hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
e1380953e45198fa9e2e06574415a9672cb1b40a
99,305
py
Python
myvenv/lib/python3.6/site-packages/pandas/plotting/_core.py
catb0y/twitter_feeling
9092a26f2554bbf6b14b33d797abaffa48cda99c
[ "MIT" ]
4
2018-06-03T14:08:15.000Z
2020-09-09T01:56:29.000Z
myvenv/lib/python3.6/site-packages/pandas/plotting/_core.py
catb0y/twitter_feeling
9092a26f2554bbf6b14b33d797abaffa48cda99c
[ "MIT" ]
2
2018-01-22T23:21:36.000Z
2018-01-22T23:31:27.000Z
myvenv/lib/python3.6/site-packages/pandas/plotting/_core.py
catb0y/twitter_feeling
9092a26f2554bbf6b14b33d797abaffa48cda99c
[ "MIT" ]
5
2018-05-19T05:08:51.000Z
2021-04-29T16:03:45.000Z
# being a bit too dynamic # pylint: disable=E1101 from __future__ import division import warnings import re from collections import namedtuple from distutils.version import LooseVersion import numpy as np from pandas.util._decorators import cache_readonly from pandas.core.base import PandasObject from pandas.core.config import get_option from pandas.core.dtypes.missing import isna, notna, remove_na_arraylike from pandas.core.dtypes.common import ( is_list_like, is_integer, is_number, is_hashable, is_iterator) from pandas.core.dtypes.generic import ABCSeries from pandas.core.common import AbstractMethodError, _try_sort, _any_not_none from pandas.core.generic import _shared_docs, _shared_doc_kwargs from pandas.core.index import Index, MultiIndex from pandas.core.indexes.period import PeriodIndex from pandas.compat import range, lrange, map, zip, string_types import pandas.compat as compat from pandas.io.formats.printing import pprint_thing from pandas.util._decorators import Appender from pandas.plotting._compat import (_mpl_ge_1_3_1, _mpl_ge_1_5_0, _mpl_ge_2_0_0) from pandas.plotting._style import (plot_params, _get_standard_colors) from pandas.plotting._tools import (_subplots, _flatten, table, _handle_shared_axes, _get_all_lines, _get_xlim, _set_ticks_props, format_date_labels) try: from pandas.plotting import _converter except ImportError: pass else: if get_option('plotting.matplotlib.register_converters'): _converter.register(explicit=True) def _get_standard_kind(kind): return {'density': 'kde'}.get(kind, kind) def _gca(rc=None): import matplotlib.pyplot as plt with plt.rc_context(rc): return plt.gca() def _gcf(): import matplotlib.pyplot as plt return plt.gcf() class MPLPlot(object): """ Base class for assembling a pandas plot using matplotlib Parameters ---------- data : """ @property def _kind(self): """Specify kind str. Must be overridden in child class""" raise NotImplementedError _layout_type = 'vertical' _default_rot = 0 orientation = None _pop_attributes = ['label', 'style', 'logy', 'logx', 'loglog', 'mark_right', 'stacked'] _attr_defaults = {'logy': False, 'logx': False, 'loglog': False, 'mark_right': True, 'stacked': False} def __init__(self, data, kind=None, by=None, subplots=False, sharex=None, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, sort_columns=False, fontsize=None, secondary_y=False, colormap=None, table=False, layout=None, **kwds): _converter._WARN = False self.data = data self.by = by self.kind = kind self.sort_columns = sort_columns self.subplots = subplots if sharex is None: if ax is None: self.sharex = True else: # if we get an axis, the users should do the visibility # setting... self.sharex = False else: self.sharex = sharex self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for format_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False self.rot = self._default_rot if grid is None: grid = False if secondary_y else self.plt.rcParams['axes.grid'] self.grid = grid self.legend = legend self.legend_handles = [] self.legend_labels = [] for attr in self._pop_attributes: value = kwds.pop(attr, self._attr_defaults.get(attr, None)) setattr(self, attr, value) self.ax = ax self.fig = fig self.axes = None # parse errorbar input if given xerr = kwds.pop('xerr', None) yerr = kwds.pop('yerr', None) self.errors = {} for kw, err in zip(['xerr', 'yerr'], [xerr, yerr]): self.errors[kw] = self._parse_errorbars(kw, err) if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, Index)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmap` name. # Probably better to accept either. if 'cmap' in kwds and colormap: raise TypeError("Only specify one of `cmap` and `colormap`.") elif 'cmap' in kwds: self.colormap = kwds.pop('cmap') else: self.colormap = colormap self.table = table self.kwds = kwds self._validate_color_args() def _validate_color_args(self): if 'color' not in self.kwds and 'colors' in self.kwds: warnings.warn(("'colors' is being deprecated. Please use 'color'" "instead of 'colors'")) colors = self.kwds.pop('colors') self.kwds['color'] = colors if ('color' in self.kwds and self.nseries == 1 and not is_list_like(self.kwds['color'])): # support series.plot(color='green') self.kwds['color'] = [self.kwds['color']] if ('color' in self.kwds and isinstance(self.kwds['color'], tuple) and self.nseries == 1 and len(self.kwds['color']) in (3, 4)): # support RGB and RGBA tuples in series plot self.kwds['color'] = [self.kwds['color']] if ('color' in self.kwds or 'colors' in self.kwds) and \ self.colormap is not None: warnings.warn("'color' and 'colormap' cannot be used " "simultaneously. Using 'color'") if 'color' in self.kwds and self.style is not None: if is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: if re.match('^[a-z]+?', s) is not None: raise ValueError( "Cannot pass 'style' string with a color " "symbol and 'color' keyword argument. Please" " use one or the other or pass 'style' " "without a color symbol") def _iter_data(self, data=None, keep_index=False, fillna=None): if data is None: data = self.data if fillna is not None: data = data.fillna(fillna) # TODO: unused? # if self.sort_columns: # columns = _try_sort(data.columns) # else: # columns = data.columns for col, values in data.iteritems(): if keep_index is True: yield col, values else: yield col, values.values @property def nseries(self): if self.data.ndim == 1: return 1 else: return self.data.shape[1] def draw(self): self.plt.draw_if_interactive() def generate(self): self._args_adjust() self._compute_plot_data() self._setup_subplots() self._make_plot() self._add_table() self._make_legend() self._adorn_subplots() for ax in self.axes: self._post_plot_logic_common(ax, self.data) self._post_plot_logic(ax, self.data) def _args_adjust(self): pass def _has_plotted_object(self, ax): """check whether ax has data""" return (len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0) def _maybe_right_yaxis(self, ax, axes_num): if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._get_ax_layer(ax) if hasattr(ax, 'right_ax'): # if it has right_ax proparty, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, 'left_ax'): # if it has left_ax proparty, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() # TODO: use Matplotlib public API when available new_ax._get_lines = orig_ax._get_lines new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.get_yaxis().set_visible(False) return new_ax def _setup_subplots(self): if self.subplots: fig, axes = _subplots(naxes=self.nseries, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type) else: if self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.get_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = _flatten(axes) if self.logx or self.loglog: [a.set_xscale('log') for a in axes] if self.logy or self.loglog: [a.set_yscale('log') for a in axes] self.fig = fig self.axes = axes @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = (is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries) if (sec_true or all_sec): # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0] def _compute_plot_data(self): data = self.data if isinstance(data, ABCSeries): label = self.label if label is None and data.name is None: label = 'None' data = data.to_frame(name=label) # GH16953, _convert is needed as fallback, for ``Series`` # with ``dtype == object`` data = data._convert(datetime=True, timedelta=True) numeric_data = data.select_dtypes(include=[np.number, "datetime", "datetimetz", "timedelta"]) try: is_empty = numeric_data.empty except AttributeError: is_empty = not len(numeric_data) # no empty frames or series allowed if is_empty: raise TypeError('Empty {0!r}: no numeric data to ' 'plot'.format(numeric_data.__class__.__name__)) self.data = numeric_data def _make_plot(self): raise AbstractMethodError(self) def _add_table(self): if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._get_ax(0) table(ax, data) def _post_plot_logic_common(self, ax, data): """Common post process for each axes""" def get_label(i): try: return pprint_thing(data.index[i]) except Exception: return '' if self.orientation == 'vertical' or self.orientation is None: if self._need_to_set_index: xticklabels = [get_label(x) for x in ax.get_xticks()] ax.set_xticklabels(xticklabels) self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, 'right_ax'): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) elif self.orientation == 'horizontal': if self._need_to_set_index: yticklabels = [get_label(y) for y in ax.get_yticks()] ax.set_yticklabels(yticklabels) self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, 'right_ax'): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) else: # pragma no cover raise ValueError def _post_plot_logic(self, ax, data): """Post process for each axes. Overridden in child classes""" pass def _adorn_subplots(self): """Common post process unrelated to data""" if len(self.axes) > 0: all_axes = self._get_subplots() nrows, ncols = self._get_axes_layout() _handle_shared_axes(axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey) for ax in self.axes: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if len(self.title) != self.nseries: msg = ('The length of `title` must equal the number ' 'of columns if using `title` of type `list` ' 'and `subplots=True`.\n' 'length of title = {}\n' 'number of columns = {}').format( len(self.title), self.nseries) raise ValueError(msg) for (ax, title) in zip(self.axes, self.title): ax.set_title(title) else: self.fig.suptitle(self.title) else: if is_list_like(self.title): msg = ('Using `title` of type `list` is not supported ' 'unless `subplots=True` is passed') raise ValueError(msg) self.axes[0].set_title(self.title) def _apply_axis_properties(self, axis, rot=None, fontsize=None): labels = axis.get_majorticklabels() + axis.get_minorticklabels() for label in labels: if rot is not None: label.set_rotation(rot) if fontsize is not None: label.set_fontsize(fontsize) @property def legend_title(self): if not isinstance(self.data.columns, MultiIndex): name = self.data.columns.name if name is not None: name = pprint_thing(name) return name else: stringified = map(pprint_thing, self.data.columns.names) return ','.join(stringified) def _add_legend_handle(self, handle, label, index=None): if label is not None: if self.mark_right and index is not None: if self.on_right(index): label = label + ' (right)' self.legend_handles.append(handle) self.legend_labels.append(label) def _make_legend(self): ax, leg = self._get_ax_legend(self.axes[0]) handles = [] labels = [] title = '' if not self.subplots: if leg is not None: title = leg.get_title().get_text() handles = leg.legendHandles labels = [x.get_text() for x in leg.get_texts()] if self.legend: if self.legend == 'reverse': self.legend_handles = reversed(self.legend_handles) self.legend_labels = reversed(self.legend_labels) handles += self.legend_handles labels += self.legend_labels if self.legend_title is not None: title = self.legend_title if len(handles) > 0: ax.legend(handles, labels, loc='best', title=title) elif self.subplots and self.legend: for ax in self.axes: if ax.get_visible(): ax.legend(loc='best') def _get_ax_legend(self, ax): leg = ax.get_legend() other_ax = (getattr(ax, 'left_ax', None) or getattr(ax, 'right_ax', None)) other_leg = None if other_ax is not None: other_leg = other_ax.get_legend() if leg is None and other_leg is not None: leg = other_leg ax = other_ax return ax, leg @cache_readonly def plt(self): import matplotlib.pyplot as plt return plt @staticmethod def mpl_ge_1_3_1(): return _mpl_ge_1_3_1() @staticmethod def mpl_ge_1_5_0(): return _mpl_ge_1_5_0() _need_to_set_index = False def _get_xticks(self, convert_period=False): index = self.data.index is_datetype = index.inferred_type in ('datetime', 'date', 'datetime64', 'time') if self.use_index: if convert_period and isinstance(index, PeriodIndex): self.data = self.data.reindex(index=index.sort_values()) x = self.data.index.to_timestamp()._mpl_repr() elif index.is_numeric(): """ Matplotlib supports numeric values or datetime objects as xaxis values. Taking LBYL approach here, by the time matplotlib raises exception when using non numeric/datetime values for xaxis, several actions are already taken by plt. """ x = index._mpl_repr() elif is_datetype: self.data = self.data[notna(self.data.index)] self.data = self.data.sort_index() x = self.data.index._mpl_repr() else: self._need_to_set_index = True x = lrange(len(index)) else: x = lrange(len(index)) return x @classmethod def _plot(cls, ax, x, y, style=None, is_errorbar=False, **kwds): mask = isna(y) if mask.any(): y = np.ma.array(y) y = np.ma.masked_where(mask, y) if isinstance(x, Index): x = x._mpl_repr() if is_errorbar: if 'xerr' in kwds: kwds['xerr'] = np.array(kwds.get('xerr')) if 'yerr' in kwds: kwds['yerr'] = np.array(kwds.get('yerr')) return ax.errorbar(x, y, **kwds) else: # prevent style kwarg from going to errorbar, where it is # unsupported if style is not None: args = (x, y, style) else: args = (x, y) return ax.plot(*args, **kwds) def _get_index_name(self): if isinstance(self.data.index, MultiIndex): name = self.data.index.names if _any_not_none(*name): name = ','.join([pprint_thing(x) for x in name]) else: name = None else: name = self.data.index.name if name is not None: name = pprint_thing(name) return name @classmethod def _get_ax_layer(cls, ax, primary=True): """get left (primary) or right (secondary) axes""" if primary: return getattr(ax, 'left_ax', ax) else: return getattr(ax, 'right_ax', ax) def _get_ax(self, i): # get the twinx ax if appropriate if self.subplots: ax = self.axes[i] ax = self._maybe_right_yaxis(ax, i) self.axes[i] = ax else: ax = self.axes[0] ax = self._maybe_right_yaxis(ax, i) ax.get_yaxis().set_visible(True) return ax def on_right(self, i): if isinstance(self.secondary_y, bool): return self.secondary_y if isinstance(self.secondary_y, (tuple, list, np.ndarray, Index)): return self.data.columns[i] in self.secondary_y def _apply_style_colors(self, colors, kwds, col_num, label): """ Manage style and color based on column number and its label. Returns tuple of appropriate style and kwds which "color" may be added. """ style = None if self.style is not None: if isinstance(self.style, list): try: style = self.style[col_num] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(label, style) else: style = self.style has_color = 'color' in kwds or self.colormap is not None nocolor_style = style is None or re.match('[a-z]+', style) is None if (has_color or self.subplots) and nocolor_style: kwds['color'] = colors[col_num % len(colors)] return style, kwds def _get_colors(self, num_colors=None, color_kwds='color'): if num_colors is None: num_colors = self.nseries return _get_standard_colors(num_colors=num_colors, colormap=self.colormap, color=self.kwds.get(color_kwds)) def _parse_errorbars(self, label, err): """ Look for error keyword arguments and return the actual errorbar data or return the error DataFrame/dict Error bars can be specified in several ways: Series: the user provides a pandas.Series object of the same length as the data ndarray: provides a np.ndarray of the same length as the data DataFrame/dict: error values are paired with keys matching the key in the plotted DataFrame str: the name of the column within the plotted DataFrame """ if err is None: return None from pandas import DataFrame, Series def match_labels(data, e): e = e.reindex(data.index) return e # key-matched DataFrame if isinstance(err, DataFrame): err = match_labels(self.data, err) # key-matched dict elif isinstance(err, dict): pass # Series of error values elif isinstance(err, Series): # broadcast error series across data err = match_labels(self.data, err) err = np.atleast_2d(err) err = np.tile(err, (self.nseries, 1)) # errors are a column in the dataframe elif isinstance(err, string_types): evalues = self.data[err].values self.data = self.data[self.data.columns.drop(err)] err = np.atleast_2d(evalues) err = np.tile(err, (self.nseries, 1)) elif is_list_like(err): if is_iterator(err): err = np.atleast_2d(list(err)) else: # raw error values err = np.atleast_2d(err) err_shape = err.shape # asymmetrical error bars if err.ndim == 3: if (err_shape[0] != self.nseries) or \ (err_shape[1] != 2) or \ (err_shape[2] != len(self.data)): msg = "Asymmetrical error bars should be provided " + \ "with the shape (%u, 2, %u)" % \ (self.nseries, len(self.data)) raise ValueError(msg) # broadcast errors to each data series if len(err) == 1: err = np.tile(err, (self.nseries, 1)) elif is_number(err): err = np.tile([err], (self.nseries, len(self.data))) else: msg = "No valid %s detected" % label raise ValueError(msg) return err def _get_errorbars(self, label=None, index=None, xerr=True, yerr=True): from pandas import DataFrame errors = {} for kw, flag in zip(['xerr', 'yerr'], [xerr, yerr]): if flag: err = self.errors[kw] # user provided label-matched dataframe of errors if isinstance(err, (DataFrame, dict)): if label is not None and label in err.keys(): err = err[label] else: err = None elif index is not None and err is not None: err = err[index] if err is not None: errors[kw] = err return errors def _get_subplots(self): from matplotlib.axes import Subplot return [ax for ax in self.axes[0].get_figure().get_axes() if isinstance(ax, Subplot)] def _get_axes_layout(self): axes = self._get_subplots() x_set = set() y_set = set() for ax in axes: # check axes coordinates to estimate layout points = ax.get_position().get_points() x_set.add(points[0][0]) y_set.add(points[0][1]) return (len(y_set), len(x_set)) class PlanePlot(MPLPlot): """ Abstract class for plotting on plane, currently scatter and hexbin. """ _layout_type = 'single' def __init__(self, data, x, y, **kwargs): MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError(self._kind + ' requires and x and y column') if is_integer(x) and not self.data.columns.holds_integer(): x = self.data.columns[x] if is_integer(y) and not self.data.columns.holds_integer(): y = self.data.columns[y] if len(self.data[x]._get_numeric_data()) == 0: raise ValueError(self._kind + ' requires x column to be numeric') if len(self.data[y]._get_numeric_data()) == 0: raise ValueError(self._kind + ' requires y column to be numeric') self.x = x self.y = y @property def nseries(self): return 1 def _post_plot_logic(self, ax, data): x, y = self.x, self.y ax.set_ylabel(pprint_thing(y)) ax.set_xlabel(pprint_thing(x)) class ScatterPlot(PlanePlot): _kind = 'scatter' def __init__(self, data, x, y, s=None, c=None, **kwargs): if s is None: # hide the matplotlib default for size, in case we want to change # the handling of this argument later s = 20 super(ScatterPlot, self).__init__(data, x, y, s=s, **kwargs) if is_integer(c) and not self.data.columns.holds_integer(): c = self.data.columns[c] self.c = c def _make_plot(self): x, y, c, data = self.x, self.y, self.c, self.data ax = self.axes[0] c_is_column = is_hashable(c) and c in self.data.columns # plot a colorbar only if a colormap is provided or necessary cb = self.kwds.pop('colorbar', self.colormap or c_is_column) # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or 'Greys' cmap = self.plt.cm.get_cmap(cmap) color = self.kwds.pop("color", None) if c is not None and color is not None: raise TypeError('Specify exactly one of `c` and `color`') elif c is None and color is None: c_values = self.plt.rcParams['patch.facecolor'] elif color is not None: c_values = color elif c_is_column: c_values = self.data[c].values else: c_values = c if self.legend and hasattr(self, 'label'): label = self.label else: label = None scatter = ax.scatter(data[x].values, data[y].values, c=c_values, label=label, cmap=cmap, **self.kwds) if cb: img = ax.collections[0] kws = dict(ax=ax) if self.mpl_ge_1_3_1(): kws['label'] = c if c_is_column else '' self.fig.colorbar(img, **kws) if label is not None: self._add_legend_handle(scatter, label) else: self.legend = False errors_x = self._get_errorbars(label=x, index=0, yerr=False) errors_y = self._get_errorbars(label=y, index=0, xerr=False) if len(errors_x) > 0 or len(errors_y) > 0: err_kwds = dict(errors_x, **errors_y) err_kwds['ecolor'] = scatter.get_facecolor()[0] ax.errorbar(data[x].values, data[y].values, linestyle='none', **err_kwds) class HexBinPlot(PlanePlot): _kind = 'hexbin' def __init__(self, data, x, y, C=None, **kwargs): super(HexBinPlot, self).__init__(data, x, y, **kwargs) if is_integer(C) and not self.data.columns.holds_integer(): C = self.data.columns[C] self.C = C def _make_plot(self): x, y, data, C = self.x, self.y, self.data, self.C ax = self.axes[0] # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or 'BuGn' cmap = self.plt.cm.get_cmap(cmap) cb = self.kwds.pop('colorbar', True) if C is None: c_values = None else: c_values = data[C].values ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds) if cb: img = ax.collections[0] self.fig.colorbar(img, ax=ax) def _make_legend(self): pass class LinePlot(MPLPlot): _kind = 'line' _default_rot = 0 orientation = 'vertical' def __init__(self, data, **kwargs): MPLPlot.__init__(self, data, **kwargs) if self.stacked: self.data = self.data.fillna(value=0) self.x_compat = plot_params['x_compat'] if 'x_compat' in self.kwds: self.x_compat = bool(self.kwds.pop('x_compat')) def _is_ts_plot(self): # this is slightly deceptive return not self.x_compat and self.use_index and self._use_dynamic_x() def _use_dynamic_x(self): from pandas.plotting._timeseries import _use_dynamic_x return _use_dynamic_x(self._get_ax(0), self.data) def _make_plot(self): if self._is_ts_plot(): from pandas.plotting._timeseries import _maybe_convert_index data = _maybe_convert_index(self._get_ax(0), self.data) x = data.index # dummy, not used plotf = self._ts_plot it = self._iter_data(data=data, keep_index=True) else: x = self._get_xticks(convert_period=True) plotf = self._plot it = self._iter_data() stacking_id = self._get_stacking_id() is_errorbar = _any_not_none(*self.errors.values()) colors = self._get_colors() for i, (label, y) in enumerate(it): ax = self._get_ax(i) kwds = self.kwds.copy() style, kwds = self._apply_style_colors(colors, kwds, i, label) errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) # .encode('utf-8') kwds['label'] = label newlines = plotf(ax, x, y, style=style, column_num=i, stacking_id=stacking_id, is_errorbar=is_errorbar, **kwds) self._add_legend_handle(newlines[0], label, index=i) if not _mpl_ge_2_0_0(): lines = _get_all_lines(ax) left, right = _get_xlim(lines) ax.set_xlim(left, right) @classmethod def _plot(cls, ax, x, y, style=None, column_num=None, stacking_id=None, **kwds): # column_num is used to get the target column from protf in line and # area plots if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds['label']) lines = MPLPlot._plot(ax, x, y_values, style=style, **kwds) cls._update_stacker(ax, stacking_id, y) return lines @classmethod def _ts_plot(cls, ax, x, data, style=None, **kwds): from pandas.plotting._timeseries import (_maybe_resample, _decorate_axes, format_dateaxis) # accept x to be consistent with normal plot func, # x is not passed to tsplot as it uses data.index as x coordinate # column_num must be in kwds for stacking purpose freq, data = _maybe_resample(data, ax, kwds) # Set ax with freq info _decorate_axes(ax, freq, kwds) # digging deeper if hasattr(ax, 'left_ax'): _decorate_axes(ax.left_ax, freq, kwds) if hasattr(ax, 'right_ax'): _decorate_axes(ax.right_ax, freq, kwds) ax._plot_data.append((data, cls._kind, kwds)) lines = cls._plot(ax, data.index, data.values, style=style, **kwds) # set date formatter, locators and rescale limits format_dateaxis(ax, ax.freq, data.index) return lines def _get_stacking_id(self): if self.stacked: return id(self.data) else: return None @classmethod def _initialize_stacker(cls, ax, stacking_id, n): if stacking_id is None: return if not hasattr(ax, '_stacker_pos_prior'): ax._stacker_pos_prior = {} if not hasattr(ax, '_stacker_neg_prior'): ax._stacker_neg_prior = {} ax._stacker_pos_prior[stacking_id] = np.zeros(n) ax._stacker_neg_prior[stacking_id] = np.zeros(n) @classmethod def _get_stacked_values(cls, ax, stacking_id, values, label): if stacking_id is None: return values if not hasattr(ax, '_stacker_pos_prior'): # stacker may not be initialized for subplots cls._initialize_stacker(ax, stacking_id, len(values)) if (values >= 0).all(): return ax._stacker_pos_prior[stacking_id] + values elif (values <= 0).all(): return ax._stacker_neg_prior[stacking_id] + values raise ValueError('When stacked is True, each column must be either ' 'all positive or negative.' '{0} contains both positive and negative values' .format(label)) @classmethod def _update_stacker(cls, ax, stacking_id, values): if stacking_id is None: return if (values >= 0).all(): ax._stacker_pos_prior[stacking_id] += values elif (values <= 0).all(): ax._stacker_neg_prior[stacking_id] += values def _post_plot_logic(self, ax, data): condition = (not self._use_dynamic_x() and data.index.is_all_dates and not self.subplots or (self.subplots and self.sharex)) index_name = self._get_index_name() if condition: # irregular TS rotated 30 deg. by default # probably a better place to check / set this. if not self._rot_set: self.rot = 30 format_date_labels(ax, rot=self.rot) if index_name is not None and self.use_index: ax.set_xlabel(index_name) class AreaPlot(LinePlot): _kind = 'area' def __init__(self, data, **kwargs): kwargs.setdefault('stacked', True) data = data.fillna(value=0) LinePlot.__init__(self, data, **kwargs) if not self.stacked: # use smaller alpha to distinguish overlap self.kwds.setdefault('alpha', 0.5) if self.logy or self.loglog: raise ValueError("Log-y scales are not supported in area plot") @classmethod def _plot(cls, ax, x, y, style=None, column_num=None, stacking_id=None, is_errorbar=False, **kwds): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds['label']) # need to remove label, because subplots uses mpl legend as it is line_kwds = kwds.copy() if cls.mpl_ge_1_5_0(): line_kwds.pop('label') lines = MPLPlot._plot(ax, x, y_values, style=style, **line_kwds) # get data from the line to get coordinates for fill_between xdata, y_values = lines[0].get_data(orig=False) # unable to use ``_get_stacked_values`` here to get starting point if stacking_id is None: start = np.zeros(len(y)) elif (y >= 0).all(): start = ax._stacker_pos_prior[stacking_id] elif (y <= 0).all(): start = ax._stacker_neg_prior[stacking_id] else: start = np.zeros(len(y)) if 'color' not in kwds: kwds['color'] = lines[0].get_color() rect = ax.fill_between(xdata, start, y_values, **kwds) cls._update_stacker(ax, stacking_id, y) # LinePlot expects list of artists res = [rect] if cls.mpl_ge_1_5_0() else lines return res def _add_legend_handle(self, handle, label, index=None): if not self.mpl_ge_1_5_0(): from matplotlib.patches import Rectangle # Because fill_between isn't supported in legend, # specifically add Rectangle handle here alpha = self.kwds.get('alpha', None) handle = Rectangle((0, 0), 1, 1, fc=handle.get_color(), alpha=alpha) LinePlot._add_legend_handle(self, handle, label, index=index) def _post_plot_logic(self, ax, data): LinePlot._post_plot_logic(self, ax, data) if self.ylim is None: if (data >= 0).all().all(): ax.set_ylim(0, None) elif (data <= 0).all().all(): ax.set_ylim(None, 0) class BarPlot(MPLPlot): _kind = 'bar' _default_rot = 90 orientation = 'vertical' def __init__(self, data, **kwargs): # we have to treat a series differently than a # 1-column DataFrame w.r.t. color handling self._is_series = isinstance(data, ABCSeries) self.bar_width = kwargs.pop('width', 0.5) pos = kwargs.pop('position', 0.5) kwargs.setdefault('align', 'center') self.tick_pos = np.arange(len(data)) self.bottom = kwargs.pop('bottom', 0) self.left = kwargs.pop('left', 0) self.log = kwargs.pop('log', False) MPLPlot.__init__(self, data, **kwargs) if self.stacked or self.subplots: self.tickoffset = self.bar_width * pos if kwargs['align'] == 'edge': self.lim_offset = self.bar_width / 2 else: self.lim_offset = 0 else: if kwargs['align'] == 'edge': w = self.bar_width / self.nseries self.tickoffset = self.bar_width * (pos - 0.5) + w * 0.5 self.lim_offset = w * 0.5 else: self.tickoffset = self.bar_width * pos self.lim_offset = 0 self.ax_pos = self.tick_pos - self.tickoffset def _args_adjust(self): if is_list_like(self.bottom): self.bottom = np.array(self.bottom) if is_list_like(self.left): self.left = np.array(self.left) @classmethod def _plot(cls, ax, x, y, w, start=0, log=False, **kwds): return ax.bar(x, y, w, bottom=start, log=log, **kwds) @property def _start_base(self): return self.bottom def _make_plot(self): import matplotlib as mpl colors = self._get_colors() ncolors = len(colors) pos_prior = neg_prior = np.zeros(len(self.data)) K = self.nseries for i, (label, y) in enumerate(self._iter_data(fillna=0)): ax = self._get_ax(i) kwds = self.kwds.copy() if self._is_series: kwds['color'] = colors else: kwds['color'] = colors[i % ncolors] errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) if (('yerr' in kwds) or ('xerr' in kwds)) \ and (kwds.get('ecolor') is None): kwds['ecolor'] = mpl.rcParams['xtick.color'] start = 0 if self.log and (y >= 1).all(): start = 1 start = start + self._start_base if self.subplots: w = self.bar_width / 2 rect = self._plot(ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds) ax.set_title(label) elif self.stacked: mask = y > 0 start = np.where(mask, pos_prior, neg_prior) + self._start_base w = self.bar_width / 2 rect = self._plot(ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds) pos_prior = pos_prior + np.where(mask, y, 0) neg_prior = neg_prior + np.where(mask, 0, y) else: w = self.bar_width / K rect = self._plot(ax, self.ax_pos + (i + 0.5) * w, y, w, start=start, label=label, log=self.log, **kwds) self._add_legend_handle(rect, label, index=i) def _post_plot_logic(self, ax, data): if self.use_index: str_index = [pprint_thing(key) for key in data.index] else: str_index = [pprint_thing(key) for key in range(data.shape[0])] name = self._get_index_name() s_edge = self.ax_pos[0] - 0.25 + self.lim_offset e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset self._decorate_ticks(ax, name, str_index, s_edge, e_edge) def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge): ax.set_xlim((start_edge, end_edge)) ax.set_xticks(self.tick_pos) ax.set_xticklabels(ticklabels) if name is not None and self.use_index: ax.set_xlabel(name) class BarhPlot(BarPlot): _kind = 'barh' _default_rot = 0 orientation = 'horizontal' @property def _start_base(self): return self.left @classmethod def _plot(cls, ax, x, y, w, start=0, log=False, **kwds): return ax.barh(x, y, w, left=start, log=log, **kwds) def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge): # horizontal bars ax.set_ylim((start_edge, end_edge)) ax.set_yticks(self.tick_pos) ax.set_yticklabels(ticklabels) if name is not None and self.use_index: ax.set_ylabel(name) class HistPlot(LinePlot): _kind = 'hist' def __init__(self, data, bins=10, bottom=0, **kwargs): self.bins = bins # use mpl default self.bottom = bottom # Do not call LinePlot.__init__ which may fill nan MPLPlot.__init__(self, data, **kwargs) def _args_adjust(self): if is_integer(self.bins): # create common bin edge values = (self.data._convert(datetime=True)._get_numeric_data()) values = np.ravel(values) values = values[~isna(values)] hist, self.bins = np.histogram( values, bins=self.bins, range=self.kwds.get('range', None), weights=self.kwds.get('weights', None)) if is_list_like(self.bottom): self.bottom = np.array(self.bottom) @classmethod def _plot(cls, ax, y, style=None, bins=None, bottom=0, column_num=0, stacking_id=None, **kwds): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(bins) - 1) y = y[~isna(y)] base = np.zeros(len(bins) - 1) bottom = bottom + \ cls._get_stacked_values(ax, stacking_id, base, kwds['label']) # ignore style n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds) cls._update_stacker(ax, stacking_id, n) return patches def _make_plot(self): colors = self._get_colors() stacking_id = self._get_stacking_id() for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) kwds = self.kwds.copy() label = pprint_thing(label) kwds['label'] = label style, kwds = self._apply_style_colors(colors, kwds, i, label) if style is not None: kwds['style'] = style kwds = self._make_plot_keywords(kwds, y) artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds) self._add_legend_handle(artists[0], label, index=i) def _make_plot_keywords(self, kwds, y): """merge BoxPlot/KdePlot properties to passed kwds""" # y is required for KdePlot kwds['bottom'] = self.bottom kwds['bins'] = self.bins return kwds def _post_plot_logic(self, ax, data): if self.orientation == 'horizontal': ax.set_xlabel('Frequency') else: ax.set_ylabel('Frequency') @property def orientation(self): if self.kwds.get('orientation', None) == 'horizontal': return 'horizontal' else: return 'vertical' class KdePlot(HistPlot): _kind = 'kde' orientation = 'vertical' def __init__(self, data, bw_method=None, ind=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) self.bw_method = bw_method self.ind = ind def _args_adjust(self): pass def _get_ind(self, y): if self.ind is None: # np.nanmax() and np.nanmin() ignores the missing values sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace(np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, 1000) else: ind = self.ind return ind @classmethod def _plot(cls, ax, y, style=None, bw_method=None, ind=None, column_num=None, stacking_id=None, **kwds): from scipy.stats import gaussian_kde from scipy import __version__ as spv y = remove_na_arraylike(y) if LooseVersion(spv) >= '0.11.0': gkde = gaussian_kde(y, bw_method=bw_method) else: gkde = gaussian_kde(y) if bw_method is not None: msg = ('bw_method was added in Scipy 0.11.0.' + ' Scipy version in use is %s.' % spv) warnings.warn(msg) y = gkde.evaluate(ind) lines = MPLPlot._plot(ax, ind, y, style=style, **kwds) return lines def _make_plot_keywords(self, kwds, y): kwds['bw_method'] = self.bw_method kwds['ind'] = self._get_ind(y) return kwds def _post_plot_logic(self, ax, data): ax.set_ylabel('Density') class PiePlot(MPLPlot): _kind = 'pie' _layout_type = 'horizontal' def __init__(self, data, kind=None, **kwargs): data = data.fillna(value=0) if (data < 0).any().any(): raise ValueError("{0} doesn't allow negative values".format(kind)) MPLPlot.__init__(self, data, kind=kind, **kwargs) def _args_adjust(self): self.grid = False self.logy = False self.logx = False self.loglog = False def _validate_color_args(self): pass def _make_plot(self): colors = self._get_colors( num_colors=len(self.data), color_kwds='colors') self.kwds.setdefault('colors', colors) for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) if label is not None: label = pprint_thing(label) ax.set_ylabel(label) kwds = self.kwds.copy() def blank_labeler(label, value): if value == 0: return '' else: return label idx = [pprint_thing(v) for v in self.data.index] labels = kwds.pop('labels', idx) # labels is used for each wedge's labels # Blank out labels for values of 0 so they don't overlap # with nonzero wedges if labels is not None: blabels = [blank_labeler(l, value) for l, value in zip(labels, y)] else: blabels = None results = ax.pie(y, labels=blabels, **kwds) if kwds.get('autopct', None) is not None: patches, texts, autotexts = results else: patches, texts = results autotexts = [] if self.fontsize is not None: for t in texts + autotexts: t.set_fontsize(self.fontsize) # leglabels is used for legend labels leglabels = labels if labels is not None else idx for p, l in zip(patches, leglabels): self._add_legend_handle(p, l) class BoxPlot(LinePlot): _kind = 'box' _layout_type = 'horizontal' _valid_return_types = (None, 'axes', 'dict', 'both') # namedtuple to hold results BP = namedtuple("Boxplot", ['ax', 'lines']) def __init__(self, data, return_type='axes', **kwargs): # Do not call LinePlot.__init__ which may fill nan if return_type not in self._valid_return_types: raise ValueError( "return_type must be {None, 'axes', 'dict', 'both'}") self.return_type = return_type MPLPlot.__init__(self, data, **kwargs) def _args_adjust(self): if self.subplots: # Disable label ax sharing. Otherwise, all subplots shows last # column label if self.orientation == 'vertical': self.sharex = False else: self.sharey = False @classmethod def _plot(cls, ax, y, column_num=None, return_type='axes', **kwds): if y.ndim == 2: y = [remove_na_arraylike(v) for v in y] # Boxplot fails with empty arrays, so need to add a NaN # if any cols are empty # GH 8181 y = [v if v.size > 0 else np.array([np.nan]) for v in y] else: y = remove_na_arraylike(y) bp = ax.boxplot(y, **kwds) if return_type == 'dict': return bp, bp elif return_type == 'both': return cls.BP(ax=ax, lines=bp), bp else: return ax, bp def _validate_color_args(self): if 'color' in self.kwds: if self.colormap is not None: warnings.warn("'color' and 'colormap' cannot be used " "simultaneously. Using 'color'") self.color = self.kwds.pop('color') if isinstance(self.color, dict): valid_keys = ['boxes', 'whiskers', 'medians', 'caps'] for key, values in compat.iteritems(self.color): if key not in valid_keys: raise ValueError("color dict contains invalid " "key '{0}' " "The key must be either {1}" .format(key, valid_keys)) else: self.color = None # get standard colors for default colors = _get_standard_colors(num_colors=3, colormap=self.colormap, color=None) # use 2 colors by default, for box/whisker and median # flier colors isn't needed here # because it can be specified by ``sym`` kw self._boxes_c = colors[0] self._whiskers_c = colors[0] self._medians_c = colors[2] self._caps_c = 'k' # mpl default def _get_colors(self, num_colors=None, color_kwds='color'): pass def maybe_color_bp(self, bp): if isinstance(self.color, dict): boxes = self.color.get('boxes', self._boxes_c) whiskers = self.color.get('whiskers', self._whiskers_c) medians = self.color.get('medians', self._medians_c) caps = self.color.get('caps', self._caps_c) else: # Other types are forwarded to matplotlib # If None, use default colors boxes = self.color or self._boxes_c whiskers = self.color or self._whiskers_c medians = self.color or self._medians_c caps = self.color or self._caps_c from matplotlib.artist import setp setp(bp['boxes'], color=boxes, alpha=1) setp(bp['whiskers'], color=whiskers, alpha=1) setp(bp['medians'], color=medians, alpha=1) setp(bp['caps'], color=caps, alpha=1) def _make_plot(self): if self.subplots: from pandas.core.series import Series self._return_obj = Series() for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) kwds = self.kwds.copy() ret, bp = self._plot(ax, y, column_num=i, return_type=self.return_type, **kwds) self.maybe_color_bp(bp) self._return_obj[label] = ret label = [pprint_thing(label)] self._set_ticklabels(ax, label) else: y = self.data.values.T ax = self._get_ax(0) kwds = self.kwds.copy() ret, bp = self._plot(ax, y, column_num=0, return_type=self.return_type, **kwds) self.maybe_color_bp(bp) self._return_obj = ret labels = [l for l, _ in self._iter_data()] labels = [pprint_thing(l) for l in labels] if not self.use_index: labels = [pprint_thing(key) for key in range(len(labels))] self._set_ticklabels(ax, labels) def _set_ticklabels(self, ax, labels): if self.orientation == 'vertical': ax.set_xticklabels(labels) else: ax.set_yticklabels(labels) def _make_legend(self): pass def _post_plot_logic(self, ax, data): pass @property def orientation(self): if self.kwds.get('vert', True): return 'vertical' else: return 'horizontal' @property def result(self): if self.return_type is None: return super(BoxPlot, self).result else: return self._return_obj # kinds supported by both dataframe and series _common_kinds = ['line', 'bar', 'barh', 'kde', 'density', 'area', 'hist', 'box'] # kinds supported by dataframe _dataframe_kinds = ['scatter', 'hexbin'] # kinds supported only by series or dataframe single column _series_kinds = ['pie'] _all_kinds = _common_kinds + _dataframe_kinds + _series_kinds _klasses = [LinePlot, BarPlot, BarhPlot, KdePlot, HistPlot, BoxPlot, ScatterPlot, HexBinPlot, AreaPlot, PiePlot] _plot_klass = {} for klass in _klasses: _plot_klass[klass._kind] = klass def _plot(data, x=None, y=None, subplots=False, ax=None, kind='line', **kwds): kind = _get_standard_kind(kind.lower().strip()) if kind in _all_kinds: klass = _plot_klass[kind] else: raise ValueError("%r is not a valid plot kind" % kind) from pandas import DataFrame if kind in _dataframe_kinds: if isinstance(data, DataFrame): plot_obj = klass(data, x=x, y=y, subplots=subplots, ax=ax, kind=kind, **kwds) else: raise ValueError("plot kind %r can only be used for data frames" % kind) elif kind in _series_kinds: if isinstance(data, DataFrame): if y is None and subplots is False: msg = "{0} requires either y column or 'subplots=True'" raise ValueError(msg.format(kind)) elif y is not None: if is_integer(y) and not data.columns.holds_integer(): y = data.columns[y] # converted to series actually. copy to not modify data = data[y].copy() data.index.name = y plot_obj = klass(data, subplots=subplots, ax=ax, kind=kind, **kwds) else: if isinstance(data, DataFrame): if x is not None: if is_integer(x) and not data.columns.holds_integer(): x = data.columns[x] data = data.set_index(x) if y is not None: if is_integer(y) and not data.columns.holds_integer(): y = data.columns[y] label = kwds['label'] if 'label' in kwds else y series = data[y].copy() # Don't modify series.name = label for kw in ['xerr', 'yerr']: if (kw in kwds) and \ (isinstance(kwds[kw], string_types) or is_integer(kwds[kw])): try: kwds[kw] = data[kwds[kw]] except (IndexError, KeyError, TypeError): pass data = series plot_obj = klass(data, subplots=subplots, ax=ax, kind=kind, **kwds) plot_obj.generate() plot_obj.draw() return plot_obj.result df_kind = """- 'scatter' : scatter plot - 'hexbin' : hexbin plot""" series_kind = "" df_coord = """x : label or position, default None y : label or position, default None Allows plotting of one column versus another""" series_coord = "" df_unique = """stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot. sort_columns : boolean, default False Sort column names to determine plot ordering secondary_y : boolean or sequence, default False Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis""" series_unique = """label : label argument to provide to plot secondary_y : boolean or sequence of ints, default False If True then y-axis will be on the right""" df_ax = """ax : matplotlib axes object, default None subplots : boolean, default False Make separate subplots for each column sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible layout : tuple (optional) (rows, columns) for the layout of subplots""" series_ax = """ax : matplotlib axes object If not passed, uses gca()""" df_note = """- If `kind` = 'scatter' and the argument `c` is the name of a dataframe column, the values of that column are used to color each point. - If `kind` = 'hexbin', you can control the size of the bins with the `gridsize` argument. By default, a histogram of the counts around each `(x, y)` point is computed. You can specify alternative aggregations by passing values to the `C` and `reduce_C_function` arguments. `C` specifies the value at each `(x, y)` point and `reduce_C_function` is a function of one argument that reduces all the values in a bin to a single number (e.g. `mean`, `max`, `sum`, `std`).""" series_note = "" _shared_doc_df_kwargs = dict(klass='DataFrame', klass_obj='df', klass_kind=df_kind, klass_coord=df_coord, klass_ax=df_ax, klass_unique=df_unique, klass_note=df_note) _shared_doc_series_kwargs = dict(klass='Series', klass_obj='s', klass_kind=series_kind, klass_coord=series_coord, klass_ax=series_ax, klass_unique=series_unique, klass_note=series_note) _shared_docs['plot'] = """ Make plots of %(klass)s using matplotlib / pylab. *New in version 0.17.0:* Each plot kind has a corresponding method on the ``%(klass)s.plot`` accessor: ``%(klass_obj)s.plot(kind='line')`` is equivalent to ``%(klass_obj)s.plot.line()``. Parameters ---------- data : %(klass)s %(klass_coord)s kind : str - 'line' : line plot (default) - 'bar' : vertical bar plot - 'barh' : horizontal bar plot - 'hist' : histogram - 'box' : boxplot - 'kde' : Kernel Density Estimation plot - 'density' : same as 'kde' - 'area' : area plot - 'pie' : pie plot %(klass_kind)s %(klass_ax)s figsize : a tuple (width, height) in inches use_index : boolean, default True Use index as ticks for x axis title : string or list Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and `subplots` is True, print each item in the list above the corresponding subplot. grid : boolean, default None (matlab style default) Axis grid lines legend : False/True/'reverse' Place legend on axis subplots style : list or dict matplotlib line style per column logx : boolean, default False Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False Use log scaling on both x and y axes xticks : sequence Values to use for the xticks yticks : sequence Values to use for the yticks xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None Font size for xticks and yticks colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional If True, plot colorbar (only relevant for 'scatter' and 'hexbin' plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) table : boolean, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See :ref:`Plotting with Error Bars <visualization.errorbars>` for detail. xerr : same types as yerr. %(klass_unique)s mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with "(right)" in the legend kwds : keywords Options to pass to matplotlib plotting method Returns ------- axes : matplotlib.AxesSubplot or np.array of them Notes ----- - See matplotlib documentation online for more on this subject - If `kind` = 'bar' or 'barh', you can specify relative alignments for bar plot layout by `position` keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) %(klass_note)s """ @Appender(_shared_docs['plot'] % _shared_doc_df_kwargs) def plot_frame(data, x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds): return _plot(data, kind=kind, x=x, y=y, ax=ax, subplots=subplots, sharex=sharex, sharey=sharey, layout=layout, figsize=figsize, use_index=use_index, title=title, grid=grid, legend=legend, style=style, logx=logx, logy=logy, loglog=loglog, xticks=xticks, yticks=yticks, xlim=xlim, ylim=ylim, rot=rot, fontsize=fontsize, colormap=colormap, table=table, yerr=yerr, xerr=xerr, secondary_y=secondary_y, sort_columns=sort_columns, **kwds) @Appender(_shared_docs['plot'] % _shared_doc_series_kwargs) def plot_series(data, kind='line', ax=None, # Series unique figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, # Series unique **kwds): import matplotlib.pyplot as plt if ax is None and len(plt.get_fignums()) > 0: ax = _gca() ax = MPLPlot._get_ax_layer(ax) return _plot(data, kind=kind, ax=ax, figsize=figsize, use_index=use_index, title=title, grid=grid, legend=legend, style=style, logx=logx, logy=logy, loglog=loglog, xticks=xticks, yticks=yticks, xlim=xlim, ylim=ylim, rot=rot, fontsize=fontsize, colormap=colormap, table=table, yerr=yerr, xerr=xerr, label=label, secondary_y=secondary_y, **kwds) _shared_docs['boxplot'] = """ Make a box plot from DataFrame column optionally grouped by some columns or other inputs Parameters ---------- data : the pandas object holding the data column : column name or list of names, or vector Can be any valid input to groupby by : string or sequence Column in the DataFrame to group by ax : Matplotlib axes object, optional fontsize : int or string rot : label rotation angle figsize : A tuple (width, height) in inches grid : Setting this to True will show the grid layout : tuple (optional) (rows, columns) for the layout of the plot return_type : {None, 'axes', 'dict', 'both'}, default None The kind of object to return. The default is ``axes`` 'axes' returns the matplotlib axes the boxplot is drawn on; 'dict' returns a dictionary whose values are the matplotlib Lines of the boxplot; 'both' returns a namedtuple with the axes and dict. When grouping with ``by``, a Series mapping columns to ``return_type`` is returned, unless ``return_type`` is None, in which case a NumPy array of axes is returned with the same shape as ``layout``. See the prose documentation for more. kwds : other plotting keyword arguments to be passed to matplotlib boxplot function Returns ------- lines : dict ax : matplotlib Axes (ax, lines): namedtuple Notes ----- Use ``return_type='dict'`` when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned. """ @Appender(_shared_docs['boxplot'] % _shared_doc_kwargs) def boxplot(data, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds): # validate return_type: if return_type not in BoxPlot._valid_return_types: raise ValueError("return_type must be {'axes', 'dict', 'both'}") from pandas import Series, DataFrame if isinstance(data, Series): data = DataFrame({'x': data}) column = 'x' def _get_colors(): return _get_standard_colors(color=kwds.get('color'), num_colors=1) def maybe_color_bp(bp): if 'color' not in kwds: from matplotlib.artist import setp setp(bp['boxes'], color=colors[0], alpha=1) setp(bp['whiskers'], color=colors[0], alpha=1) setp(bp['medians'], color=colors[2], alpha=1) def plot_group(keys, values, ax): keys = [pprint_thing(x) for x in keys] values = [np.asarray(remove_na_arraylike(v)) for v in values] bp = ax.boxplot(values, **kwds) if fontsize is not None: ax.tick_params(axis='both', labelsize=fontsize) if kwds.get('vert', 1): ax.set_xticklabels(keys, rotation=rot) else: ax.set_yticklabels(keys, rotation=rot) maybe_color_bp(bp) # Return axes in multiplot case, maybe revisit later # 985 if return_type == 'dict': return bp elif return_type == 'both': return BoxPlot.BP(ax=ax, lines=bp) else: return ax colors = _get_colors() if column is None: columns = None else: if isinstance(column, (list, tuple)): columns = column else: columns = [column] if by is not None: # Prefer array return type for 2-D plots to match the subplot layout # https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580 result = _grouped_plot_by_column(plot_group, data, columns=columns, by=by, grid=grid, figsize=figsize, ax=ax, layout=layout, return_type=return_type) else: if return_type is None: return_type = 'axes' if layout is not None: raise ValueError("The 'layout' keyword is not supported when " "'by' is None") if ax is None: rc = {'figure.figsize': figsize} if figsize is not None else {} ax = _gca(rc) data = data._get_numeric_data() if columns is None: columns = data.columns else: data = data[columns] result = plot_group(columns, data.values.T, ax) ax.grid(grid) return result @Appender(_shared_docs['boxplot'] % _shared_doc_kwargs) def boxplot_frame(self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds): import matplotlib.pyplot as plt _converter._WARN = False ax = boxplot(self, column=column, by=by, ax=ax, fontsize=fontsize, grid=grid, rot=rot, figsize=figsize, layout=layout, return_type=return_type, **kwds) plt.draw_if_interactive() return ax def scatter_plot(data, x, y, by=None, ax=None, figsize=None, grid=False, **kwargs): """ Make a scatter plot from two DataFrame columns Parameters ---------- data : DataFrame x : Column name for the x-axis values y : Column name for the y-axis values ax : Matplotlib axis object figsize : A tuple (width, height) in inches grid : Setting this to True will show the grid kwargs : other plotting keyword arguments To be passed to scatter function Returns ------- fig : matplotlib.Figure """ import matplotlib.pyplot as plt kwargs.setdefault('edgecolors', 'none') def plot_group(group, ax): xvals = group[x].values yvals = group[y].values ax.scatter(xvals, yvals, **kwargs) ax.grid(grid) if by is not None: fig = _grouped_plot(plot_group, data, by=by, figsize=figsize, ax=ax) else: if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: fig = ax.get_figure() plot_group(data, ax) ax.set_ylabel(pprint_thing(y)) ax.set_xlabel(pprint_thing(x)) ax.grid(grid) return fig def hist_frame(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds): """ Draw histogram of the DataFrame's series using matplotlib / pylab. Parameters ---------- data : DataFrame column : string or sequence If passed, will be used to limit data to a subset of columns by : object, optional If passed, then used to form histograms for separate groups grid : boolean, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels ax : matplotlib axes object, default None sharex : boolean, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure! sharey : boolean, default False In case subplots=True, share y axis and set some y axis labels to invisible figsize : tuple The size of the figure to create in inches by default layout : tuple, optional Tuple of (rows, columns) for the layout of the histograms bins : integer, default 10 Number of histogram bins to be used kwds : other plotting keyword arguments To be passed to hist function """ _converter._WARN = False if by is not None: axes = grouped_hist(data, column=column, by=by, ax=ax, grid=grid, figsize=figsize, sharex=sharex, sharey=sharey, layout=layout, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, **kwds) return axes if column is not None: if not isinstance(column, (list, np.ndarray, Index)): column = [column] data = data[column] data = data._get_numeric_data() naxes = len(data.columns) fig, axes = _subplots(naxes=naxes, ax=ax, squeeze=False, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout) _axes = _flatten(axes) for i, col in enumerate(_try_sort(data.columns)): ax = _axes[i] ax.hist(data[col].dropna().values, bins=bins, **kwds) ax.set_title(col) ax.grid(grid) _set_ticks_props(axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot) fig.subplots_adjust(wspace=0.3, hspace=0.3) return axes def hist_series(self, by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds): """ Draw histogram of the input series using matplotlib Parameters ---------- by : object, optional If passed, then used to form histograms for separate groups ax : matplotlib axis object If not passed, uses gca() grid : boolean, default True Whether to show axis grid lines xlabelsize : int, default None If specified changes the x-axis label size xrot : float, default None rotation of x axis labels ylabelsize : int, default None If specified changes the y-axis label size yrot : float, default None rotation of y axis labels figsize : tuple, default None figure size in inches by default bins: integer, default 10 Number of histogram bins to be used kwds : keywords To be passed to the actual plotting function Notes ----- See matplotlib documentation online for more on this """ import matplotlib.pyplot as plt if by is None: if kwds.get('layout', None) is not None: raise ValueError("The 'layout' keyword is not supported when " "'by' is None") # hack until the plotting interface is a bit more unified fig = kwds.pop('figure', plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)) if (figsize is not None and tuple(figsize) != tuple(fig.get_size_inches())): fig.set_size_inches(*figsize, forward=True) if ax is None: ax = fig.gca() elif ax.get_figure() != fig: raise AssertionError('passed axis not bound to passed figure') values = self.dropna().values ax.hist(values, bins=bins, **kwds) ax.grid(grid) axes = np.array([ax]) _set_ticks_props(axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot) else: if 'figure' in kwds: raise ValueError("Cannot pass 'figure' when using the " "'by' argument, since a new 'Figure' instance " "will be created") axes = grouped_hist(self, by=by, ax=ax, grid=grid, figsize=figsize, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, **kwds) if hasattr(axes, 'ndim'): if axes.ndim == 1 and len(axes) == 1: return axes[0] return axes def grouped_hist(data, column=None, by=None, ax=None, bins=50, figsize=None, layout=None, sharex=False, sharey=False, rot=90, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, **kwargs): """ Grouped histogram Parameters ---------- data: Series/DataFrame column: object, optional by: object, optional ax: axes, optional bins: int, default 50 figsize: tuple, optional layout: optional sharex: boolean, default False sharey: boolean, default False rot: int, default 90 grid: bool, default True kwargs: dict, keyword arguments passed to matplotlib.Axes.hist Returns ------- axes: collection of Matplotlib Axes """ _converter._WARN = False def plot_group(group, ax): ax.hist(group.dropna().values, bins=bins, **kwargs) xrot = xrot or rot fig, axes = _grouped_plot(plot_group, data, column=column, by=by, sharex=sharex, sharey=sharey, ax=ax, figsize=figsize, layout=layout, rot=rot) _set_ticks_props(axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot) fig.subplots_adjust(bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3) return axes def boxplot_frame_groupby(grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, **kwds): """ Make box plots from DataFrameGroupBy data. Parameters ---------- grouped : Grouped DataFrame subplots : * ``False`` - no subplots will be used * ``True`` - create a subplot for each group column : column name or list of names, or vector Can be any valid input to groupby fontsize : int or string rot : label rotation angle grid : Setting this to True will show the grid ax : Matplotlib axis object, default None figsize : A tuple (width, height) in inches layout : tuple (optional) (rows, columns) for the layout of the plot kwds : other plotting keyword arguments to be passed to matplotlib boxplot function Returns ------- dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples -------- >>> import pandas >>> import numpy as np >>> import itertools >>> >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pandas.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pandas.DataFrame(data, columns=list('ABCD'), index=index) >>> >>> grouped = df.groupby(level='lvl1') >>> boxplot_frame_groupby(grouped) >>> >>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) >>> boxplot_frame_groupby(grouped, subplots=False) """ _converter._WARN = False if subplots is True: naxes = len(grouped) fig, axes = _subplots(naxes=naxes, squeeze=False, ax=ax, sharex=False, sharey=True, figsize=figsize, layout=layout) axes = _flatten(axes) from pandas.core.series import Series ret = Series() for (key, group), ax in zip(grouped, axes): d = group.boxplot(ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds) ax.set_title(pprint_thing(key)) ret.loc[key] = d fig.subplots_adjust(bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2) else: from pandas.core.reshape.concat import concat keys, frames = zip(*grouped) if grouped.axis == 0: df = concat(frames, keys=keys, axis=1) else: if len(frames) > 1: df = frames[0].join(frames[1::]) else: df = frames[0] ret = df.boxplot(column=column, fontsize=fontsize, rot=rot, grid=grid, ax=ax, figsize=figsize, layout=layout, **kwds) return ret def _grouped_plot(plotf, data, column=None, by=None, numeric_only=True, figsize=None, sharex=True, sharey=True, layout=None, rot=0, ax=None, **kwargs): from pandas import DataFrame if figsize == 'default': # allowed to specify mpl default with 'default' warnings.warn("figsize='default' is deprecated. Specify figure" "size by tuple instead", FutureWarning, stacklevel=4) figsize = None grouped = data.groupby(by) if column is not None: grouped = grouped[column] naxes = len(grouped) fig, axes = _subplots(naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout) _axes = _flatten(axes) for i, (key, group) in enumerate(grouped): ax = _axes[i] if numeric_only and isinstance(group, DataFrame): group = group._get_numeric_data() plotf(group, ax, **kwargs) ax.set_title(pprint_thing(key)) return fig, axes def _grouped_plot_by_column(plotf, data, columns=None, by=None, numeric_only=True, grid=False, figsize=None, ax=None, layout=None, return_type=None, **kwargs): grouped = data.groupby(by) if columns is None: if not isinstance(by, (list, tuple)): by = [by] columns = data._get_numeric_data().columns.difference(by) naxes = len(columns) fig, axes = _subplots(naxes=naxes, sharex=True, sharey=True, figsize=figsize, ax=ax, layout=layout) _axes = _flatten(axes) ax_values = [] for i, col in enumerate(columns): ax = _axes[i] gp_col = grouped[col] keys, values = zip(*gp_col) re_plotf = plotf(keys, values, ax, **kwargs) ax.set_title(col) ax.set_xlabel(pprint_thing(by)) ax_values.append(re_plotf) ax.grid(grid) from pandas.core.series import Series result = Series(ax_values, index=columns) # Return axes in multiplot case, maybe revisit later # 985 if return_type is None: result = axes byline = by[0] if len(by) == 1 else by fig.suptitle('Boxplot grouped by %s' % byline) fig.subplots_adjust(bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2) return result class BasePlotMethods(PandasObject): def __init__(self, data): self._data = data def __call__(self, *args, **kwargs): raise NotImplementedError class SeriesPlotMethods(BasePlotMethods): """Series plotting accessor and method Examples -------- >>> s.plot.line() >>> s.plot.bar() >>> s.plot.hist() Plotting methods can also be accessed by calling the accessor as a method with the ``kind`` argument: ``s.plot(kind='line')`` is equivalent to ``s.plot.line()`` """ def __call__(self, kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds): return plot_series(self._data, kind=kind, ax=ax, figsize=figsize, use_index=use_index, title=title, grid=grid, legend=legend, style=style, logx=logx, logy=logy, loglog=loglog, xticks=xticks, yticks=yticks, xlim=xlim, ylim=ylim, rot=rot, fontsize=fontsize, colormap=colormap, table=table, yerr=yerr, xerr=xerr, label=label, secondary_y=secondary_y, **kwds) __call__.__doc__ = plot_series.__doc__ def line(self, **kwds): """ Line plot .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='line', **kwds) def bar(self, **kwds): """ Vertical bar plot .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='bar', **kwds) def barh(self, **kwds): """ Horizontal bar plot .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='barh', **kwds) def box(self, **kwds): """ Boxplot .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='box', **kwds) def hist(self, bins=10, **kwds): """ Histogram .. versionadded:: 0.17.0 Parameters ---------- bins: integer, default 10 Number of histogram bins to be used **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='hist', bins=bins, **kwds) def kde(self, **kwds): """ Kernel Density Estimate plot .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='kde', **kwds) density = kde def area(self, **kwds): """ Area plot .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='area', **kwds) def pie(self, **kwds): """ Pie chart .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.Series.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='pie', **kwds) class FramePlotMethods(BasePlotMethods): """DataFrame plotting accessor and method Examples -------- >>> df.plot.line() >>> df.plot.scatter('x', 'y') >>> df.plot.hexbin() These plotting methods can also be accessed by calling the accessor as a method with the ``kind`` argument: ``df.plot(kind='line')`` is equivalent to ``df.plot.line()`` """ def __call__(self, x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds): return plot_frame(self._data, kind=kind, x=x, y=y, ax=ax, subplots=subplots, sharex=sharex, sharey=sharey, layout=layout, figsize=figsize, use_index=use_index, title=title, grid=grid, legend=legend, style=style, logx=logx, logy=logy, loglog=loglog, xticks=xticks, yticks=yticks, xlim=xlim, ylim=ylim, rot=rot, fontsize=fontsize, colormap=colormap, table=table, yerr=yerr, xerr=xerr, secondary_y=secondary_y, sort_columns=sort_columns, **kwds) __call__.__doc__ = plot_frame.__doc__ def line(self, x=None, y=None, **kwds): """ Line plot .. versionadded:: 0.17.0 Parameters ---------- x, y : label or position, optional Coordinates for each point. **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='line', x=x, y=y, **kwds) def bar(self, x=None, y=None, **kwds): """ Vertical bar plot .. versionadded:: 0.17.0 Parameters ---------- x, y : label or position, optional Coordinates for each point. **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='bar', x=x, y=y, **kwds) def barh(self, x=None, y=None, **kwds): """ Horizontal bar plot .. versionadded:: 0.17.0 Parameters ---------- x, y : label or position, optional Coordinates for each point. **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='barh', x=x, y=y, **kwds) def box(self, by=None, **kwds): r""" Boxplot .. versionadded:: 0.17.0 Parameters ---------- by : string or sequence Column in the DataFrame to group by. \*\*kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='box', by=by, **kwds) def hist(self, by=None, bins=10, **kwds): """ Histogram .. versionadded:: 0.17.0 Parameters ---------- by : string or sequence Column in the DataFrame to group by. bins: integer, default 10 Number of histogram bins to be used **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='hist', by=by, bins=bins, **kwds) def kde(self, **kwds): """ Kernel Density Estimate plot .. versionadded:: 0.17.0 Parameters ---------- **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='kde', **kwds) density = kde def area(self, x=None, y=None, **kwds): """ Area plot .. versionadded:: 0.17.0 Parameters ---------- x, y : label or position, optional Coordinates for each point. **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='area', x=x, y=y, **kwds) def pie(self, y=None, **kwds): """ Pie chart .. versionadded:: 0.17.0 Parameters ---------- y : label or position, optional Column to plot. **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='pie', y=y, **kwds) def scatter(self, x, y, s=None, c=None, **kwds): """ Scatter plot .. versionadded:: 0.17.0 Parameters ---------- x, y : label or position, optional Coordinates for each point. s : scalar or array_like, optional Size of each point. c : label or position, optional Color of each point. **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ return self(kind='scatter', x=x, y=y, c=c, s=s, **kwds) def hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None, **kwds): """ Hexbin plot .. versionadded:: 0.17.0 Parameters ---------- x, y : label or position, optional Coordinates for each point. C : label or position, optional The value at each `(x, y)` point. reduce_C_function : callable, optional Function of one argument that reduces all the values in a bin to a single number (e.g. `mean`, `max`, `sum`, `std`). gridsize : int, optional Number of bins. **kwds : optional Keyword arguments to pass on to :py:meth:`pandas.DataFrame.plot`. Returns ------- axes : matplotlib.AxesSubplot or np.array of them """ if reduce_C_function is not None: kwds['reduce_C_function'] = reduce_C_function if gridsize is not None: kwds['gridsize'] = gridsize return self(kind='hexbin', x=x, y=y, C=C, **kwds)
34.397298
84
0.558562
6849a6481c1e9b24fa7a16daf6743df3e2cb1d4e
1,485
py
Python
nciauth_girder3/__init__.py
knowledgevis/NCIAuth-girder3
cb4b7a71ae0aeec068dc3e1a5f321cd700c79ad5
[ "Apache-2.0" ]
null
null
null
nciauth_girder3/__init__.py
knowledgevis/NCIAuth-girder3
cb4b7a71ae0aeec068dc3e1a5f321cd700c79ad5
[ "Apache-2.0" ]
null
null
null
nciauth_girder3/__init__.py
knowledgevis/NCIAuth-girder3
cb4b7a71ae0aeec068dc3e1a5f321cd700c79ad5
[ "Apache-2.0" ]
null
null
null
#from girder.constants import SettingKey, SettingDefault #from girder.constants import SettingDefault from girder.utility import config, setting_utilities from . import rest, constants # added for Girder V3 from girder import plugin @setting_utilities.validator(constants.PluginSettings.PROVIDERS_ENABLED) def validateProvidersEnabled(doc): if not isinstance(doc['value'], (list, tuple)): raise ValidationException('The enabled providers must be a list.', 'value') @setting_utilities.validator(constants.PluginSettings.IGNORE_REGISTRATION_POLICY) def validateIgnoreRegistrationPolicy(doc): if not isinstance(doc['value'], bool): raise ValidationException('Ignore registration policy setting must be boolean.', 'value') @setting_utilities.validator({ constants.PluginSettings.NCI_CLIENT_ID, constants.PluginSettings.NCI_CLIENT_SECRET, constants.PluginSettings.NCI_API_URL, constants.PluginSettings.NCI_RETURN_URL, # constants.PluginSettings.NCI_LOGIN_URL, # constants.PluginSettings.NCI_VALIDATION_URL }) def validateOtherSettings(event): pass # the load function goes inside a plugin class declaration now class GirderPlugin(plugin.GirderPlugin): DISPLAY_NAME = 'NCIAuth-girder3' CLIENT_SOURCE_PATH = 'web_client' def load(self,info): info['apiRoot'].nciLogin = rest.NCILogin() print('NCIAuth-girder3: Warning: SettingDefault not enabled!') #SettingDefault.defaults[constants.PluginSettings.PROVIDERS_ENABLED] = []
37.125
97
0.791919
0d5e7f90e99e1ae85937a5c263ecf441b03172e3
5,567
py
Python
src/maestral_cocoa/activity.py
samschott/maestral-cocoa
270574545267dcd32f643f12daf4b5e31edd29bf
[ "MIT" ]
2
2022-01-08T11:18:20.000Z
2022-01-26T13:41:34.000Z
src/maestral_cocoa/activity.py
samschott/maestral-cocoa
270574545267dcd32f643f12daf4b5e31edd29bf
[ "MIT" ]
4
2022-01-05T09:16:30.000Z
2022-03-29T09:32:44.000Z
src/maestral_cocoa/activity.py
samschott/maestral-cocoa
270574545267dcd32f643f12daf4b5e31edd29bf
[ "MIT" ]
1
2022-01-05T08:56:59.000Z
2022-01-05T08:56:59.000Z
# -*- coding: utf-8 -*- from __future__ import annotations # system imports import os.path as osp import asyncio from datetime import datetime from typing import Iterable, Any # external imports import click import toga from toga.sources import Source from toga.style.pack import Pack from maestral.models import SyncEvent, ItemType from maestral.daemon import MaestralProxy from maestral.utils import sanitize_string # local imports from .private.widgets import FreestandingIconButton, Icon, Window from .private.constants import ImageTemplate PADDING = 10 ICON_SIZE = 32 WINDOW_SIZE = (700, 600) class SyncEventRow: _reveal: FreestandingIconButton | None def __init__(self, sync_event: SyncEvent) -> None: self.sync_event = sync_event dirname, basename = osp.split(self.sync_event.local_path) dt = datetime.fromtimestamp(self.sync_event.change_time_or_sync_time) # attributes for table column values self._basename = basename self._icon: Icon | None = None self.location = osp.basename(dirname) self.type = self.sync_event.change_type.value.capitalize() self.time = dt.strftime("%d %b %Y %H:%M") self.username = self.sync_event.change_user_name self._reveal = None @property def filename(self) -> tuple[Icon, str]: if not self._icon: if self.sync_event.item_type is ItemType.Folder: self._icon = Icon(for_path="/usr") else: self._icon = Icon(for_path=self.sync_event.local_path) return self._icon, sanitize_string(self._basename) @property def reveal(self) -> FreestandingIconButton: if not self._reveal: self._reveal = FreestandingIconButton( label="", icon=Icon(template=ImageTemplate.Reveal), on_press=self.on_reveal_pressed, enabled=osp.exists(self.sync_event.local_path), ) return self._reveal def on_reveal_pressed(self, widget: Any) -> None: click.launch(self.sync_event.local_path, locate=True) def refresh(self) -> None: self.reveal.enabled = osp.exists(self.sync_event.local_path) class SyncEventSource(Source): def __init__(self, sync_events: Iterable[SyncEvent] = tuple()) -> None: super().__init__() self._rows = [SyncEventRow(e) for e in sync_events] def __len__(self) -> int: return len(self._rows) def __getitem__(self, index: int) -> SyncEventRow: return self._rows[index] def add(self, sync_event: SyncEvent) -> None: row = SyncEventRow(sync_event) self._rows.append(row) self._notify("insert", index=len(self._rows) - 1, item=row) def insert(self, index: int, sync_event: SyncEvent) -> None: row = SyncEventRow(sync_event) self._rows.insert(index, row) self._notify("insert", index=index, item=row) def remove(self, index: int) -> None: row = self._rows[index] self._notify("pre_remove", item=row) del self._rows[index] self._notify("remove", item=row) def clear(self) -> None: self._rows.clear() self._notify("clear") class ActivityWindow(Window): def __init__(self, mdbx: MaestralProxy, app: toga.App) -> None: super().__init__(title="Maestral Activity", release_on_close=False, app=app) self.size = WINDOW_SIZE self._refresh = False self._refresh_interval = 1 self._ids: set[str] = set() self.on_close = self.on_close_pressed self.mdbx = mdbx self.table = toga.Table( headings=["File", "Location", "Change", "Time", " "], accessors=["filename", "location", "type", "time", "reveal"], missing_value="--", on_double_click=self.on_row_clicked, style=Pack(flex=1), ) self.table._impl.columns[-1].maxWidth = 25 # TODO: don't use private API self.content = self.table self.center() self._initial_load = False def on_row_clicked(self, sender: Any, row: SyncEventRow) -> None: res = click.launch(row.sync_event.local_path) if res != 0: self.app.alert( title="Count not open item", message="The file or folder no longer exists.", ) async def periodic_refresh_gui(self, sender: Any = None) -> None: while self._refresh: await self.refresh_gui() await asyncio.sleep(self._refresh_interval) async def refresh_gui(self) -> None: needs_refresh = False for event in self.mdbx.get_history(): if event.id not in self._ids: self.table.data.insert(0, event) self._ids.add(event.id) await asyncio.sleep(0.002) needs_refresh = True if needs_refresh: for row in self.table.data: row.refresh() def on_close_pressed(self, sender: Any = None) -> bool: self._refresh = False return True def show(self) -> None: if not self._initial_load: sync_events = self.mdbx.get_history() data_source = SyncEventSource(reversed(sync_events)) self._ids = set(event.id for event in sync_events) self.table.data = data_source self._initial_load = True self._refresh = True self.app.add_background_task(self.periodic_refresh_gui) super().show()
30.756906
84
0.625831
a705adff06687c26b9e5ff81bcf33b14b64aaebf
2,111
py
Python
src/pipelining/pipes/pipe_evaluate_final_anwendungsfeld_sm.py
acdh-oeaw/mara_nlp_suite
223850ffde46bb9fedce9981d1f7a94f865a6a5a
[ "MIT" ]
null
null
null
src/pipelining/pipes/pipe_evaluate_final_anwendungsfeld_sm.py
acdh-oeaw/mara_nlp_suite
223850ffde46bb9fedce9981d1f7a94f865a6a5a
[ "MIT" ]
null
null
null
src/pipelining/pipes/pipe_evaluate_final_anwendungsfeld_sm.py
acdh-oeaw/mara_nlp_suite
223850ffde46bb9fedce9981d1f7a94f865a6a5a
[ "MIT" ]
null
null
null
from etl.gold_data_manager import GoldDataContainer, GoldDataItem from pipelining.pipe_root import ConfigRoot from etl import maxqdata_manager, gold_data_transform_rules, gold_data_manager from pipelining import data_flow_registry from IPython import embed from pipelining.pipes import pipe_train_AF from evaluators import evaluator import main class TrainDataConfig(ConfigRoot): gold_data_transform_rule = gold_data_transform_rules.TransformRule24 class EvalConfig(ConfigRoot): gold_data_json_path = data_flow_registry.gold_data["g10"]["path"] gold_data_transform_rule = gold_data_transform_rules.TransformRule25 evaluation_scores_path = data_flow_registry.evaluations_scores["es8"]["path"] evaluation_diffs_path = data_flow_registry.evaluation_diffs["ed8"]["path"] class TrainConfig(ConfigRoot): should_load_model = True model_def_dict = data_flow_registry.models["mo9"] trainer_class = model_def_dict["trainer_class"] model_path = model_def_dict["path"] def run(): trainer = main.init_trainer(TrainConfig) gdc_train = pipe_train_AF.load_and_transform_data() gdc_train = main.transform_gold_data(TrainDataConfig, gdc_train) gdc_eval_not = main.load_gold_data(EvalConfig) gdc_eval_not = main.transform_gold_data(EvalConfig, gdc_eval_not) af_sc = "AF: Soziale Medien" af_sc_not = "AF: NOT Soziale Medien" gdc_eval = GoldDataContainer(cats_list=[af_sc], gold_data_item_list=[]) for gdi_not in gdc_eval_not.gold_data_item_list: gdi = GoldDataItem(article_id=gdi_not.article_id, text=gdi_not.text) if gdi_not.cats[af_sc_not] == 1: gdi.cats = {af_sc: 0} elif gdi_not.cats[af_sc_not] == 0: gdi.cats = {af_sc: 1} else: raise Exception gdc_eval.gold_data_item_list.append(gdi) evaluator.calc_and_write_all_tables( gdc_train=gdc_train, gdc_eval=gdc_eval, trainer=trainer, table_path_score=EvalConfig.evaluation_scores_path, table_path_diff=EvalConfig.evaluation_diffs_path, cats_are_exclusive=False )
34.606557
81
0.755566
13ceb7802f436344bd1a2181f29c27abdf4343d3
10,771
py
Python
view/gui/flags_box.py
galizia-lab/pyview
07bef637b0c60fae8830c1b3947e4a7bcd14bb2c
[ "BSD-3-Clause" ]
2
2021-11-07T10:17:16.000Z
2021-11-07T10:17:19.000Z
view/gui/flags_box.py
galizia-lab/pyview
07bef637b0c60fae8830c1b3947e4a7bcd14bb2c
[ "BSD-3-Clause" ]
5
2021-11-03T12:43:03.000Z
2021-12-16T10:34:52.000Z
view/gui/flags_box.py
galizia-lab/pyview
07bef637b0c60fae8830c1b3947e4a7bcd14bb2c
[ "BSD-3-Clause" ]
1
2021-09-23T15:46:26.000Z
2021-09-23T15:46:26.000Z
from PyQt5.QtWidgets import QTableWidget, QTabWidget, QLineEdit, QMessageBox, QPushButton, QVBoxLayout, QWidget, \ QSizePolicy, QHeaderView, QMenu, QComboBox, QHBoxLayout, QLabel, QWidget from PyQt5.QtGui import QGuiApplication, QCursor from PyQt5.QtCore import pyqtSignal, pyqtSlot, QObject from .flags_search import get_flags_index, query from collections import OrderedDict from html.parser import HTMLParser import pandas as pd class ButtonCopyableLabel(QPushButton): def __init__(self, label): super().__init__(label) def contextMenuEvent(self, QContextMenuEvent): qmenu = QMenu(self) copy_action = qmenu.addAction("Copy name") copy_action.triggered.connect(self.copy_name_to_clipboard) qmenu.exec(QCursor().pos()) def copy_name_to_clipboard(self): clipboard = QGuiApplication.clipboard() clipboard.setText(self.text()) class FlagSubgroupPage(QTableWidget): return_flag_signal = pyqtSignal(str, str, name="return_flag_signal") def __init__(self, parent, flags_default_values_descriptions_df): super().__init__(parent=parent) self.setRowCount(flags_default_values_descriptions_df.shape[0]) self.setColumnCount(2) self.setHorizontalHeaderLabels(["Flag Name", "Flag Value"]) self.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.flag_values_descriptions_df = flags_default_values_descriptions_df.set_index("Flag Name") self.flag_values_descriptions_df.rename(columns={"Flag Default Value": "Flag Value"}, inplace=True) for index, (flag_name, flag_value, flags_description, selectable_options_str, flag_value_type) in \ flags_default_values_descriptions_df.iterrows(): if flag_value_type.find("bool") >= 0: to_update = "True:\nFalse:\n1: same as True\n0: same as False" if not pd.isnull(selectable_options_str): to_update = f"{to_update}\n{selectable_options_str}" selectable_options_str = to_update self.flag_values_descriptions_df.loc[flag_name, "Selectable Options"] = selectable_options_str name_button = ButtonCopyableLabel(flag_name) name_button.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) name_button.setToolTip("Click here for a description of flag function and possible choices") name_button.clicked.connect(self.display_description) self.setCellWidget(index, 0, name_button) combobox = QComboBox(self) combobox.setToolTip( "Click on flag name (button just to the left) " "for a description of flag function and possible choices") combobox.setInsertPolicy(QComboBox.InsertAtBottom) combobox.setAccessibleName(flag_name) combobox.setEditable(True) if not pd.isnull(selectable_options_str): selectable_options_dict = self.parse_selectable_options_str(selectable_options_str) combobox.addItems(selectable_options_dict.keys()) combobox.lineEdit().editingFinished.connect(self.return_flag) combobox.currentIndexChanged.connect(self.return_flag) self.flag_values_descriptions_df.loc[flag_name, "combobox"] = combobox # set_flag accesses the column "combobox", so it needs to be set beforehand self.set_flag(flag_name, flag_value) self.setCellWidget(index, 1, combobox) self.flag_values_descriptions_df.loc[flag_name, "button"] = name_button def parse_selectable_options_str(self, selectable_options_str): selectable_options_dict = {} for line in selectable_options_str.splitlines(): if ":" in line: splits = line.split(":") k, d = splits[0], ":".join(splits[1:]) selectable_options_dict[k.rstrip().lstrip()] = d return selectable_options_dict def set_flag(self, flag_name, flag_value): self.flag_values_descriptions_df.loc[flag_name, "combobox"].setCurrentText(str(flag_value)) self.flag_values_descriptions_df.loc[flag_name, "Flag Value"] = str(flag_value) def reset_flag(self, flag_name, flag_value): self.flag_values_descriptions_df.loc[flag_name, "combobox"].setCurrentText(str(flag_value)) def display_description(self): sender = QObject.sender(self) flag_name = sender.text() flag_descr = self.flag_values_descriptions_df.loc[flag_name, "Flag Description"] flag_selectable_values = self.flag_values_descriptions_df.loc[flag_name, "Selectable Options"] descr = flag_descr[:] # make a copy if not pd.isnull(flag_selectable_values): descr = f"{descr}\n\nValid values:\n\n{flag_selectable_values}" QMessageBox.information(self, f"Description of flag '{flag_name}'", descr) def return_flag(self): sender_le = QObject.sender(self) if sender_le is not None: flag_name = sender_le.accessibleName() if flag_name in self.flag_values_descriptions_df.index.values: # not sure why this check is needed self.return_flag_signal.emit(flag_name, sender_le.currentText()) def jump_to_flag(self, flag_name): flag_index = self.flag_values_descriptions_df.index.values.tolist().index(flag_name) # this programmatic change will otherwise send currentChanged signal self.blockSignals(True) self.setCurrentCell(flag_index, 1) self.blockSignals(False) class FlagsDisplayChoiceTabs(QTabWidget): def __init__(self, parent, flags): super().__init__(parent=parent) self.subgroup_pages = OrderedDict() self.setMovable(True) self.search_widget = FlagsSearchWidget(self, flags) self.search_widget.raise_jump_to_flag_signal.connect(self.jump_to_flag) self.addTab(self.search_widget, "Search") self.flag_name_subgroup_mapping = {} for subgroup in flags.get_subgroups(): subgroup_flag_def_subset_df = flags.get_subgroup_definition(subgroup) subgroup_page = FlagSubgroupPage(parent=None, flags_default_values_descriptions_df=subgroup_flag_def_subset_df ) self.flag_name_subgroup_mapping.update({flag_name: subgroup for flag_name in subgroup_flag_def_subset_df["Flag Name"]}) self.subgroup_pages[subgroup] = subgroup_page widget = QWidget(self) vbox = QVBoxLayout() vbox.addWidget(subgroup_page) widget.setLayout(vbox) self.addTab(widget, subgroup) def block_flags_update_signals(self, b): for subgroup_page in self.subgroup_pages.values(): subgroup_page.blockSignals(b) def set_flags(self, flags): for flag_name, flag_value in flags.items(): # this can happen when a request is raised for updating a deprecated or an unknown flag if flag_name in self.flag_name_subgroup_mapping: subgroup = self.flag_name_subgroup_mapping[flag_name] self.subgroup_pages[subgroup].set_flag(flag_name, flag_value) def reset_flag(self, flag_name, flag_value): subgroup = self.flag_name_subgroup_mapping[flag_name] self.subgroup_pages[subgroup].reset_flag(flag_name, flag_value) @pyqtSlot(str, name="jump to flag") def jump_to_flag(self, flag_name): target_subgroup_name = self.flag_name_subgroup_mapping[flag_name] target_subgroup_page = self.subgroup_pages[target_subgroup_name] subgroup_index = list(self.subgroup_pages.keys()).index(target_subgroup_name) # this programmatic change will otherwise send currentChanged signal self.blockSignals(True) self.setCurrentIndex(subgroup_index + 1) # index 0 is search page self.blockSignals(False) target_subgroup_page.jump_to_flag(flag_name) class FlagNameParser(HTMLParser): def __init__(self, line): super().__init__() self.flag_name = None self.feed(line) def handle_data(self, data): self.flag_name = data class FlagsSearchWidget(QWidget): raise_jump_to_flag_signal = pyqtSignal(str) def __init__(self, parent, flags): super().__init__(parent) self.search_index = get_flags_index(flags) vbox = QVBoxLayout(self) self.query_le = QLineEdit() self.query_le.setPlaceholderText("--- Search for flags here ---") self.query_le.textEdited.connect(self.query) vbox.addWidget(self.query_le) self.search_results_table = QTableWidget(self) self.search_results_table.setColumnCount(3) self.search_results_table.setHorizontalHeaderLabels(["Flag Name", "Flag Subgroup", "Flag Description"]) self.search_results_table.horizontalHeader().setSectionResizeMode(QHeaderView.ResizeToContents) vbox.addWidget(self.search_results_table) self.flag_name_push_button_mapping_2way = {} @pyqtSlot(str, name="query and refresh") def query(self, text): self.flag_name_push_button_mapping_2way = {} highlights = query(index=self.search_index, query_str=text, max_results=20) self.search_results_table.clearContents() self.search_results_table.setRowCount(len(highlights)) for ind, highlight in enumerate(highlights): self.search_results_table.setCellWidget(ind, 0, QLabel(highlight["flag_name"])) flag_name_parser = FlagNameParser(highlight["flag_name"]) widget = QWidget() layout = QHBoxLayout(widget) layout.addWidget(QLabel(highlight["flag_subgroup"])) push_button = QPushButton("Go to flag") self.flag_name_push_button_mapping_2way[flag_name_parser.flag_name] = push_button self.flag_name_push_button_mapping_2way[push_button] = flag_name_parser.flag_name push_button.clicked.connect(self.raise_jump_to_flag) layout.addWidget(push_button) self.search_results_table.setCellWidget(ind, 1, widget) self.search_results_table.setCellWidget(ind, 2, QLabel(highlight["flag_description"])) self.search_results_table.resizeColumnsToContents() self.search_results_table.resizeRowsToContents() @pyqtSlot(name="raise jump to flag") def raise_jump_to_flag(self): sender = QObject.sender(self) self.raise_jump_to_flag_signal.emit(self.flag_name_push_button_mapping_2way[sender])
40.190299
114
0.68963
2adc86cf7198998e26a7c43dc49885820f9d8806
1,143
py
Python
main.py
Neira1991/opendata
950697707ac9f0abf438634101812c4803195885
[ "MIT" ]
null
null
null
main.py
Neira1991/opendata
950697707ac9f0abf438634101812c4803195885
[ "MIT" ]
null
null
null
main.py
Neira1991/opendata
950697707ac9f0abf438634101812c4803195885
[ "MIT" ]
null
null
null
import json import matplotlib.pyplot as plt from makegraph.generate_graph import GenerateGraph import networkx as nx def run(): # Opening JSON file f = open('data/matches/2068/structured_data.json', 'r') p = open('data/matches/2068/match_data.json', 'r') data = json.load(f) data_players = json.load(p) f.close() p.close() match_iterator = GenerateGraph(data, data_players['players']) graph_match = None; for element in match_iterator: graph_match = element.graph enlarge = [(u, v) for (u, v, d) in graph_match.edges(data=True) if d["weight"] > 2] small = [(u, v) for (u, v, d) in graph_match.edges(data=True) if d["weight"] <= 1] node_pos = nx.circular_layout(graph_match) nx.draw_networkx_edges(graph_match, node_pos, edgelist=enlarge) nx.draw_networkx_edges(graph_match, node_pos, edgelist=small, alpha=0.5, edge_color="b", style="dashed") nx.draw_networkx_labels(graph_match, node_pos, font_size=20, font_family="sans-serif") ax = plt.gca() ax.margins(0.08) plt.axis("off") plt.tight_layout() plt.show() if __name__ == '__main__': run()
31.75
108
0.67804
d92f9f6589f0568a1ea6d3701bf5d8cab246d462
5,020
py
Python
venv/lib/python3.8/site-packages/ansible_test/_internal/payload.py
saeedya/docker-ansible
6fb0cfc6bc4a5925b21380952a5a4502ec02119a
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.8/site-packages/ansible_test/_internal/payload.py
saeedya/docker-ansible
6fb0cfc6bc4a5925b21380952a5a4502ec02119a
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.8/site-packages/ansible_test/_internal/payload.py
saeedya/docker-ansible
6fb0cfc6bc4a5925b21380952a5a4502ec02119a
[ "Apache-2.0" ]
null
null
null
"""Payload management for sending Ansible files and test content to other systems (VMs, containers).""" from __future__ import annotations import atexit import os import stat import tarfile import tempfile import time import typing as t from .constants import ( ANSIBLE_BIN_SYMLINK_MAP, ) from .config import ( IntegrationConfig, ShellConfig, ) from .util import ( display, ANSIBLE_SOURCE_ROOT, remove_tree, is_subdir, ) from .data import ( data_context, ) from .util_common import ( CommonConfig, ) # improve performance by disabling uid/gid lookups tarfile.pwd = None tarfile.grp = None def create_payload(args, dst_path): # type: (CommonConfig, str) -> None """Create a payload for delegation.""" if args.explain: return files = list(data_context().ansible_source) filters = {} def make_executable(tar_info): # type: (tarfile.TarInfo) -> t.Optional[tarfile.TarInfo] """Make the given file executable.""" tar_info.mode |= stat.S_IXUSR | stat.S_IXOTH | stat.S_IXGRP return tar_info if not ANSIBLE_SOURCE_ROOT: # reconstruct the bin directory which is not available when running from an ansible install files.extend(create_temporary_bin_files(args)) filters.update(dict((os.path.join('ansible', path[3:]), make_executable) for path in ANSIBLE_BIN_SYMLINK_MAP.values() if path.startswith('../'))) if not data_context().content.is_ansible: # exclude unnecessary files when not testing ansible itself files = [f for f in files if is_subdir(f[1], 'bin/') or is_subdir(f[1], 'lib/ansible/') or is_subdir(f[1], 'test/lib/ansible_test/')] if not isinstance(args, (ShellConfig, IntegrationConfig)): # exclude built-in ansible modules when they are not needed files = [f for f in files if not is_subdir(f[1], 'lib/ansible/modules/') or f[1] == 'lib/ansible/modules/__init__.py'] collection_layouts = data_context().create_collection_layouts() content_files = [] extra_files = [] for layout in collection_layouts: if layout == data_context().content: # include files from the current collection (layout.collection.directory will be added later) content_files.extend((os.path.join(layout.root, path), path) for path in data_context().content.all_files()) else: # include files from each collection in the same collection root as the content being tested extra_files.extend((os.path.join(layout.root, path), os.path.join(layout.collection.directory, path)) for path in layout.all_files()) else: # when testing ansible itself the ansible source is the content content_files = files # there are no extra files when testing ansible itself extra_files = [] for callback in data_context().payload_callbacks: # execute callbacks only on the content paths # this is done before placing them in the appropriate subdirectory (see below) callback(content_files) # place ansible source files under the 'ansible' directory on the delegated host files = [(src, os.path.join('ansible', dst)) for src, dst in files] if data_context().content.collection: # place collection files under the 'ansible_collections/{namespace}/{collection}' directory on the delegated host files.extend((src, os.path.join(data_context().content.collection.directory, dst)) for src, dst in content_files) # extra files already have the correct destination path files.extend(extra_files) # maintain predictable file order files = sorted(set(files)) display.info('Creating a payload archive containing %d files...' % len(files), verbosity=1) start = time.time() with tarfile.open(dst_path, mode='w:gz', compresslevel=4, format=tarfile.GNU_FORMAT) as tar: for src, dst in files: display.info('%s -> %s' % (src, dst), verbosity=4) tar.add(src, dst, filter=filters.get(dst)) duration = time.time() - start payload_size_bytes = os.path.getsize(dst_path) display.info('Created a %d byte payload archive containing %d files in %d seconds.' % (payload_size_bytes, len(files), duration), verbosity=1) def create_temporary_bin_files(args): # type: (CommonConfig) -> t.Tuple[t.Tuple[str, str], ...] """Create a temporary ansible bin directory populated using the symlink map.""" if args.explain: temp_path = '/tmp/ansible-tmp-bin' else: temp_path = tempfile.mkdtemp(prefix='ansible', suffix='bin') atexit.register(remove_tree, temp_path) for name, dest in ANSIBLE_BIN_SYMLINK_MAP.items(): path = os.path.join(temp_path, name) os.symlink(dest, path) return tuple((os.path.join(temp_path, name), os.path.join('bin', name)) for name in sorted(ANSIBLE_BIN_SYMLINK_MAP))
37.744361
153
0.6749
f2bb97f77659dbc5094d9d784a3a609d312cc868
299
py
Python
kaybee/plugins/resources/container.py
pauleveritt/kaybee
a00a718aaaa23b2d12db30dfacb6b2b6ec84459c
[ "Apache-2.0" ]
2
2017-11-08T19:55:57.000Z
2018-12-21T12:41:41.000Z
kaybee/plugins/resources/container.py
pauleveritt/kaybee
a00a718aaaa23b2d12db30dfacb6b2b6ec84459c
[ "Apache-2.0" ]
null
null
null
kaybee/plugins/resources/container.py
pauleveritt/kaybee
a00a718aaaa23b2d12db30dfacb6b2b6ec84459c
[ "Apache-2.0" ]
1
2018-10-13T08:59:29.000Z
2018-10-13T08:59:29.000Z
""" A UserDict container for resources. This allows us to validate schemas on add plus provide some query-like methods on the app.resources instance """ from collections import UserDict class ResourcesContainer(UserDict): def __setitem__(self, name, value): self.data[name] = value
19.933333
70
0.749164
40fc786cbdac618c3d699ce1f9c3e970040d58dd
31,068
py
Python
thermo/gpumd/data.py
hityingph/thermo
08faef51ad4333e816cadf838a224773152421fc
[ "MIT" ]
3
2022-01-03T06:30:36.000Z
2022-01-06T00:36:57.000Z
thermo/gpumd/data.py
hityingph/thermo
08faef51ad4333e816cadf838a224773152421fc
[ "MIT" ]
null
null
null
thermo/gpumd/data.py
hityingph/thermo
08faef51ad4333e816cadf838a224773152421fc
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import os import copy import multiprocessing as mp from functools import partial from collections import deque from .common import __get_path, __get_direction, __check_list, __check_range __author__ = "Alexander Gabourie" __email__ = "gabourie@stanford.edu" ######################################### # Helper Functions ######################################### def __process_sample(nbins, i): """ A helper function for the multiprocessing of kappamode.out files Args: nbins (int): Number of bins used in the GPUMD simulation i (int): The current sample from a run to analyze Returns: np.ndarray: A 2D array of each bin and output for a sample """ out = list() for j in range(nbins): out += [float(x) for x in malines[j + i * nbins].split()] return np.array(out).reshape((nbins,5)) def tail(f, nlines, BLOCK_SIZE=32768): """ Reads the last nlines of a file. Args: f (filehandle): File handle of file to be read nlines (int): Number of lines to be read from end of file BLOCK_SIZE (int): Size of block (in bytes) to be read per read operation. Performance depend on this parameter and file size. Returns: list: List of ordered final nlines of file Additional Information: Since GPUMD output files are mostly append-only, this becomes useful when a simulation prematurely ends (i.e. cluster preempts run, but simulation restarts elsewhere). In this case, it is not necessary to clean the directory before re-running. File outputs will be too long (so there still is a storage concern), but the proper data can be extracted from the end of file. This may also be useful if you want to only grab data from the final m number of runs of the simulation """ # BLOCK_SIZE is in bytes (must decode to string) f.seek(0, 2) bytes_remaining = f.tell() idx = -BLOCK_SIZE blocks = list() # Make no assumptions about line length lines_left = nlines eof = False first = True num_lines = 0 # BLOCK_size is smaller than file if BLOCK_SIZE <= bytes_remaining: while lines_left > 0 and not eof: if bytes_remaining > BLOCK_SIZE: f.seek(idx, 2) blocks.append(f.read(BLOCK_SIZE)) else: # if reached end of file f.seek(0, 0) blocks.append(f.read(bytes_remaining)) eof = True idx -= BLOCK_SIZE bytes_remaining -= BLOCK_SIZE num_lines = blocks[-1].count(b'\n') if first: lines_left -= num_lines - 1 first = False else: lines_left -= num_lines # since whitespace removed from eof, must compare to 1 here if eof and lines_left > 1: raise ValueError("More lines requested than exist.") # Corrects for reading too many lines with large buffer if bytes_remaining > 0: skip = 1 + abs(lines_left) blocks[-1] = blocks[-1].split(b'\n', skip)[skip] text = b''.join(reversed(blocks)).strip() else: # BLOCK_SIZE is bigger than file f.seek(0, 0) block = f.read() num_lines = block.count(b'\n') if num_lines < nlines: raise ValueError("More lines requested than exist.") skip = num_lines - nlines text = block.split(b'\n', skip)[skip].strip() return text.split(b'\n') def __modal_analysis_read(nbins, nsamples, datapath, ndiv, multiprocessing, ncore, block_size): global malines # Get full set of results datalines = nbins * nsamples with open(datapath, 'rb') as f: if multiprocessing: malines = tail(f, datalines, BLOCK_SIZE=block_size) else: malines = deque(tail(f, datalines, BLOCK_SIZE=block_size)) if multiprocessing: # TODO Improve memory efficiency of multiprocessing if not ncore: ncore = mp.cpu_count() func = partial(__process_sample, nbins) pool = mp.Pool(ncore) data = np.array(pool.map(func, range(nsamples)), dtype='float32').transpose((1, 0, 2)) pool.close() else: # Faster if single thread data = np.zeros((nbins, nsamples, 5), dtype='float32') for j in range(nsamples): for i in range(nbins): measurements = malines.popleft().split() data[i, j, 0] = float(measurements[0]) data[i, j, 1] = float(measurements[1]) data[i, j, 2] = float(measurements[2]) data[i, j, 3] = float(measurements[3]) data[i, j, 4] = float(measurements[4]) del malines if ndiv: nbins = int(np.ceil(data.shape[0] / ndiv)) # overwrite nbins npad = nbins * ndiv - data.shape[0] data = np.pad(data, [(0, npad), (0, 0), (0, 0)]) data = np.sum(data.reshape((-1, ndiv, data.shape[1], data.shape[2])), axis=1) return data def __basic_reader(points, data, labels): start = 0 out = dict() for i, npoints in enumerate(points): end = start + npoints run = dict() for j, key in enumerate(labels): run[key] = data[j][start:end].to_numpy(dtype='float') start = end out['run{}'.format(i)] = run return out def __basic_frame_loader(n, directory, filename): path = __get_path(directory, filename) data = pd.read_csv(path, delim_whitespace=True, header=None).to_numpy(dtype='float') if not (data.shape[0] / n).is_integer(): raise ValueError("An integer number of frames cannot be created. Please check n.") return data.reshape(-1, n, 3) ######################################### # Data-loading Related ######################################### def load_omega2(directory=None, filename='omega2.out'): """ Loads data from omega2.out GPUMD output file.\n Args: directory (str): Directory to load force file from filename (str): Name of force data file Returns: Numpy array of shape (N_kpoints,3*N_basis) in units of THz. N_kpoints is number of k points in kpoint.in and N_basis is the number of basis atoms defined in basis.in """ path = __get_path(directory, filename) data = pd.read_csv(path, delim_whitespace=True, header=None).to_numpy(dtype='float') data = np.sqrt(data)/(2*np.pi) return data def load_force(n, directory=None, filename='force.out'): """ Loads data from force.out GPUMD output file.\n Currently supports loading a single run. Args: n (int): Number of atoms force is output for directory (str): Directory to load force file from filename (str): Name of force data file Returns: Numpy array of shape (-1,n,3) containing all forces (ev/A) from filename """ return __basic_frame_loader(n, directory, filename) def load_velocity(n, directory=None, filename='velocity.out'): """ Loads data from velocity.out GPUMD output file.\n Currently supports loading a single run. Args: n (int): Number of atoms velocity is output for directory (str): Directory to load velocity file from filename (str): Name of velocity data file Returns: Numpy array of shape (-1,n,3) containing all forces (A/ps) from filename """ return __basic_frame_loader(n, directory, filename) def load_compute(quantities=None, directory=None, filename='compute.out'): """ Loads data from compute.out GPUMD output file.\n Currently supports loading a single run. Args: quantities (str or list(str)): Quantities to extract from compute.out Accepted quantities are:\n ['T', 'U', 'F', 'W', 'jp', 'jk']. \n Other quantity will be ignored.\n T=temperature, U=potential, F=force, W=virial, jp=heat current (potential), jk=heat current (kinetic) directory (str): Directory to load compute file from filename (str): file to load compute from Returns: Dictionary containing the data from compute.out .. csv-table:: Output dictionary :stub-columns: 1 **key**,T,U,F,W,jp,jk,Ein,Eout **units**,K,eV,|c1|,eV,|c2|,|c2|,eV,eV .. |c1| replace:: eVA\ :sup:`-1` .. |c2| replace:: eV\ :sup:`3/2` amu\ :sup:`-1/2` """ # TODO Add input checking if not quantities: return None compute_path = __get_path(directory, filename) data = pd.read_csv(compute_path, delim_whitespace=True, header=None) num_col = len(data.columns) q_count = {'T': 1, 'U': 1, 'F': 3, 'W': 3, 'jp': 3, 'jk': 3} out = dict() count = 0 for value in quantities: count += q_count[value] m = int(num_col / count) if 'T' in quantities: m = int((num_col - 2) / count) out['Ein'] = np.array(data.iloc[:, -2]) out['Eout'] = np.array(data.iloc[:, -1]) out['m'] = m start = 0 for quantity in q_count.keys(): if quantity in quantities: end = start + q_count[quantity]*m out[quantity] = data.iloc[:, start:end].to_numpy(dtype='float') start = end return out def load_thermo(directory=None, filename='thermo.out'): """ Loads data from thermo.out GPUMD output file. Args: directory (str): Directory to load thermal data file from filename (str): Name of thermal data file Returns: 'output' dictionary containing the data from thermo.out .. csv-table:: Output dictionary :stub-columns: 1 **key**,T,K,U,Px,Py,Pz,Lx,Ly,Lz,ax,ay,az,bx,by,bz,cx,cy,cz **units**,K,eV,eV,GPa,GPa,GPa,A,A,A,A,A,A,A,A,A,A,A,A """ thermo_path = __get_path(directory, filename) data = pd.read_csv(thermo_path, delim_whitespace=True, header=None) labels = ['T', 'K', 'U', 'Px', 'Py', 'Pz', 'Pyz', 'Pxz', 'Pxy'] # Orthogonal if data.shape[1] == 12: labels += ['Lx', 'Ly', 'Lz'] elif data.shape[1] == 18: labels += ['ax', 'ay', 'az', 'bx', 'by', 'bz', 'cx', 'cy', 'cz'] out = dict() for i in range(data.shape[1]): out[labels[i]] = data[i].to_numpy(dtype='float') return out def load_heatmode(nbins, nsamples, directory=None, inputfile='heatmode.out', directions='xyz', outputfile='heatmode.npy', ndiv=None, save=False, multiprocessing=False, ncore=None, block_size=65536, return_data=True): """ Loads data from heatmode.out GPUMD file. Option to save as binary file for fast re-load later. WARNING: If using multiprocessing, memory usage may be significantly larger than file size Args: nbins (int): Number of bins used during the GPUMD simulation nsamples (int): Number of times heat flux was sampled with GKMA during GPUMD simulation directory (str): Name of directory storing the input file to read inputfile (str): Modal heat flux file output by GPUMD directions (str): Directions to gather data from. Any order of 'xyz' is accepted. Excluding directions also allowed (i.e. 'xz' is accepted) outputfile (str): File name to save read data to. Output file is a binary dictionary. Loading from a binary file is much faster than re-reading data files and saving is recommended ndiv (int): Integer used to shrink number of bins output. If originally have 10 bins, but want 5, ndiv=2. nbins/ndiv need not be an integer save (bool): Toggle saving data to binary dictionary. Loading from save file is much faster and recommended multiprocessing (bool): Toggle using multi-core processing for conversion of text file ncore (bool): Number of cores to use for multiprocessing. Ignored if multiprocessing is False block_size (int): Size of block (in bytes) to be read per read operation. File reading performance depend on this parameter and file size return_data (bool): Toggle returning the loaded modal heat flux data. If this is False, the user should ensure that save is True Returns: dict: Dictionary with all modal heat fluxes requested .. csv-table:: Output dictionary :stub-columns: 1 **key**,nbins, nsamples, jmxi, jmxo, jmyi, jmyo, jmz **units**,N/A, N/A,|jm1|,|jm1|,|jm1|,|jm1|,|jm1| .. |jm1| replace:: eV\ :sup:`3/2` amu\ :sup:`-1/2` *x*\ :sup:`-1` Here *x* is the size of the bins in THz. For example, if there are 4 bins per THz, *x* = 0.25 THz. """ jm_path = __get_path(directory, inputfile) out_path = __get_path(directory, outputfile) data = __modal_analysis_read(nbins, nsamples, jm_path, ndiv, multiprocessing, ncore, block_size) out = dict() directions = __get_direction(directions) if 'x' in directions: out['jmxi'] = data[:, :, 0] out['jmxo'] = data[:, :, 1] if 'y' in directions: out['jmyi'] = data[:, :, 2] out['jmyo'] = data[:, :, 3] if 'z' in directions: out['jmz'] = data[:, :, 4] out['nbins'] = nbins out['nsamples'] = nsamples if save: np.save(out_path, out) if return_data: return out return def load_kappamode(nbins, nsamples, directory=None, inputfile='kappamode.out', directions='xyz', outputfile='kappamode.npy', ndiv=None, save=False, multiprocessing=False, ncore=None, block_size=65536, return_data=True): """ Loads data from kappamode.out GPUMD file. Option to save as binary file for fast re-load later. WARNING: If using multiprocessing, memory useage may be significantly larger than file size Args: nbins (int): Number of bins used during the GPUMD simulation nsamples (int): Number of times thermal conductivity was sampled with HNEMA during GPUMD simulation directory (str): Name of directory storing the input file to read inputfile (str): Modal thermal conductivity file output by GPUMD directions (str): Directions to gather data from. Any order of 'xyz' is accepted. Excluding directions also allowed (i.e. 'xz' is accepted) outputfile (str): File name to save read data to. Output file is a binary dictionary. Loading from a binary file is much faster than re-reading data files and saving is recommended ndiv (int): Integer used to shrink number of bins output. If originally have 10 bins, but want 5, ndiv=2. nbins/ndiv need not be an integer save (bool): Toggle saving data to binary dictionary. Loading from save file is much faster and recommended multiprocessing (bool): Toggle using multi-core processing for conversion of text file ncore (bool): Number of cores to use for multiprocessing. Ignored if multiprocessing is False block_size (int): Size of block (in bytes) to be read per read operation. File reading performance depend on this parameter and file size return_data (bool): Toggle returning the loaded modal thermal conductivity data. If this is False, the user should ensure that save is True Returns: dict: Dictionary with all modal thermal conductivities requested .. csv-table:: Output dictionary :stub-columns: 1 **key**,nbins,nsamples,kmxi,kmxo,kmyi,kmyo,kmz **units**,N/A,N/A,|hn1|,|hn1|,|hn1|,|hn1|,|hn1| .. |hn1| replace:: Wm\ :sup:`-1` K\ :sup:`-1` *x*\ :sup:`-1` Here *x* is the size of the bins in THz. For example, if there are 4 bins per THz, *x* = 0.25 THz. """ km_path = __get_path(directory, inputfile) out_path = __get_path(directory, outputfile) data = __modal_analysis_read(nbins, nsamples, km_path, ndiv, multiprocessing, ncore, block_size) out = dict() directions = __get_direction(directions) if 'x' in directions: out['kmxi'] = data[:, :, 0] out['kmxo'] = data[:, :, 1] if 'y' in directions: out['kmyi'] = data[:, :, 2] out['kmyo'] = data[:, :, 3] if 'z' in directions: out['kmz'] = data[:, :, 4] out['nbins'] = nbins out['nsamples'] = nsamples if save: np.save(out_path, out) if return_data: return out return def load_saved_kappamode(filename='kappamode.npy', directory=None): """ Loads data saved by the 'load_kappamode' function and returns the original dictionary. Args: filename (str): Name of the file to load directory (str): Directory the data file is located in Returns: dict: Dictionary with all modal thermal conductivities previously requested """ path = __get_path(directory, filename) return np.load(path, allow_pickle=True).item() def load_saved_heatmode(filename='heatmode.npy', directory=None): """ Loads data saved by the 'load_heatmode' or 'get_gkma_kappa' function and returns the original dictionary. Args: filename (str): Name of the file to load directory (str): Directory the data file is located in Returns: dict: Dictionary with all modal heat flux previously requested """ path = __get_path(directory, filename) return np.load(path, allow_pickle=True).item() def load_sdc(Nc, directory=None, filename='sdc.out'): """ Loads data from sdc.out GPUMD output file. Args: Nc (int or list(int)): Number of time correlation points the VAC/SDC is computed for directory (str): Directory to load 'sdc.out' file from (dir. of simulation) filename (str): File to load SDC from Returns: dict(dict): Dictonary with SDC/VAC data. The outermost dictionary stores each individual run .. csv-table:: Output dictionary :stub-columns: 1 **key**,t,VACx,VACy,VACz,SDCx,SDCy,SDCz **units**,ps,|sd1|,|sd1|,|sd1|,|sd2|,|sd2|,|sd2| .. |sd1| replace:: A\ :sup:`2` ps\ :sup:`-2` .. |sd2| replace:: A\ :sup:`2` ps\ :sup:`-1` """ Nc = __check_list(Nc, varname='Nc', dtype=int) sdc_path = __get_path(directory, filename) data = pd.read_csv(sdc_path, delim_whitespace=True, header=None) __check_range(Nc, data.shape[0]) labels = ['t', 'VACx', 'VACy', 'VACz', 'SDCx', 'SDCy', 'SDCz'] return __basic_reader(Nc, data, labels) def load_vac(Nc, directory=None, filename='mvac.out'): """ Loads data from mvac.out GPUMD output file. Args: Nc (int or list(int)): Number of time correlation points the VAC is computed for directory (str): Directory to load 'mvac.out' file from filename (str): File to load VAC from Returns: dict(dict): Dictonary with VAC data. The outermost dictionary stores each individual run .. csv-table:: Output dictionary :stub-columns: 1 **key**,t,VACx,VACy,VACz **units**,ps,|v1|,|v1|,|v1| .. |v1| replace:: A\ :sup:`2` ps\ :sup:`-2` """ Nc = __check_list(Nc, varname='Nc', dtype=int) sdc_path = __get_path(directory, filename) data = pd.read_csv(sdc_path, delim_whitespace=True, header=None) __check_range(Nc, data.shape[0]) labels = ['t', 'VACx', 'VACy', 'VACz'] return __basic_reader(Nc, data, labels) def load_dos(num_dos_points, directory=None, filename='dos.out'): """ Loads data from dos.out GPUMD output file. Args: num_dos_points (int or list(int)): Number of frequency points the DOS is computed for. directory (str): Directory to load 'dos.out' file from (dir. of simulation) filename (str): File to load DOS from. Returns: dict(dict)): Dictonary with DOS data. The outermost dictionary stores each individual run. .. csv-table:: Output dictionary :stub-columns: 1 **key**,nu,DOSx,DOSy,DOSz **units**,THz,|d1|,|d1|,|d1| .. |d1| replace:: THz\ :sup:`-1` """ num_dos_points = __check_list(num_dos_points, varname='num_dos_points', dtype=int) dos_path = __get_path(directory, filename) data = pd.read_csv(dos_path, delim_whitespace=True, header=None) __check_range(num_dos_points, data.shape[0]) labels = ['nu', 'DOSx', 'DOSy', 'DOSz'] out = __basic_reader(num_dos_points, data, labels) for key in out.keys(): out[key]['nu'] /= (2 * np.pi) return out def load_shc(Nc, num_omega, directory=None, filename='shc.out'): """ Loads the data from shc.out GPUMD output file. Args: Nc (int or list(int)): Maximum number of correlation steps. If multiple shc runs, can provide a list of Nc. num_omega (int or list(int)): Number of frequency points. If multiple shc runs, can provide a list of num_omega. directory (str): Directory to load 'shc.out' file from (dir. of simulation) filename (str): File to load SHC from. Returns: dict: Dictionary of in- and out-of-plane shc results (average) .. csv-table:: Output dictionary :stub-columns: 1 **key**,t, Ki, Ko, nu, jwi, jwo **units**,ps, |sh1|,|sh1|, THz, |sh2|, |sh2| .. |sh1| replace:: A eV ps\ :sup:`-1` .. |sh2| replace:: A eV ps\ :sup:`-1` THz\ :sup:`-1` """ Nc = __check_list(Nc, varname='Nc', dtype=int) num_omega = __check_list(num_omega, varname='num_omega', dtype=int) if not len(Nc) == len(num_omega): raise ValueError('Nc and num_omega must be the same length.') shc_path = __get_path(directory, filename) data = pd.read_csv(shc_path, delim_whitespace=True, header=None) __check_range(np.array(Nc) * 2 - 1 + np.array(num_omega), data.shape[0]) if not all([i>0 for i in Nc]) or not all([i>0 for i in num_omega]): raise ValueError('Only strictly positive numbers are allowed.') labels_corr = ['t', 'Ki', 'Ko'] labels_omega = ['nu', 'jwi', 'jwo'] out = dict() start = 0 for i, varlen in enumerate(zip(Nc, num_omega)): run = dict() Nc_i = varlen[0] * 2 - 1 num_omega_i = varlen[1] end = start + Nc_i for j, key in enumerate(labels_corr): run[key] = data[j][start:end].to_numpy(dtype='float') start = end end += num_omega_i for j, key in enumerate(labels_omega): run[key] = data[j][start:end].to_numpy(dtype='float') run['nu'] /= (2 * np.pi) start = end out['run{}'.format(i)] = run return out def load_kappa(directory=None, filename='kappa.out'): """ Loads data from kappa.out GPUMD output file which contains HNEMD kappa. Args: directory (str): Directory containing kappa data file filename (str): The kappa data file Returns: dict: A dictionary with keys corresponding to the columns in 'kappa.out' .. csv-table:: Output dictionary :stub-columns: 1 **key**,kxi, kxo, kyi, kyo, kz **units**,|k1|,|k1|,|k1|,|k1|,|k1| .. |k1| replace:: Wm\ :sup:`-1` K\ :sup:`-1` """ kappa_path = __get_path(directory, filename) data = pd.read_csv(kappa_path, delim_whitespace=True, header=None) labels = ['kxi', 'kxo', 'kyi', 'kyo', 'kz'] out = dict() for i, key in enumerate(labels): out[key] = data[i].to_numpy(dtype='float') return out def load_hac(Nc, output_interval, directory=None,filename='hac.out'): """ Loads data from hac.out GPUMD output file. Args: Nc (int or list(int)): Number of correlation steps output_interval (int or list(int)): Output interval for HAC and RTC data directory (str): Directory containing hac data file filename (str): The hac data file Returns: dict: A dictionary containing the data from hac runs .. csv-table:: Output dictionary :stub-columns: 1 **key**,t, kxi, kxo, kyi, kyo, kz, jxijx, jxojx, jyijy, jyojy, jzjz **units**,ps,|h1|,|h1|,|h1|,|h1|,|h1|,|h2|,|h2|,|h2|,|h2|,|h2| .. |h1| replace:: Wm\ :sup:`-1` K\ :sup:`-1` .. |h2| replace:: eV\ :sup:`3` amu\ :sup:`-1` """ Nc = __check_list(Nc, varname='Nc', dtype=int) output_interval = __check_list(output_interval, varname='output_interval', dtype=int) if not len(Nc) == len(output_interval): raise ValueError('Nc and output_interval must be the same length.') npoints = [int(x / y) for x, y in zip(Nc, output_interval)] hac_path = __get_path(directory, filename) data = pd.read_csv(hac_path, delim_whitespace=True, header=None) __check_range(npoints, data.shape[0]) labels = ['t', 'jxijx', 'jxojx', 'jyijy', 'jyojy', 'jzjz', 'kxi', 'kxo', 'kyi', 'kyo', 'kz'] start = 0 out = dict() for i, varlen in enumerate(npoints): end = start + varlen run = dict() for j, key in enumerate(labels): run[key] = data[j][start:end].to_numpy(dtype='float') start = end out['run{}'.format(i)] = run return out def get_frequency_info(bin_f_size, eigfile='eigenvector.out', directory=None): """ Gathers eigen-frequency information from the eigenvector file and sorts it appropriately based on the selected frequency bins (identical to internal GPUMD representation). Args: bin_f_size (float): The frequency-based bin size (in THz) eigfile (str): The filename of the eigenvector output/input file created by GPUMD phonon package directory (str): Directory eigfile is stored Returns: dict: Dictionary with the system eigen-freqeuency information along with binning information .. csv-table:: Output dictionary :stub-columns: 1 **key**,fq,fmax,fmin,shift,nbins,bin_count,bin_f_size **units**,THz,THz,THz,N/A,N/A,N/A,THz """ if not directory: eigpath = os.path.join(os.getcwd(), eigfile) else: eigpath = os.path.join(directory, eigfile) with open(eigpath, 'r') as f: om2 = [float(x) for x in f.readline().split()] epsilon = 1.e-6 # tolerance for float errors fq = np.sign(om2) * np.sqrt(abs(np.array(om2))) / (2 * np.pi) fmax = (np.floor(np.abs(fq[-1]) / bin_f_size) + 1) * bin_f_size fmin = np.floor(np.abs(fq[0]) / bin_f_size) * bin_f_size shift = int(np.floor(np.abs(fmin) / bin_f_size + epsilon)) nbins = int(np.floor((fmax - fmin) / bin_f_size + epsilon)) bin_count = np.zeros(nbins) for freq in fq: bin_count[int(np.floor(np.abs(freq) / bin_f_size) - shift)] += 1 return {'fq': fq, 'fmax': fmax, 'fmin': fmin, 'shift': shift, 'nbins': nbins, 'bin_count': bin_count, 'bin_f_size': bin_f_size} def reduce_frequency_info(freq, ndiv=1): """ Recalculates frequency binning information based on how many times larger bins are wanted. Args: freq (dict): Dictionary with frequency binning information from the get_frequency_info function output ndiv (int): Integer used to shrink number of bins output. If originally have 10 bins, but want 5, ndiv=2. nbins/ndiv need not be an integer Returns: dict: Dictionary with the system eigen freqeuency information along with binning information """ epsilon = 1.e-6 # tolerance for float errors freq = copy.deepcopy(freq) freq['bin_f_size'] = freq['bin_f_size'] * ndiv freq['fmax'] = (np.floor(np.abs(freq['fq'][-1]) / freq['bin_f_size']) + 1) * freq['bin_f_size'] nbins_new = int(np.ceil(freq['nbins'] / ndiv - epsilon)) npad = nbins_new * ndiv - freq['nbins'] freq['nbins'] = nbins_new freq['bin_count'] = np.pad(freq['bin_count'], [(0, npad)]) freq['bin_count'] = np.sum(freq['bin_count'].reshape(-1, ndiv), axis=1) freq['ndiv'] = ndiv return freq def load_loss(directory=None, filename='loss.out'): """ Loads the loss data from loss.out of NEP output file. Args: directory (str): Directory to load thermal data file from filename (str): Name of thermal data file Returns: 'output' dictionary containing the data from thermo.out .. csv-table:: Output dictionary :stub-columns: 1 **key**,Step,Total,L1,L2,E_train,F_train,V_train,E_test,F_test,V_test **units**,1, 1, 1, 1,eV/atom, eV/A,eV/atom,eV/atom, eV/A,eV/atom """ loss_path = __get_path(directory, filename) data = pd.read_csv(loss_path, delim_whitespace=True, header=None) labels = ['Step', 'Total', 'L1', 'L2', 'E_train', 'F_train', 'V_train', 'E_test', 'F_test', 'V_test'] out = dict() for i in range(data.shape[1]): out[labels[i]] = data[i].to_numpy(dtype='float') return out def load_train(directory=None, filename=None): """ Loads data from NEP output file including the energy, force, and virial out file of train and test dataset. Args: directory (str): Directory to load thermal data file from filename (str): Name of thermal data file Returns: 'output' dictionary containing the data from thermo.out .. csv-table:: Output dictionary :stub-columns: 1 **key**, Energy, Force, Virial **units**,eV/atom, eV/A, eV/atom """ train_path = __get_path(directory, filename) data = pd.read_csv(train_path, delim_whitespace=True, header=None) if filename in ("energy_train.out", "energy_test.out"): labels = ['E_nep', 'E_reference'] elif filename in ("virial_train.out", "virial_test.out"): labels = ['V_nep', 'V_reference'] elif filename in ("force_train.out", "force_test.out"): labels = ['F_nep_x', 'F_nep_y', 'F_nep_z', 'F_ref_x', 'F_ref_y', 'F_ref_z',] else: raise ValueError("The out filename is not correct, please check it again !") out = dict() for i in range(data.shape[1]): out[labels[i]] = data[i].to_numpy(dtype='float') return out
32.028866
120
0.601262
f1170f1f784e4369b6867e5901bb595c35bcb6a7
4,950
py
Python
schema.py
ines/spacy-graphql
a71b51c668fa434a645fdbed90bf538e59f3cb4a
[ "MIT" ]
87
2018-08-01T15:24:47.000Z
2022-02-01T18:10:35.000Z
schema.py
ines/spacy-graphql
a71b51c668fa434a645fdbed90bf538e59f3cb4a
[ "MIT" ]
null
null
null
schema.py
ines/spacy-graphql
a71b51c668fa434a645fdbed90bf538e59f3cb4a
[ "MIT" ]
10
2018-08-01T23:33:27.000Z
2020-01-07T23:15:15.000Z
from graphene import ObjectType, Field, List, String, Boolean, Int, Float class Token(ObjectType): """An individual token — a word, punctuation symbol, whitespace, etc.""" text = String(description="Verbatim text") text_with_ws = String(description="Text with trailing space, if present") orth = Int(description="ID of the verbatim text content") i = Int(description="Index of the token within the parent Doc") idx = Int(description="Character offset of the token within parent Doc") head_i = Int(description="Index of the token's head") lower = Int(description="Lowercase form") lower_ = String(description="Lowercase form") shape = Int(description="Transform of token text, to show orthographic features") shape_ = String(description="Transform of token text, to show orthographic features") lemma = Int(description="Base form of the token") lemma_ = String(description="Base form of the token") norm = Int(description="Normalized form of the token") norm_ = String(description="Normalized form of the token") pos = Int(description="Coarse-grained part-of-speech tag") pos_ = String(description="Coarse-grained part-of-speech tag") tag = Int(description="Fine-grained part-of-speech tag") tag_ = String(description="Fine-grained part-of-speech tag") dep = Int(description="Dependency label") dep_ = String(description="Dependency label") ent_type = Int(description="Named entity type") ent_type_ = String(description="Named entity type") ent_iob = Int(description="IOB code of named entity tag") ent_iob_ = String(description="IOB code of named entity tag") is_alpha = Boolean(description="Does the token consist of alphabetic characters?") is_ascii = Boolean(description="Does the token consist of ASCII characters?") is_digit = Boolean(description="Does the token consist of digits?") is_lower = Boolean(description="Is the token lowercase?") is_upper = Boolean(description="Is the token uppercase?") is_title = Boolean(description="Is the token titlecase?") is_punct = Boolean(description="Is the token punctuation?") is_left_punct = Boolean(description="Is the token left punctuation?") is_right_punct = Boolean(description="Is the token right punctuation?") is_space = Boolean(description="Does the token consist of whitespace characters?") is_bracket = Boolean(description="Is the token a bracket?") is_quote = Boolean(description="Is the token a quotation mark?") is_stop = Boolean(description="Is the token a stop word?") like_num = Boolean(description="Does the token resemble a number?") like_url = Boolean(description="Does the token resemble a URL?") like_email = Boolean(description="Does the token resemble an email address?") class Span(ObjectType): """A slice from a Doc object""" text = String(description="Verbatim text") text_with_ws = String(description="Text with trailing space, if present") start = Int(description="The token offset for the start of the span") end = Int(description="The token offset for the end of the span") start_char = Int(description="The character offset for the start of the span") end_char = Int(description="The character offset for the end of the span.") label = Int(description="The span's label") label_ = String(description="The span's label") class Cat(ObjectType): """A text category predicted by the text classifier""" label = String(description="The name of the category") score = Float(description="The score predicted for the category") class Doc(ObjectType): """A sequence of Token objects and a container for accessing linguistic annotations.""" text = String(description="Verbatim text") text_with_ws = String(description="Text with trailing space, if present") tokens = List(Token, description="The tokens in the document") ents = List(Span, description="The named entities in the document") sents = List(Span, description="The sentences in the document") cats = List(Cat, description="The text classification categories, if available") class Meta(ObjectType): """The current model's meta information.""" lang = String(description="Model language") name = String(description="Model name") license = String(description="Model license") author = String(description="Model author") url = String(description="Model author URL") email = String(description="Model author email") description = String(description="Model description") pipeline = List(String, description="Names of model pipeline components") sources = List(String, description="Training data sources") class NLP(ObjectType): """Container for processing results and meta information.""" doc = Field(Doc, description="The processed document") meta = Field(Meta, description="The current model's meta information")
49.5
89
0.724242
6be0d720a8cb7e0f129f6c27a1253c2ba04603a8
914
py
Python
DJCore.py
ammasyaa/bot-presence
1111f2159973d0abd3eec1862728a6a898ab0a1b
[ "MIT" ]
null
null
null
DJCore.py
ammasyaa/bot-presence
1111f2159973d0abd3eec1862728a6a898ab0a1b
[ "MIT" ]
null
null
null
DJCore.py
ammasyaa/bot-presence
1111f2159973d0abd3eec1862728a6a898ab0a1b
[ "MIT" ]
null
null
null
import discord import os from discord.ext import commands bot = commands.AutoShardedBot(case_insensitive=True, command_prefix=commands.when_mentioned_or(os.getenv('PREFIX'))) bot.remove_command('help') bot.initials = ('modules.misc', 'modules.music', 'modules.handler', 'modules.owner') bot.owner = int(os.getenv('OWNER')) bot.color = int(os.getenv('COLOR'), 16) @bot.check async def _bot_protection(ctx): return not ctx.author.bot @bot.event async def on_ready(): print(f'Bot is ready! Logged as in: {bot.user}') await bot.change_presence(status=discord.Status.online, activity=discord.Activity(type=discord.ActivityType.playing, name=f"Red Dead Online")) if __name__ == "__main__": for extension in bot.initials: try: bot.load_extension(extension) except Exception as e: print(f'Failed to load extension {extension}: {e}') bot.run(os.getenv('TOKEN'))
32.642857
146
0.71663
932eeb4269b05020b8251453bfc5a400c85cd3e1
33,612
py
Python
reviewboard/diffviewer/parser.py
b1pb1p/reviewboard
b13aca3b88bc16d3c4258adce5df79cd1da577d3
[ "MIT" ]
null
null
null
reviewboard/diffviewer/parser.py
b1pb1p/reviewboard
b13aca3b88bc16d3c4258adce5df79cd1da577d3
[ "MIT" ]
null
null
null
reviewboard/diffviewer/parser.py
b1pb1p/reviewboard
b13aca3b88bc16d3c4258adce5df79cd1da577d3
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import io import logging import re from django.utils import six from django.utils.encoding import force_bytes from django.utils.translation import ugettext as _ from djblets.util.properties import AliasProperty, TypedProperty from reviewboard.deprecation import RemovedInReviewBoard50Warning from reviewboard.diffviewer.errors import DiffParserError from reviewboard.scmtools.core import Revision logger = logging.getLogger(__name__) class ParsedDiffFile(object): """A parsed file from a diff. This stores information on a single file represented in a diff, including the contents of that file's diff, as parsed by :py:class:`DiffParser` or one of its subclasses. Parsers should set the attributes on this based on the contents of the diff, and should add any data found in the diff. This class is meant to be used internally and by subclasses of :py:class:`DiffParser`. Attributes: binary (bool); Whether this represents a binary file. copied (bool): Whether this represents a file that has been copied. The file may or may not be modified in the process. deleted (bool): Whether this represents a file that has been deleted. delete_count (int): The number of delete (``-``) lines found in the file. insert_count (int): The number of insert (``+``) lines found in the file. is_symlink (bool): Whether this represents a file that is a symbolic link to another file. moved (bool): Whether this represents a file that has been moved/renamed. The file may or may not be modified in the process. parser (DiffParser): The diff parser that parsed this file. skip (bool): Whether this file should be skipped by the parser. If any of the parser methods set this, the file will stop parsing and will be excluded from results. """ #: The parsed original name of the file. #: #: Type: #: bytes orig_filename = TypedProperty(bytes) #: The parsed file details of the original file. #: #: This will usually be a revision. #: #: Type: #: bytes or reviewboard.scmtools.core.Revision orig_file_details = TypedProperty((bytes, Revision)) #: The parsed modified name of the file. #: #: This may be the same as :py:attr:`orig_filename`. #: #: Type: #: bytes modified_filename = TypedProperty(bytes) #: The parsed file details of the modified file. #: #: This will usually be a revision. #: #: Type: #: bytes or reviewboard.scmtools.core.Revision modified_file_details = TypedProperty((bytes, Revision)) #: The parsed value for an Index header. #: #: If present in the diff, this usually contains a filename, but may #: contain other content as well, depending on the variation of the diff #: format. #: #: Type: #: bytes index_header_value = TypedProperty(bytes) #: The parsed original name of the file. #: #: Deprecated: #: 4.0: #: Use :py:attr:`orig_filename` instead. origFile = AliasProperty('orig_filename', convert_to_func=force_bytes, deprecated=True, deprecation_warning=RemovedInReviewBoard50Warning) #: The parsed file details of the original file. #: #: Deprecated: #: 4.0: #: Use :py:attr:`orig_file_details` instead. origInfo = AliasProperty('orig_file_details', convert_to_func=force_bytes, deprecated=True, deprecation_warning=RemovedInReviewBoard50Warning) #: The parsed original name of the file. #: #: Deprecated: #: 4.0: #: Use :py:attr:`modified_filename` instead. newFile = AliasProperty('modified_filename', convert_to_func=force_bytes, deprecated=True, deprecation_warning=RemovedInReviewBoard50Warning) #: The parsed file details of the modified file. #: #: Deprecated: #: 4.0: #: Use :py:attr:`modified_file_details` instead. newInfo = AliasProperty('modified_file_details', convert_to_func=force_bytes, deprecated=True, deprecation_warning=RemovedInReviewBoard50Warning) #: The parsed value for an Index header. #: #: Deprecated: #: 4.0: #: Use :py:attr:`index_header_value` instead. index = AliasProperty('index_header_value', convert_to_func=force_bytes, deprecated=True, deprecation_warning=RemovedInReviewBoard50Warning) def __init__(self, parser=None): """Initialize the parsed file information. Args: parser (reviewboard.diffviewer.parser.DiffParser, optional): The diff parser that parsed this file. """ if parser is None: RemovedInReviewBoard50Warning.warn( 'Diff parsers must pass themselves as a parameter when' 'creating a ParsedDiffFile. This will be mandatory in ' 'Review Board 5.0.') self.parser = parser self.binary = False self.deleted = False self.moved = False self.copied = False self.is_symlink = False self.insert_count = 0 self.delete_count = 0 self.skip = False self.extra_data = {} self._data_io = io.BytesIO() self._data = None self._deprecated_info = {} def __setitem__(self, key, value): """Set information on the parsed file from a diff. This is a legacy implementation used to help diff parsers retain compatibility with the old dictionary-based ways of setting parsed file information. Callers should be updated to set attributes instead. Deprecated: 4.0: This will be removed in Review Board 5.0. Args: key (str): The key to set. value (object): The value to set. """ self._warn_old_usage_deprecation() self._deprecated_info[key] = value setattr(self, key, value) def __getitem__(self, key): """Return information on the parsed file from a diff. This is a legacy implementation used to help diff parsers retain compatibility with the old dictionary-based ways of setting parsed file information. Callers should be updated to access attributes instead. Deprecated: 4.0: This will be removed in Review Board 5.0. Args: key (str): The key to retrieve. Returns: object: The resulting value. Raises: KeyError: The key is invalid. """ self._warn_old_usage_deprecation() return self._deprecated_info[key] def __contains__(self, key): """Return whether an old parsed file key has been explicitly set. This is a legacy implementation used to help diff parsers retain compatibility with the old dictionary-based ways of setting parsed file information. Callers should be updated to check attribute values instead. Deprecated: 4.0: This will be removed in Review Board 5.0. Args: key (str): The key to check. Returns: bool: ``True`` if the key has been explicitly set by a diff parser. ``False`` if it has not. """ self._warn_old_usage_deprecation() return key in self._deprecated_info def set(self, key, value): """Set information on the parsed file from a diff. This is a legacy implementation used to help diff parsers retain compatibility with the old dictionary-based ways of setting parsed file information. Callers should be updated to set attributes instead. Deprecated: 4.0: This will be removed in Review Board 5.0. Args: key (str): The key to set. value (object): The value to set. """ self._warn_old_usage_deprecation() self._deprecated_info[key] = value setattr(self, key, value) def get(self, key, default=None): """Return information on the parsed file from a diff. This is a legacy implementation used to help diff parsers retain compatibility with the old dictionary-based ways of setting parsed file information. Callers should be updated to access attributes instead. Deprecated: 4.0: This will be removed in Review Board 5.0. Args: key (str): The key to retrieve. default (object, optional): The default value to return. Returns: object: The resulting value. """ self._warn_old_usage_deprecation() return self._deprecated_info.get(key, default) def update(self, items): """Update information on the parsed file from a diff. This is a legacy implementation used to help diff parsers retain compatibility with the old dictionary-based ways of setting parsed file information. Callers should be updated to set individual attributes instead. Deprecated: 4.0: This will be removed in Review Board 5.0. Args: items (dict): The keys and values to set. """ self._warn_old_usage_deprecation() for key, value in six.iteritems(items): self._deprecated_info[key] = value setattr(self, key, value) @property def data(self): """The data for this diff. This must be accessed after :py:meth:`finalize` has been called. """ if self._data is None: raise ValueError('ParsedDiffFile.data cannot be accessed until ' 'finalize() is called.') return self._data def finalize(self): """Finalize the parsed diff. This makes the diff data available to consumers and closes the buffer for writing. """ self._data = self._data_io.getvalue() self._data_io.close() def prepend_data(self, data): """Prepend data to the buffer. Args: data (bytes): The data to prepend. """ if data: new_data_io = io.BytesIO() new_data_io.write(data) new_data_io.write(self._data_io.getvalue()) self._data_io.close() self._data_io = new_data_io def append_data(self, data): """Append data to the buffer. Args: data (bytes): The data to append. """ if data: self._data_io.write(data) def _warn_old_usage_deprecation(self): """Warn that a DiffParser is populating information in an old way.""" if self.parser is None: message = ( 'Diff parsers must be updated to populate attributes on a ' 'ParsedDiffFile, instead of setting the information in a ' 'dictionary. This will be required in Review Board 5.0.' ) else: message = ( '%r must be updated to populate attributes on a ' 'ParsedDiffFile, instead of setting the information in a ' 'dictionary. This will be required in Review Board 5.0.' % type(self.parser) ) RemovedInReviewBoard50Warning.warn(message, stacklevel=3) class DiffParser(object): """Parses diff files, allowing subclasses to specialize parsing behavior. This class provides the base functionality for parsing Unified Diff files. It looks for common information present in many variations of diffs, such as ``Index:`` lines, in order to extract files and their modified content from a diff. Subclasses can extend the parsing behavior to extract additional metadata or handle special representations of changes. They may want to override the following methods: * :py:meth:`parse_special_header` * :py:meth:`parse_diff_header` * :py:meth:`parse_filename_header` * :py:meth:`parse_after_headers` * :py:meth:`get_orig_commit_id` * :py:meth:`normalize_diff_filename` """ #: A separator string below an Index header. #: #: This is commonly found immediately below an ``Index:`` header, meant #: to help locate the beginning of the metadata or changes made to a file. #: #: Its presence and location is not guaranteed. INDEX_SEP = b'=' * 67 def __init__(self, data): """Initialize the parser. Args: data (bytes): The diff content to parse. Raises: TypeError: The provided ``data`` argument was not a ``bytes`` type. """ from reviewboard.diffviewer.diffutils import split_line_endings if not isinstance(data, bytes): raise TypeError( _('%s expects bytes values for "data", not %s') % (type(self).__name__, type(data))) self.base_commit_id = None self.new_commit_id = None self.data = data self.lines = split_line_endings(data) def parse(self): """Parse the diff. This will parse the content of the file, returning any files that were found. Returns: list of ParsedDiffFile: The resulting list of files. Raises: reviewboard.diffviewer.errors.DiffParserError: There was an error parsing part of the diff. This may be a corrupted diff, or an error in the parsing implementation. Details are in the error message. """ logger.debug('%s.parse: Beginning parse of diff, size = %s', type(self).__name__, len(self.data)) preamble = io.BytesIO() self.files = [] parsed_file = None i = 0 # Go through each line in the diff, looking for diff headers. while i < len(self.lines): next_linenum, new_file = self.parse_change_header(i) if new_file: # This line is the start of a new file diff. # # First, finalize the last one. if self.files: self.files[-1].finalize() parsed_file = new_file # We need to prepend the preamble, if we have one. parsed_file.prepend_data(preamble.getvalue()) preamble.close() preamble = io.BytesIO() self.files.append(parsed_file) i = next_linenum else: if parsed_file: i = self.parse_diff_line(i, parsed_file) else: preamble.write(self.lines[i]) preamble.write(b'\n') i += 1 if self.files: self.files[-1].finalize() preamble.close() logger.debug('%s.parse: Finished parsing diff.', type(self).__name__) return self.files def parse_diff_line(self, linenum, parsed_file): """Parse a line of data in a diff. This will append the line to the parsed file's data, and if the content represents active changes to a file, its insert/delete counts will be updated to reflect them. Args: linenum (int): The 0-based line number. parsed_file (ParsedDiffFile): The current parsed diff file info. Returns: int: The next line number to parse. """ line = self.lines[linenum] if (parsed_file.orig_filename is not None and parsed_file.modified_filename is not None): if line.startswith(b'-'): parsed_file.delete_count += 1 elif line.startswith(b'+'): parsed_file.insert_count += 1 parsed_file.append_data(line) parsed_file.append_data(b'\n') return linenum + 1 def parse_change_header(self, linenum): """Parse a header before a change to a file. This will attempt to parse the following information, starting at the specified line in the diff: 1. Any special file headers (such as ``Index:`` lines) through :py:meth:`parse_special_header` 2. A standard Unified Diff file header (through :py:meth:`parse_diff_header`) 3. Any content after the header (through :py:meth:`parse_after_headers`) If the special or diff headers are able to populate the original and modified filenames and revisions/file details, and none of the methods above mark the file as skipped (by setting :py:attr:`ParsedDiffFile.skip`), then this will finish by appending all parsed data and returning a parsed file entry. Subclasses that need to control parsing logic should override one or more of the above methods. Args: linenum (int): The line number to begin parsing. Returns: tuple: A tuple containing the following: 1. The next line number to parse 2. The populated :py:class:`ParsedDiffFile` instance for this file Raises: reviewboard.diffviewer.errors.DiffParserError: There was an error parsing the change header. This may be a corrupted diff, or an error in the parsing implementation. Details are in the error message. """ parsed_file = ParsedDiffFile(parser=self) start = linenum linenum = self.parse_special_header(linenum, parsed_file) linenum = self.parse_diff_header(linenum, parsed_file) skip = ( parsed_file.skip or parsed_file.orig_filename is None or parsed_file.orig_file_details is None or parsed_file.modified_filename is None or parsed_file.modified_file_details is None ) if skip: return linenum, None # If we have enough information to represent a header, build the # file to return. if linenum < len(self.lines): linenum = self.parse_after_headers(linenum, parsed_file) if parsed_file.skip: return linenum, None # The header is part of the diff, so make sure it gets in the # diff content. for line in self.lines[start:linenum]: parsed_file.append_data(line) parsed_file.append_data(b'\n') return linenum, parsed_file def parse_special_header(self, linenum, parsed_file): """Parse a special diff header marking the start of a new file's info. This attempts to locate an ``Index:`` line at the specified line number, which usually indicates the beginning of file's information in a diff (for Unified Diff variants that support it). By default, this method expects the line to be found at ``linenum``. If present, the value found immediately after the ``Index:`` will be stored in :py:attr:`ParsedDiffFile.index_header_value`, allowing subclasses to make a determination based on its contents (which may vary between types of diffs, but should include at least a filename. If the ``Index:`` line is not present, this won't do anything by default. Subclasses can override this to parse additional information before the standard diff header. They may also set :py:attr:`ParsedFileDiff.skip` to skip the rest of this file and begin parsing a new entry at the returned line number. Args: linenum (int): The line number to begin parsing. parsed_file (ParsedDiffFile): The file currently being parsed. Returns: int: The next line number to parse. Raises: reviewboard.diffviewer.errors.DiffParserError: There was an error parsing the special header. This may be a corrupted diff, or an error in the parsing implementation. Details are in the error message. """ try: index_line = self.lines[linenum] is_index = index_line.startswith(b'Index: ') except IndexError: is_index = False if is_index: # Try to find the "====" line. temp_linenum = linenum + 1 while temp_linenum + 1 < len(self.lines): line = self.lines[temp_linenum] if line == self.INDEX_SEP: # We found the line. This is looking like a valid diff # for CVS, Subversion, and other systems. Try to parse # the data from the line. try: parsed_file.index_header_value = \ index_line.split(None, 1)[1] # Set these for backwards-compatibility. # # This should be removed in Review Board 5.0. parsed_file._deprecated_info['index'] = \ parsed_file.index_header_value except ValueError: raise DiffParserError('Malformed Index line', linenum) linenum = temp_linenum + 1 break elif line.startswith((b'---', b'+++')): # We never found that line, but we did hit the start of # a diff file. We can't treat the "Index:" line as special # in this case. break temp_linenum += 1 return linenum def parse_diff_header(self, linenum, parsed_file): """Parse a standard header before changes made to a file. This attempts to parse the ``---`` (original) and ``+++`` (modified) file lines, which are usually present right before any changes to the file. By default, this method expects the ``---`` line to be found at ``linenum``. If found, this will populate :py:attr:`ParsedDiffFile.orig_filename`, :py:attr:`ParsedDiffFile.orig_file_details`, :py:attr:`ParsedDiffFile.modified_filename`, and :py:attr:`ParsedDiffFile.modified_file_details`. This calls out to :py:meth:`parse_filename_header` to help parse the contents immediately after the ``---`` or ``+++``. Subclasses can override this to parse these lines differently, or to to process the results of these lines (such as converting special filenames to states like "deleted" or "new file"). They may also set :py:class:`ParsedFileDiff.skip` to skip the rest of this file and begin parsing a new entry at the returned line number. Args: linenum (int): The line number to begin parsing. parsed_file (ParsedDiffFile): The file currently being parsed. Returns: int: The next line number to parse. Raises: reviewboard.diffviewer.errors.DiffParserError: There was an error parsing the diff header. This may be a corrupted diff, or an error in the parsing implementation. Details are in the error message. """ try: line1 = self.lines[linenum] line2 = self.lines[linenum + 1] is_diff_header = ( # Unified diff headers (line1.startswith(b'--- ') and line2.startswith(b'+++ ')) or # Context diff headers (line1.startswith(b'*** ') and line2.startswith(b'--- ') and not line1.endswith(b' ****')) ) except IndexError: is_diff_header = False if is_diff_header: # This is a unified or context diff header. Parse the # file and extra info. try: (parsed_file.orig_filename, parsed_file.orig_file_details) = \ self.parse_filename_header(self.lines[linenum][4:], linenum) linenum += 1 (parsed_file.modified_filename, parsed_file.modified_file_details) = \ self.parse_filename_header(self.lines[linenum][4:], linenum) # Set these for backwards-compatibility. # # This should be removed in Review Board 5.0. parsed_file._deprecated_info['origFile'] = \ parsed_file.orig_filename parsed_file._deprecated_info['origInfo'] = \ parsed_file.orig_file_details parsed_file._deprecated_info['newFile'] = \ parsed_file.modified_filename parsed_file._deprecated_info['newInfo'] = \ parsed_file.modified_file_details linenum += 1 except ValueError: raise DiffParserError( 'The diff file is missing revision information', linenum) return linenum def parse_after_headers(self, linenum, parsed_file): """Parse information after a diff header but before diff data. This attempts to parse the information found after :py:meth:`parse_diff_headers` is called, but before gathering any lines that are part of the diff contents. It's intended for the few diff formats that may place content at this location. By default, this does nothing. Subclasses can override this to provide custom parsing of any lines that may exist here. They may also set :py:class:`ParsedFileDiff.skip` to skip the rest of this file and begin parsing a new entry at the returned line number. Args: linenum (int): The line number to begin parsing. parsed_file (ParsedDiffFile): The file currently being parsed. Returns: int: The next line number to parse. Raises: reviewboard.diffviewer.errors.DiffParserError: There was an error parsing the diff header. This may be a corrupted diff, or an error in the parsing implementation. Details are in the error message. """ return linenum def parse_filename_header(self, s, linenum): """Parse the filename found in a diff filename line. This parses the value after a ``---`` or ``+++`` indicator (or a special variant handled by a subclass), normalizing the filename and any following file details, and returning both for processing and storage. Often times, the file details will be a revision for the original file, but this is not guaranteed, and is up to the variation of the diff format. By default, this will assume that a filename and file details are separated by either a single tab, or two or more spaces. If neither are found, this will fail to parse. This must parse only the provided value, and cannot parse subsequent lines. Subclasses can override this behavior to parse these lines another way, or to normalize filenames (handling escaping or filenames with spaces as needed by that particular diff variation). Args: s (bytes): The value to parse. linenum (int): The line number containing the value to parse. Returns: tuple: A tuple containing: 1. The filename (as bytes) 2. The additional file information (as bytes) Raises: reviewboard.diffviewer.errors.DiffParserError: There was an error parsing the diff header. This may be a corrupted diff, or an error in the parsing implementation. Details are in the error message. """ if b'\t' in s: # There's a \t separating the filename and info. This is the # best case scenario, since it allows for filenames with spaces # without much work. return s.split(b'\t', 1) # There's spaces being used to separate the filename and info. # This is technically wrong, so all we can do is assume that # 1) the filename won't have multiple consecutive spaces, and # 2) there's at least 2 spaces separating the filename and info. if b' ' in s: return re.split(br' +', s, 1) raise DiffParserError('No valid separator after the filename was ' 'found in the diff header', linenum) def raw_diff(self, diffset_or_commit): """Return a raw diff as a string. This takes a DiffSet or DiffCommit and generates a new, single diff file that represents all the changes made. It's used to regenerate a diff and serve it up for other tools or processes to use. Subclasses can override this to provide any special logic for building the diff. Args: diffset_or_commit (reviewboard.diffviewer.models.diffset.DiffSet or reviewboard.diffviewer.models.diffcommit .DiffCommit): The DiffSet or DiffCommit to render. If passing in a DiffSet, only the cumulative diff's file contents will be returned. If passing in a DiffCommit, only that commit's file contents will be returned. Returns: bytes: The diff composed of all the component FileDiffs. Raises: TypeError: The provided ``diffset_or_commit`` wasn't of a supported type. """ if hasattr(diffset_or_commit, 'cumulative_files'): filediffs = diffset_or_commit.cumulative_files elif hasattr(diffset_or_commit, 'files'): filediffs = diffset_or_commit.files.all() else: raise TypeError('%r is not a valid value. Please pass a DiffSet ' 'or DiffCommit.' % diffset_or_commit) return b''.join( filediff.diff for filediff in filediffs ) def get_orig_commit_id(self): """Return the commit ID of the original revision for the diff. By default, this returns ``None``. Subclasses would override this if they work with repositories that always look up changes to a file by the ID of the commit that made the changes instead of a per-file revision or ID. Non-``None`` values returned by this method will override the values being stored in :py:attr:`FileDiff.source_revision <reviewboard.diffviewer.models.filediff.FileDiff.source_revision>`. Implementations would likely want to parse out the commit ID from some prior header and return it here. By the time this is called, all files will have been parsed already. Returns: bytes: The commit ID used to override the source revision of any created :py:class:`~reviewboard.diffviewer.models.filediff.FileDiff` instances. """ return None def normalize_diff_filename(self, filename): """Normalize filenames in diffs. This returns a normalized filename suitable for populating in :py:attr:`FileDiff.source_file <reviewboard.diffviewer.models.filediff.FileDiff.source_file>` or :py:attr:`FileDiff.dest_file <reviewboard.diffviewer.models.filediff.FileDiff.dest_file>`, or for when presenting a filename to the UI. By default, this strips off any leading slashes, which might occur due to differences in various diffing methods or APIs. Subclasses can override this to provide additional methods of normalization. Args: filename (unicode): The filename to normalize. Returns: unicode: The normalized filename. """ if filename.startswith('/'): return filename[1:] else: return filename
34.50924
79
0.587885
3767af49cd6a236c8ca1b59cc3456bfaebe6a1f5
1,624
py
Python
mycloud/drive/filesystem/metadata_manager.py
ThomasGassmann/swisscom-my-cloud-backup
97e222c45a54197c82c8f3a5d59aa20bf3382ed8
[ "MIT" ]
4
2019-11-28T22:10:43.000Z
2022-01-23T15:18:26.000Z
mycloud/drive/filesystem/metadata_manager.py
ThomasGassmann/swisscom-my-cloud-backup
97e222c45a54197c82c8f3a5d59aa20bf3382ed8
[ "MIT" ]
18
2019-01-20T22:30:48.000Z
2020-06-09T21:16:07.000Z
mycloud/drive/filesystem/metadata_manager.py
thomasgassmann/mycloud-cli
97e222c45a54197c82c8f3a5d59aa20bf3382ed8
[ "MIT" ]
null
null
null
from mycloud.common import get_string_generator from mycloud.constants import METADATA_FILE_NAME from mycloud.drive.filesystem.file_metadata import FileMetadata from mycloud.drive.filesystem.translatable_path import TranslatablePath from mycloud.mycloudapi import MyCloudRequestExecutor, ObjectResourceBuilder from mycloud.mycloudapi.requests.drive import (GetObjectRequest, PutObjectRequest) class MetadataManager: def __init__(self, request_executor: MyCloudRequestExecutor): self._request_executor = request_executor async def get_metadata(self, path: TranslatablePath): metadata_path = MetadataManager._get_metadata_path(path) get_request = GetObjectRequest(metadata_path) response = await self._request_executor.execute(get_request) text = await response.result.text() return None if response.result.status == 404 else FileMetadata.from_json(text) async def update_metadata(self, path: TranslatablePath, metadata: FileMetadata): metadata_path = MetadataManager._get_metadata_path(path) json_representation = FileMetadata.to_json(metadata) byte_generator = get_string_generator(json_representation) put_request = PutObjectRequest(metadata_path, byte_generator) _ = await self._request_executor.execute(put_request) @staticmethod def _get_metadata_path(path: TranslatablePath): full_path = path.calculate_remote() metadata_path = ObjectResourceBuilder.combine_cloud_path( full_path, METADATA_FILE_NAME) return metadata_path
46.4
86
0.759236
37d5f9daa8e6b4d0194745f765c55b0f973da231
2,940
py
Python
tests/test_compositions/test_composition.py
rddaz2013/pysketcher
9d4079baf0aa04f8fa80dc6edcf03bf1c14f70a4
[ "MIT" ]
27
2020-09-03T16:59:32.000Z
2022-03-11T08:21:25.000Z
tests/test_compositions/test_composition.py
ReblochonMasque/pysketcher-1
9e804f4855edc6962b68e92091f35c2e960df813
[ "MIT" ]
395
2020-09-05T06:32:54.000Z
2022-03-31T12:06:55.000Z
tests/test_compositions/test_composition.py
ReblochonMasque/pysketcher-1
9e804f4855edc6962b68e92091f35c2e960df813
[ "MIT" ]
4
2021-04-19T09:23:06.000Z
2021-11-12T20:21:30.000Z
from hypothesis import given from hypothesis.strategies import floats, sampled_from import pytest from pysketcher import Line, Point, Shape, Style, Text from pysketcher.composition import Composition class TestCompositionStyle: @pytest.fixture(scope="module") def composition(self): shape1 = Line(Point(0, 1), Point(1, 1)) shape2 = Line(Point(1, 1), Point(0, 2)) text = Text("This is a test.", Point(2, 2)) composition = Composition( { "shape1": shape1, "shape2": shape2, "test": text, } ) return composition @given(sampled_from(Style.LineStyle)) def test_line_style(self, composition: Composition, line_style: Style.LineStyle): composition.style.line_style = line_style assert composition["shape1"].style.line_style == line_style assert composition["shape2"].style.line_style == line_style @given(floats(allow_nan=False, allow_infinity=False)) def test_line_width(self, composition: Composition, line_width: float): composition.style.line_width = line_width assert composition["shape1"].style.line_width == line_width assert composition["shape2"].style.line_width == line_width @given(sampled_from(Style.Color)) def test_line_color(self, composition: Composition, line_color: Style.Color): composition.style.line_color = line_color assert composition["shape1"].style.line_color == line_color assert composition["shape2"].style.line_color == line_color @given(sampled_from(Style.Color)) def test_fill_color(self, composition: Composition, fill_color: Style.Color): composition.style.fill_color = fill_color assert composition["shape1"].style.fill_color == fill_color assert composition["shape2"].style.fill_color == fill_color @given(sampled_from(Style.FillPattern)) def test_fill_pattern( self, composition: Composition, fill_pattern: Style.FillPattern ): composition.style.fill_pattern = fill_pattern assert composition["shape1"].style.fill_pattern == fill_pattern assert composition["shape2"].style.fill_pattern == fill_pattern @given(sampled_from(Style.ArrowStyle)) def test_arrow(self, composition: Composition, arrow: Style.ArrowStyle): composition.style.arrow = arrow assert composition["shape1"].style.arrow == arrow assert composition["shape2"].style.arrow == arrow @given(floats(allow_nan=False, allow_infinity=False)) def test_shadow(self, composition: Composition, shadow: float): composition.style.shadow = shadow assert composition["shape1"].style.shadow == shadow assert composition["shape2"].style.shadow == shadow def test_iteration(self, composition: Composition): for shape in composition: assert isinstance(shape, Shape)
41.408451
85
0.690816
2e469afc59ca855e8c6bc6a237f7491b3038e42d
1,878
py
Python
a1fbox/calllist.py
mvo5/a1fbox
7d1d648717d58538a2f14d711cff9e584e901d09
[ "MIT" ]
null
null
null
a1fbox/calllist.py
mvo5/a1fbox
7d1d648717d58538a2f14d711cff9e584e901d09
[ "MIT" ]
null
null
null
a1fbox/calllist.py
mvo5/a1fbox
7d1d648717d58538a2f14d711cff9e584e901d09
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from collections import Counter from time import sleep from callinfo import CallInfo from callprefix import CallPrefix from fritzconn import FritzConn from fritzconnection.lib.fritzcall import FritzCall from phonebook import Phonebook if __name__ == "__main__": # Quick example how to use only # Initialize by using parameters from config file fritzconn = FritzConn() fc = FritzCall(fc=fritzconn) cp = CallPrefix(fc=fritzconn) pb = Phonebook(fc=fritzconn) calls = fc.get_missed_calls(update=True) missed_list = [] for call in calls: number = call.Called if call.type == 3 else call.Caller missed_list.append(number) counts = Counter(missed_list) print("\nMissed calls, ordered by count:") print(counts) calls = fc.get_calls(update=True) numbers = set() for call in calls: number = call.Called if call.type == 3 else call.Caller if number: # If CLIR / Anon, there is no number if not number.startswith('0'): number = cp.area_code + number numbers.add(number) print(f'\nAll {len(calls)} calls, uniqued {len(numbers)}:') print(numbers) anylist = pb.get_all_numbers_for_pb_ids([0, 1, 2]) # White- or blacklist print('\nWhite- or blacklisted:') unknowns = set() for number in numbers: name = pb.get_name_for_number_in_dict(number, anylist, area_code=cp.area_code) if name: print(f'{number} {name}') else: unknowns.add(number) # Idea: rate & info ... auto-block .. or add good names to whitelist? print('\nResolving Unknowns:') for unknown in unknowns: ci = CallInfo(unknown) ci.get_cascade_score() print(ci) sleep(10) # Anti-DDOS needed for tellows and wemgehoert, otherwise you get blocked or captcha
30.786885
102
0.657082
fca0e7dcdc96233c4aba182b784b4ddcf64c734c
507
py
Python
plotly/validators/scatter3d/marker/colorbar/_tickvalssrc.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/scatter3d/marker/colorbar/_tickvalssrc.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/scatter3d/marker/colorbar/_tickvalssrc.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class TickvalssrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='tickvalssrc', parent_name='scatter3d.marker.colorbar', **kwargs ): super(TickvalssrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'info'), **kwargs )
26.684211
70
0.617357
70f8134cc8f4a42b7d9133d5a22461fe393337c1
3,097
py
Python
python/dllib/examples/autograd/custom.py
DirkFi/BigDL
7493209165c046116470b9a1e1c8f527915d6f1e
[ "Apache-2.0" ]
3
2021-07-14T01:28:47.000Z
2022-03-02T01:16:32.000Z
python/dllib/examples/autograd/custom.py
DirkFi/BigDL
7493209165c046116470b9a1e1c8f527915d6f1e
[ "Apache-2.0" ]
null
null
null
python/dllib/examples/autograd/custom.py
DirkFi/BigDL
7493209165c046116470b9a1e1c8f527915d6f1e
[ "Apache-2.0" ]
null
null
null
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from bigdl.dllib.nncontext import * from bigdl.dllib.keras.autograd import * from bigdl.dllib.keras.layers import * from bigdl.dllib.keras.models import * from optparse import OptionParser def mean_absolute_error(y_true, y_pred): result = mean(abs(y_true - y_pred), axis=1) return result def add_one_func(x): return x + 1.0 if __name__ == "__main__": parser = OptionParser() parser.add_option("--nb_epoch", dest="nb_epoch", default="5") parser.add_option("--batch_size", type=int,dest="batch_size", default=512) parser.add_option("--cluster-mode", dest="clusterMode", default="local") (options, args) = parser.parse_args(sys.argv) conf = {} if options.clusterMode.startswith("yarn"): hadoop_conf = os.environ.get("HADOOP_CONF_DIR") assert hadoop_conf, "Directory path to hadoop conf not found for yarn-client mode. Please " \ "set the environment variable HADOOP_CONF_DIR" spark_conf = create_spark_conf().set("spark.executor.memory", "5g") \ .set("spark.executor.cores", 2) \ .set("spark.executor.instances", 2) \ .set("spark.driver.memory", "4g") spark_conf.setAll(conf) if options.clusterMode == "yarn-client": sc = init_nncontext(spark_conf, cluster_mode="yarn-client", hadoop_conf=hadoop_conf) else: sc = init_nncontext(spark_conf, cluster_mode="yarn-cluster", hadoop_conf=hadoop_conf) elif options.clusterMode == "local": spark_conf = SparkConf().set("spark.driver.memory", "10g")\ .set("spark.driver.cores", 4) sc = init_nncontext(spark_conf, cluster_mode="local") elif options.clusterMode == "spark-submit": sc = init_nncontext(cluster_mode="spark-submit") data_len = 1000 X_ = np.random.uniform(0, 1, (1000, 2)) Y_ = ((2 * X_).sum(1) + 0.4).reshape([data_len, 1]) a = Input(shape=(2,)) b = Dense(1)(a) c = Lambda(function=add_one_func)(b) model = Model(input=a, output=c) model.compile(optimizer=SGD(learningrate=1e-2), loss=mean_absolute_error) model.set_tensorboard('./log', 'customized layer and loss') model.fit(x=X_, y=Y_, batch_size=options.batch_size, nb_epoch=int(options.nb_epoch), distributed=True) model.save_graph_topology('./log') w = model.get_weights() print(w) pred = model.predict_local(X_) print("finished...") sc.stop()
34.411111
101
0.661608
43d410ed1629317c0ed17df2fcac9119300bb4df
4,614
py
Python
code_v1.2/prepare_peakCalling.py
Xinfeng-Yao/APEC
0596e2c8947fd9eb3b4cb5acee8d298ebbe8408a
[ "BSD-2-Clause" ]
24
2019-03-08T03:06:14.000Z
2021-12-13T06:38:59.000Z
code_v1.2/prepare_peakCalling.py
Xinfeng-Yao/APEC
0596e2c8947fd9eb3b4cb5acee8d298ebbe8408a
[ "BSD-2-Clause" ]
1
2020-06-30T04:53:34.000Z
2020-07-14T01:25:32.000Z
code_v1.2/prepare_peakCalling.py
Xinfeng-Yao/APEC
0596e2c8947fd9eb3b4cb5acee8d298ebbe8408a
[ "BSD-2-Clause" ]
6
2019-06-14T03:17:00.000Z
2021-12-18T05:49:48.000Z
#!/usr/bin/python # import warnings warnings.filterwarnings("ignore") # import os,numpy,sys,subprocess from optparse import OptionParser import subroutines # # opts = OptionParser() usage = "Call peaks\nusage: %prog -s project --blist blacklist.bed --fa genome_chr.fa --tss tssFile --logq 3" opts = OptionParser(usage=usage, version="%prog 1.0") opts.add_option("-s", help="The project folder.") opts.add_option("--picard", default="../reference/picard.jar", help="The picard.jar file path, default=../reference/picard.jar") opts.add_option("--blist", default='../reference/hg19_blacklist.JDB.bed', help="Blacklist.bed, default=../reference/hg19_blacklist.JDB.bed") opts.add_option("--fa", default='../reference/hg19_chr.fa', help="Genome_chr.fa, default=../reference/hg19_chr.fa") opts.add_option('--tss', default='../reference/hg19_refseq_genes_TSS.txt', help='TSS file, default=../reference/hg19_refseq_genes_TSS.txt') opts.add_option('--ref', default='hg19', help='Name of genome reference, default=hg19') opts.add_option('--logq', default='3', help='Threshold of -log(p-value) for top peaks, default=3.') options, arguments = opts.parse_args() # workspace_folder = options.s + '/work/' peak_folder = options.s + '/peak/' genome_fasta = options.fa tssFile = options.tss if not os.path.exists(peak_folder): subprocess.check_call('mkdir ' + peak_folder, shell=True) # # print('!!!!!! merge all marked bam files !!!!!!') bam_folder = [x for x in os.listdir(workspace_folder)] bam_folder.sort() print('cells number:', len(bam_folder)) marked_bam = [] #merged_raw = peak_folder + 'mergeAll.raw.bam' merged_bam = peak_folder + 'mergeAll.bam' for folder in bam_folder: path = workspace_folder + folder + '/' if len(folder.split('.'))<=1: marked_bam.extend([path + x for x in os.listdir(path) if x[-10:]=='marked.bam']) if len(marked_bam)<=1000: marked_bam = ' '.join(marked_bam) subprocess.check_call('samtools merge -f ' + merged_bam + ' ' + marked_bam, shell=True) else: n_batch = len(marked_bam)//1000 + 1 temps = [] for i_batch in range(0, n_batch): temp_bam = peak_folder+'temp_'+str(i_batch)+'.bam' temps.append(temp_bam) start, end = i_batch*1000, min((i_batch+1)*1000, len(marked_bam)) marked = ' '.join(marked_bam[start:end]) subprocess.check_call('samtools merge -f ' + temp_bam + ' ' + marked, shell=True) subprocess.check_call('samtools index ' + temp_bam, shell=True) all_temp = ' '.join(temps) subprocess.check_call('samtools merge -f ' + merged_bam + ' ' + all_temp, shell=True) # subprocess.check_call('samtools index ' + merged_bam, shell=True) print('!!!!!! merge done !!!!!!') # hist_log = peak_folder + 'mergeAll.hist.log' hist_pdf = peak_folder + 'mergeAll.hist.pdf' subprocess.check_call('java -XX:+UseSerialGC -Xmx1g -jar '+options.picard+' CollectInsertSizeMetrics VALIDATION_STRINGENCY=SILENT I=' + merged_bam + ' O=' + hist_log + ' H=' + hist_pdf + ' W=1000', shell=True) # refSeqTSS = peak_folder + 'mergeAll.RefSeqTSS' subroutines.draw_TSS_insert(tssFile, merged_bam, refSeqTSS) # print('!!!!!! call peak by macs2 !!!!!!') peak_file = peak_folder + 'peaks' subprocess.check_call('macs2 callpeak --nomodel -t ' + merged_bam + ' -n ' + peak_file + ' --nolambda --keep-dup all --call-summits', shell=True) print('!!!!!! call peak done !!!!!!') # summit = peak_folder + 'peaks_summits.bed' filtered_peak = peak_folder + 'filtered_peaks.bed' if options.blist: print('!!!!!! filter peaks !!!!!!') subprocess.check_call('bedtools intersect -v -a ' + summit + ' -b ' + options.blist + " | sort -k5 -nr > " + filtered_peak, shell=True) print('!!!!!! filter peaks done !!!!!!') else: subprocess.check_call('sort -k5 -nr ' + summit + ' > ' + filtered_peak, shell=True) print('!!!!!! get top peaks by q-value !!!!!!') fold_rank = numpy.loadtxt(filtered_peak, 'str', delimiter='\t') fold_rank[:, 1] = numpy.array(list(map(int, fold_rank[:, 1]))) - 249 # 250 fold_rank[:, 2] = numpy.array(list(map(int, fold_rank[:, 2]))) + 250 toppeaks = peak_folder + 'temp01.bed' top_peaks = peak_folder + 'top_peaks.bed' with open(toppeaks, 'w') as output: for peak in fold_rank: if float(peak[-1])>=float(options.logq): # print >> output, peak[0]+'\t'+peak[1]+'\t'+peak[2] output.write(peak[0]+'\t'+peak[1]+'\t'+peak[2]+'\n') subprocess.check_call('bedtools sort -i ' + toppeaks + ' > ' + top_peaks, shell=True) print('!!!!!! get top peaks done !!!!!!') # #
44.365385
133
0.657997
0cef925bd8246224363aee57d548faff6bfc591e
547
py
Python
pyscripts/knn.py
mathewjhan/ivyhacks
e966754170e2638f5ac6714df33692e6ce294e88
[ "MIT" ]
null
null
null
pyscripts/knn.py
mathewjhan/ivyhacks
e966754170e2638f5ac6714df33692e6ce294e88
[ "MIT" ]
null
null
null
pyscripts/knn.py
mathewjhan/ivyhacks
e966754170e2638f5ac6714df33692e6ce294e88
[ "MIT" ]
2
2020-11-02T07:33:52.000Z
2021-01-02T07:11:02.000Z
from sklearn.neighbors import NearestNeighbors import numpy as np import pandas as pd def knn(): userdata = pd.read_csv('userdata.csv') ids = userdata['user_id'].to_numpy() X = userdata.iloc[:, 4:].to_numpy() nbrs = NearestNeighbors(n_neighbors=len(X), algorithm='auto').fit(X) _, indices = nbrs.kneighbors(X) similarity = {} for i in range(indices.shape[0]): similarity[ids[i]] = [] for j in range(1, indices.shape[1]): similarity[ids[i]].append(ids[indices[i][j]]) return similarity
30.388889
72
0.64351
5f7a6ac5169917c134354511aaff0b1c903ffdd9
2,547
py
Python
analysis/api/utils/custom.py
truemrwalker/mads-app
79481293af2c0ce5533ab9ebd24868965c3c0031
[ "MIT" ]
null
null
null
analysis/api/utils/custom.py
truemrwalker/mads-app
79481293af2c0ce5533ab9ebd24868965c3c0031
[ "MIT" ]
2
2021-04-22T06:57:27.000Z
2021-08-06T03:19:42.000Z
analysis/api/utils/custom.py
truemrwalker/mads-app
79481293af2c0ce5533ab9ebd24868965c3c0031
[ "MIT" ]
2
2021-02-12T01:19:44.000Z
2021-05-14T06:54:34.000Z
import logging import numpy as np logger = logging.getLogger(__name__) def get_custom(data): # includeNoneVals = False # if "undefinedIsIncluded" in data['view']['settings']: # includeNoneVals = data['view']['settings']['undefinedIsIncluded'] # bins = data['view']['settings']['bins'] result = {} # if type(data['data'][0]) is str: # if(None in data['data']): # if includeNoneVals: # data['data'] = ['Undefined' if v is None else v for v in data['data']] # else: # data['data'] = [x for x in data['data'] if x is not None] # unique_elements, counts_elements = np.unique(data['data'], return_counts=True) # result['values'] = counts_elements # result['dimensions'] = [str(ue) for ue in unique_elements] # else: # if(None in data['data']): # if includeNoneVals: # data['data'] = ['Undefined' if v is None else v for v in data['data']] # else: # data['data'] = [x for x in data['data'] if x is not None] # unique_elements, counts_elements = np.unique(data['data'], return_counts=True) # if bins == 0 or bins == len(unique_elements): # result['values'] = counts_elements # result['dimensions'] = [str(ue) for ue in unique_elements] # else: # hist, bin_edges = np.histogram(data['data'], bins=bins) # result['values'] = hist # floatsExists = False # for x in bin_edges: # if not (x.is_integer()): # floatsExists = True # break # if floatsExists: # result['dimensions'] = ["{:.2f}".format(x) + " - " + "{:.2f}".format(bin_edges[idx+1]) for idx, x in enumerate(bin_edges) if (idx+1) < (len(bin_edges))] # else: # result['dimensions'] = ["{:0.0f}".format(x) for x in bin_edges] # x_array = np.array(data['data']) # indices = [] # l = len(bin_edges) # for i in range(l - 1): # left = bin_edges[i] # right = bin_edges[i + 1] # ids = [] # if i == l - 2: # ids = list(np.where((left <= x_array) & (x_array <= right))[0]) # else: # ids = list(np.where((left <= x_array) & (x_array < right))[0]) # indices.append(ids) # result['indices'] = indices return result
41.754098
171
0.498233
020f833081f1bda0738d4a20fc85b27d4295e932
3,694
py
Python
apps/category/tests/test_mappers.py
tuanquanghpvn/rest_exam
134f5e7bf44f8e5b0c601e04410693067aef6c4e
[ "MIT" ]
null
null
null
apps/category/tests/test_mappers.py
tuanquanghpvn/rest_exam
134f5e7bf44f8e5b0c601e04410693067aef6c4e
[ "MIT" ]
null
null
null
apps/category/tests/test_mappers.py
tuanquanghpvn/rest_exam
134f5e7bf44f8e5b0c601e04410693067aef6c4e
[ "MIT" ]
null
null
null
from apps.base.mappers import (PagingRequestSchema, PagingResponseSchema) from apps.category.mappers import (CategorySchema, GetCategoryRequestSchema, PostCategoryRequestSchema, PutCategoryRequestSchema, DeleteCategoryRequestSchema) from contracts.base import (LIMIT_NAME, OFFSET_NAME, SORT_NAME, COUNT_NAME, CURRENT_NAME, PREV_NAME, NEXT_NAME) from contracts.category import (CATEGORY_ID, NAME, SLUG, GetCategoryRequest, PostCategoryRequest, PutCategoryRequest, DeleteCategoryRequest) TEST_COUNT = 10 TEST_CURRENT = "http://sample" TEST_PREV = "http://sample/prev" TEST_NEXT = "http://sample/next" TEST_LIMIT = 10 TEST_OFFSET = 10 TEST_SORT = "sort" TEST_PATH = "http://sample/path" PAGING_REQUEST = { LIMIT_NAME: TEST_LIMIT, OFFSET_NAME: TEST_OFFSET, SORT_NAME: TEST_SORT } PAGING_RESPONSE = { COUNT_NAME: TEST_COUNT, CURRENT_NAME: TEST_CURRENT, PREV_NAME: TEST_PREV, NEXT_NAME: TEST_NEXT } TEST_CATEGORY_ID = 1 TEST_CATEGORY_NAME = 'Category name 1' TEST_CATEGORY_SLUG = 'category-name-1' TEST_CATEGORY = { CATEGORY_ID: TEST_CATEGORY_ID, NAME: TEST_CATEGORY_NAME, SLUG: TEST_CATEGORY_SLUG } TEST_CATEGORY_POST = { NAME: TEST_CATEGORY_NAME, SLUG: TEST_CATEGORY_SLUG } TEST_CATEGORY_PUT = { NAME: TEST_CATEGORY_NAME, SLUG: TEST_CATEGORY_SLUG } def _test_category(category, has_id=False, has_name=False, has_slug=False): assert category.id == (TEST_CATEGORY_ID if has_id else None) assert category.name == (TEST_CATEGORY_NAME if has_name else None) assert category.slug == (TEST_CATEGORY_SLUG if has_slug else None) class TestPagingRequestSchema(object): def test_load(self): actual, errors = PagingRequestSchema().load(PAGING_REQUEST) assert actual == PAGING_REQUEST assert errors == {} class TestPagingResponseSchema(object): def test_load(self): actual, errors = PagingResponseSchema().load(PAGING_RESPONSE) assert actual == PAGING_RESPONSE assert errors == {} class TestCategorySchema(object): def test_load(self): actual, errors = CategorySchema().load(TEST_CATEGORY) assert actual == TEST_CATEGORY assert errors == {} class TestGetCategorySchema(object): def test_load(self): request = dict(PAGING_REQUEST) actual, errors = GetCategoryRequestSchema().load(request) assert isinstance(actual, GetCategoryRequest) assert errors == {} class TestPostCategorySchema(object): def test_load(self): expected = { NAME: TEST_CATEGORY_NAME, SLUG: TEST_CATEGORY_SLUG } actual, errors = PostCategoryRequestSchema().load(expected) assert isinstance(actual, PostCategoryRequest) assert errors == {} _test_category(category=actual, has_name=True, has_slug=True) class TestPutCategorySchema(object): def test_load(self): expected = { CATEGORY_ID: TEST_CATEGORY_ID, NAME: TEST_CATEGORY_NAME, SLUG: TEST_CATEGORY_SLUG } actual, errors = PutCategoryRequestSchema().load(expected) assert isinstance(actual, PutCategoryRequest) assert errors == {} _test_category(category=actual, has_id=True, has_name=True, has_slug=True) class TestDeleteCategorySchema(object): def test_load(self): expected = { CATEGORY_ID: TEST_CATEGORY_ID, } actual, errors = DeleteCategoryRequestSchema().load(expected) assert isinstance(actual, DeleteCategoryRequest) assert errors == {} _test_category(category=actual, has_id=True)
31.042017
117
0.699783
12bc67d0dd1b92c28735f9f657acb1701550c160
2,567
py
Python
test_kitti_depth.py
xuyufan936831611/vo_imu
8a5753384b4a5c08dc83edf718d76a2ac308a298
[ "MIT" ]
null
null
null
test_kitti_depth.py
xuyufan936831611/vo_imu
8a5753384b4a5c08dc83edf718d76a2ac308a298
[ "MIT" ]
null
null
null
test_kitti_depth.py
xuyufan936831611/vo_imu
8a5753384b4a5c08dc83edf718d76a2ac308a298
[ "MIT" ]
null
null
null
from __future__ import division import tensorflow as tf import numpy as np import os # import scipy.misc import PIL.Image as pil from SfMLearner import SfMLearner flags = tf.app.flags flags.DEFINE_integer("batch_size", 4, "The size of of a sample batch") flags.DEFINE_integer("img_height", 128, "Image height") flags.DEFINE_integer("img_width", 416, "Image width") flags.DEFINE_string("dataset_dir", None, "Dataset directory") flags.DEFINE_string("output_dir", None, "Output directory") flags.DEFINE_string("ckpt_file", None, "checkpoint file") FLAGS = flags.FLAGS def main(_): with open('data/kitti/test_files_eigen.txt', 'r') as f: test_files = f.readlines() test_files = [FLAGS.dataset_dir + t[:-1] for t in test_files] if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) basename = os.path.basename(FLAGS.ckpt_file) output_file = FLAGS.output_dir + '/' + basename sfm = SfMLearner() sfm.setup_inference(img_height=FLAGS.img_height, img_width=FLAGS.img_width, batch_size=FLAGS.batch_size, mode='depth') saver = tf.train.Saver([var for var in tf.model_variables()]) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: saver.restore(sess, FLAGS.ckpt_file) pred_all = [] for t in range(0, len(test_files), FLAGS.batch_size): if t % 100 == 0: print('processing %s: %d/%d' % (basename, t, len(test_files))) inputs = np.zeros( (FLAGS.batch_size, FLAGS.img_height, FLAGS.img_width, 3), dtype=np.uint8) for b in range(FLAGS.batch_size): idx = t + b if idx >= len(test_files): break fh = open(test_files[idx], 'r') raw_im = pil.open(fh) scaled_im = raw_im.resize((FLAGS.img_width, FLAGS.img_height), pil.ANTIALIAS) inputs[b] = np.array(scaled_im) # im = scipy.misc.imread(test_files[idx]) # inputs[b] = scipy.misc.imresize(im, (FLAGS.img_height, FLAGS.img_width)) pred = sfm.inference(inputs, sess, mode='depth') for b in range(FLAGS.batch_size): idx = t + b if idx >= len(test_files): break pred_all.append(pred['depth'][b,:,:]) np.save(output_file, pred_all) if __name__ == '__main__': tf.app.run()
41.403226
93
0.600312
7d5cd0c1cd9c42c9060933211ff9482c58989605
21,585
py
Python
chia/util/keychain.py
Water-Networks/chia-blockchain
58d2c427397dd45f36aa9e964fd6a11422b4eda4
[ "Apache-2.0" ]
null
null
null
chia/util/keychain.py
Water-Networks/chia-blockchain
58d2c427397dd45f36aa9e964fd6a11422b4eda4
[ "Apache-2.0" ]
null
null
null
chia/util/keychain.py
Water-Networks/chia-blockchain
58d2c427397dd45f36aa9e964fd6a11422b4eda4
[ "Apache-2.0" ]
null
null
null
import colorama import os import pkg_resources import sys import unicodedata from bitstring import BitArray # pyright: reportMissingImports=false from blspy import AugSchemeMPL, G1Element, PrivateKey # pyright: reportMissingImports=false from chia.util.hash import std_hash from chia.util.keyring_wrapper import KeyringWrapper from hashlib import pbkdf2_hmac from pathlib import Path from secrets import token_bytes from time import sleep from typing import Any, Dict, List, Optional, Tuple CURRENT_KEY_VERSION = "1.8" DEFAULT_USER = f"user-chia-{CURRENT_KEY_VERSION}" # e.g. user-chia-1.8 DEFAULT_SERVICE = f"chia-{DEFAULT_USER}" # e.g. chia-user-chia-1.8 DEFAULT_PASSPHRASE_PROMPT = ( colorama.Fore.YELLOW + colorama.Style.BRIGHT + "(Unlock Keyring)" + colorama.Style.RESET_ALL + " Passphrase: " ) # noqa: E501 FAILED_ATTEMPT_DELAY = 0.5 MAX_KEYS = 100 MAX_RETRIES = 3 MIN_PASSPHRASE_LEN = 8 class KeyringIsLocked(Exception): pass class KeyringRequiresMigration(Exception): pass class KeyringCurrentPassphraseIsInvalid(Exception): pass class KeyringMaxUnlockAttempts(Exception): pass def supports_keyring_passphrase() -> bool: # TODO: Enable once all platforms are supported and GUI work is finalized (including migration) return False or os.environ.get("CHIA_PASSPHRASE_SUPPORT", "").lower() in ["1", "true"] # from sys import platform # return platform == "linux" def supports_os_passphrase_storage() -> bool: return sys.platform in ["darwin", "win32", "cygwin"] def passphrase_requirements() -> Dict[str, Any]: """ Returns a dictionary specifying current passphrase requirements """ if not supports_keyring_passphrase: return {} return {"is_optional": True, "min_length": MIN_PASSPHRASE_LEN} # lgtm [py/clear-text-logging-sensitive-data] def set_keys_root_path(keys_root_path: Path) -> None: """ Used to set the keys_root_path prior to instantiating the KeyringWrapper shared instance. """ KeyringWrapper.set_keys_root_path(keys_root_path) def obtain_current_passphrase(prompt: str = DEFAULT_PASSPHRASE_PROMPT, use_passphrase_cache: bool = False) -> str: """ Obtains the master passphrase for the keyring, optionally using the cached value (if previously set). If the passphrase isn't already cached, the user is prompted interactively to enter their passphrase a max of MAX_RETRIES times before failing. """ from chia.cmds.passphrase_funcs import prompt_for_passphrase if use_passphrase_cache: passphrase, validated = KeyringWrapper.get_shared_instance().get_cached_master_passphrase() if passphrase: # If the cached passphrase was previously validated, we assume it's... valid if validated: return passphrase # Cached passphrase needs to be validated if KeyringWrapper.get_shared_instance().master_passphrase_is_valid(passphrase): KeyringWrapper.get_shared_instance().set_cached_master_passphrase(passphrase, validated=True) return passphrase else: # Cached passphrase is bad, clear the cache KeyringWrapper.get_shared_instance().set_cached_master_passphrase(None) # Prompt interactively with up to MAX_RETRIES attempts for i in range(MAX_RETRIES): colorama.init() passphrase = prompt_for_passphrase(prompt) if KeyringWrapper.get_shared_instance().master_passphrase_is_valid(passphrase): # If using the passphrase cache, and the user inputted a passphrase, update the cache if use_passphrase_cache: KeyringWrapper.get_shared_instance().set_cached_master_passphrase(passphrase, validated=True) return passphrase sleep(FAILED_ATTEMPT_DELAY) print("Incorrect passphrase\n") raise KeyringMaxUnlockAttempts("maximum passphrase attempts reached") def unlocks_keyring(use_passphrase_cache=False): """ Decorator used to unlock the keyring interactively, if necessary """ def inner(func): def wrapper(*args, **kwargs): try: if KeyringWrapper.get_shared_instance().has_master_passphrase(): obtain_current_passphrase(use_passphrase_cache=use_passphrase_cache) except Exception as e: print(f"Unable to unlock the keyring: {e}") sys.exit(1) return func(*args, **kwargs) return wrapper return inner def bip39_word_list() -> str: return pkg_resources.resource_string(__name__, "english.txt").decode() def generate_mnemonic() -> str: mnemonic_bytes = token_bytes(32) mnemonic = bytes_to_mnemonic(mnemonic_bytes) return mnemonic def bytes_to_mnemonic(mnemonic_bytes: bytes) -> str: if len(mnemonic_bytes) not in [16, 20, 24, 28, 32]: raise ValueError( f"Data length should be one of the following: [16, 20, 24, 28, 32], but it is {len(mnemonic_bytes)}." ) word_list = bip39_word_list().splitlines() CS = len(mnemonic_bytes) // 4 checksum = BitArray(bytes(std_hash(mnemonic_bytes)))[:CS] bitarray = BitArray(mnemonic_bytes) + checksum mnemonics = [] assert len(bitarray) % 11 == 0 for i in range(0, len(bitarray) // 11): start = i * 11 end = start + 11 bits = bitarray[start:end] m_word_position = bits.uint m_word = word_list[m_word_position] mnemonics.append(m_word) return " ".join(mnemonics) def bytes_from_mnemonic(mnemonic_str: str) -> bytes: mnemonic: List[str] = mnemonic_str.split(" ") if len(mnemonic) not in [12, 15, 18, 21, 24]: raise ValueError("Invalid mnemonic length") word_list = {word: i for i, word in enumerate(bip39_word_list().splitlines())} bit_array = BitArray() for i in range(0, len(mnemonic)): word = mnemonic[i] if word not in word_list: raise ValueError(f"'{word}' is not in the mnemonic dictionary; may be misspelled") value = word_list[word] bit_array.append(BitArray(uint=value, length=11)) CS: int = len(mnemonic) // 3 ENT: int = len(mnemonic) * 11 - CS assert len(bit_array) == len(mnemonic) * 11 assert ENT % 32 == 0 entropy_bytes = bit_array[:ENT].bytes checksum_bytes = bit_array[ENT:] checksum = BitArray(std_hash(entropy_bytes))[:CS] assert len(checksum_bytes) == CS if checksum != checksum_bytes: raise ValueError("Invalid order of mnemonic words") return entropy_bytes def mnemonic_to_seed(mnemonic: str, passphrase: str) -> bytes: """ Uses BIP39 standard to derive a seed from entropy bytes. """ salt_str: str = "mnemonic" + passphrase salt = unicodedata.normalize("NFKD", salt_str).encode("utf-8") mnemonic_normalized = unicodedata.normalize("NFKD", mnemonic).encode("utf-8") seed = pbkdf2_hmac("sha512", mnemonic_normalized, salt, 2048) assert len(seed) == 64 return seed def default_keychain_user() -> str: return DEFAULT_USER def default_keychain_service() -> str: return DEFAULT_SERVICE def get_private_key_user(user: str, index: int) -> str: """ Returns the keychain user string for a key index. """ return f"wallet-{user}-{index}" class Keychain: """ The keychain stores two types of keys: private keys, which are PrivateKeys from blspy, and private key seeds, which are bytes objects that are used as a seed to construct PrivateKeys. Private key seeds are converted to mnemonics when shown to users. Both types of keys are stored as hex strings in the python keyring, and the implementation of the keyring depends on OS. Both types of keys can be added, and get_private_keys returns a list of all keys. """ def __init__(self, user: Optional[str] = None, service: Optional[str] = None): self.user = user if user is not None else default_keychain_user() self.service = service if service is not None else default_keychain_service() self.keyring_wrapper = KeyringWrapper.get_shared_instance() @unlocks_keyring(use_passphrase_cache=True) def _get_pk_and_entropy(self, user: str) -> Optional[Tuple[G1Element, bytes]]: """ Returns the keychain contents for a specific 'user' (key index). The contents include an G1Element and the entropy required to generate the private key. Note that generating the actual private key also requires the passphrase. """ read_str = self.keyring_wrapper.get_passphrase(self.service, user) if read_str is None or len(read_str) == 0: return None str_bytes = bytes.fromhex(read_str) return ( G1Element.from_bytes(str_bytes[: G1Element.SIZE]), str_bytes[G1Element.SIZE :], # flake8: noqa ) def _get_free_private_key_index(self) -> int: """ Get the index of the first free spot in the keychain. """ index = 0 while True: pk = get_private_key_user(self.user, index) pkent = self._get_pk_and_entropy(pk) if pkent is None: return index index += 1 @unlocks_keyring(use_passphrase_cache=True) def add_private_key(self, mnemonic: str, passphrase: str) -> PrivateKey: """ Adds a private key to the keychain, with the given entropy and passphrase. The keychain itself will store the public key, and the entropy bytes, but not the passphrase. """ seed = mnemonic_to_seed(mnemonic, passphrase) entropy = bytes_from_mnemonic(mnemonic) index = self._get_free_private_key_index() key = AugSchemeMPL.key_gen(seed) fingerprint = key.get_g1().get_fingerprint() if fingerprint in [pk.get_fingerprint() for pk in self.get_all_public_keys()]: # Prevents duplicate add return key self.keyring_wrapper.set_passphrase( self.service, get_private_key_user(self.user, index), bytes(key.get_g1()).hex() + entropy.hex(), ) return key def get_first_private_key(self, passphrases: List[str] = [""]) -> Optional[Tuple[PrivateKey, bytes]]: """ Returns the first key in the keychain that has one of the passed in passphrases. """ index = 0 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) while index <= MAX_KEYS: if pkent is not None: pk, ent = pkent for pp in passphrases: mnemonic = bytes_to_mnemonic(ent) seed = mnemonic_to_seed(mnemonic, pp) key = AugSchemeMPL.key_gen(seed) if key.get_g1() == pk: return (key, ent) index += 1 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) return None def get_private_key_by_fingerprint( self, fingerprint: int, passphrases: List[str] = [""] ) -> Optional[Tuple[PrivateKey, bytes]]: """ Return first private key which have the given public key fingerprint. """ index = 0 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) while index <= MAX_KEYS: if pkent is not None: pk, ent = pkent for pp in passphrases: mnemonic = bytes_to_mnemonic(ent) seed = mnemonic_to_seed(mnemonic, pp) key = AugSchemeMPL.key_gen(seed) if pk.get_fingerprint() == fingerprint: return (key, ent) index += 1 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) return None def get_all_private_keys(self, passphrases: List[str] = [""]) -> List[Tuple[PrivateKey, bytes]]: """ Returns all private keys which can be retrieved, with the given passphrases. A tuple of key, and entropy bytes (i.e. mnemonic) is returned for each key. """ all_keys: List[Tuple[PrivateKey, bytes]] = [] index = 0 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) while index <= MAX_KEYS: if pkent is not None: pk, ent = pkent for pp in passphrases: mnemonic = bytes_to_mnemonic(ent) seed = mnemonic_to_seed(mnemonic, pp) key = AugSchemeMPL.key_gen(seed) if key.get_g1() == pk: all_keys.append((key, ent)) index += 1 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) return all_keys def get_all_public_keys(self) -> List[G1Element]: """ Returns all public keys. """ all_keys: List[Tuple[G1Element, bytes]] = [] index = 0 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) while index <= MAX_KEYS: if pkent is not None: pk, ent = pkent all_keys.append(pk) index += 1 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) return all_keys def get_first_public_key(self) -> Optional[G1Element]: """ Returns the first public key. """ index = 0 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) while index <= MAX_KEYS: if pkent is not None: pk, ent = pkent return pk index += 1 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) return None def delete_key_by_fingerprint(self, fingerprint: int): """ Deletes all keys which have the given public key fingerprint. """ index = 0 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) while index <= MAX_KEYS: if pkent is not None: pk, ent = pkent if pk.get_fingerprint() == fingerprint: self.keyring_wrapper.delete_passphrase(self.service, get_private_key_user(self.user, index)) index += 1 pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) def delete_all_keys(self): """ Deletes all keys from the keychain. """ index = 0 delete_exception = False pkent = None while True: try: pkent = self._get_pk_and_entropy(get_private_key_user(self.user, index)) self.keyring_wrapper.delete_passphrase(self.service, get_private_key_user(self.user, index)) except Exception: # Some platforms might throw on no existing key delete_exception = True # Stop when there are no more keys to delete if (pkent is None or delete_exception) and index > MAX_KEYS: break index += 1 index = 0 delete_exception = True pkent = None while True: try: pkent = self._get_pk_and_entropy( get_private_key_user(self.user, index) ) # changed from _get_fingerprint_and_entropy to _get_pk_and_entropy - GH self.keyring_wrapper.delete_passphrase(self.service, get_private_key_user(self.user, index)) except Exception: # Some platforms might throw on no existing key delete_exception = True # Stop when there are no more keys to delete if (pkent is None or delete_exception) and index > MAX_KEYS: break index += 1 @staticmethod def is_keyring_locked() -> bool: """ Returns whether the keyring is in a locked state. If the keyring doesn't have a master passphrase set, or if a master passphrase is set and the cached passphrase is valid, the keyring is "unlocked" """ # Unlocked: If a master passphrase isn't set, or if the cached passphrase is valid if not Keychain.has_master_passphrase() or ( Keychain.has_cached_passphrase() and Keychain.master_passphrase_is_valid(Keychain.get_cached_master_passphrase()) ): return False # Locked: Everything else return True @staticmethod def needs_migration() -> bool: """ Returns a bool indicating whether the underlying keyring needs to be migrated to the new format for passphrase support. """ return KeyringWrapper.get_shared_instance().using_legacy_keyring() @staticmethod def handle_migration_completed(): """ When migration completes outside of the current process, we rely on a notification to inform the current process that it needs to reset/refresh its keyring. This allows us to stop using the legacy keyring in an already-running daemon if migration is completed using the CLI. """ KeyringWrapper.get_shared_instance().refresh_keyrings() @staticmethod def migrate_legacy_keyring(passphrase: Optional[str] = None, cleanup_legacy_keyring: bool = False) -> None: """ Begins legacy keyring migration in a non-interactive manner """ if passphrase is not None and passphrase != "": KeyringWrapper.get_shared_instance().set_master_passphrase( current_passphrase=None, new_passphrase=passphrase, write_to_keyring=False, allow_migration=False ) KeyringWrapper.get_shared_instance().migrate_legacy_keyring(cleanup_legacy_keyring=cleanup_legacy_keyring) @staticmethod def passphrase_is_optional() -> bool: """ Returns whether a user-supplied passphrase is optional, as specified by the passphrase requirements. """ return passphrase_requirements().get("is_optional", False) @staticmethod def minimum_passphrase_length() -> int: """ Returns the minimum passphrase length, as specified by the passphrase requirements. """ return passphrase_requirements().get("min_length", 0) @staticmethod def passphrase_meets_requirements(passphrase: Optional[str]) -> bool: """ Returns whether the provided passphrase satisfies the passphrase requirements. """ # Passphrase is not required and None was provided if (passphrase is None or passphrase == "") and Keychain.passphrase_is_optional(): return True # Passphrase meets the minimum length requirement if passphrase is not None and len(passphrase) >= Keychain.minimum_passphrase_length(): return True return False @staticmethod def has_master_passphrase() -> bool: """ Returns a bool indicating whether the underlying keyring data is secured by a passphrase. """ return KeyringWrapper.get_shared_instance().has_master_passphrase() @staticmethod def master_passphrase_is_valid(passphrase: str, force_reload: bool = False) -> bool: """ Checks whether the provided passphrase can unlock the keyring. If force_reload is true, the keyring payload will be re-read from the backing file. If false, the passphrase will be checked against the in-memory payload. """ return KeyringWrapper.get_shared_instance().master_passphrase_is_valid(passphrase, force_reload=force_reload) @staticmethod def has_cached_passphrase() -> bool: """ Returns whether the master passphrase has been cached (it may need to be validated) """ return KeyringWrapper.get_shared_instance().has_cached_master_passphrase() @staticmethod def get_cached_master_passphrase() -> str: """ Returns the cached master passphrase """ passphrase, _ = KeyringWrapper.get_shared_instance().get_cached_master_passphrase() return passphrase @staticmethod def set_cached_master_passphrase(passphrase: Optional[str]) -> None: """ Caches the provided master passphrase """ KeyringWrapper.get_shared_instance().set_cached_master_passphrase(passphrase) @staticmethod def set_master_passphrase( current_passphrase: Optional[str], new_passphrase: str, *, allow_migration: bool = True, save_passphrase: bool = False, ) -> None: """ Encrypts the keyring contents to new passphrase, provided that the current passphrase can decrypt the contents """ KeyringWrapper.get_shared_instance().set_master_passphrase( current_passphrase, new_passphrase, allow_migration=allow_migration, save_passphrase=save_passphrase ) @staticmethod def remove_master_passphrase(current_passphrase: Optional[str]) -> None: """ Removes the user-provided master passphrase, and replaces it with the default master passphrase. The keyring contents will remain encrypted, but to the default passphrase. """ KeyringWrapper.get_shared_instance().remove_master_passphrase(current_passphrase)
37.151463
117
0.649571
83ef2dbc3031bc08f0ac190551b9d5d9eb51289d
40,694
py
Python
examples/flax/language-modeling/run_t5_mlm_flax.py
bhavika/transformers
65cf33e7e53cd46313f3655f274b3f6ca0fd679d
[ "Apache-2.0" ]
1
2022-03-16T13:02:15.000Z
2022-03-16T13:02:15.000Z
examples/flax/language-modeling/run_t5_mlm_flax.py
bhavika/transformers
65cf33e7e53cd46313f3655f274b3f6ca0fd679d
[ "Apache-2.0" ]
2
2022-03-14T10:13:16.000Z
2022-03-14T11:50:27.000Z
examples/flax/language-modeling/run_t5_mlm_flax.py
bhavika/transformers
65cf33e7e53cd46313f3655f274b3f6ca0fd679d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pretraining the library models for T5-like span-masked language modeling on a text file or a dataset. Here is the full list of checkpoints on the hub that can be pretrained by this script: https://huggingface.co/models?filter=t5 """ import json import logging import os import sys import time from dataclasses import asdict, dataclass, field # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. from enum import Enum from itertools import chain from pathlib import Path from typing import Dict, List, Optional import numpy as np from datasets import load_dataset from tqdm import tqdm import flax import jax import jax.numpy as jnp import optax from flax import jax_utils, traverse_util from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, AutoTokenizer, BatchEncoding, FlaxT5ForConditionalGeneration, HfArgumentParser, PreTrainedTokenizerBase, T5Config, is_tensorboard_available, set_seed, ) from transformers.file_utils import get_full_repo_name from transformers.models.t5.modeling_flax_t5 import shift_tokens_right MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, ) validation_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization and masking. Sequences longer than this will be truncated. Default to the max input length of the model." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"} ) mean_noise_span_length: float = field( default=3.0, metadata={"help": "Mean span length of masked tokens"}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length): """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ . Training parameters to avoid padding with random_spans_noise_mask. When training a model with random_spans_noise_mask, we would like to set the other training hyperparmeters in a way that avoids padding. This function helps us compute these hyperparameters. We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens, and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens. This function tells us the required number of tokens in the raw example (for split_tokens()) as well as the length of the encoded targets. Note that this function assumes the inputs and targets will have EOS appended and includes that in the reported length. Args: inputs_length: an integer - desired length of the tokenized inputs sequence noise_density: a float mean_noise_span_length: a float Returns: tokens_length: length of original text in tokens targets_length: an integer - length in tokens of encoded targets sequence """ def _tokens_length_to_inputs_length_targets_length(tokens_length): num_noise_tokens = int(round(tokens_length * noise_density)) num_nonnoise_tokens = tokens_length - num_noise_tokens num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length)) # inputs contain all nonnoise tokens, sentinels for all noise spans # and one EOS token. _input_length = num_nonnoise_tokens + num_noise_spans + 1 _output_length = num_noise_tokens + num_noise_spans + 1 return _input_length, _output_length tokens_length = inputs_length while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length: tokens_length += 1 inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length) # minor hack to get the targets length to be equal to inputs length # which is more likely to have been set to a nice round number. if noise_density == 0.5 and targets_length > inputs_length: tokens_length -= 1 targets_length -= 1 return tokens_length, targets_length @flax.struct.dataclass class FlaxDataCollatorForT5MLM: """ Data collator used for T5 span-masked language modeling. It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length. For more information on how T5 span-masked language modeling works, one can take a look at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__ or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ . Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. noise_density (:obj:`float`): The probability with which to (randomly) mask tokens in the input. mean_noise_span_length (:obj:`float`): The average span length of the masked tokens. input_length (:obj:`int`): The expected input length after masking. target_length (:obj:`int`): The expected target length after masking. pad_token_id: (:obj:`int`): The pad token id of the model decoder_start_token_id: (:obj:`int): The decoder start token id of the model """ tokenizer: PreTrainedTokenizerBase noise_density: float mean_noise_span_length: float input_length: int target_length: int pad_token_id: int decoder_start_token_id: int def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]: # convert list to dict and tensorize input batch = BatchEncoding( {k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()} ) input_ids = batch["input_ids"] batch_size, expandend_input_length = input_ids.shape mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)]) labels_mask = ~mask_indices input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8)) labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8)) batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel) batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel) if batch["input_ids"].shape[-1] != self.input_length: raise ValueError( f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but should be {self.target_length}." ) if batch["labels"].shape[-1] != self.target_length: raise ValueError( f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be {self.target_length}." ) # to check that tokens are correctly proprocessed, one can run `self.tokenizer.batch_decode(input_ids)` and `self.tokenizer.batch_decode(labels)` here... batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.pad_token_id, self.decoder_start_token_id ) return batch def create_sentinel_ids(self, mask_indices): """ Sentinel ids creation given the indices that should be masked. The start indices of each mask are replaced by the sentinel ids in increasing order. Consecutive mask indices to be deleted are replaced with `-1`. """ start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices start_indices[:, 0] = mask_indices[:, 0] sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices) sentinel_ids = np.where(sentinel_ids != 0, (len(self.tokenizer) - sentinel_ids), 0) sentinel_ids -= mask_indices - start_indices return sentinel_ids def filter_input_ids(self, input_ids, sentinel_ids): """ Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting. This will reduce the sequence length from `expanded_inputs_length` to `input_length`. """ batch_size = input_ids.shape[0] input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids) # input_ids tokens and sentinel tokens are >= 0, tokens < 0 are # masked tokens coming after sentinel tokens and should be removed input_ids = input_ids_full[input_ids_full >= 0].reshape((batch_size, -1)) input_ids = np.concatenate( [input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1 ) return input_ids def random_spans_noise_mask(self, length): """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ . Noise mask consisting of random spans of noise tokens. The number of noise tokens and the number of noise spans and non-noise spans are determined deterministically as follows: num_noise_tokens = round(length * noise_density) num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length) Spans alternate between non-noise and noise, beginning with non-noise. Subject to the above restrictions, all masks are equally likely. Args: length: an int32 scalar (length of the incoming token sequence) noise_density: a float - approximate density of output mask mean_noise_span_length: a number Returns: a boolean tensor with shape [length] """ orig_length = length num_noise_tokens = int(np.round(length * self.noise_density)) # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens. num_noise_tokens = min(max(num_noise_tokens, 1), length - 1) num_noise_spans = int(np.round(num_noise_tokens / self.mean_noise_span_length)) # avoid degeneracy by ensuring positive number of noise spans num_noise_spans = max(num_noise_spans, 1) num_nonnoise_tokens = length - num_noise_tokens # pick the lengths of the noise spans and the non-noise spans def _random_segmentation(num_items, num_segments): """Partition a sequence of items randomly into non-empty segments. Args: num_items: an integer scalar > 0 num_segments: an integer scalar in [1, num_items] Returns: a Tensor with shape [num_segments] containing positive integers that add up to num_items """ mask_indices = np.arange(num_items - 1) < (num_segments - 1) np.random.shuffle(mask_indices) first_in_segment = np.pad(mask_indices, [[1, 0]]) segment_id = np.cumsum(first_in_segment) # count length of sub segments assuming that list is sorted _, segment_length = np.unique(segment_id, return_counts=True) return segment_length noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans) nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans) interleaved_span_lengths = np.reshape( np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2] ) span_starts = np.cumsum(interleaved_span_lengths)[:-1] span_start_indicator = np.zeros((length,), dtype=np.int8) span_start_indicator[span_starts] = True span_num = np.cumsum(span_start_indicator) is_noise = np.equal(span_num % 2, 1) return is_noise[:orig_length] def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray: num_samples = len(samples_idx) samples_to_remove = num_samples % batch_size if samples_to_remove != 0: samples_idx = samples_idx[:-samples_to_remove] sections_split = num_samples // batch_size batch_idx = np.split(samples_idx, sections_split) return batch_idx def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO, datefmt="[%X]", ) # Log on each process the small summary: logger = logging.getLogger(__name__) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: if training_args.hub_model_id is None: repo_name = get_full_repo_name( Path(training_args.output_dir).absolute().name, token=training_args.hub_token ) else: repo_name = training_args.hub_model_id repo = Repository(training_args.output_dir, clone_from=repo_name) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.config_name: config = T5Config.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer) ) elif model_args.model_name_or_path: config = T5Config.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # Since we make sure that all sequences are of the same length, no attention_mask is needed. def tokenize_function(examples): return tokenizer(examples[text_column_name], return_attention_mask=False) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token. # To ensure that the input length is `max_seq_length`, we need to increase the maximum length # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly. expanded_inputs_length, targets_length = compute_input_and_target_lengths( inputs_length=max_seq_length, noise_density=data_args.mlm_probability, mean_noise_span_length=data_args.mean_noise_span_length, ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= expanded_inputs_length: total_length = (total_length // expanded_inputs_length) * expanded_inputs_length # Split by chunks of max_len. result = { k: [t[i : i + expanded_inputs_length] for i in range(0, total_length, expanded_inputs_length)] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) if model_args.model_name_or_path: model = FlaxT5ForConditionalGeneration.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) ) else: config.vocab_size = len(tokenizer) model = FlaxT5ForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)) # Data collator # This one will take care of randomly masking the tokens. data_collator = FlaxDataCollatorForT5MLM( tokenizer=tokenizer, noise_density=data_args.mlm_probability, mean_noise_span_length=data_args.mean_noise_span_length, input_length=max_seq_length, target_length=targets_length, pad_token_id=model.config.pad_token_id, decoder_start_token_id=model.config.decoder_start_token_id, ) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps ) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) flat_mask = { path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")]) for path in flat_params } return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) # Define gradient update step fn def train_step(state, batch, dropout_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_fn(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] # compute loss loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean( {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch" ) return new_state, metrics, new_dropout_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] # compute loss loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) # compute accuracy accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) # summarize metrics metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) train_time = 0 epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset num_train_samples = len(tokenized_datasets["train"]) train_samples_idx = np.random.permutation(np.arange(num_train_samples)) train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) # Gather the indexes for creating the batch and do a training step for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward model_inputs = shard(model_inputs.data) state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * (num_train_samples // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = jax_utils.unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== num_eval_samples = len(tokenized_datasets["validation"]) eval_samples_idx = jnp.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward model_inputs = shard(model_inputs.data) metrics = p_eval_step(state.params, model_inputs) eval_metrics.append(metrics) # get eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_map(jnp.mean, eval_metrics) # Update progress bar epochs.write(f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})") # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) # Eval after training if training_args.do_eval: num_eval_samples = len(tokenized_datasets["validation"]) eval_samples_idx = jnp.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward model_inputs = shard(model_inputs.data) metrics = p_eval_step(state.params, model_inputs) eval_metrics.append(metrics) # get eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_map(lambda metric: jnp.mean(metric).item(), eval_metrics) if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
44.916115
209
0.675063
427c9369ab053d0e3043bf36625be835def10bff
965
py
Python
Task2F.py
otss2/1CW-Computing-Project
6e19d04ec0ca1f8bcaf047424b74a9bcde96f85b
[ "MIT" ]
null
null
null
Task2F.py
otss2/1CW-Computing-Project
6e19d04ec0ca1f8bcaf047424b74a9bcde96f85b
[ "MIT" ]
null
null
null
Task2F.py
otss2/1CW-Computing-Project
6e19d04ec0ca1f8bcaf047424b74a9bcde96f85b
[ "MIT" ]
null
null
null
from floodsystem import plot from floodsystem.plot import plot_water_level_with_fit, plot_water_levels from floodsystem.stationdata import build_station_list, update_water_levels from floodsystem.flood import stations_highest_rel_level from floodsystem.datafetcher import fetch_measure_levels import matplotlib.pyplot as plt import datetime from datetime import timedelta from floodsystem.analysis import * def run(): """Requirements for Task 2F""" # Build list of stations to plot stations = build_station_list() update_water_levels(stations) N = 5 stations_to_plot = stations_highest_rel_level(stations, N) dt = timedelta(days=2) for station in stations_to_plot: dates, levels = fetch_measure_levels(station.measure_id, dt) if levels: plot_water_level_with_fit(station, dates, levels, 4) if __name__ == "__main__": print("*** Task 2F: CUED Part IA Flood Warning System ***") run()
27.571429
75
0.752332
f7dcd4b15929f7e4d59cb222f357b0b502573463
717
py
Python
setup.py
ryneches/Shand
ec7f8c914d7099b96e755c75b5313cbae1cab3c5
[ "BSD-3-Clause" ]
null
null
null
setup.py
ryneches/Shand
ec7f8c914d7099b96e755c75b5313cbae1cab3c5
[ "BSD-3-Clause" ]
2
2016-02-17T03:16:00.000Z
2016-02-17T03:16:42.000Z
setup.py
ryneches/Shand
ec7f8c914d7099b96e755c75b5313cbae1cab3c5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from setuptools import setup, Extension from Cython.Distutils import build_ext from Cython.Build import cythonize setup( name='shand', version='0.1', description='A pipeline for investigating cospeciation in microbiomes', scripts=['scripts/shand'], url='http://github.com/ryneches/Shand', author='Russell Neches', author_email='ryneches@ucdavis.edu', license='BSD', packages=['shand'], install_requires=[ 'pandas', 'screed', 'hat_trie', 'scikit-bio', 'pyprind', 'psutil', 'cython' ], zip_safe=False, ext_modules = cythonize( 'shand/quicktree.pyx' ), test_suite = 'nose.collector' )
24.724138
75
0.633194
5f9287402641495d5edad30daa2d68e821d8f7c7
21,472
py
Python
pymatgen/analysis/tests/test_reaction_calculator.py
naik-aakash/pymatgen
394e0d71bf1d1025fcf75498cbb16aa3f41ce78c
[ "MIT" ]
1
2022-03-24T04:12:16.000Z
2022-03-24T04:12:16.000Z
pymatgen/analysis/tests/test_reaction_calculator.py
naik-aakash/pymatgen
394e0d71bf1d1025fcf75498cbb16aa3f41ce78c
[ "MIT" ]
null
null
null
pymatgen/analysis/tests/test_reaction_calculator.py
naik-aakash/pymatgen
394e0d71bf1d1025fcf75498cbb16aa3f41ce78c
[ "MIT" ]
null
null
null
# Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import unittest import warnings from collections import defaultdict from math import isnan import numpy as np from pymatgen.analysis.reaction_calculator import ( BalancedReaction, ComputedReaction, Reaction, ReactionError, ) from pymatgen.core.composition import Composition from pymatgen.entries.computed_entries import ComputedEntry class ReactionTest(unittest.TestCase): def setUp(self): warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_init(self): reactants = [Composition("Fe"), Composition("O2")] products = [Composition("Fe2O3")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "2 Fe + 1.5 O2 -> Fe2O3") self.assertEqual(rxn.normalized_repr, "4 Fe + 3 O2 -> 2 Fe2O3") d = rxn.as_dict() rxn = Reaction.from_dict(d) repr, factor = rxn.normalized_repr_and_factor() self.assertEqual(repr, "4 Fe + 3 O2 -> 2 Fe2O3") self.assertAlmostEqual(factor, 2) reactants = [Composition("FePO4"), Composition("Mn")] products = [Composition("FePO4"), Composition("Xe")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "FePO4 -> FePO4") products = [Composition("Ti2 O4"), Composition("O1")] reactants = [Composition("Ti1 O2")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "2 TiO2 -> 2 TiO2") reactants = [Composition("FePO4"), Composition("Li")] products = [Composition("LiFePO4")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "FePO4 + Li -> LiFePO4") reactants = [Composition("MgO")] products = [Composition("MgO")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "MgO -> MgO") reactants = [Composition("Mg")] products = [Composition("Mg")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "Mg -> Mg") reactants = [Composition("FePO4"), Composition("LiPO3")] products = [Composition("LiFeP2O7")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "FePO4 + LiPO3 -> LiFeP2O7") reactants = [Composition("Na"), Composition("K2O")] products = [Composition("Na2O"), Composition("K")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "2 Na + K2O -> Na2O + 2 K") # Test for an old bug which has a problem when excess product is # defined. products = [Composition("FePO4"), Composition("O")] reactants = [Composition("FePO4")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "FePO4 -> FePO4") products = list(map(Composition, ["LiCrO2", "La8Ti8O12", "O2"])) reactants = [Composition("LiLa3Ti3CrO12")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "LiLa3Ti3CrO12 -> LiCrO2 + 1.5 La2Ti2O3 + 2.75 O2") def test_rank(self): reactants = [Composition("La2Zr2O7"), Composition("LiCoO2")] products = [ Composition("La2O3"), Composition("Co2O3"), Composition("Li2ZrO3"), Composition("Li2O"), ] self.assertEqual( str(Reaction(reactants, products)), "La2Zr2O7 + 6 LiCoO2 -> La2O3 + 3 Co2O3 + 2 Li2ZrO3 + Li2O", ) reactants = [Composition("La2O3"), Composition("Co2O3"), Composition("Li2ZrO3")] products = [ Composition("Li2O"), Composition("La2Zr2O7"), Composition("Li3CoO3"), ] self.assertEqual( str(Reaction(reactants, products)), "La2O3 + 0.3333 Co2O3 + 2 Li2ZrO3 -> Li2O + La2Zr2O7 + 0.6667 Li3CoO3", ) reactants = [Composition("La2O3"), Composition("Co2O3"), Composition("Li2ZrO3")] products = [ Composition("Xe"), Composition("Li2O"), Composition("La2Zr2O7"), Composition("Li3CoO3"), ] self.assertEqual( str(Reaction(reactants, products)), "La2O3 + 0.3333 Co2O3 + 2 Li2ZrO3 -> Li2O + La2Zr2O7 + 0.6667 Li3CoO3", ) reactants = [Composition("La2O3"), Composition("Co2O3"), Composition("Li2ZrO3")] products = [ Composition("Xe"), Composition("Li2O"), Composition("La2Zr2O7"), Composition("Li3CoO3"), Composition("XeNe"), ] self.assertEqual( str(Reaction(reactants, products)), "La2O3 + 0.3333 Co2O3 + 2 Li2ZrO3 -> Li2O + La2Zr2O7 + 0.6667 Li3CoO3", ) reactants = [Composition("LiCoO2")] products = [ Composition("La2O3"), Composition("Co2O3"), Composition("Li2O1"), Composition("Li1F1"), Composition("Co1F3"), ] self.assertEqual( str(Reaction(reactants, products)), "1.667 LiCoO2 + 0.3333 CoF3 -> Co2O3 + 0.3333 Li2O + LiF", ) # this test can fail because of numerical rank calculation issues reactants = [Composition("LiCoO2"), Composition("Li2O1")] products = [Composition("ZrF4"), Composition("Co2O3")] self.assertEqual(str(Reaction(reactants, products)), "2 LiCoO2 -> Li2O + Co2O3") def test_singular_case(self): rxn = Reaction( [Composition("XeMn"), Composition("Li")], [Composition("S"), Composition("LiS2"), Composition("FeCl")], ) self.assertEqual(str(rxn), "Li + 2 S -> LiS2") def test_overdetermined(self): self.assertRaises(ReactionError, Reaction, [Composition("Li")], [Composition("LiO2")]) def test_scientific_notation(self): products = [Composition("FePO3.9999"), Composition("O2")] reactants = [Composition("FePO4")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "FePO4 -> Fe1P1O3.9999 + 5e-05 O2") self.assertEqual(rxn, Reaction.from_string(str(rxn))) rxn2 = Reaction.from_string("FePO4 + 20 CO -> 1e1 O2 + Fe1P1O4 + 20 C") self.assertEqual(str(rxn2), "20 CO -> 20 C + 10 O2") def test_equals(self): reactants = [Composition("Fe"), Composition("O2")] products = [Composition("Fe2O3")] rxn = Reaction(reactants, products) reactants = [Composition("O2"), Composition("Fe")] products = [Composition("Fe2O3")] rxn2 = Reaction(reactants, products) self.assertTrue(rxn == rxn2) def test_normalize_to(self): products = [Composition("Fe"), Composition("O2")] reactants = [Composition("Fe2O3")] rxn = Reaction(reactants, products) rxn.normalize_to(Composition("Fe"), 3) self.assertEqual(str(rxn), "1.5 Fe2O3 -> 3 Fe + 2.25 O2") def test_calculate_energy(self): reactants = [Composition("MgO"), Composition("Al2O3")] products = [Composition("MgAl2O4")] energies = { Composition("MgO"): -0.1, Composition("Al2O3"): -0.2, Composition("MgAl2O4"): -0.5, } rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "MgO + Al2O3 -> MgAl2O4") self.assertEqual(rxn.normalized_repr, "MgO + Al2O3 -> MgAl2O4") self.assertAlmostEqual(rxn.calculate_energy(energies), -0.2, 5) def test_as_entry(self): reactants = [Composition("MgO"), Composition("Al2O3")] products = [Composition("MgAl2O4")] energies = { Composition("MgO"): -0.1, Composition("Al2O3"): -0.2, Composition("MgAl2O4"): -0.5, } rxn = Reaction(reactants, products) entry = rxn.as_entry(energies) self.assertEqual(entry.name, "MgO + Al2O3 -> MgAl2O4") self.assertAlmostEqual(entry.energy, -0.2, 5) products = [Composition("Fe"), Composition("O2")] reactants = [Composition("Fe2O3")] rxn = Reaction(reactants, products) energies = { Composition("Fe"): 0, Composition("O2"): 0, Composition("Fe2O3"): 0.5, } entry = rxn.as_entry(energies) self.assertEqual(entry.composition, Composition("Fe1.0 O1.5")) self.assertAlmostEqual(entry.energy, -0.25, 5) def test_products_reactants(self): reactants = [ Composition("Li3Fe2(PO4)3"), Composition("Fe2O3"), Composition("O2"), ] products = [Composition("LiFePO4")] energies = { Composition("Li3Fe2(PO4)3"): -0.1, Composition("Fe2O3"): -0.2, Composition("O2"): -0.2, Composition("LiFePO4"): -0.5, } rxn = Reaction(reactants, products) self.assertIn(Composition("O2"), rxn.products, "O not in products!") self.assertIn(Composition("Li3Fe2(PO4)3"), rxn.reactants, "Li3Fe2(PO4)4 not in reactants!") self.assertEqual(str(rxn), "0.3333 Li3Fe2(PO4)3 + 0.1667 Fe2O3 -> 0.25 O2 + LiFePO4") self.assertEqual(rxn.normalized_repr, "4 Li3Fe2(PO4)3 + 2 Fe2O3 -> 3 O2 + 12 LiFePO4") self.assertAlmostEqual(rxn.calculate_energy(energies), -0.48333333, 5) def test_to_from_dict(self): reactants = [Composition("Fe"), Composition("O2")] products = [Composition("Fe2O3")] rxn = Reaction(reactants, products) d = rxn.as_dict() rxn = Reaction.from_dict(d) self.assertEqual(rxn.normalized_repr, "4 Fe + 3 O2 -> 2 Fe2O3") def test_underdetermined(self): reactants = [Composition("Fe"), Composition("O2")] products = [Composition("Fe"), Composition("O2")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "Fe + O2 -> Fe + O2") reactants = [ Composition("Fe"), Composition("O2"), Composition("Na"), Composition("Li"), Composition("Cl"), ] products = [Composition("FeO2"), Composition("NaCl"), Composition("Li2Cl2")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "Fe + O2 + Na + 2 Li + 1.5 Cl2 -> FeO2 + NaCl + 2 LiCl") reactants = [ Composition("Fe"), Composition("Na"), Composition("Li2O"), Composition("Cl"), ] products = [ Composition("LiCl"), Composition("Na2O"), Composition("Xe"), Composition("FeCl"), Composition("Mn"), ] rxn = Reaction(reactants, products) # this can't normalize to 1 LiCl + 1 Na2O (not enough O), so chooses LiCl and FeCl self.assertEqual(str(rxn), "Fe + Na + 0.5 Li2O + Cl2 -> LiCl + 0.5 Na2O + FeCl") def test_underdetermined_reactants(self): reactants = [Composition("Li"), Composition("Cl"), Composition("Cl")] products = [Composition("LiCl")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "Li + 0.25 Cl2 + 0.25 Cl2 -> LiCl") reactants = [Composition("LiMnCl3"), Composition("LiCl"), Composition("MnCl2")] products = [Composition("Li2MnCl4")] rxn = Reaction(reactants, products) self.assertEqual(str(rxn), "LiMnCl3 + 3 LiCl + MnCl2 -> 2 Li2MnCl4") class BalancedReactionTest(unittest.TestCase): def setUp(self): warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_init(self): rct = {Composition("K2SO4"): 3, Composition("Na2S"): 1, Composition("Li"): 24} prod = {Composition("KNaS"): 2, Composition("K2S"): 2, Composition("Li2O"): 12} rxn = BalancedReaction(rct, prod) self.assertIsNotNone(str(rxn)) # Test unbalanced exception rct = {Composition("K2SO4"): 1, Composition("Na2S"): 1, Composition("Li"): 24} prod = {Composition("KNaS"): 2, Composition("K2S"): 2, Composition("Li2O"): 12} self.assertRaises(ReactionError, BalancedReaction, rct, prod) def test_to_from_dict(self): rct = {Composition("K2SO4"): 3, Composition("Na2S"): 1, Composition("Li"): 24} prod = {Composition("KNaS"): 2, Composition("K2S"): 2, Composition("Li2O"): 12} rxn = BalancedReaction(rct, prod) d = rxn.as_dict() new_rxn = BalancedReaction.from_dict(d) for comp in new_rxn.all_comp: self.assertEqual(new_rxn.get_coeff(comp), rxn.get_coeff(comp)) def test_from_string(self): rxn = BalancedReaction({Composition("Li"): 4, Composition("O2"): 1}, {Composition("Li2O"): 2}) self.assertEqual(rxn, BalancedReaction.from_string("4 Li + O2 -> 2Li2O")) rxn = BalancedReaction( {Composition("Li(NiO2)3"): 1}, { Composition("O2"): 0.5, Composition("Li(NiO2)2"): 1, Composition("NiO"): 1, }, ) self.assertEqual( rxn, BalancedReaction.from_string("1.000 Li(NiO2)3 -> 0.500 O2 + 1.000 Li(NiO2)2 + 1.000 NiO"), ) def test_remove_spectator_species(self): rxn = BalancedReaction( {Composition("Li"): 4, Composition("O2"): 1, Composition("Na"): 1}, {Composition("Li2O"): 2, Composition("Na"): 1}, ) self.assertTrue(Composition("Na") not in rxn.all_comp) class ComputedReactionTest(unittest.TestCase): def setUp(self): d = [ { "correction": 0.0, "data": {}, "energy": -108.56492362, "parameters": {}, "composition": {"Li": 54}, }, { "correction": 0.0, "data": {}, "energy": -577.94689128, "parameters": {}, "composition": {"O": 32, "Li": 64}, }, { "correction": 0.0, "data": {}, "energy": -17.02844794, "parameters": {}, "composition": {"O": 2}, }, { "correction": 0.0, "data": {}, "energy": -959.64693323, "parameters": {}, "composition": {"O": 72, "Li": 72}, }, ] entries = [] for e in d: entries.append(ComputedEntry.from_dict(e)) rcts = list(filter(lambda e: e.composition.reduced_formula in ["Li", "O2"], entries)) prods = list(filter(lambda e: e.composition.reduced_formula == "Li2O2", entries)) self.rxn = ComputedReaction(rcts, prods) def test_calculated_reaction_energy(self): self.assertAlmostEqual(self.rxn.calculated_reaction_energy, -5.60748821935) def test_calculated_reaction_energy_uncertainty(self): d = [ { "correction": 0.0, "data": {}, "energy": -108.56492362, "parameters": {}, "composition": {"Li": 54}, }, { "correction": 0.0, "data": {}, "energy": -17.02844794, "parameters": {}, "composition": {"O": 2}, }, { "@module": "pymatgen.entries.computed_entries", "@class": "ComputedEntry", "energy": -38.76889738, "composition": defaultdict(float, {"Li": 4.0, "O": 4.0}), "energy_adjustments": [ { "@module": "pymatgen.entries.computed_entries", "@class": "ConstantEnergyAdjustment", "@version": "2020.6.8", "value": -1.864, "uncertainty": 0.0744, "name": "MP2020 Composition Correction", "cls": { "@module": "pymatgen.entries.compatibility", "@class": "MaterialsProject2020Compatibility", "@version": "2020.6.8", "compat_type": "Advanced", "correct_peroxide": True, "check_potcar_hash": False, }, "description": "Constant energy adjustment (-1.864 eV)", } ], "parameters": { "run_type": "GGA", "is_hubbard": False, "pseudo_potential": { "functional": "PBE", "labels": ["Li_sv", "O"], "pot_type": "paw", }, "hubbards": {}, "potcar_symbols": ["PBE Li_sv", "PBE O"], "oxide_type": "peroxide", }, "data": {"oxide_type": "peroxide"}, "entry_id": "mp-841", "correction": -1.864, }, ] entries = [] for e in d: entries.append(ComputedEntry.from_dict(e)) rcts = list(filter(lambda e: e.composition.reduced_formula in ["Li", "O2"], entries)) prods = list(filter(lambda e: e.composition.reduced_formula == "Li2O2", entries)) rxn_with_uncertainty = ComputedReaction(rcts, prods) self.assertAlmostEqual(rxn_with_uncertainty.calculated_reaction_energy_uncertainty, 0.5 * 0.0744) def test_calculated_reaction_energy_uncertainty_for_no_uncertainty(self): # test that reaction_energy_uncertainty property doesn't cause errors # when products/reactants have no uncertainties self.assertAlmostEqual(self.rxn.calculated_reaction_energy_uncertainty, 0) def test_calculated_reaction_energy_uncertainty_for_nan(self): # test that reaction_energy_uncertainty property is nan when the uncertainty # for any product/reactant is nan d = [ { "correction": 0.0, "data": {}, "energy": -108.56492362, "parameters": {}, "composition": {"Li": 54}, }, { "correction": 0.0, "data": {}, "energy": -17.02844794, "parameters": {}, "composition": {"O": 2}, }, { "@module": "pymatgen.entries.computed_entries", "@class": "ComputedEntry", "energy": -38.76889738, "composition": defaultdict(float, {"Li": 4.0, "O": 4.0}), "energy_adjustments": [ { "@module": "pymatgen.entries.computed_entries", "@class": "ConstantEnergyAdjustment", "@version": "2020.6.8", "value": -1.864, "uncertainty": np.nan, "name": "MP2020 Composition Correction", "cls": { "@module": "pymatgen.entries.compatibility", "@class": "MaterialsProject2020Compatibility", "@version": "2020.6.8", "compat_type": "Advanced", "correct_peroxide": True, "check_potcar_hash": False, }, "description": "Constant energy adjustment (-1.864 eV)", } ], "parameters": { "run_type": "GGA", "is_hubbard": False, "pseudo_potential": { "functional": "PBE", "labels": ["Li_sv", "O"], "pot_type": "paw", }, "hubbards": {}, "potcar_symbols": ["PBE Li_sv", "PBE O"], "oxide_type": "peroxide", }, "data": {"oxide_type": "peroxide"}, "entry_id": "mp-841", "correction": -1.864, }, ] entries = [] for e in d: entries.append(ComputedEntry.from_dict(e)) rcts = list(filter(lambda e: e.composition.reduced_formula in ["Li", "O2"], entries)) prods = list(filter(lambda e: e.composition.reduced_formula == "Li2O2", entries)) rxn_with_uncertainty = ComputedReaction(rcts, prods) self.assertTrue(isnan(rxn_with_uncertainty.calculated_reaction_energy_uncertainty)) def test_init(self): self.assertEqual(str(self.rxn), "2 Li + O2 -> Li2O2") def test_to_from_dict(self): d = self.rxn.as_dict() new_rxn = ComputedReaction.from_dict(d) self.assertEqual(str(new_rxn), "2 Li + O2 -> Li2O2") def test_all_entries(self): for c, e in zip(self.rxn.coeffs, self.rxn.all_entries): if c > 0: self.assertEqual(e.composition.reduced_formula, "Li2O2") self.assertAlmostEqual(e.energy, -959.64693323) if __name__ == "__main__": unittest.main()
38.138544
105
0.529061
7f8e69b8777a4596adc1e66b704b0aaaef484160
6,995
py
Python
api_server/switch_api/utilities/DataInterfaces/SqlInterface.py
cliftbar/switch_suncode2019
cad8fcca50a4848ba946f39aeaa624a230af679d
[ "MIT" ]
null
null
null
api_server/switch_api/utilities/DataInterfaces/SqlInterface.py
cliftbar/switch_suncode2019
cad8fcca50a4848ba946f39aeaa624a230af679d
[ "MIT" ]
null
null
null
api_server/switch_api/utilities/DataInterfaces/SqlInterface.py
cliftbar/switch_suncode2019
cad8fcca50a4848ba946f39aeaa624a230af679d
[ "MIT" ]
1
2019-08-31T01:10:10.000Z
2019-08-31T01:10:10.000Z
import logging import time from abc import abstractmethod from enum import Enum from typing import Dict, Callable, Any, List from schema import Schema import sqlalchemy from sqlalchemy.engine import ResultProxy from sqlalchemy.orm import Query from sqlalchemy.schema import Table from sqlalchemy.engine.base import Engine from sqlalchemy.engine.base import Connection from contextlib import contextmanager from switch_api.utilities.DataInterfaces import ConnectionOptions logger = logging.getLogger(__name__) class SqlDialect(Enum): postgres = "postgres" sqlite = "sqlite" @classmethod def has_value(cls, value) -> bool: return any(value == item.value for item in cls) # TODO: Connection Factory class SqlConnectionOptions(ConnectionOptions): @staticmethod def factory(sql_connection_type: SqlDialect, **kwargs) -> 'SqlConnectionOptions': """ Function signatures for factory method Postgres: (dialect: SqlDialects, host: str, port: int, username: str, password: str, database_name: str, timeout: int = None) """ return SqlConnectionFactories.get_factory(sql_connection_type)(**kwargs) def __init__(self, dialect: SqlDialect, host: str, port: int, username: str, password: str, database_name: str , timeout_s: int = None): self.dialect: SqlDialect = dialect self.host: str = host self.port: int = port self.username: str = username self.password: str = password self.database_name: str = database_name self.timeout: int = timeout_s self.connection_string: str = None @classmethod @abstractmethod def schema_validate_arguments(cls, schema: Schema, parameters: Dict) -> Dict: pass class PostgresConnectionOptions(SqlConnectionOptions): _factory_schema: Schema = Schema( { 'host': str, 'port': int, 'username': str, 'password': str, 'database_name': str # 'timeout': int }, ignore_extra_keys=True ) def __init__(self, dialect: SqlDialect, host: str, port: int, username: str, password: str, database_name: str, timeout_s: int = None) -> None: super().__init__(dialect, host, port, username, password, database_name, timeout_s) self.connection_string = \ f"postgresql://{self.username}:{self.password}@{self.host}:{self.port}/{self.database_name}" @classmethod def schema_validate_arguments(cls, schema: Schema, parameters: Dict) -> Dict: return schema.validate(parameters) @classmethod def factory(cls, **kwargs) -> 'PostgresConnectionOptions': parameters: Dict = cls.schema_validate_arguments(cls._factory_schema, kwargs) return cls(SqlDialect.postgres, parameters['host'], parameters['port'] , parameters['username'], parameters['password'], parameters['database_name'] , parameters.get('timeout')) class SqlConnectionFactories: _factories: Dict[SqlDialect, Callable] = { SqlDialect.postgres: PostgresConnectionOptions.factory # , SqlDialects.sqlite: SqliteConnectionOptions.factory } @classmethod def get_factory(cls, factory_type: SqlDialect) -> Callable: return cls._factories[factory_type] class SqlInterface: """SQL methods to tack onto SQL based librarians""" def __init__(self, connection_options: SqlConnectionOptions) -> None: self.connection_options = connection_options self.sql_engine: Engine = None self.sql_metadata: sqlalchemy.MetaData = None def update(self, schema: str, table: str, column: str, value: Any, sql_connection: Connection) -> None: raise NotImplementedError def select(self, schema: str, table: str, sql_connection: Connection) -> List[Dict[str, Any]]: sql_table: Table = self._get_table_reflection(schema, table) return self._execute_query(sql_connection, sql_table.select()) def insert(self, schema: str, table: str, values: List[Dict[str, Any]], sql_connection: Connection) -> None: sql_table: Table = self._get_table_reflection(schema, table) insert_query = sql_table.insert(values=values) self._execute_query(sql_connection, insert_query) def setup_pre_connection(self, connection_options) -> None: self._build_engine(connection_options) self._metadata_reflection(self.sql_engine) def close_connection(self, sql_connection: Connection) -> None: if sql_connection is not None: sql_connection.close() @contextmanager def managed_connection(self, connection_options: SqlConnectionOptions = None) -> Connection: if connection_options is None: connection_options = self.connection_options self.setup_pre_connection(connection_options) connection: Connection = None try: connection = self.sql_engine.connect() yield connection finally: self.close_connection(connection) # SQLAlchemy internal methods def _build_engine(self, connection_options: SqlConnectionOptions) -> None: self.sql_engine = sqlalchemy.create_engine(connection_options.connection_string) def _metadata_reflection(self, sql_engine) -> None: self.sql_metadata = sqlalchemy.MetaData(bind=sql_engine) def _get_table_reflection(self, schema: str, table: str) -> Table: return Table(table, self.sql_metadata, schema=schema, autoload=True) def _validate_write_schema(self, table: Table, values: Dict[str, Any]) -> bool: table_columns = list(dict(table.columns).keys()) return list(values.keys()) == table_columns def _parse_result_proxy(self, result) -> List[Dict[str, Any]]: return list(map(lambda x: dict(x), result)) def _execute_query(self, sql_connection: Connection, sql_query: Query) -> List[Dict[str, Any]]: start_time: float = time.time() return_result: List[Dict[str, Any]] = None try: result: ResultProxy = sql_connection.execute(sql_query) if result.returns_rows: return_result: List[Dict[str, Any]] = self._parse_result_proxy(result) except Exception as e: logger.info(f"SQL query failed: {e}") logger.debug(f"SQL query {str(sql_query.compile())}, connection: {sql_connection.engine} failed with exception {e}") raise e finally: end_time: float = time.time() query_time: float = end_time - start_time logger.info(f"SQL execute time: {query_time}") logger.debug( f"SQL execute time: {query_time}, query: {str(sql_query.compile())}, connection: {sql_connection.engine}" ) return return_result
37.607527
128
0.666333
dd8769ff19e5369ac070df72ddf16afb206c3494
68,788
py
Python
lingvo/core/base_input_generator.py
Saiprasad16/lingvo
1862d61748f03f950c14144acc9cf21f1e7ed358
[ "Apache-2.0" ]
1
2021-05-10T10:47:28.000Z
2021-05-10T10:47:28.000Z
lingvo/core/base_input_generator.py
Saiprasad16/lingvo
1862d61748f03f950c14144acc9cf21f1e7ed358
[ "Apache-2.0" ]
null
null
null
lingvo/core/base_input_generator.py
Saiprasad16/lingvo
1862d61748f03f950c14144acc9cf21f1e7ed358
[ "Apache-2.0" ]
null
null
null
# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Input generators. There are three types of batch sizes: * Device split batch size: Defined by Params() and is the batch size on each device/TPU core. BaseInputGenerator.params.batch_size and BaseSequenceInputGenerator.params.bucket_batch_limit specify per-split batch size. * GlobalBatchSize: number of examples in a global batch. * InfeedBatchSize: global_batch_size // num_infeed_hosts, where num_infeed_hosts is cluster.num_tpu_hosts if using per-host infeed with TPU, otherwise num_infeed_hosts is 1. TODO(rpang): Deal with on packed_inputs. """ import inspect import lingvo.compat as tf from lingvo.core import base_layer from lingvo.core import batch_utils from lingvo.core import cluster from lingvo.core import cluster_factory from lingvo.core import datasource from lingvo.core import hyperparams from lingvo.core import input_generator_helper as ig_helper from lingvo.core import inspect_utils from lingvo.core import ops from lingvo.core import py_utils from lingvo.core import tokenizers from lingvo.core import tpu_embedding_layers # pylint: disable=g-direct-tensorflow-import from tensorflow.python.ops import io_ops from tensorflow.python.tpu import tpu_embedding as tpu_embedding_lib from tensorflow.python.tpu import tpu_feed # pylint: enable=g-direct-tensorflow-import DEFAULT_TOKENIZER_KEY = 'default' INPUT_DATA_STATS_SUMMARIES_COLLECTION = 'INPUT_DATA_STATS_SUMMARIES' class BaseInputGenerator(base_layer.BaseLayer): """The abstract base input generator.""" @classmethod def DefineInfeedParams(cls, p): # TPU related infeed tuning. # Supported use cases: # # Data parallelism (num_partitions=None) # - single host (use_per_host_infeed=False, tpu_infeed_parallelism=1)) # - multi host (use_per_host_infeed=False, tpu_infeed_parallelism>1) # - per host (use_per_host_infeed=True) # - unsharded inputs (_InputBatch returns a single NestedMap) # - sharded inputs (_InputBatch returns a list containing # tpu_number_of_shards NestedMaps) # Model parallelism (num_partitions>1 where) # - non-partitioned infeed (use_partitioned_infeed_queue=False): # - Only first partition gets infeed (e.g. manual partition) # - single host (use_per_host_infeed=False) # - per host (use_per_host_infeed=True) # - All partitions gets data parallel infeed (e.g. MoE) # - single host not supported # - per host (use_per_host_infeed=True, use_per_core_infeed=True) # num_partitions should be set to number of partitions per replica # - partitioned infeed (use_partitioned_infeed_queue=True) # - single host (use_per_host_infeed=False) # - per host (use_per_host_infeed=True) # num_partitions should be set to number of partitions per replica # and all partitions should exist on a single host p.Define('use_per_host_infeed', False, 'Whether run infeed op on each host.') p.Define('use_per_core_infeed', False, 'Whether to shard the infeed per TPU core instead of per replica') p.Define('tpu_infeed_parallelism', 1, 'Uses these many python threads to drive infeed concurrently.') p.Define('use_partitioned_infeed_queue', False, 'Use partitioned infeed') p.Define( 'num_partitions', None, 'Number of partitions to split the model graph into. Used with ' 'model parallelism. When >1, it specifies the number of devices ' 'used to place one replica of the model graph nodes.') @classmethod def Params(cls): """Defaults params for input generators.""" p = super().Params() p.name = 'input' p.Define( 'file_datasource', None, 'The DataSource that produces input batches for this input generator.') p.Define( 'batch_size', 0, 'Batch size for a device split. This will be ' 'scaled to match the accelarator hardware topology.') p.Define( 'num_samples', 0, 'If non-zero, the dataset contains these many samples. ' 'For test/eval dataset, if we want the test/evel job evaluate ' 'the whole dataset, this param must be set precisely. Otherwise, ' 'this param is optional.') p.Define('resettable', False, 'If True, the input generator must implement Reset().') # For an input generator to support samples_per_summary == 0 to indicate # using the entire dataset, it must (1) be resettable, and (2) throws # tf.errors.OutOfRangeError when reading a batch beyond an epoch. p.Define( 'eval_samples_per_summary', None, 'If not None, overrides ' 'task_p.eval.samples_per_summary directly. Allowed to be 0, which ' 'means to use the entire dataset.') p.Define( 'decoder_samples_per_summary', None, 'If not None, overrides ' 'task_p.eval.decoder_samples_per_summary directly. Allowed to be 0, ' 'which means to use the entire dataset.') p.Define( 'filter_sparse_tensors', False, 'If true, filter out SparseTensors in input_batch before enqueuing ' 'onto TPU.') cls.DefineInfeedParams(p) p.Define('remote', hyperparams.Params(), 'Params to configure remote input policy.') p.remote.Define( 'max_inflights_per_target', 32, 'The maximum number of ' 'concurrent inflight remote input fetches per remote target.') p.Define( 'input_stats_summary_interval_steps', 10, 'Number of steps in between logging of TF scalar summaries for ' 'training related input data stats.') p.Define( 'skip_tpu_embedding_enqueue_ops', False, 'Whether to skip CreateTpuEmbeddingEnqueueOps. This is useful for ' 'multi-program training with one tasking having tpu embedding and ' 'the other not.') return p def __init__(self, params): super().__init__(params) # parameter to tell the bprop one hot for all the files. # TODO(ankurbpn): Initialize when using sources from mixed record yielders. self._bprop_onehot = tf.constant([1], dtype=tf.float32) # Each entry is a regular expression specifying the set of variables # to bprop per data source. self._bprop_variable_filters = [''] # For TPU enqueue ops, we do not use graph collections, instead, we rely # on this member variable. This is especially useful for # executor-driven multiple programs, as we need more fine-grained # access to drive the infeed for a specific program, rather than # a single global collection across the graph. self._tpu_infeed_op = None # A list of InfeedQueues. self._tpu_queues = [] # Set to true in GetPreprocessedInputBatch() (and thus _InputBatch()) self._in_get_processed_input_batch = False # Merged TF scalar summaries for training related input data stats. self._merged_input_data_summary_op = None # Tensorboard layout for charts displaying input data stats. self._input_data_summary_layout = None self.CreateDatasource() def CreateDatasource(self): if self.params.file_datasource: self.CreateChild('datasource', self.params.file_datasource) self.datasource.SetInputGenerator(self) def CommonInputOpArgs(self): """Common input params.""" return {} def GetBpropVariableFilters(self): return self._bprop_variable_filters def GetInputSourceOneHot(self): """Get the current bprop type of the input generator batch.""" return self._bprop_onehot def GlobalBatchSize(self): """Returns the total batch size (for stats), int or dynamic int tensor.""" # Uses `InfeedBatchSize()` instead of calculating it from `p.batch_size` # because the behavior would be overridden by subclasses. global_batch_size = batch_utils.scale_infeed_to_global( self.InfeedBatchSize(), self.params.use_per_host_infeed) tf.logging.info('GlobalBatchSize {}'.format(global_batch_size)) return global_batch_size def InfeedBatchSize(self): """Returns the batch size of the input batch: int or dynamic int tensor.""" batch_per_input = batch_utils.scale_split_to_infeed( self.params.batch_size, self.params.use_per_host_infeed) tf.logging.info('batch_per_input: %d', batch_per_input) return batch_per_input def Initialize(self, sess): """Initialize using a session.""" if 'datasource' in self.children: self.datasource.Initialize(sess) def _InputBatch(self): """The current input batch, not preprocessed. This is meant to be overridden by subclasses, but not called directly. Callers should use `GetPreprocessedInputBatch()`. Returns: A NestedMap (or list of NestedMaps when using TPU sharded infeed) of input tensors. """ raise NotImplementedError('Abstract method') def _PreprocessInputBatch(self, batch): """Preprocesses input batch from _InputBatch. Args: batch: A NestedMap (or list of NestedMaps when using TPU sharded infeed) containing input tensors in the format returned by _InputBatch. Returns: A NestedMap containing preprocessed inputs to feed to the model. """ return batch def GetPreprocessedInputBatch(self): """Returns preprocessed batch of inputs. These are the actual inputs fed to the model. Subclasses generally should not override this function directly. Instead, override _InputBatch and maybe _PreprocessInputBatch. """ self._in_get_processed_input_batch = True # TODO(b/139345706): Use self.datasource.GetNext() for all datasource. if ('datasource' in self.children and isinstance(self.datasource, datasource.TFDatasetSource)): if self.cluster.input_targets: raise ValueError( 'TFDatasetSource subclassed DataSources do not support using ' 'train_input_replica. Try tf_data_service_replicas instead.') # pylint: disable=protected-access if ((self._InputBatch.__func__ is not BaseInputGenerator._InputBatch and self._InputBatch.__func__ is not BaseInputGeneratorFromFiles._InputBatch) or self._PreprocessInputBatch.__func__ is not BaseInputGenerator._PreprocessInputBatch): # pylint: enable=protected-access # If you hit this error trying to run with --tf_data_service_replicas, # try to refactor your input generator by moving all the code inside # _InputBatch and _PreprocessInputBatch to _DataSourceFromFilePattern. raise ValueError( 'Batches obtained through p.file_datasource do not go through ' 'self._InputBatch() or self._PreprocessInputBatch(). To reduce the ' 'potential of mistakes, this error is raised when either of those ' 'functions have been overridden.') batch = self.datasource.GetNext() else: batch = self._PreprocessInputBatch(self._InputBatch()) self._in_get_processed_input_batch = False if py_utils.GetUnitTestSession(): self.Initialize(py_utils.GetUnitTestSession()) return batch @property def tpu_number_of_shards(self): """Number of shards to split the input batch into.""" p = self.params num_tpu_hosts = self.cluster.num_tpu_hosts num_infeed_hosts = num_tpu_hosts if p.use_per_host_infeed else 1 shards = (self.cluster.total_worker_devices // num_infeed_hosts) if p.use_partitioned_infeed_queue or not p.use_per_core_infeed: shards = shards // self.cluster.num_devices_per_split return shards def CreateTpuEnqueueOps(self, job_name=None): """Create the host-side enqueue ops. This should be called in an outer non-TPU context. Args: job_name: the name of the job on which the enqueue operations run. """ assert not self._tpu_queues, ('CreateTpuEnqueueOps should only be called ' 'once.') self._tpu_queues = [] self._per_host_batches = [] self._per_host_emb_batches = [] # A list of lists, where the [i][j] element is the j-th passthrought batch # of the i-th task. Each task will have more than one passthrought batch iff # sharded infeed is used. self._per_host_passthrough_batches = [] p = self.params num_tpu_hosts = self.cluster.num_tpu_hosts num_cores_per_host = self.cluster.total_worker_devices // num_tpu_hosts tf.logging.info( 'CreateTpuEnqueueOps num_splits_per_client={} ' 'num_devices_per_split={} num_tpu_hosts={} use_per_host_infeed={}' .format(self.cluster.num_splits_per_client, self.cluster.num_devices_per_split, num_tpu_hosts, p.use_per_host_infeed)) assert num_tpu_hosts > 0, ('num_tpu_hosts: %d' % num_tpu_hosts) if p.use_per_core_infeed: if (not p.use_per_host_infeed) or p.use_partitioned_infeed_queue: raise ValueError('use_per_core_infeed need to have use_per_host_infeed ' 'but not use_partitioned_infeed_queue.') if (self.cluster.num_devices_per_split > num_cores_per_host and (p.use_per_host_infeed and not p.use_per_core_infeed)): tf.logging.fatal('Doesn\'t support per host infeed mode when ' 'num_devices_per_split({}) > num_cores_per_host({}).' 'Each host must be able to accommodate >= 1 split when ' 'using per_host_infeed.'.format( self.cluster.num_devices_per_split, num_cores_per_host)) shards = self.tpu_number_of_shards tf.logging.info('shards {}'.format(shards)) input_ops_list = [] cpu_passthrough_keys = self.GetCpuPassthroughKeys() num_infeed_hosts = num_tpu_hosts if p.use_per_host_infeed else 1 tf.logging.info('num_infeed_hosts: %d', num_infeed_hosts) host_devices = self.cluster.ListDevices(self.cluster.job_spec).flatten() if p.use_per_host_infeed and num_infeed_hosts != len(host_devices): raise ValueError( f'Configuration mismatch, number of infeed hosts {num_infeed_hosts} ' f'does not match available devices {host_devices}.') for task_id in range(num_infeed_hosts): host_device = host_devices[task_id] if cpu_passthrough_keys and ( '/task:{}/device:CPU:0'.format(task_id) not in host_device): raise ValueError( f'CPU passthrough configuration mismatch, device {host_device} ' f'does not match task id {task_id}.') with tf.device(host_device), cluster.InfeedContextScope( infeed_host_index=task_id, num_infeed_hosts=num_infeed_hosts): batch = self.GetPreprocessedInputBatch() if not isinstance(batch, (list, tuple)): batch = [batch] cur_passthrough_batches = [] for i in range(len(batch)): b = batch[i] assert isinstance(b, py_utils.NestedMap) # Hack: bucket_keys and xxx.bucket_keys are not needed on TPU. # Note that when MultiTaskData is used, bucket_keys will be at the # second level of the dictionary. b = b.FilterKeyVal(lambda k, _: not k.endswith('bucket_keys')) # Split out any keys that are meant for CPU passthrough only. cur_passthrough_batches.append( b.FilterKeyVal(lambda k, _: k in cpu_passthrough_keys)) b = b.FilterKeyVal(lambda k, _: k not in cpu_passthrough_keys) batch[i] = b if i > 0: # If the input batch is already sharded, check that the shards are # compatible with each other. assert py_utils.IsCompatible(b, batch[0]) self._per_host_passthrough_batches.append(cur_passthrough_batches) tf.logging.info('CPU passthrough keys: %s', cpu_passthrough_keys) if p.filter_sparse_tensors: # Make a copy of this host's input batch, then filter out any # SparseTensor features. This way, SparseTensor features are not fed # into the TPU InfeedQueue (and only to TPUEmbedding). # TODO(jeffreyzhao): Hack, come up with better solution. # Ideally we would like users to override # CreateTpuEmbeddingEnqueueOpsForHost() to modify the input batch # and remove fields they don't want to enqueue onto TPU. # However, the TPUEmbedding singleton and TPU embedding enqueue ops # are currently constructed after CreateTpuEnqueueOps() is called. emb_batch = [] new_batch = [] for i, b in enumerate(batch): emb_batch.append( b.Filter(lambda v: isinstance(v, tf.sparse.SparseTensor))) new_batch.append( b.Filter(lambda v: not isinstance(v, tf.sparse.SparseTensor))) self._per_host_emb_batches.append(emb_batch) batch = new_batch self._batch_nm_types = batch[0] tf.logging.info('host_device: %s, batch: %r', host_device, batch) self._per_host_batches.append(batch) for b in batch: for k, x in b.FlattenItems(): assert x.shape.is_fully_defined(), ( 'Shape must be fully defined: %s: %s' % (k, x)) # TODO(cwhipkey): if it's a string (or other type not supported on # TPU), drop it from feeding and on the other end add in an op that # fails if used. shapes = batch[0].Transform(lambda x: x.shape).Flatten() dtypes = batch[0].Transform(lambda x: x.dtype).Flatten() tf.logging.info('host_device: %s infeed shapes: %r', host_device, shapes) tf.logging.info('host_device: %s infeed dtypes: %r', host_device, dtypes) if p.use_partitioned_infeed_queue: device_assignment = py_utils.GetTpuDeviceAssignment(job_name) host_device = device_assignment.host_device( replica=0, job=tf.flags.FLAGS.tf_master) host_id = int(host_device.split('/task:')[1].split('/device:')[0]) tf.logging.info('host_id: {} host_device: {}'.format( host_id, host_device)) q = tpu_feed._PartitionedInfeedQueue( # pylint: disable=protected-access number_of_tuple_elements=len(dtypes), device_assignment=device_assignment, host_id=host_id, input_partition_dims=[ [p.num_partitions] + [1] * (len(s) - 1) for s in shapes ], tuple_types=dtypes, tuple_shapes=shapes) else: if p.use_per_core_infeed: q = tpu_feed.InfeedQueue( tuple_types=dtypes, tuple_shapes=shapes, number_of_partitions=p.num_partitions) elif len(batch) > 1: # When the input batch is sharded, the unsharded dtypes and shapes # will be determined later by the generate_enqueue_ops() call. q = tpu_feed.InfeedQueue( number_of_tuple_elements=len(batch[0].Flatten())) else: q = tpu_feed.InfeedQueue(tuple_types=dtypes, tuple_shapes=shapes) assert shards is not None q.set_number_of_shards(shards) self._tpu_queues.append(q) if p.use_partitioned_infeed_queue: assert len(batch) == 1 input_ops = q.generate_enqueue_ops([batch[0].Flatten()]) elif p.use_per_host_infeed: # TODO(ylc/zhifengc): Add this to a policy module and test it. def TPUOrdinalFunction(shard_index_in_host): if p.use_per_core_infeed: return shard_index_in_host device_assignment = py_utils.GetTpuDeviceAssignment() if device_assignment: # We put both enqueue/dequeue ops at core 0 in each replica. replica = device_assignment.lookup_replicas( task_id, 0)[shard_index_in_host] # pylint: disable=cell-var-from-loop return device_assignment.tpu_ordinal(replica=replica) else: return shard_index_in_host if len(batch) > 1: # In this case, the `shard_index_in_host` argument of # `TPUOrdinalFunction` is the index of a sharded batch in the # `batch` list. input_ops = q.generate_enqueue_ops( [b.Flatten() for b in batch], placement_function=lambda x: host_device, # pylint: disable=cell-var-from-loop tpu_ordinal_function=TPUOrdinalFunction) else: input_ops = q.split_inputs_and_generate_enqueue_ops( batch[0].Flatten(), placement_function=lambda x: host_device, # pylint: disable=cell-var-from-loop tpu_ordinal_function=TPUOrdinalFunction) else: assert len(batch) == 1 input_ops = q.split_inputs_and_generate_enqueue_ops( batch[0].Flatten(), device_assignment=py_utils.GetTpuDeviceAssignment(job_name)) input_ops_list += input_ops tf.logging.info('input_ops_list %s', input_ops_list) grouped_infeed_op = tf.group(*input_ops_list) self._tpu_infeed_op = [] for _ in range(p.tpu_infeed_parallelism): self._tpu_infeed_op.append(grouped_infeed_op) def TpuDequeueBatch(self): """Create TPU dequeue ops. This should only be called within a TPU context. Returns: - A NestedMap of the input batch. """ assert self._tpu_queues, 'CreateTpuEnqueueOps must be called first.' with tf.device(tf.tpu.core(0)): # Note that the dequeue_tuple op on the TPU core # only cares about the shape/types being dequeued # which is why this is hard-coded to the first Queue. tensors = self._tpu_queues[0].generate_dequeue_op() return self._batch_nm_types.Pack(tensors) def CreateTpuEmbeddingEnqueueOps(self, mode_override=None): """Creates the TpuEmbedding enqueue ops on all hosts. Note that this must be called after the instantiation of the monolithic TPUEmbeddingLayer. Args: mode_override: String to override TPU embedding mode. See TPUEmbedding.generate_enqueue_ops() """ p = self.params if p.skip_tpu_embedding_enqueue_ops: return tpu_embedding_collection = tpu_embedding_layers.TpuEmbeddingCollection.Get() tpu_embedding = tpu_embedding_collection.tpu_embedding if not tpu_embedding: return num_tpu_hosts = self.cluster.num_tpu_hosts num_infeed_hosts = num_tpu_hosts if p.use_per_host_infeed else 1 if p.filter_sparse_tensors: assert len(self._per_host_emb_batches) == num_infeed_hosts else: assert len(self._per_host_batches) == num_infeed_hosts if num_tpu_hosts > 1 and tpu_embedding is not None: if not p.use_per_host_infeed: tf.logging.fatal( 'TPU Embedding must be used with per_host_infeed with multiple ' 'TPU host topologies.') enqueue_ops = [] for task_id in range(num_infeed_hosts): host_device = '/task:{}/device:CPU:0'.format(task_id) if p.filter_sparse_tensors: batch = self._per_host_emb_batches[task_id] else: batch = self._per_host_batches[task_id] assert len(batch) == 1, "Tpu Embedding doesn't support sharded inputs." batch = batch[0] with tf.device(host_device): tf.logging.info('host_device: %s, batch: %r', host_device, batch) enqueue_ops += self.CreateTpuEmbeddingEnqueueOpsForHost( tpu_embedding, batch, mode_override=mode_override) self._tpu_infeed_op.append(tf.group(*enqueue_ops)) def CreateTpuEmbeddingEnqueueOpsForHost(self, tpu_embedding, input_batch, mode_override=None): """Hook for creating TPU embedding enqueue ops for a single host. Used by CreateTpuEmbeddingEnqueueOps(). Override this method in input generators to control how embedding inputs are enqueued onto TPU. Args: tpu_embedding: The monolithic TpuEmbedding object. input_batch: The input batch for this host. mode_override: String to override TPU embedding mode. See TPUEmbedding.generate_enqueue_ops() Returns: A list of TPU Embedding enqueue ops. """ tpu_emb_input_keys = list(tpu_embedding.feature_to_config_dict.keys()) tf.logging.info('tpu_emb_input_keys: %r', tpu_emb_input_keys) num_cores_per_host = tpu_embedding.num_cores_per_host enqueue_dict_per_core = [{} for _ in range(num_cores_per_host)] for key in tpu_emb_input_keys: feat = input_batch[key] if isinstance(feat, tf.sparse.SparseTensor): tpu_emb_feat_splitted = tf.sparse.split( feat, num_cores_per_host, axis=0) for core, split in enumerate(tpu_emb_feat_splitted): enqueue_data = tpu_embedding_lib.EnqueueData.from_sparse_tensor(split) enqueue_dict_per_core[core][key] = enqueue_data else: tpu_emb_feat_splitted = tf.split(feat, num_cores_per_host) for core, split in enumerate(tpu_emb_feat_splitted): # Dense to sparse. Note the assumption of a padding id. sample_indices = tf.where(tf.not_equal(split, -1)) embedding_indices = tf.gather_nd(split, sample_indices) enqueue_data = tpu_embedding_lib.EnqueueData(embedding_indices, sample_indices) enqueue_dict_per_core[core][key] = enqueue_data return tpu_embedding.generate_enqueue_ops( enqueue_dict_per_core, mode_override=mode_override) def GetCpuPassthroughKeys(self): """Return a list of keys from the input to skip sending to the device. When running on TPU, a user may want to avoid sending some inputs to the device; either the type is not supported (e.g., string), or the input will not be processed on the device at all. However, these items may be still useful to passthrough to the "output", e.g., for decoding purposes. This function should return a list of keys from InputBatch() that should not be sent to the TPU, but can be combined with the outputs of Decode() before passing to PostProcessDecodeOut(). Returns: A list of keys from the input to filter from being sent to the device, which may be combined with the output of Decode() prior to PostProcessDecodeOut(). """ return [] def CreateCpuPassthroughEnqueueOps(self): """Creates enqueue ops to pass through CPU inputs to the output.""" p = self.params num_tpu_hosts = self.cluster.num_tpu_hosts num_infeed_hosts = num_tpu_hosts if p.use_per_host_infeed else 1 cpu_passthrough_keys = self.GetCpuPassthroughKeys() if not cpu_passthrough_keys: return # There is one enqueue op per host. self._host_queues = {} enqueue_ops = [] assert len(self._per_host_batches) == num_infeed_hosts for task_id in range(num_infeed_hosts): host_device = '/task:{}/device:CPU:0'.format(task_id) batch = self._per_host_passthrough_batches[task_id] assert isinstance(batch, list) with tf.device(host_device): self._cpu_nm_types = batch[0] if len(batch) == 1 else batch tf.logging.info('host_device CPU passthrough types: %s, batch: %r', host_device, batch) cpu_dtypes = py_utils.Flatten( py_utils.Transform(lambda x: x.dtype, batch)) # NOTE: we use a large capacity queue under the assumption that the size # of these tensors will be generally smaller than that sent to the TPU, # and that the TPU queue will likely fill up before the host queue, # blocking further enqueues. host_queue = tf.queue.FIFOQueue(capacity=10000, dtypes=cpu_dtypes) self._host_queues[task_id] = host_queue enqueue_ops += [host_queue.enqueue(py_utils.Flatten(batch))] self._tpu_infeed_op.append(tf.group(*enqueue_ops)) def DequeueCpuPassthrough(self, concat=True): """Create CPU dequeue ops. Args: concat: Whether to concat the passthrough batches for each host into one batch. Returns: None if there are no CPU passthrough values. Otherwise, a NestedMap of the CPU passthrough input batch if `concat`, or a list of NestedMaps (one for each host) if not `concat`. """ cpu_passthrough_keys = self.GetCpuPassthroughKeys() if not cpu_passthrough_keys: return None p = self.params num_tpu_hosts = self.cluster.num_tpu_hosts num_infeed_hosts = num_tpu_hosts if p.use_per_host_infeed else 1 tensor_list = [] for task_id in range(num_infeed_hosts): with tf.device('/task:{}/device:CPU:0'.format(task_id)): tensors = self._host_queues[task_id].dequeue() # Make list if only one tensor. if not isinstance(tensors, list): tensors = [tensors] tensor_list.append(tensors) # TODO(laigd): consider moving the concat logic out to make the API simpler. if concat: with tf.device('/task:0/device:CPU:0'): # Transpose to get per-dequeue-element tuples, then concat. result = list(map(lambda xs: tf.concat(xs, axis=0), zip(*tensor_list))) return py_utils.Pack(self._cpu_nm_types, result) # Return a list of batches, one per host. return [py_utils.Pack(self._cpu_nm_types, xs) for xs in tensor_list] @property def tpu_infeed_op(self): if self._tpu_infeed_op is not None: return self._tpu_infeed_op else: raise ValueError('TPU infeed op not set. Call CreateTpuEnqueueOps first.') @property def merged_input_data_summary_op(self): return self._merged_input_data_summary_op @property def input_data_summary_layout(self): return self._input_data_summary_layout def SplitInputBatch(self, num_splits): """Splits the current InputBatch into num_splits ways. Args: num_splits: The number of splits. Returns: A list of `.NestedMap`. Each `.NestedMap` represents the input tensors in one split. """ assert num_splits >= 1 batch = self.GetPreprocessedInputBatch() if num_splits == 1: # Special case. No split is needed. return [batch] assert not py_utils.use_tpu() field_split = ig_helper.SplitTensors(batch.Flatten(), num_splits) num_fields = len(field_split) ret = [] for j in range(num_splits): split_flatten = [field_split[i][j] for i in range(num_fields)] split = batch.Pack(split_flatten) ret += [split] return ret def Reset(self, sess): """Reset the input-generator. Override so that the input_generator reproduces examples as if from a fresh instantiation. Args: sess: A tensorflow session. """ raise NotImplementedError() @property def _map_args(self): """Default args for tf.data.DataSet.map().""" return { 'num_parallel_calls': 1 if self.cluster.in_unit_test else tf.data.experimental.AUTOTUNE, 'deterministic': self.cluster.require_sequential_input_order } def FilePatternToDataSource(p): """Helper to turn p.file_pattern (deprecated) into p.file_datasource.""" if isinstance(p.file_pattern, str): ds = datasource.SimpleDataSource.Params().Set(file_pattern=p.file_pattern) elif isinstance(p.file_pattern, (list, tuple)): if all([isinstance(x, str) for x in p.file_pattern]): # While this violates the documentation and intended use, there are # subclasses that have used a tuple of strings, rather than a list of # string, weight tuples. Rather than treating lists and tuples # differently, support both here until p.file_pattern is removed. ds = datasource.SimpleDataSource.Params().Set( file_pattern=list(p.file_pattern)) elif p.use_within_batch_mixing: if max(list(map(len, p.file_pattern))) >= 3: # Within batch mixing doesn't work with backprop filters, i.e. when # file_pattern param contains a list of # <file_pattern, weight, [bprop_variable_filter]> tuples. raise ValueError('Expected a list of pairs, got %s' % p.file_pattern) file_patterns, weights = (list(x) for x in zip(*p.file_pattern)) ds = datasource.SimpleDataSource.Params().Set( file_pattern=file_patterns, weights=weights) else: # Otherwise fall back to MixByWeight-based approach. datasources = [] weights = [] bprop_variable_filters = [] for input_entry in p.file_pattern: if isinstance(input_entry, str): raise ValueError('Should explicitly specify weights, got string: %s' % input_entry) file_pattern, weight = input_entry[:2] datasources.append( datasource.SimpleDataSource.Params().Set(file_pattern=file_pattern)) weights.append(weight) bprop_variable_filter = input_entry[2] if len(input_entry) > 2 else '' bprop_variable_filters.append(bprop_variable_filter) ds = datasource.CrossBatchMixingDataSource.Params().Set( sub=datasources, weights=weights, bprop_variable_filters=bprop_variable_filters) else: raise ValueError('Cannot parse p.file_pattern into a datasource.') if cluster_factory.Current().tf_data_service_address: bucket_upper_bound = None if 'bucket_upper_bound' in p: bucket_upper_bound = p.bucket_upper_bound ds = datasource.TFDataServiceSource.Params().Set( sub=ds, bucket_upper_bound=bucket_upper_bound) ds = datasource.TFDatasetPrefetch.Params().Set(sub=ds) return ds class BaseInputGeneratorFromFiles(BaseInputGenerator): """Base class for input generators that reads from files. Subclasses should implement _DataSourceFromFilePattern. """ @classmethod def Params(cls): """Defaults params for input generators.""" p = super().Params() p.Define( # NOTE: file_pattern is deprecated. New params should use # file_datasource instead. # TODO(b/139345706) remove file_pattern parameter 'file_pattern', '', 'A single file pattern string, a list of file pattern strings or a list' ' of <file_pattern, weight> pairs or a list of <file_pattern, weight, ' 'bprop_variable_filter> tuples. Some of the cases may not be supported ' 'with use_within_batch_mixing, where probablistic samples are from the ' 'inputs proportional to their weights. Typically, values are binary ' 'protocol buffers containing train/eval samples. Keys are not used.') p.Define('file_random_seed', 301, 'Random seed for shuffling the input data.') p.Define( 'file_buffer_size', 10000, 'How many records are buffered for random shuffling. This param ' 'affects how much RAM a train/test job needs. E.g., if an average ' 'record is about 500KB, the buffer needs 5GB ram.') p.Define( 'file_buffer_size_in_seconds', 0, 'If non-zero, keep enough records in the buffer to handle N seconds ' 'worth of demand. E.g., if the training job is reading 1000 records ' 'per second and this parameter is set to 10, the buffer is resized ' 'to contain 10000 records. This parameter is useful when reading from ' 'many data sources at different speeds, as it automatically tunes the ' 'size of buffers to fit demand. The file_buffer_size parameter is an ' 'upper bound to the buffer size.') p.Define('file_parallelism', 16, 'How many files to read concurrently.') p.Define( 'flush_every_n', 0, 'If non-zero, flushes all batches buffered ' 'so far every these many records are yielded.') p.Define('num_batcher_threads', 1, 'Number of threads to use for input ' 'record batcher.') p.Define( 'repeat_count', -1, 'Number of repetitions of a dataset before throwing OutOfRange error ' 'when using require_sequential_input_order. Must only be set if ' 'cluster.require_sequential_input_order is True.') # TODO(b/139345706) when file_pattern is deleted use_within_batch_mixing # will be specified by setting weights in SimpleDataSource in # p.file_datasource and this param should be deleted as well. p.Define( 'use_within_batch_mixing', False, 'Whether to mix records from ' 'different input sources within batch or across batches (the ' 'default option). This option only takes effect when file_pattern' ' is a list of file patterns with weights.') return p def __init__(self, params): if params.use_per_host_infeed and params.file_random_seed != 0: raise ValueError('file_random_seed needs to be 0 when ' 'use_per_host_infeed == True.') super().__init__(params) def CreateDatasource(self): p = self.params assert not ( p.file_pattern and p.file_datasource ), 'Only one of file_pattern and file_datasource can be specified' if not p.file_datasource: p.file_datasource = FilePatternToDataSource(p) # TODO(b/139345706) remove support for file_pattern # p.file_pattern = '' super().CreateDatasource() def CommonInputOpArgs(self): """Common input params.""" p = self.params args = super().CommonInputOpArgs() num_input_replicas = 1 input_replica_id = 0 infeed_context = cluster.GetInfeedContext() if infeed_context: num_input_replicas = infeed_context.num_infeed_hosts input_replica_id = infeed_context.infeed_host_index tf.logging.info('input_replica_id=%s/%s', input_replica_id, num_input_replicas) # Legacy behavior for Lingvo input ops: require_sequential_order defaults to # False for eval jobs. Note that this value is different from # self.cluster.require_sequential_input_order. require_sequential_order = bool( self.cluster.params.require_sequential_input_order) args.update({ 'file_random_seed': p.file_random_seed, 'file_buffer_size': p.file_buffer_size, 'file_parallelism': p.file_parallelism, 'file_buffer_size_in_seconds': p.file_buffer_size_in_seconds, 'flush_every_n': p.flush_every_n, 'num_threads': p.num_batcher_threads, 'require_sequential_order': require_sequential_order, 'repeat_count': p.repeat_count, 'num_input_replicas': num_input_replicas, 'input_replica_id': input_replica_id, }) args.update(self._InputOpBucketingArgs()) return args def _InputOpBucketingArgs(self): return { 'bucket_upper_bound': [1000000], 'bucket_batch_limit': [self.InfeedBatchSize()], 'bucket_adjust_every_n': 0, } def _InputBatch(self): return self._BuildDataSource() # TODO(b/139345706): After p.file_pattern is deleted, the following functions # _DataSourceFromFilePattern, _BuildDataSourceWithMetadata, _BuildDataSource # can be deleted and functionality moved to using the DataSource directly. def _DataSourceFromFilePattern(self, file_pattern, input_source_weights=None): """Return a NestedMap containing an input batch from a string file_pattern. Subclasses should implement this function. Args: file_pattern: A string file pattern. input_source_weights: A list of float input source weights to control input example mix in the batch. The records will be sampled from inputs proportionally to these weights. Defaults to None which should be treated as an empty list. Returns: A `.NestedMap` of tf.Tensors containing a batch of input data with shapes [batch, ...]. """ return py_utils.NestedMap(x=tf.zeros([1])) def _BuildDataSourceWithMetadata(self): """Read and return input batch from `p.file_pattern`. `p.file_pattern` may be a string file_pattern or a list of (file_pattern, weight, [bprop_variable_filter]) tuples. bprop_variable_filter is optional. When bprop_variable_filter is used, batches will always contain the examples from the same source. Otherwise, examples from different sources may be mixed together. Returns: A `.NestedMap` containing - data: `.NestedMap` of tf.Tensor as in `_DataSourceFromFilePattern()`. - source_selected: optional tensor of size [batch_size, #datasources]. - selected_bprop: optional tensor of size [#datasources]. - bprop_variable_filters: optional list of filters for each source. Raises: ValueError: If file_datasource is not set """ p = self.params if p.use_per_host_infeed and not self._in_get_processed_input_batch: raise ValueError( 'This input generator does not support p.use_per_host_infeed. ' 'Please set it to False, or move the call to self._BuildDataSource() ' 'from self.__init__() to self._InputBatch() for batches to be ' 'correctly replicated per host.') if not p.file_datasource and p.file_pattern: # This is a workaround for subclasses which have defined # their own data source-like functionality. tf.logging.info( 'Creating data source-like output from class %s using ' 'file_pattern %s', self, p.file_pattern) ret = py_utils.NestedMap() ret.data = self._DataSourceFromFilePattern(p.file_pattern) else: tf.logging.info( 'Building data source %s with params %s and ' 'file_pattern %s', self.datasource, self.datasource.params, p.file_pattern) batch = self.datasource.GetNext() ret = self.datasource.GetMeta() ret.data = batch if 'selected_bprop' in ret: self._bprop_onehot = ret.selected_bprop if 'bprop_variable_filters' in ret: self._bprop_variable_filters = ret.bprop_variable_filters if 'source_selected' not in ret: ret.source_selected = None return ret def _BuildDataSource(self): """Read and return input batch from `p.file_pattern`. Same as _BuildDataSourceWithMetadata but does not return any metadata. Returns: A `.NestedMap` of tf.Tensor as in `self._DataSourceFromFilePattern()`. Raises: ValueError: If unknown token type. """ return self._BuildDataSourceWithMetadata()['data'] class BaseSequenceInputGenerator(BaseInputGeneratorFromFiles): """The basic sequence input generator. Subclasses should implement _DataSourceFromFilePattern defined in BaseInputGeneratorFromFiles. """ @classmethod def Params(cls): """Defaults params for sequence input generators.""" p = super().Params() p.Delete('batch_size') # How input should be bucketized. p.Define( 'bucket_upper_bound', [2560], 'Bucketing scheme. Required to be' 'a sorted list of integers. Examples that are longer than all bucket' 'upper bounds are skipped.') p.Define( 'bucket_batch_limit', [8], 'Desired per-split batch size per bucket. Scaled in ' 'infeed_bucket_batch_limit to the infeed size.' 'Must be the same length as bucket_upper_bound.') p.Define( 'bucket_adjust_every_n', 0, 'If non-zero, optimize the values of ' 'bucket_upper_bound except the last one after every N records ' 'based on the current input length distribution.') p.Define('source_max_length', None, 'The maximum length of the source sequence.') p.Define('target_max_length', 300, 'The maximum length of the target sequence.') p.Define('pad_to_max_seq_length', False, 'If True, input tensors will be padded to max_length.') p.Define('tokenizer', tokenizers.AsciiTokenizer.Params(), 'Tokenizer params.') p.Define( 'tokenizer_dict', {}, 'If multiple tokenizers are required, they can be accessed through ' 'this dict via a key.') return p def __init__(self, params): super().__init__(params) p = self.params if p.tokenizer: assert DEFAULT_TOKENIZER_KEY not in p.tokenizer_dict p.tokenizer_dict[DEFAULT_TOKENIZER_KEY] = p.tokenizer self.tokenizer_dict = {} for k, p in p.tokenizer_dict.items(): if p: name = '_tokenizer_' + k self.CreateChild(name, p) self.tokenizer_dict[k] = self.children[name] else: self.tokenizer_dict[k] = None if DEFAULT_TOKENIZER_KEY in self.tokenizer_dict: self.tokenizer = self.tokenizer_dict[DEFAULT_TOKENIZER_KEY] @property # Adjust batch size according to the cluster spec. def infeed_bucket_batch_limit(self): """Returns the bucket batch limit for one infeed host.""" p = self.params infeed_bucket_batch_limit = [ batch_utils.scale_split_to_infeed(b, p.use_per_host_infeed) for b in p.bucket_batch_limit ] tf.logging.info( 'infeed_bucket_batch_limit={} num_splits_per_client={} bucket_batch_limit={}' .format(infeed_bucket_batch_limit, self.cluster.num_splits_per_client, p.bucket_batch_limit)) return infeed_bucket_batch_limit def InfeedBatchSize(self): """Returns the batch size of one infeed pipeline. Override in subclass to provide dynamically shaped infeed batch size. If use_per_host_infeed is False then there is only one infeed pipeline and then the GlobalBatchSize() and the InfeedBatchSize() is the same. """ buckets = self.infeed_bucket_batch_limit if any(x != buckets[0] for x in buckets): tf.logging.warning('Using max bucket batch limit but not all limits are ' 'the same {}'.format(buckets)) infeed_size = max(buckets) tf.logging.info('InfeedBatchSize: %d', infeed_size) return infeed_size def _InputOpBucketingArgs(self): p = self.params bucket_batch_limit = self.infeed_bucket_batch_limit tf.logging.info('infeed_bucket_batch_limit %r', bucket_batch_limit) return { 'bucket_upper_bound': p.bucket_upper_bound, 'bucket_batch_limit': bucket_batch_limit, 'bucket_adjust_every_n': p.bucket_adjust_every_n, } def StringsToIds(self, strs, is_source=False, external_max_length=None, external_append_eos=None, key=None, languages=None): """Tokenize strs into vocab ids. Args: strs: A vector of strings. is_source: A bool to indicate whether to use `source_max_length` to pad 'strs'. external_max_length: An int providing the max_length for strs. external_append_eos: Bool or None. If None, will be ignored and `params.append_eos` will be used. If bool, will determine if an eos symbol will be added to tokens. key: A string key in case the model has multiple tokenizers. languages: A vector of str with the same length as `strs`. Returns: A tuple (ids, labels, paddings) with the same shape [batch, maxlen]. - ids[i, j] is the input token id of i-th sample for j-th step. - labels[i, j] is the target token id of i-th sample for j-th step. - paddings[i, j] is 1 iff i-th sample's j-th step is padded. Usually ids[i, 0] == SOS, ids[i, j+1] == labels[i, j], and labels[i, :] ends with EOS. That is, `ids` and `labels` are inputs and ground-truth labels for step-by-step teacher-forcing training, respectively. Raises: ValueError: If unknown token type. """ p = self.params if external_max_length is not None: maxlen = external_max_length elif is_source: maxlen = p.source_max_length else: maxlen = p.target_max_length key = key or DEFAULT_TOKENIZER_KEY return self.tokenizer_dict[key].StringsToIds( strs, maxlen, external_append_eos, languages=languages) def StringsToIdsWithOffsets(self, strs, is_source=False, external_max_length=None, external_append_eos=None, key=None, languages=None): """Tokenize strs into vocab ids, and also return byte-level offsets. Args: strs: A vector of strings. is_source: A bool to indicate whether to use `source_max_length` to pad 'strs'. external_max_length: An int providing the max_length for strs. external_append_eos: Bool or None. If None, will be ignored and `params.append_eos` will be used. If bool, will determine if an eos symbol will be added to tokens. key: A string key in case the model has multiple tokenizers. languages: A vector of str with the same length as `strs`. Returns: A tuple (ids, labels, paddings) with the same shape [batch, maxlen]. - ids[i, j] is the input token id of i-th sample for j-th step. - labels[i, j] is the target token id of i-th sample for j-th step. - paddings[i, j] is 1 iff i-th sample's j-th step is padded. - start_offset[i, j] is the byte-level offset of the start of the j-th id in the i-th original string - end_offset[i, j] is the byte-level offset of the end of the j-th id in the i-th original string Usually ids[i, 0] == SOS, ids[i, j+1] == labels[i, j], and labels[i, :] ends with EOS. That is, `ids` and `labels` are inputs and ground-truth labels for step-by-step teacher-forcing training, respectively. Raises: ValueError: If unknown token type. Exception: If the specified tokenizer does not support offsets. """ p = self.params if external_max_length is not None: maxlen = external_max_length elif is_source: maxlen = p.source_max_length else: maxlen = p.target_max_length key = key or DEFAULT_TOKENIZER_KEY return self.tokenizer_dict[key].StringsToIdsWithOffsets( strs, maxlen, external_append_eos, languages=languages) def IdsToStrings(self, ids, lens, key=None): """Converts ids back to strings. Args: ids: A matrix of shape [batch, seqlen]. ids[i, :] is the i-th sample's ids. lens: A vector of shape [batch]. lens[i] is the sequence length of the i-th sample. Only the first lens[i] tokens in ids[i, :] are valid tokens for the i-th sequence. key: A string key in case the model has multiple tokenizers. Returns: sequences - A vector of shape [batch]. The converted string sequence. Raises: ValueError: If unknown token type. """ key = key or DEFAULT_TOKENIZER_KEY return self.tokenizer_dict[key].IdsToStrings(ids, lens) def Cast(self, v): """Cast tensor dtype to fprop_dtype.""" if not v.dtype.is_floating: return v return tf.cast(v, py_utils.FPropDtype(self.params)) class BaseTinyDatasetInput(BaseInputGenerator): """Input generator for tiny dataset which are stored in tf checkpoint. | Input batch (b: batch size, h: height, w: width, d: depth): | raw: Samples. [b, h, w, d]. | data: Preprocessed samples. [b, h, w, d]. | label: Labels. [b]. | weight: [b]. weight[i] is 1.0 if i-th sample is considered to | be a real example. Otherwise, weight[i] is 0.0. """ @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.Define('ckpt', None, 'A TensorFlow checkpoint.') p.Define('data', 'x_train', 'The tensor name in the ckpt.') p.Define('data_dtype', tf.uint8, 'The tensor dtype in the ckpt.') p.Define( 'data_shape', (0, 0, 0), 'A tuple of ints. E.g., a tiny image ' 'has the shape (height, weight, depth).') p.Define('label', 'y_train', 'The tensor name in the ckpt.') p.Define('label_dtype', tf.uint8, 'The tensor dtype in the ckpt.') p.Define('repeat', True, 'If true, goes through the dataset repeatedly.') p.use_per_host_infeed = True return p def _InputBatch(self): p = self.params @tf.function def ReadData(): x, y = io_ops.restore_v2(p.ckpt, [p.data, p.label], [''] * 2, [p.data_dtype, p.label_dtype]) # Always convert to float32. return tf.cast(x, tf.float32), tf.cast(y, tf.float32) # Loads data and label into memory and keep it around. data, label = ops.cached_call( f=ReadData.get_concrete_function(), T=[tf.float32, tf.float32]) b, shape = self.InfeedBatchSize(), list(p.data_shape) data = tf.reshape(data, [-1] + shape) label = tf.reshape(label, [-1]) label = py_utils.HasShape(label, [tf.shape(data)[0]]) sample_ids = ops.random_permutation_sequence( num=p.num_samples, batch=b, repeat=p.repeat, seed=p.random_seed if p.random_seed else 0) n = tf.shape(sample_ids)[0] raw = py_utils.PadOrTrimTo(tf.gather(data, sample_ids), [b] + shape) ret = py_utils.NestedMap( raw=raw, data=self._Preprocess(raw), label=py_utils.PadOrTrimTo(tf.gather(label, sample_ids), [b]), weight=py_utils.PadOrTrimTo(tf.ones([n], dtype=tf.float32), [b])) if not py_utils.use_tpu(): ret['sample_ids'] = sample_ids return ret def _Preprocess(self, raw): return raw class TFDataSequenceInputGenerator(BaseSequenceInputGenerator): """tf.data input pipeline for sequences. Inherits params from BaseSequenceInputGenerator so this can be a drop-in replacement for existing input generators inheriting from BaseSequenceInputGenerator. However, many params may be ignored / unused. """ @classmethod def Params(cls): p = super().Params() p.Define('prefetch_buffer_size', 1, 'Local prefetch buffer size.') p.resettable = True return p def CreateDatasource(self): p = self.params if not p.file_datasource: # Convert p.file_pattern into p.file_datasource. ds = self.ConvertFilePatternToDataSource(p, p.file_pattern) p.file_pattern = '' else: ds = p.file_datasource ds = datasource.CustomTFDatasetTransform.Params().Set( sub=ds, fn='TakeEvalSamples') ds = datasource.TFDatasetBatchBySequenceLength.Params().Set( sub=ds, seqlen_fn='GetSequenceLength', input_shape_fn='_InputShape', input_padding_fn='_InputPaddingValue', bucket_upper_bound=p.bucket_upper_bound, bucket_batch_limit=p.bucket_batch_limit) if self.cluster.tf_data_service_address: ds = datasource.TFDataServiceSource.Params().Set( sub=ds, bucket_upper_bound=p.bucket_upper_bound) ds = datasource.TFDatasetPrefetch.Params().Set( sub=ds, buffer_size=p.prefetch_buffer_size) p.file_datasource = ds super().CreateDatasource() @classmethod def ConvertFilePatternToDataSource(cls, p, file_pattern): if isinstance(file_pattern, str): file_patterns = file_pattern.split(',') weights = None else: if all([isinstance(x, str) for x in file_pattern]): file_patterns = file_pattern weights = None elif all([isinstance(x, tuple) for x in file_pattern]): file_patterns, weights = zip(*file_pattern) else: raise ValueError( f'file_pattern must be all strings or all tuples, but got: ' f'{file_pattern}.') for fp in file_patterns: if ',' in fp: raise ValueError(f'file_pattern should not contain comma: {fp}') ds = [] for fp in file_patterns: ds.append(datasource.TFDatasetFnInput.Params().Set( load_fn='LoadDataset', kwargs=dict(file_pattern=fp), shuffle_buffer_size=p.file_buffer_size)) if len(ds) > 1: if not p.use_within_batch_mixing: raise ValueError( 'Only p.use_within_batch_mixing is supported with multiple ' 'file_patterns.') ds = [datasource.TFDatasetMixer.Params().Set(sub=ds, weights=weights)] ds = datasource.CustomTFDatasetTransform.Params().Set( sub=ds[0], fn='ProcessDataset') return ds def Reset(self, sess): self.datasource.Reset(sess) def GetPreprocessedInputBatch(self): return self.datasource.GetNext() def LoadDataset(self, file_pattern): """Load a dataset from file. Args: file_pattern: the path to the file to load. Returns: A tf.data.Dataset() whose elements represent a single training sample without a leading batch dim. """ raise NotImplementedError() def TakeEvalSamples(self, dataset): p = self.params if self.do_eval and p.num_samples > 0: dataset = dataset.take(p.num_samples) return dataset def ProcessDataset(self, dataset): """Processes a dataset returned by LoadDataset. Args: dataset: A dataset returned by LoadDataset. Returns: A processed dataset containing NestedMaps of Tensors without a leading batch dimension. """ raise NotImplementedError() def GetSequenceLength(self, example): """Returns sequence length for the example NestedMap from the dataset. Args: example: A NestedMap containing an input example. Tensors in the example do not have a leading batch dimension. Returns: An integer sequence length for the example. """ raise NotImplementedError() def _InputShape(self, key): """Returns the final shape of the tensor corresponding to key as a tuple. The shape should not include a leading batch dimension. Args: key: The NestedMap key to return shape for. """ if key in ('source_id', 'bucket_keys'): return () raise ValueError('Unexpected key %s' % key) def _InputPaddingValue(self, key, tensorspec): """Returns the value to pad the tensor corresponding to key with.""" if key.endswith('_paddings'): return tf.ones([], dtype=tensorspec.dtype) else: return tf.zeros([], dtype=tensorspec.dtype) class BaseDataExampleInputGenerator(BaseInputGenerator): """Base class for input generators that read Feature protos via tf.data.""" @classmethod def Params(cls): p = super().Params() p.Define('input_files', None, 'Delimited glob of input files.') p.Define( 'dataset_type', None, 'A dataset class constructor such as tf.data.TFRecordDataset. ' 'The class constructor must take a list of filenames and produce an ' 'object that extends tf.data.Dataset.') p.Define('randomize_order', True, 'Whether to randomize the order.') p.Define('parallel_readers', 1, 'Number of parallel reader threads.') p.Define('num_examples', -1, 'Number of examples (-1 for unlimited).') p.Define( 'num_epochs', -1, 'Number of passes through the data to make (-1 for unlimited).' '`tf.errors.OutOfRangeError` is thrown after the limit is reached.') p.Define('randomize_shuffle_size', 500, 'Size of the random shuffle buffer.') return p def __init__(self, params): super().__init__(params) p = params assert p.input_files, ( 'input_files is required for a tf.data example input generator') assert p.dataset_type, ( 'dataset_type is required for a tf.data example input generator') def GetFeatureSpec(self): """Subclasses must implement and return a feature spec. Returns: NestedMap of features compatible with tf.io.parse_example. Default implementation returns an empty dict. """ return {} def GetPreprocessedInputBatch(self): p = self.params def ParseAndProcess(*cols): """Parses a Tensorflow example into features.""" # Assume either one or two column input. If one, then the record is # assumed to be that column. If 2, then it is assumed to be a KV store # and the record is the second column. assert len(cols) in [ 1, 2 ], ('BaseExampleInputGenerator supports one or two column input') record = cols[-1] feature_spec = self.GetFeatureSpec() features = py_utils.NestedMap(tf.io.parse_example(record, feature_spec)) return self._PreprocessInputBatch(features) dataset_factory = p.dataset_type dataset = ( tf.data.Dataset.list_files( p.input_files, shuffle=bool(p.randomize_order)).apply( tf.data.experimental.parallel_interleave( dataset_factory, cycle_length=p.parallel_readers, sloppy=p.randomize_order))) if p.randomize_order: dataset = dataset.shuffle(p.randomize_shuffle_size) dataset = dataset.take(p.num_examples) dataset = dataset.repeat(p.num_epochs) dataset = dataset.batch(self.InfeedBatchSize(), drop_remainder=True) dataset = dataset.map( ParseAndProcess, num_parallel_calls=p.parallel_readers) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) iterator = dataset.make_one_shot_iterator() input_batch = iterator.get_next() return input_batch def DefineTFDataInput(name, func, ignore_args=None, map_args=None): """Defines a new InputGenerator class from given tf.data pipeline. This function allows users to utilize existing tf.data pipelines which are defined externally, without making binding boilerplates. The generated InputGenerator behaves like a one-shot iterator of the given pipeline. If the iterator is designed to be repeated, the returned InputGenerator will work similarly. This function generates `Params` automatically by analysing the given pipeline's signature so that the behavior of the pipeline can be saved into `Params`. This function defines the InputGenerator class on the caller's module. To avoid any confusion, the returned class have to be stored in the module-level symbol with the same identifier with given `name`. Example: >>> # A tf.data pipeline which returns a dict of Tensors. >>> def my_dataset(begin=0, end=10): ... ds = tf.data.Dataset.from_tensor_slices(tf.range(begin, end)) ... return ds.map(lambda x: {'value': x}) >>> # Defines the InputGenerator class for my_dataset. >>> MyInput = DefineTFDataInput('MyInput', my_dataset) >>> # Obtains Params of MyInput. >>> p = MyInput.Params() >>> assert p.args.begin == 0 >>> assert p.args.end == 10 >>> # Instantiates the InputGenerator from Params. >>> ig = p.Instantiate() >>> assert isinstance(ig, MyInput) >>> # Obtains the data tensors. >>> # In TFv1: >>> data = ig.GetPreprocessedInputBatch() >>> with tf.Session() as sess: ... values = sess.run(data) # {'value': 0} ... values = sess.run(data) # {'value': 1} ... values = sess.run(data) # {'value': 2} >>> # In TFv2: >>> values = ig.GetPreprocessedInputBatch() # {'value': 0} >>> values = ig.GetPreprocessedInputBatch() # {'value': 1} >>> values = ig.GetPreprocessedInputBatch() # {'value': 2} Args: name: A string, representing the name of the new InputGenerator class. func: A callable to be analysed to generate the new InputGenerator. The return value of `func` must be a single `tf.data.Dataset` which yields a dict or its subclasses. The signature (parameter list) of `func` must have all explicit parameters needed to configure the pipeline. `*args` and `**kwargs` parameters would be ignored from defining `Params`. ignore_args: A collection of strings, representing the set of parameter names to be ignored from defining `Params`. map_args: A {str: str} dict, representing mappings from existing fields in `Params()` to `func`'s parameter. These mappings can be used to propagate some particular Lingvo-specific options defined by others (typically by super classes: `BaseInputGenerator` or `BaseLayer`) to the given function. Each entry in the dict represents a `{func_param: layer_param}` pair such that the `Params().layer_param` field will be mapped to the parameter `func_param` of `func`. `func_param` won't be added into `Params().args` to avoid duplicated definitions about the same parameters. Returns: A new InputGenerator class that invokes `func` internally. The `Params()` method of the returned class makes a new Params containing the `args` field representing the parameters of `func`. The `GetPreprocessedInputBatch()` method returns a `py_utils.NestedMap` representing the same dict of the obtained data from the dataset. """ ignore_args = set(ignore_args if ignore_args is not None else ()) map_args = dict(map_args if map_args is not None else {}) # Defines the class first as it will be required to call `super()`. generated_cls = type(name, (BaseInputGenerator,), {}) @classmethod def _Params(cls): """Generates Params to configure the InputGenerator. This function analyses the signature of the given callable `func` and defines corresponding fields into `Params` to the obtained function parameters. Returns: An `InstantiableParams` object representing the InputGenerator. It has the `args` field which contains the set of parameters of `func`. """ # Keys in `map_args` will also be ignored. actual_ignore_args = ignore_args | set(map_args.keys()) p = super(generated_cls, cls).Params() # Introduces a new group `args` to avoid confusion between `func`'s # parameters and existing params defined by super classes. # TODO(oday): For better UX, consider removing this nested field and add # `func`s parameters to `p` directly. We need to make sure that there are no # side effects by integrating `func`'s parameters and follows: # - BaseInputGenerator.Params() # - BaseLayer.Params() # - InstantiableParams.cls p.Define('args', hyperparams.Params(), 'Parameter list of the pipeline.') inspect_utils.DefineParams(func, p.args, actual_ignore_args) ds = datasource.TFDatasetFnInput.Params().Set( load_fn='GetDataset', shuffle_buffer_size=1) if cluster_factory.Current().tf_data_service_address: ds = datasource.TFDataServiceSource.Params().Set(sub=ds) ds = datasource.TFDatasetPrefetch.Params().Set(sub=ds) p.file_datasource = ds return p def _GetDataset(self): p = self.params overrides = {k: p.Get(v) for k, v in map_args.items()} dataset = inspect_utils.CallWithParams(func, p.args, **overrides) assert isinstance(dataset, (tf.tf1.data.Dataset, tf.tf2.data.Dataset)), ( 'DefineTFDataInput must take a callable which returns a ' '`tf.data.Dataset`. The given callable `%s` returned `%s`' % (func, dataset)) return dataset def _GetPreprocessedInputBatch(self): """Generates data tensors by invoking the pipeline.""" # TFv1: Returns Tensors which will be determined by Session.run(). # TFv2: Returns Tensors with actual values. data = self.datasource.GetNext() # Converts dict to NestedMap to maintain consistency with existing # functionalities in base_input_generator. # TODO(oday): Consider mitigating this restriction. assert isinstance(data, dict), ( 'DefineTFDataInput accepts only datasets that returns a dict or its ' 'subclasses.') if not isinstance(data, py_utils.NestedMap): data = py_utils.NestedMap.FromNestedDict(data) return data # Overrides member methods. generated_cls.Params = _Params generated_cls.GetDataset = _GetDataset generated_cls.GetPreprocessedInputBatch = _GetPreprocessedInputBatch # Sets __module__ to the caller's module name for pickling and restoring from # Params to work. # See also the namedtuple's implementation for details. module = inspect.stack()[1].frame.f_globals.get('__name__', '__main__') generated_cls.__module__ = module return generated_cls
40.558962
95
0.679435
5524375de699146ef8dc3d1b462ae6233a316bd8
9,822
py
Python
redash/query_runner/pg.py
rrgaya-zz/redash
8ad08a566adf1ce6fd461bf7cf11b51f12b3a48f
[ "BSD-2-Clause" ]
8
2019-05-05T10:33:43.000Z
2021-07-14T11:21:52.000Z
redash/query_runner/pg.py
rrgaya-zz/redash
8ad08a566adf1ce6fd461bf7cf11b51f12b3a48f
[ "BSD-2-Clause" ]
3
2020-06-18T15:21:00.000Z
2021-02-08T20:35:37.000Z
redash/query_runner/pg.py
rrgaya-zz/redash
8ad08a566adf1ce6fd461bf7cf11b51f12b3a48f
[ "BSD-2-Clause" ]
15
2019-06-29T13:58:00.000Z
2022-02-27T14:57:03.000Z
import os import logging import select import psycopg2 from psycopg2.extras import Range from redash.query_runner import * from redash.utils import JSONEncoder, json_dumps, json_loads logger = logging.getLogger(__name__) types_map = { 20: TYPE_INTEGER, 21: TYPE_INTEGER, 23: TYPE_INTEGER, 700: TYPE_FLOAT, 1700: TYPE_FLOAT, 701: TYPE_FLOAT, 16: TYPE_BOOLEAN, 1082: TYPE_DATE, 1114: TYPE_DATETIME, 1184: TYPE_DATETIME, 1014: TYPE_STRING, 1015: TYPE_STRING, 1008: TYPE_STRING, 1009: TYPE_STRING, 2951: TYPE_STRING } class PostgreSQLJSONEncoder(JSONEncoder): def default(self, o): if isinstance(o, Range): # From: https://github.com/psycopg/psycopg2/pull/779 if o._bounds is None: return '' items = [ o._bounds[0], str(o._lower), ', ', str(o._upper), o._bounds[1] ] return ''.join(items) return super(PostgreSQLJSONEncoder, self).default(o) def _wait(conn, timeout=None): while 1: try: state = conn.poll() if state == psycopg2.extensions.POLL_OK: break elif state == psycopg2.extensions.POLL_WRITE: select.select([], [conn.fileno()], [], timeout) elif state == psycopg2.extensions.POLL_READ: select.select([conn.fileno()], [], [], timeout) else: raise psycopg2.OperationalError("poll() returned %s" % state) except select.error: raise psycopg2.OperationalError("select.error received") class PostgreSQL(BaseSQLQueryRunner): noop_query = "SELECT 1" @classmethod def configuration_schema(cls): return { "type": "object", "properties": { "user": { "type": "string" }, "password": { "type": "string" }, "host": { "type": "string", "default": "127.0.0.1" }, "port": { "type": "number", "default": 5432 }, "dbname": { "type": "string", "title": "Database Name" }, "sslmode": { "type": "string", "title": "SSL Mode", "default": "prefer" } }, "order": ['host', 'port', 'user', 'password'], "required": ["dbname"], "secret": ["password"] } @classmethod def type(cls): return "pg" def _get_definitions(self, schema, query): results, error = self.run_query(query, None) if error is not None: raise Exception("Failed getting schema.") results = json_loads(results) for row in results['rows']: if row['table_schema'] != 'public': table_name = u'{}.{}'.format(row['table_schema'], row['table_name']) else: table_name = row['table_name'] if table_name not in schema: schema[table_name] = {'name': table_name, 'columns': []} schema[table_name]['columns'].append(row['column_name']) def _get_tables(self, schema): ''' relkind constants per https://www.postgresql.org/docs/10/static/catalog-pg-class.html r = regular table v = view m = materialized view f = foreign table p = partitioned table (new in 10) --- i = index S = sequence t = TOAST table c = composite type ''' query = """ SELECT s.nspname as table_schema, c.relname as table_name, a.attname as column_name FROM pg_class c JOIN pg_namespace s ON c.relnamespace = s.oid AND s.nspname NOT IN ('pg_catalog', 'information_schema') JOIN pg_attribute a ON a.attrelid = c.oid AND a.attnum > 0 AND NOT a.attisdropped WHERE c.relkind IN ('m', 'f', 'p') UNION SELECT table_schema, table_name, column_name FROM information_schema.columns WHERE table_schema NOT IN ('pg_catalog', 'information_schema') """ self._get_definitions(schema, query) return schema.values() def _get_connection(self): connection = psycopg2.connect(user=self.configuration.get('user'), password=self.configuration.get('password'), host=self.configuration.get('host'), port=self.configuration.get('port'), dbname=self.configuration.get('dbname'), sslmode=self.configuration.get('sslmode'), async_=True) return connection def run_query(self, query, user): connection = self._get_connection() _wait(connection, timeout=10) cursor = connection.cursor() try: cursor.execute(query) _wait(connection) if cursor.description is not None: columns = self.fetch_columns([(i[0], types_map.get(i[1], None)) for i in cursor.description]) rows = [dict(zip((c['name'] for c in columns), row)) for row in cursor] data = {'columns': columns, 'rows': rows} error = None json_data = json_dumps(data, ignore_nan=True, cls=PostgreSQLJSONEncoder) else: error = 'Query completed but it returned no data.' json_data = None except (select.error, OSError) as e: error = "Query interrupted. Please retry." json_data = None except psycopg2.DatabaseError as e: error = e.message json_data = None except (KeyboardInterrupt, InterruptException): connection.cancel() error = "Query cancelled by user." json_data = None finally: connection.close() return json_data, error class Redshift(PostgreSQL): @classmethod def type(cls): return "redshift" def _get_connection(self): sslrootcert_path = os.path.join(os.path.dirname(__file__), './files/redshift-ca-bundle.crt') connection = psycopg2.connect(user=self.configuration.get('user'), password=self.configuration.get('password'), host=self.configuration.get('host'), port=self.configuration.get('port'), dbname=self.configuration.get('dbname'), sslmode=self.configuration.get('sslmode', 'prefer'), sslrootcert=sslrootcert_path, async_=True) return connection @classmethod def configuration_schema(cls): return { "type": "object", "properties": { "user": { "type": "string" }, "password": { "type": "string" }, "host": { "type": "string" }, "port": { "type": "number" }, "dbname": { "type": "string", "title": "Database Name" }, "sslmode": { "type": "string", "title": "SSL Mode", "default": "prefer" } }, "order": ['host', 'port', 'user', 'password'], "required": ["dbname", "user", "password", "host", "port"], "secret": ["password"] } def _get_tables(self, schema): # Use svv_columns to include internal & external (Spectrum) tables and views data for Redshift # https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_COLUMNS.html # Use HAS_SCHEMA_PRIVILEGE(), SVV_EXTERNAL_SCHEMAS and HAS_TABLE_PRIVILEGE() to filter # out tables the current user cannot access. # https://docs.aws.amazon.com/redshift/latest/dg/r_HAS_SCHEMA_PRIVILEGE.html # https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_EXTERNAL_SCHEMAS.html # https://docs.aws.amazon.com/redshift/latest/dg/r_HAS_TABLE_PRIVILEGE.html query = """ WITH tables AS ( SELECT DISTINCT table_name, table_schema, column_name, ordinal_position AS pos FROM svv_columns WHERE table_schema NOT IN ('pg_internal','pg_catalog','information_schema') ) SELECT table_name, table_schema, column_name FROM tables WHERE HAS_SCHEMA_PRIVILEGE(table_schema, 'USAGE') AND ( table_schema IN (SELECT schemaname FROM SVV_EXTERNAL_SCHEMAS) OR HAS_TABLE_PRIVILEGE('"' || table_schema || '"."' || table_name || '"', 'SELECT') ) ORDER BY table_name, pos """ self._get_definitions(schema, query) return schema.values() class CockroachDB(PostgreSQL): @classmethod def type(cls): return "cockroach" register(PostgreSQL) register(Redshift) register(CockroachDB)
31.581994
109
0.503869
f3a0ee3aa8206e35a384d717ca5d6c038a9c25f2
9,884
py
Python
Tiles/tilesdemo.py
davidoj/RL_Aggregation
d1f7fa01016660963e87dd4bcdb475a7b4aed466
[ "MIT" ]
null
null
null
Tiles/tilesdemo.py
davidoj/RL_Aggregation
d1f7fa01016660963e87dd4bcdb475a7b4aed466
[ "MIT" ]
null
null
null
Tiles/tilesdemo.py
davidoj/RL_Aggregation
d1f7fa01016660963e87dd4bcdb475a7b4aed466
[ "MIT" ]
1
2020-06-22T22:49:11.000Z
2020-06-22T22:49:11.000Z
""" Tiles demo This demo is good for illustrating or testing the tile routines. The demo displays a graph where instead of lines, there is a dot for each x,y pair in the graph. The x,y pairs are points whose tiles match the point we are doing tiles for. There is a separate graph entry for each of the following tile types: regular(square), stripes, diagonals, diamond, logarithmic sized, and exponential sized. The graph window first comes up with tiles for the point 2.0, 2.0 displayed. You can click anywhere in the graph window to show the tiles for that point. You can use the graph highlighting functions by pressing the space bar, and then the arrow keys, to show the different tiles (some may be hidden by others, so this is the only way to see some of them). There is a menu of other options for the tile codes (e.g. collision tables, number of tilings). If you choose one of these, a dnw window will be created, and you can move it side by side with the old one to compare things. When imported, a tile window is automatically created for you. There is a function to create windows which you may wish to call: showtiles(numtilings, memct, floats, ints, title, start, end, intervals) where: numtilings is the number of tilings to be done memct is the memory size or collision table to use floats are the (two) floating point numbers to do tiles for ints is an optional list of integers to use in the tiling (defaults to none) start is the starting point of the tile window (defaults to 0.0) end is the end point of the tile window (defaults to 5.0) intervals is the number of intervals between whole number points (default 10) Note: don't make the start and end too far apart, or too many intervals between. The program will call the tiles function for each interval between\ the start and end points (in each direction) for each type of tiling and compare it against the tiles returned by those functions for the original point, so if you ask for too many, it will be VERY slow. """ import tiles import fancytiles import random import RLtoolkit.Quickgraph.graph as graph from RLtoolkit.G.g import * class Tileview(graph.Dataview): """Special graph view for tile display""" def gDrawView (self): self.parentgraph.gDrawView() pass def gClickEventHandler(self, x, y): print "clicked at ", x, y self.newExample(x, y) def newExample (self, x, y): global inputarray, functionapproximator, examples self.parentgraph.drawExample(x, y) class TileDisplay(graph.Graph): def __init__(self, x, y, numtilings=1, memct=8192, title="Tile Display", \ dataviewtype=Tileview, start=0.0, end=5.0, intervals=10, **kwargs): title = title + " for "+str(numtilings)+" tilings" graph.Graph.__init__(self, title, dataviewtype, **kwargs) self.dataview.parentgraph = self self.tilex = x self.tiley = y self.numtilings = numtilings self.memct = memct self.start = start self.end = end self.intervals = intervals self.initDemo() def gDrawView(self): graph.Graph.gDrawView(self) gDrawLineR(self.dataview, self.tilex, self.tiley, 0, .2, 'black') gDrawLineR(self.dataview, self.tilex, self.tiley, 0, -.2, 'black') gDrawLineR(self.dataview, self.tilex, self.tiley, .2, 0, 'black') gDrawLineR(self.dataview, self.tilex, self.tiley, -.2, 0, 'black') def drawExample(self, x, y): self.tilex = x self.tiley = y graph.graph(self.calcTiledata(self.numtilings, self.memct, [x, y]), None, self) gDrawLineR(self.dataview, x, y, 0, .2, 'black') gDrawLineR(self.dataview, x, y, 0, -.2, 'black') gDrawLineR(self.dataview, x, y, .2, 0, 'black') gDrawLineR(self.dataview, x, y, -.2, 0, 'black') def initDemo(self): gClear(self) gClear(self.dataview) self.data = [] self.drawExample(self.tilex, self.tiley) graph.xGraphLimits(self.start, self.end, self) graph.yGraphLimits(self.start, self.end, self) graph.graphPointsOnly(self) graph.xTickmarks(1, self) graph.yTickmarks(1, self) graph.gridGraph(5, self) def calcTiledata(self, numtilings, memct, floats, ints=[]): samet = [] sametd = [] sametbd = [] sametdm = [] sametl = [] samete = [] samets = [] t = tiles.tiles(numtilings, memct, floats, ints) tsx = fancytiles.stripetiles(numtilings, memct, [floats[0]], None, ints) tsy = fancytiles.stripetiles(numtilings, memct, [floats[1]], None, ints) td = fancytiles.diagonaltiles(numtilings, memct, floats, None, ints) tbd = fancytiles.backdiagonaltiles(numtilings, memct, floats, None, ints) tdm = fancytiles.diamondtiles(numtilings, memct, floats, None, ints) tl = fancytiles.logtiles(numtilings, memct, floats, ints) te = fancytiles.exptiles(numtilings, memct, floats, ints) total = int((self.end - self.start) * self.intervals) for i in xrange(total): for j in xrange(total): x = float(i)/self.intervals + self.start y = float(j)/self.intervals + self.start newfloats = [x, y] if tiles.tiles(numtilings, memct, newfloats, ints) == t: samet.append(newfloats) if fancytiles.stripetiles(numtilings, memct, [x], None, ints) == tsx or \ fancytiles.stripetiles(numtilings, memct, [y], None, ints) == tsy: samets.append(newfloats) if fancytiles.diagonaltiles(numtilings, memct, newfloats, None, ints) == td: sametd.append(newfloats) if fancytiles.backdiagonaltiles(numtilings, memct, newfloats, None, ints) == tbd: sametbd.append(newfloats) if fancytiles.diamondtiles(numtilings, memct, newfloats, None, ints) == tdm: sametdm.append(newfloats) if fancytiles.logtiles(numtilings, memct, newfloats, ints) == tl: sametl.append(newfloats) if fancytiles.exptiles(numtilings, memct, newfloats, ints) == te: samete.append(newfloats) data = [samet, samets, sametd, sametbd, sametdm, sametl, samete] return data def showtiles(numtilings, memct, floats, ints=[], title="Tile Display", \ start=0.0, end=5.0, intervals=10): w = TileDisplay(2.0, 2.0, numtilings, memct, title=title, start=start, \ end=end, intervals=intervals, gdViewport=(0, 20, 600, 620)) # should really have one for each type of tiling for test? ctu = tiles.CollisionTable(4096, 'unsafe') cts = tiles.CollisionTable(4096, 'safe') ctss = tiles.CollisionTable(4096, 'super safe') gAddMenu(GMENU, 'Tile Window', \ [['1 tiling, memory 1024', lambda: showtiles(1, 1024, [1.0, 2.0], title="Tile Display, memory 1024")], \ ['2 tilings, memory 1024', lambda: showtiles(2, 1024, [1.0, 2.0], title="Tile Display, memory 1024")], \ ['4 tilings, memory 1024', lambda: showtiles(4, 1024, [1.0, 2.0], title="Tile Display, memory 1024")], \ ['8 tilings, memory 1024', lambda: showtiles(8, 1024, [1.0, 2.0], title="Tile Display, memory 1024")], \ ['16 tilings, memory 1024', lambda: showtiles(16, 1024, [1.0, 2.0], title="Tile Display, memory 1024")], \ '---', \ ['1 tiling, memory 2048', lambda: showtiles(1, 2048, [1.0, 2.0], title="Tile Display, memory 2048")], \ ['2 tilings, memory 2048', lambda: showtiles(2, 2048, [1.0, 2.0], title="Tile Display, memory 2048")], \ ['4 tilings, memory 2048', lambda: showtiles(4, 2048, [1.0, 2.0], title="Tile Display, memory 2048")], \ ['8 tilings, memory 2048', lambda: showtiles(8, 2048, [1.0, 2.0], title="Tile Display, memory 2048")], \ ['16 tilings, memory 2048', lambda: showtiles(16, 2048, [1.0, 2.0], title="Tile Display, memory 2048")], \ '---', \ ['1 tiling, memory 4096', lambda: showtiles(1, 4096, [1.0, 2.0], title="Tile Display, memory 4096")], \ ['2 tilings, memory 4096', lambda: showtiles(2, 4096, [1.0, 2.0], title="Tile Display, memory 4096")], \ ['4 tilings, memory 4096', lambda: showtiles(4, 4096, [1.0, 2.0], title="Tile Display, memory 4096")], \ ['8 tilings, memory 4096', lambda: showtiles(8, 4096, [1.0, 2.0], title="Tile Display, memory 4096")], \ ['16 tilings, memory 4096', lambda: showtiles(16, 4096, [1.0, 2.0], title="Tile Display, memory 4096")], \ '---', \ ['1 tiling, safe collision table', lambda: showtiles(1, cts, [1.0, 2.0], title="Tile Display, safe collision table")], \ ['2 tilings, safe collision table', lambda: showtiles(2, cts, [1.0, 2.0], title="Tile Display, safe collision table")], \ '---', \ ['1 tiling, super safe collision table', lambda: showtiles(1, ctss, [1.0, 2.0], title="Tile Display, super safe collision table")], \ ['2 tilings, super safe collision table', lambda: showtiles(2, ctss, [1.0, 2.0], title="Tile Display, super safe collision table")], \ '---', \ ['1 tiling, range -2 to 7, memory 4096', lambda: showtiles(1, 4096, [1.0, 2.0], start=-2.0, end=7.0, title="Tile Display, memory 4096")], \ ['2 tilings, range -2 to 7, memory 4096', lambda: showtiles(2, 4096, [1.0, 2.0], start=-2.0, end=7.0, title="Tile Display, memory 4096")], \ '---', \ ['Quit', gQuit]]) if __name__ == "__main__": showtiles(1, 4096, [2.0, 2.0], title="Tile Display, memory 4096") graph.gStartEventLoop()
53.139785
150
0.624949
885979730fea0f869d48d9171e2c13de8c4c2e60
112
py
Python
CodeSignal/test.py
JeffreyAsuncion/CodingProblems_Python
db71cb46b2579c1c65767a644a0ea989da4fa559
[ "MIT" ]
null
null
null
CodeSignal/test.py
JeffreyAsuncion/CodingProblems_Python
db71cb46b2579c1c65767a644a0ea989da4fa559
[ "MIT" ]
null
null
null
CodeSignal/test.py
JeffreyAsuncion/CodingProblems_Python
db71cb46b2579c1c65767a644a0ea989da4fa559
[ "MIT" ]
null
null
null
sequence = [1,2,3,4,5] preNum = -99999999999 for num in sequence: if not num > preNum: print(False)
18.666667
24
0.625
9911b5533d8332c99a0309b889c58ebb42e79b25
12,362
py
Python
models/soft_refinedet.py
gdjmck/multitrident
437a6d46d49cec8552a4cb465b23ce387bf284d9
[ "Apache-2.0" ]
106
2019-06-13T07:23:46.000Z
2021-05-20T02:52:37.000Z
models/soft_refinedet.py
yangheng111/multitrident
b11808af66ade1637822de53840ad4a16719a9f2
[ "Apache-2.0" ]
7
2019-07-11T05:40:48.000Z
2021-02-06T15:17:07.000Z
models/soft_refinedet.py
yangheng111/multitrident
b11808af66ade1637822de53840ad4a16719a9f2
[ "Apache-2.0" ]
26
2019-06-17T01:42:35.000Z
2021-11-02T12:13:58.000Z
import torch import torch.nn as nn import torch.nn.functional as F from layers import * from data import voc_refinedet, coco_refinedet import os class SoftRefineDet(nn.Module): """Single Shot Multibox Architecture The network is composed of a base VGG network followed by the added multibox conv layers. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1512.02325.pdf for more details. Args: phase: (string) Can be "test" or "train" size: input image size base: VGG16 layers for input, size of either 300 or 500 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, phase, size, base, extras, ARM, ODM, TCB, AF, num_classes): super(SoftRefineDet, self).__init__() self.phase = phase self.num_classes = num_classes self.cfg = (coco_refinedet, voc_refinedet)[num_classes == 21] self.priorbox = PriorBox(self.cfg[str(size)]) with torch.no_grad(): self.priors = self.priorbox.forward() self.size = size # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.conv4_3_L2Norm = L2Norm(512, 10) self.conv5_3_L2Norm = L2Norm(512, 8) self.extras = nn.ModuleList(extras) self.arm_loc = nn.ModuleList(ARM[0]) self.arm_conf = nn.ModuleList(ARM[1]) self.odm_loc = nn.ModuleList(ODM[0]) self.odm_conf = nn.ModuleList(ODM[1]) #self.tcb = nn.ModuleList(TCB) self.tcb0 = nn.ModuleList(TCB[0]) self.tcb1 = nn.ModuleList(TCB[1]) self.tcb2 = nn.ModuleList(TCB[2]) self.af_loc = nn.ModuleList(AF[0]) self.af_conf = nn.ModuleList(AF[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect_RefineDet(num_classes, self.size, 0, 1000, 0.01, 0.45, 0.01, 500) def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() tcb_source = list() arm_loc = list() arm_conf = list() odm_loc = list() odm_conf = list() # apply vgg up to conv4_3 relu and conv5_3 relu for k in range(30): x = self.vgg[k](x) if 22 == k: s = self.conv4_3_L2Norm(x) sources.append(s) elif 29 == k: s = self.conv5_3_L2Norm(x) sources.append(s) # apply vgg up to fc7 for k in range(30, len(self.vgg)): x = self.vgg[k](x) sources.append(x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: sources.append(x) # apply ARM and ODM to source layers for (x, l, c) in zip(sources, self.arm_loc, self.arm_conf): arm_loc.append(l(x).permute(0, 2, 3, 1).contiguous()) arm_conf.append(c(x).permute(0, 2, 3, 1).contiguous()) arm_loc = torch.cat([o.view(o.size(0), -1) for o in arm_loc], 1) arm_conf = torch.cat([o.view(o.size(0), -1) for o in arm_conf], 1) #print([x.size() for x in sources]) # calculate TCB features #print([x.size() for x in sources]) p = None for k, v in enumerate(sources[::-1]): s = v for i in range(3): s = self.tcb0[(3-k)*3 + i](s) #print(s.size()) if k != 0: u = p u = self.tcb1[3-k](u) s += u for i in range(3): s = self.tcb2[(3-k)*3 + i](s) p = s tcb_source.append(s) #print([x.size() for x in tcb_source]) tcb_source.reverse() # apply ODM to source layers for (x, l, c) in zip(tcb_source, self.odm_loc, self.odm_conf): odm_loc.append(l(x).permute(0, 2, 3, 1).contiguous()) odm_conf.append(c(x).permute(0, 2, 3, 1).contiguous()) odm_loc = torch.cat([o.view(o.size(0), -1) for o in odm_loc], 1) odm_conf = torch.cat([o.view(o.size(0), -1) for o in odm_conf], 1) #print(arm_loc.size(), arm_conf.size(), odm_loc.size(), odm_conf.size()) AF_loc=[] AF_conf=[] for (x, l, c) in zip(tcb_source, self.af_loc, self.af_conf): AF_loc.append(l(x)) AF_conf.append(c(x)) if self.phase == "test": #print(loc, conf) output = self.detect( arm_loc.view(arm_loc.size(0), -1, 4), # arm loc preds self.softmax(arm_conf.view(arm_conf.size(0), -1, 2)), # arm conf preds odm_loc.view(odm_loc.size(0), -1, 4), # odm loc preds self.softmax(odm_conf.view(odm_conf.size(0), -1, self.num_classes)), # odm conf preds self.priors.type(type(x.data)) # default boxes ) else: output = ( arm_loc.view(arm_loc.size(0), -1, 4), arm_conf.view(arm_conf.size(0), -1, 2), odm_loc.view(odm_loc.size(0), -1, 4), odm_conf.view(odm_conf.size(0), -1, self.num_classes), self.priors ) return output, (AF_loc, AF_conf) def load_weights(self, base_file): other, ext = os.path.splitext(base_file) if ext == '.pkl' or '.pth': print('Loading weights into state dict...') self.load_state_dict(torch.load(base_file, map_location=lambda storage, loc: storage)) print('Finished!') else: print('Sorry only .pth and .pkl files supported.') # This function is derived from torchvision VGG make_layers() # https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py def vgg(cfg, i, batch_norm=False): layers = [] in_channels = i for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'C': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=3, dilation=3) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)] return layers def add_extras(cfg, size, i, batch_norm=False): # Extra layers added to VGG for feature scaling layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': layers += [nn.Conv2d(in_channels, cfg[k + 1], kernel_size=(1, 3)[flag], stride=2, padding=1)] else: layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])] flag = not flag in_channels = v return layers def arm_multibox(vgg, extra_layers, cfg): arm_loc_layers = [] arm_conf_layers = [] vgg_source = [21, 28, -2] for k, v in enumerate(vgg_source): arm_loc_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 4, kernel_size=3, padding=1)] arm_conf_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 2, kernel_size=3, padding=1)] for k, v in enumerate(extra_layers[1::2], 3): arm_loc_layers += [nn.Conv2d(v.out_channels, cfg[k] * 4, kernel_size=3, padding=1)] arm_conf_layers += [nn.Conv2d(v.out_channels, cfg[k] * 2, kernel_size=3, padding=1)] return (arm_loc_layers, arm_conf_layers) def odm_multibox(vgg, extra_layers, cfg, num_classes): odm_loc_layers = [] odm_conf_layers = [] vgg_source = [21, 28, -2] for k, v in enumerate(vgg_source): odm_loc_layers += [nn.Conv2d(256, cfg[k] * 4, kernel_size=3, padding=1)] odm_conf_layers += [nn.Conv2d(256, cfg[k] * num_classes, kernel_size=3, padding=1)] for k, v in enumerate(extra_layers[1::2], 3): odm_loc_layers += [nn.Conv2d(256, cfg[k] * 4, kernel_size=3, padding=1)] odm_conf_layers += [nn.Conv2d(256, cfg[k] * num_classes, kernel_size=3, padding=1)] return (odm_loc_layers, odm_conf_layers) def AF(num_classes): conf_layers = [ nn.Conv2d(256, num_classes, kernel_size=3, padding=1), nn.Conv2d(256, num_classes, kernel_size=3, padding=1), nn.Conv2d(256, num_classes, kernel_size=3, padding=1), nn.Conv2d(256, num_classes, kernel_size=3, padding=1) ] loc_layers = [ nn.Conv2d(256, 4, kernel_size=3, padding=1), nn.Conv2d(256, 4, kernel_size=3, padding=1), nn.Conv2d(256, 4, kernel_size=3, padding=1), nn.Conv2d(256, 4, kernel_size=3, padding=1) ] return (loc_layers, conf_layers) def add_tcb(cfg): feature_scale_layers = [] feature_upsample_layers = [] feature_pred_layers = [] for k, v in enumerate(cfg): feature_scale_layers += [nn.Conv2d(cfg[k], 256, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, padding=1) ] feature_pred_layers += [nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(inplace=True) ] if k != len(cfg) - 1: feature_upsample_layers += [nn.ConvTranspose2d(256, 256, 2, 2)] return (feature_scale_layers, feature_upsample_layers, feature_pred_layers) base = { '320': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512], '512': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512], } extras = { '320': [256, 'S', 512], '512': [256, 'S', 512], } mbox = { '320': [3, 3, 3, 3], # number of boxes per feature map location '512': [3, 3, 3, 3], # number of boxes per feature map location } tcb = { '320': [512, 512, 1024, 512], '512': [512, 512, 1024, 512], } def build_softrefinedet(phase, size=320, num_classes=21): if phase != "test" and phase != "train": print("ERROR: Phase: " + phase + " not recognized") return if size != 320 and size != 512: print("ERROR: You specified size " + repr(size) + ". However, " + "currently only RefineDet320 and RefineDet512 is supported!") return base_ = vgg(base[str(size)], 3) extras_ = add_extras(extras[str(size)], size, 1024) ARM_ = arm_multibox(base_, extras_, mbox[str(size)]) ODM_ = odm_multibox(base_, extras_, mbox[str(size)], num_classes) TCB_ = add_tcb(tcb[str(size)]) AF_ = AF(num_classes) return SoftRefineDet(phase, size, base_, extras_, ARM_, ODM_, TCB_, AF_, num_classes)
39.369427
98
0.555088
3b442195b4bdbb38822a959ea54d0586b627e270
5,771
py
Python
utils/load_corpus.py
ssbeicdm/ssbe
5ae671962c3e50ea912eba02779e9a1c3ae37534
[ "BSD-3-Clause-Clear" ]
null
null
null
utils/load_corpus.py
ssbeicdm/ssbe
5ae671962c3e50ea912eba02779e9a1c3ae37534
[ "BSD-3-Clause-Clear" ]
null
null
null
utils/load_corpus.py
ssbeicdm/ssbe
5ae671962c3e50ea912eba02779e9a1c3ae37534
[ "BSD-3-Clause-Clear" ]
null
null
null
# -*- coding: utf-8 -*- import os import json from gensim.models.doc2vec import LabeledSentence import string as st import spacy.en parser = spacy.load('en') class Lemmatizer(object): def __init__(self): self.parser = parser def __call__(self, line): line = self.parser(line) return [t.lemma_ for t in line if not t.lemma_.isdigit()] class Paragraphs(object): def __init__(self, istex=None, ucbl=None, istex_mr=None, wiki=None, tokenize=False, max_nb_wiki_paragraphs=None, paragraphs_per_article=None, istex_tag=None, wiki_tag=None): self.istex = istex self.ucbl = ucbl self.istex_mr = istex_mr self.wiki = wiki self.tokenize = tokenize self.max_nb_wiki_paragraphs = max_nb_wiki_paragraphs self.paragraphs_per_article = paragraphs_per_article self.istex_tag = istex_tag self.wiki_tag = wiki_tag self.index = dict() self.inversed_index = dict() self.paper_count = 0 self.wiki_count = 0 def __iter__(self): ## UCBL data loading if self.ucbl is not None: f=open(self.ucbl,'r') data=json.load(f) f.close() for doc in data : line = doc["title"] + " __ " + doc["abstract"] if self.tokenize: u_line = self.to_unicode(line) words_lst = self.tokenize(u_line) try : self.yield_element(words_lst, tag=self.istex_tag, count=self.paper_count) self.index[self.paper_count] = 'UCBL_' + doc["istex_id"] self.inversed_index['UCBL_' + doc["istex_id"]] = self.paper_count except : continue else: yield line self.index[self.paper_count] = 'UCBL_' + doc["istex_id"] self.inversed_index['UCBL_' + doc["istex_id"]] = self.paper_count self.paper_count += 1 self.ucbl_count = self.paper_count ## ISTEX Mental Rotation (istex_mr) data loading if self.istex_mr is not None: f=open(self.istex_mr,'r') data=json.load(f) f.close() for doc in data : line = doc["title"] + " __ " + doc["abstract"] if self.tokenize: u_line = self.to_unicode(line) words_lst = self.tokenize(u_line) try : self.yield_element(words_lst, tag=self.istex_tag, count=self.paper_count) self.index[self.paper_count] = 'MRISTEX_' + doc["istex_id"] self.inversed_index['MRISTEX_' + doc["istex_id"]] = self.paper_count except : continue else: yield line self.index[self.paper_count] = 'MRISTEX_' + doc["istex_id"] self.inversed_index['MRISTEX_' + doc["istex_id"]] = self.paper_count self.paper_count += 1 self.istex_mr_count = self.paper_count - self.ucbl_count ## ISTEX data loading if self.istex is not None: for fname in os.listdir(self.istex): f=open(os.path.join(self.istex, fname),'r') data=json.load(f) f.close() for doc in data : line = doc["title"] + " __ " + doc["abstract"] if self.tokenize: u_line = self.to_unicode(line) words_lst = self.tokenize(u_line) try : self.yield_element(words_lst, tag=self.istex_tag, count=self.paper_count) self.index[self.paper_count] = 'ISTEX_' + doc["istex_id"] self.inversed_index['ISTEX_' + doc["istex_id"]] = self.paper_count except : continue else: yield line self.index[self.paper_count] = 'ISTEX_' + doc["istex_id"] self.inversed_index['ISTEX_' + doc["istex_id"]] = self.paper_count self.paper_count += 1 self.istex_count = self.paper_count - (self.ucbl_count + self.istex_mr_count) ## Wikipedia data itteration if self.wiki is not None: wiki = self.wiki for sub in os.listdir(wiki): subdir = os.path.join(wiki, sub) for fname in os.listdir(subdir): paragraphs_per_article_count = 0 for line in open(os.path.join(subdir, fname)): # each line represent a paragraph in wiki article if self.max_nb_wiki_paragraphs is not None and self.wiki_count >= self.max_nb_wiki_paragraphs: break if len(line.split()) > 2 and line[:8] != '<doc id=': # to verify if the line is a paragraph if self.tokenize: u_line = self.to_unicode(line) words_lst = self.tokenize(u_line) self.yield_element(words_lst, tag=self.wiki_tag, count=self.wiki_count) else: yield line self.index[self.paper_count] = "WIKI" + '_' + str(self.wiki_count) self.inversed_index["WIKI" + '_' + str(self.wiki_count)] = self.paper_count self.paper_count += 1 self.wiki_count += 1 if self.paragraphs_per_article is not None: paragraphs_per_article_count += 1 if paragraphs_per_article_count >= self.paragraphs_per_article: break print 'number of wikipedia paragraphs: ', self.wiki_count print 'number of abstracts: ', self.istex_count + self.ucbl_count print 'total number of paragraphs and abstracts: ', self.paper_count print 'number of ucbl articles: ', self.ucbl_count if self.istex_mr is not None: print 'number of istex_mr articles: ', self.istex_mr_count print 'total number of mental rotation articles: ', self.istex_mr_count + self.ucbl_count print 'number of istex articles other than mental rotation ones: ', self.istex_count def to_unicode(self,line) : try : line = line.encode('utf-8','ignore').decode('utf-8') except: line2 = "" for w in line.split() : try : line2+=w.encode('utf-8','ignore').decode('utf-8')+" " except : if w[-1] in ['?','.','!'] : line2 += w[-1] + " " line = line2.rstrip() # remove last space if it exists return line def tokenize(self, line): lst = line.lower().split() lst = [ i for i in lst if not i.isdigit()] return lst def yield_element(self, words_lst, tag=None, count=None): if tag is not None: yield LabeledSentence(words=words_lst ,tags=[tag+'_%s' % str(count)]) else: yield words_lst
33.358382
113
0.668515
1dd321f38aee3be197c73d1209782cd484b66fae
2,958
py
Python
scripts/build/devtools_file_hashes.py
gonnavis/devtools-frontend
93f79d6e7b973f0b7aadde4547733ec0ce1cf11a
[ "BSD-3-Clause" ]
2,389
2015-06-05T05:06:05.000Z
2022-03-31T07:08:56.000Z
scripts/build/devtools_file_hashes.py
gonnavis/devtools-frontend
93f79d6e7b973f0b7aadde4547733ec0ce1cf11a
[ "BSD-3-Clause" ]
157
2016-02-03T06:03:25.000Z
2022-02-03T13:55:47.000Z
scripts/build/devtools_file_hashes.py
gonnavis/devtools-frontend
93f79d6e7b973f0b7aadde4547733ec0ce1cf11a
[ "BSD-3-Clause" ]
388
2015-10-10T12:45:24.000Z
2022-03-22T18:11:08.000Z
# Copyright (c) 2014 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hashlib import os.path try: import json except ImportError: import simplejson as json def save_hashes(hashes_file_path, hashes): try: with open(hashes_file_path, "wt") as hashes_file: json.dump(hashes, hashes_file, indent=4, separators=(",", ": "), sort_keys=True) except: print("ERROR: Failed to write %s" % hashes_file_path) raise def load_hashes(hashes_file_path): try: with open(hashes_file_path, "r") as hashes_file: hashes = json.load(hashes_file) except: return {} return hashes def calculate_file_hash(file_path): with open(file_path, "rb") as file: data = file.read() md5_hash = hashlib.md5(data).hexdigest() return md5_hash def files_with_invalid_hashes(hash_file_path, file_paths): hashes = load_hashes(hash_file_path) result = [] for file_path in file_paths: file_name = os.path.basename(file_path) if calculate_file_hash(file_path) != hashes.get(file_name, ""): result.append(file_path) return result def update_file_hashes(hash_file_path, file_paths): hashes = {} for file_path in file_paths: file_name = os.path.basename(file_path) hashes[file_name] = calculate_file_hash(file_path) save_hashes(hash_file_path, hashes)
35.638554
72
0.709263
7af55702ad763d64b19e020a6774eff221ecbdef
863
py
Python
setup.py
gwtaylor/pyautodiff
7973e26f1c233570ed4bb10d08634ec7378e2152
[ "BSD-3-Clause" ]
59
2015-02-03T20:50:59.000Z
2020-05-26T05:38:54.000Z
setup.py
gwtaylor/pyautodiff
7973e26f1c233570ed4bb10d08634ec7378e2152
[ "BSD-3-Clause" ]
3
2015-05-10T06:22:45.000Z
2016-12-06T02:20:58.000Z
setup.py
gwtaylor/pyautodiff
7973e26f1c233570ed4bb10d08634ec7378e2152
[ "BSD-3-Clause" ]
11
2015-04-15T16:52:09.000Z
2017-06-28T12:10:39.000Z
import sys from setuptools import setup if sys.version < '3': raise ImportError( 'This version of autodiff only support Python 3+. Please check out an ' 'earlier branch for use with Python 2.') setup( name='autodiff', version='0.5', maintainer='Lowin Data Company', maintainer_email='info@lowindata.com', description=('Automatic differentiation for NumPy.'), license='BSD-3', url='https://github.com/LowinData/pyautodiff', long_description = open('README.md').read(), install_requires=['numpy', 'theano', 'meta'], classifiers=[ 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', ] )
30.821429
79
0.641947
0291cb546b48ab1f479537d9a794310ee283e76c
2,930
py
Python
src/simmer/schemas/read_yml.py
holdengill/SImMER
7608a9cb044f2827f43f2d0c177e17faf8ff7720
[ "MIT" ]
null
null
null
src/simmer/schemas/read_yml.py
holdengill/SImMER
7608a9cb044f2827f43f2d0c177e17faf8ff7720
[ "MIT" ]
25
2021-01-21T06:51:58.000Z
2022-03-28T21:07:30.000Z
src/simmer/schemas/read_yml.py
holdengill/SImMER
7608a9cb044f2827f43f2d0c177e17faf8ff7720
[ "MIT" ]
null
null
null
import os import cerberus import yaml from .custom_validator import SimmerValidator def normalize(yml_dict, validator, schema, plot_types): """ Inputs: :yml_dict: (dictionary) the dictionary to be normalized against a schema :validator: (SimmerValidator) the validator object used. :schema: the schema against which the yml_dict is normalized. :plot_types: (list of strings) the basic plot_types that must be in the uppermost keys. Outputs: :normalized: normalized dictionary. """ validator.schema = schema for plot_type in plot_types: if plot_type not in yml_dict.keys(): yml_dict[plot_type] = {} normalized = validator.normalized(yml_dict) return normalized def read_yml(yml_filename): """ Reads in a yaml file. Inputs: :yml_filename: (string) path to the yml. Outputs: :parsed_yml_file: (dictionary) key-value pairs as read from the yaml file. """ file = open(yml_filename) parsed_yaml_file = yaml.load(file, Loader=yaml.SafeLoader) file.close() return parsed_yaml_file def validate_yml(schema_filename, yml_filename): """ Ensures that a given yml file is in accordance with the provided schema. In essence, this ensures that no odd keys or fields are provided to the yml. Inputs: :schema_filename: (string) path to schema yaml. :yml_filename: (string) path to yml yaml. Outputs: :validated: (bool) whether or not the yaml was successfully validated. """ parsed_schema = read_yml(schema_filename) parsed_yml = read_yml(yml_filename) s = SimmerValidator() try: s.validate(parsed_yml, parsed_schema) validated = True except cerberus.SchemaError: validated = False return validated def get_plotting_args(yml_filename=None): """ Gets plotting args. Inputs: :yml_filename: (string) path of the plotting yml to be used. Defaults to None. Outputs: :plotting_arg: (dictionary) all arguments that are related to plotting. See the `plotting_schema.yml` schema for documentation of keys and values. """ my_path = os.path.abspath(os.path.dirname(__file__)) schema_filename = os.path.join(my_path, "plotting_schema.yml") plot_types = ["intermediate", "final_im", "rots"] if not yml_filename: # the normalizer fills in all empty fields later on yml_dict = {plot_type: [{}] for plot_type in plot_types} else: if validate_yml(schema_filename, yml_filename): yml_dict = read_yml(yml_filename) else: raise cerberus.SchemaError("parsing plotting yml failed") s = SimmerValidator() schema = read_yml(schema_filename) plotting_args = normalize(yml_dict, s, schema, plot_types) return plotting_args
29.009901
86
0.666894
865cb3d6e8455051d40eefdd8cc790be9c8b3bbd
1,926
py
Python
pages/source/conf.py
hep-statistics-standard/hep-statistics-standard.github.io
da74fbeab30c5bc0a503aa8a1a2d5a34e8c4530d
[ "BSD-3-Clause" ]
null
null
null
pages/source/conf.py
hep-statistics-standard/hep-statistics-standard.github.io
da74fbeab30c5bc0a503aa8a1a2d5a34e8c4530d
[ "BSD-3-Clause" ]
null
null
null
pages/source/conf.py
hep-statistics-standard/hep-statistics-standard.github.io
da74fbeab30c5bc0a503aa8a1a2d5a34e8c4530d
[ "BSD-3-Clause" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'HEP statistics standard' copyright = '2020, Jonas Eschle, John Doe' author = 'Jonas Eschle, John Doe' # The full version, including alpha/beta/rc tags release = '0.0.1' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
35.018182
79
0.665109
2ec9813707d9708d72322d079f84f1cfb724a817
3,820
py
Python
examples/quickstart_pytorch/client.py
zliel/flower
c5a4b2718bed5ec73a3838cc997c38b5ba4862e7
[ "Apache-2.0" ]
null
null
null
examples/quickstart_pytorch/client.py
zliel/flower
c5a4b2718bed5ec73a3838cc997c38b5ba4862e7
[ "Apache-2.0" ]
null
null
null
examples/quickstart_pytorch/client.py
zliel/flower
c5a4b2718bed5ec73a3838cc997c38b5ba4862e7
[ "Apache-2.0" ]
null
null
null
from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import CIFAR10 import flwr as fl DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def main(): """Create model, load data, define Flower client, start Flower client.""" # Model (simple CNN adapted from 'PyTorch: A 60 Minute Blitz') class Net(nn.Module): def __init__(self) -> None: super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net().to(DEVICE) # Load data (CIFAR-10) trainloader, testloader = load_data() # Flower client class CifarClient(fl.client.NumPyClient): def get_parameters(self): return [val.cpu().numpy() for _, val in net.state_dict().items()] def set_parameters(self, parameters): params_dict = zip(net.state_dict().keys(), parameters) state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict}) net.load_state_dict(state_dict, strict=True) def fit(self, parameters, config): self.set_parameters(parameters) train(net, trainloader, epochs=1) return self.get_parameters(), len(trainloader) def evaluate(self, parameters, config): self.set_parameters(parameters) loss, accuracy = test(net, testloader) return len(testloader), float(loss), float(accuracy) # Start client fl.client.start_numpy_client("0.0.0.0:8080", client=CifarClient()) def train(net, trainloader, epochs): """Train the network on the training set.""" criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for _ in range(epochs): for images, labels in trainloader: images, labels = images.to(DEVICE), labels.to(DEVICE) optimizer.zero_grad() loss = criterion(net(images), labels) loss.backward() optimizer.step() def test(net, testloader): """Validate the network on the entire test set.""" criterion = torch.nn.CrossEntropyLoss() correct, total, loss = 0, 0, 0.0 with torch.no_grad(): for data in testloader: images, labels = data[0].to(DEVICE), data[1].to(DEVICE) outputs = net(images) loss += criterion(outputs, labels).item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total return loss, accuracy def load_data(): """Load CIFAR-10 (training and test set).""" transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] ) trainset = CIFAR10("./dataset", train=True, download=True, transform=transform) testset = CIFAR10("./dataset", train=False, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=32, shuffle=True) testloader = DataLoader(testset, batch_size=32) return trainloader, testloader if __name__ == "__main__": main()
34.727273
87
0.613613
693d73bd5b3b1a4496d7a1badcff7f8abf98059f
33,588
py
Python
scripts/pymo/preprocessing.py
TomKingsfordUoA/Co-Speech_Gesture_Generation
a9f7a66a254e724cb10fc630c140fb71a91ce594
[ "MIT" ]
19
2020-06-29T14:42:02.000Z
2022-02-15T14:35:11.000Z
scripts/pymo/preprocessing.py
TomKingsfordUoA/Co-Speech_Gesture_Generation
a9f7a66a254e724cb10fc630c140fb71a91ce594
[ "MIT" ]
7
2020-08-05T04:14:49.000Z
2022-02-21T09:43:31.000Z
scripts/pymo/preprocessing.py
TomKingsfordUoA/Co-Speech_Gesture_Generation
a9f7a66a254e724cb10fc630c140fb71a91ce594
[ "MIT" ]
6
2020-07-27T08:17:33.000Z
2022-02-15T13:28:11.000Z
''' Preprocessing Tranformers Based on sci-kit's API By Omid Alemi Created on June 12, 2017 Modified by Simon Alexanderson, 2020-06-24 ''' import copy import pandas as pd import numpy as np import transforms3d as t3d import scipy.ndimage.filters as filters from scipy.spatial.transform import Rotation as R from sklearn.base import BaseEstimator, TransformerMixin class MocapParameterizer(BaseEstimator, TransformerMixin): def __init__(self, param_type = 'euler'): ''' param_type = {'euler', 'quat', 'expmap', 'position', 'expmap2pos'} ''' self.param_type = param_type def fit(self, X, y=None): return self def transform(self, X, y=None): print("MocapParameterizer: " + self.param_type) if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._to_expmap(X) elif self.param_type == 'quat': return X elif self.param_type == 'position': return self._to_pos(X) elif self.param_type == 'expmap2pos': return self._expmap_to_pos(X) else: raise 'param types: euler, quat, expmap, position, expmap2pos' # return X def inverse_transform(self, X, copy=None): if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._expmap_to_euler(X) elif self.param_type == 'quat': raise 'quat2euler is not supported' elif self.param_type == 'position': raise 'positions 2 eulers is not supported' return X else: raise 'param types: euler, quat, expmap, position' def fix_rotvec(self, rots): '''fix problems with discontinuous rotation vectors''' new_rots = rots.copy() # Compute angles and alternative rotation angles angs = np.linalg.norm(rots, axis=1) alt_angs=2*np.pi-angs #find discontinuities by checking if the alternative representation is closer d_angs = np.diff(angs, axis=0) d_angs2 = alt_angs[1:]-angs[:-1] swps = np.where(np.abs(d_angs2)<np.abs(d_angs))[0] #reshape into intervals where we should flip rotation axis isodd = swps.shape[0] % 2 == 1 if isodd: swps=swps[:-1] intv = 1+swps.reshape((swps.shape[0]//2, 2)) #flip rotations in selected intervals for ii in range(intv.shape[0]): new_ax = -rots[intv[ii,0]:intv[ii,1],:]/np.tile(angs[intv[ii,0]:intv[ii,1], None], (1,3)) new_angs = alt_angs[intv[ii,0]:intv[ii,1]] new_rots[intv[ii,0]:intv[ii,1],:] = new_ax*np.tile(new_angs[:, None], (1,3)) return new_rots def _to_pos(self, X): '''Converts joints rotations in Euler angles to joint positions''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep pos_df = pd.DataFrame(index=euler_df.index) # List the columns that contain rotation channels rot_cols = [c for c in euler_df.columns if ('rotation' in c)] # List the columns that contain position channels pos_cols = [c for c in euler_df.columns if ('position' in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] rot_order = track.skeleton[joint]['order'] # Get the rotation columns that belong to this joint rc = euler_df[[c for c in rot_cols if joint in c]] # Get the position columns that belong to this joint pc = euler_df[[c for c in pos_cols if joint in c]] # Make sure the columns are organized in xyz order if rc.shape[1] < 3: euler_values = [[0,0,0] for f in rc.iterrows()] rot_order = "XYZ" else: euler_values = [[f[1]['%s_%srotation'%(joint, rot_order[0])], f[1]['%s_%srotation'%(joint, rot_order[1])], f[1]['%s_%srotation'%(joint, rot_order[2])]] for f in rc.iterrows()] if pc.shape[1] < 3: pos_values = [[0,0,0] for f in pc.iterrows()] else: pos_values =[[f[1]['%s_Xposition'%joint], f[1]['%s_Yposition'%joint], f[1]['%s_Zposition'%joint]] for f in pc.iterrows()] # Convert the eulers to rotation matrices rotmats = R.from_euler(rot_order, euler_values, degrees=True).inv() tree_data[joint]=[ [], # to store the rotation matrix [] # to store the calculated position ] if track.root_name == joint: tree_data[joint][0] = rotmats tree_data[joint][1] = pos_values else: # for every frame i, multiply this joint's rotmat to the rotmat of its parent tree_data[joint][0] = rotmats*tree_data[parent][0] # add the position channel to the offset and store it in k, for every frame i k = pos_values + np.asarray(track.skeleton[joint]['offsets']) # multiply k to the rotmat of the parent for every frame i q = tree_data[parent][0].inv().apply(k) # add q to the position of the parent, for every frame i tree_data[joint][1] = tree_data[parent][1] + q # Create the corresponding columns in the new DataFrame pos_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index) new_track = track.clone() new_track.values = pos_df Q.append(new_track) return Q def _to_expmap(self, X): '''Converts Euler angles to Exponential Maps''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep exp_df = euler_df.copy() # List the columns that contain rotation channels rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint rot_order = track.skeleton[joint]['order'] r1_col = '%s_%srotation'%(joint, rot_order[0]) r2_col = '%s_%srotation'%(joint, rot_order[1]) r3_col = '%s_%srotation'%(joint, rot_order[2]) exp_df.drop([r1_col, r2_col, r3_col], axis=1, inplace=True) euler = [[f[1][r1_col], f[1][r2_col], f[1][r3_col]] for f in r.iterrows()] exps = np.array(self.fix_rotvec(R.from_euler(rot_order.lower(), euler, degrees=True).as_rotvec())) # Create the corresponding columns in the new DataFrame exp_df.insert(loc=0, column='%s_gamma'%joint, value=pd.Series(data=[e[2] for e in exps], index=exp_df.index)) exp_df.insert(loc=0, column='%s_beta'%joint, value=pd.Series(data=[e[1] for e in exps], index=exp_df.index)) exp_df.insert(loc=0, column='%s_alpha'%joint, value=pd.Series(data=[e[0] for e in exps], index=exp_df.index)) #print(exp_df.columns) new_track = track.clone() new_track.values = exp_df Q.append(new_track) return Q def _expmap_to_euler(self, X): Q = [] for track in X: channels = [] titles = [] exp_df = track.values # Create a new DataFrame to store the exponential map rep euler_df = exp_df.copy() # List the columns that contain rotation channels exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton if 'Nub' not in joint) for joint in joints: r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint euler_df.drop(['%s_alpha'%joint, '%s_beta'%joint, '%s_gamma'%joint], axis=1, inplace=True) expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order rot_order = track.skeleton[joint]['order'] euler_rots = np.array(R.from_rotvec(expmap).as_euler(rot_order.lower(), degrees=True)) # Create the corresponding columns in the new DataFrame euler_df['%s_%srotation'%(joint, rot_order[0])] = pd.Series(data=[e[0] for e in euler_rots], index=euler_df.index) euler_df['%s_%srotation'%(joint, rot_order[1])] = pd.Series(data=[e[1] for e in euler_rots], index=euler_df.index) euler_df['%s_%srotation'%(joint, rot_order[2])] = pd.Series(data=[e[2] for e in euler_rots], index=euler_df.index) new_track = track.clone() new_track.values = euler_df Q.append(new_track) return Q class Mirror(BaseEstimator, TransformerMixin): def __init__(self, axis="X", append=True): """ Mirrors the data """ self.axis = axis self.append = append def fit(self, X, y=None): return self def transform(self, X, y=None): print("Mirror: " + self.axis) Q = [] if self.append: for track in X: Q.append(track) for track in X: channels = [] titles = [] if self.axis == "X": signs = np.array([1,-1,-1]) if self.axis == "Y": signs = np.array([-1,1,-1]) if self.axis == "Z": signs = np.array([-1,-1,1]) euler_df = track.values # Create a new DataFrame to store the exponential map rep new_df = pd.DataFrame(index=euler_df.index) # Copy the root positions into the new DataFrame rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name new_df[rxp] = pd.Series(data=-signs[0]*euler_df[rxp], index=new_df.index) new_df[ryp] = pd.Series(data=-signs[1]*euler_df[ryp], index=new_df.index) new_df[rzp] = pd.Series(data=-signs[2]*euler_df[rzp], index=new_df.index) # List the columns that contain rotation channels rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)] #lft_rots = [c for c in euler_df.columns if ('Left' in c and 'rotation' in c and 'Nub' not in c)] #rgt_rots = [c for c in euler_df.columns if ('Right' in c and 'rotation' in c and 'Nub' not in c)] lft_joints = (joint for joint in track.skeleton if 'Left' in joint and 'Nub' not in joint) rgt_joints = (joint for joint in track.skeleton if 'Right' in joint and 'Nub' not in joint) new_track = track.clone() for lft_joint in lft_joints: rgt_joint = lft_joint.replace('Left', 'Right') # Create the corresponding columns in the new DataFrame new_df['%s_Xrotation'%lft_joint] = pd.Series(data=signs[0]*track.values['%s_Xrotation'%rgt_joint], index=new_df.index) new_df['%s_Yrotation'%lft_joint] = pd.Series(data=signs[1]*track.values['%s_Yrotation'%rgt_joint], index=new_df.index) new_df['%s_Zrotation'%lft_joint] = pd.Series(data=signs[2]*track.values['%s_Zrotation'%rgt_joint], index=new_df.index) new_df['%s_Xrotation'%rgt_joint] = pd.Series(data=signs[0]*track.values['%s_Xrotation'%lft_joint], index=new_df.index) new_df['%s_Yrotation'%rgt_joint] = pd.Series(data=signs[1]*track.values['%s_Yrotation'%lft_joint], index=new_df.index) new_df['%s_Zrotation'%rgt_joint] = pd.Series(data=signs[2]*track.values['%s_Zrotation'%lft_joint], index=new_df.index) # List the joints that are not left or right, i.e. are on the trunk joints = (joint for joint in track.skeleton if 'Nub' not in joint and 'Left' not in joint and 'Right' not in joint) for joint in joints: # Create the corresponding columns in the new DataFrame new_df['%s_Xrotation'%joint] = pd.Series(data=signs[0]*track.values['%s_Xrotation'%joint], index=new_df.index) new_df['%s_Yrotation'%joint] = pd.Series(data=signs[1]*track.values['%s_Yrotation'%joint], index=new_df.index) new_df['%s_Zrotation'%joint] = pd.Series(data=signs[2]*track.values['%s_Zrotation'%joint], index=new_df.index) new_track.values = new_df Q.append(new_track) return Q def inverse_transform(self, X, copy=None, start_pos=None): return X class JointSelector(BaseEstimator, TransformerMixin): ''' Allows for filtering the mocap data to include only the selected joints ''' def __init__(self, joints, include_root=False): self.joints = joints self.include_root = include_root def fit(self, X, y=None): selected_joints = [] selected_channels = [] if self.include_root: selected_joints.append(X[0].root_name) selected_joints.extend(self.joints) for joint_name in selected_joints: selected_channels.extend([o for o in X[0].values.columns if (joint_name + "_") in o and 'Nub' not in o]) self.selected_joints = selected_joints self.selected_channels = selected_channels self.not_selected = X[0].values.columns.difference(selected_channels) self.not_selected_values = {c:X[0].values[c].values[0] for c in self.not_selected} self.orig_skeleton = X[0].skeleton return self def transform(self, X, y=None): print("JointSelector") Q = [] for track in X: t2 = track.clone() for key in track.skeleton.keys(): if key not in self.selected_joints: t2.skeleton.pop(key) t2.values = track.values[self.selected_channels] Q.append(t2) return Q def inverse_transform(self, X, copy=None): Q = [] for track in X: t2 = track.clone() t2.skeleton = self.orig_skeleton for d in self.not_selected: t2.values[d] = self.not_selected_values[d] Q.append(t2) return Q class Numpyfier(BaseEstimator, TransformerMixin): ''' Just converts the values in a MocapData object into a numpy array Useful for the final stage of a pipeline before training ''' def __init__(self): pass def fit(self, X, y=None): self.org_mocap_ = X[0].clone() self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True) return self def transform(self, X, y=None): print("Numpyfier") Q = [] for track in X: Q.append(track.values.values) #print("Numpyfier:" + str(track.values.columns)) return np.array(Q) def inverse_transform(self, X, copy=None): Q = [] for track in X: new_mocap = self.org_mocap_.clone() time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit='s') new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns) new_mocap.values = new_df Q.append(new_mocap) return Q class Slicer(BaseEstimator, TransformerMixin): ''' Slice the data into intervals of equal size ''' def __init__(self, window_size, overlap=0.5): self.window_size = window_size self.overlap = overlap pass def fit(self, X, y=None): self.org_mocap_ = X[0].clone() self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True) return self def transform(self, X, y=None): print("Slicer") Q = [] for track in X: vals = track.values.values nframes = vals.shape[0] overlap_frames = (int)(self.overlap*self.window_size) n_sequences = (nframes-overlap_frames)//(self.window_size-overlap_frames) if n_sequences>0: y = np.zeros((n_sequences, self.window_size, vals.shape[1])) # extract sequences from the input data for i in range(0,n_sequences): frameIdx = (self.window_size-overlap_frames) * i Q.append(vals[frameIdx:frameIdx+self.window_size,:]) return np.array(Q) def inverse_transform(self, X, copy=None): Q = [] for track in X: new_mocap = self.org_mocap_.clone() time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit='s') new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns) new_mocap.values = new_df Q.append(new_mocap) return Q class RootTransformer(BaseEstimator, TransformerMixin): def __init__(self, method, position_smoothing=0, rotation_smoothing=0): """ Accepted methods: abdolute_translation_deltas pos_rot_deltas """ self.method = method self.position_smoothing=position_smoothing self.rotation_smoothing=rotation_smoothing def fit(self, X, y=None): return self def transform(self, X, y=None): print("RootTransformer") Q = [] for track in X: if self.method == 'abdolute_translation_deltas': new_df = track.values.copy() xpcol = '%s_Xposition'%track.root_name ypcol = '%s_Yposition'%track.root_name zpcol = '%s_Zposition'%track.root_name dxpcol = '%s_dXposition'%track.root_name dzpcol = '%s_dZposition'%track.root_name x=track.values[xpcol].copy() z=track.values[zpcol].copy() if self.position_smoothing>0: x_sm = filters.gaussian_filter1d(x, self.position_smoothing, axis=0, mode='nearest') z_sm = filters.gaussian_filter1d(z, self.position_smoothing, axis=0, mode='nearest') dx = pd.Series(data=x_sm, index=new_df.index).diff() dz = pd.Series(data=z_sm, index=new_df.index).diff() new_df[xpcol] = x-x_sm new_df[zpcol] = z-z_sm else: dx = x.diff() dz = z.diff() new_df.drop([xpcol, zpcol], axis=1, inplace=True) dx[0] = dx[1] dz[0] = dz[1] new_df[dxpcol] = dx new_df[dzpcol] = dz new_track = track.clone() new_track.values = new_df # end of abdolute_translation_deltas elif self.method == 'hip_centric': new_track = track.clone() # Absolute columns xp_col = '%s_Xposition'%track.root_name yp_col = '%s_Yposition'%track.root_name zp_col = '%s_Zposition'%track.root_name xr_col = '%s_Xrotation'%track.root_name yr_col = '%s_Yrotation'%track.root_name zr_col = '%s_Zrotation'%track.root_name new_df = track.values.copy() all_zeros = np.zeros(track.values[xp_col].values.shape) new_df[xp_col] = pd.Series(data=all_zeros, index=new_df.index) new_df[yp_col] = pd.Series(data=all_zeros, index=new_df.index) new_df[zp_col] = pd.Series(data=all_zeros, index=new_df.index) new_df[xr_col] = pd.Series(data=all_zeros, index=new_df.index) new_df[yr_col] = pd.Series(data=all_zeros, index=new_df.index) new_df[zr_col] = pd.Series(data=all_zeros, index=new_df.index) new_track.values = new_df #print(new_track.values.columns) Q.append(new_track) return Q def inverse_transform(self, X, copy=None, start_pos=None): Q = [] #TODO: simplify this implementation startx = 0 startz = 0 if start_pos is not None: startx, startz = start_pos for track in X: new_track = track.clone() if self.method == 'abdolute_translation_deltas': new_df = new_track.values xpcol = '%s_Xposition'%track.root_name ypcol = '%s_Yposition'%track.root_name zpcol = '%s_Zposition'%track.root_name dxpcol = '%s_dXposition'%track.root_name dzpcol = '%s_dZposition'%track.root_name dx = track.values[dxpcol].values dz = track.values[dzpcol].values recx = [startx] recz = [startz] for i in range(dx.shape[0]-1): recx.append(recx[i]+dx[i+1]) recz.append(recz[i]+dz[i+1]) # recx = [recx[i]+dx[i+1] for i in range(dx.shape[0]-1)] # recz = [recz[i]+dz[i+1] for i in range(dz.shape[0]-1)] # recx = dx[:-1] + dx[1:] # recz = dz[:-1] + dz[1:] if self.position_smoothing > 0: new_df[xpcol] = pd.Series(data=new_df[xpcol]+recx, index=new_df.index) new_df[zpcol] = pd.Series(data=new_df[zpcol]+recz, index=new_df.index) else: new_df[xpcol] = pd.Series(data=recx, index=new_df.index) new_df[zpcol] = pd.Series(data=recz, index=new_df.index) new_df.drop([dxpcol, dzpcol], axis=1, inplace=True) new_track.values = new_df # end of abdolute_translation_deltas Q.append(new_track) return Q class RootCentricPositionNormalizer(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X, y=None): Q = [] for track in X: new_track = track.clone() rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name projected_root_pos = track.values[[rxp, ryp, rzp]] projected_root_pos.loc[:,ryp] = 0 # we want the root's projection on the floor plane as the ref new_df = pd.DataFrame(index=track.values.index) all_but_root = [joint for joint in track.skeleton if track.root_name not in joint] # all_but_root = [joint for joint in track.skeleton] for joint in all_but_root: new_df['%s_Xposition'%joint] = pd.Series(data=track.values['%s_Xposition'%joint]-projected_root_pos[rxp], index=new_df.index) new_df['%s_Yposition'%joint] = pd.Series(data=track.values['%s_Yposition'%joint]-projected_root_pos[ryp], index=new_df.index) new_df['%s_Zposition'%joint] = pd.Series(data=track.values['%s_Zposition'%joint]-projected_root_pos[rzp], index=new_df.index) # keep the root as it is now new_df[rxp] = track.values[rxp] new_df[ryp] = track.values[ryp] new_df[rzp] = track.values[rzp] new_track.values = new_df Q.append(new_track) return Q def inverse_transform(self, X, copy=None): Q = [] for track in X: new_track = track.clone() rxp = '%s_Xposition'%track.root_name ryp = '%s_Yposition'%track.root_name rzp = '%s_Zposition'%track.root_name projected_root_pos = track.values[[rxp, ryp, rzp]] projected_root_pos.loc[:,ryp] = 0 # we want the root's projection on the floor plane as the ref new_df = pd.DataFrame(index=track.values.index) for joint in track.skeleton: new_df['%s_Xposition'%joint] = pd.Series(data=track.values['%s_Xposition'%joint]+projected_root_pos[rxp], index=new_df.index) new_df['%s_Yposition'%joint] = pd.Series(data=track.values['%s_Yposition'%joint]+projected_root_pos[ryp], index=new_df.index) new_df['%s_Zposition'%joint] = pd.Series(data=track.values['%s_Zposition'%joint]+projected_root_pos[rzp], index=new_df.index) new_track.values = new_df Q.append(new_track) return Q class Flattener(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X, y=None): return np.concatenate(X, axis=0) class ConstantsRemover(BaseEstimator, TransformerMixin): ''' For now it just looks at the first track ''' def __init__(self, eps = 1e-6): self.eps = eps def fit(self, X, y=None): stds = X[0].values.std() cols = X[0].values.columns.values self.const_dims_ = [c for c in cols if (stds[c] < self.eps).any()] self.const_values_ = {c:X[0].values[c].values[0] for c in cols if (stds[c] < self.eps).any()} return self def transform(self, X, y=None): Q = [] for track in X: t2 = track.clone() #for key in t2.skeleton.keys(): # if key in self.ConstDims_: # t2.skeleton.pop(key) #print(track.values.columns.difference(self.const_dims_)) t2.values.drop(self.const_dims_, axis=1, inplace=True) #t2.values = track.values[track.values.columns.difference(self.const_dims_)] Q.append(t2) return Q def inverse_transform(self, X, copy=None): Q = [] for track in X: t2 = track.clone() for d in self.const_dims_: t2.values[d] = self.const_values_[d] # t2.values.assign(d=pd.Series(data=self.const_values_[d], index = t2.values.index)) Q.append(t2) return Q class ListStandardScaler(BaseEstimator, TransformerMixin): def __init__(self, is_DataFrame=False): self.is_DataFrame = is_DataFrame def fit(self, X, y=None): if self.is_DataFrame: X_train_flat = np.concatenate([m.values for m in X], axis=0) else: X_train_flat = np.concatenate([m for m in X], axis=0) self.data_mean_ = np.mean(X_train_flat, axis=0) self.data_std_ = np.std(X_train_flat, axis=0) return self def transform(self, X, y=None): Q = [] for track in X: if self.is_DataFrame: normalized_track = track.copy() normalized_track.values = (track.values - self.data_mean_) / self.data_std_ else: normalized_track = (track - self.data_mean_) / self.data_std_ Q.append(normalized_track) if self.is_DataFrame: return Q else: return np.array(Q) def inverse_transform(self, X, copy=None): Q = [] for track in X: if self.is_DataFrame: unnormalized_track = track.copy() unnormalized_track.values = (track.values * self.data_std_) + self.data_mean_ else: unnormalized_track = (track * self.data_std_) + self.data_mean_ Q.append(unnormalized_track) if self.is_DataFrame: return Q else: return np.array(Q) class ListMinMaxScaler(BaseEstimator, TransformerMixin): def __init__(self, is_DataFrame=False): self.is_DataFrame = is_DataFrame def fit(self, X, y=None): if self.is_DataFrame: X_train_flat = np.concatenate([m.values for m in X], axis=0) else: X_train_flat = np.concatenate([m for m in X], axis=0) self.data_max_ = np.max(X_train_flat, axis=0) self.data_min_ = np.min(X_train_flat, axis=0) return self def transform(self, X, y=None): Q = [] for track in X: if self.is_DataFrame: normalized_track = track.copy() normalized_track.values = (track.values - self.data_min_) / (self.data_max_ - self.data_min_) else: normalized_track = (track - self.data_min_) / (self.data_max_ - self.data_min_) Q.append(normalized_track) if self.is_DataFrame: return Q else: return np.array(Q) def inverse_transform(self, X, copy=None): Q = [] for track in X: if self.is_DataFrame: unnormalized_track = track.copy() unnormalized_track.values = (track.values * (self.data_max_ - self.data_min_)) + self.data_min_ else: unnormalized_track = (track * (self.data_max_ - self.data_min_)) + self.data_min_ Q.append(unnormalized_track) if self.is_DataFrame: return Q else: return np.array(Q) class DownSampler(BaseEstimator, TransformerMixin): def __init__(self, tgt_fps, keep_all=True): self.tgt_fps = tgt_fps self.keep_all = keep_all def fit(self, X, y=None): return self def transform(self, X, y=None): Q = [] for track in X: orig_fps=round(1.0/track.framerate) rate = orig_fps//self.tgt_fps if orig_fps%self.tgt_fps!=0: print("error orig_fps (" + str(orig_fps) + ") is not dividable with tgt_fps (" + str(self.tgt_fps) + ")") else: print("downsampling with rate: " + str(rate)) #print(track.values.size) for ii in range(0,rate): new_track = track.clone() new_track.values = track.values[ii:-1:rate].copy() #print(new_track.values.size) #new_track = track[0:-1:self.rate] new_track.framerate = 1.0/self.tgt_fps Q.append(new_track) if not self.keep_all: break return Q def inverse_transform(self, X, copy=None): return X class ReverseTime(BaseEstimator, TransformerMixin): def __init__(self, append=True): self.append = append def fit(self, X, y=None): return self def transform(self, X, y=None): Q = [] if self.append: for track in X: Q.append(track) for track in X: new_track = track.clone() new_track.values = track.values[-1::-1] Q.append(new_track) return Q def inverse_transform(self, X, copy=None): return X #TODO: JointsSelector (x) #TODO: SegmentMaker #TODO: DynamicFeaturesAdder #TODO: ShapeFeaturesAdder #TODO: DataFrameNumpier (x) class TemplateTransform(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X, y=None): return X
36.508696
171
0.550881
3dea639187ef62778602bdd192cf5f2e2f49db82
8,421
py
Python
tests/queries/query_test.py
Taschenbergerm/ClickHouse
d15bac31ff462a7c5fde36d5e58a3683e7b45135
[ "Apache-2.0" ]
3
2021-02-16T13:50:34.000Z
2021-03-19T12:22:52.000Z
tests/queries/query_test.py
Taschenbergerm/ClickHouse
d15bac31ff462a7c5fde36d5e58a3683e7b45135
[ "Apache-2.0" ]
null
null
null
tests/queries/query_test.py
Taschenbergerm/ClickHouse
d15bac31ff462a7c5fde36d5e58a3683e7b45135
[ "Apache-2.0" ]
1
2021-02-16T21:24:34.000Z
2021-02-16T21:24:34.000Z
import pytest import difflib import os import random import string import subprocess import sys SKIP_LIST = [ # these couple of tests hangs everything "00600_replace_running_query", "00987_distributed_stack_overflow", # just fail "00505_secure", "00505_shard_secure", "00646_url_engine", "00725_memory_tracking", # BROKEN "00834_cancel_http_readonly_queries_on_client_close", "00933_test_fix_extra_seek_on_compressed_cache", "00965_logs_level_bugfix", "00965_send_logs_level_concurrent_queries", "00990_hasToken", "00990_metric_log_table_not_empty", "01014_lazy_database_concurrent_recreate_reattach_and_show_tables", "01018_Distributed__shard_num", "01018_ip_dictionary", "01050_clickhouse_dict_source_with_subquery", "01053_ssd_dictionary", "01054_cache_dictionary_overflow_cell", "01057_http_compression_prefer_brotli", "01080_check_for_error_incorrect_size_of_nested_column", "01083_expressions_in_engine_arguments", "01086_odbc_roundtrip", "01088_benchmark_query_id", "01098_temporary_and_external_tables", "01099_parallel_distributed_insert_select", "01103_check_cpu_instructions_at_startup", "01114_database_atomic", "01148_zookeeper_path_macros_unfolding", "01181_db_atomic_drop_on_cluster", # tcp port in reference "01280_ssd_complex_key_dictionary", "01293_client_interactive_vertical_multiline", # expect-test "01293_client_interactive_vertical_singleline", # expect-test "01293_system_distribution_queue", # FLAKY "01293_show_clusters", "01294_lazy_database_concurrent_recreate_reattach_and_show_tables", "01294_system_distributed_on_cluster", "01300_client_save_history_when_terminated", # expect-test "01304_direct_io", "01306_benchmark_json", "01035_lc_empty_part_bug", # FLAKY "01320_create_sync_race_condition_zookeeper", "01355_CSV_input_format_allow_errors", "01370_client_autocomplete_word_break_characters", # expect-test "01376_GROUP_BY_injective_elimination_dictGet", "01393_benchmark_secure_port", "01418_custom_settings", "01451_wrong_error_long_query", "01455_opentelemetry_distributed", "01473_event_time_microseconds", "01474_executable_dictionary", "01507_clickhouse_server_start_with_embedded_config", "01514_distributed_cancel_query_on_error", "01520_client_print_query_id", # expect-test "01526_client_start_and_exit", # expect-test "01527_dist_sharding_key_dictGet_reload", "01545_url_file_format_settings", "01553_datetime64_comparison", "01555_system_distribution_queue_mask", "01558_ttest_scipy", "01561_mann_whitney_scipy", "01582_distinct_optimization", "01599_multiline_input_and_singleline_comments", # expect-test "01601_custom_tld", "01610_client_spawn_editor", # expect-test "01676_clickhouse_client_autocomplete", # expect-test (partially) "01683_text_log_deadlock", # secure tcp ] def check_result(result, error, return_code, reference, replace_map): if replace_map: for old, new in replace_map.items(): result = result.replace(old.encode('utf-8'), new.encode('utf-8')) if return_code != 0: try: print(error.decode('utf-8'), file=sys.stderr) except UnicodeDecodeError: print(error.decode('latin1'), file=sys.stderr) # encoding with 1 symbol per 1 byte, covering all values pytest.fail('Client died unexpectedly with code {code}'.format(code=return_code), pytrace=False) elif result != reference: pytest.fail("Query output doesn't match reference:{eol}{diff}".format( eol=os.linesep, diff=os.linesep.join(l.strip() for l in difflib.unified_diff(reference.decode('utf-8').splitlines(), result.decode('utf-8').splitlines(), fromfile='expected', tofile='actual'))), pytrace=False) def run_client(bin_prefix, port, database, query, reference, replace_map=None): # We can't use `text=True` since some tests may return binary data client = subprocess.Popen([bin_prefix + '-client', '--port', str(port), '-d', database, '-m', '-n', '--testmode'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result, error = client.communicate(query.encode('utf-8')) assert client.returncode is not None, "Client should exit after processing all queries" check_result(result, error, client.returncode, reference, replace_map) def run_shell(bin_prefix, server, database, path, reference, replace_map=None): env = { 'CLICKHOUSE_BINARY': bin_prefix, 'CLICKHOUSE_DATABASE': database, 'CLICKHOUSE_PORT_TCP': str(server.tcp_port), 'CLICKHOUSE_PORT_TCP_SECURE': str(server.tcps_port), 'CLICKHOUSE_PORT_TCP_WITH_PROXY': str(server.proxy_port), 'CLICKHOUSE_PORT_HTTP': str(server.http_port), 'CLICKHOUSE_PORT_INTERSERVER': str(server.inter_port), 'CLICKHOUSE_TMP': server.tmp_dir, 'CLICKHOUSE_CONFIG_CLIENT': server.client_config } shell = subprocess.Popen([path], env=env, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result, error = shell.communicate() assert shell.returncode is not None, "Script should exit after executing all commands" check_result(result, error, shell.returncode, reference, replace_map) def random_str(length=10): alphabet = string.ascii_lowercase + string.digits random.seed(os.urandom(8)) return ''.join(random.choice(alphabet) for _ in range(length)) def test_sql_query(bin_prefix, sql_query, standalone_server): for test in SKIP_LIST: if test in sql_query: pytest.skip("Test matches skip-list: " + test) return tcp_port = standalone_server.tcp_port query_path = sql_query + ".sql" reference_path = sql_query + ".reference" if not os.path.exists(reference_path): pytest.skip('No .reference file found') with open(query_path, 'r') as file: query = file.read() with open(reference_path, 'rb') as file: reference = file.read() random_name = 'test_{random}'.format(random=random_str()) run_client(bin_prefix, tcp_port, 'default', 'CREATE DATABASE {random};'.format(random=random_name), b'') run_client(bin_prefix, tcp_port, random_name, query, reference, {random_name: 'default'}) query = "SELECT 'SHOW ORPHANED TABLES'; SELECT name FROM system.tables WHERE database != 'system' ORDER BY (database, name);" run_client(bin_prefix, tcp_port, 'default', query, b'SHOW ORPHANED TABLES\n') query = 'DROP DATABASE {random};'.format(random=random_name) run_client(bin_prefix, tcp_port, 'default', query, b'') query = "SELECT 'SHOW ORPHANED DATABASES'; SHOW DATABASES;" run_client(bin_prefix, tcp_port, 'default', query, b'SHOW ORPHANED DATABASES\ndefault\nsystem\n') def test_shell_query(bin_prefix, shell_query, standalone_server): for test in SKIP_LIST: if test in shell_query: pytest.skip("Test matches skip-list: " + test) return tcp_port = standalone_server.tcp_port shell_path = shell_query + ".sh" reference_path = shell_query + ".reference" if not os.path.exists(reference_path): pytest.skip('No .reference file found') with open(reference_path, 'rb') as file: reference = file.read() random_name = 'test_{random}'.format(random=random_str()) query = 'CREATE DATABASE {random};'.format(random=random_name) run_client(bin_prefix, tcp_port, 'default', query, b'') run_shell(bin_prefix, standalone_server, random_name, shell_path, reference, {random_name: 'default'}) query = "SELECT 'SHOW ORPHANED TABLES'; SELECT name FROM system.tables WHERE database != 'system' ORDER BY (database, name);" run_client(bin_prefix, tcp_port, 'default', query, b'SHOW ORPHANED TABLES\n') query = 'DROP DATABASE {random};'.format(random=random_name) run_client(bin_prefix, tcp_port, 'default', query, b'') query = "SELECT 'SHOW ORPHANED DATABASES'; SHOW DATABASES;" run_client(bin_prefix, tcp_port, 'default', query, b'SHOW ORPHANED DATABASES\ndefault\nsystem\n')
41.279412
129
0.710248
96ff8aa15c0c3219a7708ff43d19a23314413270
3,494
py
Python
hplip-3.20.3/ui4/pqdiagdialog.py
Deril-Pana/wikiBlackcoinNL
9633307f0b485c27feae5da242944adf450e8963
[ "MIT" ]
null
null
null
hplip-3.20.3/ui4/pqdiagdialog.py
Deril-Pana/wikiBlackcoinNL
9633307f0b485c27feae5da242944adf450e8963
[ "MIT" ]
1
2021-11-20T16:33:39.000Z
2021-11-20T16:33:39.000Z
hplip-3.20.3/ui4/pqdiagdialog.py
Deril-Pana/wikiBlackcoinNL
9633307f0b485c27feae5da242944adf450e8963
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # (c) Copyright 2001-2015 HP Development Company, L.P. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Authors: Don Welch # # StdLib import operator # Local from base.g import * from base import device, utils, maint from prnt import cups from base.codes import * from .ui_utils import * # Qt from PyQt4.QtCore import * from PyQt4.QtGui import * # Ui from .pqdiagdialog_base import Ui_Dialog class PQDiagDialog(QDialog, Ui_Dialog): def __init__(self, parent, device_uri): QDialog.__init__(self, parent) self.setupUi(self) self.device_uri = device_uri self.initUi() QTimer.singleShot(0, self.updateUi) def initUi(self): # connect signals/slots self.connect(self.CancelButton, SIGNAL("clicked()"), self.CancelButton_clicked) self.connect(self.RunButton, SIGNAL("clicked()"), self.RunButton_clicked) self.connect(self.DeviceComboBox, SIGNAL("DeviceUriComboBox_noDevices"), self.DeviceUriComboBox_noDevices) self.connect(self.DeviceComboBox, SIGNAL("DeviceUriComboBox_currentChanged"), self.DeviceUriComboBox_currentChanged) self.DeviceComboBox.setFilter({'pq-diag-type': (operator.gt, 0)}) # Application icon self.setWindowIcon(QIcon(load_pixmap('hp_logo', '128x128'))) if self.device_uri: self.DeviceComboBox.setInitialDevice(self.device_uri) def updateUi(self): self.DeviceComboBox.updateUi() self.LoadPaper.setButtonName(self.__tr("Run")) self.LoadPaper.updateUi() def DeviceUriComboBox_currentChanged(self, device_uri): self.device_uri = device_uri def DeviceUriComboBox_noDevices(self): FailureUI(self, self.__tr("<b>No devices that support print quality diagnostics found.</b><p>Click <i>OK</i> to exit.</p>")) self.close() def CancelButton_clicked(self): self.close() def RunButton_clicked(self): d = None try: try: d = device.Device(self.device_uri) except Error: CheckDeviceUI(self) return pqdiag_type = d.pq_diag_type try: d.open() except Error: CheckDeviceUI(self) else: if d.isIdleAndNoError(): if pqdiag_type == 1: maint.printQualityDiagType1(d, lambda : True) elif pqdiag_type == 2: maint.printQualityDiagType2(d, lambda : True) else: CheckDeviceUI(self) finally: if d is not None: d.close() self.close() # # Misc # def __tr(self,s,c = None): return qApp.translate("PQDiagDialog",s,c)
27.952
132
0.638523
a3833ff5244ac9c3a4d108da7319e6ecac8e7707
8,009
gyp
Python
build/apk_tests.gyp
bofeng-song/webrtc
cd06ce5490635ef5ef953b17eabb6e833eed5b76
[ "DOC", "BSD-3-Clause" ]
null
null
null
build/apk_tests.gyp
bofeng-song/webrtc
cd06ce5490635ef5ef953b17eabb6e833eed5b76
[ "DOC", "BSD-3-Clause" ]
null
null
null
build/apk_tests.gyp
bofeng-song/webrtc
cd06ce5490635ef5ef953b17eabb6e833eed5b76
[ "DOC", "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. # This file exists in two versions. A no-op version under # webrtc/build/apk_tests_noop.gyp and this one. This gyp file builds the apk # unit tests (for Android) assuming that WebRTC is built inside a Chromium # workspace. The no-op version is included when building WebRTC without # Chromium. This is a workaround for the fact that 'includes' don't expand # variables and that the relative location of apk_test.gypi is different for # WebRTC when built as part of Chromium and when it is built without Chromium. { 'includes': [ 'common.gypi', ], 'targets': [ { 'target_name': 'audio_decoder_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'audio_decoder_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)audio_decoder_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/modules/modules.gyp:audio_decoder_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'common_audio_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'common_audio_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)common_audio_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/common_audio/common_audio.gyp:common_audio_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'common_video_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'common_video_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)common_video_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/common_video/common_video_unittests.gyp:common_video_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'modules_tests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'modules_tests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)modules_tests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/modules/modules.gyp:modules_tests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'modules_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'modules_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)modules_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/modules/modules.gyp:modules_unittests', 'audio_device_java', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'rtc_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'rtc_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)rtc_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/webrtc.gyp:rtc_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'system_wrappers_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'system_wrappers_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)system_wrappers_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/system_wrappers/system_wrappers_tests.gyp:system_wrappers_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'test_support_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'test_support_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)test_support_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/test/test.gyp:test_support_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'tools_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'tools_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)tools_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/tools/tools.gyp:tools_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'video_engine_core_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'video_engine_core_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)video_engine_core_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/video_engine/video_engine_core_unittests.gyp:video_engine_core_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'video_engine_tests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'video_engine_tests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)video_engine_tests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/webrtc.gyp:video_engine_tests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'voice_engine_unittests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'voice_engine_unittests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)voice_engine_unittests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/voice_engine/voice_engine.gyp:voice_engine_unittests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'webrtc_perf_tests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'webrtc_perf_tests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)webrtc_perf_tests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/webrtc.gyp:webrtc_perf_tests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'webrtc_nonparallel_tests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'webrtc_nonparallel_tests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)webrtc_nonparallel_tests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/webrtc.gyp:webrtc_nonparallel_tests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'audio_codec_speed_tests_apk', 'type': 'none', 'variables': { 'test_suite_name': 'audio_codec_speed_tests', 'input_shlib_path': '<(SHARED_LIB_DIR)/<(SHARED_LIB_PREFIX)audio_codec_speed_tests<(SHARED_LIB_SUFFIX)', }, 'dependencies': [ '<(webrtc_root)/modules/modules.gyp:audio_codec_speed_tests', ], 'includes': [ '../../build/apk_test.gypi', ], }, { 'target_name': 'audio_device_java', 'type': 'none', 'variables': { 'java_in_dir': '<(webrtc_root)/modules/audio_device/android/java', 'additional_src_dirs': [ '<(webrtc_root)/base/java/src', ], 'never_lint': 1, }, 'includes': [ '../../build/java.gypi', ], }, ], }
32.294355
116
0.601324
9a9cf757420aecdf825267cef948df7a3819ecd4
5,069
py
Python
torch_glow/tests/nodes/quantized_batchnorm2d_test.py
YaronBenAtar/glow
a13706a4239fa7eaf059c670dc573e3eb0768f86
[ "Apache-2.0" ]
2,838
2018-05-02T16:57:22.000Z
2022-03-31T14:35:26.000Z
torch_glow/tests/nodes/quantized_batchnorm2d_test.py
YaronBenAtar/glow
a13706a4239fa7eaf059c670dc573e3eb0768f86
[ "Apache-2.0" ]
4,149
2018-05-02T17:50:14.000Z
2022-03-31T23:56:43.000Z
torch_glow/tests/nodes/quantized_batchnorm2d_test.py
LaudateCorpus1/glow-1
cda5383b1609ebad1a3631ca77b41b8a863443d4
[ "Apache-2.0" ]
685
2018-05-02T16:54:09.000Z
2022-03-24T01:12:24.000Z
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals import torch import torch.nn as nn from tests import utils from torch.ao.quantization import QConfig, observer my_qconfig = QConfig( activation=observer.default_observer, weight=observer.HistogramObserver.with_args(dtype=torch.qint8, reduce_range=False), ) class TestQuantizedBatchNorm2D(utils.TorchGlowTestCase): def test_batchnorm_basic(self): """ Basic test of the PyTorch 3D batchnorm Node on Glow. """ class SimpleQuantizedBatchNorm(nn.Module): def __init__( self, C, running_mean, running_var, in_scale, in_zero_point, out_scale, out_zero_point, ): super(SimpleQuantizedBatchNorm, self).__init__() self.qconfig = my_qconfig self.batchnorm = nn.BatchNorm2d(C) self.batchnorm.scale = out_scale self.batchnorm.zero_point = out_zero_point self.batchnorm.running_mean = running_mean self.batchnorm.running_var = running_var self.relu = torch.nn.ReLU() self.q = torch.ao.quantization.QuantStub() self.q.scale = in_scale self.q.zero_point = in_zero_point self.dq = torch.ao.quantization.DeQuantStub() def forward(self, x): qx = self.q(x) qy = self.batchnorm(qx) qy = self.relu(qy) y = self.dq(qy) return y C = 7 in_scale = 0.102 out_scale = 0.003 in_zero_point = -37 out_zero_point = 3 running_mean = torch.zeros(C) running_var = torch.ones(C) inputs = torch.randn((6, C, 43, 52), requires_grad=False) model = SimpleQuantizedBatchNorm( C, running_mean, running_var, in_scale, in_zero_point, out_scale, out_zero_point, ) model.eval() utils.compare_tracing_methods( model, inputs, skip_to_glow=True, ) def test_batchnorm_with_weights(self): """ Test of the PyTorch 2D batchnorm Node with weights and biases on Glow. """ class SimpleQuantizedBatchNorm(nn.Module): def __init__( self, C, weight, bias, running_mean, running_var, in_scale, in_zero_point, out_scale, out_zero_point, ): super(SimpleQuantizedBatchNorm, self).__init__() self.qconfig = my_qconfig self.batchnorm = nn.BatchNorm2d(C) self.batchnorm.scale = out_scale self.batchnorm.zero_point = out_zero_point self.batchnorm.weight = nn.Parameter(weight) self.batchnorm.bias = nn.Parameter(bias) self.batchnorm.running_mean = running_mean self.batchnorm.running_var = running_var self.relu = nn.ReLU() self.q = torch.ao.quantization.QuantStub() self.q.scale = in_scale self.q.zero_point = in_zero_point self.dq = torch.ao.quantization.DeQuantStub() def forward(self, x): qx = self.q(x) qy = self.batchnorm(qx) y = self.dq(qy) return y C = 11 in_scale = 0.234 out_scale = 0.003 in_zero_point = -10 out_zero_point = -5 weight = torch.ones(C) + torch.rand(C) * 0.001 bias = torch.rand(C) * 0.0001 running_mean = torch.zeros(C) running_var = torch.ones(C) inputs = torch.randn((6, C, 33, 42), requires_grad=False) model = SimpleQuantizedBatchNorm( C, weight, bias, running_mean, running_var, in_scale, in_zero_point, out_scale, out_zero_point, ) model.eval() utils.compare_tracing_methods( model, inputs, skip_to_glow=True, )
31.68125
87
0.548234
7302bc79ef228952ee8276138a669408f569f2c8
2,321
py
Python
scraper.py
di37/selenium-youtube-scraper
0a79af0ed89c857475d99e261dc2277f3373a95d
[ "MIT" ]
null
null
null
scraper.py
di37/selenium-youtube-scraper
0a79af0ed89c857475d99e261dc2277f3373a95d
[ "MIT" ]
null
null
null
scraper.py
di37/selenium-youtube-scraper
0a79af0ed89c857475d99e261dc2277f3373a95d
[ "MIT" ]
null
null
null
import smtplib import json import os from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.by import By YOUTUBE_TRENDING_URL = 'https://www.youtube.com/feed/trending' def get_driver(): chrome_options = Options() chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--headless') chrome_options.add_argument('--disable-dev-shm-usage') driver = webdriver.Chrome(options=chrome_options) return driver def get_videos(driver): VIDEO_DIV_TAG = 'ytd-video-renderer' driver.get(YOUTUBE_TRENDING_URL) videos = driver.find_elements(By.TAG_NAME, VIDEO_DIV_TAG) return videos def parse_video(video): # title, url, thumbnail_url, channel, views, uploaded, # description title_tag = video.find_element(By.ID, 'video-title') title = title_tag.text URL = title_tag.get_attribute('href') thumbnail_url_tag = video.find_element(By.TAG_NAME, 'img') thumbnail_url = thumbnail_url_tag.get_attribute('src') metablock = video.find_element(By.CLASS_NAME, 'ytd-video-meta-block').text.split('\n') channel_name = metablock[0] views = metablock[1] uploaded = metablock[2] description = video.find_element(By.ID, 'description-text').text return { 'Title': title, 'Url': URL, 'Thumbnail_url': thumbnail_url, 'Channel_name': channel_name, 'Views': views, 'Uploaded': uploaded, 'Description': description } def send_email(body): EMAIL_ADDRESS = 'd.isham.993@gmail.com' EMAIL_PASSWORD = os.environ['GMAIL_PASS'] try: with smtplib.SMTP_SSL('smtp.gmail.com', 465) as smtp: smtp.ehlo() smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) subject = 'YouTube top 10 trending videos!' msg = f'''Subject: {subject}\n\n{body}''' smtp.sendmail(EMAIL_ADDRESS, ['d.isham.ai93@gmail.com'], msg) smtp.close() except: print('Something went wrong.') if __name__ == '__main__': print('Creating driver') driver = get_driver() print('Fetching trending videos') videos = get_videos(driver) print(f'Found {len(videos)} videos.') print('Parsing top 10 videos') videos_data = [parse_video(video) for video in videos[:10]] print('Send the results over email.') body = json.dumps(videos_data, indent=2) send_email(body)
25.788889
88
0.71047
fd95695000963e8dd1a726b80e15ca45c9a896b5
488
py
Python
test_projects/test_module_a/test_feat_1.py
martinsmid/pytest-ui
15fcbe04a6467cc6f7a373ef6156acc44f0ba5ec
[ "MIT" ]
27
2017-03-10T08:54:06.000Z
2021-09-28T13:51:10.000Z
test_projects/test_module_a/test_feat_1.py
martinsmid/pytest-ui
15fcbe04a6467cc6f7a373ef6156acc44f0ba5ec
[ "MIT" ]
1
2021-06-22T19:29:31.000Z
2021-06-22T19:29:31.000Z
test_projects/test_module_a/test_feat_1.py
martinsmid/pytest-ui
15fcbe04a6467cc6f7a373ef6156acc44f0ba5ec
[ "MIT" ]
1
2020-04-19T07:25:27.000Z
2020-04-19T07:25:27.000Z
from __future__ import print_function import unittest import logging logging.basicConfig() logger = logging.getLogger(__name__) class TestOutputCapturing(unittest.TestCase): def test_feat_1_case_1(self): print('hello') logger.debug('hello at the debug level') def test_feat_1_case_2(self): self.assertEqual(True, False) def test_feat_1_case_3(self): logger.error('hello at the error level') def test_feat_1_case_4(self): pass
22.181818
48
0.715164
a0fd3a71ef5e3e45dcbc389e74c3f103b099c11b
1,678
py
Python
helpers.py
gabrielaraujof/Babelegram
8ea28b68d24ef66a6b95e5b71e648b2b04a3bad0
[ "MIT" ]
1
2016-03-29T16:54:49.000Z
2016-03-29T16:54:49.000Z
helpers.py
gabrielaraujof/Babelegram
8ea28b68d24ef66a6b95e5b71e648b2b04a3bad0
[ "MIT" ]
2
2016-03-25T14:47:13.000Z
2016-03-30T04:48:26.000Z
helpers.py
gabrielaraujof/Babelegram
8ea28b68d24ef66a6b95e5b71e648b2b04a3bad0
[ "MIT" ]
1
2016-03-29T16:54:50.000Z
2016-03-29T16:54:50.000Z
""" A set of helpers functions and constants for supporting the bot engine. """ _LANG_SET = { 'ar': ' Arabic', 'bg': 'Bulgarian', 'ca': 'Catalan', 'zh-CHS': 'Chinese (Simplified)', 'zh-CHT': 'Chinese (Traditional)', 'cs': 'Czech', 'da': 'Danish', 'nl': 'Dutch', 'en': 'Inglês', 'et': 'Estonian', 'fi': 'Finnish', 'fr': 'Francês', 'de': 'Alemão', 'el': 'Greek', 'ht': 'Haitian Creole', 'he': 'Hebrew', 'hi': 'Hindi', 'hu': 'Hungarian', 'id': 'Indonesian', 'it': 'Italian', 'ja': 'Japanese', 'ko': 'Korean', 'lv': 'Latvian', 'lt': 'Lithuanian', 'mww': 'Hmong Daw', 'no': 'Norwegian', 'pl': 'Polish', 'pt': 'Português', 'ro': 'Romanian', 'ru': 'Russian', 'sk': 'Slovak', 'sl': 'Slovenian', 'es': 'Spanish', 'sv': 'Swedish', 'th': 'Thai', 'tr': 'Turkish', 'uk': 'Ukrainian', 'vi': 'Vietnamese', } def get_lang_name(lang_id): """ Returns the name of a language by its id. """ return _LANG_SET[lang_id] def start_rank(): """ Create the structure for ranking with the languages available for translating.""" ocurrence_dict = {lang_id: 1 for lang_id, name in _LANG_SET.items()} ranking = list([lang_id for lang_id, name in _LANG_SET.items()]) return ranking, ocurrence_dict def rating_calc(item, ocurrences, last_ocurrences, total_ocurrences): """ Calculates the rating of the target language. """ rating = ocurrences / total_ocurrences if item in last_ocurrences: rating *= 2 if last_ocurrences and item == last_ocurrences[-1]: rating *= 4 return rating
23.971429
72
0.567342
4ae700203d43181c7662b8a568b439e4f77b8b04
1,170
py
Python
chapter2/data-preprocessing.py
kevingo/ml-az
02f998d8c7f5476461b5cf59267c9532308e4ea4
[ "MIT" ]
null
null
null
chapter2/data-preprocessing.py
kevingo/ml-az
02f998d8c7f5476461b5cf59267c9532308e4ea4
[ "MIT" ]
null
null
null
chapter2/data-preprocessing.py
kevingo/ml-az
02f998d8c7f5476461b5cf59267c9532308e4ea4
[ "MIT" ]
null
null
null
# Import Library import numpy as np import matplotlib.pyplot as plt import pandas as pd import os # import data dataset = pd.read_csv('Data.csv') X = dataset.iloc[:, :-1].values Y = dataset.iloc[:, 3].values # deal with missing data from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) imputer = imputer.fit(X[:, 1:3]) X[:, 1:3] = imputer.transform(X[:, 1:3]) print X # encoding categorical data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelEncoder_X = LabelEncoder() X[:, 0] = labelEncoder_X.fit_transform(X[:, 0]) print X oneHotEncoder = OneHotEncoder(categorical_features = [0]) X = oneHotEncoder.fit_transform(X).toarray() print X labelEncoder_Y = LabelEncoder() Y = labelEncoder_Y.fit_transform(Y) print Y # Split data into training / testing dataset from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) print X_train
25.434783
92
0.759829
431623c0f1d70d0ccd2c36fa82c47496a7633c47
22,418
py
Python
tests/conftest.py
ArunkumarRamanan/computervision-recipes
861ebf32484f9a58ff3570cf73e7b86a254d33e1
[ "MIT" ]
null
null
null
tests/conftest.py
ArunkumarRamanan/computervision-recipes
861ebf32484f9a58ff3570cf73e7b86a254d33e1
[ "MIT" ]
null
null
null
tests/conftest.py
ArunkumarRamanan/computervision-recipes
861ebf32484f9a58ff3570cf73e7b86a254d33e1
[ "MIT" ]
1
2020-09-07T03:19:02.000Z
2020-09-07T03:19:02.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # NOTE: This file is used by pytest to inject fixtures automatically. As it is explained in the documentation # https://docs.pytest.org/en/latest/fixture.html: # "If during implementing your tests you realize that you want to use a fixture function from multiple test files # you can move it to a conftest.py file. You don't need to import the fixture you want to use in a test, it # automatically gets discovered by pytest." import numpy as np import os import pytest import torch import urllib.request import random from PIL import Image from torch import tensor from pathlib import Path from fastai.vision import cnn_learner, models from fastai.vision.data import ImageList, imagenet_stats from typing import List, Tuple from tempfile import TemporaryDirectory from utils_cv.common.data import unzip_url from utils_cv.classification.data import Urls as ic_urls from utils_cv.detection.data import Urls as od_urls from utils_cv.detection.bbox import DetectionBbox, AnnotationBbox from utils_cv.detection.dataset import DetectionDataset from utils_cv.detection.model import ( get_pretrained_fasterrcnn, get_pretrained_maskrcnn, get_pretrained_keypointrcnn, DetectionLearner, _extract_od_results, _apply_threshold, ) def path_classification_notebooks(): """ Returns the path of the classification notebooks folder. """ return os.path.abspath( os.path.join( os.path.dirname(__file__), os.path.pardir, "scenarios", "classification", ) ) def path_similarity_notebooks(): """ Returns the path of the similarity notebooks folder. """ return os.path.abspath( os.path.join( os.path.dirname(__file__), os.path.pardir, "scenarios", "similarity", ) ) def path_detection_notebooks(): """ Returns the path of the detection notebooks folder. """ return os.path.abspath( os.path.join( os.path.dirname(__file__), os.path.pardir, "scenarios", "detection" ) ) # ----- Module fixtures ---------------------------------------------------------- @pytest.fixture(scope="module") def classification_notebooks(): folder_notebooks = path_classification_notebooks() # Path for the notebooks paths = { "00_webcam": os.path.join(folder_notebooks, "00_webcam.ipynb"), "01_training_introduction": os.path.join( folder_notebooks, "01_training_introduction.ipynb" ), "02_multilabel_classification": os.path.join( folder_notebooks, "02_multilabel_classification.ipynb" ), "03_training_accuracy_vs_speed": os.path.join( folder_notebooks, "03_training_accuracy_vs_speed.ipynb" ), "10_image_annotation": os.path.join( folder_notebooks, "10_image_annotation.ipynb" ), "11_exploring_hyperparameters": os.path.join( folder_notebooks, "11_exploring_hyperparameters.ipynb" ), "12_hard_negative_sampling": os.path.join( folder_notebooks, "12_hard_negative_sampling.ipynb" ), "20_azure_workspace_setup": os.path.join( folder_notebooks, "20_azure_workspace_setup.ipynb" ), "21_deployment_on_azure_container_instances": os.path.join( folder_notebooks, "21_deployment_on_azure_container_instances.ipynb", ), "22_deployment_on_azure_kubernetes_service": os.path.join( folder_notebooks, "22_deployment_on_azure_kubernetes_service.ipynb" ), "23_aci_aks_web_service_testing": os.path.join( folder_notebooks, "23_aci_aks_web_service_testing.ipynb" ), "24_exploring_hyperparameters_on_azureml": os.path.join( folder_notebooks, "24_exploring_hyperparameters_on_azureml.ipynb" ), } return paths @pytest.fixture(scope="module") def similarity_notebooks(): folder_notebooks = path_similarity_notebooks() # Path for the notebooks paths = { "00": os.path.join(folder_notebooks, "00_webcam.ipynb"), "01": os.path.join( folder_notebooks, "01_training_and_evaluation_introduction.ipynb" ), "11": os.path.join( folder_notebooks, "11_exploring_hyperparameters.ipynb" ), "12": os.path.join(folder_notebooks, "12_fast_retrieval.ipynb"), } return paths @pytest.fixture(scope="module") def detection_notebooks(): folder_notebooks = path_detection_notebooks() # Path for the notebooks paths = { "00": os.path.join(folder_notebooks, "00_webcam.ipynb"), "01": os.path.join(folder_notebooks, "01_training_introduction.ipynb"), "02": os.path.join(folder_notebooks, "02_mask_rcnn.ipynb"), "03": os.path.join(folder_notebooks, "03_keypoint_rcnn.ipynb"), "11": os.path.join( folder_notebooks, "11_exploring_hyperparameters_on_azureml.ipynb" ), "12": os.path.join( folder_notebooks, "12_hard_negative_sampling.ipynb" ), "20": os.path.join( folder_notebooks, "20_deployment_on_kubernetes.ipynb" ), } return paths # ----- Function fixtures ---------------------------------------------------------- @pytest.fixture(scope="function") def tmp(tmp_path_factory): """Create a function-scoped temp directory. Will be cleaned up after each test function. Args: tmp_path_factory (pytest.TempPathFactory): Pytest default fixture Returns: str: Temporary directory path """ with TemporaryDirectory(dir=tmp_path_factory.getbasetemp()) as td: yield td @pytest.fixture(scope="function") def func_tiny_od_data_path(tmp_session) -> str: """ Returns the path to the fridge object detection dataset. """ return unzip_url( od_urls.fridge_objects_tiny_path, fpath=f"{tmp_session}/tmp", dest=f"{tmp_session}/tmp", exist_ok=True, ) # ----- Session fixtures ---------------------------------------------------------- @pytest.fixture(scope="session") def tmp_session(tmp_path_factory): """ Same as 'tmp' fixture but with session level scope. """ with TemporaryDirectory(dir=tmp_path_factory.getbasetemp()) as td: yield td # ------|-- Classification/Similarity --------------------------------------------- @pytest.fixture(scope="session") def tiny_ic_multidata_path(tmp_session) -> List[str]: """ Returns the path to multiple dataset. """ return [ unzip_url( ic_urls.fridge_objects_watermark_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ), unzip_url( ic_urls.fridge_objects_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ), ] @pytest.fixture(scope="session") def tiny_ic_data_path(tmp_session) -> str: """ Returns the path to the tiny fridge objects dataset. """ return unzip_url( ic_urls.fridge_objects_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) @pytest.fixture(scope="session") def tiny_multilabel_ic_data_path(tmp_session) -> str: """ Returns the path to the tiny fridge objects dataset. """ return unzip_url( ic_urls.multilabel_fridge_objects_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) @pytest.fixture(scope="session") def multilabel_ic_data_path(tmp_session) -> str: """ Returns the path to the tiny fridge objects dataset. """ return unzip_url( ic_urls.multilabel_fridge_objects_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) @pytest.fixture(scope="session") def tiny_ic_negatives_path(tmp_session) -> str: """ Returns the path to the tiny negatives dataset. """ return unzip_url( ic_urls.fridge_objects_negatives_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) @pytest.fixture(scope="session") def tiny_ic_databunch(tmp_session): """ Returns a databunch object for the tiny fridge objects dataset. """ im_paths = unzip_url( ic_urls.fridge_objects_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) return ( ImageList.from_folder(im_paths) .split_by_rand_pct(valid_pct=0.1, seed=20) .label_from_folder() .transform(size=50) .databunch(bs=16) .normalize(imagenet_stats) ) @pytest.fixture(scope="session") def multilabel_result(): """ Fake results to test evaluation metrics for multilabel classification. """ y_pred = torch.tensor( [ [0.9, 0.0, 0.0, 0.0], [0.9, 0.0, 0.9, 0.9], [0.0, 0.9, 0.0, 0.0], [0.9, 0.9, 0.0, 0.0], ] ).float() y_true = torch.tensor( [[1, 0, 0, 1], [1, 1, 1, 1], [0, 1, 0, 0], [1, 1, 1, 0]] ).float() return y_pred, y_true @pytest.fixture(scope="session") def model_pred_scores(tiny_ic_databunch): """Return a simple learner and prediction scores on tiny ic data""" model = models.resnet18 lr = 1e-4 epochs = 1 learn = cnn_learner(tiny_ic_databunch, model) learn.fit(epochs, lr) return learn, learn.get_preds()[0].tolist() @pytest.fixture(scope="session") def testing_im_list(tmp_session): """ Set of 5 images from the can/ folder of the Fridge Objects dataset used to test positive example rank calculations""" im_paths = unzip_url( ic_urls.fridge_objects_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) can_im_paths = os.listdir(os.path.join(im_paths, "can")) can_im_paths = [ os.path.join(im_paths, "can", im_name) for im_name in can_im_paths ][0:5] return can_im_paths @pytest.fixture(scope="session") def testing_databunch(tmp_session): """ Builds a databunch from the Fridge Objects and returns its validation component that is used to test comparative_set_builder""" im_paths = unzip_url( ic_urls.fridge_objects_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) can_im_paths = os.listdir(os.path.join(im_paths, "can")) can_im_paths = [ os.path.join(im_paths, "can", im_name) for im_name in can_im_paths ][0:5] random.seed(642) data = ( ImageList.from_folder(im_paths) .split_by_rand_pct(valid_pct=0.2, seed=20) .label_from_folder() .transform(size=300) .databunch(bs=16) .normalize(imagenet_stats) ) validation_bunch = data.valid_ds return validation_bunch # ------|-- Detection ------------------------------------------------------------- @pytest.fixture(scope="session") def od_cup_path(tmp_session) -> str: """ Returns the path to the downloaded cup image. """ IM_URL = "https://cvbp.blob.core.windows.net/public/images/cvbp_cup.jpg" im_path = os.path.join(tmp_session, "example.jpg") urllib.request.urlretrieve(IM_URL, im_path) return im_path @pytest.fixture(scope="session") def od_cup_mask_path(tmp_session) -> str: """ Returns the path to the downloaded cup image. """ im_url = ( "https://cvbp.blob.core.windows.net/public/images/cvbp_cup_mask.png" ) im_path = os.path.join(tmp_session, "example_mask.png") urllib.request.urlretrieve(im_url, im_path) return im_path @pytest.fixture(scope="session") def od_cup_anno_bboxes(tmp_session, od_cup_path) -> List[AnnotationBbox]: return [ AnnotationBbox( left=61, top=59, right=273, bottom=244, label_name="cup", label_idx=0, im_path=od_cup_path, ) ] @pytest.fixture(scope="session") def od_cup_det_bboxes(tmp_session, od_cup_path) -> List[DetectionBbox]: return [ DetectionBbox( left=61, top=59, right=273, bottom=244, label_name="cup", label_idx=0, im_path=od_cup_path, score=0.99, ) ] @pytest.fixture(scope="session") def od_mask_rects() -> Tuple: """ Returns synthetic mask and rectangles ([left, top, right, bottom]) for object detection. """ height = width = 100 mask = np.zeros((height, width), dtype=np.uint8) mask[:10, :20] = 1 mask[20:40, 30:60] = 2 # corresponding binary masks of the mask above binary_masks = np.zeros((2, height, width), dtype=np.bool) binary_masks[0, :10, :20] = True binary_masks[1, 20:40, 30:60] = True # corresponding rectangles of the mask above rects = [[0, 0, 19, 9], [30, 20, 59, 39]] # a completely black image im = Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8)) return binary_masks, mask, rects, im @pytest.fixture(scope="session") def tiny_od_data_path(tmp_session) -> str: """ Returns the path to the fridge object detection dataset. """ return unzip_url( od_urls.fridge_objects_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) @pytest.fixture(scope="session") def tiny_od_mask_data_path(tmp_session) -> str: """ Returns the path to the fridge object detection mask dataset. """ return unzip_url( od_urls.fridge_objects_mask_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) @pytest.fixture(scope="session") def tiny_od_keypoint_data_path(tmp_session) -> str: """ Returns the path to the fridge object detection keypoint dataset. """ return unzip_url( od_urls.fridge_objects_keypoint_milk_bottle_tiny_path, fpath=tmp_session, dest=tmp_session, exist_ok=True, ) @pytest.fixture(scope="session") def od_sample_im_anno(tiny_od_data_path) -> Tuple[Path, ...]: """ Returns an annotation and image path from the tiny_od_data_path fixture. Specifically, using the paths for 1.xml and 1.jpg """ anno_path = Path(tiny_od_data_path) / "annotations" / "1.xml" im_path = Path(tiny_od_data_path) / "images" / "1.jpg" return anno_path, im_path @pytest.fixture(scope="session") def od_data_path_labels() -> List[str]: return ["water_bottle", "can", "milk_bottle", "carton"] @pytest.fixture(scope="session") def od_sample_raw_preds(): device = ( torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") ) boxes = [ [109.0, 190.0, 205.0, 408.0], [340.0, 326.0, 465.0, 549.0], [214.0, 181.0, 315.0, 460.0], [215.0, 193.0, 316.0, 471.0], [109.0, 209.0, 209.0, 420.0], ] # construct masks masks = np.zeros((len(boxes), 1, 666, 499), dtype=np.float) for rect, mask in zip(boxes, masks): left, top, right, bottom = [int(x) for x in rect] # first line of the bounding box mask[:, top, left : (right + 1)] = 0.05 # other lines of the bounding box mask[:, (top + 1) : (bottom + 1), left : (right + 1)] = 0.7 # construct keypoints start_points = [[120, 200], [350, 350], [220, 300], [250, 400], [100, 350]] keypoints = [] for x, y in start_points: points = [] for i in range(13): points.append([x + i, y + i, 2]) keypoints.append(points) return [ { "boxes": tensor(boxes, device=device, dtype=torch.float), "labels": tensor( [3, 3, 3, 2, 1], device=device, dtype=torch.int64 ), "scores": tensor( [0.9985, 0.9979, 0.9945, 0.1470, 0.0903], device=device, dtype=torch.float, ), "masks": tensor(masks, device=device, dtype=torch.float), "keypoints": tensor(keypoints, device=device, dtype=torch.float32), } ] @pytest.fixture(scope="session") def od_sample_detection(od_sample_raw_preds, od_detection_mask_dataset): labels = ["one", "two", "three", "four"] detections = _extract_od_results( _apply_threshold(od_sample_raw_preds[0], threshold=0.001), labels, od_detection_mask_dataset.im_paths[0], ) detections["idx"] = 0 del detections["keypoints"] return detections @pytest.fixture(scope="session") def od_sample_keypoint_detection( od_sample_raw_preds, tiny_od_detection_keypoint_dataset ): labels = ["one", "two", "three", "four"] detections = _extract_od_results( _apply_threshold(od_sample_raw_preds[0], threshold=0.9), labels, tiny_od_detection_keypoint_dataset.im_paths[0], ) detections["idx"] = 0 del detections["masks"] return detections @pytest.fixture(scope="session") def od_detection_dataset(tiny_od_data_path): """ returns a basic detection dataset. """ return DetectionDataset(tiny_od_data_path) @pytest.fixture(scope="session") def od_detection_mask_dataset(tiny_od_mask_data_path): """ returns a basic detection mask dataset. """ return DetectionDataset( tiny_od_mask_data_path, mask_dir="segmentation-masks" ) @pytest.fixture(scope="session") def tiny_od_detection_keypoint_dataset(tiny_od_keypoint_data_path): """ returns a basic detection keypoint dataset. """ return DetectionDataset( tiny_od_keypoint_data_path, keypoint_meta={ "labels": [ "lid_left_top", "lid_right_top", "lid_left_bottom", "lid_right_bottom", "left_bottom", "right_bottom", ], "skeleton": [ [0, 1], [0, 2], [1, 3], [2, 3], [2, 4], [3, 5], [4, 5], ], "hflip_inds": [1, 0, 3, 2, 5, 4], }, ) @pytest.mark.gpu @pytest.fixture(scope="session") def od_detection_learner(od_detection_dataset): """ returns a basic detection learner that has been trained for one epoch. """ model = get_pretrained_fasterrcnn( num_classes=len(od_detection_dataset.labels) + 1, min_size=100, max_size=200, rpn_pre_nms_top_n_train=500, rpn_pre_nms_top_n_test=250, rpn_post_nms_top_n_train=500, rpn_post_nms_top_n_test=250, ) learner = DetectionLearner(od_detection_dataset, model=model) learner.fit(1) return learner @pytest.mark.gpu @pytest.fixture(scope="session") def od_detection_mask_learner(od_detection_mask_dataset): """ returns a mask detection learner that has been trained for one epoch. """ model = get_pretrained_maskrcnn( num_classes=len(od_detection_mask_dataset.labels) + 1, min_size=100, max_size=200, rpn_pre_nms_top_n_train=500, rpn_pre_nms_top_n_test=250, rpn_post_nms_top_n_train=500, rpn_post_nms_top_n_test=250, ) learner = DetectionLearner(od_detection_mask_dataset, model=model) learner.fit(1) return learner @pytest.mark.gpu @pytest.fixture(scope="session") def od_detection_keypoint_learner(tiny_od_detection_keypoint_dataset): """ returns a keypoint detection learner that has been trained for one epoch. """ model = get_pretrained_keypointrcnn( num_classes=len(tiny_od_detection_keypoint_dataset.labels) + 1, num_keypoints=len( tiny_od_detection_keypoint_dataset.keypoint_meta["labels"] ), min_size=100, max_size=200, rpn_pre_nms_top_n_train=500, rpn_pre_nms_top_n_test=250, rpn_post_nms_top_n_train=500, rpn_post_nms_top_n_test=250, ) learner = DetectionLearner(tiny_od_detection_keypoint_dataset, model=model) learner.fit(1, skip_evaluation=True) return learner @pytest.mark.gpu @pytest.fixture(scope="session") def od_detection_eval(od_detection_learner): """ returns the eval results of a detection learner after one epoch of training. """ return od_detection_learner.evaluate() @pytest.mark.gpu @pytest.fixture(scope="session") def od_detection_mask_eval(od_detection_mask_learner): """ returns the eval results of a detection learner after one epoch of training. """ return od_detection_mask_learner.evaluate() @pytest.mark.gpu @pytest.fixture(scope="session") def od_detections(od_detection_dataset): """ returns output of the object detector for a given test set. """ learner = DetectionLearner(od_detection_dataset) return learner.predict_dl(od_detection_dataset.test_dl, threshold=0) # ----- AML Settings ---------------------------------------------------------- # TODO i can't find where this function is being used def pytest_addoption(parser): parser.addoption( "--subscription_id", help="Azure Subscription Id to create resources in", ) parser.addoption("--resource_group", help="Name of the resource group") parser.addoption("--workspace_name", help="Name of Azure ML Workspace") parser.addoption( "--workspace_region", help="Azure region to create the workspace in" ) @pytest.fixture def subscription_id(request): return request.config.getoption("--subscription_id") @pytest.fixture def resource_group(request): return request.config.getoption("--resource_group") @pytest.fixture def workspace_name(request): return request.config.getoption("--workspace_name") @pytest.fixture def workspace_region(request): return request.config.getoption("--workspace_region") # @pytest.fixture(scope="session") # def testing_im_list(tmp_session): # """ Set of 5 images from the can/ folder of the Fridge Objects dataset # used to test positive example rank calculations""" # im_paths = unzip_url( # Urls.fridge_objects_tiny_path, tmp_session, exist_ok=True # ) # can_im_paths = os.listdir(os.path.join(im_paths, "can")) # can_im_paths = [ # os.path.join(im_paths, "can", im_name) for im_name in can_im_paths # ][0:5] # return can_im_paths
30.667579
113
0.642073
8db1cb3abf1e9af230362a216411d9a31040ec2c
1,240
py
Python
enviroment_config/main.py
kringsman/exercises_python
054581a2ee1710984b04f5f6d288d6dc79e09240
[ "MIT" ]
null
null
null
enviroment_config/main.py
kringsman/exercises_python
054581a2ee1710984b04f5f6d288d6dc79e09240
[ "MIT" ]
7
2020-05-01T09:03:04.000Z
2022-03-12T00:31:28.000Z
enviroment_config/main.py
kringsman/exercises_python
054581a2ee1710984b04f5f6d288d6dc79e09240
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from flask import Flask, render_template, request, flash, redirect from contact_model import Contact app = Flask(__name__) app.secret_key = 'some_secret' app.debug = True @app.route(r'/', methods=['GET']) def contact_book(): contacts = Contact.query().fetch() return render_template('contact_book.html', contacts=contacts) @app.route(r'/add', methods=['GET', 'POST']) def add_contact(): if request.form: contact = Contact(name=request.form.get('name'), phone=request.form.get('phone'), email=request.form.get('email')) contact.put() flash('¡Se añadio el contacto!') return render_template('add_contact.html') @app.route(r'/contacts/<uid>', methods=['GET']) def contact_details(uid): contact = Contact.get_by_id(int(uid)) if not contact: return redirect('/', code=301) return render_template('contact.html', contact=contact) @app.route(r'/delete', methods=['POST']) def delete_contact(): contact = Contact.get_by_id(int(request.form.get('uid'))) contact.key.delete() return redirect('/contacts/{}'.format(contact.key.id())) if __name__ == '__main__': app.run()
25.306122
67
0.637097
c8aabb962cce3ed34d57ca149e07d95967c7c5e3
3,264
py
Python
surgame/src/caveGenerate.py
anokata/pythonPetProjects
245c3ff11ae560b17830970061d8d60013948fd7
[ "MIT" ]
3
2017-04-30T17:44:53.000Z
2018-02-03T06:02:11.000Z
surgame/src/caveGenerate.py
anokata/pythonPetProjects
245c3ff11ae560b17830970061d8d60013948fd7
[ "MIT" ]
10
2021-03-18T20:17:19.000Z
2022-03-11T23:14:19.000Z
surgame/src/caveGenerate.py
anokata/pythonPetProjects
245c3ff11ae560b17830970061d8d60013948fd7
[ "MIT" ]
null
null
null
import random WALL = 0 FLOOR = 1 SPACE = 2 PLAYER = 8 TELEPORT = 3 INIT = 4 lastId = 9 DrawChars = { WALL: 'x', FLOOR: 'f', SPACE: ' ', PLAYER: '~', TELEPORT: 'T', INIT: 'o', } def addRectBorder(m, w, val=WALL): for x in (0, w-1): for y in range(len(m)): m[x][y] = val for y in (0, w-1): for x in range(len(m)): m[x][y] = val def floodFill(m, x, y, val, newval): tofill = list() tofill.append((x, y)) while len(tofill) != 0: x, y = tofill[0] tofill.remove((x, y)) if m[x][y] == val: m[x][y] = newval tofill.append((x+1, y)) tofill.append((x-1, y)) tofill.append((x, y+1)) tofill.append((x, y-1)) return m def stepn(m): BL = 4 DL = 3 n = init_matrix(len(m)) for x in range(1, len(m) - 2): for y in range(1, len(m) - 2): ne = calcNei(m, x, y) c = m[x][y] if c == WALL: if ne > BL: n[x][y] = FLOOR else: if ne >= DL: n[x][y] = FLOOR return n def calcNei(m, x, y): r = 0 r += m[x-1][y] r += m[x-1][y-1] r += m[x-1][y+1] r += m[x+1][y] r += m[x+1][y+1] r += m[x+1][y-1] r += m[x][y-1] r += m[x][y+1] return r def init_matrix(w, val=WALL): m = [[val for x in range(w)] for y in range(w)] return m def objects_generate(m, TL=4): for x in range(1, len(m)-1): for y in range(1, len(m)-1): ne = calcNei(m, x, y) if ne < TL and m[x][y] == FLOOR: m[x][y] = 3 def randomize(m, chance=55): for x in range(0, len(m)): for y in range(0, len(m)): c = random.randint(0,100) if c > chance: m[x][y] = FLOOR return m def gen(w=100, steps=3): m = init_matrix(w) m = randomize(m) for i in range(steps): m = stepn(m) objects_generate(m) #floodFill(m, 20, 20, m[20][20], 2) addRectBorder(m, w) placePlayer(m) return m def getRandomFreePoint(m): x = 0 y = 0 w = len(m) notFree = True while notFree: x = random.randint(2, w-2) y = random.randint(2, w-2) n = calcNei(m, x, y) notFree = n < 7 #notFree = m[x][y] == FLOOR return (x, y) def placePlayer(m): x, y = getRandomFreePoint(m) m[x][y] = PLAYER return m def drawString(m): r = str() for x in range(0, len(m)): for y in range(0, len(m)): char = DrawChars[m[x][y]] r += char r += '\n' return r def changeTile(m, old, new): for x in range(0, len(m)): for y in range(0, len(m)): if m[x][y] == old: m[x][y] = new def addObjectsRandom(m, obj, count): global lastId idd = lastId DrawChars.update({lastId:obj}) lastId += 1 for i in range(count): x, y = getRandomFreePoint(m) m[x][y] = idd m = gen(30, 5) changeTile(m, FLOOR, SPACE) #addObjectsRandom(m, 'G', 10) floor = init_matrix(30, FLOOR) if __name__ == '__main__': print(drawString(m)) #print(drawString(floor))
21.615894
51
0.460478
f6f3fe06e05f3a14f4acfd6893e88abc7d3a9284
1,574
py
Python
script.py
apsknight/crawlresult
d314990dcc919a6535503fcc019a0bfe4cca6ff6
[ "MIT" ]
2
2020-11-02T22:18:25.000Z
2020-11-28T14:51:53.000Z
script.py
apsknight/crawlresult
d314990dcc919a6535503fcc019a0bfe4cca6ff6
[ "MIT" ]
null
null
null
script.py
apsknight/crawlresult
d314990dcc919a6535503fcc019a0bfe4cca6ff6
[ "MIT" ]
null
null
null
from generator import generate import json year = int(raw_input('Enter first two digit of Roll No. : ')) # assert (year >= 14 and year <= 17), 'Entered Year is not correct' branch = str(raw_input('Enter branch abbreviation : ')).upper() branches = ['CE', 'CS', 'ME', 'MM', 'EE', 'EC'] assert branch in branches, 'Entered branch abbreviation not correct' degree = int(raw_input('Enter 1 for single degree and 2 for dual degree : ')) assert degree in [1, 2], 'Entered degree not correct' lastroll = int(raw_input('Enter last possible Roll No. : ')) # assert lastroll <= 46 and lastroll >= 9, 'lastroll should be less than 46' firstroll = int(raw_input('Enter first Roll No. : ')) depc = [] for i in range(firstroll, lastroll): if i in depc: continue if (i < 10) : roll = str(year) + str(branch) + '0' + str(degree) + '00' + str(i) else : roll = str(year) + str(branch) + '0' + str(degree) + '0' + str(i) with open("stres.json") as f: prev = json.load(f) if roll in prev: continue scheme = 0 choice = [[2000 - 18, 2000 - 17, 2000 - 19, 2000 - 16, 2000 - 20], [2000 - 18, 2000 - 19, 2000 - 17, 2000 - 16, 2000 - 20], [2000 - 17, 2000 - 18, 2000 - 19, 2000 - 16, 2000 - 20], [2000 - 19, 2000 - 18, 2000 - 17, 2000 - 16, 2000 - 20]] if generate(roll, year + choice[scheme][0]) == False: if generate(roll, year + choice[scheme][1]) == False: if generate(roll, year + choice[scheme][2]) == False: # if generate(roll, year + choice[scheme][3]) == False: # if generate(roll, year + choice[scheme][4]) == False: print ("I fail for", roll)
39.35
238
0.627065
fad296641260275970ef95a3895efa75e7f1eb16
19,850
py
Python
methods/PPO_Hierarchy.py
vanstrn/RL_public
0e971e40e063b17918460e19728f95d7924af8db
[ "MIT" ]
1
2021-03-19T17:57:51.000Z
2021-03-19T17:57:51.000Z
methods/PPO_Hierarchy.py
vanstrn/RL_public
0e971e40e063b17918460e19728f95d7924af8db
[ "MIT" ]
null
null
null
methods/PPO_Hierarchy.py
vanstrn/RL_public
0e971e40e063b17918460e19728f95d7924af8db
[ "MIT" ]
null
null
null
""" To Do: -Add an optional input for the networks so they can be defined in a main run script. -Test -Combine Training Operation """ from .method import Method from .buffer import Trajectory,BatchDivider,MultiBatchDivider from .AdvantageEstimator import gae import tensorflow as tf import numpy as np from utils.utils import MovingAverage def _log(val): return tf.log(tf.clip_by_value(val, 1e-10, 10.0)) class PPO_Hierarchy(Method): def __init__(self,sess,settings,netConfigOverride,stateShape,actionSize,nTrajs=1,**kwargs): """ Initializes a training method for a neural network. Parameters ---------- Model : Keras Model Object A Keras model object with fully defined layers and a call function. See examples in networks module. sess : Tensorflow Session Initialized Tensorflow session stateShape : list List of integers of the inputs shape size. Ex [39,39,6] actionSize : int Output size of the network. HPs : dict Dictionary that contains all hyperparameters to be used in the methods training nTrajs : int (Optional) Number that specifies the number of trajectories to be created for collecting training data. scope : str (Optional) Name of the PPO method. Used to group and differentiate variables between other networks. Returns ------- N/A """ #Processing inputs self.actionSize = actionSize self.sess=sess self.Model = NetworkBuilder(networkConfig=settings["NetworkConfig"],netConfigOverride=netConfigOverride,actionSize=actionSize) self.HPs=settings["HPs"] self.subReward = False self.UpdateSubpolicies = True self.nTrajs = nTrajs self.method = self.HPs["Method"] #Creating two buffers to separate information between the different levels of the network. if self.subReward: self.buffer = [Trajectory(depth=12) for _ in range(nTrajs)] #[s0,a,r,r_sub,s1,done]+[HL_actions, HL_log_logits, HL_v, flag, critics, logits] else: self.buffer = [Trajectory(depth=11) for _ in range(nTrajs)] #[s0,a,r,s1,done]+[HL_action, HL_log_logits, HL_v, flag, critics, logits] with self.sess.as_default(), self.sess.graph.as_default(): with tf.name_scope(scope): #Generic placeholders self.s = tf.placeholder(tf.float32, [None]+stateShape, 'S') self.a_his = tf.placeholder(tf.int32, [None, ], 'A') self.td_target_ = tf.placeholder(tf.float32, [None], 'Vtarget') self.advantage_ = tf.placeholder(shape=[None], dtype=tf.float32, name='adv_hold') #Initializing Netowrk I/O inputs = {"state":self.s} out = self.Model(inputs) self.a_prob = out["metaActor"] self.v = out["metaCritic"] self.log_logits = out["metaLogLogits"] self.sub_a_prob = out["subActor"] self.sub_log_logits = out["subLogLogits"] self.sub_v = out["subCritic"] self.nPolicies = len(self.sub_a_prob) #Placeholder for the Hierarchical Policy self.old_log_logits_ = tf.placeholder(shape=[None, self.nPolicies], dtype=tf.float32, name='old_logit_hold') #Placeholder for the Sub-Policies self.old_log_logits_sub_ = tf.placeholder(shape=[None, actionSize], dtype=tf.float32, name='old_logit_sub_hold') # Creating the Loss and update calls for the Hierarchical policy self.hierarchicalLoss = self.CreateLossPPO(self.a_prob,self.td_target_,self.v,self.a_his,self.log_logits,self.old_log_logits_,self.advantage_,self.nPolicies) variables = self.Model.getHierarchyVariables() self.hierarchyUpdater = self.CreateUpdater(self.hierarchicalLoss,variables) # Creating the Losses updaters for the Sub-policies. self.subpolicyLoss = [] self.subpolicyUpdater = [] for i in range(self.nPolicies): loss = self.CreateLossPPO(self.sub_a_prob[i],self.td_target_,self.sub_v[i],self.a_his,self.sub_log_logits[i],self.old_log_logits_sub_,self.advantage_,self.actionSize) self.subpolicyLoss.append(loss) variables = self.Model.getSubpolicyVariables(i) self.subpolicyUpdater.append(self.CreateUpdater(loss,variables)) #Creating Variables for teh purpose of logging. self.SubpolicyDistribution = MovingAverage(1000) def CreateUpdater(self,loss,variables): optimizer = tf.keras.optimizers.Adam(self.HPs["LR"]) gradients = optimizer.get_gradients(loss,variables) return optimizer.apply_gradients(zip(gradients,variables)) def CreateLossPPO(self,a_prob,td_target_,v,a_his,log_logits,old_log_logits_,advantage_,actionSize): # Entropy entropy = -tf.reduce_mean(a_prob * _log(a_prob), name='entropy') # Critic Loss td_error = td_target_ - v critic_loss = tf.reduce_mean(tf.square(td_error), name='critic_loss') # Actor Loss action_OH = tf.one_hot(a_his, actionSize, dtype=tf.float32) log_prob = tf.reduce_sum(log_logits * action_OH, 1) old_log_prob = tf.reduce_sum(old_log_logits_ * action_OH, 1) # Clipped surrogate function ratio = tf.exp(log_prob - old_log_prob) surrogate = ratio * advantage_ clipped_surrogate = tf.clip_by_value(ratio, 1-self.HPs["eps"], 1+self.HPs["eps"]) * advantage_ surrogate_loss = tf.minimum(surrogate, clipped_surrogate, name='surrogate_loss') actor_loss = -tf.reduce_mean(surrogate_loss, name='actor_loss') actor_loss = actor_loss - entropy * self.HPs["EntropyBeta"] loss = actor_loss + critic_loss * self.HPs["CriticBeta"] return loss def InitiateEpisode(self): if self.method == "Greedy": pass elif self.method == "Fixed Step": self.counter = 1 self.nStep = 4 elif self.method == "Constant": pass elif self.method == "Confidence": self.pastActions = [None]*self.nTrajs elif self.method == "Probabilistic Confidence": pass else: pass def GetAction(self, state, step,episode=0): """ Method to run data through hierarchical network First run the state through the meta network to select subpolicy to use. Second run the state through the proper Subpolicy ToDo: Check if faster to run the entire network and select appropriate subpolicy afterwards. or run only the required bit. Parameters ---------- state : np.array Data with the shape of [N, self.stateShape] where N is number of smaples Returns ------- actions : list[int] List of actions based on NN output. extraData : list List of data that is passed to the execution code to be bundled with state data. """ #Determine number of steps and whether to initiate confidence based on the length of the Buffer. if step == 0: self.InitiateEpisode() # Run the Meta and Sub-policy Networks targets = [self.a_prob,self.log_logits,self.v]+self.sub_a_prob+self.sub_log_logits+self.sub_v res = self.sess.run(targets, {self.s: state}) LL_probs=res[0] HL_log_logits =res[1] HL_v = res[2] sub_probs = res[3:3+self.nPolicies] sub_log_logits = res[3+self.nPolicies:3+2*self.nPolicies] sub_v = res[3+2*self.nPolicies:] if self.method == "Greedy": HL_actions = np.array([np.random.choice(LL_probs.shape[1], p=prob / sum(prob)) for prob in LL_probs]) flag=[True]*state.shape[0] elif self.method == "Fixed Step": if self.counter == self.nStep: #Reseting Step counter and selecting New option self.counter = 1 if self.counter == 1: HL_actions = np.array([np.random.choice(LL_probs.shape[1], p=prob / sum(prob)) for prob in LL_probs]) self.traj_action = HL_actions flag=[True]*state.shape[0] else: HL_actions = self.traj_action flag=[False]*state.shape[0] self.counter +=1 elif self.method == "Confidence": flag = [] HL_actions = [] confids = -np.mean(LL_probs * np.log(LL_probs), axis=1) for i,confid in enumerate(confids): if confid < 0.1 or step==0: action = np.random.choice(LL_probs.shape[1], p=LL_probs[i] / sum(LL_probs[i])) HL_actions.append(action) self.pastActions[i] = action flag.append(True) else: HL_actions.append(self.pastActions[i]) flag.append(True) self.traj_action = HL_actions elif self.method == "Probabilistic Confidence": pass else: pass # Run the Subpolicy Network actions = np.array([np.random.choice(self.actionSize, p=sub_probs[mod][idx] / sum(sub_probs[mod][idx])) for idx, mod in enumerate(HL_actions)]) critics = [sub_v[mod][idx] for idx, mod in enumerate(HL_actions)] logits = [sub_log_logits[mod][idx] for idx, mod in enumerate(HL_actions)] return actions, [HL_actions, HL_log_logits, HL_v, flag, critics, logits] def Update(self,HPs): """ Process the buffer and backpropagates the loses through the NN. Parameters ---------- HPs : dict Hyperparameters for training. Returns ------- N/A """ samples=0 for i in range(len(self.buffer)): samples +=len(self.buffer[i]) if samples < self.HPs["BatchSize"]: return for traj in range(len(self.buffer)): td_target, advantage, td_target_hier, advantage_hier,actions_hier,ll_hier,s_hier = self.ProcessBuffer(HPs,traj) # Updating the Hierarchical Controller for epoch in range(self.HPs["Epochs"]): for batch in MultiBatchDivider([s_hier,actions_hier,td_target_hier,advantage_hier,ll_hier],self.HPs["MinibatchSize"]): feed_dict = {self.s: np.asarray(batch[0]).squeeze(), self.a_his: np.asarray(batch[1]).squeeze(), self.td_target_: np.asarray(batch[2]).squeeze(), self.advantage_: np.reshape(batch[3], [-1]), self.old_log_logits_: np.asarray(batch[4]).squeeze()} self.sess.run(self.hierarchyUpdater, feed_dict) if self.UpdateSubpolicies: #Collecting the data into different sub-Policies if self.subReward: tmp, l1, l2, l3, l4, l5 = (list(t) for t in zip(*sorted(zip(self.buffer[traj][6], self.buffer[traj][0], self.buffer[traj][1], td_target, advantage, self.buffer[traj][10]),key=lambda x: x[0]))) #Sorting by the value in the actions_hier #dividing at the splits for subpolicyNum,data in SubpolicyIterator(tmp,[l1, l2, l3, l4, l5]): #Updating each of the sub-policies. for epoch in range(self.HPs["Epochs"]): for batch in MultiBatchDivider(data,self.HPs["MinibatchSize"]): feed_dict = {self.s: np.asarray(batch[0]).squeeze(), self.a_his: np.asarray(batch[1]).squeeze(), self.td_target_: np.asarray(batch[2]).squeeze(), self.advantage_: np.reshape(batch[3], [-1]), self.old_log_logits_sub_: np.asarray(batch[4]).squeeze()} self.sess.run(self.subpolicyUpdater[subpolicyNum], feed_dict) self.SubpolicyDistribution.extend(np.asarray(self.buffer[traj][6])) else: tmp, l1, l2, l3, l4, l5 = (list(t) for t in zip(*sorted(zip(self.buffer[traj][5], self.buffer[traj][0], self.buffer[traj][1], td_target, advantage, self.buffer[traj][10]),key=lambda x: x[0]))) #Sorting by the value in the actions_hier #dividing at the splits for subpolicyNum,data in SubpolicyIterator(tmp,[l1, l2, l3, l4, l5]): #Updating each of the sub-policies. for epoch in range(self.HPs["Epochs"]): for batch in MultiBatchDivider(data,self.HPs["MinibatchSize"]): feed_dict = {self.s: np.asarray(batch[0]).squeeze(), self.a_his: np.asarray(batch[1]).squeeze(), self.td_target_: np.asarray(batch[2]).squeeze(), self.advantage_: np.reshape(batch[3], [-1]), self.old_log_logits_sub_: np.asarray(batch[4]).squeeze()} self.sess.run(self.subpolicyUpdater[subpolicyNum], feed_dict) self.SubpolicyDistribution.extend(np.asarray(self.buffer[traj][5])) self.ClearTrajectory() def GetStatistics(self): stats={} for i in range(self.nPolicies): length = len(self.SubpolicyDistribution.tolist()) if length == 0: length=1 stats["Subpolicy Use/"+str(i)] = self.SubpolicyDistribution.tolist().count(i)/length return stats def ProcessBuffer(self,HPs,traj): """ Process the buffer and backpropagates the loses through the NN. Parameters ---------- Model : HPs Hyperparameters for training. traj : Trajectory Data stored by the neural network. clip : list[bool] List where the trajectory has finished. Returns ------- td_target : list List Temporal Difference Target for particular states. advantage : list List of advantages for particular actions. """ #Splitting the buffer into different episodes based on the done tag. split_loc = [i+1 for i, x in enumerate(self.buffer[traj][4]) if x] if self.subReward: #Stuff need to be processed for the Low Level Controllers reward_lists = np.split(self.buffer[traj][2],split_loc[:-1]) sub_reward_lists = np.split(self.buffer[traj][3],split_loc[:-1]) value_lists = np.split(self.buffer[traj][10],split_loc[:-1]) #Stuff needed for the HL_S_lists = np.split(self.buffer[traj][0],split_loc[:-1]) HL_Critic_lists = np.split(self.buffer[traj][8],split_loc[:-1]) HL_Logits_lists = np.split(self.buffer[traj][7],split_loc[:-1]) HL_action_lists = np.split(self.buffer[traj][6],split_loc[:-1]) HL_flag_lists = np.split(self.buffer[traj][9],split_loc[:-1]) td_target=[]; advantage=[] td_target_hier=[]; advantage_hier=[] ll=[];actions=[] for rew,s_rew,value,HL_critic,HL_ll,HL_a,HL_flag,HL_s in zip(reward_lists,sub_reward_lists,value_lists,HL_Critic_lists,HL_Logits_lists,HL_action_lists,HL_flag_lists,HL_S_lists): # Calculating the per step advantage of each of the different sections td_target_i, advantage_i = gae(s_rew.reshape(-1).tolist(),value.reshape(-1).tolist(),0,self.HPs["Gamma"],self.HPs["lambda"]) td_target.extend(td_target_i); advantage.extend( advantage_i) #Colapsing different trajectory lengths for the hierarchical controller split_loc_ = [i+1 for i, x in enumerate(HL_flag[:-1]) if x] rew_hier = [np.sum(l) for l in np.split(rew,split_loc_)] value_hier = [l[0] for l in np.split(HL_critic,split_loc_)] actions.extend([l[0] for l in np.split(HL_a,split_loc_)]) ll.extend([l[0] for l in np.split(HL_ll,split_loc_)]) s.extend([l[0] for l in np.split(HL_s,split_loc_)]) #Calculating the td_target and advantage for the hierarchical controller. td_target_i_, advantage_i_ = gae(np.asarray(rew_hier).reshape(-1).tolist(),np.asarray(value_hier).reshape(-1).tolist(),0,self.HPs["Gamma"],self.HPs["lambda"]) td_target_hier.extend(td_target_i_); advantage_hier.extend( advantage_i_) return td_target, advantage, td_target_hier, advantage_hier,actions,ll else: #Stuff need to be processed for the Low Level Controllers reward_lists = np.split(self.buffer[traj][2],split_loc[:-1]) value_lists = np.split(self.buffer[traj][9],split_loc[:-1]) #Stuff needed for the HL_S_lists = np.split(self.buffer[traj][0],split_loc[:-1]) HL_Critic_lists = np.split(self.buffer[traj][7],split_loc[:-1]) HL_Logits_lists = np.split(self.buffer[traj][6],split_loc[:-1]) HL_action_lists = np.split(self.buffer[traj][5],split_loc[:-1]) HL_flag_lists = np.split(self.buffer[traj][8],split_loc[:-1]) td_target=[]; advantage=[] td_target_hier=[]; advantage_hier=[] ll=[];actions=[];s=[] for rew,value,HL_critic,HL_ll,HL_a,HL_flag,HL_s in zip(reward_lists,value_lists,HL_Critic_lists,HL_Logits_lists,HL_action_lists,HL_flag_lists,HL_S_lists): # Calculating the per step advantage of each of the different sections td_target_i, advantage_i = gae(rew.reshape(-1).tolist(),value.reshape(-1).tolist(),0,self.HPs["Gamma"],self.HPs["lambda"]) td_target.extend(td_target_i); advantage.extend( advantage_i) #Colapsing different trajectory lengths for the hierarchical controller split_loc_ = [i+1 for i, x in enumerate(HL_flag[:-1]) if x] rew_hier = [np.sum(l) for l in np.split(rew,split_loc_)] value_hier = [l[0] for l in np.split(HL_critic,split_loc_)] actions.extend([l[0] for l in np.split(HL_a,split_loc_)]) ll.extend([l[0] for l in np.split(HL_ll,split_loc_)]) s.extend([l[0] for l in np.split(HL_s,split_loc_)]) #Calculating the td_target and advantage for the hierarchical controller. td_target_i_, advantage_i_ = gae(np.asarray(rew_hier).reshape(-1).tolist(),np.asarray(value_hier).reshape(-1).tolist(),0,self.HPs["Gamma"],self.HPs["lambda"]) td_target_hier.extend(td_target_i_); advantage_hier.extend( advantage_i_) return td_target, advantage, td_target_hier, advantage_hier,actions,ll,s @property def getVars(self): return self.Model.getVars("PPO_Training") def SubpolicyIterator(sortingList, dataLists): list = np.asarray(sortingList).squeeze().tolist() for num in set(list): res = [] for dataList in dataLists: index_first = list.index(num) index_last = len(list) - 1 - list[::-1].index(num) res.append(dataList[index_first:index_last]) yield num, res
48.179612
254
0.595567
d006b5b8728c6ce8462144067807d4cb217f47ab
2,516
py
Python
2016-2021 Miami University/CSE 564 Algorithms/Coding Assignments/src/hashing.py
0x326/academic-code-portfolio
8e76628608622b26608de52c56367e75942d4eb5
[ "MIT" ]
null
null
null
2016-2021 Miami University/CSE 564 Algorithms/Coding Assignments/src/hashing.py
0x326/academic-code-portfolio
8e76628608622b26608de52c56367e75942d4eb5
[ "MIT" ]
null
null
null
2016-2021 Miami University/CSE 564 Algorithms/Coding Assignments/src/hashing.py
0x326/academic-code-portfolio
8e76628608622b26608de52c56367e75942d4eb5
[ "MIT" ]
1
2020-12-11T23:43:09.000Z
2020-12-11T23:43:09.000Z
#!/usr/bin/env python3 """ 2019-03-01 Hashing Assignment """ import logging from itertools import chain from typing import NamedTuple, List, Iterator class Entry(NamedTuple): present_as_positive_value: bool present_as_negative_value: bool class TrivialSet: def __init__(self, max_range: int): self.array: List[Entry] = [Entry(present_as_positive_value=False, present_as_negative_value=False) for _ in range(max_range + 1)] def add(self, item): present_as_positive_value, present_as_negative_value = self.array[item] if item >= 0: present_as_positive_value = True else: present_as_negative_value = True self.array[abs(item)] = Entry(present_as_positive_value, present_as_negative_value) def discard(self, item): present_as_positive_value, present_as_negative_value = self.array[item] if item >= 0: present_as_positive_value = False else: present_as_negative_value = False self.array[abs(item)] = Entry(present_as_positive_value, present_as_negative_value) def __contains__(self, item): if item >= 0: return self.array[abs(item)].present_as_positive_value else: return self.array[abs(item)].present_as_negative_value def __iter__(self) -> Iterator[int]: negative_items = (-index for index, entry in enumerate(self.array) if entry.present_as_negative_value) positive_items = (index for index, entry in enumerate(self.array) if entry.present_as_positive_value) return chain(negative_items, positive_items) def __str__(self): return '{%s}' % ', '.join(map(str, iter(self))) def __repr__(self): return f'{self.__class__.__name__}({str(self)})' if __name__ == '__main__': import argparse import sys from random import randint parser = argparse.ArgumentParser(description='Sort a random array') parser.add_argument('--max-range', metavar='MAX', type=int, default=10) parser.add_argument('--test-count', metavar='MAX', type=int, default=10) args = parser.parse_args() logging.basicConfig(level=logging.DEBUG, stream=sys.stdout) trivial_set = TrivialSet(max_range=args.max_range) for _ in range(args.max_range): num = randint(-args.max_range, args.max_range) logging.debug(f'Adding value: {num}') trivial_set.add(num) logging.debug(f'Set after add: {trivial_set}')
33.546667
110
0.67806
bc11a5764c56d981d53a8b390ec16dda73590284
3,305
py
Python
data/external/repositories/120243/tradeshift-text-classification-master/src/xgb_meta_part2_predict.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories/120243/tradeshift-text-classification-master/src/xgb_meta_part2_predict.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories/120243/tradeshift-text-classification-master/src/xgb_meta_part2_predict.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
1
2019-12-04T08:23:33.000Z
2019-12-04T08:23:33.000Z
from tool import * from xgb_classifier import xgb_classifier import numpy as np import pickle def xgb_meta_predict(data_base_dir,data_meta_part2_dir,submission_dir): test_id=pickle.load(open(data_base_dir+"test_id.p","rb")) y_all=pickle.load(open(data_base_dir+"y.p","rb")) y_part2=y_all[y_all.shape[0]/2:,:] X_numerical=pickle.load(open(data_base_dir+"X_numerical.p","rb")) X_numerical_part2=X_numerical[X_numerical.shape[0]/2:,:] X_test_numerical=pickle.load(open(data_base_dir+"X_test_numerical.p","rb")) X_part2_rf=pickle.load(open(data_meta_part2_dir+ "X_meta_part2_rf.p", "rb" ) ) X_test_rf=pickle.load(open(data_meta_part2_dir+ "X_test_meta_rf.p", "rb" ) ) X_part2_svc=pickle.load(open(data_meta_part2_dir+ "X_meta_part2_svc.p", "rb" ) ) X_test_svc=pickle.load(open(data_meta_part2_dir+ "X_test_meta_svc.p", "rb" ) ) X_part2_sgd=pickle.load(open(data_meta_part2_dir+ "X_meta_part2_sgd.p", "rb" ) ) X_test_sgd=pickle.load(open(data_meta_part2_dir+ "X_test_meta_sgd.p", "rb" ) ) X_part2_best_online=pickle.load(open(data_meta_part2_dir+ "X_meta_part2_online.p", "rb" ) ) X_test_best_online=pickle.load(open(data_meta_part2_dir+ "X_test_meta_online.p", "rb" ) ) # private LB 0.0048854 xgb_clf=xgb_classifier(eta=0.09,min_child_weight=6,depth=18,num_round=120,threads=16) X_xgb_predict = xgb_clf.train_predict_all_labels(np.hstack([X_part2_best_online,X_part2_rf,X_numerical_part2]), y_part2,np.hstack([X_test_best_online, X_test_rf,X_test_numerical]),predict_y14=True) save_predictions(submission_dir+'xgb-part2-d18-e0.09-min6-tree120.csv.gz', test_id , X_xgb_predict) # private LB 0.0048763 xgb_clf=xgb_classifier(eta=0.07,min_child_weight=6,depth=20,num_round=150,threads=16) X_xgb_predict = xgb_clf.train_predict_all_labels(np.hstack([X_part2_best_online,X_part2_rf,X_numerical_part2]), y_part2,np.hstack([X_test_best_online, X_test_rf,X_test_numerical]),predict_y14=True) save_predictions(submission_dir+'xgb-part2-d20-e0.07-min6-tree150.csv.gz', test_id , X_xgb_predict) # private LB 0.0048978 xgb_clf=xgb_classifier(eta=0.09,min_child_weight=6,depth=18,num_round=100,threads=16) X_xgb_predict = xgb_clf.train_predict_all_labels(np.hstack([X_part2_best_online,X_part2_rf,X_part2_svc,X_numerical_part2]), y_part2,np.hstack([X_test_best_online, X_test_rf,X_test_svc,X_test_numerical]),predict_y14=True) save_predictions(submission_dir+'xgb-part2-d18-svc-e0.09-min6-tree100.csv.gz', test_id , X_xgb_predict) # private LB 0.0050270 xgb_clf=xgb_classifier(eta=0.1,min_child_weight=6,depth=20,num_round=110,threads=16) X_xgb_predict = xgb_clf.train_predict_all_labels(np.hstack([X_part2_best_online,X_part2_rf,X_part2_svc,X_part2_sgd]), y_part2,np.hstack([X_test_best_online, X_test_rf,X_test_svc,X_test_sgd]),predict_y14=True) save_predictions(submission_dir+'xgb-part2-d20-e0.1-min6-tree110-metaonly.csv.gz', test_id , X_xgb_predict) import sys if __name__ == "__main__": data_base_dir=sys.argv[1] data_meta_part2_dir=sys.argv[2] submission_dir=sys.argv[3] xgb_meta_predict(data_base_dir,data_meta_part2_dir,submission_dir)
47.898551
224
0.751589
cc30e164aa6a637649c95da8f0d93a8abcecfd01
1,513
py
Python
django/privat_gos_sait/about_company/views.py
Netromnik/python
630a9df63b1cade9af38de07bb9cd0c3b8694c93
[ "Apache-2.0" ]
null
null
null
django/privat_gos_sait/about_company/views.py
Netromnik/python
630a9df63b1cade9af38de07bb9cd0c3b8694c93
[ "Apache-2.0" ]
null
null
null
django/privat_gos_sait/about_company/views.py
Netromnik/python
630a9df63b1cade9af38de07bb9cd0c3b8694c93
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import render from django.shortcuts import get_object_or_404 ,redirect from markdown import markdown from .models import about_company,item_block,list_menu from django.http import HttpResponse from django.views.generic import ListView from django.views.generic.detail import SingleObjectMixin from blog.models import Post def my_rederect(request): return redirect("/news/") from itertools import chain # Create your views here. class My_list_views(ListView): model=list_menu template_name="about_company/index.html" def content_render(request): response = HttpResponse() items_block= item_block.objects.all() response.write(render(request,'about_company/block-img.html',context={'name':request,'block':items_block}).content) lists_menu= list_menu.objects.all() response.write(render(request,'about_company/glob_meny.html',context={'name':request,'list_menu':lists_menu}).content) return HttpResponse(render(request,'about_company/index.html',context={'post':str(response.content.decode('utf-8'))}).content) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['test']=Post.objects.all() return context def DetailView(request,slug): model=list_menu template_name="about_company/post.html" my_object = get_object_or_404(model, slug=slug) return render(request,template_name,context=({'post':my_object}))
39.815789
135
0.733642
b1c3b6ca95a9e404e7ae46ace7a1c737c87e383d
2,703
py
Python
disposable_email_checker/validators.py
jheld/DisposableEmailChecker
eca98a377865164ec2eef4d348916764fb7d7326
[ "BSD-3-Clause" ]
2
2020-05-16T14:37:33.000Z
2022-03-18T11:38:29.000Z
disposable_email_checker/validators.py
jheld/DisposableEmailChecker
eca98a377865164ec2eef4d348916764fb7d7326
[ "BSD-3-Clause" ]
null
null
null
disposable_email_checker/validators.py
jheld/DisposableEmailChecker
eca98a377865164ec2eef4d348916764fb7d7326
[ "BSD-3-Clause" ]
2
2020-05-15T10:21:37.000Z
2021-12-13T15:44:45.000Z
# -*- coding: utf-8 -*- import re from django.conf import settings from django.utils.encoding import force_text from django.core import validators from django.core.exceptions import ValidationError from django.utils.translation import gettext_lazy as _ from bdea.client import BDEAClient from django.urls import get_callable class DisposableEmailChecker(object): """ Check if an email is from a disposable email service """ message = _("Blocked email provider.") code = "invalid" whitelist = [] def __init__(self, message=None, code=None, whitelist=None): if message is not None: self.message = message elif hasattr(settings, "BDEA_MESSAGE"): self.message = getattr(settings, "BDEA_MESSAGE") if code is not None: self.code = code if whitelist is not None: self.whitelist = whitelist self.emails = self._load_emails() self.BDEA_APIKEY = getattr(settings, "BDEA_APIKEY", None) self.BDEA_TIMEOUT = getattr(settings, "BDEA_TIMEOUT", 5) def __call__(self, value): value = force_text(value) # Catch invalid emails before we check if they're disposable try: validators.validate_email(value) except ValidationError: return user_part, domain_part = value.rsplit("@", 1) if domain_part not in self.whitelist: if self.BDEA_APIKEY: # Validate using block-disposable-email.com client = BDEAClient( self.BDEA_APIKEY, timeout=self.BDEA_TIMEOUT ) response = client.get_domain_status(domain_part) if response.status() and response.is_disposable(): raise ValidationError(self.message, code=self.code) """ This will run if we are not using BDEA, we're out of BDEA credits, there was an error contacting BDEA's servers or we did not get a hit on BDEA. Basically always check using local list as a backup """ for email_group in self.chunk(self.emails, 20): regex = "(.*" + "$)|(.*".join(email_group) + "$)" if re.match(regex, value): raise ValidationError(self.message, code=self.code) def _load_emails(self): loader = getattr( settings, "DEC_LOADER", "disposable_email_checker.emails.email_domain_loader", ) return get_callable(loader)() def chunk(self, emails, n): return (emails[i : i + n] for i in range(0, len(emails), n)) validate_disposable_email = DisposableEmailChecker()
32.963415
78
0.617832
8d050b77929daf8f663de4b769a02d447ddf518f
19,116
py
Python
venv/lib/python2.7/site-packages/cffi/model.py
deathping1994/gmail-sendmail-api
5f6cadf2a5a6a9d30581726647ca638661a040f5
[ "Apache-2.0" ]
5
2015-10-11T04:36:12.000Z
2018-12-02T17:42:28.000Z
venv/lib/python2.7/site-packages/cffi/model.py
deathping1994/gmail-sendmail-api
5f6cadf2a5a6a9d30581726647ca638661a040f5
[ "Apache-2.0" ]
2
2015-10-15T07:18:12.000Z
2015-10-15T07:23:48.000Z
venv/lib/python2.7/site-packages/cffi/model.py
deathping1994/gmail-sendmail-api
5f6cadf2a5a6a9d30581726647ca638661a040f5
[ "Apache-2.0" ]
1
2020-11-01T20:40:01.000Z
2020-11-01T20:40:01.000Z
import types import weakref from .lock import allocate_lock class BaseTypeByIdentity(object): is_array_type = False is_raw_function = False def get_c_name(self, replace_with='', context='a C file'): result = self.c_name_with_marker assert result.count('&') == 1 # some logic duplication with ffi.getctype()... :-( replace_with = replace_with.strip() if replace_with: if replace_with.startswith('*') and '&[' in result: replace_with = '(%s)' % replace_with elif not replace_with[0] in '[(': replace_with = ' ' + replace_with result = result.replace('&', replace_with) if '$' in result: from .ffiplatform import VerificationError raise VerificationError( "cannot generate '%s' in %s: unknown type name" % (self._get_c_name(), context)) return result def _get_c_name(self): return self.c_name_with_marker.replace('&', '') def has_c_name(self): return '$' not in self._get_c_name() def is_integer_type(self): return False def get_cached_btype(self, ffi, finishlist, can_delay=False): try: BType = ffi._cached_btypes[self] except KeyError: BType = self.build_backend_type(ffi, finishlist) BType2 = ffi._cached_btypes.setdefault(self, BType) assert BType2 is BType return BType def __repr__(self): return '<%s>' % (self._get_c_name(),) def _get_items(self): return [(name, getattr(self, name)) for name in self._attrs_] class BaseType(BaseTypeByIdentity): def __eq__(self, other): return (self.__class__ == other.__class__ and self._get_items() == other._get_items()) def __ne__(self, other): return not self == other def __hash__(self): return hash((self.__class__, tuple(self._get_items()))) class VoidType(BaseType): _attrs_ = () def __init__(self): self.c_name_with_marker = 'void&' def build_backend_type(self, ffi, finishlist): return global_cache(self, ffi, 'new_void_type') void_type = VoidType() class BasePrimitiveType(BaseType): pass class PrimitiveType(BasePrimitiveType): _attrs_ = ('name',) ALL_PRIMITIVE_TYPES = { 'char': 'c', 'short': 'i', 'int': 'i', 'long': 'i', 'long long': 'i', 'signed char': 'i', 'unsigned char': 'i', 'unsigned short': 'i', 'unsigned int': 'i', 'unsigned long': 'i', 'unsigned long long': 'i', 'float': 'f', 'double': 'f', 'long double': 'f', '_Bool': 'i', # the following types are not primitive in the C sense 'wchar_t': 'c', 'int8_t': 'i', 'uint8_t': 'i', 'int16_t': 'i', 'uint16_t': 'i', 'int32_t': 'i', 'uint32_t': 'i', 'int64_t': 'i', 'uint64_t': 'i', 'int_least8_t': 'i', 'uint_least8_t': 'i', 'int_least16_t': 'i', 'uint_least16_t': 'i', 'int_least32_t': 'i', 'uint_least32_t': 'i', 'int_least64_t': 'i', 'uint_least64_t': 'i', 'int_fast8_t': 'i', 'uint_fast8_t': 'i', 'int_fast16_t': 'i', 'uint_fast16_t': 'i', 'int_fast32_t': 'i', 'uint_fast32_t': 'i', 'int_fast64_t': 'i', 'uint_fast64_t': 'i', 'intptr_t': 'i', 'uintptr_t': 'i', 'intmax_t': 'i', 'uintmax_t': 'i', 'ptrdiff_t': 'i', 'size_t': 'i', 'ssize_t': 'i', } def __init__(self, name): assert name in self.ALL_PRIMITIVE_TYPES self.name = name self.c_name_with_marker = name + '&' def is_char_type(self): return self.ALL_PRIMITIVE_TYPES[self.name] == 'c' def is_integer_type(self): return self.ALL_PRIMITIVE_TYPES[self.name] == 'i' def is_float_type(self): return self.ALL_PRIMITIVE_TYPES[self.name] == 'f' def build_backend_type(self, ffi, finishlist): return global_cache(self, ffi, 'new_primitive_type', self.name) class UnknownIntegerType(BasePrimitiveType): _attrs_ = ('name',) def __init__(self, name): self.name = name self.c_name_with_marker = name + '&' def is_integer_type(self): return True # for now def build_backend_type(self, ffi, finishlist): raise NotImplementedError("integer type '%s' can only be used after " "compilation" % self.name) class BaseFunctionType(BaseType): _attrs_ = ('args', 'result', 'ellipsis') def __init__(self, args, result, ellipsis): self.args = args self.result = result self.ellipsis = ellipsis # reprargs = [arg._get_c_name() for arg in self.args] if self.ellipsis: reprargs.append('...') reprargs = reprargs or ['void'] replace_with = self._base_pattern % (', '.join(reprargs),) self.c_name_with_marker = ( self.result.c_name_with_marker.replace('&', replace_with)) class RawFunctionType(BaseFunctionType): # Corresponds to a C type like 'int(int)', which is the C type of # a function, but not a pointer-to-function. The backend has no # notion of such a type; it's used temporarily by parsing. _base_pattern = '(&)(%s)' is_raw_function = True def build_backend_type(self, ffi, finishlist): from . import api raise api.CDefError("cannot render the type %r: it is a function " "type, not a pointer-to-function type" % (self,)) def as_function_pointer(self): return FunctionPtrType(self.args, self.result, self.ellipsis) class FunctionPtrType(BaseFunctionType): _base_pattern = '(*&)(%s)' def build_backend_type(self, ffi, finishlist): result = self.result.get_cached_btype(ffi, finishlist) args = [] for tp in self.args: args.append(tp.get_cached_btype(ffi, finishlist)) return global_cache(self, ffi, 'new_function_type', tuple(args), result, self.ellipsis) def as_raw_function(self): return RawFunctionType(self.args, self.result, self.ellipsis) class PointerType(BaseType): _attrs_ = ('totype',) _base_pattern = " *&" _base_pattern_array = "(*&)" def __init__(self, totype): self.totype = totype if totype.is_array_type: extra = self._base_pattern_array else: extra = self._base_pattern self.c_name_with_marker = totype.c_name_with_marker.replace('&', extra) def build_backend_type(self, ffi, finishlist): BItem = self.totype.get_cached_btype(ffi, finishlist, can_delay=True) return global_cache(self, ffi, 'new_pointer_type', BItem) voidp_type = PointerType(void_type) class ConstPointerType(PointerType): _base_pattern = " const *&" _base_pattern_array = "(const *&)" const_voidp_type = ConstPointerType(void_type) class NamedPointerType(PointerType): _attrs_ = ('totype', 'name') def __init__(self, totype, name): PointerType.__init__(self, totype) self.name = name self.c_name_with_marker = name + '&' class ArrayType(BaseType): _attrs_ = ('item', 'length') is_array_type = True def __init__(self, item, length): self.item = item self.length = length # if length is None: brackets = '&[]' elif length == '...': brackets = '&[/*...*/]' else: brackets = '&[%s]' % length self.c_name_with_marker = ( self.item.c_name_with_marker.replace('&', brackets)) def resolve_length(self, newlength): return ArrayType(self.item, newlength) def build_backend_type(self, ffi, finishlist): if self.length == '...': from . import api raise api.CDefError("cannot render the type %r: unknown length" % (self,)) self.item.get_cached_btype(ffi, finishlist) # force the item BType BPtrItem = PointerType(self.item).get_cached_btype(ffi, finishlist) return global_cache(self, ffi, 'new_array_type', BPtrItem, self.length) char_array_type = ArrayType(PrimitiveType('char'), None) class StructOrUnionOrEnum(BaseTypeByIdentity): _attrs_ = ('name',) forcename = None def build_c_name_with_marker(self): name = self.forcename or '%s %s' % (self.kind, self.name) self.c_name_with_marker = name + '&' def force_the_name(self, forcename): self.forcename = forcename self.build_c_name_with_marker() def get_official_name(self): assert self.c_name_with_marker.endswith('&') return self.c_name_with_marker[:-1] class StructOrUnion(StructOrUnionOrEnum): fixedlayout = None completed = 0 partial = False packed = False def __init__(self, name, fldnames, fldtypes, fldbitsize): self.name = name self.fldnames = fldnames self.fldtypes = fldtypes self.fldbitsize = fldbitsize self.build_c_name_with_marker() def has_anonymous_struct_fields(self): if self.fldtypes is None: return False for name, type in zip(self.fldnames, self.fldtypes): if name == '' and isinstance(type, StructOrUnion): return True return False def enumfields(self): for name, type, bitsize in zip(self.fldnames, self.fldtypes, self.fldbitsize): if name == '' and isinstance(type, StructOrUnion): # nested anonymous struct/union for result in type.enumfields(): yield result else: yield (name, type, bitsize) def force_flatten(self): # force the struct or union to have a declaration that lists # directly all fields returned by enumfields(), flattening # nested anonymous structs/unions. names = [] types = [] bitsizes = [] for name, type, bitsize in self.enumfields(): names.append(name) types.append(type) bitsizes.append(bitsize) self.fldnames = tuple(names) self.fldtypes = tuple(types) self.fldbitsize = tuple(bitsizes) def get_cached_btype(self, ffi, finishlist, can_delay=False): BType = StructOrUnionOrEnum.get_cached_btype(self, ffi, finishlist, can_delay) if not can_delay: self.finish_backend_type(ffi, finishlist) return BType def finish_backend_type(self, ffi, finishlist): if self.completed: if self.completed != 2: raise NotImplementedError("recursive structure declaration " "for '%s'" % (self.name,)) return BType = ffi._cached_btypes[self] # self.completed = 1 # if self.fldtypes is None: pass # not completing it: it's an opaque struct # elif self.fixedlayout is None: fldtypes = [tp.get_cached_btype(ffi, finishlist) for tp in self.fldtypes] lst = list(zip(self.fldnames, fldtypes, self.fldbitsize)) sflags = 0 if self.packed: sflags = 8 # SF_PACKED ffi._backend.complete_struct_or_union(BType, lst, self, -1, -1, sflags) # else: fldtypes = [] fieldofs, fieldsize, totalsize, totalalignment = self.fixedlayout for i in range(len(self.fldnames)): fsize = fieldsize[i] ftype = self.fldtypes[i] # if isinstance(ftype, ArrayType) and ftype.length == '...': # fix the length to match the total size BItemType = ftype.item.get_cached_btype(ffi, finishlist) nlen, nrest = divmod(fsize, ffi.sizeof(BItemType)) if nrest != 0: self._verification_error( "field '%s.%s' has a bogus size?" % ( self.name, self.fldnames[i] or '{}')) ftype = ftype.resolve_length(nlen) self.fldtypes = (self.fldtypes[:i] + (ftype,) + self.fldtypes[i+1:]) # BFieldType = ftype.get_cached_btype(ffi, finishlist) if isinstance(ftype, ArrayType) and ftype.length is None: assert fsize == 0 else: bitemsize = ffi.sizeof(BFieldType) if bitemsize != fsize: self._verification_error( "field '%s.%s' is declared as %d bytes, but is " "really %d bytes" % (self.name, self.fldnames[i] or '{}', bitemsize, fsize)) fldtypes.append(BFieldType) # lst = list(zip(self.fldnames, fldtypes, self.fldbitsize, fieldofs)) ffi._backend.complete_struct_or_union(BType, lst, self, totalsize, totalalignment) self.completed = 2 def _verification_error(self, msg): from .ffiplatform import VerificationError raise VerificationError(msg) def check_not_partial(self): if self.partial and self.fixedlayout is None: from . import ffiplatform raise ffiplatform.VerificationMissing(self._get_c_name()) def build_backend_type(self, ffi, finishlist): self.check_not_partial() finishlist.append(self) # return global_cache(self, ffi, 'new_%s_type' % self.kind, self.get_official_name(), key=self) class StructType(StructOrUnion): kind = 'struct' class UnionType(StructOrUnion): kind = 'union' class EnumType(StructOrUnionOrEnum): kind = 'enum' partial = False partial_resolved = False def __init__(self, name, enumerators, enumvalues, baseinttype=None): self.name = name self.enumerators = enumerators self.enumvalues = enumvalues self.baseinttype = baseinttype self.build_c_name_with_marker() def force_the_name(self, forcename): StructOrUnionOrEnum.force_the_name(self, forcename) if self.forcename is None: name = self.get_official_name() self.forcename = '$' + name.replace(' ', '_') def check_not_partial(self): if self.partial and not self.partial_resolved: from . import ffiplatform raise ffiplatform.VerificationMissing(self._get_c_name()) def build_backend_type(self, ffi, finishlist): self.check_not_partial() base_btype = self.build_baseinttype(ffi, finishlist) return global_cache(self, ffi, 'new_enum_type', self.get_official_name(), self.enumerators, self.enumvalues, base_btype, key=self) def build_baseinttype(self, ffi, finishlist): if self.baseinttype is not None: return self.baseinttype.get_cached_btype(ffi, finishlist) # if self.enumvalues: smallest_value = min(self.enumvalues) largest_value = max(self.enumvalues) else: smallest_value = 0 largest_value = 0 if smallest_value < 0: # needs a signed type sign = 1 candidate1 = PrimitiveType("int") candidate2 = PrimitiveType("long") else: sign = 0 candidate1 = PrimitiveType("unsigned int") candidate2 = PrimitiveType("unsigned long") btype1 = candidate1.get_cached_btype(ffi, finishlist) btype2 = candidate2.get_cached_btype(ffi, finishlist) size1 = ffi.sizeof(btype1) size2 = ffi.sizeof(btype2) if (smallest_value >= ((-1) << (8*size1-1)) and largest_value < (1 << (8*size1-sign))): return btype1 if (smallest_value >= ((-1) << (8*size2-1)) and largest_value < (1 << (8*size2-sign))): return btype2 raise api.CDefError("%s values don't all fit into either 'long' " "or 'unsigned long'" % self._get_c_name()) def unknown_type(name, structname=None): if structname is None: structname = '$%s' % name tp = StructType(structname, None, None, None) tp.force_the_name(name) tp.origin = "unknown_type" return tp def unknown_ptr_type(name, structname=None): if structname is None: structname = '$$%s' % name tp = StructType(structname, None, None, None) return NamedPointerType(tp, name) global_lock = allocate_lock() def global_cache(srctype, ffi, funcname, *args, **kwds): key = kwds.pop('key', (funcname, args)) assert not kwds try: return ffi._backend.__typecache[key] except KeyError: pass except AttributeError: # initialize the __typecache attribute, either at the module level # if ffi._backend is a module, or at the class level if ffi._backend # is some instance. if isinstance(ffi._backend, types.ModuleType): ffi._backend.__typecache = weakref.WeakValueDictionary() else: type(ffi._backend).__typecache = weakref.WeakValueDictionary() try: res = getattr(ffi._backend, funcname)(*args) except NotImplementedError as e: raise NotImplementedError("%s: %r: %s" % (funcname, srctype, e)) # note that setdefault() on WeakValueDictionary is not atomic # and contains a rare bug (http://bugs.python.org/issue19542); # we have to use a lock and do it ourselves cache = ffi._backend.__typecache with global_lock: res1 = cache.get(key) if res1 is None: cache[key] = res return res else: return res1 def pointer_cache(ffi, BType): return global_cache('?', ffi, 'new_pointer_type', BType) def attach_exception_info(e, name): if e.args and type(e.args[0]) is str: e.args = ('%s: %s' % (name, e.args[0]),) + e.args[1:]
34.443243
79
0.565129
01e960254b27f019287800280a88057de6a758c2
1,660
py
Python
dog-breed-identification/utils.py
rishabhiitbhu/kaggle
bdcfd406737b82bb7ba6e993bc481cb3a6975296
[ "MIT" ]
1
2017-11-12T18:22:51.000Z
2017-11-12T18:22:51.000Z
dog-breed-identification/utils.py
rishabhiitbhu/kaggle
bdcfd406737b82bb7ba6e993bc481cb3a6975296
[ "MIT" ]
null
null
null
dog-breed-identification/utils.py
rishabhiitbhu/kaggle
bdcfd406737b82bb7ba6e993bc481cb3a6975296
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import matplotlib.image as mpimg import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split label_data = pd.read_csv('labels.csv') train_label, dev_label = train_test_split(label_data, test_size=0.30, random_state=0) unique_labels = pd.unique(label_data['breed']) def load_data(type_): label_data = train_label if type_=='train' else dev_label X = np.zeros(([label_data.shape[0], 387, 443, 3]), dtype='float32') Y = np.zeros(([120, label_data.shape[0]]), dtype='float32') for i, id_ in enumerate(label_data['id']): file = 'train/' + id_ + '.jpg' X[i] = mpimg.imread(file) breed = label_data.loc[label_data['id']==id_]['breed'].as_matrix()[0] Y[np.where(unique_labels==breed)[0][0], i] = 1 return (X, Y) def load_test_data(): X = np.zeros(([10357, 387, 443, 3]), dtype='float32') for i, filename in enumerate(os.listdir('test')): file = os.path.join('test', filename) X[i] = mpimg.imread(file) return X def plot_training(history): acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1,) plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.legend(['train', 'val'], loc='upper left') plt.title(' accuracy') plt.subplot(1, 2, 2) plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.legend(['train', 'val'], loc='upper left') plt.title('loss') plt.show() #if __name__=='main':
30.181818
85
0.640964
3a1f06baef78856de2d3fbebbcc9f5d9b069368f
4,256
py
Python
src/gretel_client/transformers/data_transform_pipeline.py
franccesco/gretel-python-client
fd20dee07eba9657262edc902779142bf32c5b7c
[ "Apache-2.0" ]
null
null
null
src/gretel_client/transformers/data_transform_pipeline.py
franccesco/gretel-python-client
fd20dee07eba9657262edc902779142bf32c5b7c
[ "Apache-2.0" ]
null
null
null
src/gretel_client/transformers/data_transform_pipeline.py
franccesco/gretel-python-client
fd20dee07eba9657262edc902779142bf32c5b7c
[ "Apache-2.0" ]
null
null
null
"""This module exposes the primary class that contains all ``DataPath`` objects and is responsible for running all transformations. """ import collections from typing import TYPE_CHECKING try: import pandas as pd except ImportError: pd = None from gretel_client.transformers.data_pipeline import DataPipeline from gretel_client.readers import DataFrameReader if TYPE_CHECKING: from pandas import DataFrame as DataFrameT else: DataFrameT = None GRETEL_ID = "gretel_id" FIELDS = "fields" METADATA = "metadata" RECORD = "record" DATA = "data" RECORD_KEYS = [RECORD, DATA] class DataTransformPipeline(DataPipeline): """This class is a container for data paths describing a records transformations. It constructs a data pipeline from a list of ``DataPath`` objects and is used to process records based on the order of the data path list. Args: data_paths: A list of ``data_path`` instancess """ def transform_record(self, payload: dict): ( data_fields, record_key, _, gretel_id, ) = DataTransformPipeline._get_data_and_schema(payload) if not data_fields: raise ValueError("Record does not seem to contain data.") xform_payload_record = {} xform_payload_metadata_fields = {} data_path_list = self._build_datapath_list(data_fields) meta_fields = payload.get(METADATA, {}).get(FIELDS, {}) for data_path in data_path_list: field = data_path.input_field value = data_fields.get(field) meta = meta_fields.get(field, {}) meta[GRETEL_ID] = gretel_id for transformation in data_path.get_data_path_transformations(): if transformation.labels: if meta: value, meta = transformation.transform_entities(value, meta) if not value: break else: for key, field_ref in transformation.field_ref_dict.items(): if isinstance(field_ref.field_name, list): transformation.field_ref_dict[key].value = [ xform_payload_record.get(field_name) or data_fields.get(field_name) for field_name in field_ref.field_name ] else: transformation.field_ref_dict[ key ].value = xform_payload_record.get( field_ref.field_name ) or data_fields.get( field_ref.field_name ) if transformation.__class__.__name__ == "Drop": break field_value = transformation.transform_field(field, value, meta) if not field_value: break else: value = field_value.get(field) else: xform_payload_record[data_path.output_field] = value if meta and field in meta_fields.keys(): xform_payload_metadata_fields[data_path.output_field] = meta xform_payload_record = collections.OrderedDict( sorted([(k, v) for k, v in xform_payload_record.items()]) ) return DataTransformPipeline._build_return_record( dict(xform_payload_record), record_key, xform_payload_metadata_fields, gretel_id, ) def transform_df(self, df: DataFrameT) -> DataFrameT: """Helper method that can consume a DataFrame and iterate over each record as a dictionary, then run the transform pipeline on each record. """ if pd is None: raise RuntimeError("Pandas must be installed to use this feature!") records = [] reader = DataFrameReader(df) for row in reader: records.append( self.transform_record(row) ) return pd.DataFrame(records)
37.008696
102
0.570254
c40cd53cc57a699ae79d8b764f58105e6f5d7930
18,852
py
Python
isi_sdk_8_2_0/isi_sdk_8_2_0/models/sync_job_service_report_item.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_0/isi_sdk_8_2_0/models/sync_job_service_report_item.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_0/isi_sdk_8_2_0/models/sync_job_service_report_item.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 7 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SyncJobServiceReportItem(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'component': 'str', 'directory': 'str', 'end_time': 'int', 'error_msg': 'list[str]', 'filter': 'list[str]', 'handlers_failed': 'int', 'handlers_skipped': 'int', 'handlers_transferred': 'int', 'records_failed': 'int', 'records_skipped': 'int', 'records_transferred': 'int', 'start_time': 'int', 'status': 'str' } attribute_map = { 'component': 'component', 'directory': 'directory', 'end_time': 'end_time', 'error_msg': 'error_msg', 'filter': 'filter', 'handlers_failed': 'handlers_failed', 'handlers_skipped': 'handlers_skipped', 'handlers_transferred': 'handlers_transferred', 'records_failed': 'records_failed', 'records_skipped': 'records_skipped', 'records_transferred': 'records_transferred', 'start_time': 'start_time', 'status': 'status' } def __init__(self, component=None, directory=None, end_time=None, error_msg=None, filter=None, handlers_failed=None, handlers_skipped=None, handlers_transferred=None, records_failed=None, records_skipped=None, records_transferred=None, start_time=None, status=None): # noqa: E501 """SyncJobServiceReportItem - a model defined in Swagger""" # noqa: E501 self._component = None self._directory = None self._end_time = None self._error_msg = None self._filter = None self._handlers_failed = None self._handlers_skipped = None self._handlers_transferred = None self._records_failed = None self._records_skipped = None self._records_transferred = None self._start_time = None self._status = None self.discriminator = None if component is not None: self.component = component if directory is not None: self.directory = directory if end_time is not None: self.end_time = end_time if error_msg is not None: self.error_msg = error_msg if filter is not None: self.filter = filter if handlers_failed is not None: self.handlers_failed = handlers_failed if handlers_skipped is not None: self.handlers_skipped = handlers_skipped if handlers_transferred is not None: self.handlers_transferred = handlers_transferred if records_failed is not None: self.records_failed = records_failed if records_skipped is not None: self.records_skipped = records_skipped if records_transferred is not None: self.records_transferred = records_transferred if start_time is not None: self.start_time = start_time if status is not None: self.status = status @property def component(self): """Gets the component of this SyncJobServiceReportItem. # noqa: E501 The component that was processed. # noqa: E501 :return: The component of this SyncJobServiceReportItem. # noqa: E501 :rtype: str """ return self._component @component.setter def component(self, component): """Sets the component of this SyncJobServiceReportItem. The component that was processed. # noqa: E501 :param component: The component of this SyncJobServiceReportItem. # noqa: E501 :type: str """ if component is not None and len(component) > 255: raise ValueError("Invalid value for `component`, length must be less than or equal to `255`") # noqa: E501 if component is not None and len(component) < 0: raise ValueError("Invalid value for `component`, length must be greater than or equal to `0`") # noqa: E501 self._component = component @property def directory(self): """Gets the directory of this SyncJobServiceReportItem. # noqa: E501 The directory of the service export. # noqa: E501 :return: The directory of this SyncJobServiceReportItem. # noqa: E501 :rtype: str """ return self._directory @directory.setter def directory(self, directory): """Sets the directory of this SyncJobServiceReportItem. The directory of the service export. # noqa: E501 :param directory: The directory of this SyncJobServiceReportItem. # noqa: E501 :type: str """ if directory is not None and len(directory) > 255: raise ValueError("Invalid value for `directory`, length must be less than or equal to `255`") # noqa: E501 if directory is not None and len(directory) < 0: raise ValueError("Invalid value for `directory`, length must be greater than or equal to `0`") # noqa: E501 self._directory = directory @property def end_time(self): """Gets the end_time of this SyncJobServiceReportItem. # noqa: E501 The time the job ended this component. # noqa: E501 :return: The end_time of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._end_time @end_time.setter def end_time(self, end_time): """Sets the end_time of this SyncJobServiceReportItem. The time the job ended this component. # noqa: E501 :param end_time: The end_time of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if end_time is not None and end_time > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `end_time`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if end_time is not None and end_time < 0: # noqa: E501 raise ValueError("Invalid value for `end_time`, must be a value greater than or equal to `0`") # noqa: E501 self._end_time = end_time @property def error_msg(self): """Gets the error_msg of this SyncJobServiceReportItem. # noqa: E501 A list of error messages generated while exporting components. # noqa: E501 :return: The error_msg of this SyncJobServiceReportItem. # noqa: E501 :rtype: list[str] """ return self._error_msg @error_msg.setter def error_msg(self, error_msg): """Sets the error_msg of this SyncJobServiceReportItem. A list of error messages generated while exporting components. # noqa: E501 :param error_msg: The error_msg of this SyncJobServiceReportItem. # noqa: E501 :type: list[str] """ self._error_msg = error_msg @property def filter(self): """Gets the filter of this SyncJobServiceReportItem. # noqa: E501 A list of path-based filters for exporting components. # noqa: E501 :return: The filter of this SyncJobServiceReportItem. # noqa: E501 :rtype: list[str] """ return self._filter @filter.setter def filter(self, filter): """Sets the filter of this SyncJobServiceReportItem. A list of path-based filters for exporting components. # noqa: E501 :param filter: The filter of this SyncJobServiceReportItem. # noqa: E501 :type: list[str] """ self._filter = filter @property def handlers_failed(self): """Gets the handlers_failed of this SyncJobServiceReportItem. # noqa: E501 The number of handlers failed during export. # noqa: E501 :return: The handlers_failed of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._handlers_failed @handlers_failed.setter def handlers_failed(self, handlers_failed): """Sets the handlers_failed of this SyncJobServiceReportItem. The number of handlers failed during export. # noqa: E501 :param handlers_failed: The handlers_failed of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if handlers_failed is not None and handlers_failed > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `handlers_failed`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if handlers_failed is not None and handlers_failed < 0: # noqa: E501 raise ValueError("Invalid value for `handlers_failed`, must be a value greater than or equal to `0`") # noqa: E501 self._handlers_failed = handlers_failed @property def handlers_skipped(self): """Gets the handlers_skipped of this SyncJobServiceReportItem. # noqa: E501 The number of handlers skipped during export. # noqa: E501 :return: The handlers_skipped of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._handlers_skipped @handlers_skipped.setter def handlers_skipped(self, handlers_skipped): """Sets the handlers_skipped of this SyncJobServiceReportItem. The number of handlers skipped during export. # noqa: E501 :param handlers_skipped: The handlers_skipped of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if handlers_skipped is not None and handlers_skipped > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `handlers_skipped`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if handlers_skipped is not None and handlers_skipped < 0: # noqa: E501 raise ValueError("Invalid value for `handlers_skipped`, must be a value greater than or equal to `0`") # noqa: E501 self._handlers_skipped = handlers_skipped @property def handlers_transferred(self): """Gets the handlers_transferred of this SyncJobServiceReportItem. # noqa: E501 The number of handlers exported. # noqa: E501 :return: The handlers_transferred of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._handlers_transferred @handlers_transferred.setter def handlers_transferred(self, handlers_transferred): """Sets the handlers_transferred of this SyncJobServiceReportItem. The number of handlers exported. # noqa: E501 :param handlers_transferred: The handlers_transferred of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if handlers_transferred is not None and handlers_transferred > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `handlers_transferred`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if handlers_transferred is not None and handlers_transferred < 0: # noqa: E501 raise ValueError("Invalid value for `handlers_transferred`, must be a value greater than or equal to `0`") # noqa: E501 self._handlers_transferred = handlers_transferred @property def records_failed(self): """Gets the records_failed of this SyncJobServiceReportItem. # noqa: E501 The number of records failed during export. # noqa: E501 :return: The records_failed of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._records_failed @records_failed.setter def records_failed(self, records_failed): """Sets the records_failed of this SyncJobServiceReportItem. The number of records failed during export. # noqa: E501 :param records_failed: The records_failed of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if records_failed is not None and records_failed > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `records_failed`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if records_failed is not None and records_failed < 0: # noqa: E501 raise ValueError("Invalid value for `records_failed`, must be a value greater than or equal to `0`") # noqa: E501 self._records_failed = records_failed @property def records_skipped(self): """Gets the records_skipped of this SyncJobServiceReportItem. # noqa: E501 The number of records skipped during export. # noqa: E501 :return: The records_skipped of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._records_skipped @records_skipped.setter def records_skipped(self, records_skipped): """Sets the records_skipped of this SyncJobServiceReportItem. The number of records skipped during export. # noqa: E501 :param records_skipped: The records_skipped of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if records_skipped is not None and records_skipped > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `records_skipped`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if records_skipped is not None and records_skipped < 0: # noqa: E501 raise ValueError("Invalid value for `records_skipped`, must be a value greater than or equal to `0`") # noqa: E501 self._records_skipped = records_skipped @property def records_transferred(self): """Gets the records_transferred of this SyncJobServiceReportItem. # noqa: E501 The number of records exported. # noqa: E501 :return: The records_transferred of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._records_transferred @records_transferred.setter def records_transferred(self, records_transferred): """Sets the records_transferred of this SyncJobServiceReportItem. The number of records exported. # noqa: E501 :param records_transferred: The records_transferred of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if records_transferred is not None and records_transferred > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `records_transferred`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if records_transferred is not None and records_transferred < 0: # noqa: E501 raise ValueError("Invalid value for `records_transferred`, must be a value greater than or equal to `0`") # noqa: E501 self._records_transferred = records_transferred @property def start_time(self): """Gets the start_time of this SyncJobServiceReportItem. # noqa: E501 The time the job began this component. # noqa: E501 :return: The start_time of this SyncJobServiceReportItem. # noqa: E501 :rtype: int """ return self._start_time @start_time.setter def start_time(self, start_time): """Sets the start_time of this SyncJobServiceReportItem. The time the job began this component. # noqa: E501 :param start_time: The start_time of this SyncJobServiceReportItem. # noqa: E501 :type: int """ if start_time is not None and start_time > 9223372036854775807: # noqa: E501 raise ValueError("Invalid value for `start_time`, must be a value less than or equal to `9223372036854775807`") # noqa: E501 if start_time is not None and start_time < 0: # noqa: E501 raise ValueError("Invalid value for `start_time`, must be a value greater than or equal to `0`") # noqa: E501 self._start_time = start_time @property def status(self): """Gets the status of this SyncJobServiceReportItem. # noqa: E501 The current status of export for this component. # noqa: E501 :return: The status of this SyncJobServiceReportItem. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this SyncJobServiceReportItem. The current status of export for this component. # noqa: E501 :param status: The status of this SyncJobServiceReportItem. # noqa: E501 :type: str """ if status is not None and len(status) > 255: raise ValueError("Invalid value for `status`, length must be less than or equal to `255`") # noqa: E501 if status is not None and len(status) < 0: raise ValueError("Invalid value for `status`, length must be greater than or equal to `0`") # noqa: E501 self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SyncJobServiceReportItem): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
38.084848
284
0.644918
742cb308b3cb02c117f8ae7ec3d096b4e82449c2
17,954
bzl
Python
tensorflow/compiler/aot/tfcompile.bzl
so5462/tensorflow
0f9acc15ba56ecf01a79889d29295310559c681a
[ "Apache-2.0" ]
10
2021-04-29T16:31:02.000Z
2021-08-10T13:17:55.000Z
tensorflow/compiler/aot/tfcompile.bzl
sseung0703/tensorflow
be084bd7a4dd241eb781fc704f57bcacc5c9b6dd
[ "Apache-2.0" ]
88
2020-11-24T08:18:10.000Z
2022-03-25T20:28:30.000Z
tensorflow/compiler/aot/tfcompile.bzl
sseung0703/tensorflow
be084bd7a4dd241eb781fc704f57bcacc5c9b6dd
[ "Apache-2.0" ]
9
2020-11-06T22:50:15.000Z
2021-12-30T01:45:55.000Z
"""Build macro that compiles a TensorFlow graph into a cc_library. To use from your BUILD file, add the following line to load the macro: load("//tensorflow/compiler/aot:tfcompile.bzl", "tf_library") Then call the macro like this: tf_library( name = "test_graph_tfmatmul", config = "test_graph_tfmatmul.config.pbtxt", cpp_class = "MatMulComp", graph = ":test_graph_tfmatmul.pb", ) """ load( "//tensorflow:tensorflow.bzl", "if_android", "tf_cc_test", "tf_copts", ) load("//tensorflow:tensorflow.bzl", "tfcompile_target_cpu") def tf_library( name, graph, config, debug_info = None, freeze_checkpoint = None, freeze_saver = None, cpp_class = None, gen_test = True, gen_benchmark = True, visibility = None, testonly = None, tfcompile_flags = None, tfcompile_tool = "//tensorflow/compiler/aot:tfcompile", include_standard_runtime_deps = True, enable_xla_hlo_profiling = False, enable_tracemes = False, mlir_components = "None", deps = None, tags = []): """Runs tfcompile to compile a TensorFlow graph into executable code with fast math enabled on cpu. Given an invocation of tf_library(name="foo", ...), generates the following build targets: foo: A cc_library containing the generated header and computation. foo_test: A cc_test with simple tests and benchmarks. Only created if gen_test=True. foo_benchmark: A cc_binary that runs a minimal-dependency benchmark, useful for mobile devices or other platforms that can't compile the full test libraries. Only created if gen_benchmark=True. The output header is called <name>.h. Args: name: The name of the build rule. graph: The TensorFlow GraphDef to compile. If the file ends in '.pbtxt' it is expected to be in the human-readable proto text format, otherwise it is expected to be in the proto binary format. config: File containing tensorflow.tf2xla.Config proto. If the file ends in '.pbtxt' it is expected to be in the human-readable proto text format, otherwise it is expected to be in the proto binary format. freeze_checkpoint: If provided, run freeze_graph with this checkpoint to convert variables into constants. freeze_saver: If provided, run freeze_graph with this saver, in SaverDef binary form, to convert variables into constants. cpp_class: The name of the generated C++ class, wrapping the generated function. The syntax of this flag is [[<optional_namespace>::],...]<class_name>. This mirrors the C++ syntax for referring to a class, where multiple namespaces may precede the class name, separated by double-colons. The class will be generated in the given namespace(s), or if no namespaces are given, within the global namespace. gen_test: If True, also generate a cc_test rule that builds a simple test and benchmark. gen_benchmark: If True, also generate a binary with a simple benchmark. Unlike the output of gen_test, this benchmark can be run on android. visibility: Bazel build visibility. testonly: Bazel testonly attribute. tfcompile_flags: Extra flags to pass to tfcompile to control compilation. tfcompile_tool: The tfcompile binary. A non-default can be passed to use a tfcompile built with extra dependencies. include_standard_runtime_deps: If True, the standard list of kernel/runtime deps is added to deps. If False, deps must contain the full set of deps needed by the generated library. enable_xla_hlo_profiling: Enable XLA HLO profiling in the generated program, and emit metadata that lets us pretty-print the gathered profile counters. enable_tracemes: Tell tfcompile to generate calls to TraceMe::Activity{Start|End} around HLO instructions that can be used by Xprof to construct profiler timelines. mlir_components: When the value is "None", no components use MLIR. When the value is "Bridge", use MLIR to translate GraphDef to HLO. deps: a list of deps to include on the build rules for the generated library, added to the standard deps if standard_runtime_deps is True. tags: tags to apply to subsidiary build rules. """ if not cpp_class: fail("cpp_class must be specified") tfcompile_graph = graph if freeze_checkpoint or freeze_saver: if not freeze_checkpoint: fail("freeze_checkpoint must be specified when freeze_saver is " + "specified") freeze_name = "freeze_" + name freeze_file = freeze_name + ".pb" # First run tfcompile to generate the list of out_nodes. # # Here and below, we set CUDA_VISIBLE_DEVICES='' to prevent the code we # launch from using any GPUs which might be present. This is important # because builds may run concurrently with tests, and tests need to be # able to assume that they have control of the full GPU. out_nodes_file = "out_nodes_" + freeze_name native.genrule( name = ("gen_" + out_nodes_file), srcs = [config], outs = [out_nodes_file], cmd = ("CUDA_VISIBLE_DEVICES='' " + "$(location " + tfcompile_tool + ")" + " --config=$(location " + config + ")" + " --dump_fetch_nodes > $@"), exec_tools = [tfcompile_tool], # Run tfcompile on the build host, rather than forge, since it's # typically way faster on the local machine. local = 1, tags = tags, ) # Now run freeze_graph to convert variables into constants. freeze_args = ( " --input_graph=$(location " + graph + ")" + " --checkpoint_version=1" + " --input_binary=" + str(not graph.endswith(".pbtxt")) + " --input_checkpoint=$(location " + freeze_checkpoint + ")" + " --output_graph=$(location " + freeze_file + ")" + " --output_node_names=$$(<$(location " + out_nodes_file + "))" ) freeze_saver_srcs = [] if freeze_saver: freeze_args += " --input_saver=$(location " + freeze_saver + ")" freeze_saver_srcs += [freeze_saver] native.genrule( name = freeze_name, srcs = [ graph, freeze_checkpoint, out_nodes_file, ] + freeze_saver_srcs, outs = [freeze_file], cmd = ( "CUDA_VISIBLE_DEVICES='' " + "$(location " + "//tensorflow/python/tools:freeze_graph)" + freeze_args ), exec_tools = ["//tensorflow/python/tools:freeze_graph"], tags = tags, ) tfcompile_graph = freeze_file # Rule that runs tfcompile to produce the header and object file. header_file = name + ".h" metadata_object_file = name + "_tfcompile_metadata.o" function_object_file = name + "_tfcompile_function.o" # The XLA backends morph kernal name prefix __ that is not in the form of # __xla_. ep = ("__xla_" + native.package_name() + "__" + name).replace("/", "_") if type(tfcompile_flags) == type(""): flags = tfcompile_flags else: flags = " ".join([ "'" + arg.replace("'", "'\\''") + "'" for arg in (tfcompile_flags or []) ]) # Do this before we append the `select` into `flags`, because doing so # transforms `flags` into a variable of type `select`, and we can't call # `find` on such an object. need_xla_data_proto = flags and flags.find("--gen_program_shape") != -1 target_cpu = tfcompile_target_cpu() extra_flags = "--target_cpu=" + target_cpu + " " if target_cpu else " " flags = extra_flags + flags if enable_xla_hlo_profiling: profiling_flag = "--xla_hlo_profile" else: profiling_flag = "" if enable_tracemes: traceme_flag = "--xla_cpu_enable_xprof_traceme=true" else: traceme_flag = "--xla_cpu_enable_xprof_traceme=false" mlir_flag = "--mlir_components=" + mlir_components srcs = [tfcompile_graph, config] debug_info_flag = "" if debug_info: srcs.append(debug_info) debug_info_flag = " --debug_info=$(location " + debug_info + ")" default_fast_math_xla_flags = ("XLA_FLAGS='" + "--xla_cpu_enable_fast_math=true " + "--xla_cpu_fast_math_honor_nans=false " + "--xla_cpu_fast_math_honor_infs=false " + "--xla_cpu_fast_math_honor_functions=false " + "--xla_cpu_fast_math_honor_division=false " + "--xla_cpu_enable_fast_min_max=true " + "$${XLA_FLAGS:-}' ") native.genrule( name = ("gen_" + name), srcs = srcs, outs = [ header_file, metadata_object_file, function_object_file, ], cmd = ( default_fast_math_xla_flags + "CUDA_VISIBLE_DEVICES='' " + "$(location " + tfcompile_tool + ")" + " --graph=$(location " + tfcompile_graph + ")" + debug_info_flag + " --config=$(location " + config + ")" + " --entry_point=" + ep + " --cpp_class=" + cpp_class + " --target_triple=" + target_llvm_triple() + " --out_header=$(@D)/" + header_file + " --out_metadata_object=$(@D)/" + metadata_object_file + " --out_function_object=$(@D)/" + function_object_file + " " + flags + " " + profiling_flag + " " + mlir_flag + " " + traceme_flag ), exec_tools = [tfcompile_tool], visibility = visibility, testonly = testonly, # Run tfcompile on the build host since it's typically faster on the # local machine. # # Note that setting the local=1 attribute on a *test target* causes the # test infrastructure to skip that test. However this is a genrule, not # a test target, and runs with --strategy=Genrule=forced_forge, meaning # the local=1 attribute is ignored, and the genrule is still run. # # https://www.bazel.io/versions/master/docs/be/general.html#genrule local = 1, tags = tags, ) # Rule that runs tfcompile to produce the SessionModule proto, useful for # debugging. TODO(b/64813587): Once the SessionModule proto is # deterministic, move this into the main rule above. session_module_pb = name + "_session_module.pb" native.genrule( name = (name + "_session_module"), srcs = srcs, outs = [ session_module_pb, ], cmd = ( default_fast_math_xla_flags + "CUDA_VISIBLE_DEVICES='' " + "$(location " + tfcompile_tool + ")" + " --graph=$(location " + tfcompile_graph + ")" + debug_info_flag + " --config=$(location " + config + ")" + " --entry_point=" + ep + " --cpp_class=" + cpp_class + " --target_triple=" + target_llvm_triple() + " --out_session_module=$(@D)/" + session_module_pb + " " + flags ), exec_tools = [tfcompile_tool], visibility = visibility, testonly = testonly, local = 1, tags = tags, ) # The cc_library rule packaging up the header and object file, and needed # kernel implementations. native.cc_library( name = name, srcs = [function_object_file, metadata_object_file], hdrs = [header_file], visibility = visibility, testonly = testonly, deps = [ # These deps are required by all tf_library targets even if # include_standard_runtime_deps is False. Without them, the # generated code will fail to compile. "//tensorflow/compiler/tf2xla:xla_compiled_cpu_function", "//tensorflow/core:framework_lite", ] + (need_xla_data_proto and [ # If we're generating the program shape, we must depend on the # proto. "//tensorflow/compiler/xla:xla_data_proto_cc", ] or []) + (enable_xla_hlo_profiling and [ "//tensorflow/compiler/xla/service:hlo_profile_printer_data_cc", ] or []) + (include_standard_runtime_deps and [ # TODO(cwhipkey): only depend on kernel code that the model actually # needed. "//tensorflow/compiler/xla/service/cpu:runtime_conv2d", "//tensorflow/compiler/xla/service/cpu:runtime_key_value_sort", "//tensorflow/compiler/xla/service/cpu:runtime_matmul", "//tensorflow/compiler/xla/service/cpu:runtime_single_threaded_conv2d", "//tensorflow/compiler/xla/service/cpu:runtime_single_threaded_matmul", "//third_party/eigen3", ] or []) + (deps or []), tags = tags, ) # Variables used for gen_test and gen_benchmark. cpp_class_split = cpp_class.rsplit("::", 2) if len(cpp_class_split) == 1: no_ns_name = cpp_class_split[0] else: no_ns_name = cpp_class_split[1] sed_replace = ( "-e \"s|{{TFCOMPILE_HEADER}}|$(location " + header_file + ")|g\" " + "-e \"s|{{TFCOMPILE_CPP_CLASS}}|" + cpp_class + "|g\" " + "-e \"s|{{TFCOMPILE_NAME}}|" + no_ns_name + "|g\" " ) if gen_test: test_name = name + "_test" test_file = test_name + ".cc" # Rule to rewrite test.cc to produce the test_file. native.genrule( name = ("gen_" + test_name), testonly = 1, srcs = [ "//tensorflow/compiler/aot:test.cc", header_file, ], outs = [test_file], cmd = ( "sed " + sed_replace + " $(location //tensorflow/compiler/aot:test.cc) " + "> $(OUTS)" ), tags = tags, ) # The cc_test rule for the generated code. To ensure that this works # reliably across build configurations, we must use tf_cc_test instead # of native.cc_test. This is related to how we build # //tensorflow/core:lib -- see the note in # tensorflow/core/BUILD for more details. tf_cc_test( name = test_name, srcs = [test_file], deps = [ ":" + name, "//tensorflow/compiler/aot:tf_library_test_main", "//tensorflow/compiler/xla:executable_run_options", "//third_party/eigen3", "//tensorflow/core:lib", "//tensorflow/core:test", ], tags = tags, ) if gen_benchmark: benchmark_name = name + "_benchmark" benchmark_file = benchmark_name + ".cc" benchmark_main = ("//tensorflow/compiler/aot:" + "benchmark_main.template") # Rule to rewrite benchmark.cc to produce the benchmark_file. native.genrule( name = ("gen_" + benchmark_name), srcs = [ benchmark_main, header_file, ], testonly = testonly, outs = [benchmark_file], cmd = ("sed " + sed_replace + " $(location " + benchmark_main + ") " + "> $(OUTS)"), tags = tags, ) # The cc_benchmark rule for the generated code. This does not need the # tf_cc_binary since we (by deliberate design) do not depend on # //tensorflow/core:lib. # # Note: to get smaller size on android for comparison, compile with: # --copt=-fvisibility=hidden # --copt=-D_LIBCPP_TYPE_VIS=_LIBCPP_HIDDEN # --copt=-D_LIBCPP_EXCEPTION_ABI=_LIBCPP_HIDDEN native.cc_binary( name = benchmark_name, srcs = [benchmark_file], testonly = testonly, copts = tf_copts(), linkopts = if_android(["-pie", "-s"]), deps = [ ":" + name, "//tensorflow/compiler/aot:benchmark", "//tensorflow/compiler/xla:executable_run_options", "//third_party/eigen3", ] + if_android([ "//tensorflow/compiler/aot:benchmark_extra_android", ]), tags = tags, ) def target_llvm_triple(): """Returns the target LLVM triple to be used for compiling the target.""" # TODO(toddw): Add target_triple for other targets. For details see: # http://llvm.org/docs/doxygen/html/Triple_8h_source.html return select({ "//tensorflow:android_armeabi": "armv5-none-android", "//tensorflow:android_arm": "armv7-none-android", "//tensorflow:android_arm64": "aarch64-none-android", "//tensorflow:android_x86": "i686-none-android", "//tensorflow:ios": "arm64-none-ios", "//tensorflow:ios_x86_64": "x86_64-apple-ios", "//tensorflow:linux_ppc64le": "ppc64le-ibm-linux-gnu", "//tensorflow:macos": "x86_64-none-darwin", "//tensorflow:windows": "x86_64-none-windows", "//tensorflow:linux_s390x": "systemz-none-linux-gnu", "//conditions:default": "x86_64-pc-linux", })
40.804545
85
0.58104
10b6cb3d2da7857a2b193c7e1c4a88244ac992e8
18,609
py
Python
model.py
18wh1a0590/NLP-Text-Generation
1a4115875d6898d7491953cffded6153cb9ff221
[ "MIT" ]
25
2021-06-12T11:38:07.000Z
2022-03-17T13:32:02.000Z
model.py
18wh1a0590/NLP-Text-Generation
1a4115875d6898d7491953cffded6153cb9ff221
[ "MIT" ]
3
2021-07-18T19:20:41.000Z
2022-03-09T09:35:37.000Z
model.py
18wh1a0590/NLP-Text-Generation
1a4115875d6898d7491953cffded6153cb9ff221
[ "MIT" ]
6
2021-07-27T15:08:32.000Z
2022-02-18T19:01:35.000Z
import torch from torch.functional import norm import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict import math from itertools import combinations from torch.nn.init import xavier_normal_ from torch.nn.modules.activation import MultiheadAttention from torch.autograd import Variable import torchvision.models as models from utils import extract_class_indices, cos_sim from einops import rearrange class CNN_FSHead(nn.Module): """ Base class which handles a few-shot method. Contains a resnet backbone which computes features. """ def __init__(self, args): super(CNN_FSHead, self).__init__() self.train() self.args = args last_layer_idx = -1 if self.args.backbone == "resnet18": backbone = models.resnet18(pretrained=True) elif self.args.backbone == "resnet34": backbone = models.resnet34(pretrained=True) elif self.args.backbone == "resnet50": backbone = models.resnet50(pretrained=True) if self.args.pretrained_backbone is not None: checkpoint = torch.load(self.args.pretrained_backbone) backbone.load_state_dict(checkpoint) self.backbone = nn.Sequential(*list(backbone.children())[:last_layer_idx]) def get_feats(self, support_images, target_images): """ Takes in images from the support set and query video and returns CNN features. """ support_features = self.backbone(support_images).squeeze() target_features = self.backbone(target_images).squeeze() dim = int(support_features.shape[1]) support_features = support_features.reshape(-1, self.args.seq_len, dim) target_features = target_features.reshape(-1, self.args.seq_len, dim) return support_features, target_features def forward(self, support_images, support_labels, target_images): """ Should return a dict containing logits which are required for computing accuracy. Dict can also contain other info needed to compute the loss. E.g. inter class distances. """ raise NotImplementedError def distribute_model(self): """ Use to split the backbone evenly over all GPUs. Modify if you have other components """ if self.args.num_gpus > 1: self.backbone.cuda(0) self.backbone = torch.nn.DataParallel(self.backbone, device_ids=[i for i in range(0, self.args.num_gpus)]) def loss(self, task_dict, model_dict): """ Takes in a the task dict containing labels etc. Takes in the model output dict, which contains "logits", as well as any other info needed to compute the loss. Default is cross entropy loss. """ return F.cross_entropy(model_dict["logits"], task_dict["target_labels"].long()) class PositionalEncoding(nn.Module): """ Positional encoding from the Transformer paper. """ def __init__(self, d_model, dropout, max_len=5000, pe_scale_factor=0.1): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) self.pe_scale_factor = pe_scale_factor # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) * self.pe_scale_factor pe[:, 1::2] = torch.cos(position * div_term) * self.pe_scale_factor pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x) class TemporalCrossTransformer(nn.Module): """ A temporal cross transformer for a single tuple cardinality. E.g. pairs or triples. """ def __init__(self, args, temporal_set_size=3): super(TemporalCrossTransformer, self).__init__() self.args = args self.temporal_set_size = temporal_set_size max_len = int(self.args.seq_len * 1.5) self.pe = PositionalEncoding(self.args.trans_linear_in_dim, self.args.trans_dropout, max_len=max_len) self.k_linear = nn.Linear(self.args.trans_linear_in_dim * temporal_set_size, self.args.trans_linear_out_dim)#.cuda() self.v_linear = nn.Linear(self.args.trans_linear_in_dim * temporal_set_size, self.args.trans_linear_out_dim)#.cuda() self.norm_k = nn.LayerNorm(self.args.trans_linear_out_dim) self.norm_v = nn.LayerNorm(self.args.trans_linear_out_dim) self.class_softmax = torch.nn.Softmax(dim=1) # generate all tuples frame_idxs = [i for i in range(self.args.seq_len)] frame_combinations = combinations(frame_idxs, temporal_set_size) self.tuples = nn.ParameterList([nn.Parameter(torch.tensor(comb), requires_grad=False) for comb in frame_combinations]) self.tuples_len = len(self.tuples) def forward(self, support_set, support_labels, queries): n_queries = queries.shape[0] n_support = support_set.shape[0] # static pe support_set = self.pe(support_set) queries = self.pe(queries) # construct new queries and support set made of tuples of images after pe s = [torch.index_select(support_set, -2, p).reshape(n_support, -1) for p in self.tuples] q = [torch.index_select(queries, -2, p).reshape(n_queries, -1) for p in self.tuples] support_set = torch.stack(s, dim=-2) queries = torch.stack(q, dim=-2) # apply linear maps support_set_ks = self.k_linear(support_set) queries_ks = self.k_linear(queries) support_set_vs = self.v_linear(support_set) queries_vs = self.v_linear(queries) # apply norms where necessary mh_support_set_ks = self.norm_k(support_set_ks) mh_queries_ks = self.norm_k(queries_ks) mh_support_set_vs = support_set_vs mh_queries_vs = queries_vs unique_labels = torch.unique(support_labels) # init tensor to hold distances between every support tuple and every target tuple all_distances_tensor = torch.zeros(n_queries, self.args.way, device=queries.device) for label_idx, c in enumerate(unique_labels): # select keys and values for just this class class_k = torch.index_select(mh_support_set_ks, 0, extract_class_indices(support_labels, c)) class_v = torch.index_select(mh_support_set_vs, 0, extract_class_indices(support_labels, c)) k_bs = class_k.shape[0] class_scores = torch.matmul(mh_queries_ks.unsqueeze(1), class_k.transpose(-2,-1)) / math.sqrt(self.args.trans_linear_out_dim) # reshape etc. to apply a softmax for each query tuple class_scores = class_scores.permute(0,2,1,3) class_scores = class_scores.reshape(n_queries, self.tuples_len, -1) class_scores = [self.class_softmax(class_scores[i]) for i in range(n_queries)] class_scores = torch.cat(class_scores) class_scores = class_scores.reshape(n_queries, self.tuples_len, -1, self.tuples_len) class_scores = class_scores.permute(0,2,1,3) # get query specific class prototype query_prototype = torch.matmul(class_scores, class_v) query_prototype = torch.sum(query_prototype, dim=1) # calculate distances from queries to query-specific class prototypes diff = mh_queries_vs - query_prototype norm_sq = torch.norm(diff, dim=[-2,-1])**2 distance = torch.div(norm_sq, self.tuples_len) # multiply by -1 to get logits distance = distance * -1 c_idx = c.long() all_distances_tensor[:,c_idx] = distance return_dict = {'logits': all_distances_tensor} return return_dict class CNN_TRX(CNN_FSHead): """ Backbone connected to Temporal Cross Transformers of multiple cardinalities. """ def __init__(self, args): super(CNN_TRX, self).__init__(args) #fill default args self.args.trans_linear_out_dim = 1152 self.args.temp_set = [2,3] self.args.trans_dropout = 0.1 self.transformers = nn.ModuleList([TemporalCrossTransformer(args, s) for s in args.temp_set]) def forward(self, support_images, support_labels, target_images): support_features, target_features = self.get_feats(support_images, target_images) all_logits = [t(support_features, support_labels, target_features)['logits'] for t in self.transformers] all_logits = torch.stack(all_logits, dim=-1) sample_logits = all_logits sample_logits = torch.mean(sample_logits, dim=[-1]) return_dict = {'logits': sample_logits} return return_dict def distribute_model(self): """ Distributes the CNNs over multiple GPUs. Leaves TRX on GPU 0. :return: Nothing """ if self.args.num_gpus > 1: self.backbone.cuda(0) self.backbone = torch.nn.DataParallel(self.backbone, device_ids=[i for i in range(0, self.args.num_gpus)]) self.transformers.cuda(0) def OTAM_cum_dist(dists, lbda=0.1): """ Calculates the OTAM distances for sequences in one direction (e.g. query to support). :input: Tensor with frame similarity scores of shape [n_queries, n_support, query_seq_len, support_seq_len] TODO: clearn up if possible - currently messy to work with pt1.8. Possibly due to stack operation? """ dists = F.pad(dists, (1,1), 'constant', 0) cum_dists = torch.zeros(dists.shape, device=dists.device) # top row for m in range(1, dists.shape[3]): # cum_dists[:,:,0,m] = dists[:,:,0,m] - lbda * torch.log( torch.exp(- cum_dists[:,:,0,m-1])) # paper does continuous relaxation of the cum_dists entry, but it trains faster without, so using the simpler version for now: cum_dists[:,:,0,m] = dists[:,:,0,m] + cum_dists[:,:,0,m-1] # remaining rows for l in range(1,dists.shape[2]): #first non-zero column cum_dists[:,:,l,1] = dists[:,:,l,1] - lbda * torch.log( torch.exp(- cum_dists[:,:,l-1,0] / lbda) + torch.exp(- cum_dists[:,:,l-1,1] / lbda) + torch.exp(- cum_dists[:,:,l,0] / lbda) ) #middle columns for m in range(2,dists.shape[3]-1): cum_dists[:,:,l,m] = dists[:,:,l,m] - lbda * torch.log( torch.exp(- cum_dists[:,:,l-1,m-1] / lbda) + torch.exp(- cum_dists[:,:,l,m-1] / lbda ) ) #last column #cum_dists[:,:,l,-1] = dists[:,:,l,-1] - lbda * torch.log( torch.exp(- cum_dists[:,:,l-1,-2] / lbda) + torch.exp(- cum_dists[:,:,l,-2] / lbda) ) cum_dists[:,:,l,-1] = dists[:,:,l,-1] - lbda * torch.log( torch.exp(- cum_dists[:,:,l-1,-2] / lbda) + torch.exp(- cum_dists[:,:,l-1,-1] / lbda) + torch.exp(- cum_dists[:,:,l,-2] / lbda) ) return cum_dists[:,:,-1,-1] class CNN_OTAM(CNN_FSHead): """ OTAM with a CNN backbone. """ def __init__(self, args): super(CNN_OTAM, self).__init__(args) def forward(self, support_images, support_labels, target_images): support_features, target_features = self.get_feats(support_images, target_images) unique_labels = torch.unique(support_labels) n_queries = target_features.shape[0] n_support = support_features.shape[0] support_features = rearrange(support_features, 'b s d -> (b s) d') target_features = rearrange(target_features, 'b s d -> (b s) d') frame_sim = cos_sim(target_features, support_features) frame_dists = 1 - frame_sim dists = rearrange(frame_dists, '(tb ts) (sb ss) -> tb sb ts ss', tb = n_queries, sb = n_support) # calculate query -> support and support -> query cum_dists = OTAM_cum_dist(dists) + OTAM_cum_dist(rearrange(dists, 'tb sb ts ss -> tb sb ss ts')) class_dists = [torch.mean(torch.index_select(cum_dists, 1, extract_class_indices(support_labels, c)), dim=1) for c in unique_labels] class_dists = torch.stack(class_dists) class_dists = rearrange(class_dists, 'c q -> q c') return_dict = {'logits': - class_dists} return return_dict def loss(self, task_dict, model_dict): return F.cross_entropy(model_dict["logits"], task_dict["target_labels"].long()) class CNN_TSN(CNN_FSHead): """ TSN with a CNN backbone. Either cosine similarity or negative norm squared distance. Use mean distance from query to class videos. """ def __init__(self, args): super(CNN_TSN, self).__init__(args) self.norm_sq_dist = False def forward(self, support_images, support_labels, target_images): support_features, target_features = self.get_feats(support_images, target_images) unique_labels = torch.unique(support_labels) support_features = torch.mean(support_features, dim=1) target_features = torch.mean(target_features, dim=1) if self.norm_sq_dist: class_prototypes = [torch.mean(torch.index_select(support_features, 0, extract_class_indices(support_labels, c)), dim=0) for c in unique_labels] class_prototypes = torch.stack(class_prototypes) diffs = [target_features - class_prototypes[i] for i in unique_labels] diffs = torch.stack(diffs) norm_sq = torch.norm(diffs, dim=[-1])**2 distance = - rearrange(norm_sq, 'c q -> q c') return_dict = {'logits': distance} else: class_sim = cos_sim(target_features, support_features) class_sim = [torch.mean(torch.index_select(class_sim, 1, extract_class_indices(support_labels, c)), dim=1) for c in unique_labels] class_sim = torch.stack(class_sim) class_sim = rearrange(class_sim, 'c q -> q c') return_dict = {'logits': class_sim} return return_dict class CNN_PAL(CNN_FSHead): """ PAL with a CNN backbone. Cosine similarity as distance measure. """ def __init__(self, args): super(CNN_PAL, self).__init__(args) self.mha = MultiheadAttention(embed_dim=self.args.trans_linear_in_dim, num_heads=1, dropout=0) self.cos_sim = torch.nn.CosineSimilarity() self.loss_lambda = 1 def forward(self, support_images, support_labels, target_images): support_features, target_features = self.get_feats(support_images, target_images) unique_labels = torch.unique(support_labels) support_features = torch.mean(support_features, dim=1) target_features = torch.mean(target_features, dim=1) support_features = rearrange(support_features, 'n d -> n 1 d') target_features = rearrange(target_features, 'n d -> n 1 d') support_features = support_features + self.mha(support_features, support_features, support_features)[0] target_features = target_features + self.mha(target_features, support_features, support_features)[0] support_features = rearrange(support_features, 'b 1 d -> b d') target_features = rearrange(target_features, 'b 1 d -> b d') prototypes = [torch.mean(torch.index_select(support_features, 0, extract_class_indices(support_labels, c)), dim=0) for c in unique_labels] prototypes = torch.stack(prototypes) q_s_sim = cos_sim(target_features, prototypes) return_dict = {'logits': q_s_sim} return return_dict def loss(self, task_dict, model_dict): """ Computes cross entropy loss on the logits, and the additional loss between the queries and their correct classes. """ q_s_sim = model_dict["logits"] l_meta = F.cross_entropy(q_s_sim, task_dict["target_labels"].long()) pcc_q_s_sim = q_s_sim pcc_q_s_sim = torch.sigmoid(q_s_sim) unique_labels = torch.unique(task_dict["support_labels"]) total_q_c_sim = torch.sum(pcc_q_s_sim, dim=0) + 0.1 q_c_sim = [torch.sum(torch.index_select(pcc_q_s_sim, 0, extract_class_indices(task_dict["target_labels"], c)), dim=0) for c in unique_labels] q_c_sim = torch.stack(q_c_sim) q_c_sim = torch.diagonal(q_c_sim) q_c_sim = torch.div(q_c_sim, total_q_c_sim) l_pcc = - torch.mean(torch.log(q_c_sim)) return l_meta + self.loss_lambda * l_pcc if __name__ == "__main__": class ArgsObject(object): def __init__(self): self.trans_linear_in_dim = 512 self.trans_linear_out_dim = 128 self.way = 4 self.shot = 3 self.query_per_class = 2 self.trans_dropout = 0.1 self.seq_len = 5 self.img_size = 84 self.backbone = "resnet18" self.num_gpus = 1 self.temp_set = [2,3] self.pretrained_backbone = None args = ArgsObject() torch.manual_seed(0) device = 'cpu' # device = 'cuda:0' # model = CNN_TRX(args).to(device) model = CNN_OTAM(args).to(device) # model = CNN_TSN(args).to(device) # model = CNN_PAL(args).to(device) support_imgs = torch.rand(args.way * args.shot * args.seq_len,3, args.img_size, args.img_size).to(device) target_imgs = torch.rand(args.way * args.query_per_class * args.seq_len ,3, args.img_size, args.img_size).to(device) support_labels = torch.tensor([n for n in range(args.way)] * args.shot).to(device) target_labels = torch.tensor([n for n in range(args.way)] * args.query_per_class).to(device) print("Support images input shape: {}".format(support_imgs.shape)) print("Target images input shape: {}".format(target_imgs.shape)) print("Support labels input shape: {}".format(support_imgs.shape)) task_dict = {} task_dict["support_set"] = support_imgs task_dict["support_labels"] = support_labels task_dict["target_set"] = target_imgs task_dict["target_labels"] = target_labels model_dict = model(support_imgs, support_labels, target_imgs) print("Model returns the distances from each query to each class prototype. Use these as logits. Shape: {}".format(model_dict['logits'].shape)) loss = model.loss(task_dict, model_dict)
40.542484
195
0.653501
441b2a22730130d816811a6f411973bc2e8a43aa
43
py
Python
Python_Codes_for_BJ/stage03 for문 사용하기/N 찍기.py
ch96an/BaekJoonSolution
25594fda5ba1c0c4d26ff0828ec8dcf2f6572d33
[ "MIT" ]
null
null
null
Python_Codes_for_BJ/stage03 for문 사용하기/N 찍기.py
ch96an/BaekJoonSolution
25594fda5ba1c0c4d26ff0828ec8dcf2f6572d33
[ "MIT" ]
null
null
null
Python_Codes_for_BJ/stage03 for문 사용하기/N 찍기.py
ch96an/BaekJoonSolution
25594fda5ba1c0c4d26ff0828ec8dcf2f6572d33
[ "MIT" ]
null
null
null
for i in range(1,int(input())+1): print(i)
21.5
33
0.627907
238ee3a7c703fe6e5d3d7c31bfbfbc24bdafbc5d
13,505
py
Python
tests/flow/test_function_calls.py
TatianaJin/RedisGraph
a03a79f95f12d1376d848b3963d4a729019b6b0b
[ "MIT", "Ruby", "ISC", "BSD-3-Clause" ]
1
2021-01-26T21:02:32.000Z
2021-01-26T21:02:32.000Z
tests/flow/test_function_calls.py
danitseitlin/RedisGraph
6e7c5cc2c06574292b88f905d271e83c95b7ee3b
[ "MIT", "Ruby", "ISC", "BSD-3-Clause" ]
null
null
null
tests/flow/test_function_calls.py
danitseitlin/RedisGraph
6e7c5cc2c06574292b88f905d271e83c95b7ee3b
[ "MIT", "Ruby", "ISC", "BSD-3-Clause" ]
null
null
null
import redis import os import sys from RLTest import Env from base import FlowTestsBase from redisgraph import Graph, Node, Edge graph = None redis_con = None people = ["Roi", "Alon", "Ailon", "Boaz"] class testFunctionCallsFlow(FlowTestsBase): def __init__(self): self.env = Env() global graph global redis_con redis_con = self.env.getConnection() graph = Graph("G", redis_con) self.populate_graph() def populate_graph(self): global graph nodes = {} # Create entities for idx, p in enumerate(people): node = Node(label="person", properties={"name": p, "val": idx}) graph.add_node(node) nodes[p] = node # Fully connected graph for src in nodes: for dest in nodes: if src != dest: edge = Edge(nodes[src], "know", nodes[dest]) graph.add_edge(edge) for src in nodes: for dest in nodes: if src != dest: edge = Edge(nodes[src], "works_with", nodes[dest]) graph.add_edge(edge) graph.commit() query = """MATCH (a)-[:know]->(b) CREATE (a)-[:know]->(b)""" graph.query(query) def expect_type_error(self, query): try: graph.query(query) assert(False) except redis.exceptions.ResponseError as e: # Expecting a type error. self.env.assertIn("Type mismatch", e.message) def expect_error(self, query, expected_err_msg): try: graph.query(query) assert(False) except redis.exceptions.ResponseError as e: # Expecting a type error. self.env.assertIn(expected_err_msg, e.message) # Validate capturing of errors prior to query execution. def test01_compile_time_errors(self): query = """RETURN toUpper(5)""" self.expect_type_error(query) query = """RETURN 'a' * 2""" self.expect_type_error(query) query = """RETURN max(1 + min(2))""" self.expect_error(query, "Can't use aggregate functions inside of aggregate functions") def test02_boolean_comparisons(self): query = """RETURN true = 5""" actual_result = graph.query(query) expected_result = [[False]] self.env.assertEquals(actual_result.result_set, expected_result) query = """RETURN true <> 'str'""" actual_result = graph.query(query) expected_result = [[True]] self.env.assertEquals(actual_result.result_set, expected_result) query = """RETURN 'anything' <> NULL""" actual_result = graph.query(query) expected_result = [[None]] self.env.assertEquals(actual_result.result_set, expected_result) query = """RETURN 'anything' = NULL""" actual_result = graph.query(query) expected_result = [[None]] self.env.assertEquals(actual_result.result_set, expected_result) query = """RETURN 10 >= 1.5""" actual_result = graph.query(query) expected_result = [[True]] self.env.assertEquals(actual_result.result_set, expected_result) query = """RETURN -1 < 1""" actual_result = graph.query(query) expected_result = [[True]] self.env.assertEquals(actual_result.result_set, expected_result) def test03_boolean_errors(self): query = """RETURN 'str' < 5.5""" self.expect_type_error(query) query = """RETURN true > 5""" self.expect_type_error(query) query = """MATCH (a) RETURN a < 'anything' LIMIT 1""" self.expect_type_error(query) def test04_entity_functions(self): query = "RETURN ID(5)" self.expect_type_error(query) query = "MATCH (a) RETURN ID(a) ORDER BY ID(a) LIMIT 3" actual_result = graph.query(query) expected_result = [[0], [1], [2]] self.env.assertEquals(actual_result.result_set, expected_result) query = "MATCH (a)-[e]->() RETURN ID(e) ORDER BY ID(e) LIMIT 3" actual_result = graph.query(query) expected_result = [[0], [1], [2]] self.env.assertEquals(actual_result.result_set, expected_result) query = "RETURN EXISTS(null)" actual_result = graph.query(query) expected_result = [[False]] self.env.assertEquals(actual_result.result_set, expected_result) query = "RETURN EXISTS('anything')" actual_result = graph.query(query) expected_result = [[True]] self.env.assertEquals(actual_result.result_set, expected_result) def test07_nonmap_errors(self): query = """MATCH (a) WITH a.name AS scalar RETURN scalar.name""" self.expect_type_error(query) def test08_apply_all_function(self): query = "MATCH () RETURN COUNT(*)" actual_result = graph.query(query) expected_result = [[4]] self.env.assertEquals(actual_result.result_set, expected_result) query = "UNWIND [1, 2] AS a RETURN COUNT(*)" actual_result = graph.query(query) expected_result = [[2]] self.env.assertEquals(actual_result.result_set, expected_result) def test09_static_aggregation(self): query = "RETURN count(*)" actual_result = graph.query(query) expected_result = [[1]] self.env.assertEquals(actual_result.result_set, expected_result) query = "RETURN max(2)" actual_result = graph.query(query) expected_result = [[2]] self.env.assertEquals(actual_result.result_set, expected_result) query = "RETURN min(3)" actual_result = graph.query(query) expected_result = [[3]] self.env.assertEquals(actual_result.result_set, expected_result) def test10_modulo_inputs(self): # Validate modulo with integer inputs. query = "RETURN 5 % 2" actual_result = graph.query(query) expected_result = [[1]] self.env.assertEquals(actual_result.result_set, expected_result) # Validate modulo with a floating-point dividend. query = "RETURN 5.5 % 2" actual_result = graph.query(query) expected_result = [[1.5]] self.env.assertEquals(actual_result.result_set, expected_result) # Validate modulo with a floating-point divisor. query = "RETURN 5 % 2.5" actual_result = graph.query(query) expected_result = [[0]] self.env.assertEquals(actual_result.result_set, expected_result) # Validate modulo with both a floating-point dividen and a floating-point divisor. query = "RETURN 5.5 % 2.5" actual_result = graph.query(query) expected_result = [[0.5]] self.env.assertEquals(actual_result.result_set, expected_result) # Validate modulo with negative integer inputs. query = "RETURN -5 % -2" actual_result = graph.query(query) expected_result = [[-1]] self.env.assertEquals(actual_result.result_set, expected_result) # Validate modulo with negative floating-point inputs. query = "RETURN -5.5 % -2.5" actual_result = graph.query(query) expected_result = [[-0.5]] self.env.assertEquals(actual_result.result_set, expected_result) # Aggregate functions should handle null inputs appropriately. def test11_null_aggregate_function_inputs(self): # SUM should sum all non-null inputs. query = """UNWIND [1, NULL, 3] AS a RETURN sum(a)""" actual_result = graph.query(query) expected_result = [[4]] self.env.assertEquals(actual_result.result_set, expected_result) # SUM should return 0 given a fully NULL input. query = """WITH NULL AS a RETURN sum(a)""" actual_result = graph.query(query) expected_result = [[0]] self.env.assertEquals(actual_result.result_set, expected_result) # COUNT should count all non-null inputs. query = """UNWIND [1, NULL, 3] AS a RETURN count(a)""" actual_result = graph.query(query) expected_result = [[2]] self.env.assertEquals(actual_result.result_set, expected_result) # COUNT should return 0 given a fully NULL input. query = """WITH NULL AS a RETURN count(a)""" actual_result = graph.query(query) expected_result = [[0]] self.env.assertEquals(actual_result.result_set, expected_result) # COLLECT should ignore null inputs. query = """UNWIND [1, NULL, 3] AS a RETURN collect(a)""" actual_result = graph.query(query) expected_result = [[[1, 3]]] self.env.assertEquals(actual_result.result_set, expected_result) # COLLECT should return an empty array on all null inputs. query = """WITH NULL AS a RETURN collect(a)""" actual_result = graph.query(query) expected_result = [[[]]] self.env.assertEquals(actual_result.result_set, expected_result) # Verify that nested functions that perform heap allocations return properly. def test12_nested_heap_functions(self): query = """MATCH p = (n) WITH head(nodes(p)) AS node RETURN node.name ORDER BY node.name""" actual_result = graph.query(query) expected_result = [['Ailon'], ['Alon'], ['Boaz'], ['Roi']] self.env.assertEquals(actual_result.result_set, expected_result) # CASE...WHEN statements should properly handle NULL, false, and true evaluations. def test13_case_when_inputs(self): # Simple case form: single value evaluation. query = """UNWIND [NULL, true, false] AS v RETURN v, CASE v WHEN true THEN v END""" actual_result = graph.query(query) expected_result = [[None, None], [True, True], [False, None]] self.env.assertEquals(actual_result.result_set, expected_result) query = """UNWIND [NULL, true, false] AS v RETURN v, CASE v WHEN true THEN v WHEN false THEN v END""" actual_result = graph.query(query) expected_result = [[None, None], [True, True], [False, False]] self.env.assertEquals(actual_result.result_set, expected_result) # Generic case form: evaluation for each case. query = """UNWIND [NULL, true, false] AS v RETURN v, CASE WHEN v THEN v END""" actual_result = graph.query(query) # Only the true value should return non-NULL. expected_result = [[None, None], [True, True], [False, None]] self.env.assertEquals(actual_result.result_set, expected_result) query = """UNWIND [NULL, true, false] AS v RETURN v, CASE WHEN v IS NOT NULL THEN v END""" actual_result = graph.query(query) # The true and false values should both return non-NULL. expected_result = [[None, None], [True, True], [False, False]] self.env.assertEquals(actual_result.result_set, expected_result) # CASE...WHEN statements should manage allocated values properly. def test14_case_when_memory_management(self): # Simple case form: single value evaluation. query = """WITH 'A' AS a WITH CASE a WHEN 'A' THEN toString(a) END AS key RETURN toLower(key)""" actual_result = graph.query(query) expected_result = [['a']] self.env.assertEquals(actual_result.result_set, expected_result) # Generic case form: evaluation for each case. query = """WITH 'A' AS a WITH CASE WHEN true THEN toString(a) END AS key RETURN toLower(key)""" actual_result = graph.query(query) expected_result = [['a']] self.env.assertEquals(actual_result.result_set, expected_result) def test15_aggregate_error_handling(self): functions = ["avg", "collect", "count", "max", "min", "sum", "percentileDisc", "percentileCont", "stDev"] # Test all functions for invalid argument counts. for function in functions: query = """UNWIND range(0, 10) AS val RETURN %s(val, val, val)""" % (function) self.expect_error(query, "Received 3 arguments") # Test numeric functions for invalid input types. numeric_functions = ["avg", "sum", "stDev"] for function in numeric_functions: query = """UNWIND ['a', 'b', 'c'] AS val RETURN %s(val)""" % (function) self.expect_type_error(query) # Test invalid numeric input for percentile function. query = """UNWIND range(0, 10) AS val RETURN percentileDisc(val, -1)""" self.expect_error(query, "must be a number in the range 0.0 to 1.0") # startNode and endNode calls should return the appropriate nodes. def test16_edge_endpoints(self): query = """MATCH (a)-[e]->(b) RETURN a.name, startNode(e).name, b.name, endNode(e).name""" actual_result = graph.query(query) for row in actual_result.result_set: self.env.assertEquals(row[0], row[1]) self.env.assertEquals(row[2], row[3])
39.955621
109
0.606886
a620a35ba2096f9ff489fd28d358ca7a4712e612
305
py
Python
data/multilingual/Latn.NDS/Serif_12/pdf_to_json_test_Latn.NDS_Serif_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Latn.NDS/Serif_12/pdf_to_json_test_Latn.NDS_Serif_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Latn.NDS/Serif_12/pdf_to_json_test_Latn.NDS_Serif_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.NDS/Serif_12/udhr_Latn.NDS_Serif_12.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.5
75
0.813115
190fc37d153e9a196b62ac804907ed1e180bd8a6
72,149
py
Python
show/muxcable.py
Yakiv-Huryk/sonic-utilities
a8a7edbb4a0bc1c743dc9f963767520188b593a9
[ "Apache-2.0" ]
null
null
null
show/muxcable.py
Yakiv-Huryk/sonic-utilities
a8a7edbb4a0bc1c743dc9f963767520188b593a9
[ "Apache-2.0" ]
null
null
null
show/muxcable.py
Yakiv-Huryk/sonic-utilities
a8a7edbb4a0bc1c743dc9f963767520188b593a9
[ "Apache-2.0" ]
null
null
null
import json import sys import time import click import re import utilities_common.cli as clicommon from natsort import natsorted from collections import OrderedDict from operator import itemgetter from sonic_py_common import multi_asic from swsscommon.swsscommon import SonicV2Connector, ConfigDBConnector from swsscommon import swsscommon from tabulate import tabulate from utilities_common import platform_sfputil_helper platform_sfputil = None REDIS_TIMEOUT_MSECS = 0 SELECT_TIMEOUT = 1000 # The empty namespace refers to linux host namespace. EMPTY_NAMESPACE = '' CONFIG_SUCCESSFUL = 0 CONFIG_FAIL = 1 EXIT_FAIL = 1 EXIT_SUCCESS = 0 STATUS_FAIL = 1 STATUS_SUCCESSFUL = 0 VENDOR_NAME = "Credo" VENDOR_MODEL_REGEX = re.compile(r"CAC\w{3}321P2P\w{2}MS") def db_connect(db_name, namespace=EMPTY_NAMESPACE): return swsscommon.DBConnector(db_name, REDIS_TIMEOUT_MSECS, True, namespace) def delete_all_keys_in_db_table(db_type, table_name): redis_db = {} table = {} table_keys = {} namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) redis_db[asic_id] = db_connect(db_type, namespace) table[asic_id] = swsscommon.Table(redis_db[asic_id], table_name) table_keys[asic_id] = table[asic_id].getKeys() for key in table_keys[asic_id]: table[asic_id]._del(key) target_dict = { "NIC":"0", "TORA":"1", "TORB":"2", "LOCAL":"3"} def parse_target(target): return target_dict.get(target, None) def check_port_in_mux_cable_table(port): per_npu_configdb = {} mux_tbl_cfg_db = {} port_mux_tbl_keys = {} # Getting all front asic namespace and correspding config and state DB connector namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) # TO-DO replace the macros with correct swsscommon names per_npu_configdb[asic_id] = ConfigDBConnector(use_unix_socket_path=False, namespace=namespace) per_npu_configdb[asic_id].connect() mux_tbl_cfg_db[asic_id] = per_npu_configdb[asic_id].get_table("MUX_CABLE") port_mux_tbl_keys[asic_id] = mux_tbl_cfg_db[asic_id].keys() asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: click.echo("Got invalid asic index for port {}, cant retrieve mux cable table entries".format(port)) return False if port in port_mux_tbl_keys[asic_index]: return True return False def get_response_for_version(port, mux_info_dict): state_db = {} xcvrd_show_fw_res_tbl = {} namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) state_db[asic_id] = db_connect("STATE_DB", namespace) xcvrd_show_fw_res_tbl[asic_id] = swsscommon.Table(state_db[asic_id], "XCVRD_SHOW_FW_RES") logical_port_list = platform_sfputil_helper.get_logical_list() if port not in logical_port_list: click.echo("ERR: This is not a valid port, valid ports ({})".format(", ".join(logical_port_list))) rc = EXIT_FAIL res_dict[1] = rc return mux_info_dict asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: click.echo("Got invalid asic index for port {}, cant retreive mux status".format(port)) rc = CONFIG_FAIL res_dict[1] = rc return mux_info_dict (status, fvp) = xcvrd_show_fw_res_tbl[asic_index].get(port) res_dir = dict(fvp) mux_info_dict["version_nic_active"] = res_dir.get("version_nic_active", None) mux_info_dict["version_nic_inactive"] = res_dir.get("version_nic_inactive", None) mux_info_dict["version_nic_next"] = res_dir.get("version_nic_next", None) mux_info_dict["version_peer_active"] = res_dir.get("version_peer_active", None) mux_info_dict["version_peer_inactive"] = res_dir.get("version_peer_inactive", None) mux_info_dict["version_peer_next"] = res_dir.get("version_peer_next", None) mux_info_dict["version_self_active"] = res_dir.get("version_self_active", None) mux_info_dict["version_self_inactive"] = res_dir.get("version_self_inactive", None) mux_info_dict["version_self_next"] = res_dir.get("version_self_next", None) return mux_info_dict def get_event_logs(port, res_dict, mux_info_dict): state_db = {} xcvrd_show_fw_res_tbl = {} namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) state_db[asic_id] = db_connect("STATE_DB", namespace) xcvrd_show_fw_res_tbl[asic_id] = swsscommon.Table(state_db[asic_id], "XCVRD_EVENT_LOG_RES") logical_port_list = platform_sfputil_helper.get_logical_list() if port not in logical_port_list: click.echo("ERR: This is not a valid port, valid ports ({})".format(", ".join(logical_port_list))) rc = EXIT_FAIL res_dict[1] = rc return mux_info_dict asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: click.echo("Got invalid asic index for port {}, cant retreive mux status".format(port)) rc = CONFIG_FAIL res_dict[1] = rc return mux_info_dict (status, fvp) = xcvrd_show_fw_res_tbl[asic_index].get(port) res_dir = dict(fvp) for key, value in res_dir.items(): mux_info_dict[key] = value; return mux_info_dict def get_result(port, res_dict, cmd ,result, table_name): state_db = {} xcvrd_show_fw_res_tbl = {} namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) state_db[asic_id] = db_connect("STATE_DB", namespace) xcvrd_show_fw_res_tbl[asic_id] = swsscommon.Table(state_db[asic_id], table_name) logical_port_list = platform_sfputil_helper.get_logical_list() if port not in logical_port_list: click.echo("ERR: This is not a valid port, valid ports ({})".format(", ".join(logical_port_list))) rc = EXIT_FAIL res_dict[1] = rc return result asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: click.echo("Got invalid asic index for port {}, cant retreive mux status".format(port)) rc = CONFIG_FAIL res_dict[1] = rc return result (status, fvp) = xcvrd_show_fw_res_tbl[asic_index].get(port) res_dir = dict(fvp) return res_dir def update_and_get_response_for_xcvr_cmd(cmd_name, rsp_name, exp_rsp, cmd_table_name, cmd_arg_table_name, rsp_table_name ,port, cmd_timeout_secs, param_dict= None, arg=None): res_dict = {} state_db, appl_db = {}, {} firmware_rsp_tbl, firmware_rsp_tbl_keys = {}, {} firmware_rsp_sub_tbl = {} firmware_cmd_tbl = {} firmware_cmd_arg_tbl = {} CMD_TIMEOUT_SECS = cmd_timeout_secs time_start = time.time() sel = swsscommon.Select() namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) state_db[asic_id] = db_connect("STATE_DB", namespace) appl_db[asic_id] = db_connect("APPL_DB", namespace) firmware_cmd_tbl[asic_id] = swsscommon.Table(appl_db[asic_id], cmd_table_name) firmware_rsp_sub_tbl[asic_id] = swsscommon.SubscriberStateTable(state_db[asic_id], rsp_table_name) firmware_rsp_tbl[asic_id] = swsscommon.Table(state_db[asic_id], rsp_table_name) if cmd_arg_table_name is not None: firmware_cmd_arg_tbl[asic_id] = swsscommon.Table(appl_db[asic_id], cmd_arg_table_name) firmware_rsp_tbl_keys[asic_id] = firmware_rsp_tbl[asic_id].getKeys() for key in firmware_rsp_tbl_keys[asic_id]: firmware_rsp_tbl[asic_id]._del(key) sel.addSelectable(firmware_rsp_sub_tbl[asic_id]) rc = CONFIG_FAIL res_dict[0] = CONFIG_FAIL res_dict[1] = 'unknown' logical_port_list = platform_sfputil_helper.get_logical_list() if port not in logical_port_list: click.echo("ERR: This is not a valid port, valid ports ({})".format(", ".join(logical_port_list))) res_dict[0] = rc return res_dict asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: click.echo("Got invalid asic index for port {}, cant perform firmware cmd".format(port)) res_dict[0] = rc return res_dict if arg is None: cmd_arg = "null" else: cmd_arg = str(arg) if param_dict is not None: for key, value in param_dict.items(): fvs = swsscommon.FieldValuePairs([(str(key), str(value))]) firmware_cmd_arg_tbl[asic_index].set(port, fvs) fvs = swsscommon.FieldValuePairs([(cmd_name, cmd_arg)]) firmware_cmd_tbl[asic_index].set(port, fvs) # Listen indefinitely for changes to the HW_MUX_CABLE_TABLE in the Application DB's while True: # Use timeout to prevent ignoring the signals we want to handle # in signal_handler() (e.g. SIGTERM for graceful shutdown) (state, selectableObj) = sel.select(SELECT_TIMEOUT) time_now = time.time() time_diff = time_now - time_start if time_diff >= CMD_TIMEOUT_SECS: return res_dict if state == swsscommon.Select.TIMEOUT: # Do not flood log when select times out continue if state != swsscommon.Select.OBJECT: click.echo("sel.select() did not return swsscommon.Select.OBJECT for sonic_y_cable updates") continue # Get the redisselect object from selectable object redisSelectObj = swsscommon.CastSelectableToRedisSelectObj( selectableObj) # Get the corresponding namespace from redisselect db connector object namespace = redisSelectObj.getDbConnector().getNamespace() asic_index = multi_asic.get_asic_index_from_namespace(namespace) (port_m, op_m, fvp_m) = firmware_rsp_sub_tbl[asic_index].pop() if not port_m: click.echo("Did not receive a port response {}".format(port)) res_dict[1] = 'unknown' res_dict[0] = CONFIG_FAIL firmware_rsp_tbl[asic_index]._del(port) break if port_m != port: res_dict[1] = 'unknown' res_dict[0] = CONFIG_FAIL firmware_rsp_tbl[asic_index]._del(port) continue if fvp_m: fvp_dict = dict(fvp_m) if rsp_name in fvp_dict: # check if xcvrd got a probe command result = fvp_dict[rsp_name] res_dict[1] = result res_dict[0] = 0 else: res_dict[1] = 'unknown' res_dict[0] = CONFIG_FAIL firmware_rsp_tbl[asic_index]._del(port) break else: res_dict[1] = 'unknown' res_dict[0] = CONFIG_FAIL firmware_rsp_tbl[asic_index]._del(port) break delete_all_keys_in_db_table("STATE_DB", rsp_table_name) return res_dict # 'muxcable' command ("show muxcable") # @click.group(name='muxcable', cls=clicommon.AliasedGroup) def muxcable(): """SONiC command line - 'show muxcable' command""" global platform_sfputil # Load platform-specific sfputil class platform_sfputil_helper.load_platform_sfputil() # Load port info platform_sfputil_helper.platform_sfputil_read_porttab_mappings() platform_sfputil = platform_sfputil_helper.platform_sfputil def get_value_for_key_in_dict(mdict, port, key, table_name): value = mdict.get(key, None) if value is None: click.echo("could not retrieve key {} value for port {} inside table {}".format(key, port, table_name)) sys.exit(STATUS_FAIL) return value def get_value_for_key_in_config_tbl(config_db, port, key, table): info_dict = {} info_dict = config_db.get_entry(table, port) if info_dict is None: click.echo("could not retrieve key {} value for port {} inside table {}".format(key, port, table)) sys.exit(STATUS_FAIL) value = get_value_for_key_in_dict(info_dict, port, key, table) return value def get_switch_name(config_db): info_dict = {} info_dict = config_db.get_entry("DEVICE_METADATA", "localhost") #click.echo("{} ".format(info_dict)) switch_name = get_value_for_key_in_dict(info_dict, "localhost", "peer_switch", "DEVICE_METADATA") if switch_name is not None: return switch_name else: click.echo("could not retreive switch name") sys.exit(STATUS_FAIL) def create_json_dump_per_port_status(db, port_status_dict, muxcable_info_dict, muxcable_health_dict, muxcable_metrics_dict, asic_index, port): res_dict = {} status_value = get_value_for_key_in_dict(muxcable_info_dict[asic_index], port, "state", "MUX_CABLE_TABLE") port_name = platform_sfputil_helper.get_interface_alias(port, db) port_status_dict["MUX_CABLE"][port_name] = {} port_status_dict["MUX_CABLE"][port_name]["STATUS"] = status_value health_value = get_value_for_key_in_dict(muxcable_health_dict[asic_index], port, "state", "MUX_LINKMGR_TABLE") port_status_dict["MUX_CABLE"][port_name]["HEALTH"] = health_value res_dict = get_hwmode_mux_direction_port(db, port) if res_dict[2] == "False": hwstatus = "absent" elif res_dict[1] == "not Y-Cable port": hwstatus = "not Y-Cable port" elif res_dict[1] == status_value: hwstatus = "consistent" else: hwstatus = "inconsistent" port_status_dict["MUX_CABLE"][port_name]["HWSTATUS"] = hwstatus last_switch_end_time = "" if "linkmgrd_switch_standby_end" in muxcable_metrics_dict[asic_index]: last_switch_end_time = muxcable_metrics_dict[asic_index].get("linkmgrd_switch_standby_end") elif "linkmgrd_switch_active_end" in muxcable_metrics_dict[asic_index]: last_switch_end_time = muxcable_metrics_dict[asic_index].get("linkmgrd_switch_active_end") port_status_dict["MUX_CABLE"][port_name]["LAST_SWITCHOVER_TIME"] = last_switch_end_time def create_table_dump_per_port_status(db, print_data, muxcable_info_dict, muxcable_health_dict, muxcable_metrics_dict, asic_index, port): print_port_data = [] res_dict = {} res_dict = get_hwmode_mux_direction_port(db, port) status_value = get_value_for_key_in_dict(muxcable_info_dict[asic_index], port, "state", "MUX_CABLE_TABLE") #status_value = get_value_for_key_in_tbl(y_cable_asic_table, port, "status") health_value = get_value_for_key_in_dict(muxcable_health_dict[asic_index], port, "state", "MUX_LINKMGR_TABLE") last_switch_end_time = "" if "linkmgrd_switch_standby_end" in muxcable_metrics_dict[asic_index]: last_switch_end_time = muxcable_metrics_dict[asic_index].get("linkmgrd_switch_standby_end") elif "linkmgrd_switch_active_end" in muxcable_metrics_dict[asic_index]: last_switch_end_time = muxcable_metrics_dict[asic_index].get("linkmgrd_switch_active_end") port_name = platform_sfputil_helper.get_interface_alias(port, db) print_port_data.append(port_name) print_port_data.append(status_value) print_port_data.append(health_value) if res_dict[2] == "False": hwstatus = "absent" elif res_dict[1] == "not Y-Cable port": hwstatus = "not Y-Cable port" elif res_dict[1] == status_value: hwstatus = "consistent" else: hwstatus = "inconsistent" print_port_data.append(hwstatus) print_port_data.append(last_switch_end_time) print_data.append(print_port_data) def create_table_dump_per_port_config(db ,print_data, per_npu_configdb, asic_id, port): port_list = [] port_name = platform_sfputil_helper.get_interface_alias(port, db) port_list.append(port_name) state_value = get_value_for_key_in_config_tbl(per_npu_configdb[asic_id], port, "state", "MUX_CABLE") port_list.append(state_value) ipv4_value = get_value_for_key_in_config_tbl(per_npu_configdb[asic_id], port, "server_ipv4", "MUX_CABLE") port_list.append(ipv4_value) ipv6_value = get_value_for_key_in_config_tbl(per_npu_configdb[asic_id], port, "server_ipv6", "MUX_CABLE") port_list.append(ipv6_value) print_data.append(port_list) def create_json_dump_per_port_config(db, port_status_dict, per_npu_configdb, asic_id, port): state_value = get_value_for_key_in_config_tbl(per_npu_configdb[asic_id], port, "state", "MUX_CABLE") port_name = platform_sfputil_helper.get_interface_alias(port, db) port_status_dict["MUX_CABLE"]["PORTS"][port_name] = {"STATE": state_value} port_status_dict["MUX_CABLE"]["PORTS"][port_name]["SERVER"] = {} ipv4_value = get_value_for_key_in_config_tbl(per_npu_configdb[asic_id], port, "server_ipv4", "MUX_CABLE") port_status_dict["MUX_CABLE"]["PORTS"][port_name]["SERVER"]["IPv4"] = ipv4_value ipv6_value = get_value_for_key_in_config_tbl(per_npu_configdb[asic_id], port, "server_ipv6", "MUX_CABLE") port_status_dict["MUX_CABLE"]["PORTS"][port_name]["SERVER"]["IPv6"] = ipv6_value @muxcable.command() @click.argument('port', required=False, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def status(db, port, json_output): """Show muxcable status information""" port = platform_sfputil_helper.get_interface_name(port, db) port_table_keys = {} port_health_table_keys = {} port_metrics_table_keys = {} per_npu_statedb = {} muxcable_info_dict = {} muxcable_health_dict = {} muxcable_metrics_dict = {} # Getting all front asic namespace and correspding config and state DB connector namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) per_npu_statedb[asic_id] = SonicV2Connector(use_unix_socket_path=False, namespace=namespace) per_npu_statedb[asic_id].connect(per_npu_statedb[asic_id].STATE_DB) port_table_keys[asic_id] = per_npu_statedb[asic_id].keys( per_npu_statedb[asic_id].STATE_DB, 'MUX_CABLE_TABLE|*') port_health_table_keys[asic_id] = per_npu_statedb[asic_id].keys( per_npu_statedb[asic_id].STATE_DB, 'MUX_LINKMGR_TABLE|*') port_metrics_table_keys[asic_id] = per_npu_statedb[asic_id].keys( per_npu_statedb[asic_id].STATE_DB, 'MUX_METRICS_TABLE|*') if port is not None: asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo("Got invalid asic index for port {}, cant retreive mux status".format(port_name)) sys.exit(STATUS_FAIL) muxcable_info_dict[asic_index] = per_npu_statedb[asic_index].get_all( per_npu_statedb[asic_index].STATE_DB, 'MUX_CABLE_TABLE|{}'.format(port)) muxcable_health_dict[asic_index] = per_npu_statedb[asic_index].get_all( per_npu_statedb[asic_index].STATE_DB, 'MUX_LINKMGR_TABLE|{}'.format(port)) muxcable_metrics_dict[asic_index] = per_npu_statedb[asic_index].get_all( per_npu_statedb[asic_index].STATE_DB, 'MUX_METRICS_TABLE|{}'.format(port)) if muxcable_info_dict[asic_index] is not None: logical_key = "MUX_CABLE_TABLE|{}".format(port) logical_health_key = "MUX_LINKMGR_TABLE|{}".format(port) logical_metrics_key = "MUX_METRICS_TABLE|{}".format(port) if logical_key in port_table_keys[asic_index] and logical_health_key in port_health_table_keys[asic_index]: if logical_metrics_key not in port_metrics_table_keys[asic_index]: muxcable_metrics_dict[asic_index] = {} if json_output: port_status_dict = {} port_status_dict["MUX_CABLE"] = {} create_json_dump_per_port_status(db, port_status_dict, muxcable_info_dict, muxcable_health_dict, muxcable_metrics_dict, asic_index, port) click.echo("{}".format(json.dumps(port_status_dict, indent=4))) sys.exit(STATUS_SUCCESSFUL) else: print_data = [] create_table_dump_per_port_status(db, print_data, muxcable_info_dict, muxcable_health_dict, muxcable_metrics_dict, asic_index, port) headers = ['PORT', 'STATUS', 'HEALTH', 'HWSTATUS', 'LAST_SWITCHOVER_TIME'] click.echo(tabulate(print_data, headers=headers)) sys.exit(STATUS_SUCCESSFUL) else: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo("this is not a valid port present on mux_cable".format(port_name)) sys.exit(STATUS_FAIL) else: click.echo("there is not a valid asic table for this asic_index".format(asic_index)) sys.exit(STATUS_FAIL) else: if json_output: port_status_dict = {} port_status_dict["MUX_CABLE"] = {} for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) for key in natsorted(port_table_keys[asic_id]): port = key.split("|")[1] muxcable_info_dict[asic_id] = per_npu_statedb[asic_id].get_all( per_npu_statedb[asic_id].STATE_DB, 'MUX_CABLE_TABLE|{}'.format(port)) muxcable_health_dict[asic_id] = per_npu_statedb[asic_id].get_all( per_npu_statedb[asic_id].STATE_DB, 'MUX_LINKMGR_TABLE|{}'.format(port)) muxcable_metrics_dict[asic_id] = per_npu_statedb[asic_id].get_all( per_npu_statedb[asic_id].STATE_DB, 'MUX_METRICS_TABLE|{}'.format(port)) if not muxcable_metrics_dict[asic_id]: muxcable_metrics_dict[asic_id] = {} create_json_dump_per_port_status(db, port_status_dict, muxcable_info_dict, muxcable_health_dict, muxcable_metrics_dict, asic_id, port) click.echo("{}".format(json.dumps(port_status_dict, indent=4))) else: print_data = [] for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) for key in natsorted(port_table_keys[asic_id]): port = key.split("|")[1] muxcable_health_dict[asic_id] = per_npu_statedb[asic_id].get_all( per_npu_statedb[asic_id].STATE_DB, 'MUX_LINKMGR_TABLE|{}'.format(port)) muxcable_info_dict[asic_id] = per_npu_statedb[asic_id].get_all( per_npu_statedb[asic_id].STATE_DB, 'MUX_CABLE_TABLE|{}'.format(port)) muxcable_metrics_dict[asic_id] = per_npu_statedb[asic_id].get_all( per_npu_statedb[asic_id].STATE_DB, 'MUX_METRICS_TABLE|{}'.format(port)) if not muxcable_metrics_dict[asic_id]: muxcable_metrics_dict[asic_id] = {} create_table_dump_per_port_status(db, print_data, muxcable_info_dict, muxcable_health_dict, muxcable_metrics_dict, asic_id, port) headers = ['PORT', 'STATUS', 'HEALTH', 'HWSTATUS','LAST_SWITCHOVER_TIME'] click.echo(tabulate(print_data, headers=headers)) sys.exit(STATUS_SUCCESSFUL) @muxcable.command() @click.argument('port', required=False, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def config(db, port, json_output): """Show muxcable config information""" port = platform_sfputil_helper.get_interface_name(port, db) port_mux_tbl_keys = {} asic_start_idx = None per_npu_configdb = {} mux_tbl_cfg_db = {} peer_switch_tbl_cfg_db = {} # Getting all front asic namespace and correspding config and state DB connector namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) if asic_start_idx is None: asic_start_idx = asic_id # TO-DO replace the macros with correct swsscommon names #config_db[asic_id] = swsscommon.DBConnector("CONFIG_DB", REDIS_TIMEOUT_MSECS, True, namespace) #mux_tbl_cfg_db[asic_id] = swsscommon.Table(config_db[asic_id], swsscommon.CFG_MUX_CABLE_TABLE_NAME) per_npu_configdb[asic_id] = ConfigDBConnector(use_unix_socket_path=False, namespace=namespace) per_npu_configdb[asic_id].connect() mux_tbl_cfg_db[asic_id] = per_npu_configdb[asic_id].get_table("MUX_CABLE") peer_switch_tbl_cfg_db[asic_id] = per_npu_configdb[asic_id].get_table("PEER_SWITCH") #peer_switch_tbl_cfg_db[asic_id] = swsscommon.Table(config_db[asic_id], swsscommon.CFG_PEER_SWITCH_TABLE_NAME) port_mux_tbl_keys[asic_id] = mux_tbl_cfg_db[asic_id].keys() if port is not None: asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo("Got invalid asic index for port {}, cant retreive mux status".format(port_name)) sys.exit(CONFIG_FAIL) port_status_dict = {} port_status_dict["MUX_CABLE"] = {} port_status_dict["MUX_CABLE"]["PEER_TOR"] = {} peer_switch_value = None switch_name = get_switch_name(per_npu_configdb[asic_start_idx]) if asic_start_idx is not None: peer_switch_value = get_value_for_key_in_config_tbl( per_npu_configdb[asic_start_idx], switch_name, "address_ipv4", "PEER_SWITCH") port_status_dict["MUX_CABLE"]["PEER_TOR"] = peer_switch_value if port_mux_tbl_keys[asic_id] is not None: if port in port_mux_tbl_keys[asic_id]: if json_output: port_status_dict["MUX_CABLE"] = {} port_status_dict["MUX_CABLE"]["PORTS"] = {} create_json_dump_per_port_config(db, port_status_dict, per_npu_configdb, asic_id, port) click.echo("{}".format(json.dumps(port_status_dict, indent=4))) sys.exit(CONFIG_SUCCESSFUL) else: print_data = [] print_peer_tor = [] create_table_dump_per_port_config(db, print_data, per_npu_configdb, asic_id, port) headers = ['SWITCH_NAME', 'PEER_TOR'] peer_tor_data = [] peer_tor_data.append(switch_name) peer_tor_data.append(peer_switch_value) print_peer_tor.append(peer_tor_data) click.echo(tabulate(print_peer_tor, headers=headers)) headers = ['port', 'state', 'ipv4', 'ipv6'] click.echo(tabulate(print_data, headers=headers)) sys.exit(CONFIG_SUCCESSFUL) else: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo("this is not a valid port present on mux_cable".format(port_name)) sys.exit(CONFIG_FAIL) else: click.echo("there is not a valid asic table for this asic_index".format(asic_index)) sys.exit(CONFIG_FAIL) else: port_status_dict = {} port_status_dict["MUX_CABLE"] = {} port_status_dict["MUX_CABLE"]["PEER_TOR"] = {} peer_switch_value = None switch_name = get_switch_name(per_npu_configdb[asic_start_idx]) if asic_start_idx is not None: peer_switch_value = get_value_for_key_in_config_tbl( per_npu_configdb[asic_start_idx], switch_name, "address_ipv4", "PEER_SWITCH") port_status_dict["MUX_CABLE"]["PEER_TOR"] = peer_switch_value if json_output: port_status_dict["MUX_CABLE"]["PORTS"] = {} for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) for port in natsorted(port_mux_tbl_keys[asic_id]): create_json_dump_per_port_config(db, port_status_dict, per_npu_configdb, asic_id, port) click.echo("{}".format(json.dumps(port_status_dict, indent=4))) else: print_data = [] print_peer_tor = [] for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) for port in natsorted(port_mux_tbl_keys[asic_id]): create_table_dump_per_port_config(db, print_data, per_npu_configdb, asic_id, port) headers = ['SWITCH_NAME', 'PEER_TOR'] peer_tor_data = [] peer_tor_data.append(switch_name) peer_tor_data.append(peer_switch_value) print_peer_tor.append(peer_tor_data) click.echo(tabulate(print_peer_tor, headers=headers)) headers = ['port', 'state', 'ipv4', 'ipv6'] click.echo(tabulate(print_data, headers=headers)) sys.exit(CONFIG_SUCCESSFUL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.argument('target', metavar='<target> NIC TORA TORB LOCAL', required=True, default=None, type=click.Choice(["NIC", "TORA", "TORB", "LOCAL"])) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def berinfo(db, port, target, json_output): """Show muxcable BER (bit error rate) information""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") if port is not None: res_dict = {} result = {} param_dict = {} target = parse_target(target) param_dict["target"] = target res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "get_ber", "status", "True", "XCVRD_GET_BER_CMD", "XCVRD_GET_BER_CMD_ARG", "XCVRD_GET_BER_RSP", port, 10, param_dict, "ber") if res_dict[1] == "True": result = get_result(port, res_dict, "fec" , result, "XCVRD_GET_BER_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") port = platform_sfputil_helper.get_interface_alias(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for ber value".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.argument('target', metavar='<target> NIC TORA TORB LOCAL', required=True, default=None, type=click.Choice(["NIC", "TORA", "TORB", "LOCAL"])) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def eyeinfo(db, port, target, json_output): """Show muxcable eye information in mv""" port = platform_sfputil_helper.get_interface_alias(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") if port is not None: res_dict = {} result = {} param_dict = {} target = parse_target(target) param_dict["target"] = target res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "get_ber", "status", "True", "XCVRD_GET_BER_CMD", "XCVRD_GET_BER_CMD_ARG", "XCVRD_GET_BER_RSP", port, 10, param_dict, "eye") if res_dict[1] == "True": result = get_result(port, res_dict, "fec" , result, "XCVRD_GET_BER_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") port = platform_sfputil_helper.get_interface_alias(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for ber value".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.argument('target', metavar='<target> NIC TORA TORB LOCAL', required=True, default=None, type=click.Choice(["NIC", "TORA", "TORB", "LOCAL"])) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def fecstatistics(db, port, target, json_output): """Show muxcable fec layer statistics information, target NIC TORA TORB""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") if port is not None: res_dict = {} result = {} param_dict = {} target = parse_target(target) param_dict["target"] = target res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "get_ber", "status", "True", "XCVRD_GET_BER_CMD", "XCVRD_GET_BER_CMD_ARG", "XCVRD_GET_BER_RSP", port, 10, param_dict, "fec_stats") if res_dict[1] == "True": result = get_result(port, res_dict, "fec" , result, "XCVRD_GET_BER_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") port = platform_sfputil_helper.get_interface_alias(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for ber value".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.argument('target', metavar='<target> NIC TORA TORB LOCAL', required=True, default=None, type=click.Choice(["NIC", "TORA", "TORB", "LOCAL"])) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def pcsstatistics(db, port, target, json_output): """Show muxcable pcs layer statistics information""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") if port is not None: res_dict = {} result = {} param_dict = {} target = parse_target(target) param_dict["target"] = target res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "get_ber", "status", "True", "XCVRD_GET_BER_CMD", "XCVRD_GET_BER_CMD_ARG", "XCVRD_GET_BER_RSP", port, 10, param_dict, "pcs_stats") if res_dict[1] == "True": result = get_result(port, res_dict, "fec" , result, "XCVRD_GET_BER_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") port = platform_sfputil_helper.get_interface_alias(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for pcs statistics".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.argument('option', required=False, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def debugdumpregisters(db, port, option, json_output): """Show muxcable debug deump registers information, preagreed by vendors""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") if port is not None: res_dict = {} result = {} param_dict = {} param_dict["option"] = option res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "get_ber", "status", "True", "XCVRD_GET_BER_CMD", "XCVRD_GET_BER_CMD_ARG", "XCVRD_GET_BER_RSP", port, 100, param_dict, "debug_dump") if res_dict[1] == "True": result = get_result(port, res_dict, "fec" , result, "XCVRD_GET_BER_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD_ARG") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") port = platform_sfputil_helper.get_interface_alias(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for debug dump registers".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def alivecablestatus(db, port, json_output): """Show muxcable alive information """ port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") if port is not None: res_dict = {} result = {} res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "get_ber", "status", "True", "XCVRD_GET_BER_CMD", None, "XCVRD_GET_BER_RSP", port, 10, None, "cable_alive") if res_dict[1] == "True": result = get_result(port, res_dict, "fec" , result, "XCVRD_GET_BER_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_BER_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_BER_RES") port = platform_sfputil_helper.get_interface_alias(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for cable alive status".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', required=True, default=None) @clicommon.pass_db def cableinfo(db, port): """Show muxcable cable information""" port = platform_sfputil_helper.get_interface_name(port, db) if platform_sfputil is not None: physical_port_list = platform_sfputil_helper.logical_port_name_to_physical_port_list(port) if not isinstance(physical_port_list, list): click.echo("ERR: Unable to get a port on muxcable port") sys.exit(EXIT_FAIL) if len(physical_port_list) != 1: click.echo("ERR: Unable to get a single port on muxcable") sys.exit(EXIT_FAIL) physical_port = physical_port_list[0] import sonic_y_cable.y_cable part_num = sonic_y_cable.y_cable.get_part_number(physical_port) if part_num == False or part_num == -1: click.echo("ERR: Unable to get cable info part number") sys.exit(EXIT_FAIL) vendor = sonic_y_cable.y_cable.get_vendor(physical_port) if vendor == False or vendor == -1: click.echo("ERR: Unable to get cable info vendor name") sys.exit(EXIT_FAIL) headers = ['Vendor', 'Model'] body = [[vendor, part_num]] click.echo(tabulate(body, headers=headers)) def get_hwmode_mux_direction_port(db, port): delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_HWMODE_DIR_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RES") res_dict = {} res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict[2] = "unknown" result = {} if port is not None: res_dict = update_and_get_response_for_xcvr_cmd( "state", "state", "True", "XCVRD_SHOW_HWMODE_DIR_CMD", "XCVRD_SHOW_HWMODE_DIR_RES", "XCVRD_SHOW_HWMODE_DIR_RSP", port, 1, None, "probe") result = get_result(port, res_dict, "muxdirection" , result, "XCVRD_SHOW_HWMODE_DIR_RES") res_dict[2] = result.get("presence","unknown") return res_dict @muxcable.group(cls=clicommon.AbbreviationGroup) def hwmode(): """Shows the muxcable hardware information directly""" pass @hwmode.command() @click.argument('port', metavar='<port_name>', required=False, default=None) @clicommon.pass_db def muxdirection(db, port): """Shows the current direction of the muxcable {active/standy}""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_HWMODE_DIR_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RES") if port is not None: if check_port_in_mux_cable_table(port) == False: click.echo("Not Y-cable port") return CONFIG_FAIL res_dict = get_hwmode_mux_direction_port(db, port) body = [] temp_list = [] headers = ['Port', 'Direction', 'Presence'] port = platform_sfputil_helper.get_interface_alias(port, db) temp_list.append(port) temp_list.append(res_dict[1]) temp_list.append(res_dict[2]) body.append(temp_list) rc = res_dict[0] click.echo(tabulate(body, headers=headers)) delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_HWMODE_DIR_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RES") return rc else: logical_port_list = platform_sfputil_helper.get_logical_list() rc_exit = True body = [] for port in logical_port_list: if platform_sfputil is not None: physical_port_list = platform_sfputil_helper.logical_port_name_to_physical_port_list(port) if not isinstance(physical_port_list, list): continue if len(physical_port_list) != 1: continue if not check_port_in_mux_cable_table(port): continue physical_port = physical_port_list[0] logical_port_list_for_physical_port = platform_sfputil_helper.get_physical_to_logical() logical_port_list_per_port = logical_port_list_for_physical_port.get(physical_port, None) """ This check is required for checking whether or not this logical port is the one which is actually mapped to physical port and by convention it is always the first port. TODO: this should be removed with more logic to check which logical port maps to actual physical port being used""" if port != logical_port_list_per_port[0]: continue temp_list = [] res_dict = get_hwmode_mux_direction_port(db, port) port = platform_sfputil_helper.get_interface_alias(port, db) temp_list.append(port) temp_list.append(res_dict[1]) temp_list.append(res_dict[2]) body.append(temp_list) rc = res_dict[0] if rc != 0: rc_exit = False headers = ['Port', 'Direction', 'Presence'] click.echo(tabulate(body, headers=headers)) delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_HWMODE_DIR_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_DIR_RES") if rc_exit == False: sys.exit(EXIT_FAIL) @hwmode.command() @click.argument('port', metavar='<port_name>', required=False, default=None) @clicommon.pass_db def switchmode(db, port): """Shows the current switching mode of the muxcable {auto/manual}""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_HWMODE_SWMODE_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_SWMODE_RSP") if port is not None: if check_port_in_mux_cable_table(port) == False: click.echo("Not Y-cable port") return CONFIG_FAIL res_dict = {} res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "state", "state", "True", "XCVRD_SHOW_HWMODE_SWMODE_CMD", None, "XCVRD_SHOW_HWMODE_SWMODE_RSP", port, 1, None, "probe") body = [] temp_list = [] headers = ['Port', 'Switching'] port = platform_sfputil_helper.get_interface_alias(port, db) temp_list.append(port) temp_list.append(res_dict[1]) body.append(temp_list) rc = res_dict[0] click.echo(tabulate(body, headers=headers)) delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_HWMODE_SWMODE_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_SWMODE_RSP") return rc else: logical_port_list = platform_sfputil_helper.get_logical_list() rc_exit = True body = [] for port in logical_port_list: if platform_sfputil is not None: physical_port_list = platform_sfputil_helper.logical_port_name_to_physical_port_list(port) if not isinstance(physical_port_list, list): continue if len(physical_port_list) != 1: continue if not check_port_in_mux_cable_table(port): continue physical_port = physical_port_list[0] logical_port_list_for_physical_port = platform_sfputil_helper.get_physical_to_logical() logical_port_list_per_port = logical_port_list_for_physical_port.get(physical_port, None) """ This check is required for checking whether or not this logical port is the one which is actually mapped to physical port and by convention it is always the first port. TODO: this should be removed with more logic to check which logical port maps to actual physical port being used""" if port != logical_port_list_per_port[0]: continue temp_list = [] res_dict = {} res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "state", "state", "True", "XCVRD_SHOW_HWMODE_SWMODE_CMD", None, "XCVRD_SHOW_HWMODE_SWMODE_RSP", port, 1, None, "probe") port = platform_sfputil_helper.get_interface_alias(port, db) temp_list.append(port) temp_list.append(res_dict[1]) rc = res_dict[1] if rc != 0: rc_exit = False body.append(temp_list) delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_HWMODE_SWMODE_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_HWMODE_SWMODE_RSP") headers = ['Port', 'Switching'] click.echo(tabulate(body, headers=headers)) if rc_exit == False: sys.exit(EXIT_FAIL) def get_single_port_firmware_version(port, res_dict, mux_info_dict): state_db, appl_db = {}, {} xcvrd_show_fw_rsp_sts_tbl_keys = {} xcvrd_show_fw_rsp_sts_tbl = {} xcvrd_show_fw_rsp_tbl = {} xcvrd_show_fw_cmd_tbl, xcvrd_show_fw_res_tbl = {}, {} sel = swsscommon.Select() namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) state_db[asic_id] = db_connect("STATE_DB", namespace) appl_db[asic_id] = db_connect("APPL_DB", namespace) xcvrd_show_fw_cmd_tbl[asic_id] = swsscommon.Table(appl_db[asic_id], "XCVRD_SHOW_FW_CMD") xcvrd_show_fw_rsp_tbl[asic_id] = swsscommon.SubscriberStateTable(state_db[asic_id], "XCVRD_SHOW_FW_RSP") xcvrd_show_fw_rsp_sts_tbl[asic_id] = swsscommon.Table(state_db[asic_id], "XCVRD_SHOW_FW_RSP") xcvrd_show_fw_res_tbl[asic_id] = swsscommon.Table(state_db[asic_id], "XCVRD_SHOW_FW_RES") xcvrd_show_fw_rsp_sts_tbl_keys[asic_id] = xcvrd_show_fw_rsp_sts_tbl[asic_id].getKeys() for key in xcvrd_show_fw_rsp_sts_tbl_keys[asic_id]: xcvrd_show_fw_rsp_sts_tbl[asic_id]._del(key) sel.addSelectable(xcvrd_show_fw_rsp_tbl[asic_id]) rc = 0 res_dict[0] = 'unknown' logical_port_list = platform_sfputil_helper.get_logical_list() if port not in logical_port_list: click.echo("ERR: This is not a valid port, valid ports ({})".format(", ".join(logical_port_list))) rc = EXIT_FAIL res_dict[1] = rc return asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: click.echo("Got invalid asic index for port {}, cant retreive mux status".format(port)) rc = CONFIG_FAIL res_dict[1] = rc return fvs = swsscommon.FieldValuePairs([('firmware_version', 'probe')]) xcvrd_show_fw_cmd_tbl[asic_index].set(port, fvs) # Listen indefinitely for changes to the HW_MUX_CABLE_TABLE in the Application DB's while True: # Use timeout to prevent ignoring the signals we want to handle # in signal_handler() (e.g. SIGTERM for graceful shutdown) (state, selectableObj) = sel.select(SELECT_TIMEOUT) if state == swsscommon.Select.TIMEOUT: # Do not flood log when select times out continue if state != swsscommon.Select.OBJECT: click.echo("sel.select() did not return swsscommon.Select.OBJECT for sonic_y_cable updates") continue # Get the redisselect object from selectable object redisSelectObj = swsscommon.CastSelectableToRedisSelectObj( selectableObj) # Get the corresponding namespace from redisselect db connector object namespace = redisSelectObj.getDbConnector().getNamespace() asic_index = multi_asic.get_asic_index_from_namespace(namespace) (port_m, op_m, fvp_m) = xcvrd_show_fw_rsp_tbl[asic_index].pop() if not port_m: click.echo("Did not receive a port response {}".format(port)) res_dict[0] = 'False' res_dict[1] = EXIT_FAIL xcvrd_show_fw_rsp_sts_tbl[asic_index]._del(port) break if port_m != port: res_dict[0] = 'False' res_dict[1] = EXIT_FAIL xcvrd_show_fw_rsp_sts_tbl[asic_index]._del(port) continue if fvp_m: fvp_dict = dict(fvp_m) if "status" in fvp_dict: # check if xcvrd got a probe command state = fvp_dict["status"] res_dict[0] = state res_dict[1] = EXIT_FAIL xcvrd_show_fw_rsp_sts_tbl[asic_index]._del(port) (status, fvp) = xcvrd_show_fw_res_tbl[asic_index].get(port) res_dir = dict(fvp) mux_info_dict["version_nic_active"] = res_dir.get("version_nic_active", None) mux_info_dict["version_nic_inactive"] = res_dir.get("version_nic_inactive", None) mux_info_dict["version_nic_next"] = res_dir.get("version_nic_next", None) mux_info_dict["version_peer_active"] = res_dir.get("version_peer_active", None) mux_info_dict["version_peer_inactive"] = res_dir.get("version_peer_inactive", None) mux_info_dict["version_peer_next"] = res_dir.get("version_peer_next", None) mux_info_dict["version_self_active"] = res_dir.get("version_self_active", None) mux_info_dict["version_self_inactive"] = res_dir.get("version_self_inactive", None) mux_info_dict["version_self_next"] = res_dir.get("version_self_next", None) break else: res_dict[0] = 'False' res_dict[1] = EXIT_FAIL xcvrd_show_fw_rsp_sts_tbl[asic_index]._del(port) break else: res_dict[0] = 'False' res_dict[1] = EXIT_FAIL xcvrd_show_fw_rsp_sts_tbl[asic_index]._del(port) break delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_FW_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_FW_RES") return @muxcable.group(cls=clicommon.AbbreviationGroup) def firmware(): """Show muxcable firmware command""" pass @firmware.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.option('--active', 'active', required=False, is_flag=True, type=click.BOOL, help="display the firmware version of only active bank within MCU's") @clicommon.pass_db def version(db, port, active): """Show muxcable firmware version""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_DOWN_FW_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_DOWN_FW_RSP") delete_all_keys_in_db_table("APPL_DB", "XCVRD_SHOW_FW_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_FW_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_FW_RES") if port is not None: res_dict = {} mux_info_dict, mux_info_active_dict = {}, {} res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" mux_info_dict["version_nic_active"] = "N/A" mux_info_dict["version_nic_inactive"] = "N/A" mux_info_dict["version_nic_next"] = "N/A" mux_info_dict["version_peer_active"] = "N/A" mux_info_dict["version_peer_inactive"] = "N/A" mux_info_dict["version_peer_next"] = "N/A" mux_info_dict["version_self_active"] = "N/A" mux_info_dict["version_self_inactive"] = "N/A" mux_info_dict["version_self_next"] = "N/A" res_dict = update_and_get_response_for_xcvr_cmd( "firmware_version", "status", "True", "XCVRD_SHOW_FW_CMD", None, "XCVRD_SHOW_FW_RSP", port, 20, None, "probe") if res_dict[1] == "True": mux_info_dict = get_response_for_version(port, mux_info_dict) delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_FW_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_SHOW_FW_RES") if active is True: for key in mux_info_dict: if key.endswith("_active"): mux_info_active_dict[key] = mux_info_dict[key] click.echo("{}".format(json.dumps(mux_info_active_dict, indent=4))) else: click.echo("{}".format(json.dumps(mux_info_dict, indent=4))) else: port_name = platform_sfputil_helper.get_interface_name(port, db) click.echo("Did not get a valid Port for mux firmware version".format(port_name)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def metrics(db, port, json_output): """Show muxcable metrics <port>""" port = platform_sfputil_helper.get_interface_name(port, db) metrics_table_keys = {} per_npu_statedb = {} metrics_dict = {} # Getting all front asic namespace and correspding config and state DB connector namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) # replace these with correct macros per_npu_statedb[asic_id] = swsscommon.SonicV2Connector(use_unix_socket_path=False, namespace=namespace) per_npu_statedb[asic_id].connect(per_npu_statedb[asic_id].STATE_DB) metrics_table_keys[asic_id] = per_npu_statedb[asic_id].keys( per_npu_statedb[asic_id].STATE_DB, 'MUX_METRICS_TABLE|*') if port is not None: logical_port_list = platform_sfputil_helper.get_logical_list() if port not in logical_port_list: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo(("ERR: Not a valid logical port for muxcable firmware {}".format(port_name))) sys.exit(CONFIG_FAIL) asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo("Got invalid asic index for port {}, cant retreive mux status".format(port_name)) metrics_dict[asic_index] = per_npu_statedb[asic_index].get_all( per_npu_statedb[asic_index].STATE_DB, 'MUX_METRICS_TABLE|{}'.format(port)) ordered_dict = OrderedDict(sorted(metrics_dict[asic_index].items(), key=itemgetter(1))) if json_output: click.echo("{}".format(json.dumps(ordered_dict, indent=4))) else: print_data = [] for key, val in ordered_dict.items(): print_port_data = [] port = platform_sfputil_helper.get_interface_alias(port, db) print_port_data.append(port) print_port_data.append(key) print_port_data.append(val) print_data.append(print_port_data) headers = ['PORT', 'EVENT', 'TIME'] click.echo(tabulate(print_data, headers=headers)) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def event_log(db, port, json_output): """Show muxcable event log <port>""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_EVENT_LOG_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_EVENT_LOG_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_EVENT_LOG_RES") if port is not None: res_dict = {} result = {} mux_info_dict = {} res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "show_event", "status", "True", "XCVRD_EVENT_LOG_CMD", None, "XCVRD_EVENT_LOG_RSP", port, 1000, None, "probe") if res_dict[1] == "True": result = get_event_logs(port, res_dict, mux_info_dict) delete_all_keys_in_db_table("STATE_DB", "XCVRD_EVENT_LOG_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_EVENT_LOG_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_EVENT_LOG_CMD") port = platform_sfputil_helper.get_interface_alias(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for event log".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def get_fec_anlt_speed(db, port, json_output): """Show muxcable configurations for fec anlt speed <port>""" port = platform_sfputil_helper.get_interface_name(port, db) delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_FEC_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_FEC_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_FEC_RES") if port is not None: res_dict = {} result = {} res_dict[0] = CONFIG_FAIL res_dict[1] = "unknown" res_dict = update_and_get_response_for_xcvr_cmd( "get_fec", "status", "True", "XCVRD_GET_FEC_CMD", None, "XCVRD_GET_FEC_RSP", port, 10, None, "probe") if res_dict[1] == "True": result = get_result(port, res_dict, "fec" , result, "XCVRD_GET_FEC_RES") delete_all_keys_in_db_table("APPL_DB", "XCVRD_GET_FEC_CMD") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_FEC_RSP") delete_all_keys_in_db_table("STATE_DB", "XCVRD_GET_FEC_RES") port = platform_sfputil_helper.get_interface_name(port, db) if json_output: click.echo("{}".format(json.dumps(result, indent=4))) else: headers = ['PORT', 'ATTR', 'VALUE'] res = [[port]+[key] + [val] for key, val in result.items()] click.echo(tabulate(res, headers=headers)) else: click.echo("Did not get a valid Port for fec value speed anlt".format(port)) sys.exit(CONFIG_FAIL) @muxcable.command() @click.argument('port', metavar='<port_name>', required=True, default=None) @click.option('--json', 'json_output', required=False, is_flag=True, type=click.BOOL, help="display the output in json format") @clicommon.pass_db def packetloss(db, port, json_output): """show muxcable packetloss <port>""" port = platform_sfputil_helper.get_interface_name(port, db) pckloss_table_keys = {} per_npu_statedb = {} pckloss_dict = {} namespaces = multi_asic.get_front_end_namespaces() for namespace in namespaces: asic_id = multi_asic.get_asic_index_from_namespace(namespace) per_npu_statedb[asic_id] = swsscommon.SonicV2Connector(use_unix_socket_path=True, namespace=namespace) per_npu_statedb[asic_id].connect(per_npu_statedb[asic_id].STATE_DB) pckloss_table_keys[asic_id] = per_npu_statedb[asic_id].keys( per_npu_statedb[asic_id].STATE_DB, 'LINK_PROBE_STATS|*') if port is not None: logical_port_list = platform_sfputil_helper.get_logical_list() if port not in logical_port_list: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo(("ERR: Not a valid logical port for muxcable firmware {}".format(port_name))) sys.exit(CONFIG_FAIL) asic_index = None if platform_sfputil is not None: asic_index = platform_sfputil_helper.get_asic_id_for_logical_port(port) if asic_index is None: # TODO this import is only for unit test purposes, and should be removed once sonic_platform_base # is fully mocked import sonic_platform_base.sonic_sfp.sfputilhelper asic_index = sonic_platform_base.sonic_sfp.sfputilhelper.SfpUtilHelper().get_asic_id_for_logical_port(port) if asic_index is None: port_name = platform_sfputil_helper.get_interface_alias(port, db) click.echo("Got invalid asic index for port {}, cant retreive pck loss info".format(port_name)) pckloss_dict[asic_index] = per_npu_statedb[asic_index].get_all( per_npu_statedb[asic_index].STATE_DB, 'LINK_PROBE_STATS|{}'.format(port)) ordered_dict = OrderedDict(sorted(pckloss_dict[asic_index].items(), key=itemgetter(1))) if json_output: click.echo("{}".format(json.dumps(ordered_dict, indent=4))) else: print_count = [] print_event = [] for key, val in ordered_dict.items(): print_port_data = [] port = platform_sfputil_helper.get_interface_alias(port, db) print_port_data.append(port) print_port_data.append(key) print_port_data.append(val) if "count" in key: print_count.append(print_port_data) else: print_event.append(print_port_data) count_headers = ['PORT', 'COUNT', 'VALUE'] event_headers = ['PORT', 'EVENT', 'TIME'] click.echo(tabulate(print_count, headers=count_headers)) click.echo(tabulate(print_event, headers=event_headers))
42.192398
174
0.673648
0d744718f04029fb305ecf660b16088f097f8355
1,531
py
Python
problem_solving/warmup/diagonal_difference/aut_tests.py
hugolribeiro/hackerrank_exercises
d2757b24479c26ec39e01091e3a15e8980e97864
[ "MIT" ]
null
null
null
problem_solving/warmup/diagonal_difference/aut_tests.py
hugolribeiro/hackerrank_exercises
d2757b24479c26ec39e01091e3a15e8980e97864
[ "MIT" ]
null
null
null
problem_solving/warmup/diagonal_difference/aut_tests.py
hugolribeiro/hackerrank_exercises
d2757b24479c26ec39e01091e3a15e8980e97864
[ "MIT" ]
null
null
null
from main import diagonalDifference arr1 = [[11, 2, 4], [4, 5, 6], [10, 8, -12]] result1 = diagonalDifference(arr1) answer1 = 15 if result1 == answer1: print(f'Test number 1 \nExpected Output: {answer1}\nThe output: {result1} \n\033[0;32;1mTest OK\033[m') else: print(f'Test number 1 \nExpected Output: {answer1}\nThe output: {result1} \n\033[0;31;1mWRONG\033[m') print('#' * 20) # Test 2 arr2 = [[6, 7, 8], [5, 2, 12], [10, 9, -10]] result2 = diagonalDifference(arr2) answer2 = 22 if result2 == answer2: print(f'Test number 2 \nExpected Output: {answer2}\nThe output: {result2} \n\033[0;32;1mTest OK\033[m') else: print(f'Test number 2 \nExpected Output: {answer2}\nThe output: {result2} \n\033[0;31;1mWRONG\033[m') print('#' * 20) # Test 3 arr3 = [[-5, 23, 4], [8, 15, 6], [23, 0, 5]] result3 = diagonalDifference(arr3) answer3 = 27 if result3 == answer3: print(f'Test number 3 \nExpected Output: {answer3}\nThe output: {result3} \n\033[0;32;1mTest OK\033[m') else: print(f'Test number 3 \nExpected Output: {answer3}\nThe output: {result3} \n\033[0;31;1mWRONG\033[m') print('#' * 20) # Test 4 arr4 = [[36, 23, -4], [41, -50, 6], [10, -15, 7]] result4 = diagonalDifference(arr4) answer4 = 37 if result4 == answer4: print(f'Test number 4 \nExpected Output: {answer4}\nThe output: {result4} \n\033[0;32;1mTest OK\033[m') else: print(f'Test number 4 \nExpected Output: {answer4}\nThe output: {result4} \n\033[0;31;1mWRONG\033[m')
30.019608
107
0.629001
8f0de34e577655e7cbab08143fb27ed8741f34cf
845
py
Python
yaya/cmdlineparser.py
libyoung/yaya
4df4b360ce90bab0e3a62a4ef482c38739b25695
[ "MIT" ]
1
2017-09-25T06:34:02.000Z
2017-09-25T06:34:02.000Z
yaya/cmdlineparser.py
libyoung/yaya
4df4b360ce90bab0e3a62a4ef482c38739b25695
[ "MIT" ]
null
null
null
yaya/cmdlineparser.py
libyoung/yaya
4df4b360ce90bab0e3a62a4ef482c38739b25695
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: UTF-8 -*- ############################## # Create Time: 20170427 # Author: liuyang # Email: czyang.liu@jrdcom.com # Content: Flow Object ############################## import argparse from argparse import ArgumentDefaultsHelpFormatter class CmdLineParser(object): def __init__(self): self.parser = argparse.ArgumentParser(description='Argument Parser for MTBF Handler', formatter_class=ArgumentDefaultsHelpFormatter) self.parser.add_argument('-loop', help='specify the current test loop ') self.parser.add_argument('-name', help='specify the current text module name') self.parser.add_argument('-mode', help='specify test mode') def parse(self, input): return self.parser.parse_args(input)
38.409091
93
0.615385
f8547657492a4e26961c0de783a01fcc6b24ff30
11,206
py
Python
sdk/python/pulumi_azure_nextgen/databoxedge/latest/share.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/databoxedge/latest/share.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/databoxedge/latest/share.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['Share'] warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:databoxedge:Share'.""", DeprecationWarning) class Share(pulumi.CustomResource): warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:databoxedge:Share'.""", DeprecationWarning) def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, access_protocol: Optional[pulumi.Input[Union[str, 'ShareAccessProtocol']]] = None, azure_container_info: Optional[pulumi.Input[pulumi.InputType['AzureContainerInfoArgs']]] = None, client_access_rights: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ClientAccessRightArgs']]]]] = None, data_policy: Optional[pulumi.Input[Union[str, 'DataPolicy']]] = None, description: Optional[pulumi.Input[str]] = None, device_name: Optional[pulumi.Input[str]] = None, monitoring_status: Optional[pulumi.Input[Union[str, 'MonitoringStatus']]] = None, name: Optional[pulumi.Input[str]] = None, refresh_details: Optional[pulumi.Input[pulumi.InputType['RefreshDetailsArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, share_status: Optional[pulumi.Input[Union[str, 'ShareStatus']]] = None, user_access_rights: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['UserAccessRightArgs']]]]] = None, __props__=None, __name__=None, __opts__=None): """ Represents a share on the Data Box Edge/Gateway device. Latest API Version: 2020-09-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Union[str, 'ShareAccessProtocol']] access_protocol: Access protocol to be used by the share. :param pulumi.Input[pulumi.InputType['AzureContainerInfoArgs']] azure_container_info: Azure container mapping for the share. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ClientAccessRightArgs']]]] client_access_rights: List of IP addresses and corresponding access rights on the share(required for NFS protocol). :param pulumi.Input[Union[str, 'DataPolicy']] data_policy: Data policy of the share. :param pulumi.Input[str] description: Description for the share. :param pulumi.Input[str] device_name: The device name. :param pulumi.Input[Union[str, 'MonitoringStatus']] monitoring_status: Current monitoring status of the share. :param pulumi.Input[str] name: The share name. :param pulumi.Input[pulumi.InputType['RefreshDetailsArgs']] refresh_details: Details of the refresh job on this share. :param pulumi.Input[str] resource_group_name: The resource group name. :param pulumi.Input[Union[str, 'ShareStatus']] share_status: Current status of the share. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['UserAccessRightArgs']]]] user_access_rights: Mapping of users and corresponding access rights on the share (required for SMB protocol). """ pulumi.log.warn("Share is deprecated: The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:databoxedge:Share'.") if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if access_protocol is None and not opts.urn: raise TypeError("Missing required property 'access_protocol'") __props__['access_protocol'] = access_protocol __props__['azure_container_info'] = azure_container_info __props__['client_access_rights'] = client_access_rights __props__['data_policy'] = data_policy __props__['description'] = description if device_name is None and not opts.urn: raise TypeError("Missing required property 'device_name'") __props__['device_name'] = device_name if monitoring_status is None and not opts.urn: raise TypeError("Missing required property 'monitoring_status'") __props__['monitoring_status'] = monitoring_status __props__['name'] = name __props__['refresh_details'] = refresh_details if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if share_status is None and not opts.urn: raise TypeError("Missing required property 'share_status'") __props__['share_status'] = share_status __props__['user_access_rights'] = user_access_rights __props__['share_mappings'] = None __props__['system_data'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:databoxedge:Share"), pulumi.Alias(type_="azure-nextgen:databoxedge/v20190301:Share"), pulumi.Alias(type_="azure-nextgen:databoxedge/v20190701:Share"), pulumi.Alias(type_="azure-nextgen:databoxedge/v20190801:Share"), pulumi.Alias(type_="azure-nextgen:databoxedge/v20200501preview:Share"), pulumi.Alias(type_="azure-nextgen:databoxedge/v20200901:Share"), pulumi.Alias(type_="azure-nextgen:databoxedge/v20200901preview:Share")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Share, __self__).__init__( 'azure-nextgen:databoxedge/latest:Share', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Share': """ Get an existing Share resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return Share(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="accessProtocol") def access_protocol(self) -> pulumi.Output[str]: """ Access protocol to be used by the share. """ return pulumi.get(self, "access_protocol") @property @pulumi.getter(name="azureContainerInfo") def azure_container_info(self) -> pulumi.Output[Optional['outputs.AzureContainerInfoResponse']]: """ Azure container mapping for the share. """ return pulumi.get(self, "azure_container_info") @property @pulumi.getter(name="clientAccessRights") def client_access_rights(self) -> pulumi.Output[Optional[Sequence['outputs.ClientAccessRightResponse']]]: """ List of IP addresses and corresponding access rights on the share(required for NFS protocol). """ return pulumi.get(self, "client_access_rights") @property @pulumi.getter(name="dataPolicy") def data_policy(self) -> pulumi.Output[Optional[str]]: """ Data policy of the share. """ return pulumi.get(self, "data_policy") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description for the share. """ return pulumi.get(self, "description") @property @pulumi.getter(name="monitoringStatus") def monitoring_status(self) -> pulumi.Output[str]: """ Current monitoring status of the share. """ return pulumi.get(self, "monitoring_status") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The object name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="refreshDetails") def refresh_details(self) -> pulumi.Output[Optional['outputs.RefreshDetailsResponse']]: """ Details of the refresh job on this share. """ return pulumi.get(self, "refresh_details") @property @pulumi.getter(name="shareMappings") def share_mappings(self) -> pulumi.Output[Sequence['outputs.MountPointMapResponse']]: """ Share mount point to the role. """ return pulumi.get(self, "share_mappings") @property @pulumi.getter(name="shareStatus") def share_status(self) -> pulumi.Output[str]: """ Current status of the share. """ return pulumi.get(self, "share_status") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ Share on ASE device """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The hierarchical type of the object. """ return pulumi.get(self, "type") @property @pulumi.getter(name="userAccessRights") def user_access_rights(self) -> pulumi.Output[Optional[Sequence['outputs.UserAccessRightResponse']]]: """ Mapping of users and corresponding access rights on the share (required for SMB protocol). """ return pulumi.get(self, "user_access_rights") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
47.084034
512
0.663127
dd505f44b116ba0e69cb475c389a18c0b9a2ee9e
56
py
Python
cartpy/__init__.py
lucascr91/cartpy
b7e6302d8b4b5406b5f4304f4d05f17e7d2ac552
[ "MIT" ]
1
2020-11-21T03:46:21.000Z
2020-11-21T03:46:21.000Z
cartpy/__init__.py
lucascr91/cartpy
b7e6302d8b4b5406b5f4304f4d05f17e7d2ac552
[ "MIT" ]
null
null
null
cartpy/__init__.py
lucascr91/cartpy
b7e6302d8b4b5406b5f4304f4d05f17e7d2ac552
[ "MIT" ]
null
null
null
from cartpy.cartpy import Municipio, Year, name_to_code
28
55
0.839286
14b8b663f07d6ef1a102a6e0338661b3a89f0152
7,694
py
Python
seahub/dingtalk/views.py
Jonatino/seahub
0bff0c1104dd52bb0d09daa6bc241e63dffe2b23
[ "Apache-2.0" ]
101
2021-05-16T06:00:03.000Z
2021-12-01T02:02:29.000Z
seahub/dingtalk/views.py
Jonatino/seahub
0bff0c1104dd52bb0d09daa6bc241e63dffe2b23
[ "Apache-2.0" ]
null
null
null
seahub/dingtalk/views.py
Jonatino/seahub
0bff0c1104dd52bb0d09daa6bc241e63dffe2b23
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import uuid import json import time import hmac import base64 import urllib import logging import requests from hashlib import sha256 from django.http import HttpResponseRedirect from django.urls import reverse from django.utils.translation import ugettext as _ from seahub.api2.utils import get_api_token from seahub import auth from seahub.profile.models import Profile from seahub.utils import render_error, get_site_scheme_and_netloc from seahub.utils.auth import gen_user_virtual_id from seahub.base.accounts import User from seahub.auth.models import SocialAuthUser from seahub.auth.decorators import login_required from seahub.dingtalk.settings import ENABLE_DINGTALK, \ DINGTALK_QR_CONNECT_APP_ID, DINGTALK_QR_CONNECT_APP_SECRET, \ DINGTALK_QR_CONNECT_AUTHORIZATION_URL, \ DINGTALK_QR_CONNECT_USER_INFO_URL, DINGTALK_QR_CONNECT_RESPONSE_TYPE, \ DINGTALK_QR_CONNECT_SCOPE, DINGTALK_QR_CONNECT_LOGIN_REMEMBER_ME logger = logging.getLogger(__name__) def dingtalk_login(request): if not ENABLE_DINGTALK: return render_error(request, _('Error, please contact administrator.')) state = str(uuid.uuid4()) request.session['dingtalk_login_state'] = state request.session['dingtalk_login_redirect'] = request.GET.get(auth.REDIRECT_FIELD_NAME, '/') data = { 'appid': DINGTALK_QR_CONNECT_APP_ID, 'response_type': DINGTALK_QR_CONNECT_RESPONSE_TYPE, 'scope': DINGTALK_QR_CONNECT_SCOPE, 'redirect_uri': get_site_scheme_and_netloc() + reverse('dingtalk_callback'), 'state': state, } url = DINGTALK_QR_CONNECT_AUTHORIZATION_URL + '?' + urllib.parse.urlencode(data) return HttpResponseRedirect(url) def dingtalk_callback(request): if not ENABLE_DINGTALK: return render_error(request, _('Error, please contact administrator.')) state = request.GET.get('state', '') if not state or state != request.session.get('dingtalk_login_state', ''): logger.error('invalid state') return render_error(request, _('Error, please contact administrator.')) timestamp = str(int(time.time()*1000)).encode('utf-8') appsecret = DINGTALK_QR_CONNECT_APP_SECRET.encode('utf-8') signature = base64.b64encode(hmac.new(appsecret, timestamp, digestmod=sha256).digest()) parameters = { 'accessKey': DINGTALK_QR_CONNECT_APP_ID, 'timestamp': timestamp, 'signature': signature, } code = request.GET.get('code') data = {"tmp_auth_code": code} full_user_info_url = DINGTALK_QR_CONNECT_USER_INFO_URL + '?' + urllib.parse.urlencode(parameters) user_info_resp = requests.post(full_user_info_url, data=json.dumps(data)) user_info = user_info_resp.json()['user_info'] # seahub authenticate user if 'unionid' not in user_info: logger.error('Required user info not found.') logger.error(user_info) return render_error(request, _('Error, please contact administrator.')) auth_user = SocialAuthUser.objects.get_by_provider_and_uid('dingtalk', user_info['unionid']) if auth_user: email = auth_user.username else: email = gen_user_virtual_id() SocialAuthUser.objects.add(email, 'dingtalk', user_info['unionid']) try: user = auth.authenticate(remote_user=email) except User.DoesNotExist: user = None except Exception as e: logger.error(e) return render_error(request, _('Error, please contact administrator.')) if not user or not user.is_active: return render_error(request, _('User %s not found or inactive.') % email) # User is valid. Set request.user and persist user in the session # by logging the user in. request.user = user request.session['remember_me'] = DINGTALK_QR_CONNECT_LOGIN_REMEMBER_ME auth.login(request, user) # update user's profile name = user_info['nick'] if 'nick' in user_info else '' if name: profile = Profile.objects.get_profile_by_user(email) if not profile: profile = Profile(user=email) profile.nickname = name.strip() profile.save() # generate auth token for Seafile client api_token = get_api_token(request) # redirect user to home page response = HttpResponseRedirect(request.session['dingtalk_login_redirect']) response.set_cookie('seahub_auth', email + '@' + api_token.key) return response @login_required def dingtalk_connect(request): if not ENABLE_DINGTALK: return render_error(request, _('Error, please contact administrator.')) state = str(uuid.uuid4()) request.session['dingtalk_connect_state'] = state request.session['dingtalk_connect_redirect'] = request.GET.get(auth.REDIRECT_FIELD_NAME, '/') data = { 'appid': DINGTALK_QR_CONNECT_APP_ID, 'response_type': DINGTALK_QR_CONNECT_RESPONSE_TYPE, 'scope': DINGTALK_QR_CONNECT_SCOPE, 'redirect_uri': get_site_scheme_and_netloc() + reverse('dingtalk_connect_callback'), 'state': state, } url = DINGTALK_QR_CONNECT_AUTHORIZATION_URL + '?' + urllib.parse.urlencode(data) return HttpResponseRedirect(url) @login_required def dingtalk_connect_callback(request): if not ENABLE_DINGTALK: return render_error(request, _('Error, please contact administrator.')) state = request.GET.get('state', '') if not state or state != request.session.get('dingtalk_connect_state', ''): logger.error('invalid state') return render_error(request, _('Error, please contact administrator.')) timestamp = str(int(time.time()*1000)).encode('utf-8') appsecret = DINGTALK_QR_CONNECT_APP_SECRET.encode('utf-8') signature = base64.b64encode(hmac.new(appsecret, timestamp, digestmod=sha256).digest()) parameters = { 'accessKey': DINGTALK_QR_CONNECT_APP_ID, 'timestamp': timestamp, 'signature': signature, } code = request.GET.get('code') data = {"tmp_auth_code": code} full_user_info_url = DINGTALK_QR_CONNECT_USER_INFO_URL + '?' + urllib.parse.urlencode(parameters) user_info_resp = requests.post(full_user_info_url, data=json.dumps(data)) user_info = user_info_resp.json()['user_info'] # seahub authenticate user if 'unionid' not in user_info: logger.error('Required user info not found.') logger.error(user_info) return render_error(request, _('Error, please contact administrator.')) username = request.user.username dingtalk_user_id = user_info['unionid'] auth_user = SocialAuthUser.objects.get_by_provider_and_uid('dingtalk', dingtalk_user_id) if auth_user: logger.error('dingtalk account already exists %s' % dingtalk_user_id) return render_error(request, '出错了,此钉钉账号已被绑定') SocialAuthUser.objects.add(username, 'dingtalk', dingtalk_user_id) # update user's profile name = user_info['nick'] if 'nick' in user_info else '' if name: profile = Profile.objects.get_profile_by_user(username) if not profile: profile = Profile(user=username) profile.nickname = name.strip() profile.save() response = HttpResponseRedirect(request.session['dingtalk_connect_redirect']) return response @login_required def dingtalk_disconnect(request): if not ENABLE_DINGTALK: return render_error(request, _('Error, please contact administrator.')) username = request.user.username SocialAuthUser.objects.delete_by_username_and_provider(username, 'dingtalk') response = HttpResponseRedirect(request.GET.get(auth.REDIRECT_FIELD_NAME, '/')) return response
35.62037
101
0.713803
af5d0b37c4a9894442cc30435fe3cd880970d2f1
1,471
py
Python
.history/run_update_20220325112242.py
miguel-fresh/geoip-translation
ccf9dbc0330e597704e57d8b2967fc9be16017ed
[ "Info-ZIP" ]
null
null
null
.history/run_update_20220325112242.py
miguel-fresh/geoip-translation
ccf9dbc0330e597704e57d8b2967fc9be16017ed
[ "Info-ZIP" ]
null
null
null
.history/run_update_20220325112242.py
miguel-fresh/geoip-translation
ccf9dbc0330e597704e57d8b2967fc9be16017ed
[ "Info-ZIP" ]
null
null
null
import subprocess from sys import stderr, stdout from pathlib import Path from os import rename, getcwd, path START_DOWNLOAD = False START_CONVERT = True CURRENT_DIR = Path(getcwd()) ZIP_NAME = 'GeoLite2-City-CSV.zip' DAT_NAME = 'GeoLiteCity.dat' DOWNLOAD_DIRNAME = './data' OUTPUT_DIRNAME = '../output' DOWNLOAD_ABSPATH = CURRENT_DIR.joinpath(DOWNLOAD_DIRNAME) OUTPUT_ABSPATH = CURRENT_DIR.joinpath(OUTPUT_DIRNAME) ZIP_ABSPATH = DOWNLOAD_ABSPATH.joinpath(ZIP_NAME) DAT_ABSPATH = OUTPUT_ABSPATH.joinpath(DAT_NAME) if START_DOWNLOAD: # Download .zip download_output = subprocess.run(['composer', 'update', 'tronovav/geoip2-update'], capture_output=True, shell=True, cwd='./geoip2-update') print(download_output) # TODO: Rename .zip to GeoLite2-City-CSV.zip # Convert format if START_CONVERT: # python geolite2legacy.py -i GeoLite2-City-CSV.zip -o GeoLiteCity.dat -f geoname2fips.csv downloaded_zip_asbpath = CURRENT_DIR.joinpath(ZIP_NAME) print(downloaded_zip_asbpath) update_output = subprocess.run(['python', 'geolite2legacy.py', '-i', ZIP_ABSPATH, '-o', DAT_ABSPATH, '-f', 'geoname2fips.csv'], cwd='./geolite2legacy') print(update_output) print(DOWNLOAD_ABSPATH)
28.288462
94
0.626105
12255ec753630cb2efaffc1b52d2cdd4f4c59fd3
5,430
py
Python
pyiron_base/project/store.py
pmrv/pyiron_base
af1729708a8226575ca2c84f574e7cb046b7f7cd
[ "BSD-3-Clause" ]
null
null
null
pyiron_base/project/store.py
pmrv/pyiron_base
af1729708a8226575ca2c84f574e7cb046b7f7cd
[ "BSD-3-Clause" ]
null
null
null
pyiron_base/project/store.py
pmrv/pyiron_base
af1729708a8226575ca2c84f574e7cb046b7f7cd
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from __future__ import print_function from datetime import datetime from pyiron_base.job.generic import GenericJob """ Class for storing user aggregated information in an pyiron object """ __author__ = "Jan Janssen" __copyright__ = ( "Copyright 2020, Max-Planck-Institut für Eisenforschung GmbH - " "Computational Materials Design (CM) Department" ) __version__ = "1.0" __maintainer__ = "Jan Janssen" __email__ = "janssen@mpie.de" __status__ = "testing" __date__ = "Sep 1, 2017" class ProjectStore(GenericJob): """ The ProjectStore object, is derived from the GenericJob class and allows the user to store aggregated information in an HDF5 file associated with the corresponding project. To the user the ProjectStore object behaves like a dictionary. Args: project: Project object (defines path where job will be created and stored) job_name: name of the job (must be unique within this project path) Attributes: .. attribute:: key keys of the ProjectStore object (like a dictionary) .. attribute:: items items of the ProjectStore object (like a dictionary) .. attribute:: values values of the ProjectStore object (like a dictionary) .. attribute:: time_created date when the ProjecStore object was created .. attribute:: time_modified date when the ProjecStore object was modified """ def __init__(self, project, job_name): super(ProjectStore, self).__init__(project, job_name) self.__version__ = "0.1" self.__name__ = "ProjectStore" self._lib = {"available": True, "enabled": True} self._store = {} @property def keys(self): """ a set-like object providing a view on ProjectStore's dictionary keys """ return self._store.keys() @property def items(self): """ a set-like object providing a view on ProjectStore's dictionary items """ return self._store.items() @property def values(self): """ an object providing a view on ProjectStore's dictionary values """ return self._store.values() @property def time_created(self): """ Return the date when the ProjectStore object was created Returns: DateTime: the date when the ProjectStore object was created """ if self.job_id: return self.project.db.get_item_by_id(self._job_id)["timestart"] return None @property def time_modified(self): """ Return the date when the ProjectStore object was modified Returns: DateTime: the date when the ProjectStore object was modified """ if self.job_id: return self.project.db.get_item_by_id(self._job_id)["timestop"] return None def run_if_lib(self): """ Internal function to handle jobs with Python based executables Returns: int: Database ID of the ProjectStore object """ job_id = self.save() self._write_to_database() return job_id def from_hdf(self, hdf=None, group_name=None): """ Restore object from hdf5 format Args: hdf: Optional hdf5 file, otherwise self is used. group_name (str): Optional hdf5 group in the hdf5 file. """ super(ProjectStore, self).from_hdf(hdf=hdf, group_name=group_name) for node in self.project_hdf5.list_nodes(): value = self.project_hdf5[node] self._store[node] = value self.__setattr__(node, value) def __setitem__(self, key, value): """ Store values in the ProjectStore Args: key (str): Key for the dictionary value: corresponding values """ self._hdf5[key] = value self._store[key] = value self.__setattr__(key, value) self.run() def _run_if_finished(self, delete_existing_job=False, run_again=True): """ Internal function overwriting the default behaviour when the job is finished, to update the database entry when the job was modified Args: delete_existing_job (bool): not used for this job type run_again (bool): not used for this job type """ self._write_to_database() def _write_to_database(self): """ If a job_id exists update the timestop entry in the database, to validate when this object was updated. """ if self.job_id: self.project.db.item_update({"timestop": datetime.now()}, self._job_id) def write_input(self): """ Implement required function template - even though it is not required for this job type. """ pass def collect_output(self): """ Implement required function template - even though it is not required for this job type. """ pass def collect_logfiles(self): """ Implement required function template - even though it is not required for this job type. """ pass
29.193548
111
0.628545
e0f463df9b204df35b819405cd3a9398947c9a40
2,847
py
Python
syn/python/get_kge.py
mundaym/ibex
71a8763553a25b90394de92f3f97e56b1009030b
[ "Apache-2.0" ]
1,375
2019-11-05T15:11:00.000Z
2022-03-28T17:50:43.000Z
syn/python/get_kge.py
mundaym/ibex
71a8763553a25b90394de92f3f97e56b1009030b
[ "Apache-2.0" ]
7,045
2019-11-05T16:05:45.000Z
2022-03-31T23:08:08.000Z
syn/python/get_kge.py
mundaym/ibex
71a8763553a25b90394de92f3f97e56b1009030b
[ "Apache-2.0" ]
428
2019-11-05T15:00:20.000Z
2022-03-28T15:34:57.000Z
#!/usr/bin/python3 # Copyright lowRISC contributors. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 # Parse a yosys area report and give a kGE equivalient import argparse def read_lib(lib_file_path, ref_cell): with open(lib_file_path, 'r') as f: lib_file = f.readlines() cell_dict = {} weighted_dict = {} cell_name = None for line_idx, line in enumerate(lib_file): if line.startswith(' cell ('): if cell_name is not None: raise RuntimeError('{}:{} Found cell while searching for area' .format(lib_file_path, line_idx + 1)) cell_name = line.split()[1].strip('()') elif line.startswith('\tarea'): if cell_name is None: raise RuntimeError('{}:{} Found area while searching for cell' .format(lib_file_path, line_idx + 1)) try: cell_area = line.split()[2].strip(';') cell_dict[cell_name] = float(cell_area) cell_name = None except (IndexError, ValueError): raise RuntimeError('{}:{} Area declaration misformatted' .format(lib_file_path, line_idx + 1)) if ref_cell not in cell_dict: raise RuntimeError('Specified reference cell: {} was not found in ' 'library: {}' .format(ref_cell, lib_file_path)) for cell in cell_dict: weighted_dict[cell] = cell_dict[cell] / cell_dict[ref_cell] return weighted_dict def get_kge(report_path, weighted_dict): with open(report_path, 'r') as f: report = f.readlines() ge = 0.0 for line_idx, line in enumerate(report): data = line.split() if not data: continue weight = weighted_dict.get(data[0]) if weight is not None: try: ge += float(data[1]) * weight except (IndexError, ValueError): raise RuntimeError('{}:{} Cell {} matched but was misformatted' .format(report_path, line_idx + 1, data[0])) print("Area in kGE = ", round(ge/1000, 2)) def main(): arg_parser = argparse.ArgumentParser( description="""Calculate kGE from a Yosys report and LIB file""") arg_parser.add_argument('lib_file_path', help='Path to the LIB file') arg_parser.add_argument('report_path', help='Path to the report') arg_parser.add_argument('--cell', help='Reference cell (default:NAND2_X1)', default='NAND2_X1') args = arg_parser.parse_args() weighted_dict = read_lib(args.lib_file_path, args.cell) get_kge(args.report_path, weighted_dict) if __name__ == "__main__": main()
35.148148
79
0.588339
dbdb41fe69ab9694fe573269ef0becb89599cac8
447
py
Python
env/lib/python3.8/site-packages/plotly/validators/contour/_uirevision.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/contour/_uirevision.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/contour/_uirevision.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class UirevisionValidator(_plotly_utils.basevalidators.AnyValidator): def __init__(self, plotly_name="uirevision", parent_name="contour", **kwargs): super(UirevisionValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs )
34.384615
82
0.657718
cf46f93f64f6e2585f2243569bd8db792ef764c9
552
py
Python
utils/builders/grpc_builders.py
bpuderer/python-test-env
ed5d1f1b977560cc9bc52952500b93060fc11e6a
[ "MIT" ]
null
null
null
utils/builders/grpc_builders.py
bpuderer/python-test-env
ed5d1f1b977560cc9bc52952500b93060fc11e6a
[ "MIT" ]
1
2021-03-31T18:50:05.000Z
2021-03-31T18:50:05.000Z
utils/builders/grpc_builders.py
bpuderer/python-test-env
ed5d1f1b977560cc9bc52952500b93060fc11e6a
[ "MIT" ]
null
null
null
import json from google.protobuf import json_format from services.doubler.doubler_pb2 import Number def build_request_from_dict(d, request): json_str = json.dumps(d) return json_format.Parse(json_str, request) def build_request_from_file(filename, request): with open(filename) as f: json_str = f.read() return json_format.Parse(json_str, request) def build_number_from_dict(d): return build_request_from_dict(d, Number()) def build_number_from_file(filename): return build_request_from_file(filename, Number())
24
54
0.768116
81c202fb46304ee3e9ced64dbcc189af26ac908f
1,354
py
Python
ooobuild/dyn/view/x_control_access.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/dyn/view/x_control_access.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/dyn/view/x_control_access.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Interface Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.view from typing import TYPE_CHECKING from ooo.oenv.env_const import UNO_ENVIRONMENT, UNO_RUNTIME _DYNAMIC = False if (not TYPE_CHECKING) and UNO_RUNTIME and UNO_ENVIRONMENT: _DYNAMIC = True if not TYPE_CHECKING and _DYNAMIC: from com.sun.star.view import XControlAccess as XControlAccess setattr(XControlAccess, '__ooo_ns__', 'com.sun.star.view') setattr(XControlAccess, '__ooo_full_ns__', 'com.sun.star.view.XControlAccess') setattr(XControlAccess, '__ooo_type_name__', 'interface') else: from ...lo.view.x_control_access import XControlAccess as XControlAccess __all__ = ['XControlAccess']
36.594595
82
0.767356
0473dbd355cf30969018b1156a37f9bcc5b61775
1,374
py
Python
dapr/actor/runtime/_method_context.py
mukundansundararajan/python-sdk
2ee94e31292a650135b97bc3c70e3eca885c9b47
[ "MIT" ]
null
null
null
dapr/actor/runtime/_method_context.py
mukundansundararajan/python-sdk
2ee94e31292a650135b97bc3c70e3eca885c9b47
[ "MIT" ]
null
null
null
dapr/actor/runtime/_method_context.py
mukundansundararajan/python-sdk
2ee94e31292a650135b97bc3c70e3eca885c9b47
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Copyright (c) Microsoft Corporation. Licensed under the MIT License. """ from dapr.actor.runtime._call_type import ActorCallType class ActorMethodContext: """A Actor method context that contains method information invoked by :class:`ActorRuntime`. """ def __init__(self, method_name: str, call_type: ActorCallType): self._method_name = method_name self._calltype = call_type @property def method_name(self) -> str: """Gets the method name.""" return self._method_name @property def call_type(self) -> ActorCallType: """Gets :class:`ActorCallType` for this method.""" return self._calltype @classmethod def create_for_actor(cls, method_name: str): """Creates :class:`ActorMethodContext` object for actor method.""" return ActorMethodContext(method_name, ActorCallType.actor_interface_method) @classmethod def create_for_timer(cls, method_name: str): """Creates :class:`ActorMethodContext` object for timer_method.""" return ActorMethodContext(method_name, ActorCallType.timer_method) @classmethod def create_for_reminder(cls, method_name: str): """Creates :class:`ActorMethodContext` object for reminder_method.""" return ActorMethodContext(method_name, ActorCallType.reminder_method)
31.227273
84
0.700873
26b37c181e6812d0b4d916774768c68fe25e8e99
11,739
py
Python
src/plugin.py
urwrstkn8mare/galaxy-minecraft-integration
cc4448019b6a8713ae474b45b554172b17d4776b
[ "MIT" ]
17
2019-09-19T15:02:05.000Z
2022-01-14T16:33:02.000Z
src/plugin.py
urwrstkn8mare/galaxy-minecraft-integration
cc4448019b6a8713ae474b45b554172b17d4776b
[ "MIT" ]
19
2019-09-05T12:27:18.000Z
2021-12-05T20:55:45.000Z
src/plugin.py
urwrstkn8mare/galaxy-minecraft-integration
cc4448019b6a8713ae474b45b554172b17d4776b
[ "MIT" ]
8
2019-08-30T12:55:08.000Z
2021-12-18T10:10:07.000Z
import sys, asyncio, logging, urllib, os, json, pickle, webbrowser from galaxy.api.plugin import ( Plugin, LocalGame, Authentication, Game, create_and_run_plugin, GameTime, ) from galaxy.api.consts import LocalGameState, LicenseType, OSCompatibility, Platform from galaxy.api.types import LicenseInfo from galaxy.api.errors import InvalidCredentials from local import WindowsLocalClient, MacLocalClient from consts import ( GameID, MINECRAFT_DUNGEONS_INSTALL_URL, MINECRAFT_MAC_INSTALL_URL, MINECRAFT_WIN_INSTALL_URL, GAME_NAMES, IS_WINDOWS, INSTALLED_FOLDER_PATH, GAMES, ) from utils import misc, time_tracker from utils.decorators import double_click_effect import multimc from version import __version__ log = logging.getLogger(__name__) class MinecraftPlugin(Plugin): def __init__(self, reader, writer, token): super().__init__(Platform.Minecraft, __version__, reader, writer, token) self.local_client = WindowsLocalClient() if IS_WINDOWS else MacLocalClient() self.status = { GameID.Minecraft: LocalGameState.None_, GameID.MinecraftDungeons: LocalGameState.None_, } self.was_game_launched_task: asyncio.Task = None self.update_task: asyncio.Task = None self.check_sizes_task: asyncio.Task = None self.owned = [] self.multimc: multimc.MultiMCClient = None def _authenticate(self): return Authentication("Minecraft_ID", "Minecraft Player") async def authenticate(self, stored_credentials=None): log.debug(f"stored_credentials: {stored_credentials}") if stored_credentials is not None: if "dummy" in stored_credentials: raise InvalidCredentials if misc.IS(["owned", "multimcpath"], IN=stored_credentials): self.owned = json.loads(stored_credentials["owned"]) if stored_credentials["multimcpath"] != "null": self.multimc = multimc.MultiMCClient(stored_credentials["multimcpath"]) return self._authenticate() return misc.get_next_step("Select Owned Games", 715, 725, "page1") async def pass_login_credentials(self, step, credentials, cookies): def auth(): self.store_credentials( { "owned": json.dumps(self.owned), "multimcpath": "null" if self.multimc is None else self.multimc.path, } ) return self._authenticate() params = urllib.parse.parse_qs( urllib.parse.urlsplit(credentials["end_uri"]).query, keep_blank_values=True ) log.debug(f"Params: {params}") if "open" in params: webbrowser.open_new(params["open"][0]) if "install_mc" in params and params["install_mc"][0] == "true": await self.install_game(GameID.Minecraft) if "next" in params: nxt = params["next"][0] if nxt == "page2": new_params = "" if "path" in params: raw_path = params["path"][0] new_params = f"?path={urllib.parse.quote(raw_path)}" for game_id in GAMES: if game_id in params and params[game_id][0] == "on": self.owned.append(game_id) return misc.get_next_step( "Set your MultiMC path", 505, 505, "page2", params=new_params ) elif nxt == "page3": if "path" in params: raw_path = params["path"][0] if raw_path != "": path = os.path.expanduser(os.path.expandvars(os.path.abspath(raw_path))) try: self.multimc = multimc.MultiMCClient(path) return misc.get_next_step( "Finished", 410, 355, "page3", params="?multimc=true" ) except multimc.PathNotExectuable: return misc.get_next_step( "Set your MultiMC path", 530, 505, "page2", params=f"?errored=true&path={urllib.parse.quote(raw_path)}", ) return misc.get_next_step("Finished", 310, 310, "page3") elif nxt == "close": return auth() log.warning("if you see this, something is wrong") async def get_owned_games(self): log.debug(f"self.owned: {self.owned}") out = [] for game_id in self.owned: out.append( Game(game_id, GAME_NAMES[game_id], None, LicenseInfo(LicenseType.SinglePurchase)) ) return out async def get_local_games(self): local_games = [] for game_id in self.owned: local_games.append(LocalGame(game_id, self.status[game_id])) return local_games async def get_os_compatibility(self, game_id, context): # Assuming OS compatible with game and supported by this plugin. if game_id == GameID.Minecraft: return OSCompatibility.MacOS | OSCompatibility.Windows elif game_id == GameID.MinecraftDungeons: return OSCompatibility.Windows async def get_local_size(self, game_id: str, context): size = await misc.get_size_at_path( self.local_client.find_launcher_path(game_id, folder=True) ) if game_id == GameID.Minecraft and self._multimc_enabled(): if size is None: size = 0 size += await misc.get_size_at_path(self.multimc.folder) return size async def install_game(self, game_id): if game_id == GameID.Minecraft: url = MINECRAFT_WIN_INSTALL_URL if IS_WINDOWS else MINECRAFT_MAC_INSTALL_URL elif game_id == GameID.MinecraftDungeons: url = MINECRAFT_DUNGEONS_INSTALL_URL else: log.warning(f"Uknown game_id to install: {game_id}") return installer_path = await misc.download(url) log.info(f"Installing {game_id} by launching: {installer_path}") misc.open_path(installer_path) def _launch_multimc(self): self.multimc.launch() def _multimc_enabled(self): return self.multimc is not None @double_click_effect(timeout=0.5, effect="_launch_multimc", if_func="_multimc_enabled") async def launch_game(self, game_id): pth = self.local_client.find_launcher_path(game_id) if game_id == GameID.Minecraft and pth is None and self._multimc_enabled(): log.info("Launching MultiMC") self.multimc.launch() else: self.local_client.launch(game_id) async def uninstall_game(self, game_id): log.info(f"Uninstalling {game_id}") self.local_client.uninstall(game_id) async def _update(self): def update(game_id, status: LocalGameState): if self.status[game_id] != status: self.status[game_id] = status self.update_local_game_status(LocalGame(game_id, status)) log.info(f"Updated {game_id} to {status}") return True return False for game_id in self.owned: is_installed = self.local_client.find_launcher_path(game_id) is not None if game_id == GameID.Minecraft and self._multimc_enabled() and self.multimc.running(): update(game_id, LocalGameState.Installed | LocalGameState.Running) elif self.local_client.is_game_still_running(game_id): if update(game_id, LocalGameState.Installed | LocalGameState.Running): log.info(f"Starting to track {game_id}") self.game_time_tracker.start_tracking_game(game_id) elif game_id == GameID.Minecraft and self._multimc_enabled(): update(game_id, LocalGameState.Installed) elif is_installed: if update(game_id, LocalGameState.Installed): if game_id in self.game_time_tracker.get_tracking_games(): self.game_time_tracker.stop_tracking_game(game_id) log.debug(f"Stopped tracking time for {game_id}") else: update(game_id, LocalGameState.None_) await asyncio.sleep(0) def tick(self): if self.update_task is None or self.update_task.done(): self.update_task = self.create_task(self._update(), "Update Task") # Time Tracker async def get_game_time(self, game_id, context): try: tracked_time = self.game_time_tracker.get_tracked_time(game_id) except time_tracker.GameNotTrackedException: tracked_time = GameTime(game_id, 0, None) if self._multimc_enabled() and game_id == GameID.Minecraft: multimc_time = self.multimc.get_time() else: multimc_time = GameTime(game_id, 0, None) time = tracked_time.time_played + multimc_time.time_played lastPlayed = misc.compare(tracked_time.last_played_time, multimc_time.last_played_time) log.debug(f"Got game time: {time}") return GameTime(game_id, time, lastPlayed) def handshake_complete(self): self.play_time_cache_path = os.path.join( INSTALLED_FOLDER_PATH, "minecraft_play_time_cache.txt" ) log.debug(f"Local Play Time Cache Path: {self.play_time_cache_path}") if "game_time_cache" in self.persistent_cache: self.game_time_cache = pickle.loads( bytes.fromhex(self.persistent_cache["game_time_cache"]) ) else: try: with open(self.play_time_cache_path, "r") as file: for line in file.readlines(): if line[:1] != "#": self.game_time_cache = pickle.loads(bytes.fromhex(line)) break except FileNotFoundError: self.game_time_cache = None self.game_time_tracker = time_tracker.TimeTracker(game_time_cache=self.game_time_cache) async def shutdown(self): for game_id in self.game_time_tracker.get_tracking_games(): self.game_time_tracker.stop_tracking_game(game_id) if self.game_time_cache is not None: with open(self.play_time_cache_path, "w+") as file: file.write("# DO NOT EDIT THIS FILE\n") file.write(self.game_time_tracker.get_time_cache_hex()) log.info("Wrote to local file cache") await super().shutdown() def game_times_import_complete(self): if len(self.game_time_tracker.get_tracking_games()) > 0: log.debug("Game time still being tracked. Not setting cache yet.") else: self.game_time_cache = self.game_time_tracker.get_time_cache() log.debug(f"game_time_cache: {self.game_time_cache}") self.persistent_cache["game_time_cache"] = self.game_time_tracker.get_time_cache_hex() self.push_cache() def main(): create_and_run_plugin(MinecraftPlugin, sys.argv) if __name__ == "__main__": main()
42.532609
99
0.593066
cd3c7a3a77c6712ce77ca59b7d2f340ce9405979
8,851
py
Python
tests/contrib/sensors/test_hdfs_sensor.py
RyanMagnusson/incubator-airflow
ad81412fba2e8510442db73d9c905cac5eed8ebd
[ "Apache-2.0" ]
1
2021-05-07T17:12:35.000Z
2021-05-07T17:12:35.000Z
tests/contrib/sensors/test_hdfs_sensor.py
RyanMagnusson/incubator-airflow
ad81412fba2e8510442db73d9c905cac5eed8ebd
[ "Apache-2.0" ]
null
null
null
tests/contrib/sensors/test_hdfs_sensor.py
RyanMagnusson/incubator-airflow
ad81412fba2e8510442db73d9c905cac5eed8ebd
[ "Apache-2.0" ]
1
2021-05-07T17:12:37.000Z
2021-05-07T17:12:37.000Z
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest import re from datetime import timedelta from airflow.contrib.sensors.hdfs_sensor import HdfsSensorFolder, HdfsSensorRegex from airflow.exceptions import AirflowSensorTimeout class HdfsSensorFolderTests(unittest.TestCase): def setUp(self): from tests.core import FakeHDFSHook self.hook = FakeHDFSHook self.log = logging.getLogger() self.log.setLevel(logging.DEBUG) def test_should_be_empty_directory(self): """ test the empty directory behaviour :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) task = HdfsSensorFolder(task_id='Should_be_empty_directory', filepath='/datadirectory/empty_directory', be_empty=True, timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When task.execute(None) # Then # Nothing happens, nothing is raised exec is ok def test_should_be_empty_directory_fail(self): """ test the empty directory behaviour :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) task = HdfsSensorFolder(task_id='Should_be_empty_directory_fail', filepath='/datadirectory/not_empty_directory', be_empty=True, timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When # Then with self.assertRaises(AirflowSensorTimeout): task.execute(None) def test_should_be_a_non_empty_directory(self): """ test the empty directory behaviour :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) task = HdfsSensorFolder(task_id='Should_be_non_empty_directory', filepath='/datadirectory/not_empty_directory', timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When task.execute(None) # Then # Nothing happens, nothing is raised exec is ok def test_should_be_non_empty_directory_fail(self): """ test the empty directory behaviour :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) task = HdfsSensorFolder(task_id='Should_be_empty_directory_fail', filepath='/datadirectory/empty_directory', timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When # Then with self.assertRaises(AirflowSensorTimeout): task.execute(None) class HdfsSensorRegexTests(unittest.TestCase): def setUp(self): from tests.core import FakeHDFSHook self.hook = FakeHDFSHook self.log = logging.getLogger() self.log.setLevel(logging.DEBUG) def test_should_match_regex(self): """ test the empty directory behaviour :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) compiled_regex = re.compile("test[1-2]file") task = HdfsSensorRegex(task_id='Should_match_the_regex', filepath='/datadirectory/regex_dir', regex=compiled_regex, timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When task.execute(None) # Then # Nothing happens, nothing is raised exec is ok def test_should_not_match_regex(self): """ test the empty directory behaviour :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) compiled_regex = re.compile("^IDoNotExist") task = HdfsSensorRegex(task_id='Should_not_match_the_regex', filepath='/datadirectory/regex_dir', regex=compiled_regex, timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When # Then with self.assertRaises(AirflowSensorTimeout): task.execute(None) def test_should_match_regex_and_filesize(self): """ test the file size behaviour with regex :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) compiled_regex = re.compile("test[1-2]file") task = HdfsSensorRegex(task_id='Should_match_the_regex_and_filesize', filepath='/datadirectory/regex_dir', regex=compiled_regex, ignore_copying=True, ignored_ext=['_COPYING_', 'sftp'], file_size=10, timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When task.execute(None) # Then # Nothing happens, nothing is raised exec is ok def test_should_match_regex_but_filesize(self): """ test the file size behaviour with regex :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) compiled_regex = re.compile("test[1-2]file") task = HdfsSensorRegex(task_id='Should_match_the_regex_but_filesize', filepath='/datadirectory/regex_dir', regex=compiled_regex, file_size=20, timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When # Then with self.assertRaises(AirflowSensorTimeout): task.execute(None) def test_should_match_regex_but_copyingext(self): """ test the file size behaviour with regex :return: """ # Given self.log.debug('#' * 10) self.log.debug('Running %s', self._testMethodName) self.log.debug('#' * 10) compiled_regex = re.compile("copying_file_\d+.txt") task = HdfsSensorRegex(task_id='Should_match_the_regex_but_filesize', filepath='/datadirectory/regex_dir', regex=compiled_regex, ignored_ext=['_COPYING_', 'sftp'], file_size=20, timeout=1, retry_delay=timedelta(seconds=1), poke_interval=1, hook=self.hook) # When # Then with self.assertRaises(AirflowSensorTimeout): task.execute(None)
35.546185
81
0.516552
c427c62662daa151124b09abf6b4db8ba9afaf3a
3,347
py
Python
image_proc/launch/image_proc.launch.py
allenh1/image_pipeline
ab7f8ec264c5c8e7240d599fbacc44b6a7af0450
[ "Apache-2.0" ]
1
2021-03-22T15:35:15.000Z
2021-03-22T15:35:15.000Z
image_proc/launch/image_proc.launch.py
allenh1/image_pipeline
ab7f8ec264c5c8e7240d599fbacc44b6a7af0450
[ "Apache-2.0" ]
null
null
null
image_proc/launch/image_proc.launch.py
allenh1/image_pipeline
ab7f8ec264c5c8e7240d599fbacc44b6a7af0450
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020, Open Source Robotics Foundation, Inc. # All rights reserved. # # Software License Agreement (BSD License 2.0) # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from launch import LaunchDescription from launch_ros import actions from launch_ros.descriptions import ComposableNode def generate_launch_description(): ld = LaunchDescription() # Load composable container image_processing = actions.ComposableNodeContainer( node_name='image_proc_container', package='rclcpp_components', node_executable='component_container', composable_node_descriptions=[ ComposableNode( package='image_proc', node_plugin='image_proc::DebayerNode', node_name='debayer_node', ), # Example of rectifying an image ComposableNode( package='image_proc', node_plugin='image_proc::RectifyNode', node_name='rectify_mono_node', # Remap subscribers and publishers remappings=[ # Subscriber remap ('image', 'image_mono'), ('camera_info', 'camera_info'), ('image_rect', 'image_rect') ], ), # Example of rectifying an image ComposableNode( package='image_proc', node_plugin='image_proc::RectifyNode', node_name='rectify_color_node', # Remap subscribers and publishers remappings=[ # Subscriber remap ('image', 'image_color'), # Publisher remap ('image_rect', 'image_rect_color') ], )], output='screen' ) ld.add_action(image_processing) return ld
39.376471
70
0.653421
3242b2d491a50281dba26151f677fc40922722f1
12,907
py
Python
oldversion/test/experiment.py
ne1199/RobustAutoencoder
2d32750fa08a88fe19ecb3ede6d76e50ecceb91d
[ "MIT" ]
3
2021-07-08T03:30:33.000Z
2022-02-10T14:12:22.000Z
oldversion/test/experiment.py
yli96/RobustAutoencoder
01de32f5d670280ca8f8f9a6f6d704930fc266b4
[ "MIT" ]
null
null
null
oldversion/test/experiment.py
yli96/RobustAutoencoder
01de32f5d670280ca8f8f9a6f6d704930fc266b4
[ "MIT" ]
1
2021-07-09T07:54:03.000Z
2021-07-09T07:54:03.000Z
import PIL.Image as Image import ImShow as I import numpy as np import tensorflow as tf import DAE_tensorflow as DAE import RDAE_tensorflow as RDAE import l21RobustAutoencoder as l21RDAE import os def tune_RDAE(x, lam_list = [50], learn_rates = [0.1], inner = 50, outter = 5): sess = tf.Session() sparsities = [] error = [] for lam in lam_list: for rate in learn_rates: rae = RDAE.RDAE(sess = sess, lambda_ = lam, layers_sizes =[784,400,225,100,50]) L, S = rae.fit(x ,sess = sess, learning_rate = rate, batch_size = 130, inner_iteration = inner, iteration=outter, verbose=True) recon_rae = rae.getRecon(x, sess = sess) error.append([lam,np.sum(X-L-S)]) sparsities.append([lam,Counter(S.reshape(S.size))[0]]) ## save the training error #error_file_name = "lam"+str(lam)+"_rate"+str(rate)+"_inner"+str(inner)+"_outter"+str(outter)+".pkl" #np.array(rae.errors).dump(error_file_name) sess.close() return error,sparsities def tune_l21RDAE(x, lam_list = [50], learn_rates = [0.1], inner = 150, outter = 10, batch_size=133): #x = np.load(r"/home/czhou2/Documents/train_x_small.pkl") with tf.Session() as sess: rae = l21RDAE.RobustL21Autoencoder(sess = sess, lambda_= lam_list[0], layers_sizes=[784,400,255,100]) L, S = rae.fit(x, sess = sess, inner_iteration = inner, iteration = outter, batch_size = batch_size, verbose = True) ae = Deep_Autoencoder(sess = sess, input_dim_list=[784,400,225,100]) error = ae.fit(x ,sess = sess, learning_rate = learn_rates[0], iteration = inner * outer, batch_size = batch_size ,verbose=True) return rae.errors,error def compare_RDAE_DAE_l21RDAE(X, layers, lamda, folder, learning_rate = 0.15, inner = 100, outer = 10, batch_size = 133,inputsize = (28,28)): if not os.path.isdir(folder): os.makedirs(folder) os.chdir(folder) with tf.Graph().as_default(): with tf.Session() as sess: ae = DAE.Deep_Autoencoder(sess = sess, input_dim_list = layers) error = ae.fit(X = X ,sess = sess, learning_rate = learning_rate, iteration = inner * outer, batch_size = batch_size, verbose=True) dR = ae.getRecon(X = X, sess = sess) dH = ae.transform(X, sess) Image.fromarray(I.tile_raster_images(X=dR,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"dR.png") dH.dump("dH.pkl") np.array(error).dump(r"DAEerror.pkl") with tf.Graph().as_default(): with tf.Session() as sess: rael21 = l21RDAE.RobustL21Autoencoder(sess = sess, lambda_= lamda*X.shape[0], layers_sizes=layers) l21L, l21S = rael21.fit(X = X, sess = sess, inner_iteration = inner, iteration = outer, batch_size = batch_size, learning_rate = learning_rate, verbose = True) l21R = rael21.getRecon(X = X, sess = sess) l21H = rael21.transform(X, sess) Image.fromarray(I.tile_raster_images(X=l21S,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21S.png") Image.fromarray(I.tile_raster_images(X=l21R,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21R.png") Image.fromarray(I.tile_raster_images(X=l21L,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21L.png") l21H.dump(r"l21H.pkl") np.array(rael21.errors).dump(r"l21error.pkl") l21S.dump("l21S.pkl") with tf.Graph().as_default(): with tf.Session() as sess: rae = RDAE.RDAE(sess = sess, lambda_ = lamda * 10, layers_sizes = layers) rL, rS = rae.fit(X = X ,sess = sess, learning_rate = learning_rate, batch_size = batch_size, inner_iteration = inner, iteration = outer, verbose=True) rR = rae.getRecon(X, sess) rH = rae.transform(X, sess) Image.fromarray(I.tile_raster_images(X=rR,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"rR.png") Image.fromarray(I.tile_raster_images(X=rS,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"rS.png") Image.fromarray(I.tile_raster_images(X=rL,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"rL.png") rH.dump(r"rH.pkl") np.array(rae.errors).dump(r"RDAEerror.pkl") rS.dump("rS.pkl") os.chdir("../") def RDAE_DAE_l21RDAE_compressUser(X, layers, lamda, folder, learning_rate = 0.15, inner = 100, outer = 10, batch_size = 133,inputsize = (28,28)): if not os.path.isdir(folder): os.makedirs(folder) os.chdir(folder) with tf.Graph().as_default(): with tf.Session() as sess: rael21 = l21RDAE.RobustL21Autoencoder(sess = sess, lambda_= lamda*X.shape[0], layers_sizes=layers) l21L, l21S = rael21.fit(X = X, sess = sess, inner_iteration = inner, iteration = outer, batch_size = batch_size, learning_rate = learning_rate, verbose = True) l21R = rael21.getRecon(X = X, sess = sess) l21H = rael21.transform(X, sess) Image.fromarray(I.tile_raster_images(X=l21S.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21S.png") Image.fromarray(I.tile_raster_images(X=l21R.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21R.png") Image.fromarray(I.tile_raster_images(X=l21L.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21L.png") l21H.dump(r"l21H.pkl") np.array(rael21.errors).dump(r"l21error.pkl") l21S.dump("l21S.pkl") with tf.Graph().as_default(): with tf.Session() as sess: rae = RDAE.RDAE(sess = sess, lambda_ = lamda * 10, layers_sizes = layers) rL, rS = rae.fit(X = X ,sess = sess, learning_rate = learning_rate, batch_size = batch_size, inner_iteration = inner, iteration = outer, verbose=True) rR = rae.getRecon(X, sess) rH = rae.transform(X, sess) Image.fromarray(I.tile_raster_images(X=rR.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"rR.png") Image.fromarray(I.tile_raster_images(X=rS.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"rS.png") Image.fromarray(I.tile_raster_images(X=rL.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"rL.png") rH.dump(r"rH.pkl") np.array(rae.errors).dump(r"RDAEerror.pkl") rS.dump("rS.pkl") os.chdir("../") def l21RDAE_compressUser(X, layers, lamda, folder, learning_rate = 0.15, inner = 100, outer = 10, batch_size = 133,inputsize = (28,28)): if not os.path.isdir(folder): os.makedirs(folder) os.chdir(folder) with tf.Graph().as_default(): with tf.Session() as sess: rael21 = l21RDAE.RobustL21Autoencoder(sess = sess, lambda_= lamda*X.shape[0], layers_sizes=layers) l21L, l21S = rael21.fit(X = X, sess = sess, inner_iteration = inner, iteration = outer, batch_size = batch_size, learning_rate = learning_rate, verbose = True) l21R = rael21.getRecon(X = X, sess = sess) l21H = rael21.transform(X, sess) Image.fromarray(I.tile_raster_images(X=l21S.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21S.png") Image.fromarray(I.tile_raster_images(X=l21R.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21R.png") Image.fromarray(I.tile_raster_images(X=l21L.T,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21L.png") l21H.dump(r"l21H.pkl") np.array(rael21.errors).dump(r"l21error.pkl") l21S.dump("l21S.pkl") os.chdir("../") def l21RDAE_compressFeature(X, layers, lamda, folder, learning_rate = 0.15, inner = 100, outer = 10, batch_size = 133,inputsize = (28,28)): if not os.path.isdir(folder): os.makedirs(folder) os.chdir(folder) with tf.Graph().as_default(): with tf.Session() as sess: rael21 = l21RDAE.RobustL21Autoencoder(sess = sess, lambda_= lamda*X.shape[0], layers_sizes=layers) l21L, l21S = rael21.fit(X = X, sess = sess, inner_iteration = inner, iteration = outer, batch_size = batch_size, learning_rate = learning_rate, verbose = True) l21R = rael21.getRecon(X = X, sess = sess) l21H = rael21.transform(X, sess) Image.fromarray(I.tile_raster_images(X=l21S,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21S.png") Image.fromarray(I.tile_raster_images(X=l21R,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21R.png") Image.fromarray(I.tile_raster_images(X=l21L,img_shape=inputsize, tile_shape=(10, 10),tile_spacing=(1, 1))).save(r"l21L.png") l21H.dump(r"l21H.pkl") np.array(rael21.errors).dump(r"l21error.pkl") l21S.dump("l21S.pkl") os.chdir("../") def onePixel_uniformNoise(data, corNum=10): corruption_index = map(np.int,np.floor(np.random.random_sample(size = corNum)*data.shape[1])) for i in range(data.shape[0]): for j in corruption_index: #corrupted[i,j] = corrupted[i,j] + np.random.normal(loc=0.5, scale=0.25) data[i,j] = np.random.uniform() return data def onePixel_fixedNoise(data, corNum=10): corruption_index = map(np.int,np.floor(np.random.random_sample(size = corNum)*data.shape[1])) for j in corruption_index: corruption_amplitude = np.random.random() data[:,j] = corruption_amplitude return data def onePixel_GaussianNoise(data, corNum=10): corruption_index = map(np.int,np.floor(np.random.random_sample(size = corNum)*data.shape[1])) for i in range(data.shape[0]): for j in corruption_index: #corrupted[i,j] = corrupted[i,j] + np.random.normal(loc=0.5, scale=0.25) data[i,j] = np.random.normal(loc=0, scale=1) return data def compare_frame(): #X = np.load(r"/home/czhou2/Documents/mnist_noise_variations_all_1_data_small.pkl") #X = np.load(r"/home/czhou2/Documents/train_x_small.pkl") #X = np.load(r"/home/zc8304/Documents/Two_with7_p5.pkl") ## on jetstream #X = np.load(r"/home/czhou2/Documents/Two_with7_p5.pkl") #X = np.load(r"/home/czhou2/Documents/Zero_with1_p5.pkl") #X = np.load(r"/home/czhou2/Documents/Two_with7_p5.pkl") #X = np.load(r"/home/zc8304/Documents/ZeroOne_with7_p5.pkl") X = np.load(r"/home/czhou2/Documents/ZeroOne_with7_p5.pkl") #X = np.load(r"/home/zc8304/Documents/Two_with0_noise_p10.pkl") ## jetstream #X = np.load(r"/home/czhou2/Documents/Two_with0_noise_p10.pkl") ## stormbringer inner = 100 outer = 8 #lamda_list = [0.1,1.,5.,10.,15.,20.,25.,50.,70.,100.] #layers_list =[[784,625,400,225],[784,400,225],[784,625,225],[784,625,400]] #lamda_list = np.arange(0.0001,0.0015,0.00005) #lamda_list = [0.0015,0.003,0.005,0.008,0.01,0.03,0.05,0.08,0.1,0.2,0.3,0.5] #lamda_list = np.arange(0.03,0.08,0.003) ## detailed search for 2 with 0 noise lamda_list = np.arange(0.0002,0.0004,0.00003) ## detailed search for 2 with 0 noise #lamda_list = [0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5,1.,5] # error,sp = tune_RDAE(x = X, lam_list = lam_list, learn_rates = learn_rates, inner = inner, outter = outter, batch_size ) # np.array(error).dump(r"diff_X_L_S.pkl") # np.array(sp).dump(r"sparsities") #error,sp = tune_l21RDAE(x = X, lam_list = lam_list, learn_rates = learn_rates, inner = inner, outter = outter) layers = [784, 600, 400] ## S trans #layers = [5215,1000,400] ## for 0 and 1 #layers = [5216,1000,400] ## for 2 and 7 #layers = [10868,4000,2000] ## for 01 and 7 #layers = [5460,2000,1000] ## for 2 with 0 noise image_X = Image.fromarray(I.tile_raster_images(X = X, img_shape = (28,28), tile_shape=(10, 10),tile_spacing=(1, 1))) image_X.save(r"X.png") for lam in lamda_list: folder = "lam" + str(lam) #compare_RDAE_DAE_l21RDAE(X = X, layers=layers, lamda = lam, folder = folder, learning_rate = 0.05, inner = inner, outer = outer, batch_size = 133,inputsize = (28,28)) #RDAE_DAE_l21RDAE_compressUser(X = X.T, layers=layers, lamda = lam, folder = folder, learning_rate = 0.05, inner = inner, outer = outer, batch_size = 133,inputsize = (28,28)) #l21RDAE_compressUser(X = X.T, layers=layers, lamda = lam, folder = folder, learning_rate = 0.05, inner = inner, outer = outer, batch_size = 133,inputsize = (28,28)) l21RDAE_compressFeature(X = X, layers=layers, lamda = lam, folder = folder, learning_rate = 0.05, inner = inner, outer = outer, batch_size = 133,inputsize = (28,28)) if __name__ == "__main__": compare_frame()
58.402715
182
0.64802
c5423e2bb2bd5c9fea16e6ed08fe47b20e867597
773
py
Python
test/test.py
ytyaru/Python.Mastodon.Api.Toot.20210813105938
18b46d9143f6d2a934e2fe7cd69b847e62399e67
[ "CC0-1.0" ]
null
null
null
test/test.py
ytyaru/Python.Mastodon.Api.Toot.20210813105938
18b46d9143f6d2a934e2fe7cd69b847e62399e67
[ "CC0-1.0" ]
null
null
null
test/test.py
ytyaru/Python.Mastodon.Api.Toot.20210813105938
18b46d9143f6d2a934e2fe7cd69b847e62399e67
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 # coding: utf8 #import requests #import os, sys, argparse, json, urllib.parse, datetime #from string import Template #from abc import ABCMeta, abstractmethod #import mimetypes import os, sys # 親ディレクトリをパスに追加する #sys.path.append(os.path.join(os.path.dirname(__file__), '../src')) #from lib import exept_null, Path, FileReader, FileWriter, Authenticator, Api #import media #import unittest from unittest import TestLoader from unittest import TextTestRunner #from test.support import captured_stdout #from unittest.mock import MagicMock, patch, mock_open #import copy #from collections import namedtuple #from string import Template if __name__ == '__main__': TextTestRunner().run(TestLoader().discover(os.path.abspath(os.path.dirname(__file__))))
30.92
91
0.78784
834b6ded71b3a92fa44e70ad8e85a01e4d353c2d
4,590
py
Python
libpermian/webui/server.py
velezd/permian
b52189f44c3112ad933a6b1e303a6b30c272651a
[ "MIT" ]
null
null
null
libpermian/webui/server.py
velezd/permian
b52189f44c3112ad933a6b1e303a6b30c272651a
[ "MIT" ]
9
2022-02-07T14:14:10.000Z
2022-03-22T09:17:16.000Z
libpermian/webui/server.py
velezd/permian
b52189f44c3112ad933a6b1e303a6b30c272651a
[ "MIT" ]
3
2022-01-20T09:17:39.000Z
2022-03-08T00:35:58.000Z
import uuid from flask import Flask import threading import socket import logging import socket from . import hooks LOGGER = logging.getLogger(__name__) class WebUI(threading.Thread): """ Web UI for the pipeline. This class is designed as container for the flask app running in thread providing interface for the flask app instance and the HTTP server used for the interface where one can obtain baseurl of the server or wait for the server to start. The class also work as bridge between the flask app and pipeline instance associated to it using flask config to pass the pipeline instance, see :py:func:`currentPipeline` and :py:func:`currentWebUI`. :param pipeline: Pipeline instance for which the web UI should provide interface. :type pipeline: libpermian.pipeline.Pipeline """ blueprints=[] @classmethod def registerBlueprint(cls, blueprint, url_prefix=None): """ Extend the webUI by providing flask Blueprint. There's no way to provide url_prefix at this point and it should be set in the Blueprint itself. The blueprints are registered to the app in the order they are registered via this method starting with pipeline builtin blueprints and then the plugin blueprints (in the order of plugins being loaded). :param blueprint: Flask Blueprint instance extending the webUI flask app :type blueprint: flask.Blueprint """ cls.blueprints.append((blueprint, url_prefix)) return blueprint def __init__(self, pipeline): super().__init__(daemon=True) self.app = Flask(__name__) for blueprint, url_prefix in self.blueprints: self.app.register_blueprint(blueprint, url_prefix=url_prefix) self.pipeline = pipeline self.listen_ip = self.config('listen_ip') self.port = None # delay obtaining the port until the very moment before the flask app is started to limit potential random port collision self._operationalLock = threading.Lock() self._operationalLock.acquire() # immediately acquire the lock as the webUI is not running yet self.uuid = uuid.uuid4().hex self.app.config.update( ENV='embedded', pipeline=self.pipeline, webUI=self, ) def run(self): """ The function that's executed in the thread. Call the :py:meth:`~WebUI.start` method instead of this one. For more info see python :py:class:`threading.Thread`. """ self.port = get_port(self.config('listen_port')) hooks.WebUI_starting(self) self.app.run(self.listen_ip, self.port) def config(self, option): """ """ return self.pipeline.settings.get('WebUI', option) @property def baseurl(self): """ """ return f'http://{get_ip()}:{self.port}/' def waitUntilStarted(self): """ """ # just wait for operational lock to be released with self._operationalLock: pass def unlock(self): """ """ LOGGER.debug(f'Unlocking webUI {self}') hooks.WebUI_started(self) self._operationalLock.release() def get_port(port_spec): """ Provide port number based on the `port_spec` parameter. If the provided port is string 'random' then random available port is returned. In future this function could possibly also accept tuple (or range) as `port_spec` choosing available port from the provided range. :param port_spec: :type port_spec: int or str :return: port number :rtype: int """ try: # try first to convert the string to number port_spec = int(port_spec) except ValueError: pass if isinstance(port_spec, int): return port_spec if port_spec == 'random': return get_random_free_port() raise ValueError(f'Unrecognized port value: {port_spec!r}') def get_random_free_port(): """ Finds free port, There is possibility for a race condition, since another process may grab that port before it is used by Flask. :return: Port number of random available (currently unused) port :rtype: int """ tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp.bind(('', 0)) port = tcp.getsockname()[1] tcp.close() return port def get_ip(): """ :return: IP address of the host which should be reachable from outside. :rtype: str """ return socket.gethostbyname(socket.gethostname())
32.097902
146
0.661656
89a5a5c29549fabd6cbab7e450b3368c029a29a2
5,385
py
Python
sydent/http/servlets/__init__.py
eyetime-international-ltd/sydent
48501fbe473555163214c37b90b342a706bd53d7
[ "Apache-2.0" ]
null
null
null
sydent/http/servlets/__init__.py
eyetime-international-ltd/sydent
48501fbe473555163214c37b90b342a706bd53d7
[ "Apache-2.0" ]
null
null
null
sydent/http/servlets/__init__.py
eyetime-international-ltd/sydent
48501fbe473555163214c37b90b342a706bd53d7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2014 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import json import copy import functools from twisted.internet import defer from twisted.web import server logger = logging.getLogger(__name__) class MatrixRestError(Exception): """ Handled by the jsonwrap wrapper. Any servlets that don't use this wrapper should catch this exception themselves. """ def __init__(self, httpStatus, errcode, error): super(Exception, self).__init__(error) self.httpStatus = httpStatus self.errcode = errcode self.error = error def get_args(request, required_args): """ Helper function to get arguments for an HTTP request. Currently takes args from the top level keys of a json object or www-form-urlencoded for backwards compatability on v1 endpoints only. Returns a tuple (error, args) where if error is non-null, the request is malformed. Otherwise, args contains the parameters passed. """ v1_path = request.path.startswith('/_matrix/identity/api/v1') args = None # for v1 paths, only look for json args if content type is json if ( request.method in ('POST', 'PUT') and ( not v1_path or ( request.requestHeaders.hasHeader('Content-Type') and request.requestHeaders.getRawHeaders('Content-Type')[0].startswith('application/json') ) ) ): try: args = json.load(request.content) except ValueError: raise MatrixRestError(400, 'M_BAD_JSON', 'Malformed JSON') # If we didn't get anything from that, and it's a v1 api path, try the request args # (riot-web's usage of the ed25519 sign servlet currently involves # sending the params in the query string with a json body of 'null') if args is None and (v1_path or request.method == 'GET'): args = copy.copy(request.args) # Twisted supplies everything as an array because it's valid to # supply the same params multiple times with www-form-urlencoded # params. This make it incompatible with the json object though, # so we need to convert one of them. Since this is the # backwards-compat option, we convert this one. for k, v in args.items(): if isinstance(v, list) and len(v) == 1: args[k] = v[0] elif args is None: args = {} missing = [] for a in required_args: if a not in args: missing.append(a) if len(missing) > 0: request.setResponseCode(400) msg = "Missing parameters: "+(",".join(missing)) raise MatrixRestError(400, 'M_MISSING_PARAMS', msg) return args def jsonwrap(f): @functools.wraps(f) def inner(self, request, *args, **kwargs): try: request.setHeader("Content-Type", "application/json") return json.dumps(f(self, request, *args, **kwargs)).encode("UTF-8") except MatrixRestError as e: request.setResponseCode(e.httpStatus) return json.dumps({ "errcode": e.errcode, "error": e.error, }) except Exception: logger.exception("Exception processing request"); request.setHeader("Content-Type", "application/json") request.setResponseCode(500) return json.dumps({ "errcode": "M_UNKNOWN", "error": "Internal Server Error", }) return inner def deferjsonwrap(f): def reqDone(resp, request): request.setHeader("Content-Type", "application/json") request.setResponseCode(200) request.write(json.dumps(resp).encode("UTF-8")) request.finish() def reqErr(failure, request): request.setHeader("Content-Type", "application/json") if failure.check(MatrixRestError) is not None: request.setResponseCode(failure.value.httpStatus) request.write(json.dumps({'errcode': failure.value.errcode, 'error': failure.value.error})) else: logger.error("Request processing failed: %r, %s", failure, failure.getTraceback()) request.setResponseCode(500) request.write(json.dumps({'errcode': 'M_UNKNOWN', 'error': 'Internal Server Error'})) request.finish() def inner(*args, **kwargs): request = args[1] d = defer.maybeDeferred(f, *args, **kwargs) d.addCallback(reqDone, request) d.addErrback(reqErr, request) return server.NOT_DONE_YET return inner def send_cors(request): request.setHeader("Access-Control-Allow-Origin", "*") request.setHeader("Access-Control-Allow-Methods", "GET, POST, PUT, DELETE, OPTIONS") request.setHeader("Access-Control-Allow-Headers", "*")
36.14094
103
0.640483
a3be9afaae88f08bc9ca5765b7def6293f31cabe
20,394
py
Python
admin/polytope-admin/polytope_admin/api/Config.py
ecmwf-projects/polytope-server
135017717cf161d68875a55aa364ce311a1d2ea6
[ "Apache-2.0" ]
null
null
null
admin/polytope-admin/polytope_admin/api/Config.py
ecmwf-projects/polytope-server
135017717cf161d68875a55aa364ce311a1d2ea6
[ "Apache-2.0" ]
1
2022-01-28T11:39:25.000Z
2022-01-28T11:39:25.000Z
admin/polytope-admin/polytope_admin/api/Config.py
ecmwf-projects/polytope-server
135017717cf161d68875a55aa364ce311a1d2ea6
[ "Apache-2.0" ]
null
null
null
# # Copyright 2022 European Centre for Medium-Range Weather Forecasts (ECMWF) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation nor # does it submit to any jurisdiction. # import getpass import logging import os import pprint import urllib.parse from http.client import HTTPConnection from pathlib import Path import yaml from . import helpers class Config: def __init__( self, config_path=None, address=None, port=None, username=None, key_path=None, quiet=None, verbose=None, log_file=None, log_level=None, user_key=None, user_email=None, password=None, insecure=None, skip_tls=None, logger=None, cli=False, ): # hard-coded defaults are not specified in the __init__ header # so that session configuration specified in the headers is not # directly merged into the hard-coded configuration before the file # configuration is applied # __init__ collects and merges client configuration from five sources, # in the following order (subsequent layers override configuration # already present in the previous layers): # - hard-coded defaults # - system-wide configuration file # - configuration file # - env variables # - session ad hoc configuration if logger: self._logger = logger else: self._logger = logging.getLogger(__name__) self._cli = cli self.file_config_items = [ "address", "port", "username", "key_path", "quiet", "verbose", "log_file", "log_level", "user_key", "user_email", "password", "insecure", "skip_tls", ] # Reading session configuration config = locals() config.pop("self") config.pop("config_path") config.pop("logger") config.pop("cli") self.session_config = helpers.process_config(config) # Default polytope client environment configuration config = {} config["address"] = "" config["port"] = None config["username"] = getpass.getuser() config["key_path"] = None # this default may be readjusted # later according to the config_path config["quiet"] = False config["verbose"] = False config["log_file"] = None config["log_level"] = "DEBUG" config["user_key"] = None config["user_email"] = None config["password"] = None config["insecure"] = False config["skip_tls"] = False self.default_config = config # Reading system-wide file configuration system_config_path = Path("/etc/polytope-adm-client/config.yaml") self.system_file_config = helpers.read_config(system_config_path) # Reading file configuration if not config_path: config_path = os.environ.get("POLYTOPE_CONFIG_PATH") if config_path: config_path = Path(os.path.expanduser(config_path)) self.config_path = config_path else: self.config_path = Path.home() / ".polytope-adm-client" self.default_config["key_path"] = str(self.config_path / "keys") self.file_config = helpers.read_config(self.config_path) # Reading env var configuration def fun(x): return "POLYTOPE_" + x.upper() env_var_config = {} for var in self.file_config_items: val = os.environ.get(fun(var)) if val: env_var_config[var] = val self.env_var_config = env_var_config self.update_loggers() message = "Gathered Polytope client configuration:\n" message += pprint.pformat(self.get()) self._logger.debug(message) def get_url(self, endpoint, request_id=None, collection_id=None): # This function generates an HTTP URL pointing to the API exposed by a # Polytope frontend instance. The IP and port are read from the # configuration file (after being set manually by the user, or using the # 'polytope config' command), or set to the default 127.0.0.1:5678 if not # configured. config = self.get() valid_endpoints = ["api_root", "auth", "users", "requests", "download", "upload", "ping", "collections"] if endpoint not in valid_endpoints: raise ValueError("Unrecognized frontend endpoint requested.") if endpoint == "api_root": suffix = "" elif endpoint == "auth": suffix = "/auth/keys" elif endpoint == "users": # the admin client performs all user management operations # against /auth/users, whereas the normal client attacks # /user suffix = "/auth/users" elif endpoint == "requests": suffix = "/requests" if request_id: suffix += "/" + request_id elif collection_id: suffix += "/" + collection_id elif endpoint == "collections": suffix = "/collections" elif endpoint == "download": suffix = "/downloads" if request_id: suffix += "/" + request_id elif endpoint == "upload": suffix = "/requests" if collection_id: suffix += "/" + collection_id elif request_id: suffix = "/uploads/" + request_id elif endpoint == "ping": suffix = "/test" else: raise helpers.BugError url = config["address"] # Add default scheme 'https://' if it was not specified if not url.startswith(("http://", "https://")) and "://" not in url: url = "https://" + url # Split URL and validate each component parsed_url = urllib.parse.urlsplit(url) scheme = parsed_url.scheme if scheme not in ("http", "https"): raise ValueError("Unrecognized URL scheme {}".format(scheme)) if scheme == "https" and config["insecure"]: scheme = "http" if scheme == "http" and not config["insecure"]: raise ValueError("Cannot use insecure http protocol without insecure flag") if not parsed_url.hostname: raise ValueError("URL {} could not be parsed".format(url)) # Adopt the port from URL if it exists, else read config port = parsed_url.port or config["port"] if port is None: port = 80 if scheme == "http" else 443 # Create the full path and reconstruct the URL path = os.path.join(parsed_url.path + "/api/v1" + suffix) url = urllib.parse.urlunsplit((scheme, parsed_url.hostname + ":" + str(port), path, None, None)) return url def get(self): # gathers, merges and returns all configuration, as detailed in the # documentation of __init__ config = {} config.update(self.default_config) config.update(self.system_file_config) config.update(self.file_config) config.update(self.env_var_config) config.update(self.session_config) special_file_priority = ["quiet", "verbose", "insecure", "skip_tls"] for item in special_file_priority: if item in self.session_config and not self.session_config[item]: if item in self.system_file_config: config[item] = self.system_file_config[item] if item in self.file_config: config[item] = self.file_config[item] booleans = ["quiet", "verbose", "insecure", "skip_tls"] for item in booleans: if isinstance(config[item], str): config[item] = config[item].lower() in ["true", "1"] return config def update_loggers(self): config_dict = self.get() # polytope_client loggers if config_dict["verbose"]: stream_log_level = "DEBUG" else: stream_log_level = "INFO" helpers.set_stream_handler(self._logger, config_dict["quiet"], stream_log_level) helpers.set_file_handler(self._logger, config_dict["log_file"], config_dict["log_level"]) # requests loggers # actually, the requests module doesn't implement logging loggers # the urllib3 module does # and the http.client just prints information out logger = logging.getLogger("urllib3") logger.setLevel(logging.DEBUG) quiet = config_dict["quiet"] log_file = config_dict["log_file"] if not config_dict["verbose"]: quiet = True HTTPConnection.debuglevel = 0 else: if not quiet: HTTPConnection.debuglevel = 1 if config_dict["log_level"] != "DEBUG": log_file = None helpers.set_stream_handler(logger, quiet, "DEBUG") helpers.set_file_handler(logger, log_file, "DEBUG") def list(self): """ Show Polytope client configuration. Lists the current Polytope client configuration, as stored in the Polytope client configuration file ($HOME/.polytope-adm-client by default). For each configuration item, its name and value are shown. Also, its origin is shown wrapped in brackets. The possible origins of a configuration item can be 'default', 'system file', 'file', 'env var' or 'session'. See 'polytope set config' for more information. :returns: None """ config = {} origins = {} for k, v in self.default_config.items(): config[k] = v origins[k] = "default" for k, v in self.system_file_config.items(): config[k] = v origins[k] = "system file" for k, v in self.file_config.items(): config[k] = v origins[k] = "file" for k, v in self.env_var_config.items(): config[k] = v origins[k] = "env var" for k, v in self.session_config.items(): config[k] = v origins[k] = "session" special_file_priority = ["quiet", "verbose", "insecure", "skip_tls"] for item in special_file_priority: if item in self.session_config and not self.session_config[item]: if item in self.system_file_config: config[item] = self.system_file_config[item] origins[item] = "system file" if item in self.file_config: config[item] = self.file_config[item] origins[item] = "file" message = "Found configuration items:\n" for k in config: print_value = config[k] if k == "password" and config[k]: print_value = "**hidden**" message += " - ({}) {}: {}\n".format(origins[k], k, print_value) if len(self.system_file_config) > 0: message += "The system-wide configuration file " + "is /etc/polytope-adm-client/config.json\n" message += "The configuration source directory used in this session " + "is " + str(self.config_path) self._logger.info(message) def set(self, key, value, persist=False): """ Configure the Polytope client. Sets a Polytope client configuration item, such as the IP address or port where the Polytope server frontend is exposed, as well as a user name to be used for the next operations with the Polytope server. See below for a complete list of configurable items. (Not relevant to CLI users): The new configuration item is added to the session configuration (in order for the new value to take effect over potential previous session configuration values for the same item) and, if 'persist = True' (always the case when used from the CLI), it is as well stored in the Polytope client configuration file ($HOME/.polytope_client/config.yaml by default). During execution, whenever the Polytope client does not find a value in the configuration file for any configuration item, a system-wide configuration file (/etc/polytope-adm-client/config.yaml) is first checked to find a value and, if not found, a library-internal fixed value is used. Configuration items in the configuration file can be overridden with environment variables (e.g. POLYTOPE_PORT, POLYTOPE_VERBOSE, ...) specified before running the API or CLI. When using the Polytope client API, upon creation of the client (i.e. when instantiating the Client class), additional session configuration values can be specified via the creator or via environment variables. These values will take priority over any library-defaults, file configurations or environment variables. The configuration items 'quiet' and 'verbose' are special. The Polytope CLI specifically sets them to True or False (depending on whether the CLI user specified the --quiet or --verbose flags) when instantiating the Client class, and hence these items show up as session configurations when queried via 'polytope list config'. However, if these items are set in the configuration file, and the session --quiet or --verbose flags have not been specified, the file values will take priority over the session configuration values. In that case, the origin of the configuration item in 'polytope list config' will show as '(file)'. The available configurable items, their library-default values and their meaning are listed below: config_path: $HOME/.polytope-client Path where the client configuration is stored. address: URL or IP address to the Polytope server frontend. port: 32002 Port used by the Polytope server frontend. username: host system user name Name of the Polytope user to use for subsequent client operations. This username is used to: - log in the system and name the obtained credential (key) - easily identify the key to be used in subsequent client operations This configuration item does not have an effect if a session key has been specified. key_path: config_path/keys Path where the user credentials are stored. quiet: False Whether to hide user information messages or not. verbose: False Whether to show detailed information of the progress or not. log_file: None File where to store the user information messages. log_level: DEBUG Level of detail of the log messages stored in the log_file. Accepts any Python logging level (WARNING, INFO, DEBUG, ...). user_key: None Polytope user key user_email: None Polytope user email associated to the user_key. password: None HTTP Basic authentication password. Strongly recommended to specify this configuration item only via the environment variable POLYTOPE_PASSWORD or manually in the Polytope configuration file. :param key: Name of the configuration item to set. :type key: str :param value: Value for the configuration item. :type value: str :param persist: Whether to apply the change in the Polytope client configuration or not (default). :type persist: bool :returns: None """ if key not in self.file_config_items: raise ValueError("Invalid configuration key provided (" + key + ")") print_value = value if key == "password" and value: print_value = "**hidden**" self.session_config[key] = value self.update_loggers() if not persist: if not self._cli: message = ( "Successfully updated the following configuration " + "item for the current Polytope client session:\n" ) message += " - {}: {}\n".format(key, print_value) self._logger.info(message) return config = self.file_config config[key] = value helpers.convert_back(config) helpers.validate_config(config) self.file_config = config os.makedirs(str(self.config_path), exist_ok=True) with open(str(self.config_path / "config.yaml"), "w", encoding="utf8") as outfile: yaml.dump(config, outfile, default_flow_style=False, allow_unicode=True) message = ( "Successfully updated the following configuration " + "item in the Polytope client configuration file:\n" ) message += " - {}: {}\n".format(key, print_value) self._logger.info(message) if key == "user_key": message = ( "A session key has been specified. The " + "specified 'username' (" + self.get()["username"] + ") will be ignored." ) self._logger.info(message) def unset(self, key, persist=False): """ Remove Polytope client configurations. Removes a Polytope client configuration item. (Not relevant to CLI users): The item is removed from the current session configuration if present and, if 'persist = True' (always the case when used from the CLI), it is removed as well from the Polytope client configuration file. See 'polytope set config' for more information. :param key: Name of the configuration item to be removed. Can take the value 'all' to remove all file configuration items. :type key: str :param persist: Whether to apply the change in the Polytope client configuration or not (default). :type persist: bool :returns: None """ if key == "all": self.session_config = {} self._logger.info("Configuration wiped.") if not persist: return config_dir = self.config_path try: os.remove(str(config_dir / "config.yaml")) self._logger.debug("Deleted " + str(config_dir / "config.yaml")) except OSError: self._logger.debug("Configuration file not found.") pass self.file_config = {} return if key not in self.file_config_items: raise ValueError("Invalid configuration key provided (" + key + ")") if key in self.session_config: del self.session_config[key] message = ( "Successfully removed the following configuration " + "item for the Polytope client:\n - " + key + "\n" ) self._logger.info(message) self.update_loggers() if not persist: return if key not in self.file_config: self._logger.info("Configuration item '" + key + "' not currently present in the configuration file.") return del self.file_config[key] os.makedirs(str(self.config_path), exist_ok=True) with open(str(self.config_path / "config.yaml"), "w", encoding="utf8") as outfile: yaml.dump(self.file_config, outfile, default_flow_style=False, allow_unicode=True)
38.119626
117
0.608365
9a2207d48f38f0bf97739ba91fe67dc626cf58cf
1,589
py
Python
BlinkSupport/KNNModel.py
isibord/EyeBlinkModels
d80659189234a66c10bec501f9e25062f243d2b3
[ "MIT" ]
null
null
null
BlinkSupport/KNNModel.py
isibord/EyeBlinkModels
d80659189234a66c10bec501f9e25062f243d2b3
[ "MIT" ]
null
null
null
BlinkSupport/KNNModel.py
isibord/EyeBlinkModels
d80659189234a66c10bec501f9e25062f243d2b3
[ "MIT" ]
null
null
null
import numpy as np class KNNModel(object): """A KNN Model""" def __init__(self): pass def fit(self, x, y, k): self.trainx = x self.trainy = y self.kval = k def predictThres(self, x, batchThres=True, threshold=0.5): # for every sample in training set # compute the distance to xText (using l2 norm) probEst = [] for eachx in x: distDict = {} eachx = np.asarray(eachx) for i in range(len(self.trainx)): trainxval = np.asarray(self.trainx[i]) normval = np.linalg.norm(trainxval-eachx) distDict[i] = normval sorted_x = sorted(distDict.items(), key=lambda kv: kv[1]) count1s = 0 for j in range(self.kval): (idx, norm) = sorted_x[j] yVal = self.trainy[idx] if yVal == 1: count1s +=1 probEst.append(count1s/self.kval) predictionList = [] if batchThres: thresholdval = -0.01 for j in range(101): predictions = [] thresholdval += 0.01 for probVal in probEst: predictions.append(1 if probVal > thresholdval else 0) predictionList.append(predictions) else: predictions = [] for probVal in probEst: predictions.append(1 if probVal > threshold else 0) predictionList.append(predictions) return predictionList
27.877193
74
0.507237
38028d5069637cb55233b6c7410c866cfe122132
1,611
py
Python
Loan-Approval-Analysis/code.py
Muskan-Agrawal07/greyatom-python-for-data-science
761afdeb4886a7db9fa74ca46df45ab1b0c5d630
[ "MIT" ]
null
null
null
Loan-Approval-Analysis/code.py
Muskan-Agrawal07/greyatom-python-for-data-science
761afdeb4886a7db9fa74ca46df45ab1b0c5d630
[ "MIT" ]
null
null
null
Loan-Approval-Analysis/code.py
Muskan-Agrawal07/greyatom-python-for-data-science
761afdeb4886a7db9fa74ca46df45ab1b0c5d630
[ "MIT" ]
null
null
null
# -------------- # Importing header files import numpy as np import pandas as pd from scipy.stats import mode import warnings warnings.filterwarnings('ignore') #Reading file bank_data = pd.read_csv(path) #Checking all categorical values categorical_var = bank_data.select_dtypes(include = 'object') print(categorical_var) #Checking all numerical values numerical_var = bank_data.select_dtypes(include = 'number') print(numerical_var) #drop the column Loan_ID to create a new dataframe banks banks = bank_data.drop('Loan_ID',axis=1) #see the null values print(banks.isnull().sum()) bank_mode = banks.mode().iloc[0] banks.fillna(bank_mode, inplace = True) banks.isnull() print(banks.isnull().sum()) #Now let's check the loan amount of an average person based on 'Gender', 'Married', 'Self_Employed'. avg_loan_amount = banks.pivot_table(index=['Gender', 'Married', 'Self_Employed'],values='LoanAmount',aggfunc='mean') loan_approved_se = banks[(banks['Self_Employed'] == 'Yes') & (banks['Loan_Status'] == 'Y')] loan_approved_nse = banks[(banks['Self_Employed'] == 'No') & (banks['Loan_Status'] == 'Y')] percentage_se = round((len(loan_approved_se)/614)*100,2) print(percentage_se) percentage_nse = round((len(loan_approved_nse)/614)*100,2) print(percentage_nse) loan_term = banks['Loan_Amount_Term'].apply(lambda x:x/12) big_loan_term = 0 for i in loan_term: if i>=25: big_loan_term+=1 print(big_loan_term) loan_groupby = banks.groupby('Loan_Status')[['ApplicantIncome', 'Credit_History']] mean_values = loan_groupby.mean() print(mean_values)
30.980769
117
0.721912
5f6dde442962e2fdce021352fe0cd483e0c1179a
3,493
py
Python
src/trellotask/settings.py
true7/oleg_diatlenko_test_pj
4249c75010f92e94f3a6dd0b2b672fc14061c9e5
[ "MIT" ]
null
null
null
src/trellotask/settings.py
true7/oleg_diatlenko_test_pj
4249c75010f92e94f3a6dd0b2b672fc14061c9e5
[ "MIT" ]
null
null
null
src/trellotask/settings.py
true7/oleg_diatlenko_test_pj
4249c75010f92e94f3a6dd0b2b672fc14061c9e5
[ "MIT" ]
null
null
null
""" Django settings for trellotask project. Generated by 'django-admin startproject' using Django 1.10.5. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '0@i$5-aauf)th!i(t&z04oi-8$d4_ndywke0=mwr*f!%x&c-ho' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'notes', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'trellotask.urls' FIXTURE_DIRS = ( os.path.join(BASE_DIR, 'initial_data.json'), ) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'notes.context_processors.total_count', ], }, }, ] WSGI_APPLICATION = 'trellotask.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), # '/var/www/static/', ] STATIC_ROOT = os.path.join(BASE_DIR, "static_cdn") MEDIA_URL = "/media/" MEDIA_ROOT = os.path.join(BASE_DIR, "media_cdn")
25.49635
91
0.692814
4c33bd0bc0d77116e61e99049716af678fb44591
105,674
py
Python
reviewboard/diffviewer/tests/test_diffx_parser.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
reviewboard/diffviewer/tests/test_diffx_parser.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
reviewboard/diffviewer/tests/test_diffx_parser.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
"""Unit tests for reviewboard.diffviewer.parser.DiffXParser.""" from djblets.testing.decorators import add_fixtures from reviewboard.diffviewer.errors import DiffParserError from reviewboard.diffviewer.parser import DiffXParser from reviewboard.scmtools.core import HEAD, PRE_CREATION, UNKNOWN from reviewboard.testing import TestCase class DiffXParserTests(TestCase): """Unit tests for reviewboard.diffviewer.parser.DiffXParser.""" def test_parse_diff_with_basic_diff(self): """Testing DiffXParser.parse_diff with a basic DiffX file""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=156\n' b'{\n' b' "path": {\n' b' "new": "message2.py",\n' b' "old": "message.py"\n' b' },\n' b' "revision": {\n' b' "new": "def456",\n' b' "old": "abc123"\n' b' }\n' b'}\n' b'#...diff: length=693, line_endings=unix\n' b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message2.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': { 'old': 'message.py', 'new': 'message2.py', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message2.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n') self.assertEqual(parsed_file.orig_filename, b'message.py') self.assertEqual(parsed_file.orig_file_details, b'abc123') self.assertEqual(parsed_file.modified_filename, b'message2.py') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 4) self.assertEqual(parsed_file.delete_count, 4) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_complex_diff(self): """Testing DiffXParser.parse_diff with a complex DiffX file""" parser = DiffXParser( b'#diffx: encoding=utf-16, version=1.0\n' b'#.preamble: encoding=ascii, indent=2, length=36,' b' line_endings=dos, mimetype=text/plain\n' b' This is the file-level preamble.\r\n' b'#.meta: encoding=utf-32, format=json, length=96\n' b'\xff\xfe\x00\x00{\x00\x00\x00\n\x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00"' b'\x00\x00\x00k\x00\x00\x00e\x00\x00\x00y\x00\x00\x00"' b'\x00\x00\x00:\x00\x00\x00 \x00\x00\x00"\x00\x00\x00v' b'\x00\x00\x00a\x00\x00\x00l\x00\x00\x00u\x00\x00\x00e' b'\x00\x00\x00"\x00\x00\x00\n\x00\x00\x00}\x00\x00\x00' b'\n\x00\x00\x00' b'#.change:\n' b'#..preamble: indent=2, length=14, line_endings=unix, ' b'mimetype=text/markdown\n' b' \xff\xfet\x00e\x00s\x00t\x00\n\x00' b'#..meta: encoding=utf-8, format=json, length=302\n' b'{\n' b' "author": "Test User <test@example.com>",\n' b' "author date": "2021-06-01T13:12:06-07:00",\n' b' "committer": "Test User <test@example.com>",\n' b' "date": "2021-06-02T19:26:31-07:00",\n' b' "id": "a25e7b28af5e3184946068f432122c68c1a30b23",\n' b' "parent id": "b892d5f833474c59d7851ff46a4b0bd919017e97"\n' b'}\n' b'#..file:\n' b'#...meta: encoding=latin1, format=json, length=166\n' b'{\n' b' "path": "file1",\n' b' "revision": {\n' b' "new": "eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef",\n' b' "old": "c8839177d1a5605aa60abe69db95c84183f0eebe"\n' b' }\n' b'}\n' b'#...diff: length=60, line_endings=unix\n' b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n' b'#.change:\n' b'#..preamble: encoding=utf-8, indent=4, length=56, ' b'line_endings=unix\n' b' Summary of commit #2\n' b' \n' b' Here\'s a description.\n' b'#..meta: encoding=utf-8, format=json, length=302\n' b'{\n' b' "author": "Test User <test@example.com>",\n' b' "author date": "2021-06-01T19:46:22-07:00",\n' b' "committer": "Test User <test@example.com>",\n' b' "date": "2021-06-02T19:46:25-07:00",\n' b' "id": "91127b687f583184144161f432222748c1a30b23",\n' b' "parent id": "a25e7b28af5e3184946068f432122c68c1a30b23"\n' b'}\n' b'#..file:\n' b'#...meta: encoding=utf-32, format=json, length=668\n' b'\xff\xfe\x00\x00{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'p\x00\x00\x00a\x00\x00\x00t\x00\x00\x00h\x00\x00\x00' b'"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'f\x00\x00\x00i\x00\x00\x00l\x00\x00\x00e\x00\x00\x00' b'2\x00\x00\x00"\x00\x00\x00,\x00\x00\x00\n\x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x00r\x00\x00\x00e\x00\x00\x00v\x00\x00\x00' b'i\x00\x00\x00s\x00\x00\x00i\x00\x00\x00o\x00\x00\x00' b'n\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00"\x00\x00\x00n\x00\x00\x00' b'e\x00\x00\x00w\x00\x00\x00"\x00\x00\x00:\x00\x00\x00' b' \x00\x00\x00"\x00\x00\x003\x00\x00\x008\x00\x00\x00' b'9\x00\x00\x00c\x00\x00\x00c\x00\x00\x006\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x00a\x00\x00\x00e\x00\x00\x00' b'5\x00\x00\x00a\x00\x00\x006\x00\x00\x005\x00\x00\x00' b'9\x00\x00\x003\x00\x00\x008\x00\x00\x003\x00\x00\x00' b'e\x00\x00\x00a\x00\x00\x00b\x00\x00\x005\x00\x00\x00' b'd\x00\x00\x00f\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'5\x00\x00\x003\x00\x00\x007\x00\x00\x006\x00\x00\x00' b'4\x00\x00\x00e\x00\x00\x00c\x00\x00\x00c\x00\x00\x00' b'f\x00\x00\x008\x00\x00\x004\x00\x00\x007\x00\x00\x00' b'3\x00\x00\x002\x00\x00\x00"\x00\x00\x00,\x00\x00\x00' b'\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00"\x00\x00\x00o\x00\x00\x00l\x00\x00\x00' b'd\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x002\x00\x00\x008\x00\x00\x001\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x000\x00\x00\x004\x00\x00\x00' b'6\x00\x00\x001\x00\x00\x007\x00\x00\x00e\x00\x00\x00' b'8\x00\x00\x000\x00\x00\x007\x00\x00\x008\x00\x00\x00' b'5\x00\x00\x000\x00\x00\x00e\x00\x00\x000\x00\x00\x00' b'7\x00\x00\x00e\x00\x00\x005\x00\x00\x004\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00e\x00\x00\x003\x00\x00\x00' b'4\x00\x00\x006\x00\x00\x009\x00\x00\x00f\x00\x00\x00' b'6\x00\x00\x00a\x00\x00\x002\x00\x00\x00e\x00\x00\x00' b'7\x00\x00\x00"\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00}\x00\x00\x00' b'\n\x00\x00\x00}\x00\x00\x00\n\x00\x00\x00' b'#...diff: encoding=utf-16, length=22, line_endings=unix\n' b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00' b'#..file:\n' b'#...meta: encoding=utf-8, format=json, length=166\n' b'{\n' b' "path": "file3",\n' b' "revision": {\n' b' "new": "0d4a0fb8d62b762a26e13591d06d93d79d61102f",\n' b' "old": "be089b7197974703c83682088a068bef3422c6c2"\n' b' }\n' b'}\n' b'#...diff: length=87, line_endings=dos\n' b'--- a/file3\r\n' b'+++ b/file3\r\n' b'@@ -258,1 +258,2 @@\r\n' b'- old line\r\n' b'+ new line 1\r\n' b'+ new line 2\r\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 2) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'metadata': { 'key': 'value', }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, 'options': { 'encoding': 'utf-16', 'version': '1.0', }, 'preamble': 'This is the file-level preamble.\r\n', 'preamble_options': { 'encoding': 'ascii', 'indent': 2, 'line_endings': 'dos', 'mimetype': 'text/plain', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) # Inspect change #1. parsed_change = parsed_diff.changes[0] self.assertEqual(parsed_change.commit_id, b'a25e7b28af5e3184946068f432122c68c1a30b23') self.assertIsNone(parsed_change.parent_commit_id, b'b892d5f833474c59d7851ff46a4b0bd919017e97') self.assertEqual(parsed_change.extra_data, { 'diffx': { 'metadata': { 'author': 'Test User <test@example.com>', 'author date': '2021-06-01T13:12:06-07:00', 'committer': 'Test User <test@example.com>', 'date': '2021-06-02T19:26:31-07:00', 'id': 'a25e7b28af5e3184946068f432122c68c1a30b23', 'parent id': 'b892d5f833474c59d7851ff46a4b0bd919017e97', }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, 'preamble': 'test\n', 'preamble_options': { 'indent': 2, 'line_endings': 'unix', 'mimetype': 'text/markdown', }, }, }) self.assertEqual(len(parsed_change.files), 1) # Inspect change #1, file #1 parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': 'file1', 'revision': { 'old': 'c8839177d1a5605aa60abe69db95c84183f0eebe', 'new': 'eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef', }, }, 'metadata_options': { 'encoding': 'latin1', 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n') self.assertEqual(parsed_file.orig_filename, b'file1') self.assertEqual(parsed_file.orig_file_details, b'c8839177d1a5605aa60abe69db95c84183f0eebe') self.assertEqual(parsed_file.modified_filename, b'file1') self.assertEqual(parsed_file.modified_file_details, b'eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef') self.assertEqual(parsed_file.insert_count, 0) self.assertEqual(parsed_file.delete_count, 0) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) # Inspect change #2. parsed_change = parsed_diff.changes[1] self.assertEqual(parsed_change.commit_id, b'91127b687f583184144161f432222748c1a30b23') self.assertIsNone(parsed_change.parent_commit_id, b'a25e7b28af5e3184946068f432122c68c1a30b23') self.assertEqual(parsed_change.extra_data, { 'diffx': { 'metadata': { 'author': 'Test User <test@example.com>', 'author date': '2021-06-01T19:46:22-07:00', 'committer': 'Test User <test@example.com>', 'date': '2021-06-02T19:46:25-07:00', 'id': '91127b687f583184144161f432222748c1a30b23', 'parent id': 'a25e7b28af5e3184946068f432122c68c1a30b23', }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, 'preamble': ( "Summary of commit #2\n" "\n" "Here's a description.\n" ), 'preamble_options': { 'encoding': 'utf-8', 'indent': 4, 'line_endings': 'unix', }, }, }) self.assertEqual(len(parsed_change.files), 2) # Inspect change #2, file #1 parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'encoding': 'utf-16', 'line_endings': 'unix', }, 'metadata': { 'path': 'file2', 'revision': { 'old': '281bac2b704617e807850e07e54bae3469f6a2e7', 'new': '389cc6b7ae5a659383eab5dfc253764eccf84732', }, }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, }, 'encoding': 'utf-16', }) self.assertEqual( parsed_file.data, b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00') self.assertEqual(parsed_file.orig_filename, b'file2') self.assertEqual(parsed_file.orig_file_details, b'281bac2b704617e807850e07e54bae3469f6a2e7') self.assertEqual(parsed_file.modified_filename, b'file2') self.assertEqual(parsed_file.modified_file_details, b'389cc6b7ae5a659383eab5dfc253764eccf84732') self.assertEqual(parsed_file.insert_count, 0) self.assertEqual(parsed_file.delete_count, 0) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) # Inspect change #2, file #2 parsed_file = parsed_change.files[1] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'dos', }, 'metadata': { 'path': 'file3', 'revision': { 'old': 'be089b7197974703c83682088a068bef3422c6c2', 'new': '0d4a0fb8d62b762a26e13591d06d93d79d61102f', }, }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- a/file3\r\n' b'+++ b/file3\r\n' b'@@ -258,1 +258,2 @@\r\n' b'- old line\r\n' b'+ new line 1\r\n' b'+ new line 2\r\n') self.assertEqual(parsed_file.orig_filename, b'file3') self.assertEqual(parsed_file.orig_file_details, b'be089b7197974703c83682088a068bef3422c6c2') self.assertEqual(parsed_file.modified_filename, b'file3') self.assertEqual(parsed_file.modified_file_details, b'0d4a0fb8d62b762a26e13591d06d93d79d61102f') self.assertEqual(parsed_file.insert_count, 2) self.assertEqual(parsed_file.delete_count, 1) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_path_string(self): """Testing DiffXParser.parse_diff with file's meta.path as single string """ parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=103\n' b'{\n' b' "path": "message.py",\n' b' "revision": {\n' b' "new": "def456",\n' b' "old": "abc123"\n' b' }\n' b'}\n' b'#...diff: length=692, line_endings=unix\n' b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': 'message.py', 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n') self.assertEqual(parsed_file.orig_filename, b'message.py') self.assertEqual(parsed_file.orig_file_details, b'abc123') self.assertEqual(parsed_file.modified_filename, b'message.py') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 4) self.assertEqual(parsed_file.delete_count, 4) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_revision_old_only(self): """Testing DiffXParser.parse_diff with file's revision.old and no revision.new """ parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=78\n' b'{\n' b' "path": "message.py",\n' b' "revision": {\n' b' "old": "abc123"\n' b' }\n' b'}\n' b'#...diff: length=692, line_endings=unix\n' b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': 'message.py', 'revision': { 'old': 'abc123', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n') self.assertEqual(parsed_file.orig_filename, b'message.py') self.assertEqual(parsed_file.orig_file_details, b'abc123') self.assertEqual(parsed_file.modified_filename, b'message.py') self.assertEqual(parsed_file.modified_file_details, HEAD) self.assertEqual(parsed_file.insert_count, 4) self.assertEqual(parsed_file.delete_count, 4) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_revision_new_only(self): """Testing DiffXParser.parse_diff with file's revision.new and no revision.old """ parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=78\n' b'{\n' b' "path": "message.py",\n' b' "revision": {\n' b' "new": "def456"\n' b' }\n' b'}\n' b'#...diff: length=692, line_endings=unix\n' b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': 'message.py', 'revision': { 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n') self.assertEqual(parsed_file.orig_filename, b'message.py') self.assertEqual(parsed_file.orig_file_details, UNKNOWN) self.assertEqual(parsed_file.modified_filename, b'message.py') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 4) self.assertEqual(parsed_file.delete_count, 4) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_revision_new_only_op_create(self): """Testing DiffXParser.parse_diff with file's revision.new and no revision.old and op=create """ parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=98\n' b'{\n' b' "op": "create",\n' b' "path": "message.py",\n' b' "revision": {\n' b' "new": "def456"\n' b' }\n' b'}\n' b'#...diff: length=692, line_endings=unix\n' b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'op': 'create', 'path': 'message.py', 'revision': { 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n') self.assertEqual(parsed_file.orig_filename, b'message.py') self.assertEqual(parsed_file.orig_file_details, PRE_CREATION) self.assertEqual(parsed_file.modified_filename, b'message.py') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 4) self.assertEqual(parsed_file.delete_count, 4) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_binary_file(self): """Testing DiffXParser.parse_diff with binary file""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=104\n' b'{\n' b' "path": "message.bin",\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' }\n' b'}\n' b'#...diff: length=23, type=binary, line_endings=unix\n' b'This is a binary file.\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', 'type': 'binary', }, 'metadata': { 'path': 'message.bin', 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'This is a binary file.\n') self.assertEqual(parsed_file.orig_filename, b'message.bin') self.assertEqual(parsed_file.orig_file_details, b'abc123') self.assertEqual(parsed_file.modified_filename, b'message.bin') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 0) self.assertEqual(parsed_file.delete_count, 0) self.assertTrue(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_file_op_delete(self): """Testing DiffXParser.parse_diff with file op=delete""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=123\n' b'{\n' b' "op": "delete",\n' b' "path": "message.py",\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' }\n' b'}\n' b'#...diff: length=29, line_endings=unix\n' b'@@ -1 +0,0 @@\n' b'-Goodbye, file\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'op': 'delete', 'path': 'message.py', 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'@@ -1 +0,0 @@\n' b'-Goodbye, file\n') self.assertEqual(parsed_file.orig_filename, b'message.py') self.assertEqual(parsed_file.orig_file_details, 'abc123') self.assertEqual(parsed_file.modified_filename, b'message.py') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 0) self.assertEqual(parsed_file.delete_count, 1) self.assertTrue(parsed_file.deleted) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.moved) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_op_move(self): """Testing DiffXParser.parse_diff with file op=move""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=169\n' b'{\n' b' "op": "move",\n' b' "path": {\n' b' "old": "old-name",\n' b' "new": "new-name"\n' b' },\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' }\n' b'}\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'metadata': { 'op': 'move', 'path': { 'old': 'old-name', 'new': 'new-name', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual(parsed_file.data, b'') self.assertEqual(parsed_file.orig_filename, b'old-name') self.assertEqual(parsed_file.orig_file_details, 'abc123') self.assertEqual(parsed_file.modified_filename, b'new-name') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 0) self.assertEqual(parsed_file.delete_count, 0) self.assertTrue(parsed_file.moved) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_op_move_modify(self): """Testing DiffXParser.parse_diff with file op=move-modify""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=176\n' b'{\n' b' "op": "move-modify",\n' b' "path": {\n' b' "old": "old-name",\n' b' "new": "new-name"\n' b' },\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' }\n' b'}\n' b'#...diff: length=58, line_endings=unix\n' b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'op': 'move-modify', 'path': { 'old': 'old-name', 'new': 'new-name', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n') self.assertEqual(parsed_file.orig_filename, b'old-name') self.assertEqual(parsed_file.orig_file_details, 'abc123') self.assertEqual(parsed_file.modified_filename, b'new-name') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 1) self.assertEqual(parsed_file.delete_count, 1) self.assertTrue(parsed_file.moved) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.is_symlink) def test_parse_diff_with_op_copy(self): """Testing DiffXParser.parse_diff with file op=copy""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=169\n' b'{\n' b' "op": "copy",\n' b' "path": {\n' b' "old": "old-name",\n' b' "new": "new-name"\n' b' },\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' }\n' b'}\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'metadata': { 'op': 'copy', 'path': { 'old': 'old-name', 'new': 'new-name', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual(parsed_file.data, b'') self.assertEqual(parsed_file.orig_filename, b'old-name') self.assertEqual(parsed_file.orig_file_details, 'abc123') self.assertEqual(parsed_file.modified_filename, b'new-name') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 0) self.assertEqual(parsed_file.delete_count, 0) self.assertTrue(parsed_file.copied) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.is_symlink) self.assertFalse(parsed_file.moved) def test_parse_diff_with_op_copy_modify(self): """Testing DiffXParser.parse_diff with file op=copy-modify""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=176\n' b'{\n' b' "op": "copy-modify",\n' b' "path": {\n' b' "old": "old-name",\n' b' "new": "new-name"\n' b' },\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' }\n' b'}\n' b'#...diff: length=58, line_endings=unix\n' b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'op': 'copy-modify', 'path': { 'old': 'old-name', 'new': 'new-name', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n') self.assertEqual(parsed_file.orig_filename, b'old-name') self.assertEqual(parsed_file.orig_file_details, 'abc123') self.assertEqual(parsed_file.modified_filename, b'new-name') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 1) self.assertEqual(parsed_file.delete_count, 1) self.assertTrue(parsed_file.copied) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.is_symlink) self.assertFalse(parsed_file.moved) def test_parse_diff_with_existing_stats(self): """Testing DiffXParser.parse_diff with existing file stats""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=225\n' b'{\n' b' "path": {\n' b' "old": "old-name",\n' b' "new": "new-name"\n' b' },\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' },\n' b' "stats": {\n' b' "deletions": 100,\n' b' "insertions": 200\n' b' }\n' b'}\n' b'#...diff: length=58, line_endings=unix\n' b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': { 'old': 'old-name', 'new': 'new-name', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, 'stats': { 'deletions': 100, 'insertions': 200, }, }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n') self.assertEqual(parsed_file.orig_filename, b'old-name') self.assertEqual(parsed_file.orig_file_details, 'abc123') self.assertEqual(parsed_file.modified_filename, b'new-name') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 200) self.assertEqual(parsed_file.delete_count, 100) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.is_symlink) self.assertFalse(parsed_file.moved) def test_parse_diff_with_type_symlink(self): """Testing DiffXParser.parse_diff with file type=symlink""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=212\n' b'{\n' b' "path": {\n' b' "old": "old-name",\n' b' "new": "new-name"\n' b' },\n' b' "revision": {\n' b' "old": "abc123",\n' b' "new": "def456"\n' b' },\n' b' "type": "symlink",\n' b' "symlink target": "target/path/"\n' b'}\n' b'#...diff: length=58, line_endings=unix\n' b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n' ) parsed_diff = parser.parse_diff() self.assertEqual(len(parsed_diff.changes), 1) self.assertEqual(parsed_diff.extra_data, { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, }) self.assertIs(parsed_diff.parser, parser) self.assertFalse(parsed_diff.uses_commit_ids_as_revisions) parsed_change = parsed_diff.changes[0] self.assertIsNone(parsed_change.commit_id) self.assertIsNone(parsed_change.parent_commit_id) self.assertEqual(parsed_change.extra_data, {}) self.assertEqual(len(parsed_change.files), 1) parsed_file = parsed_change.files[0] self.assertEqual(parsed_file.extra_data, { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': { 'old': 'old-name', 'new': 'new-name', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, 'type': 'symlink', 'symlink target': 'target/path/', }, 'metadata_options': { 'format': 'json', }, }, }) self.assertEqual( parsed_file.data, b'--- old-name\n' b'+++ new-name\n' b'@@ -1 +1 @@\n' b'-old line\n' b'+new line\n') self.assertEqual(parsed_file.orig_filename, b'old-name') self.assertEqual(parsed_file.orig_file_details, 'abc123') self.assertEqual(parsed_file.modified_filename, b'new-name') self.assertEqual(parsed_file.modified_file_details, b'def456') self.assertEqual(parsed_file.insert_count, 1) self.assertEqual(parsed_file.delete_count, 1) self.assertTrue(parsed_file.is_symlink) self.assertFalse(parsed_file.binary) self.assertFalse(parsed_file.copied) self.assertFalse(parsed_file.deleted) self.assertFalse(parsed_file.moved) def test_parse_diff_with_invalid_diffx(self): """Testing DiffXParser.parse_diff with invalid DiffX file contents""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'BLARGH\n' ) message = ( "Error on line 2: Unexpected or improperly formatted header: %r" % b'BLARGH' ) with self.assertRaisesMessage(DiffParserError, message): parser.parse_diff() def test_parse_diff_with_path_invalid_type(self): """Testing DiffXParser.parse_diff with invalid file path type""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=94\n' b'{\n' b' "path": 123,\n' b' "revision": {\n' b' "new": "def456",\n' b' "old": "abc123"\n' b' }\n' b'}\n' ) message = ( 'Unexpected type %s for "path" key in change 1, file 1' % int ) with self.assertRaisesMessage(DiffParserError, message): parser.parse_diff() def test_parse_diff_with_path_dict_missing_old(self): """Testing DiffXParser.parse_diff with file path as dictionary with missing "old" key """ parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=120\n' b'{\n' b' "path": {\n' b' "new": "file"\n' b' },\n' b' "revision": {\n' b' "new": "def456",\n' b' "old": "abc123"\n' b' }\n' b'}\n' ) message = 'Missing the "path.old" key in change 1, file 1' with self.assertRaisesMessage(DiffParserError, message): parser.parse_diff() def test_parse_diff_with_path_dict_missing_new(self): """Testing DiffXParser.parse_diff with file path as dictionary with missing "new" key """ parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=120\n' b'{\n' b' "path": {\n' b' "old": "file"\n' b' },\n' b' "revision": {\n' b' "new": "def456",\n' b' "old": "abc123"\n' b' }\n' b'}\n' ) message = 'Missing the "path.new" key in change 1, file 1' with self.assertRaisesMessage(DiffParserError, message): parser.parse_diff() def test_parse_diff_with_revision_invalid_type(self): """Testing DiffXParser.parse_diff with invalid file revision type""" parser = DiffXParser( b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=44\n' b'{\n' b' "path": "file",\n' b' "revision": 123\n' b'}\n' ) message = ( 'Unexpected type %s for "revision" key in change 1, file 1' % int ) with self.assertRaisesMessage(DiffParserError, message): parser.parse_diff() @add_fixtures(['test_scmtools']) def test_raw_diff_with_diffset_simple(self): """Testing DiffXParser.raw_diff with DiffSet and simple diff""" repository = self.create_repository(tool_name='Test') diffset = self.create_diffset(repository=repository) diffset.extra_data = { 'diffx': { 'options': { 'encoding': 'utf-8', 'version': '1.0', }, }, } diffset.save(update_fields=('extra_data',)) diffcommit = self.create_diffcommit(diffset=diffset, with_diff=False) filediff = self.create_filediff( diffset=diffset, commit=diffcommit, save=False, diff=( b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message2.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict ' b'does not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': { 'old': 'message.py', 'new': 'message2.py', }, 'revision': { 'old': 'abc123', 'new': 'def456', }, }, 'metadata_options': { 'format': 'json', }, }, } filediff.save() parser = DiffXParser(b'') self.assertEqual( parser.raw_diff(diffset), b'#diffx: encoding=utf-8, version=1.0\n' b'#.change:\n' b'#..file:\n' b'#...meta: format=json, length=156\n' b'{\n' b' "path": {\n' b' "new": "message2.py",\n' b' "old": "message.py"\n' b' },\n' b' "revision": {\n' b' "new": "def456",\n' b' "old": "abc123"\n' b' }\n' b'}\n' b'#...diff: length=693, line_endings=unix\n' b'--- message.py\t2021-07-02 13:20:12.285875444 -0700\n' b'+++ message2.py\t2021-07-02 13:21:31.428383873 -0700\n' b'@@ -164,10 +164,10 @@\n' b' not isinstance(headers, MultiValueDict)):\n' b' # Instantiating a MultiValueDict from a dict does ' b'not ensure that\n' b' # values are lists, so we have to ensure that ' b'ourselves.\n' b'- headers = MultiValueDict(dict(\n' b'- (key, [value])\n' b'- for key, value in six.iteritems(headers)\n' b'- ))\n' b'+ headers = MultiValueDict({\n' b'+ key: [value]\n' b'+ for key, value in headers.items()\n' b'+ })\n' b' \n' b' if in_reply_to:\n' b' headers["In-Reply-To"] = in_reply_to\n') @add_fixtures(['test_scmtools']) def test_raw_diff_with_diffset_complex(self): """Testing DiffXParser.raw_diff with DiffSet and complex diff""" repository = self.create_repository(tool_name='Test') diffset = self.create_diffset(repository=repository) diffset.extra_data = { 'diffx': { 'metadata': { 'key': 'value', }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, 'options': { 'encoding': 'utf-16', 'version': '1.0', }, 'preamble': 'This is the file-level preamble.\r\n', 'preamble_options': { 'encoding': 'ascii', 'indent': 2, 'line_endings': 'dos', 'mimetype': 'text/plain', }, }, } diffset.save(update_fields=('extra_data',)) # Create DiffCommit #1. diffcommit = self.create_diffcommit( diffset=diffset, commit_id='a25e7b28af5e3184946068f432122c68c1a30b23', with_diff=False) diffcommit.extra_data = { 'diffx': { 'metadata': { 'author': 'Test User <test@example.com>', 'author date': '2021-06-01T13:12:06-07:00', 'committer': 'Test User <test@example.com>', 'date': '2021-06-02T19:26:31-07:00', 'id': 'a25e7b28af5e3184946068f432122c68c1a30b23', 'parent id': 'b892d5f833474c59d7851ff46a4b0bd919017e97', }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, 'preamble': 'test\n', 'preamble_options': { 'indent': 2, 'line_endings': 'unix', 'mimetype': 'text/markdown', }, }, } diffcommit.save(update_fields=('extra_data',)) filediff = self.create_filediff( diffset=diffset, commit=diffcommit, source_file='file1', source_revision='c8839177d1a5605aa60abe69db95c84183f0eebe', dest_file='file1', dest_detail='eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef', save=False, diff=( b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': 'file1', 'revision': { 'old': 'c8839177d1a5605aa60abe69db95c84183f0eebe', 'new': 'eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef', }, }, 'metadata_options': { 'encoding': 'latin1', 'format': 'json', }, }, } filediff.save() # Create DiffCommit #2. diffcommit = self.create_diffcommit( diffset=diffset, commit_id='91127b687f583184144161f432222748c1a30b23', with_diff=False) diffcommit.extra_data = { 'diffx': { 'metadata': { 'author': 'Test User <test@example.com>', 'author date': '2021-06-01T19:46:22-07:00', 'committer': 'Test User <test@example.com>', 'date': '2021-06-02T19:46:25-07:00', 'id': '91127b687f583184144161f432222748c1a30b23', 'parent id': 'a25e7b28af5e3184946068f432122c68c1a30b23', }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, 'preamble': ( "Summary of commit #2\n" "\n" "Here's a description.\n" ), 'preamble_options': { 'encoding': 'utf-8', 'indent': 4, 'line_endings': 'unix', }, }, } diffcommit.save(update_fields=('extra_data',)) filediff = self.create_filediff( diffset=diffset, commit=diffcommit, source_file='file2', source_revision='281bac2b704617e807850e07e54bae3469f6a2e7', dest_file='file2', dest_detail='389cc6b7ae5a659383eab5dfc253764eccf84732', save=False, diff=( b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'encoding': 'utf-16', 'line_endings': 'unix', }, 'metadata': { 'path': 'file2', 'revision': { 'old': '281bac2b704617e807850e07e54bae3469f6a2e7', 'new': '389cc6b7ae5a659383eab5dfc253764eccf84732', }, }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, }, 'encoding': 'utf-16', } filediff.save() filediff = self.create_filediff( diffset=diffset, commit=diffcommit, source_file='file3', source_revision='be089b7197974703c83682088a068bef3422c6c2', dest_file='file3', dest_detail='0d4a0fb8d62b762a26e13591d06d93d79d61102f', save=False, diff=( b'--- a/file3\r\n' b'+++ b/file3\r\n' b'@@ -258,1 +258,2 @@\r\n' b'- old line\r\n' b'+ new line 1\r\n' b'+ new line 2\r\n' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'line_endings': 'dos', }, 'metadata': { 'path': 'file3', 'revision': { 'old': 'be089b7197974703c83682088a068bef3422c6c2', 'new': '0d4a0fb8d62b762a26e13591d06d93d79d61102f', }, }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, }, } filediff.save() parser = DiffXParser(b'') self.assertEqual( parser.raw_diff(diffset), b'#diffx: encoding=utf-16, version=1.0\n' b'#.preamble: encoding=ascii, indent=2, length=36,' b' line_endings=dos, mimetype=text/plain\n' b' This is the file-level preamble.\r\n' b'#.meta: encoding=utf-32, format=json, length=96\n' b'\xff\xfe\x00\x00{\x00\x00\x00\n\x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00"' b'\x00\x00\x00k\x00\x00\x00e\x00\x00\x00y\x00\x00\x00"' b'\x00\x00\x00:\x00\x00\x00 \x00\x00\x00"\x00\x00\x00v' b'\x00\x00\x00a\x00\x00\x00l\x00\x00\x00u\x00\x00\x00e' b'\x00\x00\x00"\x00\x00\x00\n\x00\x00\x00}\x00\x00\x00' b'\n\x00\x00\x00' b'#.change:\n' b'#..preamble: indent=2, length=14, line_endings=unix, ' b'mimetype=text/markdown\n' b' \xff\xfet\x00e\x00s\x00t\x00\n\x00' b'#..meta: encoding=utf-8, format=json, length=302\n' b'{\n' b' "author": "Test User <test@example.com>",\n' b' "author date": "2021-06-01T13:12:06-07:00",\n' b' "committer": "Test User <test@example.com>",\n' b' "date": "2021-06-02T19:26:31-07:00",\n' b' "id": "a25e7b28af5e3184946068f432122c68c1a30b23",\n' b' "parent id": "b892d5f833474c59d7851ff46a4b0bd919017e97"\n' b'}\n' b'#..file:\n' b'#...meta: encoding=latin1, format=json, length=166\n' b'{\n' b' "path": "file1",\n' b' "revision": {\n' b' "new": "eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef",\n' b' "old": "c8839177d1a5605aa60abe69db95c84183f0eebe"\n' b' }\n' b'}\n' b'#...diff: length=60, line_endings=unix\n' b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n' b'#.change:\n' b'#..preamble: encoding=utf-8, indent=4, length=56, ' b'line_endings=unix\n' b' Summary of commit #2\n' b' \n' b' Here\'s a description.\n' b'#..meta: encoding=utf-8, format=json, length=302\n' b'{\n' b' "author": "Test User <test@example.com>",\n' b' "author date": "2021-06-01T19:46:22-07:00",\n' b' "committer": "Test User <test@example.com>",\n' b' "date": "2021-06-02T19:46:25-07:00",\n' b' "id": "91127b687f583184144161f432222748c1a30b23",\n' b' "parent id": "a25e7b28af5e3184946068f432122c68c1a30b23"\n' b'}\n' b'#..file:\n' b'#...meta: encoding=utf-32, format=json, length=668\n' b'\xff\xfe\x00\x00{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'p\x00\x00\x00a\x00\x00\x00t\x00\x00\x00h\x00\x00\x00' b'"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'f\x00\x00\x00i\x00\x00\x00l\x00\x00\x00e\x00\x00\x00' b'2\x00\x00\x00"\x00\x00\x00,\x00\x00\x00\n\x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x00r\x00\x00\x00e\x00\x00\x00v\x00\x00\x00' b'i\x00\x00\x00s\x00\x00\x00i\x00\x00\x00o\x00\x00\x00' b'n\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00"\x00\x00\x00n\x00\x00\x00' b'e\x00\x00\x00w\x00\x00\x00"\x00\x00\x00:\x00\x00\x00' b' \x00\x00\x00"\x00\x00\x003\x00\x00\x008\x00\x00\x00' b'9\x00\x00\x00c\x00\x00\x00c\x00\x00\x006\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x00a\x00\x00\x00e\x00\x00\x00' b'5\x00\x00\x00a\x00\x00\x006\x00\x00\x005\x00\x00\x00' b'9\x00\x00\x003\x00\x00\x008\x00\x00\x003\x00\x00\x00' b'e\x00\x00\x00a\x00\x00\x00b\x00\x00\x005\x00\x00\x00' b'd\x00\x00\x00f\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'5\x00\x00\x003\x00\x00\x007\x00\x00\x006\x00\x00\x00' b'4\x00\x00\x00e\x00\x00\x00c\x00\x00\x00c\x00\x00\x00' b'f\x00\x00\x008\x00\x00\x004\x00\x00\x007\x00\x00\x00' b'3\x00\x00\x002\x00\x00\x00"\x00\x00\x00,\x00\x00\x00' b'\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00"\x00\x00\x00o\x00\x00\x00l\x00\x00\x00' b'd\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x002\x00\x00\x008\x00\x00\x001\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x000\x00\x00\x004\x00\x00\x00' b'6\x00\x00\x001\x00\x00\x007\x00\x00\x00e\x00\x00\x00' b'8\x00\x00\x000\x00\x00\x007\x00\x00\x008\x00\x00\x00' b'5\x00\x00\x000\x00\x00\x00e\x00\x00\x000\x00\x00\x00' b'7\x00\x00\x00e\x00\x00\x005\x00\x00\x004\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00e\x00\x00\x003\x00\x00\x00' b'4\x00\x00\x006\x00\x00\x009\x00\x00\x00f\x00\x00\x00' b'6\x00\x00\x00a\x00\x00\x002\x00\x00\x00e\x00\x00\x00' b'7\x00\x00\x00"\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00}\x00\x00\x00' b'\n\x00\x00\x00}\x00\x00\x00\n\x00\x00\x00' b'#...diff: encoding=utf-16, length=22, line_endings=unix\n' b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00' b'#..file:\n' b'#...meta: encoding=utf-8, format=json, length=166\n' b'{\n' b' "path": "file3",\n' b' "revision": {\n' b' "new": "0d4a0fb8d62b762a26e13591d06d93d79d61102f",\n' b' "old": "be089b7197974703c83682088a068bef3422c6c2"\n' b' }\n' b'}\n' b'#...diff: length=87, line_endings=dos\n' b'--- a/file3\r\n' b'+++ b/file3\r\n' b'@@ -258,1 +258,2 @@\r\n' b'- old line\r\n' b'+ new line 1\r\n' b'+ new line 2\r\n') @add_fixtures(['test_scmtools']) def test_raw_diff_with_diffset_no_diffcommits(self): """Testing DiffXParser.raw_diff with DiffSet and no DiffCommits""" repository = self.create_repository(tool_name='Test') diffset = self.create_diffset(repository=repository) diffset.extra_data = { 'diffx': { 'metadata': { 'key': 'value', }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, 'options': { 'encoding': 'utf-16', 'version': '1.0', }, 'preamble': 'This is the file-level preamble.\r\n', 'preamble_options': { 'encoding': 'ascii', 'indent': 2, 'line_endings': 'dos', 'mimetype': 'text/plain', }, }, 'change_extra_data': { 'diffx': { 'metadata': { 'author': 'Test User <test@example.com>', 'author date': '2021-06-01T13:12:06-07:00', 'committer': 'Test User <test@example.com>', 'date': '2021-06-02T19:26:31-07:00', 'id': 'a25e7b28af5e3184946068f432122c68c1a30b23', 'parent id': 'b892d5f833474c59d7851ff46a4b0bd919017e97', }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, 'preamble': 'test\n', 'preamble_options': { 'indent': 2, 'line_endings': 'unix', 'mimetype': 'text/markdown', }, }, }, } diffset.save(update_fields=('extra_data',)) filediff = self.create_filediff( diffset=diffset, source_file='file1', source_revision='c8839177d1a5605aa60abe69db95c84183f0eebe', dest_file='file1', dest_detail='eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef', save=False, diff=( b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': 'file1', 'revision': { 'old': 'c8839177d1a5605aa60abe69db95c84183f0eebe', 'new': 'eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef', }, }, 'metadata_options': { 'encoding': 'latin1', 'format': 'json', }, }, } filediff.save() filediff = self.create_filediff( diffset=diffset, source_file='file2', source_revision='281bac2b704617e807850e07e54bae3469f6a2e7', dest_file='file2', dest_detail='389cc6b7ae5a659383eab5dfc253764eccf84732', save=False, diff=( b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'encoding': 'utf-16', 'line_endings': 'unix', }, 'metadata': { 'path': 'file2', 'revision': { 'old': '281bac2b704617e807850e07e54bae3469f6a2e7', 'new': '389cc6b7ae5a659383eab5dfc253764eccf84732', }, }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, }, 'encoding': 'utf-16', } filediff.save() parser = DiffXParser(b'') self.assertEqual( parser.raw_diff(diffset), b'#diffx: encoding=utf-16, version=1.0\n' b'#.preamble: encoding=ascii, indent=2, length=36,' b' line_endings=dos, mimetype=text/plain\n' b' This is the file-level preamble.\r\n' b'#.meta: encoding=utf-32, format=json, length=96\n' b'\xff\xfe\x00\x00{\x00\x00\x00\n\x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00"' b'\x00\x00\x00k\x00\x00\x00e\x00\x00\x00y\x00\x00\x00"' b'\x00\x00\x00:\x00\x00\x00 \x00\x00\x00"\x00\x00\x00v' b'\x00\x00\x00a\x00\x00\x00l\x00\x00\x00u\x00\x00\x00e' b'\x00\x00\x00"\x00\x00\x00\n\x00\x00\x00}\x00\x00\x00' b'\n\x00\x00\x00' b'#.change:\n' b'#..preamble: indent=2, length=14, line_endings=unix, ' b'mimetype=text/markdown\n' b' \xff\xfet\x00e\x00s\x00t\x00\n\x00' b'#..meta: encoding=utf-8, format=json, length=302\n' b'{\n' b' "author": "Test User <test@example.com>",\n' b' "author date": "2021-06-01T13:12:06-07:00",\n' b' "committer": "Test User <test@example.com>",\n' b' "date": "2021-06-02T19:26:31-07:00",\n' b' "id": "a25e7b28af5e3184946068f432122c68c1a30b23",\n' b' "parent id": "b892d5f833474c59d7851ff46a4b0bd919017e97"\n' b'}\n' b'#..file:\n' b'#...meta: encoding=latin1, format=json, length=166\n' b'{\n' b' "path": "file1",\n' b' "revision": {\n' b' "new": "eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef",\n' b' "old": "c8839177d1a5605aa60abe69db95c84183f0eebe"\n' b' }\n' b'}\n' b'#...diff: length=60, line_endings=unix\n' b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n' b'#..file:\n' b'#...meta: encoding=utf-32, format=json, length=668\n' b'\xff\xfe\x00\x00{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'p\x00\x00\x00a\x00\x00\x00t\x00\x00\x00h\x00\x00\x00' b'"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'f\x00\x00\x00i\x00\x00\x00l\x00\x00\x00e\x00\x00\x00' b'2\x00\x00\x00"\x00\x00\x00,\x00\x00\x00\n\x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x00r\x00\x00\x00e\x00\x00\x00v\x00\x00\x00' b'i\x00\x00\x00s\x00\x00\x00i\x00\x00\x00o\x00\x00\x00' b'n\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00"\x00\x00\x00n\x00\x00\x00' b'e\x00\x00\x00w\x00\x00\x00"\x00\x00\x00:\x00\x00\x00' b' \x00\x00\x00"\x00\x00\x003\x00\x00\x008\x00\x00\x00' b'9\x00\x00\x00c\x00\x00\x00c\x00\x00\x006\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x00a\x00\x00\x00e\x00\x00\x00' b'5\x00\x00\x00a\x00\x00\x006\x00\x00\x005\x00\x00\x00' b'9\x00\x00\x003\x00\x00\x008\x00\x00\x003\x00\x00\x00' b'e\x00\x00\x00a\x00\x00\x00b\x00\x00\x005\x00\x00\x00' b'd\x00\x00\x00f\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'5\x00\x00\x003\x00\x00\x007\x00\x00\x006\x00\x00\x00' b'4\x00\x00\x00e\x00\x00\x00c\x00\x00\x00c\x00\x00\x00' b'f\x00\x00\x008\x00\x00\x004\x00\x00\x007\x00\x00\x00' b'3\x00\x00\x002\x00\x00\x00"\x00\x00\x00,\x00\x00\x00' b'\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00"\x00\x00\x00o\x00\x00\x00l\x00\x00\x00' b'd\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x002\x00\x00\x008\x00\x00\x001\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x000\x00\x00\x004\x00\x00\x00' b'6\x00\x00\x001\x00\x00\x007\x00\x00\x00e\x00\x00\x00' b'8\x00\x00\x000\x00\x00\x007\x00\x00\x008\x00\x00\x00' b'5\x00\x00\x000\x00\x00\x00e\x00\x00\x000\x00\x00\x00' b'7\x00\x00\x00e\x00\x00\x005\x00\x00\x004\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00e\x00\x00\x003\x00\x00\x00' b'4\x00\x00\x006\x00\x00\x009\x00\x00\x00f\x00\x00\x00' b'6\x00\x00\x00a\x00\x00\x002\x00\x00\x00e\x00\x00\x00' b'7\x00\x00\x00"\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00}\x00\x00\x00' b'\n\x00\x00\x00}\x00\x00\x00\n\x00\x00\x00' b'#...diff: encoding=utf-16, length=22, line_endings=unix\n' b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00') @add_fixtures(['test_scmtools']) def test_raw_diff_with_diffcommit(self): """Testing DiffXParser.raw_diff with DiffCommit""" repository = self.create_repository(tool_name='Test') diffset = self.create_diffset(repository=repository) diffset.extra_data = { 'diffx': { 'metadata': { 'key': 'value', }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, 'options': { 'encoding': 'utf-16', 'version': '1.0', }, 'preamble': 'This is the file-level preamble.\r\n', 'preamble_options': { 'encoding': 'ascii', 'indent': 2, 'line_endings': 'dos', 'mimetype': 'text/plain', }, }, } diffset.save(update_fields=('extra_data',)) # Create DiffCommit #1. diffcommit1 = self.create_diffcommit( diffset=diffset, commit_id='a25e7b28af5e3184946068f432122c68c1a30b23', with_diff=False) diffcommit1.extra_data = { 'diffx': { 'metadata': { 'author': 'Test User <test@example.com>', 'author date': '2021-06-01T13:12:06-07:00', 'committer': 'Test User <test@example.com>', 'date': '2021-06-02T19:26:31-07:00', 'id': 'a25e7b28af5e3184946068f432122c68c1a30b23', 'parent id': 'b892d5f833474c59d7851ff46a4b0bd919017e97', }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, 'preamble': 'test\n', 'preamble_options': { 'indent': 2, 'line_endings': 'unix', 'mimetype': 'text/markdown', }, }, } diffcommit1.save(update_fields=('extra_data',)) filediff = self.create_filediff( diffset=diffset, commit=diffcommit1, source_file='file1', source_revision='c8839177d1a5605aa60abe69db95c84183f0eebe', dest_file='file1', dest_detail='eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef', save=False, diff=( b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'line_endings': 'unix', }, 'metadata': { 'path': 'file1', 'revision': { 'old': 'c8839177d1a5605aa60abe69db95c84183f0eebe', 'new': 'eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef', }, }, 'metadata_options': { 'encoding': 'latin1', 'format': 'json', }, }, } filediff.save() # Create DiffCommit #2. This one won't be used. diffcommit2 = self.create_diffcommit( diffset=diffset, commit_id='91127b687f583184144161f432222748c1a30b23', with_diff=False) diffcommit2.extra_data = { 'diffx': { 'metadata': { 'author': 'Test User <test@example.com>', 'author date': '2021-06-01T19:46:22-07:00', 'committer': 'Test User <test@example.com>', 'date': '2021-06-02T19:46:25-07:00', 'id': '91127b687f583184144161f432222748c1a30b23', 'parent id': 'a25e7b28af5e3184946068f432122c68c1a30b23', }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, 'preamble': ( "Summary of commit #2\n" "\n" "Here's a description.\n" ), 'preamble_options': { 'encoding': 'utf-8', 'indent': 4, 'line_endings': 'unix', }, }, } diffcommit2.save(update_fields=('extra_data',)) filediff = self.create_filediff( diffset=diffset, commit=diffcommit2, source_file='file2', source_revision='281bac2b704617e807850e07e54bae3469f6a2e7', dest_file='file2', dest_detail='389cc6b7ae5a659383eab5dfc253764eccf84732', save=False, diff=( b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'encoding': 'utf-16', 'line_endings': 'unix', }, 'metadata': { 'path': 'file2', 'revision': { 'old': '281bac2b704617e807850e07e54bae3469f6a2e7', 'new': '389cc6b7ae5a659383eab5dfc253764eccf84732', }, }, 'metadata_options': { 'encoding': 'utf-32', 'format': 'json', }, }, 'encoding': 'utf-16', } filediff.save() filediff = self.create_filediff( diffset=diffset, commit=diffcommit2, source_file='file3', source_revision='be089b7197974703c83682088a068bef3422c6c2', dest_file='file3', dest_detail='0d4a0fb8d62b762a26e13591d06d93d79d61102f', save=False, diff=( b'--- a/file3\r\n' b'+++ b/file3\r\n' b'@@ -258,1 +258,2 @@\r\n' b'- old line\r\n' b'+ new line 1\r\n' b'+ new line 2\r\n' )) filediff.extra_data = { 'diffx': { 'diff_options': { 'line_endings': 'dos', }, 'metadata': { 'path': 'file3', 'revision': { 'old': 'be089b7197974703c83682088a068bef3422c6c2', 'new': '0d4a0fb8d62b762a26e13591d06d93d79d61102f', }, }, 'metadata_options': { 'encoding': 'utf-8', 'format': 'json', }, }, } filediff.save() parser = DiffXParser(b'') self.assertEqual( parser.raw_diff(diffcommit1), b'#diffx: encoding=utf-16, version=1.0\n' b'#.change:\n' b'#..preamble: indent=2, length=14, line_endings=unix, ' b'mimetype=text/markdown\n' b' \xff\xfet\x00e\x00s\x00t\x00\n\x00' b'#..meta: encoding=utf-8, format=json, length=302\n' b'{\n' b' "author": "Test User <test@example.com>",\n' b' "author date": "2021-06-01T13:12:06-07:00",\n' b' "committer": "Test User <test@example.com>",\n' b' "date": "2021-06-02T19:26:31-07:00",\n' b' "id": "a25e7b28af5e3184946068f432122c68c1a30b23",\n' b' "parent id": "b892d5f833474c59d7851ff46a4b0bd919017e97"\n' b'}\n' b'#..file:\n' b'#...meta: encoding=latin1, format=json, length=166\n' b'{\n' b' "path": "file1",\n' b' "revision": {\n' b' "new": "eed8df7f1400a95cdf5a87ddb947e7d9c5a19cef",\n' b' "old": "c8839177d1a5605aa60abe69db95c84183f0eebe"\n' b' }\n' b'}\n' b'#...diff: length=60, line_endings=unix\n' b'--- /file1\n' b'+++ /file1\n' b'@@ -498,7 +498,7 @@\n' b' ... diff content\n') self.assertEqual( parser.raw_diff(diffcommit2), b'#diffx: encoding=utf-16, version=1.0\n' b'#.change:\n' b'#..preamble: encoding=utf-8, indent=4, length=56, ' b'line_endings=unix\n' b' Summary of commit #2\n' b' \n' b' Here\'s a description.\n' b'#..meta: encoding=utf-8, format=json, length=302\n' b'{\n' b' "author": "Test User <test@example.com>",\n' b' "author date": "2021-06-01T19:46:22-07:00",\n' b' "committer": "Test User <test@example.com>",\n' b' "date": "2021-06-02T19:46:25-07:00",\n' b' "id": "91127b687f583184144161f432222748c1a30b23",\n' b' "parent id": "a25e7b28af5e3184946068f432122c68c1a30b23"\n' b'}\n' b'#..file:\n' b'#...meta: encoding=utf-32, format=json, length=668\n' b'\xff\xfe\x00\x00{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'p\x00\x00\x00a\x00\x00\x00t\x00\x00\x00h\x00\x00\x00' b'"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00"\x00\x00\x00' b'f\x00\x00\x00i\x00\x00\x00l\x00\x00\x00e\x00\x00\x00' b'2\x00\x00\x00"\x00\x00\x00,\x00\x00\x00\n\x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x00r\x00\x00\x00e\x00\x00\x00v\x00\x00\x00' b'i\x00\x00\x00s\x00\x00\x00i\x00\x00\x00o\x00\x00\x00' b'n\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'{\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00"\x00\x00\x00n\x00\x00\x00' b'e\x00\x00\x00w\x00\x00\x00"\x00\x00\x00:\x00\x00\x00' b' \x00\x00\x00"\x00\x00\x003\x00\x00\x008\x00\x00\x00' b'9\x00\x00\x00c\x00\x00\x00c\x00\x00\x006\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x00a\x00\x00\x00e\x00\x00\x00' b'5\x00\x00\x00a\x00\x00\x006\x00\x00\x005\x00\x00\x00' b'9\x00\x00\x003\x00\x00\x008\x00\x00\x003\x00\x00\x00' b'e\x00\x00\x00a\x00\x00\x00b\x00\x00\x005\x00\x00\x00' b'd\x00\x00\x00f\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'5\x00\x00\x003\x00\x00\x007\x00\x00\x006\x00\x00\x00' b'4\x00\x00\x00e\x00\x00\x00c\x00\x00\x00c\x00\x00\x00' b'f\x00\x00\x008\x00\x00\x004\x00\x00\x007\x00\x00\x00' b'3\x00\x00\x002\x00\x00\x00"\x00\x00\x00,\x00\x00\x00' b'\n\x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00"\x00\x00\x00o\x00\x00\x00l\x00\x00\x00' b'd\x00\x00\x00"\x00\x00\x00:\x00\x00\x00 \x00\x00\x00' b'"\x00\x00\x002\x00\x00\x008\x00\x00\x001\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00c\x00\x00\x002\x00\x00\x00' b'b\x00\x00\x007\x00\x00\x000\x00\x00\x004\x00\x00\x00' b'6\x00\x00\x001\x00\x00\x007\x00\x00\x00e\x00\x00\x00' b'8\x00\x00\x000\x00\x00\x007\x00\x00\x008\x00\x00\x00' b'5\x00\x00\x000\x00\x00\x00e\x00\x00\x000\x00\x00\x00' b'7\x00\x00\x00e\x00\x00\x005\x00\x00\x004\x00\x00\x00' b'b\x00\x00\x00a\x00\x00\x00e\x00\x00\x003\x00\x00\x00' b'4\x00\x00\x006\x00\x00\x009\x00\x00\x00f\x00\x00\x00' b'6\x00\x00\x00a\x00\x00\x002\x00\x00\x00e\x00\x00\x00' b'7\x00\x00\x00"\x00\x00\x00\n\x00\x00\x00 \x00\x00\x00' b' \x00\x00\x00 \x00\x00\x00 \x00\x00\x00}\x00\x00\x00' b'\n\x00\x00\x00}\x00\x00\x00\n\x00\x00\x00' b'#...diff: encoding=utf-16, length=22, line_endings=unix\n' b'\xff\xfe \x00.\x00.\x00.\x00 \x00d\x00i\x00f\x00f\x00\n\x00' b'#..file:\n' b'#...meta: encoding=utf-8, format=json, length=166\n' b'{\n' b' "path": "file3",\n' b' "revision": {\n' b' "new": "0d4a0fb8d62b762a26e13591d06d93d79d61102f",\n' b' "old": "be089b7197974703c83682088a068bef3422c6c2"\n' b' }\n' b'}\n' b'#...diff: length=87, line_endings=dos\n' b'--- a/file3\r\n' b'+++ b/file3\r\n' b'@@ -258,1 +258,2 @@\r\n' b'- old line\r\n' b'+ new line 1\r\n' b'+ new line 2\r\n')
40.958915
78
0.475349
fe87bf30f22f34861a589c4cc5a74427af647ce4
9,045
py
Python
models/bilinear.py
roeiherz/AG2Video
a4eb439d7147c91237ddd50ec305add8e1537360
[ "MIT" ]
22
2020-07-01T07:11:15.000Z
2022-02-17T13:26:16.000Z
models/bilinear.py
roeiherz/AG2Video
a4eb439d7147c91237ddd50ec305add8e1537360
[ "MIT" ]
5
2021-06-16T02:35:14.000Z
2022-03-12T01:00:27.000Z
models/bilinear.py
roeiherz/AG2Video
a4eb439d7147c91237ddd50ec305add8e1537360
[ "MIT" ]
2
2021-08-04T05:22:58.000Z
2021-12-11T02:15:57.000Z
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F from models.metrics import xywh_to_points from models.utils import remove_dummy_objects """ Functions for performing differentiable bilinear cropping of images, for use in the object discriminator """ def crop_bbox_batch(imgs, objs, bbox, HH, WW=None, vocab=None, backend='cudnn'): """ Inputs: - imgs: FloatTensor of shape (N, C, H, W) - bbox: FloatTensor of shape (B, 4) giving bounding box coordinates - bbox_to_feats: LongTensor of shape (B,) mapping boxes to feature maps; each element is in the range [0, N) and bbox_to_feats[b] = i means that bbox[b] will be cropped from feats[i]. - HH, WW: Size of the output crops Returns: - crops: FloatTensor of shape (B, C, HH, WW) where crops[i] uses bbox[i] to crop from feats[bbox_to_feats[i]]. """ if backend == 'cudnn': return crop_bbox_batch_cudnn(imgs, objs, bbox, HH, WW, vocab=vocab) N, C, H, W = imgs.size() B = bbox.size(0) if WW is None: WW = HH dtype, device = imgs.dtype, imgs.device crops = torch.zeros(B, C, HH, WW, dtype=dtype, device=device) for i in range(N): mask = remove_dummy_objects(objs[i], vocab) cur_bbox = bbox[i][mask] n = cur_bbox.size(0) cur_feats = imgs[i].view(1, C, H, W).expand(n, C, H, W).contiguous() cur_crops = crop_bbox(cur_feats, cur_bbox, HH, WW) crops[i] = cur_crops return crops def _invperm(p): N = p.size(0) eye = torch.arange(0, N).type_as(p) pp = (eye[:, None] == p).nonzero()[:, 1] return pp def crop_bbox_batch_cudnn(imgs, objs, bbox, HH, WW=None, vocab=None): B, N, C, H, W = imgs.size() if WW is None: WW = HH crops_b = [] objs_b = [] for b in range(B): feats_flat, bbox_flat, obj_flat = [], [], [] mask = remove_dummy_objects(objs[b], vocab) for i in range(N): cur_bbox = bbox[b][i][mask] # Remove illegal boxes [0, 0, 0, 0] legal_boxes = (cur_bbox != 0).any(dim=-1) cur_bbox = cur_bbox[legal_boxes] curr_objs = objs[b][mask][legal_boxes].view(-1) n = cur_bbox.size(0) cur_feats = imgs[b][i].view(1, C, H, W).expand(n, C, H, W).contiguous() feats_flat.append(cur_feats) bbox_flat.append(cur_bbox) obj_flat.append(curr_objs) feats_flat_b = torch.cat(feats_flat, dim=0) bbox_flat_b = torch.cat(bbox_flat, dim=0) objs_flat_b = torch.cat(obj_flat, dim=0) crops = crop_bbox(feats_flat_b, bbox_flat_b, HH, WW, backend='cudnn') crops_b.append(crops) objs_b.append(objs_flat_b) return crops_b, objs_b def crop_bbox(feats, bbox, HH, WW=None, backend='cudnn'): """ Take differentiable crops of feats specified by bbox. Inputs: - feats: Tensor of shape (N, C, H, W) - bbox: Bounding box coordinates of shape (N, 4) in the format [x0, y0, x1, y1] in the [0, 1] coordinate space. - HH, WW: Size of the output crops. Returns: - crops: Tensor of shape (N, C, HH, WW) where crops[i] is the portion of feats[i] specified by bbox[i], reshaped to (HH, WW) using bilinear sampling. """ bbox = xywh_to_points(bbox) N = feats.size(0) assert bbox.size(0) == N assert bbox.size(1) == 4 if WW is None: WW = HH if backend == 'cudnn': # Change box from [0, 1] to [-1, 1] coordinate system bbox = 2 * bbox - 1 x0, y0, x1, y1 = bbox[:, 0], bbox[:, 1], bbox[:, 2], bbox[:, 3] X = tensor_linspace(x0, x1, steps=WW).view(N, 1, WW).expand(N, HH, WW) Y = tensor_linspace(y0, y1, steps=HH).view(N, HH, 1).expand(N, HH, WW) if backend == 'jj': return bilinear_sample(feats, X, Y) elif backend == 'cudnn': grid = torch.stack([X, Y], dim=3) return F.grid_sample(feats, grid, align_corners=True) def bilinear_sample(feats, X, Y): """ Perform bilinear sampling on the features in feats using the sampling grid given by X and Y. Inputs: - feats: Tensor holding input feature map, of shape (N, C, H, W) - X, Y: Tensors holding x and y coordinates of the sampling grids; both have shape shape (N, HH, WW) and have elements in the range [0, 1]. Returns: - out: Tensor of shape (B, C, HH, WW) where out[i] is computed by sampling from feats[idx[i]] using the sampling grid (X[i], Y[i]). """ N, C, H, W = feats.size() assert X.size() == Y.size() assert X.size(0) == N _, HH, WW = X.size() X = X.mul(W) Y = Y.mul(H) # Get the x and y coordinates for the four samples x0 = X.floor().clamp(min=0, max=W - 1) x1 = (x0 + 1).clamp(min=0, max=W - 1) y0 = Y.floor().clamp(min=0, max=H - 1) y1 = (y0 + 1).clamp(min=0, max=H - 1) # In numpy we could do something like feats[i, :, y0, x0] to pull out # the elements of feats at coordinates y0 and x0, but PyTorch doesn't # yet support this style of indexing. Instead we have to use the gather # method, which only allows us to index along one dimension at a time; # therefore we will collapse the features (BB, C, H, W) into (BB, C, H * W) # and index along the last dimension. Below we generate linear indices into # the collapsed last dimension for each of the four combinations we need. y0x0_idx = (W * y0 + x0).view(N, 1, HH * WW).expand(N, C, HH * WW) y1x0_idx = (W * y1 + x0).view(N, 1, HH * WW).expand(N, C, HH * WW) y0x1_idx = (W * y0 + x1).view(N, 1, HH * WW).expand(N, C, HH * WW) y1x1_idx = (W * y1 + x1).view(N, 1, HH * WW).expand(N, C, HH * WW) # Actually use gather to pull out the values from feats corresponding # to our four samples, then reshape them to (BB, C, HH, WW) feats_flat = feats.view(N, C, H * W) v1 = feats_flat.gather(2, y0x0_idx.long()).view(N, C, HH, WW) v2 = feats_flat.gather(2, y1x0_idx.long()).view(N, C, HH, WW) v3 = feats_flat.gather(2, y0x1_idx.long()).view(N, C, HH, WW) v4 = feats_flat.gather(2, y1x1_idx.long()).view(N, C, HH, WW) # Compute the weights for the four samples w1 = ((x1 - X) * (y1 - Y)).view(N, 1, HH, WW).expand(N, C, HH, WW) w2 = ((x1 - X) * (Y - y0)).view(N, 1, HH, WW).expand(N, C, HH, WW) w3 = ((X - x0) * (y1 - Y)).view(N, 1, HH, WW).expand(N, C, HH, WW) w4 = ((X - x0) * (Y - y0)).view(N, 1, HH, WW).expand(N, C, HH, WW) # Multiply the samples by the weights to give our interpolated results. out = w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4 return out def tensor_linspace(start, end, steps=10): """ Vectorized version of torch.linspace. Inputs: - start: Tensor of any shape - end: Tensor of the same shape as start - steps: Integer Returns: - out: Tensor of shape start.size() + (steps,), such that out.select(-1, 0) == start, out.select(-1, -1) == end, and the other elements of out linearly interpolate between start and end. """ assert start.size() == end.size() view_size = start.size() + (1,) w_size = (1,) * start.dim() + (steps,) out_size = start.size() + (steps,) start_w = torch.linspace(1, 0, steps=steps).to(start) start_w = start_w.view(w_size).expand(out_size) end_w = torch.linspace(0, 1, steps=steps).to(start) end_w = end_w.view(w_size).expand(out_size) start = start.contiguous().view(view_size).expand(out_size) end = end.contiguous().view(view_size).expand(out_size) out = start_w * start + end_w * end return out if __name__ == '__main__': import numpy as np from scipy.misc import imread, imsave, imresize cat = imresize(imread('cat.jpg'), (256, 256), anti_aliasing=True) dog = imresize(imread('dog.jpg'), (256, 256), anti_aliasing=True) feats = torch.stack([ torch.from_numpy(cat.transpose(2, 0, 1).astype(np.float32)), torch.from_numpy(dog.transpose(2, 0, 1).astype(np.float32))], dim=0) boxes = torch.FloatTensor([ [0, 0, 1, 1], [0.25, 0.25, 0.75, 0.75], [0, 0, 0.5, 0.5], ]) box_to_feats = torch.LongTensor([1, 0, 1]).cuda() feats, boxes = feats.cuda(), boxes.cuda() crops = crop_bbox_batch_cudnn(feats, boxes, box_to_feats, 128) for i in range(crops.size(0)): crop_np = crops.data[i].cpu().numpy().transpose(1, 2, 0).astype(np.uint8) imsave('out%d.png' % i, crop_np)
36.471774
85
0.612272
3fce59e242e38ad28ee6df35a892f4fd78bf3f49
1,392
py
Python
example/blueprints/testdash.py
MaayanLab/jupyter-template
dd05bfcb95c9eafb1a9df845b5d8fecae1d6b9d5
[ "Apache-2.0" ]
null
null
null
example/blueprints/testdash.py
MaayanLab/jupyter-template
dd05bfcb95c9eafb1a9df845b5d8fecae1d6b9d5
[ "Apache-2.0" ]
24
2020-04-07T17:04:47.000Z
2020-05-27T00:51:25.000Z
example/blueprints/testdash.py
MaayanLab/jupyter-template
dd05bfcb95c9eafb1a9df845b5d8fecae1d6b9d5
[ "Apache-2.0" ]
null
null
null
def testdash(app, url_prefix='/testdash', DATA_DIR=''): import pandas as pd import dash from dash.dependencies import Input, Output from dash import dcc from dash import html df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/dash-stock-ticker-demo.csv') testdash = dash.Dash( 'testdash', server=app, routes_pathname_prefix=url_prefix + '/', ) testdash.layout = html.Div([ html.H1('Stock Tickers'), dcc.Dropdown( id='my-dropdown', options=[ {'label': 'Tesla', 'value': 'TSLA'}, {'label': 'Apple', 'value': 'AAPL'}, {'label': 'Coke', 'value': 'COKE'} ], value='TSLA' ), dcc.Graph(id='my-graph') ], className="container") @testdash.callback(Output('my-graph', 'figure'), [Input('my-dropdown', 'value')]) def update_graph(selected_dropdown_value): dff = df[df['Stock'] == selected_dropdown_value] return { 'data': [{ 'x': dff.Date, 'y': dff.Close, 'line': { 'width': 3, 'shape': 'spline' } }], 'layout': { 'margin': { 'l': 30, 'r': 20, 'b': 30, 't': 20 } } }
26.769231
105
0.469828
09a645c2b36031352bf29c72ee41e0fce0728493
2,921
py
Python
migrations/versions/eb6f1d267a24_.py
Amin1014/pitch
38862a080a1ea183d9820b2499fab98776223799
[ "MIT" ]
null
null
null
migrations/versions/eb6f1d267a24_.py
Amin1014/pitch
38862a080a1ea183d9820b2499fab98776223799
[ "MIT" ]
null
null
null
migrations/versions/eb6f1d267a24_.py
Amin1014/pitch
38862a080a1ea183d9820b2499fab98776223799
[ "MIT" ]
null
null
null
"""empty message Revision ID: eb6f1d267a24 Revises: Create Date: 2021-08-18 16:25:41.411119 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'eb6f1d267a24' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=255), nullable=True), sa.Column('email', sa.String(length=255), nullable=True), sa.Column('bio', sa.String(length=255), nullable=True), sa.Column('profile_pic_path', sa.String(), nullable=True), sa.Column('pass_secure', sa.String(length=255), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_users_email'), 'users', ['email'], unique=True) op.create_table('pitches', sa.Column('id', sa.Integer(), nullable=False), sa.Column('pitch', sa.String(), nullable=True), sa.Column('posted_date', sa.DateTime(), nullable=False), sa.Column('content', sa.String(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('category', sa.String(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('comments', sa.Column('id', sa.Integer(), nullable=False), sa.Column('comment', sa.String(), nullable=False), sa.Column('posted_date', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('pitch_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['pitch_id'], ['pitches.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('downvotes', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('pitch_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['pitch_id'], ['pitches.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('upvotes', sa.Column('id', sa.Integer(), nullable=False), sa.Column('upvote', sa.Integer(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('pitch_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['pitch_id'], ['pitches.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('upvotes') op.drop_table('downvotes') op.drop_table('comments') op.drop_table('pitches') op.drop_index(op.f('ix_users_email'), table_name='users') op.drop_table('users') # ### end Alembic commands ###
36.5125
76
0.657994
ccd54f0d919152280191464aea819835e47ec852
15,614
py
Python
legacy/huobi_eth_client.py
szhu3210/Arbitrage-trader
d2af5670f7285084f70e36a48c95e796d1fd2d37
[ "Apache-2.0" ]
6
2019-04-03T22:33:39.000Z
2021-05-07T12:00:00.000Z
legacy/huobi_eth_client.py
szhu3210/Arbitrage-trader
d2af5670f7285084f70e36a48c95e796d1fd2d37
[ "Apache-2.0" ]
2
2019-04-03T22:57:41.000Z
2019-04-26T07:13:12.000Z
legacy/huobi_eth_client.py
szhu3210/Arbitrage-trader
d2af5670f7285084f70e36a48c95e796d1fd2d37
[ "Apache-2.0" ]
1
2019-04-28T07:23:32.000Z
2019-04-28T07:23:32.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import logging import base64 import hmac import hashlib import json from urllib import parse from urllib import request from datetime import datetime # timeout in 5 seconds: TIMEOUT = 5 API_HOST = 'be.huobi.com' SCHEME = 'https' # language setting: 'zh-CN', 'en': LANG = 'zh-CN' DEFAULT_GET_HEADERS = { 'Accept': 'application/json', 'Accept-Language': LANG } DEFAULT_POST_HEADERS = { 'Content-Type': 'application/json', 'Accept': 'application/json', 'Accept-Language': LANG } class Dict(dict): def __init__(self, **kw): super().__init__(**kw) def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(r"'Dict' object has no attribute '%s'" % key) def __setattr__(self, key, value): self[key] = value def _toDict(d): return Dict(**d) class ApiError(BaseException): pass class ApiNetworkError(BaseException): pass class ApiClient(object): def __init__(self, appKey, appSecret, host=API_HOST): ''' Init api client object, by passing appKey and appSecret. ''' self._accessKeyId = appKey self._accessKeySecret = appSecret.encode('utf-8') # change to bytes self._host = host def get(self, path, **params): ''' Send a http get request and return json object. ''' qs = self._sign('GET', path, self._utc(), params) return self._call('GET', '%s?%s' % (path, qs)) def post(self, path, obj=None): ''' Send a http post request and return json object. ''' qs = self._sign('POST', path, self._utc()) data = None if obj is not None: data = json.dumps(obj).encode('utf-8') return self._call('POST', '%s?%s' % (path, qs), data) def _call(self, method, uri, data=None): url = '%s://%s%s' % (SCHEME, self._host, uri) # print(method + ' ' + url) req = request.Request(url, data=data, headers=DEFAULT_GET_HEADERS if method=='GET' else DEFAULT_POST_HEADERS, method=method) with request.urlopen(req, timeout=TIMEOUT) as resp: if resp.getcode()!=200: raise ApiNetworkError('Bad response code: %s %s' % (resp.getcode(), resp.reason)) return self._parse(resp.read()) def _parse(self, text): # print('Response:\n%s' % text) result = json.loads(text, object_hook=_toDict) if result.status=='ok': return result.data raise ApiError('%s: %s' % (result['err-code'], result['err-msg'])) def _sign(self, method, path, ts, params=None): self._method = method # create signature: if params is None: params = {} params['SignatureMethod'] = 'HmacSHA256' params['SignatureVersion'] = '2' params['AccessKeyId'] = self._accessKeyId params['Timestamp'] = ts # sort by key: keys = sorted(params.keys()) # build query string like: a=1&b=%20&c=: qs = '&'.join(['%s=%s' % (key, self._encode(params[key])) for key in keys]) # build payload: payload = '%s\n%s\n%s\n%s' % (method, self._host, path, qs) # print('payload:\n%s' % payload) dig = hmac.new(self._accessKeySecret, msg=payload.encode('utf-8'), digestmod=hashlib.sha256).digest() sig = self._encode(base64.b64encode(dig).decode()) # print('sign: ' + sig) qs = qs + '&Signature=' + sig return qs def _utc(self): return datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S') def _encode(self, s): return parse.quote(s, safe='') class Huobi_ETH_Client(): def __init__(self): self.client = ApiClient(API_KEY, API_SECRET) self.account_id = self._getAccountID() def getSymbols(self): logging.info('Getting symbols for client:') return self.client.get('/v1/common/symbols') def getUserInfo(self): logging.info('Getting user info for client:') return self.client.get('/v1/users/user') def getAllAccounts(self): logging.info('Getting accounts for client:') return self.client.get('/v1/account/accounts') def getETHBalance(self): balanceList = self.client.get('/v1/account/accounts/%s/balance' % self.account_id).list for line in balanceList: if line.currency=='eth' and line.type=='trade': return line.balance raise BaseException('ETH balance not found in account! Check ETH account!') def getCNYBalance(self): balanceList = self.client.get('/v1/account/accounts/%s/balance' % self.account_id).list for line in balanceList: if line.currency=='cny' and line.type=='trade': return line.balance raise BaseException('CNY balance not found in account! Check ETH account!') def printBalanceRaw(self): accs = self.getAllAccounts() logging.info('All Accounts: ') logging.info(accs) logging.info('Getting balance for client:') for acc in accs: logging.info('Getting sub account: %s' % acc) subaccs = self.client.get('/v1/account/accounts/%s/balance' % acc.id) print(subaccs) def getBalance(self): res = [] accs = self.getAllAccounts() logging.info('All Accounts: ') logging.info(accs) logging.info('Getting balance for client:') for acc in accs: logging.info('Getting sub account: %s' % acc) subaccs = self.client.get('/v1/account/accounts/%s/balance' % acc.id) res.append(subaccs) return res def printBalance(self): accs = self.getAllAccounts() logging.info('All Accounts: ') logging.info(accs) logging.info('Getting balance for client:') account_id = accs[0].id for acc in accs: logging.info('Getting sub account: %s' % acc) subaccs = self.client.get('/v1/account/accounts/%s/balance' % acc.id) self._br() print('Account ID: %s' % account_id) print('#\tCurrency\tType\t\tBalance') for i, currency in enumerate(subaccs.list): print('%d\t%s\t\t%s\t\t%s' % (i+1, currency.currency, currency.type, currency.balance)) self._br() def _getAccountID(self): return self.getAllAccounts()[0].id def _br(self): print('\n' + '-'*50 + '\n') def getSubmittedOrders(self): return self._getOrders('submitted') def printSubmittedOrders(self): logging.info('Getting submitted orders:') order_info = self.getSubmittedOrders() self._printOrders(order_info, title='ALL SUBMITTED ORDERS') def getCurrentOrders(self): return self._getOrders('submitted,partial-filled,partial-canceled') def printCurrentOrders(self): logging.info('Getting current orders:') order_info = self.getCurrentOrders() self._printOrders(order_info, title='CURRENT ORDERS') def getAllValidOrders(self): return self._getOrders('submitted,partial-filled,partial-canceled,filled,canceled') def printAllValidOrders(self): logging.info('Getting all valid orders:') order_info = self.getAllValidOrders() self._printOrders(order_info, title='ALL VALID ORDERS') def getFilledOrders(self): return self._getOrders('filled') def getAllOrders(self): return self._getOrders() def _getOrders(self, types='pre-submitted,submitted,partial-filled,partial-canceled,filled,canceled'): return self.client.get('/v1/order/orders', symbol='ethcny', states=types) def printAllOrders(self): logging.info('Getting all orders:') order_info = self.getAllOrders() self._printOrders(order_info, title='ALL ORDERS') def _printOrders(self, order_info, title=''): self._br() print(' ' + '~'*10 + ''.join(title) + '~'*10 +'\n') print(' # Order\t Amount\t Price\t Create Time Type Field-Amount Field-Cash Field-Fees Finished Time Source State Cancelled at') for i, line in enumerate(order_info): # print(line) print('%3d %d\t%s\t%15s\t %s \t%10s\t%15s\t%15s\t%15s\t %s\t %s \t%s\t%s' % ( i+1, line.id, line.amount, line.price, datetime.fromtimestamp(line['created-at']/1000).strftime('%Y-%m-%d %H:%M:%S'), line.type, line['field-amount'], line['field-cash-amount'], line['field-fees'], datetime.fromtimestamp(line['finished-at']/1000).strftime('%Y-%m-%d %H:%M:%S'), line.source, line.state, '' if 0==line['canceled-at'] else datetime.fromtimestamp(line['canceled-at']/1000).strftime('%Y-%m-%d %H:%M:%S') )) self._br() def buy_ETH_limit(self): pass def createOrder(self, amount, price, direction): order_id = self.client.post('/v1/order/orders', { 'account-id': self.account_id, 'amount': amount, 'price': price, 'symbol': 'ethcny', 'type': direction, 'source': 'api' }) logging.info('Printing order_id:') logging.info(order_id) return order_id def placeOrder(self, order_id): self.client.post('/v1/order/orders/%s/place' % order_id) def printOrderDetails(self, order_id): order_info = self.client.get('/v1/order/orders/%s' % order_id) self._printOrders([order_info], title='ORDER DETAIL of ORDER # %s' % order_id) def getOrderStatus(self, order_id): return self.client.get('/v1/order/orders/%s' % order_id).state def getOrderDetail(self, order_id): return self.client.get('/v1/order/orders/%s' % order_id) def isOrderSuccess(self, order_id): orderStatus = self.getOrderStatus(order_id) return orderStatus == 'filled' def isOrderCancelled(self, order_id): orderStatus = self.getOrderStatus(order_id) return orderStatus == 'canceled' def cancelOrder(self, order_id): return self.client.post('/v1/order/orders/%s/submitcancel' % order_id) def cancelAllOrders(self): logging.info('Canelling all current orders:') self.printCurrentOrders() orders = self.getCurrentOrders() for order in orders: order_id = order.id logging.info('Cancelling order # %d' % order_id) self.cancelOrder(order_id) logging.info('All orders cancelled!') def getWithdrawAddress(self): return self.client.get('/v1/dw/withdraw-legal/addresses', currency='cny') def create_transfer_cny_to_main(self, amount): withdraw_id = self.client.post('/v1/dw/withdraw-legal/create', { 'account-id': self.account_id, 'amount': amount, 'currency': 'cny', }) print('Printing CNY_withdraw_id:') print(withdraw_id) return withdraw_id def place_transfer_cny_to_main(self, withdraw_id): return self.client.post('/v1/dw/withdraw-legal/%s/place' % withdraw_id) def transfer_cny_to_main(self, amount): if '.' in amount and len(amount.split('.')[1]) > 2: raise BaseException('CNY transfer amount: Decimal part should be no more than 2-digits!') if float(self.getCNYBalance()) < float(amount): raise BaseException('Not enough CNY balance (in ETH account) to transfer!') transfer_id = self.create_transfer_cny_to_main(amount) return self.place_transfer_cny_to_main(transfer_id) def get_transferable_cny_from_main(self): return self.client.get('/v1/dw/deposit-legal/balance', currency='cny') def create_transfer_cny_from_main(self, amount): withdraw_id = self.client.post('/v1/dw/deposit-legal/create', { 'account-id': self.account_id, 'amount': amount, 'currency': 'cny', }) print('Printing CNY_deposit_id: %s ' % withdraw_id) return withdraw_id def place_transfer_cny_from_main(self, withdraw_id): return self.client.post('/v1/dw/deposit-legal/%s/place' % withdraw_id) def cancel_transfer_cny_from_main(self, withdraw_id): # INVALID return self.client.post('/v1/dw/deposit-legal/%s/submitcancel' % withdraw_id) def cancel_transfer_cny_to_main(self, withdraw_id): # INVALID return self.client.post('/v1/dw/withdraw-legal/%s/cancel' % withdraw_id) def get_financial_history(self): return self.client.get('/v1/query/finances') def print_financial_history(self): history = self.get_financial_history() for transaction in history: print(transaction) def transfer_cny_from_main(self, amount): if float(self.get_transferable_cny_from_main()) < float(amount): raise BaseException('Not enough CNY balance (in main account) to transfer!') transfer_id = self.create_transfer_cny_from_main(amount) return self.place_transfer_cny_from_main(transfer_id) def get_eth_withdraw_addresses(self): addresses = self.client.get('/v1/dw/withdraw-virtual/addresses', currency='eth') logging.info('Printing addresses:') logging.info(addresses) return addresses def withdraw_eth_create(self, address_id='', amount=''): # INVALID withdraw_id = self.client.post('/v1/dw/withdraw-virtual/create', { 'address-id': address_id, 'amount': amount, 'trade-password': self.TRADE_PW # needs update here, trade pw is not supported by server and will return error }) logging.info('Printing withdraw_id:') logging.info(withdraw_id) return withdraw_id def withdraw_eth_place(self, withdraw_id): status = self.client.post('/v1/dw/withdraw-virtual/%s/place' % withdraw_id) print('Withdraw ETH order placed.') logging.info('Printing withdraw status:') logging.info(status) return status def main(): huobi_eth = Huobi_ETH_Client() # print(type(huobi_eth.getCNYBalance())) # print(huobi_eth.cancel_transfer_cny_to_main(withdraw_id='45833')) # huobi_eth.print_financial_history() # huobi_eth.transfer_cny_from_main(amount='1.0') # print(huobi_eth.transfer_cny_to_main(amount='0.02')) # print(huobi_eth.get_eth_withdraw_addresses()) # print(huobi_eth.get_transferable_cny_from_main()) # print(huobi_eth.transfer_cny_from_main('0.01')) # print(huobi_eth.getCNYBalance()) # huobi_eth.getETHBalance() # print(huobi_eth.transfer_cny_to_main('0.03')) # transfer_id = huobi_eth.create_transfer_cny_to_main('0.02') # print(huobi_eth.place_transfer_cny_to_main(transfer_id)) # print(huobi_eth.getWithdrawAddress()) # print(huobi_eth.getSymbols()) # print(huobi_eth.getUserInfo()) # print(huobi_eth.getAllAccounts()) # huobi_eth.printBalance() # huobi_eth.printSubmittedOrders() # huobi_eth.printAllValidOrders() # huobi_eth.printAllOrders() # orderid = huobi_eth.createOrder(huobi_eth.account_id(), '0.001', '1600.0', 'sell-limit') # huobi_eth.placeOrder(orderid) # huobi_eth.cancelAllOrders() if __name__ == '__main__': main()
36.227378
204
0.618612
3b7d4b6c172ee5fe12716066c26e54f0e01a292a
298
py
Python
tools/__init__.py
NickolausDS/gladier_kanzus
79c66eaba88956ab44ff5e6e38ed3b6e6b3e1fdd
[ "MIT" ]
null
null
null
tools/__init__.py
NickolausDS/gladier_kanzus
79c66eaba88956ab44ff5e6e38ed3b6e6b3e1fdd
[ "MIT" ]
null
null
null
tools/__init__.py
NickolausDS/gladier_kanzus
79c66eaba88956ab44ff5e6e38ed3b6e6b3e1fdd
[ "MIT" ]
null
null
null
from gladier import GladierBaseTool #__[all]__ = [CreatePhil,DialsStills,DialsVersion,Pilot,Prime,Primalisys] CreatePhil = GladierBaseTool() DialsStills = GladierBaseTool() DialsVersion = GladierBaseTool() Pilot = GladierBaseTool() Prime = GladierBaseTool() Primalisys = GladierBaseTool()
16.555556
73
0.788591
85c630753e80879e4489ceb359e25a3287be3ff0
3,958
py
Python
navigation.py
Johnkhk/140A-lab-5
6ff1a441675b5e0052a4e1ef3ca5206b4fb044bb
[ "MIT" ]
null
null
null
navigation.py
Johnkhk/140A-lab-5
6ff1a441675b5e0052a4e1ef3ca5206b4fb044bb
[ "MIT" ]
null
null
null
navigation.py
Johnkhk/140A-lab-5
6ff1a441675b5e0052a4e1ef3ca5206b4fb044bb
[ "MIT" ]
null
null
null
import torchvision import torch import torchvision.transforms as transforms import torch.nn.functional as F import cv2 import PIL.Image import numpy as np import traitlets from jetbot import Camera, bgr8_to_jpeg from jetbot import Robot import time import math # Hint : Look at Road Following and Collision Avoidance Lab class Navigation: def __init__(self): self.camera = Camera.instance(width=224, height=224) self.robot = Robot() #Collision Avoidance self.ca_model = torchvision.models.alexnet(pretrained=False) self.ca_model.classifier[6] = torch.nn.Linear(self.ca_model.classifier[6].in_features, 2) self.ca_model.load_state_dict(torch.load('best_model.pth')) self.device = torch.device('cuda') self.ca_model = self.ca_model.to(self.device) self.mean = torch.Tensor([0.485, 0.456, 0.406]).cuda().half() self.std = torch.Tensor([0.229, 0.224, 0.225]).cuda().half() self.normalize = torchvision.transforms.Normalize(self.mean, self.std) #Road following support variables self.angle = 0.0 self.angle_last = 0.0 # Instantiating the road following network. self.rf_model = torchvision.models.resnet18(pretrained=False) self.rf_model.fc = torch.nn.Linear(512, 2) self.rf_model.load_state_dict(torch.load('best_steering_model_xy.pth')) self.rf_model = self.rf_model.to(self.device) self.rf_model = self.rf_model.eval().half() self.speed_gain = 0.12 self.steering_gain = 0 self.steering_dgain = 0.1 self.steering_bias = 0.0 self.t_unit_dist = 0.04 self.starttime = 0 self.cumulative_angle = -1 self.pitstop = [] self.startposition = [] self.pathpoints = [[]] self.proportionality_const = -1 # TODO : Add the proper value def collision_avoidance_preprocessing(self, camera_value): """Preprocessing for collision avoidance.""" ... def collision_avoidance(self, change): """This will determine the next start point which will be which will be demarcated by the presence of another bot.""" # Collision avoidance has to be trained to detect a bot as # and obstacle. This will then be called in the road following function. ... def road_following_preprocessing(self, image): "Preprocesses the image for road following." ... def road_following(self, change): "The main function to navigate in the race." ... # 1. This will ideally have the road following code # 2. This method will also call the collision avoidance # function which will detect the presence of a bot. # 3. Once the collision is detected it will verify it's position # is within the range of the next start point # 4. If it is so, it will call the bot detected function # which will publish a message on the appropriate topic. # 5. In addition to that it will also be storing its coordinate location # 6. The initial start angle (bot's orientation at the startpoint ) will # be provided to the students in the start-coordinates def collision_detected(self): """This will publish the message on the topic for the next bot to run.""" ... def move_to_start(self, pitstop, startpoint): """Calibrate the bot to reach the start positions.""" # pitstop structure : list : [ x_coordinate, y_coordinate ] # startpoint structure : list : [ x_coordinate, y_coordinate, start_angle ] # start_angle : angle it makes with the x axis at the start location def sprint(self, comm_callback1, comm_callback2): """Navigate through the track.""" self.baton_callback = baton_callback() self.path_callback = pathpoints_callback()
40.804124
97
0.656645
3d364a7c8805e503632e7a208047a6419fb0ce53
40
py
Python
core/database/SqlException.py
Korbier/PyWsServer
95510a935c3019ead04d2de71e4344d94b3ac560
[ "MIT" ]
null
null
null
core/database/SqlException.py
Korbier/PyWsServer
95510a935c3019ead04d2de71e4344d94b3ac560
[ "MIT" ]
null
null
null
core/database/SqlException.py
Korbier/PyWsServer
95510a935c3019ead04d2de71e4344d94b3ac560
[ "MIT" ]
null
null
null
class SqlException(Exception): pass
13.333333
30
0.75
baefc05a4393db9f3ebbf03b3ffb07012f642692
400
py
Python
multinet/api/views/__init__.py
multinet-app/multinet-api
a658d787f0fb9ba415ed85a1e37c29953486287f
[ "Apache-2.0" ]
null
null
null
multinet/api/views/__init__.py
multinet-app/multinet-api
a658d787f0fb9ba415ed85a1e37c29953486287f
[ "Apache-2.0" ]
91
2021-03-15T19:00:15.000Z
2022-03-11T00:04:05.000Z
multinet/api/views/__init__.py
multinet-app/multinet-api
a658d787f0fb9ba415ed85a1e37c29953486287f
[ "Apache-2.0" ]
1
2022-02-05T15:53:04.000Z
2022-02-05T15:53:04.000Z
from .network import NetworkViewSet from .query import AqlQueryViewSet from .table import TableViewSet from .upload import UploadViewSet from .users import users_me_view, users_search_view from .workspace import WorkspaceViewSet __all__ = [ 'users_me_view', 'users_search_view', 'NetworkViewSet', 'TableViewSet', 'UploadViewSet', 'WorkspaceViewSet', 'AqlQueryViewSet', ]
23.529412
51
0.76
27cc7a8cb424d68ce06905d92c8df4faf2590958
1,846
py
Python
main.py
mtrazzi/baba-is-gym
5bbc1a9f7eda86073fa399378cb6b39c0ac16db0
[ "BSD-3-Clause" ]
5
2019-04-14T22:12:26.000Z
2021-12-28T09:27:26.000Z
main.py
mtrazzi/baba-is-gym
5bbc1a9f7eda86073fa399378cb6b39c0ac16db0
[ "BSD-3-Clause" ]
1
2019-04-14T21:34:58.000Z
2019-04-14T21:34:58.000Z
main.py
mtrazzi/baba-is-gym
5bbc1a9f7eda86073fa399378cb6b39c0ac16db0
[ "BSD-3-Clause" ]
null
null
null
# adapted from: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0 import numpy as np import os import random import sys def gridworld(): import gym import baba_is_gym return gym.make('BabaIsGymEnv-v0') def main(): render_mode = 'terminal' if (len(sys.argv) > 1): render_mode = sys.argv[1] env = gridworld() total_reward = 0 # Initialize table with all zeros Q = np.zeros([env.observation_space.n,env.action_space.n]) # Set learning parameters lr = .8 y = .95 epsilon = 0.1 num_episodes = 20000 steps_per_episode = 200 for i in range(num_episodes): # Reset environment and get first new observation s = env.reset() rAll = 0 d = False j = 0 #The Q-Table learning algorithm while j < steps_per_episode: if (render_mode == 'terminal' and i > 0 and (i % 100) == 0): env.render('terminal') j += 1 # Choose an action by epsilon-greedy (with noise) picking from Q table if (random.random() < (epsilon / np.log(i+2))): a = random.randint(0, env.action_space.n - 1) else: a = np.argmax(Q[s,:] + np.random.randn(1,env.action_space.n)*(1./(i+1))) # Get new state and reward from environment s1,r,d,_ = env.step(a) # Update Q-Table with new knowledge s1 = int(s1) Q[s,a] = Q[s,a] + lr * (r + y * np.max(Q[s1,:]) - Q[s,a]) rAll += r s = s1 if d == True: break os.system('cls' if os.name == 'nt' else 'clear') print("num_episodes: ", i, "\nreward: ", int(rAll)) if __name__ == "__main__": main()
32.964286
159
0.557421