no children) else: elem_name= funk_type_name[1].strip().decode('utf-8') elem_type= funk_type_name[0].strip().decode('utf-8') insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', NULL, NULL, NULL, '%s', 'a', '%s', '%s', NULL, NULL, NULL, %d, %d, %d, %0.2f, %0.2f, %d) """ % (work_tbl, idef, idef_sort, leaf, elem_type, elem_name, v_total, v_nation, v_eu, v_proc_nation, v_proc_eu, curr_year) execute_sql(insert_statement, connection) # FUNKCJA - ZADANIE: level 'b', node NULL if row['test_z']: curr_zadanie= row['numer'].replace('.','-') idef= curr_zadanie idef_sort= sort_format(idef) parent= curr_funkcja parent_sort= sort_format(parent) list_name= row['funkcja_zadanie_podzadanie'].split('.', 2) elem_type= ('Zadanie ' + list_name[0].strip() + '.' + list_name[1].strip()).decode('utf-8') elem_name= list_name[2].strip().decode('utf-8') leaf= False # 'zadanie' has children v_total= row['ogolem'] v_nation= row['budzet_panstwa'] v_eu= row['budzet_srodkow_europejskich'] if v_total != 0: v_proc_eu= round(float(v_eu) / float(v_total) * 100, 2) #percentage v_proc_nation= round(float(v_nation) / float(v_total) * 100, 2) insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', NULL, '%s', 'b', '%s', '%s', NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_year) execute_sql(insert_statement, connection) # money are NULL on that level zadanie_dysp_count= 0 # for incrementing children - 'dysponent' # ZADANIE - DYSPONENT: level 'c', node 0 if row['test_z_d']: zadanie_dysp_count += 1 parent= curr_zadanie parent_sort= sort_format(parent) idef= curr_zadanie+'-'+str(zadanie_dysp_count) curr_zadanie_dysponent= idef idef_sort= sort_format(idef) elem_type= 'Dysponent' elem_name= row['dysponent'].strip().decode('utf-8') leaf= False # 'dysponent' has children v_total= row['ogolem'] v_nation= row['budzet_panstwa'] v_eu= row['budzet_srodkow_europejskich'] if v_total != 0: v_proc_eu= round(float(v_eu) / float(v_total) * 100, 2) #percentage v_proc_nation= round(float(v_nation) / float(v_total) * 100, 2) if '/' in row['czesc']: curr_czesc= row['czesc'] else: curr_czesc= str('%02d' % int(row['czesc'])) insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 0, '%s', 'c', '%s', '%s', '%s', NULL, NULL, %d, %d, %d, %0.2f, %0.2f, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, v_total, v_nation, v_eu, v_proc_nation, v_proc_eu, curr_year) execute_sql(insert_statement, connection) zadanie_dysp_cel_count= 0 # for incrementing children - 'cel' # WARNING! if curr_funkcja == '22': # doubling that for the node 1, as there's no 'Podzadanie' for Funk 22 insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 1, '%s', 'c', '%s', '%s', '%s', NULL, NULL, %d, %d, %d, %0.2f, %0.2f, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, v_total, v_nation, v_eu, v_proc_nation, v_proc_eu, curr_year) execute_sql(insert_statement, connection) # ZADANIE - DYSPONENT - CEL: level 'd', node 0 if row['test_z_c']: zadanie_dysp_cel_count += 1 parent= curr_zadanie_dysponent parent_sort= sort_format(parent) idef= curr_zadanie_dysponent+'-'+str(zadanie_dysp_cel_count) curr_zadanie_dysponent_cel= idef idef_sort= sort_format(idef) elem_type= 'Cel' if row['cel'] is None: print "--- ! empty Cel of parent %s" % parent elem_name= '' else: elem_name= row['cel'].strip().decode('utf-8') if '/' in row['czesc']: curr_czesc= row['czesc'] else: curr_czesc= str('%02d' % int(row['czesc'])) leaf= False # 'cel' has children insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 0, '%s', 'd', '%s', '%s', '%s', NULL, NULL, NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, curr_year) execute_sql(insert_statement, connection) # money are NULL on that level zadanie_dysp_cel_mier_count= 0 # for incrementing children - 'cel' # WARNING! if curr_funkcja == '22': # doubling that for the node 1, as there's no 'Podzadanie' for Funk 22 insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 1, '%s', 'd', '%s', '%s', '%s', NULL, NULL, NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, curr_year) execute_sql(insert_statement, connection) # ZADANIE - DYSPONENT - CEL - MIERNIK: level 'e', node 0, leaf= True if row['test_z_m']: zadanie_dysp_cel_mier_count += 1 parent= curr_zadanie_dysponent_cel parent_sort= sort_format(parent) idef= curr_zadanie_dysponent_cel+'-'+str(zadanie_dysp_cel_mier_count) idef_sort= sort_format(idef) elem_type= 'Miernik' if row['miernik_nazwa'] is None: print "--- ! empty Miernik of parent %s" % parent elem_name= '' else: elem_name= row['miernik_nazwa'].strip().decode('utf-8') wartosc_bazowa= row['miernik_wartosc_bazowa'] wartosc_rok_obec= row['miernik_wartosc_rok_obec'] if wartosc_bazowa is not None: wartosc_bazowa= wartosc_bazowa.strip().decode('utf-8') if wartosc_rok_obec is not None: wartosc_rok_obec= wartosc_rok_obec.strip().decode('utf-8') leaf= True # 'miernik' is the deepest level if '/' in row['czesc']: curr_czesc= row['czesc'] else: curr_czesc= str('%02d' % int(row['czesc'])) insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 0, '%s', 'e', '%s', '%s', '%s', '%s', '%s', NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, wartosc_bazowa, wartosc_rok_obec, curr_year) execute_sql(insert_statement, connection) # money are NULL on that level # WARNING! if curr_funkcja == '22': # doubling that for the node 1, as there's no 'Podzadanie' for Funk 22 insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 1, '%s', 'e', '%s', '%s', '%s', '%s', '%s', NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, wartosc_bazowa, wartosc_rok_obec, curr_year) execute_sql(insert_statement, connection) # ZADANIE - PODZADANIE: level 'c', node 1 if row['test_p']: parent= curr_zadanie parent_sort= sort_format(parent) idef= row['numer'].replace('.','-') idef_sort= sort_format(idef) curr_podzadanie= idef list_name= row['funkcja_zadanie_podzadanie'].split('.', 3) elem_type= ('Podzadanie ' + list_name[0].strip() + '.' + list_name[1].strip() + '.' + list_name[2].strip()).decode('utf-8') elem_name= list_name[3].strip().decode('utf-8') v_total= row['ogolem'] v_nation= row['budzet_panstwa'] v_eu= row['budzet_srodkow_europejskich'] if v_total != 0: v_proc_eu= round(float(v_eu) / float(v_total) * 100, 2) #percentage v_proc_nation= round(float(v_nation) / float(v_total) * 100, 2) leaf= False # 'podzadanie' has children insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 1, '%s', 'c', '%s', '%s', NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_year) execute_sql(insert_statement, connection) # money are NULL on that level podzadanie_dysp_count= 0 # for incrementing children - 'dysponent' # ZADANIE - PODZADANIE - DYSPONENT: level 'd', node 1 if row['test_p_d']: podzadanie_dysp_count += 1 parent= curr_podzadanie parent_sort= sort_format(parent) idef= curr_podzadanie+'-'+str(podzadanie_dysp_count) curr_podzadanie_dysp= idef idef_sort= sort_format(idef) elem_type= 'Dysponent' elem_name= row['dysponent'].strip().decode('utf-8') leaf= False # 'dysponent' has children - TO CONFIRM BY IGNACY!!! (*) v_total= row['ogolem'] v_nation= row['budzet_panstwa'] v_eu= row['budzet_srodkow_europejskich'] if v_total != 0: v_proc_eu= round(float(v_eu) / float(v_total) * 100, 2) #percentage v_proc_nation= round(float(v_nation) / float(v_total) * 100, 2) if '/' in row['czesc']: curr_czesc= row['czesc'] else: curr_czesc= str('%02d' % int(row['czesc'])) insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 1, '%s', 'd', '%s', '%s', '%s', NULL, NULL, %d, %d, %d, %0.2f, %0.2f, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, v_total, v_nation, v_eu, v_proc_nation, v_proc_eu, curr_year) execute_sql(insert_statement, connection) zadanie_dysp_cel_count= 0 # for incrementing children - 'cel' # (*) next 2 blocks - until Ignacy confirms that we fulfill next 2 levels with 1 successive element in each case # ZADANIE - PODZADANIE - DYSPONENT - CEL: level 'e', node 1 parent= curr_podzadanie_dysp parent_sort= sort_format(parent) idef= curr_podzadanie_dysp+'-1' # to change depends on (*) curr_podzadanie_dysp_cel= idef idef_sort= sort_format(idef) elem_type= 'Cel' if row['cel'] is None: elem_name= '' print "--- ! empty Cel of parent %s" % parent else: elem_name= row['cel'].strip().decode('utf-8') leaf= False # 'cel' has children - TO BE CONFIRMED (*) if '/' in row['czesc']: curr_czesc= row['czesc'] else: curr_czesc= str('%02d' % int(row['czesc'])) insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 1, '%s', 'e', '%s', '%s', '%s', NULL, NULL, NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, curr_year) execute_sql(insert_statement, connection) zadanie_dysp_cel_mier_count= 0 # for incrementing children - 'cel' # ZADANIE - PODZADANIE - DYSPONENT - CEL - MIERNIK: level 'f', node 1 parent= curr_podzadanie_dysp_cel parent_sort= sort_format(parent) idef= curr_podzadanie_dysp_cel+'-1' # to change depends on (*) idef_sort= sort_format(idef) elem_type= 'Miernik' if row['miernik_nazwa'] is None: elem_name= '' print "--- ! empty Miernik of parent %s" % parent else: elem_name= row['miernik_nazwa'].strip().decode('utf-8') wartosc_bazowa= row['miernik_wartosc_bazowa'] wartosc_rok_obec= row['miernik_wartosc_rok_obec'] if wartosc_bazowa is not None: wartosc_bazowa= wartosc_bazowa.strip().decode('utf-8') if wartosc_rok_obec is not None: wartosc_rok_obec= wartosc_rok_obec.strip().decode('utf-8') leaf= True # 'miernik' is the deepest level if '/' in row['czesc']: curr_czesc= row['czesc'] else: curr_czesc= str('%02d' % int(row['czesc'])) insert_statement= """ INSERT INTO %s VALUES ('%s', '%s', '%s', '%s', 1, '%s', 'f', '%s', '%s', '%s', '%s', '%s', NULL, NULL, NULL, NULL, NULL, %d) """ % (work_tbl, idef, idef_sort, parent, parent_sort, leaf, elem_type, elem_name, curr_czesc, wartosc_bazowa, wartosc_rok_obec, curr_year) execute_sql(insert_statement, connection) # now calculating totals print "... calculating totals" # for zadanie select_statement= """ SELECT parent, SUM(v_total) as sum_v_total, SUM(v_nation) as sum_v_nation, SUM(v_eu) as sum_v_eu FROM %s WHERE node = 0 AND elem_level = 'c' AND budg_year = %d GROUP BY parent """ % (work_tbl, curr_year) dict_cur= connection.cursor(cursor_factory=psycopg2.extras.DictCursor) dict_cur.execute(select_statement) rows = dict_cur.fetchall() for row in rows: if row['sum_v_total'] != 0: v_proc_eu= round(float(row['sum_v_eu']) / float(row['sum_v_total']) * 100, 2) #percentage v_proc_nation= round(float(row['sum_v_nation']) / float(row['sum_v_total']) * 100, 2) update_statement= """ UPDATE %s SET v_total = %d, v_nation= %d, v_eu= %d, v_proc_nation= %0.2f, v_proc_eu= %0.2f WHERE idef = '%s' AND budg_year = %d """ % (work_tbl, row['sum_v_total'], row['sum_v_nation'], row['sum_v_eu'], v_proc_nation, v_proc_eu, row['parent'], curr_year) execute_sql(update_statement, connection) # and podzadanie select_statement= "SELECT parent, SUM(v_total) as sum_v_total, SUM(v_nation) as sum_v_nation, SUM(v_eu) as sum_v_eu FROM " + work_tbl + " WHERE node = 1 AND elem_level = 'd' AND idef NOT like '22%' AND budg_year = " + str(curr_year) + " GROUP BY parent" dict_cur= connection.cursor(cursor_factory=psycopg2.extras.DictCursor) dict_cur.execute(select_statement) rows = dict_cur.fetchall() for row in rows: if row['sum_v_total'] != 0: v_proc_eu= round(float(row['sum_v_eu']) / float(row['sum_v_total']) * 100, 2) #percentage v_proc_nation= round(float(row['sum_v_nation']) / float(row['sum_v_total']) * 100, 2) update_statement= """ UPDATE %s SET v_total = %d, v_nation= %d, v_eu= %d, v_proc_nation= %0.2f, v_proc_eu= %0.2f WHERE idef = '%s' AND node = 1 AND budg_year = %d """ % (work_tbl, row['sum_v_total'], row['sum_v_nation'], row['sum_v_eu'], v_proc_nation, v_proc_eu, row['parent'], curr_year) else: update_statement= """ UPDATE %s SET v_total = %d, v_nation= %d, v_eu= %d WHERE idef = '%s' AND node = 1 AND budg_year = %d """ % (work_tbl, row['sum_v_total'], row['sum_v_nation'], row['sum_v_eu'], row['parent'], curr_year) execute_sql(update_statement, connection) #----------------------------- def csv_parse(csv_read, table, schema, conn): colmn_name= schema['temp']['columns'] for row in csv_read: keys= tuple(row) keys_len= len(keys) row= iter(row) for row in csv_read: insert_statement= "INSERT INTO %s VALUES(" % table i= 0 for field in row: if field == '': curr_field= "NULL" else: if 'integer' in colmn_name[str(i)]['type']: curr_field= field.replace(' ', '').strip() else: field_rp= field.replace('\n', ' ') curr_field= "'" + field_rp.replace('Ŝ', 'ż').strip().decode('utf-8') + "'" insert_statement= insert_statement + curr_field + ', ' i += 1 # checking the data collected in the dict_row and putting to the proper "socket" in the roles matrix if row[0].count('.') == 0: # row[0] is 'numer': ('grand grand total' or 'funkcja') #True: test_f insert_statement= insert_statement + "'true', 'false', 'false', 'false', 'false', 'false', 'false', " elif row[0].count('.') == 1: # "zadanie + dysponent + cel + miernik" OR "dysponent + cel + miernik" OR "cel + miernik" OR "miernik" if row[1] and row[2] and row[4]: # row[1] zadanie + row[2] dysponent + row[4] cel + miernik #True: test_z (zadanie), test_z_d (zadanie_dysponent), test_z_c (zadanie_cel), test_z_m (zadanie_miernik) insert_statement= insert_statement + "'false', 'true', 'true', 'true', 'true', 'false', 'false', " else: if row[2] and row[4]: # row[2] dysponent + row[4] cel + miernik #True: test_z_d (zadanie_dysponent), test_z_c (zadanie_cel), test_z_m (zadanie_miernik) insert_statement= insert_statement + "'false', 'false', 'true', 'true', 'true', 'false', 'false', " else: if row[4]: #row[5] cel + miernik #True: test_z_c (zadanie_cel), test_z_m (zadanie_miernik) insert_statement= insert_statement + "'false', 'false', 'false', 'true', 'true', 'false', 'false', " else: # zadanie_miernik #True: test_z_m insert_statement= insert_statement + "'false', 'false', 'false', 'false', 'true', 'false', 'false', " elif row[0].count('.') == 2: # row[0] is 'numer': "podzadanie + dysponent + cel + miernik" / "dysponent + cel + miernik" if row[1]: # row[1] is podzadanie: "podzadanie + dysponent + cel + miernik" #True: test_p (podzadanie), test_p_d (podzadanie_dysponent) insert_statement= insert_statement + "'false', 'false', 'false', 'false', 'false', 'true', 'true', " else: # dysponent + cel + miernik #True: test_p_d (podzadanie_dysponent) insert_statement= insert_statement + "'false', 'false', 'false', 'false', 'false', 'false', 'true', " insert_statement= insert_statement + "DEFAULT)" execute_sql(insert_statement, conn) #----------------------------- if __name__ == "__main__": # process command line options cmdparser = optparse.OptionParser(usage="usage: python %prog [Options] src_filename.csv src_schema.json") cmdparser.add_option("-f", "--conf", action="store", dest="conf_filename", help="configuration file (CSV)") cmdparser.add_option("-c", action="store_true",dest='dbact',help="clean db before insert (ignored if db is not updated)") opts, args = cmdparser.parse_args() try: src_file= open(args[0], 'rb') except IOError as e: print 'Unable to open file:\n %s\n' % e exit() csv_delim= ';' #read CSV file with data csv_quote= '"' try: csv_read= csv.reader(src_file, delimiter= csv_delim, quotechar= csv_quote) except Exception as e: print 'Unable to read CSV file:\n %s\n' % e exit() try: #read schema file filename_schema= args[1] except: filename_schema= None if filename_schema is None: filename_schema= args[0].rstrip('.csv')+'-sql.json' try: #deserialize it into the object sch_src= open(filename_schema, 'rb') schema= json.load(sch_src, encoding='utf-8') # schema file except Exception as e: print 'Error in processing schema file:\n %s\n' % e exit() conf_filename= opts.conf_filename if conf_filename is None: print 'No configuration file is specified, exiting now' exit() # get connection details conn= get_db_connect(conf_filename, 'postgresql') conn_host= conn['host'] conn_port= conn['port'] conn_db= conn['database'] conn_username= conn['username'] conn_password= conn['password'] #username - ask for password if conn_password is None: conn_password = getpass.getpass('Password for '+conn_username+': ') try: connect_postgres = psycopg2.connect(host= conn_host, port= conn_port, database=conn_db, user= conn_username, password= conn_password) print "... connected to db", conn_db except Exception, e: print 'Unable to connect to the PostgreSQL database:\n %s\n' % e exit() #no connection to the database - no data processing clean_db= opts.dbact # False - insert() data, True - remove() and then insert() mode= 'temp' temp_table_created, temp_table= create_table(connect_postgres, schema, mode, True) # create temporary table work_year= 2012 csv_parse(csv_read, temp_table, schema, connect_postgres) # fill temporary table mode= 'work' table_created, work_table= create_table(connect_postgres, schema, mode, clean_db) # create work table fill_work_table(work_year, temp_table, work_table, connect_postgres) # fill work table print '... work table is filled' print '... dropping temporary table' drop_statement= "DROP TABLE %s" % (temp_table) execute_sql(drop_statement, connect_postgres) print 'Done'
49.080224
257
0.572471
ab2e14d37fdede644b22d20e694b2927dfb2e0d0
18,663
py
Python
core/dbt/config/project.py
nchammas/dbt
ea4948ff8a0d076425ecab1f4ec187296876589c
[ "Apache-2.0" ]
null
null
null
core/dbt/config/project.py
nchammas/dbt
ea4948ff8a0d076425ecab1f4ec187296876589c
[ "Apache-2.0" ]
null
null
null
core/dbt/config/project.py
nchammas/dbt
ea4948ff8a0d076425ecab1f4ec187296876589c
[ "Apache-2.0" ]
null
null
null
from copy import deepcopy from dataclasses import dataclass from itertools import chain from typing import List, Dict, Any, Optional, TypeVar, Union, Tuple, Callable import hashlib import os from dbt.clients.system import resolve_path_from_base from dbt.clients.system import path_exists from dbt.clients.system import load_file_contents from dbt.clients.yaml_helper import load_yaml_text from dbt.exceptions import DbtProjectError from dbt.exceptions import RecursionException from dbt.exceptions import SemverException from dbt.exceptions import validator_error_message from dbt.exceptions import warn_or_error from dbt.helper_types import NoValue from dbt.semver import VersionSpecifier from dbt.semver import versions_compatible from dbt.version import get_installed_version from dbt.ui import printer from dbt.utils import deep_map from dbt.source_config import SourceConfig from dbt.contracts.project import ( Project as ProjectContract, SemverString, ) from dbt.contracts.project import PackageConfig from hologram import ValidationError from .renderer import ConfigRenderer UNUSED_RESOURCE_CONFIGURATION_PATH_MESSAGE = """\ WARNING: Configuration paths exist in your dbt_project.yml file which do not \ apply to any resources. There are {} unused configuration paths:\n{} """ INVALID_VERSION_ERROR = """\ This version of dbt is not supported with the '{package}' package. Installed version of dbt: {installed} Required version of dbt for '{package}': {version_spec} Check the requirements for the '{package}' package, or run dbt again with \ --no-version-check """ IMPOSSIBLE_VERSION_ERROR = """\ The package version requirement can never be satisfied for the '{package} package. Required versions of dbt for '{package}': {version_spec} Check the requirements for the '{package}' package, or run dbt again with \ --no-version-check """ MALFORMED_PACKAGE_ERROR = """\ The packages.yml file in this project is malformed. Please double check the contents of this file and fix any errors before retrying. You can find more information on the syntax for this file here: https://docs.getdbt.com/docs/package-management Validator Error: {error} """ def _list_if_none(value): if value is None: value = [] return value def _dict_if_none(value): if value is None: value = {} return value def _list_if_none_or_string(value): value = _list_if_none(value) if isinstance(value, str): return [value] return value def _load_yaml(path): contents = load_file_contents(path) return load_yaml_text(contents) def _get_config_paths(config, path=(), paths=None): if paths is None: paths = set() for key, value in config.items(): if isinstance(value, dict): if key in SourceConfig.ConfigKeys: if path not in paths: paths.add(path) else: _get_config_paths(value, path + (key,), paths) else: if path not in paths: paths.add(path) return frozenset(paths) def _is_config_used(path, fqns): if fqns: for fqn in fqns: if len(path) <= len(fqn) and fqn[:len(path)] == path: return True return False def package_data_from_root(project_root): package_filepath = resolve_path_from_base( 'packages.yml', project_root ) if path_exists(package_filepath): packages_dict = _load_yaml(package_filepath) else: packages_dict = None return packages_dict def package_config_from_data(packages_data): if packages_data is None: packages_data = {'packages': []} try: packages = PackageConfig.from_dict(packages_data) except ValidationError as e: raise DbtProjectError( MALFORMED_PACKAGE_ERROR.format(error=str(e.message)) ) from e return packages def _parse_versions(versions: Union[List[str], str]) -> List[VersionSpecifier]: """Parse multiple versions as read from disk. The versions value may be any one of: - a single version string ('>0.12.1') - a single string specifying multiple comma-separated versions ('>0.11.1,<=0.12.2') - an array of single-version strings (['>0.11.1', '<=0.12.2']) Regardless, this will return a list of VersionSpecifiers """ if isinstance(versions, str): versions = versions.split(',') return [VersionSpecifier.from_version_string(v) for v in versions] def _all_source_paths( source_paths: List[str], data_paths: List[str], snapshot_paths: List[str] ) -> List[str]: return list(chain(source_paths, data_paths, snapshot_paths)) T = TypeVar('T') def value_or(value: Optional[T], default: T) -> T: if value is None: return default else: return value def _raw_project_from(project_root: str) -> Dict[str, Any]: project_root = os.path.normpath(project_root) project_yaml_filepath = os.path.join(project_root, 'dbt_project.yml') # get the project.yml contents if not path_exists(project_yaml_filepath): raise DbtProjectError( 'no dbt_project.yml found at expected path {}' .format(project_yaml_filepath) ) project_dict = _load_yaml(project_yaml_filepath) if not isinstance(project_dict, dict): raise DbtProjectError( 'dbt_project.yml does not parse to a dictionary' ) return project_dict @dataclass class PartialProject: profile_name: Optional[str] project_name: Optional[str] project_root: str project_dict: Dict[str, Any] def render(self, renderer): packages_dict = package_data_from_root(self.project_root) return Project.render_from_dict( self.project_root, self.project_dict, packages_dict, renderer, ) @dataclass class Project: project_name: str version: Union[SemverString, float] project_root: str profile_name: str source_paths: List[str] macro_paths: List[str] data_paths: List[str] test_paths: List[str] analysis_paths: List[str] docs_paths: List[str] target_path: str snapshot_paths: List[str] clean_targets: List[str] log_path: str modules_path: str quoting: Dict[str, Any] models: Dict[str, Any] on_run_start: List[str] on_run_end: List[str] seeds: Dict[str, Any] snapshots: Dict[str, Any] dbt_version: List[VersionSpecifier] packages: Dict[str, Any] query_comment: Optional[Union[str, NoValue]] @property def all_source_paths(self) -> List[str]: return _all_source_paths( self.source_paths, self.data_paths, self.snapshot_paths ) @staticmethod def _preprocess(project_dict: Dict[str, Any]) -> Dict[str, Any]: """Pre-process certain special keys to convert them from None values into empty containers, and to turn strings into arrays of strings. """ handlers: Dict[Tuple[str, ...], Callable[[Any], Any]] = { ('on-run-start',): _list_if_none_or_string, ('on-run-end',): _list_if_none_or_string, } for k in ('models', 'seeds', 'snapshots'): handlers[(k,)] = _dict_if_none handlers[(k, 'vars')] = _dict_if_none handlers[(k, 'pre-hook')] = _list_if_none_or_string handlers[(k, 'post-hook')] = _list_if_none_or_string handlers[('seeds', 'column_types')] = _dict_if_none def converter(value: Any, keypath: Tuple[str, ...]) -> Any: if keypath in handlers: handler = handlers[keypath] return handler(value) else: return value return deep_map(converter, project_dict) @classmethod def from_project_config( cls, project_dict: Dict[str, Any], packages_dict: Optional[Dict[str, Any]] = None, ) -> 'Project': """Create a project from its project and package configuration, as read by yaml.safe_load(). :param project_dict: The dictionary as read from disk :param packages_dict: If it exists, the packages file as read from disk. :raises DbtProjectError: If the project is missing or invalid, or if the packages file exists and is invalid. :returns: The project, with defaults populated. """ try: project_dict = cls._preprocess(project_dict) except RecursionException: raise DbtProjectError( 'Cycle detected: Project input has a reference to itself', project=project_dict ) try: cfg = ProjectContract.from_dict(project_dict) except ValidationError as e: raise DbtProjectError(validator_error_message(e)) from e # name/version are required in the Project definition, so we can assume # they are present name = cfg.name version = cfg.version # this is added at project_dict parse time and should always be here # once we see it. if cfg.project_root is None: raise DbtProjectError('cfg must have a project root!') else: project_root = cfg.project_root # this is only optional in the sense that if it's not present, it needs # to have been a cli argument. profile_name = cfg.profile # these are all the defaults source_paths: List[str] = value_or(cfg.source_paths, ['models']) macro_paths: List[str] = value_or(cfg.macro_paths, ['macros']) data_paths: List[str] = value_or(cfg.data_paths, ['data']) test_paths: List[str] = value_or(cfg.test_paths, ['test']) analysis_paths: List[str] = value_or(cfg.analysis_paths, []) snapshot_paths: List[str] = value_or(cfg.snapshot_paths, ['snapshots']) all_source_paths: List[str] = _all_source_paths( source_paths, data_paths, snapshot_paths ) docs_paths: List[str] = value_or(cfg.docs_paths, all_source_paths) target_path: str = value_or(cfg.target_path, 'target') clean_targets: List[str] = value_or(cfg.clean_targets, [target_path]) log_path: str = value_or(cfg.log_path, 'logs') modules_path: str = value_or(cfg.modules_path, 'dbt_modules') # in the default case we'll populate this once we know the adapter type # It would be nice to just pass along a Quoting here, but that would # break many things quoting: Dict[str, Any] = {} if cfg.quoting is not None: quoting = cfg.quoting.to_dict() models: Dict[str, Any] = cfg.models seeds: Dict[str, Any] = cfg.seeds snapshots: Dict[str, Any] = cfg.snapshots on_run_start: List[str] = value_or(cfg.on_run_start, []) on_run_end: List[str] = value_or(cfg.on_run_end, []) # weird type handling: no value_or use dbt_raw_version: Union[List[str], str] = '>=0.0.0' if cfg.require_dbt_version is not None: dbt_raw_version = cfg.require_dbt_version query_comment = cfg.query_comment try: dbt_version = _parse_versions(dbt_raw_version) except SemverException as e: raise DbtProjectError(str(e)) from e try: packages = package_config_from_data(packages_dict) except ValidationError as e: raise DbtProjectError(validator_error_message(e)) from e project = cls( project_name=name, version=version, project_root=project_root, profile_name=profile_name, source_paths=source_paths, macro_paths=macro_paths, data_paths=data_paths, test_paths=test_paths, analysis_paths=analysis_paths, docs_paths=docs_paths, target_path=target_path, snapshot_paths=snapshot_paths, clean_targets=clean_targets, log_path=log_path, modules_path=modules_path, quoting=quoting, models=models, on_run_start=on_run_start, on_run_end=on_run_end, seeds=seeds, snapshots=snapshots, dbt_version=dbt_version, packages=packages, query_comment=query_comment, ) # sanity check - this means an internal issue project.validate() return project def __str__(self): cfg = self.to_project_config(with_packages=True) return str(cfg) def __eq__(self, other): if not (isinstance(other, self.__class__) and isinstance(self, other.__class__)): return False return self.to_project_config(with_packages=True) == \ other.to_project_config(with_packages=True) def to_project_config(self, with_packages=False): """Return a dict representation of the config that could be written to disk with `yaml.safe_dump` to get this configuration. :param with_packages bool: If True, include the serialized packages file in the root. :returns dict: The serialized profile. """ result = deepcopy({ 'name': self.project_name, 'version': self.version, 'project-root': self.project_root, 'profile': self.profile_name, 'source-paths': self.source_paths, 'macro-paths': self.macro_paths, 'data-paths': self.data_paths, 'test-paths': self.test_paths, 'analysis-paths': self.analysis_paths, 'docs-paths': self.docs_paths, 'target-path': self.target_path, 'snapshot-paths': self.snapshot_paths, 'clean-targets': self.clean_targets, 'log-path': self.log_path, 'quoting': self.quoting, 'models': self.models, 'on-run-start': self.on_run_start, 'on-run-end': self.on_run_end, 'seeds': self.seeds, 'snapshots': self.snapshots, 'require-dbt-version': [ v.to_version_string() for v in self.dbt_version ], }) if with_packages: result.update(self.packages.to_dict()) if self.query_comment != NoValue(): result['query-comment'] = self.query_comment return result def validate(self): try: ProjectContract.from_dict(self.to_project_config()) except ValidationError as e: raise DbtProjectError(validator_error_message(e)) from e @classmethod def render_from_dict( cls, project_root: str, project_dict: Dict[str, Any], packages_dict: Dict[str, Any], renderer: ConfigRenderer, ) -> 'Project': rendered_project = renderer.render_project(project_dict) rendered_project['project-root'] = project_root rendered_packages = renderer.render_packages_data(packages_dict) return cls.from_project_config(rendered_project, rendered_packages) @classmethod def partial_load( cls, project_root: str ) -> PartialProject: project_root = os.path.normpath(project_root) project_dict = _raw_project_from(project_root) project_name = project_dict.get('name') profile_name = project_dict.get('profile') return PartialProject( profile_name=profile_name, project_name=project_name, project_root=project_root, project_dict=project_dict, ) @classmethod def from_project_root( cls, project_root: str, renderer: ConfigRenderer ) -> 'Project': partial = cls.partial_load(project_root) return partial.render(renderer) def hashed_name(self): return hashlib.md5(self.project_name.encode('utf-8')).hexdigest() def get_resource_config_paths(self): """Return a dictionary with 'seeds' and 'models' keys whose values are lists of lists of strings, where each inner list of strings represents a configured path in the resource. """ return { 'models': _get_config_paths(self.models), 'seeds': _get_config_paths(self.seeds), 'snapshots': _get_config_paths(self.snapshots), } def get_unused_resource_config_paths(self, resource_fqns, disabled): """Return a list of lists of strings, where each inner list of strings represents a type + FQN path of a resource configuration that is not used. """ disabled_fqns = frozenset(tuple(fqn) for fqn in disabled) resource_config_paths = self.get_resource_config_paths() unused_resource_config_paths = [] for resource_type, config_paths in resource_config_paths.items(): used_fqns = resource_fqns.get(resource_type, frozenset()) fqns = used_fqns | disabled_fqns for config_path in config_paths: if not _is_config_used(config_path, fqns): unused_resource_config_paths.append( (resource_type,) + config_path ) return unused_resource_config_paths def warn_for_unused_resource_config_paths(self, resource_fqns, disabled): unused = self.get_unused_resource_config_paths(resource_fqns, disabled) if len(unused) == 0: return msg = UNUSED_RESOURCE_CONFIGURATION_PATH_MESSAGE.format( len(unused), '\n'.join('- {}'.format('.'.join(u)) for u in unused) ) warn_or_error(msg, log_fmt=printer.yellow('{}')) def validate_version(self): """Ensure this package works with the installed version of dbt.""" installed = get_installed_version() if not versions_compatible(*self.dbt_version): msg = IMPOSSIBLE_VERSION_ERROR.format( package=self.project_name, version_spec=[ x.to_version_string() for x in self.dbt_version ] ) raise DbtProjectError(msg) if not versions_compatible(installed, *self.dbt_version): msg = INVALID_VERSION_ERROR.format( package=self.project_name, installed=installed.to_version_string(), version_spec=[ x.to_version_string() for x in self.dbt_version ] ) raise DbtProjectError(msg)
33.748644
79
0.641644
a61d15ef6ef3a78682fa36cb0e57d3cc9dc1a41f
5,810
py
Python
tools/schedulers.py
dong03/DogNoseLandmarks
ac5d1e0436e9e0835a6939f8d125f1d36007bc62
[ "MIT" ]
1
2020-09-09T04:34:55.000Z
2020-09-09T04:34:55.000Z
tools/schedulers.py
dong03/DogNoseLandmarks
ac5d1e0436e9e0835a6939f8d125f1d36007bc62
[ "MIT" ]
null
null
null
tools/schedulers.py
dong03/DogNoseLandmarks
ac5d1e0436e9e0835a6939f8d125f1d36007bc62
[ "MIT" ]
null
null
null
from bisect import bisect_right from timm.optim import AdamW from torch import optim from torch.optim import lr_scheduler from torch.optim.rmsprop import RMSprop from torch.optim.adamw import AdamW from torch.optim.lr_scheduler import MultiStepLR, CyclicLR from torch.optim.lr_scheduler import _LRScheduler from apex.optimizers import FusedAdam, FusedSGD class LRStepScheduler(_LRScheduler): def __init__(self, optimizer, steps, last_epoch=-1): self.lr_steps = steps super().__init__(optimizer, last_epoch) def get_lr(self): pos = max(bisect_right([x for x, y in self.lr_steps], self.last_epoch) - 1, 0) return [self.lr_steps[pos][1] if self.lr_steps[pos][0] <= self.last_epoch else base_lr for base_lr in self.base_lrs] class PolyLR(_LRScheduler): """Sets the learning rate of each parameter group according to poly learning rate policy """ def __init__(self, optimizer, max_iter=90000, power=0.9, last_epoch=-1,cycle=False): self.max_iter = max_iter self.power = power self.cycle = cycle super(PolyLR, self).__init__(optimizer, last_epoch) def get_lr(self): self.last_epoch_div = (self.last_epoch + 1) % self.max_iter scale = (self.last_epoch + 1) // self.max_iter + 1.0 if self.cycle else 1 return [(base_lr * ((1 - float(self.last_epoch_div) / self.max_iter) ** (self.power))) / scale for base_lr in self.base_lrs] class ExponentialLRScheduler(_LRScheduler): """Decays the learning rate of each parameter group by gamma every epoch. When last_epoch=-1, sets initial lr as lr. Args: optimizer (Optimizer): Wrapped optimizer. gamma (float): Multiplicative factor of learning rate decay. last_epoch (int): The index of last epoch. Default: -1. """ def __init__(self, optimizer, gamma, last_epoch=-1): self.gamma = gamma super(ExponentialLRScheduler, self).__init__(optimizer, last_epoch) def get_lr(self): if self.last_epoch <= 0: return self.base_lrs return [base_lr * self.gamma**self.last_epoch for base_lr in self.base_lrs] def create_optimizer(optimizer_config, model, master_params=None): if optimizer_config.get("classifier_lr", -1) != -1: # Separate classifier parameters from all others net_params = [] classifier_params = [] for k, v in model.named_parameters(): if not v.requires_grad: continue if k.find("encoder") != -1: net_params.append(v) else: classifier_params.append(v) params = [ {"params": net_params}, {"params": classifier_params, "lr": optimizer_config["classifier_lr"]}, ] else: if master_params: params = master_params else: params = model.parameters() if optimizer_config["type"] == "SGD": optimizer = optim.SGD(params, lr=optimizer_config["learning_rate"], momentum=optimizer_config["momentum"], weight_decay=optimizer_config["weight_decay"], nesterov=optimizer_config["nesterov"]) elif optimizer_config["type"] == "FusedSGD": optimizer = FusedSGD(params, lr=optimizer_config["learning_rate"], momentum=optimizer_config["momentum"], weight_decay=optimizer_config["weight_decay"], nesterov=optimizer_config["nesterov"]) elif optimizer_config["type"] == "Adam": optimizer = optim.Adam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "FusedAdam": optimizer = FusedAdam(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "AdamW": optimizer = AdamW(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) elif optimizer_config["type"] == "RmsProp": optimizer = RMSprop(params, lr=optimizer_config["learning_rate"], weight_decay=optimizer_config["weight_decay"]) else: raise KeyError("unrecognized optimizer {}".format(optimizer_config["type"])) if optimizer_config["schedule"]["type"] == "step": scheduler = LRStepScheduler(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "clr": scheduler = CyclicLR(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "multistep": scheduler = MultiStepLR(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "exponential": scheduler = ExponentialLRScheduler(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "poly": scheduler = PolyLR(optimizer, **optimizer_config["schedule"]["params"]) elif optimizer_config["schedule"]["type"] == "constant": scheduler = lr_scheduler.LambdaLR(optimizer, lambda epoch: 1.0) elif optimizer_config["schedule"]["type"] == "linear": def linear_lr(it): return it * optimizer_config["schedule"]["params"]["alpha"] + optimizer_config["schedule"]["params"]["beta"] scheduler = lr_scheduler.LambdaLR(optimizer, linear_lr) return optimizer, scheduler
45.748031
132
0.624957
2e959f8ed7a4499d9c31891b4aea32055ab1ea01
296
py
Python
myFirstPiPy/myFirstPiPy/tests/test_all.py
StudentESE/myFirstPiP
b6116753f77f1f3cec9b36f73d86a008fe27c500
[ "BSD-2-Clause" ]
null
null
null
myFirstPiPy/myFirstPiPy/tests/test_all.py
StudentESE/myFirstPiP
b6116753f77f1f3cec9b36f73d86a008fe27c500
[ "BSD-2-Clause" ]
null
null
null
myFirstPiPy/myFirstPiPy/tests/test_all.py
StudentESE/myFirstPiP
b6116753f77f1f3cec9b36f73d86a008fe27c500
[ "BSD-2-Clause" ]
null
null
null
import unittest import __init__ as myModule class TestMyMethod(unittest.TestCase): def test_myMethod(self): self.assertEqual(myModule.myMethod(), "Hello PiP") def test_myVariable(self): self.assertIs(myModule.myVariable, 123) if __name__ == '__main__': unittest.main()
32.888889
58
0.726351
c8f733c620e2eb5a11eadb130462c3f53340d87d
1,391
py
Python
part_2_read_test_json.py
hooplapunta/cc_tools
43bc430b3374f55a72c13c3bb01bd5422ec5c4aa
[ "MIT" ]
null
null
null
part_2_read_test_json.py
hooplapunta/cc_tools
43bc430b3374f55a72c13c3bb01bd5422ec5c4aa
[ "MIT" ]
null
null
null
part_2_read_test_json.py
hooplapunta/cc_tools
43bc430b3374f55a72c13c3bb01bd5422ec5c4aa
[ "MIT" ]
null
null
null
import test_data import json #Creates and returns a GameLibrary object(defined in test_data) from loaded json_data def make_game_library_from_json( json_data ): #Initialize a new GameLibrary game_library = test_data.GameLibrary() ### Begin Add Code Here ### #Loop through the json_data #Create a new Game object from the json_data by reading # title # year # platform (which requires reading name and launch_year) #Add that Game object to the game_library ### End Add Code Here ### for game_data in json_data: print(game_data) platform_data = game_data["platform"] platform = test_data.Platform(platform_data["name"], platform_data["launch_year"]) game = test_data.Game(game_data["title"], platform, game_data["year"]) game_library.add_game(game) return game_library #Part 2 input_json_file = "data/test_data.json" ### Begin Add Code Here ### #Open the file specified by input_json_file #Use the json module to load the data from the file #Use make_game_library_from_json(json_data) to convert the data to GameLibrary data #Print out the resulting GameLibrary data using print() ### End Add Code Here ### with open(input_json_file, "r") as reader: test_data_json = json.load(reader) print(test_data_json) lib = make_game_library_from_json (test_data_json) print(lib)
31.613636
90
0.718188
f9ba7c323173201b928f341ba4b0774443a55b1f
3,712
py
Python
DeepLearning/pytorch/papers/EfficientDet/backbone.py
MikoyChinese/Learn
c482b1e84496279935b5bb2cfc1e6d78e2868c63
[ "Apache-2.0" ]
null
null
null
DeepLearning/pytorch/papers/EfficientDet/backbone.py
MikoyChinese/Learn
c482b1e84496279935b5bb2cfc1e6d78e2868c63
[ "Apache-2.0" ]
null
null
null
DeepLearning/pytorch/papers/EfficientDet/backbone.py
MikoyChinese/Learn
c482b1e84496279935b5bb2cfc1e6d78e2868c63
[ "Apache-2.0" ]
null
null
null
import torch from torch import nn from efficientdet.model import BiFPN, Regressor, Classifier, EfficientNet from efficientdet.utils import Anchors class EfficientDetBackbone(nn.Module): def __init__(self, num_classes=80, compound_coef=0, load_weights=False, **kwargs): super(EfficientDetBackbone, self).__init__() self.compound_coef = compound_coef self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6, 7] self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384, 384] self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8, 8] self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536] self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5, 5] self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6] self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5., 4.] self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]) self.num_scales = len(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])) conv_channel_coef = { # the channels of P3/P4/P5. 0: [40, 112, 320], 1: [40, 112, 320], 2: [48, 120, 352], 3: [48, 136, 384], 4: [56, 160, 448], 5: [64, 176, 512], 6: [72, 200, 576], 7: [72, 200, 576], 8: [80, 224, 640], } num_anchors = len(self.aspect_ratios) * self.num_scales self.bifpn = nn.Sequential( *[BiFPN(self.fpn_num_filters[self.compound_coef], conv_channel_coef[compound_coef], True if _ == 0 else False, attention=True if compound_coef < 6 else False, use_p8=compound_coef > 7) for _ in range(self.fpn_cell_repeats[compound_coef])]) self.num_classes = num_classes self.regressor = Regressor(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_layers=self.box_class_repeats[self.compound_coef], pyramid_levels=self.pyramid_levels[self.compound_coef]) self.classifier = Classifier(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, num_classes=num_classes, num_layers=self.box_class_repeats[self.compound_coef], pyramid_levels=self.pyramid_levels[self.compound_coef]) self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef], pyramid_levels=(torch.arange(self.pyramid_levels[self.compound_coef]) + 3).tolist(), **kwargs) self.backbone_net = EfficientNet(self.backbone_compound_coef[compound_coef], load_weights) def freeze_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() def forward(self, inputs): max_size = inputs.shape[-1] _, p3, p4, p5 = self.backbone_net(inputs) features = (p3, p4, p5) features = self.bifpn(features) regression = self.regressor(features) classification = self.classifier(features) anchors = self.anchors(inputs, inputs.dtype) return features, regression, classification, anchors def init_backbone(self, path): state_dict = torch.load(path) try: ret = self.load_state_dict(state_dict, strict=False) print(ret) except RuntimeError as e: print('[Error]: Ignoring %s' % str(e))
44.722892
115
0.562769
d9a6d5e397e715bcf69c1e2cb9b31432e9ae2d4d
12,764
py
Python
featuretools/variable_types/variable.py
jeffzi/featuretools
cd674b3f302832cacb3ce9cc95d5ce2f5052a4d6
[ "BSD-3-Clause" ]
null
null
null
featuretools/variable_types/variable.py
jeffzi/featuretools
cd674b3f302832cacb3ce9cc95d5ce2f5052a4d6
[ "BSD-3-Clause" ]
null
null
null
featuretools/variable_types/variable.py
jeffzi/featuretools
cd674b3f302832cacb3ce9cc95d5ce2f5052a4d6
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import pandas as pd from featuretools.utils.gen_utils import find_descendents class Variable(object): """Represent a variable in an entity A Variable is analogous to a column in table in a relational database Args: id (str) : Id of variable. Must match underlying data in Entity it belongs to. entity (:class:`.Entity`) : Entity this variable belongs to. name (str, optional) : Variable name. Defaults to id. See Also: :class:`.Entity`, :class:`.Relationship`, :class:`.BaseEntitySet` """ type_string = None _default_pandas_dtype = object def __init__(self, id, entity, name=None): assert isinstance(id, str), "Variable id must be a string" self.id = id self._name = name self.entity_id = entity.id assert entity.entityset is not None, "Entity must contain reference to EntitySet" self.entity = entity self._interesting_values = pd.Series() @property def entityset(self): return self.entity.entityset def __eq__(self, other, deep=False): shallow_eq = isinstance(other, self.__class__) and \ self.id == other.id and \ self.entity_id == other.entity_id if not deep: return shallow_eq else: return shallow_eq and set(self.interesting_values.values) == set(other.interesting_values.values) def __hash__(self): return hash((self.id, self.entity_id)) def __repr__(self): return u"<Variable: {} (dtype = {})>".format(self.name, self.type_string) @classmethod def create_from(cls, variable): """Create new variable this type from existing Args: variable (Variable) : Existing variable to create from. Returns: :class:`.Variable` : new variable """ v = cls(id=variable.id, name=variable.name, entity=variable.entity) return v @property def name(self): return self._name if self._name is not None else self.id @property def dtype(self): return self.type_string \ if self.type_string is not None else "generic_type" @name.setter def name(self, name): self._name = name @property def interesting_values(self): return self._interesting_values @interesting_values.setter def interesting_values(self, interesting_values): self._interesting_values = pd.Series(interesting_values) @property def series(self): return self.entity.df[self.id] def to_data_description(self): return { 'id': self.id, 'type': { 'value': self.type_string, }, 'properties': { 'name': self.name, 'entity': self.entity.id, 'interesting_values': self._interesting_values.to_json() }, } class Unknown(Variable): pass class Discrete(Variable): """Superclass representing variables that take on discrete values""" type_string = "discrete" def __init__(self, id, entity, name=None): super(Discrete, self).__init__(id, entity, name) self._interesting_values = pd.Series() @property def interesting_values(self): return self._interesting_values @interesting_values.setter def interesting_values(self, values): seen = set() seen_add = seen.add self._interesting_values = pd.Series([v for v in values if not (v in seen or seen_add(v))]) class Boolean(Variable): """Represents variables that take on one of two values Args: true_values (list) : List of valued true values. Defaults to [1, True, "true", "True", "yes", "t", "T"] false_values (list): List of valued false values. Defaults to [0, False, "false", "False", "no", "f", "F"] """ type_string = "boolean" _default_pandas_dtype = bool def __init__(self, id, entity, name=None, true_values=None, false_values=None): default = [1, True, "true", "True", "yes", "t", "T"] self.true_values = true_values or default default = [0, False, "false", "False", "no", "f", "F"] self.false_values = false_values or default super(Boolean, self).__init__(id, entity, name=name) def to_data_description(self): description = super(Boolean, self).to_data_description() description['type'].update({ 'true_values': self.true_values, 'false_values': self.false_values }) return description class Categorical(Discrete): """Represents variables that can take an unordered discrete values Args: categories (list) : List of categories. If left blank, inferred from data. """ type_string = "categorical" def __init__(self, id, entity, name=None, categories=None): self.categories = None or [] super(Categorical, self).__init__(id, entity, name=name) def to_data_description(self): description = super(Categorical, self).to_data_description() description['type'].update({'categories': self.categories}) return description class Id(Categorical): """Represents variables that identify another entity""" type_string = "id" _default_pandas_dtype = int class Ordinal(Discrete): """Represents variables that take on an ordered discrete value""" type_string = "ordinal" _default_pandas_dtype = int class Numeric(Variable): """Represents variables that contain numeric values Args: range (list, optional) : List of start and end. Can use inf and -inf to represent infinity. Unconstrained if not specified. start_inclusive (bool, optional) : Whether or not range includes the start value. end_inclusive (bool, optional) : Whether or not range includes the end value Attributes: max (float) min (float) std (float) mean (float) """ type_string = "numeric" _default_pandas_dtype = float def __init__(self, id, entity, name=None, range=None, start_inclusive=True, end_inclusive=False): self.range = None or [] self.start_inclusive = start_inclusive self.end_inclusive = end_inclusive super(Numeric, self).__init__(id, entity, name=name) def to_data_description(self): description = super(Numeric, self).to_data_description() description['type'].update({ 'range': self.range, 'start_inclusive': self.start_inclusive, 'end_inclusive': self.end_inclusive, }) return description class Index(Variable): """Represents variables that uniquely identify an instance of an entity Attributes: count (int) """ type_string = "index" _default_pandas_dtype = int class Datetime(Variable): """Represents variables that are points in time Args: format (str): Python datetime format string documented `here <http://strftime.org/>`_. """ type_string = "datetime" _default_pandas_dtype = np.datetime64 def __init__(self, id, entity, name=None, format=None): self.format = format super(Datetime, self).__init__(id, entity, name=name) def __repr__(self): return u"<Variable: {} (dtype: {}, format: {})>".format(self.name, self.type_string, self.format) def to_data_description(self): description = super(Datetime, self).to_data_description() description['type'].update({'format': self.format}) return description class TimeIndex(Variable): """Represents time index of entity""" type_string = "time_index" _default_pandas_dtype = np.datetime64 class NumericTimeIndex(TimeIndex, Numeric): """Represents time index of entity that is numeric""" type_string = "numeric_time_index" _default_pandas_dtype = float class DatetimeTimeIndex(TimeIndex, Datetime): """Represents time index of entity that is a datetime""" type_string = "datetime_time_index" _default_pandas_dtype = np.datetime64 class Timedelta(Variable): """Represents variables that are timedeltas Args: range (list, optional) : List of start and end of allowed range in seconds. Can use inf and -inf to represent infinity. Unconstrained if not specified. start_inclusive (bool, optional) : Whether or not range includes the start value. end_inclusive (bool, optional) : Whether or not range includes the end value """ type_string = "timedelta" _default_pandas_dtype = np.timedelta64 def __init__(self, id, entity, name=None, range=None, start_inclusive=True, end_inclusive=False): self.range = range or [] self.start_inclusive = start_inclusive self.end_inclusive = end_inclusive super(Timedelta, self).__init__(id, entity, name=name) def to_data_description(self): description = super(Timedelta, self).to_data_description() description['type'].update({ 'range': self.range, 'start_inclusive': self.start_inclusive, 'end_inclusive': self.end_inclusive, }) return description class Text(Variable): """Represents variables that are arbitary strings""" type_string = "text" _default_pandas_dtype = str class PandasTypes(object): _all = 'all' _categorical = 'category' _pandas_datetimes = ['datetime64[ns]', 'datetime64[ns, tz]'] _pandas_timedeltas = ['Timedelta'] _pandas_numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] class LatLong(Variable): """Represents an ordered pair (Latitude, Longitude) To make a latlong in a dataframe do data['latlong'] = data[['latitude', 'longitude']].apply(tuple, axis=1) """ type_string = "latlong" class ZIPCode(Categorical): """Represents a postal address in the United States. Consists of a series of digits which are casts as string. Five digit and 9 digit zipcodes are supported. """ type_string = "zipcode" _default_pandas_dtype = str class IPAddress(Variable): """Represents a computer network address. Represented in dotted-decimal notation. IPv4 and IPv6 are supported. """ type_string = "ip" _default_pandas_dtype = str class FullName(Variable): """Represents a person's full name. May consist of a first name, last name, and a title. """ type_string = "full_name" _default_pandas_dtype = str class EmailAddress(Variable): """Represents an email box to which email message are sent. Consists of a local-part, an @ symbol, and a domain. """ type_string = "email" _default_pandas_dtype = str class URL(Variable): """Represents a valid web url (with or without http/www)""" type_string = "url" _default_pandas_dtype = str class PhoneNumber(Variable): """Represents any valid phone number. Can be with/without parenthesis. Can be with/without area/country codes. """ type_string = "phone_number" _default_pandas_dtype = str class DateOfBirth(Datetime): """Represents a date of birth as a datetime""" type_string = "date_of_birth" _default_pandas_dtype = np.datetime64 class CountryCode(Categorical): """Represents an ISO-3166 standard country code. ISO 3166-1 (countries) are supported. These codes should be in the Alpha-2 format. e.g. United States of America = US """ type_string = "country_code" _default_pandas_dtype = str class SubRegionCode(Categorical): """Represents an ISO-3166 standard sub-region code. ISO 3166-2 codes (sub-regions are supported. These codes should be in the Alpha-2 format. e.g. United States of America, Arizona = US-AZ """ type_string = "subregion_code" _default_pandas_dtype = str class FilePath(Variable): """Represents a valid filepath, absolute or relative""" type_string = "filepath" _default_pandas_dtype = str def find_variable_types(): return {str(vtype.type_string): vtype for vtype in find_descendents( Variable) if hasattr(vtype, 'type_string')} DEFAULT_DTYPE_VALUES = { np.datetime64: pd.Timestamp.now(), int: 0, float: 0.1, np.timedelta64: pd.Timedelta('1d'), object: 'object', bool: True, str: 'test' }
29.752914
159
0.63875
bcf2535a3b2410e7b659082114e1fa965f50d07d
1,749
py
Python
tests/unit/resources/networking/test_interconnect_types.py
PragadeeswaranS/oneview-python
3acc113b8dd30029beb7c228c3bc2bbe67d3485b
[ "Apache-2.0" ]
null
null
null
tests/unit/resources/networking/test_interconnect_types.py
PragadeeswaranS/oneview-python
3acc113b8dd30029beb7c228c3bc2bbe67d3485b
[ "Apache-2.0" ]
null
null
null
tests/unit/resources/networking/test_interconnect_types.py
PragadeeswaranS/oneview-python
3acc113b8dd30029beb7c228c3bc2bbe67d3485b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ### # (C) Copyright [2019] Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### import unittest import mock from hpOneView.connection import connection from hpOneView.resources.networking.interconnect_types import InterconnectTypes from hpOneView.resources.resource import Resource, ResourceHelper class InterconnectTypesTest(unittest.TestCase): def setUp(self): self.host = '127.0.0.1' self.connection = connection(self.host) self._interconnect_types = InterconnectTypes(self.connection) @mock.patch.object(ResourceHelper, 'do_requests_to_getall') def test_get_all_called_once(self, mock_do_get): filter = 'name=TestName' sort = 'name:ascending' self._interconnect_types.get_all(2, 500, filter=filter, sort=sort) mock_do_get.assert_called_once_with('/rest/interconnect-types?start=2&count=500&filter=name%3DTestName&sort=name%3Aascending', 500) @mock.patch.object(Resource, 'get_by') def test_get_by_called_once(self, mock_get_by): self._interconnect_types.get_by_name('HP VC Flex-10 Enet Module') mock_get_by.assert_called_once_with( 'name', 'HP VC Flex-10 Enet Module')
35.693878
139
0.74271
000d7adbe57df358025e2c9b6c3390e117ef0dbd
2,466
py
Python
huawei_lte/errors.py
bfg100k/HuaweiB525Router
dd2c6b2954b1e48f571e6024c2c5fb29e90ef0b1
[ "MIT" ]
64
2019-02-05T23:31:57.000Z
2022-02-13T22:59:31.000Z
huawei_lte/errors.py
bfg100k/HuaweiB525Router
dd2c6b2954b1e48f571e6024c2c5fb29e90ef0b1
[ "MIT" ]
14
2019-07-13T22:43:21.000Z
2021-01-04T22:46:20.000Z
huawei_lte/errors.py
bfg100k/HuaweiB525Router
dd2c6b2954b1e48f571e6024c2c5fb29e90ef0b1
[ "MIT" ]
20
2019-05-09T12:48:16.000Z
2022-01-12T10:55:29.000Z
import huawei_lte.xmlobjects as xmlobjects class RouterError(Exception): __ERRORS = [ [2000, 'Python API: %s - %s'], [100001, 'An unkown error occurred'], [100002, 'No such URL. The router does not support this function'], [100003, 'You have no rights to access this function'], [100004, 'The system is busy'], [100005, 'Format error'], #TODO: This is not very discriptive, XML format? [100006, 'Parameter error'], #TODO: Assume invalid attribute, or missing attribute? [100007, 'Save config file error'], [100008, 'Get config file error'], [101001, 'No SIM card, or invalid SIM card'], [101002, 'Check SIM card PIN lock'], [101003, 'Check SIM card PUN lock'], [101004, 'Check SIM card is usable'], [101005, 'Enable PIN failed'], [101006, 'Disable PIN failed'], [101007, 'Unlock PIN failed'], [101008, 'Disable Auto PIN failed'], [101009, 'Enable Auto PIN failed'], [108001, 'The username is wrong'], [108002, 'The password is wrong'], [108003, 'The user is already logged in'], [108004, 'Modify password failed'], [108005, 'Too many users logged in'], [108006, 'The username and/or password are wrong'], [108007, 'Logging in too many times'], [108010, 'Access denied, logins are too frequent'], [118001, 'Cradle get current connected user IP failed'], [118002, 'Cradle get current connected user MAC failed'], [118003, 'Cradle set MAC failed'], [118004, 'Cradle get WAN information failed'], [118005, 'Cradle coding failure'], [118006, 'Cradle update profile failed'], [120001, 'Voice is busy'], [125001, 'Invalid authentication token'], [125002, 'Invalid session'], [125003, 'Invalid session token'] #TODO: Add 9003 occurring when setting static ip addresses ] @classmethod def hasError(cls, xml): return '<error>' in xml @classmethod def getErrorMessage(cls, code): code = int(code) return next((err[1] for err in cls.__ERRORS if err[0] == code), 'An unknown error occurred') def __init__(self, response): error = xmlobjects.Error() error.parseXML(response) self.code = error.code self.message = error.message super(RouterError, self).__init__(self.code +": "+self.message)
39.142857
100
0.607461
0b3e3c8e7b8d7d624827e0aff2c268649440b0fb
8,526
py
Python
api/tacticalrmm/tacticalrmm/constants.py
v2cloud/tacticalrmm
12f599f9749985f66ff9b559c5e5abd36064b182
[ "MIT" ]
null
null
null
api/tacticalrmm/tacticalrmm/constants.py
v2cloud/tacticalrmm
12f599f9749985f66ff9b559c5e5abd36064b182
[ "MIT" ]
null
null
null
api/tacticalrmm/tacticalrmm/constants.py
v2cloud/tacticalrmm
12f599f9749985f66ff9b559c5e5abd36064b182
[ "MIT" ]
null
null
null
from enum import Enum from django.db import models class MeshAgentIdent(Enum): WIN32 = 3 WIN64 = 4 LINUX32 = 5 LINUX64 = 6 LINUX_ARM_64 = 26 LINUX_ARM_HF = 25 def __str__(self): return str(self.value) CORESETTINGS_CACHE_KEY = "core_settings" ROLE_CACHE_PREFIX = "role_" class ScriptShell(models.TextChoices): POWERSHELL = "powershell", "Powershell" CMD = "cmd", "Batch (CMD)" PYTHON = "python", "Python" SHELL = "shell", "Shell" class ScriptType(models.TextChoices): USER_DEFINED = "userdefined", "User Defined" BUILT_IN = "builtin", "Built In" class EvtLogNames(models.TextChoices): APPLICATION = "Application", "Application" SYSTEM = "System", "System" SECURITY = "Security", "Security" class EvtLogTypes(models.TextChoices): INFO = "INFO", "Information" WARNING = "WARNING", "Warning" ERROR = "ERROR", "Error" AUDIT_SUCCESS = "AUDIT_SUCCESS", "Success Audit" AUDIT_FAILURE = "AUDIT_FAILURE", "Failure Audit" class EvtLogFailWhen(models.TextChoices): CONTAINS = "contains", "Log contains" NOT_CONTAINS = "not_contains", "Log does not contain" class CheckStatus(models.TextChoices): PASSING = "passing", "Passing" FAILING = "failing", "Failing" PENDING = "pending", "Pending" class PAStatus(models.TextChoices): PENDING = "pending", "Pending" COMPLETED = "completed", "Completed" class PAAction(models.TextChoices): SCHED_REBOOT = "schedreboot", "Scheduled Reboot" AGENT_UPDATE = "agentupdate", "Agent Update" CHOCO_INSTALL = "chocoinstall", "Chocolatey Software Install" RUN_CMD = "runcmd", "Run Command" RUN_SCRIPT = "runscript", "Run Script" RUN_PATCH_SCAN = "runpatchscan", "Run Patch Scan" RUN_PATCH_INSTALL = "runpatchinstall", "Run Patch Install" class CheckType(models.TextChoices): DISK_SPACE = "diskspace", "Disk Space Check" PING = "ping", "Ping Check" CPU_LOAD = "cpuload", "CPU Load Check" MEMORY = "memory", "Memory Check" WINSVC = "winsvc", "Service Check" SCRIPT = "script", "Script Check" EVENT_LOG = "eventlog", "Event Log Check" class AuditActionType(models.TextChoices): LOGIN = "login", "User Login" FAILED_LOGIN = "failed_login", "Failed User Login" DELETE = "delete", "Delete Object" MODIFY = "modify", "Modify Object" ADD = "add", "Add Object" VIEW = "view", "View Object" CHECK_RUN = "check_run", "Check Run" TASK_RUN = "task_run", "Task Run" AGENT_INSTALL = "agent_install", "Agent Install" REMOTE_SESSION = "remote_session", "Remote Session" EXEC_SCRIPT = "execute_script", "Execute Script" EXEC_COMMAND = "execute_command", "Execute Command" BULK_ACTION = "bulk_action", "Bulk Action" URL_ACTION = "url_action", "URL Action" class AuditObjType(models.TextChoices): USER = "user", "User" SCRIPT = "script", "Script" AGENT = "agent", "Agent" POLICY = "policy", "Policy" WINUPDATE = "winupdatepolicy", "Patch Policy" CLIENT = "client", "Client" SITE = "site", "Site" CHECK = "check", "Check" AUTOTASK = "automatedtask", "Automated Task" CORE = "coresettings", "Core Settings" BULK = "bulk", "Bulk" ALERT_TEMPLATE = "alerttemplate", "Alert Template" ROLE = "role", "Role" URL_ACTION = "urlaction", "URL Action" KEYSTORE = "keystore", "Global Key Store" CUSTOM_FIELD = "customfield", "Custom Field" class DebugLogLevel(models.TextChoices): INFO = "info", "Info" WARN = "warning", "Warning" ERROR = "error", "Error" CRITICAL = "critical", "Critical" class DebugLogType(models.TextChoices): AGENT_UPDATE = "agent_update", "Agent Update" AGENT_ISSUES = "agent_issues", "Agent Issues" WIN_UPDATES = "win_updates", "Windows Updates" SYSTEM_ISSUES = "system_issues", "System Issues" SCRIPTING = "scripting", "Scripting" # Agent db fields that are not needed for most queries, speeds up query AGENT_DEFER = ( "wmi_detail", "services", "created_by", "created_time", "modified_by", "modified_time", ) ONLINE_AGENTS = ( "pk", "agent_id", "last_seen", "overdue_time", "offline_time", "version", ) FIELDS_TRIGGER_TASK_UPDATE_AGENT = [ "run_time_bit_weekdays", "run_time_date", "expire_date", "daily_interval", "weekly_interval", "enabled", "remove_if_not_scheduled", "run_asap_after_missed", "monthly_days_of_month", "monthly_months_of_year", "monthly_weeks_of_month", "task_repetition_duration", "task_repetition_interval", "stop_task_at_duration_end", "random_task_delay", "run_asap_after_missed", "task_instance_policy", ] POLICY_TASK_FIELDS_TO_COPY = [ "alert_severity", "email_alert", "text_alert", "dashboard_alert", "name", "actions", "run_time_bit_weekdays", "run_time_date", "expire_date", "daily_interval", "weekly_interval", "task_type", "enabled", "remove_if_not_scheduled", "run_asap_after_missed", "custom_field", "collector_all_output", "monthly_days_of_month", "monthly_months_of_year", "monthly_weeks_of_month", "task_repetition_duration", "task_repetition_interval", "stop_task_at_duration_end", "random_task_delay", "run_asap_after_missed", "task_instance_policy", "continue_on_error", ] CHECKS_NON_EDITABLE_FIELDS = [ "check_type", "overridden_by_policy", "created_by", "created_time", "modified_by", "modified_time", ] POLICY_CHECK_FIELDS_TO_COPY = [ "warning_threshold", "error_threshold", "alert_severity", "name", "run_interval", "disk", "fails_b4_alert", "ip", "script", "script_args", "info_return_codes", "warning_return_codes", "timeout", "svc_name", "svc_display_name", "svc_policy_mode", "pass_if_start_pending", "pass_if_svc_not_exist", "restart_if_stopped", "log_name", "event_id", "event_id_is_wildcard", "event_type", "event_source", "event_message", "fail_when", "search_last_days", "number_of_events_b4_alert", "email_alert", "text_alert", "dashboard_alert", ] WEEK_DAYS = { "Sunday": 0x1, "Monday": 0x2, "Tuesday": 0x4, "Wednesday": 0x8, "Thursday": 0x10, "Friday": 0x20, "Saturday": 0x40, } MONTHS = { "January": 0x1, "February": 0x2, "March": 0x4, "April": 0x8, "May": 0x10, "June": 0x20, "July": 0x40, "August": 0x80, "September": 0x100, "October": 0x200, "November": 0x400, "December": 0x800, } WEEKS = { "First Week": 0x1, "Second Week": 0x2, "Third Week": 0x4, "Fourth Week": 0x8, "Last Week": 0x10, } MONTH_DAYS = {f"{b}": 0x1 << a for a, b in enumerate(range(1, 32))} MONTH_DAYS["Last Day"] = 0x80000000 DEMO_NOT_ALLOWED = [ {"name": "AgentProcesses", "methods": ["DELETE"]}, {"name": "AgentMeshCentral", "methods": ["GET", "POST"]}, {"name": "update_agents", "methods": ["POST"]}, {"name": "send_raw_cmd", "methods": ["POST"]}, {"name": "install_agent", "methods": ["POST"]}, {"name": "GenerateAgent", "methods": ["GET"]}, {"name": "email_test", "methods": ["POST"]}, {"name": "server_maintenance", "methods": ["POST"]}, {"name": "CodeSign", "methods": ["PATCH", "POST"]}, {"name": "TwilioSMSTest", "methods": ["POST"]}, {"name": "GetEditActionService", "methods": ["PUT", "POST"]}, {"name": "TestScript", "methods": ["POST"]}, {"name": "GetUpdateDeleteAgent", "methods": ["DELETE"]}, {"name": "Reboot", "methods": ["POST", "PATCH"]}, {"name": "recover", "methods": ["POST"]}, {"name": "run_script", "methods": ["POST"]}, {"name": "bulk", "methods": ["POST"]}, {"name": "WMI", "methods": ["POST"]}, {"name": "PolicyAutoTask", "methods": ["POST"]}, {"name": "RunAutoTask", "methods": ["POST"]}, {"name": "run_checks", "methods": ["POST"]}, {"name": "GetSoftware", "methods": ["POST", "PUT"]}, {"name": "ScanWindowsUpdates", "methods": ["POST"]}, {"name": "InstallWindowsUpdates", "methods": ["POST"]}, {"name": "PendingActions", "methods": ["DELETE"]}, {"name": "clear_cache", "methods": ["GET"]}, ] LINUX_NOT_IMPLEMENTED = [ {"name": "ScanWindowsUpdates", "methods": ["POST"]}, {"name": "GetSoftware", "methods": ["POST", "PUT"]}, {"name": "Reboot", "methods": ["PATCH"]}, # TODO implement reboot later ]
26.811321
76
0.629369
f5bff68874a788009cfe6f66ced9081140bda556
9,783
py
Python
markdown_it/rules_block/list.py
tadeu/markdown-it-py
53d9b3379494dc7f4ef53eaf4726399aac875215
[ "MIT" ]
285
2020-04-30T02:45:16.000Z
2022-03-30T03:25:44.000Z
markdown_it/rules_block/list.py
tadeu/markdown-it-py
53d9b3379494dc7f4ef53eaf4726399aac875215
[ "MIT" ]
181
2020-04-30T21:31:24.000Z
2022-03-22T12:20:35.000Z
markdown_it/rules_block/list.py
tadeu/markdown-it-py
53d9b3379494dc7f4ef53eaf4726399aac875215
[ "MIT" ]
37
2020-05-04T22:30:43.000Z
2022-03-19T22:54:17.000Z
# Lists import logging from .state_block import StateBlock from ..common.utils import isSpace LOGGER = logging.getLogger(__name__) # Search `[-+*][\n ]`, returns next pos after marker on success # or -1 on fail. def skipBulletListMarker(state: StateBlock, startLine: int): pos = state.bMarks[startLine] + state.tShift[startLine] maximum = state.eMarks[startLine] marker = state.srcCharCode[pos] pos += 1 # Check bullet /* * */ /* - */ /* + */ if marker != 0x2A and marker != 0x2D and marker != 0x2B: return -1 if pos < maximum: ch = state.srcCharCode[pos] if not isSpace(ch): # " -test " - is not a list item return -1 return pos # Search `\d+[.)][\n ]`, returns next pos after marker on success # or -1 on fail. def skipOrderedListMarker(state: StateBlock, startLine: int): start = state.bMarks[startLine] + state.tShift[startLine] pos = start maximum = state.eMarks[startLine] # List marker should have at least 2 chars (digit + dot) if pos + 1 >= maximum: return -1 ch = state.srcCharCode[pos] pos += 1 # /* 0 */ /* 9 */ if ch < 0x30 or ch > 0x39: return -1 while True: # EOL -> fail if pos >= maximum: return -1 ch = state.srcCharCode[pos] pos += 1 # /* 0 */ /* 9 */ if ch >= 0x30 and ch <= 0x39: # List marker should have no more than 9 digits # (prevents integer overflow in browsers) if pos - start >= 10: return -1 continue # found valid marker: /* ) */ /* . */ if ch == 0x29 or ch == 0x2E: break return -1 if pos < maximum: ch = state.srcCharCode[pos] if not isSpace(ch): # " 1.test " - is not a list item return -1 return pos def markTightParagraphs(state: StateBlock, idx: int): level = state.level + 2 i = idx + 2 length = len(state.tokens) - 2 while i < length: if state.tokens[i].level == level and state.tokens[i].type == "paragraph_open": state.tokens[i + 2].hidden = True state.tokens[i].hidden = True i += 2 i += 1 def list_block(state: StateBlock, startLine: int, endLine: int, silent: bool): LOGGER.debug("entering list: %s, %s, %s, %s", state, startLine, endLine, silent) isTerminatingParagraph = False tight = True # if it's indented more than 3 spaces, it should be a code block if state.sCount[startLine] - state.blkIndent >= 4: return False # Special case: # - item 1 # - item 2 # - item 3 # - item 4 # - this one is a paragraph continuation if ( state.listIndent >= 0 and state.sCount[startLine] - state.listIndent >= 4 and state.sCount[startLine] < state.blkIndent ): return False # limit conditions when list can interrupt # a paragraph (validation mode only) if silent and state.parentType == "paragraph": # Next list item should still terminate previous list item # # This code can fail if plugins use blkIndent as well as lists, # but I hope the spec gets fixed long before that happens. # if state.tShift[startLine] >= state.blkIndent: isTerminatingParagraph = True # Detect list type and position after marker posAfterMarker = skipOrderedListMarker(state, startLine) if posAfterMarker >= 0: isOrdered = True start = state.bMarks[startLine] + state.tShift[startLine] markerValue = int(state.src[start : posAfterMarker - 1]) # If we're starting a new ordered list right after # a paragraph, it should start with 1. if isTerminatingParagraph and markerValue != 1: return False else: posAfterMarker = skipBulletListMarker(state, startLine) if posAfterMarker >= 0: isOrdered = False else: return False # If we're starting a new unordered list right after # a paragraph, first line should not be empty. if isTerminatingParagraph: if state.skipSpaces(posAfterMarker) >= state.eMarks[startLine]: return False # We should terminate list on style change. Remember first one to compare. markerCharCode = state.srcCharCode[posAfterMarker - 1] # For validation mode we can terminate immediately if silent: return True # Start list listTokIdx = len(state.tokens) if isOrdered: token = state.push("ordered_list_open", "ol", 1) if markerValue != 1: token.attrs = {"start": markerValue} else: token = state.push("bullet_list_open", "ul", 1) token.map = listLines = [startLine, 0] token.markup = chr(markerCharCode) # # Iterate list items # nextLine = startLine prevEmptyEnd = False terminatorRules = state.md.block.ruler.getRules("list") oldParentType = state.parentType state.parentType = "list" while nextLine < endLine: pos = posAfterMarker maximum = state.eMarks[nextLine] initial = offset = ( state.sCount[nextLine] + posAfterMarker - (state.bMarks[startLine] + state.tShift[startLine]) ) while pos < maximum: ch = state.srcCharCode[pos] if ch == 0x09: offset += 4 - (offset + state.bsCount[nextLine]) % 4 elif ch == 0x20: offset += 1 else: break pos += 1 contentStart = pos if contentStart >= maximum: # trimming space in "- \n 3" case, indent is 1 here indentAfterMarker = 1 else: indentAfterMarker = offset - initial # If we have more than 4 spaces, the indent is 1 # (the rest is just indented code block) if indentAfterMarker > 4: indentAfterMarker = 1 # " - test" # ^^^^^ - calculating total length of this thing indent = initial + indentAfterMarker # Run subparser & write tokens token = state.push("list_item_open", "li", 1) token.markup = chr(markerCharCode) token.map = itemLines = [startLine, 0] # change current state, then restore it after parser subcall oldTight = state.tight oldTShift = state.tShift[startLine] oldSCount = state.sCount[startLine] # - example list # ^ listIndent position will be here # ^ blkIndent position will be here # oldListIndent = state.listIndent state.listIndent = state.blkIndent state.blkIndent = indent state.tight = True state.tShift[startLine] = contentStart - state.bMarks[startLine] state.sCount[startLine] = offset if contentStart >= maximum and state.isEmpty(startLine + 1): # workaround for this case # (list item is empty, list terminates before "foo"): # ~~~~~~~~ # - # # foo # ~~~~~~~~ state.line = min(state.line + 2, endLine) else: # NOTE in list.js this was: # state.md.block.tokenize(state, startLine, endLine, True) # but tokeniz does not take the final parameter state.md.block.tokenize(state, startLine, endLine) # If any of list item is tight, mark list as tight if (not state.tight) or prevEmptyEnd: tight = False # Item become loose if finish with empty line, # but we should filter last element, because it means list finish prevEmptyEnd = (state.line - startLine) > 1 and state.isEmpty(state.line - 1) state.blkIndent = state.listIndent state.listIndent = oldListIndent state.tShift[startLine] = oldTShift state.sCount[startLine] = oldSCount state.tight = oldTight token = state.push("list_item_close", "li", -1) token.markup = chr(markerCharCode) nextLine = startLine = state.line itemLines[1] = nextLine if nextLine >= endLine: break contentStart = state.bMarks[startLine] # # Try to check if list is terminated or continued. # if state.sCount[nextLine] < state.blkIndent: break # if it's indented more than 3 spaces, it should be a code block if state.sCount[startLine] - state.blkIndent >= 4: break # fail if terminating block found terminate = False for terminatorRule in terminatorRules: if terminatorRule(state, nextLine, endLine, True): terminate = True break if terminate: break # fail if list has another type if isOrdered: posAfterMarker = skipOrderedListMarker(state, nextLine) if posAfterMarker < 0: break else: posAfterMarker = skipBulletListMarker(state, nextLine) if posAfterMarker < 0: break if markerCharCode != state.srcCharCode[posAfterMarker - 1]: break # Finalize list if isOrdered: token = state.push("ordered_list_close", "ol", -1) else: token = state.push("bullet_list_close", "ul", -1) token.markup = chr(markerCharCode) listLines[1] = nextLine state.line = nextLine state.parentType = oldParentType # mark paragraphs tight if needed if tight: markTightParagraphs(state, listTokIdx) return True
28.605263
87
0.58019
278d9602b03ec5b23a68f59190a5f44c74df243c
1,572
py
Python
include/matrix/python/console_formatter.py
lanfis/Walker
db174fcc0e672da7c3113571a8ce772ad2e1fac5
[ "MIT" ]
null
null
null
include/matrix/python/console_formatter.py
lanfis/Walker
db174fcc0e672da7c3113571a8ce772ad2e1fac5
[ "MIT" ]
null
null
null
include/matrix/python/console_formatter.py
lanfis/Walker
db174fcc0e672da7c3113571a8ce772ad2e1fac5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # license removed for brevity import sys class Console_Formatter: def INFO(self, msg, node_name=None): MSG = None if node_name is "" else self.GREEN+"[{}]".format(self.node_name) MSG = MSG + self.NO_COLOR + msg +self.NO_COLOR return MSG def DEBUG(self, msg, node_name=None): MSG = None if node_name is "" else self.BLUE+"[{}]".format(self.node_name) MSG = MSG + self.NO_COLOR + msg +self.NO_COLOR return MSG def WARN(self, msg, node_name=None): MSG = None if node_name is "" else self.YELLOW+"[{}]".format(self.node_name) MSG = MSG + self.YELLOW + msg +self.NO_COLOR return MSG def ERR(self, msg, node_name=None): MSG = None if node_name is "" else self.RED+"[{}]".format(self.node_name) MSG = MSG + self.RED + msg +self.NO_COLOR return MSG def FATAL(self, msg, node_name=None): MSG = None if node_name is "" else self.RED+"[{}]".format(self.node_name) MSG = MSG + self.RED + msg +self.NO_COLOR return MSG def __init__(self, node_name=None): self.node_name = node_name self.NO_COLOR = "\033[0m" self.BLACK = "\033[30m" self.RED = "\033[31m" self.GREEN = "\033[32m" self.YELLOW = "\033[33m" self.BLUE = "\033[34m" self.MAGENTA = "\033[35m" self.CYAN = "\033[36m" self.LIGHTGRAY = "\033[37m"
36.55814
85
0.540712
905000858d4e2d7bbf8d8b5f01fe46157656448c
5,455
py
Python
cnc/hal_virtual.py
whisperoftheshot/PyCNC
41cb8c11c66bf21d168dc7f2756ade4a8514a139
[ "MIT" ]
null
null
null
cnc/hal_virtual.py
whisperoftheshot/PyCNC
41cb8c11c66bf21d168dc7f2756ade4a8514a139
[ "MIT" ]
null
null
null
cnc/hal_virtual.py
whisperoftheshot/PyCNC
41cb8c11c66bf21d168dc7f2756ade4a8514a139
[ "MIT" ]
null
null
null
from __future__ import division import time from cnc.pulses import * from cnc.config import * """ This is virtual device class which is very useful for debugging. It checks PulseGenerator with some tests. """ def init(): """ Initialize GPIO pins and machine itself. """ logging.info("initialize hal") def spindle_control(percent): """ Spindle control implementation 0..100. :param percent: Spindle speed in percent. """ logging.info("spindle control: {}%".format(percent)) def disable_steppers(): """ Disable all steppers until any movement occurs. """ logging.info("hal disable steppers") def calibrate(x, y, z): """ Move head to home position till end stop switch will be triggered. Do not return till all procedures are completed. :param x: boolean, True to calibrate X axis. :param y: boolean, True to calibrate Y axis. :param z: boolean, True to calibrate Z axis. :return: boolean, True if all specified end stops were triggered. """ logging.info("hal calibrate, x={}, y={}, z={}".format(x, y, z)) return True # noinspection PyUnusedLocal def move(generator): """ Move head to specified position. :param generator: PulseGenerator object. """ delta = generator.delta() ix = iy = iz = ie = 0 lx, ly, lz, le = None, None, None, None dx, dy, dz, de = 0, 0, 0, 0 mx, my, mz, me = 0, 0, 0, 0 cx, cy, cz, ce = 0, 0, 0, 0 direction_x, direction_y, direction_z, direction_e = 1, 1, 1, 1 st = time.time() direction_found = False for direction, tx, ty, tz, te in generator: if direction: direction_found = True direction_x, direction_y, direction_z, direction_e = tx, ty, tz, te if STEPPER_INVERTED_X: direction_x = -direction_x if STEPPER_INVERTED_Y: direction_y = -direction_y if STEPPER_INVERTED_Z: direction_z = -direction_z if STEPPER_INVERTED_E: direction_e = -direction_e if isinstance(generator, PulseGeneratorLinear): assert ((direction_x < 0 and delta.x < 0) or (direction_x > 0 and delta.x > 0) or delta.x == 0) assert ((direction_y < 0 and delta.y < 0) or (direction_y > 0 and delta.y > 0) or delta.y == 0) assert ((direction_z < 0 and delta.z < 0) or (direction_z > 0 and delta.z > 0) or delta.z == 0) assert ((direction_e < 0 and delta.e < 0) or (direction_e > 0 and delta.e > 0) or delta.e == 0) continue if tx is not None: if tx > mx: mx = tx tx = int(round(tx * 1000000)) ix += direction_x cx += 1 if lx is not None: dx = tx - lx assert dx > 0, "negative or zero time delta detected for x" lx = tx else: dx = None if ty is not None: if ty > my: my = ty ty = int(round(ty * 1000000)) iy += direction_y cy += 1 if ly is not None: dy = ty - ly assert dy > 0, "negative or zero time delta detected for y" ly = ty else: dy = None if tz is not None: if tz > mz: mz = tz tz = int(round(tz * 1000000)) iz += direction_z cz += 1 if lz is not None: dz = tz - lz assert dz > 0, "negative or zero time delta detected for z" lz = tz else: dz = None if te is not None: if te > me: me = te te = int(round(te * 1000000)) ie += direction_e ce += 1 if le is not None: de = te - le assert de > 0, "negative or zero time delta detected for e" le = te else: de = None # very verbose, uncomment on demand # logging.debug("Iteration {} is {} {} {} {}". # format(max(ix, iy, iz, ie), tx, ty, tz, te)) f = list(x for x in (tx, ty, tz, te) if x is not None) assert f.count(f[0]) == len(f), "fast forwarded pulse detected" pt = time.time() assert direction_found, "direction not found" assert round(ix / STEPPER_PULSES_PER_MM_X, 10) == delta.x,\ "x wrong number of pulses" assert round(iy / STEPPER_PULSES_PER_MM_Y, 10) == delta.y,\ "y wrong number of pulses" assert round(iz / STEPPER_PULSES_PER_MM_Z, 10) == delta.z, \ "z wrong number of pulses" assert round(ie / STEPPER_PULSES_PER_MM_E, 10) == delta.e, \ "e wrong number of pulses" assert max(mx, my, mz, me) <= generator.total_time_s(), \ "interpolation time or pulses wrong" logging.debug("Moved {}, {}, {}, {} iterations".format(ix, iy, iz, ie)) logging.info("prepared in " + str(round(pt - st, 2)) + "s, estimated " + str(round(generator.total_time_s(), 2)) + "s") def join(): """ Wait till motors work. """ logging.info("hal join()") def deinit(): """ De-initialise. """ logging.info("hal deinit()") def watchdog_feed(): """ Feed hardware watchdog. """ pass
32.861446
79
0.530889
ea1de5d55853926d9987b4fa4ffddd545999e802
2,917
py
Python
AsciiArt/ascii-art.py
linxiaohui/CodeRepoPy
0bb6a47225b0638dec360dd441ed506f9295a4b1
[ "MIT" ]
null
null
null
AsciiArt/ascii-art.py
linxiaohui/CodeRepoPy
0bb6a47225b0638dec360dd441ed506f9295a4b1
[ "MIT" ]
null
null
null
AsciiArt/ascii-art.py
linxiaohui/CodeRepoPy
0bb6a47225b0638dec360dd441ed506f9295a4b1
[ "MIT" ]
null
null
null
""" How it works? We scale a given image to a standard resolution that suitably represents the ASCII version of a given image. The scaled version is then converted to a grayscale image. In a grayscale image, there are 256 shades of gray, or in other words, each pixel carries only the intensity information which is represented by an 8 bit value. A pixel with a value of 0 is assumed to be black and the one with 255 is assumed to be white. We divide the whole range of 0-255 into 11 smaller ranges of 25 pixels each and then assign each pixel a character according to the range it falls in. The point is to assign a group of pixels with slightly varying intensity the same ASCII char. We use the PIL library to play with the images. The code given below is almost self explanatory. The default char mapping and resolution doesn't render good ASCII arts for every image size and so you should try modifying the char mapping and image size to the one that best represents the given image. From: http://www.hackerearth.com/notes/beautiful-python-a-simple-ascii-art-generator-from-images/ """ from PIL import Image ASCII_CHARS = [ '#', '?', '%', '.', 'S', '+', '.', '*', ':', ',', '@'] def scale_image(image, new_width=100): """Resizes an image preserving the aspect ratio. """ (original_width, original_height) = image.size aspect_ratio = original_height/float(original_width) new_height = int(aspect_ratio * new_width) new_image = image.resize((new_width, new_height)) return new_image def convert_to_grayscale(image): return image.convert('L') def map_pixels_to_ascii_chars(image, range_width=25): """Maps each pixel to an ascii char based on the range in which it lies. 0-255 is divided into 11 ranges of 25 pixels each. """ pixels_in_image = list(image.getdata()) pixels_to_chars = [ASCII_CHARS[pixel_value//range_width] for pixel_value in pixels_in_image] return "".join(pixels_to_chars) def convert_image_to_ascii(image, new_width=100): image = scale_image(image) image = convert_to_grayscale(image) pixels_to_chars = map_pixels_to_ascii_chars(image) len_pixels_to_chars = len(pixels_to_chars) image_ascii = [pixels_to_chars[index: index + new_width] for index in range(0, len_pixels_to_chars, new_width)] return "\n".join(image_ascii) def handle_image_conversion(image_filepath): image = None try: image = Image.open(image_filepath) except Exception as e: print("Unable to open image file {image_filepath}.".format(image_filepath=image_filepath)) print(e) return image_ascii = convert_image_to_ascii(image) print(image_ascii) if __name__=='__main__': import sys image_file_path = sys.argv[1] handle_image_conversion(image_file_path)
36.924051
113
0.70929
0cd46792179934cd95439eef8eafea9b385d2853
832
py
Python
jaraco/input/binary.py
jaraco/jaraco.input
2693448286ce496efc82045ad4e1165f0479cc15
[ "MIT" ]
null
null
null
jaraco/input/binary.py
jaraco/jaraco.input
2693448286ce496efc82045ad4e1165f0479cc15
[ "MIT" ]
null
null
null
jaraco/input/binary.py
jaraco/jaraco.input
2693448286ce496efc82045ad4e1165f0479cc15
[ "MIT" ]
null
null
null
def get_bit_values(number, size=32): """ Get bit values as a list for a given number >>> get_bit_values(1) == [0]*31 + [1] True >>> get_bit_values(0xDEADBEEF) [1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, ..., 0, 1, 1, 1, 1] You may override the default word size of 32-bits to match your actual application. >>> get_bit_values(0x3, 2) [1, 1] >>> get_bit_values(0x3, 4) [0, 0, 1, 1] """ res = list(gen_bit_values(number)) res.reverse() # 0-pad the most significant bit res = [0] * (size - len(res)) + res return res def gen_bit_values(number): """ Return a zero or one for each bit of a numeric value up to the most significant 1 bit, beginning with the least significant bit. """ while number: yield number & 0x1 number >>= 1
24.470588
74
0.579327
702bc72f4925fdf589162911cef89997a640ed7b
1,691
py
Python
examples/dfp/v201805/inventory_service/get_all_ad_units.py
christineyi3898/googleads-python-lib
cd707dc897b93cf1bbb19355f7424e7834e7fb55
[ "Apache-2.0" ]
1
2019-10-21T04:10:22.000Z
2019-10-21T04:10:22.000Z
examples/dfp/v201805/inventory_service/get_all_ad_units.py
christineyi3898/googleads-python-lib
cd707dc897b93cf1bbb19355f7424e7834e7fb55
[ "Apache-2.0" ]
null
null
null
examples/dfp/v201805/inventory_service/get_all_ad_units.py
christineyi3898/googleads-python-lib
cd707dc897b93cf1bbb19355f7424e7834e7fb55
[ "Apache-2.0" ]
1
2019-10-21T04:10:51.000Z
2019-10-21T04:10:51.000Z
#!/usr/bin/env python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example gets all ad units. """ # Import appropriate modules from the client library. from googleads import dfp def main(client): # Initialize appropriate service. ad_unit_service = client.GetService('InventoryService', version='v201805') # Create a statement to select ad units. statement = dfp.StatementBuilder() # Retrieve a small amount of ad units at a time, paging # through until all ad units have been retrieved. while True: response = ad_unit_service.getAdUnitsByStatement(statement.ToStatement()) if 'results' in response and len(response['results']): for ad_unit in response['results']: # Print out some information for each ad unit. print('Ad unit with ID "%s" and name "%s" was found.\n' % (ad_unit['id'], ad_unit['name'])) statement.offset += statement.limit else: break print '\nNumber of results found: %s' % response['totalResultSetSize'] if __name__ == '__main__': # Initialize client object. dfp_client = dfp.DfpClient.LoadFromStorage() main(dfp_client)
33.82
77
0.719101
22810b8afffdfed8a7d5fe3862bd01a9ab75b727
32,927
py
Python
sdk/core/azure-core/tests/azure_core_asynctests/test_basic_transport.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
1
2020-12-10T03:17:51.000Z
2020-12-10T03:17:51.000Z
sdk/core/azure-core/tests/azure_core_asynctests/test_basic_transport.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/core/azure-core/tests/azure_core_asynctests/test_basic_transport.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
1
2020-07-31T16:33:36.000Z
2020-07-31T16:33:36.000Z
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See LICENSE.txt in the project root for # license information. # ------------------------------------------------------------------------- from six.moves.http_client import HTTPConnection import time try: from unittest import mock except ImportError: import mock from azure.core.pipeline.transport import HttpRequest, AsyncHttpResponse, AsyncHttpTransport, AioHttpTransport from azure.core.pipeline.policies import HeadersPolicy from azure.core.pipeline import AsyncPipeline import pytest # transport = mock.MagicMock(spec=AsyncHttpTransport) # MagicMock support async cxt manager only after 3.8 # https://github.com/python/cpython/pull/9296 class MockAsyncHttpTransport(AsyncHttpTransport): async def __aenter__(self): return self async def __aexit__(self, *args): pass async def open(self): pass async def close(self): pass async def send(self, request, **kwargs): pass class MockResponse(AsyncHttpResponse): def __init__(self, request, body, content_type): super(MockResponse, self).__init__(request, None) self._body = body self.content_type = content_type def body(self): return self._body @pytest.mark.asyncio async def test_basic_options_aiohttp(): request = HttpRequest("OPTIONS", "https://httpbin.org") async with AsyncPipeline(AioHttpTransport(), policies=[]) as pipeline: response = await pipeline.run(request) assert pipeline._transport.session is None assert isinstance(response.http_response.status_code, int) @pytest.mark.asyncio async def test_multipart_send(): transport = MockAsyncHttpTransport() class RequestPolicy(object): async def on_request(self, request): # type: (PipelineRequest) -> None request.http_request.headers['x-ms-date'] = 'Thu, 14 Jun 2018 16:46:54 GMT' req0 = HttpRequest("DELETE", "/container0/blob0") req1 = HttpRequest("DELETE", "/container1/blob1") request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( req0, req1, policies=[RequestPolicy()], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" # Fix it so test are deterministic ) async with AsyncPipeline(transport) as pipeline: await pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.asyncio async def test_multipart_send_with_context(): transport = MockAsyncHttpTransport() header_policy = HeadersPolicy() class RequestPolicy(object): async def on_request(self, request): # type: (PipelineRequest) -> None request.http_request.headers['x-ms-date'] = 'Thu, 14 Jun 2018 16:46:54 GMT' req0 = HttpRequest("DELETE", "/container0/blob0") req1 = HttpRequest("DELETE", "/container1/blob1") request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( req0, req1, policies=[header_policy, RequestPolicy()], boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525", # Fix it so test are deterministic headers={'Accept': 'application/json'} ) async with AsyncPipeline(transport) as pipeline: await pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'Accept: application/json\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'Accept: application/json\r\n' b'x-ms-date: Thu, 14 Jun 2018 16:46:54 GMT\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.asyncio async def test_multipart_send_with_one_changeset(): transport = MockAsyncHttpTransport() requests = [ HttpRequest("DELETE", "/container0/blob0"), HttpRequest("DELETE", "/container1/blob1") ] changeset = HttpRequest(None, None) changeset.set_multipart_mixed( *requests, boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( changeset, boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) async with AsyncPipeline(transport) as pipeline: await pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.asyncio async def test_multipart_send_with_multiple_changesets(): transport = MockAsyncHttpTransport() changeset1 = HttpRequest(None, None) changeset1.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), HttpRequest("DELETE", "/container1/blob1"), boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) changeset2 = HttpRequest(None, None) changeset2.set_multipart_mixed( HttpRequest("DELETE", "/container2/blob2"), HttpRequest("DELETE", "/container3/blob3"), boundary="changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314" ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( changeset1, changeset2, boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525", ) async with AsyncPipeline(transport) as pipeline: await pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 3\r\n' b'\r\n' b'DELETE /container3/blob3 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.asyncio async def test_multipart_send_with_combination_changeset_first(): transport = MockAsyncHttpTransport() changeset = HttpRequest(None, None) changeset.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), HttpRequest("DELETE", "/container1/blob1"), boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( changeset, HttpRequest("DELETE", "/container2/blob2"), boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) async with AsyncPipeline(transport) as pipeline: await pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.asyncio async def test_multipart_send_with_combination_changeset_last(): transport = MockAsyncHttpTransport() changeset = HttpRequest(None, None) changeset.set_multipart_mixed( HttpRequest("DELETE", "/container1/blob1"), HttpRequest("DELETE", "/container2/blob2"), boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), changeset, boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) async with AsyncPipeline(transport) as pipeline: await pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.asyncio async def test_multipart_send_with_combination_changeset_middle(): transport = MockAsyncHttpTransport() changeset = HttpRequest(None, None) changeset.set_multipart_mixed( HttpRequest("DELETE", "/container1/blob1"), boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), changeset, HttpRequest("DELETE", "/container2/blob2"), boundary="batch_357de4f7-6d0b-4e02-8cd2-6361411a9525" ) async with AsyncPipeline(transport) as pipeline: await pipeline.run(request) assert request.body == ( b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'DELETE /container0/blob0 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: multipart/mixed; boundary=changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'DELETE /container1/blob1 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'DELETE /container2/blob2 HTTP/1.1\r\n' b'\r\n' b'\r\n' b'--batch_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' ) @pytest.mark.asyncio async def test_multipart_receive(): class ResponsePolicy(object): def on_response(self, request, response): # type: (PipelineRequest, PipelineResponse) -> None response.http_response.headers['x-ms-fun'] = 'true' class AsyncResponsePolicy(object): async def on_response(self, request, response): # type: (PipelineRequest, PipelineResponse) -> None response.http_response.headers['x-ms-async-fun'] = 'true' req0 = HttpRequest("DELETE", "/container0/blob0") req1 = HttpRequest("DELETE", "/container1/blob1") request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( req0, req1, policies=[ResponsePolicy(), AsyncResponsePolicy()] ) body_as_str = ( "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "Content-Type: application/http\r\n" "Content-ID: 0\r\n" "\r\n" "HTTP/1.1 202 Accepted\r\n" "x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n" "x-ms-version: 2018-11-09\r\n" "\r\n" "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "Content-Type: application/http\r\n" "Content-ID: 2\r\n" "\r\n" "HTTP/1.1 404 The specified blob does not exist.\r\n" "x-ms-error-code: BlobNotFound\r\n" "x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e2852\r\n" "x-ms-version: 2018-11-09\r\n" "Content-Length: 216\r\n" "Content-Type: application/xml\r\n" "\r\n" '<?xml version="1.0" encoding="utf-8"?>\r\n' "<Error><Code>BlobNotFound</Code><Message>The specified blob does not exist.\r\n" "RequestId:778fdc83-801e-0000-62ff-0334671e2852\r\n" "Time:2018-06-14T16:46:54.6040685Z</Message></Error>\r\n" "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--" ) response = MockResponse( request, body_as_str.encode('ascii'), "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 2 res0 = parts[0] assert res0.status_code == 202 assert res0.headers['x-ms-fun'] == 'true' assert res0.headers['x-ms-async-fun'] == 'true' res1 = parts[1] assert res1.status_code == 404 assert res1.headers['x-ms-fun'] == 'true' assert res1.headers['x-ms-async-fun'] == 'true' @pytest.mark.asyncio async def test_multipart_receive_with_one_changeset(): changeset = HttpRequest(None, None) changeset.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), HttpRequest("DELETE", "/container1/blob1") ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(changeset) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 202 Accepted\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 202 Accepted\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = MockResponse( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 2 res0 = parts[0] assert res0.status_code == 202 @pytest.mark.asyncio async def test_multipart_receive_with_multiple_changesets(): changeset1 = HttpRequest(None, None) changeset1.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), HttpRequest("DELETE", "/container1/blob1") ) changeset2 = HttpRequest(None, None) changeset2.set_multipart_mixed( HttpRequest("DELETE", "/container2/blob2"), HttpRequest("DELETE", "/container3/blob3") ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(changeset1, changeset2) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314"\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 3\r\n' b'\r\n' b'HTTP/1.1 409\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_8b9e487e-a353-4dcb-a6f4-0688191e0314--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = MockResponse( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 4 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 assert parts[3].status_code == 409 @pytest.mark.asyncio async def test_multipart_receive_with_combination_changeset_first(): changeset = HttpRequest(None, None) changeset.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), HttpRequest("DELETE", "/container1/blob1") ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(changeset, HttpRequest("DELETE", "/container2/blob2")) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = MockResponse( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 3 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 @pytest.mark.asyncio async def test_multipart_receive_with_combination_changeset_middle(): changeset = HttpRequest(None, None) changeset.set_multipart_mixed(HttpRequest("DELETE", "/container1/blob1")) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed( HttpRequest("DELETE", "/container0/blob0"), changeset, HttpRequest("DELETE", "/container2/blob2") ) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = MockResponse( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 3 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 @pytest.mark.asyncio async def test_multipart_receive_with_combination_changeset_last(): changeset = HttpRequest(None, None) changeset.set_multipart_mixed( HttpRequest("DELETE", "/container1/blob1"), HttpRequest("DELETE", "/container2/blob2") ) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(HttpRequest("DELETE", "/container0/blob0"), changeset) body_as_bytes = ( b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 2\r\n' b'\r\n' b'HTTP/1.1 200\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n' b'Content-Type: multipart/mixed; boundary="changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525"\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 0\r\n' b'\r\n' b'HTTP/1.1 202\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525\r\n' b'Content-Type: application/http\r\n' b'Content-Transfer-Encoding: binary\r\n' b'Content-ID: 1\r\n' b'\r\n' b'HTTP/1.1 404\r\n' b'x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n' b'x-ms-version: 2018-11-09\r\n' b'\r\n' b'\r\n' b'--changeset_357de4f7-6d0b-4e02-8cd2-6361411a9525--\r\n' b'\r\n' b'--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--\r\n' ) response = MockResponse( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 3 assert parts[0].status_code == 200 assert parts[1].status_code == 202 assert parts[2].status_code == 404 @pytest.mark.asyncio async def test_multipart_receive_with_bom(): req0 = HttpRequest("DELETE", "/container0/blob0") request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(req0) body_as_bytes = ( b"--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\n" b"Content-Type: application/http\n" b"Content-Transfer-Encoding: binary\n" b"Content-ID: 0\n" b'\r\n' b'HTTP/1.1 400 One of the request inputs is not valid.\r\n' b'Content-Length: 220\r\n' b'Content-Type: application/xml\r\n' b'Server: Windows-Azure-Blob/1.0\r\n' b'\r\n' b'\xef\xbb\xbf<?xml version="1.0" encoding="utf-8"?>\n<Error><Code>InvalidInput</Code><Message>One' b'of the request inputs is not valid.\nRequestId:5f3f9f2f-e01e-00cc-6eb1-6d00b5000000\nTime:2019-09-17T23:44:07.4671860Z</Message></Error>\n' b"--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--" ) response = MockResponse( request, body_as_bytes, "multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 1 res0 = parts[0] assert res0.status_code == 400 assert res0.body().startswith(b'\xef\xbb\xbf') @pytest.mark.asyncio async def test_recursive_multipart_receive(): req0 = HttpRequest("DELETE", "/container0/blob0") internal_req0 = HttpRequest("DELETE", "/container0/blob0") req0.set_multipart_mixed(internal_req0) request = HttpRequest("POST", "http://account.blob.core.windows.net/?comp=batch") request.set_multipart_mixed(req0) internal_body_as_str = ( "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "Content-Type: application/http\r\n" "Content-ID: 0\r\n" "\r\n" "HTTP/1.1 400 Accepted\r\n" "x-ms-request-id: 778fdc83-801e-0000-62ff-0334671e284f\r\n" "x-ms-version: 2018-11-09\r\n" "\r\n" "--batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed--" ) body_as_str = ( "--batchresponse_8d5f5bcd-2cb5-44bb-91b5-e9a722e68cb6\r\n" "Content-Type: application/http\r\n" "Content-ID: 0\r\n" "\r\n" "HTTP/1.1 202 Accepted\r\n" "Content-Type: multipart/mixed; boundary=batchresponse_66925647-d0cb-4109-b6d3-28efe3e1e5ed\r\n" "\r\n" "{}" "--batchresponse_8d5f5bcd-2cb5-44bb-91b5-e9a722e68cb6--" ).format(internal_body_as_str) response = MockResponse( request, body_as_str.encode('ascii'), "multipart/mixed; boundary=batchresponse_8d5f5bcd-2cb5-44bb-91b5-e9a722e68cb6" ) parts = [] async for part in response.parts(): parts.append(part) assert len(parts) == 1 res0 = parts[0] assert res0.status_code == 202 internal_parts = [] async for part in res0.parts(): internal_parts.append(part) assert len(internal_parts) == 1 internal_response0 = internal_parts[0] assert internal_response0.status_code == 400
35.216043
149
0.62675
294d21728368aea940319594e4b0dd7b90e02d84
523
py
Python
geokey/users/migrations/0002_auto_20150106_1420.py
universityofsussex/geokey
25e161dbc81841c57c148053dbe99facc81e84b8
[ "Apache-2.0" ]
null
null
null
geokey/users/migrations/0002_auto_20150106_1420.py
universityofsussex/geokey
25e161dbc81841c57c148053dbe99facc81e84b8
[ "Apache-2.0" ]
null
null
null
geokey/users/migrations/0002_auto_20150106_1420.py
universityofsussex/geokey
25e161dbc81841c57c148053dbe99facc81e84b8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from django.db import migrations def create_anonymous(apps, schema_editor): User = apps.get_model("users", "User") if not User.objects.filter(display_name='AnonymousUser').exists(): User.objects.create( display_name='AnonymousUser', password='', email='' ) class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.RunPython(create_anonymous), ]
20.115385
70
0.602294
ccb1280133f71916654ae3a70f30845926149cd0
9,155
py
Python
src/old/multimodal_code/utils.py
trungnt13/digisami_journal
671486d0fe7b65cad80daf8e8b96d475245c5fed
[ "Apache-2.0" ]
null
null
null
src/old/multimodal_code/utils.py
trungnt13/digisami_journal
671486d0fe7b65cad80daf8e8b96d475245c5fed
[ "Apache-2.0" ]
null
null
null
src/old/multimodal_code/utils.py
trungnt13/digisami_journal
671486d0fe7b65cad80daf8e8b96d475245c5fed
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function, division, absolute_import import os from six.moves import cPickle import random import numpy as np from odin import fuel as F from odin.utils import get_modelpath, Progbar, bidict from odin.stats import freqcount CODE_PATH = '/home/trung/src/digisami' DATASET_PATH = '/home/trung/data/%s_audio' ANNO_PATH = '/home/trung/data/%s_anno' data_order = ['estonia', 'finnish'] SPLIT = [0.6, 0.8] SEED = 12082518 laugh_labels = bidict({ u'': 0, u'fl, b': 1, u'st, e': 2, u'st, b': 3, u'fl, e': 4, u'st, m': 5, u'fl, o': 6, u'fl, m': 7, u'fl, p': 8, u'fl, o, p': 9, u'fl, d': 10, u'st, o': 11, u'st, p': 12 }) laugh_labels_binary = bidict({ u'': 0, u'fl, b': 1, u'st, e': 1, u'st, b': 1, u'fl, e': 1, u'st, m': 1, u'fl, o': 1, u'fl, m': 1, u'fl, p': 1, u'fl, o, p': 1, u'fl, d': 1, u'st, o': 1, u'st, p': 1 }) laugh_shortened = bidict({ u'': 0, u'fl, b': 1, u'st, e': 2, u'st, b': 3, u'fl, e': 4, u'st, o': 5, u'st, m': 6, u'fl, o': 7, u'fl, m': 8, u'fl, p': 9 }) # =========================================================================== # Label maker # =========================================================================== def flst(x): """fl = 1, st = 2""" return 0 if len(x) == 0 else (1 if 'fl' in x else 2) def bin(x): return 1 if len(x) > 0 else 0 def allab(x): return laugh_labels[x] def get_anno(lang): f = open(ANNO_PATH % lang, 'r') anno = cPickle.load(f) f.close() return anno def get_data(lang, feat, stack, ctx, hop, mode, batch_mode, ncpu): """ mode: "binary", "laugh", "all", "emotion" batch_mode: "all", "mul" """ path = DATASET_PATH % lang if mode == 'binary': label_parser = bin elif mode == 'laugh': label_parser = flst else: label_parser = allab ds = F.Dataset(path, read_only=True) indices = np.genfromtxt(ds['indices.csv'], dtype=str, delimiter=' ') # ====== split indices ====== # n = indices.shape[0] np.random.seed(SEED); np.random.shuffle(indices) train_indices = indices[:int(SPLIT[0] * n)] valid_indices = indices[int(SPLIT[0] * n):int(SPLIT[1] * n)] test_indices = indices[int(SPLIT[1] * n):] print('#Files:', n, ' #Train:', train_indices.shape[0], ' #Valid:', valid_indices.shape[0], ' #Test:', test_indices.shape[0] ) # ====== create feeder ====== # maximum_queue_size = 66 train = F.Feeder(ds[feat], train_indices, ncpu=ncpu, buffer_size=3, maximum_queue_size=maximum_queue_size) valid = F.Feeder(ds[feat], valid_indices, ncpu=max(1, ncpu // 2), buffer_size=1, maximum_queue_size=maximum_queue_size) test = F.Feeder(ds[feat], test_indices, ncpu=max(1, ncpu // 2), buffer_size=1, maximum_queue_size=maximum_queue_size) # create feature transform if ctx <= 1: feature_transform = None elif stack: feature_transform = F.recipes.Stacking(left_context=ctx // 2, right_context=ctx // 2, shift=hop) else: feature_transform = F.recipes.Sequencing(frame_length=ctx, hop_length=hop, end='pad') if batch_mode == 'all': batch_filter = lambda data: data elif batch_mode == 'mul': batch_filter = lambda data: None if len(set(data[-1])) <= 1 else data else: raise ValueError('invalid batch_mode=%s' % batch_mode) # ====== create recipes ====== # recipes = [ F.recipes.Normalization(local_normalize=False, mean=ds['%s_mean' % feat], std=ds['%s_std' % feat]), feature_transform ] # ====== set recipes ====== # train.set_recipes([F.recipes.TransLoader(ds['laugh.dict'], dtype=int, label_dict=label_parser)] + recipes + [F.recipes.CreateBatch(batch_filter=batch_filter)]) valid.set_recipes([F.recipes.TransLoader(ds['laugh.dict'], dtype=int, label_dict=label_parser)] + recipes + [F.recipes.CreateBatch()]) test.set_recipes([F.recipes.TransLoader(ds['laugh.dict'], dtype=str)] + recipes + [F.recipes.CreateFile(return_name=True)]) return train, valid, test # =========================================================================== # For evaluation # =========================================================================== from sklearn.metrics import (accuracy_score, f1_score, confusion_matrix, classification_report) def report_func(y_true, y_pred, nb_classes): def report(true, pred): labels = np.unique(true).tolist() print('Labels:', labels, 'y_true:', np.unique(true), 'y_pred:', np.unique(pred)) print('Accuracy:', accuracy_score(true, pred)) print('F1 weighted:', f1_score(true, pred, labels=labels, average='weighted')) print('F1 micro:', f1_score(true, pred, labels=labels, average='micro')) print('F1 macro:', f1_score(true, pred, labels=labels, average='macro')) print('Confusion matrix:') print(confusion_matrix(true, pred, labels=labels)) # print('Report:') # print(classification_report(true, pred, labels=labels)) # TODO there exist the case: for [0, 1, 2], we predict [0, 1] # output is 1, but true value is 0, then calibrate is 0 or 1 ? def convert_to_flst(true, pred): if nb_classes == 2: return [flst(j) if i == 1 and len(j) > 0 else (random.choice([1, 2]) if i == 1 and len(j) == 0 else i) for i, j in zip(pred, true)] elif nb_classes == 3: return pred else: return [flst(laugh_labels[i]) for i in pred] def convert_to_all(true, pred): alllabels = np.unique([allab(i) for i in true if len(i) > 0]) if nb_classes == 2: return [allab(j) if i == 1 and len(j) > 0 else (random.choice(alllabels) if i == 1 and len(j) == 0 else i) for i, j in zip(pred, true)] elif nb_classes == 3: return [allab(j) if (i == 1 and 'fl,' in j) or (i == 2 and 'st,' in j) else (random.choice(alllabels) if i > 0 and len(j) == 0 else i) for i, j in zip(pred, true)] else: return pred print('SkyPrediction:') hist_pred = freqcount(y_pred) for i, j in hist_pred.iteritems(): print(i, ':', j) hist_true = freqcount(y_true) print('GroundTrue:') for i, j in hist_true.iteritems(): print(i, ':', j) # ====== binary ====== # print('\n******** Binary problem:') report([bin(i) for i in y_true], [1 if i > 0 else 0 for i in y_pred]) # ====== FL-ST ====== # print('\n******** FL-ST problem:') report([flst(i) for i in y_true], convert_to_flst(y_true, y_pred)) # ====== ALL ====== # print('\n******** ALL %d problem:' % len(laugh_labels)) report([allab(i) for i in y_true], convert_to_all(y_true, y_pred)) def evaluate(model_path, threshold=0.5): from odin import backend as K if not os.path.exists(model_path): model_path = get_modelpath(name=model_path, override=False) f, args = cPickle.load(open(model_path, 'r')) print('======== Configuration ========') for i, j in args.iteritems(): print(i, ':', j) print() print('======== Loading data ========') test = [get_data(path, args['feat'], args['stack'], args['ctx'], args['hop'], args['mode'], args['bmode'], ncpu=2)[-1] for path in data_order] for i, j in zip(data_order, test): print('Test %s:' % i, j.shape) print('Building predict function ...') K.set_training(False) print('Input shape:', (None,) + test[0].shape[1:]) X = K.placeholder(shape=(None,) + test[0].shape[1:], name='X') f_pred = K.function(X, f(X)) for name, data in zip(data_order, test): print('=' * 30, name, '=' * 30) # print header y_true = [] y_pred = [] nb_classes = 0 prog = Progbar(target=data.shape[0], title=name) for X, y in data.set_batch(batch_size=args['bs'] * 3, seed=None): _ = f_pred(X) nb_classes = _.shape[-1] _ = _ >= threshold if nb_classes == 1 else np.argmax(_, -1) y_pred.append(_.astype('int32')) y_true.append(y) prog.add(X.shape[0]) # ====== report ====== # prog.update(data.shape[0]) y_pred = np.concatenate(y_pred, axis=0) y_true = np.concatenate(y_true, axis=0) report_func(y_true, y_pred, 2 if nb_classes == 1 else nb_classes) exit()
33.534799
101
0.518187
1b98a017bc628a35aa80ac880da460199d38bdc8
3,746
py
Python
apps/auth/fixtures.py
Eudorajab1/websaw
7c3a369789d23ac699868fa1eff6c63e3e5c1e36
[ "MIT" ]
1
2022-03-29T00:12:12.000Z
2022-03-29T00:12:12.000Z
apps/auth/fixtures.py
Eudorajab1/websaw
7c3a369789d23ac699868fa1eff6c63e3e5c1e36
[ "MIT" ]
null
null
null
apps/auth/fixtures.py
Eudorajab1/websaw
7c3a369789d23ac699868fa1eff6c63e3e5c1e36
[ "MIT" ]
null
null
null
from websaw import DefaultApp, DefaultContext, XAuth, AuthErr, redirect from websaw.core import request, Fixture, BaseContext from pprint import pprint class Auth(XAuth): def take_on(self, ctx: BaseContext): self.data.ctx = ctx self.data.db = ctx.auth_db self.data.session = ctx.session self.data.cuser = ctx.current_user self.data.user = self.data.cuser.user self.data.shared_data = ctx.state.shared_data if not self.data.shared_data.get('template_context', None): self.data.shared_data['template_context'] = {} #intialise it self.data.shared_data['template_context']['auth_user'] = self.data.cuser.user flash = self.data.session.get('message', None) if flash: f_message = dict(message=flash['message'], _class=flash['_class']) self.data.shared_data['template_context']['flash'] = f_message self.data.session['message'] = None def user_by_login(self, login: str) -> dict: login = login.lower() db = self.data.ctx.auth_db user = db(db.auth_user.username == login).select().first() return user def user_for_session(self, user): suser = super().user_for_session(user) suser['email'] = user['email'] suser['username'] = user['username'] suser['first_name'] = user['first_name'] suser['last_name'] = user['last_name'] return suser def register(self, fields): db = self.data.ctx.auth_db ret = db.auth_user.insert(**fields) db.commit() return ret def update_profile(self, user_id, fields): db = self.data.ctx.auth_db res = db.auth_user(user_id).update_record( username = fields["username"], email = fields["email"], first_name = fields["first_name"], last_name = fields["last_name"], ) db.commit() print('Res in update_profiel is ', res) if res: self.store_user_in_session(res.as_dict()) return res['id'] else: return dict(message='Could not update profiel', _class='danger') def has_membership(self, role): user_id = self.user_id db = self.data.db belongs = db(db.auth_membership.user_id == user_id).select() for b in belongs: if db.auth_roles(b.role_id).role == role: return True return False auth = Auth() class Flash(Fixture): def take_on(self, ctx: BaseContext): self.data.ctx = ctx self.data.message = None self.data._class = None self.data.session = ctx.session self.data.shared_data = ctx.state.shared_data if not self.data.shared_data.get('template_context', None): self.data.shared_data['template_context'] = {} #initilaise shared data flash = self.data.session.get('message', None) if flash: mess = flash['message'] cl = flash['_class'] self.set(mess, cl) self.data.session['message'] = None self.data.shared_data['template_context']['flash'] = flash return True else: return False def store_message_in_session(self, message: dict): session = self.data.session session["message"] = message def set(self, message, _class): self.data.message = message self.data._class = _class f_message = dict(message=message, _class=_class) flash = self.store_message_in_session(f_message) self.data.shared_data['template_context']['flash'] = f_message return flash flash = Flash()
36.019231
85
0.599039
aa5ff839cefe5bbec114956e9a9593d3945beeb0
321,430
py
Python
pyboto3/docdb.py
gehad-shaat/pyboto3
4a0c2851a8bc04fb1c71c36086f7bb257e48181d
[ "MIT" ]
91
2016-12-31T11:38:37.000Z
2021-09-16T19:33:23.000Z
pyboto3/docdb.py
gehad-shaat/pyboto3
4a0c2851a8bc04fb1c71c36086f7bb257e48181d
[ "MIT" ]
7
2017-01-02T18:54:23.000Z
2020-08-11T13:54:02.000Z
pyboto3/docdb.py
gehad-shaat/pyboto3
4a0c2851a8bc04fb1c71c36086f7bb257e48181d
[ "MIT" ]
26
2016-12-31T13:11:00.000Z
2022-03-03T21:01:12.000Z
''' The MIT License (MIT) Copyright (c) 2016 WavyCloud Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' def add_tags_to_resource(ResourceName=None, Tags=None): """ Adds metadata tags to an Amazon DocumentDB resource. You can use these tags with cost allocation reporting to track costs that are associated with Amazon DocumentDB resources. or in a Condition statement in an AWS Identity and Access Management (IAM) policy for Amazon DocumentDB. See also: AWS API Documentation Exceptions :example: response = client.add_tags_to_resource( ResourceName='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) :type ResourceName: string :param ResourceName: [REQUIRED]\nThe Amazon DocumentDB resource that the tags are added to. This value is an Amazon Resource Name (ARN).\n :type Tags: list :param Tags: [REQUIRED]\nThe tags to be assigned to the Amazon DocumentDB resource.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :returns: DocDB.Client.exceptions.DBInstanceNotFoundFault DocDB.Client.exceptions.DBSnapshotNotFoundFault DocDB.Client.exceptions.DBClusterNotFoundFault """ pass def apply_pending_maintenance_action(ResourceIdentifier=None, ApplyAction=None, OptInType=None): """ Applies a pending maintenance action to a resource (for example, to a DB instance). See also: AWS API Documentation Exceptions :example: response = client.apply_pending_maintenance_action( ResourceIdentifier='string', ApplyAction='string', OptInType='string' ) :type ResourceIdentifier: string :param ResourceIdentifier: [REQUIRED]\nThe Amazon Resource Name (ARN) of the resource that the pending maintenance action applies to.\n :type ApplyAction: string :param ApplyAction: [REQUIRED]\nThe pending maintenance action to apply to this resource.\nValid values: system-update , db-upgrade\n :type OptInType: string :param OptInType: [REQUIRED]\nA value that specifies the type of opt-in request or undoes an opt-in request. An opt-in request of type immediate can\'t be undone.\nValid values:\n\nimmediate - Apply the maintenance action immediately.\nnext-maintenance - Apply the maintenance action during the next maintenance window for the resource.\nundo-opt-in - Cancel any existing next-maintenance opt-in requests.\n\n :rtype: dict ReturnsResponse Syntax { 'ResourcePendingMaintenanceActions': { 'ResourceIdentifier': 'string', 'PendingMaintenanceActionDetails': [ { 'Action': 'string', 'AutoAppliedAfterDate': datetime(2015, 1, 1), 'ForcedApplyDate': datetime(2015, 1, 1), 'OptInStatus': 'string', 'CurrentApplyDate': datetime(2015, 1, 1), 'Description': 'string' }, ] } } Response Structure (dict) -- ResourcePendingMaintenanceActions (dict) -- Represents the output of ApplyPendingMaintenanceAction . ResourceIdentifier (string) -- The Amazon Resource Name (ARN) of the resource that has pending maintenance actions. PendingMaintenanceActionDetails (list) -- A list that provides details about the pending maintenance actions for the resource. (dict) -- Provides information about a pending maintenance action for a resource. Action (string) -- The type of pending maintenance action that is available for the resource. AutoAppliedAfterDate (datetime) -- The date of the maintenance window when the action is applied. The maintenance action is applied to the resource during its first maintenance window after this date. If this date is specified, any next-maintenance opt-in requests are ignored. ForcedApplyDate (datetime) -- The date when the maintenance action is automatically applied. The maintenance action is applied to the resource on this date regardless of the maintenance window for the resource. If this date is specified, any immediate opt-in requests are ignored. OptInStatus (string) -- Indicates the type of opt-in request that has been received for the resource. CurrentApplyDate (datetime) -- The effective date when the pending maintenance action is applied to the resource. Description (string) -- A description providing more detail about the maintenance action. Exceptions DocDB.Client.exceptions.ResourceNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBInstanceStateFault :return: { 'ResourcePendingMaintenanceActions': { 'ResourceIdentifier': 'string', 'PendingMaintenanceActionDetails': [ { 'Action': 'string', 'AutoAppliedAfterDate': datetime(2015, 1, 1), 'ForcedApplyDate': datetime(2015, 1, 1), 'OptInStatus': 'string', 'CurrentApplyDate': datetime(2015, 1, 1), 'Description': 'string' }, ] } } :returns: DocDB.Client.exceptions.ResourceNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBInstanceStateFault """ pass def can_paginate(operation_name=None): """ Check if an operation can be paginated. :type operation_name: string :param operation_name: The operation name. This is the same name\nas the method name on the client. For example, if the\nmethod name is create_foo, and you\'d normally invoke the\noperation as client.create_foo(**kwargs), if the\ncreate_foo operation can be paginated, you can use the\ncall client.get_paginator('create_foo'). """ pass def copy_db_cluster_parameter_group(SourceDBClusterParameterGroupIdentifier=None, TargetDBClusterParameterGroupIdentifier=None, TargetDBClusterParameterGroupDescription=None, Tags=None): """ Copies the specified cluster parameter group. See also: AWS API Documentation Exceptions :example: response = client.copy_db_cluster_parameter_group( SourceDBClusterParameterGroupIdentifier='string', TargetDBClusterParameterGroupIdentifier='string', TargetDBClusterParameterGroupDescription='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) :type SourceDBClusterParameterGroupIdentifier: string :param SourceDBClusterParameterGroupIdentifier: [REQUIRED]\nThe identifier or Amazon Resource Name (ARN) for the source cluster parameter group.\nConstraints:\n\nMust specify a valid cluster parameter group.\nIf the source cluster parameter group is in the same AWS Region as the copy, specify a valid parameter group identifier; for example, my-db-cluster-param-group , or a valid ARN.\nIf the source parameter group is in a different AWS Region than the copy, specify a valid cluster parameter group ARN; for example, arn:aws:rds:us-east-1:123456789012:cluster-pg:custom-cluster-group1 .\n\n :type TargetDBClusterParameterGroupIdentifier: string :param TargetDBClusterParameterGroupIdentifier: [REQUIRED]\nThe identifier for the copied cluster parameter group.\nConstraints:\n\nCannot be null, empty, or blank.\nMust contain from 1 to 255 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: my-cluster-param-group1\n :type TargetDBClusterParameterGroupDescription: string :param TargetDBClusterParameterGroupDescription: [REQUIRED]\nA description for the copied cluster parameter group.\n :type Tags: list :param Tags: The tags that are to be assigned to the parameter group.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DBClusterParameterGroup': { 'DBClusterParameterGroupName': 'string', 'DBParameterGroupFamily': 'string', 'Description': 'string', 'DBClusterParameterGroupArn': 'string' } } Response Structure (dict) -- DBClusterParameterGroup (dict) -- Detailed information about a cluster parameter group. DBClusterParameterGroupName (string) -- Provides the name of the cluster parameter group. DBParameterGroupFamily (string) -- Provides the name of the parameter group family that this cluster parameter group is compatible with. Description (string) -- Provides the customer-specified description for this cluster parameter group. DBClusterParameterGroupArn (string) -- The Amazon Resource Name (ARN) for the cluster parameter group. Exceptions DocDB.Client.exceptions.DBParameterGroupNotFoundFault DocDB.Client.exceptions.DBParameterGroupQuotaExceededFault DocDB.Client.exceptions.DBParameterGroupAlreadyExistsFault :return: { 'DBClusterParameterGroup': { 'DBClusterParameterGroupName': 'string', 'DBParameterGroupFamily': 'string', 'Description': 'string', 'DBClusterParameterGroupArn': 'string' } } :returns: DocDB.Client.exceptions.DBParameterGroupNotFoundFault DocDB.Client.exceptions.DBParameterGroupQuotaExceededFault DocDB.Client.exceptions.DBParameterGroupAlreadyExistsFault """ pass def copy_db_cluster_snapshot(SourceDBClusterSnapshotIdentifier=None, TargetDBClusterSnapshotIdentifier=None, KmsKeyId=None, PreSignedUrl=None, CopyTags=None, Tags=None): """ Copies a snapshot of a cluster. To copy a cluster snapshot from a shared manual cluster snapshot, SourceDBClusterSnapshotIdentifier must be the Amazon Resource Name (ARN) of the shared cluster snapshot. To cancel the copy operation after it is in progress, delete the target cluster snapshot identified by TargetDBClusterSnapshotIdentifier while that DB cluster snapshot is in the copying status. See also: AWS API Documentation Exceptions :example: response = client.copy_db_cluster_snapshot( SourceDBClusterSnapshotIdentifier='string', TargetDBClusterSnapshotIdentifier='string', KmsKeyId='string', PreSignedUrl='string', CopyTags=True|False, Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) :type SourceDBClusterSnapshotIdentifier: string :param SourceDBClusterSnapshotIdentifier: [REQUIRED]\nThe identifier of the cluster snapshot to copy. This parameter is not case sensitive.\nYou can\'t copy an encrypted, shared cluster snapshot from one AWS Region to another.\nConstraints:\n\nMust specify a valid system snapshot in the 'available' state.\nIf the source snapshot is in the same AWS Region as the copy, specify a valid snapshot identifier.\nIf the source snapshot is in a different AWS Region than the copy, specify a valid cluster snapshot ARN.\n\nExample: my-cluster-snapshot1\n :type TargetDBClusterSnapshotIdentifier: string :param TargetDBClusterSnapshotIdentifier: [REQUIRED]\nThe identifier of the new cluster snapshot to create from the source cluster snapshot. This parameter is not case sensitive.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: my-cluster-snapshot2\n :type KmsKeyId: string :param KmsKeyId: The AWS KMS key ID for an encrypted cluster snapshot. The AWS KMS key ID is the Amazon Resource Name (ARN), AWS KMS key identifier, or the AWS KMS key alias for the AWS KMS encryption key.\nIf you copy an encrypted cluster snapshot from your AWS account, you can specify a value for KmsKeyId to encrypt the copy with a new AWS KMS encryption key. If you don\'t specify a value for KmsKeyId , then the copy of the cluster snapshot is encrypted with the same AWS KMS key as the source cluster snapshot.\nIf you copy an encrypted cluster snapshot that is shared from another AWS account, then you must specify a value for KmsKeyId .\nTo copy an encrypted cluster snapshot to another AWS Region, set KmsKeyId to the AWS KMS key ID that you want to use to encrypt the copy of the cluster snapshot in the destination Region. AWS KMS encryption keys are specific to the AWS Region that they are created in, and you can\'t use encryption keys from one Region in another Region.\nIf you copy an unencrypted cluster snapshot and specify a value for the KmsKeyId parameter, an error is returned.\n :type PreSignedUrl: string :param PreSignedUrl: The URL that contains a Signature Version 4 signed request for the CopyDBClusterSnapshot API action in the AWS Region that contains the source cluster snapshot to copy. You must use the PreSignedUrl parameter when copying an encrypted cluster snapshot from another AWS Region.\nThe presigned URL must be a valid request for the CopyDBSClusterSnapshot API action that can be executed in the source AWS Region that contains the encrypted DB cluster snapshot to be copied. The presigned URL request must contain the following parameter values:\n\nKmsKeyId - The AWS KMS key identifier for the key to use to encrypt the copy of the cluster snapshot in the destination AWS Region. This is the same identifier for both the CopyDBClusterSnapshot action that is called in the destination AWS Region, and the action contained in the presigned URL.\nDestinationRegion - The name of the AWS Region that the DB cluster snapshot will be created in.\nSourceDBClusterSnapshotIdentifier - The cluster snapshot identifier for the encrypted cluster snapshot to be copied. This identifier must be in the Amazon Resource Name (ARN) format for the source AWS Region. For example, if you are copying an encrypted cluster snapshot from the us-west-2 AWS Region, then your SourceDBClusterSnapshotIdentifier looks like the following example: arn:aws:rds:us-west-2:123456789012:cluster-snapshot:my-cluster-snapshot-20161115 .\n\n :type CopyTags: boolean :param CopyTags: Set to true to copy all tags from the source cluster snapshot to the target cluster snapshot, and otherwise false . The default is false . :type Tags: list :param Tags: The tags to be assigned to the cluster snapshot.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DBClusterSnapshot': { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' } } Response Structure (dict) -- DBClusterSnapshot (dict) -- Detailed information about a cluster snapshot. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster snapshot can be restored in. (string) -- DBClusterSnapshotIdentifier (string) -- Specifies the identifier for the cluster snapshot. DBClusterIdentifier (string) -- Specifies the cluster identifier of the cluster that this cluster snapshot was created from. SnapshotCreateTime (datetime) -- Provides the time when the snapshot was taken, in UTC. Engine (string) -- Specifies the name of the database engine. Status (string) -- Specifies the status of this cluster snapshot. Port (integer) -- Specifies the port that the cluster was listening on at the time of the snapshot. VpcId (string) -- Provides the virtual private cloud (VPC) ID that is associated with the cluster snapshot. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). MasterUsername (string) -- Provides the master user name for the cluster snapshot. EngineVersion (string) -- Provides the version of the database engine for this cluster snapshot. SnapshotType (string) -- Provides the type of the cluster snapshot. PercentProgress (integer) -- Specifies the percentage of the estimated data that has been transferred. StorageEncrypted (boolean) -- Specifies whether the cluster snapshot is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster snapshot. DBClusterSnapshotArn (string) -- The Amazon Resource Name (ARN) for the cluster snapshot. SourceDBClusterSnapshotArn (string) -- If the cluster snapshot was copied from a source cluster snapshot, the ARN for the source cluster snapshot; otherwise, a null value. Exceptions DocDB.Client.exceptions.DBClusterSnapshotAlreadyExistsFault DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault DocDB.Client.exceptions.SnapshotQuotaExceededFault DocDB.Client.exceptions.KMSKeyNotAccessibleFault :return: { 'DBClusterSnapshot': { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' } } :returns: (string) -- """ pass def create_db_cluster(AvailabilityZones=None, BackupRetentionPeriod=None, DBClusterIdentifier=None, DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None, MasterUsername=None, MasterUserPassword=None, PreferredBackupWindow=None, PreferredMaintenanceWindow=None, Tags=None, StorageEncrypted=None, KmsKeyId=None, EnableCloudwatchLogsExports=None, DeletionProtection=None): """ Creates a new Amazon DocumentDB cluster. See also: AWS API Documentation Exceptions :example: response = client.create_db_cluster( AvailabilityZones=[ 'string', ], BackupRetentionPeriod=123, DBClusterIdentifier='string', DBClusterParameterGroupName='string', VpcSecurityGroupIds=[ 'string', ], DBSubnetGroupName='string', Engine='string', EngineVersion='string', Port=123, MasterUsername='string', MasterUserPassword='string', PreferredBackupWindow='string', PreferredMaintenanceWindow='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ], StorageEncrypted=True|False, KmsKeyId='string', EnableCloudwatchLogsExports=[ 'string', ], DeletionProtection=True|False ) :type AvailabilityZones: list :param AvailabilityZones: A list of Amazon EC2 Availability Zones that instances in the cluster can be created in.\n\n(string) --\n\n :type BackupRetentionPeriod: integer :param BackupRetentionPeriod: The number of days for which automated backups are retained. You must specify a minimum value of 1.\nDefault: 1\nConstraints:\n\nMust be a value from 1 to 35.\n\n :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe cluster identifier. This parameter is stored as a lowercase string.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: my-cluster\n :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: The name of the cluster parameter group to associate with this cluster. :type VpcSecurityGroupIds: list :param VpcSecurityGroupIds: A list of EC2 VPC security groups to associate with this cluster.\n\n(string) --\n\n :type DBSubnetGroupName: string :param DBSubnetGroupName: A subnet group to associate with this cluster.\nConstraints: Must match the name of an existing DBSubnetGroup . Must not be default.\nExample: mySubnetgroup\n :type Engine: string :param Engine: [REQUIRED]\nThe name of the database engine to be used for this cluster.\nValid values: docdb\n :type EngineVersion: string :param EngineVersion: The version number of the database engine to use. :type Port: integer :param Port: The port number on which the instances in the cluster accept connections. :type MasterUsername: string :param MasterUsername: [REQUIRED]\nThe name of the master user for the cluster.\nConstraints:\n\nMust be from 1 to 63 letters or numbers.\nThe first character must be a letter.\nCannot be a reserved word for the chosen database engine.\n\n :type MasterUserPassword: string :param MasterUserPassword: [REQUIRED]\nThe password for the master database user. This password can contain any printable ASCII character except forward slash (/), double quote ('), or the 'at' symbol (@).\nConstraints: Must contain from 8 to 100 characters.\n :type PreferredBackupWindow: string :param PreferredBackupWindow: The daily time range during which automated backups are created if automated backups are enabled using the BackupRetentionPeriod parameter.\nThe default is a 30-minute window selected at random from an 8-hour block of time for each AWS Region.\nConstraints:\n\nMust be in the format hh24:mi-hh24:mi .\nMust be in Universal Coordinated Time (UTC).\nMust not conflict with the preferred maintenance window.\nMust be at least 30 minutes.\n\n :type PreferredMaintenanceWindow: string :param PreferredMaintenanceWindow: The weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC).\nFormat: ddd:hh24:mi-ddd:hh24:mi\nThe default is a 30-minute window selected at random from an 8-hour block of time for each AWS Region, occurring on a random day of the week.\nValid days: Mon, Tue, Wed, Thu, Fri, Sat, Sun\nConstraints: Minimum 30-minute window.\n :type Tags: list :param Tags: The tags to be assigned to the cluster.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :type StorageEncrypted: boolean :param StorageEncrypted: Specifies whether the cluster is encrypted. :type KmsKeyId: string :param KmsKeyId: The AWS KMS key identifier for an encrypted cluster.\nThe AWS KMS key identifier is the Amazon Resource Name (ARN) for the AWS KMS encryption key. If you are creating a cluster using the same AWS account that owns the AWS KMS encryption key that is used to encrypt the new cluster, you can use the AWS KMS key alias instead of the ARN for the AWS KMS encryption key.\nIf an encryption key is not specified in KmsKeyId :\n\nIf ReplicationSourceIdentifier identifies an encrypted source, then Amazon DocumentDB uses the encryption key that is used to encrypt the source. Otherwise, Amazon DocumentDB uses your default encryption key.\nIf the StorageEncrypted parameter is true and ReplicationSourceIdentifier is not specified, Amazon DocumentDB uses your default encryption key.\n\nAWS KMS creates the default encryption key for your AWS account. Your AWS account has a different default encryption key for each AWS Region.\nIf you create a replica of an encrypted cluster in another AWS Region, you must set KmsKeyId to a KMS key ID that is valid in the destination AWS Region. This key is used to encrypt the replica in that AWS Region.\n :type EnableCloudwatchLogsExports: list :param EnableCloudwatchLogsExports: A list of log types that need to be enabled for exporting to Amazon CloudWatch Logs.\n\n(string) --\n\n :type DeletionProtection: boolean :param DeletionProtection: Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. :rtype: dict ReturnsResponse Syntax { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) -- Detailed information about a cluster. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) -- Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) -- Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) -- Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) -- Specifies the current state of this cluster. PercentProgress (string) -- Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) -- The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) -- Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) -- The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) -- Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) -- Provides the name of the database engine to be used for this cluster. EngineVersion (string) -- Indicates the database engine version. LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) -- Specifies the port that the database engine is listening on. MasterUsername (string) -- Contains the master user name for the cluster. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) -- Provides the list of instances that make up the cluster. (dict) -- Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) -- Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) -- A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) -- Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) -- Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) -- Specifies whether the cluster is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) -- The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) -- The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) -- Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) -- Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) -- Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) -- A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) -- Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterAlreadyExistsFault DocDB.Client.exceptions.InsufficientStorageClusterCapacityFault DocDB.Client.exceptions.DBClusterQuotaExceededFault DocDB.Client.exceptions.StorageQuotaExceededFault DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.InvalidVPCNetworkStateFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBSubnetGroupStateFault DocDB.Client.exceptions.InvalidSubnet DocDB.Client.exceptions.InvalidDBInstanceStateFault DocDB.Client.exceptions.DBClusterParameterGroupNotFoundFault DocDB.Client.exceptions.KMSKeyNotAccessibleFault DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.DBInstanceNotFoundFault DocDB.Client.exceptions.DBSubnetGroupDoesNotCoverEnoughAZs :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: (string) -- """ pass def create_db_cluster_parameter_group(DBClusterParameterGroupName=None, DBParameterGroupFamily=None, Description=None, Tags=None): """ Creates a new cluster parameter group. Parameters in a cluster parameter group apply to all of the instances in a DB cluster. A cluster parameter group is initially created with the default parameters for the database engine used by instances in the cluster. To provide custom values for any of the parameters, you must modify the group after you create it. After you create a DB cluster parameter group, you must associate it with your cluster. For the new DB cluster parameter group and associated settings to take effect, you must then reboot the instances in the cluster without failover. See also: AWS API Documentation Exceptions :example: response = client.create_db_cluster_parameter_group( DBClusterParameterGroupName='string', DBParameterGroupFamily='string', Description='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: [REQUIRED]\nThe name of the cluster parameter group.\nConstraints:\n\nMust not match the name of an existing DBClusterParameterGroup .\n\n\nNote\nThis value is stored as a lowercase string.\n\n :type DBParameterGroupFamily: string :param DBParameterGroupFamily: [REQUIRED]\nThe cluster parameter group family name.\n :type Description: string :param Description: [REQUIRED]\nThe description for the cluster parameter group.\n :type Tags: list :param Tags: The tags to be assigned to the cluster parameter group.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DBClusterParameterGroup': { 'DBClusterParameterGroupName': 'string', 'DBParameterGroupFamily': 'string', 'Description': 'string', 'DBClusterParameterGroupArn': 'string' } } Response Structure (dict) -- DBClusterParameterGroup (dict) -- Detailed information about a cluster parameter group. DBClusterParameterGroupName (string) -- Provides the name of the cluster parameter group. DBParameterGroupFamily (string) -- Provides the name of the parameter group family that this cluster parameter group is compatible with. Description (string) -- Provides the customer-specified description for this cluster parameter group. DBClusterParameterGroupArn (string) -- The Amazon Resource Name (ARN) for the cluster parameter group. Exceptions DocDB.Client.exceptions.DBParameterGroupQuotaExceededFault DocDB.Client.exceptions.DBParameterGroupAlreadyExistsFault :return: { 'DBClusterParameterGroup': { 'DBClusterParameterGroupName': 'string', 'DBParameterGroupFamily': 'string', 'Description': 'string', 'DBClusterParameterGroupArn': 'string' } } :returns: DocDB.Client.exceptions.DBParameterGroupQuotaExceededFault DocDB.Client.exceptions.DBParameterGroupAlreadyExistsFault """ pass def create_db_cluster_snapshot(DBClusterSnapshotIdentifier=None, DBClusterIdentifier=None, Tags=None): """ Creates a snapshot of a cluster. See also: AWS API Documentation Exceptions :example: response = client.create_db_cluster_snapshot( DBClusterSnapshotIdentifier='string', DBClusterIdentifier='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) :type DBClusterSnapshotIdentifier: string :param DBClusterSnapshotIdentifier: [REQUIRED]\nThe identifier of the cluster snapshot. This parameter is stored as a lowercase string.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: my-cluster-snapshot1\n :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe identifier of the cluster to create a snapshot for. This parameter is not case sensitive.\nConstraints:\n\nMust match the identifier of an existing DBCluster .\n\nExample: my-cluster\n :type Tags: list :param Tags: The tags to be assigned to the cluster snapshot.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DBClusterSnapshot': { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' } } Response Structure (dict) -- DBClusterSnapshot (dict) -- Detailed information about a cluster snapshot. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster snapshot can be restored in. (string) -- DBClusterSnapshotIdentifier (string) -- Specifies the identifier for the cluster snapshot. DBClusterIdentifier (string) -- Specifies the cluster identifier of the cluster that this cluster snapshot was created from. SnapshotCreateTime (datetime) -- Provides the time when the snapshot was taken, in UTC. Engine (string) -- Specifies the name of the database engine. Status (string) -- Specifies the status of this cluster snapshot. Port (integer) -- Specifies the port that the cluster was listening on at the time of the snapshot. VpcId (string) -- Provides the virtual private cloud (VPC) ID that is associated with the cluster snapshot. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). MasterUsername (string) -- Provides the master user name for the cluster snapshot. EngineVersion (string) -- Provides the version of the database engine for this cluster snapshot. SnapshotType (string) -- Provides the type of the cluster snapshot. PercentProgress (integer) -- Specifies the percentage of the estimated data that has been transferred. StorageEncrypted (boolean) -- Specifies whether the cluster snapshot is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster snapshot. DBClusterSnapshotArn (string) -- The Amazon Resource Name (ARN) for the cluster snapshot. SourceDBClusterSnapshotArn (string) -- If the cluster snapshot was copied from a source cluster snapshot, the ARN for the source cluster snapshot; otherwise, a null value. Exceptions DocDB.Client.exceptions.DBClusterSnapshotAlreadyExistsFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.SnapshotQuotaExceededFault DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault :return: { 'DBClusterSnapshot': { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' } } :returns: (string) -- """ pass def create_db_instance(DBInstanceIdentifier=None, DBInstanceClass=None, Engine=None, AvailabilityZone=None, PreferredMaintenanceWindow=None, AutoMinorVersionUpgrade=None, Tags=None, DBClusterIdentifier=None, PromotionTier=None): """ Creates a new instance. See also: AWS API Documentation Exceptions :example: response = client.create_db_instance( DBInstanceIdentifier='string', DBInstanceClass='string', Engine='string', AvailabilityZone='string', PreferredMaintenanceWindow='string', AutoMinorVersionUpgrade=True|False, Tags=[ { 'Key': 'string', 'Value': 'string' }, ], DBClusterIdentifier='string', PromotionTier=123 ) :type DBInstanceIdentifier: string :param DBInstanceIdentifier: [REQUIRED]\nThe instance identifier. This parameter is stored as a lowercase string.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: mydbinstance\n :type DBInstanceClass: string :param DBInstanceClass: [REQUIRED]\nThe compute and memory capacity of the instance; for example, db.r5.large .\n :type Engine: string :param Engine: [REQUIRED]\nThe name of the database engine to be used for this instance.\nValid value: docdb\n :type AvailabilityZone: string :param AvailabilityZone: The Amazon EC2 Availability Zone that the instance is created in.\nDefault: A random, system-chosen Availability Zone in the endpoint\'s AWS Region.\nExample: us-east-1d\nConstraint: The AvailabilityZone parameter can\'t be specified if the MultiAZ parameter is set to true . The specified Availability Zone must be in the same AWS Region as the current endpoint.\n :type PreferredMaintenanceWindow: string :param PreferredMaintenanceWindow: The time range each week during which system maintenance can occur, in Universal Coordinated Time (UTC).\nFormat: ddd:hh24:mi-ddd:hh24:mi\nThe default is a 30-minute window selected at random from an 8-hour block of time for each AWS Region, occurring on a random day of the week.\nValid days: Mon, Tue, Wed, Thu, Fri, Sat, Sun\nConstraints: Minimum 30-minute window.\n :type AutoMinorVersionUpgrade: boolean :param AutoMinorVersionUpgrade: Indicates that minor engine upgrades are applied automatically to the instance during the maintenance window.\nDefault: true\n :type Tags: list :param Tags: The tags to be assigned to the instance. You can assign up to 10 tags to an instance.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe identifier of the cluster that the instance will belong to.\n :type PromotionTier: integer :param PromotionTier: A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance.\nDefault: 1\nValid values: 0-15\n :rtype: dict ReturnsResponse Syntax { 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } Response Structure (dict) -- DBInstance (dict) -- Detailed information about an instance. DBInstanceIdentifier (string) -- Contains a user-provided database identifier. This identifier is the unique key that identifies an instance. DBInstanceClass (string) -- Contains the name of the compute and memory capacity class of the instance. Engine (string) -- Provides the name of the database engine to be used for this instance. DBInstanceStatus (string) -- Specifies the current state of this database. Endpoint (dict) -- Specifies the connection endpoint. Address (string) -- Specifies the DNS address of the instance. Port (integer) -- Specifies the port that the database engine is listening on. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. InstanceCreateTime (datetime) -- Provides the date and time that the instance was created. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. VpcSecurityGroups (list) -- Provides a list of VPC security group elements that the instance belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. AvailabilityZone (string) -- Specifies the name of the Availability Zone that the instance is located in. DBSubnetGroup (dict) -- Specifies information on the subnet group that is associated with the instance, including the name, description, and subnets in the subnet group. DBSubnetGroupName (string) -- The name of the subnet group. DBSubnetGroupDescription (string) -- Provides the description of the subnet group. VpcId (string) -- Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) -- Provides the status of the subnet group. Subnets (list) -- Detailed information about one or more subnets within a subnet group. (dict) -- Detailed information about a subnet. SubnetIdentifier (string) -- Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) -- Specifies the Availability Zone for the subnet. Name (string) -- The name of the Availability Zone. SubnetStatus (string) -- Specifies the status of the subnet. DBSubnetGroupArn (string) -- The Amazon Resource Name (ARN) for the DB subnet group. PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). PendingModifiedValues (dict) -- Specifies that changes to the instance are pending. This element is included only when changes are pending. Specific changes are identified by subelements. DBInstanceClass (string) -- Contains the new DBInstanceClass for the instance that will be applied or is currently being applied. AllocatedStorage (integer) -- Contains the new AllocatedStorage size for then instance that will be applied or is currently being applied. MasterUserPassword (string) -- Contains the pending or currently in-progress change of the master credentials for the instance. Port (integer) -- Specifies the pending port for the instance. BackupRetentionPeriod (integer) -- Specifies the pending number of days for which automated backups are retained. MultiAZ (boolean) -- Indicates that the Single-AZ instance is to change to a Multi-AZ deployment. EngineVersion (string) -- Indicates the database engine version. LicenseModel (string) -- The license model for the instance. Valid values: license-included , bring-your-own-license , general-public-license Iops (integer) -- Specifies the new Provisioned IOPS value for the instance that will be applied or is currently being applied. DBInstanceIdentifier (string) -- Contains the new DBInstanceIdentifier for the instance that will be applied or is currently being applied. StorageType (string) -- Specifies the storage type to be associated with the instance. CACertificateIdentifier (string) -- Specifies the identifier of the certificate authority (CA) certificate for the DB instance. DBSubnetGroupName (string) -- The new subnet group for the instance. PendingCloudwatchLogsExports (dict) -- A list of the log types whose configuration is still pending. These log types are in the process of being activated or deactivated. LogTypesToEnable (list) -- Log types that are in the process of being deactivated. After they are deactivated, these log types aren\'t exported to CloudWatch Logs. (string) -- LogTypesToDisable (list) -- Log types that are in the process of being enabled. After they are enabled, these log types are exported to Amazon CloudWatch Logs. (string) -- LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. EngineVersion (string) -- Indicates the database engine version. AutoMinorVersionUpgrade (boolean) -- Indicates that minor version patches are applied automatically. PubliclyAccessible (boolean) -- Not supported. Amazon DocumentDB does not currently support public endpoints. The value of PubliclyAccessible is always false . StatusInfos (list) -- The status of a read replica. If the instance is not a read replica, this is blank. (dict) -- Provides a list of status information for an instance. StatusType (string) -- This value is currently "read replication ." Normal (boolean) -- A Boolean value that is true if the instance is operating normally, or false if the instance is in an error state. Status (string) -- Status of the instance. For a StatusType of read replica, the values can be replicating , error, stopped , or terminated . Message (string) -- Details of the error if there is an error for the instance. If the instance is not in an error state, this value is blank. DBClusterIdentifier (string) -- Contains the name of the cluster that the instance is a member of if the instance is a member of a cluster. StorageEncrypted (boolean) -- Specifies whether or not the instance is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted instance. DbiResourceId (string) -- The AWS Region-unique, immutable identifier for the instance. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the instance is accessed. CACertificateIdentifier (string) -- The identifier of the CA certificate for this DB instance. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. DBInstanceArn (string) -- The Amazon Resource Name (ARN) for the instance. EnabledCloudwatchLogsExports (list) -- A list of log types that this instance is configured to export to Amazon CloudWatch Logs. (string) -- Exceptions DocDB.Client.exceptions.DBInstanceAlreadyExistsFault DocDB.Client.exceptions.InsufficientDBInstanceCapacityFault DocDB.Client.exceptions.DBParameterGroupNotFoundFault DocDB.Client.exceptions.DBSecurityGroupNotFoundFault DocDB.Client.exceptions.InstanceQuotaExceededFault DocDB.Client.exceptions.StorageQuotaExceededFault DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.DBSubnetGroupDoesNotCoverEnoughAZs DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidSubnet DocDB.Client.exceptions.InvalidVPCNetworkStateFault DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.StorageTypeNotSupportedFault DocDB.Client.exceptions.AuthorizationNotFoundFault DocDB.Client.exceptions.KMSKeyNotAccessibleFault :return: { 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } :returns: (string) -- """ pass def create_db_subnet_group(DBSubnetGroupName=None, DBSubnetGroupDescription=None, SubnetIds=None, Tags=None): """ Creates a new subnet group. subnet groups must contain at least one subnet in at least two Availability Zones in the AWS Region. See also: AWS API Documentation Exceptions :example: response = client.create_db_subnet_group( DBSubnetGroupName='string', DBSubnetGroupDescription='string', SubnetIds=[ 'string', ], Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) :type DBSubnetGroupName: string :param DBSubnetGroupName: [REQUIRED]\nThe name for the subnet group. This value is stored as a lowercase string.\nConstraints: Must contain no more than 255 letters, numbers, periods, underscores, spaces, or hyphens. Must not be default.\nExample: mySubnetgroup\n :type DBSubnetGroupDescription: string :param DBSubnetGroupDescription: [REQUIRED]\nThe description for the subnet group.\n :type SubnetIds: list :param SubnetIds: [REQUIRED]\nThe Amazon EC2 subnet IDs for the subnet group.\n\n(string) --\n\n :type Tags: list :param Tags: The tags to be assigned to the subnet group.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' } } Response Structure (dict) -- DBSubnetGroup (dict) -- Detailed information about a subnet group. DBSubnetGroupName (string) -- The name of the subnet group. DBSubnetGroupDescription (string) -- Provides the description of the subnet group. VpcId (string) -- Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) -- Provides the status of the subnet group. Subnets (list) -- Detailed information about one or more subnets within a subnet group. (dict) -- Detailed information about a subnet. SubnetIdentifier (string) -- Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) -- Specifies the Availability Zone for the subnet. Name (string) -- The name of the Availability Zone. SubnetStatus (string) -- Specifies the status of the subnet. DBSubnetGroupArn (string) -- The Amazon Resource Name (ARN) for the DB subnet group. Exceptions DocDB.Client.exceptions.DBSubnetGroupAlreadyExistsFault DocDB.Client.exceptions.DBSubnetGroupQuotaExceededFault DocDB.Client.exceptions.DBSubnetQuotaExceededFault DocDB.Client.exceptions.DBSubnetGroupDoesNotCoverEnoughAZs DocDB.Client.exceptions.InvalidSubnet :return: { 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' } } :returns: DocDB.Client.exceptions.DBSubnetGroupAlreadyExistsFault DocDB.Client.exceptions.DBSubnetGroupQuotaExceededFault DocDB.Client.exceptions.DBSubnetQuotaExceededFault DocDB.Client.exceptions.DBSubnetGroupDoesNotCoverEnoughAZs DocDB.Client.exceptions.InvalidSubnet """ pass def delete_db_cluster(DBClusterIdentifier=None, SkipFinalSnapshot=None, FinalDBSnapshotIdentifier=None): """ Deletes a previously provisioned cluster. When you delete a cluster, all automated backups for that cluster are deleted and can\'t be recovered. Manual DB cluster snapshots of the specified cluster are not deleted. See also: AWS API Documentation Exceptions :example: response = client.delete_db_cluster( DBClusterIdentifier='string', SkipFinalSnapshot=True|False, FinalDBSnapshotIdentifier='string' ) :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe cluster identifier for the cluster to be deleted. This parameter isn\'t case sensitive.\nConstraints:\n\nMust match an existing DBClusterIdentifier .\n\n :type SkipFinalSnapshot: boolean :param SkipFinalSnapshot: Determines whether a final cluster snapshot is created before the cluster is deleted. If true is specified, no cluster snapshot is created. If false is specified, a cluster snapshot is created before the DB cluster is deleted.\n\nNote\nIf SkipFinalSnapshot is false , you must specify a FinalDBSnapshotIdentifier parameter.\n\nDefault: false\n :type FinalDBSnapshotIdentifier: string :param FinalDBSnapshotIdentifier: The cluster snapshot identifier of the new cluster snapshot created when SkipFinalSnapshot is set to false .\n\nNote\nSpecifying this parameter and also setting the SkipFinalShapshot parameter to true results in an error.\n\nConstraints:\n\nMust be from 1 to 255 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\n :rtype: dict ReturnsResponse Syntax { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) -- Detailed information about a cluster. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) -- Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) -- Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) -- Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) -- Specifies the current state of this cluster. PercentProgress (string) -- Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) -- The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) -- Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) -- The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) -- Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) -- Provides the name of the database engine to be used for this cluster. EngineVersion (string) -- Indicates the database engine version. LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) -- Specifies the port that the database engine is listening on. MasterUsername (string) -- Contains the master user name for the cluster. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) -- Provides the list of instances that make up the cluster. (dict) -- Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) -- Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) -- A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) -- Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) -- Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) -- Specifies whether the cluster is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) -- The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) -- The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) -- Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) -- Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) -- Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) -- A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) -- Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.DBClusterSnapshotAlreadyExistsFault DocDB.Client.exceptions.SnapshotQuotaExceededFault DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: (string) -- """ pass def delete_db_cluster_parameter_group(DBClusterParameterGroupName=None): """ Deletes a specified cluster parameter group. The cluster parameter group to be deleted can\'t be associated with any clusters. See also: AWS API Documentation Exceptions :example: response = client.delete_db_cluster_parameter_group( DBClusterParameterGroupName='string' ) :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: [REQUIRED]\nThe name of the cluster parameter group.\nConstraints:\n\nMust be the name of an existing cluster parameter group.\nYou can\'t delete a default cluster parameter group.\nCannot be associated with any clusters.\n\n :returns: DocDB.Client.exceptions.InvalidDBParameterGroupStateFault DocDB.Client.exceptions.DBParameterGroupNotFoundFault """ pass def delete_db_cluster_snapshot(DBClusterSnapshotIdentifier=None): """ Deletes a cluster snapshot. If the snapshot is being copied, the copy operation is terminated. See also: AWS API Documentation Exceptions :example: response = client.delete_db_cluster_snapshot( DBClusterSnapshotIdentifier='string' ) :type DBClusterSnapshotIdentifier: string :param DBClusterSnapshotIdentifier: [REQUIRED]\nThe identifier of the cluster snapshot to delete.\nConstraints: Must be the name of an existing cluster snapshot in the available state.\n :rtype: dict ReturnsResponse Syntax{ 'DBClusterSnapshot': { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' } } Response Structure (dict) -- DBClusterSnapshot (dict) --Detailed information about a cluster snapshot. AvailabilityZones (list) --Provides the list of Amazon EC2 Availability Zones that instances in the cluster snapshot can be restored in. (string) -- DBClusterSnapshotIdentifier (string) --Specifies the identifier for the cluster snapshot. DBClusterIdentifier (string) --Specifies the cluster identifier of the cluster that this cluster snapshot was created from. SnapshotCreateTime (datetime) --Provides the time when the snapshot was taken, in UTC. Engine (string) --Specifies the name of the database engine. Status (string) --Specifies the status of this cluster snapshot. Port (integer) --Specifies the port that the cluster was listening on at the time of the snapshot. VpcId (string) --Provides the virtual private cloud (VPC) ID that is associated with the cluster snapshot. ClusterCreateTime (datetime) --Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). MasterUsername (string) --Provides the master user name for the cluster snapshot. EngineVersion (string) --Provides the version of the database engine for this cluster snapshot. SnapshotType (string) --Provides the type of the cluster snapshot. PercentProgress (integer) --Specifies the percentage of the estimated data that has been transferred. StorageEncrypted (boolean) --Specifies whether the cluster snapshot is encrypted. KmsKeyId (string) --If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster snapshot. DBClusterSnapshotArn (string) --The Amazon Resource Name (ARN) for the cluster snapshot. SourceDBClusterSnapshotArn (string) --If the cluster snapshot was copied from a source cluster snapshot, the ARN for the source cluster snapshot; otherwise, a null value. Exceptions DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault :return: { 'DBClusterSnapshot': { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' } } :returns: DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault """ pass def delete_db_instance(DBInstanceIdentifier=None): """ Deletes a previously provisioned instance. See also: AWS API Documentation Exceptions :example: response = client.delete_db_instance( DBInstanceIdentifier='string' ) :type DBInstanceIdentifier: string :param DBInstanceIdentifier: [REQUIRED]\nThe instance identifier for the instance to be deleted. This parameter isn\'t case sensitive.\nConstraints:\n\nMust match the name of an existing instance.\n\n :rtype: dict ReturnsResponse Syntax{ 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } Response Structure (dict) -- DBInstance (dict) --Detailed information about an instance. DBInstanceIdentifier (string) --Contains a user-provided database identifier. This identifier is the unique key that identifies an instance. DBInstanceClass (string) --Contains the name of the compute and memory capacity class of the instance. Engine (string) --Provides the name of the database engine to be used for this instance. DBInstanceStatus (string) --Specifies the current state of this database. Endpoint (dict) --Specifies the connection endpoint. Address (string) --Specifies the DNS address of the instance. Port (integer) --Specifies the port that the database engine is listening on. HostedZoneId (string) --Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. InstanceCreateTime (datetime) --Provides the date and time that the instance was created. PreferredBackupWindow (string) --Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . BackupRetentionPeriod (integer) --Specifies the number of days for which automatic snapshots are retained. VpcSecurityGroups (list) --Provides a list of VPC security group elements that the instance belongs to. (dict) --Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) --The name of the VPC security group. Status (string) --The status of the VPC security group. AvailabilityZone (string) --Specifies the name of the Availability Zone that the instance is located in. DBSubnetGroup (dict) --Specifies information on the subnet group that is associated with the instance, including the name, description, and subnets in the subnet group. DBSubnetGroupName (string) --The name of the subnet group. DBSubnetGroupDescription (string) --Provides the description of the subnet group. VpcId (string) --Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) --Provides the status of the subnet group. Subnets (list) --Detailed information about one or more subnets within a subnet group. (dict) --Detailed information about a subnet. SubnetIdentifier (string) --Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) --Specifies the Availability Zone for the subnet. Name (string) --The name of the Availability Zone. SubnetStatus (string) --Specifies the status of the subnet. DBSubnetGroupArn (string) --The Amazon Resource Name (ARN) for the DB subnet group. PreferredMaintenanceWindow (string) --Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). PendingModifiedValues (dict) --Specifies that changes to the instance are pending. This element is included only when changes are pending. Specific changes are identified by subelements. DBInstanceClass (string) --Contains the new DBInstanceClass for the instance that will be applied or is currently being applied. AllocatedStorage (integer) --Contains the new AllocatedStorage size for then instance that will be applied or is currently being applied. MasterUserPassword (string) --Contains the pending or currently in-progress change of the master credentials for the instance. Port (integer) --Specifies the pending port for the instance. BackupRetentionPeriod (integer) --Specifies the pending number of days for which automated backups are retained. MultiAZ (boolean) --Indicates that the Single-AZ instance is to change to a Multi-AZ deployment. EngineVersion (string) --Indicates the database engine version. LicenseModel (string) --The license model for the instance. Valid values: license-included , bring-your-own-license , general-public-license Iops (integer) --Specifies the new Provisioned IOPS value for the instance that will be applied or is currently being applied. DBInstanceIdentifier (string) --Contains the new DBInstanceIdentifier for the instance that will be applied or is currently being applied. StorageType (string) --Specifies the storage type to be associated with the instance. CACertificateIdentifier (string) --Specifies the identifier of the certificate authority (CA) certificate for the DB instance. DBSubnetGroupName (string) --The new subnet group for the instance. PendingCloudwatchLogsExports (dict) --A list of the log types whose configuration is still pending. These log types are in the process of being activated or deactivated. LogTypesToEnable (list) --Log types that are in the process of being deactivated. After they are deactivated, these log types aren\'t exported to CloudWatch Logs. (string) -- LogTypesToDisable (list) --Log types that are in the process of being enabled. After they are enabled, these log types are exported to Amazon CloudWatch Logs. (string) -- LatestRestorableTime (datetime) --Specifies the latest time to which a database can be restored with point-in-time restore. EngineVersion (string) --Indicates the database engine version. AutoMinorVersionUpgrade (boolean) --Indicates that minor version patches are applied automatically. PubliclyAccessible (boolean) --Not supported. Amazon DocumentDB does not currently support public endpoints. The value of PubliclyAccessible is always false . StatusInfos (list) --The status of a read replica. If the instance is not a read replica, this is blank. (dict) --Provides a list of status information for an instance. StatusType (string) --This value is currently "read replication ." Normal (boolean) --A Boolean value that is true if the instance is operating normally, or false if the instance is in an error state. Status (string) --Status of the instance. For a StatusType of read replica, the values can be replicating , error, stopped , or terminated . Message (string) --Details of the error if there is an error for the instance. If the instance is not in an error state, this value is blank. DBClusterIdentifier (string) --Contains the name of the cluster that the instance is a member of if the instance is a member of a cluster. StorageEncrypted (boolean) --Specifies whether or not the instance is encrypted. KmsKeyId (string) --If StorageEncrypted is true , the AWS KMS key identifier for the encrypted instance. DbiResourceId (string) --The AWS Region-unique, immutable identifier for the instance. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the instance is accessed. CACertificateIdentifier (string) --The identifier of the CA certificate for this DB instance. PromotionTier (integer) --A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. DBInstanceArn (string) --The Amazon Resource Name (ARN) for the instance. EnabledCloudwatchLogsExports (list) --A list of log types that this instance is configured to export to Amazon CloudWatch Logs. (string) -- Exceptions DocDB.Client.exceptions.DBInstanceNotFoundFault DocDB.Client.exceptions.InvalidDBInstanceStateFault DocDB.Client.exceptions.DBSnapshotAlreadyExistsFault DocDB.Client.exceptions.SnapshotQuotaExceededFault DocDB.Client.exceptions.InvalidDBClusterStateFault :return: { 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } :returns: (string) -- """ pass def delete_db_subnet_group(DBSubnetGroupName=None): """ Deletes a subnet group. See also: AWS API Documentation Exceptions :example: response = client.delete_db_subnet_group( DBSubnetGroupName='string' ) :type DBSubnetGroupName: string :param DBSubnetGroupName: [REQUIRED]\nThe name of the database subnet group to delete.\n\nNote\nYou can\'t delete the default subnet group.\n\nConstraints:\nMust match the name of an existing DBSubnetGroup . Must not be default.\nExample: mySubnetgroup\n """ pass def describe_certificates(CertificateIdentifier=None, Filters=None, MaxRecords=None, Marker=None): """ Returns a list of certificate authority (CA) certificates provided by Amazon DocumentDB for this AWS account. See also: AWS API Documentation Exceptions :example: response = client.describe_certificates( CertificateIdentifier='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type CertificateIdentifier: string :param CertificateIdentifier: The user-supplied certificate identifier. If this parameter is specified, information for only the specified certificate is returned. If this parameter is omitted, a list of up to MaxRecords certificates is returned. This parameter is not case sensitive.\nConstraints\n\nMust match an existing CertificateIdentifier .\n\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token called a marker is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints:\n\nMinimum: 20\nMaximum: 100\n\n :type Marker: string :param Marker: An optional pagination token provided by a previous DescribeCertificates request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'Certificates': [ { 'CertificateIdentifier': 'string', 'CertificateType': 'string', 'Thumbprint': 'string', 'ValidFrom': datetime(2015, 1, 1), 'ValidTill': datetime(2015, 1, 1), 'CertificateArn': 'string' }, ], 'Marker': 'string' } Response Structure (dict) -- Certificates (list) -- A list of certificates for this AWS account. (dict) -- A certificate authority (CA) certificate for an AWS account. CertificateIdentifier (string) -- The unique key that identifies a certificate. Example: rds-ca-2019 CertificateType (string) -- The type of the certificate. Example: CA Thumbprint (string) -- The thumbprint of the certificate. ValidFrom (datetime) -- The starting date-time from which the certificate is valid. Example: 2019-07-31T17:57:09Z ValidTill (datetime) -- The date-time after which the certificate is no longer valid. Example: 2024-07-31T17:57:09Z CertificateArn (string) -- The Amazon Resource Name (ARN) for the certificate. Example: arn:aws:rds:us-east-1::cert:rds-ca-2019 Marker (string) -- An optional pagination token provided if the number of records retrieved is greater than MaxRecords . If this parameter is specified, the marker specifies the next record in the list. Including the value of Marker in the next call to DescribeCertificates results in the next page of certificates. Exceptions DocDB.Client.exceptions.CertificateNotFoundFault :return: { 'Certificates': [ { 'CertificateIdentifier': 'string', 'CertificateType': 'string', 'Thumbprint': 'string', 'ValidFrom': datetime(2015, 1, 1), 'ValidTill': datetime(2015, 1, 1), 'CertificateArn': 'string' }, ], 'Marker': 'string' } :returns: DocDB.Client.exceptions.CertificateNotFoundFault """ pass def describe_db_cluster_parameter_groups(DBClusterParameterGroupName=None, Filters=None, MaxRecords=None, Marker=None): """ Returns a list of DBClusterParameterGroup descriptions. If a DBClusterParameterGroupName parameter is specified, the list contains only the description of the specified cluster parameter group. See also: AWS API Documentation Exceptions :example: response = client.describe_db_cluster_parameter_groups( DBClusterParameterGroupName='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: The name of a specific cluster parameter group to return details for.\nConstraints:\n\nIf provided, must match the name of an existing DBClusterParameterGroup .\n\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'Marker': 'string', 'DBClusterParameterGroups': [ { 'DBClusterParameterGroupName': 'string', 'DBParameterGroupFamily': 'string', 'Description': 'string', 'DBClusterParameterGroupArn': 'string' }, ] } Response Structure (dict) -- Represents the output of DBClusterParameterGroups . Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . DBClusterParameterGroups (list) -- A list of cluster parameter groups. (dict) -- Detailed information about a cluster parameter group. DBClusterParameterGroupName (string) -- Provides the name of the cluster parameter group. DBParameterGroupFamily (string) -- Provides the name of the parameter group family that this cluster parameter group is compatible with. Description (string) -- Provides the customer-specified description for this cluster parameter group. DBClusterParameterGroupArn (string) -- The Amazon Resource Name (ARN) for the cluster parameter group. Exceptions DocDB.Client.exceptions.DBParameterGroupNotFoundFault :return: { 'Marker': 'string', 'DBClusterParameterGroups': [ { 'DBClusterParameterGroupName': 'string', 'DBParameterGroupFamily': 'string', 'Description': 'string', 'DBClusterParameterGroupArn': 'string' }, ] } :returns: DocDB.Client.exceptions.DBParameterGroupNotFoundFault """ pass def describe_db_cluster_parameters(DBClusterParameterGroupName=None, Source=None, Filters=None, MaxRecords=None, Marker=None): """ Returns the detailed parameter list for a particular cluster parameter group. See also: AWS API Documentation Exceptions :example: response = client.describe_db_cluster_parameters( DBClusterParameterGroupName='string', Source='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: [REQUIRED]\nThe name of a specific cluster parameter group to return parameter details for.\nConstraints:\n\nIf provided, must match the name of an existing DBClusterParameterGroup .\n\n :type Source: string :param Source: A value that indicates to return only parameters for a specific source. Parameter sources can be engine , service , or customer . :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'Parameters': [ { 'ParameterName': 'string', 'ParameterValue': 'string', 'Description': 'string', 'Source': 'string', 'ApplyType': 'string', 'DataType': 'string', 'AllowedValues': 'string', 'IsModifiable': True|False, 'MinimumEngineVersion': 'string', 'ApplyMethod': 'immediate'|'pending-reboot' }, ], 'Marker': 'string' } Response Structure (dict) -- Represents the output of DBClusterParameterGroup . Parameters (list) -- Provides a list of parameters for the cluster parameter group. (dict) -- Detailed information about an individual parameter. ParameterName (string) -- Specifies the name of the parameter. ParameterValue (string) -- Specifies the value of the parameter. Description (string) -- Provides a description of the parameter. Source (string) -- Indicates the source of the parameter value. ApplyType (string) -- Specifies the engine-specific parameters type. DataType (string) -- Specifies the valid data type for the parameter. AllowedValues (string) -- Specifies the valid range of values for the parameter. IsModifiable (boolean) -- Indicates whether (true ) or not (false ) the parameter can be modified. Some parameters have security or operational implications that prevent them from being changed. MinimumEngineVersion (string) -- The earliest engine version to which the parameter can apply. ApplyMethod (string) -- Indicates when to apply parameter updates. Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . Exceptions DocDB.Client.exceptions.DBParameterGroupNotFoundFault :return: { 'Parameters': [ { 'ParameterName': 'string', 'ParameterValue': 'string', 'Description': 'string', 'Source': 'string', 'ApplyType': 'string', 'DataType': 'string', 'AllowedValues': 'string', 'IsModifiable': True|False, 'MinimumEngineVersion': 'string', 'ApplyMethod': 'immediate'|'pending-reboot' }, ], 'Marker': 'string' } :returns: DocDB.Client.exceptions.DBParameterGroupNotFoundFault """ pass def describe_db_cluster_snapshot_attributes(DBClusterSnapshotIdentifier=None): """ Returns a list of cluster snapshot attribute names and values for a manual DB cluster snapshot. When you share snapshots with other AWS accounts, DescribeDBClusterSnapshotAttributes returns the restore attribute and a list of IDs for the AWS accounts that are authorized to copy or restore the manual cluster snapshot. If all is included in the list of values for the restore attribute, then the manual cluster snapshot is public and can be copied or restored by all AWS accounts. See also: AWS API Documentation Exceptions :example: response = client.describe_db_cluster_snapshot_attributes( DBClusterSnapshotIdentifier='string' ) :type DBClusterSnapshotIdentifier: string :param DBClusterSnapshotIdentifier: [REQUIRED]\nThe identifier for the cluster snapshot to describe the attributes for.\n :rtype: dict ReturnsResponse Syntax{ 'DBClusterSnapshotAttributesResult': { 'DBClusterSnapshotIdentifier': 'string', 'DBClusterSnapshotAttributes': [ { 'AttributeName': 'string', 'AttributeValues': [ 'string', ] }, ] } } Response Structure (dict) -- DBClusterSnapshotAttributesResult (dict) --Detailed information about the attributes that are associated with a cluster snapshot. DBClusterSnapshotIdentifier (string) --The identifier of the cluster snapshot that the attributes apply to. DBClusterSnapshotAttributes (list) --The list of attributes and values for the cluster snapshot. (dict) --Contains the name and values of a manual cluster snapshot attribute. Manual cluster snapshot attributes are used to authorize other AWS accounts to restore a manual cluster snapshot. AttributeName (string) --The name of the manual cluster snapshot attribute. The attribute named restore refers to the list of AWS accounts that have permission to copy or restore the manual cluster snapshot. AttributeValues (list) --The values for the manual cluster snapshot attribute. If the AttributeName field is set to restore , then this element returns a list of IDs of the AWS accounts that are authorized to copy or restore the manual cluster snapshot. If a value of all is in the list, then the manual cluster snapshot is public and available for any AWS account to copy or restore. (string) -- Exceptions DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault :return: { 'DBClusterSnapshotAttributesResult': { 'DBClusterSnapshotIdentifier': 'string', 'DBClusterSnapshotAttributes': [ { 'AttributeName': 'string', 'AttributeValues': [ 'string', ] }, ] } } :returns: DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault """ pass def describe_db_cluster_snapshots(DBClusterIdentifier=None, DBClusterSnapshotIdentifier=None, SnapshotType=None, Filters=None, MaxRecords=None, Marker=None, IncludeShared=None, IncludePublic=None): """ Returns information about cluster snapshots. This API operation supports pagination. See also: AWS API Documentation Exceptions :example: response = client.describe_db_cluster_snapshots( DBClusterIdentifier='string', DBClusterSnapshotIdentifier='string', SnapshotType='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string', IncludeShared=True|False, IncludePublic=True|False ) :type DBClusterIdentifier: string :param DBClusterIdentifier: The ID of the cluster to retrieve the list of cluster snapshots for. This parameter can\'t be used with the DBClusterSnapshotIdentifier parameter. This parameter is not case sensitive.\nConstraints:\n\nIf provided, must match the identifier of an existing DBCluster .\n\n :type DBClusterSnapshotIdentifier: string :param DBClusterSnapshotIdentifier: A specific cluster snapshot identifier to describe. This parameter can\'t be used with the DBClusterIdentifier parameter. This value is stored as a lowercase string.\nConstraints:\n\nIf provided, must match the identifier of an existing DBClusterSnapshot .\nIf this identifier is for an automated snapshot, the SnapshotType parameter must also be specified.\n\n :type SnapshotType: string :param SnapshotType: The type of cluster snapshots to be returned. You can specify one of the following values:\n\nautomated - Return all cluster snapshots that Amazon DocumentDB has automatically created for your AWS account.\nmanual - Return all cluster snapshots that you have manually created for your AWS account.\nshared - Return all manual cluster snapshots that have been shared to your AWS account.\npublic - Return all cluster snapshots that have been marked as public.\n\nIf you don\'t specify a SnapshotType value, then both automated and manual cluster snapshots are returned. You can include shared cluster snapshots with these results by setting the IncludeShared parameter to true . You can include public cluster snapshots with these results by setting the IncludePublic parameter to true .\nThe IncludeShared and IncludePublic parameters don\'t apply for SnapshotType values of manual or automated . The IncludePublic parameter doesn\'t apply when SnapshotType is set to shared . The IncludeShared parameter doesn\'t apply when SnapshotType is set to public .\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :type IncludeShared: boolean :param IncludeShared: Set to true to include shared manual cluster snapshots from other AWS accounts that this AWS account has been given permission to copy or restore, and otherwise false . The default is false . :type IncludePublic: boolean :param IncludePublic: Set to true to include manual cluster snapshots that are public and can be copied or restored by any AWS account, and otherwise false . The default is false . :rtype: dict ReturnsResponse Syntax { 'Marker': 'string', 'DBClusterSnapshots': [ { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' }, ] } Response Structure (dict) -- Represents the output of DescribeDBClusterSnapshots . Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . DBClusterSnapshots (list) -- Provides a list of cluster snapshots. (dict) -- Detailed information about a cluster snapshot. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster snapshot can be restored in. (string) -- DBClusterSnapshotIdentifier (string) -- Specifies the identifier for the cluster snapshot. DBClusterIdentifier (string) -- Specifies the cluster identifier of the cluster that this cluster snapshot was created from. SnapshotCreateTime (datetime) -- Provides the time when the snapshot was taken, in UTC. Engine (string) -- Specifies the name of the database engine. Status (string) -- Specifies the status of this cluster snapshot. Port (integer) -- Specifies the port that the cluster was listening on at the time of the snapshot. VpcId (string) -- Provides the virtual private cloud (VPC) ID that is associated with the cluster snapshot. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). MasterUsername (string) -- Provides the master user name for the cluster snapshot. EngineVersion (string) -- Provides the version of the database engine for this cluster snapshot. SnapshotType (string) -- Provides the type of the cluster snapshot. PercentProgress (integer) -- Specifies the percentage of the estimated data that has been transferred. StorageEncrypted (boolean) -- Specifies whether the cluster snapshot is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster snapshot. DBClusterSnapshotArn (string) -- The Amazon Resource Name (ARN) for the cluster snapshot. SourceDBClusterSnapshotArn (string) -- If the cluster snapshot was copied from a source cluster snapshot, the ARN for the source cluster snapshot; otherwise, a null value. Exceptions DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault :return: { 'Marker': 'string', 'DBClusterSnapshots': [ { 'AvailabilityZones': [ 'string', ], 'DBClusterSnapshotIdentifier': 'string', 'DBClusterIdentifier': 'string', 'SnapshotCreateTime': datetime(2015, 1, 1), 'Engine': 'string', 'Status': 'string', 'Port': 123, 'VpcId': 'string', 'ClusterCreateTime': datetime(2015, 1, 1), 'MasterUsername': 'string', 'EngineVersion': 'string', 'SnapshotType': 'string', 'PercentProgress': 123, 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DBClusterSnapshotArn': 'string', 'SourceDBClusterSnapshotArn': 'string' }, ] } :returns: (string) -- """ pass def describe_db_clusters(DBClusterIdentifier=None, Filters=None, MaxRecords=None, Marker=None): """ Returns information about provisioned Amazon DocumentDB clusters. This API operation supports pagination. For certain management features such as cluster and instance lifecycle management, Amazon DocumentDB leverages operational technology that is shared with Amazon RDS and Amazon Neptune. Use the filterName=engine,Values=docdb filter parameter to return only Amazon DocumentDB clusters. See also: AWS API Documentation Exceptions :example: response = client.describe_db_clusters( DBClusterIdentifier='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type DBClusterIdentifier: string :param DBClusterIdentifier: The user-provided cluster identifier. If this parameter is specified, information from only the specific cluster is returned. This parameter isn\'t case sensitive.\nConstraints:\n\nIf provided, must match an existing DBClusterIdentifier .\n\n :type Filters: list :param Filters: A filter that specifies one or more clusters to describe.\nSupported filters:\n\ndb-cluster-id - Accepts cluster identifiers and cluster Amazon Resource Names (ARNs). The results list only includes information about the clusters identified by these ARNs.\n\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'Marker': 'string', 'DBClusters': [ { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False }, ] } Response Structure (dict) -- Represents the output of DescribeDBClusters . Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . DBClusters (list) -- A list of clusters. (dict) -- Detailed information about a cluster. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) -- Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) -- Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) -- Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) -- Specifies the current state of this cluster. PercentProgress (string) -- Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) -- The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) -- Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) -- The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) -- Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) -- Provides the name of the database engine to be used for this cluster. EngineVersion (string) -- Indicates the database engine version. LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) -- Specifies the port that the database engine is listening on. MasterUsername (string) -- Contains the master user name for the cluster. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) -- Provides the list of instances that make up the cluster. (dict) -- Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) -- Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) -- A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) -- Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) -- Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) -- Specifies whether the cluster is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) -- The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) -- The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) -- Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) -- Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) -- Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) -- A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) -- Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterNotFoundFault :return: { 'Marker': 'string', 'DBClusters': [ { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False }, ] } :returns: (string) -- """ pass def describe_db_engine_versions(Engine=None, EngineVersion=None, DBParameterGroupFamily=None, Filters=None, MaxRecords=None, Marker=None, DefaultOnly=None, ListSupportedCharacterSets=None, ListSupportedTimezones=None): """ Returns a list of the available engines. See also: AWS API Documentation :example: response = client.describe_db_engine_versions( Engine='string', EngineVersion='string', DBParameterGroupFamily='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string', DefaultOnly=True|False, ListSupportedCharacterSets=True|False, ListSupportedTimezones=True|False ) :type Engine: string :param Engine: The database engine to return. :type EngineVersion: string :param EngineVersion: The database engine version to return.\nExample: 5.1.49\n :type DBParameterGroupFamily: string :param DBParameterGroupFamily: The name of a specific parameter group family to return details for.\nConstraints:\n\nIf provided, must match an existing DBParameterGroupFamily .\n\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :type DefaultOnly: boolean :param DefaultOnly: Indicates that only the default version of the specified engine or engine and major version combination is returned. :type ListSupportedCharacterSets: boolean :param ListSupportedCharacterSets: If this parameter is specified and the requested engine supports the CharacterSetName parameter for CreateDBInstance , the response includes a list of supported character sets for each engine version. :type ListSupportedTimezones: boolean :param ListSupportedTimezones: If this parameter is specified and the requested engine supports the TimeZone parameter for CreateDBInstance , the response includes a list of supported time zones for each engine version. :rtype: dict ReturnsResponse Syntax { 'Marker': 'string', 'DBEngineVersions': [ { 'Engine': 'string', 'EngineVersion': 'string', 'DBParameterGroupFamily': 'string', 'DBEngineDescription': 'string', 'DBEngineVersionDescription': 'string', 'ValidUpgradeTarget': [ { 'Engine': 'string', 'EngineVersion': 'string', 'Description': 'string', 'AutoUpgrade': True|False, 'IsMajorVersionUpgrade': True|False }, ], 'ExportableLogTypes': [ 'string', ], 'SupportsLogExportsToCloudwatchLogs': True|False }, ] } Response Structure (dict) -- Represents the output of DescribeDBEngineVersions . Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . DBEngineVersions (list) -- Detailed information about one or more engine versions. (dict) -- Detailed information about an engine version. Engine (string) -- The name of the database engine. EngineVersion (string) -- The version number of the database engine. DBParameterGroupFamily (string) -- The name of the parameter group family for the database engine. DBEngineDescription (string) -- The description of the database engine. DBEngineVersionDescription (string) -- The description of the database engine version. ValidUpgradeTarget (list) -- A list of engine versions that this database engine version can be upgraded to. (dict) -- The version of the database engine that an instance can be upgraded to. Engine (string) -- The name of the upgrade target database engine. EngineVersion (string) -- The version number of the upgrade target database engine. Description (string) -- The version of the database engine that an instance can be upgraded to. AutoUpgrade (boolean) -- A value that indicates whether the target version is applied to any source DB instances that have AutoMinorVersionUpgrade set to true . IsMajorVersionUpgrade (boolean) -- A value that indicates whether a database engine is upgraded to a major version. ExportableLogTypes (list) -- The types of logs that the database engine has available for export to Amazon CloudWatch Logs. (string) -- SupportsLogExportsToCloudwatchLogs (boolean) -- A value that indicates whether the engine version supports exporting the log types specified by ExportableLogTypes to CloudWatch Logs. :return: { 'Marker': 'string', 'DBEngineVersions': [ { 'Engine': 'string', 'EngineVersion': 'string', 'DBParameterGroupFamily': 'string', 'DBEngineDescription': 'string', 'DBEngineVersionDescription': 'string', 'ValidUpgradeTarget': [ { 'Engine': 'string', 'EngineVersion': 'string', 'Description': 'string', 'AutoUpgrade': True|False, 'IsMajorVersionUpgrade': True|False }, ], 'ExportableLogTypes': [ 'string', ], 'SupportsLogExportsToCloudwatchLogs': True|False }, ] } :returns: (string) -- """ pass def describe_db_instances(DBInstanceIdentifier=None, Filters=None, MaxRecords=None, Marker=None): """ Returns information about provisioned Amazon DocumentDB instances. This API supports pagination. See also: AWS API Documentation Exceptions :example: response = client.describe_db_instances( DBInstanceIdentifier='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type DBInstanceIdentifier: string :param DBInstanceIdentifier: The user-provided instance identifier. If this parameter is specified, information from only the specific instance is returned. This parameter isn\'t case sensitive.\nConstraints:\n\nIf provided, must match the identifier of an existing DBInstance .\n\n :type Filters: list :param Filters: A filter that specifies one or more instances to describe.\nSupported filters:\n\ndb-cluster-id - Accepts cluster identifiers and cluster Amazon Resource Names (ARNs). The results list includes only the information about the instances that are associated with the clusters that are identified by these ARNs.\ndb-instance-id - Accepts instance identifiers and instance ARNs. The results list includes only the information about the instances that are identified by these ARNs.\n\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'Marker': 'string', 'DBInstances': [ { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] }, ] } Response Structure (dict) -- Represents the output of DescribeDBInstances . Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . DBInstances (list) -- Detailed information about one or more instances. (dict) -- Detailed information about an instance. DBInstanceIdentifier (string) -- Contains a user-provided database identifier. This identifier is the unique key that identifies an instance. DBInstanceClass (string) -- Contains the name of the compute and memory capacity class of the instance. Engine (string) -- Provides the name of the database engine to be used for this instance. DBInstanceStatus (string) -- Specifies the current state of this database. Endpoint (dict) -- Specifies the connection endpoint. Address (string) -- Specifies the DNS address of the instance. Port (integer) -- Specifies the port that the database engine is listening on. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. InstanceCreateTime (datetime) -- Provides the date and time that the instance was created. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. VpcSecurityGroups (list) -- Provides a list of VPC security group elements that the instance belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. AvailabilityZone (string) -- Specifies the name of the Availability Zone that the instance is located in. DBSubnetGroup (dict) -- Specifies information on the subnet group that is associated with the instance, including the name, description, and subnets in the subnet group. DBSubnetGroupName (string) -- The name of the subnet group. DBSubnetGroupDescription (string) -- Provides the description of the subnet group. VpcId (string) -- Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) -- Provides the status of the subnet group. Subnets (list) -- Detailed information about one or more subnets within a subnet group. (dict) -- Detailed information about a subnet. SubnetIdentifier (string) -- Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) -- Specifies the Availability Zone for the subnet. Name (string) -- The name of the Availability Zone. SubnetStatus (string) -- Specifies the status of the subnet. DBSubnetGroupArn (string) -- The Amazon Resource Name (ARN) for the DB subnet group. PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). PendingModifiedValues (dict) -- Specifies that changes to the instance are pending. This element is included only when changes are pending. Specific changes are identified by subelements. DBInstanceClass (string) -- Contains the new DBInstanceClass for the instance that will be applied or is currently being applied. AllocatedStorage (integer) -- Contains the new AllocatedStorage size for then instance that will be applied or is currently being applied. MasterUserPassword (string) -- Contains the pending or currently in-progress change of the master credentials for the instance. Port (integer) -- Specifies the pending port for the instance. BackupRetentionPeriod (integer) -- Specifies the pending number of days for which automated backups are retained. MultiAZ (boolean) -- Indicates that the Single-AZ instance is to change to a Multi-AZ deployment. EngineVersion (string) -- Indicates the database engine version. LicenseModel (string) -- The license model for the instance. Valid values: license-included , bring-your-own-license , general-public-license Iops (integer) -- Specifies the new Provisioned IOPS value for the instance that will be applied or is currently being applied. DBInstanceIdentifier (string) -- Contains the new DBInstanceIdentifier for the instance that will be applied or is currently being applied. StorageType (string) -- Specifies the storage type to be associated with the instance. CACertificateIdentifier (string) -- Specifies the identifier of the certificate authority (CA) certificate for the DB instance. DBSubnetGroupName (string) -- The new subnet group for the instance. PendingCloudwatchLogsExports (dict) -- A list of the log types whose configuration is still pending. These log types are in the process of being activated or deactivated. LogTypesToEnable (list) -- Log types that are in the process of being deactivated. After they are deactivated, these log types aren\'t exported to CloudWatch Logs. (string) -- LogTypesToDisable (list) -- Log types that are in the process of being enabled. After they are enabled, these log types are exported to Amazon CloudWatch Logs. (string) -- LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. EngineVersion (string) -- Indicates the database engine version. AutoMinorVersionUpgrade (boolean) -- Indicates that minor version patches are applied automatically. PubliclyAccessible (boolean) -- Not supported. Amazon DocumentDB does not currently support public endpoints. The value of PubliclyAccessible is always false . StatusInfos (list) -- The status of a read replica. If the instance is not a read replica, this is blank. (dict) -- Provides a list of status information for an instance. StatusType (string) -- This value is currently "read replication ." Normal (boolean) -- A Boolean value that is true if the instance is operating normally, or false if the instance is in an error state. Status (string) -- Status of the instance. For a StatusType of read replica, the values can be replicating , error, stopped , or terminated . Message (string) -- Details of the error if there is an error for the instance. If the instance is not in an error state, this value is blank. DBClusterIdentifier (string) -- Contains the name of the cluster that the instance is a member of if the instance is a member of a cluster. StorageEncrypted (boolean) -- Specifies whether or not the instance is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted instance. DbiResourceId (string) -- The AWS Region-unique, immutable identifier for the instance. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the instance is accessed. CACertificateIdentifier (string) -- The identifier of the CA certificate for this DB instance. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. DBInstanceArn (string) -- The Amazon Resource Name (ARN) for the instance. EnabledCloudwatchLogsExports (list) -- A list of log types that this instance is configured to export to Amazon CloudWatch Logs. (string) -- Exceptions DocDB.Client.exceptions.DBInstanceNotFoundFault :return: { 'Marker': 'string', 'DBInstances': [ { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] }, ] } :returns: (string) -- """ pass def describe_db_subnet_groups(DBSubnetGroupName=None, Filters=None, MaxRecords=None, Marker=None): """ Returns a list of DBSubnetGroup descriptions. If a DBSubnetGroupName is specified, the list will contain only the descriptions of the specified DBSubnetGroup . See also: AWS API Documentation Exceptions :example: response = client.describe_db_subnet_groups( DBSubnetGroupName='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type DBSubnetGroupName: string :param DBSubnetGroupName: The name of the subnet group to return details for. :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'Marker': 'string', 'DBSubnetGroups': [ { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, ] } Response Structure (dict) -- Represents the output of DescribeDBSubnetGroups . Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . DBSubnetGroups (list) -- Detailed information about one or more subnet groups. (dict) -- Detailed information about a subnet group. DBSubnetGroupName (string) -- The name of the subnet group. DBSubnetGroupDescription (string) -- Provides the description of the subnet group. VpcId (string) -- Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) -- Provides the status of the subnet group. Subnets (list) -- Detailed information about one or more subnets within a subnet group. (dict) -- Detailed information about a subnet. SubnetIdentifier (string) -- Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) -- Specifies the Availability Zone for the subnet. Name (string) -- The name of the Availability Zone. SubnetStatus (string) -- Specifies the status of the subnet. DBSubnetGroupArn (string) -- The Amazon Resource Name (ARN) for the DB subnet group. Exceptions DocDB.Client.exceptions.DBSubnetGroupNotFoundFault :return: { 'Marker': 'string', 'DBSubnetGroups': [ { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, ] } :returns: DocDB.Client.exceptions.DBSubnetGroupNotFoundFault """ pass def describe_engine_default_cluster_parameters(DBParameterGroupFamily=None, Filters=None, MaxRecords=None, Marker=None): """ Returns the default engine and system parameter information for the cluster database engine. See also: AWS API Documentation :example: response = client.describe_engine_default_cluster_parameters( DBParameterGroupFamily='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type DBParameterGroupFamily: string :param DBParameterGroupFamily: [REQUIRED]\nThe name of the cluster parameter group family to return the engine parameter information for.\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'EngineDefaults': { 'DBParameterGroupFamily': 'string', 'Marker': 'string', 'Parameters': [ { 'ParameterName': 'string', 'ParameterValue': 'string', 'Description': 'string', 'Source': 'string', 'ApplyType': 'string', 'DataType': 'string', 'AllowedValues': 'string', 'IsModifiable': True|False, 'MinimumEngineVersion': 'string', 'ApplyMethod': 'immediate'|'pending-reboot' }, ] } } Response Structure (dict) -- EngineDefaults (dict) -- Contains the result of a successful invocation of the DescribeEngineDefaultClusterParameters operation. DBParameterGroupFamily (string) -- The name of the cluster parameter group family to return the engine parameter information for. Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . Parameters (list) -- The parameters of a particular cluster parameter group family. (dict) -- Detailed information about an individual parameter. ParameterName (string) -- Specifies the name of the parameter. ParameterValue (string) -- Specifies the value of the parameter. Description (string) -- Provides a description of the parameter. Source (string) -- Indicates the source of the parameter value. ApplyType (string) -- Specifies the engine-specific parameters type. DataType (string) -- Specifies the valid data type for the parameter. AllowedValues (string) -- Specifies the valid range of values for the parameter. IsModifiable (boolean) -- Indicates whether (true ) or not (false ) the parameter can be modified. Some parameters have security or operational implications that prevent them from being changed. MinimumEngineVersion (string) -- The earliest engine version to which the parameter can apply. ApplyMethod (string) -- Indicates when to apply parameter updates. :return: { 'EngineDefaults': { 'DBParameterGroupFamily': 'string', 'Marker': 'string', 'Parameters': [ { 'ParameterName': 'string', 'ParameterValue': 'string', 'Description': 'string', 'Source': 'string', 'ApplyType': 'string', 'DataType': 'string', 'AllowedValues': 'string', 'IsModifiable': True|False, 'MinimumEngineVersion': 'string', 'ApplyMethod': 'immediate'|'pending-reboot' }, ] } } """ pass def describe_event_categories(SourceType=None, Filters=None): """ Displays a list of categories for all event source types, or, if specified, for a specified source type. See also: AWS API Documentation :example: response = client.describe_event_categories( SourceType='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ] ) :type SourceType: string :param SourceType: The type of source that is generating the events.\nValid values: db-instance , db-parameter-group , db-security-group , db-snapshot\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'EventCategoriesMapList': [ { 'SourceType': 'string', 'EventCategories': [ 'string', ] }, ] } Response Structure (dict) -- Represents the output of DescribeEventCategories . EventCategoriesMapList (list) -- A list of event category maps. (dict) -- An event source type, accompanied by one or more event category names. SourceType (string) -- The source type that the returned categories belong to. EventCategories (list) -- The event categories for the specified source type. (string) -- :return: { 'EventCategoriesMapList': [ { 'SourceType': 'string', 'EventCategories': [ 'string', ] }, ] } :returns: (string) -- """ pass def describe_events(SourceIdentifier=None, SourceType=None, StartTime=None, EndTime=None, Duration=None, EventCategories=None, Filters=None, MaxRecords=None, Marker=None): """ Returns events related to instances, security groups, snapshots, and DB parameter groups for the past 14 days. You can obtain events specific to a particular DB instance, security group, snapshot, or parameter group by providing the name as a parameter. By default, the events of the past hour are returned. See also: AWS API Documentation :example: response = client.describe_events( SourceIdentifier='string', SourceType='db-instance'|'db-parameter-group'|'db-security-group'|'db-snapshot'|'db-cluster'|'db-cluster-snapshot', StartTime=datetime(2015, 1, 1), EndTime=datetime(2015, 1, 1), Duration=123, EventCategories=[ 'string', ], Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type SourceIdentifier: string :param SourceIdentifier: The identifier of the event source for which events are returned. If not specified, then all sources are included in the response.\nConstraints:\n\nIf SourceIdentifier is provided, SourceType must also be provided.\nIf the source type is DBInstance , a DBInstanceIdentifier must be provided.\nIf the source type is DBSecurityGroup , a DBSecurityGroupName must be provided.\nIf the source type is DBParameterGroup , a DBParameterGroupName must be provided.\nIf the source type is DBSnapshot , a DBSnapshotIdentifier must be provided.\nCannot end with a hyphen or contain two consecutive hyphens.\n\n :type SourceType: string :param SourceType: The event source to retrieve events for. If no value is specified, all events are returned. :type StartTime: datetime :param StartTime: The beginning of the time interval to retrieve events for, specified in ISO 8601 format.\nExample: 2009-07-08T18:00Z\n :type EndTime: datetime :param EndTime: The end of the time interval for which to retrieve events, specified in ISO 8601 format.\nExample: 2009-07-08T18:00Z\n :type Duration: integer :param Duration: The number of minutes to retrieve events for.\nDefault: 60\n :type EventCategories: list :param EventCategories: A list of event categories that trigger notifications for an event notification subscription.\n\n(string) --\n\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'Marker': 'string', 'Events': [ { 'SourceIdentifier': 'string', 'SourceType': 'db-instance'|'db-parameter-group'|'db-security-group'|'db-snapshot'|'db-cluster'|'db-cluster-snapshot', 'Message': 'string', 'EventCategories': [ 'string', ], 'Date': datetime(2015, 1, 1), 'SourceArn': 'string' }, ] } Response Structure (dict) -- Represents the output of DescribeEvents . Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . Events (list) -- Detailed information about one or more events. (dict) -- Detailed information about an event. SourceIdentifier (string) -- Provides the identifier for the source of the event. SourceType (string) -- Specifies the source type for this event. Message (string) -- Provides the text of this event. EventCategories (list) -- Specifies the category for the event. (string) -- Date (datetime) -- Specifies the date and time of the event. SourceArn (string) -- The Amazon Resource Name (ARN) for the event. :return: { 'Marker': 'string', 'Events': [ { 'SourceIdentifier': 'string', 'SourceType': 'db-instance'|'db-parameter-group'|'db-security-group'|'db-snapshot'|'db-cluster'|'db-cluster-snapshot', 'Message': 'string', 'EventCategories': [ 'string', ], 'Date': datetime(2015, 1, 1), 'SourceArn': 'string' }, ] } :returns: (string) -- """ pass def describe_orderable_db_instance_options(Engine=None, EngineVersion=None, DBInstanceClass=None, LicenseModel=None, Vpc=None, Filters=None, MaxRecords=None, Marker=None): """ Returns a list of orderable instance options for the specified engine. See also: AWS API Documentation :example: response = client.describe_orderable_db_instance_options( Engine='string', EngineVersion='string', DBInstanceClass='string', LicenseModel='string', Vpc=True|False, Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], MaxRecords=123, Marker='string' ) :type Engine: string :param Engine: [REQUIRED]\nThe name of the engine to retrieve instance options for.\n :type EngineVersion: string :param EngineVersion: The engine version filter value. Specify this parameter to show only the available offerings that match the specified engine version. :type DBInstanceClass: string :param DBInstanceClass: The instance class filter value. Specify this parameter to show only the available offerings that match the specified instance class. :type LicenseModel: string :param LicenseModel: The license model filter value. Specify this parameter to show only the available offerings that match the specified license model. :type Vpc: boolean :param Vpc: The virtual private cloud (VPC) filter value. Specify this parameter to show only the available VPC or non-VPC offerings. :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :rtype: dict ReturnsResponse Syntax { 'OrderableDBInstanceOptions': [ { 'Engine': 'string', 'EngineVersion': 'string', 'DBInstanceClass': 'string', 'LicenseModel': 'string', 'AvailabilityZones': [ { 'Name': 'string' }, ], 'Vpc': True|False }, ], 'Marker': 'string' } Response Structure (dict) -- Represents the output of DescribeOrderableDBInstanceOptions . OrderableDBInstanceOptions (list) -- The options that are available for a particular orderable instance. (dict) -- The options that are available for an instance. Engine (string) -- The engine type of an instance. EngineVersion (string) -- The engine version of an instance. DBInstanceClass (string) -- The instance class for an instance. LicenseModel (string) -- The license model for an instance. AvailabilityZones (list) -- A list of Availability Zones for an instance. (dict) -- Information about an Availability Zone. Name (string) -- The name of the Availability Zone. Vpc (boolean) -- Indicates whether an instance is in a virtual private cloud (VPC). Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :return: { 'OrderableDBInstanceOptions': [ { 'Engine': 'string', 'EngineVersion': 'string', 'DBInstanceClass': 'string', 'LicenseModel': 'string', 'AvailabilityZones': [ { 'Name': 'string' }, ], 'Vpc': True|False }, ], 'Marker': 'string' } """ pass def describe_pending_maintenance_actions(ResourceIdentifier=None, Filters=None, Marker=None, MaxRecords=None): """ Returns a list of resources (for example, instances) that have at least one pending maintenance action. See also: AWS API Documentation Exceptions :example: response = client.describe_pending_maintenance_actions( ResourceIdentifier='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ], Marker='string', MaxRecords=123 ) :type ResourceIdentifier: string :param ResourceIdentifier: The ARN of a resource to return pending maintenance actions for. :type Filters: list :param Filters: A filter that specifies one or more resources to return pending maintenance actions for.\nSupported filters:\n\ndb-cluster-id - Accepts cluster identifiers and cluster Amazon Resource Names (ARNs). The results list includes only pending maintenance actions for the clusters identified by these ARNs.\ndb-instance-id - Accepts instance identifiers and instance ARNs. The results list includes only pending maintenance actions for the DB instances identified by these ARNs.\n\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :type Marker: string :param Marker: An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . :type MaxRecords: integer :param MaxRecords: The maximum number of records to include in the response. If more records exist than the specified MaxRecords value, a pagination token (marker) is included in the response so that the remaining results can be retrieved.\nDefault: 100\nConstraints: Minimum 20, maximum 100.\n :rtype: dict ReturnsResponse Syntax { 'PendingMaintenanceActions': [ { 'ResourceIdentifier': 'string', 'PendingMaintenanceActionDetails': [ { 'Action': 'string', 'AutoAppliedAfterDate': datetime(2015, 1, 1), 'ForcedApplyDate': datetime(2015, 1, 1), 'OptInStatus': 'string', 'CurrentApplyDate': datetime(2015, 1, 1), 'Description': 'string' }, ] }, ], 'Marker': 'string' } Response Structure (dict) -- Represents the output of DescribePendingMaintenanceActions . PendingMaintenanceActions (list) -- The maintenance actions to be applied. (dict) -- Represents the output of ApplyPendingMaintenanceAction . ResourceIdentifier (string) -- The Amazon Resource Name (ARN) of the resource that has pending maintenance actions. PendingMaintenanceActionDetails (list) -- A list that provides details about the pending maintenance actions for the resource. (dict) -- Provides information about a pending maintenance action for a resource. Action (string) -- The type of pending maintenance action that is available for the resource. AutoAppliedAfterDate (datetime) -- The date of the maintenance window when the action is applied. The maintenance action is applied to the resource during its first maintenance window after this date. If this date is specified, any next-maintenance opt-in requests are ignored. ForcedApplyDate (datetime) -- The date when the maintenance action is automatically applied. The maintenance action is applied to the resource on this date regardless of the maintenance window for the resource. If this date is specified, any immediate opt-in requests are ignored. OptInStatus (string) -- Indicates the type of opt-in request that has been received for the resource. CurrentApplyDate (datetime) -- The effective date when the pending maintenance action is applied to the resource. Description (string) -- A description providing more detail about the maintenance action. Marker (string) -- An optional pagination token provided by a previous request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by MaxRecords . Exceptions DocDB.Client.exceptions.ResourceNotFoundFault :return: { 'PendingMaintenanceActions': [ { 'ResourceIdentifier': 'string', 'PendingMaintenanceActionDetails': [ { 'Action': 'string', 'AutoAppliedAfterDate': datetime(2015, 1, 1), 'ForcedApplyDate': datetime(2015, 1, 1), 'OptInStatus': 'string', 'CurrentApplyDate': datetime(2015, 1, 1), 'Description': 'string' }, ] }, ], 'Marker': 'string' } :returns: DocDB.Client.exceptions.ResourceNotFoundFault """ pass def failover_db_cluster(DBClusterIdentifier=None, TargetDBInstanceIdentifier=None): """ Forces a failover for a cluster. A failover for a cluster promotes one of the Amazon DocumentDB replicas (read-only instances) in the cluster to be the primary instance (the cluster writer). If the primary instance fails, Amazon DocumentDB automatically fails over to an Amazon DocumentDB replica, if one exists. You can force a failover when you want to simulate a failure of a primary instance for testing. See also: AWS API Documentation Exceptions :example: response = client.failover_db_cluster( DBClusterIdentifier='string', TargetDBInstanceIdentifier='string' ) :type DBClusterIdentifier: string :param DBClusterIdentifier: A cluster identifier to force a failover for. This parameter is not case sensitive.\nConstraints:\n\nMust match the identifier of an existing DBCluster .\n\n :type TargetDBInstanceIdentifier: string :param TargetDBInstanceIdentifier: The name of the instance to promote to the primary instance.\nYou must specify the instance identifier for an Amazon DocumentDB replica in the cluster. For example, mydbcluster-replica1 .\n :rtype: dict ReturnsResponse Syntax { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) -- Detailed information about a cluster. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) -- Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) -- Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) -- Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) -- Specifies the current state of this cluster. PercentProgress (string) -- Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) -- The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) -- Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) -- The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) -- Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) -- Provides the name of the database engine to be used for this cluster. EngineVersion (string) -- Indicates the database engine version. LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) -- Specifies the port that the database engine is listening on. MasterUsername (string) -- Contains the master user name for the cluster. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) -- Provides the list of instances that make up the cluster. (dict) -- Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) -- Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) -- A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) -- Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) -- Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) -- Specifies whether the cluster is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) -- The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) -- The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) -- Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) -- Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) -- Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) -- A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) -- Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBInstanceStateFault :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: (string) -- """ pass def generate_presigned_url(ClientMethod=None, Params=None, ExpiresIn=None, HttpMethod=None): """ Generate a presigned url given a client, its method, and arguments :type ClientMethod: string :param ClientMethod: The client method to presign for :type Params: dict :param Params: The parameters normally passed to\nClientMethod. :type ExpiresIn: int :param ExpiresIn: The number of seconds the presigned url is valid\nfor. By default it expires in an hour (3600 seconds) :type HttpMethod: string :param HttpMethod: The http method to use on the generated url. By\ndefault, the http method is whatever is used in the method\'s model. """ pass def get_paginator(operation_name=None): """ Create a paginator for an operation. :type operation_name: string :param operation_name: The operation name. This is the same name\nas the method name on the client. For example, if the\nmethod name is create_foo, and you\'d normally invoke the\noperation as client.create_foo(**kwargs), if the\ncreate_foo operation can be paginated, you can use the\ncall client.get_paginator('create_foo'). :rtype: L{botocore.paginate.Paginator} ReturnsA paginator object. """ pass def get_waiter(waiter_name=None): """ Returns an object that can wait for some condition. :type waiter_name: str :param waiter_name: The name of the waiter to get. See the waiters\nsection of the service docs for a list of available waiters. :rtype: botocore.waiter.Waiter """ pass def list_tags_for_resource(ResourceName=None, Filters=None): """ Lists all tags on an Amazon DocumentDB resource. See also: AWS API Documentation Exceptions :example: response = client.list_tags_for_resource( ResourceName='string', Filters=[ { 'Name': 'string', 'Values': [ 'string', ] }, ] ) :type ResourceName: string :param ResourceName: [REQUIRED]\nThe Amazon DocumentDB resource with tags to be listed. This value is an Amazon Resource Name (ARN).\n :type Filters: list :param Filters: This parameter is not currently supported.\n\n(dict) --A named set of filter values, used to return a more specific list of results. You can use a filter to match a set of resources by specific criteria, such as IDs.\nWildcards are not supported in filters.\n\nName (string) -- [REQUIRED]The name of the filter. Filter names are case sensitive.\n\nValues (list) -- [REQUIRED]One or more filter values. Filter values are case sensitive.\n\n(string) --\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'TagList': [ { 'Key': 'string', 'Value': 'string' }, ] } Response Structure (dict) -- Represents the output of ListTagsForResource . TagList (list) -- A list of one or more tags. (dict) -- Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair. Key (string) -- The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with "aws:" or "rds:". The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$"). Value (string) -- The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with "aws:" or "rds:". The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$"). Exceptions DocDB.Client.exceptions.DBInstanceNotFoundFault DocDB.Client.exceptions.DBSnapshotNotFoundFault DocDB.Client.exceptions.DBClusterNotFoundFault :return: { 'TagList': [ { 'Key': 'string', 'Value': 'string' }, ] } :returns: DocDB.Client.exceptions.DBInstanceNotFoundFault DocDB.Client.exceptions.DBSnapshotNotFoundFault DocDB.Client.exceptions.DBClusterNotFoundFault """ pass def modify_db_cluster(DBClusterIdentifier=None, NewDBClusterIdentifier=None, ApplyImmediately=None, BackupRetentionPeriod=None, DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, Port=None, MasterUserPassword=None, PreferredBackupWindow=None, PreferredMaintenanceWindow=None, CloudwatchLogsExportConfiguration=None, EngineVersion=None, DeletionProtection=None): """ Modifies a setting for an Amazon DocumentDB cluster. You can change one or more database configuration parameters by specifying these parameters and the new values in the request. See also: AWS API Documentation Exceptions :example: response = client.modify_db_cluster( DBClusterIdentifier='string', NewDBClusterIdentifier='string', ApplyImmediately=True|False, BackupRetentionPeriod=123, DBClusterParameterGroupName='string', VpcSecurityGroupIds=[ 'string', ], Port=123, MasterUserPassword='string', PreferredBackupWindow='string', PreferredMaintenanceWindow='string', CloudwatchLogsExportConfiguration={ 'EnableLogTypes': [ 'string', ], 'DisableLogTypes': [ 'string', ] }, EngineVersion='string', DeletionProtection=True|False ) :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe cluster identifier for the cluster that is being modified. This parameter is not case sensitive.\nConstraints:\n\nMust match the identifier of an existing DBCluster .\n\n :type NewDBClusterIdentifier: string :param NewDBClusterIdentifier: The new cluster identifier for the cluster when renaming a cluster. This value is stored as a lowercase string.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: my-cluster2\n :type ApplyImmediately: boolean :param ApplyImmediately: A value that specifies whether the changes in this request and any pending changes are asynchronously applied as soon as possible, regardless of the PreferredMaintenanceWindow setting for the cluster. If this parameter is set to false , changes to the cluster are applied during the next maintenance window.\nThe ApplyImmediately parameter affects only the NewDBClusterIdentifier and MasterUserPassword values. If you set this parameter value to false , the changes to the NewDBClusterIdentifier and MasterUserPassword values are applied during the next maintenance window. All other changes are applied immediately, regardless of the value of the ApplyImmediately parameter.\nDefault: false\n :type BackupRetentionPeriod: integer :param BackupRetentionPeriod: The number of days for which automated backups are retained. You must specify a minimum value of 1.\nDefault: 1\nConstraints:\n\nMust be a value from 1 to 35.\n\n :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: The name of the cluster parameter group to use for the cluster. :type VpcSecurityGroupIds: list :param VpcSecurityGroupIds: A list of virtual private cloud (VPC) security groups that the cluster will belong to.\n\n(string) --\n\n :type Port: integer :param Port: The port number on which the cluster accepts connections.\nConstraints: Must be a value from 1150 to 65535 .\nDefault: The same port as the original cluster.\n :type MasterUserPassword: string :param MasterUserPassword: The password for the master database user. This password can contain any printable ASCII character except forward slash (/), double quote ('), or the 'at' symbol (@).\nConstraints: Must contain from 8 to 100 characters.\n :type PreferredBackupWindow: string :param PreferredBackupWindow: The daily time range during which automated backups are created if automated backups are enabled, using the BackupRetentionPeriod parameter.\nThe default is a 30-minute window selected at random from an 8-hour block of time for each AWS Region.\nConstraints:\n\nMust be in the format hh24:mi-hh24:mi .\nMust be in Universal Coordinated Time (UTC).\nMust not conflict with the preferred maintenance window.\nMust be at least 30 minutes.\n\n :type PreferredMaintenanceWindow: string :param PreferredMaintenanceWindow: The weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC).\nFormat: ddd:hh24:mi-ddd:hh24:mi\nThe default is a 30-minute window selected at random from an 8-hour block of time for each AWS Region, occurring on a random day of the week.\nValid days: Mon, Tue, Wed, Thu, Fri, Sat, Sun\nConstraints: Minimum 30-minute window.\n :type CloudwatchLogsExportConfiguration: dict :param CloudwatchLogsExportConfiguration: The configuration setting for the log types to be enabled for export to Amazon CloudWatch Logs for a specific instance or cluster. The EnableLogTypes and DisableLogTypes arrays determine which logs are exported (or not exported) to CloudWatch Logs.\n\nEnableLogTypes (list) --The list of log types to enable.\n\n(string) --\n\n\nDisableLogTypes (list) --The list of log types to disable.\n\n(string) --\n\n\n\n :type EngineVersion: string :param EngineVersion: The version number of the database engine to which you want to upgrade. Changing this parameter results in an outage. The change is applied during the next maintenance window unless the ApplyImmediately parameter is set to true . :type DeletionProtection: boolean :param DeletionProtection: Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. :rtype: dict ReturnsResponse Syntax { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) -- Detailed information about a cluster. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) -- Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) -- Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) -- Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) -- Specifies the current state of this cluster. PercentProgress (string) -- Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) -- The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) -- Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) -- The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) -- Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) -- Provides the name of the database engine to be used for this cluster. EngineVersion (string) -- Indicates the database engine version. LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) -- Specifies the port that the database engine is listening on. MasterUsername (string) -- Contains the master user name for the cluster. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) -- Provides the list of instances that make up the cluster. (dict) -- Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) -- Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) -- A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) -- Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) -- Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) -- Specifies whether the cluster is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) -- The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) -- The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) -- Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) -- Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) -- Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) -- A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) -- Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.StorageQuotaExceededFault DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.InvalidVPCNetworkStateFault DocDB.Client.exceptions.InvalidDBSubnetGroupStateFault DocDB.Client.exceptions.InvalidSubnet DocDB.Client.exceptions.DBClusterParameterGroupNotFoundFault DocDB.Client.exceptions.InvalidDBSecurityGroupStateFault DocDB.Client.exceptions.InvalidDBInstanceStateFault DocDB.Client.exceptions.DBClusterAlreadyExistsFault :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: (string) -- """ pass def modify_db_cluster_parameter_group(DBClusterParameterGroupName=None, Parameters=None): """ Modifies the parameters of a cluster parameter group. To modify more than one parameter, submit a list of the following: ParameterName , ParameterValue , and ApplyMethod . A maximum of 20 parameters can be modified in a single request. See also: AWS API Documentation Exceptions :example: response = client.modify_db_cluster_parameter_group( DBClusterParameterGroupName='string', Parameters=[ { 'ParameterName': 'string', 'ParameterValue': 'string', 'Description': 'string', 'Source': 'string', 'ApplyType': 'string', 'DataType': 'string', 'AllowedValues': 'string', 'IsModifiable': True|False, 'MinimumEngineVersion': 'string', 'ApplyMethod': 'immediate'|'pending-reboot' }, ] ) :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: [REQUIRED]\nThe name of the cluster parameter group to modify.\n :type Parameters: list :param Parameters: [REQUIRED]\nA list of parameters in the cluster parameter group to modify.\n\n(dict) --Detailed information about an individual parameter.\n\nParameterName (string) --Specifies the name of the parameter.\n\nParameterValue (string) --Specifies the value of the parameter.\n\nDescription (string) --Provides a description of the parameter.\n\nSource (string) --Indicates the source of the parameter value.\n\nApplyType (string) --Specifies the engine-specific parameters type.\n\nDataType (string) --Specifies the valid data type for the parameter.\n\nAllowedValues (string) --Specifies the valid range of values for the parameter.\n\nIsModifiable (boolean) --Indicates whether (true ) or not (false ) the parameter can be modified. Some parameters have security or operational implications that prevent them from being changed.\n\nMinimumEngineVersion (string) --The earliest engine version to which the parameter can apply.\n\nApplyMethod (string) --Indicates when to apply parameter updates.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DBClusterParameterGroupName': 'string' } Response Structure (dict) -- Contains the name of a cluster parameter group. DBClusterParameterGroupName (string) -- The name of a cluster parameter group. Constraints: Must be from 1 to 255 letters or numbers. The first character must be a letter. Cannot end with a hyphen or contain two consecutive hyphens. Note This value is stored as a lowercase string. Exceptions DocDB.Client.exceptions.DBParameterGroupNotFoundFault DocDB.Client.exceptions.InvalidDBParameterGroupStateFault :return: { 'DBClusterParameterGroupName': 'string' } :returns: Must be from 1 to 255 letters or numbers. The first character must be a letter. Cannot end with a hyphen or contain two consecutive hyphens. """ pass def modify_db_cluster_snapshot_attribute(DBClusterSnapshotIdentifier=None, AttributeName=None, ValuesToAdd=None, ValuesToRemove=None): """ Adds an attribute and values to, or removes an attribute and values from, a manual DB cluster snapshot. To share a manual cluster snapshot with other AWS accounts, specify restore as the AttributeName , and use the ValuesToAdd parameter to add a list of IDs of the AWS accounts that are authorized to restore the manual cluster snapshot. Use the value all to make the manual cluster snapshot public, which means that it can be copied or restored by all AWS accounts. Do not add the all value for any manual DB cluster snapshots that contain private information that you don\'t want available to all AWS accounts. If a manual cluster snapshot is encrypted, it can be shared, but only by specifying a list of authorized AWS account IDs for the ValuesToAdd parameter. You can\'t use all as a value for that parameter in this case. See also: AWS API Documentation Exceptions :example: response = client.modify_db_cluster_snapshot_attribute( DBClusterSnapshotIdentifier='string', AttributeName='string', ValuesToAdd=[ 'string', ], ValuesToRemove=[ 'string', ] ) :type DBClusterSnapshotIdentifier: string :param DBClusterSnapshotIdentifier: [REQUIRED]\nThe identifier for the cluster snapshot to modify the attributes for.\n :type AttributeName: string :param AttributeName: [REQUIRED]\nThe name of the cluster snapshot attribute to modify.\nTo manage authorization for other AWS accounts to copy or restore a manual cluster snapshot, set this value to restore .\n :type ValuesToAdd: list :param ValuesToAdd: A list of cluster snapshot attributes to add to the attribute specified by AttributeName .\nTo authorize other AWS accounts to copy or restore a manual cluster snapshot, set this list to include one or more AWS account IDs. To make the manual cluster snapshot restorable by any AWS account, set it to all . Do not add the all value for any manual cluster snapshots that contain private information that you don\'t want to be available to all AWS accounts.\n\n(string) --\n\n :type ValuesToRemove: list :param ValuesToRemove: A list of cluster snapshot attributes to remove from the attribute specified by AttributeName .\nTo remove authorization for other AWS accounts to copy or restore a manual cluster snapshot, set this list to include one or more AWS account identifiers. To remove authorization for any AWS account to copy or restore the cluster snapshot, set it to all . If you specify all , an AWS account whose account ID is explicitly added to the restore attribute can still copy or restore a manual cluster snapshot.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax { 'DBClusterSnapshotAttributesResult': { 'DBClusterSnapshotIdentifier': 'string', 'DBClusterSnapshotAttributes': [ { 'AttributeName': 'string', 'AttributeValues': [ 'string', ] }, ] } } Response Structure (dict) -- DBClusterSnapshotAttributesResult (dict) -- Detailed information about the attributes that are associated with a cluster snapshot. DBClusterSnapshotIdentifier (string) -- The identifier of the cluster snapshot that the attributes apply to. DBClusterSnapshotAttributes (list) -- The list of attributes and values for the cluster snapshot. (dict) -- Contains the name and values of a manual cluster snapshot attribute. Manual cluster snapshot attributes are used to authorize other AWS accounts to restore a manual cluster snapshot. AttributeName (string) -- The name of the manual cluster snapshot attribute. The attribute named restore refers to the list of AWS accounts that have permission to copy or restore the manual cluster snapshot. AttributeValues (list) -- The values for the manual cluster snapshot attribute. If the AttributeName field is set to restore , then this element returns a list of IDs of the AWS accounts that are authorized to copy or restore the manual cluster snapshot. If a value of all is in the list, then the manual cluster snapshot is public and available for any AWS account to copy or restore. (string) -- Exceptions DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault DocDB.Client.exceptions.SharedSnapshotQuotaExceededFault :return: { 'DBClusterSnapshotAttributesResult': { 'DBClusterSnapshotIdentifier': 'string', 'DBClusterSnapshotAttributes': [ { 'AttributeName': 'string', 'AttributeValues': [ 'string', ] }, ] } } :returns: (string) -- """ pass def modify_db_instance(DBInstanceIdentifier=None, DBInstanceClass=None, ApplyImmediately=None, PreferredMaintenanceWindow=None, AutoMinorVersionUpgrade=None, NewDBInstanceIdentifier=None, CACertificateIdentifier=None, PromotionTier=None): """ Modifies settings for an instance. You can change one or more database configuration parameters by specifying these parameters and the new values in the request. See also: AWS API Documentation Exceptions :example: response = client.modify_db_instance( DBInstanceIdentifier='string', DBInstanceClass='string', ApplyImmediately=True|False, PreferredMaintenanceWindow='string', AutoMinorVersionUpgrade=True|False, NewDBInstanceIdentifier='string', CACertificateIdentifier='string', PromotionTier=123 ) :type DBInstanceIdentifier: string :param DBInstanceIdentifier: [REQUIRED]\nThe instance identifier. This value is stored as a lowercase string.\nConstraints:\n\nMust match the identifier of an existing DBInstance .\n\n :type DBInstanceClass: string :param DBInstanceClass: The new compute and memory capacity of the instance; for example, db.r5.large . Not all instance classes are available in all AWS Regions.\nIf you modify the instance class, an outage occurs during the change. The change is applied during the next maintenance window, unless ApplyImmediately is specified as true for this request.\nDefault: Uses existing setting.\n :type ApplyImmediately: boolean :param ApplyImmediately: Specifies whether the modifications in this request and any pending modifications are asynchronously applied as soon as possible, regardless of the PreferredMaintenanceWindow setting for the instance.\nIf this parameter is set to false , changes to the instance are applied during the next maintenance window. Some parameter changes can cause an outage and are applied on the next reboot.\nDefault: false\n :type PreferredMaintenanceWindow: string :param PreferredMaintenanceWindow: The weekly time range (in UTC) during which system maintenance can occur, which might result in an outage. Changing this parameter doesn\'t result in an outage except in the following situation, and the change is asynchronously applied as soon as possible. If there are pending actions that cause a reboot, and the maintenance window is changed to include the current time, changing this parameter causes a reboot of the instance. If you are moving this window to the current time, there must be at least 30 minutes between the current time and end of the window to ensure that pending changes are applied.\nDefault: Uses existing setting.\nFormat: ddd:hh24:mi-ddd:hh24:mi\nValid days: Mon, Tue, Wed, Thu, Fri, Sat, Sun\nConstraints: Must be at least 30 minutes.\n :type AutoMinorVersionUpgrade: boolean :param AutoMinorVersionUpgrade: Indicates that minor version upgrades are applied automatically to the instance during the maintenance window. Changing this parameter doesn\'t result in an outage except in the following case, and the change is asynchronously applied as soon as possible. An outage results if this parameter is set to true during the maintenance window, and a newer minor version is available, and Amazon DocumentDB has enabled automatic patching for that engine version. :type NewDBInstanceIdentifier: string :param NewDBInstanceIdentifier: The new instance identifier for the instance when renaming an instance. When you change the instance identifier, an instance reboot occurs immediately if you set Apply Immediately to true . It occurs during the next maintenance window if you set Apply Immediately to false . This value is stored as a lowercase string.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: mydbinstance\n :type CACertificateIdentifier: string :param CACertificateIdentifier: Indicates the certificate that needs to be associated with the instance. :type PromotionTier: integer :param PromotionTier: A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance.\nDefault: 1\nValid values: 0-15\n :rtype: dict ReturnsResponse Syntax { 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } Response Structure (dict) -- DBInstance (dict) -- Detailed information about an instance. DBInstanceIdentifier (string) -- Contains a user-provided database identifier. This identifier is the unique key that identifies an instance. DBInstanceClass (string) -- Contains the name of the compute and memory capacity class of the instance. Engine (string) -- Provides the name of the database engine to be used for this instance. DBInstanceStatus (string) -- Specifies the current state of this database. Endpoint (dict) -- Specifies the connection endpoint. Address (string) -- Specifies the DNS address of the instance. Port (integer) -- Specifies the port that the database engine is listening on. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. InstanceCreateTime (datetime) -- Provides the date and time that the instance was created. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. VpcSecurityGroups (list) -- Provides a list of VPC security group elements that the instance belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. AvailabilityZone (string) -- Specifies the name of the Availability Zone that the instance is located in. DBSubnetGroup (dict) -- Specifies information on the subnet group that is associated with the instance, including the name, description, and subnets in the subnet group. DBSubnetGroupName (string) -- The name of the subnet group. DBSubnetGroupDescription (string) -- Provides the description of the subnet group. VpcId (string) -- Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) -- Provides the status of the subnet group. Subnets (list) -- Detailed information about one or more subnets within a subnet group. (dict) -- Detailed information about a subnet. SubnetIdentifier (string) -- Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) -- Specifies the Availability Zone for the subnet. Name (string) -- The name of the Availability Zone. SubnetStatus (string) -- Specifies the status of the subnet. DBSubnetGroupArn (string) -- The Amazon Resource Name (ARN) for the DB subnet group. PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). PendingModifiedValues (dict) -- Specifies that changes to the instance are pending. This element is included only when changes are pending. Specific changes are identified by subelements. DBInstanceClass (string) -- Contains the new DBInstanceClass for the instance that will be applied or is currently being applied. AllocatedStorage (integer) -- Contains the new AllocatedStorage size for then instance that will be applied or is currently being applied. MasterUserPassword (string) -- Contains the pending or currently in-progress change of the master credentials for the instance. Port (integer) -- Specifies the pending port for the instance. BackupRetentionPeriod (integer) -- Specifies the pending number of days for which automated backups are retained. MultiAZ (boolean) -- Indicates that the Single-AZ instance is to change to a Multi-AZ deployment. EngineVersion (string) -- Indicates the database engine version. LicenseModel (string) -- The license model for the instance. Valid values: license-included , bring-your-own-license , general-public-license Iops (integer) -- Specifies the new Provisioned IOPS value for the instance that will be applied or is currently being applied. DBInstanceIdentifier (string) -- Contains the new DBInstanceIdentifier for the instance that will be applied or is currently being applied. StorageType (string) -- Specifies the storage type to be associated with the instance. CACertificateIdentifier (string) -- Specifies the identifier of the certificate authority (CA) certificate for the DB instance. DBSubnetGroupName (string) -- The new subnet group for the instance. PendingCloudwatchLogsExports (dict) -- A list of the log types whose configuration is still pending. These log types are in the process of being activated or deactivated. LogTypesToEnable (list) -- Log types that are in the process of being deactivated. After they are deactivated, these log types aren\'t exported to CloudWatch Logs. (string) -- LogTypesToDisable (list) -- Log types that are in the process of being enabled. After they are enabled, these log types are exported to Amazon CloudWatch Logs. (string) -- LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. EngineVersion (string) -- Indicates the database engine version. AutoMinorVersionUpgrade (boolean) -- Indicates that minor version patches are applied automatically. PubliclyAccessible (boolean) -- Not supported. Amazon DocumentDB does not currently support public endpoints. The value of PubliclyAccessible is always false . StatusInfos (list) -- The status of a read replica. If the instance is not a read replica, this is blank. (dict) -- Provides a list of status information for an instance. StatusType (string) -- This value is currently "read replication ." Normal (boolean) -- A Boolean value that is true if the instance is operating normally, or false if the instance is in an error state. Status (string) -- Status of the instance. For a StatusType of read replica, the values can be replicating , error, stopped , or terminated . Message (string) -- Details of the error if there is an error for the instance. If the instance is not in an error state, this value is blank. DBClusterIdentifier (string) -- Contains the name of the cluster that the instance is a member of if the instance is a member of a cluster. StorageEncrypted (boolean) -- Specifies whether or not the instance is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted instance. DbiResourceId (string) -- The AWS Region-unique, immutable identifier for the instance. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the instance is accessed. CACertificateIdentifier (string) -- The identifier of the CA certificate for this DB instance. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. DBInstanceArn (string) -- The Amazon Resource Name (ARN) for the instance. EnabledCloudwatchLogsExports (list) -- A list of log types that this instance is configured to export to Amazon CloudWatch Logs. (string) -- Exceptions DocDB.Client.exceptions.InvalidDBInstanceStateFault DocDB.Client.exceptions.InvalidDBSecurityGroupStateFault DocDB.Client.exceptions.DBInstanceAlreadyExistsFault DocDB.Client.exceptions.DBInstanceNotFoundFault DocDB.Client.exceptions.DBSecurityGroupNotFoundFault DocDB.Client.exceptions.DBParameterGroupNotFoundFault DocDB.Client.exceptions.InsufficientDBInstanceCapacityFault DocDB.Client.exceptions.StorageQuotaExceededFault DocDB.Client.exceptions.InvalidVPCNetworkStateFault DocDB.Client.exceptions.DBUpgradeDependencyFailureFault DocDB.Client.exceptions.StorageTypeNotSupportedFault DocDB.Client.exceptions.AuthorizationNotFoundFault DocDB.Client.exceptions.CertificateNotFoundFault :return: { 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } :returns: (string) -- """ pass def modify_db_subnet_group(DBSubnetGroupName=None, DBSubnetGroupDescription=None, SubnetIds=None): """ Modifies an existing subnet group. subnet groups must contain at least one subnet in at least two Availability Zones in the AWS Region. See also: AWS API Documentation Exceptions :example: response = client.modify_db_subnet_group( DBSubnetGroupName='string', DBSubnetGroupDescription='string', SubnetIds=[ 'string', ] ) :type DBSubnetGroupName: string :param DBSubnetGroupName: [REQUIRED]\nThe name for the subnet group. This value is stored as a lowercase string. You can\'t modify the default subnet group.\nConstraints: Must match the name of an existing DBSubnetGroup . Must not be default.\nExample: mySubnetgroup\n :type DBSubnetGroupDescription: string :param DBSubnetGroupDescription: The description for the subnet group. :type SubnetIds: list :param SubnetIds: [REQUIRED]\nThe Amazon EC2 subnet IDs for the subnet group.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax { 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' } } Response Structure (dict) -- DBSubnetGroup (dict) -- Detailed information about a subnet group. DBSubnetGroupName (string) -- The name of the subnet group. DBSubnetGroupDescription (string) -- Provides the description of the subnet group. VpcId (string) -- Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) -- Provides the status of the subnet group. Subnets (list) -- Detailed information about one or more subnets within a subnet group. (dict) -- Detailed information about a subnet. SubnetIdentifier (string) -- Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) -- Specifies the Availability Zone for the subnet. Name (string) -- The name of the Availability Zone. SubnetStatus (string) -- Specifies the status of the subnet. DBSubnetGroupArn (string) -- The Amazon Resource Name (ARN) for the DB subnet group. Exceptions DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.DBSubnetQuotaExceededFault DocDB.Client.exceptions.SubnetAlreadyInUse DocDB.Client.exceptions.DBSubnetGroupDoesNotCoverEnoughAZs DocDB.Client.exceptions.InvalidSubnet :return: { 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' } } :returns: DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.DBSubnetQuotaExceededFault DocDB.Client.exceptions.SubnetAlreadyInUse DocDB.Client.exceptions.DBSubnetGroupDoesNotCoverEnoughAZs DocDB.Client.exceptions.InvalidSubnet """ pass def reboot_db_instance(DBInstanceIdentifier=None, ForceFailover=None): """ You might need to reboot your instance, usually for maintenance reasons. For example, if you make certain changes, or if you change the cluster parameter group that is associated with the instance, you must reboot the instance for the changes to take effect. Rebooting an instance restarts the database engine service. Rebooting an instance results in a momentary outage, during which the instance status is set to rebooting . See also: AWS API Documentation Exceptions :example: response = client.reboot_db_instance( DBInstanceIdentifier='string', ForceFailover=True|False ) :type DBInstanceIdentifier: string :param DBInstanceIdentifier: [REQUIRED]\nThe instance identifier. This parameter is stored as a lowercase string.\nConstraints:\n\nMust match the identifier of an existing DBInstance .\n\n :type ForceFailover: boolean :param ForceFailover: When true , the reboot is conducted through a Multi-AZ failover.\nConstraint: You can\'t specify true if the instance is not configured for Multi-AZ.\n :rtype: dict ReturnsResponse Syntax { 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } Response Structure (dict) -- DBInstance (dict) -- Detailed information about an instance. DBInstanceIdentifier (string) -- Contains a user-provided database identifier. This identifier is the unique key that identifies an instance. DBInstanceClass (string) -- Contains the name of the compute and memory capacity class of the instance. Engine (string) -- Provides the name of the database engine to be used for this instance. DBInstanceStatus (string) -- Specifies the current state of this database. Endpoint (dict) -- Specifies the connection endpoint. Address (string) -- Specifies the DNS address of the instance. Port (integer) -- Specifies the port that the database engine is listening on. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. InstanceCreateTime (datetime) -- Provides the date and time that the instance was created. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. VpcSecurityGroups (list) -- Provides a list of VPC security group elements that the instance belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. AvailabilityZone (string) -- Specifies the name of the Availability Zone that the instance is located in. DBSubnetGroup (dict) -- Specifies information on the subnet group that is associated with the instance, including the name, description, and subnets in the subnet group. DBSubnetGroupName (string) -- The name of the subnet group. DBSubnetGroupDescription (string) -- Provides the description of the subnet group. VpcId (string) -- Provides the virtual private cloud (VPC) ID of the subnet group. SubnetGroupStatus (string) -- Provides the status of the subnet group. Subnets (list) -- Detailed information about one or more subnets within a subnet group. (dict) -- Detailed information about a subnet. SubnetIdentifier (string) -- Specifies the identifier of the subnet. SubnetAvailabilityZone (dict) -- Specifies the Availability Zone for the subnet. Name (string) -- The name of the Availability Zone. SubnetStatus (string) -- Specifies the status of the subnet. DBSubnetGroupArn (string) -- The Amazon Resource Name (ARN) for the DB subnet group. PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). PendingModifiedValues (dict) -- Specifies that changes to the instance are pending. This element is included only when changes are pending. Specific changes are identified by subelements. DBInstanceClass (string) -- Contains the new DBInstanceClass for the instance that will be applied or is currently being applied. AllocatedStorage (integer) -- Contains the new AllocatedStorage size for then instance that will be applied or is currently being applied. MasterUserPassword (string) -- Contains the pending or currently in-progress change of the master credentials for the instance. Port (integer) -- Specifies the pending port for the instance. BackupRetentionPeriod (integer) -- Specifies the pending number of days for which automated backups are retained. MultiAZ (boolean) -- Indicates that the Single-AZ instance is to change to a Multi-AZ deployment. EngineVersion (string) -- Indicates the database engine version. LicenseModel (string) -- The license model for the instance. Valid values: license-included , bring-your-own-license , general-public-license Iops (integer) -- Specifies the new Provisioned IOPS value for the instance that will be applied or is currently being applied. DBInstanceIdentifier (string) -- Contains the new DBInstanceIdentifier for the instance that will be applied or is currently being applied. StorageType (string) -- Specifies the storage type to be associated with the instance. CACertificateIdentifier (string) -- Specifies the identifier of the certificate authority (CA) certificate for the DB instance. DBSubnetGroupName (string) -- The new subnet group for the instance. PendingCloudwatchLogsExports (dict) -- A list of the log types whose configuration is still pending. These log types are in the process of being activated or deactivated. LogTypesToEnable (list) -- Log types that are in the process of being deactivated. After they are deactivated, these log types aren\'t exported to CloudWatch Logs. (string) -- LogTypesToDisable (list) -- Log types that are in the process of being enabled. After they are enabled, these log types are exported to Amazon CloudWatch Logs. (string) -- LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. EngineVersion (string) -- Indicates the database engine version. AutoMinorVersionUpgrade (boolean) -- Indicates that minor version patches are applied automatically. PubliclyAccessible (boolean) -- Not supported. Amazon DocumentDB does not currently support public endpoints. The value of PubliclyAccessible is always false . StatusInfos (list) -- The status of a read replica. If the instance is not a read replica, this is blank. (dict) -- Provides a list of status information for an instance. StatusType (string) -- This value is currently "read replication ." Normal (boolean) -- A Boolean value that is true if the instance is operating normally, or false if the instance is in an error state. Status (string) -- Status of the instance. For a StatusType of read replica, the values can be replicating , error, stopped , or terminated . Message (string) -- Details of the error if there is an error for the instance. If the instance is not in an error state, this value is blank. DBClusterIdentifier (string) -- Contains the name of the cluster that the instance is a member of if the instance is a member of a cluster. StorageEncrypted (boolean) -- Specifies whether or not the instance is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted instance. DbiResourceId (string) -- The AWS Region-unique, immutable identifier for the instance. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the instance is accessed. CACertificateIdentifier (string) -- The identifier of the CA certificate for this DB instance. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. DBInstanceArn (string) -- The Amazon Resource Name (ARN) for the instance. EnabledCloudwatchLogsExports (list) -- A list of log types that this instance is configured to export to Amazon CloudWatch Logs. (string) -- Exceptions DocDB.Client.exceptions.InvalidDBInstanceStateFault DocDB.Client.exceptions.DBInstanceNotFoundFault :return: { 'DBInstance': { 'DBInstanceIdentifier': 'string', 'DBInstanceClass': 'string', 'Engine': 'string', 'DBInstanceStatus': 'string', 'Endpoint': { 'Address': 'string', 'Port': 123, 'HostedZoneId': 'string' }, 'InstanceCreateTime': datetime(2015, 1, 1), 'PreferredBackupWindow': 'string', 'BackupRetentionPeriod': 123, 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'AvailabilityZone': 'string', 'DBSubnetGroup': { 'DBSubnetGroupName': 'string', 'DBSubnetGroupDescription': 'string', 'VpcId': 'string', 'SubnetGroupStatus': 'string', 'Subnets': [ { 'SubnetIdentifier': 'string', 'SubnetAvailabilityZone': { 'Name': 'string' }, 'SubnetStatus': 'string' }, ], 'DBSubnetGroupArn': 'string' }, 'PreferredMaintenanceWindow': 'string', 'PendingModifiedValues': { 'DBInstanceClass': 'string', 'AllocatedStorage': 123, 'MasterUserPassword': 'string', 'Port': 123, 'BackupRetentionPeriod': 123, 'MultiAZ': True|False, 'EngineVersion': 'string', 'LicenseModel': 'string', 'Iops': 123, 'DBInstanceIdentifier': 'string', 'StorageType': 'string', 'CACertificateIdentifier': 'string', 'DBSubnetGroupName': 'string', 'PendingCloudwatchLogsExports': { 'LogTypesToEnable': [ 'string', ], 'LogTypesToDisable': [ 'string', ] } }, 'LatestRestorableTime': datetime(2015, 1, 1), 'EngineVersion': 'string', 'AutoMinorVersionUpgrade': True|False, 'PubliclyAccessible': True|False, 'StatusInfos': [ { 'StatusType': 'string', 'Normal': True|False, 'Status': 'string', 'Message': 'string' }, ], 'DBClusterIdentifier': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbiResourceId': 'string', 'CACertificateIdentifier': 'string', 'PromotionTier': 123, 'DBInstanceArn': 'string', 'EnabledCloudwatchLogsExports': [ 'string', ] } } :returns: (string) -- """ pass def remove_tags_from_resource(ResourceName=None, TagKeys=None): """ Removes metadata tags from an Amazon DocumentDB resource. See also: AWS API Documentation Exceptions :example: response = client.remove_tags_from_resource( ResourceName='string', TagKeys=[ 'string', ] ) :type ResourceName: string :param ResourceName: [REQUIRED]\nThe Amazon DocumentDB resource that the tags are removed from. This value is an Amazon Resource Name (ARN).\n :type TagKeys: list :param TagKeys: [REQUIRED]\nThe tag key (name) of the tag to be removed.\n\n(string) --\n\n :returns: DocDB.Client.exceptions.DBInstanceNotFoundFault DocDB.Client.exceptions.DBSnapshotNotFoundFault DocDB.Client.exceptions.DBClusterNotFoundFault """ pass def reset_db_cluster_parameter_group(DBClusterParameterGroupName=None, ResetAllParameters=None, Parameters=None): """ Modifies the parameters of a cluster parameter group to the default value. To reset specific parameters, submit a list of the following: ParameterName and ApplyMethod . To reset the entire cluster parameter group, specify the DBClusterParameterGroupName and ResetAllParameters parameters. When you reset the entire group, dynamic parameters are updated immediately and static parameters are set to pending-reboot to take effect on the next DB instance reboot. See also: AWS API Documentation Exceptions :example: response = client.reset_db_cluster_parameter_group( DBClusterParameterGroupName='string', ResetAllParameters=True|False, Parameters=[ { 'ParameterName': 'string', 'ParameterValue': 'string', 'Description': 'string', 'Source': 'string', 'ApplyType': 'string', 'DataType': 'string', 'AllowedValues': 'string', 'IsModifiable': True|False, 'MinimumEngineVersion': 'string', 'ApplyMethod': 'immediate'|'pending-reboot' }, ] ) :type DBClusterParameterGroupName: string :param DBClusterParameterGroupName: [REQUIRED]\nThe name of the cluster parameter group to reset.\n :type ResetAllParameters: boolean :param ResetAllParameters: A value that is set to true to reset all parameters in the cluster parameter group to their default values, and false otherwise. You can\'t use this parameter if there is a list of parameter names specified for the Parameters parameter. :type Parameters: list :param Parameters: A list of parameter names in the cluster parameter group to reset to the default values. You can\'t use this parameter if the ResetAllParameters parameter is set to true .\n\n(dict) --Detailed information about an individual parameter.\n\nParameterName (string) --Specifies the name of the parameter.\n\nParameterValue (string) --Specifies the value of the parameter.\n\nDescription (string) --Provides a description of the parameter.\n\nSource (string) --Indicates the source of the parameter value.\n\nApplyType (string) --Specifies the engine-specific parameters type.\n\nDataType (string) --Specifies the valid data type for the parameter.\n\nAllowedValues (string) --Specifies the valid range of values for the parameter.\n\nIsModifiable (boolean) --Indicates whether (true ) or not (false ) the parameter can be modified. Some parameters have security or operational implications that prevent them from being changed.\n\nMinimumEngineVersion (string) --The earliest engine version to which the parameter can apply.\n\nApplyMethod (string) --Indicates when to apply parameter updates.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DBClusterParameterGroupName': 'string' } Response Structure (dict) -- Contains the name of a cluster parameter group. DBClusterParameterGroupName (string) -- The name of a cluster parameter group. Constraints: Must be from 1 to 255 letters or numbers. The first character must be a letter. Cannot end with a hyphen or contain two consecutive hyphens. Note This value is stored as a lowercase string. Exceptions DocDB.Client.exceptions.InvalidDBParameterGroupStateFault DocDB.Client.exceptions.DBParameterGroupNotFoundFault :return: { 'DBClusterParameterGroupName': 'string' } :returns: Must be from 1 to 255 letters or numbers. The first character must be a letter. Cannot end with a hyphen or contain two consecutive hyphens. """ pass def restore_db_cluster_from_snapshot(AvailabilityZones=None, DBClusterIdentifier=None, SnapshotIdentifier=None, Engine=None, EngineVersion=None, Port=None, DBSubnetGroupName=None, VpcSecurityGroupIds=None, Tags=None, KmsKeyId=None, EnableCloudwatchLogsExports=None, DeletionProtection=None): """ Creates a new cluster from a snapshot or cluster snapshot. If a snapshot is specified, the target cluster is created from the source DB snapshot with a default configuration and default security group. If a cluster snapshot is specified, the target cluster is created from the source cluster restore point with the same configuration as the original source DB cluster, except that the new cluster is created with the default security group. See also: AWS API Documentation Exceptions :example: response = client.restore_db_cluster_from_snapshot( AvailabilityZones=[ 'string', ], DBClusterIdentifier='string', SnapshotIdentifier='string', Engine='string', EngineVersion='string', Port=123, DBSubnetGroupName='string', VpcSecurityGroupIds=[ 'string', ], Tags=[ { 'Key': 'string', 'Value': 'string' }, ], KmsKeyId='string', EnableCloudwatchLogsExports=[ 'string', ], DeletionProtection=True|False ) :type AvailabilityZones: list :param AvailabilityZones: Provides the list of Amazon EC2 Availability Zones that instances in the restored DB cluster can be created in.\n\n(string) --\n\n :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe name of the cluster to create from the snapshot or cluster snapshot. This parameter isn\'t case sensitive.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\nExample: my-snapshot-id\n :type SnapshotIdentifier: string :param SnapshotIdentifier: [REQUIRED]\nThe identifier for the snapshot or cluster snapshot to restore from.\nYou can use either the name or the Amazon Resource Name (ARN) to specify a cluster snapshot. However, you can use only the ARN to specify a snapshot.\nConstraints:\n\nMust match the identifier of an existing snapshot.\n\n :type Engine: string :param Engine: [REQUIRED]\nThe database engine to use for the new cluster.\nDefault: The same as source.\nConstraint: Must be compatible with the engine of the source.\n :type EngineVersion: string :param EngineVersion: The version of the database engine to use for the new cluster. :type Port: integer :param Port: The port number on which the new cluster accepts connections.\nConstraints: Must be a value from 1150 to 65535 .\nDefault: The same port as the original cluster.\n :type DBSubnetGroupName: string :param DBSubnetGroupName: The name of the subnet group to use for the new cluster.\nConstraints: If provided, must match the name of an existing DBSubnetGroup .\nExample: mySubnetgroup\n :type VpcSecurityGroupIds: list :param VpcSecurityGroupIds: A list of virtual private cloud (VPC) security groups that the new cluster will belong to.\n\n(string) --\n\n :type Tags: list :param Tags: The tags to be assigned to the restored cluster.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :type KmsKeyId: string :param KmsKeyId: The AWS KMS key identifier to use when restoring an encrypted cluster from a DB snapshot or cluster snapshot.\nThe AWS KMS key identifier is the Amazon Resource Name (ARN) for the AWS KMS encryption key. If you are restoring a cluster with the same AWS account that owns the AWS KMS encryption key used to encrypt the new cluster, then you can use the AWS KMS key alias instead of the ARN for the AWS KMS encryption key.\nIf you do not specify a value for the KmsKeyId parameter, then the following occurs:\n\nIf the snapshot or cluster snapshot in SnapshotIdentifier is encrypted, then the restored cluster is encrypted using the AWS KMS key that was used to encrypt the snapshot or the cluster snapshot.\nIf the snapshot or the cluster snapshot in SnapshotIdentifier is not encrypted, then the restored DB cluster is not encrypted.\n\n :type EnableCloudwatchLogsExports: list :param EnableCloudwatchLogsExports: A list of log types that must be enabled for exporting to Amazon CloudWatch Logs.\n\n(string) --\n\n :type DeletionProtection: boolean :param DeletionProtection: Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. :rtype: dict ReturnsResponse Syntax { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) -- Detailed information about a cluster. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) -- Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) -- Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) -- Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) -- Specifies the current state of this cluster. PercentProgress (string) -- Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) -- The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) -- Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) -- The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) -- Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) -- Provides the name of the database engine to be used for this cluster. EngineVersion (string) -- Indicates the database engine version. LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) -- Specifies the port that the database engine is listening on. MasterUsername (string) -- Contains the master user name for the cluster. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) -- Provides the list of instances that make up the cluster. (dict) -- Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) -- Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) -- A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) -- Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) -- Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) -- Specifies whether the cluster is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) -- The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) -- The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) -- Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) -- Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) -- Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) -- A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) -- Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterAlreadyExistsFault DocDB.Client.exceptions.DBClusterQuotaExceededFault DocDB.Client.exceptions.StorageQuotaExceededFault DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.DBSnapshotNotFoundFault DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault DocDB.Client.exceptions.InsufficientDBClusterCapacityFault DocDB.Client.exceptions.InsufficientStorageClusterCapacityFault DocDB.Client.exceptions.InvalidDBSnapshotStateFault DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault DocDB.Client.exceptions.StorageQuotaExceededFault DocDB.Client.exceptions.InvalidVPCNetworkStateFault DocDB.Client.exceptions.InvalidRestoreFault DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.InvalidSubnet DocDB.Client.exceptions.KMSKeyNotAccessibleFault :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: (string) -- """ pass def restore_db_cluster_to_point_in_time(DBClusterIdentifier=None, SourceDBClusterIdentifier=None, RestoreToTime=None, UseLatestRestorableTime=None, Port=None, DBSubnetGroupName=None, VpcSecurityGroupIds=None, Tags=None, KmsKeyId=None, EnableCloudwatchLogsExports=None, DeletionProtection=None): """ Restores a cluster to an arbitrary point in time. Users can restore to any point in time before LatestRestorableTime for up to BackupRetentionPeriod days. The target cluster is created from the source cluster with the same configuration as the original cluster, except that the new cluster is created with the default security group. See also: AWS API Documentation Exceptions :example: response = client.restore_db_cluster_to_point_in_time( DBClusterIdentifier='string', SourceDBClusterIdentifier='string', RestoreToTime=datetime(2015, 1, 1), UseLatestRestorableTime=True|False, Port=123, DBSubnetGroupName='string', VpcSecurityGroupIds=[ 'string', ], Tags=[ { 'Key': 'string', 'Value': 'string' }, ], KmsKeyId='string', EnableCloudwatchLogsExports=[ 'string', ], DeletionProtection=True|False ) :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe name of the new cluster to be created.\nConstraints:\n\nMust contain from 1 to 63 letters, numbers, or hyphens.\nThe first character must be a letter.\nCannot end with a hyphen or contain two consecutive hyphens.\n\n :type SourceDBClusterIdentifier: string :param SourceDBClusterIdentifier: [REQUIRED]\nThe identifier of the source cluster from which to restore.\nConstraints:\n\nMust match the identifier of an existing DBCluster .\n\n :type RestoreToTime: datetime :param RestoreToTime: The date and time to restore the cluster to.\nValid values: A time in Universal Coordinated Time (UTC) format.\nConstraints:\n\nMust be before the latest restorable time for the instance.\nMust be specified if the UseLatestRestorableTime parameter is not provided.\nCannot be specified if the UseLatestRestorableTime parameter is true .\nCannot be specified if the RestoreType parameter is copy-on-write .\n\nExample: 2015-03-07T23:45:00Z\n :type UseLatestRestorableTime: boolean :param UseLatestRestorableTime: A value that is set to true to restore the cluster to the latest restorable backup time, and false otherwise.\nDefault: false\nConstraints: Cannot be specified if the RestoreToTime parameter is provided.\n :type Port: integer :param Port: The port number on which the new cluster accepts connections.\nConstraints: Must be a value from 1150 to 65535 .\nDefault: The default port for the engine.\n :type DBSubnetGroupName: string :param DBSubnetGroupName: The subnet group name to use for the new cluster.\nConstraints: If provided, must match the name of an existing DBSubnetGroup .\nExample: mySubnetgroup\n :type VpcSecurityGroupIds: list :param VpcSecurityGroupIds: A list of VPC security groups that the new cluster belongs to.\n\n(string) --\n\n :type Tags: list :param Tags: The tags to be assigned to the restored cluster.\n\n(dict) --Metadata assigned to an Amazon DocumentDB resource consisting of a key-value pair.\n\nKey (string) --The required name of the tag. The string value can be from 1 to 128 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\nValue (string) --The optional value of the tag. The string value can be from 1 to 256 Unicode characters in length and can\'t be prefixed with 'aws:' or 'rds:'. The string can contain only the set of Unicode letters, digits, white space, \'_\', \'.\', \'/\', \'=\', \'+\', \'-\' (Java regex: '^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-]*)$').\n\n\n\n\n :type KmsKeyId: string :param KmsKeyId: The AWS KMS key identifier to use when restoring an encrypted cluster from an encrypted cluster.\nThe AWS KMS key identifier is the Amazon Resource Name (ARN) for the AWS KMS encryption key. If you are restoring a cluster with the same AWS account that owns the AWS KMS encryption key used to encrypt the new cluster, then you can use the AWS KMS key alias instead of the ARN for the AWS KMS encryption key.\nYou can restore to a new cluster and encrypt the new cluster with an AWS KMS key that is different from the AWS KMS key used to encrypt the source cluster. The new DB cluster is encrypted with the AWS KMS key identified by the KmsKeyId parameter.\nIf you do not specify a value for the KmsKeyId parameter, then the following occurs:\n\nIf the cluster is encrypted, then the restored cluster is encrypted using the AWS KMS key that was used to encrypt the source cluster.\nIf the cluster is not encrypted, then the restored cluster is not encrypted.\n\nIf DBClusterIdentifier refers to a cluster that is not encrypted, then the restore request is rejected.\n :type EnableCloudwatchLogsExports: list :param EnableCloudwatchLogsExports: A list of log types that must be enabled for exporting to Amazon CloudWatch Logs.\n\n(string) --\n\n :type DeletionProtection: boolean :param DeletionProtection: Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. :rtype: dict ReturnsResponse Syntax { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) -- Detailed information about a cluster. AvailabilityZones (list) -- Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) -- Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) -- Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) -- Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) -- Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) -- Specifies the current state of this cluster. PercentProgress (string) -- Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) -- The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) -- Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) -- The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) -- Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) -- Provides the name of the database engine to be used for this cluster. EngineVersion (string) -- Indicates the database engine version. LatestRestorableTime (datetime) -- Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) -- Specifies the port that the database engine is listening on. MasterUsername (string) -- Contains the master user name for the cluster. PreferredBackupWindow (string) -- Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) -- Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) -- Provides the list of instances that make up the cluster. (dict) -- Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) -- Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) -- A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) -- Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) -- A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) -- Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) -- Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) -- The name of the VPC security group. Status (string) -- The status of the VPC security group. HostedZoneId (string) -- Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) -- Specifies whether the cluster is encrypted. KmsKeyId (string) -- If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) -- The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) -- The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) -- Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) -- Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) -- Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) -- Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) -- A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) -- Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterAlreadyExistsFault DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.DBClusterQuotaExceededFault DocDB.Client.exceptions.DBClusterSnapshotNotFoundFault DocDB.Client.exceptions.DBSubnetGroupNotFoundFault DocDB.Client.exceptions.InsufficientDBClusterCapacityFault DocDB.Client.exceptions.InsufficientStorageClusterCapacityFault DocDB.Client.exceptions.InvalidDBClusterSnapshotStateFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBSnapshotStateFault DocDB.Client.exceptions.InvalidRestoreFault DocDB.Client.exceptions.InvalidSubnet DocDB.Client.exceptions.InvalidVPCNetworkStateFault DocDB.Client.exceptions.KMSKeyNotAccessibleFault DocDB.Client.exceptions.StorageQuotaExceededFault :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: (string) -- """ pass def start_db_cluster(DBClusterIdentifier=None): """ Restarts the stopped cluster that is specified by DBClusterIdentifier . For more information, see Stopping and Starting an Amazon DocumentDB Cluster . See also: AWS API Documentation Exceptions :example: response = client.start_db_cluster( DBClusterIdentifier='string' ) :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe identifier of the cluster to restart. Example: docdb-2019-05-28-15-24-52\n :rtype: dict ReturnsResponse Syntax{ 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) --Detailed information about a cluster. AvailabilityZones (list) --Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) --Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) --Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) --Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) --Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) --Specifies the current state of this cluster. PercentProgress (string) --Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) --The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) --Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) --The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) --Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) --Provides the name of the database engine to be used for this cluster. EngineVersion (string) --Indicates the database engine version. LatestRestorableTime (datetime) --Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) --Specifies the port that the database engine is listening on. MasterUsername (string) --Contains the master user name for the cluster. PreferredBackupWindow (string) --Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) --Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) --Provides the list of instances that make up the cluster. (dict) --Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) --Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) --A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) --Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) --A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) --Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) --Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) --The name of the VPC security group. Status (string) --The status of the VPC security group. HostedZoneId (string) --Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) --Specifies whether the cluster is encrypted. KmsKeyId (string) --If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) --The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) --The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) --Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) --Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) --The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) --Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) --Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) --A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) --Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBInstanceStateFault :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. """ pass def stop_db_cluster(DBClusterIdentifier=None): """ Stops the running cluster that is specified by DBClusterIdentifier . The cluster must be in the available state. For more information, see Stopping and Starting an Amazon DocumentDB Cluster . See also: AWS API Documentation Exceptions :example: response = client.stop_db_cluster( DBClusterIdentifier='string' ) :type DBClusterIdentifier: string :param DBClusterIdentifier: [REQUIRED]\nThe identifier of the cluster to stop. Example: docdb-2019-05-28-15-24-52\n :rtype: dict ReturnsResponse Syntax{ 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } Response Structure (dict) -- DBCluster (dict) --Detailed information about a cluster. AvailabilityZones (list) --Provides the list of Amazon EC2 Availability Zones that instances in the cluster can be created in. (string) -- BackupRetentionPeriod (integer) --Specifies the number of days for which automatic snapshots are retained. DBClusterIdentifier (string) --Contains a user-supplied cluster identifier. This identifier is the unique key that identifies a cluster. DBClusterParameterGroup (string) --Specifies the name of the cluster parameter group for the cluster. DBSubnetGroup (string) --Specifies information on the subnet group that is associated with the cluster, including the name, description, and subnets in the subnet group. Status (string) --Specifies the current state of this cluster. PercentProgress (string) --Specifies the progress of the operation as a percentage. EarliestRestorableTime (datetime) --The earliest time to which a database can be restored with point-in-time restore. Endpoint (string) --Specifies the connection endpoint for the primary instance of the cluster. ReaderEndpoint (string) --The reader endpoint for the cluster. The reader endpoint for a cluster load balances connections across the Amazon DocumentDB replicas that are available in a cluster. As clients request new connections to the reader endpoint, Amazon DocumentDB distributes the connection requests among the Amazon DocumentDB replicas in the cluster. This functionality can help balance your read workload across multiple Amazon DocumentDB replicas in your cluster. If a failover occurs, and the Amazon DocumentDB replica that you are connected to is promoted to be the primary instance, your connection is dropped. To continue sending your read workload to other Amazon DocumentDB replicas in the cluster, you can then reconnect to the reader endpoint. MultiAZ (boolean) --Specifies whether the cluster has instances in multiple Availability Zones. Engine (string) --Provides the name of the database engine to be used for this cluster. EngineVersion (string) --Indicates the database engine version. LatestRestorableTime (datetime) --Specifies the latest time to which a database can be restored with point-in-time restore. Port (integer) --Specifies the port that the database engine is listening on. MasterUsername (string) --Contains the master user name for the cluster. PreferredBackupWindow (string) --Specifies the daily time range during which automated backups are created if automated backups are enabled, as determined by the BackupRetentionPeriod . PreferredMaintenanceWindow (string) --Specifies the weekly time range during which system maintenance can occur, in Universal Coordinated Time (UTC). DBClusterMembers (list) --Provides the list of instances that make up the cluster. (dict) --Contains information about an instance that is part of a cluster. DBInstanceIdentifier (string) --Specifies the instance identifier for this member of the cluster. IsClusterWriter (boolean) --A value that is true if the cluster member is the primary instance for the cluster and false otherwise. DBClusterParameterGroupStatus (string) --Specifies the status of the cluster parameter group for this member of the DB cluster. PromotionTier (integer) --A value that specifies the order in which an Amazon DocumentDB replica is promoted to the primary instance after a failure of the existing primary instance. VpcSecurityGroups (list) --Provides a list of virtual private cloud (VPC) security groups that the cluster belongs to. (dict) --Used as a response element for queries on virtual private cloud (VPC) security group membership. VpcSecurityGroupId (string) --The name of the VPC security group. Status (string) --The status of the VPC security group. HostedZoneId (string) --Specifies the ID that Amazon Route 53 assigns when you create a hosted zone. StorageEncrypted (boolean) --Specifies whether the cluster is encrypted. KmsKeyId (string) --If StorageEncrypted is true , the AWS KMS key identifier for the encrypted cluster. DbClusterResourceId (string) --The AWS Region-unique, immutable identifier for the cluster. This identifier is found in AWS CloudTrail log entries whenever the AWS KMS key for the cluster is accessed. DBClusterArn (string) --The Amazon Resource Name (ARN) for the cluster. AssociatedRoles (list) --Provides a list of the AWS Identity and Access Management (IAM) roles that are associated with the cluster. IAM roles that are associated with a cluster grant permission for the cluster to access other AWS services on your behalf. (dict) --Describes an AWS Identity and Access Management (IAM) role that is associated with a cluster. RoleArn (string) --The Amazon Resource Name (ARN) of the IAM role that is associated with the DB cluster. Status (string) --Describes the state of association between the IAM role and the cluster. The Status property returns one of the following values: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. ClusterCreateTime (datetime) --Specifies the time when the cluster was created, in Universal Coordinated Time (UTC). EnabledCloudwatchLogsExports (list) --A list of log types that this cluster is configured to export to Amazon CloudWatch Logs. (string) -- DeletionProtection (boolean) --Specifies whether this cluster can be deleted. If DeletionProtection is enabled, the cluster cannot be deleted unless it is modified and DeletionProtection is disabled. DeletionProtection protects clusters from being accidentally deleted. Exceptions DocDB.Client.exceptions.DBClusterNotFoundFault DocDB.Client.exceptions.InvalidDBClusterStateFault DocDB.Client.exceptions.InvalidDBInstanceStateFault :return: { 'DBCluster': { 'AvailabilityZones': [ 'string', ], 'BackupRetentionPeriod': 123, 'DBClusterIdentifier': 'string', 'DBClusterParameterGroup': 'string', 'DBSubnetGroup': 'string', 'Status': 'string', 'PercentProgress': 'string', 'EarliestRestorableTime': datetime(2015, 1, 1), 'Endpoint': 'string', 'ReaderEndpoint': 'string', 'MultiAZ': True|False, 'Engine': 'string', 'EngineVersion': 'string', 'LatestRestorableTime': datetime(2015, 1, 1), 'Port': 123, 'MasterUsername': 'string', 'PreferredBackupWindow': 'string', 'PreferredMaintenanceWindow': 'string', 'DBClusterMembers': [ { 'DBInstanceIdentifier': 'string', 'IsClusterWriter': True|False, 'DBClusterParameterGroupStatus': 'string', 'PromotionTier': 123 }, ], 'VpcSecurityGroups': [ { 'VpcSecurityGroupId': 'string', 'Status': 'string' }, ], 'HostedZoneId': 'string', 'StorageEncrypted': True|False, 'KmsKeyId': 'string', 'DbClusterResourceId': 'string', 'DBClusterArn': 'string', 'AssociatedRoles': [ { 'RoleArn': 'string', 'Status': 'string' }, ], 'ClusterCreateTime': datetime(2015, 1, 1), 'EnabledCloudwatchLogsExports': [ 'string', ], 'DeletionProtection': True|False } } :returns: ACTIVE - The IAM role ARN is associated with the cluster and can be used to access other AWS services on your behalf. PENDING - The IAM role ARN is being associated with the DB cluster. INVALID - The IAM role ARN is associated with the cluster, but the cluster cannot assume the IAM role to access other AWS services on your behalf. """ pass
37.523932
1,428
0.676191
e20be1b9fe1b4f062c386feb79c75ab3c83f453d
6,046
py
Python
benchmarks/skimage/cucim_restoration_bench.py
chrisroat/cucim
8b909e374b9a77bb1c8ad747c793c30a3d86d4b4
[ "Apache-2.0" ]
null
null
null
benchmarks/skimage/cucim_restoration_bench.py
chrisroat/cucim
8b909e374b9a77bb1c8ad747c793c30a3d86d4b4
[ "Apache-2.0" ]
null
null
null
benchmarks/skimage/cucim_restoration_bench.py
chrisroat/cucim
8b909e374b9a77bb1c8ad747c793c30a3d86d4b4
[ "Apache-2.0" ]
null
null
null
import math import os import pickle import cucim.skimage import cucim.skimage.restoration import cupy as cp import cupyx.scipy.ndimage as ndi import numpy as np import pandas as pd import skimage import skimage.restoration from cucim.skimage.restoration import denoise_tv_chambolle as tv_gpu from skimage.restoration import denoise_tv_chambolle as tv_cpu from _image_bench import ImageBench class DenoiseBench(ImageBench): def set_args(self, dtype): if np.dtype(dtype).kind in "iu": im1 = skimage.data.camera() else: im1 = skimage.data.camera() / 255.0 im1 = im1.astype(dtype) if len(self.shape) == 3: im1 = im1[..., np.newaxis] # add noise if np.dtype(dtype).kind in "iu": sigma = 0.05 * 255 im1 = im1 + sigma * np.random.randn(*im1.shape) im1 = np.clip(im1, 0, 255).astype(dtype) else: sigma = 0.05 im1 = im1 + sigma * np.random.randn(*im1.shape) n_tile = [math.ceil(s / im_s) for s, im_s in zip(self.shape, im1.shape)] slices = tuple([slice(s) for s in self.shape]) image = np.tile(im1, n_tile)[slices] imaged = cp.asarray(image) self.args_cpu = (image,) self.args_gpu = (imaged,) class CalibratedDenoiseBench(ImageBench): def set_args(self, dtype): if np.dtype(dtype).kind in "iu": im1 = skimage.data.camera() else: im1 = skimage.data.camera() / 255.0 im1 = im1.astype(dtype) if len(self.shape) == 3: im1 = im1[..., np.newaxis] # add noise if np.dtype(dtype).kind in "iu": sigma = 0.05 * 255 im1 = im1 + sigma * np.random.randn(*im1.shape) im1 = np.clip(im1, 0, 255).astype(dtype) else: sigma = 0.05 im1 = im1 + sigma * np.random.randn(*im1.shape) n_tile = [math.ceil(s / im_s) for s, im_s in zip(self.shape, im1.shape)] slices = tuple([slice(s) for s in self.shape]) image = np.tile(im1, n_tile)[slices] imaged = cp.asarray(image) denoise_parameters = {"weight": np.linspace(0.01, 0.4, 10)} self.args_cpu = (image, tv_cpu, denoise_parameters) self.args_gpu = (imaged, tv_gpu, denoise_parameters) class DeconvolutionBench(ImageBench): def set_args(self, dtype): if np.dtype(dtype).kind in "iu": im1 = skimage.data.camera() else: im1 = skimage.data.camera() / 255.0 im1 = im1.astype(dtype) if len(self.shape) == 3: im1 = im1[..., np.newaxis] im1 = cp.array(im1) n_tile = [math.ceil(s / im_s) for s, im_s in zip(self.shape, im1.shape)] slices = tuple([slice(s) for s in self.shape]) imaged = cp.tile(im1, n_tile)[slices] psfd = cp.ones((5,) * imaged.ndim) / 25 imaged = ndi.convolve(imaged, psfd) image = cp.asnumpy(imaged) psf = cp.asnumpy(psfd) self.args_cpu = (image, psf) self.args_gpu = (imaged, psfd) pfile = "cucim_restoration_results.pickle" if os.path.exists(pfile): with open(pfile, "rb") as f: all_results = pickle.load(f) else: all_results = pd.DataFrame() dtypes = [np.float32] for function_name, fixed_kwargs, var_kwargs, allow_color, allow_nd in [ # _denoise.py ("denoise_tv_chambolle", dict(), dict(weight=[0.02]), True, True), # j_invariant.py ("calibrate_denoiser", dict(), dict(), False, True), ]: for shape in [(512, 512), (1980, 1080), (1980, 1080, 3), (128, 128, 128)]: ndim = len(shape) if not allow_nd: if not allow_color: if ndim > 2: continue else: if ndim > 3 or (ndim == 3 and shape[-1] not in [3, 4]): continue if shape[-1] == 3 and not allow_color: continue if function_name == "denoise_tv_chambolle": fixed_kwargs["channel_axis"] = -1 if shape[-1] == 3 else None if function_name == "calibrate_denoiser": denoise_class = CalibratedDenoiseBench else: denoise_class = DenoiseBench B = denoise_class( function_name=function_name, shape=shape, dtypes=dtypes, fixed_kwargs=fixed_kwargs, var_kwargs=var_kwargs, module_cpu=skimage.restoration, module_gpu=cucim.skimage.restoration, ) results = B.run_benchmark(duration=1) all_results = all_results.append(results["full"]) # function_name, fixed_kwargs, var_kwargs, allow_color, allow_nd = ('unsupervised_wiener', dict(), dict(), False, True) for function_name, fixed_kwargs, var_kwargs, allow_color, allow_nd in [ # deconvolution.py ("wiener", dict(balance=100.0), dict(), False, False), ("unsupervised_wiener", dict(), dict(), False, False), ("richardson_lucy", dict(), dict(num_iter=[5]), False, True), ]: for shape in [(512, 512), (3840, 2160), (3840, 2160, 3), (192, 192, 192)]: ndim = len(shape) if not allow_nd: if not allow_color: if ndim > 2: continue else: if ndim > 3 or (ndim == 3 and shape[-1] not in [3, 4]): continue if shape[-1] == 3 and not allow_color: continue B = DeconvolutionBench( function_name=function_name, shape=shape, dtypes=dtypes, fixed_kwargs=fixed_kwargs, var_kwargs=var_kwargs, module_cpu=skimage.restoration, module_gpu=cucim.skimage.restoration, ) results = B.run_benchmark(duration=1) all_results = all_results.append(results["full"]) fbase = os.path.splitext(pfile)[0] all_results.to_csv(fbase + ".csv") all_results.to_pickle(pfile) with open(fbase + ".md", "wt") as f: f.write(all_results.to_markdown())
31.989418
119
0.577407
24d3f587dfe209aac6560a64bf5eac919b86013b
28,038
py
Python
test/functional/__init__.py
NicolasT/swift
16e1e1e3c6a921a335e5340be9bde698f4ee5b65
[ "Apache-2.0" ]
null
null
null
test/functional/__init__.py
NicolasT/swift
16e1e1e3c6a921a335e5340be9bde698f4ee5b65
[ "Apache-2.0" ]
null
null
null
test/functional/__init__.py
NicolasT/swift
16e1e1e3c6a921a335e5340be9bde698f4ee5b65
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2014 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import pickle import socket import locale import eventlet import eventlet.debug import functools import random from time import time, sleep from httplib import HTTPException from urlparse import urlparse from nose import SkipTest from contextlib import closing from gzip import GzipFile from shutil import rmtree from tempfile import mkdtemp from test import get_config from test.functional.swift_test_client import Account, Connection, \ ResponseError # This has the side effect of mocking out the xattr module so that unit tests # (and in this case, when in-process functional tests are called for) can run # on file systems that don't support extended attributes. from test.unit import debug_logger, FakeMemcache from swift.common import constraints, utils, ring, storage_policy from swift.common.wsgi import monkey_patch_mimetools from swift.common.middleware import catch_errors, gatekeeper, healthcheck, \ proxy_logging, container_sync, bulk, tempurl, slo, dlo, ratelimit, \ tempauth, container_quotas, account_quotas from swift.common.utils import config_true_value from swift.proxy import server as proxy_server from swift.account import server as account_server from swift.container import server as container_server from swift.obj import server as object_server, mem_server as mem_object_server import swift.proxy.controllers.obj # In order to get the proper blocking behavior of sockets without using # threads, where we can set an arbitrary timeout for some piece of code under # test, we use eventlet with the standard socket library patched. We have to # perform this setup at module import time, since all the socket module # bindings in the swiftclient code will have been made by the time nose # invokes the package or class setup methods. eventlet.hubs.use_hub(utils.get_hub()) eventlet.patcher.monkey_patch(all=False, socket=True) eventlet.debug.hub_exceptions(False) from swiftclient import get_auth, http_connection has_insecure = False try: from swiftclient import __version__ as client_version # Prevent a ValueError in StrictVersion with '2.0.3.68.ga99c2ff' client_version = '.'.join(client_version.split('.')[:3]) except ImportError: # Pre-PBR we had version, not __version__. Anyhow... client_version = '1.2' from distutils.version import StrictVersion if StrictVersion(client_version) >= StrictVersion('2.0'): has_insecure = True config = {} web_front_end = None normalized_urls = None # If no config was read, we will fall back to old school env vars swift_test_auth_version = None swift_test_auth = os.environ.get('SWIFT_TEST_AUTH') swift_test_user = [os.environ.get('SWIFT_TEST_USER'), None, None, ''] swift_test_key = [os.environ.get('SWIFT_TEST_KEY'), None, None, ''] swift_test_tenant = ['', '', '', ''] swift_test_perm = ['', '', '', ''] swift_test_domain = ['', '', '', ''] swift_test_user_id = ['', '', '', ''] swift_test_tenant_id = ['', '', '', ''] skip, skip2, skip3 = False, False, False orig_collate = '' insecure = False orig_hash_path_suff_pref = ('', '') orig_swift_conf_name = None in_process = False _testdir = _test_servers = _test_sockets = _test_coros = None class FakeMemcacheMiddleware(object): """ Caching middleware that fakes out caching in swift. """ def __init__(self, app, conf): self.app = app self.memcache = FakeMemcache() def __call__(self, env, start_response): env['swift.cache'] = self.memcache return self.app(env, start_response) def fake_memcache_filter_factory(conf): def filter_app(app): return FakeMemcacheMiddleware(app, conf) return filter_app # swift.conf contents for in-process functional test runs functests_swift_conf = ''' [swift-hash] swift_hash_path_suffix = inprocfunctests swift_hash_path_prefix = inprocfunctests [swift-constraints] max_file_size = %d ''' % ((8 * 1024 * 1024) + 2) # 8 MB + 2 def in_process_setup(the_object_server=object_server): print >>sys.stderr, 'IN-PROCESS SERVERS IN USE FOR FUNCTIONAL TESTS' print >>sys.stderr, 'Using object_server: %s' % the_object_server.__name__ monkey_patch_mimetools() global _testdir _testdir = os.path.join(mkdtemp(), 'tmp_functional') utils.mkdirs(_testdir) rmtree(_testdir) utils.mkdirs(os.path.join(_testdir, 'sda1')) utils.mkdirs(os.path.join(_testdir, 'sda1', 'tmp')) utils.mkdirs(os.path.join(_testdir, 'sdb1')) utils.mkdirs(os.path.join(_testdir, 'sdb1', 'tmp')) swift_conf = os.path.join(_testdir, "swift.conf") with open(swift_conf, "w") as scfp: scfp.write(functests_swift_conf) global orig_swift_conf_name orig_swift_conf_name = utils.SWIFT_CONF_FILE utils.SWIFT_CONF_FILE = swift_conf constraints.reload_constraints() storage_policy.SWIFT_CONF_FILE = swift_conf storage_policy.reload_storage_policies() global config if constraints.SWIFT_CONSTRAINTS_LOADED: # Use the swift constraints that are loaded for the test framework # configuration config.update(constraints.EFFECTIVE_CONSTRAINTS) else: # In-process swift constraints were not loaded, somethings wrong raise SkipTest global orig_hash_path_suff_pref orig_hash_path_suff_pref = utils.HASH_PATH_PREFIX, utils.HASH_PATH_SUFFIX utils.validate_hash_conf() # We create the proxy server listening socket to get its port number so # that we can add it as the "auth_port" value for the functional test # clients. prolis = eventlet.listen(('localhost', 0)) # The following set of configuration values is used both for the # functional test frame work and for the various proxy, account, container # and object servers. config.update({ # Values needed by the various in-process swift servers 'devices': _testdir, 'swift_dir': _testdir, 'mount_check': 'false', 'client_timeout': 4, 'allow_account_management': 'true', 'account_autocreate': 'true', 'allowed_headers': 'content-disposition, content-encoding, x-delete-at,' ' x-object-manifest, x-static-large-object', 'allow_versions': 'True', # Below are values used by the functional test framework, as well as # by the various in-process swift servers 'auth_host': '127.0.0.1', 'auth_port': str(prolis.getsockname()[1]), 'auth_ssl': 'no', 'auth_prefix': '/auth/', # Primary functional test account (needs admin access to the # account) 'account': 'test', 'username': 'tester', 'password': 'testing', # User on a second account (needs admin access to the account) 'account2': 'test2', 'username2': 'tester2', 'password2': 'testing2', # User on same account as first, but without admin access 'username3': 'tester3', 'password3': 'testing3', # For tempauth middleware 'user_admin_admin': 'admin .admin .reseller_admin', 'user_test_tester': 'testing .admin', 'user_test2_tester2': 'testing2 .admin', 'user_test_tester3': 'testing3' }) acc1lis = eventlet.listen(('localhost', 0)) acc2lis = eventlet.listen(('localhost', 0)) con1lis = eventlet.listen(('localhost', 0)) con2lis = eventlet.listen(('localhost', 0)) obj1lis = eventlet.listen(('localhost', 0)) obj2lis = eventlet.listen(('localhost', 0)) global _test_sockets _test_sockets = \ (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis) account_ring_path = os.path.join(_testdir, 'account.ring.gz') with closing(GzipFile(account_ring_path, 'wb')) as f: pickle.dump(ring.RingData([[0, 1, 0, 1], [1, 0, 1, 0]], [{'id': 0, 'zone': 0, 'device': 'sda1', 'ip': '127.0.0.1', 'port': acc1lis.getsockname()[1]}, {'id': 1, 'zone': 1, 'device': 'sdb1', 'ip': '127.0.0.1', 'port': acc2lis.getsockname()[1]}], 30), f) container_ring_path = os.path.join(_testdir, 'container.ring.gz') with closing(GzipFile(container_ring_path, 'wb')) as f: pickle.dump(ring.RingData([[0, 1, 0, 1], [1, 0, 1, 0]], [{'id': 0, 'zone': 0, 'device': 'sda1', 'ip': '127.0.0.1', 'port': con1lis.getsockname()[1]}, {'id': 1, 'zone': 1, 'device': 'sdb1', 'ip': '127.0.0.1', 'port': con2lis.getsockname()[1]}], 30), f) object_ring_path = os.path.join(_testdir, 'object.ring.gz') with closing(GzipFile(object_ring_path, 'wb')) as f: pickle.dump(ring.RingData([[0, 1, 0, 1], [1, 0, 1, 0]], [{'id': 0, 'zone': 0, 'device': 'sda1', 'ip': '127.0.0.1', 'port': obj1lis.getsockname()[1]}, {'id': 1, 'zone': 1, 'device': 'sdb1', 'ip': '127.0.0.1', 'port': obj2lis.getsockname()[1]}], 30), f) eventlet.wsgi.HttpProtocol.default_request_version = "HTTP/1.0" # Turn off logging requests by the underlying WSGI software. eventlet.wsgi.HttpProtocol.log_request = lambda *a: None logger = utils.get_logger(config, 'wsgi-server', log_route='wsgi') # Redirect logging other messages by the underlying WSGI software. eventlet.wsgi.HttpProtocol.log_message = \ lambda s, f, *a: logger.error('ERROR WSGI: ' + f % a) # Default to only 4 seconds for in-process functional test runs eventlet.wsgi.WRITE_TIMEOUT = 4 prosrv = proxy_server.Application(config, logger=debug_logger('proxy')) acc1srv = account_server.AccountController( config, logger=debug_logger('acct1')) acc2srv = account_server.AccountController( config, logger=debug_logger('acct2')) con1srv = container_server.ContainerController( config, logger=debug_logger('cont1')) con2srv = container_server.ContainerController( config, logger=debug_logger('cont2')) obj1srv = the_object_server.ObjectController( config, logger=debug_logger('obj1')) obj2srv = the_object_server.ObjectController( config, logger=debug_logger('obj2')) global _test_servers _test_servers = \ (prosrv, acc1srv, acc2srv, con1srv, con2srv, obj1srv, obj2srv) pipeline = [ catch_errors.filter_factory, gatekeeper.filter_factory, healthcheck.filter_factory, proxy_logging.filter_factory, fake_memcache_filter_factory, container_sync.filter_factory, bulk.filter_factory, tempurl.filter_factory, slo.filter_factory, dlo.filter_factory, ratelimit.filter_factory, tempauth.filter_factory, container_quotas.filter_factory, account_quotas.filter_factory, proxy_logging.filter_factory, ] app = prosrv import mock for filter_factory in reversed(pipeline): app_filter = filter_factory(config) with mock.patch('swift.common.utils') as mock_utils: mock_utils.get_logger.return_value = None app = app_filter(app) app.logger = prosrv.logger nl = utils.NullLogger() prospa = eventlet.spawn(eventlet.wsgi.server, prolis, app, nl) acc1spa = eventlet.spawn(eventlet.wsgi.server, acc1lis, acc1srv, nl) acc2spa = eventlet.spawn(eventlet.wsgi.server, acc2lis, acc2srv, nl) con1spa = eventlet.spawn(eventlet.wsgi.server, con1lis, con1srv, nl) con2spa = eventlet.spawn(eventlet.wsgi.server, con2lis, con2srv, nl) obj1spa = eventlet.spawn(eventlet.wsgi.server, obj1lis, obj1srv, nl) obj2spa = eventlet.spawn(eventlet.wsgi.server, obj2lis, obj2srv, nl) global _test_coros _test_coros = \ (prospa, acc1spa, acc2spa, con1spa, con2spa, obj1spa, obj2spa) # Create accounts "test" and "test2" def create_account(act): ts = utils.normalize_timestamp(time()) partition, nodes = prosrv.account_ring.get_nodes(act) for node in nodes: # Note: we are just using the http_connect method in the object # controller here to talk to the account server nodes. conn = swift.proxy.controllers.obj.http_connect( node['ip'], node['port'], node['device'], partition, 'PUT', '/' + act, {'X-Timestamp': ts, 'x-trans-id': act}) resp = conn.getresponse() assert(resp.status == 201) create_account('AUTH_test') create_account('AUTH_test2') cluster_info = {} def get_cluster_info(): # The fallback constraints used for testing will come from the current # effective constraints. eff_constraints = dict(constraints.EFFECTIVE_CONSTRAINTS) # We'll update those constraints based on what the /info API provides, if # anything. global cluster_info try: conn = Connection(config) conn.authenticate() cluster_info.update(conn.cluster_info()) except (ResponseError, socket.error): # Failed to get cluster_information via /info API, so fall back on # test.conf data pass else: try: eff_constraints.update(cluster_info['swift']) except KeyError: # Most likely the swift cluster has "expose_info = false" set # in its proxy-server.conf file, so we'll just do the best we # can. print >>sys.stderr, "** Swift Cluster not exposing /info **" # Finally, we'll allow any constraint present in the swift-constraints # section of test.conf to override everything. Note that only those # constraints defined in the constraints module are converted to integers. test_constraints = get_config('swift-constraints') for k in constraints.DEFAULT_CONSTRAINTS: try: test_constraints[k] = int(test_constraints[k]) except KeyError: pass except ValueError: print >>sys.stderr, "Invalid constraint value: %s = %s" % ( k, test_constraints[k]) eff_constraints.update(test_constraints) # Just make it look like these constraints were loaded from a /info call, # even if the /info call failed, or when they are overridden by values # from the swift-constraints section of test.conf cluster_info['swift'] = eff_constraints def setup_package(): in_process_env = os.environ.get('SWIFT_TEST_IN_PROCESS') if in_process_env is not None: use_in_process = utils.config_true_value(in_process_env) else: use_in_process = None global in_process if use_in_process: # Explicitly set to True, so barrel on ahead with in-process # functional test setup. in_process = True # NOTE: No attempt is made to a read local test.conf file. else: if use_in_process is None: # Not explicitly set, default to using in-process functional tests # if the test.conf file is not found, or does not provide a usable # configuration. config.update(get_config('func_test')) if config: in_process = False else: in_process = True else: # Explicitly set to False, do not attempt to use in-process # functional tests, be sure we attempt to read from local # test.conf file. in_process = False config.update(get_config('func_test')) if in_process: in_mem_obj_env = os.environ.get('SWIFT_TEST_IN_MEMORY_OBJ') in_mem_obj = utils.config_true_value(in_mem_obj_env) in_process_setup(the_object_server=( mem_object_server if in_mem_obj else object_server)) global web_front_end web_front_end = config.get('web_front_end', 'integral') global normalized_urls normalized_urls = config.get('normalized_urls', False) global orig_collate orig_collate = locale.setlocale(locale.LC_COLLATE) locale.setlocale(locale.LC_COLLATE, config.get('collate', 'C')) global insecure insecure = config_true_value(config.get('insecure', False)) global swift_test_auth_version global swift_test_auth global swift_test_user global swift_test_key global swift_test_tenant global swift_test_perm global swift_test_domain if config: swift_test_auth_version = str(config.get('auth_version', '1')) swift_test_auth = 'http' if config_true_value(config.get('auth_ssl', 'no')): swift_test_auth = 'https' if 'auth_prefix' not in config: config['auth_prefix'] = '/' try: suffix = '://%(auth_host)s:%(auth_port)s%(auth_prefix)s' % config swift_test_auth += suffix except KeyError: pass # skip if swift_test_auth_version == "1": swift_test_auth += 'v1.0' try: if 'account' in config: swift_test_user[0] = '%(account)s:%(username)s' % config else: swift_test_user[0] = '%(username)s' % config swift_test_key[0] = config['password'] except KeyError: # bad config, no account/username configured, tests cannot be # run pass try: swift_test_user[1] = '%s%s' % ( '%s:' % config['account2'] if 'account2' in config else '', config['username2']) swift_test_key[1] = config['password2'] except KeyError: pass # old config, no second account tests can be run try: swift_test_user[2] = '%s%s' % ( '%s:' % config['account'] if 'account' in config else '', config['username3']) swift_test_key[2] = config['password3'] except KeyError: pass # old config, no third account tests can be run for _ in range(3): swift_test_perm[_] = swift_test_user[_] else: swift_test_user[0] = config['username'] swift_test_tenant[0] = config['account'] swift_test_key[0] = config['password'] swift_test_user[1] = config['username2'] swift_test_tenant[1] = config['account2'] swift_test_key[1] = config['password2'] swift_test_user[2] = config['username3'] swift_test_tenant[2] = config['account'] swift_test_key[2] = config['password3'] if 'username4' in config: swift_test_user[3] = config['username4'] swift_test_tenant[3] = config['account4'] swift_test_key[3] = config['password4'] swift_test_domain[3] = config['domain4'] for _ in range(4): swift_test_perm[_] = swift_test_tenant[_] + ':' \ + swift_test_user[_] global skip skip = not all([swift_test_auth, swift_test_user[0], swift_test_key[0]]) if skip: print >>sys.stderr, 'SKIPPING FUNCTIONAL TESTS DUE TO NO CONFIG' global skip2 skip2 = not all([not skip, swift_test_user[1], swift_test_key[1]]) if not skip and skip2: print >>sys.stderr, \ 'SKIPPING SECOND ACCOUNT FUNCTIONAL TESTS' \ ' DUE TO NO CONFIG FOR THEM' global skip3 skip3 = not all([not skip, swift_test_user[2], swift_test_key[2]]) if not skip and skip3: print >>sys.stderr, \ 'SKIPPING THIRD ACCOUNT FUNCTIONAL TESTS DUE TO NO CONFIG FOR THEM' global skip_if_not_v3 skip_if_not_v3 = (swift_test_auth_version != '3' or not all([not skip, swift_test_user[3], swift_test_key[3]])) if not skip and skip_if_not_v3: print >>sys.stderr, \ 'SKIPPING FUNCTIONAL TESTS SPECIFIC TO AUTH VERSION 3' get_cluster_info() def teardown_package(): global orig_collate locale.setlocale(locale.LC_COLLATE, orig_collate) # clean up containers and objects left behind after running tests conn = Connection(config) conn.authenticate() account = Account(conn, config.get('account', config['username'])) account.delete_containers() global in_process if in_process: try: for server in _test_coros: server.kill() except Exception: pass try: rmtree(os.path.dirname(_testdir)) except Exception: pass utils.HASH_PATH_PREFIX, utils.HASH_PATH_SUFFIX = \ orig_hash_path_suff_pref utils.SWIFT_CONF_FILE = orig_swift_conf_name constraints.reload_constraints() class AuthError(Exception): pass class InternalServerError(Exception): pass url = [None, None, None, None] token = [None, None, None, None] parsed = [None, None, None, None] conn = [None, None, None, None] def connection(url): if has_insecure: return http_connection(url, insecure=insecure) return http_connection(url) def retry(func, *args, **kwargs): """ You can use the kwargs to override: 'retries' (default: 5) 'use_account' (default: 1) - which user's token to pass 'url_account' (default: matches 'use_account') - which user's storage URL 'resource' (default: url[url_account] - URL to connect to; retry() will interpolate the variable :storage_url: if present """ global url, token, parsed, conn retries = kwargs.get('retries', 5) attempts, backoff = 0, 1 # use account #1 by default; turn user's 1-indexed account into 0-indexed use_account = kwargs.pop('use_account', 1) - 1 # access our own account by default url_account = kwargs.pop('url_account', use_account + 1) - 1 os_options = {'user_domain_name': swift_test_domain[use_account], 'project_domain_name': swift_test_domain[use_account]} while attempts <= retries: attempts += 1 try: if not url[use_account] or not token[use_account]: url[use_account], token[use_account] = \ get_auth(swift_test_auth, swift_test_user[use_account], swift_test_key[use_account], snet=False, tenant_name=swift_test_tenant[use_account], auth_version=swift_test_auth_version, os_options=os_options) parsed[use_account] = conn[use_account] = None if not parsed[use_account] or not conn[use_account]: parsed[use_account], conn[use_account] = \ connection(url[use_account]) # default resource is the account url[url_account] resource = kwargs.pop('resource', '%(storage_url)s') template_vars = {'storage_url': url[url_account]} parsed_result = urlparse(resource % template_vars) return func(url[url_account], token[use_account], parsed_result, conn[url_account], *args, **kwargs) except (socket.error, HTTPException): if attempts > retries: raise parsed[use_account] = conn[use_account] = None except AuthError: url[use_account] = token[use_account] = None continue except InternalServerError: pass if attempts <= retries: sleep(backoff) backoff *= 2 raise Exception('No result after %s retries.' % retries) def check_response(conn): resp = conn.getresponse() if resp.status == 401: resp.read() raise AuthError() elif resp.status // 100 == 5: resp.read() raise InternalServerError() return resp def load_constraint(name): global cluster_info try: c = cluster_info['swift'][name] except KeyError: raise SkipTest("Missing constraint: %s" % name) if not isinstance(c, int): raise SkipTest("Bad value, %r, for constraint: %s" % (c, name)) return c def get_storage_policy_from_cluster_info(info): policies = info['swift'].get('policies', {}) default_policy = [] non_default_policies = [] for p in policies: if p.get('default', {}): default_policy.append(p) else: non_default_policies.append(p) return default_policy, non_default_policies def reset_acl(): def post(url, token, parsed, conn): conn.request('POST', parsed.path, '', { 'X-Auth-Token': token, 'X-Account-Access-Control': '{}' }) return check_response(conn) resp = retry(post, use_account=1) resp.read() def requires_acls(f): @functools.wraps(f) def wrapper(*args, **kwargs): global skip, cluster_info if skip or not cluster_info: raise SkipTest # Determine whether this cluster has account ACLs; if not, skip test if not cluster_info.get('tempauth', {}).get('account_acls'): raise SkipTest if 'keystoneauth' in cluster_info: # remove when keystoneauth supports account acls raise SkipTest reset_acl() try: rv = f(*args, **kwargs) finally: reset_acl() return rv return wrapper class FunctionalStoragePolicyCollection(object): def __init__(self, policies): self._all = policies self.default = None for p in self: if p.get('default', False): assert self.default is None, 'Found multiple default ' \ 'policies %r and %r' % (self.default, p) self.default = p @classmethod def from_info(cls, info=None): if not (info or cluster_info): get_cluster_info() info = info or cluster_info try: policy_info = info['swift']['policies'] except KeyError: raise AssertionError('Did not find any policy info in %r' % info) policies = cls(policy_info) assert policies.default, \ 'Did not find default policy in %r' % policy_info return policies def __len__(self): return len(self._all) def __iter__(self): return iter(self._all) def __getitem__(self, index): return self._all[index] def filter(self, **kwargs): return self.__class__([p for p in self if all( p.get(k) == v for k, v in kwargs.items())]) def exclude(self, **kwargs): return self.__class__([p for p in self if all( p.get(k) != v for k, v in kwargs.items())]) def select(self): return random.choice(self) def requires_policies(f): @functools.wraps(f) def wrapper(self, *args, **kwargs): if skip: raise SkipTest try: self.policies = FunctionalStoragePolicyCollection.from_info() except AssertionError: raise SkipTest("Unable to determine available policies") if len(self.policies) < 2: raise SkipTest("Multiple policies not enabled") return f(self, *args, **kwargs) return wrapper
36.603133
79
0.634389
1c4da840d1b02cac2a696c76cc31d30757ac9afb
344
py
Python
ch07/07_09.py
leeseedong/book-cryptocurrency
58c0bb3f5a80f8cc73ba47c4839be3bd33c9d67c
[ "Apache-2.0" ]
121
2019-03-23T13:53:06.000Z
2022-03-28T15:15:03.000Z
ch07/07_09.py
leeseedong/book-cryptocurrency
58c0bb3f5a80f8cc73ba47c4839be3bd33c9d67c
[ "Apache-2.0" ]
3
2021-04-14T14:31:26.000Z
2021-05-09T13:46:14.000Z
ch07/07_09.py
leeseedong/book-cryptocurrency
58c0bb3f5a80f8cc73ba47c4839be3bd33c9d67c
[ "Apache-2.0" ]
114
2019-03-21T13:43:03.000Z
2022-03-31T18:42:11.000Z
import pybithumb import numpy as np df = pybithumb.get_ohlcv("BTC") df = df['2018'] df['range'] = (df['high'] - df['low']) * 0.5 df['target'] = df['open'] + df['range'].shift(1) df['ror'] = np.where(df['high'] > df['target'], df['close'] / df['target'], 1) ror = df['ror'].cumprod()[-2] print(ror)
21.5
48
0.505814
13b84123abf3bc2e468a223d7995e489fea72362
539
py
Python
plotly/validators/scattergeo/marker/colorbar/titlefont/_size.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/scattergeo/marker/colorbar/titlefont/_size.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
1
2020-12-15T16:56:11.000Z
2020-12-15T16:56:11.000Z
plotly/validators/scattergeo/marker/colorbar/titlefont/_size.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class SizeValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='size', parent_name='scattergeo.marker.colorbar.titlefont', **kwargs ): super(SizeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'calc'), min=kwargs.pop('min', 1), role=kwargs.pop('role', 'style'), **kwargs )
26.95
66
0.597403
9a673d0823617f1e57ab61e645a2b71a7950e3f5
1,409
py
Python
card.py
catInside/ES_best_team
580c567369b03c0f2350bc4c9d7289b092cc104a
[ "Apache-2.0" ]
null
null
null
card.py
catInside/ES_best_team
580c567369b03c0f2350bc4c9d7289b092cc104a
[ "Apache-2.0" ]
null
null
null
card.py
catInside/ES_best_team
580c567369b03c0f2350bc4c9d7289b092cc104a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from character import Character class Card(object): def __init__(self, name, point, char_name): self.name = name self.point = point self.char_name = char_name self.char = None def __eq__(self, other): if isinstance(other, Character): return self.char_name == other.name else: return self.name == other.name def __ne__(self, other): return self.name != other.name def __ge__(self, other): return self.point >= other.point def __gt__(self, other): return self.point > other.point def __le__(self, other): return self.point <= other.point def __lt__(self, other): return self.point < other.point def __add__(self, other): return self.point + other.point def __radd__(self, num): return self.point + num def __repr__(self): return self.char_name + ': ' + self.name def __str__(self): return self.char_name + ': ' + self.name def add_char(self, char): if char.name == self.char_name: self.char = char
28.18
60
0.479063
b838f5fe549bb4358128f3f652c93844cc7b1dcc
480
py
Python
Fractions/__init__.py
alexcamargos/Learning_Python_Programming
f1cce9f85a672468b6ed1eb98dea9f7c09443722
[ "MIT" ]
2
2021-06-04T23:39:14.000Z
2021-09-15T05:36:35.000Z
Fractions/__init__.py
alexcamargos/Learning_Python_Programming
f1cce9f85a672468b6ed1eb98dea9f7c09443722
[ "MIT" ]
null
null
null
Fractions/__init__.py
alexcamargos/Learning_Python_Programming
f1cce9f85a672468b6ed1eb98dea9f7c09443722
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # # ----------------------------------------------------------------------------------------------------------------------- # Name: Fractions # Version: 0.0.1 # Summary: fractions.py - implements a rational numbers # # Author: Alexsander Lopes Camargos # Author-email: alcamargos@vivaldi.net # # License: MIT # -----------------------------------------------------------------------------------------------------------------------
34.285714
122
0.341667
6c466adbde4791d8151eb64ba2b26f4456c73990
1,074
py
Python
socialite/apps/twitter/decorators.py
dgouldin/django-socialite
4de4060f5d8ab89ae9dd4032e66e526873351ba4
[ "MIT" ]
1
2015-01-30T19:05:26.000Z
2015-01-30T19:05:26.000Z
socialite/apps/twitter/decorators.py
dgouldin/django-socialite
4de4060f5d8ab89ae9dd4032e66e526873351ba4
[ "MIT" ]
null
null
null
socialite/apps/twitter/decorators.py
dgouldin/django-socialite
4de4060f5d8ab89ae9dd4032e66e526873351ba4
[ "MIT" ]
2
2016-06-26T13:49:31.000Z
2021-08-13T01:00:15.000Z
import urllib import urlparse from django.conf import settings from django.contrib.auth import logout from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect def twitter_login_required(func): def inner(request, *args, **kwargs): # hack the impersonate paramter out of the querystring before continuing params = dict(urlparse.parse_qsl(request.META['QUERY_STRING'])) impersonate = params.pop(settings.TWITTER_IMPERSONATE_SESSION_KEY, None) if impersonate is not None: logout(request) if not request.user.is_authenticated(): redirect_url = reverse('twitter_authenticate') request.META['QUERY_STRING'] = urllib.urlencode(params) if impersonate: request.session[settings.TWITTER_IMPERSONATE_SESSION_KEY] = impersonate return HttpResponseRedirect('%s?%s' % (redirect_url, urllib.urlencode({ 'next': request.get_full_path(), }))) return func(request, *args, **kwargs) return inner
37.034483
87
0.687151
ea865e7832061ca11eeb9a2676141f671a136da5
554
py
Python
twobuntu/articles/migrations/0002_article_image.py
muhiza/originarities
ca0a67363579e6237127386f13baa2ab7a7c2717
[ "Apache-2.0" ]
16
2015-01-12T12:25:28.000Z
2021-06-22T03:23:44.000Z
twobuntu/articles/migrations/0002_article_image.py
muhiza/originarities
ca0a67363579e6237127386f13baa2ab7a7c2717
[ "Apache-2.0" ]
5
2015-01-02T01:23:40.000Z
2015-10-22T06:11:40.000Z
twobuntu/articles/migrations/0002_article_image.py
muhiza/originarities
ca0a67363579e6237127386f13baa2ab7a7c2717
[ "Apache-2.0" ]
11
2015-01-27T06:23:45.000Z
2020-05-20T11:46:12.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('images', '0001_initial'), ('articles', '0001_initial'), ] operations = [ migrations.AddField( model_name='article', name='image', field=models.ForeignKey(blank=True, to='images.Image', help_text=b'An image highlighting the contents of the article.', null=True), preserve_default=True, ), ]
25.181818
143
0.613718
11597855bc41e62f8ffb42fdfd67ab1b4a3f9d81
6,437
py
Python
nagare/validate.py
nagareproject/config
8832debb888f771f6112ae07698bc355354a783c
[ "BSD-3-Clause" ]
null
null
null
nagare/validate.py
nagareproject/config
8832debb888f771f6112ae07698bc355354a783c
[ "BSD-3-Clause" ]
null
null
null
nagare/validate.py
nagareproject/config
8832debb888f771f6112ae07698bc355354a783c
[ "BSD-3-Clause" ]
null
null
null
# Encoding: utf-8 # -- # Copyright (c) 2008-2021 Net-ng. # All rights reserved. # # This software is licensed under the BSD License, as described in # the file LICENSE.txt, which you should have received as part of # this distribution. # -- from functools import partial from .config_exceptions import SpecificationError, ParameterError NO_DEFAULT = object() class Validator(object): def __getitem__(self, name): if name.startswith('_'): raise AttributeError(name) if name == 'True': return True if name == 'False': return False return getattr(self, name, name) @staticmethod def _number(convert, min, max, default, v, ancestors_names, name): if v is None: return default if isinstance(v, list): raise ParameterError('not a number {}'.format(repr(v)), sections=ancestors_names, name=name) try: v = convert(v) except ValueError: raise ParameterError('not a number {}'.format(repr(v)), sections=ancestors_names, name=name) if (min is not None) and (v < min): raise ParameterError("the value '{}' is too small".format(v), sections=ancestors_names, name=name) if (max is not None) and (v > max): raise ParameterError("the value '{}' is too big".format(v), sections=ancestors_names, name=name) return v @classmethod def integer(cls, min=None, max=None, default=NO_DEFAULT, help=None): return partial(cls._number, int, min, max, default) @classmethod def float(cls, *args, **params): min = params.get('min') max = params.get('min') default = params.get('default', NO_DEFAULT) return float(*args) if (args or default is NO_DEFAULT) else partial(cls._number, float, min, max, default) @staticmethod def _to_boolean(v): v = v.strip().lower() if v in ('true', 'on', 'yes', '1'): return True if v in ('false', 'off', 'no', '0'): return False raise ValueError('not a boolean {}'.format(repr(v))) @classmethod def _boolean(cls, default, v, ancestors_names, name): error = ParameterError('not a boolean {}'.format(repr(v)), sections=ancestors_names, name=name) if v is None: return default if isinstance(v, bool): return v if isinstance(v, list): raise error try: return cls._to_boolean(v) except ValueError: raise error @classmethod def boolean(cls, default=NO_DEFAULT, help=None): return partial(cls._boolean, default) @staticmethod def _string(default, v, ancestors_names, name): if v is None: return default if isinstance(v, list): raise ParameterError('not a string {}'.format(repr(v)), sections=ancestors_names, name=name) return v @classmethod def string(cls, default=NO_DEFAULT, help=None): return partial(cls._string, default) @staticmethod def _list(convert, min, max, default, v, ancestors_names, name): if v is None: return default if not isinstance(v, (list, tuple)): v = v.split(',') if (min is not None) and (len(v) < min): raise ParameterError('not enougth elements {}'.format(v), sections=ancestors_names, name=name) if (max is not None) and (len(v) > max): raise ParameterError('too many elements {}'.format(v), sections=ancestors_names, name=name) try: return [convert(e) for e in v] except ValueError: raise ParameterError('invalid value(s) in {}'.format(v), sections=ancestors_names, name=name) @classmethod def list(cls, *args, **params): min = params.get('min') max = params.get('min') default = params.get('default', NO_DEFAULT) help = params.get('help') list_constructor = args or (min, max, default, help) == (None, None, NO_DEFAULT, None) return list(args) if list_constructor else partial(cls._list, str, min, max, default) @classmethod def string_list(cls, min=None, max=None, default=NO_DEFAULT, help=None): return partial(cls._list, str, min, max, default) force_list = string_list @classmethod def _tuple(cls, min, max, default, v, ancestors_names, name): return tuple(cls._list(str, min, max, default, v, ancestors_names, name)) @classmethod def tuple(cls, *args, **params): min = params.get('min') max = params.get('min') default = params.get('default', NO_DEFAULT) help = params.get('help') tuple_constructor = args or (min, max, default, help) == (None, None, NO_DEFAULT, None) return args if tuple_constructor else partial(cls._tuple, min, max, default) @classmethod def int_list(cls, min=None, max=None, default=NO_DEFAULT, help=None): return partial(cls._list, int, min, max, default) @classmethod def float_list(cls, min=None, max=None, default=NO_DEFAULT, help=None): return partial(cls._list, float, min, max, default) @classmethod def bool_list(cls, min=None, max=None, default=NO_DEFAULT, help=None): return partial(cls._list, cls._to_boolean, min, max, default) @staticmethod def _option(options, default, v, ancestors_names, name): if v is None: return default if v not in options: raise ParameterError('not a valid option {}'.format(repr(v)), sections=ancestors_names, name=name) return v @classmethod def option(cls, *args, **params): default = params.get('default', NO_DEFAULT) return partial(cls._option, args, default) def validate(self, expr, v, ancestors_name, name): try: validation = eval(expr, {}, self) if not isinstance(validation, partial): validation = validation() return validation(v, ancestors_name, name) except Exception as e: e = SpecificationError('invalid specification {}'.format(repr(expr)), sections=ancestors_name, name=name) e.__cause__ = None raise e def get_default_value(self, expr, ancestors_names, name): return self.validate(expr, None, ancestors_names, name)
31.4
117
0.614727
2dfa2de408ddc95e57f93088944f3b784b9cc8e0
8,755
py
Python
spark/spark_admin.py
wensheng/spark
ab47107d000f0670f4cfe131637f72471a04cfb2
[ "MIT" ]
null
null
null
spark/spark_admin.py
wensheng/spark
ab47107d000f0670f4cfe131637f72471a04cfb2
[ "MIT" ]
null
null
null
spark/spark_admin.py
wensheng/spark
ab47107d000f0670f4cfe131637f72471a04cfb2
[ "MIT" ]
null
null
null
import os import sys import shutil import spark from optparse import OptionParser join = os.path.join cur_dir = os.getcwd() proj_template = join(spark.__path__[0],'proj') files_dir = join(proj_template,'files') def main(): usage = "usage: %prog [options] [args]" parser = OptionParser(usage) parser.add_option("-c", "--create", type="string", nargs=1, dest="name", help="create a new spark project") parser.add_option("--demo", choices=('mysql','sqlite'), dest="db_choice", help="setup demo wiki controllers and related files\ndb_choice is either mysql or sqlite") parser.add_option("--admin", action="store_true", dest="admin", help="setup admin controller") (options, args) = parser.parse_args() if options.name: setup_proj(options.name) elif options.db_choice: setup_demo(options.db_choice) elif options.admin: setup_admin() else: print_help(parser) #try: # action = args[0] #except IndexError: # print_help(parser) def print_help(parser): parser.print_help(sys.stderr) sys.exit() def setup_proj(name): proj_dir = join(cur_dir,name) os.mkdir(proj_dir) shutil.copytree(join(proj_template,'scripts'), join(proj_dir,'scripts')) shutil.copytree(join(proj_template,'etc'), join(proj_dir,'etc')) os.chmod(join(proj_dir,'etc','cgiserver.py'),0755) os.chmod(join(proj_dir,'etc','python.fcgi'),0755) shutil.copytree(join(proj_template,'webdir'), join(proj_dir,'webdir')) os.mkdir(join(proj_dir,'log')) os.mkdir(join(proj_dir,'cache')) os.chmod(join(proj_dir,'cache'),0777) os.mkdir(join(proj_dir,'public')) os.mkdir(join(proj_dir,'templates')) import spark.sprite import socket tp1 = spark.sprite.Sprite("apache_modpython.conf",files_dir) fw1 = open(join(proj_dir,'etc','apache_modpython.conf'),'w') tp1.set_vars({'proj_dir':proj_dir,'server_name':socket.getfqdn()}) fw1.write("\n".join(tp1.display(1))) fw1.close() fw1.close() fr2 = open(join(files_dir,'lighttpd_python.conf')) fw2 = open(join(proj_dir,'etc','lighttpd_python.conf'),'w') fw2.write(fr2.read()) fr2.close() fw2.close() def setup_demo(db): controllers = join(cur_dir,'webdir') templates = join(cur_dir,'templates') if not (os.path.isdir(controllers) and os.path.isdir(templates)): print "You are NOT in a spark project directory" sys.exit() import spark.sprite tp1 = spark.sprite.Sprite("wiki_controller.pytp",files_dir) fw1 = open(join(controllers,'wiki_controller.py'),'w') tp2 = spark.sprite.Sprite("ajaxwiki_controller.pytp",files_dir) fw2 = open(join(controllers,'ajaxwiki_controller.py'),'w') if db=="mysql": try: import MySQLdb except ImportError: print "you don't have mysql python module installed" sys.exit() print "You are about to create a database called sparkdemo." print "Make sure the user has the priviledge to do that." user = raw_input("what's db username? [root] >>") if not user: user = "root" passwd = raw_input("what's db password? [] >>") from spark.dbmysql import DbSpark db = DbSpark(user=user,passwd=passwd) db.q("""CREATE DATABASE sparkdemo; USE sparkdemo; CREATE TABLE wiki( word VARCHAR(100) NOT NULL UNIQUE, content TEXT NOT NULL);""" ) vars_assign = {'driver':'mysql', 'dbstring':'db="sparkdemo",user="%s",passwd="%s"'%(user,passwd), 'ismysql':[{}], } tp1.set_vars(vars_assign) tp2.set_vars(vars_assign) else: from spark.dbsqlite import DbSpark dbname = join(cur_dir,'etc','sparkdemo.db') db = DbSpark(db=dbname) db.q("""create table wiki( word VARCHAR NOT NULL UNIQUE, content TEXT NOT NULL)""") db.commit() vars_assign = {'driver':'sqlite', 'dbstring':'db="%s"' % dbname, } tp1.set_vars(vars_assign) tp2.set_vars(vars_assign) fw1.write("\n".join(tp1.display(1))) fw1.close() fw2.write("\n".join(tp2.display(1))) fw2.close() try: import simplejson except ImportError: import spark.contribs.ez_setup as ez_setup ez_setup.main(["simplejson"]) if not os.path.isdir(join(cur_dir,'templates','wiki')): os.mkdir(join(cur_dir,'templates','wiki')) if not os.path.isdir(join(cur_dir,'public','js')): os.mkdir(join(cur_dir,'public','js')) shutil.copy(join(files_dir,'wiki.html'),join(cur_dir,'templates','wiki')) shutil.copy(join(files_dir,'awiki.js'),join(cur_dir,'public','js')) print "For ajaxwiki to work, Dojotoolkit (3.4Mb) is required." answer = raw_input("Do you want to download and install Dojo now? [y,n]") if answer in ["y", "Y"]: dojo_dir = join(cur_dir,'public','js','dojo') if not os.path.isdir(dojo_dir): os.mkdir(dojo_dir, 0755) dojof = download2temp('http://download.dojotoolkit.org/release-0.3.1/dojo-0.3.1-ajax.zip') unzip_install(dojof,dojo_dir) else: print "you need to manually download Dojo and install it into public/js/dojo" def download2temp(url): import urllib2 fr = urllib2.urlopen(url) size = int(fr.info()['Content-Length']) import tempfile ftmp = open(tempfile.mktemp(),"w+b") import spark.contribs.progress meter = spark.contribs.progress.TextMeter() meter.start(text="Downloading",size=size) i = 0 while i < size: ftmp.write(fr.read(8192)) i += 8192 meter.update(i) meter.end(size) ftmp.seek(0) return ftmp def unzip_install(filename,install_dir): """does NOT work in windows with python 2.4.2, because namelist() doesn't work. will fix or work around """ import zipfile zf = zipfile.ZipFile(filename) namelist = zf.namelist() singletop = True first = namelist[0].split('/')[0] for name in namelist: if not name.startswith(first): singletop = False break for name in namelist: names = name.split('/') if singletop: names = names[1:] if not os.path.isdir( join(install_dir,*names[:-1]) ): os.makedirs(join(install_dir, *names[:-1]) ) if name.endswith('/'): continue outfile = open(join(install_dir, *names), 'wb') outfile.write(zf.read(name)) outfile.close() def setup_admin(): try: import MySQLdb except ImportError: print "you don't have mysql python module installed" sys.exit() try: import simplejson except ImportError: import spark.contribs.ez_setup as ez_setup ez_setup.main(["simplejson"]) create_adminfile() controllers = join(cur_dir,'webdir') templates = join(cur_dir,'templates') if not (os.path.isdir(controllers) and os.path.isdir(templates)): print "You are NOT in a spark project directory" sys.exit() import spark.sprite tp1 = spark.sprite.Sprite("admin_controller.pytp",files_dir) fw1 = open(join(controllers,'admin_controller.py'),'w') print "Make sure the user has the priviledge to manage one or more databases." user = raw_input("what's database username? [root] >>") if not user: user = "root" passwd = raw_input("what's database password? [] >>") tp1.set_vars({'dbstring':'user="%s",passwd="%s"'%(user,passwd)}) fw1.write("\n".join(tp1.display(1))) fw1.close() if not os.path.isdir(join(cur_dir,'templates','admin')): os.mkdir(join(cur_dir,'templates','admin')) if not os.path.isdir(join(cur_dir,'public','js')): os.mkdir(join(cur_dir,'public','js')) if not os.path.isdir(join(cur_dir,'public','admin')): os.mkdir(join(cur_dir,'public','admin')) shutil.copy(join(files_dir,'table.html'),join(cur_dir,'templates','admin')) shutil.copy(join(files_dir,'ajax_tables.css'),join(cur_dir,'public','admin')) print "For admin interface to work, Mochikit (291Kb) is required." answer = raw_input("Do you want to download and install Mochikit now? [y,n]") if answer in ["y", "Y"]: mochi_dir = join(cur_dir,'public','js','MochiKit') if not os.path.isdir(mochi_dir): os.mkdir(mochi_dir, 0755) mochif = download2temp('http://mochikit.com/dist/MochiKit-1.3.1.zip') unzip_install(mochif,mochi_dir) shutil.copy(join(cur_dir,'public','js','MochiKit','packed','MochiKit','MochiKit.js'), join(cur_dir,'public','js','MochiKit')) else: print "you need to manually download MochiKit and install it into public/js/MochiKit" def create_adminfile(): import sha, getpass userdata = {} fp = join(cur_dir,'etc','admin_passwd') if os.path.exists(fp): passwdf = open(fp,'r') for line in passwdf: i = line.split(':') if len(i)>1: userdata[i[0]]=i[1] passwdf.close() name = raw_input("Enter your username: ") if len(name)<2: print "Username too short!" sys.exit() password1 = getpass.getpass("Enter your password(>5): ") if len(password1)<5: print "password too short!" sys.exit() password1 = sha.new(password1).hexdigest() password2 = getpass.getpass("Enter password again: ") password2 = sha.new(password2).hexdigest() if password1 != password2: print "passwords not match!" sys.exit() userdata[name]=password1 passwdf = open(fp,'w') for i in userdata: passwdf.write("%s:%s"%(i,userdata[i])) passwdf.close() print "User created."
31.721014
92
0.7004
6290dde983b2bf260a0cbce3e4e1a512bf627117
1,178
py
Python
drned/drned/choice.py
micnovak/drned-xmnr
af68d4ab1162b7cdcda61da6e825b61ba0069c66
[ "Apache-2.0" ]
7
2019-05-21T22:25:16.000Z
2022-01-24T16:06:02.000Z
drned/drned/choice.py
micnovak/drned-xmnr
af68d4ab1162b7cdcda61da6e825b61ba0069c66
[ "Apache-2.0" ]
45
2018-10-16T14:35:40.000Z
2022-03-24T16:11:25.000Z
drned/drned/choice.py
micnovak/drned-xmnr
af68d4ab1162b7cdcda61da6e825b61ba0069c66
[ "Apache-2.0" ]
6
2019-06-17T20:35:19.000Z
2021-05-12T13:21:50.000Z
class Choice(object): def __init__(self, children, name): self.children = {} self.indexes = {} self.add(children, name) self.done = False def add(self, children, name): if name not in self.children: self.children[name] = children self.indexes[name] = 0 def current(self, name): return self.children[name][self.indexes[name]] def joined(self, child, name): return self.current(name) == child def increment(self): for name in self.children: current = self.current(name) if current and not current.all_done(): return False # Increment index self.indexes[name] += 1 if self.indexes[name] >= len(self.children[name]): self.indexes[name] = 0 self.done = True else: return True return False def get_choice(choices, path, children, name): if path in choices: choice = choices[path] choice.add(children, name) else: choice = Choice(children, name) choices[path] = choice return choice
28.047619
62
0.55348
0b1ef82017bc12fcbc5bfd81d5ba603840e67d95
3,276
py
Python
tools/div_free_base.py
marvin-eisenberger/hamiltonian-interpolation
d18c2f401feffc672998c5fa1d50c1de03dba902
[ "MIT" ]
5
2021-01-05T23:16:55.000Z
2021-07-23T12:26:06.000Z
tools/div_free_base.py
marvin-eisenberger/hamiltonian-interpolation
d18c2f401feffc672998c5fa1d50c1de03dba902
[ "MIT" ]
null
null
null
tools/div_free_base.py
marvin-eisenberger/hamiltonian-interpolation
d18c2f401feffc672998c5fa1d50c1de03dba902
[ "MIT" ]
1
2021-02-22T08:31:05.000Z
2021-02-22T08:31:05.000Z
import torch import math import numpy as np from torch.nn import Parameter import torch.sparse from shape_utils import * from param import device, device_cpu import quaternion as quat from base_tools import * def compute_eigenvectors_3d(vert, k): kv = torch.arange(1, k+1, device=device, dtype=torch.float32).unsqueeze(0).unsqueeze(1) vert = vert.unsqueeze(2) * kv * math.pi vert_sin = torch.sin(vert) vert_cos = torch.cos(vert) * kv sin_x = vert_sin[:, 0, :].unsqueeze(2).unsqueeze(3) sin_y = vert_sin[:, 1, :].unsqueeze(1).unsqueeze(3) sin_z = vert_sin[:, 2, :].unsqueeze(1).unsqueeze(2) cos_x = vert_cos[:, 0, :].unsqueeze(2).unsqueeze(3) cos_y = vert_cos[:, 1, :].unsqueeze(1).unsqueeze(3) cos_z = vert_cos[:, 2, :].unsqueeze(1).unsqueeze(2) phi = torch.cat(((cos_x * sin_y * sin_z).unsqueeze(1), (sin_x * cos_y * sin_z).unsqueeze(1), (sin_x * sin_y * cos_z).unsqueeze(1)), 1) scale_fac = torch.sqrt(kv.unsqueeze(2) ** 2 + kv.unsqueeze(3) ** 2) ** (-1) scale_fac = scale_fac.transpose(1, 3).unsqueeze(4) scale_fac = torch.cat((scale_fac.unsqueeze(1).repeat_interleave(k, 1), scale_fac.unsqueeze(2).repeat_interleave(k, 2), scale_fac.unsqueeze(3).repeat_interleave(k, 3)), 5) phi = phi.transpose(1, 4).unsqueeze(5).unsqueeze(6) phi = torch.sum(hat_matrix.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) * phi, 4) phi = phi * scale_fac phi = phi.transpose(1, 4).reshape(vert.shape[0], 3, -1).transpose(1, 2) return phi def tensor_prod_velocity(phi, a): return torch.bmm(phi.permute((2, 0, 1)), a.unsqueeze(0).unsqueeze(2).repeat(3, 1, 1)).permute((1, 2, 0)).squeeze() def div_free_trans(velo_t, vert_t, k): n_feat = 3 * k ** 3 phi = compute_eigenvectors_3d(vert_t, k) M = my_eye(n_feat) * 1e-3 for d in range(3): M = M + torch.mm(phi[..., d].transpose(0, 1), phi[..., d]) M = M.unsqueeze(0) phi = phi.permute([2, 0, 1]) xi_d = torch.bmm(phi.transpose(1, 2), velo_t.unsqueeze(2).permute([1, 0, 2])) xi_d, _ = torch.solve(xi_d, M) velo_t = torch.bmm(phi, xi_d) velo_t = velo_t.permute([1, 2, 0]).squeeze() return velo_t, xi_d def apply_field(vert_t, xi_d, k): phi = compute_eigenvectors_3d(vert_t, k) phi = phi.permute([2, 0, 1]) velo_t = torch.bmm(phi, xi_d) velo_t = velo_t.permute([1, 2, 0]).squeeze() return velo_t class Rigid(torch.nn.Module): def __init__(self): super().__init__() self.translation = Parameter(torch.zeros([3], dtype=torch.float32, device=device), requires_grad=True) self.rotation = Parameter(torch.as_tensor([1, 0, 0, 0], dtype=torch.float32, device=device), requires_grad=True) def forward(self, vert): vert = quat.qrot((self.rotation / (self.rotation.norm())).repeat(vert.shape[0], 1), vert - 0.5) vert = vert + self.translation.unsqueeze(0) + 0.5 return vert def detach_(self): self.translation.requires_grad_(False) self.rotation.requires_grad_(False) def detach(self): self.detach_() return self if __name__ == "__main__": print("main of div_free_base.py")
30.055046
120
0.625153
bd45238f75d96d54115593c1c93ef151a0fd7267
847
py
Python
programmers/lv3/17676.py
KLumy/Basic-Algorithm
e52e4200c1955a9062569814ff3418dd06666845
[ "MIT" ]
1
2021-01-22T15:58:32.000Z
2021-01-22T15:58:32.000Z
programmers/lv3/17676.py
KLumy/Basic-Algorithm
e52e4200c1955a9062569814ff3418dd06666845
[ "MIT" ]
null
null
null
programmers/lv3/17676.py
KLumy/Basic-Algorithm
e52e4200c1955a9062569814ff3418dd06666845
[ "MIT" ]
null
null
null
from typing import List import heapq def solution(lines: List[str]) -> int: traffic_log = [] for line in lines: date, time, delay = line.split() time = time.split(":") time = ( 3600000 * int(time[0]) + 60000 * int(time[1]) + int(float(time[2]) * 1000) ) delay = int(float(delay[:-1]) * 1000) traffic_log.append((time - delay + 1, time)) traffic_log.sort() max_traffic = 1 queue = [] for start, end in traffic_log: while queue and queue[0] <= start - 1000: heapq.heappop(queue) heapq.heappush(queue, end) max_traffic = len(queue) if len(queue) > max_traffic else max_traffic return max_traffic if __name__ == "__main__": i = ["2016-09-15 01:00:04.001 2.0s", "2016-09-15 01:00:07.000 2s"] print(solution(i))
24.911765
86
0.57379
dfa092cce2f01e3530a85da95c547bc44ff85e51
288
py
Python
urdudataste/arynews/arynews/pipelines.py
Mubashar-arb/urdu-dataset
16b7db91d93d0833fc41fbf9b396b05d92cd7df2
[ "MIT" ]
2
2021-07-12T15:14:44.000Z
2021-07-16T14:27:30.000Z
urdudataste/arynews/arynews/pipelines.py
Mubashar-arb/urdu-dataset
16b7db91d93d0833fc41fbf9b396b05d92cd7df2
[ "MIT" ]
null
null
null
urdudataste/arynews/arynews/pipelines.py
Mubashar-arb/urdu-dataset
16b7db91d93d0833fc41fbf9b396b05d92cd7df2
[ "MIT" ]
1
2021-07-14T06:31:33.000Z
2021-07-14T06:31:33.000Z
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class ArynewsPipeline(object): def process_item(self, item, spider): return item
24
65
0.711806
edae53f608072fcfe8f65b2f540f04766a643822
1,263
py
Python
src/android/toga_android/app.py
Donyme/toga
2647c7dc5db248025847e3a60b115ff51d4a0d4a
[ "BSD-3-Clause" ]
null
null
null
src/android/toga_android/app.py
Donyme/toga
2647c7dc5db248025847e3a60b115ff51d4a0d4a
[ "BSD-3-Clause" ]
null
null
null
src/android/toga_android/app.py
Donyme/toga
2647c7dc5db248025847e3a60b115ff51d4a0d4a
[ "BSD-3-Clause" ]
null
null
null
from android import PythonActivity from .window import Window class MainWindow(Window): pass class TogaApp: def __init__(self, app): self._interface = app def onStart(self): print("Toga app: onStart") def onResume(self): print("Toga app: onResume") def onResume(self): print("Toga app: onResume") def onPause(self): print("Toga app: onPause") def onStop(self): print("Toga app: onStop") def onDestroy(self): print("Toga app: onDestroy") def onRestart(self): print("Toga app: onRestart") class App: _MAIN_WINDOW_CLASS = MainWindow def __init__(self, interface): self.interface = interface self.interface._impl = self def create(self): # Connect this app to the PythonActivity self._listener = TogaApp(self) # Set the Python activity listener to be this app. self.native = PythonActivity.setListener(self._listener) self.startup() def open_document(self, fileURL): print("Can't open document %s (yet)" % fileURL) def main_loop(self): # Main loop is a no-op on Android; the app loop is integrated with the # main Android event loop. pass
21.40678
78
0.625495
7a57b82c3f6ef4ffb82de994f2376cbf530c312f
2,852
py
Python
train_interaction.py
zwxxxuan/EPI
1c48994afc97518a4d8e6df7f6cabaa8792bb425
[ "MIT" ]
28
2019-02-22T05:00:10.000Z
2021-09-23T05:12:59.000Z
train_interaction.py
zwxxxuan/EPI
1c48994afc97518a4d8e6df7f6cabaa8792bb425
[ "MIT" ]
3
2019-06-04T05:38:42.000Z
2019-10-27T03:51:56.000Z
train_interaction.py
zwxxxuan/EPI
1c48994afc97518a4d8e6df7f6cabaa8792bb425
[ "MIT" ]
1
2020-09-04T02:10:09.000Z
2020-09-04T02:10:09.000Z
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline from rllab.envs.normalized_env import normalize from rllab.envs.gym_env import GymEnv from sandbox.rocky.tf.envs.base import TfEnv from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy import pickle import rllab.misc.logger as logger import os.path as osp import datetime import tensorflow as tf import argparse from EPI.interaction_policy.trpo import TRPO from EPI.interaction_policy.prediction_model import PredictionModel import EPI def main(): parser = argparse.ArgumentParser() parser.add_argument('name') parser.add_argument('-e', type=int) parser.add_argument('-r', default=0.5, type=float) args = parser.parse_args() name = args.name if 'Striker' in name: EPI.init('striker', prediction_reward_scale=args.r, embedding_dimension=args.e) elif 'Hopper' in name: EPI.init('hopper', prediction_reward_scale=args.r, num_of_envs=100, num_of_params=8, embedding_dimension=int(args.e)) log_dir = setup_logger(exp_name=name) logger.log("EPI:DEFAULT_REWARD_SCALE:" + str(EPI.DEFAULT_REWARD_SCALE)) logger.log("EPI:PREDICTION_REWARD_SCALE:" + str(EPI.PREDICTION_REWARD_SCALE)) logger.log("EPI:NUM_OF_PARAMS:" + str(EPI.NUM_OF_PARAMS)) logger.log("EPI:EMBEDDING_DIMENSION:" + str(EPI.EMBEDDING_DIMENSION)) logger.log("EPI:LOSS_TYPE:" + str(EPI.LOSS_TYPE)) env = TfEnv(normalize(GymEnv(name + '-v0'))) policy = GaussianMLPPolicy( name="policy", env_spec=env.spec, hidden_sizes=(32, 32), ) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=10000, max_path_length=10, n_itr=500, discount=0.99, step_size=0.01, ) prediction_model = PredictionModel(log_dir) sess = tf.Session() sess.__enter__() algo.train(sess=sess, pred_model=prediction_model) pickle.dump(algo, open(log_dir + "/algo.p", "wb")) # need sess sess.close() close_logger(log_dir) def setup_logger(exp_name=''): # Logging info now = datetime.datetime.now() exp_name = 'Exp' + now.strftime("%y%m%d_") + exp_name n = 0 while osp.exists('./data/' + exp_name + '_' + str(n)): n = n + 1 exp_name = exp_name + '_' + str(n) log_dir = './data/' + exp_name logger.add_text_output(osp.join(log_dir, 'debug.log')) logger.add_tabular_output(osp.join(log_dir, 'progress.csv')) logger.push_prefix("[%s] " % exp_name) return log_dir def close_logger(log_dir): logger.remove_tabular_output(osp.join(log_dir, 'progress.csv')) logger.remove_text_output(osp.join(log_dir, 'debug.log')) logger.pop_prefix() if __name__ == '__main__': main()
31.340659
92
0.690393
d74b76ad57d48d1af7a80ea329a9edbf60c2b541
2,093
py
Python
prudentia/cli.py
StarterSquad/prudentia
44a0a8bd54a3dfcd46c16ed295ca660bb3865368
[ "MIT" ]
29
2015-02-04T06:39:12.000Z
2019-02-26T08:50:56.000Z
prudentia/cli.py
StarterSquad/prudentia
44a0a8bd54a3dfcd46c16ed295ca660bb3865368
[ "MIT" ]
44
2015-01-05T16:08:12.000Z
2018-12-29T20:40:42.000Z
prudentia/cli.py
StarterSquad/prudentia
44a0a8bd54a3dfcd46c16ed295ca660bb3865368
[ "MIT" ]
7
2015-01-30T17:28:49.000Z
2021-02-14T23:43:26.000Z
import argparse import os import sys from os import path from ansible import __version__ as ansible_ver from . import __version__ as prudentia_ver # Setting Ansible config file environment variable as first thing cwd = path.dirname(path.realpath(__file__)) os.environ['ANSIBLE_CONFIG'] = path.join(cwd, 'ansible.cfg') os.environ['ANSIBLE_ROLES_PATH'] = path.join(cwd, 'roles') + ':/etc/ansible/roles' os.environ['ANSIBLE_LOOKUP_PLUGINS'] = path.join(cwd, 'plugins', 'lookup') + \ ':~/.ansible/plugins/lookup:/usr/share/ansible/plugins/lookup' os.environ['ANSIBLE_ACTION_PLUGINS'] = path.join(cwd, 'plugins', 'action') + \ ':~/.ansible/plugins/action:/usr/share/ansible/plugins/action' os.environ['ANSIBLE_LIBRARY'] = path.join(cwd, 'modules') from prudentia.digital_ocean import DigitalOceanCli from prudentia.local import LocalCli from prudentia.ssh import SshCli from prudentia.vagrant import VagrantCli Providers = { 'local': LocalCli, 'ssh': SshCli, 'vagrant': VagrantCli, 'digital-ocean': DigitalOceanCli } def parse(args=None): parser = argparse.ArgumentParser( prog='Prudentia', description='A useful Continuous Deployment toolkit.' ) parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + prudentia_ver + ', Ansible ' + ansible_ver) parser.add_argument('provider', choices=Providers.keys(), help='use one of the available providers') parser.add_argument('commands', nargs='*', default='', help='optional quoted list of commands to run with the chosen provider') if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args(args) def run(args): chosen_cli = Providers[args.provider]() if args.commands: for c in args.commands: print ("Executing: '{0}'\n".format(c)) chosen_cli.onecmd(c) else: chosen_cli.cmdloop() return chosen_cli.provider.provisioned
36.086207
101
0.655518
870a5b54de48a268106166a740702e42685f1dd9
264
py
Python
loghub/emails.py
mskasal/loghub
b4821759012468d9003ec1119c06b8db9c3a17d0
[ "MIT" ]
null
null
null
loghub/emails.py
mskasal/loghub
b4821759012468d9003ec1119c06b8db9c3a17d0
[ "MIT" ]
null
null
null
loghub/emails.py
mskasal/loghub
b4821759012468d9003ec1119c06b8db9c3a17d0
[ "MIT" ]
null
null
null
from flask.ext.mail import Message from loghub import mail def send_email(subject, sender, recipients, text_body, html_body): msg = Message(subject, sender = sender, recipients = recipients) msg.body = text_body msg.html = html_body mail.send(msg)
33
68
0.738636
c7a18f6b2dc263a28bbb7cb8d8990ce3618a2615
8,334
py
Python
test/test_who.py
rliebz/whoswho
0c411e418c240fcec6ea0a23d15bd003056c65d0
[ "MIT" ]
28
2018-02-14T23:14:59.000Z
2021-07-08T07:24:54.000Z
test/test_who.py
rliebz/whoswho
0c411e418c240fcec6ea0a23d15bd003056c65d0
[ "MIT" ]
1
2019-01-21T15:25:49.000Z
2019-01-23T19:03:06.000Z
test/test_who.py
rliebz/whoswho
0c411e418c240fcec6ea0a23d15bd003056c65d0
[ "MIT" ]
2
2018-09-27T05:46:46.000Z
2020-07-16T05:19:02.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import unittest import nose from nose.tools import * from whoswho import who, config from nameparser.config.titles import TITLES as NAMEPARSER_TITLES class TestMatch(unittest.TestCase): def setUp(self): self.name = 'Robert Evan Liebowitz' def test_string(self): # Only relevant for python 2.X assert_true(who.match(self.name, str('Robert Liebowitz'))) def test_unicode(self): name = self.name assert_true(who.match(name, 'attaché Robert Evan Liebowitz')) assert_true(who.match(name, 'Rōbért Èvān Lîęböwitz')) assert_false(who.match(name, 'Rōbért Èvān Lęîböwitz')) def test_name_and_initials(self): assert_true(who.match(self.name, 'R. Evan Liebowitz')) assert_true(who.match(self.name, 'Robert E. Liebowitz')) assert_true(who.match(self.name, 'R. E. Liebowitz')) def test_different_number_initials(self): assert_true(who.match(self.name, 'Robert Liebowitz')) assert_true(who.match(self.name, 'R. Liebowitz')) assert_false(who.match(self.name, 'Robert E. E. Liebowitz')) assert_false(who.match(self.name, 'R. E. E. Liebowitz')) assert_true(who.match('R.E.E. Liebowitz', 'R. E. E. Liebowitz')) def test_different_initials(self): assert_false(who.match(self.name, 'E. R. Liebowitz')) assert_false(who.match(self.name, 'E. Liebowitz')) assert_false(who.match(self.name, 'R. V. Liebowitz')) assert_false(who.match(self.name, 'O. E. Liebowitz')) def test_short_names(self): assert_true(who.match(self.name, 'Rob Liebowitz')) # TODO: Should these be true? assert_false(who.match(self.name, 'Bert Liebowitz')) assert_false(who.match(self.name, 'Robbie Liebowitz')) def test_suffixes(self): name = 'Robert Liebowitz Jr' assert_true(who.match(name, 'Robert Liebowitz')) assert_true(who.match(name, 'Robert Liebowitz Jr')) assert_true(who.match(name, 'Robert Liebowitz, PhD')) assert_false(who.match(name, 'Robert Liebowitz, Sr')) assert_false(who.match(name, 'Robert Liebowitz, Sr, PhD')) assert_true(who.match(name, 'Robert Liebowitz, Jr, PhD')) def test_equivalent_suffixes(self): name = 'Robert Liebowitz Jr' assert_true(who.match(name, 'Robert Liebowitz Jnr')) assert_false(who.match(name, 'Robert Liebowitz Snr')) def test_titles(self): name = 'Mr. Robert Liebowitz' assert_true(who.match(name, 'Robert Liebowitz')) assert_true(who.match(name, 'Sir Robert Liebowitz')) assert_true(who.match(name, 'Dr. Robert Liebowitz')) assert_false(who.match(name, 'Mrs. Robert Liebowitz')) def test_nickname(self): name = 'Robert "Evan" Liebowitz' assert_true(who.match(name, 'Evan Liebowitz')) assert_true(who.match('Evan Liebowitz', name)) assert_false(who.match(name, 'Wrongbert Lieobwitz')) assert_false(who.match(name, 'Robert Evan')) assert_false(who.match(name, 'Evan Liebowitz', options={'check_nickname': False})) class TestRatio(unittest.TestCase): def setUp(self): self.name = 'Robert Evan Liebowitz' def test_string(self): # Only relevant for python 2.X assert_equal(who.ratio(self.name, str('Robert Liebowitz')), 100) def test_unicode(self): name = self.name assert_equal(who.ratio(name, 'attaché Robert Evan Liebowitz'), 100) assert_equal(who.ratio(name, 'Rōbért Èvān Lîęböwitz'), 100) assert_true(who.ratio(name, 'Rōbért Èvān Lęîböwitz') < 100) def test_name_and_initials(self): assert_equal(who.ratio(self.name, 'R. Evan Liebowitz'), 100) assert_equal(who.ratio(self.name, 'Robert E. Liebowitz'), 100) assert_equal(who.ratio(self.name, 'R. E. Liebowitz'), 100) def test_different_number_initials(self): assert_equal(who.ratio(self.name, 'Robert Liebowitz'), 100) assert_equal(who.ratio(self.name, 'R. Liebowitz'), 100) assert_true(who.ratio(self.name, 'Robert E. E. Liebowitz') < 100) assert_true(who.ratio(self.name, 'R. E. E. Liebowitz') < 100) assert_equal(who.ratio('R.E.E. Liebowitz', 'R. E. E. Liebowitz'), 100) def test_different_initials(self): assert_true(who.ratio(self.name, 'E. R. Liebowitz') < 100) assert_true(who.ratio(self.name, 'E. Liebowitz') < 100) assert_true(who.ratio(self.name, 'R. V. Liebowitz') < 100) assert_true(who.ratio(self.name, 'O. E. Liebowitz') < 100) assert_true(who.ratio(self.name, 'E. R. Liebowitz') < who.ratio(self.name, 'E. E. Liebowitz')) assert_true(who.ratio(self.name, 'E. R. Liebowitz') < who.ratio(self.name, 'R. R. Liebowitz')) assert_true(who.ratio(self.name, 'E. R. Liebowitz') < who.ratio(self.name, 'E. Liebowitz')) def test_short_names(self): assert_true(who.ratio(self.name, 'Rob Liebowitz')) assert_true(who.ratio(self.name, 'Bert Liebowitz') < 100) assert_true(who.ratio(self.name, 'Robbie Liebowitz') < 100) assert_true(who.ratio(self.name, 'xxxxx Liebowitz') < who.ratio(self.name, 'Bobby Liebowitz')) def test_suffixes(self): name = 'Robert Liebowitz Jr' assert_equal(who.ratio(name, 'Robert Liebowitz'), 100) assert_equal(who.ratio(name, 'Robert Liebowitz Jr'), 100) assert_equal(who.ratio(name, 'Robert Liebowitz, PhD'), 100) assert_false(who.ratio(name, 'Robert Liebowitz, Sr')) assert_false(who.ratio(name, 'Robert Liebowitz, Sr, PhD')) assert_equal(who.ratio(name, 'Robert Liebowitz, Jr, PhD'), 100) # Suffix doesn't change a match assert_equal(who.ratio(name, 'Zachary Liebowitz, Jr'), who.ratio(name, 'Zachary Liebowitz')) def test_equivalent_suffixes(self): name = 'Robert Liebowitz Jr' assert_equal(who.ratio(name, 'Robert Liebowitz Jnr'), 100) assert_false(who.ratio(name, 'Robert Liebowitz Snr')) def test_titles(self): name = 'Mr. Robert Liebowitz' assert_equal(who.ratio(name, 'Robert Liebowitz'), 100) assert_equal(who.ratio(name, 'Sir Robert Liebowitz'), 100) assert_equal(who.ratio(name, 'Dr. Robert Liebowitz'), 100) assert_false(who.ratio(name, 'Mrs. Robert Liebowitz')) # Title doesn't change a match assert_equal(who.ratio(name, 'Dr. Zachary Liebowitz'), who.ratio(name, 'Zachary Liebowitz')) def test_nickname(self): name = 'Robert "Evan" Liebowitz' assert_equal(who.ratio(name, 'Evan Liebowitz'), 100) assert_equal(who.ratio('Evan Liebowitz', name), 100) assert_true(who.ratio(name, 'Wrongbert Lieobwitz') < 100) assert_true(who.ratio(name, 'Robert Evan') < 100) assert_true(who.ratio(name, 'Evan Liebowitz', options={'check_nickname': False}) < 100) assert_true(who.ratio(name, 'xxxx Liebowitz') < who.ratio(name, 'xvax Liebowitz')) assert_equal(who.ratio(name, 'xxxx Liebowitz'), who.ratio(name, 'xvax Liebowitz', 'strict')) # TODO: Should we ensure that the metadata is up to date? @nottest class TestConfig(unittest.TestCase): def test_titles_all_defined(self): """ Check if list of titles is up to date with nameparser """ all_titles = ( config.MALE_TITLES | config.FEMALE_TITLES | config.GENDERLESS_TITLES ) assert_equal(all_titles, NAMEPARSER_TITLES) def test_suffixes_all_defined(self): """ Check if list of suffixes is up to date with nameparser """ from nameparser.config.suffixes import SUFFIX_ACRONYMS, SUFFIX_NOT_ACRONYMS all_suffixes = ( config.UNIQUE_SUFFIXES | config.MISC_SUFFIXES ) nameparser_suffixes = ( SUFFIX_ACRONYMS | SUFFIX_NOT_ACRONYMS ) assert_equal(all_suffixes, nameparser_suffixes) if __name__ == '__main__': nose.main()
40.852941
83
0.636069
21bf09393f379989fa9a94930ed6fd4c2689b37f
2,778
py
Python
tests/test_transfer.py
pacdao/gov-token
7ce7b8916c70e145f311e4190507b245dbeb2c12
[ "MIT" ]
null
null
null
tests/test_transfer.py
pacdao/gov-token
7ce7b8916c70e145f311e4190507b245dbeb2c12
[ "MIT" ]
null
null
null
tests/test_transfer.py
pacdao/gov-token
7ce7b8916c70e145f311e4190507b245dbeb2c12
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import brownie import pytest @pytest.mark.skip(reason="no transfer") def test_sender_balance_decreases(accounts, token): sender_balance = token.balanceOf(accounts[0]) amount = sender_balance // 4 token.transfer(accounts[1], amount, {"from": accounts[0]}) assert token.balanceOf(accounts[0]) == sender_balance - amount @pytest.mark.skip(reason="no transfer") def test_receiver_balance_increases(accounts, token): receiver_balance = token.balanceOf(accounts[1]) amount = token.balanceOf(accounts[0]) // 4 token.transfer(accounts[1], amount, {"from": accounts[0]}) assert token.balanceOf(accounts[1]) == receiver_balance + amount def test_total_supply_not_affected(accounts, token): total_supply = token.totalSupply() amount = token.balanceOf(accounts[0]) with brownie.reverts("No transfer"): token.transfer(accounts[1], amount, {"from": accounts[0]}) assert token.totalSupply() == total_supply @pytest.mark.skip(reason="no transfer") def test_returns_true(accounts, token): amount = token.balanceOf(accounts[0]) tx = token.transfer(accounts[1], amount, {"from": accounts[0]}) assert tx.return_value is True @pytest.mark.skip(reason="no transfer") def test_transfer_full_balance(accounts, token): amount = token.balanceOf(accounts[0]) receiver_balance = token.balanceOf(accounts[1]) token.transfer(accounts[1], amount, {"from": accounts[0]}) assert token.balanceOf(accounts[0]) == 0 assert token.balanceOf(accounts[1]) == receiver_balance + amount def test_transfer_zero_tokens(accounts, token): sender_balance = token.balanceOf(accounts[0]) receiver_balance = token.balanceOf(accounts[1]) with brownie.reverts(): token.transfer(accounts[1], 0, {"from": accounts[0]}) assert token.balanceOf(accounts[0]) == sender_balance assert token.balanceOf(accounts[1]) == receiver_balance @pytest.mark.skip(reason="no transfer") def test_transfer_to_self(accounts, token, owner): sender_balance = token.balanceOf(accounts[0]) amount = sender_balance // 4 token.transfer(accounts[0], amount, {"from": accounts[0]}) assert token.balanceOf(accounts[0]) == sender_balance @pytest.mark.skip(reason="no transfer") def test_insufficient_balance(accounts, token): balance = token.balanceOf(accounts[0]) with brownie.reverts(): token.transfer(accounts[1], balance + 1, {"from": accounts[0]}) @pytest.mark.skip(reason="no transfer") def test_transfer_event_fires(accounts, token): amount = token.balanceOf(accounts[0]) tx = token.transfer(accounts[1], amount, {"from": accounts[0]}) assert len(tx.events) == 1 assert tx.events["Transfer"].values() == [accounts[0], accounts[1], amount]
30.527473
79
0.711303
8f526e9eff86ecaae78fbf6c9fde06132bae1365
287
py
Python
chainer/utils/array.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
7
2017-05-08T07:02:40.000Z
2018-12-02T18:35:39.000Z
chainer/utils/array.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
null
null
null
chainer/utils/array.py
takeratta/chainer
02686e98cd6dc8f20979a1f3a79130f076cbfc6c
[ "MIT" ]
1
2021-05-27T16:52:11.000Z
2021-05-27T16:52:11.000Z
import numpy from chainer import cuda def as_vec(x): return x.ravel() def as_mat(x): return x.reshape(len(x), -1) def empty_like(x): if cuda.available and isinstance(x, cuda.ndarray): return cuda.cupy.empty_like(x) else: return numpy.empty_like(x)
15.105263
54
0.655052
675dd6d84ca6e1b7163035d8cba62b570a642b90
545
py
Python
publishconf.py
tijptjik/thegodsproject
8014f7b546289b9ca3aec64f6492b8312628d0a2
[ "MIT" ]
null
null
null
publishconf.py
tijptjik/thegodsproject
8014f7b546289b9ca3aec64f6492b8312628d0a2
[ "MIT" ]
null
null
null
publishconf.py
tijptjik/thegodsproject
8014f7b546289b9ca3aec64f6492b8312628d0a2
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # from __future__ import unicode_literals # This file is only used if you use `make publish` or # explicitly specify it as your config file. import os import sys sys.path.append(os.curdir) from pelicanconf import * SITEURL = 'http://thegodsproject.com' RELATIVE_URLS = False FEED_ALL_ATOM = 'feeds/all.atom.xml' CATEGORY_FEED_ATOM = 'feeds/%s.atom.xml' DELETE_OUTPUT_DIRECTORY = True # Following items are often useful when publishing #DISQUS_SITENAME = "" GOOGLE_ANALYTICS = "UA-85430564-1"
21.8
53
0.752294
8131b3e77af825166020447c9a094c9068cb4ac7
8,735
py
Python
examples/examples/views.py
flying-sausages/iommi
1cf0a2c513f37392d93df7a5ffeb9958f27f4216
[ "BSD-3-Clause" ]
null
null
null
examples/examples/views.py
flying-sausages/iommi
1cf0a2c513f37392d93df7a5ffeb9958f27f4216
[ "BSD-3-Clause" ]
null
null
null
examples/examples/views.py
flying-sausages/iommi
1cf0a2c513f37392d93df7a5ffeb9958f27f4216
[ "BSD-3-Clause" ]
null
null
null
import json from datetime import ( date, datetime, ) from pathlib import Path from django.conf import settings from django.contrib.auth.models import User from django.db import OperationalError from django.urls import ( include, path, reverse, ) from tri_declarative import ( get_members, is_shortcut, LAST, Namespace, Shortcut, ) import iommi.part import iommi.style import iommi.traversable from iommi import ( Column, Fragment, Header, html, Page, Table, ) from iommi._web_compat import HttpResponseRedirect from iommi.admin import ( Admin, Auth, ) from iommi.base import ( items, keys, ) from iommi.form import ( Field, Form, ) from iommi.menu import ( Menu, MenuItem, ) from iommi.style import validate_styles from .models import ( Album, Artist, Foo, TBar, TFoo, Track, ) # Use this function in your code to check that the style is configured correctly. Pass in all stylable classes in your system. For example if you have subclasses for Field, pass these here. validate_styles() def ensure_objects(): if not User.objects.exists(): User.objects.create(username='admin', is_staff=True, first_name='Tony', last_name='Iommi') for i in range(100 - Foo.objects.count()): Foo.objects.create(name=f'X{i}', a=i, b=True) if not TBar.objects.all(): # Fill in some dummy data if none exists for i in range(200): f = TFoo.objects.create(a=i, name='Foo: %s' % i) TBar.objects.create(b=f, c='foo%s' % (i % 3)) # Get some artist and album data if not Path(settings.STATIC_ROOT).joinpath('album_art').exists(): try: from scrape_data import scrape_data scrape_data() except ImportError as e: print("!!! Unable to scrape artist and track data.") print(e) if not Album.objects.exists(): with open(Path(__file__).parent.parent / 'scraped_data.json') as f: artists = json.loads(f.read()) for artist_name, albums in items(artists): artist, _ = Artist.objects.get_or_create(name=artist_name) for album_name, album_data in items(albums): album, _ = Album.objects.get_or_create(artist=artist, name=album_name, year=int(album_data['year'])) for i, (track_name, duration) in enumerate(album_data['tracks']): Track.objects.get_or_create(album=album, index=i + 1, name=track_name, duration=duration) try: ensure_objects() except OperationalError: # We'll end up here in the management commands before the db is set up pass class StyleSelector(Form): class Meta: @staticmethod def actions__submit__post_handler(request, form, **_): style = form.fields.style.value settings.IOMMI_DEFAULT_STYLE = style return HttpResponseRedirect(request.get_full_path()) style = Field.choice( choices=[k for k, v in items(iommi.style._styles) if not v.internal], initial=lambda form, field, **_: getattr(settings, 'IOMMI_DEFAULT_STYLE', iommi.style.DEFAULT_STYLE), ) menu = Menu( sub_menu=dict( root=MenuItem(url='/'), page_examples=MenuItem(url='/page'), form_examples=MenuItem(url='/form'), table_examples=MenuItem(url='/table'), menu_examples=MenuItem(url='/menu'), supernaut=MenuItem(url='/supernaut'), admin=MenuItem(url='/iommi-admin'), login=MenuItem( display_name='Log in', url='/iommi-admin/login/?next=/', include=lambda request, **_: not request.user.is_authenticated, ), log_out=MenuItem( display_name='Log out', url='/iommi-admin/logout/', include=lambda request, **_: request.user.is_authenticated, ), ) ) class ExamplesPage(Page): menu = menu footer = html.div( html.hr(), html.a('iommi rocks!', attrs__href='http://iommi.rocks/'), StyleSelector(), after=LAST, ) class IndexPage(ExamplesPage): header = html.h1('Welcome to iommi examples application') logo = html.img( attrs__src='https://docs.iommi.rocks/en/latest/_static/logo_with_outline.svg', attrs__style__width='30%', ) def all_field_sorts(request): some_choices = ['Foo', 'Bar', 'Baz'] return ExamplesPage( parts=dict( header=Header('All sorts of fields'), form=Form( fields={ f'{t}__call_target__attribute': t for t in keys(get_members(cls=Field, member_class=Shortcut, is_member=is_shortcut)) if t not in [ # These only work if we have an instance 'foreign_key', 'many_to_many', ] }, fields__radio__choices=some_choices, fields__choice__choices=some_choices, fields__choice_queryset__choices=Artist.objects.all(), fields__multi_choice__choices=some_choices, fields__multi_choice_queryset__choices=Track.objects.all(), fields__info__value="This is some information", fields__text__initial='Text', fields__textarea__initial='text area\nsecond row', fields__integer__initial=3, fields__float__initial=3.14, fields__password__initial='abc123', fields__boolean__initial=True, fields__datetime__initial=datetime.now(), fields__date__initial=date.today(), fields__time__initial=datetime.now().time(), fields__decimal__initial=3.14, fields__url__initial='http://iommi.rocks', fields__email__initial='example@example.com', fields__phone_number__initial='+1 555 555', actions__submit__include=False, ), ) ) class DummyRow: def __init__(self, idx): self.idx = idx def __getattr__(self, attr): _, _, shortcut = attr.partition('column_of_type_') s = f'{shortcut} #{self.idx}' if shortcut == 'link': class Link: def get_absolute_url(self): return '#' def __str__(self): return 'title' return Link() return s @staticmethod def get_absolute_url(): return '#' class ShortcutSelectorForm(Form): class Meta: attrs__method = 'get' actions__submit__post_handler = lambda **_: None shortcut = Field.multi_choice( choices=[ t for t in keys(get_members(cls=Column, member_class=Shortcut, is_member=is_shortcut)) if t not in [ 'icon', 'foreign_key', 'many_to_many', 'choice_queryset', 'multi_choice_queryset', ] ] ) def all_column_sorts(request): selected_shortcuts = ShortcutSelectorForm().bind(request=request).fields.shortcut.value or [] type_specifics = Namespace( choice__choices=['Foo', 'Bar', 'Baz'], multi_choice__choices=['Foo', 'Bar', 'Baz'], ) return ExamplesPage( parts=dict( header=Header('All sorts of columns'), form=ShortcutSelectorForm(), table=Table( assets__ajax_enhance__template=None, columns={ f'column_of_type_{t}': dict( type_specifics.get(t, {}), call_target__attribute=t, ) for t in selected_shortcuts }, rows=[DummyRow(i) for i in range(10)], ), ) ) class ExampleAdmin(Admin): class Meta: iommi_style = None parts__menu__sub_menu = dict( home=MenuItem(url='/'), admin=MenuItem(url=lambda **_: reverse(ExampleAdmin.all_models)), change_password=MenuItem(url=lambda **_: reverse(Auth.change_password)), logout=MenuItem(url=lambda **_: reverse(Auth.logout)), ) parts__footer = Fragment( after=LAST, children=dict( hr=html.hr(), style=StyleSelector(title='Change iommi style'), ), ) urlpatterns = [ path('', IndexPage().as_view()), path('iommi-admin/', include(ExampleAdmin.urls())), ]
29.019934
189
0.581339
07082b46d2f9fd351d588d56007c0aece9086a25
1,998
py
Python
app/strava/test_tasks.py
AartGoossens/sweaty-reports
02e6de908cd7d9dcd04e36f383444bd9f62d387b
[ "MIT" ]
1
2020-09-07T13:08:01.000Z
2020-09-07T13:08:01.000Z
app/strava/test_tasks.py
AartGoossens/sweaty-reports
02e6de908cd7d9dcd04e36f383444bd9f62d387b
[ "MIT" ]
3
2020-03-24T17:56:14.000Z
2021-02-02T22:31:19.000Z
app/strava/test_tasks.py
AartGoossens/sweaty-reports
02e6de908cd7d9dcd04e36f383444bd9f62d387b
[ "MIT" ]
null
null
null
from dataclasses import dataclass from pathlib import Path import asynctest import pytest from .. import config from . import tasks from .models import StravaAthlete from .schemas import Event @pytest.mark.asyncio async def test_handle_event(mocker): event = Event( aspect_type='update', event_time=1516126040, object_id=1360128428, object_type='activity', owner_id=2, subscription_id=120475, updates=dict(title='Messy') ) with asynctest.patch('app.strava.tasks.generate_report') as mocked_generate_report: await tasks.handle_event(event) athlete = await StravaAthlete.objects.get(id=event.owner_id) mocked_generate_report.assert_called_once_with(athlete, event.object_id) @pytest.mark.asyncio async def test_handle_event_athlete(mocker): mocked_generate_report = mocker.patch('app.strava.tasks.generate_report') event = Event( aspect_type='update', event_time=1516126040, object_id=1360128428, object_type='athlete', owner_id=2, subscription_id=120475, updates=dict(title='Messy') ) await tasks.handle_event(event) mocked_generate_report.assert_not_called() @pytest.mark.asyncio async def test_new_athlete(mocker): mocked_get_activities = mocker.patch('stravalib.Client.get_activities') @dataclass class StravaActivity: id: int mocked_get_activities.return_value = [StravaActivity(1337)] strava_athlete = await StravaAthlete.objects.get(id=1) assert strava_athlete.backfilled == False with asynctest.patch('app.strava.tasks.generate_report') as mocked_generate_report: await tasks.new_athlete(strava_athlete) mocked_get_activities.assert_called_once_with(limit=config.STRAVA_BACKFILL_COUNT) mocked_generate_report.assert_called_once_with(strava_athlete, 1337) strava_athlete = await StravaAthlete.objects.get(id=1) assert strava_athlete.backfilled == True
27
87
0.737237
055613217cedabfb50bb2114101518002e365b6e
7,168
py
Python
relation_engine_server/api_versions/api_v1.py
slebras/relation_engine
71d5cc4841b5140b09da8751eb61cd9ba2c83430
[ "MIT" ]
null
null
null
relation_engine_server/api_versions/api_v1.py
slebras/relation_engine
71d5cc4841b5140b09da8751eb61cd9ba2c83430
[ "MIT" ]
null
null
null
relation_engine_server/api_versions/api_v1.py
slebras/relation_engine
71d5cc4841b5140b09da8751eb61cd9ba2c83430
[ "MIT" ]
null
null
null
import flask from relation_engine_server.utils import ( arango_client, spec_loader, auth, bulk_import, pull_spec, config, parse_json, ) from relation_engine_server.utils.json_validation import run_validator from relation_engine_server.exceptions import InvalidParameters api_v1 = flask.Blueprint("api_v1", __name__) @api_v1.route("/data_sources", methods=["GET"]) def list_data_sources(): # note the custom response format is used by the frontend, so this endpoint is provided # in addition to the /specs/data_sources endpoint data_sources = spec_loader.get_names("data_sources") return flask.jsonify({"data_sources": data_sources}) @api_v1.route("/data_sources/<name>", methods=["GET"]) def fetch_data_source(name): data_source = spec_loader.get_schema("data_source", name) return flask.jsonify({"data_source": data_source}) @api_v1.route("/specs/data_sources", methods=["GET"]) def show_data_sources(): """Show the current data sources loaded from the spec.""" name = flask.request.args.get("name") if name: return flask.jsonify(spec_loader.get_schema("data_source", name)) return flask.jsonify(spec_loader.get_names("data_sources")) @api_v1.route("/specs/stored_queries", methods=["GET"]) def show_stored_queries(): """Show the current stored query names loaded from the spec.""" name = flask.request.args.get("name") if name: return flask.jsonify( {"stored_query": spec_loader.get_schema("stored_query", name)} ) return flask.jsonify(spec_loader.get_names("stored_query")) @api_v1.route("/specs/collections", methods=["GET"]) @api_v1.route("/specs/schemas", methods=["GET"]) def show_collections(): """Show the names of the (document) collections (edges and vertices) loaded from the spec.""" name = flask.request.args.get("name") doc_id = flask.request.args.get("doc_id") if name: return flask.jsonify(spec_loader.get_schema("collection", name)) elif doc_id: return flask.jsonify(spec_loader.get_schema_for_doc(doc_id)) else: return flask.jsonify(spec_loader.get_names("collection")) @api_v1.route("/query_results", methods=["POST"]) def run_query(): """ Run a stored query as a query against the database. Auth: - only kbase re admins for ad-hoc queries - public stored queries (these have access controls within them based on params) """ json_body = parse_json.get_json_body() or {} # fetch number of documents to return batch_size = int(flask.request.args.get("batch_size", 10000)) full_count = flask.request.args.get("full_count", False) if "query" in json_body: # Run an adhoc query for a sysadmin auth.require_auth_token(roles=["RE_ADMIN"]) query_text = _preprocess_stored_query(json_body["query"], json_body) del json_body["query"] if "ws_ids" in query_text: # Fetch any authorized workspace IDs using a KBase auth token, if present auth_token = auth.get_auth_header() json_body["ws_ids"] = auth.get_workspace_ids(auth_token) resp_body = arango_client.run_query( query_text=query_text, bind_vars=json_body, batch_size=batch_size, full_count=full_count, ) return flask.jsonify(resp_body) if "stored_query" in flask.request.args or "view" in flask.request.args: # Run a query from a query name # Note: we are maintaining backwards compatibility here with the "view" arg. # "stored_query" is the more accurate name query_name = flask.request.args.get("stored_query") or flask.request.args.get( "view" ) stored_query = spec_loader.get_stored_query(query_name) if "params" in stored_query: # Validate the user params for the query stored_query_path = spec_loader.get_stored_query(query_name, path_only=True) run_validator( schema_file=stored_query_path, data=json_body, validate_at="/params" ) stored_query_source = _preprocess_stored_query( stored_query["query"], stored_query ) if "ws_ids" in stored_query_source: # Fetch any authorized workspace IDs using a KBase auth token, if present auth_token = auth.get_auth_header() json_body["ws_ids"] = auth.get_workspace_ids(auth_token) resp_body = arango_client.run_query( query_text=stored_query_source, bind_vars=json_body, batch_size=batch_size, full_count=full_count, ) return flask.jsonify(resp_body) if "cursor_id" in flask.request.args: # Run a query from a cursor ID cursor_id = flask.request.args["cursor_id"] resp_body = arango_client.run_query(cursor_id=cursor_id) return flask.jsonify(resp_body) # No valid options were passed raise InvalidParameters("Pass in a query name or a cursor_id") @api_v1.route("/specs", methods=["PUT"]) def update_specs(): """ Manually check for updates, download spec releases, and init new collections. Auth: admin """ auth.require_auth_token(["RE_ADMIN"]) init_collections = "init_collections" in flask.request.args release_url = flask.request.args.get("release_url") pull_spec.download_specs(init_collections, release_url, reset=True) return flask.jsonify({"status": "updated"}) @api_v1.route("/documents", methods=["PUT"]) def save_documents(): """ Create, update, or replace many documents in a batch. Auth: admin """ auth.require_auth_token(["RE_ADMIN"]) collection_name = flask.request.args["collection"] query = {"collection": collection_name, "type": "documents"} if flask.request.args.get("display_errors"): # Display an array of error messages query["details"] = "true" if flask.request.args.get("on_duplicate"): query["onDuplicate"] = flask.request.args["on_duplicate"] if flask.request.args.get("overwrite"): query["overwrite"] = "true" resp = bulk_import.bulk_import(query) if resp.get("errors") > 0: return (flask.jsonify(resp), 400) else: return flask.jsonify(resp) @api_v1.route("/config", methods=["GET"]) def show_config(): """Show public config data.""" conf = config.get_config() return flask.jsonify( { "auth_url": conf["auth_url"], "workspace_url": conf["workspace_url"], "kbase_endpoint": conf["kbase_endpoint"], "db_url": conf["db_url"], "db_name": conf["db_name"], "spec_repo_url": conf["spec_repo_url"], "spec_release_url": conf["spec_release_url"], "spec_release_path": conf["spec_release_path"], } ) def _preprocess_stored_query(query_text, config): """Inject some default code into each stored query.""" ws_id_text = " LET ws_ids = @ws_ids " if "ws_ids" in query_text else "" return "\n".join([config.get("query_prefix", ""), ws_id_text, query_text])
36.385787
97
0.666574
7c5298ef6ba4cba447f060d790bb6d76fdec2a4d
12,896
py
Python
mpparser/mp_parser.py
nomad-coe/nomad-parser-mp
ef6874c976ab4f801f652254aeedfa8852bce0dd
[ "Apache-2.0" ]
null
null
null
mpparser/mp_parser.py
nomad-coe/nomad-parser-mp
ef6874c976ab4f801f652254aeedfa8852bce0dd
[ "Apache-2.0" ]
null
null
null
mpparser/mp_parser.py
nomad-coe/nomad-parser-mp
ef6874c976ab4f801f652254aeedfa8852bce0dd
[ "Apache-2.0" ]
null
null
null
# # Copyright The NOMAD Authors. # # This file is part of NOMAD. # See https://nomad-lab.eu for further info. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import logging import json import numpy as np from nomad.units import ureg from nomad.parsing.parser import FairdiParser from nomad.datamodel.metainfo.simulation.run import Run, Program from nomad.datamodel.metainfo.workflow import ( Workflow, Elastic, EquationOfState, EOSFit, Thermodynamics, Stability, Decomposition, Phonon) from nomad.datamodel.metainfo.simulation.system import System, Atoms from nomad.datamodel.metainfo.simulation.method import ( Method, DFT, Electronic, XCFunctional, Functional, BasisSet, BasisSetCellDependent) from nomad.datamodel.metainfo.simulation.calculation import ( Calculation, Dos, DosValues, BandStructure, BandEnergies) from mpparser.metainfo.mp import Composition, Symmetry class MPParser(FairdiParser): def __init__(self): super().__init__( name='parsers/mp', code_name='MaterialsProject', code_homepage='https://materialsproject.org', mainfile_mime_re=r'(application/json)|(text/.*)', mainfile_name_re=r'.*mp.+materials\.json', mainfile_contents_re=(r'"pymatgen_version":')) def init_parser(self): try: self.data = json.load(open(self.filepath)) except Exception: self.logger.error('Failed to load json file.') def parse_elastic(self, source): sec_workflow = self.archive.m_create(Workflow) sec_workflow.type = 'elastic' sec_elastic = sec_workflow.m_create(Elastic) sec_elastic.energy_stress_calculator = 'VASP' sec_elastic.calculation_method = 'stress' source = source.get('elasticity', source) sec_elastic.elastic_constants_order = source.get('order', 2) deformations = source.get('deformations') if deformations is not None: sec_elastic.n_deformations = len(deformations) elastic_tensor = source.get('elastic_tensor') if elastic_tensor is not None: sec_elastic.elastic_constants_matrix_second_order = elastic_tensor * ureg.GPa compliance_tensor = source.get('compliance_tensor') if compliance_tensor is not None: sec_elastic.compliance_matrix_second_order = compliance_tensor * (1 / ureg.GPa) if source.get('g_reuss') is not None: sec_elastic.shear_modulus_reuss = source['g_reuss'] * ureg.GPa if source.get('g_voigt') is not None: sec_elastic.shear_modulus_voigt = source['g_voigt'] * ureg.GPa if source.get('g_vrh') is not None: sec_elastic.shear_modulus_hill = source['g_vrh'] * ureg.GPa if source.get('homogeneous_poisson') is not None: sec_elastic.poisson_ratio_hill = source['homogeneous_poisson'] if source.get('k_reuss') is not None: sec_elastic.bulk_modulus_reuss = source['k_reuss'] * ureg.GPa if source.get('k_voigt') is not None: sec_elastic.bulk_modulus_voigt = source['k_voigt'] * ureg.GPa if source.get('k_vrh') is not None: sec_elastic.bulk_modulus_hill = source['k_vrh'] * ureg.GPa def parse_eos(self, source): sec_workflow = self.archive.m_create(Workflow) sec_workflow.type = 'equation_of_state' sec_eos = sec_workflow.m_create(EquationOfState) if source.get('volumes') is not None: sec_eos.volumes = source['volumes'] * ureg.angstrom ** 3 if source.get('energies') is not None: sec_eos.energies = source['energies'] * ureg.eV for fit_function, result in source.get('eos', {}).items(): sec_eos_fit = sec_eos.m_create(EOSFit) sec_eos_fit.function_name = fit_function if result.get('B') is not None: sec_eos_fit.bulk_modulus = result['B'] * ureg.eV / ureg.angstrom ** 3 if result.get('C') is not None: sec_eos_fit.bulk_modulus_derivative = result['C'] if result.get('E0') is not None: sec_eos_fit.equilibrium_energy = result['E0'] * ureg.eV if result.get('V0') is not None: sec_eos_fit.equilibrium_volume = result['V0'] * ureg.angstrom ** 3 if result.get('eos_energies') is not None: sec_eos_fit.fitted_energies = result['eos_energies'] * ureg.eV def parse_thermo(self, data): sec_workflow = self.archive.m_create(Workflow) sec_workflow.type = 'thermodynamics' sec_thermo = sec_workflow.m_create(Thermodynamics) sec_stability = sec_thermo.m_create(Stability) sec_stability.formation_energy = data.get( 'formation_energy_per_atom', 0) * data.get('nsites', 1) * ureg.eV sec_stability.delta_formation_energy = data.get('energy_above_hull', 0) * ureg.eV sec_stability.is_stable = data.get('is_stable') if data.get('decomposes_to') is not None: for system in data.get('decomposes_to'): sec_decomposition = sec_stability.m_create(Decomposition) sec_decomposition.formula = system.get('formula') sec_decomposition.fraction = system.get('amount') def parse_phonon(self, data): sec_workflow = self.archive.m_create(Workflow) sec_workflow.type = 'phonon' sec_phonon = sec_workflow.m_create(Phonon) # TODO is vasp always mp calculator? sec_phonon.force_calculator = 'vasp' calculations = self.archive.run[-1].calculation calc = calculations[-1] if calculations else self.archive.run[-1].m_create(Calculation) if data.get('ph_dos') is not None: sec_dos = calc.m_create(Dos, Calculation.dos_phonon) sec_dos.energies = data['ph_dos']['frequencies'] * ureg.THz * ureg.h dos = data['ph_dos']['densities'] * (1 / (ureg.THz * ureg.h)) sec_dos.total.append(DosValues(value=dos)) if data.get('ph_bs') is not None: sec_phonon.with_non_analytic_correction = data['ph_bs'].get('has_nac') sec_bs = calc.m_create(BandStructure, Calculation.band_structure_phonon) bands = np.transpose(data['ph_bs']['bands']) qpoints = data['ph_bs']['qpoints'] labels = data['ph_bs']['labels_dict'] hisym_qpts = list(labels.values()) labels = list(labels.keys()) endpoints = [] for i, qpoint in enumerate(qpoints): if qpoint in hisym_qpts: endpoints.append(i) if len(endpoints) < 2: continue sec_segment = sec_bs.m_create(BandEnergies) energies = bands[endpoints[0]: endpoints[1] + 1] sec_segment.energies = np.reshape(energies, (1, *np.shape(energies))) * ureg.THz * ureg.h sec_segment.kpoints = qpoints[endpoints[0]: endpoints[1] + 1] sec_segment.endpoints_labels = [labels[hisym_qpts.index(qpoints[i])] for i in endpoints] endpoints = [] calc.system_ref = self.archive.run[-1].system[0] # TODO add eigendisplacements def parse_tasks(self, data): if len(data['calcs_reversed']) == 0: return xc_func_mapping = { 'PAW_PBE': ['GGA_X_PBE', 'GGA_C_PBE'] } sec_method = self.archive.run[-1].m_create(Method) sec_xc_functional = XCFunctional() for potcar_type in data['calcs_reversed'][0].get('input', {}).get('potcar_type', []): for xc_functional in xc_func_mapping.get(potcar_type, []): if '_X_' in xc_functional or xc_functional.endswith('_X'): sec_xc_functional.exchange.append(Functional(name=xc_functional)) elif '_C_' in xc_functional or xc_functional.endswith('_C'): sec_xc_functional.correlation.append(Functional(name=xc_functional)) elif 'HYB' in xc_functional: sec_xc_functional.hybrid.append(Functional(name=xc_functional)) else: sec_xc_functional.contributions.append(Functional(name=xc_functional)) sec_method.dft = DFT(xc_functional=sec_xc_functional) sec_method.electronic = Electronic(method="DFT") encut = data['calcs_reversed'][0].get('input', {}).get('incar', {}).get('ENCUT') prec = data['calcs_reversed'][0].get('input', {}).get('incar', {}).get('PREC') if encut is not None and prec is not None: sec_basis = sec_method.m_create(BasisSet) sec_basis.type = 'plane waves' sec_basis_set_cell_dependent = sec_basis.m_create(BasisSetCellDependent) sec_basis_set_cell_dependent.kind = 'plane waves' prec = 1.3 if 'acc' in prec else 1.0 sec_basis_set_cell_dependent.planewave_cutoff = encut * prec * ureg.eV self.archive.run[-1].calculation[0].method_ref = sec_method def parse(self, filepath, archive, logger): self.filepath = os.path.abspath(filepath) self.archive = archive self.logger = logger if logger is not None else logging.getLogger(__name__) self.maindir = os.path.dirname(self.filepath) self.init_parser() sec_run = archive.m_create(Run) sec_run.program = Program(name='MaterialsProject', version="1.0.0") # TODO system should be referenced structure = self.data.get('structure') if structure is not None: labels = [site['label'] for site in structure.get('sites')] positions = [site['xyz'] for site in structure.get('sites')] cell = structure.get('lattice', {}).get('matrix') sec_system = sec_run.m_create(System) sec_atoms = sec_system.m_create(Atoms) if cell is not None: sec_atoms.lattice_vectors = cell * ureg.angstrom sec_atoms.periodic = [True, True, True] if positions: sec_atoms.positions = positions * ureg.angstrom if labels: sec_atoms.labels = labels for key, val in self.data.get('composition', {}).items(): sec_system.x_mp_composition.append( Composition(x_mp_label=key, x_mp_value=val)) for key, val in self.data.get('composition_reduced', {}).items(): sec_system.x_mp_composition_reduced.append( Composition(x_mp_label=key, x_mp_value=val)) symmetry = self.data.get('symmetry') if symmetry is not None: sec_symmetry = sec_system.m_create(Symmetry) for key, val in symmetry.items(): try: setattr(sec_symmetry, 'x_mp_%s' % key, val) except Exception: pass # misc sec_system.x_mp_elements = self.data.get('elements', []) for key, val in self.data.items(): try: setattr(sec_system, 'x_mp_%s' % key, val) except Exception: pass # temporary fix to go through workflow normalization sec_calc = sec_run.m_create(Calculation) sec_calc.system_ref = sec_system # TODO should we use the MP api for workflow results? workflow_files = [f for f in os.listdir( self.maindir) if f.endswith('.json') and f != os.path.basename(self.filepath)] for filename in workflow_files: try: data = json.load(open(os.path.join(self.maindir, filename))) except Exception: continue # make sure data matches that of system # TODO maybe better to simply compare filename prefix so no need to load data if data.get('material_id', data.get('task_id')) != self.data.get('material_id'): continue if 'elasticity' in data: self.parse_elastic(data) if 'eos' in data: self.parse_eos(data) if 'ph_bs' in data or 'ph_dos' in data: self.parse_phonon(data) if 'property_name' in data and data.get('property_name') == 'thermo': self.parse_thermo(data) if 'calcs_reversed' in data: self.parse_tasks(data)
45.730496
105
0.628102
4807e068bebaaddc9e58ef5cba0f03ca622b1978
1,979
py
Python
app_verifications/thread/thread_checks.py
kskarbinski/threads-api
c144c1cb51422095922310d278f80e4996c10ea0
[ "MIT" ]
null
null
null
app_verifications/thread/thread_checks.py
kskarbinski/threads-api
c144c1cb51422095922310d278f80e4996c10ea0
[ "MIT" ]
null
null
null
app_verifications/thread/thread_checks.py
kskarbinski/threads-api
c144c1cb51422095922310d278f80e4996c10ea0
[ "MIT" ]
null
null
null
from app_verifications import BaseChecks from app_data.threads import threads, threads_invitations, threads_applications from app_utils.helpers.finders import FindModel class ThreadChecks(BaseChecks): """ Checks related to thread/threads. All checks return True or False. """ def __init__(self, value=None, by="id", model=None): super(ThreadChecks, self).__init__(container=threads, value=value, by=by, model=model) self.thread_model = self.model def check_thread_exists(self): return True if self.thread_model else False def check_user_is_owner(self, user_id): return True if self.thread_model.owner == user_id else False def check_user_is_not_owner(self, user_id): return not self.check_user_is_owner(user_id=user_id) def check_excludes_owner(self, user_ids): return True if self.thread_model.owner not in user_ids else False def check_user_is_invited(self, user_id): thread_invitations = threads_invitations[self.thread_model.id] return True if FindModel(models_list=thread_invitations).by_user(user_id) else False def check_user_is_member(self, user_id): return True if user_id in self.thread_model.users else False def check_thread_is_private(self): return True if self.thread_model.private else False def check_thread_is_not_private(self): return not self.check_thread_is_private() def check_user_applied(self, user_id): return True if FindModel(models_list=threads_applications[self.thread_model.id]).by_user(user_id) else False def check_user_not_applied(self, user_id): return not self.check_user_applied(user_id=user_id) def check_user_invited(self, user_id): return True if FindModel(models_list=threads_invitations[self.thread_model.id]).by_user(user_id) else False def check_user_not_invited(self, user_id): return not self.check_user_invited(user_id=user_id)
38.803922
116
0.749368
0636110aa501f3df35d633a1a75dcc94ab026c20
1,357
py
Python
apps/common/const.py
constructorfleet/AutomationApps
a7d14582e30c1d1a4392774ab4e7e00055fa0e26
[ "MIT" ]
null
null
null
apps/common/const.py
constructorfleet/AutomationApps
a7d14582e30c1d1a4392774ab4e7e00055fa0e26
[ "MIT" ]
null
null
null
apps/common/const.py
constructorfleet/AutomationApps
a7d14582e30c1d1a4392774ab4e7e00055fa0e26
[ "MIT" ]
null
null
null
ARG_OR = 'or' ARG_AND = 'and' ARG_ENTITY_ID = 'entity_id' ARG_ATTRIBUTE = 'attribute' ARG_EXISTS = 'exists' ARG_STATE = 'state' ARG_VALUE = 'value' ARG_HOUR = 'hour' ARG_MINUTE = 'minute' ARG_SECOND = 'second' ARG_BEFORE = 'before' ARG_AFTER = 'after' ARG_AT = 'at' ARG_DOMAIN = 'domain' ARG_GROUPS = 'groups' ARG_SERVICE = 'service' ARG_SERVICE_DATA = 'service_data' ARG_COMPARATOR = 'comparator' ARG_DEPENDENCIES = "dependencies" ARG_NOTIFY = 'notify' ARG_NOTIFY_CATEGORY = 'notify_category' ARG_NOTIFY_REPLACERS = 'replacers' ARG_NOTIFY_ENTITY_ID = 'response_entity_id' ARG_SENSOR = 'sensor' ARG_FILENAME = 'filename' ARG_LOG_LEVEL = 'log_level' ARG_ENABLED_FLAG = 'enabled_flag' ATTR_SCORE = 'score' ATTR_FILENAME = 'filename' ATTR_OLD_STATE = 'old_state' ATTR_NEW_STATE = 'new_state' ATTR_ENTITY_NAME = 'entity_name' ATTR_RGB_COLOR = "rgb_color" ATTR_COLOR_NAME = "color_name" EVENT_STATE_CHANGED = 'state_changed' DOMAIN_NOTIFY = 'notify' DOMAIN_HOMEASSISTANT = 'homeassistant' DOMAIN_CAMERA = 'camera' SERVICE_TURN_ON = 'turn_on' SERVICE_TURN_OFF = 'turn_off' SERVICE_SNAPSHOT = 'snapshot' EQUALS = '=' LESS_THAN = '<' LESS_THAN_EQUAL_TO = '<=' GREATER_THAN = '>' GREATER_THAN_EQUAL_TO = '>=' NOT_EQUAL = '!=' VALID_COMPARATORS = [ EQUALS, LESS_THAN, LESS_THAN_EQUAL_TO, GREATER_THAN, GREATER_THAN_EQUAL_TO, NOT_EQUAL ]
21.887097
43
0.750184
3013977f7a7b727b4dbed6f9a1232d26aa143b9b
3,090
py
Python
models.py
zhikangD/CycleGAN-Tensorflow-PyTorch-Simple
68357996780b758ae313814be16366255080cebf
[ "MIT" ]
null
null
null
models.py
zhikangD/CycleGAN-Tensorflow-PyTorch-Simple
68357996780b758ae313814be16366255080cebf
[ "MIT" ]
null
null
null
models.py
zhikangD/CycleGAN-Tensorflow-PyTorch-Simple
68357996780b758ae313814be16366255080cebf
[ "MIT" ]
1
2020-11-20T06:30:46.000Z
2020-11-20T06:30:46.000Z
from __future__ import division from __future__ import print_function from __future__ import absolute_import import ops import functools import tensorflow as tf import tensorflow.contrib.slim as slim conv = functools.partial(slim.conv2d, activation_fn=None) deconv = functools.partial(slim.conv2d_transpose, activation_fn=None) relu = tf.nn.relu lrelu = functools.partial(ops.leak_relu, leak=0.2) def discriminator(img, scope, df_dim=64, reuse=False, train=True): bn = functools.partial(slim.batch_norm, scale=True, is_training=train, decay=0.9, epsilon=1e-5, updates_collections=None) with tf.variable_scope(scope + '_discriminator', reuse=reuse): h0 = lrelu(conv(img, df_dim, 4, 2, scope='h0_conv')) # h0 is (128 x 128 x df_dim) h1 = lrelu(bn(conv(h0, df_dim * 2, 4, 2, scope='h1_conv'), scope='h1_bn')) # h1 is (64 x 64 x df_dim*2) h2 = lrelu(bn(conv(h1, df_dim * 4, 4, 2, scope='h2_conv'), scope='h2_bn')) # h2 is (32x 32 x df_dim*4) h3 = lrelu(bn(conv(h2, df_dim * 8, 4, 1, scope='h3_conv'), scope='h3_bn')) # h3 is (32 x 32 x df_dim*8) h4 = conv(h3, 1, 4, 1, scope='h4_conv') # h4 is (32 x 32 x 1) return h4 def generator(img, scope, gf_dim=64, reuse=False, train=True): bn = functools.partial(slim.batch_norm, scale=True, is_training=train, decay=0.9, epsilon=1e-5, updates_collections=None) def residule_block(x, dim, scope='res'): y = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT") y = relu(bn(conv(y, dim, 3, 1, padding='VALID', scope=scope + '_conv1'), scope=scope + '_bn1')) y = tf.pad(y, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT") y = bn(conv(y, dim, 3, 1, padding='VALID', scope=scope + '_conv2'), scope=scope + '_bn2') return y + x with tf.variable_scope(scope + '_generator', reuse=reuse): c0 = tf.pad(img, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT") c1 = relu(bn(conv(c0, gf_dim, 7, 1, padding='VALID', scope='c1_conv'), scope='c1_bn')) c2 = relu(bn(conv(c1, gf_dim * 2, 3, 2, scope='c2_conv'), scope='c2_bn')) c3 = relu(bn(conv(c2, gf_dim * 4, 3, 2, scope='c3_conv'), scope='c3_bn')) r1 = residule_block(c3, gf_dim * 4, scope='r1') r2 = residule_block(r1, gf_dim * 4, scope='r2') r3 = residule_block(r2, gf_dim * 4, scope='r3') r4 = residule_block(r3, gf_dim * 4, scope='r4') r5 = residule_block(r4, gf_dim * 4, scope='r5') r6 = residule_block(r5, gf_dim * 4, scope='r6') r7 = residule_block(r6, gf_dim * 4, scope='r7') r8 = residule_block(r7, gf_dim * 4, scope='r8') r9 = residule_block(r8, gf_dim * 4, scope='r9') d1 = relu(bn(deconv(r9, gf_dim * 2, 3, 2, scope='d1_dconv'), scope='d1_bn')) d2 = relu(bn(deconv(d1, gf_dim, 3, 2, scope='d2_dconv'), scope='d2_bn')) d2 = tf.pad(d2, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT") pred = conv(d2, 3, 7, 1, padding='VALID', scope='pred_conv') pred = tf.nn.tanh(pred) return pred
46.119403
112
0.594822
7373e82adcdb3483a229c5c89389d5c91b30d4f9
6,688
py
Python
custom_components/nicehash/nicehash.py
v00g100skr/ha-nicehash
5db5848daff713016893654db5c1636ff7d1ca22
[ "MIT" ]
null
null
null
custom_components/nicehash/nicehash.py
v00g100skr/ha-nicehash
5db5848daff713016893654db5c1636ff7d1ca22
[ "MIT" ]
null
null
null
custom_components/nicehash/nicehash.py
v00g100skr/ha-nicehash
5db5848daff713016893654db5c1636ff7d1ca22
[ "MIT" ]
null
null
null
""" NiceHash API interface References: - https://docs.nicehash.com/main/index.html - https://github.com/nicehash/rest-clients-demo/blob/master/python/nicehash.py """ from datetime import datetime from hashlib import sha256 import hmac import httpx import json import logging import re import sys from time import mktime import uuid import logging from .const import MAX_TWO_BYTES, NICEHASH_API_URL _LOGGER = logging.getLogger(__name__) def parse_device_name(raw_name): name = re.sub( r"(\s?\(r\))|(\s?\(tm\))|(\s?cpu)|(\s?graphics)|(\s?@.*ghz)", "", raw_name, flags=re.IGNORECASE, ) return name class MiningAlgorithm: def __init__(self, data: dict): self.name = data.get("title") self.speed = round(float(data.get("speed")), 2) unit = data.get("displaySuffix") self.unit = f"{unit}/s" class MiningRigDevice: def __init__(self, rig_name, data: dict): self.id = '%s_%s' % (rig_name,data.get("id")) self.name = parse_device_name(data.get("name")) self.status = data.get("status").get("description") self.gtemperature = int(data.get("temperature")) % MAX_TWO_BYTES self.htemperature = int(int(data.get("temperature")) / MAX_TWO_BYTES) self.load = int(data.get("load")) % MAX_TWO_BYTES self.rpm = int(data.get("revolutionsPerMinute")) self.speeds = data.get("speeds") class MiningRig: def __init__(self, data: dict): self.id = data.get("rigId") self.name = data.get("name") self.status = data.get("minerStatus") self.status_time = data.get("statusTime") self.profitability = data.get("profitability") self.unpaid_amount = float(data.get("unpaidAmount")) devices = data.get("devices") if devices is not None: self.num_devices = len(devices) self.devices = dict() for device_data in devices: device = MiningRigDevice(data.get("name"), device_data) self.devices[f"{device.id}"] = device else: self.num_devices = 0 self.devices = dict() def get_algorithms(self): algorithms = dict() for device in self.devices.values(): if len(device.speeds) > 0: algo = MiningAlgorithm(device.speeds[0]) existingAlgo = algorithms.get(algo.name) if existingAlgo: existingAlgo.speed += algo.speed else: algorithms[algo.name] = algo return algorithms class Payout: def __init__(self, data: dict): self.id = data.get("id") self.currency = "Unknown" self.created = data.get("created") self.amount = float(data.get("amount")) self.fee = float(data.get("feeAmount")) self.account_type = "Unknown" # Currency currency = data.get("currency") if currency: self.currency = currency.get("enumName") # Account Type account_type = data.get("accountType") if account_type: self.account_type = account_type.get("enumName") class NiceHashPublicClient: async def get_exchange_rates(self): exchange_data = await self.request("GET", "/main/api/v2/exchangeRate/list") return exchange_data.get("list") async def request(self, method, path, query=None, body=None): url = NICEHASH_API_URL + path if query is not None: url += f"?{query}" _LOGGER.debug(url) async with httpx.AsyncClient() as client: if body: data = json.dumps(body) response = await client.request(method, url, data=data) else: response = await client.request(method, url) if response.status_code == 200: return response.json() else: err_messages = [str(response.status_code), response.reason] if response.content: err_messages.append(str(response.content)) raise Exception(": ".join(err_messages)) class NiceHashPrivateClient: def __init__(self, organization_id, key, secret): self.organization_id = organization_id self.key = key self.secret = secret async def get_accounts(self): return await self.request("GET", "/main/api/v2/accounting/accounts2") async def get_mining_rigs(self): return await self.request("GET", "/main/api/v2/mining/rigs2") async def get_mining_rig(self, rig_id): return await self.request("GET", f"/main/api/v2/mining/rig2/{rig_id}") async def get_rig_payouts(self, size=84): query = f"size={size}" return await self.request("GET", "/main/api/v2/mining/rigs/payouts", query) async def request(self, method, path, query="", body=None): xtime = self.get_epoch_ms_from_now() xnonce = str(uuid.uuid4()) message = f"{self.key}\00{str(xtime)}\00{xnonce}\00\00{self.organization_id}\00\00{method}\00{path}\00{query}" data = None if body: data = json.dumps(body) message += f"\00{data}" digest = hmac.new(self.secret.encode(), message.encode(), sha256).hexdigest() xauth = f"{self.key}:{digest}" headers = { "X-Time": str(xtime), "X-Nonce": xnonce, "X-Auth": xauth, "Content-Type": "application/json", "X-Organization-Id": self.organization_id, "X-Request-Id": str(uuid.uuid4()), } async with httpx.AsyncClient() as client: client.headers = headers url = NICEHASH_API_URL + path if query: url += f"?{query}" _LOGGER.debug(url) if data: response = await client.request(method, url, data=data) else: response = await client.request(method, url) if response.status_code == 200: return response.json() else: err_messages = [str(response.status_code), response.reason] if response.content: err_messages.append(str(response.content)) raise Exception(": ".join(err_messages)) def get_epoch_ms_from_now(self): now = datetime.now() now_ec_since_epoch = mktime( now.timetuple()) + now.microsecond / 1000000.0 return int(now_ec_since_epoch * 1000)
32
118
0.576106
1175b116ca844b90ff9ad6bcdce62a70c87ac173
521
py
Python
Algorithms and Data Structures/old/bubble_sort.py
ioyy900205/PyTorch_mess-around
90d255e17158699fd7902f7746b35fa18975112e
[ "MIT" ]
null
null
null
Algorithms and Data Structures/old/bubble_sort.py
ioyy900205/PyTorch_mess-around
90d255e17158699fd7902f7746b35fa18975112e
[ "MIT" ]
null
null
null
Algorithms and Data Structures/old/bubble_sort.py
ioyy900205/PyTorch_mess-around
90d255e17158699fd7902f7746b35fa18975112e
[ "MIT" ]
null
null
null
''' Date: 2021-06-22 09:59:40 LastEditors: Liuliang LastEditTime: 2021-06-22 10:24:49 Description: bubble_sort ''' import random # from random_int_list import * from bacic_module.random_int_list import * import numpy as np def bubble_sort(li): lenth = len(li) for i in range(lenth-1): for j in range(lenth-1-i): if li[j] > li[j+1]: li[j],li[j+1] = li[j+1], li[j] if __name__ == "__main__": list = random_int_list(5,1000,20) print(list) bubble_sort(list) print(list)
18.607143
62
0.642994
963ee09542fe0d3266b44a4bfea45ad516209877
22,486
py
Python
checkers-reference/checkers_P2.py
cjsproject/Draughts-Checkers
76928822692c3daeb87e2f75db1e2ca825abec29
[ "MIT" ]
null
null
null
checkers-reference/checkers_P2.py
cjsproject/Draughts-Checkers
76928822692c3daeb87e2f75db1e2ca825abec29
[ "MIT" ]
null
null
null
checkers-reference/checkers_P2.py
cjsproject/Draughts-Checkers
76928822692c3daeb87e2f75db1e2ca825abec29
[ "MIT" ]
null
null
null
from __future__ import nested_scopes import string import random #======================== Class GameEngine ======================================= class GameEngine: def __init__(self, str_name): self.str = str_name def __str__(self): return self.str #The return value should be a move that is denoted by a list def nextMove(self,state): global PLAYER curNode = Node(Board(state)) PLAYER = self.str result = maxv(curNode,Thresh(-2000),Thresh(2000),0,"",self.str) return result.bestSucc.state.move #==================== Class Node ============================================ class Node: def __init__ (self,state,parent=None,depth=0,gval=0,hval=None): self.state = state self.parent = parent self.depth = depth self.gval = gval self.hval = hval def printNode(self): print "state: ", self.state, " Parent: ", self.parent.state, print " Gval=",self.gval," Hval=",self.hval def printPathToNode(self): if self: self.printNode() if self.parent: printPathToNode(self.parent) #================== Class Thresh ======================================= class Thresh: def __init__(self,initVal,node=None): self.val = initVal self.bestSucc = node def __repr__(self): return str(self.val) #============== A New Class: Board ============================================ # This class is used to represent board and move # Class Members: # board : a list of lists that represents the 8*8 board # move : is also a list, e.g move = [(1,1),(3,3),(5,5)] class Board: def __init__(self,board,move=[]): self.board = board self.move = move #This function outputs the current Board def PrintBoard(self,name="====== The current board is: =========",parent = None ): if parent: print "Move = ",self.move print "The Parent board is:", name for i in [7,6,5,4,3,2,1,0]: print i,":", for j in range(8): print parent.board[i][j], print "\t|\t",i,":", for j in range(8): print self.board[i][j], print print " ",0,1,2,3,4,5,6,7,"\t|\t ",0,1,2,3,4,5,6,7 else: print name print "move = ",self.move for i in [7,6,5,4,3,2,1,0]: print i,":", for j in range(8): print self.board[i][j], print print " ",0,1,2,3,4,5,6,7 #This function has not been finished (To be continued ???, or just use PrintBoard) def __str__(self): return "Board" #======================================================= #Please only modify code in the following two functions #======================================================= #Heuristic function. #Input: #Type of return value: a real number def evalFun(node,space,player): cur_board = node.state.board val = 0 opponent = OppDic1[player] for i in range(8): for j in range(8): #number of the king and man if cur_board[i][j] == player: val = val + 20 elif cur_board[i][j] == PieceToKingDic[player]: val = val + 40 elif cur_board[i][j] == opponent: val = val - 20 elif cur_board[i][j] == PieceToKingDic[opponent]: val = val - 40 return val def cutoff(state,depth,space,player): if depth >= 5 or not successors(state,player): return 1 else: return 0 #====================================================== #Please don't change anything below this point #====================================================== def edgecost (state1, state2): return 1 def expand (n, succboards): if succboards == []: return [] else: x = map(lambda s: Node(s,parent=n,depth=1+n.depth,\ gval=n.gval+edgecost(n.state,s)),succboards) return x #This function will return move. It has not been tested and it is not used yet def GetMoveList(cur_board,suc_board,player): for i in range(8): for j in range(8): if suc_board[i][j] == '.' and cur_board[i][j] in PlayerDic[player]: s,r = i,j if cur_board[i][j] == '.' and suc_board[i][j] in PlayerDic[player]: a,b = i,j if abs(s-a) == 1: move = [(s,r),(a,b)] else: move = [(s,r)] while s != a and r != b: if s >= 2 and r >= 2 and cur_board[s-1][r-1] in Oppdic[player] and suc_board[s-1][r-1] == '.': s,r = s-2,r-2 move = move + [(s,r)] elif s >= 2 and r<= 5 and cur_board[s-1][r+1] in Oppdic[player] and suc_board[s-1][r+1] == '.': s,r = s-2,r+2 move = move + [(s,r)] elif s <= 5 and r >= 2 and cur_board[s+1][r-1] in Oppdic[player] and suc_board[s+1][r-1] == '.': s,r = s+2,r-2 move = move + [(s,r)] elif s <= 5 and r <= 5 and cur_board[s+1][r+1] in Oppdic[player] and suc_board[s+1][r+1] == '.': s,r = s+2,r+2 move = move + [(s,r)] return move def Jump(board, a,b, jstep, player): result = [] if player == 'b': #Jump: upper right if a <= 5 and b <= 5 and (board[a+1][b+1] == 'r' or board[a+1][b+1] == 'R') and board[a+2][b+2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a+1][b+1] = '.','.' if a == 5: new_board[a+2][b+2] = 'B' else: new_board[a+2][b+2] = 'b' tlist = Jump(new_board,a+2,b+2,jstep+1,'b') for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist #Jump: upper left if a <= 5 and b >= 2 and (board[a+1][b-1] == 'r' or board[a+1][b-1] == 'R') and board[a+2][b-2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a+1][b-1] = '.','.' if a == 5: new_board[a+2][b-2] = 'B' else: new_board[a+2][b-2] = 'b' tlist = Jump(new_board,a+2,b-2,jstep+1,'b') for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist if not result and jstep >= 1: result = [Board(board,move = [(a,b)])] elif player == 'r': #Jump: down right if a >= 2 and b <= 5 and (board[a-1][b+1] == 'b' or board[a-1][b+1] == 'B') and board[a-2][b+2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a-1][b+1] = '.','.' if a == 2: new_board[a-2][b+2] = 'R' else: new_board[a-2][b+2] = 'r' tlist = Jump(new_board,a-2,b+2,jstep+1,'r') for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist #Jump: down left if a >= 2 and b >= 2 and (board[a-1][b-1] == 'b' or board[a-1][b-1] == 'B') and board[a-2][b-2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a-1][b-1] = '.','.' if a == 2: new_board[a-2][b-2] = 'R' else: new_board[a-2][b-2] = 'r' tlist = Jump(new_board,a-2,b-2,jstep+1,'r') for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist if not result and jstep >= 1: result = [Board(board,move = [(a,b)])] elif player == 'B' or player == 'R': #Jump: upper right if a <= 5 and b <= 5 and (board[a+1][b+1] in OppDic[player]) and board[a+2][b+2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a+1][b+1] = '.','.' new_board[a+2][b+2] = player tlist = Jump(new_board,a+2,b+2,jstep+1,player) for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist #Jump: upper left if a <= 5 and b >= 2 and (board[a+1][b-1] in OppDic[player]) and board[a+2][b-2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a+1][b-1] = '.','.' new_board[a+2][b-2] = player tlist = Jump(new_board,a+2,b-2,jstep+1,player) for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist #Jump: down right if a >= 2 and b <= 5 and (board[a-1][b+1] in OppDic[player]) and board[a-2][b+2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a-1][b+1] = '.','.' new_board[a-2][b+2] = player tlist = Jump(new_board,a-2,b+2,jstep+1,player) for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist #Jump: down left if a >= 2 and b >= 2 and (board[a-1][b-1] in OppDic[player]) and board[a-2][b-2] == '.': new_board = Copyboard(board) new_board[a][b], new_board[a-1][b-1] = '.','.' new_board[a-2][b-2] = player tlist = Jump(new_board,a-2,b-2,jstep+1,player) for state in tlist: state.move = [(a,b)]+ state.move result = result + tlist if not result and jstep >= 1: result = [Board(board,move = [(a,b)])] return result def Copyboard(board): new_board = [[]]*8 for i in range(8): new_board[i] = [] + board[i] return new_board def successors(state,player): cur_board = state.board suc_result = [] if player == 'b': #Test jump: If a piece can jump, it must jump piece_list = [] for i in range(8): for j in range(8): if cur_board[i][j] == 'b' or cur_board[i][j] == 'B': suc_result = suc_result + Jump(cur_board, i,j, 0, cur_board[i][j]) piece_list = piece_list + [[i,j]] #Move the piece one step if not suc_result: for x in piece_list: i,j = x[0],x[1] if cur_board[i][j] == 'b': #(1)The piece is not in the rightmost column, move to upperright if j <= 6 and cur_board[i+1][j+1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' if i<=5: suc_board[i+1][j+1] = 'b' else: suc_board[i+1][j+1] = 'B' move = [(i,j),(i+1,j+1)] suc_result = suc_result + [Board(suc_board,move)] #(2)The pice is not in the leftmost column, move to the upperleft if j >= 1 and cur_board[i+1][j-1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' if i<= 5: suc_board[i+1][j-1] = 'b' else: suc_board[i+1][j-1] = 'B' move = [(i,j),(i+1,j-1)] suc_result = suc_result + [Board(suc_board,move)] elif cur_board[i][j] == 'B': #Move the king one step #(1)The king is not in top and the rightmost column, move to upperright if i <= 6 and j <= 6 and cur_board[i+1][j+1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i+1][j+1] = 'B' move = [(i,j),(i+1,j+1)] suc_result = suc_result + [Board(suc_board,move)] #(2)The king is not in top and the leftmost column, move to the upperleft if i <= 6 and j >= 1 and cur_board[i+1][j-1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i+1][j-1] = 'B' move = [(i,j),(i+1,j-1)] suc_result = suc_result + [Board(suc_board,move)] #(3)The king is not in bottom and the rightmost column, move to the downright if i >= 1 and j <= 6 and cur_board[i-1][j+1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i-1][j+1] = 'B' move = [(i,j),(i-1,j+1)] suc_result = suc_result + [Board(suc_board,move)] #(4)The king is not in the leftmost column, move to the downleft if i >= 1 and j >= 1 and cur_board[i-1][j-1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i-1][j-1] = 'B' move = [(i,j),(i-1,j-1)] suc_result = suc_result + [Board(suc_board,move)] else: #Test jump: If a piece can jump, it must jump piece_list = [] for i in range(8): for j in range(8): if cur_board[i][j] == 'r' or cur_board[i][j] == 'R': suc_result = suc_result + Jump(cur_board, i,j, 0, cur_board[i][j]) piece_list = piece_list + [[i,j]] #If jump is not available, move the piece one step if not suc_result: for x in piece_list: i,j = x[0],x[1] if cur_board[i][j] == 'r': #move the piece one step #(1)the piece is not in the rightmost column, move to downright if j <= 6 and cur_board[i-1][j+1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' if i >= 2: suc_board[i-1][j+1] = 'r' else: suc_board[i-1][j+1] = 'R' move = [(i,j),(i-1,j+1)] suc_result = suc_result + [Board(suc_board,move)] #(2)the pice is not in the leftmost column, move to the upperleft if j >= 1 and cur_board[i-1][j-1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' if i >= 2: suc_board[i-1][j-1] = 'r' else: suc_board[i-1][j-1] = 'R' move = [(i,j),(i-1,j-1)] suc_result = suc_result + [Board(suc_board,move)] elif cur_board[i][j] == 'R': #move the king one step #(1)the king is not in top and the rightmost column, move to upperright if i <= 6 and j <= 6 and cur_board[i+1][j+1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i+1][j+1] = 'R' move = [(i,j),(i+1,j+1)] suc_result = suc_result + [Board(suc_board,move)] #(2)the king is not in top and the leftmost column, move to the upperleft if i <= 6 and j >= 1 and cur_board[i+1][j-1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i+1][j-1] = 'R' move = [(i,j),(i+1,j-1)] suc_result = suc_result + [Board(suc_board,move)] #(3)the king is not in bottom and the rightmost column, move to the downright if i >= 1 and j <= 6 and cur_board[i-1][j+1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i-1][j+1] = 'R' move = [(i,j),(i-1,j+1)] suc_result = suc_result + [Board(suc_board,move)] #(4)the king is not in the leftmost column, move to the upperleft if i >= 1 and j >= 1 and cur_board[i-1][j-1] == '.': suc_board = Copyboard(cur_board) suc_board[i][j] = '.' suc_board[i-1][j-1] = 'R' move = [(i,j),(i-1,j-1)] suc_result = suc_result + [Board(suc_board,move)] return suc_result #============================================================================= def maxv (node, parentalpha, parentbeta, depth,space,player): alpha = Thresh(parentalpha.val,parentalpha.bestSucc) beta = Thresh(parentbeta.val,parentbeta.bestSucc) if PrintFlag: #print "player =",player print space, "maxv", node.state, " alpha:", alpha.val, " beta:", beta.val,"-->" if cutoff(node.state,depth,space,player): #t = Thresh(evalFun(node.state,space,PLAYER),node) t = Thresh(evalFun(node,space,PLAYER),node) if PrintFlag: print space,"returning",t,"<--" return t else: for s in expand(node,successors(node.state,player)): newspace = space + " " minval = minv(s, alpha, beta, depth+1,newspace,OppDic1[player]) if minval.val > alpha.val: alpha.val = minval.val alpha.bestSucc = s if PrintFlag: print space, "alpha updated to ", alpha.val if alpha.val >= beta.val: if PrintFlag: print space, "alpha >= beta so returning beta, which is ", beta.val,"<--" return beta if PrintFlag: print space, "returning alpha ", alpha,"<--" return alpha def minv (node, parentalpha, parentbeta, depth, space,player): alpha = Thresh(parentalpha.val,parentalpha.bestSucc) beta = Thresh(parentbeta.val,parentbeta.bestSucc) if PrintFlag: #print "player =",player print space, "minv",node.state, " alpha:", alpha.val, " beta:", beta.val,"-->" if cutoff(node.state,depth,space,player): #t = Thresh(evalFun(node.state,space,PLAYER),node) t = Thresh(evalFun(node,space,PLAYER),node) if PrintFlag: print space,"returning",t,"<--" return t else: for s in expand(node,successors(node.state,player)): newspace = space + " " maxval = maxv(s, alpha, beta, depth+1,newspace,OppDic1[player]) if maxval.val < beta.val: beta.val = maxval.val beta.bestSucc = s if PrintFlag: print space, "beta updated to ", beta.val if beta.val <= alpha.val: if PrintFlag: print space, "beta <= alpha so returning alpha, which is ", alpha.val,"<--" return alpha if PrintFlag: print space, "returning beta ", beta return beta #============= The Checkers Problem ========================= Initial_Board = [ ['b','.','b','.','b','.','b','.'],\ ['.','b','.','b','.','b','.','b'],\ ['b','.','b','.','b','.','b','.'],\ ['.','.','.','.','.','.','.','.'],\ ['.','.','.','.','.','.','.','.'],\ ['.','r','.','r','.','r','.','r'],\ ['r','.','r','.','r','.','r','.'],\ ['.','r','.','r','.','r','.','r'] \ ] #This board is used to test one-step move Test_Board1 = [ ['b','.','b','.','.','.','.','.'],\ ['.','b','.','.','.','r','.','b'],\ ['.','.','.','.','b','.','.','.'],\ ['.','B','.','.','.','.','.','R'],\ ['B','.','.','.','.','.','R','.'],\ ['.','.','.','r','.','.','.','.'],\ ['r','.','b','.','.','.','r','.'],\ ['.','.','.','.','.','r','.','r'] \ ] #These boards are used to test jump Test_Board2 = [ ['.','.','.','.','.','.','.','.'],\ ['r','.','R','.','R','.','R','.'],\ ['.','.','.','.','.','.','.','.'],\ ['r','.','r','.','R','.','r','.'],\ ['.','.','.','.','.','.','.','.'],\ ['R','.','R','.','r','.','R','.'],\ ['.','.','.','B','.','.','.','.'],\ ['.','.','.','.','.','.','b','.'] \ ] Test_Board3 = [ ['.','.','.','.','.','.','.','.'],\ ['b','.','b','.','b','.','B','.'],\ ['.','.','.','.','.','.','.','.'],\ ['b','.','b','.','B','.','b','.'],\ ['.','.','.','.','.','.','.','.'],\ ['B','.','b','.','b','.','B','.'],\ ['.','.','.','r','.','.','.','.'],\ ['.','.','.','.','.','.','R','.'] \ ] PieceToKingDic = {'r':'R', 'b':'B'} OppDic = {'B':['r','R'],'R':['b','B'],'b':['r','R'],'r':['b','B']} PlayerDic = {'r':['r','R'],'b':['b','B'],'R':['r','R'],'B':['b','B']} OppDic1 = {'b':'r','r':'b'} PrintFlag = 0 #PLAYER = 'r' #The following code is used to test the successors function #Board(Test_Board1).PrintBoard(name = "Test_Board1 for one step move:") #for board in successors(Board(Test_Board1),'r'): # board.PrintBoard(parent = Board(Test_Board1)) # print ""; #Board(Test_Board2).PrintBoard(name = "Test_Board2 for jump:") #for board in successors(Board(Test_Board2),'b'): # board.PrintBoard(parent = Board(Test_Board2)) # print ""; #Board(Test_Board3).PrintBoard(name = "Test_Board3 for jump:") #for board in successors(Board(Test_Board3),'r'): # board.PrintBoard(parent = Board(Test_Board3)) # print "";
42.994264
111
0.42373
90a03e48bff9d125781226a18da32cb2fa337ac4
14,217
py
Python
tests/sdc/test_populate.py
beda-software/adibox-sdc
0c2da41ac5ddbe0e33657fe51c6ee7d5aeb382ee
[ "MIT" ]
7
2020-05-14T21:00:42.000Z
2021-10-17T09:10:18.000Z
tests/sdc/test_populate.py
beda-software/adibox-sdc
0c2da41ac5ddbe0e33657fe51c6ee7d5aeb382ee
[ "MIT" ]
27
2020-07-16T06:59:04.000Z
2021-11-18T13:22:35.000Z
tests/sdc/test_populate.py
beda-software/adibox-sdc
0c2da41ac5ddbe0e33657fe51c6ee7d5aeb382ee
[ "MIT" ]
2
2020-11-06T09:30:09.000Z
2021-03-03T09:48:27.000Z
from tests.utils import create_parameters async def test_initial_expression_populate(sdk, safe_db): q = sdk.client.resource( "Questionnaire", **{ "status": "active", "launchContext": [{"name": "LaunchPatient", "type": "Patient",},], "item": [ { "type": "string", "linkId": "patientId", "initialExpression": { "language": "text/fhirpath", "expression": "%LaunchPatient.id", }, }, ], }, ) await q.save() assert q.id is not None launch_patient = {"resourceType": "Patient", "id": "patienit-id"} p = await q.execute("$populate", data=create_parameters(LaunchPatient=launch_patient)) assert p == { "resourceType": "QuestionnaireResponse", "questionnaire": q.id, "item": [{"linkId": "patientId", "answer": [{"value": {"string": launch_patient["id"]}}],}], } async def test_initial_expression_populate_using_list_endpoint(sdk, safe_db): q = { "id": "virtual-id", "resourceType": "Questionnaire", "status": "active", "launchContext": [{"name": "LaunchPatient", "type": "Patient",},], "item": [ { "type": "string", "linkId": "patientId", "initialExpression": { "language": "text/fhirpath", "expression": "%LaunchPatient.id", }, }, ], } launch_patient = {"resourceType": "Patient", "id": "patient-id"} p = await sdk.client.execute( "Questionnaire/$populate", data=create_parameters(Questionnaire=q, LaunchPatient=launch_patient), ) assert p == { "resourceType": "QuestionnaireResponse", "questionnaire": q["id"], "item": [{"linkId": "patientId", "answer": [{"value": {"string": launch_patient["id"]}}],}], } async def test_item_context_with_repeats_populate(sdk, safe_db): q = sdk.client.resource( "Questionnaire", **{ "status": "active", "launchContext": [{"name": "LaunchPatient", "type": "Patient",},], "item": [ { "type": "group", "linkId": "names", "itemContext": { "language": "text/fhirpath", "expression": "%LaunchPatient.name", }, "item": [ { "repeats": True, "type": "string", "linkId": "firstName", "initialExpression": { "language": "text/fhirpath", "expression": "given", }, }, ], }, ], }, ) await q.save() assert q.id is not None launch_patient = { "resourceType": "Patient", "id": "patienit-id", "name": [{"given": ["Peter", "Middlename"]}, {"given": ["Pit"]}, {"given": ["Little Pitty"]},], } p = await q.execute("$populate", data=create_parameters(LaunchPatient=launch_patient)) assert p == { "item": [ { "item": [ { "linkId": "firstName", "answer": [ {"value": {"string": "Peter"}}, {"value": {"string": "Middlename"}}, {"value": {"string": "Pit"}}, {"value": {"string": "Little Pitty"}}, ], } ], "linkId": "names", } ], "questionnaire": q.id, "resourceType": "QuestionnaireResponse", } async def test_item_context_with_repeating_group_populate(sdk, safe_db): q = sdk.client.resource( "Questionnaire", **{ "status": "active", "launchContext": [{"name": "LaunchPatient", "type": "Patient",},], "item": [ { "type": "group", "linkId": "addresses", "repeats": True, "itemContext": { "language": "text/fhirpath", "expression": "%LaunchPatient.address", }, "item": [ { "type": "string", "linkId": "city", "initialExpression": { "language": "text/fhirpath", "expression": "city.first()", }, }, ], }, ], }, ) await q.save() assert q.id is not None launch_patient = { "resourceType": "Patient", "id": "patienit-id", "address": [{"city": "San Francisco"}, {"city": "San Diego"}], } p = await q.execute("$populate", data=create_parameters(LaunchPatient=launch_patient)) assert p == { "item": [ { "item": [ { "linkId": "city", "answer": [ {"value": {"string": "San Francisco"}}, ], } ], "linkId": "addresses", }, { "item": [ { "linkId": "city", "answer": [ {"value": {"string": "San Diego"}}, ], } ], "linkId": "addresses", } ], "questionnaire": q.id, "resourceType": "QuestionnaireResponse", } async def test_item_context_without_repeats_populate(sdk, safe_db): q = sdk.client.resource( "Questionnaire", **{ "status": "active", "launchContext": [{"name": "LaunchPatient", "type": "Patient",},], "item": [ { "text": "Address", "type": "group", "linkId": "address", "itemContext": { "language": "text/fhirpath", "expression": "%LaunchPatient.address", }, "item": [ { "text": "City", "linkId": "city", "type": "string", "initialExpression": { "language": "text/fhirpath", "expression": "city", }, }, { "text": "Line 1", "linkId": "line-1", "type": "string", "initialExpression": { "language": "text/fhirpath", "expression": "line[0]", }, }, { "text": "Line 2", "linkId": "line-2", "type": "string", "initialExpression": { "language": "text/fhirpath", "expression": "line[1]", }, }, { "text": "Country", "linkId": "Country", "type": "string", "initialExpression": { "language": "text/fhirpath", "expression": "country", }, }, ], } ], }, ) await q.save() launch_patient = { "resourceType": "Patient", "id": "patienit-id", "address": [ { "city": "Sydney", "line": ["Central park", "near metro station museum"], "country": "Australia", } ], } p = await q.execute("$populate", data=create_parameters(LaunchPatient=launch_patient)) assert p == { "item": [ { "item": [ { "answer": [{"value": {"string": "Sydney"}}], "linkId": "city", "text": "City", }, { "answer": [{"value": {"string": "Central park"}}], "linkId": "line-1", "text": "Line 1", }, { "answer": [{"value": {"string": "near metro station " "museum"}}], "linkId": "line-2", "text": "Line 2", }, { "answer": [{"value": {"string": "Australia"}}], "linkId": "Country", "text": "Country", }, ], "linkId": "address", "text": "Address", } ], "questionnaire": q.id, "resourceType": "QuestionnaireResponse", } async def test_source_queries_populate(sdk, safe_db): p = sdk.client.resource("Patient") await p.save() a = sdk.client.resource( "Appointment", **{ "status": "booked", "start": "2020-01-01T00:00", "participant": [{"status": "accepted", "actor": p}], }, ) await a.save() q = sdk.client.resource( "Questionnaire", **{ "status": "active", "contained": [ { "resourceType": "Bundle", "id": "PrePopQuery", "type": "batch", "entry": [ { "request": { "method": "GET", "url": "Appointment?patient={{%LaunchPatient.id}}", }, }, ], } ], "launchContext": [{"name": "LaunchPatient", "type": "Patient",},], "sourceQueries": [{"localRef": "Bundle#PrePopQuery"},], "item": [ { "type": "string", "linkId": "last-appointment", "initialExpression": { "language": "text/fhirpath", "expression": "%PrePopQuery.entry.resource.entry.resource.start", }, }, ], }, ) await q.save() p = await q.execute("$populate", data=create_parameters(LaunchPatient=p)) assert p == { "resourceType": "QuestionnaireResponse", "questionnaire": q.id, "item": [{"linkId": "last-appointment", "answer": [{"value": {"string": a["start"]}}],}], } async def test_multiple_answers_populate(sdk, safe_db): q = sdk.client.resource( "Questionnaire", **{ "status": "active", "launchContext": [{"name": "Diet", "type": "Bundle",},], "item": [ { "type": "choice", "linkId": "diet", "repeats": True, "initialExpression": { "language": "text/fhirpath", "expression": "%Diet.entry.resource.oralDiet.type.coding.where(system = 'http://snomed.info/sct')", }, }, ], }, ) await q.save() assert q.id is not None diet = { "resourceType": "Bundle", "entry": [ { "resource": { "resourceType": "NutritionOrder", "oralDiet": { "type": { "coding": [{"system": "http://snomed.info/sct", "code": "160671006",},] }, }, }, }, { "resource": { "resourceType": "NutritionOrder", "oralDiet": {"type": {"coding": [{"system": "UNKNOWN", "code": "ABC",},]},}, }, }, { "resource": { "resourceType": "NutritionOrder", "oralDiet": { "type": { "coding": [{"system": "http://snomed.info/sct", "code": "302320003",},] }, }, }, }, ], } p = await q.execute("$populate", data=create_parameters(Diet=diet)) assert p == { "resourceType": "QuestionnaireResponse", "questionnaire": q.id, "item": [ { "linkId": "diet", "answer": [ { "value": { "Coding": {"system": "http://snomed.info/sct", "code": "160671006",} } }, { "value": { "Coding": {"system": "http://snomed.info/sct", "code": "302320003",} } }, ], } ], }
31.805369
123
0.346627
2bcacca1fd20eb7692188f2edfb3dd40e2cc8b93
27,224
py
Python
tests/sagemaker/test_deployment.py
Kublai-Jing/mlflow
ad60bf1f6d4496573f8f278efd192fd282dfe5aa
[ "Apache-2.0" ]
null
null
null
tests/sagemaker/test_deployment.py
Kublai-Jing/mlflow
ad60bf1f6d4496573f8f278efd192fd282dfe5aa
[ "Apache-2.0" ]
null
null
null
tests/sagemaker/test_deployment.py
Kublai-Jing/mlflow
ad60bf1f6d4496573f8f278efd192fd282dfe5aa
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import os import pytest import time import mock from collections import namedtuple import boto3 import botocore import numpy as np from click.testing import CliRunner from sklearn.linear_model import LogisticRegression import mlflow import mlflow.pyfunc import mlflow.sklearn import mlflow.sagemaker as mfs import mlflow.sagemaker.cli as mfscli from mlflow.exceptions import MlflowException from mlflow.models import Model from mlflow.protos.databricks_pb2 import ErrorCode, RESOURCE_DOES_NOT_EXIST, \ INVALID_PARAMETER_VALUE, INTERNAL_ERROR from mlflow.store.s3_artifact_repo import S3ArtifactRepository from mlflow.tracking.artifact_utils import _download_artifact_from_uri from tests.helper_functions import set_boto_credentials # pylint: disable=unused-import from tests.sagemaker.mock import mock_sagemaker, Endpoint, EndpointOperation TrainedModel = namedtuple("TrainedModel", ["model_path", "run_id", "model_uri"]) @pytest.fixture def pretrained_model(): model_path = "model" with mlflow.start_run(): X = np.array([-2, -1, 0, 1, 2, 1]).reshape(-1, 1) y = np.array([0, 0, 1, 1, 1, 0]) lr = LogisticRegression(solver='lbfgs') lr.fit(X, y) mlflow.sklearn.log_model(lr, model_path) run_id = mlflow.active_run().info.run_id model_uri = "runs:/" + run_id + "/" + model_path return TrainedModel(model_path, run_id, model_uri) @pytest.fixture def sagemaker_client(): return boto3.client("sagemaker", region_name="us-west-2") def get_sagemaker_backend(region_name): return mock_sagemaker.backends[region_name] def mock_sagemaker_aws_services(fn): # Import `wraps` from `six` instead of `functools` to properly set the # wrapped function's `__wrapped__` attribute to the required value # in Python 2 from six import wraps from moto import mock_s3, mock_ecr, mock_sts, mock_iam @mock_ecr @mock_iam @mock_s3 @mock_sagemaker @mock_sts @wraps(fn) def mock_wrapper(*args, **kwargs): # Create an ECR repository for the `mlflow-pyfunc` SageMaker docker image ecr_client = boto3.client("ecr", region_name="us-west-2") ecr_client.create_repository(repositoryName=mfs.DEFAULT_IMAGE_NAME) # Create the moto IAM role role_policy = """ { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "*", "Resource": "*" } ] } """ iam_client = boto3.client("iam", region_name="us-west-2") iam_client.create_role(RoleName="moto", AssumeRolePolicyDocument=role_policy) return fn(*args, **kwargs) return mock_wrapper @pytest.mark.large def test_deployment_with_unsupported_flavor_raises_exception(pretrained_model): unsupported_flavor = "this is not a valid flavor" with pytest.raises(MlflowException) as exc: mfs.deploy(app_name="bad_flavor", model_uri=pretrained_model.model_uri, flavor=unsupported_flavor) assert exc.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) @pytest.mark.large def test_deployment_with_missing_flavor_raises_exception(pretrained_model): missing_flavor = "mleap" with pytest.raises(MlflowException) as exc: mfs.deploy(app_name="missing-flavor", model_uri=pretrained_model.model_uri, flavor=missing_flavor) assert exc.value.error_code == ErrorCode.Name(RESOURCE_DOES_NOT_EXIST) @pytest.mark.large def test_deployment_of_model_with_no_supported_flavors_raises_exception(pretrained_model): logged_model_path = _download_artifact_from_uri(pretrained_model.model_uri) model_config_path = os.path.join(logged_model_path, "MLmodel") model_config = Model.load(model_config_path) del model_config.flavors[mlflow.pyfunc.FLAVOR_NAME] model_config.save(path=model_config_path) with pytest.raises(MlflowException) as exc: mfs.deploy(app_name="missing-flavor", model_uri=logged_model_path, flavor=None) assert exc.value.error_code == ErrorCode.Name(RESOURCE_DOES_NOT_EXIST) @pytest.mark.large def test_validate_deployment_flavor_validates_python_function_flavor_successfully( pretrained_model): model_config_path = os.path.join( _download_artifact_from_uri(pretrained_model.model_uri), "MLmodel") model_config = Model.load(model_config_path) mfs._validate_deployment_flavor( model_config=model_config, flavor=mlflow.pyfunc.FLAVOR_NAME) @pytest.mark.large def test_get_preferred_deployment_flavor_obtains_valid_flavor_from_model(pretrained_model): model_config_path = os.path.join( _download_artifact_from_uri(pretrained_model.model_uri), "MLmodel") model_config = Model.load(model_config_path) selected_flavor = mfs._get_preferred_deployment_flavor(model_config=model_config) assert selected_flavor in mfs.SUPPORTED_DEPLOYMENT_FLAVORS assert selected_flavor in model_config.flavors @pytest.mark.large def test_attempting_to_deploy_in_asynchronous_mode_without_archiving_throws_exception( pretrained_model): with pytest.raises(MlflowException) as exc: mfs.deploy(app_name="test-app", model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE, archive=False, synchronous=False) assert "Resources must be archived" in exc.value.message assert exc.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_creates_sagemaker_and_s3_resources_with_expected_names_from_local( pretrained_model, sagemaker_client): app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) region_name = sagemaker_client.meta.region_name s3_client = boto3.client("s3", region_name=region_name) default_bucket = mfs._get_default_s3_bucket(region_name) endpoint_description = sagemaker_client.describe_endpoint(EndpointName=app_name) endpoint_production_variants = endpoint_description["ProductionVariants"] assert len(endpoint_production_variants) == 1 model_name = endpoint_production_variants[0]["VariantName"] assert model_name in [ model["ModelName"] for model in sagemaker_client.list_models()["Models"] ] object_names = [ entry["Key"] for entry in s3_client.list_objects(Bucket=default_bucket)["Contents"] ] assert any([model_name in object_name for object_name in object_names]) assert any([app_name in config["EndpointConfigName"] for config in sagemaker_client.list_endpoint_configs()["EndpointConfigs"]]) assert app_name in [endpoint["EndpointName"] for endpoint in sagemaker_client.list_endpoints()["Endpoints"]] @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_cli_creates_sagemaker_and_s3_resources_with_expected_names_from_local( pretrained_model, sagemaker_client): app_name = "test-app" result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke( mfscli.commands, [ 'deploy', '-a', app_name, '-m', pretrained_model.model_uri, '--mode', mfs.DEPLOYMENT_MODE_CREATE, ]) assert result.exit_code == 0 region_name = sagemaker_client.meta.region_name s3_client = boto3.client("s3", region_name=region_name) default_bucket = mfs._get_default_s3_bucket(region_name) endpoint_description = sagemaker_client.describe_endpoint(EndpointName=app_name) endpoint_production_variants = endpoint_description["ProductionVariants"] assert len(endpoint_production_variants) == 1 model_name = endpoint_production_variants[0]["VariantName"] assert model_name in [ model["ModelName"] for model in sagemaker_client.list_models()["Models"] ] object_names = [ entry["Key"] for entry in s3_client.list_objects(Bucket=default_bucket)["Contents"] ] assert any([model_name in object_name for object_name in object_names]) assert any([app_name in config["EndpointConfigName"] for config in sagemaker_client.list_endpoint_configs()["EndpointConfigs"]]) assert app_name in [endpoint["EndpointName"] for endpoint in sagemaker_client.list_endpoints()["Endpoints"]] @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_creates_sagemaker_and_s3_resources_with_expected_names_from_s3( pretrained_model, sagemaker_client): local_model_path = _download_artifact_from_uri(pretrained_model.model_uri) artifact_path = "model" region_name = sagemaker_client.meta.region_name default_bucket = mfs._get_default_s3_bucket(region_name) s3_artifact_repo = S3ArtifactRepository('s3://{}'.format(default_bucket)) s3_artifact_repo.log_artifacts(local_model_path, artifact_path=artifact_path) model_s3_uri = 's3://{bucket_name}/{artifact_path}'.format( bucket_name=default_bucket, artifact_path=pretrained_model.model_path) app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=model_s3_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) endpoint_description = sagemaker_client.describe_endpoint(EndpointName=app_name) endpoint_production_variants = endpoint_description["ProductionVariants"] assert len(endpoint_production_variants) == 1 model_name = endpoint_production_variants[0]["VariantName"] assert model_name in [ model["ModelName"] for model in sagemaker_client.list_models()["Models"] ] s3_client = boto3.client("s3", region_name=region_name) object_names = [ entry["Key"] for entry in s3_client.list_objects(Bucket=default_bucket)["Contents"] ] assert any([model_name in object_name for object_name in object_names]) assert any([app_name in config["EndpointConfigName"] for config in sagemaker_client.list_endpoint_configs()["EndpointConfigs"]]) assert app_name in [endpoint["EndpointName"] for endpoint in sagemaker_client.list_endpoints()["Endpoints"]] @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_cli_creates_sagemaker_and_s3_resources_with_expected_names_from_s3( pretrained_model, sagemaker_client): local_model_path = _download_artifact_from_uri(pretrained_model.model_uri) artifact_path = "model" region_name = sagemaker_client.meta.region_name default_bucket = mfs._get_default_s3_bucket(region_name) s3_artifact_repo = S3ArtifactRepository('s3://{}'.format(default_bucket)) s3_artifact_repo.log_artifacts(local_model_path, artifact_path=artifact_path) model_s3_uri = 's3://{bucket_name}/{artifact_path}'.format( bucket_name=default_bucket, artifact_path=pretrained_model.model_path) app_name = "test-app" result = CliRunner(env={"LC_ALL": "en_US.UTF-8", "LANG": "en_US.UTF-8"}).invoke( mfscli.commands, [ 'deploy', '-a', app_name, '-m', model_s3_uri, '--mode', mfs.DEPLOYMENT_MODE_CREATE, ]) assert result.exit_code == 0 region_name = sagemaker_client.meta.region_name s3_client = boto3.client("s3", region_name=region_name) default_bucket = mfs._get_default_s3_bucket(region_name) endpoint_description = sagemaker_client.describe_endpoint(EndpointName=app_name) endpoint_production_variants = endpoint_description["ProductionVariants"] assert len(endpoint_production_variants) == 1 model_name = endpoint_production_variants[0]["VariantName"] assert model_name in [ model["ModelName"] for model in sagemaker_client.list_models()["Models"] ] object_names = [ entry["Key"] for entry in s3_client.list_objects(Bucket=default_bucket)["Contents"] ] assert any([model_name in object_name for object_name in object_names]) assert any([app_name in config["EndpointConfigName"] for config in sagemaker_client.list_endpoint_configs()["EndpointConfigs"]]) assert app_name in [endpoint["EndpointName"] for endpoint in sagemaker_client.list_endpoints()["Endpoints"]] @pytest.mark.large @mock_sagemaker_aws_services def test_deploying_application_with_preexisting_name_in_create_mode_throws_exception( pretrained_model): app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) with pytest.raises(MlflowException) as exc: mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) assert "an application with the same name already exists" in exc.value.message assert exc.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_in_synchronous_mode_waits_for_endpoint_creation_to_complete_before_returning( pretrained_model, sagemaker_client): endpoint_creation_latency = 10 get_sagemaker_backend(sagemaker_client.meta.region_name).set_endpoint_update_latency( endpoint_creation_latency) app_name = "test-app" deployment_start_time = time.time() mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE, synchronous=True) deployment_end_time = time.time() assert (deployment_end_time - deployment_start_time) >= endpoint_creation_latency endpoint_description = sagemaker_client.describe_endpoint(EndpointName=app_name) assert endpoint_description["EndpointStatus"] == Endpoint.STATUS_IN_SERVICE @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_create_in_asynchronous_mode_returns_before_endpoint_creation_completes( pretrained_model, sagemaker_client): endpoint_creation_latency = 10 get_sagemaker_backend(sagemaker_client.meta.region_name).set_endpoint_update_latency( endpoint_creation_latency) app_name = "test-app" deployment_start_time = time.time() mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE, synchronous=False, archive=True) deployment_end_time = time.time() assert (deployment_end_time - deployment_start_time) < endpoint_creation_latency endpoint_description = sagemaker_client.describe_endpoint(EndpointName=app_name) assert endpoint_description["EndpointStatus"] == Endpoint.STATUS_CREATING @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_replace_in_asynchronous_mode_returns_before_endpoint_creation_completes( pretrained_model, sagemaker_client): endpoint_update_latency = 10 get_sagemaker_backend(sagemaker_client.meta.region_name).set_endpoint_update_latency( endpoint_update_latency) app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE, synchronous=True) update_start_time = time.time() mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_REPLACE, synchronous=False, archive=True) update_end_time = time.time() assert (update_end_time - update_start_time) < endpoint_update_latency endpoint_description = sagemaker_client.describe_endpoint(EndpointName=app_name) assert endpoint_description["EndpointStatus"] == Endpoint.STATUS_UPDATING @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_in_create_mode_throws_exception_after_endpoint_creation_fails( pretrained_model, sagemaker_client): endpoint_creation_latency = 10 sagemaker_backend = get_sagemaker_backend(sagemaker_client.meta.region_name) sagemaker_backend.set_endpoint_update_latency(endpoint_creation_latency) boto_caller = botocore.client.BaseClient._make_api_call def fail_endpoint_creations(self, operation_name, operation_kwargs): """ Processes all boto3 client operations according to the following rules: - If the operation is an endpoint creation, create the endpoint and set its status to ``Endpoint.STATUS_FAILED``. - Else, execute the client operation as normal """ result = boto_caller(self, operation_name, operation_kwargs) if operation_name == "CreateEndpoint": endpoint_name = operation_kwargs["EndpointName"] sagemaker_backend.set_endpoint_latest_operation( endpoint_name=endpoint_name, operation=EndpointOperation.create_unsuccessful( latency_seconds=endpoint_creation_latency)) return result with mock.patch("botocore.client.BaseClient._make_api_call", new=fail_endpoint_creations),\ pytest.raises(MlflowException) as exc: mfs.deploy(app_name="test-app", model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) assert "deployment operation failed" in exc.value.message assert exc.value.error_code == ErrorCode.Name(INTERNAL_ERROR) @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_in_add_mode_adds_new_model_to_existing_endpoint(pretrained_model, sagemaker_client): app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) models_added = 1 for _ in range(11): mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_ADD, archive=True, synchronous=False) models_added += 1 endpoint_response = sagemaker_client.describe_endpoint(EndpointName=app_name) endpoint_config_name = endpoint_response["EndpointConfigName"] endpoint_config_response = sagemaker_client.describe_endpoint_config( EndpointConfigName=endpoint_config_name) production_variants = endpoint_config_response["ProductionVariants"] assert len(production_variants) == models_added @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_in_replace_model_removes_preexisting_models_from_endpoint( pretrained_model, sagemaker_client): app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_ADD) for _ in range(11): mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_ADD, archive=True, synchronous=False) endpoint_response_before_replacement = sagemaker_client.describe_endpoint(EndpointName=app_name) endpoint_config_name_before_replacement =\ endpoint_response_before_replacement["EndpointConfigName"] endpoint_config_response_before_replacement = sagemaker_client.describe_endpoint_config( EndpointConfigName=endpoint_config_name_before_replacement) production_variants_before_replacement =\ endpoint_config_response_before_replacement["ProductionVariants"] deployed_models_before_replacement = [ variant["ModelName"] for variant in production_variants_before_replacement] mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_REPLACE, archive=True, synchronous=False) endpoint_response_after_replacement = sagemaker_client.describe_endpoint(EndpointName=app_name) endpoint_config_name_after_replacement =\ endpoint_response_after_replacement["EndpointConfigName"] endpoint_config_response_after_replacement = sagemaker_client.describe_endpoint_config( EndpointConfigName=endpoint_config_name_after_replacement) production_variants_after_replacement =\ endpoint_config_response_after_replacement["ProductionVariants"] deployed_models_after_replacement = [ variant["ModelName"] for variant in production_variants_after_replacement] assert len(deployed_models_after_replacement) == 1 assert all([model_name not in deployed_models_after_replacement for model_name in deployed_models_before_replacement]) @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_in_replace_mode_throws_exception_after_endpoint_update_fails( pretrained_model, sagemaker_client): endpoint_update_latency = 5 sagemaker_backend = get_sagemaker_backend(sagemaker_client.meta.region_name) sagemaker_backend.set_endpoint_update_latency(endpoint_update_latency) app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) boto_caller = botocore.client.BaseClient._make_api_call def fail_endpoint_updates(self, operation_name, operation_kwargs): """ Processes all boto3 client operations according to the following rules: - If the operation is an endpoint update, update the endpoint and set its status to ``Endpoint.STATUS_FAILED``. - Else, execute the client operation as normal """ result = boto_caller(self, operation_name, operation_kwargs) if operation_name == "UpdateEndpoint": endpoint_name = operation_kwargs["EndpointName"] sagemaker_backend.set_endpoint_latest_operation( endpoint_name=endpoint_name, operation=EndpointOperation.update_unsuccessful( latency_seconds=endpoint_update_latency)) return result with mock.patch("botocore.client.BaseClient._make_api_call", new=fail_endpoint_updates),\ pytest.raises(MlflowException) as exc: mfs.deploy(app_name="test-app", model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_REPLACE) assert "deployment operation failed" in exc.value.message assert exc.value.error_code == ErrorCode.Name(INTERNAL_ERROR) @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_in_replace_mode_waits_for_endpoint_update_completion_before_deleting_resources( pretrained_model, sagemaker_client): endpoint_update_latency = 10 sagemaker_backend = get_sagemaker_backend(sagemaker_client.meta.region_name) sagemaker_backend.set_endpoint_update_latency(endpoint_update_latency) app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) endpoint_config_name_before_replacement = sagemaker_client.describe_endpoint( EndpointName=app_name)["EndpointConfigName"] boto_caller = botocore.client.BaseClient._make_api_call update_start_time = time.time() def validate_deletes(self, operation_name, operation_kwargs): """ Processes all boto3 client operations according to the following rules: - If the operation deletes an S3 or SageMaker resource, ensure that the deletion was initiated after the completion of the endpoint update - Else, execute the client operation as normal """ result = boto_caller(self, operation_name, operation_kwargs) if "Delete" in operation_name: # Confirm that a successful endpoint update occurred prior to the invocation of this # delete operation endpoint_info = sagemaker_client.describe_endpoint(EndpointName=app_name) assert endpoint_info["EndpointStatus"] == Endpoint.STATUS_IN_SERVICE assert endpoint_info["EndpointConfigName"] != endpoint_config_name_before_replacement assert time.time() - update_start_time >= endpoint_update_latency return result with mock.patch("botocore.client.BaseClient._make_api_call", new=validate_deletes): mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_REPLACE, archive=False) @pytest.mark.large @mock_sagemaker_aws_services def test_deploy_in_replace_mode_with_archiving_does_not_delete_resources( pretrained_model, sagemaker_client): region_name = sagemaker_client.meta.region_name sagemaker_backend = get_sagemaker_backend(region_name) sagemaker_backend.set_endpoint_update_latency(5) app_name = "test-app" mfs.deploy(app_name=app_name, model_uri=pretrained_model.model_uri, mode=mfs.DEPLOYMENT_MODE_CREATE) s3_client = boto3.client("s3", region_name=region_name) default_bucket = mfs._get_default_s3_bucket(region_name) object_names_before_replacement = [ entry["Key"] for entry in s3_client.list_objects(Bucket=default_bucket)["Contents"]] endpoint_configs_before_replacement = [ config["EndpointConfigName"] for config in sagemaker_client.list_endpoint_configs()["EndpointConfigs"]] models_before_replacement = [ model["ModelName"] for model in sagemaker_client.list_models()["Models"]] sk_model = mlflow.sklearn.load_model( path=pretrained_model.model_path, run_id=pretrained_model.run_id) new_artifact_path = "model" with mlflow.start_run(): mlflow.sklearn.log_model(sk_model=sk_model, artifact_path=new_artifact_path) new_model_uri = "runs:/{run_id}/{artifact_path}".format( run_id=mlflow.active_run().info.run_id, artifact_path=new_artifact_path) mfs.deploy(app_name=app_name, model_uri=new_model_uri, mode=mfs.DEPLOYMENT_MODE_REPLACE, archive=True, synchronous=True) object_names_after_replacement = [ entry["Key"] for entry in s3_client.list_objects(Bucket=default_bucket)["Contents"]] endpoint_configs_after_replacement = [ config["EndpointConfigName"] for config in sagemaker_client.list_endpoint_configs()["EndpointConfigs"]] models_after_replacement = [ model["ModelName"] for model in sagemaker_client.list_models()["Models"]] assert all([object_name in object_names_after_replacement for object_name in object_names_before_replacement]) assert all([endpoint_config in endpoint_configs_after_replacement for endpoint_config in endpoint_configs_before_replacement]) assert all([model in models_after_replacement for model in models_before_replacement])
42.604069
100
0.728181
68842b90a583a5aea244d6f55aa00a3004c2bb04
3,743
py
Python
intel-sds-proto/vsm_configure_guide/packages/vsmclient/python-vsmclient/build/lib.linux-x86_64-2.7/vsmclient/v1/vsm_snapshots.py
opensds/proposals
03735f5e19203bdff698454f2633ca483c92129d
[ "Apache-2.0" ]
5
2017-03-21T09:11:55.000Z
2018-11-19T14:44:36.000Z
intel-sds-proto/vsm_configure_guide/packages/vsmclient/python-vsmclient/vsmclient/v1/vsm_snapshots.py
opensds/proposals
03735f5e19203bdff698454f2633ca483c92129d
[ "Apache-2.0" ]
3
2018-02-06T06:17:10.000Z
2020-07-10T17:29:47.000Z
intel-sds-proto/vsm_configure_guide/packages/vsmclient/python-vsmclient/build/lib.linux-x86_64-2.7/vsmclient/v1/vsm_snapshots.py
opensds/proposals
03735f5e19203bdff698454f2633ca483c92129d
[ "Apache-2.0" ]
7
2018-02-06T03:54:13.000Z
2021-09-08T10:51:38.000Z
# Copyright 2011 Denali Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Volume snapshot interface (1.1 extension). """ import urllib from vsmclient import base class Snapshot(base.Resource): """ A Snapshot is a point-in-time snapshot of an openstack vsm. """ def __repr__(self): return "<Snapshot: %s>" % self.id def delete(self): """ Delete this snapshot. """ self.manager.delete(self) def update(self, **kwargs): """ Update the display_name or display_description for this snapshot. """ self.manager.update(self, **kwargs) @property def progress(self): return self._info.get('os-extended-snapshot-attributes:progress') @property def project_id(self): return self._info.get('os-extended-snapshot-attributes:project_id') class SnapshotManager(base.ManagerWithFind): """ Manage :class:`Snapshot` resources. """ resource_class = Snapshot def create(self, vsm_id, force=False, display_name=None, display_description=None): """ Create a snapshot of the given vsm. :param vsm_id: The ID of the vsm to snapshot. :param force: If force is True, create a snapshot even if the vsm is attached to an instance. Default is False. :param display_name: Name of the snapshot :param display_description: Description of the snapshot :rtype: :class:`Snapshot` """ body = {'snapshot': {'vsm_id': vsm_id, 'force': force, 'display_name': display_name, 'display_description': display_description}} return self._create('/snapshots', body, 'snapshot') def get(self, snapshot_id): """ Get a snapshot. :param snapshot_id: The ID of the snapshot to get. :rtype: :class:`Snapshot` """ return self._get("/snapshots/%s" % snapshot_id, "snapshot") def list(self, detailed=True, search_opts=None): """ Get a list of all snapshots. :rtype: list of :class:`Snapshot` """ if search_opts is None: search_opts = {} qparams = {} for opt, val in search_opts.iteritems(): if val: qparams[opt] = val query_string = "?%s" % urllib.urlencode(qparams) if qparams else "" detail = "" if detailed: detail = "/detail" return self._list("/snapshots%s%s" % (detail, query_string), "snapshots") def delete(self, snapshot): """ Delete a snapshot. :param snapshot: The :class:`Snapshot` to delete. """ self._delete("/snapshots/%s" % base.getid(snapshot)) def update(self, snapshot, **kwargs): """ Update the display_name or display_description for a snapshot. :param snapshot: The :class:`Snapshot` to delete. """ if not kwargs: return body = {"snapshot": kwargs} self._update("/snapshots/%s" % base.getid(snapshot), body)
28.572519
78
0.595512
d27da2089adcce348ae644644bcb466a4dfb1013
773
py
Python
algorithmic_time_complexity_plotter/plotter.py
MihaiAC/Algorithms-and-Data-Structures
23356090816e1ca53707128d243592a358212e47
[ "MIT" ]
null
null
null
algorithmic_time_complexity_plotter/plotter.py
MihaiAC/Algorithms-and-Data-Structures
23356090816e1ca53707128d243592a358212e47
[ "MIT" ]
null
null
null
algorithmic_time_complexity_plotter/plotter.py
MihaiAC/Algorithms-and-Data-Structures
23356090816e1ca53707128d243592a358212e47
[ "MIT" ]
null
null
null
from matplotlib import pyplot from functools import partial import timeit class Plotter: #generator = generates a list of appropiate arguments for the function, based on the previous list of arguments #func = function of which the runtime will be measured #n = number of plot points (executions of function func) def plotter(func,generator,n): x = range(1,n) y = [] argss = [] for i in x: argss = generator(argss) #By increasing "number", the plot gets smoother, but takes longer to generate. #"number" = number of times the timing is repeated. y.append(timeit.timeit(partial(func,argss), number = 20)) #Plot the graph: pyplot.plot(x,y) pyplot.show()
35.136364
115
0.637775
d6b820669860a875206e6c576d38ec80bebf16e7
2,001
py
Python
code/autoencoder.py
stjordanis/ml-cheatsheet
d34e096032b7ae826868be8808aee01699cec491
[ "MIT" ]
1,031
2019-12-04T23:51:59.000Z
2022-03-31T10:44:51.000Z
code/autoencoder.py
stjordanis/ml-cheatsheet
d34e096032b7ae826868be8808aee01699cec491
[ "MIT" ]
41
2019-12-04T17:21:22.000Z
2022-02-26T08:43:01.000Z
code/autoencoder.py
stjordanis/ml-cheatsheet
d34e096032b7ae826868be8808aee01699cec491
[ "MIT" ]
253
2019-12-06T06:46:08.000Z
2022-03-23T01:24:16.000Z
import torch.nn as nn from torch.autograd import Variable class Autoencoder(nn.Module): def __init__(self, in_shape): super().__init__() c,h,w = in_shape self.encoder = nn.Sequential( nn.Linear(c*h*w, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 12), nn.ReLU() ) self.decoder = nn.Sequential( nn.Linear(12, 64), nn.ReLU(), nn.Linear(64, 128), nn.ReLU(), nn.Linear(128, c*h*w), nn.Sigmoid() ) def forward(self, x): bs,c,h,w = x.size() x = x.view(bs, -1) x = self.encoder(x) x = self.decoder(x) x = x.view(bs, c, h, w) return x class ConvAutoencoder(nn.Module): def __init__(self, in_shape): super().__init__() c,h,w = in_shape self.encoder = nn.Sequential( nn.Conv2d(c, 16, kernel_size=3, stride=1, padding=1), # b, 16, 32, 32 nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), # b, 16, 16, 16 nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1), # b, 8, 16, 16 nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) # b, 8, 8, 8 ) self.decoder = nn.Sequential( nn.ConvTranspose2d(8, 16, kernel_size=3, stride=2, padding=0), # 16, 17, 17 nn.ReLU(), nn.ConvTranspose2d(16, c, kernel_size=3, stride=2, padding=1), # 3, 33, 33 CenterCrop(h, w), # 3, 32, 32 nn.Sigmoid() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x def train(net, loader, loss_func, optimizer): net.train() for inputs, _ in loader: inputs = Variable(inputs) output = net(inputs) loss = loss_func(output, inputs) optimizer.zero_grad() loss.backward() optimizer.step()
27.410959
88
0.50075
82f889092288f46a74d16aabc0c4571dad4852ce
1,757
py
Python
RRT.py
garymullen/python-visualization-of-the-RRT-algorithm-with-pygame
deeb7122ffc247982463e1358004a51c1886307a
[ "MIT" ]
4
2021-05-24T00:56:53.000Z
2022-01-23T19:17:09.000Z
RRT.py
garymullen/python-visualization-of-the-RRT-algorithm-with-pygame
deeb7122ffc247982463e1358004a51c1886307a
[ "MIT" ]
1
2021-08-07T11:20:26.000Z
2021-08-07T11:20:26.000Z
RRT.py
garymullen/python-visualization-of-the-RRT-algorithm-with-pygame
deeb7122ffc247982463e1358004a51c1886307a
[ "MIT" ]
4
2021-07-24T15:19:32.000Z
2022-02-19T12:57:10.000Z
import pygame from RRTbasePy import RRTGraph from RRTbasePy import RRTMap import time def main(): dimensions =(512,512) start=(50,50) goal=(300,300) obsdim=30 obsnum=50 iteration=0 t1=0 pygame.init() map=RRTMap(start,goal,dimensions,obsdim,obsnum) graph=RRTGraph(start,goal,dimensions,obsdim,obsnum) obstacles=graph.makeobs() map.drawMap(obstacles) t1=time.time() while (not graph.path_to_goal()): time.sleep(0.005) elapsed=time.time()-t1 t1=time.time() #raise exception if timeout if elapsed > 10: print('timeout re-initiating the calculations') raise if iteration % 10 == 0: X, Y, Parent = graph.bias(goal) pygame.draw.circle(map.map, map.grey, (X[-1], Y[-1]), map.nodeRad*2, 0) pygame.draw.line(map.map, map.Blue, (X[-1], Y[-1]), (X[Parent[-1]], Y[Parent[-1]]), map.edgeThickness) else: X, Y, Parent = graph.expand() pygame.draw.circle(map.map, map.grey, (X[-1], Y[-1]), map.nodeRad*2, 0) pygame.draw.line(map.map, map.Blue, (X[-1], Y[-1]), (X[Parent[-1]], Y[Parent[-1]]), map.edgeThickness) if iteration % 5 == 0: pygame.display.update() iteration += 1 map.drawPath(graph.getPathCoords()) pygame.display.update() pygame.event.clear() pygame.event.wait(0) if __name__ == '__main__': result=False while not result: try: main() result=True except: result=False
19.741573
96
0.515083
34cc61dcdea320c9c0bbb06dcf12fe8d2dacee45
1,255
py
Python
modules/splunk_sdk.py
julianwieg/attack_range_local
b32de256726033de144790ad8640899f3b80cc48
[ "Apache-2.0" ]
101
2020-09-20T23:21:24.000Z
2022-03-14T20:57:28.000Z
modules/splunk_sdk.py
julianwieg/attack_range_local
b32de256726033de144790ad8640899f3b80cc48
[ "Apache-2.0" ]
34
2020-09-17T21:33:12.000Z
2022-03-09T09:40:31.000Z
modules/splunk_sdk.py
julianwieg/attack_range_local
b32de256726033de144790ad8640899f3b80cc48
[ "Apache-2.0" ]
36
2020-09-20T03:29:21.000Z
2022-03-29T14:11:24.000Z
import sys import time from time import sleep import splunklib.results as results import splunklib.client as client import splunklib.results as results import requests from xml.etree import ElementTree def export_search(host, s, password, export_mode="raw", out=sys.stdout, username="admin", port=8089): """ Exports events from a search using Splunk REST API to a local file. This is faster than performing a search/export from Splunk Python SDK. @param host: splunk server address @param s: search that matches events @param password: Splunk server password @param export_mode: default `raw`. `csv`, `xml`, or `json` @param out: local file pointer to write the results @param username: Splunk server username @param port: Splunk server port """ import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) r = requests.post("https://%s:%d/servicesNS/admin/search/search/jobs/export" % (host, port), auth=(username, password), data={'output_mode': export_mode, 'search': s, 'max_count': 1000000}, verify=False) out.write(r.text.encode('utf-8'))
34.861111
101
0.661355
40be783019bc9221eb5d49fa012e23aeefd6872e
262
py
Python
mathgenerator/funcs/hcfFunc.py
furins/mathgenerator
3ba50015ef4d9abaa404b5d3b9bb272cfdcf2deb
[ "MIT" ]
null
null
null
mathgenerator/funcs/hcfFunc.py
furins/mathgenerator
3ba50015ef4d9abaa404b5d3b9bb272cfdcf2deb
[ "MIT" ]
null
null
null
mathgenerator/funcs/hcfFunc.py
furins/mathgenerator
3ba50015ef4d9abaa404b5d3b9bb272cfdcf2deb
[ "MIT" ]
null
null
null
from .__init__ import * def hcfFunc(maxVal=20): a = random.randint(1, maxVal) b = random.randint(1, maxVal) x, y = a, b while(y): x, y = y, x % y problem = f"HCF of {a} and {b} = " solution = str(x) return problem, solution
21.833333
38
0.549618
e0e35c7f7ad169d750cb4d1183be2e57bcc335fa
847
py
Python
Scripts/rst2latex.py
OlcaytoKorcan/project-management-system
5544f7abcd6549a7a6f2dd1f75ebbcbae5a1a09f
[ "MIT" ]
null
null
null
Scripts/rst2latex.py
OlcaytoKorcan/project-management-system
5544f7abcd6549a7a6f2dd1f75ebbcbae5a1a09f
[ "MIT" ]
null
null
null
Scripts/rst2latex.py
OlcaytoKorcan/project-management-system
5544f7abcd6549a7a6f2dd1f75ebbcbae5a1a09f
[ "MIT" ]
null
null
null
#!c:\users\o\documents\github\project-management-system\scripts\python.exe # $Id: rst2latex.py 5905 2009-04-16 12:04:49Z milde $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing LaTeX. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline description = ('Generates LaTeX documents from standalone reStructuredText ' 'sources. ' 'Reads from <source> (default is stdin) and writes to ' '<destination> (default is stdout). See ' '<http://docutils.sourceforge.net/docs/user/latex.html> for ' 'the full reference.') publish_cmdline(writer_name='latex', description=description)
31.37037
76
0.681228
32a006cecf21432a2d1e5264b4f4fa9c538f647f
7,778
py
Python
python/ray/serve/http_util.py
kifarid/ray
43c97c2afb979987be82fa50048674e9b6776d5d
[ "Apache-2.0" ]
3
2021-08-29T20:41:21.000Z
2022-01-31T18:47:51.000Z
python/ray/serve/http_util.py
QPC-database/amazon-ray
55aa4cac02a412b96252aea4e8c3f177a28324a1
[ "Apache-2.0" ]
64
2021-06-19T07:06:15.000Z
2022-03-26T07:13:16.000Z
python/ray/serve/http_util.py
majacQ/ray
bc08c6cdcc7ddf4da751ca2a972defd3db509061
[ "Apache-2.0" ]
null
null
null
import asyncio from dataclasses import dataclass import inspect import json from typing import Any, Dict, List, Optional, Type import starlette.requests from ray.serve.exceptions import RayServeException @dataclass class HTTPRequestWrapper: scope: Dict[Any, Any] body: bytes def build_starlette_request(scope, serialized_body: bytes): """Build and return a Starlette Request from ASGI payload. This function is intended to be used immediately before task invocation happens. """ # Simulates receiving HTTP body from TCP socket. In reality, the body has # already been streamed in chunks and stored in serialized_body. received = False async def mock_receive(): nonlocal received # If the request has already been received, starlette will keep polling # for HTTP disconnect. We will pause forever. The coroutine should be # cancelled by starlette after the response has been sent. if received: block_forever = asyncio.Event() await block_forever.wait() received = True return { "body": serialized_body, "type": "http.request", "more_body": False } return starlette.requests.Request(scope, mock_receive) class Response: """ASGI compliant response class. It is expected to be called in async context and pass along `scope, receive, send` as in ASGI spec. >>> await Response({"k": "v"}).send(scope, receive, send) """ def __init__(self, content=None, status_code=200): """Construct a HTTP Response based on input type. Args: content (optional): Any JSON serializable object. status_code (int, optional): Default status code is 200. """ self.status_code = status_code self.raw_headers = [] if content is None: self.body = b"" self.set_content_type("text") elif isinstance(content, bytes): self.body = content self.set_content_type("text") elif isinstance(content, str): self.body = content.encode("utf-8") self.set_content_type("text-utf8") else: # Delayed import since utils depends on http_util from ray.serve.utils import ServeEncoder self.body = json.dumps( content, cls=ServeEncoder, indent=2).encode() self.set_content_type("json") def set_content_type(self, content_type): if content_type == "text": self.raw_headers.append([b"content-type", b"text/plain"]) elif content_type == "text-utf8": self.raw_headers.append( [b"content-type", b"text/plain; charset=utf-8"]) elif content_type == "json": self.raw_headers.append([b"content-type", b"application/json"]) else: raise ValueError("Invalid content type {}".format(content_type)) async def send(self, scope, receive, send): await send({ "type": "http.response.start", "status": self.status_code, "headers": self.raw_headers, }) await send({"type": "http.response.body", "body": self.body}) async def receive_http_body(scope, receive, send): body_buffer = [] more_body = True while more_body: message = await receive() assert message["type"] == "http.request" more_body = message["more_body"] body_buffer.append(message["body"]) return b"".join(body_buffer) class ASGIHTTPSender: """Implement the interface for ASGI sender, build Starlette Response""" def __init__(self) -> None: self.status_code: Optional[int] = 200 self.header: Dict[str, str] = {} self.buffer: List[bytes] = [] async def __call__(self, message): if (message["type"] == "http.response.start"): self.status_code = message["status"] for key, value in message["headers"]: self.header[key.decode()] = value.decode() elif (message["type"] == "http.response.body"): self.buffer.append(message["body"]) else: raise ValueError("ASGI type must be one of " "http.responses.{body,start}.") def build_starlette_response(self) -> starlette.responses.Response: return starlette.responses.Response( b"".join(self.buffer), status_code=self.status_code, headers=dict(self.header)) def make_fastapi_class_based_view(fastapi_app, cls: Type) -> None: """Transform the `cls`'s methods and class annotations to FastAPI routes. Modified from https://github.com/dmontagu/fastapi-utils/blob/master/fastapi_utils/cbv.py Usage: >>> app = FastAPI() >>> class A: @app.route("/{i}") def func(self, i: int) -> str: return self.dep + i >>> # just running the app won't work, here. >>> make_fastapi_class_based_view(app, A) >>> # now app can be run properly """ # Delayed import to prevent ciruclar imports in workers. from fastapi import Depends, APIRouter from fastapi.routing import APIRoute def get_current_servable_instance(): from ray import serve return serve.get_replica_context().servable_object # Find all the class method routes member_methods = { func for _, func in inspect.getmembers(cls, inspect.isfunction) } class_method_routes = [ route for route in fastapi_app.routes if isinstance(route, APIRoute) and route.endpoint in member_methods ] # Modify these routes and mount it to a new APIRouter. # We need to to this (instead of modifying in place) because we want to use # the laster fastapi_app.include_router to re-run the dependency analysis # for each routes. new_router = APIRouter() for route in class_method_routes: fastapi_app.routes.remove(route) # This block just adds a default values to the self parameters so that # FastAPI knows to inject the object when calling the route. # Before: def method(self, i): ... # After: def method(self=Depends(...), *, i):... old_endpoint = route.endpoint old_signature = inspect.signature(old_endpoint) old_parameters = list(old_signature.parameters.values()) if len(old_parameters) == 0: # TODO(simon): make it more flexible to support no arguments. raise RayServeException( "Methods in FastAPI class-based view must have ``self`` as " "their first argument.") old_self_parameter = old_parameters[0] new_self_parameter = old_self_parameter.replace( default=Depends(get_current_servable_instance)) new_parameters = [new_self_parameter] + [ # Make the rest of the parameters keyword only because # the first argument is no longer positional. parameter.replace(kind=inspect.Parameter.KEYWORD_ONLY) for parameter in old_parameters[1:] ] new_signature = old_signature.replace(parameters=new_parameters) setattr(route.endpoint, "__signature__", new_signature) setattr(route.endpoint, "_serve_cls", cls) new_router.routes.append(route) fastapi_app.include_router(new_router) # Remove endpoints that belong to other class based views. routes = fastapi_app.routes for route in routes: if not isinstance(route, APIRoute): continue serve_cls = getattr(route.endpoint, "_serve_cls", None) if serve_cls is not None and serve_cls != cls: routes.remove(route)
35.354545
79
0.63371
24960a7047743d71bfcf4e5c16062a85246a5a5d
2,871
py
Python
data_generator.py
foamliu/Super-Resolution-Net
684a59f12ed0a0a89f7067c81bfd6fba8090f618
[ "MIT" ]
14
2018-06-08T19:14:11.000Z
2019-07-23T06:09:10.000Z
data_generator.py
foamliu/Super-Resolution-Net
684a59f12ed0a0a89f7067c81bfd6fba8090f618
[ "MIT" ]
1
2019-02-28T02:50:26.000Z
2019-12-18T07:28:11.000Z
data_generator.py
foamliu/Super-Resolution-Net
684a59f12ed0a0a89f7067c81bfd6fba8090f618
[ "MIT" ]
6
2018-07-21T17:12:23.000Z
2019-12-09T11:08:23.000Z
import os import random from random import shuffle import cv2 as cv import imutils import numpy as np from keras.utils import Sequence from config import batch_size, img_size, channel, image_folder from utils import random_crop, preprocess_input class DataGenSequence(Sequence): def __init__(self, usage, scale): self.usage = usage self.scale = scale if usage == 'train': names_file = 'train_names.txt' else: names_file = 'valid_names.txt' with open(names_file, 'r') as f: self.names = f.read().splitlines() np.random.shuffle(self.names) def __len__(self): return int(np.ceil(len(self.names) / float(batch_size))) def __getitem__(self, idx): i = idx * batch_size out_img_rows, out_img_cols = img_size * self.scale, img_size * self.scale length = min(batch_size, (len(self.names) - i)) batch_x = np.empty((length, img_size, img_size, channel), dtype=np.float32) batch_y = np.empty((length, out_img_rows, out_img_cols, channel), dtype=np.float32) for i_batch in range(length): name = self.names[i + i_batch] filename = os.path.join(image_folder, name) # b: 0 <=b<=255, g: 0 <=g<=255, r: 0 <=r<=255. image_bgr = cv.imread(filename) gt = random_crop(image_bgr, self.scale) if np.random.random_sample() > 0.5: gt = np.fliplr(gt) angle = random.choice((0, 90, 180, 270)) gt = imutils.rotate_bound(gt, angle) x = cv.resize(gt, (img_size, img_size), cv.INTER_CUBIC) batch_x[i_batch, :, :] = preprocess_input(x) batch_y[i_batch, :, :] = gt return batch_x, batch_y def on_epoch_end(self): np.random.shuffle(self.names) def train_gen(scale): return DataGenSequence('train', scale) def valid_gen(scale): return DataGenSequence('valid', scale) def split_data(): names = [f for f in os.listdir(image_folder) if f.lower().endswith('.jpg')] num_samples = len(names) # 1341430 print('num_samples: ' + str(num_samples)) num_train_samples = int(num_samples * 0.992) print('num_train_samples: ' + str(num_train_samples)) num_valid_samples = num_samples - num_train_samples print('num_valid_samples: ' + str(num_valid_samples)) valid_names = random.sample(names, num_valid_samples) train_names = [n for n in names if n not in valid_names] shuffle(valid_names) shuffle(train_names) # with open('names.txt', 'w') as file: # file.write('\n'.join(names)) with open('valid_names.txt', 'w') as file: file.write('\n'.join(valid_names)) with open('train_names.txt', 'w') as file: file.write('\n'.join(train_names)) if __name__ == '__main__': split_data()
28.425743
91
0.626959
d11a8dd7792b9a361db59e31f2a1ab13ddde4539
591
py
Python
run.py
kairos03/NetsPresso-ModelSearch-Dataset-Validator
b88b844867a6cb6e65962847c37cf196dcbcbc2d
[ "Apache-2.0" ]
null
null
null
run.py
kairos03/NetsPresso-ModelSearch-Dataset-Validator
b88b844867a6cb6e65962847c37cf196dcbcbc2d
[ "Apache-2.0" ]
null
null
null
run.py
kairos03/NetsPresso-ModelSearch-Dataset-Validator
b88b844867a6cb6e65962847c37cf196dcbcbc2d
[ "Apache-2.0" ]
null
null
null
import argparse import importlib from src.utils import validate if __name__=="__main__": parser = argparse.ArgumentParser(description='Dataset validator.') parser.add_argument('--dir', type=str, required=True, help='dataset path.') parser.add_argument('--format', type=str, required=True, help='dataset format') parser.add_argument('--yaml_path', type=str, required=True, help='yaml file path') args = parser.parse_args() dir_path, dataset_type, yaml_path = args.dir, args.format.lower(), args.yaml_path validate(dir_path, dataset_type, yaml_path, online=False)
45.461538
86
0.739425
6f39112dfd59cfca7bc7ac085d42e398c7994856
12,928
py
Python
lstchain/io/lstcontainers.py
yrenier/cta-lstchain
4af91ebb37a33b5af5ea91dd53e29cdfc6b2f9a0
[ "BSD-3-Clause" ]
1
2020-05-12T09:00:55.000Z
2020-05-12T09:00:55.000Z
lstchain/io/lstcontainers.py
yrenier/cta-lstchain
4af91ebb37a33b5af5ea91dd53e29cdfc6b2f9a0
[ "BSD-3-Clause" ]
10
2020-11-18T10:12:46.000Z
2021-01-28T15:54:04.000Z
lstchain/io/lstcontainers.py
yrenier/cta-lstchain
4af91ebb37a33b5af5ea91dd53e29cdfc6b2f9a0
[ "BSD-3-Clause" ]
1
2020-11-05T09:45:43.000Z
2020-11-05T09:45:43.000Z
""" Functions to handle custom containers for the mono reconstruction of LST1 """ import astropy.units as u import numpy as np from astropy.units import Quantity from astropy.coordinates import Angle from ctapipe.core import Container, Field from ctapipe.image import leakage, concentration from ctapipe.image import timing_parameters from ctapipe.image.morphology import number_of_islands from numpy import nan from ..reco import utils __all__ = [ 'DL1MonitoringEventIndexContainer', 'DL1ParametersContainer', 'DispContainer', 'ExtraImageInfo', 'ExtraMCInfo', 'ExtraMCInfo', 'LSTEventType', 'MetaData', 'ThrownEventsHistogram', ] class DL1ParametersContainer(Container): """ TODO: maybe fields could be inherited from ctapipe containers definition For now I have not found an elegant way to do so """ intensity = Field(np.float64(np.nan), 'total intensity (size)') log_intensity = Field(np.float64(np.nan), 'log of total intensity (size)') x = Field(u.Quantity(np.nan, u.m), 'centroid x coordinate', unit=u.m) y = Field(u.Quantity(np.nan, u.m), 'centroid x coordinate', unit=u.m) r = Field(u.Quantity(np.nan, u.m), 'radial coordinate of centroid', unit=u.m) phi = Field(Angle(np.nan, u.rad), 'polar coordinate of centroid', unit=u.rad) length = Field(u.Quantity(np.nan, u.deg), 'RMS spread along the major-axis', unit=u.deg) width = Field(u.Quantity(np.nan, u.deg), 'RMS spread along the minor-axis', unit=u.deg) psi = Field(Angle(np.nan, u.rad), 'rotation angle of ellipse', unit=u.rad) skewness = Field(np.nan, 'measure of the asymmetry') kurtosis = Field(np.nan, 'measure of the tailedness') disp_norm = Field(None, 'disp_norm [m]', unit=u.m) disp_dx = Field(None, 'disp_dx [m]', unit=u.m) disp_dy = Field(None, 'disp_dy [m]', unit=u.m) disp_angle = Field(None, 'disp_angle [rad]', unit=u.rad) disp_sign = Field(None, 'disp_sign') disp_miss = Field(None, 'disp_miss [m]', unit=u.m) src_x = Field(None, 'source x coordinate in camera frame', unit=u.m) src_y = Field(None, 'source y coordinate in camera frame', unit=u.m) time_gradient = Field(np.nan, 'Time gradient in the camera') intercept = Field(np.nan, 'Intercept') leakage_intensity_width_1 = \ Field(np.float32(np.nan), 'Fraction of intensity in outermost pixels', dtype=np.float32) leakage_intensity_width_2 = \ Field(np.float32(np.nan), 'Fraction of intensity in two outermost ' 'rings of pixels', dtype=np.float32) leakage_pixels_width_1 = Field(np.nan, 'Fraction of signal pixels that are ' 'border pixels') leakage_pixels_width_2 = Field(np.nan, 'Fraction of signal pixels that are ' 'in the two outermost rings of pixels') n_pixels = Field(0, 'Number of pixels after cleaning') concentration_cog = Field(np.nan, 'Fraction of intensity in three pixels ' 'closest to the cog') concentration_core = Field(np.nan, 'Fraction of intensity inside hillas ' 'ellipse') concentration_pixel = Field(np.nan, 'Fraction of intensity in brightest ' 'pixel') n_islands = Field(0, 'Number of Islands') alt_tel = Field(None, 'Telescope altitude pointing', unit=u.rad) az_tel = Field(None, 'Telescope azimuth pointing', unit=u.rad) obs_id = Field(-1, 'Observation ID') event_id = Field(-1, 'Event ID') calibration_id = Field(-1, 'ID of the employed calibration event') dragon_time = Field(None, 'Dragon time event trigger') ucts_time = Field(None, 'UCTS time event trigger') tib_time = Field(None, 'TIB time event trigger') mc_energy = Field(None, 'Simulated Energy', unit=u.TeV) log_mc_energy = Field(None, 'log of simulated energy/TeV') mc_alt = Field(None, 'Simulated altitude', unit=u.rad) mc_az = Field(None, 'Simulated azimuth', unit=u.rad) mc_core_x = Field(None, 'Simulated impact point x position', unit=u.m) mc_core_y = Field(None, 'Simulated impact point y position', unit=u.m) mc_h_first_int = Field(None, 'Simulated first interaction height', unit=u.m) mc_type = Field(-1, 'Simulated particle type') mc_az_tel = Field(None, 'Telescope MC azimuth pointing', unit=u.rad) mc_alt_tel = Field(None, 'Telescope MC altitude pointing', unit=u.rad) mc_x_max = Field(None, "MC Xmax value", unit=u.g / u.cm**2) mc_core_distance = Field(None, "Distance from the impact point to the telescope", unit=u.m) mc_shower_primary_id = Field(None, "MC shower primary ID 0 (gamma), 1(e-)," "2(mu-), 100*A+Z for nucleons and nuclei," "negative for antimatter.") hadroness = Field(None, "Hadroness") wl = Field(u.Quantity(np.nan), "width/length") tel_id = Field(None, "Telescope Id") tel_pos_x = Field(None, "Telescope x position in the ground") tel_pos_y = Field(None, "Telescope y position in the ground") tel_pos_z = Field(None, "Telescope z position in the ground") trigger_type = Field(None, "trigger type") ucts_trigger_type = Field(None, "UCTS trigger type") trigger_time = Field(None, "trigger time") lhfit_call_status = Field(None, "Status of the processing of the event " "by the LH fit method") # info not available in data #num_trig_pix = Field(None, "Number of trigger groups (sectors) listed") #trig_pix_id = Field(None, "pixels involved in the camera trigger") def fill_hillas(self, hillas): """ fill Hillas parameters hillas: HillasParametersContainer # TODO : parameters should not be simply copied but inherited (e.g. conserving unit definition) """ for key in hillas.keys(): self[key] = hillas[key] def fill_mc(self, event, tel_pos): """ fill from mc """ try: self.mc_energy = event.mc.energy self.log_mc_energy = np.log10(self.mc_energy.to_value(u.TeV)) self.mc_alt = event.mc.alt self.mc_az = event.mc.az self.mc_core_x = event.mc.core_x self.mc_core_y = event.mc.core_y self.mc_h_first_int = event.mc.h_first_int self.mc_x_max = event.mc.x_max self.mc_alt_tel = event.mcheader.run_array_direction[1] self.mc_az_tel = event.mcheader.run_array_direction[0] self.mc_type = event.mc.shower_primary_id distance = np.sqrt( (event.mc.core_x - tel_pos[0]) ** 2 + (event.mc.core_y - tel_pos[1]) ** 2 ) if np.isfinite(distance): self.mc_core_distance = distance except IndexError: print("mc information not filled") def fill_event_info(self, event): self.obs_id = event.index.obs_id self.event_id = event.index.event_id def get_features(self, features_names): return np.array([ self[k].value if isinstance(self[k], Quantity) else self[k] for k in features_names ]) def set_disp(self, source_pos, hillas): disp = utils.disp_parameters(hillas, source_pos[0], source_pos[1]) self.disp_norm = disp.norm self.disp_dx = disp.dx self.disp_dy = disp.dy self.disp_angle = disp.angle self.disp_sign = disp.sign self.disp_miss = disp.miss def set_timing_features(self, geom, image, peak_time, hillas): try: # if np.polyfit fails (e.g. len(image) < deg + 1) timepars = timing_parameters(geom, image, peak_time, hillas) self.time_gradient = timepars.slope.value self.intercept = timepars.intercept except ValueError: self.time_gradient = np.nan self.intercept = np.nan def set_leakage(self, geom, image, clean): leakage_c = leakage(geom, image, clean) self.leakage_intensity_width_1 = leakage_c.intensity_width_1 self.leakage_intensity_width_2 = leakage_c.intensity_width_2 self.leakage_pixels_width_1 = leakage_c.pixels_width_1 self.leakage_pixels_width_2 = leakage_c.pixels_width_2 def set_concentration(self, geom, image, hillas_parameters): conc = concentration(geom, image, hillas_parameters) self.concentration_cog = conc.cog self.concentration_core = conc.core self.concentration_pixel = conc.pixel def set_n_islands(self, geom, clean): n_islands, islands_mask = number_of_islands(geom, clean) self.n_islands = n_islands def set_telescope_info(self, subarray, telescope_id): self.tel_id = telescope_id tel_pos = subarray.positions[telescope_id] self.tel_pos_x = tel_pos[0] self.tel_pos_y = tel_pos[1] self.tel_pos_z = tel_pos[2] def set_source_camera_position(self, event, telescope): source_pos = utils.get_event_pos_in_camera(event, telescope) self.src_x = source_pos[0] self.src_y = source_pos[1] class DispContainer(Container): """ Disp vector container """ dx = Field(nan, 'x coordinate of the disp_norm vector') dy = Field(nan, 'y coordinate of the disp_norm vector') angle = Field(nan, 'Angle between the X axis and the disp_norm vector') norm = Field(nan, 'Norm of the disp_norm vector') sign = Field(nan, 'Sign of the disp_norm') miss = Field(nan, 'miss parameter norm') class ExtraMCInfo(Container): obs_id = Field(0, "MC Run Identifier") class ExtraImageInfo(Container): """ attach the tel_id """ tel_id = Field(0, "Telescope ID") selected_gain_channel = Field(None, "Selected gain channel") class ThrownEventsHistogram(Container): """ 2D histogram from SimTel files """ obs_id = Field(-1, 'MC run ID') hist_id = Field(-1, 'Histogram ID') num_entries = Field(-1, 'Number of entries in the histogram') bins_energy = Field(None, 'array of energy bin lower edges, as in np.histogram') bins_core_dist = Field(None, 'array of core-distance bin lower edges, as in np.histogram') histogram = Field(None, "array of histogram entries, size (n_bins_x, n_bins_y)") def fill_from_simtel(self, hist): """ fill from a SimTel Histogram entry""" self.hist_id = hist['id'] self.num_entries = hist['entries'] xbins = np.linspace(hist['lower_x'], hist['upper_x'], hist['n_bins_x'] + 1) ybins = np.linspace(hist['lower_y'], hist['upper_y'], hist['n_bins_y'] + 1) self.bins_core_dist = xbins self.bins_energy = 10 ** ybins self.histogram = hist['data'] self.meta['hist_title'] = hist['title'] self.meta['x_label'] = 'Log10 E (TeV)' self.meta['y_label'] = '3D Core Distance (m)' class MetaData(Container): """ Some metadata """ SOURCE_FILENAMES = Field([], "filename of the source file") LSTCHAIN_VERSION = Field(None, "version of lstchain") CTAPIPE_VERSION = Field(None, "version of ctapipe") CONTACT = Field(None, "Person or institution responsible for this data product") class DL1MonitoringEventIndexContainer(Container): """ Container with the calibration coefficients """ tel_id = Field(1, 'Index of telescope') calibration_id = Field(-1, 'Index of calibration event for DL1 file') pedestal_id = Field(-1, 'Index of pedestal event for DL1 file') flatfield_id = Field(-1, 'Index of flat-field event for DL1 file') class LSTEventType: """ Class to recognize event type from trigger bits bit 0: Mono bit 1: stereo bit 2: Calibration bit 3: Single Phe bit 4: Softrig(from the UCTS) bit 5: Pedestal bit 6: slow control bit 7: busy """ @staticmethod def is_mono(trigger_type): return trigger_type >> 0 & 1 @staticmethod def is_stereo(trigger_type): return trigger_type >> 1 & 1 @staticmethod def is_calibration(trigger_type): return trigger_type >> 2 & 1 @staticmethod def is_single_pe(trigger_type): return trigger_type >> 3 & 1 @staticmethod def is_soft_trig(trigger_type): return trigger_type >> 4 & 1 @staticmethod def is_pedestal(trigger_type): return trigger_type >> 5 & 1 @staticmethod def is_slow_control(trigger_type): return trigger_type >> 6 & 1 @staticmethod def is_busy(trigger_type): return trigger_type >> 7 & 1 @staticmethod def is_unknown(trigger_type): return trigger_type == -1
38.248521
95
0.639465
9540941d7e77d51d8827e7b5bc0756e42d6b9d07
2,768
py
Python
post_gnome/tests/test_nc_reader.py
rsignell-usgs/post_gnome
e24492751458570e00d07e7dd1958881f6dfa51b
[ "MIT", "Unlicense" ]
2
2017-02-15T20:45:42.000Z
2020-10-09T16:00:00.000Z
post_gnome/tests/test_nc_reader.py
rsignell-usgs/post_gnome
e24492751458570e00d07e7dd1958881f6dfa51b
[ "MIT", "Unlicense" ]
10
2015-06-25T23:42:11.000Z
2021-06-22T16:19:19.000Z
post_gnome/tests/test_nc_reader.py
rsignell-usgs/post_gnome
e24492751458570e00d07e7dd1958881f6dfa51b
[ "MIT", "Unlicense" ]
15
2016-01-11T20:49:10.000Z
2020-10-15T18:02:20.000Z
# for py2/3 compatibility from __future__ import absolute_import, division, print_function, unicode_literals import os import datetime import pytest import numpy as np import netCDF4 from post_gnome import nc_particles ## test the Reader def test_read_required(): """ Does it find the required variables and attributes Should be able to set up data_index """ r = nc_particles.Reader('sample.nc') assert len(r.times) == 3 assert np.array_equal(r.data_index, np.array([0, 3, 7, 9])) def test_read_existing_dataset(): nc = netCDF4.Dataset('sample.nc') r = nc_particles.Reader(nc) assert len(r.times) == 3 def test_str(): r = nc_particles.Reader('sample.nc') print(r) r.close() assert True ## other tests fail (E RuntimeError: NetCDF: Not a valid ID) ## if this test is here -- no idea why, but I think NetCDF4 isn't cleaning up after itself well def test_read_variables(): """ does it find the data variables ? """ r = nc_particles.Reader('sample.nc') # set(), because order doesn't matter varnames = set(r.variables) assert varnames == set(['latitude', 'depth', 'mass', 'id', 'longitude']) def test_get_all_timesteps(): r = nc_particles.Reader('sample.nc') data = r.get_all_timesteps(variables=['depth', 'mass', 'id']) print(data) assert 'depth' in data assert 'mass' in data assert 'id' in data ## better to check actual data, but what can you do? def test_get_timestep(): r = nc_particles.Reader('sample.nc') data = r.get_timestep(2, variables=['latitude', 'depth', 'mass', 'id', 'longitude']) # specific results from the sample file assert np.array_equal(data['longitude'], [-88.3, -88.1]) assert np.array_equal(data['latitude'], [28.1, 28.0]) assert np.array_equal(data['depth'], [0.0, 0.1]) assert np.array_equal(data['mass'], [0.05, 0.06]) assert np.array_equal(data['id'], [1, 3]) def test_get_individual_trajectory(): r = nc_particles.Reader('sample.nc') path = r.get_individual_trajectory(1) assert np.array_equal(path['latitude'], [28.0, 28.05, 28.1]) assert np.array_equal(path['longitude'], [-88.1, -88.2, -88.3]) def test_get_units(): r = nc_particles.Reader('sample.nc') assert r.get_units('depth') == 'meters' assert r.get_units('longitude') == 'degrees_east' def test_get_attributes(): r = nc_particles.Reader('sample.nc') assert r.get_attributes('depth') == {'units' : "meters", 'long_name' : "particle depth below sea surface", 'standard_name' : "depth", 'axis' : "z positive down", }
32.564706
95
0.627529
1abb36793fe016be519eb96eb75623172a21c09a
287
py
Python
.binder/streamlit_call.py
op07n/minimal-streamlit-example
1af747769dee3a5414da57ca3b66ea915d0fd06a
[ "MIT" ]
null
null
null
.binder/streamlit_call.py
op07n/minimal-streamlit-example
1af747769dee3a5414da57ca3b66ea915d0fd06a
[ "MIT" ]
null
null
null
.binder/streamlit_call.py
op07n/minimal-streamlit-example
1af747769dee3a5414da57ca3b66ea915d0fd06a
[ "MIT" ]
null
null
null
from subprocess import Popen def load_jupyter_server_extension(nbapp): """serve the bokeh-app directory with bokeh server""" Popen(["streamlit", "run", "st_runner.py", "apps", "--browser.serverAddress=0.0.0.0", "--server.enableCORS=False", "--browser.gatherUsageStats=False"])
41
155
0.721254
6c419b9401838ce31e68eea4acee8e44f393d97e
14,474
py
Python
flytekit/bin/entrypoint.py
cosmicBboy/flytek
84c6b52c7a9673326bc7d1c9e84ebcb0f00c61d1
[ "Apache-2.0" ]
null
null
null
flytekit/bin/entrypoint.py
cosmicBboy/flytek
84c6b52c7a9673326bc7d1c9e84ebcb0f00c61d1
[ "Apache-2.0" ]
1
2021-02-05T02:57:25.000Z
2021-02-05T02:57:25.000Z
flytekit/bin/entrypoint.py
cosmicBboy/flytekit
84c6b52c7a9673326bc7d1c9e84ebcb0f00c61d1
[ "Apache-2.0" ]
null
null
null
import datetime as _datetime import importlib as _importlib import logging as _logging import os as _os import pathlib import random as _random import click as _click from flyteidl.core import literals_pb2 as _literals_pb2 from flytekit.annotated.base_task import IgnoreOutputs, PythonTask from flytekit.annotated.context_manager import ExecutionState, FlyteContext, SerializationSettings, get_image_config from flytekit.annotated.promise import VoidPromise from flytekit.common import constants as _constants from flytekit.common import utils as _common_utils from flytekit.common import utils as _utils from flytekit.common.exceptions import scopes as _scopes from flytekit.common.exceptions import system as _system_exceptions from flytekit.common.tasks.sdk_runnable import ExecutionParameters from flytekit.configuration import TemporaryConfiguration as _TemporaryConfiguration from flytekit.configuration import internal as _internal_config from flytekit.configuration import platform as _platform_config from flytekit.configuration import sdk as _sdk_config from flytekit.engines import loader as _engine_loader from flytekit.interfaces import random as _flyte_random from flytekit.interfaces.data import data_proxy as _data_proxy from flytekit.interfaces.data.gcs import gcs_proxy as _gcs_proxy from flytekit.interfaces.data.s3 import s3proxy as _s3proxy from flytekit.interfaces.stats.taggable import get_stats as _get_stats from flytekit.models import dynamic_job as _dynamic_job from flytekit.models import literals as _literal_models from flytekit.models.core import identifier as _identifier from flytekit.tools.fast_registration import download_distribution as _download_distribution def _compute_array_job_index(): # type () -> int """ Computes the absolute index of the current array job. This is determined by summing the compute-environment-specific environment variable and the offset (if one's set). The offset will be set and used when the user request that the job runs in a number of slots less than the size of the input. :rtype: int """ offset = 0 if _os.environ.get("BATCH_JOB_ARRAY_INDEX_OFFSET"): offset = int(_os.environ.get("BATCH_JOB_ARRAY_INDEX_OFFSET")) return offset + int(_os.environ.get(_os.environ.get("BATCH_JOB_ARRAY_INDEX_VAR_NAME"))) def _map_job_index_to_child_index(local_input_dir, datadir, index): local_lookup_file = local_input_dir.get_named_tempfile("indexlookup.pb") idx_lookup_file = _os.path.join(datadir, "indexlookup.pb") # if the indexlookup.pb does not exist, then just return the index if not _data_proxy.Data.data_exists(idx_lookup_file): return index _data_proxy.Data.get_data(idx_lookup_file, local_lookup_file) mapping_proto = _utils.load_proto_from_file(_literals_pb2.LiteralCollection, local_lookup_file) if len(mapping_proto.literals) < index: raise _system_exceptions.FlyteSystemAssertion( "dynamic task index lookup array size: {} is smaller than lookup index {}".format( len(mapping_proto.literals), index ) ) return mapping_proto.literals[index].scalar.primitive.integer def _dispatch_execute(ctx: FlyteContext, task_def: PythonTask, inputs_path: str, output_prefix: str): """ Dispatches execute to PythonTask Step1: Download inputs and load into a literal map Step2: Invoke task - dispatch_execute Step3: a: [Optional] Record outputs to output_prefix b: OR if IgnoreOutputs is raised, then ignore uploading outputs c: OR if an unhandled exception is retrieved - record it as an errors.pb """ try: # Step1 local_inputs_file = _os.path.join(ctx.execution_state.working_dir, "inputs.pb") ctx.file_access.get_data(inputs_path, local_inputs_file) input_proto = _utils.load_proto_from_file(_literals_pb2.LiteralMap, local_inputs_file) idl_input_literals = _literal_models.LiteralMap.from_flyte_idl(input_proto) # Step2 outputs = task_def.dispatch_execute(ctx, idl_input_literals) if isinstance(outputs, VoidPromise): _logging.getLogger().warning("Task produces no outputs") output_file_dict = {_constants.OUTPUT_FILE_NAME: _literal_models.LiteralMap(literals={})} elif isinstance(outputs, _literal_models.LiteralMap): output_file_dict = {_constants.OUTPUT_FILE_NAME: outputs} elif isinstance(outputs, _dynamic_job.DynamicJobSpec): output_file_dict = {_constants.FUTURES_FILE_NAME: outputs} else: _logging.getLogger().error(f"SystemError: received unknown outputs from task {outputs}") # TODO This should probably cause an error file return for k, v in output_file_dict.items(): _common_utils.write_proto_to_file(v.to_flyte_idl(), _os.path.join(ctx.execution_state.engine_dir, k)) # Step3a ctx.file_access.upload_directory(ctx.execution_state.engine_dir, output_prefix) _logging.info(f"Outputs written successful the the output prefix {output_prefix}") except Exception as e: if isinstance(e, IgnoreOutputs): # Step 3b _logging.warning(f"IgnoreOutputs received! Outputs.pb will not be uploaded. reason {e}") return # Step 3c _logging.error(f"Exception when executing task {task_def.name}, reason {str(e)}") raise e def _handle_annotated_task(task_def: PythonTask, inputs: str, output_prefix: str, raw_output_data_prefix: str): """ Entrypoint for all PythonTask extensions """ _click.echo("Running native-typed task") cloud_provider = _platform_config.CLOUD_PROVIDER.get() log_level = _internal_config.LOGGING_LEVEL.get() or _sdk_config.LOGGING_LEVEL.get() _logging.getLogger().setLevel(log_level) ctx = FlyteContext.current_context() # Create directories user_workspace_dir = ctx.file_access.local_access.get_random_directory() _click.echo(f"Using user directory {user_workspace_dir}") pathlib.Path(user_workspace_dir).mkdir(parents=True, exist_ok=True) from flytekit import __version__ as _api_version execution_parameters = ExecutionParameters( execution_id=_identifier.WorkflowExecutionIdentifier( project=_internal_config.EXECUTION_PROJECT.get(), domain=_internal_config.EXECUTION_DOMAIN.get(), name=_internal_config.EXECUTION_NAME.get(), ), execution_date=_datetime.datetime.utcnow(), stats=_get_stats( # Stats metric path will be: # registration_project.registration_domain.app.module.task_name.user_stats # and it will be tagged with execution-level values for project/domain/wf/lp "{}.{}.{}.user_stats".format( _internal_config.TASK_PROJECT.get() or _internal_config.PROJECT.get(), _internal_config.TASK_DOMAIN.get() or _internal_config.DOMAIN.get(), _internal_config.TASK_NAME.get() or _internal_config.NAME.get(), ), tags={ "exec_project": _internal_config.EXECUTION_PROJECT.get(), "exec_domain": _internal_config.EXECUTION_DOMAIN.get(), "exec_workflow": _internal_config.EXECUTION_WORKFLOW.get(), "exec_launchplan": _internal_config.EXECUTION_LAUNCHPLAN.get(), "api_version": _api_version, }, ), logging=_logging, tmp_dir=user_workspace_dir, ) if cloud_provider == _constants.CloudProvider.AWS: file_access = _data_proxy.FileAccessProvider( local_sandbox_dir=_sdk_config.LOCAL_SANDBOX.get(), remote_proxy=_s3proxy.AwsS3Proxy(raw_output_data_prefix), ) elif cloud_provider == _constants.CloudProvider.GCP: file_access = _data_proxy.FileAccessProvider( local_sandbox_dir=_sdk_config.LOCAL_SANDBOX.get(), remote_proxy=_gcs_proxy.GCSProxy(raw_output_data_prefix), ) elif cloud_provider == _constants.CloudProvider.LOCAL: # A fake remote using the local disk will automatically be created file_access = _data_proxy.FileAccessProvider(local_sandbox_dir=_sdk_config.LOCAL_SANDBOX.get()) else: raise Exception(f"Bad cloud provider {cloud_provider}") with ctx.new_file_access_context(file_access_provider=file_access) as ctx: # TODO: This is copied from serialize, which means there's a similarity here I'm not seeing. env = { _internal_config.CONFIGURATION_PATH.env_var: _internal_config.CONFIGURATION_PATH.get(), _internal_config.IMAGE.env_var: _internal_config.IMAGE.get(), } serialization_settings = SerializationSettings( project=_internal_config.TASK_PROJECT.get(), domain=_internal_config.TASK_DOMAIN.get(), version=_internal_config.TASK_VERSION.get(), image_config=get_image_config(), env=env, ) # The reason we need this is because of dynamic tasks. Even if we move compilation all to Admin, # if a dynamic task calls some task, t1, we have to write to the DJ Spec the correct task # identifier for t1. with ctx.new_serialization_settings(serialization_settings=serialization_settings) as ctx: # Because execution states do not look up the context chain, it has to be made last with ctx.new_execution_context( mode=ExecutionState.Mode.TASK_EXECUTION, execution_params=execution_parameters ) as ctx: _dispatch_execute(ctx, task_def, inputs, output_prefix) @_scopes.system_entry_point def _execute_task(task_module, task_name, inputs, output_prefix, raw_output_data_prefix, test): with _TemporaryConfiguration(_internal_config.CONFIGURATION_PATH.get()): with _utils.AutoDeletingTempDir("input_dir") as input_dir: # Load user code task_module = _importlib.import_module(task_module) task_def = getattr(task_module, task_name) # Everything else if not test and not isinstance(task_def, PythonTask): local_inputs_file = input_dir.get_named_tempfile("inputs.pb") # Handle inputs/outputs for array job. if _os.environ.get("BATCH_JOB_ARRAY_INDEX_VAR_NAME"): job_index = _compute_array_job_index() # TODO: Perhaps remove. This is a workaround to an issue we perceived with limited entropy in # TODO: AWS batch array jobs. _flyte_random.seed_flyte_random( "{} {} {}".format(_random.random(), _datetime.datetime.utcnow(), job_index) ) # If an ArrayTask is discoverable, the original job index may be different than the one specified in # the environment variable. Look up the correct input/outputs in the index lookup mapping file. job_index = _map_job_index_to_child_index(input_dir, inputs, job_index) inputs = _os.path.join(inputs, str(job_index), "inputs.pb") output_prefix = _os.path.join(output_prefix, str(job_index)) _data_proxy.Data.get_data(inputs, local_inputs_file) input_proto = _utils.load_proto_from_file(_literals_pb2.LiteralMap, local_inputs_file) _engine_loader.get_engine().get_task(task_def).execute( _literal_models.LiteralMap.from_flyte_idl(input_proto), context={"output_prefix": output_prefix, "raw_output_data_prefix": raw_output_data_prefix}, ) # New annotated style task elif not test and isinstance(task_def, PythonTask): _handle_annotated_task(task_def, inputs, output_prefix, raw_output_data_prefix) @_click.group() def _pass_through(): pass _task_module_option = _click.option("--task-module", required=True) _task_name_option = _click.option("--task-name", required=True) _inputs_option = _click.option("--inputs", required=True) _output_prefix_option = _click.option("--output-prefix", required=True) _raw_output_date_prefix_option = _click.option("--raw-output-data-prefix", required=False) _test = _click.option("--test", is_flag=True) @_pass_through.command("pyflyte-execute") @_click.option("--task-module", required=True) @_click.option("--task-name", required=True) @_click.option("--inputs", required=True) @_click.option("--output-prefix", required=True) @_click.option("--raw-output-data-prefix", required=False) @_click.option("--test", is_flag=True) def execute_task_cmd(task_module, task_name, inputs, output_prefix, raw_output_data_prefix, test): _click.echo(_utils.get_version_message()) # Backwards compatibility - if Propeller hasn't filled this in, then it'll come through here as the original # template string, so let's explicitly set it to None so that the downstream functions will know to fall back # to the original shard formatter/prefix config. if raw_output_data_prefix == "{{.rawOutputDataPrefix}}": raw_output_data_prefix = None _execute_task(task_module, task_name, inputs, output_prefix, raw_output_data_prefix, test) @_pass_through.command("pyflyte-fast-execute") @_click.option("--additional-distribution", required=False) @_click.option("--dest-dir", required=False) @_click.argument("task-execute-cmd", nargs=-1, type=_click.UNPROCESSED) def fast_execute_task_cmd(additional_distribution, dest_dir, task_execute_cmd): """ Downloads a compressed code distribution specified by additional-distribution and then calls the underlying task execute command for the updated code. :param Text additional_distribution: :param Text dest_dir: :param task_execute_cmd: :return: """ if additional_distribution is not None: if not dest_dir: dest_dir = _os.getcwd() _download_distribution(additional_distribution, dest_dir) # Use the commandline to run the task execute command rather than calling it directly in python code # since the current runtime bytecode references the older user code, rather than the downloaded distribution. _os.system(" ".join(task_execute_cmd)) if __name__ == "__main__": _pass_through()
48.408027
120
0.717632
6e1f4432892e88fb8964a7870a1086f59cdb59d5
1,916
py
Python
consumers/venv/lib/python3.7/site-packages/mode/loop/__init__.py
spencerpomme/Public-Transit-Status-with-Apache-Kafka
2c85d7daadf4614fe7ce2eabcd13ff87236b1c7e
[ "MIT" ]
null
null
null
consumers/venv/lib/python3.7/site-packages/mode/loop/__init__.py
spencerpomme/Public-Transit-Status-with-Apache-Kafka
2c85d7daadf4614fe7ce2eabcd13ff87236b1c7e
[ "MIT" ]
null
null
null
consumers/venv/lib/python3.7/site-packages/mode/loop/__init__.py
spencerpomme/Public-Transit-Status-with-Apache-Kafka
2c85d7daadf4614fe7ce2eabcd13ff87236b1c7e
[ "MIT" ]
null
null
null
"""AsyncIO event loop implementations. This contains a registry of different AsyncIO loop implementations to be used with Mode. The choices available are: aio **default** Normal :mod:`asyncio` event loop policy. eventlet Use :pypi:`eventlet` as the event loop. This uses :pypi:`aioeventlet` and will apply the :pypi:`eventlet` monkey-patches. To enable execute the following as the first thing that happens when your program starts (e.g. add it as the top import of your entrypoint module):: >>> import mode.loop >>> mode.loop.use('eventlet') gevent Use :pypi:`gevent` as the event loop. This uses :pypi:`aiogevent` (+modifications) and will apply the :pypi:`gevent` monkey-patches. This choice enables you to run blocking Python code as if they have invisible `async/await` syntax around it (NOTE: C extensions are not usually gevent compatible). To enable execute the following as the first thing that happens when your program starts (e.g. add it as the top import of your entrypoint module):: >>> import mode.loop >>> mode.loop.use('gevent') uvloop Event loop using :pypi:`uvloop`. To enable execute the following as the first thing that happens when your program starts (e.g. add it as the top import of your entrypoint module):: >>> import mode.loop >>> mode.loop.use('uvloop') """ import importlib from typing import Mapping, Optional __all__ = ['LOOPS', 'use'] LOOPS: Mapping[str, Optional[str]] = { 'aio': None, 'eventlet': 'mode.loop.eventlet', 'gevent': 'mode.loop.gevent', 'uvloop': 'mode.loop.uvloop', } def use(loop: str) -> None: """Specify the event loop to use as a string. Loop must be one of: aio, eventlet, gevent, uvloop. """ mod = LOOPS.get(loop, loop) if mod is not None: importlib.import_module(mod)
26.611111
73
0.670668
925846305232b47b95688c11f7dc0f7fd4a50264
4,759
py
Python
stem_cell_hypothesis/en_electra_base/joint/dep_srl.py
emorynlp/stem-cell-hypothesis
48a628093d93d653865fbac6409d179cddd99293
[ "Apache-2.0" ]
4
2021-09-17T15:23:31.000Z
2022-02-28T10:18:04.000Z
stem_cell_hypothesis/en_electra_base/joint/dep_srl.py
emorynlp/stem-cell-hypothesis
48a628093d93d653865fbac6409d179cddd99293
[ "Apache-2.0" ]
null
null
null
stem_cell_hypothesis/en_electra_base/joint/dep_srl.py
emorynlp/stem-cell-hypothesis
48a628093d93d653865fbac6409d179cddd99293
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2021-01-06 16:12 from typing import List from elit.common.dataset import SortingSamplerBuilder from elit.common.transform import NormalizeToken from elit.components.mtl.loss_balancer import MovingAverageBalancer from elit.components.mtl.multi_task_learning import MultiTaskLearning from elit.components.mtl.tasks.constituency import CRFConstituencyParsing from elit.components.mtl.tasks.dep import BiaffineDependencyParsing from elit.components.mtl.tasks.ner.biaffine_ner import BiaffineNamedEntityRecognition from elit.components.mtl.tasks.pos import TransformerTagging from elit.components.mtl.tasks.srl.rank_srl import SpanRankingSemanticRoleLabeling from elit.datasets.parsing.ptb import PTB_TOKEN_MAPPING from elit.datasets.srl.ontonotes5.english import ONTONOTES5_POS_ENGLISH_TRAIN, ONTONOTES5_POS_ENGLISH_TEST, \ ONTONOTES5_POS_ENGLISH_DEV, ONTONOTES5_ENGLISH_TRAIN, ONTONOTES5_ENGLISH_TEST, ONTONOTES5_ENGLISH_DEV, \ ONTONOTES5_CON_ENGLISH_TRAIN, ONTONOTES5_CON_ENGLISH_DEV, ONTONOTES5_CON_ENGLISH_TEST, ONTONOTES5_DEP_ENGLISH_TEST, \ ONTONOTES5_DEP_ENGLISH_DEV, ONTONOTES5_DEP_ENGLISH_TRAIN, ONTONOTES5_SRL_ENGLISH_TRAIN, ONTONOTES5_SRL_ENGLISH_DEV, \ ONTONOTES5_SRL_ENGLISH_TEST from elit.layers.embeddings.contextual_word_embedding import ContextualWordEmbedding from elit.metrics.mtl import MetricDict from elit.utils.log_util import cprint from stem_cell_hypothesis import cdroot def main(): cdroot() scores: List[MetricDict] = [] for i in range(3): tasks = { # 'pos': TransformerTagging( # ONTONOTES5_POS_ENGLISH_TRAIN, # ONTONOTES5_POS_ENGLISH_DEV, # ONTONOTES5_POS_ENGLISH_TEST, # SortingSamplerBuilder(batch_size=64, batch_max_tokens=6400), # lr=1e-3, # ), # 'ner': BiaffineNamedEntityRecognition( # ONTONOTES5_ENGLISH_TRAIN, # ONTONOTES5_ENGLISH_DEV, # ONTONOTES5_ENGLISH_TEST, # SortingSamplerBuilder(batch_size=64, batch_max_tokens=6400), # lr=1e-3, # doc_level_offset=True, # ), 'srl': SpanRankingSemanticRoleLabeling( ONTONOTES5_SRL_ENGLISH_TRAIN, ONTONOTES5_SRL_ENGLISH_DEV, ONTONOTES5_SRL_ENGLISH_TEST, SortingSamplerBuilder(batch_size=64, batch_max_tokens=6400), lr=1e-3, doc_level_offset=True, ), 'dep': BiaffineDependencyParsing( ONTONOTES5_DEP_ENGLISH_TRAIN, ONTONOTES5_DEP_ENGLISH_DEV, ONTONOTES5_DEP_ENGLISH_TEST, SortingSamplerBuilder(batch_size=64, batch_max_tokens=6400), lr=1e-3, ), # 'con': CRFConstituencyParsing( # ONTONOTES5_CON_ENGLISH_TRAIN, # ONTONOTES5_CON_ENGLISH_DEV, # ONTONOTES5_CON_ENGLISH_TEST, # SortingSamplerBuilder(batch_size=64, batch_max_tokens=6400), # lr=1e-3, # ), } mtl = MultiTaskLearning() save_dir = f'data/model/mtl/ontonotes_electra_base_en/mtl/no-gate/dep_srl/{i}' cprint(f'Model will be saved in [cyan]{save_dir}[/cyan]') mtl.fit( ContextualWordEmbedding( 'token', 'google/electra-base-discriminator', average_subwords=True, max_sequence_length=512, word_dropout=.2, ), tasks, save_dir, 30, lr=1e-3, encoder_lr=5e-5, grad_norm=1, gradient_accumulation=4, eval_trn=False, transform=NormalizeToken(PTB_TOKEN_MAPPING, 'token'), loss_balancer=MovingAverageBalancer(5, intrinsic_weighting=False), # prefetch=10, # cache='data/tmp' ) cprint(f'Model saved in [cyan]{save_dir}[/cyan]') mtl.load(save_dir) if 'dep' in mtl.tasks: mtl['dep'].config.tree = True mtl['dep'].config.proj = True mtl.save_config(save_dir) for k, v in mtl.tasks.items(): v.trn = tasks[k].trn v.dev = tasks[k].dev v.tst = tasks[k].tst metric = mtl.evaluate(save_dir)[0] scores.append(metric) print(f'{"-".join(tasks.keys())} {len(scores)} runs scores:') for each in scores: cprint(each.cstr()) if __name__ == '__main__': import torch # torch.multiprocessing.set_start_method('spawn') # See https://github.com/pytorch/pytorch/issues/40403 main()
40.675214
121
0.63921
22459a396d7b0a0eb35e7719c951c7eaa43f63c6
6,939
py
Python
backend/nameless_smoke_29209/settings.py
crowdbotics-apps/nameless-smoke-29209
0310cd6965c9578c28fbc5f097cfb3f5b13be412
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/nameless_smoke_29209/settings.py
crowdbotics-apps/nameless-smoke-29209
0310cd6965c9578c28fbc5f097cfb3f5b13be412
[ "FTL", "AML", "RSA-MD" ]
9
2021-07-26T20:22:32.000Z
2021-07-26T20:22:37.000Z
backend/nameless_smoke_29209/settings.py
crowdbotics-apps/nameless-smoke-29209
0310cd6965c9578c28fbc5f097cfb3f5b13be412
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" Django settings for nameless_smoke_29209 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging from modules.manifest import get_modules env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', ] MODULES_APPS = get_modules() INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS + MODULES_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'nameless_smoke_29209.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'nameless_smoke_29209.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
29.653846
112
0.731373
3144af2f76110b235b8d7a9595088b101ae780ad
66
py
Python
repositorytools/cli/commands/__init__.py
MaciejKucia/repositorytools
b9c6b2c3404e0395609dec05cae329b3576aa9a7
[ "Apache-2.0" ]
32
2017-09-25T08:01:27.000Z
2022-03-16T21:53:37.000Z
repositorytools/cli/commands/__init__.py
MaciejKucia/repositorytools
b9c6b2c3404e0395609dec05cae329b3576aa9a7
[ "Apache-2.0" ]
30
2015-05-28T11:02:31.000Z
2017-08-22T12:40:27.000Z
repositorytools/cli/commands/__init__.py
MaciejKucia/repositorytools
b9c6b2c3404e0395609dec05cae329b3576aa9a7
[ "Apache-2.0" ]
16
2017-12-11T06:17:22.000Z
2021-10-09T06:35:33.000Z
__author__ = 'msamia' from .artifact import * from .repo import *
16.5
23
0.727273
bdea1feb316e9dc7ab85fa5f868681217edde391
5,508
py
Python
dist-packages/reportlab/lib/attrmap.py
Jianwei-Wang/python2.7_lib
911b8e81512e5ac5f13e669ab46f7693ed897378
[ "PSF-2.0" ]
51
2015-01-20T19:50:34.000Z
2022-03-05T21:23:32.000Z
dist-packages/reportlab/lib/attrmap.py
Jianwei-Wang/python2.7_lib
911b8e81512e5ac5f13e669ab46f7693ed897378
[ "PSF-2.0" ]
16
2015-11-15T04:23:43.000Z
2021-09-27T14:14:20.000Z
dist-packages/reportlab/lib/attrmap.py
Jianwei-Wang/python2.7_lib
911b8e81512e5ac5f13e669ab46f7693ed897378
[ "PSF-2.0" ]
46
2015-03-28T10:18:14.000Z
2021-12-16T15:57:47.000Z
#Copyright ReportLab Europe Ltd. 2000-2012 #see license.txt for license details #history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/lib/attrmap.py __version__=''' $Id$ ''' __doc__='''Framework for objects whose assignments are checked. Used by graphics. We developed reportlab/graphics prior to Python 2 and metaclasses. For the graphics, we wanted to be able to declare the attributes of a class, check them on assignment, and convert from string arguments. Examples of attrmap-based objects can be found in reportlab/graphics/shapes. It lets us defined structures like the one below, which are seen more modern form in Django models and other frameworks. We'll probably replace this one day soon, hopefully with no impact on client code. class Rect(SolidShape): """Rectangle, possibly with rounded corners.""" _attrMap = AttrMap(BASE=SolidShape, x = AttrMapValue(isNumber), y = AttrMapValue(isNumber), width = AttrMapValue(isNumber), height = AttrMapValue(isNumber), rx = AttrMapValue(isNumber), ry = AttrMapValue(isNumber), ) ''' from reportlab.lib.validators import isAnything, DerivedValue from reportlab.lib.utils import isSeq from reportlab import rl_config class CallableValue: '''a class to allow callable initial values''' def __init__(self,func,*args,**kw): #assert iscallable(func) self.func = func self.args = args self.kw = kw def __call__(self): return self.func(*self.args,**self.kw) class AttrMapValue: '''Simple multi-value holder for attribute maps''' def __init__(self,validate=None,desc=None,initial=None, advancedUsage=0, **kw): self.validate = validate or isAnything self.desc = desc self._initial = initial self._advancedUsage = advancedUsage for k,v in kw.items(): setattr(self,k,v) def __getattr__(self,name): #hack to allow callable initial values if name=='initial': if isinstance(self._initial,CallableValue): return self._initial() return self._initial elif name=='hidden': return 0 raise AttributeError(name) def __repr__(self): return 'AttrMapValue(%s)' % ', '.join(['%s=%r' % i for i in self.__dict__.items()]) class AttrMap(dict): def __init__(self,BASE=None,UNWANTED=[],**kw): data = {} if BASE: if isinstance(BASE,AttrMap): data = BASE else: if not isSeq(BASE): BASE = (BASE,) for B in BASE: am = getattr(B,'_attrMap',self) if am is not self: if am: data.update(am) else: raise ValueError('BASE=%s has wrong kind of value' % ascii(B)) dict.__init__(self,data) self.remove(UNWANTED) self.update(kw) def remove(self,unwanted): for k in unwanted: try: del self[k] except KeyError: pass def clone(self,UNWANTED=[],**kw): c = AttrMap(BASE=self,UNWANTED=UNWANTED) c.update(kw) return c def validateSetattr(obj,name,value): '''validate setattr(obj,name,value)''' if rl_config.shapeChecking: map = obj._attrMap if map and name[0]!= '_': #we always allow the inherited values; they cannot #be checked until draw time. if isinstance(value, DerivedValue): #let it through pass else: try: validate = map[name].validate if not validate(value): raise AttributeError("Illegal assignment of '%s' to '%s' in class %s" % (value, name, obj.__class__.__name__)) except KeyError: raise AttributeError("Illegal attribute '%s' in class %s" % (name, obj.__class__.__name__)) obj.__dict__[name] = value def _privateAttrMap(obj,ret=0): '''clone obj._attrMap if required''' A = obj._attrMap oA = getattr(obj.__class__,'_attrMap',None) if ret: if oA is A: return A.clone(), oA else: return A, None else: if oA is A: obj._attrMap = A.clone() def _findObjectAndAttr(src, P): '''Locate the object src.P for P a string, return parent and name of attribute ''' P = P.split('.') if len(P) == 0: return None, None else: for p in P[0:-1]: src = getattr(src, p) return src, P[-1] def hook__setattr__(obj): if not hasattr(obj,'__attrproxy__'): C = obj.__class__ import new obj.__class__=new.classobj(C.__name__,(C,)+C.__bases__, {'__attrproxy__':[], '__setattr__':lambda self,k,v,osa=getattr(obj,'__setattr__',None),hook=hook: hook(self,k,v,osa)}) def addProxyAttribute(src,name,validate=None,desc=None,initial=None,dst=None): ''' Add a proxy attribute 'name' to src with targets dst ''' #sanity assert hasattr(src,'_attrMap'), 'src object has no _attrMap' A, oA = _privateAttrMap(src,1) if not isSeq(dst): dst = dst, D = [] DV = [] for d in dst: if isSeq(d): d, e = d[0], d[1:] obj, attr = _findObjectAndAttr(src,d) if obj: dA = getattr(obj,'_attrMap',None)
33.180723
134
0.593319
574ea42f6af5980b3c62319e2f0f1ba1e9c5761d
26,727
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_08_01/aio/operations/_route_filter_rules_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_08_01/aio/operations/_route_filter_rules_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_08_01/aio/operations/_route_filter_rules_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RouteFilterRulesOperations: """RouteFilterRulesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_delete( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified rule from a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the rule. :type rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def get( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> "models.RouteFilterRule": """Gets the specified rule from a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the rule. :type rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteFilterRule, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_08_01.models.RouteFilterRule :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "models.RouteFilterRule", **kwargs ) -> "models.RouteFilterRule": cls = kwargs.pop('cls', None) # type: ClsType["models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(route_filter_rule_parameters, 'RouteFilterRule') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RouteFilterRule', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "models.RouteFilterRule", **kwargs ) -> AsyncLROPoller["models.RouteFilterRule"]: """Creates or updates a route in the specified route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the route filter rule. :type rule_name: str :param route_filter_rule_parameters: Parameters supplied to the create or update route filter rule operation. :type route_filter_rule_parameters: ~azure.mgmt.network.v2018_08_01.models.RouteFilterRule :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteFilterRule or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_08_01.models.RouteFilterRule] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.RouteFilterRule"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, route_filter_rule_parameters=route_filter_rule_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def _update_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "models.PatchRouteFilterRule", **kwargs ) -> "models.RouteFilterRule": cls = kwargs.pop('cls', None) # type: ClsType["models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(route_filter_rule_parameters, 'PatchRouteFilterRule') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_update( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "models.PatchRouteFilterRule", **kwargs ) -> AsyncLROPoller["models.RouteFilterRule"]: """Updates a route in the specified route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the route filter rule. :type rule_name: str :param route_filter_rule_parameters: Parameters supplied to the update route filter rule operation. :type route_filter_rule_parameters: ~azure.mgmt.network.v2018_08_01.models.PatchRouteFilterRule :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteFilterRule or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_08_01.models.RouteFilterRule] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.RouteFilterRule"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, route_filter_rule_parameters=route_filter_rule_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore def list_by_route_filter( self, resource_group_name: str, route_filter_name: str, **kwargs ) -> AsyncIterable["models.RouteFilterRuleListResult"]: """Gets all RouteFilterRules in a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteFilterRuleListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_08_01.models.RouteFilterRuleListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteFilterRuleListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_route_filter.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteFilterRuleListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_route_filter.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules'} # type: ignore
49.402957
221
0.671755
cd4b22b05346ba150ae1e3d72287c4250f2f87fd
360
py
Python
python_socks/async_/curio/__init__.py
sjamgade/python-socks
e9c7718b104c382ff381f059705d1e929ec63f22
[ "Apache-2.0" ]
null
null
null
python_socks/async_/curio/__init__.py
sjamgade/python-socks
e9c7718b104c382ff381f059705d1e929ec63f22
[ "Apache-2.0" ]
null
null
null
python_socks/async_/curio/__init__.py
sjamgade/python-socks
e9c7718b104c382ff381f059705d1e929ec63f22
[ "Apache-2.0" ]
null
null
null
from ..._types import ProxyType from ..._proxy_factory import ProxyFactory from ._proxy import ( CurioProxy, Socks5Proxy, Socks4Proxy, HttpProxy ) class Proxy(ProxyFactory[CurioProxy]): types = { ProxyType.SOCKS4: Socks4Proxy, ProxyType.SOCKS5: Socks5Proxy, ProxyType.HTTP: HttpProxy, } __all__ = ('Proxy',)
18
42
0.669444
1cd969d6bc7ca029dbf1576d8bafdcee9960f59a
1,813
py
Python
Metodos_numericos/MetodosDeGauss/GaussJacobi.py
iOsnaaente/Faculdade_ECA-UFSM
aea8b8d66169b073c439b47ad990e45695cbe953
[ "MIT" ]
null
null
null
Metodos_numericos/MetodosDeGauss/GaussJacobi.py
iOsnaaente/Faculdade_ECA-UFSM
aea8b8d66169b073c439b47ad990e45695cbe953
[ "MIT" ]
null
null
null
Metodos_numericos/MetodosDeGauss/GaussJacobi.py
iOsnaaente/Faculdade_ECA-UFSM
aea8b8d66169b073c439b47ad990e45695cbe953
[ "MIT" ]
null
null
null
from numpy import zeros, linspace, array from numpy.linalg import norm def gaussJacobi(A, B, Ap, e): C = zeros((len(A), len(A))) g = zeros((len(B),1)) # Construir as matrizes C e g for i in range(len(A)): g[i] = B[i]/A[i][i] for j in range(len(A)): if i == j : C[i][j] = -A[i][j]/A[i][i] # Testando a condição de parada if norm(C, 1) < 1: erro = 1 # Se quisermos saber quantas iterações foram feitas #n = 0 while erro > e: An = C*Ap + g erro = norm(An-Ap)/norm(An) Ap = An #n = n + 1 return Ap else: return None if __name__ == '__main__': ''' t = int(input("Tamanho M da matriz A[MxM]:")) A = [(map(float,input("linha "+str(x+1)+":").split())) for i in range(t)] A = array(A) B = [[x] for x in list(map(float,input('Digite os valores do vetor B [Mx1]: ').split()))] B = array(B) Ap = array([x for x in list(map(float,input('Digite os valores do vetor X[Mx1]: ').split()))]) e = input("Entre com o erro máximo tolerado: ") ''' t = 8 A = array([[-10,1,-2,0], [-1,11,-1,3], [2,-1,10,-1], [0,3,-1,8]]) B = array([-6,25,-11,15]) Ap = array([0,0,0,0]) e = 0.001 valores = gaussJacobi(A, B, Ap, e) if valores is not None: print('Os valores convergem no ponto ', end='') str_append = '' soma = 0 for i in range (len(valores)): str_append = str_append + "x%i: %10.8f" %(i, A[0][i]*valores[i]) soma = soma + A[0][i]*valores[i] print(' y(x)=%10.8f onde:' %soma) print(str_append) else: print('Não há convergência!!!')
25.9
102
0.472697
465dd63a290c6ff839bdc8d8fca6fefb889aa9bf
70,309
py
Python
binance/client.py
fzxa/python-binance
78a64a67cad02ca6397b0b95486b2bc830ae5ef0
[ "MIT" ]
2
2018-12-26T12:09:30.000Z
2020-09-27T08:21:05.000Z
binance/client.py
fzxa/python-binance
78a64a67cad02ca6397b0b95486b2bc830ae5ef0
[ "MIT" ]
null
null
null
binance/client.py
fzxa/python-binance
78a64a67cad02ca6397b0b95486b2bc830ae5ef0
[ "MIT" ]
2
2018-08-19T16:30:15.000Z
2018-12-09T10:20:15.000Z
# coding=utf-8 import hashlib import hmac import requests import time from operator import itemgetter from .helpers import date_to_milliseconds, interval_to_milliseconds from .exceptions import BinanceAPIException, BinanceRequestException, BinanceWithdrawException class Client(object): API_URL = 'https://api.binance.com/api' WITHDRAW_API_URL = 'https://api.binance.com/wapi' WEBSITE_URL = 'https://www.binance.com' PUBLIC_API_VERSION = 'v1' PRIVATE_API_VERSION = 'v3' WITHDRAW_API_VERSION = 'v3' SYMBOL_TYPE_SPOT = 'SPOT' ORDER_STATUS_NEW = 'NEW' ORDER_STATUS_PARTIALLY_FILLED = 'PARTIALLY_FILLED' ORDER_STATUS_FILLED = 'FILLED' ORDER_STATUS_CANCELED = 'CANCELED' ORDER_STATUS_PENDING_CANCEL = 'PENDING_CANCEL' ORDER_STATUS_REJECTED = 'REJECTED' ORDER_STATUS_EXPIRED = 'EXPIRED' KLINE_INTERVAL_1MINUTE = '1m' KLINE_INTERVAL_3MINUTE = '3m' KLINE_INTERVAL_5MINUTE = '5m' KLINE_INTERVAL_15MINUTE = '15m' KLINE_INTERVAL_30MINUTE = '30m' KLINE_INTERVAL_1HOUR = '1h' KLINE_INTERVAL_2HOUR = '2h' KLINE_INTERVAL_4HOUR = '4h' KLINE_INTERVAL_6HOUR = '6h' KLINE_INTERVAL_8HOUR = '8h' KLINE_INTERVAL_12HOUR = '12h' KLINE_INTERVAL_1DAY = '1d' KLINE_INTERVAL_3DAY = '3d' KLINE_INTERVAL_1WEEK = '1w' KLINE_INTERVAL_1MONTH = '1M' SIDE_BUY = 'BUY' SIDE_SELL = 'SELL' ORDER_TYPE_LIMIT = 'LIMIT' ORDER_TYPE_MARKET = 'MARKET' ORDER_TYPE_STOP_LOSS = 'STOP_LOSS' ORDER_TYPE_STOP_LOSS_LIMIT = 'STOP_LOSS_LIMIT' ORDER_TYPE_TAKE_PROFIT = 'TAKE_PROFIT' ORDER_TYPE_TAKE_PROFIT_LIMIT = 'TAKE_PROFIT_LIMIT' ORDER_TYPE_LIMIT_MAKER = 'LIMIT_MAKER' TIME_IN_FORCE_GTC = 'GTC' # Good till cancelled TIME_IN_FORCE_IOC = 'IOC' # Immediate or cancel TIME_IN_FORCE_FOK = 'FOK' # Fill or kill ORDER_RESP_TYPE_ACK = 'ACK' ORDER_RESP_TYPE_RESULT = 'RESULT' ORDER_RESP_TYPE_FULL = 'FULL' # For accessing the data returned by Client.aggregate_trades(). AGG_ID = 'a' AGG_PRICE = 'p' AGG_QUANTITY = 'q' AGG_FIRST_TRADE_ID = 'f' AGG_LAST_TRADE_ID = 'l' AGG_TIME = 'T' AGG_BUYER_MAKES = 'm' AGG_BEST_MATCH = 'M' def __init__(self, api_key, api_secret, requests_params=None): """Binance API Client constructor :param api_key: Api Key :type api_key: str. :param api_secret: Api Secret :type api_secret: str. :param requests_params: optional - Dictionary of requests params to use for all calls :type requests_params: dict. """ self.API_KEY = api_key self.API_SECRET = api_secret self.session = self._init_session() self._requests_params = requests_params # init DNS and SSL cert self.ping() def _init_session(self): session = requests.session() session.headers.update({'Accept': 'application/json', 'User-Agent': 'binance/python', 'X-MBX-APIKEY': self.API_KEY}) return session def _create_api_uri(self, path, signed=True, version=PUBLIC_API_VERSION): v = self.PRIVATE_API_VERSION if signed else version return self.API_URL + '/' + v + '/' + path def _create_withdraw_api_uri(self, path): return self.WITHDRAW_API_URL + '/' + self.WITHDRAW_API_VERSION + '/' + path def _create_website_uri(self, path): return self.WEBSITE_URL + '/' + path def _generate_signature(self, data): ordered_data = self._order_params(data) query_string = '&'.join(["{}={}".format(d[0], d[1]) for d in ordered_data]) m = hmac.new(self.API_SECRET.encode('utf-8'), query_string.encode('utf-8'), hashlib.sha256) return m.hexdigest() def _order_params(self, data): """Convert params to list with signature as last element :param data: :return: """ has_signature = False params = [] for key, value in data.items(): if key == 'signature': has_signature = True else: params.append((key, value)) # sort parameters by key params.sort(key=itemgetter(0)) if has_signature: params.append(('signature', data['signature'])) return params def _request(self, method, uri, signed, force_params=False, **kwargs): # set default requests timeout kwargs['timeout'] = 10 # add our global requests params if self._requests_params: kwargs.update(self._requests_params) data = kwargs.get('data', None) if data and isinstance(data, dict): kwargs['data'] = data if signed: # generate signature kwargs['data']['timestamp'] = int(time.time() * 1000) kwargs['data']['signature'] = self._generate_signature(kwargs['data']) # sort get and post params to match signature order if data: # find any requests params passed and apply them if 'requests_params' in kwargs['data']: # merge requests params into kwargs kwargs.update(kwargs['data']['requests_params']) del(kwargs['data']['requests_params']) # sort post params kwargs['data'] = self._order_params(kwargs['data']) # if get request assign data array to params value for requests lib if data and (method == 'get' or force_params): kwargs['params'] = kwargs['data'] del(kwargs['data']) response = getattr(self.session, method)(uri, **kwargs) return self._handle_response(response) def _request_api(self, method, path, signed=False, version=PUBLIC_API_VERSION, **kwargs): uri = self._create_api_uri(path, signed, version) return self._request(method, uri, signed, **kwargs) def _request_withdraw_api(self, method, path, signed=False, **kwargs): uri = self._create_withdraw_api_uri(path) return self._request(method, uri, signed, True, **kwargs) def _request_website(self, method, path, signed=False, **kwargs): uri = self._create_website_uri(path) return self._request(method, uri, signed, **kwargs) def _handle_response(self, response): """Internal helper for handling API responses from the Binance server. Raises the appropriate exceptions when necessary; otherwise, returns the response. """ if not str(response.status_code).startswith('2'): raise BinanceAPIException(response) try: return response.json() except ValueError: raise BinanceRequestException('Invalid Response: %s' % response.text) def _get(self, path, signed=False, version=PUBLIC_API_VERSION, **kwargs): return self._request_api('get', path, signed, version, **kwargs) def _post(self, path, signed=False, version=PUBLIC_API_VERSION, **kwargs): return self._request_api('post', path, signed, version, **kwargs) def _put(self, path, signed=False, version=PUBLIC_API_VERSION, **kwargs): return self._request_api('put', path, signed, version, **kwargs) def _delete(self, path, signed=False, version=PUBLIC_API_VERSION, **kwargs): return self._request_api('delete', path, signed, version, **kwargs) # Exchange Endpoints def get_products(self): """Return list of products currently listed on Binance Use get_exchange_info() call instead :returns: list - List of product dictionaries :raises: BinanceRequestException, BinanceAPIException """ products = self._request_website('get', 'exchange/public/product') return products def get_exchange_info(self): """Return rate limits and list of symbols :returns: list - List of product dictionaries .. code-block:: python { "timezone": "UTC", "serverTime": 1508631584636, "rateLimits": [ { "rateLimitType": "REQUESTS", "interval": "MINUTE", "limit": 1200 }, { "rateLimitType": "ORDERS", "interval": "SECOND", "limit": 10 }, { "rateLimitType": "ORDERS", "interval": "DAY", "limit": 100000 } ], "exchangeFilters": [], "symbols": [ { "symbol": "ETHBTC", "status": "TRADING", "baseAsset": "ETH", "baseAssetPrecision": 8, "quoteAsset": "BTC", "quotePrecision": 8, "orderTypes": ["LIMIT", "MARKET"], "icebergAllowed": false, "filters": [ { "filterType": "PRICE_FILTER", "minPrice": "0.00000100", "maxPrice": "100000.00000000", "tickSize": "0.00000100" }, { "filterType": "LOT_SIZE", "minQty": "0.00100000", "maxQty": "100000.00000000", "stepSize": "0.00100000" }, { "filterType": "MIN_NOTIONAL", "minNotional": "0.00100000" } ] } ] } :raises: BinanceRequestException, BinanceAPIException """ return self._get('exchangeInfo') def get_symbol_info(self, symbol): """Return information about a symbol :param symbol: required e.g BNBBTC :type symbol: str :returns: Dict if found, None if not .. code-block:: python { "symbol": "ETHBTC", "status": "TRADING", "baseAsset": "ETH", "baseAssetPrecision": 8, "quoteAsset": "BTC", "quotePrecision": 8, "orderTypes": ["LIMIT", "MARKET"], "icebergAllowed": false, "filters": [ { "filterType": "PRICE_FILTER", "minPrice": "0.00000100", "maxPrice": "100000.00000000", "tickSize": "0.00000100" }, { "filterType": "LOT_SIZE", "minQty": "0.00100000", "maxQty": "100000.00000000", "stepSize": "0.00100000" }, { "filterType": "MIN_NOTIONAL", "minNotional": "0.00100000" } ] } :raises: BinanceRequestException, BinanceAPIException """ res = self._get('exchangeInfo') for item in res['symbols']: if item['symbol'] == symbol.upper(): return item return None # General Endpoints def ping(self): """Test connectivity to the Rest API. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#test-connectivity :returns: Empty array .. code-block:: python {} :raises: BinanceRequestException, BinanceAPIException """ return self._get('ping') def get_server_time(self): """Test connectivity to the Rest API and get the current server time. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#check-server-time :returns: Current server time .. code-block:: python { "serverTime": 1499827319559 } :raises: BinanceRequestException, BinanceAPIException """ return self._get('time') # Market Data Endpoints def get_all_tickers(self): """Latest price for all symbols. https://www.binance.com/restapipub.html#symbols-price-ticker :returns: List of market tickers .. code-block:: python [ { "symbol": "LTCBTC", "price": "4.00000200" }, { "symbol": "ETHBTC", "price": "0.07946600" } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('ticker/allPrices') def get_orderbook_tickers(self): """Best price/qty on the order book for all symbols. https://www.binance.com/restapipub.html#symbols-order-book-ticker :returns: List of order book market entries .. code-block:: python [ { "symbol": "LTCBTC", "bidPrice": "4.00000000", "bidQty": "431.00000000", "askPrice": "4.00000200", "askQty": "9.00000000" }, { "symbol": "ETHBTC", "bidPrice": "0.07946700", "bidQty": "9.00000000", "askPrice": "100000.00000000", "askQty": "1000.00000000" } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('ticker/allBookTickers') def get_order_book(self, **params): """Get the Order Book for the market https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#order-book :param symbol: required :type symbol: str :param limit: Default 100; max 1000 :type limit: int :returns: API response .. code-block:: python { "lastUpdateId": 1027024, "bids": [ [ "4.00000000", # PRICE "431.00000000", # QTY [] # Can be ignored ] ], "asks": [ [ "4.00000200", "12.00000000", [] ] ] } :raises: BinanceRequestException, BinanceAPIException """ return self._get('depth', data=params) def get_recent_trades(self, **params): """Get recent trades (up to last 500). https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#recent-trades-list :param symbol: required :type symbol: str :param limit: Default 500; max 500. :type limit: int :returns: API response .. code-block:: python [ { "id": 28457, "price": "4.00000100", "qty": "12.00000000", "time": 1499865549590, "isBuyerMaker": true, "isBestMatch": true } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('trades', data=params) def get_historical_trades(self, **params): """Get older trades. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#recent-trades-list :param symbol: required :type symbol: str :param limit: Default 500; max 500. :type limit: int :param fromId: TradeId to fetch from. Default gets most recent trades. :type fromId: str :returns: API response .. code-block:: python [ { "id": 28457, "price": "4.00000100", "qty": "12.00000000", "time": 1499865549590, "isBuyerMaker": true, "isBestMatch": true } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('historicalTrades', data=params) def get_aggregate_trades(self, **params): """Get compressed, aggregate trades. Trades that fill at the time, from the same order, with the same price will have the quantity aggregated. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#compressedaggregate-trades-list :param symbol: required :type symbol: str :param fromId: ID to get aggregate trades from INCLUSIVE. :type fromId: str :param startTime: Timestamp in ms to get aggregate trades from INCLUSIVE. :type startTime: int :param endTime: Timestamp in ms to get aggregate trades until INCLUSIVE. :type endTime: int :param limit: Default 500; max 500. :type limit: int :returns: API response .. code-block:: python [ { "a": 26129, # Aggregate tradeId "p": "0.01633102", # Price "q": "4.70443515", # Quantity "f": 27781, # First tradeId "l": 27781, # Last tradeId "T": 1498793709153, # Timestamp "m": true, # Was the buyer the maker? "M": true # Was the trade the best price match? } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('aggTrades', data=params) def aggregate_trade_iter(self, symbol, start_str=None, last_id=None): """Iterate over aggregate trade data from (start_time or last_id) to the end of the history so far. If start_time is specified, start with the first trade after start_time. Meant to initialise a local cache of trade data. If last_id is specified, start with the trade after it. This is meant for updating a pre-existing local trade data cache. Only allows start_str or last_id—not both. Not guaranteed to work right if you're running more than one of these simultaneously. You will probably hit your rate limit. See dateparser docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Symbol string e.g. ETHBTC :type symbol: str :param start_str: Start date string in UTC format or timestamp in milliseconds. The iterator will return the first trade occurring later than this time. :type start_str: str|int :param last_id: aggregate trade ID of the last known aggregate trade. Not a regular trade ID. See https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#compressedaggregate-trades-list. :returns: an iterator of JSON objects, one per trade. The format of each object is identical to Client.aggregate_trades(). :type last_id: int """ if start_str is not None and last_id is not None: raise ValueError( 'start_time and last_id may not be simultaneously specified.') # If there's no last_id, get one. if last_id is None: # Without a last_id, we actually need the first trade. Normally, # we'd get rid of it. See the next loop. if start_str is None: trades = self.get_aggregate_trades(symbol=symbol, fromId=0) else: # The difference between startTime and endTime should be less # or equal than an hour and the result set should contain at # least one trade. if type(start_str) == int: start_ts = start_str else: start_ts = date_to_milliseconds(start_str) trades = self.get_aggregate_trades( symbol=symbol, startTime=start_ts, endTime=start_ts + (60 * 60 * 1000)) for t in trades: yield t last_id = trades[-1][self.AGG_ID] while True: # There is no need to wait between queries, to avoid hitting the # rate limit. We're using blocking IO, and as long as we're the # only thread running calls like this, Binance will automatically # add the right delay time on their end, forcing us to wait for # data. That really simplifies this function's job. Binance is # fucking awesome. trades = self.get_aggregate_trades(symbol=symbol, fromId=last_id) # fromId=n returns a set starting with id n, but we already have # that one. So get rid of the first item in the result set. trades = trades[1:] if len(trades) == 0: return for t in trades: yield t last_id = trades[-1][self.AGG_ID] def get_klines(self, **params): """Kline/candlestick bars for a symbol. Klines are uniquely identified by their open time. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#klinecandlestick-data :param symbol: required :type symbol: str :param interval: - :type interval: str :param limit: - Default 500; max 500. :type limit: int :param startTime: :type startTime: int :param endTime: :type endTime: int :returns: API response .. code-block:: python [ [ 1499040000000, # Open time "0.01634790", # Open "0.80000000", # High "0.01575800", # Low "0.01577100", # Close "148976.11427815", # Volume 1499644799999, # Close time "2434.19055334", # Quote asset volume 308, # Number of trades "1756.87402397", # Taker buy base asset volume "28.46694368", # Taker buy quote asset volume "17928899.62484339" # Can be ignored ] ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('klines', data=params) def _get_earliest_valid_timestamp(self, symbol, interval): """Get earliest valid open timestamp from Binance :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Binance Kline interval :type interval: str :return: first valid timestamp """ kline = self.get_klines( symbol=symbol, interval=interval, limit=1, startTime=0, endTime=None ) return kline[0][0] def get_historical_klines(self, symbol, interval, start_str, end_str=None): """Get Historical Klines from Binance See dateparser docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Binance Kline interval :type interval: str :param start_str: Start date string in UTC format or timestamp in milliseconds :type start_str: str|int :param end_str: optional - end date string in UTC format or timestamp in milliseconds (default will fetch everything up to now) :type end_str: str|int :return: list of OHLCV values """ # init our list output_data = [] # setup the max limit limit = 500 # convert interval to useful value in seconds timeframe = interval_to_milliseconds(interval) # convert our date strings to milliseconds if type(start_str) == int: start_ts = start_str else: start_ts = date_to_milliseconds(start_str) # establish first available start timestamp first_valid_ts = self._get_earliest_valid_timestamp(symbol, interval) start_ts = max(start_ts, first_valid_ts) # if an end time was passed convert it end_ts = None if end_str: if type(end_str) == int: end_ts = end_str else: end_ts = date_to_milliseconds(end_str) idx = 0 while True: # fetch the klines from start_ts up to max 500 entries or the end_ts if set temp_data = self.get_klines( symbol=symbol, interval=interval, limit=limit, startTime=start_ts, endTime=end_ts ) # handle the case where exactly the limit amount of data was returned last loop if not len(temp_data): break # append this loops data to our output data output_data += temp_data # set our start timestamp using the last value in the array start_ts = temp_data[-1][0] idx += 1 # check if we received less than the required limit and exit the loop if len(temp_data) < limit: # exit the while loop break # increment next call by our timeframe start_ts += timeframe # sleep after every 3rd call to be kind to the API if idx % 3 == 0: time.sleep(1) return output_data def get_historical_klines_generator(self, symbol, interval, start_str, end_str=None): """Get Historical Klines from Binance See dateparser docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Binance Kline interval :type interval: str :param start_str: Start date string in UTC format or timestamp in milliseconds :type start_str: str|int :param end_str: optional - end date string in UTC format or timestamp in milliseconds (default will fetch everything up to now) :type end_str: str|int :return: generator of OHLCV values """ # setup the max limit limit = 500 # convert interval to useful value in seconds timeframe = interval_to_milliseconds(interval) # convert our date strings to milliseconds if type(start_str) == int: start_ts = start_str else: start_ts = date_to_milliseconds(start_str) # establish first available start timestamp first_valid_ts = self._get_earliest_valid_timestamp(symbol, interval) start_ts = max(start_ts, first_valid_ts) # if an end time was passed convert it end_ts = None if end_str: if type(end_str) == int: end_ts = end_str else: end_ts = date_to_milliseconds(end_str) idx = 0 while True: # fetch the klines from start_ts up to max 500 entries or the end_ts if set output_data = self.get_klines( symbol=symbol, interval=interval, limit=limit, startTime=start_ts, endTime=end_ts ) # handle the case where exactly the limit amount of data was returned last loop if not len(output_data): break # yield data for o in output_data: yield o # set our start timestamp using the last value in the array start_ts = output_data[-1][0] idx += 1 # check if we received less than the required limit and exit the loop if len(output_data) < limit: # exit the while loop break # increment next call by our timeframe start_ts += timeframe # sleep after every 3rd call to be kind to the API if idx % 3 == 0: time.sleep(1) def get_ticker(self, **params): """24 hour price change statistics. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#24hr-ticker-price-change-statistics :param symbol: :type symbol: str :returns: API response .. code-block:: python { "priceChange": "-94.99999800", "priceChangePercent": "-95.960", "weightedAvgPrice": "0.29628482", "prevClosePrice": "0.10002000", "lastPrice": "4.00000200", "bidPrice": "4.00000000", "askPrice": "4.00000200", "openPrice": "99.00000000", "highPrice": "100.00000000", "lowPrice": "0.10000000", "volume": "8913.30000000", "openTime": 1499783499040, "closeTime": 1499869899040, "fristId": 28385, # First tradeId "lastId": 28460, # Last tradeId "count": 76 # Trade count } OR .. code-block:: python [ { "priceChange": "-94.99999800", "priceChangePercent": "-95.960", "weightedAvgPrice": "0.29628482", "prevClosePrice": "0.10002000", "lastPrice": "4.00000200", "bidPrice": "4.00000000", "askPrice": "4.00000200", "openPrice": "99.00000000", "highPrice": "100.00000000", "lowPrice": "0.10000000", "volume": "8913.30000000", "openTime": 1499783499040, "closeTime": 1499869899040, "fristId": 28385, # First tradeId "lastId": 28460, # Last tradeId "count": 76 # Trade count } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('ticker/24hr', data=params) def get_symbol_ticker(self, **params): """Latest price for a symbol or symbols. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#24hr-ticker-price-change-statistics :param symbol: :type symbol: str :returns: API response .. code-block:: python { "symbol": "LTCBTC", "price": "4.00000200" } OR .. code-block:: python [ { "symbol": "LTCBTC", "price": "4.00000200" }, { "symbol": "ETHBTC", "price": "0.07946600" } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('ticker/price', data=params, version=self.PRIVATE_API_VERSION) def get_orderbook_ticker(self, **params): """Latest price for a symbol or symbols. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#symbol-order-book-ticker :param symbol: :type symbol: str :returns: API response .. code-block:: python { "symbol": "LTCBTC", "bidPrice": "4.00000000", "bidQty": "431.00000000", "askPrice": "4.00000200", "askQty": "9.00000000" } OR .. code-block:: python [ { "symbol": "LTCBTC", "bidPrice": "4.00000000", "bidQty": "431.00000000", "askPrice": "4.00000200", "askQty": "9.00000000" }, { "symbol": "ETHBTC", "bidPrice": "0.07946700", "bidQty": "9.00000000", "askPrice": "100000.00000000", "askQty": "1000.00000000" } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('ticker/bookTicker', data=params, version=self.PRIVATE_API_VERSION) # Account Endpoints def create_order(self, **params): """Send in a new order Any order with an icebergQty MUST have timeInForce set to GTC. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#new-order--trade :param symbol: required :type symbol: str :param side: required :type side: str :param type: required :type type: str :param timeInForce: required if limit order :type timeInForce: str :param quantity: required :type quantity: decimal :param price: required :type price: str :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param icebergQty: Used with LIMIT, STOP_LOSS_LIMIT, and TAKE_PROFIT_LIMIT to create an iceberg order. :type icebergQty: decimal :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response Response ACK: .. code-block:: python { "symbol":"LTCBTC", "orderId": 1, "clientOrderId": "myOrder1" # Will be newClientOrderId "transactTime": 1499827319559 } Response RESULT: .. code-block:: python { "symbol": "BTCUSDT", "orderId": 28, "clientOrderId": "6gCrw2kRUAF9CvJDGP16IP", "transactTime": 1507725176595, "price": "0.00000000", "origQty": "10.00000000", "executedQty": "10.00000000", "status": "FILLED", "timeInForce": "GTC", "type": "MARKET", "side": "SELL" } Response FULL: .. code-block:: python { "symbol": "BTCUSDT", "orderId": 28, "clientOrderId": "6gCrw2kRUAF9CvJDGP16IP", "transactTime": 1507725176595, "price": "0.00000000", "origQty": "10.00000000", "executedQty": "10.00000000", "status": "FILLED", "timeInForce": "GTC", "type": "MARKET", "side": "SELL", "fills": [ { "price": "4000.00000000", "qty": "1.00000000", "commission": "4.00000000", "commissionAsset": "USDT" }, { "price": "3999.00000000", "qty": "5.00000000", "commission": "19.99500000", "commissionAsset": "USDT" }, { "price": "3998.00000000", "qty": "2.00000000", "commission": "7.99600000", "commissionAsset": "USDT" }, { "price": "3997.00000000", "qty": "1.00000000", "commission": "3.99700000", "commissionAsset": "USDT" }, { "price": "3995.00000000", "qty": "1.00000000", "commission": "3.99500000", "commissionAsset": "USDT" } ] } :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ return self._post('order', True, data=params) def order_limit(self, timeInForce=TIME_IN_FORCE_GTC, **params): """Send in a new limit order Any order with an icebergQty MUST have timeInForce set to GTC. :param symbol: required :type symbol: str :param side: required :type side: str :param quantity: required :type quantity: decimal :param price: required :type price: str :param timeInForce: default Good till cancelled :type timeInForce: str :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param icebergQty: Used with LIMIT, STOP_LOSS_LIMIT, and TAKE_PROFIT_LIMIT to create an iceberg order. :type icebergQty: decimal :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response See order endpoint for full response options :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ params.update({ 'type': self.ORDER_TYPE_LIMIT, 'timeInForce': timeInForce }) return self.create_order(**params) def order_limit_buy(self, timeInForce=TIME_IN_FORCE_GTC, **params): """Send in a new limit buy order Any order with an icebergQty MUST have timeInForce set to GTC. :param symbol: required :type symbol: str :param quantity: required :type quantity: decimal :param price: required :type price: str :param timeInForce: default Good till cancelled :type timeInForce: str :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param stopPrice: Used with stop orders :type stopPrice: decimal :param icebergQty: Used with iceberg orders :type icebergQty: decimal :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response See order endpoint for full response options :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ params.update({ 'side': self.SIDE_BUY, }) return self.order_limit(timeInForce=timeInForce, **params) def order_limit_sell(self, timeInForce=TIME_IN_FORCE_GTC, **params): """Send in a new limit sell order :param symbol: required :type symbol: str :param quantity: required :type quantity: decimal :param price: required :type price: str :param timeInForce: default Good till cancelled :type timeInForce: str :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param stopPrice: Used with stop orders :type stopPrice: decimal :param icebergQty: Used with iceberg orders :type icebergQty: decimal :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response See order endpoint for full response options :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ params.update({ 'side': self.SIDE_SELL }) return self.order_limit(timeInForce=timeInForce, **params) def order_market(self, **params): """Send in a new market order :param symbol: required :type symbol: str :param side: required :type side: str :param quantity: required :type quantity: decimal :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response See order endpoint for full response options :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ params.update({ 'type': self.ORDER_TYPE_MARKET }) return self.create_order(**params) def order_market_buy(self, **params): """Send in a new market buy order :param symbol: required :type symbol: str :param quantity: required :type quantity: decimal :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response See order endpoint for full response options :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ params.update({ 'side': self.SIDE_BUY }) return self.order_market(**params) def order_market_sell(self, **params): """Send in a new market sell order :param symbol: required :type symbol: str :param quantity: required :type quantity: decimal :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response See order endpoint for full response options :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ params.update({ 'side': self.SIDE_SELL }) return self.order_market(**params) def create_test_order(self, **params): """Test new order creation and signature/recvWindow long. Creates and validates a new order but does not send it into the matching engine. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#test-new-order-trade :param symbol: required :type symbol: str :param side: required :type side: str :param type: required :type type: str :param timeInForce: required if limit order :type timeInForce: str :param quantity: required :type quantity: decimal :param price: required :type price: str :param newClientOrderId: A unique id for the order. Automatically generated if not sent. :type newClientOrderId: str :param icebergQty: Used with iceberg orders :type icebergQty: decimal :param newOrderRespType: Set the response JSON. ACK, RESULT, or FULL; default: RESULT. :type newOrderRespType: str :param recvWindow: The number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python {} :raises: BinanceRequestException, BinanceAPIException, BinanceOrderException, BinanceOrderMinAmountException, BinanceOrderMinPriceException, BinanceOrderMinTotalException, BinanceOrderUnknownSymbolException, BinanceOrderInactiveSymbolException """ return self._post('order/test', True, data=params) def get_order(self, **params): """Check an order's status. Either orderId or origClientOrderId must be sent. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#query-order-user_data :param symbol: required :type symbol: str :param orderId: The unique order id :type orderId: int :param origClientOrderId: optional :type origClientOrderId: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "symbol": "LTCBTC", "orderId": 1, "clientOrderId": "myOrder1", "price": "0.1", "origQty": "1.0", "executedQty": "0.0", "status": "NEW", "timeInForce": "GTC", "type": "LIMIT", "side": "BUY", "stopPrice": "0.0", "icebergQty": "0.0", "time": 1499827319559 } :raises: BinanceRequestException, BinanceAPIException """ return self._get('order', True, data=params) def get_all_orders(self, **params): """Get all account orders; active, canceled, or filled. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#all-orders-user_data :param symbol: required :type symbol: str :param orderId: The unique order id :type orderId: int :param limit: Default 500; max 500. :type limit: int :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python [ { "symbol": "LTCBTC", "orderId": 1, "clientOrderId": "myOrder1", "price": "0.1", "origQty": "1.0", "executedQty": "0.0", "status": "NEW", "timeInForce": "GTC", "type": "LIMIT", "side": "BUY", "stopPrice": "0.0", "icebergQty": "0.0", "time": 1499827319559 } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('allOrders', True, data=params) def cancel_order(self, **params): """Cancel an active order. Either orderId or origClientOrderId must be sent. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#cancel-order-trade :param symbol: required :type symbol: str :param orderId: The unique order id :type orderId: int :param origClientOrderId: optional :type origClientOrderId: str :param newClientOrderId: Used to uniquely identify this cancel. Automatically generated by default. :type newClientOrderId: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "symbol": "LTCBTC", "origClientOrderId": "myOrder1", "orderId": 1, "clientOrderId": "cancelMyOrder1" } :raises: BinanceRequestException, BinanceAPIException """ return self._delete('order', True, data=params) def get_open_orders(self, **params): """Get all open orders on a symbol. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#current-open-orders-user_data :param symbol: optional :type symbol: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python [ { "symbol": "LTCBTC", "orderId": 1, "clientOrderId": "myOrder1", "price": "0.1", "origQty": "1.0", "executedQty": "0.0", "status": "NEW", "timeInForce": "GTC", "type": "LIMIT", "side": "BUY", "stopPrice": "0.0", "icebergQty": "0.0", "time": 1499827319559 } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('openOrders', True, data=params) # User Stream Endpoints def get_account(self, **params): """Get current account information. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#account-information-user_data :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "makerCommission": 15, "takerCommission": 15, "buyerCommission": 0, "sellerCommission": 0, "canTrade": true, "canWithdraw": true, "canDeposit": true, "balances": [ { "asset": "BTC", "free": "4723846.89208129", "locked": "0.00000000" }, { "asset": "LTC", "free": "4763368.68006011", "locked": "0.00000000" } ] } :raises: BinanceRequestException, BinanceAPIException """ return self._get('account', True, data=params) def get_asset_balance(self, asset, **params): """Get current asset balance. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#account-information-user_data :param asset: required :type asset: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: dictionary or None if not found .. code-block:: python { "asset": "BTC", "free": "4723846.89208129", "locked": "0.00000000" } :raises: BinanceRequestException, BinanceAPIException """ res = self.get_account(**params) # find asset balance in list of balances if "balances" in res: for bal in res['balances']: if bal['asset'].lower() == asset.lower(): return bal return None def get_my_trades(self, **params): """Get trades for a specific symbol. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#account-trade-list-user_data :param symbol: required :type symbol: str :param limit: Default 500; max 500. :type limit: int :param fromId: TradeId to fetch from. Default gets most recent trades. :type fromId: int :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python [ { "id": 28457, "price": "4.00000100", "qty": "12.00000000", "commission": "10.10000000", "commissionAsset": "BNB", "time": 1499865549590, "isBuyer": true, "isMaker": false, "isBestMatch": true } ] :raises: BinanceRequestException, BinanceAPIException """ return self._get('myTrades', True, data=params) def get_system_status(self): """Get system status detail. https://github.com/binance-exchange/binance-official-api-docs/blob/master/wapi-api.md#system-status-system :returns: API response .. code-block:: python { "status": 0, # 0: normal,1:system maintenance "msg": "normal" # normal or System maintenance. } :raises: BinanceAPIException """ return self._request_withdraw_api('get', 'systemStatus.html') def get_account_status(self, **params): """Get account status detail. https://github.com/binance-exchange/binance-official-api-docs/blob/master/wapi-api.md#account-status-user_data :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "msg": "Order failed:Low Order fill rate! Will be reactivated after 5 minutes.", "success": true, "objs": [ "5" ] } :raises: BinanceWithdrawException """ res = self._request_withdraw_api('get', 'accountStatus.html', True, data=params) if not res['success']: raise BinanceWithdrawException(res['msg']) return res def get_dust_log(self, **params): """Get log of small amounts exchanged for BNB. https://github.com/binance-exchange/binance-official-api-docs/blob/master/wapi-api.md#dustlog-user_data :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "success": true, "results": { "total": 2, //Total counts of exchange "rows": [ { "transfered_total": "0.00132256", # Total transfered BNB amount for this exchange. "service_charge_total": "0.00002699", # Total service charge amount for this exchange. "tran_id": 4359321, "logs": [ # Details of this exchange. { "tranId": 4359321, "serviceChargeAmount": "0.000009", "uid": "10000015", "amount": "0.0009", "operateTime": "2018-05-03 17:07:04", "transferedAmount": "0.000441", "fromAsset": "USDT" }, { "tranId": 4359321, "serviceChargeAmount": "0.00001799", "uid": "10000015", "amount": "0.0009", "operateTime": "2018-05-03 17:07:04", "transferedAmount": "0.00088156", "fromAsset": "ETH" } ], "operate_time": "2018-05-03 17:07:04" //The time of this exchange. }, { "transfered_total": "0.00058795", "service_charge_total": "0.000012", "tran_id": 4357015, "logs": [ // Details of this exchange. { "tranId": 4357015, "serviceChargeAmount": "0.00001", "uid": "10000015", "amount": "0.001", "operateTime": "2018-05-02 13:52:24", "transferedAmount": "0.00049", "fromAsset": "USDT" }, { "tranId": 4357015, "serviceChargeAmount": "0.000002", "uid": "10000015", "amount": "0.0001", "operateTime": "2018-05-02 13:51:11", "transferedAmount": "0.00009795", "fromAsset": "ETH" } ], "operate_time": "2018-05-02 13:51:11" } ] } } :raises: BinanceWithdrawException """ res = self._request_withdraw_api('get', 'userAssetDribbletLog.html', True, data=params) if not res['success']: raise BinanceWithdrawException(res['msg']) return res def get_trade_fee(self, **params): """Get trade fee. https://github.com/binance-exchange/binance-official-api-docs/blob/master/wapi-api.md#trade-fee-user_data :param symbol: optional :type symbol: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "tradeFee": [ { "symbol": "ADABNB", "maker": 0.9000, "taker": 1.0000 }, { "symbol": "BNBBTC", "maker": 0.3000, "taker": 0.3000 } ], "success": true } :raises: BinanceWithdrawException """ res = self._request_withdraw_api('get', 'tradeFee.html', True, data=params) if not res['success']: raise BinanceWithdrawException(res['msg']) return res def get_asset_details(self, **params): """Fetch details on assets. https://github.com/binance-exchange/binance-official-api-docs/blob/master/wapi-api.md#asset-detail-user_data :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "success": true, "assetDetail": { "CTR": { "minWithdrawAmount": "70.00000000", //min withdraw amount "depositStatus": false,//deposit status "withdrawFee": 35, // withdraw fee "withdrawStatus": true, //withdraw status "depositTip": "Delisted, Deposit Suspended" //reason }, "SKY": { "minWithdrawAmount": "0.02000000", "depositStatus": true, "withdrawFee": 0.01, "withdrawStatus": true } } } :raises: BinanceWithdrawException """ res = self._request_withdraw_api('get', 'assetDetail.html', True, data=params) if not res['success']: raise BinanceWithdrawException(res['msg']) return res # Withdraw Endpoints def withdraw(self, **params): """Submit a withdraw request. https://www.binance.com/restapipub.html Assumptions: - You must have Withdraw permissions enabled on your API key - You must have withdrawn to the address specified through the website and approved the transaction via email :param asset: required :type asset: str :type address: required :type address: str :type addressTag: optional - Secondary address identifier for coins like XRP,XMR etc. :type address: str :param amount: required :type amount: decimal :param name: optional - Description of the address, default asset value passed will be used :type name: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "msg": "success", "success": true, "id":"7213fea8e94b4a5593d507237e5a555b" } :raises: BinanceRequestException, BinanceAPIException, BinanceWithdrawException """ # force a name for the withdrawal if one not set if 'asset' in params and 'name' not in params: params['name'] = params['asset'] res = self._request_withdraw_api('post', 'withdraw.html', True, data=params) if not res['success']: raise BinanceWithdrawException(res['msg']) return res def get_deposit_history(self, **params): """Fetch deposit history. https://www.binance.com/restapipub.html :param asset: optional :type asset: str :type status: 0(0:pending,1:success) optional :type status: int :param startTime: optional :type startTime: long :param endTime: optional :type endTime: long :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "depositList": [ { "insertTime": 1508198532000, "amount": 0.04670582, "asset": "ETH", "status": 1 } ], "success": true } :raises: BinanceRequestException, BinanceAPIException """ return self._request_withdraw_api('get', 'depositHistory.html', True, data=params) def get_withdraw_history(self, **params): """Fetch withdraw history. https://www.binance.com/restapipub.html :param asset: optional :type asset: str :type status: 0(0:Email Sent,1:Cancelled 2:Awaiting Approval 3:Rejected 4:Processing 5:Failure 6Completed) optional :type status: int :param startTime: optional :type startTime: long :param endTime: optional :type endTime: long :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "withdrawList": [ { "amount": 1, "address": "0x6915f16f8791d0a1cc2bf47c13a6b2a92000504b", "asset": "ETH", "applyTime": 1508198532000 "status": 4 }, { "amount": 0.005, "address": "0x6915f16f8791d0a1cc2bf47c13a6b2a92000504b", "txId": "0x80aaabed54bdab3f6de5868f89929a2371ad21d666f20f7393d1a3389fad95a1", "asset": "ETH", "applyTime": 1508198532000, "status": 4 } ], "success": true } :raises: BinanceRequestException, BinanceAPIException """ return self._request_withdraw_api('get', 'withdrawHistory.html', True, data=params) def get_deposit_address(self, **params): """Fetch a deposit address for a symbol https://www.binance.com/restapipub.html :param asset: required :type asset: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "address": "0x6915f16f8791d0a1cc2bf47c13a6b2a92000504b", "success": true, "addressTag": "1231212", "asset": "BNB" } :raises: BinanceRequestException, BinanceAPIException """ return self._request_withdraw_api('get', 'depositAddress.html', True, data=params) def get_withdraw_fee(self, **params): """Fetch the withdrawal fee for an asset :param asset: required :type asset: str :param recvWindow: the number of milliseconds the request is valid for :type recvWindow: int :returns: API response .. code-block:: python { "withdrawFee": "0.0005", "success": true } :raises: BinanceRequestException, BinanceAPIException """ return self._request_withdraw_api('get', 'withdrawFee.html', True, data=params) # User Stream Endpoints def stream_get_listen_key(self): """Start a new user data stream and return the listen key If a stream already exists it should return the same key. If the stream becomes invalid a new key is returned. Can be used to keep the user stream alive. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#start-user-data-stream-user_stream :returns: API response .. code-block:: python { "listenKey": "pqia91ma19a5s61cv6a81va65sdf19v8a65a1a5s61cv6a81va65sdf19v8a65a1" } :raises: BinanceRequestException, BinanceAPIException """ res = self._post('userDataStream', False, data={}) return res['listenKey'] def stream_keepalive(self, listenKey): """PING a user data stream to prevent a time out. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#keepalive-user-data-stream-user_stream :param listenKey: required :type listenKey: str :returns: API response .. code-block:: python {} :raises: BinanceRequestException, BinanceAPIException """ params = { 'listenKey': listenKey } return self._put('userDataStream', False, data=params) def stream_close(self, listenKey): """Close out a user data stream. https://github.com/binance-exchange/binance-official-api-docs/blob/master/rest-api.md#close-user-data-stream-user_stream :param listenKey: required :type listenKey: str :returns: API response .. code-block:: python {} :raises: BinanceRequestException, BinanceAPIException """ params = { 'listenKey': listenKey } return self._delete('userDataStream', False, data=params)
34.031462
251
0.538722
670e229496f29510882f893323b38836fd781192
6,212
py
Python
dohproxy/client_protocol.py
rfinnie/doh-proxy
3340626e7c2ee1d094f3c81feb693be712f337a2
[ "BSD-3-Clause" ]
null
null
null
dohproxy/client_protocol.py
rfinnie/doh-proxy
3340626e7c2ee1d094f3c81feb693be712f337a2
[ "BSD-3-Clause" ]
null
null
null
dohproxy/client_protocol.py
rfinnie/doh-proxy
3340626e7c2ee1d094f3c81feb693be712f337a2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # # Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # import aioh2 import asyncio import dns.message import priority import struct import urllib.parse from dohproxy import constants, utils class StubServerProtocol: def __init__(self, args, logger=None, client_store=None): self.logger = logger self.args = args self._lock = asyncio.Lock() if logger is None: self.logger = utils.configure_logger('StubServerProtocol') # The client is wrapped in a mutable dictionary, so it may be shared # across multiple contexts if passed from higher in the chain. if client_store is None: self.client_store = {'client': None} else: self.client_store = client_store async def get_client(self): if self.client_store['client'] is not None: if self.client_store['client']._conn is not None: return self.client_store['client'] # Open client connection self.logger.debug('Opening connection to {}'.format(self.args.domain)) sslctx = utils.create_custom_ssl_context( insecure=self.args.insecure, cafile=self.args.cafile ) remote_addr = self.args.remote_address \ if self.args.remote_address else self.args.domain client = await aioh2.open_connection( remote_addr, self.args.port, functional_timeout=0.1, ssl=sslctx, server_hostname=self.args.domain) rtt = await client.wait_functional() if rtt: self.logger.debug('Round-trip time: %.1fms' % (rtt * 1000)) self.client_store['client'] = client return client def connection_made(self, transport): pass def connection_lost(self, exc): pass def on_answer(self, addr, msg): pass def on_message_received(self, stream_id, msg): """ Takes a wired format message returned from a DOH server and convert it to a python dns message. """ return dns.message.from_wire(msg) async def on_start_request(self, client, headers, end_stream): return await client.start_request(headers, end_stream=end_stream) async def on_send_data(self, client, stream_id, body): return await client.send_data(stream_id, body, end_stream=True) def on_recv_response(self, stream_id, headers): self.logger.debug('Response headers: {}'.format(headers)) def _make_get_path(self, content): params = utils.build_query_params(content) self.logger.debug('Query parameters: {}'.format(params)) params_str = urllib.parse.urlencode(params) if self.args.debug: url = utils.make_url(self.args.domain, self.args.uri) self.logger.debug('Sending {}?{}'.format(url, params_str)) return self.args.uri + '?' + params_str async def make_request(self, addr, dnsq): # FIXME: maybe aioh2 should allow registering to connection_lost event # so we can find out when the connection get disconnected. with await self._lock: client = await self.get_client() headers = {'Accept': constants.DOH_MEDIA_TYPE} path = self.args.uri qid = dnsq.id dnsq.id = 0 body = b'' headers = [ (':authority', self.args.domain), (':method', self.args.post and 'POST' or 'GET'), (':scheme', 'https'), ] if self.args.post: headers.append(('content-type', constants.DOH_MEDIA_TYPE)) body = dnsq.to_wire() else: path = self._make_get_path(dnsq.to_wire()) headers.insert(0, (':path', path)) headers.extend([ ('content-length', str(len(body))), ]) # Start request with headers # FIXME: Find a better way to close old streams. See GH#11 try: stream_id = await self.on_start_request(client, headers, not body) except priority.priority.TooManyStreamsError: client = await self.get_client() stream_id = await self.on_start_request(client, headers, not body) self.logger.debug( 'Stream ID: {} / Total streams: {}'.format( stream_id, len(client._streams) ) ) # Send my name "world" as whole request body if body: await self.on_send_data(client, stream_id, body) # Receive response headers headers = await client.recv_response(stream_id) self.on_recv_response(stream_id, headers) # FIXME handled error with servfail # Read all response body resp = await client.read_stream(stream_id, -1) dnsr = self.on_message_received(stream_id, resp) dnsr.id = qid self.on_answer(addr, dnsr.to_wire()) # Read response trailers trailers = await client.recv_trailers(stream_id) self.logger.debug('Response trailers: {}'.format(trailers)) class StubServerProtocolUDP(StubServerProtocol): def connection_made(self, transport): self.transport = transport def datagram_received(self, data, addr): dnsq = dns.message.from_wire(data) asyncio.ensure_future(self.make_request(addr, dnsq)) def on_answer(self, addr, msg): self.transport.sendto(msg, addr) class StubServerProtocolTCP(StubServerProtocol): def connection_made(self, transport): self.transport = transport self.addr = transport.get_extra_info('peername') self.buffer = b'' def data_received(self, data): self.buffer = utils.handle_dns_tcp_data( self.buffer + data, self.receive_helper ) def receive_helper(self, dnsq): asyncio.ensure_future(self.make_request(self.addr, dnsq)) def on_answer(self, addr, msg): self.transport.write(struct.pack('!H', len(msg)) + msg) def eof_received(self): self.transport.close()
33.042553
78
0.629105
ce72e0c8e22fdbdfd00bc6eb0596c2eeb03207ec
4,163
py
Python
mobidziennik.py
JakubKoralewski/mobidziennik-do-kalendarza
bab06b843e1b5d011625549c56551dabff079787
[ "MIT" ]
null
null
null
mobidziennik.py
JakubKoralewski/mobidziennik-do-kalendarza
bab06b843e1b5d011625549c56551dabff079787
[ "MIT" ]
null
null
null
mobidziennik.py
JakubKoralewski/mobidziennik-do-kalendarza
bab06b843e1b5d011625549c56551dabff079787
[ "MIT" ]
null
null
null
from robobrowser import RoboBrowser #from bs4 import BeautifulSoup import re br = RoboBrowser() br.open('https://lo2kalisz.mobidziennik.pl/dziennik/') form = br.get_form() form['login'] = input("Podaj login: ") form['haslo'] = input("Podaj haslo: ") br.submit_form(form) br.open('https://lo2kalisz.mobidziennik.pl/dziennik/planzajec/?bez-zastepstw=1') def determineDay(percent): percent = str(percent) if percent == '0.5': return 0 elif percent == '20.5': return 1 elif percent == '40.5': return 2 elif percent == '60.5': return 3 elif percent == '80.5': return 4 else: return 'error' numOfLessons = i = numOfMatches = 0 calendar = {} for bigDiv in br.find_all(class_='plansc_cnt_w'): numOfLessons += 1 bigDiv = str(bigDiv) # RegEx the left value, ex.: style="width:19%;left: two digits + (maybe)dot + (maybe) digit %;" percent = re.search(r'style="width:\d\d%;left:(\d{1,2}.?\d?)%;', bigDiv)[1] title = re.search( r'title="(?P<startTime>\d\d:\d\d) - (?P<endTime>\d\d:\d\d)&lt;br /&gt;(?P<name>.*)&lt;br /&gt;(?P<info>.*) (?P<classroom>\(.*\))"', bigDiv) # get start, end, name, classroom, which day it is and additional info try: i += 1 dayNum = determineDay(percent) startTime = title[1] endTime = title[2] name = title[3] info = title[4] classroom = title[5] except TypeError: pass # this is done for comparing number of tries against succeeded results try: title[0] numOfMatches += 1 except: pass # save to dict calendar[numOfMatches] = { 'name': name, 'dayNum': dayNum, 'startTime': startTime, 'endTime': endTime, 'classroom': classroom, 'info': info, } from icalendar import Calendar, Event from datetime import datetime, date, timedelta #import pytz import os import random import string c = Calendar() e = Event() c.add('prodid', '-//JakubKoralewski//github.com//') c.add('version', '2.0') def randomWord(length): letters = string.ascii_letters return ''.join((random.choice(letters)) for i in range(length)) for i in calendar.keys(): e = Event() name = calendar[i]['name'] dayNum = int(calendar[i]['dayNum']) startTime = calendar[i]['startTime'] endTime = calendar[i]['endTime'] classroom = calendar[i]['classroom'] info = calendar[i]['info'] todaysDate = datetime.today() todaysDay = date.isoweekday(todaysDate) uid = str(todaysDate).replace(" ", "") + \ str(randomWord(8))+'@github.com' # split 14:36 into 14 and 36 startHour = int(startTime[0:2]) startMinutes = int(startTime[3:6]) endHour = int(endTime[0:2]) endMinutes = int(endTime[3:6]) # get the day from which to start adding mondayDelta = todaysDay - 1 firstMonday = todaysDate - timedelta(days=mondayDelta) # print(firstMonday) summary = '{} - {}'.format(name, classroom) crlf = chr(13)+chr(10) description = '{}\r\nLekcja: {}\r\nKlasa: {}'.format( info, name, classroom) year = date.today().year month = date.today().month day = firstMonday + timedelta(days=dayNum) day = day.day #print('day: {}'.format(day)) e.add('summary', summary) e.add('description', description) e.add('dtstart', datetime(year, month, day, startHour, startMinutes)) e.add('dtend', datetime(year, month, day, endHour, endMinutes)) e.add('uid', uid) e.add('dtstamp', todaysDate) if month >= 9: e.add('rrule', {'freq': 'weekly', 'until': datetime(year+1, 6, 30)}) else: e.add('rrule', {'freq': 'weekly', 'until': datetime(year, 6, 30)}) c.add_component(e) print(summary) with open('calendar.ics', 'wb') as calendar: print( f'writing your calendar to {os.getcwd() + chr(92) + "calendar.ics"}.') calendar.write(c.to_ical()) input('Press anything to close.')
28.319728
148
0.582513