hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
bc8e0795beca857fd768bebf12bbfc80d2f36028
1,506
py
Python
core/storage/question/gae_models_test.py
Panda2498/oppia
fccfd7e89c6904c244deaccdee80cc5658f2520a
[ "Apache-2.0" ]
null
null
null
core/storage/question/gae_models_test.py
Panda2498/oppia
fccfd7e89c6904c244deaccdee80cc5658f2520a
[ "Apache-2.0" ]
1
2020-01-26T14:02:43.000Z
2020-01-26T14:02:43.000Z
core/storage/question/gae_models_test.py
ryanboris/oppia
bc39e54e00d53ea2f00bca906fe02162d0c422ac
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from core.domain import exp_domain from core.platform import models from core.tests import test_utils (question_models,) = models.Registry.import_models([models.NAMES.question]) class QuestionModelUnitTests(test_utils.GenericTestBase): """Tests the QuestionModel class.""" def test_create_question(self): state = exp_domain.State.create_default_state('ABC') question_data = state.to_dict() question_data_schema_version = 1 language_code = 'en' question_model = question_models.QuestionModel.create( question_data, question_data_schema_version, language_code) self.assertEqual(question_model.question_data, question_data) self.assertEqual( question_model.question_data_schema_version, question_data_schema_version) self.assertEqual(question_model.language_code, language_code)
38.615385
75
0.745684
774a4ac0a5f1d65bd8288387389a7b937611ba55
913
py
Python
metasdk/examples/media_api/set_auth_user_id.py
devision-io/metasdk
e3340ab4c62a9f6c7317d768bc12ea5ceff01275
[ "MIT" ]
1
2020-08-07T02:52:14.000Z
2020-08-07T02:52:14.000Z
metasdk/examples/media_api/set_auth_user_id.py
devision-io/metasdk
e3340ab4c62a9f6c7317d768bc12ea5ceff01275
[ "MIT" ]
2
2019-10-22T09:50:30.000Z
2020-08-05T14:22:50.000Z
metasdk/examples/media_api/set_auth_user_id.py
devision-io/metasdk
e3340ab4c62a9f6c7317d768bc12ea5ceff01275
[ "MIT" ]
1
2020-08-07T02:58:45.000Z
2020-08-07T02:58:45.000Z
import base64 from metasdk import MetaApp from metasdk.utils import pretty_json META = MetaApp(meta_url="http://localhost:8080") log = META.log # # Вы можете установить ID пользователя, от лица которого будут работать запросы # Это полезно, когда вам надо сгенерировать приватный файл в фоновом режиме. # Это user_id вы можете передать и прочитать из поля data в task # META.auth_user_id = 3503 YOUR_FILE_CONTENT_BASE64 = base64.b64encode(b'Custom user file').decode("utf-8") # Получаете инстанс сервиса и делаете запрос к нему result = META.MediaService.persist_one( file_base64_content=YOUR_FILE_CONTENT_BASE64, filename="req.txt", extension="txt", mime="plain/text" ) print(u"result = %s" % result) # Формат ответа стандартный для меты first = result['rows'][0] print(u"result['rows'][0]['url'] = %s" % first['url']) print(u"first = %s" % first) print(u"result = %s" % pretty_json(result))
30.433333
80
0.740416
f542c4199f005244f68e0965ad2eeaba96db7587
2,073
py
Python
train_exp.py
chaiyujin/AudioDVP
1b7a6bc85bda6df16c9709d08d7b1415b449c584
[ "MIT" ]
200
2020-11-14T16:23:11.000Z
2022-03-31T17:40:37.000Z
train_exp.py
chaiyujin/AudioDVP
1b7a6bc85bda6df16c9709d08d7b1415b449c584
[ "MIT" ]
36
2020-11-15T14:17:51.000Z
2022-01-04T08:22:43.000Z
train_exp.py
chaiyujin/AudioDVP
1b7a6bc85bda6df16c9709d08d7b1415b449c584
[ "MIT" ]
42
2020-11-14T16:29:18.000Z
2022-03-20T01:16:39.000Z
import time from options.options import Options from models import audio_expression_model from datasets import create_dataset from utils.visualizer import Visualizer if __name__ == '__main__': opt = Options().parse_args() # get training options dataset = create_dataset(opt) model = audio_expression_model.AudioExpressionModel(opt) visualizer = Visualizer(opt) # create a visualizer that display/save images and plots total_iters = 0 for epoch in range(opt.num_epoch): epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch for i, data in enumerate(dataset): # inner loop within one epoch iter_start_time = time.time() # timer for computation per iteration if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time total_iters += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() # calculate loss functions, get gradients, update network weights if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file visualizer.display_current_results(model.get_current_visuals(), total_iters) if total_iters % opt.print_freq == 0: # print training losses losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) visualizer.plot_current_losses(total_iters, losses) iter_data_time = time.time() print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.num_epoch, time.time() - epoch_start_time)) model.save_network()
39.865385
116
0.666184
9051a1a1ca678660821931e07eeb266ed868bac0
634
py
Python
consumeraffairs/reviews/urls.py
sqyttles/Django-Backend-Test
c46d5b2d8a1f98bf3ec69524ab7a2e344514e538
[ "MIT" ]
null
null
null
consumeraffairs/reviews/urls.py
sqyttles/Django-Backend-Test
c46d5b2d8a1f98bf3ec69524ab7a2e344514e538
[ "MIT" ]
null
null
null
consumeraffairs/reviews/urls.py
sqyttles/Django-Backend-Test
c46d5b2d8a1f98bf3ec69524ab7a2e344514e538
[ "MIT" ]
null
null
null
from django.urls import path from consumeraffairs.reviews.views import ( review_list_view, review_redirect_view, review_create_view, review_detail_view, review_update_view, review_delete_view) app_name = "reviews" urlpatterns = [ path("", view=review_list_view, name="list"), path("~redirect/", view=review_redirect_view, name="redirect"), path("create/", view=review_create_view, name="create"), path("<slug:title>", view=review_detail_view, name="detail"), path("<slug:title>/update/", view=review_update_view, name="update"), path("<slug:title>/delete/", view=review_delete_view, name="delete") ]
39.625
73
0.731861
3a0dcc37a47120f0deefaeda94e5bd31fc33c0ef
2,032
py
Python
edx_rest_framework_extensions/auth/jwt/tests/test_cookies.py
Jawayria/edx-drf-extensions
ff138f24f1695f97988356c46fc2f4c4774019a1
[ "Apache-2.0" ]
null
null
null
edx_rest_framework_extensions/auth/jwt/tests/test_cookies.py
Jawayria/edx-drf-extensions
ff138f24f1695f97988356c46fc2f4c4774019a1
[ "Apache-2.0" ]
null
null
null
edx_rest_framework_extensions/auth/jwt/tests/test_cookies.py
Jawayria/edx-drf-extensions
ff138f24f1695f97988356c46fc2f4c4774019a1
[ "Apache-2.0" ]
null
null
null
""" Unit tests for jwt cookies module. """ import ddt import mock from django.test import TestCase, override_settings from edx_rest_framework_extensions.auth.jwt.decoder import jwt_decode_handler from edx_rest_framework_extensions.auth.jwt.tests.utils import ( generate_jwt_token, generate_latest_version_payload, ) from edx_rest_framework_extensions.tests.factories import UserFactory from .. import cookies @ddt.ddt class TestJwtAuthCookies(TestCase): @ddt.data( (cookies.jwt_cookie_name, 'JWT_AUTH_COOKIE', 'custom-jwt-cookie-name'), (cookies.jwt_cookie_header_payload_name, 'JWT_AUTH_COOKIE_HEADER_PAYLOAD', 'custom-jwt-header-payload-name'), (cookies.jwt_cookie_signature_name, 'JWT_AUTH_COOKIE_SIGNATURE', 'custom-jwt-signature-name'), ) @ddt.unpack def test_get_setting_value(self, jwt_cookie_func, setting_name, setting_value): with override_settings(JWT_AUTH={setting_name: setting_value}): self.assertEqual(jwt_cookie_func(), setting_value) @ddt.data( (cookies.jwt_cookie_name, 'edx-jwt-cookie'), (cookies.jwt_cookie_header_payload_name, 'edx-jwt-cookie-header-payload'), (cookies.jwt_cookie_signature_name, 'edx-jwt-cookie-signature'), ) @ddt.unpack def test_get_default_value(self, jwt_cookie_func, expected_default_value): self.assertEqual(jwt_cookie_func(), expected_default_value) def test_get_decoded_jwt_from_existing_cookie(self): user = UserFactory() payload = generate_latest_version_payload(user) jwt = generate_jwt_token(payload) expected_decoded_jwt = jwt_decode_handler(jwt) mock_request_with_cookie = mock.Mock(COOKIES={'edx-jwt-cookie': jwt}) decoded_jwt = cookies.get_decoded_jwt(mock_request_with_cookie) self.assertEqual(expected_decoded_jwt, decoded_jwt) def test_get_decoded_jwt_when_no_cookie(self): mock_request = mock.Mock(COOKIES={}) self.assertIsNone(cookies.get_decoded_jwt(mock_request))
37.62963
117
0.752461
c3a68580661274146b3a0eeabd7858694aff0617
309
py
Python
test/solution_tests/SUM/test_sum.py
DPNT-Sourcecode/CHK-cylq01
a8ca9e25b3577370ebf0d35da8298ee523f8e46b
[ "Apache-2.0" ]
null
null
null
test/solution_tests/SUM/test_sum.py
DPNT-Sourcecode/CHK-cylq01
a8ca9e25b3577370ebf0d35da8298ee523f8e46b
[ "Apache-2.0" ]
null
null
null
test/solution_tests/SUM/test_sum.py
DPNT-Sourcecode/CHK-cylq01
a8ca9e25b3577370ebf0d35da8298ee523f8e46b
[ "Apache-2.0" ]
null
null
null
import unittest from solutions.SUM import sum_solution class TestSum(unittest.TestCase): def test_sum(self): self.assertEqual(sum_solution.compute(1, 2), 3) def test_notequal(self): self.assertNotEqual(sum_solution.compute(1,1), 3) if __name__ == '__main__': unittest.main()
19.3125
57
0.705502
3a4c1ca03c28b85d63f798781fe1ad8421f4f045
386
py
Python
tasks/__init__.py
ttzhou/poetry-workspace-plugin
078d8ab323b0d33e0b542cac93ae7144bace87e8
[ "MIT" ]
46
2021-08-10T09:30:58.000Z
2022-03-31T16:18:46.000Z
tasks/__init__.py
ttzhou/poetry-workspace-plugin
078d8ab323b0d33e0b542cac93ae7144bace87e8
[ "MIT" ]
1
2021-12-07T11:00:02.000Z
2021-12-07T11:29:19.000Z
tasks/__init__.py
ttzhou/poetry-workspace-plugin
078d8ab323b0d33e0b542cac93ae7144bace87e8
[ "MIT" ]
4
2021-08-18T02:30:18.000Z
2022-02-11T23:23:58.000Z
from invoke import Collection from tasks.changelog_check import changelog_check from tasks.lint import lint from tasks.release import build, release from tasks.test import coverage, test from tasks.typecheck import typecheck from tasks.verify import verify namespace = Collection( build, changelog_check, coverage, lint, release,test, typecheck, verify, )
20.315789
49
0.766839
103549d200e973e501c14eb496e73d2d80c9a6ee
2,428
py
Python
examples/pipeline/hetero_feature_binning/pipeline-hetero-binning-bucket-binning.py
qixiuai/FATE
6d50af65b96b5b226afda30dfa8e4a1e5746952d
[ "Apache-2.0" ]
null
null
null
examples/pipeline/hetero_feature_binning/pipeline-hetero-binning-bucket-binning.py
qixiuai/FATE
6d50af65b96b5b226afda30dfa8e4a1e5746952d
[ "Apache-2.0" ]
null
null
null
examples/pipeline/hetero_feature_binning/pipeline-hetero-binning-bucket-binning.py
qixiuai/FATE
6d50af65b96b5b226afda30dfa8e4a1e5746952d
[ "Apache-2.0" ]
null
null
null
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import sys cur_path = os.path.realpath(__file__) for i in range(4): cur_path = os.path.dirname(cur_path) print(f'fate_path: {cur_path}') sys.path.append(cur_path) from examples.pipeline.hetero_feature_binning import common_tools from pipeline.utils.tools import load_job_config def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) backend = config.backend work_mode = config.work_mode param = { "name": "hetero_feature_binning_0", "method": "bucket", "optimal_binning_param": { "metric_method": "iv", "min_bin_pct": 0.05, "max_bin_pct": 0.8, "init_bucket_method": "quantile", "init_bin_nums": 100, "mixture": True }, "compress_thres": 10000, "head_size": 10000, "error": 0.001, "bin_num": 10, "bin_indexes": -1, "bin_names": None, "category_indexes": None, "category_names": None, "adjustment_factor": 0.5, "local_only": False, "transform_param": { "transform_cols": -1, "transform_names": None, "transform_type": "bin_num" } } pipeline = common_tools.make_normal_dsl(config, namespace, param) pipeline.fit(backend=backend, work_mode=work_mode) # common_tools.prettify(pipeline.get_component("hetero_feature_binning_0").get_summary()) if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()
31.128205
93
0.644152
6f3060ee6d617c6c01ac1ea3bcb011c915657ba2
13,876
py
Python
kubernetes/client/models/v1_api_resource.py
palnabarun/Python
6b01c95e1673c0787d3d688b361bfd995d62dd98
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_api_resource.py
palnabarun/Python
6b01c95e1673c0787d3d688b361bfd995d62dd98
[ "Apache-2.0" ]
7
2020-11-07T10:35:21.000Z
2022-02-07T03:06:25.000Z
kubernetes/client/models/v1_api_resource.py
palnabarun/python
6b01c95e1673c0787d3d688b361bfd995d62dd98
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.18 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1APIResource(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'categories': 'list[str]', 'group': 'str', 'kind': 'str', 'name': 'str', 'namespaced': 'bool', 'short_names': 'list[str]', 'singular_name': 'str', 'storage_version_hash': 'str', 'verbs': 'list[str]', 'version': 'str' } attribute_map = { 'categories': 'categories', 'group': 'group', 'kind': 'kind', 'name': 'name', 'namespaced': 'namespaced', 'short_names': 'shortNames', 'singular_name': 'singularName', 'storage_version_hash': 'storageVersionHash', 'verbs': 'verbs', 'version': 'version' } def __init__(self, categories=None, group=None, kind=None, name=None, namespaced=None, short_names=None, singular_name=None, storage_version_hash=None, verbs=None, version=None, local_vars_configuration=None): # noqa: E501 """V1APIResource - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._categories = None self._group = None self._kind = None self._name = None self._namespaced = None self._short_names = None self._singular_name = None self._storage_version_hash = None self._verbs = None self._version = None self.discriminator = None if categories is not None: self.categories = categories if group is not None: self.group = group self.kind = kind self.name = name self.namespaced = namespaced if short_names is not None: self.short_names = short_names self.singular_name = singular_name if storage_version_hash is not None: self.storage_version_hash = storage_version_hash self.verbs = verbs if version is not None: self.version = version @property def categories(self): """Gets the categories of this V1APIResource. # noqa: E501 categories is a list of the grouped resources this resource belongs to (e.g. 'all') # noqa: E501 :return: The categories of this V1APIResource. # noqa: E501 :rtype: list[str] """ return self._categories @categories.setter def categories(self, categories): """Sets the categories of this V1APIResource. categories is a list of the grouped resources this resource belongs to (e.g. 'all') # noqa: E501 :param categories: The categories of this V1APIResource. # noqa: E501 :type: list[str] """ self._categories = categories @property def group(self): """Gets the group of this V1APIResource. # noqa: E501 group is the preferred group of the resource. Empty implies the group of the containing resource list. For subresources, this may have a different value, for example: Scale\". # noqa: E501 :return: The group of this V1APIResource. # noqa: E501 :rtype: str """ return self._group @group.setter def group(self, group): """Sets the group of this V1APIResource. group is the preferred group of the resource. Empty implies the group of the containing resource list. For subresources, this may have a different value, for example: Scale\". # noqa: E501 :param group: The group of this V1APIResource. # noqa: E501 :type: str """ self._group = group @property def kind(self): """Gets the kind of this V1APIResource. # noqa: E501 kind is the kind for the resource (e.g. 'Foo' is the kind for a resource 'foo') # noqa: E501 :return: The kind of this V1APIResource. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1APIResource. kind is the kind for the resource (e.g. 'Foo' is the kind for a resource 'foo') # noqa: E501 :param kind: The kind of this V1APIResource. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and kind is None: # noqa: E501 raise ValueError("Invalid value for `kind`, must not be `None`") # noqa: E501 self._kind = kind @property def name(self): """Gets the name of this V1APIResource. # noqa: E501 name is the plural name of the resource. # noqa: E501 :return: The name of this V1APIResource. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this V1APIResource. name is the plural name of the resource. # noqa: E501 :param name: The name of this V1APIResource. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and name is None: # noqa: E501 raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def namespaced(self): """Gets the namespaced of this V1APIResource. # noqa: E501 namespaced indicates if a resource is namespaced or not. # noqa: E501 :return: The namespaced of this V1APIResource. # noqa: E501 :rtype: bool """ return self._namespaced @namespaced.setter def namespaced(self, namespaced): """Sets the namespaced of this V1APIResource. namespaced indicates if a resource is namespaced or not. # noqa: E501 :param namespaced: The namespaced of this V1APIResource. # noqa: E501 :type: bool """ if self.local_vars_configuration.client_side_validation and namespaced is None: # noqa: E501 raise ValueError("Invalid value for `namespaced`, must not be `None`") # noqa: E501 self._namespaced = namespaced @property def short_names(self): """Gets the short_names of this V1APIResource. # noqa: E501 shortNames is a list of suggested short names of the resource. # noqa: E501 :return: The short_names of this V1APIResource. # noqa: E501 :rtype: list[str] """ return self._short_names @short_names.setter def short_names(self, short_names): """Sets the short_names of this V1APIResource. shortNames is a list of suggested short names of the resource. # noqa: E501 :param short_names: The short_names of this V1APIResource. # noqa: E501 :type: list[str] """ self._short_names = short_names @property def singular_name(self): """Gets the singular_name of this V1APIResource. # noqa: E501 singularName is the singular name of the resource. This allows clients to handle plural and singular opaquely. The singularName is more correct for reporting status on a single item and both singular and plural are allowed from the kubectl CLI interface. # noqa: E501 :return: The singular_name of this V1APIResource. # noqa: E501 :rtype: str """ return self._singular_name @singular_name.setter def singular_name(self, singular_name): """Sets the singular_name of this V1APIResource. singularName is the singular name of the resource. This allows clients to handle plural and singular opaquely. The singularName is more correct for reporting status on a single item and both singular and plural are allowed from the kubectl CLI interface. # noqa: E501 :param singular_name: The singular_name of this V1APIResource. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and singular_name is None: # noqa: E501 raise ValueError("Invalid value for `singular_name`, must not be `None`") # noqa: E501 self._singular_name = singular_name @property def storage_version_hash(self): """Gets the storage_version_hash of this V1APIResource. # noqa: E501 The hash value of the storage version, the version this resource is converted to when written to the data store. Value must be treated as opaque by clients. Only equality comparison on the value is valid. This is an alpha feature and may change or be removed in the future. The field is populated by the apiserver only if the StorageVersionHash feature gate is enabled. This field will remain optional even if it graduates. # noqa: E501 :return: The storage_version_hash of this V1APIResource. # noqa: E501 :rtype: str """ return self._storage_version_hash @storage_version_hash.setter def storage_version_hash(self, storage_version_hash): """Sets the storage_version_hash of this V1APIResource. The hash value of the storage version, the version this resource is converted to when written to the data store. Value must be treated as opaque by clients. Only equality comparison on the value is valid. This is an alpha feature and may change or be removed in the future. The field is populated by the apiserver only if the StorageVersionHash feature gate is enabled. This field will remain optional even if it graduates. # noqa: E501 :param storage_version_hash: The storage_version_hash of this V1APIResource. # noqa: E501 :type: str """ self._storage_version_hash = storage_version_hash @property def verbs(self): """Gets the verbs of this V1APIResource. # noqa: E501 verbs is a list of supported kube verbs (this includes get, list, watch, create, update, patch, delete, deletecollection, and proxy) # noqa: E501 :return: The verbs of this V1APIResource. # noqa: E501 :rtype: list[str] """ return self._verbs @verbs.setter def verbs(self, verbs): """Sets the verbs of this V1APIResource. verbs is a list of supported kube verbs (this includes get, list, watch, create, update, patch, delete, deletecollection, and proxy) # noqa: E501 :param verbs: The verbs of this V1APIResource. # noqa: E501 :type: list[str] """ if self.local_vars_configuration.client_side_validation and verbs is None: # noqa: E501 raise ValueError("Invalid value for `verbs`, must not be `None`") # noqa: E501 self._verbs = verbs @property def version(self): """Gets the version of this V1APIResource. # noqa: E501 version is the preferred version of the resource. Empty implies the version of the containing resource list For subresources, this may have a different value, for example: v1 (while inside a v1beta1 version of the core resource's group)\". # noqa: E501 :return: The version of this V1APIResource. # noqa: E501 :rtype: str """ return self._version @version.setter def version(self, version): """Sets the version of this V1APIResource. version is the preferred version of the resource. Empty implies the version of the containing resource list For subresources, this may have a different value, for example: v1 (while inside a v1beta1 version of the core resource's group)\". # noqa: E501 :param version: The version of this V1APIResource. # noqa: E501 :type: str """ self._version = version def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1APIResource): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1APIResource): return True return self.to_dict() != other.to_dict()
36.515789
445
0.634765
d386e5b8811179974e6f5072947f5f0c653e4d4e
254
py
Python
jalali_test/manage.py
ajahansh/django-jalali
5be8845f500fc18d96d0b624f74b4e83161c4645
[ "BSD-3-Clause" ]
null
null
null
jalali_test/manage.py
ajahansh/django-jalali
5be8845f500fc18d96d0b624f74b4e83161c4645
[ "BSD-3-Clause" ]
null
null
null
jalali_test/manage.py
ajahansh/django-jalali
5be8845f500fc18d96d0b624f74b4e83161c4645
[ "BSD-3-Clause" ]
1
2018-11-21T14:31:52.000Z
2018-11-21T14:31:52.000Z
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "jalali_test.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
23.090909
75
0.775591
45a9b868ca14f4f48414c003dff9c395080c61d9
41,198
py
Python
reinforcement_learning/common/policies.py
mizolotu/DonkeyCarExperiments
3d6be742915efe51c0f5abda4c69a4349a555373
[ "MIT" ]
null
null
null
reinforcement_learning/common/policies.py
mizolotu/DonkeyCarExperiments
3d6be742915efe51c0f5abda4c69a4349a555373
[ "MIT" ]
null
null
null
reinforcement_learning/common/policies.py
mizolotu/DonkeyCarExperiments
3d6be742915efe51c0f5abda4c69a4349a555373
[ "MIT" ]
null
null
null
import warnings from itertools import zip_longest from abc import ABC, abstractmethod import numpy as np import tensorflow as tf from reinforcement_learning.gym.spaces import Discrete from reinforcement_learning.common.tf_util import batch_to_seq, seq_to_batch from reinforcement_learning.common.tf_layers import conv, linear, conv_to_fc, lstm, mlp from reinforcement_learning.common.distributions import make_proba_dist_type, CategoricalProbabilityDistribution, MultiCategoricalProbabilityDistribution, DiagGaussianProbabilityDistribution, BernoulliProbabilityDistribution from reinforcement_learning.common.input import observation_input def nature_cnn(scaled_images, **kwargs): """ CNN from Nature paper. :param scaled_images: (TensorFlow Tensor) Image input placeholder :param kwargs: (dict) Extra keywords parameters for the convolutional layers of the CNN :return: (TensorFlow Tensor) The CNN output layer """ activ = tf.nn.relu layer_1 = activ(conv(scaled_images, 'c1', n_filters=32, filter_size=8, stride=4, init_scale=np.sqrt(2), **kwargs)) layer_2 = activ(conv(layer_1, 'c2', n_filters=64, filter_size=4, stride=2, init_scale=np.sqrt(2), **kwargs)) layer_3 = activ(conv(layer_2, 'c3', n_filters=64, filter_size=3, stride=1, init_scale=np.sqrt(2), **kwargs)) layer_3 = conv_to_fc(layer_3) return activ(linear(layer_3, 'fc1', n_hidden=512, init_scale=np.sqrt(2))) def mlp_extractor(flat_observations, net_arch, act_fun, batch_norm=True): """ Constructs an MLP that receives observations as an input and outputs a latent representation for the policy and a value network. The ``net_arch`` parameter allows to specify the amount and size of the hidden layers and how many of them are shared between the policy network and the value network. It is assumed to be a list with the following structure: 1. An arbitrary length (zero allowed) number of integers each specifying the number of units in a shared layer. If the number of ints is zero, there will be no shared layers. 2. An optional dict, to specify the following non-shared layers for the value network and the policy network. It is formatted like ``dict(vf=[<value layer sizes>], pi=[<policy layer sizes>])``. If it is missing any of the keys (pi or vf), no non-shared layers (empty list) is assumed. For example to construct a network with one shared layer of size 55 followed by two non-shared layers for the value network of size 255 and a single non-shared layer of size 128 for the policy network, the following layers_spec would be used: ``[55, dict(vf=[255, 255], pi=[128])]``. A simple shared network topology with two layers of size 128 would be specified as [128, 128]. :param flat_observations: (tf.Tensor) The observations to base policy and value function on. :param net_arch: ([int or dict]) The specification of the policy and value networks. See above for details on its formatting. :param act_fun: (tf function) The activation function to use for the networks. :return: (tf.Tensor, tf.Tensor) latent_policy, latent_value of the specified network. If all layers are shared, then ``latent_policy == latent_value`` """ latent = flat_observations policy_only_layers = [] # Layer sizes of the network that only belongs to the policy network value_only_layers = [] # Layer sizes of the network that only belongs to the value network # Iterate through the shared layers and build the shared parts of the network for idx, layer in enumerate(net_arch): if isinstance(layer, int): # Check that this is a shared layer layer_size = layer latent = act_fun(linear(latent, "shared_fc{}".format(idx), layer_size, init_scale=np.sqrt(2))) if batch_norm: latent = tf.compat.v1.layers.batch_normalization(latent) else: assert isinstance(layer, dict), "Error: the net_arch list can only contain ints and dicts" if 'pi' in layer: assert isinstance(layer['pi'], list), "Error: net_arch[-1]['pi'] must contain a list of integers." policy_only_layers = layer['pi'] if 'vf' in layer: assert isinstance(layer['vf'], list), "Error: net_arch[-1]['vf'] must contain a list of integers." value_only_layers = layer['vf'] break # From here on the network splits up in policy and value network # Build the non-shared part of the network latent_policy = latent latent_value = latent for idx, (pi_layer_size, vf_layer_size) in enumerate(zip_longest(policy_only_layers, value_only_layers)): if pi_layer_size is not None: assert isinstance(pi_layer_size, int), "Error: net_arch[-1]['pi'] must only contain integers." latent_policy = act_fun(linear(latent_policy, "pi_fc{}".format(idx), pi_layer_size, init_scale=np.sqrt(2))) if vf_layer_size is not None: assert isinstance(vf_layer_size, int), "Error: net_arch[-1]['vf'] must only contain integers." latent_value = act_fun(linear(latent_value, "vf_fc{}".format(idx), vf_layer_size, init_scale=np.sqrt(2))) return latent_policy, latent_value class BasePolicy(ABC): """ The base policy object :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batches to run (n_envs * n_steps) :param reuse: (bool) If the policy is reusable or not :param scale: (bool) whether or not to scale the input :param obs_phs: (TensorFlow Tensor, TensorFlow Tensor) a tuple containing an override for observation placeholder and the processed observation placeholder respectively :param add_action_ph: (bool) whether or not to create an action placeholder """ recurrent = False def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=False, scale=False, obs_phs=None, add_action_ph=False): self.n_env = n_env self.n_steps = n_steps self.n_batch = n_batch with tf.compat.v1.variable_scope("input", reuse=False): if obs_phs is None: self._obs_ph, self._processed_obs = observation_input(ob_space, n_batch, scale=scale) else: self._obs_ph, self._processed_obs = obs_phs self._action_ph = None if add_action_ph: self._action_ph = tf.compat.v1.placeholder(dtype=ac_space.dtype, shape=(n_batch,) + ac_space.shape, name="action_ph") self.sess = sess self.reuse = reuse self.ob_space = ob_space self.ac_space = ac_space @property def is_discrete(self): """bool: is action space discrete.""" return isinstance(self.ac_space, Discrete) @property def initial_state(self): """ The initial state of the policy. For feedforward policies, None. For a recurrent policy, a NumPy array of shape (self.n_env, ) + state_shape. """ assert not self.recurrent, "When using recurrent policies, you must overwrite `initial_state()` method" return None @property def obs_ph(self): """tf.Tensor: placeholder for observations, shape (self.n_batch, ) + self.ob_space.shape.""" return self._obs_ph @property def processed_obs(self): """tf.Tensor: processed observations, shape (self.n_batch, ) + self.ob_space.shape. The form of processing depends on the type of the observation space, and the parameters whether scale is passed to the constructor; see observation_input for more information.""" return self._processed_obs @property def action_ph(self): """tf.Tensor: placeholder for actions, shape (self.n_batch, ) + self.ac_space.shape.""" return self._action_ph @staticmethod def _kwargs_check(feature_extraction, kwargs): """ Ensure that the user is not passing wrong keywords when using policy_kwargs. :param feature_extraction: (str) :param kwargs: (dict) """ # When using policy_kwargs parameter on model creation, # all keywords arguments must be consumed by the policy constructor except # the ones for the cnn_extractor network (cf nature_cnn()), where the keywords arguments # are not passed explicitly (using **kwargs to forward the arguments) # that's why there should be not kwargs left when using the mlp_extractor # (in that case the keywords arguments are passed explicitly) if feature_extraction == 'mlp' and len(kwargs) > 0: raise ValueError("Unknown keywords for policy: {}".format(kwargs)) @abstractmethod def step(self, obs, state=None, mask=None): """ Returns the policy for a single step :param obs: ([float] or [int]) The current observation of the environment :param state: ([float]) The last states (used in recurrent policies) :param mask: ([float]) The last masks (used in recurrent policies) :return: ([float], [float], [float], [float]) actions, values, states, neglogp """ raise NotImplementedError @abstractmethod def proba_step(self, obs, state=None, mask=None): """ Returns the action probability for a single step :param obs: ([float] or [int]) The current observation of the environment :param state: ([float]) The last states (used in recurrent policies) :param mask: ([float]) The last masks (used in recurrent policies) :return: ([float]) the action probability """ raise NotImplementedError class ActorCriticPolicy(BasePolicy): """ Policy object that implements actor critic :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param reuse: (bool) If the policy is reusable or not :param scale: (bool) whether or not to scale the input """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=False, scale=False): super(ActorCriticPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=reuse, scale=scale) self._pdtype = make_proba_dist_type(ac_space) self._policy = None self._proba_distribution = None self._value_fn = None self._action = None self._deterministic_action = None def _setup_init(self): """Sets up the distributions, actions, and value.""" with tf.compat.v1.variable_scope("output", reuse=True): assert self.policy is not None and self.proba_distribution is not None and self.value_fn is not None self._action = self.proba_distribution.sample() self._deterministic_action = self.proba_distribution.mode() self._neglogp = self.proba_distribution.neglogp(self.action) if isinstance(self.proba_distribution, CategoricalProbabilityDistribution): self._policy_proba = tf.nn.softmax(self.policy) elif isinstance(self.proba_distribution, DiagGaussianProbabilityDistribution): self._policy_proba = [self.proba_distribution.mean, self.proba_distribution.std] elif isinstance(self.proba_distribution, BernoulliProbabilityDistribution): self._policy_proba = tf.nn.sigmoid(self.policy) elif isinstance(self.proba_distribution, MultiCategoricalProbabilityDistribution): self._policy_proba = [tf.nn.softmax(categorical.flatparam()) for categorical in self.proba_distribution.categoricals] else: self._policy_proba = [] # it will return nothing, as it is not implemented self._value_flat = self.value_fn[:, 0] @property def pdtype(self): """ProbabilityDistributionType: type of the distribution for stochastic actions.""" return self._pdtype @property def policy(self): """tf.Tensor: policy output, e.g. logits.""" return self._policy @property def proba_distribution(self): """ProbabilityDistribution: distribution of stochastic actions.""" return self._proba_distribution @property def value_fn(self): """tf.Tensor: value estimate, of shape (self.n_batch, 1)""" return self._value_fn @property def value_flat(self): """tf.Tensor: value estimate, of shape (self.n_batch, )""" return self._value_flat @property def action(self): """tf.Tensor: stochastic action, of shape (self.n_batch, ) + self.ac_space.shape.""" return self._action @property def deterministic_action(self): """tf.Tensor: deterministic action, of shape (self.n_batch, ) + self.ac_space.shape.""" return self._deterministic_action @property def neglogp(self): """tf.Tensor: negative log likelihood of the action sampled by self.action.""" return self._neglogp @property def policy_proba(self): """tf.Tensor: parameters of the probability distribution. Depends on pdtype.""" return self._policy_proba @abstractmethod def step(self, obs, state=None, mask=None, deterministic=False): """ Returns the policy for a single step :param obs: ([float] or [int]) The current observation of the environment :param state: ([float]) The last states (used in recurrent policies) :param mask: ([float]) The last masks (used in recurrent policies) :param deterministic: (bool) Whether or not to return deterministic actions. :return: ([float], [float], [float], [float]) actions, values, states, neglogp """ raise NotImplementedError @abstractmethod def value(self, obs, state=None, mask=None): """ Returns the value for a single step :param obs: ([float] or [int]) The current observation of the environment :param state: ([float]) The last states (used in recurrent policies) :param mask: ([float]) The last masks (used in recurrent policies) :return: ([float]) The associated value of the action """ raise NotImplementedError class RecurrentActorCriticPolicy(ActorCriticPolicy): """ Actor critic policy object uses a previous state in the computation for the current step. NOTE: this class is not limited to recurrent neural network policies, see https://github.com/hill-a/stable-baselines/issues/241 :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param state_shape: (tuple<int>) shape of the per-environment state space. :param reuse: (bool) If the policy is reusable or not :param scale: (bool) whether or not to scale the input """ recurrent = True def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, state_shape, reuse=False, scale=False): super(RecurrentActorCriticPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=reuse, scale=scale) with tf.compat.v1.variable_scope("input", reuse=False): self._dones_ph = tf.compat.v1.placeholder(tf.float32, (n_batch, ), name="dones_ph") # (done t-1) state_ph_shape = (self.n_env, ) + tuple(state_shape) self._states_ph = tf.compat.v1.placeholder(tf.float32, state_ph_shape, name="states_ph") initial_state_shape = (self.n_env, ) + tuple(state_shape) self._initial_state = np.zeros(initial_state_shape, dtype=np.float32) @property def initial_state(self): return self._initial_state @property def dones_ph(self): """tf.Tensor: placeholder for whether episode has terminated (done), shape (self.n_batch, ). Internally used to reset the state before the next episode starts.""" return self._dones_ph @property def states_ph(self): """tf.Tensor: placeholder for states, shape (self.n_env, ) + state_shape.""" return self._states_ph @abstractmethod def value(self, obs, state=None, mask=None): """ Cf base class doc. """ raise NotImplementedError class MemoryPolicy(RecurrentActorCriticPolicy): recurrent = True def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, n_mem=64, reuse=False, layers=None, net_arch=None, act_fun=tf.tanh, layer_norm=False, feature_extraction="mlp", **kwargs): assert len(ob_space.shape) == 1 nfeatures = ob_space.shape[0] super(MemoryPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, state_shape=(n_mem * nfeatures,), reuse=reuse, scale=(feature_extraction == "cnn")) if net_arch is None: # Legacy mode if layers is None: layers = [64, 64] else: warnings.warn("The layers parameter is deprecated. Use the net_arch parameter instead.") with tf.compat.v1.variable_scope("model", reuse=reuse): extracted_features = tf.compat.v1.layers.flatten(self.obs_ph) input_sequence = batch_to_seq(extracted_features, self.n_env, n_steps) masks = batch_to_seq(self.dones_ph, self.n_env, n_steps) output, self.snew = mlpstack(input_sequence, masks, self.states_ph, 'mem1', n_hidden=64, layer_norm=layer_norm, act_fun=act_fun) output = seq_to_batch(output) value_fn = linear(output, 'vf', 1) self._proba_distribution, self._policy, self.q_value = self.pdtype.proba_distribution_from_latent(output, output) self._value_fn = value_fn else: raise NotImplementedError self._setup_init() def step(self, obs, state=None, mask=None, deterministic=False): if deterministic: return self.sess.run([self.deterministic_action, self.value_flat, self.snew, self.neglogp], {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) else: return self.sess.run([self.action, self.value_flat, self.snew, self.neglogp], {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) def proba_step(self, obs, state=None, mask=None): return self.sess.run(self.policy_proba, {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) def value(self, obs, state=None, mask=None): return self.sess.run(self.value_flat, {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) class LstmPolicy(RecurrentActorCriticPolicy): """ Policy object that implements actor critic, using LSTMs. :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param n_lstm: (int) The number of LSTM cells (for recurrent policies) :param reuse: (bool) If the policy is reusable or not :param layers: ([int]) The size of the Neural network before the LSTM layer (if None, default to [64, 64]) :param net_arch: (list) Specification of the actor-critic policy network architecture. Notation similar to the format described in mlp_extractor but with additional support for a 'lstm' entry in the shared network part. :param act_fun: (tf.func) the activation function to use in the neural network. :param cnn_extractor: (function (TensorFlow Tensor, ``**kwargs``): (TensorFlow Tensor)) the CNN feature extraction :param layer_norm: (bool) Whether or not to use layer normalizing LSTMs :param feature_extraction: (str) The feature extraction type ("cnn" or "mlp") :param kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ recurrent = True def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm=64, reuse=False, layers=None, net_arch=None, act_fun=tf.tanh, cnn_extractor=nature_cnn, layer_norm=False, feature_extraction="cnn", **kwargs): # state_shape = [n_lstm * 2] dim because of the cell and hidden states of the LSTM super(LstmPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, state_shape=(2 * n_lstm, ), reuse=reuse, scale=(feature_extraction == "cnn")) self._kwargs_check(feature_extraction, kwargs) if net_arch is None: # Legacy mode if layers is None: layers = [64] else: warnings.warn("The layers parameter is deprecated. Use the net_arch parameter instead.") with tf.compat.v1.variable_scope("model", reuse=reuse): if feature_extraction == "cnn": extracted_features = cnn_extractor(self.processed_obs, **kwargs) else: extracted_features = tf.compat.v1.layers.flatten(self.processed_obs) for i, layer_size in enumerate(layers): extracted_features = act_fun(linear(extracted_features, 'pi_fc' + str(i), n_hidden=layer_size, init_scale=np.sqrt(2))) input_sequence = batch_to_seq(extracted_features, self.n_env, n_steps) masks = batch_to_seq(self.dones_ph, self.n_env, n_steps) rnn_output, self.snew = lstm(input_sequence, masks, self.states_ph, 'lstm1', n_hidden=n_lstm, layer_norm=layer_norm) rnn_output = seq_to_batch(rnn_output) value_fn = linear(rnn_output, 'vf', 1) self._proba_distribution, self._policy, self.q_value = \ self.pdtype.proba_distribution_from_latent(rnn_output, rnn_output) self._value_fn = value_fn else: # Use the new net_arch parameter if layers is not None: warnings.warn("The new net_arch parameter overrides the deprecated layers parameter.") if feature_extraction == "cnn": raise NotImplementedError() with tf.compat.v1.variable_scope("model", reuse=reuse): latent = tf.compat.v1.layers.flatten(self.processed_obs) policy_only_layers = [] # Layer sizes of the network that only belongs to the policy network value_only_layers = [] # Layer sizes of the network that only belongs to the value network # Iterate through the shared layers and build the shared parts of the network lstm_layer_constructed = False for idx, layer in enumerate(net_arch): if isinstance(layer, int): # Check that this is a shared layer layer_size = layer latent = act_fun(linear(latent, "shared_fc{}".format(idx), layer_size, init_scale=np.sqrt(2))) elif layer == "lstm": if lstm_layer_constructed: raise ValueError("The net_arch parameter must only contain one occurrence of 'lstm'!") input_sequence = batch_to_seq(latent, self.n_env, n_steps) masks = batch_to_seq(self.dones_ph, self.n_env, n_steps) rnn_output, self.snew = lstm(input_sequence, masks, self.states_ph, 'lstm1', n_hidden=n_lstm, layer_norm=layer_norm) latent = seq_to_batch(rnn_output) lstm_layer_constructed = True else: assert isinstance(layer, dict), "Error: the net_arch list can only contain ints and dicts" if 'pi' in layer: assert isinstance(layer['pi'], list), "Error: net_arch[-1]['pi'] must contain a list of integers." policy_only_layers = layer['pi'] if 'vf' in layer: assert isinstance(layer['vf'], list), "Error: net_arch[-1]['vf'] must contain a list of integers." value_only_layers = layer['vf'] break # From here on the network splits up in policy and value network # Build the non-shared part of the policy-network latent_policy = latent for idx, pi_layer_size in enumerate(policy_only_layers): if pi_layer_size == "lstm": raise NotImplementedError("LSTMs are only supported in the shared part of the policy network.") assert isinstance(pi_layer_size, int), "Error: net_arch[-1]['pi'] must only contain integers." latent_policy = act_fun( linear(latent_policy, "pi_fc{}".format(idx), pi_layer_size, init_scale=np.sqrt(2))) # Build the non-shared part of the value-network latent_value = latent for idx, vf_layer_size in enumerate(value_only_layers): if vf_layer_size == "lstm": raise NotImplementedError("LSTMs are only supported in the shared part of the value function " "network.") assert isinstance(vf_layer_size, int), "Error: net_arch[-1]['vf'] must only contain integers." latent_value = act_fun( linear(latent_value, "vf_fc{}".format(idx), vf_layer_size, init_scale=np.sqrt(2))) if not lstm_layer_constructed: raise ValueError("The net_arch parameter must contain at least one occurrence of 'lstm'!") self._value_fn = linear(latent_value, 'vf', 1) # TODO: why not init_scale = 0.001 here like in the feedforward self._proba_distribution, self._policy, self.q_value = \ self.pdtype.proba_distribution_from_latent(latent_policy, latent_value) self._setup_init() def step(self, obs, state=None, mask=None, deterministic=False): if deterministic: return self.sess.run([self.deterministic_action, self.value_flat, self.snew, self.neglogp], {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) else: return self.sess.run([self.action, self.value_flat, self.snew, self.neglogp], {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) def proba_step(self, obs, state=None, mask=None): return self.sess.run(self.policy_proba, {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) def value(self, obs, state=None, mask=None): return self.sess.run(self.value_flat, {self.obs_ph: obs, self.states_ph: state, self.dones_ph: mask}) class FeedForwardPolicy(ActorCriticPolicy): """ Policy object that implements actor critic, using a feed forward neural network. :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param reuse: (bool) If the policy is reusable or not :param layers: ([int]) (deprecated, use net_arch instead) The size of the Neural network for the policy (if None, default to [64, 64]) :param net_arch: (list) Specification of the actor-critic policy network architecture (see mlp_extractor documentation for details). :param act_fun: (tf.func) the activation function to use in the neural network. :param cnn_extractor: (function (TensorFlow Tensor, ``**kwargs``): (TensorFlow Tensor)) the CNN feature extraction :param feature_extraction: (str) The feature extraction type ("cnn" or "mlp") :param kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=False, layers=None, net_arch=None, act_fun=tf.tanh, cnn_extractor=nature_cnn, feature_extraction="cnn", **kwargs): super(FeedForwardPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=reuse, scale=(feature_extraction == "cnn")) self._kwargs_check(feature_extraction, kwargs) if layers is not None: warnings.warn("Usage of the `layers` parameter is deprecated! Use net_arch instead " "(it has a different semantics though).", DeprecationWarning) if net_arch is not None: warnings.warn("The new `net_arch` parameter overrides the deprecated `layers` parameter!", DeprecationWarning) if net_arch is None: if layers is None: layers = [64, 64] net_arch = [dict(vf=layers, pi=layers)] with tf.compat.v1.variable_scope("model", reuse=reuse): if feature_extraction == "cnn": pi_latent = vf_latent = cnn_extractor(self.processed_obs, **kwargs) else: pi_latent, vf_latent = mlp_extractor(tf.compat.v1.layers.flatten(self.processed_obs), net_arch, act_fun) self._value_fn = linear(vf_latent, 'vf', 1) self._proba_distribution, self._policy, self.q_value = \ self.pdtype.proba_distribution_from_latent(pi_latent, vf_latent, init_scale=0.01) self._setup_init() def step(self, obs, state=None, mask=None, deterministic=False): if deterministic: action, value, neglogp = self.sess.run([self.deterministic_action, self.value_flat, self.neglogp], {self.obs_ph: obs}) else: action, value, neglogp = self.sess.run([self.action, self.value_flat, self.neglogp], {self.obs_ph: obs}) return action, value, self.initial_state, neglogp def proba_step(self, obs, state=None, mask=None): return self.sess.run(self.policy_proba, {self.obs_ph: obs}) def value(self, obs, state=None, mask=None): return self.sess.run(self.value_flat, {self.obs_ph: obs}) class CnnPolicy(FeedForwardPolicy): """ Policy object that implements actor critic, using a CNN (the nature CNN) :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param reuse: (bool) If the policy is reusable or not :param _kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=False, **_kwargs): super(CnnPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse, feature_extraction="cnn", **_kwargs) class CnnLstmPolicy(LstmPolicy): """ Policy object that implements actor critic, using LSTMs with a CNN feature extraction :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param n_lstm: (int) The number of LSTM cells (for recurrent policies) :param reuse: (bool) If the policy is reusable or not :param kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm=256, reuse=False, **_kwargs): super(CnnLstmPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm, reuse, layer_norm=False, feature_extraction="cnn", **_kwargs) class CnnLnLstmPolicy(LstmPolicy): """ Policy object that implements actor critic, using a layer normalized LSTMs with a CNN feature extraction :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param n_lstm: (int) The number of LSTM cells (for recurrent policies) :param reuse: (bool) If the policy is reusable or not :param kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm=256, reuse=False, **_kwargs): super(CnnLnLstmPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm, reuse, layer_norm=True, feature_extraction="cnn", **_kwargs) class MlpPolicyDefault(FeedForwardPolicy): """ Policy object that implements actor critic, using a MLP (2 layers of 64) :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param reuse: (bool) If the policy is reusable or not :param _kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=False, **_kwargs): super(MlpPolicyDefault, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse, feature_extraction="mlp", **_kwargs) class MlpPolicy(FeedForwardPolicy): def __init__(self, *args, **kwargs): super(MlpPolicy, self).__init__(*args, **kwargs, net_arch=[256, dict(vf=[256], pi=[256])], feature_extraction="mlp") class policy_0(FeedForwardPolicy): def __init__(self, *args, **kwargs): super(policy_0, self).__init__(*args, **kwargs, net_arch=[dict(vf=[256, 256], pi=[256, 256])], feature_extraction="mlp") class policy_1(FeedForwardPolicy): def __init__(self, *args, **kwargs): super(policy_1, self).__init__(*args, **kwargs, net_arch=[256, dict(vf=[256], pi=[256])], feature_extraction="mlp") class policy_2(FeedForwardPolicy): def __init__(self, *args, **kwargs): super(policy_2, self).__init__(*args, **kwargs, net_arch=[256, 256], feature_extraction="mlp") class MlpLstmPolicy(LstmPolicy): """ Policy object that implements actor critic, using LSTMs with a MLP feature extraction :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param n_lstm: (int) The number of LSTM cells (for recurrent policies) :param reuse: (bool) If the policy is reusable or not :param kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm=256, reuse=False, **_kwargs): super(MlpLstmPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm, reuse, layer_norm=False, feature_extraction="mlp", **_kwargs) class MlpLnLstmPolicy(LstmPolicy): """ Policy object that implements actor critic, using a layer normalized LSTMs with a MLP feature extraction :param sess: (TensorFlow session) The current TensorFlow session :param ob_space: (Gym Space) The observation space of the environment :param ac_space: (Gym Space) The action space of the environment :param n_env: (int) The number of environments to run :param n_steps: (int) The number of steps to run for each environment :param n_batch: (int) The number of batch to run (n_envs * n_steps) :param n_lstm: (int) The number of LSTM cells (for recurrent policies) :param reuse: (bool) If the policy is reusable or not :param kwargs: (dict) Extra keyword arguments for the nature CNN feature extraction """ def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm=256, reuse=False, **_kwargs): super(MlpLnLstmPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm, reuse, layer_norm=True, feature_extraction="mlp", **_kwargs) _policy_registry = { ActorCriticPolicy: { "CnnPolicy": CnnPolicy, "CnnLstmPolicy": CnnLstmPolicy, "CnnLnLstmPolicy": CnnLnLstmPolicy, "MlpPolicy": MlpPolicy, "MlpLstmPolicy": MlpLstmPolicy, "MlpLnLstmPolicy": MlpLnLstmPolicy, } } def get_policy_from_name(base_policy_type, name): """ returns the registed policy from the base type and name :param base_policy_type: (BasePolicy) the base policy object :param name: (str) the policy name :return: (base_policy_type) the policy """ if base_policy_type not in _policy_registry: raise ValueError("Error: the policy type {} is not registered!".format(base_policy_type)) if name not in _policy_registry[base_policy_type]: raise ValueError("Error: unknown policy type {}, the only registed policy type are: {}!" .format(name, list(_policy_registry[base_policy_type].keys()))) return _policy_registry[base_policy_type][name] def register_policy(name, policy): """ returns the registed policy from the base type and name :param name: (str) the policy name :param policy: (subclass of BasePolicy) the policy """ sub_class = None for cls in BasePolicy.__subclasses__(): if issubclass(policy, cls): sub_class = cls break if sub_class is None: raise ValueError("Error: the policy {} is not of any known subclasses of BasePolicy!".format(policy)) if sub_class not in _policy_registry: _policy_registry[sub_class] = {} if name in _policy_registry[sub_class]: raise ValueError("Error: the name {} is alreay registered for a different policy, will not override." .format(name)) _policy_registry[sub_class][name] = policy
50.180268
224
0.656998
9c9b7dffec761731570a26a55c96024e33cf3229
2,105
py
Python
dandi/support/tests/test_iterators.py
TheChymera/dandi-cli
9a42b1fa2f9af3be01254f7457f5a21d834c1864
[ "Apache-2.0" ]
10
2020-07-27T02:34:28.000Z
2022-02-18T19:36:17.000Z
dandi/support/tests/test_iterators.py
TheChymera/dandi-cli
9a42b1fa2f9af3be01254f7457f5a21d834c1864
[ "Apache-2.0" ]
908
2019-08-16T20:40:09.000Z
2022-03-31T19:38:51.000Z
dandi/support/tests/test_iterators.py
TheChymera/dandi-cli
9a42b1fa2f9af3be01254f7457f5a21d834c1864
[ "Apache-2.0" ]
10
2019-10-08T03:12:23.000Z
2022-02-18T19:36:22.000Z
from time import sleep import pytest from ..iterators import IteratorWithAggregation def sleeping_range(n, secs=0.01, thr=None): """Fast generator based on range Parameters ---------- n : int Number to pass to `range` secs : float, optional Seconds to sleep between iterations thr : int, optional If specified, will cause loop to raise ValueError when it reaches that value Yields ------ int Integers like range does """ for i in range(n): yield i sleep(secs) if thr and i >= thr: raise ValueError(i) def test_IteratorWithAggregation(): def sumup(v, t=0): return v + t it = IteratorWithAggregation(sleeping_range(3, 0.0001), agg=sumup) # we should get our summary available after 2nd iteration and before it finishes slow_machine = False for t, i in enumerate(it): sleep(0.005) # 0.0003 should be sufficient but to deal with Windows failures, # making it longer assert t == i # it is just a range after all if i: if not it.finished: # give considerably more time for poor Windows VM slow_machine = True sleep(0.1) assert it.finished # If there is an exception thrown, it would be raised only by the end it = IteratorWithAggregation(sleeping_range(5, 0.0001, thr=2), agg=sumup) got = [] with pytest.raises(ValueError): for i in it: got.append(i) sleep(0.001 if not slow_machine else 0.1) assert got == [0, 1, 2] assert it.finished # If there is an exception thrown, it would be raised immediately it = IteratorWithAggregation( sleeping_range(5, 0.0001, thr=2), agg=sumup, reraise_immediately=True ) got = [] with pytest.raises(ValueError): for i in it: got.append(i) # sleep long enough to trigger exception before next iteration sleep(0.02 if not slow_machine else 0.1) assert got in ([], [0]) assert it.finished
28.445946
86
0.610451
54780ffc04060cacaf9139840829ffc66e979477
11,011
py
Python
data/cro_transformer_models.py
dafrie/fin-disclosures-nlp
aa89013a1b3c621df261d70cad16aeef15c34d25
[ "MIT" ]
2
2020-06-08T17:07:17.000Z
2020-06-25T16:04:38.000Z
data/cro_transformer_models.py
dafrie/fin-disclosures-nlp
aa89013a1b3c621df261d70cad16aeef15c34d25
[ "MIT" ]
2
2020-05-11T17:37:59.000Z
2020-05-11T17:41:12.000Z
data/cro_transformer_models.py
dafrie/fin-disclosures-nlp
aa89013a1b3c621df261d70cad16aeef15c34d25
[ "MIT" ]
null
null
null
import os import numpy as np from sklearn.metrics import average_precision_score, accuracy_score, balanced_accuracy_score, precision_recall_fscore_support, roc_auc_score, matthews_corrcoef from sklearn.utils.class_weight import compute_class_weight from transformers import logging, AutoModelForSequenceClassification, TrainingArguments, Trainer, AutoTokenizer from transformers.trainer_pt_utils import nested_detach import torch from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss os.environ["TOKENIZERS_PARALLELISM"] = "false" class CroTrainer(Trainer): """Custom implementation of the "Trainer" class that adds default behaviour such as custom metrics, weights in the loss function and tokenization and initialization """ def __init__(self, model_checkpoint=None, dataset=None, task=None, avg_strategy=None, max_token_size=256, should_weight=True, **kwargs): """Custom initialisation that calls the super class method of the base Trainer class. kwargs contains the TrainerArguments, so any additional parameter (that is not used in the base class) must be a named argument. Dataset doesn't need to be tokenized. """ # Initialize custom stuff self.model_checkpoint = model_checkpoint if task == 'binary': self.num_labels = 2 elif task == 'multi-class': self.num_labels = dataset['train'].features['labels'].num_classes else: self.num_labels = dataset['train'].features['labels'].feature.num_classes self.dataset = dataset self.task = task self.avg_strategy = avg_strategy self.weights = None if should_weight: self.weights = self.get_pos_weights() print(f"Using weights: {self.weights}") # Set and load the tokenizer. self.tokenizer = AutoTokenizer.from_pretrained(self.model_checkpoint) # Tokenize the dataset print("Tokenization....") self.dataset = self.dataset.map(lambda ds: self.tokenizer( ds["text"], truncation=True, padding='max_length', max_length=max_token_size), batched=True) # Setup the trainer arguments self.training_args = TrainingArguments(**kwargs) # Initialize actual trainer super().__init__( model_init=self.my_model_init, # Notice the custom implementation args=self.training_args, train_dataset=self.dataset["train"], eval_dataset=self.dataset["valid"], tokenizer=self.tokenizer, compute_metrics=self.my_compute_metrics # Notice the custom implementation ) def my_model_init(self): """Custom model initialization. Disabels logging temporarily to avoid spamming messages and loads the pretrained or fine-tuned model""" logging.set_verbosity_error() # Workaround to hide warnings that the model weights are randomly set and fine-tuning is necessary (which we do later...) model = AutoModelForSequenceClassification.from_pretrained( # Load from model checkpoint, i.e. the pretrained model or a previously saved fine-tuned model self.model_checkpoint, num_labels=self.num_labels, # The number of different categories/labels # Whether the model returns attentions weights. output_attentions=False, output_hidden_states=False, # Whether the model returns all hidden-states.) return_dict=False, # TODO: Change this back and ammend the custom functions ) logging.set_verbosity_warning() return model def prediction_step_(self, model, inputs, prediction_loss_only, ignore_keys): """Custom method overwriting the provided method to include "compute_loss()" which lead to an error when evaluating See previous PR: https://github.com/huggingface/transformers/pull/7074/files """ # Return the inherited method if not absolutely necessary if self.task != 'multi-label': return super().prediction_step(model, inputs, prediction_loss_only, ignore_keys) has_labels = all(inputs.get(k) is not None for k in self.label_names) # These two lines are added if has_labels: labels = tuple(inputs.get(name) for name in self.label_names) inputs = self._prepare_inputs(inputs) if ignore_keys is None: if hasattr(self.model, "config"): ignore_keys = getattr( self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] with torch.no_grad(): if self.args.fp16 and _use_native_amp: with autocast(): # These two lines are added if has_labels: loss = self.compute_loss(model, inputs) outputs = model(**inputs) else: # These two lines are added if has_labels: loss = self.compute_loss(model, inputs) outputs = model(**inputs) if has_labels: if isinstance(outputs, dict): # loss = outputs["loss"].mean().detach() loss = loss.mean().detach() logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"]) else: # loss = outputs[0].mean().detach() loss = loss.mean().detach() # logits = outputs[1:] logits = outputs[0:] else: loss = None if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys) else: logits = outputs # TODO: Remove # Slicing so we get a tuple even if `outputs` is a `ModelOutput`. # logits = outputs[:] if self.args.past_index >= 0: self._past = outputs[self.args.past_index if has_labels else self.args.past_index - 1] # TODO: Remove # Remove the past from the logits. # logits = logits[: self.args.past_index - 1] + \ # logits[self.args.past_index:] if prediction_loss_only: return (loss, None, None) logits = nested_detach(logits) if len(logits) == 1: logits = logits[0] if has_labels: labels = nested_detach(labels) # ORIG: labels = nested_detach(tuple(inputs.get(name) for name in self.label_names)) if len(labels) == 1: labels = labels[0] else: labels = None return (loss, logits, labels) def get_pos_weights(self): """Calculates weights for each class that relates to the ratio of positive to negative sample in each class""" if self.task == 'multi-label': pos_counts = np.sum(self.dataset['train']['labels'], axis=0) neg_counts = [self.dataset['train'].num_rows - pos_count for pos_count in pos_counts] pos_weights = neg_counts / pos_counts else: y = self.dataset['train']['labels'] pos_weights = compute_class_weight( class_weight='balanced', classes=np.unique(y), y=y) tensor = torch.as_tensor(pos_weights, dtype=torch.float) if torch.cuda.is_available(): return tensor.to(device="cuda") return tensor def compute_loss(self, model, inputs, return_outputs=False): """Implements a BinaryCrossEntropyWithLogits activation and loss function to support multi-label cases """ labels = inputs.pop("labels") outputs = model(**inputs) # logits = outputs[0] logits = outputs.logits ############################### # Note: The multi-label conditional is added since we want to use a different loss function for this case ############################### # Multi-Label: Example: [0 1 1] if self.task == 'multi-label': # To adjust for inbalanced data, the pos_weight loss_func = BCEWithLogitsLoss(pos_weight=self.weights) #labels = labels.float() loss = loss_func(logits.view(-1, self.model.config.num_labels), # model.num_labels), # The logits labels.float().view(-1, self.model.config.num_labels) # model.num_labels) ) # The labels # Binary or multi-class else: if model.num_labels == 1: loss_fct = MSELoss() # Doing regression loss = loss_fct(logits.view(-1), labels.view(-1)) # Multi-class (Example: [0 0 1]): else: loss_fct = CrossEntropyLoss(weight=self.weights) loss = loss_fct( logits.view(-1, self.model.config.num_labels), labels.view(-1)) return (loss, outputs) if return_outputs else loss def my_compute_metrics(self, pred): """Computes classification task metric. Supports both multi-class and multi-label""" labels = pred.label_ids preds = pred.predictions # Multi-label if self.task == 'multi-label': roc_auc = roc_auc_score(labels, preds, average=self.avg_strategy) pr_auc = average_precision_score( labels, preds, average=self.avg_strategy) # TODO: Also add some threshold aware eval metrics, such as accuracy, ... # Problem: How do we set the threshold? return { 'roc_auc': roc_auc, 'pr_auc': pr_auc } # Binary/Multi-class task else: preds_bool = preds.argmax(-1) # Threshold unaware metrics # roc_auc = roc_auc_score(labels, preds, average=self.avg_strategy) # pr_auc = average_precision_score(labels, preds, average = self.avg_strategy) preds = preds.argmax(-1) precision, recall, f1, _ = precision_recall_fscore_support( labels, preds_bool, average=self.avg_strategy) acc = accuracy_score(labels, preds_bool) balanced_accuracy = balanced_accuracy_score( labels, preds_bool, adjusted=True) matthews_corr = matthews_corrcoef(labels, preds_bool) return { # 'roc_auc': roc_auc, # 'pr_auc': pr_auc, 'accuracy': acc, 'balanced_accuracy': balanced_accuracy, 'f1': f1, 'precision': precision, 'recall': recall, 'matthews_correlation': matthews_corr }
42.513514
160
0.592226
308e63c76843dc2c83c6e852f8d1de8f5c88dc24
236
py
Python
thirdweb/modules/__init__.py
princetonwong/python-sdk
f35181d97620e29d055498fca75f3702f3bb2449
[ "Apache-2.0" ]
1
2022-02-18T16:59:12.000Z
2022-02-18T16:59:12.000Z
thirdweb/modules/__init__.py
princetonwong/python-sdk
f35181d97620e29d055498fca75f3702f3bb2449
[ "Apache-2.0" ]
null
null
null
thirdweb/modules/__init__.py
princetonwong/python-sdk
f35181d97620e29d055498fca75f3702f3bb2449
[ "Apache-2.0" ]
null
null
null
"""All Modules""" from .nft import NftModule as NftModuleV2 from .nft_v1 import * from .nft_types import * from .currency import * from .market import * from .pack import * from .collection import CollectionModule from .bundle import *
23.6
41
0.762712
cf963af522d3404b66c4873948913ee959b74f72
10,945
py
Python
plants_disease_classify_pytorch/main.py
wanghao15536870732/plants_disease_classify
6d0d1d39f0ec15fc2bd523142c5c403a1577da84
[ "Apache-2.0" ]
null
null
null
plants_disease_classify_pytorch/main.py
wanghao15536870732/plants_disease_classify
6d0d1d39f0ec15fc2bd523142c5c403a1577da84
[ "Apache-2.0" ]
null
null
null
plants_disease_classify_pytorch/main.py
wanghao15536870732/plants_disease_classify
6d0d1d39f0ec15fc2bd523142c5c403a1577da84
[ "Apache-2.0" ]
null
null
null
import os import random import time import json import torch import torchvision import numpy as np import pandas as pd import warnings from datetime import datetime from torch import nn, optim from config import config from collections import OrderedDict from torch.autograd import Variable from torch.utils.data import DataLoader from dataset.dataloader import * from sklearn.model_selection import train_test_split, StratifiedKFold from timeit import default_timer as timer from models.model import * from utils import * # 1. set random.seed and cudnn performance random.seed(config.seed) np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus torch.backends.cudnn.benchmark = True warnings.filterwarnings('ignore') # 2. evaluate func def evaluate(val_loader, model, criterion): # 2.1 define meters losses = AverageMeter() top1 = AverageMeter() top2 = AverageMeter() # 2.2 switch to evaluate mode and confirm model has been transfered to cuda model.cuda() model.eval() with torch.no_grad(): for i, (input, target) in enumerate(val_loader): input = Variable(input).cuda() target = Variable(torch.from_numpy(np.array(target)).long()).cuda() # target = Variable(target).cuda() # 2.2.1 compute output output = model(input) loss = criterion(output, target) # 2.2.2 measure accuracy and record loss precision1, precision2 = accuracy(output, target, topk=(1, 2)) losses.update(loss.item(), input.size(0)) top1.update(precision1[0], input.size(0)) top2.update(precision2[0], input.size(0)) return [losses.avg, top1.avg, top2.avg] # 3. test model on public dataset and save the probability matrix def predict(test_loader, model, folds): # 3.1 confirm the model converted to cuda csv_map = OrderedDict({"filename": [], "probability": []}) model.cuda() model.eval() with open("./submit/baseline.json", "w", encoding="utf-8") as f: submit_results = [] for i, (input, filepath) in enumerate(tqdm(test_loader)): # 3.2 change everything to cuda and get only basename filepath = [os.path.basename(x) for x in filepath] with torch.no_grad(): image_var = Variable(input).cuda() # 3.3.output # print(filepath) # print(input,input.shape) y_pred = model(image_var) # print(y_pred.shape) smax = nn.Softmax(1) smax_out = smax(y_pred) # 3.4 save probability to csv files csv_map["filename"].extend(filepath) for output in smax_out: prob = ";".join([str(i) for i in output.data.tolist()]) csv_map["probability"].append(prob) result = pd.DataFrame(csv_map) result["probability"] = result["probability"].map(lambda x: [float(i) for i in x.split(";")]) for index, row in result.iterrows(): pred_label = np.argmax(row['probability']) pred_acc = row['probability'][pred_label] if pred_label > 43: pred_label = pred_label + 2 submit_results.append({"image_id": row['filename'], "disease_class": config.LABEL_NAMES[pred_label], "identify_accuracy": pred_acc}) json.dump(submit_results, f, ensure_ascii=False, cls=MyEncoder) # 4. more details to build main function def main(): fold = 0 # 4.1 mkdirs if not os.path.exists(config.submit): os.mkdir(config.submit) if not os.path.exists(config.weights): os.mkdir(config.weights) if not os.path.exists(config.best_models): os.mkdir(config.best_models) if not os.path.exists(config.logs): os.mkdir(config.logs) if not os.path.exists(config.weights + config.model_name + os.sep + str(fold) + os.sep): os.makedirs(config.weights + config.model_name + os.sep + str(fold) + os.sep) if not os.path.exists(config.best_models + config.model_name + os.sep + str(fold) + os.sep): os.makedirs(config.best_models + config.model_name + os.sep + str(fold) + os.sep) # 4.2 get model and optimizer model = get_net() # model = torch.nn.DataParallel(model) model.cuda() # optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay) optimizer = optim.Adam(model.parameters(), lr=config.lr, amsgrad=True, weight_decay=config.weight_decay) criterion = nn.CrossEntropyLoss().cuda() # criterion = FocalLoss().cuda() log = Logger() log.open(config.logs + "log_train.txt", mode="a") log.write("\n----------------------------------------------- [START %s] %s\n\n" % ( datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51)) # 4.3 some parameters for K-fold and restart model start_epoch = 0 best_precision1 = 0 best_precision_save = 0 resume = True # 4.4 restart the training process if resume: checkpoint = torch.load(config.weights + config.model_name + os.sep + str(fold) + "/_checkpoint.pth.tar") start_epoch = checkpoint["epoch"] fold = checkpoint["fold"] best_precision1 = checkpoint["best_precision1"] model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) # 4.5 get files and split for K-fold dataset # 4.5.1 read files train_ = get_files(config.train_data, "train") # val_data_list = get_files(config.val_data,"val") test_files = get_files(config.test_one_data, "test") """ #4.5.2 split split_fold = StratifiedKFold(n_splits=3) folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"]) folds_indexes = np.array(list(folds_indexes)) fold_index = folds_indexes[fold] #4.5.3 using fold index to split for train data and val data train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1) val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1) """ train_data_list, val_data_list = train_test_split(train_, test_size=0.15, stratify=train_["label"]) # 4.5.4 load dataset train_dataloader = DataLoader(ChaojieDataset(train_data_list), batch_size=config.batch_size, shuffle=True, collate_fn=collate_fn, pin_memory=True) val_dataloader = DataLoader(ChaojieDataset(val_data_list, train=False), batch_size=config.batch_size, shuffle=True, collate_fn=collate_fn, pin_memory=False) test_dataloader = DataLoader(ChaojieDataset(test_files, test=True), batch_size=1, shuffle=False, pin_memory=False) # scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 4.5.5.1 define metrics train_losses = AverageMeter() train_top1 = AverageMeter() train_top2 = AverageMeter() valid_loss = [np.inf, 0, 0] model.train() # logs log.write('** start training here! **\n') log.write( ' |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n') log.write( 'lr iter epoch | loss top-1 top-2 | loss top-1 top-2 | Current Best | time |\n') log.write( '-------------------------------------------------------------------------------------------------------------------------------\n') # 4.5.5 train start = timer() for epoch in range(start_epoch, config.epochs): scheduler.step(epoch) # train # global iter for iter, (input, target) in enumerate(train_dataloader): # 4.5.5 switch to continue train process model.train() input = Variable(input).cuda() target = Variable(torch.from_numpy(np.array(target)).long()).cuda() # target = Variable(target).cuda() torch.cuda.empty_cache() output = model(input) loss = criterion(output, target) precision1_train, precision2_train = accuracy(output, target, topk=(1, 2)) train_losses.update(loss.item(), input.size(0)) train_top1.update(precision1_train[0], input.size(0)) train_top2.update(precision2_train[0], input.size(0)) # backward optimizer.zero_grad() loss.backward() optimizer.step() lr = get_learning_rate(optimizer) print('\r', end='', flush=True) print( '%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % ( \ lr, iter / len(train_dataloader) + epoch, epoch, valid_loss[0], valid_loss[1], valid_loss[2], train_losses.avg, train_top1.avg, train_top2.avg, str(best_precision_save), time_to_str((timer() - start), 'min')) , end='', flush=True) # evaluate lr = get_learning_rate(optimizer) # evaluate every half epoch valid_loss = evaluate(val_dataloader, model, criterion) is_best = valid_loss[1] > best_precision1 best_precision1 = max(valid_loss[1], best_precision1) try: best_precision_save = best_precision1.cpu().data.numpy() except: pass save_checkpoint({ "epoch": epoch + 1, "model_name": config.model_name, "state_dict": model.state_dict(), "best_precision1": best_precision1, "optimizer": optimizer.state_dict(), "fold": fold, "valid_loss": valid_loss, }, is_best, fold) # adjust learning rate scheduler.step(valid_loss[1]) print("\r", end="", flush=True) log.write( '%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % ( \ lr, 0 + epoch, epoch, valid_loss[0], valid_loss[1], valid_loss[2], train_losses.avg, train_top1.avg, train_top2.avg, str(best_precision_save), time_to_str((timer() - start), 'min')) ) log.write('\n') time.sleep(0.01) best_model = torch.load( config.best_models + os.sep + config.model_name + os.sep + str(fold) + os.sep + 'model_best.pth.tar') model.load_state_dict(best_model["state_dict"]) predict(test_dataloader, model, fold) if __name__ == "__main__": main()
42.921569
140
0.59863
28cec6f2704a461d573f458dd9f5544f37d39c91
1,111
py
Python
src/python/dependencies.py
yinghsienwu/cloud
9f6d0c0a2b26f0cab307492ef137353fdac842b3
[ "Apache-2.0" ]
null
null
null
src/python/dependencies.py
yinghsienwu/cloud
9f6d0c0a2b26f0cab307492ef137353fdac842b3
[ "Apache-2.0" ]
null
null
null
src/python/dependencies.py
yinghsienwu/cloud
9f6d0c0a2b26f0cab307492ef137353fdac842b3
[ "Apache-2.0" ]
null
null
null
# Lint as: python3 # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup configuration of TensorFlow Cloud client-side library.""" def make_required_install_packages(): return [ "absl-py", "docker", "google-api-python-client", "google-auth", "google-cloud-storage", "keras-tuner", "tensorflow>=1.15.0,<3.0", "tensorflow_datasets<3.1.0", ] def make_required_test_packages(): return [ "absl-py", "flake8", "mock", "numpy", "nbconvert", ]
28.487179
74
0.660666
95a29421407ab33bb64509191acee4b401870cba
623
py
Python
backend/Techfesia2019/events/permissions.py
Sayam753/Techfesia2019
40b497a1d98fc27910bba4ad2aad039acdea81f9
[ "MIT" ]
null
null
null
backend/Techfesia2019/events/permissions.py
Sayam753/Techfesia2019
40b497a1d98fc27910bba4ad2aad039acdea81f9
[ "MIT" ]
null
null
null
backend/Techfesia2019/events/permissions.py
Sayam753/Techfesia2019
40b497a1d98fc27910bba4ad2aad039acdea81f9
[ "MIT" ]
null
null
null
from rest_framework import permissions class IsStaffUser(permissions.BasePermission): def has_object_permission(self, request, view, obj): if request.method == 'GET': return True else: if request.user.is_staff or request.user.is_superuser: return True else: return False def has_permission(self, request, view): if request.method == 'GET': return True else: if request.user.is_staff or request.user.is_superuser: return True else: return False
28.318182
66
0.571429
7caf358bc7133176fd4fd867f42e095f51a8e575
447
py
Python
jsonschematypes/tests/fixtures.py
locationlabs/jsonschema-types
82491390ddfed3b17ff6e5fc8d62b4cb92ab05c7
[ "Apache-2.0" ]
2
2015-05-27T16:40:48.000Z
2015-05-27T17:25:50.000Z
jsonschematypes/tests/fixtures.py
locationlabs/jsonschema-types
82491390ddfed3b17ff6e5fc8d62b4cb92ab05c7
[ "Apache-2.0" ]
2
2015-06-03T17:43:42.000Z
2022-02-10T08:26:00.000Z
jsonschematypes/tests/fixtures.py
locationlabs/jsonschema-types
82491390ddfed3b17ff6e5fc8d62b4cb92ab05c7
[ "Apache-2.0" ]
2
2015-06-03T17:12:10.000Z
2021-09-08T09:49:45.000Z
""" Common test fixtures. """ from os.path import dirname, join ADDRESS = dict( street="1600 Pennsylvania Ave", city="Washington", state="DC", ) NAME = dict( first="George", last="Washington", ) RECORD = dict( name=NAME, address=ADDRESS, ) ADDRESS_ID = "http://x.y.z/bar/address" NAME_ID = "http://x.y.z/foo/name" RECORD_ID = "http://x.y.z/record" def schema_for(name): return join(dirname(__file__), name)
14.419355
40
0.63311
fd197682937f8d9d7cb9145c73bbb0ea2eb2714a
1,548
py
Python
migrations/versions/2efa047fe343_fix_issue_increase_string_length_of_.py
Bubblbu/fhe-collector
b587a952eec318eab6cf430383fe83ca85277895
[ "MIT" ]
null
null
null
migrations/versions/2efa047fe343_fix_issue_increase_string_length_of_.py
Bubblbu/fhe-collector
b587a952eec318eab6cf430383fe83ca85277895
[ "MIT" ]
null
null
null
migrations/versions/2efa047fe343_fix_issue_increase_string_length_of_.py
Bubblbu/fhe-collector
b587a952eec318eab6cf430383fe83ca85277895
[ "MIT" ]
null
null
null
"""fix issue: increase string length of source in Import() class to 500 Revision ID: 2efa047fe343 Revises: 4a3a663ce25d Create Date: 2019-03-05 00:30:15.707276 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '2efa047fe343' down_revision = '4a3a663ce25d' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('import', 'source', existing_type=sa.VARCHAR(length=32), type_=sa.String(length=500), existing_nullable=True) op.alter_column('url', 'url', existing_type=sa.VARCHAR(length=256), type_=sa.String(length=512)) op.alter_column('url', 'url_type', existing_type=sa.VARCHAR(length=64), type_=sa.String(length=32), existing_nullable=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('url', 'url_type', existing_type=sa.String(length=32), type_=sa.VARCHAR(length=64), existing_nullable=True) op.alter_column('url', 'url', existing_type=sa.String(length=512), type_=sa.VARCHAR(length=256)) op.alter_column('import', 'source', existing_type=sa.String(length=500), type_=sa.VARCHAR(length=32), existing_nullable=True) # ### end Alembic commands ###
31.591837
71
0.614987
86d50490a6ad74e8526814f464613628ef1c88ea
2,367
py
Python
tests/unit/api/test_config.py
amenezes/discovery-client
9c41456d1cc14f4aab34628ad4e13423e00bc4be
[ "Apache-2.0" ]
2
2019-07-18T22:43:49.000Z
2020-03-09T03:27:41.000Z
tests/unit/api/test_config.py
amenezes/discovery-client
9c41456d1cc14f4aab34628ad4e13423e00bc4be
[ "Apache-2.0" ]
20
2019-02-27T19:08:03.000Z
2021-06-22T16:47:32.000Z
tests/unit/api/test_config.py
amenezes/discovery-client
9c41456d1cc14f4aab34628ad4e13423e00bc4be
[ "Apache-2.0" ]
null
null
null
import pytest from discovery import api def sample_payload(): return { "Kind": "service-defaults", "Name": "web", "Protocol": "http", } def config_response(): return { "Kind": "service-defaults", "Name": "web", "Protocol": "http", "CreateIndex": 15, "ModifyIndex": 35, } def list_response(): return [ { "Kind": "service-defaults", "Name": "db", "Protocol": "tcp", "CreateIndex": 16, "ModifyIndex": 16, }, { "Kind": "service-defaults", "Name": "web", "Protocol": "http", "CreateIndex": 13, "ModifyIndex": 13, }, ] @pytest.fixture @pytest.mark.asyncio def config(consul_api): return api.Config(client=consul_api) @pytest.mark.asyncio @pytest.mark.parametrize("expected", [200]) async def test_apply(config, expected): config.client.expected = expected response = await config.apply(sample_payload()) assert response.status == 200 @pytest.mark.asyncio @pytest.mark.parametrize("expected", [config_response()]) async def test_get_success(config, expected): config.client.expected = expected response = await config.get("service-defaults", "web") response = await response.json() assert response == config_response() @pytest.mark.asyncio async def test_get_value_error(config): with pytest.raises(ValueError): await config.get("service", "web") @pytest.mark.asyncio @pytest.mark.parametrize("expected", [list_response()]) async def test_list_success(config, expected): config.client.expected = expected response = await config.list("service-defaults") response = await response.json() assert response == list_response() @pytest.mark.asyncio async def test_list_value_error(config): with pytest.raises(ValueError): await config.list("service") @pytest.mark.asyncio @pytest.mark.parametrize("expected", [200]) async def test_delete_success(config, expected): config.client.expected = expected response = await config.delete("service-defaults", "web") assert response.status == 200 @pytest.mark.asyncio async def test_delete_value_error(config): with pytest.raises(ValueError): await config.delete("service", "web")
23.909091
61
0.637938
416e9acb820f091da6e50a785a6436e2e0edc9b9
801
py
Python
app/main/forms.py
ruthjelimo/Pitch-app
c70258bd5dfc99520ed662276ef405137597cb1f
[ "MIT" ]
null
null
null
app/main/forms.py
ruthjelimo/Pitch-app
c70258bd5dfc99520ed662276ef405137597cb1f
[ "MIT" ]
null
null
null
app/main/forms.py
ruthjelimo/Pitch-app
c70258bd5dfc99520ed662276ef405137597cb1f
[ "MIT" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField,TextAreaField,SubmitField,SelectField from wtforms.validators import DataRequired class PitchForm(FlaskForm): details = TextAreaField('Add your pitch', validators=[DataRequired()]) category = SelectField("Choose Category",choices=[('interview','interview'),('Adverts','Adverts'),('products','products')]) pitch = TextAreaField('Your Pitch',validators=[DataRequired()]) title = TextAreaField('Add your pitch', validators=[DataRequired()]) submit = SubmitField('Submit') class CommentForm(FlaskForm): comment = TextAreaField('Your Comment') submit = SubmitField('Submit') class UpdateProfile(FlaskForm): bio = TextAreaField('Tell us about yourself.',validators = [DataRequired()]) submit = SubmitField('Submit')
42.157895
125
0.755306
bb1d9d55e5935ef59f7cc6aabf762d99f032dd54
4,304
py
Python
update_rundeck_ldap_info.py
dsumike/scripts
2bbf631248ec6478f1558e54f887b18db7dcacee
[ "MIT" ]
null
null
null
update_rundeck_ldap_info.py
dsumike/scripts
2bbf631248ec6478f1558e54f887b18db7dcacee
[ "MIT" ]
null
null
null
update_rundeck_ldap_info.py
dsumike/scripts
2bbf631248ec6478f1558e54f887b18db7dcacee
[ "MIT" ]
null
null
null
#!/usr/bin/env python # The MIT License (MIT) # # Copyright (c) 2015 Mike Johnson # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # TODO: Add some argparse stuff later #import argparse import ldap import mysql.connector import sys ################################################################ # !! BEGIN: user configuration ################################################################ # Exclusion List: local accounts, do not check for updates # ------------------------------------------------------------- exclusion = ['admin', 'administrator'] # LDAP Credentials # -------------------------------------------------------------- ldapserver = "ldap://<server>:<port>" binddn = "CN=<bind user>,CN=Users,dc=<domain>,dc=<tld>" bindpw = "<bind user pass>" basedn = "CN=Users,DC=<domain>,DC=<tld>" # MySQL Credentials # -------------------------------------------------------------- mysqlsvr = "localhost" mysql_db = "<rundeck mysql database>" mysqlusr = "<rundeck mysql username>" mysqlpwd = "<rundeck mysql password>" ################################################################ # !! END: user configuration ################################################################ def ldap_search(username): # LDAP Search searchFilter = "(&(objectclass=User)(sAMAccountName=%s))" % username searchAttribute = ["givenName","sn","mail"] l = ldap.initialize(ldapserver) # Initialize LDAP searchScope = ldap.SCOPE_SUBTREE # this will scope the entire subtree under UserUnits # Bind to the server try: l.protocol_version = ldap.VERSION3 l.simple_bind_s(binddn, bindpw) except ldap.INVALID_CREDENTIALS: sys.exit(0) except ldap.LDAPError, e: if type(e.message) == dict and e.message.has_key('desc'): sys.exit(0) else: sys.exit(0) try: ldap_result_id = l.search(basedn, searchScope, searchFilter, searchAttribute) result_set = [] result_type, result_data = l.result(ldap_result_id, 0) if (result_data == []): # aww, no data found data = None else: # yay, we found some data if result_type == ldap.RES_SEARCH_ENTRY: result_set.append(result_data) cn = result_data[0][0] # cn Returned first data = result_data[0][1] # searchAttributes second # Clean up the data items for easy access for (i, j) in data.items(): if len(j) == 1: data[i] = j[0] return data except ldap.LDAPError, e: sys.exit(0) finally: l.unbind_s() return 0 def mysql_update(cursor, username, userdata): query = "UPDATE rduser SET first_name='{}', last_name='{}', email='{}' WHERE login='{}'".format( userdata["givenName"], userdata["sn"], userdata["mail"], username) cursor.execute(query) def mysql_search(): cnx = mysql.connector.connect(host=mysqlsvr, user=mysqlusr, password=mysqlpwd, database=mysql_db) cur = cnx.cursor() query = "SELECT login from rduser where email is NULL and login <> 'admin'" for login in exclusion: query += " and login <> '{}'".format(login) print query cur.execute(query) result = cur.fetchall() print result sys.exit(0) for login in result: userdata = ldap_search(login[0]) mysql_update(cur, login[0], userdata) cur.close() cnx.commit() cnx.close() def main(): # TODO: Add some argparse # --full-update ? mysql_search() if __name__ == "__main__": main()
30.524823
98
0.639173
e8474f23122c62d914311431ee3b2d054ec78f33
11,253
py
Python
tensorflow/python/saved_model/load.py
KulieX/tensorflow
0064ad1e1c0fe79832cd8cbb588338683b38c937
[ "Apache-2.0" ]
1
2019-02-07T13:58:03.000Z
2019-02-07T13:58:03.000Z
tensorflow/python/saved_model/load.py
KulieX/tensorflow
0064ad1e1c0fe79832cd8cbb588338683b38c937
[ "Apache-2.0" ]
null
null
null
tensorflow/python/saved_model/load.py
KulieX/tensorflow
0064ad1e1c0fe79832cd8cbb588338683b38c937
[ "Apache-2.0" ]
2
2019-12-27T07:48:05.000Z
2020-06-13T19:20:14.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Import a checkpointable object from a SavedModel.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.lib.io import file_io from tensorflow.python.ops import init_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.saved_model import constants from tensorflow.python.saved_model import function_deserialization from tensorflow.python.saved_model import loader_impl from tensorflow.python.saved_model import nested_structure_coder from tensorflow.python.saved_model import revived_types from tensorflow.python.saved_model import saved_object_graph_pb2 from tensorflow.python.saved_model import utils_impl as saved_model_utils from tensorflow.python.training.checkpointable import base from tensorflow.python.training.checkpointable import graph_view from tensorflow.python.training.checkpointable import tracking from tensorflow.python.training.checkpointable import util from tensorflow.python.util import compat class _Loader(object): """Helper class to load an object-based SavedModel.""" def __init__(self, object_graph_proto, saved_model_proto, export_dir): meta_graph = saved_model_proto.meta_graphs[0] self._asset_file_def = meta_graph.asset_file_def self._operation_attributes = { node.name: node.attr for node in meta_graph.graph_def.node} self._proto = object_graph_proto self._export_dir = export_dir self._concrete_functions = ( function_deserialization.load_function_def_library( meta_graph.graph_def.library)) self._load_all() self._setup_functions() self._restore_checkpoint() def _setup_concrete_function(self, proto, concrete_function, coder): """Setup captured tensors and outputs for a single concrete function.""" bound_inputs = [ self._get_tensor_from_node(node_id) for node_id in proto.bound_inputs] bound_variables = [ self._nodes[node_id] for node_id in proto.bound_inputs if self._proto.nodes[node_id].WhichOneof("kind") == "variable" ] # TODO(andresp): This is only injecting the captured inputs into the # concrete function, note that we did not modify the FuncGraph # itself. concrete_function._captured_inputs = bound_inputs # pylint: disable=protected-access concrete_function._func_graph.variables = bound_variables # pylint: disable=protected-access # By setting the structured_outputs directly, we can rely on this # function_lib.ConcreteFunction object to perform the output repacking # logic. The only limitation of that logic is that it only works # with output that is convertible to Tensors and the conversion # always happens. For example tf.TensorShape([2, 3]) will be # converted to Tensor representing [2, 3]. original_outputs = coder.decode_proto(proto.output_signature) # The original_outputs here had Tensors converted to TensorSpecs, so # the restored function's structured_outputs field will not be # exactly the same. Fortunately the repacking logic cares only about # the structure. # TODO(vbardiovsky): Should we just replicate the structures, with # Nones instead of real objects? concrete_function._func_graph.structured_outputs = original_outputs # pylint: disable=protected-access concrete_function._func_graph.structured_input_signature = ( # pylint: disable=protected-access coder.decode_proto(proto.canonicalized_input_signature)) def _setup_functions(self): """Setup captures and output structure in restored functions.""" coder = nested_structure_coder.StructureCoder() for name, concrete_function_proto in self._proto.concrete_functions.items(): self._setup_concrete_function( concrete_function_proto, self._concrete_functions[name], coder) def _get_tensor_from_node(self, node_id): obj = self._nodes[node_id] if resource_variable_ops.is_resource_variable(obj): return obj.handle elif isinstance(obj, tracking.TrackableAsset): return obj.asset_path.handle elif tensor_util.is_tensor(obj): return obj raise ValueError("Can't convert node %s to tensor" % (type(obj))) def _load_all(self): """Load all saved objects and wire their properties.""" self._nodes = [] node_setters = [] for proto in self._proto.nodes: node, setter = self._recreate(proto) self._nodes.append(node) node_setters.append(setter) # After creating the objects, construct the edges between the objects. for obj, object_proto, setter in zip(self._nodes, self._proto.nodes, node_setters): for reference in object_proto.children: setter(obj, reference.local_name, self._nodes[reference.node_id]) # Note: if an object has an attribute `__call__` add a class method # that allows `obj()` syntax to work. This is done per-instance to # allow `callable` to be used to find out if an object is callable. if reference.local_name == "__call__": setattr(type(obj), "__call__", _call_attribute) def _restore_checkpoint(self): """Load state from checkpoint into the deserialized objects.""" variables_path = saved_model_utils.get_variables_path(self._export_dir) # TODO(andresp): Clean use of private methods of CheckpointableSaver. # pylint: disable=protected-access saver = util.CheckpointableSaver(graph_view.ObjectGraphView(self.get(0))) saver._file_prefix_placeholder = constant_op.constant(variables_path) load_status = saver.restore(variables_path) load_status.assert_existing_objects_matched() checkpoint = load_status._checkpoint # When running in eager mode, the `restore` call above has already run and # restored the state of checkpointables, call `position.restore_ops()` will # return an empty list as there is nothing left to do. In graph mode, that # will return the list of ops that must run to restore the object on that # position. We have to wire them in the initializers of the objects so that # they get initialized properly when using common practices (e.g. the ones # used by ManagedSession) without further user action. for object_id, obj in dict(checkpoint.object_by_proto_id).items(): position = base.CheckpointPosition(checkpoint=checkpoint, proto_id=object_id) restore_ops = position.restore_ops() if restore_ops: if resource_variable_ops.is_resource_variable(obj): obj._initializer_op = restore_ops else: raise NotImplementedError( ("Missing functionality to restore state of object " "%r from the checkpoint." % obj)) def get(self, node_id): return self._nodes[node_id] def _recreate(self, proto): """Creates a Python object from a SavedObject protocol buffer.""" factory = { "user_object": lambda: self._recreate_user_object(proto.user_object), "asset": lambda: self._recreate_asset(proto.asset), "function": lambda: self._recreate_function(proto.function), "bare_concrete_function": functools.partial( self._recreate_bare_concrete_function, proto.bare_concrete_function), "variable": lambda: self._recreate_variable(proto.variable), "constant": lambda: self._recreate_constant(proto.constant), } kind = proto.WhichOneof("kind") if kind not in factory: raise ValueError("Unknown SavedObject type: %r" % kind) return factory[kind]() def _recreate_user_object(self, proto): """Instantiates a SavedUserObject.""" looked_up = revived_types.deserialize(proto) if looked_up is None: # Note: each user object has its own class. This allows to make each one # individually callable by adding a `__call__` method to the classes of # the objects instances that have a `__call__` property. class _UserObject(tracking.AutoCheckpointable): pass return _UserObject(), setattr return looked_up def _recreate_asset(self, proto): filename = os.path.join( saved_model_utils.get_assets_dir(self._export_dir), self._asset_file_def[proto.asset_file_def_index].filename) return tracking.TrackableAsset(filename), setattr def _recreate_function(self, proto): return function_deserialization.recreate_function( proto, self._concrete_functions), setattr def _recreate_bare_concrete_function(self, proto): return function_deserialization.setup_bare_concrete_function( proto, self._concrete_functions), setattr def _recreate_variable(self, proto): # TODO(andresp): Can we use the checkpointed value as initializer? dummy_value = init_ops.Zeros(dtype=proto.dtype)(shape=proto.shape) return variables.Variable(dummy_value, trainable=proto.trainable), setattr def _recreate_constant(self, proto): tensor_proto = self._operation_attributes[proto.operation]["value"].tensor imported_constant = constant_op.constant( tensor_util.MakeNdarray(tensor_proto)) return imported_constant, setattr def _call_attribute(instance, *args, **kwargs): return instance.__call__(*args, **kwargs) def _load_saved_object_graph_proto(filename): with file_io.FileIO(filename, "rb") as f: contents = f.read() return saved_object_graph_pb2.SavedObjectGraph.FromString(contents) def load(export_dir): """Load a SavedModel from `export_dir`.""" saved_model_proto = loader_impl.parse_saved_model(export_dir) object_graph_filename = os.path.join( compat.as_bytes(export_dir), compat.as_bytes(constants.EXTRA_ASSETS_DIRECTORY), compat.as_bytes("object_graph.pb")) if file_io.file_exists(object_graph_filename): object_graph_proto = _load_saved_object_graph_proto(object_graph_filename) with ops.init_scope(): loader = _Loader(object_graph_proto, saved_model_proto, export_dir) root = loader.get(0) else: raise NotImplementedError( "Currently only SavedModels exported with `tf.saved_model.save` may be " "imported. Other SavedModels may eventually be supported via load().") return root
44.832669
107
0.734915
7b214e6cfab86941e910dd6e1287556f9fb80953
10,119
py
Python
notebooks/helpers.py
leouieda/case-studies-gravity
f1b0b3c18b752ee67b515afb93ebac03f11ea2b4
[ "CC-BY-4.0", "BSD-3-Clause" ]
3
2018-08-31T05:39:57.000Z
2020-06-24T08:32:37.000Z
notebooks/helpers.py
GeophysicsLibrary/gravity-case-studies
f1b0b3c18b752ee67b515afb93ebac03f11ea2b4
[ "CC-BY-4.0", "BSD-3-Clause" ]
2
2018-04-13T03:35:40.000Z
2018-04-13T21:32:26.000Z
notebooks/helpers.py
GeophysicsLibrary/gravity-case-studies
f1b0b3c18b752ee67b515afb93ebac03f11ea2b4
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
""" Helper functions for displaying data and making interactive plots. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import ipywidgets as widgets from IPython.display import display, clear_output import cmocean import cartopy.crs as ccrs from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter def minmax(data, fields): """ Get the minimum and maximum data values out of all fields given. Returns them in a dictionary with the 'vmin' and 'vmax' keys. """ vmin = min(data[field].min() for field in fields) vmax = max(data[field].max() for field in fields) return dict(vmin=vmin, vmax=vmax) def plot_field(ax, data, field, cmap=None, gridline_spacing=3, cb_pad=0.03, cb_aspect=50, cb_shrink=0.8, ticks=True, title=True, **kwargs): """ Make a pcolormesh plot of the given data field. Set's the plot extent and includes ticks in longitude and latitude. """ if title: ax.set_title(field) if 'add_colorbar' not in kwargs: kwargs['cbar_kwargs'] = dict(orientation='horizontal', aspect=cb_aspect, pad=cb_pad, shrink=cb_shrink) data[field].plot.pcolormesh(ax=ax, add_labels=False, cmap=cmap, **kwargs) ax.coastlines() w, e, s, n = [data.longitude.values.min(), data.longitude.values.max(), data.latitude.values.min(), data.latitude.values.max()] ax.set_extent([w, e, s, n]) xlocs = np.arange(w, e + 0.01, gridline_spacing) ylocs = np.arange(s, n + 0.01, gridline_spacing) if ticks: ax.set_xticks(xlocs) ax.set_yticks(ylocs) ax.xaxis.set_major_formatter(LongitudeFormatter()) ax.yaxis.set_major_formatter(LatitudeFormatter()) ax.gridlines(color="#cccccc55", xlocs=xlocs, ylocs=ylocs) def plot_hawaii_data(data, field, **kwargs): """ Plot a given field from our Hawai'i dataset. """ fig = plt.figure(figsize=(12, 13)) ax = plt.axes(projection=ccrs.PlateCarree()) plot_field(ax, data, field, **kwargs) plt.tight_layout(pad=0) def plot_japan_data(data, field, **kwargs): """ Plot a given field from our Japan dataset. """ fig = plt.figure(figsize=(12, 13)) ax = plt.axes(projection=ccrs.PlateCarree()) plot_field(ax, data, field, gridline_spacing=5, **kwargs) plt.tight_layout(pad=0) def plot_himalayas_data(data, field, **kwargs): """ Plot a given field from our Himalayas dataset. """ fig = plt.figure(figsize=(12, 13)) ax = plt.axes(projection=ccrs.PlateCarree()) plot_field(ax, data, field, gridline_spacing=5, **kwargs) plt.tight_layout(pad=0) class ProfileSelector(object): """ Define a widget for selecting and plotting profiles from a dataset. Use the ``interact`` method to insert an interactive widget to control the profile location. Use the ``plot`` method to plot a static profile figure. Parameters ---------- data : xarray.Dataset The data grid. fields : list of str The fields to plot in the upper profile figsize : tuple The size of the profile figure projection : cartopy CRS A cartopy projection to apply to the data maps """ def __init__(self, data, fields, projection, figsize=(15, 9), profile_interval=10, dimension='latitude'): self.data = data self.fields = fields self._plot_initiated = False self.projection = projection self.figsize = figsize self.profile_interval = profile_interval self.default_dimension = dimension def plot(self, location, dimension): """ Plot a figure of the profile at location along dimension. """ if not self._plot_initiated: # Setup the figure and subplot grid self.fig = plt.figure(figsize=self.figsize) grid = GridSpec(2, 4, hspace=0, wspace=0) self.ax_data = self.fig.add_subplot(grid[0,:-1]) self.ax_topo = self.fig.add_subplot(grid[1,:-1]) self.ax_data_map = self.fig.add_subplot(grid[0,-1], projection=self.projection) self.ax_topo_map = self.fig.add_subplot(grid[1,-1], projection=self.projection) # The y axis limits for the profiles self._topo_base = -10000 ylim_topo = [self._topo_base, self.data.topography_ell.max()*1.1] ylim_data = list(sorted(minmax(self.data, self.fields).values())) # Set labels and dimensions self.ax_data.set_ylim(ylim_data) self.ax_data.set_ylabel('mGal') self.ax_topo.set_ylim(ylim_topo) self.ax_topo.set_ylabel('Tropography (m)') self.ax_data.grid(True) self.ax_data.set_xticklabels([]) # Draw the profile lines self._data_lines = {} for field in self.fields: self._data_lines[field], = self.ax_data.plot([0], [0], '-', label=field) self.ax_data.legend(loc='upper right') # Place holders for the topography polygons self._water_fill = None self._topo_fill = None # Plot the maps plot_field(self.ax_data_map, self.data, self.fields[0], ticks=False, add_colorbar=False, title=False, cmap='RdBu_r') plot_field(self.ax_topo_map, self.data, 'topography_ell', ticks=False, add_colorbar=False, title=False, cmap=cmocean.cm.delta) # Draw on the maps showing the profiles self._datamap_profile, = self.ax_data_map.plot([0, 0], [0, 0], '--k') self._topomap_profile, = self.ax_topo_map.plot([0, 0], [0, 0], '--k') plt.tight_layout(pad=0, h_pad=0, w_pad=0) self._plot_initiated = True # Get the name of the other dimension dim_comp = set(self.data.dims).difference({dimension}).pop() # Get the profile x = self.data[dimension] xlim = [x.min(), x.max()] profile = self.data.loc[{dim_comp: location}] # Update the data plots for field in self.fields: self._data_lines[field].set_data(x, profile[field]) # Update the topography plot if self._topo_fill is not None: self._topo_fill.remove() if self._water_fill is not None: self._water_fill.remove() self._water_fill = self.ax_topo.fill_between(xlim, [0, 0], self._topo_base, color='#2780E3') self._topo_fill = self.ax_topo.fill_between(x, profile.topography_ell, self._topo_base, color='#333333') # Update the profile location plot profile_location = [xlim, [location, location]] if dimension.lower() == 'latitude': profile_location = profile_location[::-1] self._datamap_profile.set_data(*profile_location) self._topomap_profile.set_data(*profile_location) # Make sure the plots are tight self.ax_data.set_xlim(xlim) self.ax_topo.set_xlim(xlim) self.ax_topo.set_xlabel(dimension.capitalize()) plt.show() def interact(self): """ Display an interactive widget for choosing the profile. """ # Setup the initial value options for the location dim = self.default_dimension dim2 = set(self.data.dims).difference({dim}).pop() options = self.data[dim2].values.tolist()[::self.profile_interval] mid = options[len(options)//2] # Make the slider for choosing the location slider_label = widgets.Label("at {} value".format(dim2)) slider = widgets.SelectionSlider(options=options, value=mid, layout=widgets.Layout(width="350px")) # Make a menu for choosing the profile direction dimension_chooser = widgets.Dropdown( options=self.data.dims.keys(), value=dim, description="Profile along") def displayer(location, dimension): "Update and display the plot with given arguments" self.plot(location, dimension) display(self.fig) def handle_dimension_change(change): "Change the location options when dimension changes" dim2 = set(self.data.dims).difference({change.new}).pop() slider_label.value = "at {} value".format(dim2) options = self.data[dim2].values.tolist()[::self.profile_interval] slider.options = options slider.value = options[len(options)//2] # Connect the dimension change to the slider dimension_chooser.observe(handle_dimension_change, names='value') # Make the output display and connect it to the callback output = widgets.interactive_output( displayer, {'location': slider, 'dimension': dimension_chooser}) # Make a title for the widget title = widgets.HTML( '<strong style="font-size: 1.5em;">Profile selector</strong>') # Layout the widgets layout = widgets.VBox( [title, widgets.HBox([dimension_chooser, slider_label, slider]), output], layout=widgets.Layout(align_items="center")) # For some reason, calling _figure_setup inserts a plot in the output # Call clear_output to get rid of it. with output: clear_output(wait=True) display(self.fig) return layout
38.329545
79
0.591066
b399dffd7981ce9c428a48573cc758582b6d208e
1,793
py
Python
test/unit/applications/lang/python.py
matuhinal/unit
e019b7113a533b96e1e0fd5acc7b7e28101300d8
[ "Apache-2.0" ]
null
null
null
test/unit/applications/lang/python.py
matuhinal/unit
e019b7113a533b96e1e0fd5acc7b7e28101300d8
[ "Apache-2.0" ]
null
null
null
test/unit/applications/lang/python.py
matuhinal/unit
e019b7113a533b96e1e0fd5acc7b7e28101300d8
[ "Apache-2.0" ]
null
null
null
import os import shutil from urllib.parse import quote import pytest from unit.applications.proto import TestApplicationProto from unit.option import option class TestApplicationPython(TestApplicationProto): application_type = "python" load_module = "wsgi" def load(self, script, name=None, module=None, **kwargs): if name is None: name = script if module is None: module = self.load_module if script[0] == '/': script_path = script else: script_path = option.test_dir + '/python/' + script if kwargs.get('isolation') and kwargs['isolation'].get('rootfs'): rootfs = kwargs['isolation']['rootfs'] if not os.path.exists(rootfs + '/app/python/'): os.makedirs(rootfs + '/app/python/') if not os.path.exists(rootfs + '/app/python/' + name): shutil.copytree(script_path, rootfs + '/app/python/' + name) script_path = '/app/python/' + name app = { "type": self.get_application_type(), "processes": kwargs.pop('processes', {"spare": 0}), "path": script_path, "working_directory": script_path, "module": module, } for attr in ( 'callable', 'home', 'limits', 'path', 'protocol', 'targets', 'threads', ): if attr in kwargs: app[attr] = kwargs.pop(attr) self._load_conf( { "listeners": { "*:7080": {"pass": "applications/" + quote(name, '')} }, "applications": {name: app}, }, **kwargs )
27.166667
76
0.50251
641c39c468914770962fe5653c41cb8f6ec4c29c
605
py
Python
reverse-vowels-of-a-string/Solution.62349711.py
rahul-ramadas/leetcode
6c84c2333a613729361c5cdb63dc3fc80203b340
[ "MIT" ]
null
null
null
reverse-vowels-of-a-string/Solution.62349711.py
rahul-ramadas/leetcode
6c84c2333a613729361c5cdb63dc3fc80203b340
[ "MIT" ]
1
2016-09-11T22:26:17.000Z
2016-09-13T01:49:48.000Z
reverse-vowels-of-a-string/Solution.62349711.py
rahul-ramadas/leetcode
6c84c2333a613729361c5cdb63dc3fc80203b340
[ "MIT" ]
null
null
null
class Solution: def is_vowel(self, c): vowels = {"a", "e", "i", "o", "u"} return c.lower() in vowels def reverseVowels(self, s): left = 0 right = len(s) - 1 s = list(s) while left < right: while left < right and not self.is_vowel(s[left]): left += 1 while left < right and not self.is_vowel(s[right]): right -= 1 s[left], s[right] = s[right], s[left] left += 1 right -= 1 return "".join(s)
26.304348
64
0.406612
dba7b4c06c721fb49908d94d268f3689fe5b763a
2,569
py
Python
kedro/templates/project/{{ cookiecutter.repo_name }}/src/setup.py
monkeyclass/kedro
65e786bd737de66d3977712dfde6ecca9e81c320
[ "Apache-2.0" ]
1
2022-01-26T04:50:53.000Z
2022-01-26T04:50:53.000Z
kedro/templates/project/{{ cookiecutter.repo_name }}/src/setup.py
monkeyclass/kedro
65e786bd737de66d3977712dfde6ecca9e81c320
[ "Apache-2.0" ]
null
null
null
kedro/templates/project/{{ cookiecutter.repo_name }}/src/setup.py
monkeyclass/kedro
65e786bd737de66d3977712dfde6ecca9e81c320
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. from setuptools import find_packages, setup entry_point = ( "{{ cookiecutter.repo_name }} = {{ cookiecutter.python_package }}.run:run_package" ) # get the dependencies and installs with open("requirements.txt", "r", encoding="utf-8") as f: # Make sure we strip all comments and options (e.g "--extra-index-url") # that arise from a modified pip.conf file that configure global options # when running kedro build-reqs requires = [] for line in f: req = line.split("#", 1)[0].strip() if req and not req.startswith("--"): requires.append(req) setup( name="{{ cookiecutter.python_package }}", version="0.1", packages=find_packages(exclude=["tests"]), entry_points={"console_scripts": [entry_point]}, install_requires=requires, extras_require={ "docs": [ "sphinx~=3.4.3", "sphinx_rtd_theme==0.5.1", "nbsphinx==0.8.1", "nbstripout==0.3.3", "recommonmark==0.7.1", "sphinx-autodoc-typehints==1.11.1", "sphinx_copybutton==0.3.1", "ipykernel~=5.3", ] }, )
38.924242
86
0.694044
1968bec034599b962d4f66d4f93b70769b10f7d9
2,931
py
Python
tests/clients/test_dapr_grpc_response.py
karishma-chawla/python-sdk
15e018d48418cca5e1660c8afe37403b91f6298d
[ "MIT" ]
null
null
null
tests/clients/test_dapr_grpc_response.py
karishma-chawla/python-sdk
15e018d48418cca5e1660c8afe37403b91f6298d
[ "MIT" ]
null
null
null
tests/clients/test_dapr_grpc_response.py
karishma-chawla/python-sdk
15e018d48418cca5e1660c8afe37403b91f6298d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Copyright (c) Microsoft Corporation. Licensed under the MIT License. """ import unittest from google.protobuf.any_pb2 import Any as GrpcAny from dapr.clients.grpc._response import DaprResponse, InvokeMethodResponse, BindingResponse from dapr.proto import common_v1 class DaprResponseTests(unittest.TestCase): test_headers = ( ('key1', 'value1'), ('key2', 'value2'), ('key3', 'value3'), ) def test_convert_metadata(self): # act resp = DaprResponse(self.test_headers) # assert self.assertEqual(3, len(resp.headers)) for k, v in self.test_headers: self.assertEqual(resp.headers[k], [v]) class InvokeMethodResponseTests(unittest.TestCase): def test_non_protobuf_message(self): with self.assertRaises(ValueError): resp = InvokeMethodResponse(data=123) self.assertIsNone(resp, 'This should not be reached.') def test_is_proto_for_non_protobuf(self): test_data = GrpcAny(value=b'hello dapr') resp = InvokeMethodResponse( data=test_data, content_type='application/json') self.assertFalse(resp.is_proto()) def test_is_proto_for_protobuf(self): fake_req = common_v1.InvokeRequest(method="test") test_data = GrpcAny() test_data.Pack(fake_req) resp = InvokeMethodResponse(data=test_data) self.assertTrue(resp.is_proto()) def test_proto(self): fake_req = common_v1.InvokeRequest(method="test") resp = InvokeMethodResponse(data=fake_req) self.assertIsNotNone(resp.proto) def test_data(self): test_data = GrpcAny(value=b'hello dapr') resp = InvokeMethodResponse( data=test_data, content_type='application/json') self.assertEqual(b'hello dapr', resp.data) self.assertEqual('hello dapr', resp.text()) self.assertEqual('application/json', resp.content_type) def test_unpack(self): # arrange fake_req = common_v1.InvokeRequest(method="test") # act resp = InvokeMethodResponse(data=fake_req) resp_proto = common_v1.InvokeRequest() resp.unpack(resp_proto) # assert self.assertEqual("test", resp_proto.method) class InvokeBindingResponseTests(unittest.TestCase): def test_bytes_message(self): resp = BindingResponse(data=b'data', binding_metadata={}) self.assertEqual({}, resp.binding_metadata) self.assertEqual(b'data', resp.data) self.assertEqual('data', resp.text()) def test_metadata(self): resp = BindingResponse(data=b'data', binding_metadata={'status': 'ok'}) self.assertEqual({'status': 'ok'}, resp.binding_metadata) self.assertEqual(b'data', resp.data) self.assertEqual('data', resp.text()) if __name__ == '__main__': unittest.main()
30.53125
91
0.655408
da453df8a5d5738769f2aeb89e3ad132453f19ff
4,197
py
Python
utils/selenium_browser.py
Xiao233-q/JDMemberCloseAccount
2617ef1e9fc332a7bffceb02c8d11c8596d22b2b
[ "MIT" ]
1
2021-06-06T08:33:21.000Z
2021-06-06T08:33:21.000Z
utils/selenium_browser.py
Xiao233-q/JDMemberCloseAccount
2617ef1e9fc332a7bffceb02c8d11c8596d22b2b
[ "MIT" ]
null
null
null
utils/selenium_browser.py
Xiao233-q/JDMemberCloseAccount
2617ef1e9fc332a7bffceb02c8d11c8596d22b2b
[ "MIT" ]
1
2021-07-05T10:13:35.000Z
2021-07-05T10:13:35.000Z
import os import sys from utils.config import get_file from selenium import webdriver from selenium.common.exceptions import WebDriverException def get_browser(_config): """ 获取浏览器对象 :return: """ browser_type = _config['browserType'] headless = _config['headless'] binary = _config['binary'] try: if browser_type == 'Chrome': chrome_options = webdriver.ChromeOptions() # 防止在某些情况下报错` chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-dev-shm-usage') chrome_options.add_experimental_option("excludeSwitches", ['enable-automation', 'enable-logging']) if binary != "": # 当找不到浏览器时需要在 config 里配置路径 chrome_options.binary_location = binary if headless: chrome_options.add_argument('--headless') chrome_options.add_argument('--disable-gpu') if sys.platform == 'linux': _browser = webdriver.Chrome(executable_path=get_file("./drivers/chromedriver"), desired_capabilities={}, options=chrome_options) elif sys.platform == 'darwin': _browser = webdriver.Chrome(executable_path=get_file("./drivers/chromedriver"), desired_capabilities={}, options=chrome_options) elif sys.platform == 'win32': _browser = webdriver.Chrome(executable_path=get_file("./drivers/chromedriver"), desired_capabilities={}, options=chrome_options) elif browser_type == 'Edge': from msedge.selenium_tools import Edge, EdgeOptions edge_options = EdgeOptions() edge_options.use_chromium = True edge_options.add_argument('--no-sandbox') edge_options.add_argument('--disable-dev-shm-usage') edge_options.add_experimental_option("excludeSwitches", ['enable-automation', 'enable-logging']) if binary != "": edge_options.binary_location = binary if headless: edge_options.add_argument('--headless') edge_options.add_argument('--disable-gpu') if sys.platform == 'linux': _browser = Edge(executable_path=get_file("./drivers/msedgedriver"), options=edge_options, capabilities={}) elif sys.platform == 'darwin': _browser = Edge(executable_path=get_file("./drivers/msedgedriver"), capabilities={}, options=edge_options) elif sys.platform == 'win32': _browser = Edge(executable_path=get_file("./drivers/msedgedriver"), capabilities={}, options=edge_options) elif browser_type == 'Firefox': # 先清除上次的日志 if not os.path.exists(get_file("./logs")): os.mkdir(get_file("./logs/")) open(get_file("./logs/geckodriver.log"), "w").close() firefox_options = webdriver.FirefoxOptions() firefox_options.log.level = "fatal" if binary != "": firefox_options.binary_location = binary if headless: firefox_options.add_argument('--headless') firefox_options.add_argument('--disable-gpu') if sys.platform == 'linux': _browser = webdriver.Firefox(executable_path=get_file('./drivers/geckodriver'), options=firefox_options, service_log_path=get_file("./logs/geckodriver.log")) elif sys.platform == 'darwin': _browser = webdriver.Firefox(executable_path=get_file('./drivers/geckodriver'), options=firefox_options) elif sys.platform == 'win32': _browser = webdriver.Firefox(executable_path=get_file('./drivers/geckodriver'), options=firefox_options) else: raise WebDriverException return _browser except WebDriverException: # 驱动问题 print("ERROR", "浏览器错误", "请检查你的驱动和配置")
48.241379
120
0.582797
37f1baa109cd1c5a4c60bb8347e3407aea032ed7
6,718
py
Python
pidi_mpris/screens.py
chme/pidi-mpris
beb96d5221fc6d033333e831624847ba402d05ce
[ "MIT" ]
1
2020-11-26T13:11:43.000Z
2020-11-26T13:11:43.000Z
pidi_mpris/screens.py
chme/pidi-mpris
beb96d5221fc6d033333e831624847ba402d05ce
[ "MIT" ]
1
2020-11-26T15:06:18.000Z
2020-11-28T07:19:43.000Z
pidi_mpris/screens.py
chme/pidi-mpris
beb96d5221fc6d033333e831624847ba402d05ce
[ "MIT" ]
null
null
null
''' The MIT License (MIT) Copyright (c) 2020 Christian Meffert Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import csv import logging from PIL import Image, ImageFont import threading from .buttons import Button from .display import TextImage from .util import color_hex_to_rgb log = logging.getLogger(__name__) class Screen: def activate(self): pass def deactivate(self): pass def onButtonPressed(self, button): pass def onButtonLongPress(self, button, secondsPressed): pass def onButtonReleased(self, button, secondsPressed): pass def onPlayerUpdate(self): pass class GifScreen(Screen): def __init__(self, conf, display): self._display = display self._conf = conf['GifScreen'] parser = csv.reader([self._conf['image']]) self._images = [item for sublist in parser for item in sublist] self._activeImage = 0 self._numImages = len(self._images) self._irq = threading.Event() self._thread = threading.Thread(name='gif', target=self._showGif) def activate(self): self._irq.clear() self._thread = threading.Thread(name='gif', target=self._showGif) self._thread.start() def deactivate(self): self._irq.set() self._thread.join() self._thread = None def onButtonPressed(self, button): if button == Button.Y: if self._numImages > 1: self.deactivate() self._activeImage = (self._activeImage + 1) % self._numImages self.activate() def _showGif(self): image = Image.open(self._images[self._activeImage]) run = True frame = 0 while run: try: image.seek(frame) self._display.image(image) frame += 1 duration = 0.05 if 'duration' in image.info: duration = image.info['duration'] / 1000 run = not self._irq.wait(duration) except EOFError: frame = 0 class NowPlayingInfoScreen(Screen): def __init__(self, conf, display, mprisPlayer): self._display = display self._mprisPlayer = mprisPlayer self._conf = conf['NowPlayingInfoScreen'] self._fonts = [] self._fonts.append(ImageFont.truetype( self._conf['line1_font_face'], int(self._conf['line1_font_size']))) self._fonts.append(ImageFont.truetype( self._conf['line2_font_face'], int(self._conf['line2_font_size']))) self._fonts.append(ImageFont.truetype( self._conf['line3_font_face'], int(self._conf['line3_font_size']))) self._fonts.append(ImageFont.truetype( self._conf['line4_font_face'], int(self._conf['line4_font_size']))) self._bgColor = color_hex_to_rgb(self._conf['background']) self._colors = [] self._colors.append(color_hex_to_rgb(self._conf['line1_font_color'])) self._colors.append(color_hex_to_rgb(self._conf['line2_font_color'])) self._colors.append(color_hex_to_rgb(self._conf['line3_font_color'])) self._colors.append(color_hex_to_rgb(self._conf['line4_font_color'])) log.debug('Text colors: %s', self._colors) self._texts = [] self._texts.append(self._conf['line1_text']) self._texts.append(self._conf['line2_text']) self._texts.append(self._conf['line3_text']) self._texts.append(self._conf['line4_text']) log.debug('Text templates: %s', self._texts) self._txtImage = TextImage( self._display.width, self._display.height, bgColor=self._bgColor) def activate(self): self._showInfo() def deactivate(self): pass def onButtonPressed(self, button): if button == Button.A: self._mprisPlayer.previous() elif button == Button.X: self._mprisPlayer.next() elif button == Button.Y: self._mprisPlayer.playPause() def onPlayerUpdate(self): self._showInfo() def _showInfo(self): self._txtImage.reset() artist = ', '.join(self._mprisPlayer.artist()) album = self._mprisPlayer.album() title = self._mprisPlayer.title() for i, t in enumerate(self._texts): if len(t) > 0: log.debug(t.format(artist=artist, album=album, title=title)) self._txtImage.add( t.format(artist=artist, album=album, title=title), self._fonts[i], color=self._colors[i]) self._display.image(self._txtImage.draw()) class ArtworkScreen(Screen): def __init__(self, conf, display, mprisPlayer): self._conf = conf['ArtworkScreen'] self._defaultImage = self._conf['fallback_image'] self._display = display self._mprisPlayer = mprisPlayer self._artUrl = None def activate(self): self._showArtwork() def deactivate(self): self._artUrl = None def onButtonPressed(self, button): if button == Button.A: self._mprisPlayer.previous() elif button == Button.X: self._mprisPlayer.next() elif button == Button.Y: self._mprisPlayer.playPause() def onPlayerUpdate(self): self._showArtwork() def _showArtwork(self): artUrl = self._mprisPlayer.artUrl() if artUrl.startswith('file://'): artUrl = artUrl[len('file://'):] else: artUrl = self._defaultImage if self._artUrl is None or self._artUrl != artUrl: self._artUrl = artUrl self._display.imageFile(artUrl)
31.539906
109
0.638434
3f9884f52a99a1f66bf4b73f3731ae2436246d6b
5,934
py
Python
src/sentry/features/__init__.py
lauryndbrown/sentry
c5304e303966566386f5e61df1b72624a30803b4
[ "BSD-3-Clause" ]
1
2020-02-27T02:46:25.000Z
2020-02-27T02:46:25.000Z
src/sentry/features/__init__.py
lauryndbrown/sentry
c5304e303966566386f5e61df1b72624a30803b4
[ "BSD-3-Clause" ]
null
null
null
src/sentry/features/__init__.py
lauryndbrown/sentry
c5304e303966566386f5e61df1b72624a30803b4
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from .base import * # NOQA from .handler import * # NOQA from .manager import * # NOQA # The feature flag system provides a way to turn on or off features of Sentry. # # Registering a new feature: # # - Determine what scope your feature falls under. By convention we have a # organizations and project scope which map to the OrganizationFeature and # ProjectFeature feature objects. Scoping will provide the feature with # context. # # Organization and Project scoped features will automatically be added into # the Organization and Project serialized representations. # # Additional feature contexts can be found under the features.base module, # but you will typically deal with the organization or project. # # NOTE: There is no currently established convention for features which do not # fall under these scopes. Use your best judgment for these. # # - Set a default for your features. # # Feature defaults are configured in the sentry.conf.server.SENTRY_FEATURES # module variable. This is the DEFAULT value for a feature, the default may be # overridden by the logic in the exposed feature.manager.FeatureManager # instance. See the ``has`` method here for a detailed understanding of how # the default values is overridden. # # - Use your feature. # # You can check if a feature is enabled using the following call: # # >>> features.has('organization:my-feature', organization, actor=user) # # NOTE: The second parameter is used to provide the feature context, again # organization and project are the most common, but it is possible that # other Feature objects may require more arguments. # # NOTE: The actor kwarg should be passed when it's expected that the handler # needs context of the user. # # NOTE: Features that require Snuba to function, add to the # `requires_snuba` tuple. default_manager = FeatureManager() # NOQA # Unscoped features default_manager.add('auth:register') default_manager.add('organizations:create') # Organization scoped features default_manager.add('organizations:advanced-search', OrganizationFeature) # NOQA default_manager.add('organizations:boolean-search', OrganizationFeature) # NOQA default_manager.add('organizations:api-keys', OrganizationFeature) # NOQA default_manager.add('organizations:discover', OrganizationFeature) # NOQA default_manager.add('organizations:events', OrganizationFeature) # NOQA default_manager.add('organizations:events-v2', OrganizationFeature) # NOQA default_manager.add('organizations:event-attachments', OrganizationFeature) # NOQA default_manager.add('organizations:symbol-sources', OrganizationFeature) # NOQA default_manager.add('organizations:global-views', OrganizationFeature) # NOQA default_manager.add('organizations:incidents', OrganizationFeature) # NOQA default_manager.add('organizations:integrations-issue-basic', OrganizationFeature) # NOQA default_manager.add('organizations:integrations-issue-sync', OrganizationFeature) # NOQA default_manager.add('organizations:integrations-event-hooks', OrganizationFeature) # NOQA default_manager.add('organizations:internal-catchall', OrganizationFeature) # NOQA default_manager.add('organizations:incidents', OrganizationFeature) # NOQA default_manager.add('organizations:sentry-apps', OrganizationFeature) # NOQA default_manager.add('organizations:invite-members', OrganizationFeature) # NOQA default_manager.add('organizations:large-debug-files', OrganizationFeature) # NOQA default_manager.add('organizations:monitors', OrganizationFeature) # NOQA default_manager.add('organizations:onboarding', OrganizationFeature) # NOQA default_manager.add('organizations:org-saved-searches', OrganizationFeature) # NOQA default_manager.add('organizations:relay', OrganizationFeature) # NOQA default_manager.add('organizations:require-2fa', OrganizationFeature) # NOQA default_manager.add('organizations:sentry10', OrganizationFeature) # NOQA default_manager.add('organizations:sso-basic', OrganizationFeature) # NOQA default_manager.add('organizations:sso-rippling', OrganizationFeature) # NOQA default_manager.add('organizations:sso-saml2', OrganizationFeature) # NOQA default_manager.add('organizations:grouping-info', OrganizationFeature) # NOQA default_manager.add('organizations:tweak-grouping-config', OrganizationFeature) # NOQA default_manager.add('organizations:set-grouping-config', OrganizationFeature) # NOQA # Project scoped features default_manager.add('projects:custom-inbound-filters', ProjectFeature) # NOQA default_manager.add('projects:data-forwarding', ProjectFeature) # NOQA default_manager.add('projects:discard-groups', ProjectFeature) # NOQA default_manager.add('projects:minidump', ProjectFeature) # NOQA default_manager.add('projects:rate-limits', ProjectFeature) # NOQA default_manager.add('projects:sample-events', ProjectFeature) # NOQA default_manager.add('projects:servicehooks', ProjectFeature) # NOQA default_manager.add('projects:similarity-view', ProjectFeature) # NOQA default_manager.add('projects:similarity-indexing', ProjectFeature) # NOQA # Project plugin features default_manager.add('projects:plugins', ProjectPluginFeature) # NOQA # This is a gross hardcoded list, but there's no # other sensible way to manage this right now without augmenting # features themselves in the manager with detections like this. requires_snuba = ( 'organizations:discover', 'organizations:events', 'organizations:events-v2', 'organizations:global-views', 'organizations:incidents', 'organizations:sentry10', ) # NOTE: Don't add features down here! Add them to their specific group and sort # them alphabetically! The order features are registered is not important. # expose public api add = default_manager.add get = default_manager.get has = default_manager.has all = default_manager.all
49.041322
90
0.786653
c0359db92138e0b43ec02dce90ab9966d4de8fad
5,281
py
Python
vqc_qiskit/qdata.py
QML-HEP/ae_qml
f9061fe4eca76aaf0945255c48e13ced2fb6c24c
[ "MIT" ]
7
2021-11-17T12:52:08.000Z
2022-02-03T14:49:44.000Z
vqc_qiskit/qdata.py
QML-HEP/ae_qml
f9061fe4eca76aaf0945255c48e13ced2fb6c24c
[ "MIT" ]
2
2022-01-21T15:18:37.000Z
2022-02-11T13:24:34.000Z
vqc_qiskit/qdata.py
QML-HEP/ae_qml
f9061fe4eca76aaf0945255c48e13ced2fb6c24c
[ "MIT" ]
1
2021-12-01T09:22:38.000Z
2021-12-01T09:22:38.000Z
# Loads the data and an autoencoder model. The original data is passed # through the AE and the latent space is fed to the qsvm network. import sys import os import numpy as np sys.path.append("..") from .terminal_colors import tcols from autoencoders import data as aedata from autoencoders import util as aeutil class qdata: def __init__( self, data_folder, norm_name, nevents, model_path, train_events=-1, valid_events=-1, test_events=-1, kfolds=0, ): device = "cpu" model_folder = os.path.dirname(model_path) hp_file = os.path.join(model_folder, "hyperparameters.json") hp = aeutil.import_hyperparams(hp_file) print(tcols.OKCYAN + "\nLoading training data:" + tcols.ENDC) self.ae_data = aedata.AE_data( data_folder, norm_name, nevents, train_events, valid_events, test_events, ) self.model = aeutil.choose_ae_model(hp["ae_type"], device, hp) self.model.load_model(model_path) self.ntrain = self.ae_data.trdata.shape[0] self.nvalid = self.ae_data.vadata.shape[0] self.ntest = self.ae_data.tedata.shape[0] if kfolds > 0: print(tcols.OKCYAN + "Loading k-folded valid data:" + tcols.ENDC) self.kfolds = kfolds self.ae_kfold_data = aedata.AE_data( data_folder, norm_name, nevents, 0, kfolds * valid_events, kfolds * test_events, ) def get_latent_space(self, datat) -> np.ndarray: """ Get the latent space depending on the data set you want. @datat :: String of the data type. returns :: Output of the ae depending on the given data type. """ if datat == "train": return self.model.predict(self.ae_data.trdata)[0] if datat == "valid": return self.model.predict(self.ae_data.vadata)[0] if datat == "test": return self.model.predict(self.ae_data.tedata)[0] raise TypeError("Given data type does not exist!") def get_kfold_latent_space(self, datat) -> np.ndarray: """ Get the kfolded latent space for validation or testing data. @datat :: String of the data type. returns :: The kfolded output of the ae depending on the data. """ if datat == "valid": return self.model.predict(self.ae_kfold_data.vadata)[0] if datat == "test": return self.model.predict(self.ae_kfold_data.tedata)[0] raise TypeError("Given data type does not exist!") def fold(self, data, target, events_per_kfold) -> np.ndarray: """ Fold the data, given a number of events you want per fold. All data that is not folded is then discarded. @data :: Numpy array of the data to be folded. @target :: Numpy array of the target corresponding to the data. @events_per_kfold :: The number of events wanted per fold. returns :: Folded data set with a certain number of events per fold. """ data_sig, data_bkg = self.ae_data.split_sig_bkg(data, target) data_sig = data_sig.reshape(-1, int(events_per_kfold / 2), data_sig.shape[1]) data_bkg = data_bkg.reshape(-1, int(events_per_kfold / 2), data_bkg.shape[1]) return np.concatenate((data_sig, data_bkg), axis=1) def get_kfolded_data(self, datat) -> np.ndarray: """ Get the kfolded data for either the validation or testing data. @datat :: String of the data type. returns :: Folded data set with a certain number of events pre fold. """ if datat == "valid": return self.fold( self.get_kfold_latent_space(datat), self.ae_kfold_data.vatarget, self.nvalid, ) if datat == "test": return self.fold( self.get_kfold_latent_space(datat), self.ae_kfold_data.tetarget, self.ntest, ) raise TypeError("Given data type does not exist!") @staticmethod def batchify(data, batch_size): """ Reshape the training data into an array of arrays, the sub arrays containing the amount of events that are contained in a batch. @data :: Array of data to be split. @batch_size :: Int of the batch size. """ if len(data.shape) == 1: return data.reshape(-1, batch_size) elif len(data.shape) == 2: return data.reshape(-1, batch_size, data.shape[1]) else: raise RuntimeError( "Batchify does not cover arrays with dimension larger than 2." ) @staticmethod def to_onehot(target): """ Reshape the target that such that it follows onehot encoding. @target :: Numpy array with target data. """ onehot_target = np.zeros((target.size, int(target.max() + 1))) onehot_target[np.arange(target.size), target.astype(int)] = 1 return onehot_target
33.636943
85
0.587199
3cefce3965d6bb441e91a8b958de490b05540c0d
1,414
py
Python
projects/oldProyects/EWESim/LightBulb.py
GGP00/soba
c193f323f26eccf579a454b8bb4bec4e80644444
[ "MIT" ]
1
2017-03-06T12:33:02.000Z
2017-03-06T12:33:02.000Z
projects/oldProyects/EWESim/LightBulb.py
GGP00/soba
c193f323f26eccf579a454b8bb4bec4e80644444
[ "MIT" ]
3
2017-04-26T08:57:35.000Z
2019-04-24T08:28:24.000Z
projects/oldProyects/EWESim/LightBulb.py
GGP00/soba
c193f323f26eccf579a454b8bb4bec4e80644444
[ "MIT" ]
1
2019-01-20T17:39:00.000Z
2019-01-20T17:39:00.000Z
from transitions import Machine from mesa import Agent, Model from transitions import State class Bulb(Agent): states = [ State(name='off', on_enter=['set_off']), State(name='on', on_enter=['set_on']) ] def __init__(self, unique_id, model, room): super().__init__(unique_id, model) self.room = room self.machine = Machine(model=self, states=Bulb.states, initial='off') self.machine.add_transition('switch_on', '*', 'on') self.machine.add_transition('switch_off', '*', 'off') def sensorCheck(self): userInRoom = self.model.ThereIsUserInRoom(self.room) if userInRoom == True: if self.state == 'on': pass else: actions = self.model.actionsNear if actions['channel'] == 'Bulb' and actions['action'] == 'SwitchOn': self.switch_on() else: if self.state == 'off': pass else: actions = self.model.actionsFar if actions['channel'] == 'Bulb' and actions['action'] == 'SwitchOff': self.switch_off() else: pass def step(self): print(self.unique_id, self.state) self.sensorCheck() def set_off(self): pass def set_on(self): pass
30.085106
85
0.522631
be1a04c59c7bba10777a3e202050426595e1de10
3,330
py
Python
web2py/applications/rip/modules/VMPrac.py
2spmohanty/vcenter-automation
1d10b765ef335087902b0194ed12a61e53807987
[ "Apache-2.0" ]
1
2019-10-02T13:25:03.000Z
2019-10-02T13:25:03.000Z
web2py/applications/rip/modules/VMPrac.py
2spmohanty/vcenter-automation
1d10b765ef335087902b0194ed12a61e53807987
[ "Apache-2.0" ]
null
null
null
web2py/applications/rip/modules/VMPrac.py
2spmohanty/vcenter-automation
1d10b765ef335087902b0194ed12a61e53807987
[ "Apache-2.0" ]
1
2021-11-05T09:51:02.000Z
2021-11-05T09:51:02.000Z
import pyVmomi from pyVmomi import vim, vmodl def find_obj(si, name, vimtype, threaded=False): """ Find an object in vSphere by it's name and return it """ content = si.content obj_view = content.viewManager.CreateContainerView(content.rootFolder, vimtype, True) obj_list = obj_view.view for obj in obj_list: if threaded: print('THREAD %s - Checking Object "%s"' % (name, obj.name)) else: print('Checking object "%s"' % obj.name) if obj.name == name: if threaded: print('THREAD %s - Found object %s' % (name, obj.name)) else: print('Found object %s' % obj.name) return obj return None def get_container_view(service_instance, obj_type, container=None): """ Get a vSphere Container View reference to all objects of type 'obj_type' It is up to the caller to take care of destroying the View when no longer needed. Args: obj_type (list): A list of managed object types Returns: A container view ref to the discovered managed objects """ if not container: container = service_instance.content.rootFolder view_ref = service_instance.content.viewManager.CreateContainerView( container=container, type=obj_type, recursive=True ) return view_ref def collect_properties(service_instance, view_ref, obj_type, path_set=None, include_mors=False,desired_vm=None): """ Collect properties for managed objects from a view ref Returns: A list of properties for the managed objects """ collector = service_instance.content.propertyCollector # Create object specification to define the starting point of # inventory navigation obj_spec = pyVmomi.vmodl.query.PropertyCollector.ObjectSpec() obj_spec.obj = view_ref obj_spec.skip = True # Create a traversal specification to identify the path for collection traversal_spec = pyVmomi.vmodl.query.PropertyCollector.TraversalSpec() traversal_spec.name = 'traverseEntities' traversal_spec.path = 'view' traversal_spec.skip = False traversal_spec.type = view_ref.__class__ obj_spec.selectSet = [traversal_spec] # Identify the properties to the retrieved property_spec = pyVmomi.vmodl.query.PropertyCollector.PropertySpec() property_spec.type = obj_type if not path_set: property_spec.all = True property_spec.pathSet = path_set # Add the object and property specification to the # property filter specification filter_spec = pyVmomi.vmodl.query.PropertyCollector.FilterSpec() filter_spec.objectSet = [obj_spec] filter_spec.propSet = [property_spec] # Retrieve properties props = collector.RetrieveContents([filter_spec]) properties = {} try: for obj in props: for prop in obj.propSet: if desired_vm in prop.val : properties[prop.val] = obj.obj else: pass return properties except Exception, e: print "The exception inside collector_properties " + str(e) return properties
32.970297
90
0.643844
bcc5878b0a8eca7943e48f63940555d09efaf0e6
778
py
Python
drnalpha/sic_codes/models.py
UKGovernmentBEIS/BRE_DigitalRegulationNavigator_Alpha
bfa6d08212bc18034b20b9c922a554a6e1ddd0f1
[ "MIT" ]
null
null
null
drnalpha/sic_codes/models.py
UKGovernmentBEIS/BRE_DigitalRegulationNavigator_Alpha
bfa6d08212bc18034b20b9c922a554a6e1ddd0f1
[ "MIT" ]
null
null
null
drnalpha/sic_codes/models.py
UKGovernmentBEIS/BRE_DigitalRegulationNavigator_Alpha
bfa6d08212bc18034b20b9c922a554a6e1ddd0f1
[ "MIT" ]
1
2021-04-21T09:41:43.000Z
2021-04-21T09:41:43.000Z
from django.db import models class CodeQuerySet(models.QuerySet): def related_to_food(self): return self.filter( models.Q(code__startswith="10") | models.Q(code__startswith="11") | models.Q(code__startswith="56") ) class Code(models.Model): code = models.PositiveIntegerField(unique=True) title = models.CharField(max_length=255, db_index=True) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) objects = CodeQuerySet.as_manager() autocomplete_search_field = "title" class Meta: ordering = ["code"] def __str__(self): return f"{self.code}: {self.title}" def autocomplete_label(self): return str(self)
25.096774
59
0.661954
d86c3b04fb475bc8c62b45803487b9e4e19cac4e
5,264
py
Python
cnns/nnlib/robustness/batch_attack/raw_pgd.py
anonymous-user-commits/perturb-net
66fc7c4a1234fa34b92bcc85751f0a6e23d80a23
[ "MIT" ]
1
2018-03-25T13:19:46.000Z
2018-03-25T13:19:46.000Z
cnns/nnlib/robustness/batch_attack/raw_pgd.py
anonymous-user-commits/perturb-net
66fc7c4a1234fa34b92bcc85751f0a6e23d80a23
[ "MIT" ]
null
null
null
cnns/nnlib/robustness/batch_attack/raw_pgd.py
anonymous-user-commits/perturb-net
66fc7c4a1234fa34b92bcc85751f0a6e23d80a23
[ "MIT" ]
null
null
null
import torch from torch import nn from typing import Union def project(x: torch.Tensor, x_adv: torch.Tensor, norm: Union[str, int], eps: float) -> torch.Tensor: """Projects x_adv into the l_norm ball around x Assumes x and x_adv are 4D Tensors representing batches of images Args: x: Batch of natural images x_adv: Batch of adversarial images norm: Norm of ball around x eps: Radius of ball Returns: x_adv: Adversarial examples projected to be at most eps distance from x under a certain norm """ if x.shape != x_adv.shape: raise ValueError('Input Tensors must have the same shape') if norm == 'inf': # Workaround as PyTorch doesn't have elementwise clip x_adv = torch.max(torch.min(x_adv, x + eps), x - eps) else: delta = x_adv - x # Assume x and x_adv are batched tensors where the first dimension is # a batch dimension mask = delta.view(delta.shape[0], -1).norm(norm, dim=1) <= eps scaling_factor = delta.view(delta.shape[0], -1).norm(norm, dim=1) scaling_factor[mask] = eps # .view() assumes batched images as a 4D Tensor delta *= eps / scaling_factor.view(-1, 1, 1, 1) x_adv = x + delta return x_adv def random_perturbation(x: torch.Tensor, norm: Union[str, int], eps: float) -> torch.Tensor: """Applies a random l_norm bounded perturbation to x Assumes x is a 4D Tensor representing a batch of images Args: x: Batch of images norm: Norm to measure size of perturbation eps: Size of perturbation Returns: x_perturbed: Randomly perturbed version of x """ perturbation = torch.normal(torch.zeros_like(x), torch.ones_like(x)) if norm == 'inf': perturbation = torch.sign(perturbation) * eps else: perturbation = project(torch.zeros_like(x), perturbation, norm, eps) return x + perturbation class RAW_PGD: def __init__(self, model, num_steps: int = 120, step_size: int = 0.01, eps: float = 2.0, norm=2, clamp=(0, 1), y_target=None, loss_fn=nn.CrossEntropyLoss(), random: bool = True): self.model = model self.loss_fn = loss_fn self.num_steps = num_steps self.step_size = step_size self.norm = norm self.eps = eps self.clamp = clamp self.y_target = y_target self.random = random def projected_gradient_descent(self, x, y): """Performs the projected gradient descent attack on a batch of images.""" x_adv = x.clone().detach().requires_grad_(True).to(x.device) targeted = self.y_target is not None num_channels = x.shape[1] if self.random: x_adv = random_perturbation(x_adv, self.norm, self.eps) for i in range(self.num_steps): _x_adv = x_adv.clone().detach().requires_grad_(True) prediction = self.model(_x_adv) loss = self.loss_fn(prediction, self.y_target if targeted else y) loss.backward() with torch.no_grad(): # Force the gradient step to be a fixed size in a certain norm if self.norm == 'inf': gradients = _x_adv.grad.sign() * self.step_size else: # Note .view() assumes batched image data as 4D tensor gradients = _x_adv.grad * self.step_size / _x_adv.grad.view( _x_adv.shape[0], -1) \ .norm(self.norm, dim=-1) \ .view(-1, num_channels, 1, 1) if targeted: # Targeted: Gradient descent with on the loss of the (incorrect) target label # w.r.t. the image data x_adv -= gradients else: # Untargeted: Gradient ascent on the loss of the correct label w.r.t. # the model parameters x_adv += gradients # Project back into l_norm ball and correct range if self.norm == 'inf': # Workaround as PyTorch doesn't have elementwise clip x_adv = torch.max(torch.min(x_adv, x + self.eps), x - self.eps) else: delta = x_adv - x # Assume x and x_adv are batched tensors where the first dimension is # a batch dimension mask = delta.view(delta.shape[0], -1).norm(self.norm, dim=1) <= self.eps scaling_factor = delta.view(delta.shape[0], -1).norm(self.norm, dim=1) scaling_factor[mask] = self.eps # .view() assumes batched images as a 4D Tensor delta *= self.eps / scaling_factor.view(-1, 1, 1, 1) x_adv = x + delta x_adv = x_adv.clamp(*self.clamp) return x_adv.detach()
34.631579
97
0.542553
6242474447ce0d60548535d3478479418e111873
21,356
py
Python
client/software/resources/modules/MU_Musica.py
MU-Software/Project_Musica_for_Contest
c1f63f381b167d6bfe701a36e998727cf4ed3bec
[ "MIT" ]
null
null
null
client/software/resources/modules/MU_Musica.py
MU-Software/Project_Musica_for_Contest
c1f63f381b167d6bfe701a36e998727cf4ed3bec
[ "MIT" ]
null
null
null
client/software/resources/modules/MU_Musica.py
MU-Software/Project_Musica_for_Contest
c1f63f381b167d6bfe701a36e998727cf4ed3bec
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- #Project Musica main definition module import json try: from . import * except: pass from __init__ import * from MU_GUI import * COMBO_TEXT = \ """\ COMBO {0}\ """ def randomID(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def toggleInterval(interval): if interval.isPlaying(): interval.pause() else: interval.resume() class MU_Musica(MU_GUI): def __init__(self): base.cTrav = CollisionTraverser() self.collHandEvent = CollisionHandlerEvent() self.collHandEvent.addInPattern('into-%in') self.collHandEvent.addOutPattern('outof-%in') MU_GUI.__init__(self) self.song_info = json.load(open('resources/song/song_info.json', 'rb')) self.select.song_info_dict = self.song_info self.keyStat = { 'collBox_1' : False, 'collBox_2' : False, 'collBox_3' : False, 'collBox_4' : False } self.startup_musica() base.accept("o", self.setup_in_game, ["MUSICA_0002"]) #GUI Controller def GUI_mgr(self, mode): if mode == 't2s': self.title.unload_title_GUI() taskMgr.doMethodLater(1, self.select.setup_select_GUI, "GUI_select_create") taskMgr.doMethodLater(1, self.give_select_control, "give_select_control") taskMgr.doMethodLater(1.5, self.timerTask, "timerTask") base.ignore('tab') elif mode == 's2p': (self.select.unload_select_GUI()) elif mode == '': pass def title_coin_text_mgr(self, val): self.credit_updater(val) try: if self.title.credit_return() >= 3 and self.title.title_str_int_list != [15,17,4,18,18,' ',0,13,24,' ',10,4,24]: self.title.text_animation_change() base.accept('tab', self.GUI_mgr, ['t2s']) elif self.title.credit_return() < 3 and self.title.title_str_int_list != [8,13,18,4,17,19,' ',2,14,8,13,'(',18,')']: self.title.text_animation_change('INSERT COIN(S)') base.ignore('tab') except: pass def give_select_control(self, task=None): base.accept("arrow_up" , self.mode_select_movement_arrow, [-1]) base.accept("arrow_down", self.mode_select_movement_arrow, [+1]) base.accept("time-arrow_up-repeat" , self.mode_select_movement_arrow, [-1]) base.accept("time-arrow_down-repeat", self.mode_select_movement_arrow, [+1]) base.accept("arrow_left", self.menu_to_song, ['S2M']) base.accept("arrow_right", self.menu_to_song, ['M2S']) def mode_select_movement_arrow(self, pos, Long_Hold_Dummy=None): pos = 3 if (self.select.m_pos < 1 and pos < 0)\ else -3 if (self.select.m_pos > 3-1 and pos > 0)\ else pos self.mode_select_movement(self.select.m_pos + pos) def mode_select_movement(self, num): select_movement_seq_list = Parallel(name="select_movement_seq") main_target = self.select.m_target_list[num] main_target_pos = main_target.getPos() not_target = [i for i in self.select.m_target_list if not i == main_target] select_movement_seq_list.append(LerpColorScaleInterval(main_target, .25, VBase4(1, 1, 1, 1))) select_movement_seq_list.append( self.select.m_select_frame.posInterval(.1, (main_target_pos[0], 0, main_target_pos[1]+.035))) select_movement_seq_list.append( self.select.s_select_frame.posInterval(.1, (main_target_pos[0], 0, main_target_pos[1]+.035))) for i in not_target: select_movement_seq_list.append(LerpColorScaleInterval(i, .1, VBase4(1, 1, 1, .25))) self.select.m_pos = num select_movement_seq_list.start() def menu_to_song(self, way): main_target = self.select.m_target_list[self.select.m_pos] main_target_pos = main_target.getPos() seq = Parallel(name="menu_to_song") if way == 'M2S': self.select.a_Inf_STR["text"] = u"노래를 선택해 주세요" pos = (-.05, 0, .05) scale = (.55, 0, .125) base.ignore("arrow_up") base.ignore("arrow_down") base.ignore("time-arrow_up-repeat") base.ignore("time-arrow_down-repeat") base.accept("arrow_up" , self.song_select_movement, [-1]) base.accept("arrow_down", self.song_select_movement, [+1]) base.accept("time-arrow_up-repeat" , self.song_select_movement, [-1]) base.accept("time-arrow_down-repeat", self.song_select_movement, [+1]) base.accept("arrow_left", self.menu_to_song, ['S2M']) base.accept("arrow_right", self.select_to_play) else: self.select.a_Inf_STR["text"] = u"모드를 선택해 주세요" pos = self.select.m_select_frame.getPos() scale = self.select.m_select_frame.getScale() base.ignore("arrow_up") base.ignore("arrow_down") base.ignore("time-arrow_up-repeat") base.ignore("time-arrow_down-repeat") base.accept("arrow_up" , self.mode_select_movement_arrow, [-1]) base.accept("arrow_down", self.mode_select_movement_arrow, [+1]) base.accept("time-arrow_up-repeat" , self.mode_select_movement_arrow, [-1]) base.accept("time-arrow_down-repeat", self.mode_select_movement_arrow, [+1]) base.accept("arrow_left", self.menu_to_song, ['S2M']) base.accept("arrow_right", self.menu_to_song, ['M2S']) seq.append(self.select.s_select_frame.posInterval(.1, pos)) seq.append(LerpScaleInterval(self.select.s_select_frame, .1, scale)) seq.start() def song_select_movement(self, pos, Long_Hold_Dummy=None): #if 7, return 3; if 8, return 3. center_num = int(len(self.select.s_Lst_Lst)/2.1) center_num += 1 if len(self.select.s_Lst_Lst)%2 else 0 if pos > 0: self.select.s_Lst_Lst.append(self.select.s_Lst_Lst[0]) self.select.s_Lst_Lst = self.select.s_Lst_Lst[1:] for i in range(len(self.select.s_Lst_Lst))[::-1]: if i != 0: self.select.s_Lst_Lst[i-1].getPos()[1] self.select.s_Lst_Lst[i].setPos(0, self.select.s_Lst_Lst[i-1].getPos()[1]) else: self.select.s_Lst_Lst[i].setPos(0, .5) if not i in range(center_num-2, center_num+3): self.select.s_Lst_Lst[i].setColorScale(1, 1, 1, 0) else: self.select.s_Lst_Lst[i].setColorScale(1, 1, 1, 1) elif pos < 0: self.select.s_Lst_Lst.insert(0, self.select.s_Lst_Lst[-1]) self.select.s_Lst_Lst = self.select.s_Lst_Lst[:-1] for i in range(len(self.select.s_Lst_Lst))[::1]: if i != len(self.select.s_Lst_Lst)-1: self.select.s_Lst_Lst[i].setPos(0, self.select.s_Lst_Lst[i+1].getPos()[1]) else: self.select.s_Lst_Lst[i].setPos(0, -.5) if not i in range(center_num-2, center_num+3): self.select.s_Lst_Lst[i].setColorScale(1, 1, 1, 0) else: self.select.s_Lst_Lst[i].setColorScale(1, 1, 1, 1) else: return; self.select.set_music_info(self.select.song_info_dict[self.select.s_Lst_Lst[center_num].getTag("songID")]['song_info']) self.select.s_Pos += pos; if self.select.s_Pos > len(self.select.s_Lst_Lst) - 1: self.select.s_Pos = 0 elif self.select.s_Pos < 0: self.select.s_Pos = len(self.select.s_Lst_Lst) -1 def select_to_play(self): unload_returner = self.select.unload_select_GUI() if unload_returner.strip(): self.setup_in_game(unload_returner) def startup_musica(self): camera.setPosHpr(0, 12.5, 10, 0, -113, 0) #First, create hitbox that detects miss. self.Hitbox_missWall = loader.loadModel('hitbox_missWall') self.createHitbox(self.Hitbox_missWall, self.event_missWall) self.Hitbox_missWall.setHpr(90, 0, 270) self.Hitbox_missWall.setPos(0, -1, -5) self.Hitbox_missWall.setScale(1, 1.25, .25) self.Hitbox_missWall.reparentTo(hidden) #Second, create hitbox that will be controlled by player. self.Hitbox_user_list = list() for i in range(4): self.Hitbox_user_list.append(loader.loadModel('hitbox_user.egg')) self.Hitbox_user_list[i].setTag('name', ('collBox_{0}'.format(i+1))) self.createHitbox(self.Hitbox_user_list[i], self.event_success, self.event_success) self.Hitbox_user_list[i].reparentTo(hidden) self.Hitbox_user_list[i].setPos((.6*(-1+i)-.275)*5, -2, -15) self.Hitbox_user_list[i].setScale(2, .3, 3) self.Hitbox_user_list[i].setColor(0, 0, 0, 1) self.Hitbox_music_start = loader.loadModel('hitbox_missWall') self.createHitbox(self.Hitbox_music_start, self.event_startMusic) self.Hitbox_music_start.setHpr(90, 0, 270) self.Hitbox_music_start.setTransparency(1) self.Hitbox_music_start.setPos(0, -1, -16) self.Hitbox_music_start.setScale(1, 1.25, 1) self.Hitbox_music_start.setColor(0, 0, 0, 0) self.Hitbox_music_start.reparentTo(render) #Third, load SFX. self.play_input = loader.loadSfx('resources/se/play_input_short.wav') self.play_input.setVolume(0.1) base.accept('a', self.keyToBool, ['collBox_1', True]) base.accept('d', self.keyToBool, ['collBox_2', True]) base.accept('j', self.keyToBool, ['collBox_3', True]) base.accept('l', self.keyToBool, ['collBox_4', True]) base.accept('a-up', self.keyToBool, ['collBox_1', False]) base.accept('d-up', self.keyToBool, ['collBox_2', False]) base.accept('j-up', self.keyToBool, ['collBox_3', False]) base.accept('l-up', self.keyToBool, ['collBox_4', False]) #IN-Game function def loadBackground(self): self.background = OnscreenImage(parent=render2dp, image="galaxy.png") self.background.setTransparency(1) self.background.setColorScale(.5, .5, .5, .75) base.cam2dp.node().getDisplayRegion(0).setSort(-20) def setup_in_game(self, songID): self.loadBackground() self.pattern = self.patternLoader('resources/song/{0}/pattern.json'.format(self.song_info['id_list'][songID][0])) self.music = loader.loadMusic('resources/song/{0}/music.wav'.format(self.song_info['id_list'][songID][0])) self.music.stop() for i in self.Hitbox_user_list: i.reparentTo(render) self.Hitbox_missWall.reparentTo(render) self.select.unload_select_GUI() self.play.setup_play_GUI() LerpColorScaleInterval(self.title.GUI_BGI, .5, (0, 0, 0, 0)).start() self.tunnel = Tunnel(self.song_info[songID]['tunnel']['path'], self.song_info[songID]['tunnel']['speed']) self.tunnel.start() self.score.score_A_deadline = self.song_info[songID]['score_deadline']['A'] self.score.score_B_deadline = self.song_info[songID]['score_deadline']['B'] self.score.score_C_deadline = self.song_info[songID]['score_deadline']['C'] self.score.score_D_deadline = self.song_info[songID]['score_deadline']['D'] def unload_in_game(self): for i in self.Hitbox_user_list: i.reparentTo(hidden) self.Hitbox_missWall.reparentTo(hidden) self.play.unload_play_GUI() self.tunnel.close() LerpColorScaleInterval(self.title.GUI_BGI, .5, (1, 1, 1, 1)).start() self.score.score_target = self.play.score_val self.score.hit_count = self.play.highest_combo_count self.score.miss_count = self.play.miss_count self.score.combo_count = self.play.combo_count self.score.unload_score_GUI() self.score.setup_score_GUI() def score_to_select(): if self.title.credit_return(): self.score.unload_score_GUI() self.select.setup_select_GUI() self.give_select_control() self.title_coin_text_mgr(self.title.credit_return()-1) base.ignore('tab') else: self.end.setup_end_GUI() base.accept('tab', score_to_select) def patternLoader(self, path=None): pattern_open = json.load(open(path, 'r')) pattern_seq = Sequence(name='pattern_sequence') pattern = sorted(pattern_open, key=lambda x: float(x.keys()[0])) pattern_seq.append(Func(self.createShortNote, 2, None, 2.5, 'note', (0, 0, 0, 0))) current_time = 0. for i, val in enumerate(pattern): if current_time == float(val.keys()[0]): pass else: pattern_seq.append(Wait(float(val.keys()[0]) - current_time)) current_time = float(val.keys()[0]) if val.values()[0].keys()[0] == 'shortNote': pattern_seq.append(Func(self.createShortNote, val.values()[0][val.values()[0].keys()[0]])) pattern_seq.start() print pattern_seq return pattern_seq def keyToBool(self, mapKey, status): self.keyStat[mapKey] = status if status: self.Hitbox_user_list[int(mapKey[-1:])-1].setColor(0, 0, 1, 1) def mk_false_task(target): self.keyStat[target] = False self.Hitbox_user_list[int(target[-1:])-1].setColor(0, 0, 0, 1) taskMgr.doMethodLater(.5, mk_false_task, 'mk_false_task_{0}'.format(mapKey), extraArgs = [mapKey]) else: self.Hitbox_user_list[int(mapKey[-1:])-1].setColor(0, 0, 0, 1) taskMgr.remove('mk_false_task_{0}'.format(mapKey)) self.play_input.play() if status else None def stage_ender(self, task): if self.music.status() == self.music.READY: print("END") self.unload_in_game() return task.done return task.cont #Universal def createHitbox(self, object, InFunction=None, OutFunction=None, name='note', show=False): bound = object.getTightBounds() box = CollisionBox(bound[0],bound[1]) collName = 'Collision_{0}_{1}'.format(name, randomID()) cnodePath = object.attachNewNode(CollisionNode(collName)) cnodePath.node().addSolid(box) base.cTrav.addCollider(cnodePath, self.collHandEvent) if InFunction: base.accept('into-' + collName, InFunction) if OutFunction: base.accept('outof-' + collName, OutFunction) if show: cnodePath.show() #Note def createShortNote(self, line_num, function=None, speed=2.5, model_path='note', color=(1,0,1,1)): #Find note node, if it already available, Find that node and make using it. if render.find("note_node"): note_node = render.find("note_node") else: note_node = render.attachNewNode("note_node") line = -4.7 if line_num == 1 else -1.5 if line_num == 2 else 1.7 if line_num == 3 else 4.9 pos_start = Point3(line, -2, -200) pos_end = Point3(line, -2, 50) note = loader.loadModel(model_path) if function: self.createHitbox(note, function) else: self.createHitbox(note, None) note.setTag('note', 'short') note.reparentTo(note_node) note.setHpr(90, 0, 270) note.setPos(pos_start) note.setColorScale(1, 0, 1, 1) note.setScale(1.45) note.setTransparency(TransparencyAttrib.MAlpha) note.setColorScale(color) self.note_interval = note.posInterval(speed, pos_end) Sequence(self.note_interval, name=('note_short_'+randomID())).start() def createLongNote(self, line_num, start_function=None, mid_function=None, end_function=None, speed=2.5, model_path='note', color=(1,1,1,1)): if render.find("note_node"): note_node = render.find("note_node") else: note_node = render.attachNewNode("note_node") line = -4.5 if line_num == 1 else -1.5 if line_num == 2 else 1.5 if line_num == 3 else 4.5 pos_start = Point3(line, -2, -200) pos_end = Point3(line,-2, 50) note_head = loader.loadModel('note_head') note_body = loader.loadModel('note_body') note_tail = loader.loadModel('note_tail') if start_function: self.createHitbox(note_head, start_function) else: self.createHitbox(note_head, self.event_dummy) if mid_function: self.createHitbox(note_body, mid_function) else: pass if end_function: self.createHitbox(note_tail, end_function) else: self.createHitbox(note_tail, self.event_dummy) self.createHitbox(note_head, self.event_dummy) self.createHitbox(note_tail, self.event_dummy) note_head.setTag('note', 'head_{0}'.format(line_num)) note_body.setTag('note', 'body_{0}'.format(line_num)) note_tail.setTag('note', 'tail_{0}'.format(line_num)) note_head.reparentTo(note_node) note_body.reparentTo(note_node) note_tail.reparentTo(note_node) note_head.setHpr(90, 0, 270) note_body.setHpr(90, 0, 270) note_tail.setHpr(90, 0, 270) note_head.setTransparency(TransparencyAttrib.MAlpha) note_body.setTransparency(TransparencyAttrib.MAlpha) note_tail.setTransparency(TransparencyAttrib.MAlpha) note_head.setPos(pos_start) note_body.setPos(pos_start) note_tail.setPos(pos_start) note_head.setColorScale(color) note_body.setColorScale(color) note_tail.setColorScale(color) note_head.setScale(.5) note_body.setScale(.5) note_tail.setScale(.5) head_interval = Parallel(note_head.posInterval(speed, pos_end), name=('note_long_head_{0}_{1}'.format(line_num, randomID()))) body_interval = Parallel(note_body.posInterval(speed*2, pos_end), note_body.scaleInterval(speed*2, (499, 0.5, 0.5)), name=('note_long_body_create_{0}_{1}'.format(line_num, randomID()))) head_interval.start() body_interval.start() def endLongNote(self, line_num): body_interval_list = ivalMgr.getIntervalsMatching('note_long_body_create_{0}_*'.format(line_num)) for i in body_interval_list: i.pause() i = None note_node = render.find("note_node") # head = note_node.find('=note=head_*') body = note_node.find('=note=body_{0}'.format(line_num)) tail = note_node.find('=note=tail_{0}'.format(line_num)) body_interval = Parallel(body.posInterval(self.note_speed, (body.getX(), body.getY(), body.getZ()+250)), name=('note_long_body_{0}_{1}'.format(line_num, randomID()))) tail_interval = Parallel(tail.posInterval(self.note_speed, Point3(tail.getX(),-1, 50)), name=('note_long_tail_{0}_{1}'.format(line_num, randomID()))) body_interval.start() tail_interval.start() #Events def event_dummy(self, collEntry): pass def event_missWall(self, collEntry): model = collEntry.getFromNodePath().getParent() collName = collEntry.getFromNodePath().getNode(0).getName() self.play.combo_count = 0 self.play.miss_updater(1) self.play.set_combo_text('MISS') base.ignore('into-' + collName) model.removeNode() def event_startMusic(self, collEntry): Hitbox_node = collEntry.getIntoNodePath().getParent() Note_node = collEntry.getFromNodePath().getParent() if Note_node.getTag('note') == 'short': Hitbox_node.removeNode() Note_node.removeNode() self.music.play() taskMgr.add(self.stage_ender, 'stage_ender') def event_success(self, collEntry): Hitbox_node = collEntry.getIntoNodePath().getParent() Hitbox_tag = Hitbox_node.getTag('name') if self.keyStat[Hitbox_tag]: model = collEntry.getFromNodePath().getParent() collName = collEntry.getFromNodePath().getNode(0).getName() self.play.combo_count += 1 self.play.hit_count += 1 self.play.score_updater(200) self.play.set_combo_text(COMBO_TEXT.format(self.play.combo_count)) if model.getTag('note') == 'short': base.ignore('into-' + collName) model.removeNode() #MIDI to JSON exporter class midi2pattern: def convert(self, path=None, enable_long_using_tick=False): noteSeq = list() def event(time, event_func, args=None): return {str(time) : {str(event_func) : args}} event_templete = dict() file = midi.read_midifile(path) bpm = 0 current_timeline = 0. pattern = list(file) resolution = file.resolution for i1 in pattern: for i2 in i1: if i2.name == 'Set Tempo': bpm = i2.get_bpm() tick_sec = ((60.0 * 1000000.0 / bpm) / resolution) / 1000000.0 elif i2.name == 'Note On': if i2.tick: current_timeline += tick_sec * i2.tick note = i2.data[0] if (note in [67, 69, 71, 72]) or (i2.tick > 60 and enable_long_using_tick): print "LONG" line = 4 if note == 72 else 3 if note == 71 else 2 if note == 69 else 1 noteSeq.append(event(current_timeline, 'longNote_Start', line)) else: line = 4 if note == 65 else 3 if note == 64 else 2 if note == 62 else 1 if note == 60 else random.randrange(1, 5) noteSeq.append(event(current_timeline, 'shortNote', line)) elif i2.name == 'Note Off': if i2.tick: current_timeline += tick_sec * i2.tick note = i2.data[0] if note in [67, 69, 71, 72]: noteSeq.append(event(current_timeline, 'longNote_End')) return noteSeq class Tunnel: def __init__(self, path='tunnel_default.egg', speed=1, length=50, quantity=8): self.tunnel_model_value = quantity self.tunnel_time = speed self.tunnel_segment_length = length self.path = path #for pausing tunnel self.pause = (lambda:toggleInterval(self.tunnelMove)) def start(self): self.defineFog() self.initTunnel(path=self.path) def close(self): if self.tunnelMove.isPlaying(): self.tunnelMove.finish() else: pass model_list= render.findAllMatches("=tunnel") for m in model_list: m.removeNode() #Tunnel related Func def defineFog(self): self.fog = Fog('distanceFog') self.fog.setColor(0) self.fog.setExpDensity(.01) render.setFog(self.fog) def initTunnel(self, path, tag='normal'): self.tunnel = [None] * (self.tunnel_model_value + 1) for x in range(self.tunnel_model_value + 1): self.tunnel[x] = loader.loadModel(path) self.tunnel[x].setTag('tunnel',tag) self.tunnel[x].setColor(1, 1, 1) self.tunnel[x].setTransparency(True) self.tunnel[x].setColorScale(1, 1, 1, .99) #self.tunnel[x].setRenderModeWireframe(True) if x == 0: self.tunnel[x].reparentTo(render) else: self.tunnel[x].reparentTo(self.tunnel[x - 1]) self.tunnel[x].setPos(0, 0, -self.tunnel_segment_length) self.contTunnel() def contTunnel(self): self.tunnel = self.tunnel[1:] + self.tunnel[0:1] self.tunnel[0].setZ(0) #self.tunnel[0].setP(90) self.tunnel[0].reparentTo(render) self.tunnel[0].setScale(.155, .155, .305) for i in range(self.tunnel_model_value, 0, -1): self.tunnel[i].reparentTo(self.tunnel[i - 1]) self.tunnel[self.tunnel_model_value].setZ(-self.tunnel_segment_length) self.tunnel[self.tunnel_model_value].setScale(1) self.tunnelMove = Sequence( LerpFunc(self.tunnel[0].setZ, duration=self.tunnel_time, fromData=0, toData=self.tunnel_segment_length * .305), # Func(self.contTunnel), name='note_tunnel') self.tunnelMove.loop()
37.865248
142
0.708653
1fd52e657e719d5aa5e86e8f3b96c3512bd00e6a
2,536
py
Python
lib/django-1.4/django/contrib/sites/tests.py
MiCHiLU/google_appengine_sdk
3da9f20d7e65e26c4938d2c4054bc4f39cbc5522
[ "Apache-2.0" ]
26
2015-01-20T08:02:38.000Z
2020-06-10T04:57:41.000Z
lib/django-1.4/django/contrib/sites/tests.py
MiCHiLU/google_appengine_sdk
3da9f20d7e65e26c4938d2c4054bc4f39cbc5522
[ "Apache-2.0" ]
4
2016-02-28T05:53:54.000Z
2017-01-03T07:39:50.000Z
lib/django-1.4/django/contrib/sites/tests.py
MiCHiLU/google_appengine_sdk
3da9f20d7e65e26c4938d2c4054bc4f39cbc5522
[ "Apache-2.0" ]
13
2016-02-28T00:14:23.000Z
2021-05-03T15:47:36.000Z
from django.conf import settings from django.contrib.sites.models import Site, RequestSite, get_current_site from django.core.exceptions import ObjectDoesNotExist from django.http import HttpRequest from django.test import TestCase from django.test.utils import override_settings class SitesFrameworkTests(TestCase): def setUp(self): Site(id=settings.SITE_ID, domain="example.com", name="example.com").save() self.old_Site_meta_installed = Site._meta.installed Site._meta.installed = True def tearDown(self): Site._meta.installed = self.old_Site_meta_installed def test_save_another(self): # Regression for #17415 # On some backends the sequence needs reset after save with explicit ID. # Test that there is no sequence collisions by saving another site. Site(domain="example2.com", name="example2.com").save() def test_site_manager(self): # Make sure that get_current() does not return a deleted Site object. s = Site.objects.get_current() self.assertTrue(isinstance(s, Site)) s.delete() self.assertRaises(ObjectDoesNotExist, Site.objects.get_current) def test_site_cache(self): # After updating a Site object (e.g. via the admin), we shouldn't return a # bogus value from the SITE_CACHE. site = Site.objects.get_current() self.assertEqual(u"example.com", site.name) s2 = Site.objects.get(id=settings.SITE_ID) s2.name = "Example site" s2.save() site = Site.objects.get_current() self.assertEqual(u"Example site", site.name) @override_settings(ALLOWED_HOSTS=['example.com']) def test_get_current_site(self): # Test that the correct Site object is returned request = HttpRequest() request.META = { "SERVER_NAME": "example.com", "SERVER_PORT": "80", } site = get_current_site(request) self.assertTrue(isinstance(site, Site)) self.assertEqual(site.id, settings.SITE_ID) # Test that an exception is raised if the sites framework is installed # but there is no matching Site site.delete() self.assertRaises(ObjectDoesNotExist, get_current_site, request) # A RequestSite is returned if the sites framework is not installed Site._meta.installed = False site = get_current_site(request) self.assertTrue(isinstance(site, RequestSite)) self.assertEqual(site.name, u"example.com")
39.015385
82
0.680205
354acac3f4650bc15132c32b15b69b644fd966eb
4,630
py
Python
models/import_products.py
hedra-digital/SOC
36a99dca15424ff8c06d51eaad2bb21afbfdace5
[ "MIT" ]
null
null
null
models/import_products.py
hedra-digital/SOC
36a99dca15424ff8c06d51eaad2bb21afbfdace5
[ "MIT" ]
null
null
null
models/import_products.py
hedra-digital/SOC
36a99dca15424ff8c06d51eaad2bb21afbfdace5
[ "MIT" ]
null
null
null
from odoo import models, fields, api #try: # import cStringIO as StringIO #except ImportError: # import StringIO #import csv #import base64 class import_wizard_product_adj(models.Model): _name = 'import.wizard.product.adj' csv_file = fields.Binary("CSV File", required=True) log = fields.Char() @api.multi def process_csv_file(self): input = StringIO.StringIO(base64.decodestring(self.csv_file)) reader = csv.reader(input, delimiter=',') product_obj = self.env['product.product'] sil_obj = self.env['stock.inventory.line'] stock_inv = self.env['stock.inventory'].browse(self._context.get('active_id')) line_vals = [] log = '' if stock_inv.state not in ['draft','confirm']: raise except_orm(_('Please Try in Draft State'), _('Please try in draft state only')) if stock_inv.filter != 'partial': stock_inv.filter = 'partial' stock_inv.prepare_inventory() default_location_id = stock_inv.location_id.id ctx = dict(self._context) ctx.update({'default_location_id':default_location_id}) line_no=0 # for line in reader: # line_no += 1 # if len(line) >= 4: # product = product_obj.search(['|',('ean13','=',line[2]),('name','=',line[1])], limit=1) # if not product: # log += 'No product found for Barcode "%s" on Line %s \n'%(str(line[0]), str(line_no)) # continue # try: # qty = float(line[1]) # except: # log += 'Improper Qty "%s" for Product "%s" on Line %s \n'%(str(line[1]), product.name,str(line_no)) # continue # existing_line = sil_obj.search([('product_id','=',product.id), # ('inventory_id', '=', stock_inv.id)], limit=1) # # Check if that products line already exist, if exist, then just update the quantity, # # else create new line # if existing_line: # existing_line.product_qty = qty # updated_vals = existing_line.onchange_createline( location_id=existing_line.location_id and existing_line.location_id.id or False, # product_id=existing_line.product_id and existing_line.product_id.id or False, # uom_id=existing_line.product_uom_id and existing_line.product_uom_id.id or False, # package_id=existing_line.package_id and existing_line.package_id.id or False, # prod_lot_id=existing_line.prod_lot_id and existing_line.prod_lot_id.id or False, # partner_id=existing_line.partner_id and existing_line.partner_id.id or False, # company_id=existing_line.company_id and existing_line.company_id.id or False, context=None) # if updated_vals and updated_vals.get('value') and updated_vals['value'].get('theoretical_qty'): # existing_line._model._store_set_values(self._cr, self._uid, [x.id for x in existing_line], ['theoretical_qty'], self._context) # else: # line_vals = sil_obj.with_context(ctx).onchange_createline(product_id=product.id, # location_id=stock_inv.location_id.id) # line_vals.update({'inventory_id':stock_inv.id,'location_id':default_location_id, # 'product_qty':qty, 'product_id': product.id}) # inv_line = sil_obj.create(line_vals) # if log: # self.log = log # else: # self.log = 'No errors found in importing the products' return { 'name': _('File Processed Successfully'), 'view_type': 'form', 'view_mode': 'form', 'res_model': 'update.real.stock', 'view_id': self.env.ref('physical_inventory.update_real_stock_form').id, 'type': 'ir.actions.act_window', 'res_id': self.id, 'target': 'new' }
52.613636
163
0.520734
559593f00d1b4d4a522778582e34ccfc1c85ac83
745
py
Python
visuals/2022-python/circles.py
houseofleft/Processing
13e65c9ef5918c153ed83dcb44c4b53277f8bdd6
[ "MIT" ]
8
2020-03-14T20:32:00.000Z
2020-07-22T17:51:31.000Z
visuals/2022-python/circles.py
houseofleft/generative_processing_scripts
13e65c9ef5918c153ed83dcb44c4b53277f8bdd6
[ "MIT" ]
null
null
null
visuals/2022-python/circles.py
houseofleft/generative_processing_scripts
13e65c9ef5918c153ed83dcb44c4b53277f8bdd6
[ "MIT" ]
2
2020-03-14T16:33:11.000Z
2020-03-17T18:07:53.000Z
import shades import random canvas = shades.Canvas(1500, 1500) noise = shades.NoiseField(scale=0.02) ink = shades.BlockColor() colors = [ (249, 65, 68), (243, 114, 44), (248, 150, 30), (249, 132, 74), (249, 199, 79), (144, 190, 109), (67, 170, 139), (77, 144, 142), (87, 117, 144), (39, 125, 161), ] for y in range(0, canvas.height, 5): segments = 15 for i in range(segments): x = (canvas.width/segments) * i if i % 2: size = canvas.width/segments/2 * noise.noise((x, y)) else: size = canvas.width/segments/2 * (1 - noise.noise((x, y))) ink.color = random.choice(colors) ink.circle_outline(canvas, (x, y), size, 1) canvas.show()
22.575758
70
0.544966
29a9ff2af58a72c0a6358d2019a9a62d3ca481c1
287
py
Python
task_scheduler/src/send_mail_task/views.py
muhammad-mamdouh/Django_Projects
1f31e12aefb36b33474256db40a2c551882f445e
[ "MIT" ]
null
null
null
task_scheduler/src/send_mail_task/views.py
muhammad-mamdouh/Django_Projects
1f31e12aefb36b33474256db40a2c551882f445e
[ "MIT" ]
40
2020-06-05T22:10:58.000Z
2022-03-11T23:56:09.000Z
task_scheduler/src/send_mail_task/views.py
muhammad-mamdouh/Django_Projects
1f31e12aefb36b33474256db40a2c551882f445e
[ "MIT" ]
1
2021-03-31T10:30:03.000Z
2021-03-31T10:30:03.000Z
from django.http import HttpResponse from .tasks import sleepy, deliver_mail_task def index(request): sleepy.delay(5) return HttpResponse('<h1>Done!</h1>') def deliver_mail(request): deliver_mail_task.delay() return HttpResponse('<h1>EMAIL HAS BEEN DELIVERED!</h1>')
22.076923
61
0.731707
d9efb4185bdea7b71a00f547041b6ec0f38f282c
2,612
py
Python
jwt_frappe/auth.py
anvilerp/jwt_frappe
b034ed23070fdc7ee9dc4a17403d48be75bb8c9e
[ "MIT" ]
4
2020-11-20T18:53:49.000Z
2021-07-29T05:41:13.000Z
jwt_frappe/auth.py
anvilerp/jwt_frappe
b034ed23070fdc7ee9dc4a17403d48be75bb8c9e
[ "MIT" ]
null
null
null
jwt_frappe/auth.py
anvilerp/jwt_frappe
b034ed23070fdc7ee9dc4a17403d48be75bb8c9e
[ "MIT" ]
2
2021-07-28T20:49:26.000Z
2021-08-14T22:47:04.000Z
import frappe import jwt from frappe.auth import HTTPRequest, LoginManager, get_lang_code, check_session_stopped, CookieManager # frappe's CookieManager is having old class style class CookieManagerJWT(CookieManager, object): def flush_cookies(self, response): # use this opportunity to set the response headers response.headers["X-Client-Site"] = frappe.local.site if frappe.flags.jwt_clear_cookies: # Case when right after login # We set the flag on session_create self.cookies = frappe._dict() if frappe.flags.jwt: # Case when the incoming request has jwt token # We leave cookies untouched # There can be other browser tabs return return super(CookieManagerJWT, self).flush_cookies(response) class AnvilHTTPRequest(HTTPRequest): def __init__(self): # Get Environment variables self.domain = frappe.request.host if self.domain and self.domain.startswith('www.'): self.domain = self.domain[4:] if frappe.get_request_header('X-Forwarded-For'): frappe.local.request_ip = (frappe.get_request_header( 'X-Forwarded-For').split(",")[0]).strip() elif frappe.get_request_header('REMOTE_ADDR'): frappe.local.request_ip = frappe.get_request_header('REMOTE_ADDR') else: frappe.local.request_ip = '127.0.0.1' # language self.set_lang() # set db before jwt check, so token error handling can be stored # We get Internal Server Error otherwise self.connect() # JWT jwt_token = None # Check for Auth Header, if present, replace the request cookie value if frappe.get_request_header("Authorization"): token_header = frappe.get_request_header( "Authorization").split(" ") if token_header[0].lower() not in ("basic", "bearer") and ":" not in token_header[-1]: jwt_token = token_header[-1] elif frappe.request.path.startswith('/private/files/') and frappe.request.args.get("token"): jwt_token = frappe.request.args.get("token") if jwt_token: headers = frappe._dict(frappe.request.headers) headers["Authorization"] = f"Bearer {jwt_token}" frappe.request.headers = headers # load cookies frappe.local.cookie_manager = CookieManagerJWT() # login frappe.local.login_manager = LoginManager() if frappe.form_dict._lang: lang = get_lang_code(frappe.form_dict._lang) if lang: frappe.local.lang = lang self.validate_csrf_token() # write out latest cookies frappe.local.cookie_manager.init_cookies() # check status check_session_stopped()
31.853659
102
0.696401
c67c179258c3ed3c3cd80fe1ccbbc4a013ab17b7
31,043
py
Python
Autocoders/Python/src/fprime_ac/generators/visitors/ComponentVisitorBase.py
sthagen/nasa-fprime
7762d633d1c0728e68ef9217fb12a7c3070b61ac
[ "Apache-2.0" ]
1
2022-03-15T16:17:15.000Z
2022-03-15T16:17:15.000Z
Autocoders/Python/src/fprime_ac/generators/visitors/ComponentVisitorBase.py
sthagen/nasa-fprime
7762d633d1c0728e68ef9217fb12a7c3070b61ac
[ "Apache-2.0" ]
null
null
null
Autocoders/Python/src/fprime_ac/generators/visitors/ComponentVisitorBase.py
sthagen/nasa-fprime
7762d633d1c0728e68ef9217fb12a7c3070b61ac
[ "Apache-2.0" ]
null
null
null
# =============================================================================== # NAME: ComponentVisitorBase.py # # DESCRIPTION: A base class for test code generation. # # AUTHOR: bocchino # EMAIL: bocchino@jpl.nasa.gov # DATE CREATED : August 24, 2015 # # Based on code by Leonard Reder # # Copyright 2013, California Institute of Technology. # ALL RIGHTS RESERVED. U.S. Government Sponsorship acknowledged. # =============================================================================== # # Python standard modules # import datetime import logging import sys from getpass import getuser from fprime_ac.generators import formatters from fprime_ac.generators.visitors import AbstractVisitor from fprime_ac.models import ModelParser # # Python extension modules and custom interfaces # from fprime_ac.utils import ConfigManager # # Global logger init. below. PRINT = logging.getLogger("output") DEBUG = logging.getLogger("debug") # LAST = 0 NOT_LAST = 1 class ComponentVisitorBase(AbstractVisitor.AbstractVisitor): """ An abstract base class for unit test code generation. """ __instance = None __config = None __fp = None __form = None __form_comment = None __model_parser = None __visitor = None def __init__(self): super().__init__() def _writeTmpl(self, c, visit_str): """ Wrapper to write tmpl to files desc. """ DEBUG.debug("ComponentVisitorBase:%s" % visit_str) DEBUG.debug("===================================") DEBUG.debug(c) self.__fp.writelines(c.__str__()) DEBUG.debug("===================================") def argsString(self, args): """ Make a list of args into a string """ return ", ".join(args) def buildFileName(self, obj): """ Build the file name """ if self.config("component", "XMLDefaultFileName") == "True": filename = ( obj.get_namespace() + obj.get_name() + self.config("component", self.__visitor) ) DEBUG.info( "Generating code filename: %s, using XML namespace and name attributes..." % filename ) else: xml_file = obj.get_xml_filename() x = xml_file.split(".") s = self.config("component", "ComponentXML").split(".") l = len(s[0]) if (x[0][-l:] == s[0]) & (x[1] == s[1]): filename = x[0].split(s[0])[0] + self.config( "component", self.__visitor ) DEBUG.info("Generating code filename: %s..." % filename) else: msg = ( "XML file naming format not allowed (must be XXXComponentAi.xml), Filename: %s" % xml_file ) PRINT.info(msg) raise ValueError(msg) return filename def commandArgsStr(self): """ Make a list of command args into a string """ def f(lst): def g(xxx_todo_changeme): (name, a, b, c) = xxx_todo_changeme return name return self.argsString(list(map(g, lst))) return f def config(self, a, b): return self.__config.get(a, b) def doxygenPostComment(self, comment): """ Emit a doxygen post comment """ if comment is None or comment == "": return "" else: return "/*!< " + comment + "*/" def doxygenPreComment(self, comment): """ Emit a doxygen pre comment """ if comment is None or comment == "": return "" else: return "/*! " + comment + "*/" def emitComment(self, comment): """ Emit a comment """ if comment is None or comment == "": return "" else: return "/* " + comment + "*/" def emitIndent(self, indent): str = "" for i in range(0, indent): str += " " return str def emitNonPortParamsCpp(self, indent, params): """ Emit a list of non-port function parameters in a .cpp file """ return self.emitParams(self.paramStrsCpp, indent, params) def emitNonPortParamsHpp(self, indent, params): """ Emit a list of non-port function parameters in a .hpp file """ return self.emitParams(self.paramStrsHpp, indent, params) def emitParam(self, kind, indent, paramStrs, param): """ Emit a parameter """ paramStr, commentStr = paramStrs(param) indentStr = self.emitIndent(indent) if kind == LAST: return indentStr + paramStr + commentStr else: return indentStr + paramStr + "," + commentStr + "\n" def emitParams(self, paramStrs, indent, params): """ Emit a list of parameters (port or non-port) """ length = len(params) if length == 0: return "" else: str = "" for i in range(0, length - 1): str += self.emitParam(NOT_LAST, indent, paramStrs, params[i]) str += self.emitParam(LAST, indent, paramStrs, params[length - 1]) return str def emitPortParamsCpp(self, indent, params): """ Emit a list of port function parameters in a .cpp file """ return self.emitParams(self.portParamStrsCpp, indent, params) def emitPortParamsHpp(self, indent, params): """ Emit a list of port function parameters in a .hpp file """ return self.emitParams(self.portParamStrsHpp, indent, params) def eventArgsStr(self): """ Make a list of event args into a string """ def f(args): def g(lst): name = lst[0] return name return self.argsString(list(map(g, args))) return f def finishSourceFilesVisit(self, obj): self.__fp.close() def fp(self): return self.__fp def includes1Visit(self, obj): pass def includes2Visit(self, obj): pass def init(self, obj, c): self.initPreamble(obj, c) self.initCommands(obj, c) self.initEvents(obj, c) self.initInternalInterfaces(obj, c) self.initIncludes(obj, c) # self.initParameters(obj, c) self.initPorts(obj, c) self.initTelemetry(obj, c) self.initParameters(obj, c) if c.kind == "passive": c.params_init_hpp = [c.param_instance_default_zero] c.params_init_cpp = [c.param_instance] elif c.needs_msg_size: c.params_init_hpp = [ c.param_queueDepth, c.param_msgSize, c.param_instance_default_zero, ] c.params_init_cpp = [c.param_queueDepth, c.param_msgSize, c.param_instance] else: c.params_init_hpp = [c.param_queueDepth, c.param_instance_default_zero] c.params_init_cpp = [c.param_queueDepth, c.param_instance] def initBase(self, visitor): self.__config = ConfigManager.ConfigManager.getInstance() self.__form = formatters.Formatters.getInstance() self.__form_comment = formatters.CommentFormatters() self.__model_parser = ModelParser.ModelParser.getInstance() self.__visitor = visitor DEBUG.info("ComponentVisitor: Instanced.") self.bodytext = "" self.prototypetext = "" def initCommandParams(self, obj, c): """ Command function parameters for code generation """ c.param_cmdSeq = ("cmdSeq", "const U32", "The command sequence number") c.param_opCode = ("opCode", "const FwOpcodeType", "The opcode") c.param_response = ( "response", "const Fw::CmdResponse", "The command response", ) def initCommands(self, obj, c): c.has_commands = len(obj.get_commands()) > 0 c.commands = self.__model_parser.getCommandsList(obj) c.commands_sync = self.__model_parser.getCommandsListSync(obj) c.command_enums = self.__model_parser.getEnumList(obj) c.command_param_strs = self.__model_parser.getCommandArgsPrototypeStringDict( obj ) c.command_args_str_dict = c.command_param_strs c.command_args = self.__model_parser.getCommandArgsDict(obj) c.command_params = self.__model_parser.getCommandArgsDict(obj, True) c.command_args_str = self.commandArgsStr() self.initCommandParams(obj, c) def initCompIncludePath(self, obj, c): """ Configurable override for includes """ relative_path = self.relativePath() if self.__config.get("includes", "comp_include_path") == "None": if relative_path is not None: c.comp_include_path = relative_path else: c.comp_include_path = obj.get_namespace() else: c.comp_include_path = self.__config.get("includes", "comp_include_path") c.include_path = c.comp_include_path def initEventParams(self, obj, c): """ Event function parameters for code generation Some of these are also used for telemetry """ c.param_event_id = ("id", "const FwEventIdType", "The event ID") c.param_timeTag = ("timeTag", "Fw::Time&", "The time") c.param_const_timeTag = ("timeTag", "const Fw::Time&", "The time") c.param_log_severity = ("severity", "const Fw::LogSeverity", "The severity") c.param_text_log_severity = ( "severity", "const Fw::TextLogSeverity&", "The severity", ) c.param_args = ("args", "Fw::LogBuffer&", "The serialized arguments") c.param_text = ("text", "const Fw::TextLogString&", "The event string") def initEvents(self, obj, c): c.has_events = len(obj.get_events()) > 0 c.events = self.__model_parser.getEventsList(obj) c.event_enums = self.__model_parser.getEventEnumList(obj) c.event_args = self.__model_parser.getEventArgsDict(obj) c.event_params = c.event_args c.event_args_str = self.eventArgsStr() c.event_param_strs = self.__model_parser.getEventArgsPrototypeStringDict(obj) self.initEventParams(obj, c) def initIncludeName(self, obj, c): """ Generate the header file name """ if self.__config.get("component", "XMLDefaultFileName") == "False": c.include_name = obj.get_xml_filename().split("ComponentAi.xml")[0] else: c.include_name = c.name def initIncludes(self, obj, c): self.initTypeIncludes(obj, c) self.initPortIncludes(obj, c) self.initSerialIncludes(obj, c) self.initIncludeName(obj, c) self.initCompIncludePath(obj, c) def initInternalInterfaces(self, obj, c): c.has_internal_interfaces = len(obj.get_internal_interfaces()) > 0 c.internal_interface_enums = self.__model_parser.getInternalInterfaceEnumList( obj ) c.internal_interfaces = self.__model_parser.getInternalInterfacesList(obj) c.internal_interface_param_strs = ( self.__model_parser.getInternalInterfaceArgsPrototypeStringDict(obj) ) c.internal_interface_args_str_dict = c.internal_interface_param_strs c.internal_interface_args = self.__model_parser.getInternalInterfaceArgsDict( obj ) c.internal_interface_args_str = self.internalInterfaceArgsStr() c.internal_interface_params = self.__model_parser.getInternalInterfaceArgsDict( obj, True ) def initMsgTypes(self, obj, c): """ Construct msg types list """ def f(xxx_todo_changeme2): (instance, type, direction, sync, priority, role) = xxx_todo_changeme2 if self.isInput(direction) and self.isAsync(sync): return instance.upper() + "_" + type.upper() else: return None port_types = self.mapPartial(f, c.ports_sync) def g(xxx_todo_changeme3): (mnemonic, opcodes, sync, priority, full, comment) = xxx_todo_changeme3 if self.isAsync(sync): if len(opcodes) == 1: return f"CMD_{mnemonic.upper()}" else: mlist = [] inst = 0 for opcode in opcodes: mlist.append("CMD_" + mnemonic.upper() + "_%d" % inst) inst += 1 return mlist else: return None cmd_types = self.mapPartial(g, c.commands) def h(xxx_todo_changeme4): (name, priority, full) = xxx_todo_changeme4 return f"INT_IF_{name.upper()}" self.__model_parser.getInternalInterfacesList(obj) interface_types = self.mapPartial(h, c.internal_interfaces) c.msg_types = port_types + cmd_types + interface_types def initParameterParams(self, obj, c): """ Parameter function parameters for code generation """ c.param_valid = ("valid", "Fw::ParamValid", "The parameter valid flag") def initParameters(self, obj, c): c.has_parameters = len(obj.get_parameters()) > 0 c.parameter_enums = self.__model_parser.getParamEnumList(obj) c.parameters = self.__model_parser.getParametersList(obj) self.initParameterParams(obj, c) def initPortFlags(self, obj, c): """ Init port flags """ # Do we have serializable ports? c.has_serializable_ports = self.__model_parser.hasSerializablePort(obj) # Do we have guarded ports? c.has_guarded_ports = obj.get_has_guarded_ports() # Do we need a message size? c.needs_msg_size = False for (name, type, direction, sync, priority, role) in c.ports_sync: if self.isSerial(type) and self.isAsync(sync): c.needs_msg_size = True # Flags for different port categories c.has_ports = len(c.ports) > 0 c.has_input_ports = len(c.input_ports) > 0 c.has_typed_input_ports = len(c.typed_input_ports) > 0 c.has_serial_input_ports = len(c.serial_input_ports) > 0 c.has_output_ports = len(c.output_ports) > 0 c.has_typed_output_ports = len(c.typed_output_ports) > 0 c.has_serial_output_ports = len(c.serial_output_ports) > 0 roles = [ role for name, ptype, sync, priority, role, max_number in c.output_ports ] c.has_time_get = "TimeGet" in roles def initPortIncludes(self, obj, c): c.port_includes = [] for include in self.__model_parser.uniqueList(obj.get_xml_port_files()): c.port_includes.append(include.replace("PortAi.xml", "PortAc.hpp")) def initPortInputTypes(self, obj, c): """ Construct port input type list """ def f(xxx_todo_changeme5): (instance, type, direction, sync, priority, role) = xxx_todo_changeme5 if self.isSerial(type): # No serial ports return None elif not self.isAsync(sync): # Only async input ports return None else: return type l = self.mapPartial(f, c.ports_sync) c.port_input_types = self.__model_parser.uniqueList(l) def initPortLists(self, obj, c): """ Construct port lists """ # Construct (instance, type, direction, role) list c.ports = self.__model_parser.getPortsList(obj) # Construct (instance, type, direction, sync, priority, role, max num) list c.ports_all = self.__model_parser.getPortsListAll(obj) # Construct (instance, type, direction, sync, priority, role) list c.ports_sync = self.__model_parser.getPortsListSync(obj) # Construct (instance, type, direction, max num, role) list c.ports_max_num = self.__model_parser.getPortsListMaxNum(obj) # Construct port input type list self.initPortInputTypes(obj, c) # Construct port type list l = [p.get_type() for p in obj.get_ports()] c.port_types = self.__model_parser.uniqueList(l) # Construct msg type list self.initMsgTypes(obj, c) # Init input ports self.initInputPorts(c) # Init output ports self.initOutputPorts(c) # Init handlers self.initHandlers(c) # Init pre-message hooks self.initPreMessageHooks(c) # Init invocation functions self.initInvocationFunctions(c) # Init message calls self.initMessageCalls(c) def initInputPorts(self, c): """ Init input ports """ # All input ports c.input_ports = [ (instance, type, sync, priority, full, role, max_num) for ( instance, type, direction, sync, priority, full, role, max_num, ) in c.ports_all if direction == "Input" ] # User input ports c.user_input_ports = [ (instance, type, sync, priority, full, role, max_num) for (instance, type, sync, priority, full, role, max_num) in c.input_ports if role is None ] # Serial input ports c.serial_input_ports = [ (instance, sync, priority, full, max_num) for (instance, type, sync, priority, full, role, max_num) in c.input_ports if type == "Serial" ] # Typed input ports c.typed_input_ports = [ (instance, type, sync, priority, full, role, max_num) for (instance, type, sync, priority, full, role, max_num) in c.input_ports if type != "Serial" ] # Typed user input ports c.typed_user_input_ports = [ (instance, type, sync, priority, full, role, max_num) for ( instance, type, sync, priority, full, role, max_num, ) in c.typed_input_ports if role is None ] def initOutputPorts(self, c): """ Init output ports """ # All output ports c.output_ports = [ (instance, type, sync, priority, role, max_num) for ( instance, type, direction, sync, priority, full, role, max_num, ) in c.ports_all if direction == "Output" ] # User output ports c.user_output_ports = [ (instance, type, sync, priority, role, max_num) for (instance, type, sync, priority, role, max_num) in c.output_ports if role is None ] # Typed output ports c.typed_output_ports = [ (instance, type, sync, priority, role, max_num) for (instance, type, sync, priority, role, max_num) in c.output_ports if type != "Serial" ] # Typed user output ports c.typed_user_output_ports = [ (instance, type, sync, priority, role, max_num) for (instance, type, sync, priority, role, max_num) in c.typed_output_ports if role is None ] # Serial output ports c.serial_output_ports = [ (instance, sync, priority, max_num) for (instance, type, sync, priority, role, max_num) in c.output_ports if type == "Serial" ] def initHandlers(self, c): """ Handlers to implement for input ports """ # Typed handlers c.handlers_typed = [ (instance, type, sync, priority, full, role, max_num) for ( instance, type, sync, priority, full, role, max_num, ) in c.typed_input_ports if role != "Cmd" and sync != "model" ] # Serial handlers c.handlers_serial = c.serial_input_ports def initPreMessageHooks(self, c): """ Init Pre-message hooks """ # Pre-message hooks for async input ports c.pre_message_hooks = [ (instance, type, sync, priority, role, max_num) for (instance, type, sync, priority, full, role, max_num) in c.input_ports if role != "Cmd" and sync == "async" ] # Pre-message hooks for typed async input ports c.pre_message_hooks_typed = [ (instance, type, sync, priority, full, role, max_num) for ( instance, type, sync, priority, full, role, max_num, ) in c.typed_input_ports if role != "Cmd" and sync == "async" ] # Pre-message hooks for serial async input ports c.pre_message_hooks_serial = c.serial_input_ports def initInvocationFunctions(self, c): # Invocation functions for output ports c.invocation_functions = [ (instance, type, sync, priority, role, max_num) for (instance, type, sync, priority, role, max_num) in c.output_ports if role is None ] # Invocation functions for typed output ports c.typed_invocation_functions = [ (instance, type, sync, priority, role, max_num) for (instance, type, sync, priority, role, max_num) in c.typed_output_ports if role is None ] # Invocation functions for serial output ports c.serial_invocation_functions = c.serial_output_ports def initMessageCalls(self, c): """ Calls for messages """ # Message calls on typed input ports c.message_calls_typed = [ (instance, type, sync, priority, full, role, max_num) for ( instance, type, sync, priority, full, role, max_num, ) in c.typed_input_ports if role != "Cmd" ] def initPortMaps(self, obj, c): """ Construct port maps """ # Construct map: port type -> namespace c.port_namespaces = self.__model_parser.getPortNamespaceTypeDict(obj) # Construct map: port name -> arg list c.port_args = self.__model_parser.getPortArgsDict(obj) c.port_params = c.port_args # Construct map: port name -> args string c.port_arg_strs = self.__model_parser.getPortArgsCallStringDict(obj) # Construct map: port name -> params string c.port_param_strs = self.__model_parser.getPortArgsPrototypeStringDict(obj) # Construct map: port name -> return type string c.port_return_type_strs = self.__model_parser.getPortReturnDict(obj) def initPortNames(self, obj, c): """ Set special port names """ for name, type, direction, role in c.ports: if role == "Cmd": c.Cmd_Name = name if role == "CmdRegistration": c.CmdReg_Name = name if role == "CmdResponse": c.CmdStatus_Name = name if role == "LogEvent": c.LogEvent_Name = name if role == "LogTextEvent": c.LogTextEvent_Name = name if role == "ParamGet": c.ParamGet_Name = name if role == "ParamSet": c.ParamSet_Name = name if role == "Telemetry": c.Tlm_Name = name if role == "TimeGet": c.Time_Name = name def initPortParams(self, obj, c): """ Port function parameters for code generation """ c.param_portNum = ("portNum", "const NATIVE_INT_TYPE", "The port number", "") c.param_Buffer = ( "Buffer", "Fw::SerializeBufferBase", "The serialization buffer", "&", ) c.param_callComp = ( "callComp", "Fw::PassiveComponentBase", "The component instance", "*const ", ) c.emit_port_params_hpp = self.emitPortParamsHpp c.emit_port_params = c.emit_port_params_hpp c.emit_port_params_cpp = self.emitPortParamsCpp def initPorts(self, obj, c): """ Initialize port info """ self.initPortLists(obj, c) self.initPortMaps(obj, c) self.initPortFlags(obj, c) self.initPortNames(obj, c) self.initPortParams(obj, c) def initPreamble(self, obj, c): d = datetime.datetime.now() c.date = d.strftime("%A, %d %B %Y") c.kind = obj.get_kind() c.modeler = obj.get_modeler() c.name = obj.get_name c.component_base = c.name() + "ComponentBase" if obj.get_namespace() is None: c.namespace_list = None else: c.namespace_list = obj.get_namespace().split("::") c.user = getuser() c.args_string = self.argsString c.doxygen_pre_comment = self.doxygenPreComment c.doxygen_post_comment = self.doxygenPostComment c.is_primitive_type = self.isPrimitiveType c.emit_non_port_params_hpp = self.emitNonPortParamsHpp c.emit_non_port_params = c.emit_non_port_params_hpp c.emit_non_port_params_cpp = self.emitNonPortParamsCpp c.param_compName = ("compName", "const char *const", "The component name") c.param_instance = ("instance", "const NATIVE_INT_TYPE", "The instance number") c.param_instance_default_zero = ( "instance = 0", "const NATIVE_INT_TYPE", "The instance number", ) c.param_msgSize = ("msgSize", "const NATIVE_INT_TYPE", "The message size") c.param_queueDepth = ("queueDepth", "const NATIVE_INT_TYPE", "The queue depth") def initSerialIncludes(self, obj, c): """ Include any headers for channel/parameter serializable includes """ ser_includes = self.__model_parser.uniqueList(obj.get_xml_serializable_files()) s_includes = [sinc.replace("Ai.xml", "Ac.hpp") for sinc in ser_includes] c.ser_includes = s_includes def initTelemetry(self, obj, c): """ Init telemetry info """ c.has_telemetry = len(obj.get_channels()) > 0 c.has_channels = c.has_telemetry c.channel_enums = self.__model_parser.getTelemEnumList(obj) c.channels = self.__model_parser.getChannelsList(obj) self.initTelemetryParams(obj, c) def initTelemetryParams(self, obj, c): """ Telemetry function parameters for code generation """ c.param_tlm_id = ("id", "const FwChanIdType", "The channel ID") c.param_val = ("val", "Fw::TlmBuffer&", "The channel value") def initTypeIncludes(self, obj, c): type_includes = [ e.replace("Ai.xml", "Ac.hpp") for e in obj.get_included_enums() ] for p in obj.get_ports(): type_includes = type_includes + p.get_includes() c.types_includes = self.__model_parser.uniqueList(type_includes) c.c_includes = obj.get_c_header_files() if False in [x[-3:] == "hpp" or x[-1:] == "h" for x in c.c_includes]: PRINT.info( "ERROR: Only .hpp or .h files can be given within <include_header> tag!!!" ) sys.exit(-1) def internalInterfaceArgsStr(self): """ Make a list of command args into a string """ def f(lst): def g(xxx_todo_changeme1): (name, a, b, c) = xxx_todo_changeme1 return name return self.argsString(list(map(g, lst))) return f def isPrimitiveType(self, type): return type in [ "I8", "U8", "I16", "U16", "I32", "U32", "I64", "U64", "F32", "F64", "bool", ] def mapPartial(self, f, l): """ Map partial function f over list l """ result = [] for x in l: y = f(x) if y is not None: # check if list if isinstance(y, list): result += y else: result += [y] return result def namespaceVisit(self, obj): pass def openFile(self, filename): """ Open the file for writing """ DEBUG.info("Open file: %s" % filename) self.__fp = open(filename, "w") if self.__fp is None: raise Exception("Could not open file %s") % filename DEBUG.info("Completed") def initFilesVisit(self, obj): filename = self.buildFileName(obj) self.openFile(filename) def paramStrsCpp(self, param): """ Get the strings for a function parameter in a .cpp file """ name, type = param[:2] param_str = "{} {}".format(type, name) return param_str, "" def paramStrsHpp(self, param): """ Get the strings for a function parameter in a .hpp file """ name, type, comment = param[:3] param_str = "{} {}".format(type, name) comment_str = " " + self.doxygenPostComment(comment) return param_str, comment_str def portParamStrsCpp(self, param): """ Get the strings for a port function parameter in a .cpp file """ name, type, comment, modifier = param[:4] param_str = "{} {}{}".format(type, modifier, name) return param_str, "" def portParamStrsHpp(self, param): """ Get the strings for a port function parameter in a .hpp file """ name, type, comment, modifier = param[:4] param_str = "{} {}{}".format(type, modifier, name) comment_str = " " + self.doxygenPostComment(comment) return param_str, comment_str def privateVisit(self, obj): pass def protectedVisit(self, obj): pass def publicVisit(self, obj): pass
33.669197
99
0.557807
bcc8c1ed778a0e12690192b491efa6d7a64e2b09
7,969
py
Python
scripts/hapbuilder.py
openharmony-gitee-mirror/build
2eee03d63d877a247e6634438239b38aaa7d3ba6
[ "Apache-2.0" ]
null
null
null
scripts/hapbuilder.py
openharmony-gitee-mirror/build
2eee03d63d877a247e6634438239b38aaa7d3ba6
[ "Apache-2.0" ]
14
2021-09-07T08:39:43.000Z
2021-09-17T08:50:23.000Z
scripts/hapbuilder.py
openharmony-gitee-mirror/build
2eee03d63d877a247e6634438239b38aaa7d3ba6
[ "Apache-2.0" ]
1
2021-09-07T06:19:48.000Z
2021-09-07T06:19:48.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2021 Huawei Device Co., Ltd. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import optparse import subprocess import sys import shutil import os import tempfile import json from util import build_utils # noqa: E402 def sign_hap(hapsigner, private_key_path, sign_algo, certificate_profile, keystore_path, keystorepasswd, keyalias, certificate_file, unsigned_hap_path, signed_hap_path): cmd = ['java', '-jar', hapsigner, 'sign'] cmd.extend(['-mode', 'localjks']) cmd.extend(['-signAlg', sign_algo]) cmd.extend(['-privatekey', private_key_path]) cmd.extend(['-inputFile', unsigned_hap_path]) cmd.extend(['-outputFile', signed_hap_path]) cmd.extend(['-profile', certificate_profile]) cmd.extend(['-keystore', keystore_path]) cmd.extend(['-keystorepasswd', keystorepasswd]) cmd.extend(['-keyaliaspasswd', keyalias]) cmd.extend(['-certpath', certificate_file]) cmd.extend(['-profileSigned', '1']) child = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = child.communicate() if child.returncode: print(stdout.decode(), stderr.decode()) raise Exception("Failed to sign hap") def add_resources(packaged_resources, package_dir, packing_cmd): if packaged_resources: build_utils.extract_all(packaged_resources, package_dir, no_clobber=False) index_file_path = os.path.join(package_dir, 'resources.index') if os.path.exists(index_file_path): packing_cmd.extend(['--index-path', index_file_path]) packing_cmd.extend( ['--res-path', os.path.join(package_dir, 'resources')]) def add_assets(packaged_js_assets, assets, package_dir, packing_cmd): assets_dir = os.path.join(package_dir, 'assets') if packaged_js_assets: build_utils.extract_all(packaged_js_assets, package_dir, no_clobber=False) if assets: if not os.path.exists(assets_dir): os.mkdir(assets_dir) for item in assets: if os.path.isfile(item): shutil.copyfile( item, os.path.join(assets_dir, os.path.basename(item))) elif os.path.isdir(item): shutil.copytree( item, os.path.join(assets_dir, os.path.basename(item))) if os.path.exists(assets_dir) and len(os.listdir(assets_dir)) != 0: packing_cmd.extend(['--assets-path', assets_dir]) def get_ark_toolchain_version(options): cmd = [options.nodejs_path, options.js2abc_js, '--bc-version'] return build_utils.check_output(cmd).strip('\n') def tweak_hap_profile(options, package_dir): hap_profile = os.path.join(package_dir, 'config.json') if not os.path.exists(hap_profile): raise Exception('Error: config.json of hap file not exists') config = {} with open(hap_profile, 'r') as fileobj: config = json.load(fileobj) config['module']['distro']['virtualMachine'] = 'ark{}'.format( get_ark_toolchain_version(options)) build_utils.write_json(config, hap_profile) def create_hap(options, signed_hap): with build_utils.temp_dir() as package_dir, tempfile.NamedTemporaryFile( suffix='.hap') as output: packing_cmd = ['java', '-jar', options.hap_packing_tool] packing_cmd.extend( ['--mode', 'hap', '--force', 'true', '--out-path', output.name]) hap_profile_path = os.path.join(package_dir, os.path.basename(options.hap_profile)) shutil.copy(options.hap_profile, hap_profile_path) packing_cmd.extend(['--json-path', hap_profile_path]) add_assets(options.packaged_js_assets, options.assets, package_dir, packing_cmd) add_resources(options.packaged_resources, package_dir, packing_cmd) if options.js2abc: tweak_hap_profile(options, package_dir) if options.dso: lib_path = os.path.join(package_dir, "lib") os.mkdir(lib_path) for dso in sorted(options.dso): shutil.copy(dso, lib_path) packing_cmd.extend(['--lib-path', lib_path]) build_utils.check_output(packing_cmd) sign_hap(options.hapsigner, options.private_key_path, options.sign_algo, options.certificate_profile, options.keystore_path, options.keystorepasswd, options.keyalias, options.certificate_file, output.name, signed_hap) def parse_args(args): args = build_utils.expand_file_args(args) parser = optparse.OptionParser() build_utils.add_depfile_option(parser) parser.add_option('--hap-path', help='path to output hap') parser.add_option('--hapsigner', help='path to signer') parser.add_option('--assets', help='path to assets') parser.add_option('--dso', action="append", help='path to dynamic shared objects') parser.add_option('--hap-profile', help='path to hap profile') parser.add_option('--nodejs-path', help='path to node') parser.add_option('--js2abc-js', help='path to ts2abc.js') parser.add_option('--js2abc', action='store_true', default=False, help='whether to transform js to ark bytecode') parser.add_option('--hap-packing-tool', help='path to hap packing tool') parser.add_option('--private-key-path', help='path to private key') parser.add_option('--sign-algo', help='signature algorithm') parser.add_option('--certificate-profile', help='path to certificate profile') parser.add_option('--keyalias', help='keyalias') parser.add_option('--keystore-path', help='path to keystore') parser.add_option('--keystorepasswd', help='password of keystore') parser.add_option('--certificate-file', help='path to certificate file') parser.add_option('--packaged-resources', help='path to packaged resources') parser.add_option('--packaged-js-assets', help='path to packaged js assets') options, _ = parser.parse_args(args) if options.assets: options.assets = build_utils.parse_gn_list(options.assets) return options def main(args): options = parse_args(args) inputs = [ options.hap_profile, options.packaged_js_assets, options.packaged_resources, options.certificate_file, options.keystore_path, options.certificate_profile ] depfiles = [] for dire in options.assets: depfiles += (build_utils.get_all_files(dire)) if options.dso: depfiles.extend(options.dso) build_utils.call_and_write_depfile_if_stale( lambda: create_hap(options, options.hap_path), options, depfile_deps=depfiles, input_paths=inputs + depfiles, input_strings=[ options.keystorepasswd, options.keyalias, options.sign_algo, options.private_key_path ], output_paths=([options.hap_path]), force=False, add_pydeps=False) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
39.646766
78
0.642364
f3ed016b0041b597c6087389e18f02754883a817
192
py
Python
app/admin.py
nyagajr/neighborhood
98955d9c0df46b15d39e861a6eb22655990d7769
[ "Unlicense" ]
null
null
null
app/admin.py
nyagajr/neighborhood
98955d9c0df46b15d39e861a6eb22655990d7769
[ "Unlicense" ]
null
null
null
app/admin.py
nyagajr/neighborhood
98955d9c0df46b15d39e861a6eb22655990d7769
[ "Unlicense" ]
null
null
null
from django.contrib import admin from .models import Profile, Hood, Business # Register your models here. admin.site.register(Profile) admin.site.register(Hood) admin.site.register(Business)
24
43
0.807292
041dea46e60d90c95da8516067595ebea21277ff
2,852
py
Python
opacus/grad_sample/utils.py
parkbeomsik/opacus-reweight
5c58867a0a405382b107d2d0c1c498a3c98e85b4
[ "Apache-2.0" ]
null
null
null
opacus/grad_sample/utils.py
parkbeomsik/opacus-reweight
5c58867a0a405382b107d2d0c1c498a3c98e85b4
[ "Apache-2.0" ]
null
null
null
opacus/grad_sample/utils.py
parkbeomsik/opacus-reweight
5c58867a0a405382b107d2d0c1c498a3c98e85b4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from opacus.utils.cuda_timer import cuda_timer from typing import Sequence, Union import torch import torch.nn as nn from .grad_sample_module import GradSampleModule def register_grad_sampler(target_class_or_classes: Union[type, Sequence[type]]): """ Registers the decorated function as the ``grad_sampler`` of ``target_class_or_classes``, which is the function that will be invoked every time you want to compute a per-sample gradient of ``target_class_or_classes``. The signature of every grad_sampler is always the same: >>> @register_grad_sampler(nn.MyCustomClass) >>> def compute_grad_sample(module, activations, backprops): >>> pass It may help you to take a look at the existing grad_samplers inside Opacus, under ``opacus.grad_sample.`` """ def decorator(f): target_classes = ( target_class_or_classes if isinstance(target_class_or_classes, Sequence) else [target_class_or_classes] ) for target_class in target_classes: GradSampleModule.GRAD_SAMPLERS[target_class] = f return f return decorator def create_or_extend_grad_sample( param: torch.Tensor, grad_sample: torch.Tensor, batch_dim: int ) -> None: """ Creates a ``grad_sample`` attribute in the given parameter, or appends to it if the ``grad_sample`` attribute already exists. Args: param: Parameter to which ``grad_sample`` will be added grad_sample: Per-sample gradients tensor. Must be of the same shape as ``param`` with extra batch dimension batch_dim: Position of the batch dimension in the shape of ``grad_sample`` """ if hasattr(param, "grad_sample"): param.grad_sample = torch.cat((param.grad_sample, grad_sample), batch_dim) else: param.grad_sample = grad_sample def create_or_accumulate_grad_sample( param: torch.Tensor, grad_sample: torch.Tensor, layer: nn.Module ) -> None: """ Creates a ``grad_sample`` attribute in the given parameter, or adds to it if the ``grad_sample`` attribute already exists. Args: param: Parameter to which ``grad_sample`` will be added grad_sample: Per-sample gradients tensor. Must be of the same shape as ``param`` with extra batch dimension """ if hasattr(param, "grad_sample"): param.grad_sample[: grad_sample.shape[0]] += grad_sample else: max_batch_len = layer.max_batch_len param.grad_sample = torch.zeros( torch.Size([max_batch_len]) + grad_sample.shape[1:], device=grad_sample.device, dtype=grad_sample.dtype, ) param.grad_sample[: grad_sample.shape[0]] = grad_sample
33.952381
109
0.683731
bade8151a2401f61492ff799c4a08828923cd11e
4,748
py
Python
python/perspective/bench/stresstest/server/server.py
gidsg/perspective
337ee8ef696b41bbfc83f24451af862166d3b24e
[ "Apache-2.0" ]
null
null
null
python/perspective/bench/stresstest/server/server.py
gidsg/perspective
337ee8ef696b41bbfc83f24451af862166d3b24e
[ "Apache-2.0" ]
null
null
null
python/perspective/bench/stresstest/server/server.py
gidsg/perspective
337ee8ef696b41bbfc83f24451af862166d3b24e
[ "Apache-2.0" ]
null
null
null
################################################################################ # # Copyright (c) 2019, the Perspective Authors. # # This file is part of the Perspective library, distributed under the terms of # the Apache License 2.0. The full license can be found in the LICENSE file. # import logging import argparse import os import random import tornado import perspective from manager_telemetry import PerspectiveManagerWithTelemetry from tornado_handler_telemetry import PerspectiveTornadoHandlerWithTelemetry PARSER = argparse.ArgumentParser( description="A perspective-python server configured to provide telemetry for use with stress testing." ) PARSER.add_argument( "--table_size", dest="table_size", default=10000, type=int, help="The row size of the initial table. Defaults to 10000 rows.", ) PARSER.add_argument( "--update_size", dest="update_size", type=int, default=50, help="The row size of each update. Defaults to 50 rows.", ) PARSER.add_argument( "--update_rate", dest="update_rate", type=float, default=500, help="The frequency of each update in milliseconds. Defaults to 500 milliseconds.", ) PARSER.add_argument( "--port", dest="port", type=float, default=8888, help="A port to host the Tornado server on. Defaults to 8888.", ) HERE = os.path.abspath(os.path.dirname(__file__)) TABLE = None VIEW = None MANAGER = PerspectiveManagerWithTelemetry() with open( os.path.join( HERE, "..", "..", "..", "..", "..", "node_modules", "superstore-arrow", "superstore.arrow", ), "rb", ) as arrow: TABLE = perspective.Table(arrow.read(), index="Row ID") VIEW = TABLE.view() def get_data(update_size): """Return `update_size` random rows from the dataset, with their Row IDs tweaked to be half appends and half partial updates.""" size = TABLE.size() start = random.randint(0, size - update_size - 1) end = start + update_size data = VIEW.to_dict(start_row=start, end_row=end) # Generate some random row IDs data["Row ID"] = [ random.randint(size, size + update_size) if i % 2 else data["Row ID"][i] for i in range(len(data["Row ID"])) ] # And other randomized values data["Sales"] = [ random.randint(10, 1000) * random.random() for i in range(len(data["Sales"])) ] data["Profit"] = [ random.randint(10, 100) * random.random() for i in range(len(data["Profit"])) ] return data def make_app(table_size, update_size, update_rate): """Create a Tornado application for the webserver.""" MANAGER.host_table("table", TABLE) MANAGER.host_view("view", VIEW) if table_size is not None and TABLE.size() < table_size: current_size = TABLE.size() while current_size < table_size: logging.warning( "Current table size %d, requested table size %d - inflating", TABLE.size(), table_size, ) diff = table_size - TABLE.size() data = [] # less than 2x table size if diff < TABLE.size(): data = VIEW.to_dict(end_row=diff) else: data = VIEW.to_dict() data["Row ID"] = [i for i in range(TABLE.size() + 1, table_size)] TABLE.update(data) current_size = TABLE.size() logging.info("Table size: %d", TABLE.size()) # Update the table with `update_size` rows every `update_rate` milliseconds def updater(): TABLE.update(get_data(update_size)) callback = tornado.ioloop.PeriodicCallback( callback=updater, callback_time=update_rate ) callback.start() return tornado.web.Application( [ ( r"/", PerspectiveTornadoHandlerWithTelemetry, {"manager": MANAGER, "check_origin": True}, ) ] ) def start(port, table_size, update_size, update_rate): """Start the webserver at the given port.""" app = make_app(table_size, update_size, update_rate) app.listen(port) logging.critical("Listening on http://localhost:{}".format(port)) loop = tornado.ioloop.IOLoop.current() loop.start() if __name__ == "__main__": logging.basicConfig(level=logging.INFO) args = PARSER.parse_args() logging.info( "Running server on port %d - Hosting Table of size %d, updating with %d rows every %2f milliseconds", args.port, args.table_size, args.update_size, args.update_rate, ) start(args.port, args.table_size, args.update_size, args.update_rate)
27.445087
109
0.614785
e540b4d652ce323a30c353df7781c9ba61e8af23
987
py
Python
src/glod/api/transaction_node.py
gordon-elliott/glod
a381e21455d05d9c005942a3dee4ac67e10f366a
[ "MIT" ]
null
null
null
src/glod/api/transaction_node.py
gordon-elliott/glod
a381e21455d05d9c005942a3dee4ac67e10f366a
[ "MIT" ]
1
2021-03-10T16:48:34.000Z
2021-03-10T16:48:34.000Z
src/glod/api/transaction_node.py
gordon-elliott/glod
a381e21455d05d9c005942a3dee4ac67e10f366a
[ "MIT" ]
null
null
null
__copyright__ = 'Copyright(c) Gordon Elliott 2018' """ """ from a_tuin.api import ( node_class, node_connection_field, get_update_mutation, get_create_mutation, get_local_fields ) from glod.api.transaction_leaf import TransactionLeaf from glod.db.transaction import Transaction, TransactionQuery transaction_fields = get_local_fields(Transaction) TransactionNode = node_class(Transaction.__name__, TransactionLeaf, transaction_fields) transactions_connection_field = node_connection_field( Transaction, TransactionQuery, TransactionNode, description='List of all transactions' ) transactions_options_field = node_connection_field( Transaction, TransactionQuery, TransactionLeaf, description='List of all transactions for Select fields' ) CreateTransactionLeaf = get_create_mutation(Transaction, transaction_fields, TransactionLeaf) UpdateTransactionLeaf = get_update_mutation(Transaction, transaction_fields, TransactionLeaf)
26.675676
93
0.806484
f2f4e10b76d3f2a841b89e24f26a4202e4aefb87
21
py
Python
Unidad 2/packages/extra/good/beta.py
angelxehg/utzac-ppy
fb88bcc661518bb35c08a102a67c20d0659f71db
[ "MIT" ]
null
null
null
Unidad 2/packages/extra/good/beta.py
angelxehg/utzac-ppy
fb88bcc661518bb35c08a102a67c20d0659f71db
[ "MIT" ]
null
null
null
Unidad 2/packages/extra/good/beta.py
angelxehg/utzac-ppy
fb88bcc661518bb35c08a102a67c20d0659f71db
[ "MIT" ]
null
null
null
def funB(): pass
7
11
0.52381
fe3a25868d20c9588a6474c66f084dcaba0adaf4
1,044
py
Python
test/test_resources.py
luca-penasa/circle-craters
62881f7fa7f032c8377dee130598ec7a93ccdae3
[ "BSD-3-Clause" ]
1
2021-02-01T13:59:29.000Z
2021-02-01T13:59:29.000Z
test/test_resources.py
europlanet-gmap/circle-craters
62881f7fa7f032c8377dee130598ec7a93ccdae3
[ "BSD-3-Clause" ]
null
null
null
test/test_resources.py
europlanet-gmap/circle-craters
62881f7fa7f032c8377dee130598ec7a93ccdae3
[ "BSD-3-Clause" ]
1
2020-10-21T13:50:34.000Z
2020-10-21T13:50:34.000Z
# coding=utf-8 """Resources test. .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ __author__ = 'braden.sarah@gmail.com' __date__ = '2014-12-31' __copyright__ = 'Copyright 2014, Sarah E Braden' import unittest from qgis.PyQt.QtGui import QIcon class CircleCratersDialogTest(unittest.TestCase): """Test rerources work.""" def setUp(self): """Runs before each test.""" pass def tearDown(self): """Runs after each test.""" pass def test_icon_png(self): """Test we can click OK.""" path = ':/plugins/CircleCraters/icon.png' icon = QIcon(path) self.assertFalse(icon.isNull()) if __name__ == "__main__": suite = unittest.makeSuite(CircleCratersResourcesTest) runner = unittest.TextTestRunner(verbosity=2) runner.run(suite)
23.2
78
0.668582
87b48d242faa2f1c7c0757c3f07caa97b9a5fa33
852
py
Python
benchmarks/parse_unsat.py
guluchen/z3
f96ae3a0f0d7b9fa7cc5cbd9ad138eda2208ca4d
[ "MIT" ]
3
2018-11-01T06:58:00.000Z
2019-04-25T13:57:59.000Z
benchmarks/parse_unsat.py
PhucVH888/z3
f7402f8b6134e366a2060571c5176c0e6ea34ddc
[ "MIT" ]
null
null
null
benchmarks/parse_unsat.py
PhucVH888/z3
f7402f8b6134e366a2060571c5176c0e6ea34ddc
[ "MIT" ]
4
2019-07-19T07:17:12.000Z
2021-06-21T17:27:14.000Z
#!/usr/bin/env python3 import sys import os _base_dir = os.path.dirname(os.path.realpath(__file__)) def main(path): files = sorted([os.path.join(root, file) for root, dirs, files in os.walk(path) for file in files]) cmd = "cvc4 --tlimit=15000 --dump-unsat-cores-full --lang smt --strings-exp --quiet " for f in files: res = os.popen(cmd + f).readlines() if "unsat" in res[0]: save = False for r in res: if "int.to.re" in r or "str.to.int" in r: save = True print(f) break if not save: print(f + " neg") os.system("rm " + f) else: print(f + " " + res[0].replace("\n", "")) if __name__ == '__main__': main(sys.argv[1])
28.4
89
0.4777
84cb78ab31fa4abc9250e6ac055f33d074da0f0e
2,164
py
Python
share/qt/extract_strings_qt.py
swampcoin/AeriumX
76c4340a9e16ec326b20c4d7a07be88d84ee97e3
[ "MIT" ]
5
2018-06-10T21:32:12.000Z
2019-01-13T14:47:12.000Z
share/qt/extract_strings_qt.py
swampcoin/AeriumX
76c4340a9e16ec326b20c4d7a07be88d84ee97e3
[ "MIT" ]
1
2019-07-07T08:25:21.000Z
2019-07-07T08:25:21.000Z
share/qt/extract_strings_qt.py
swampcoin/AeriumX
76c4340a9e16ec326b20c4d7a07be88d84ee97e3
[ "MIT" ]
13
2018-06-16T18:01:29.000Z
2020-08-02T16:36:33.000Z
#!/usr/bin/python ''' Extract _("...") strings for translation and convert to Qt stringdefs so that they can be picked up by Qt linguist. ''' from __future__ import division,print_function,unicode_literals from subprocess import Popen, PIPE import glob import operator import os import sys OUT_CPP="qt/aeriumxstrings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = sys.argv[1:] # xgettext -n --keyword=_ $FILES XGETTEXT=os.getenv('XGETTEXT', 'xgettext') if not XGETTEXT: print('Cannot extract strings: xgettext utility is not installed or not configured.',file=sys.stderr) print('Please install package "gettext" and re-run \'./configure\'.',file=sys.stderr) exit(1) child = Popen([XGETTEXT,'--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out.decode('utf-8')) f = open(OUT_CPP, 'w') f.write(""" #include <QtGlobal> // Automatically generated by extract_strings.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *aeriumx_strings[] = {\n') messages.sort(key=operator.itemgetter(0)) for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("aeriumx-core", %s),\n' % ('\n'.join(msgid))) f.write('};\n') f.close()
25.761905
105
0.619686
57e5f53c71ff2d1281ad3f48215d660ced32d547
2,078
py
Python
tests/integration/mci/test_happy_path.py
MebinAbraham/eq-survey-runner
f8bb059bca19371043d79abeefd5d1e6c0e82e79
[ "MIT" ]
null
null
null
tests/integration/mci/test_happy_path.py
MebinAbraham/eq-survey-runner
f8bb059bca19371043d79abeefd5d1e6c0e82e79
[ "MIT" ]
null
null
null
tests/integration/mci/test_happy_path.py
MebinAbraham/eq-survey-runner
f8bb059bca19371043d79abeefd5d1e6c0e82e79
[ "MIT" ]
null
null
null
from tests.integration.integration_test_case import IntegrationTestCase class HappyPathHelperMixin(): def _happy_path(self, form_type_id, eq_id): self.launchSurvey(eq_id, form_type_id) # We are on the introduction page self.assertInBody('>Start survey<') self.assertInBody('Monthly Business Survey - Retail Sales Index') # We proceed to the questionnaire self.post(action='start_questionnaire') # We are in the Questionnaire self.assertInBody('>Monthly Business Survey - Retail Sales Index</') self.assertInBody('What are the dates of the sales period you are reporting for?') self.assertInBody('>Save and continue<') # check with have some guidance self.assertInBody('alcoholic drink') # We fill in our answers form_data = { # Start Date 'period-from-day': '01', 'period-from-month': '4', 'period-from-year': '2016', # End Date 'period-to-day': '30', 'period-to-month': '4', 'period-to-year': '2016', # Total Turnover 'total-retail-turnover': '100000', } # We submit the form self.post(form_data) # There are no validation errors self.assertInUrl('summary') # We are on the review answers page self.assertInBody('>Monthly Business Survey - Retail Sales Index</') self.assertInBody('>Check your answers and submit<') self.assertInBody('You can check your answers below') self.assertInBody('>Submit answers<') # Submit answers self.post(action=None) # We are on the thank you page self.assertRegexPage('(?s)Monthly Business Survey - Retail Sales Index.*?Monthly Business Survey - Retail Sales Index') class TestHappyPath(IntegrationTestCase, HappyPathHelperMixin): def test_happy_path_203(self): self._happy_path('0203', 'test') def test_happy_path_205(self): self._happy_path('0205', 'test')
34.065574
127
0.625602
e448d02d4af0a4f4d45bc79ec4e176efde0694a4
398
py
Python
chat/admin.py
Pygmy-Final/social-club-backend
ceb2d4ee879900597cf65685f7119c1f03e92637
[ "MIT" ]
null
null
null
chat/admin.py
Pygmy-Final/social-club-backend
ceb2d4ee879900597cf65685f7119c1f03e92637
[ "MIT" ]
null
null
null
chat/admin.py
Pygmy-Final/social-club-backend
ceb2d4ee879900597cf65685f7119c1f03e92637
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Message class MessageAdmin(admin.ModelAdmin): list_display = ['message', 'seen','sender', 'receiver', 'date_created'] model = Message def save_model(self, request, obj, form, change): if obj.receiver != request.user: obj.sender = request.user obj.save() admin.site.register(Message)
30.615385
75
0.643216
66734461d376307888a65124e6a6ae2d98544fbe
10,134
py
Python
python/kfserving/kfserving/api/creds_utils.py
titoeb/kfserving
b072a76842b57e904dbdf46a136474a22051500d
[ "Apache-2.0" ]
6
2022-02-15T21:54:19.000Z
2022-02-16T21:18:54.000Z
python/kfserving/kfserving/api/creds_utils.py
titoeb/kfserving
b072a76842b57e904dbdf46a136474a22051500d
[ "Apache-2.0" ]
7
2021-08-31T23:55:06.000Z
2022-03-02T11:34:58.000Z
python/kfserving/kfserving/api/creds_utils.py
titoeb/kfserving
b072a76842b57e904dbdf46a136474a22051500d
[ "Apache-2.0" ]
2
2021-12-16T10:32:07.000Z
2022-02-28T17:08:52.000Z
# Copyright 2019 The Kubeflow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import json import configparser from os.path import expanduser from kubernetes import client from ..constants import constants logger = logging.getLogger(__name__) def set_gcs_credentials(namespace, credentials_file, service_account): """ Set GCS Credentails (secret and service account) with credentials file. Args: namespace(str): The kubernetes namespace. credentials_file(str): The path for the gcs credentials file. service_account(str): The name of service account. If the service_account is specified, will attach created secret with the service account, otherwise will create new one and attach with created secret. """ with open(expanduser(credentials_file)) as f: gcs_creds_content = f.read() # Try to get GCS creds file name from configmap, set default value then if cannot. gcs_creds_file_name = get_creds_name_from_config_map( 'gcsCredentialFileName') if not gcs_creds_file_name: gcs_creds_file_name = constants.GCS_CREDS_FILE_DEFAULT_NAME string_data = {gcs_creds_file_name: gcs_creds_content} secret_name = create_secret( namespace=namespace, string_data=string_data) set_service_account(namespace=namespace, service_account=service_account, secret_name=secret_name) def set_s3_credentials(namespace, credentials_file, service_account, s3_profile='default', # pylint: disable=too-many-locals,too-many-arguments s3_endpoint=None, s3_region=None, s3_use_https=None, s3_verify_ssl=None): # pylint: disable=unused-argument """ Set S3 Credentails (secret and service account). Args: namespace(str): The kubernetes namespace. credentials_file(str): The path for the S3 credentials file. s3_profile(str): The profile for S3, default value is 'default'. service_account(str): The name of service account(Optional). If the service_account is specified, will attach created secret with the service account, otherwise will create new one and attach with created secret. s3_endpoint(str): S3 settings variable S3_ENDPOINT. s3_region(str): S3 settings variable AWS_REGION. s3_use_https(str): S3 settings variable S3_USE_HTTPS. s3_verify_ssl(str): S3 settings variable S3_VERIFY_SSL. """ config = configparser.ConfigParser() config.read([expanduser(credentials_file)]) s3_access_key_id = config.get(s3_profile, 'aws_access_key_id') s3_secret_access_key = config.get( s3_profile, 'aws_secret_access_key') # Try to get S3 creds name from configmap, set default value then if cannot. s3_access_key_id_name = get_creds_name_from_config_map( 's3AccessKeyIDName') if not s3_access_key_id_name: s3_access_key_id_name = constants.S3_ACCESS_KEY_ID_DEFAULT_NAME s3_secret_access_key_name = get_creds_name_from_config_map( 's3SecretAccessKeyName') if not s3_secret_access_key_name: s3_secret_access_key_name = constants.S3_SECRET_ACCESS_KEY_DEFAULT_NAME data = { s3_access_key_id_name: s3_access_key_id, s3_secret_access_key_name: s3_secret_access_key, } s3_cred_sets = { 's3_endpoint': constants.KFSERVING_GROUP + "/s3-endpoint", 's3_region': constants.KFSERVING_GROUP + "/s3-region", 's3_use_https': constants.KFSERVING_GROUP + "/s3-usehttps", 's3_verify_ssl': constants.KFSERVING_GROUP + "/s3-verifyssl", } s3_annotations = {} for key, value in s3_cred_sets.items(): arg = vars()[key] if arg is not None: s3_annotations.update({value: arg}) secret_name = create_secret( namespace=namespace, annotations=s3_annotations, data=data) set_service_account(namespace=namespace, service_account=service_account, secret_name=secret_name) def set_azure_credentials(namespace, credentials_file, service_account): """ Set Azure Credentails (secret and service account) with credentials file. Args: namespace(str): The kubernetes namespace. credentials_file(str): The path for the Azure credentials file. service_account(str): The name of service account. If the service_account is specified, will attach created secret with the service account, otherwise will create new one and attach with created secret. """ with open(expanduser(credentials_file)) as azure_creds_file: azure_creds = json.load(azure_creds_file) data = { 'AZ_CLIENT_ID': azure_creds['clientId'], 'AZ_CLIENT_SECRET': azure_creds['clientSecret'], 'AZ_SUBSCRIPTION_ID': azure_creds['subscriptionId'], 'AZ_TENANT_ID': azure_creds['tenantId'], } secret_name = create_secret( namespace=namespace, data=data) set_service_account(namespace=namespace, service_account=service_account, secret_name=secret_name) def create_secret(namespace, annotations=None, data=None, string_data=None): 'Create namespaced secret, and return the secret name.' try: created_secret = client.CoreV1Api().create_namespaced_secret( namespace, client.V1Secret( api_version='v1', kind='Secret', metadata=client.V1ObjectMeta( generate_name=constants.DEFAULT_SECRET_NAME, annotations=annotations), data=data, string_data=string_data)) except client.rest.ApiException as e: raise RuntimeError( "Exception when calling CoreV1Api->create_namespaced_secret: %s\n" % e) secret_name = created_secret.metadata.name logger.info('Created Secret: %s in namespace %s', secret_name, namespace) return secret_name def set_service_account(namespace, service_account, secret_name): """ Set service account, create if service_account does not exist, otherwise patch it. """ if check_sa_exists(namespace=namespace, service_account=service_account): patch_service_account(secret_name=secret_name, namespace=namespace, sa_name=service_account) else: create_service_account(secret_name=secret_name, namespace=namespace, sa_name=service_account) def check_sa_exists(namespace, service_account): """ Check if the specified service account existing. """ sa_list = client.CoreV1Api().list_namespaced_service_account(namespace=namespace) sa_name_list = [sa.metadata.name for sa in sa_list.items] if service_account in sa_name_list: return True return False def create_service_account(secret_name, namespace, sa_name): """ Create namespaced service account, and return the service account name """ try: client.CoreV1Api().create_namespaced_service_account( namespace, client.V1ServiceAccount( metadata=client.V1ObjectMeta( name=sa_name ), secrets=[client.V1ObjectReference( kind='Secret', name=secret_name)])) except client.rest.ApiException as e: raise RuntimeError( "Exception when calling CoreV1Api->create_namespaced_service_account: %s\n" % e) logger.info('Created Service account: %s in namespace %s', sa_name, namespace) def patch_service_account(secret_name, namespace, sa_name): """ Patch namespaced service account to attach with created secret. """ try: client.CoreV1Api().patch_namespaced_service_account( sa_name, namespace, client.V1ServiceAccount( secrets=[client.V1ObjectReference( kind='Secret', name=secret_name)])) except client.rest.ApiException as e: raise RuntimeError( "Exception when calling CoreV1Api->patch_namespaced_service_account: %s\n" % e) logger.info('Pacthed Service account: %s in namespace %s', sa_name, namespace) def get_creds_name_from_config_map(creds): """ Get the credentials name from inferenceservice config map. """ try: isvc_config_map = client.CoreV1Api().read_namespaced_config_map( constants.INFERENCESERVICE_CONFIG_MAP_NAME, constants.INFERENCESERVICE_SYSTEM_NAMESPACE) except client.rest.ApiException: logging.warning('Cannot get configmap %s in namespace %s.', constants.INFERENCESERVICE_CONFIG_MAP_NAME, constants.INFERENCESERVICE_SYSTEM_NAMESPACE) return None isvc_creds_str = isvc_config_map.data['credentials'] isvc_creds_json = json.loads(isvc_creds_str) if creds == 'gcsCredentialFileName': return isvc_creds_json['gcs']['gcsCredentialFileName'] elif creds == 's3AccessKeyIDName': return isvc_creds_json['s3']['s3AccessKeyIDName'] elif creds == 's3SecretAccessKeyName': return isvc_creds_json['s3']['s3SecretAccessKeyName'] else: raise RuntimeError("Unknown credentials.")
38.679389
98
0.67091
69767362695f02aa204d4a40ac63f4051d009e16
1,876
py
Python
solutions/543. Diameter of Binary Tree.py
JacopoPan/leetcode-top100-liked-questions
03dc05f087d05805d54b7585ce740338f3128833
[ "MIT" ]
null
null
null
solutions/543. Diameter of Binary Tree.py
JacopoPan/leetcode-top100-liked-questions
03dc05f087d05805d54b7585ce740338f3128833
[ "MIT" ]
null
null
null
solutions/543. Diameter of Binary Tree.py
JacopoPan/leetcode-top100-liked-questions
03dc05f087d05805d54b7585ce740338f3128833
[ "MIT" ]
null
null
null
""" Runtime: 472 ms, faster than 6.80% of Python3 online submissions for Diameter of Binary Tree. Memory Usage: 16 MB, less than 93.37% of Python3 online submissions for Diameter of Binary Tree. """ from typing import List from typing import Optional class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int: if (root is None) or (root.left is None and root.right is None): return 0 elif root.left is None: return max(self.diameterOfBinaryTree(root.right), self.depthOfBinaryTree(root.right)+1) elif root.right is None: return max(self.diameterOfBinaryTree(root.left), self.depthOfBinaryTree(root.left) + 1) else: l_dia = self.diameterOfBinaryTree(root.left) r_dia = self.diameterOfBinaryTree(root.right) l_dep = self.depthOfBinaryTree(root.left) r_dep = self.depthOfBinaryTree(root.right) choices = [l_dia, r_dia, l_dep + r_dep + 2] return max(choices) def depthOfBinaryTree(self, root: Optional[TreeNode]) -> int: if (root is None) or (root.left is None and root.right is None): return 0 elif root.left is None: return self.depthOfBinaryTree(root.right) + 1 elif root.right is None: return self.depthOfBinaryTree(root.left) + 1 else: max_d = max(self.depthOfBinaryTree(root.right), self.depthOfBinaryTree(root.left)) return max_d + 1 def main(): sol = Solution() t = TreeNode(1, TreeNode(2, TreeNode(4), TreeNode(5)), TreeNode(3)) print('Output:', sol.diameterOfBinaryTree(t)) print('Expected:', 3) if __name__ == "__main__": main()
38.285714
99
0.637527
a81eee5a35567b4f49467a43fb07a1f130595f4f
10,963
py
Python
runstats/core.py
cimeister/runstats
81bb3f7eb8dc1adc197dc3761c28dcc46fc76976
[ "Apache-2.0" ]
1
2020-12-07T11:23:01.000Z
2020-12-07T11:23:01.000Z
runstats/core.py
cimeister/runstats
81bb3f7eb8dc1adc197dc3761c28dcc46fc76976
[ "Apache-2.0" ]
null
null
null
runstats/core.py
cimeister/runstats
81bb3f7eb8dc1adc197dc3761c28dcc46fc76976
[ "Apache-2.0" ]
null
null
null
"""Python RunStats Compute Statistics and Regression in a single pass. """ from __future__ import division class Statistics(object): """Compute statistics in a single pass. # pylint: disable=too-many-instance-attributes Computes the minimum, maximum, mean, variance, standard deviation, skewness, and kurtosis. Statistics objects may also be added together and copied. Based entirely on the C++ code by John D Cook at http://www.johndcook.com/skewness_kurtosis.html """ def __init__(self, iterable=()): """Initialize Statistics object. Iterates optional parameter `iterable` and pushes each value into the statistics summary. """ self.clear() for value in iterable: self.push(value) def clear(self): """Clear Statistics object.""" self._count = self._eta = self._rho = self._rho2 \ = self._max_offset = self._tau = self._phi = 0.0 self._min = self._max = float('nan') self._last = None def __eq__(self, that): return self.get_state() == that.get_state() def __ne__(self, that): return self.get_state() != that.get_state() def get_state(self): """Get internal state.""" return ( self._count, self._eta, self._rho, self._rho2, self._tau, self._phi, self._min, self._max, self._max_offset ) def set_state(self, state): """Set internal state.""" ( self._count, self._eta, self._rho, self._rho2, self._tau, self._phi, self._min, self._max, self._max_offset ) = state @classmethod def fromstate(cls, state): """Return Statistics object from state.""" stats = cls() stats.set_state(state) return stats def __reduce__(self): return make_statistics, (self.get_state(),) def copy(self, _=None): """Copy Statistics object.""" return self.fromstate(self.get_state()) __copy__ = copy __deepcopy__ = copy def __len__(self): """Number of values that have been pushed.""" return int(self._count) def push(self, value, cur_max=None): """Add `value` to the Statistics summary.""" value = float(value) if self._count == 0.0: self._min = value self._max = value else: self._min = min(self._min, value) self._max = max(self._max, value) delta = value - self._eta delta_n = delta / (self._count + 1) delta_n2 = delta_n * delta_n term = delta * delta_n * self._count self._count += 1 self._eta += delta_n self._phi += ( term * delta_n2 * (self._count ** 2 - 3 * self._count + 3) + 6 * delta_n2 * self._rho - 4 * delta_n * self._tau ) self._tau += ( term * delta_n * (self._count - 2) - 3 * delta_n * self._rho ) self._rho += term #additions if self._last is not None: self._rho2 += (value - self._last)**2 self._last = value if cur_max is not None: self._max_offset += (value - cur_max)**2 def minimum(self): """Minimum of values.""" return self._min def maximum(self): """Maximum of values.""" return self._max def mean(self): """Mean of values.""" return self._eta def max_offset(self): """Mean of values.""" return self._max_offset / self._count def local_variance(self, ddof=1.0): """Variance of values (with `ddof` degrees of freedom).""" return self._rho2 / (self._count - ddof) def variance(self, ddof=1.0): """Variance of values (with `ddof` degrees of freedom).""" return self._rho / (self._count - ddof) def stddev(self, ddof=1.0): """Standard deviation of values (with `ddof` degrees of freedom).""" return self.variance(ddof) ** 0.5 def skewness(self): """Skewness of values.""" return (self._count ** 0.5) * self._tau / pow(self._rho, 1.5) def kurtosis(self): """Kurtosis of values.""" return self._count * self._phi / (self._rho * self._rho) - 3.0 def __add__(self, that): """Add two Statistics objects together.""" sigma = self.copy() sigma += that return sigma def __iadd__(self, that): """Add another Statistics object to this one.""" sum_count = self._count + that._count if sum_count == 0: return self delta = that._eta - self._eta delta2 = delta ** 2 delta3 = delta ** 3 delta4 = delta ** 4 sum_eta = ( (self._count * self._eta + that._count * that._eta) / sum_count ) sum_rho = ( self._rho + that._rho + delta2 * self._count * that._count / sum_count ) sum_rho2 = ( self._rho2 + that._rho2 ) sum_tau = ( self._tau + that._tau + delta3 * self._count * that._count * (self._count - that._count) / (sum_count ** 2) + 3.0 * delta * (self._count * that._rho - that._count * self._rho) / sum_count ) sum_phi = ( self._phi + that._phi + delta4 * self._count * that._count * (self._count ** 2 - self._count * that._count + that._count ** 2) / (sum_count ** 3) + 6.0 * delta2 * ( self._count * self._count * that._rho + that._count * that._count * self._rho ) / (sum_count ** 2) + 4.0 * delta * (self._count * that._tau - that._count * self._tau) / sum_count ) if self._count == 0.0: self._min = that._min self._max = that._max elif that._count != 0.0: self._min = min(self._min, that._min) self._max = max(self._max, that._max) self._count = sum_count self._eta = sum_eta self._rho = sum_rho self._rho2 = sum_rho2 self._tau = sum_tau self._phi = sum_phi return self def __mul__(self, that): """Multiply by a scalar to change Statistics weighting.""" sigma = self.copy() sigma *= that return sigma __rmul__ = __mul__ def __imul__(self, that): """Multiply by a scalar to change Statistics weighting in-place.""" that = float(that) self._count *= that self._rho *= that self._rho2 *= that self._tau *= that self._phi *= that return self def make_statistics(state): """Make Statistics object from state.""" return Statistics.fromstate(state) class Regression(object): """ Compute simple linear regression in a single pass. Computes the slope, intercept, and correlation. Regression objects may also be added together and copied. Based entirely on the C++ code by John D Cook at http://www.johndcook.com/running_regression.html """ def __init__(self, iterable=()): """Initialize Regression object. Iterates optional parameter `iterable` and pushes each pair into the regression summary. """ self._xstats = Statistics() self._ystats = Statistics() self.clear() for xcoord, ycoord in iterable: self.push(xcoord, ycoord) def __eq__(self, that): return self.get_state() == that.get_state() def __ne__(self, that): return self.get_state() != that.get_state() def clear(self): """Clear Regression object.""" self._xstats.clear() self._ystats.clear() self._count = self._sxy = 0.0 def get_state(self): """Get internal state.""" return ( self._count, self._sxy, self._xstats.get_state(), self._ystats.get_state() ) def set_state(self, state): """Set internal state.""" count, sxy, xstats, ystats = state self._count = count self._sxy = sxy self._xstats.set_state(xstats) self._ystats.set_state(ystats) @classmethod def fromstate(cls, state): """Return Regression object from state.""" regr = cls() regr.set_state(state) return regr def __reduce__(self): return make_regression, (self.get_state(),) def copy(self, _=None): """Copy Regression object.""" return self.fromstate(self.get_state()) __copy__ = copy __deepcopy__ = copy def __len__(self): """Number of values that have been pushed.""" return int(self._count) def push(self, xcoord, ycoord): """Add a pair `(x, y)` to the Regression summary.""" self._sxy += ( (self._xstats.mean() - xcoord) * (self._ystats.mean() - ycoord) * self._count / (self._count + 1) ) self._xstats.push(xcoord) self._ystats.push(ycoord) self._count += 1 def slope(self, ddof=1.0): """Slope of values (with `ddof` degrees of freedom).""" sxx = self._xstats.variance(ddof) * (self._count - ddof) return self._sxy / sxx def intercept(self, ddof=1.0): """Intercept of values (with `ddof` degrees of freedom).""" return self._ystats.mean() - self.slope(ddof) * self._xstats.mean() def correlation(self, ddof=1.0): """Correlation of values (with `ddof` degrees of freedom).""" term = self._xstats.stddev(ddof) * self._ystats.stddev(ddof) return self._sxy / ((self._count - ddof) * term) def __add__(self, that): """Add two Regression objects together.""" sigma = self.copy() sigma += that return sigma def __iadd__(self, that): """Add another Regression object to this one.""" sum_count = self._count + that._count if sum_count == 0: return self sum_xstats = self._xstats + that._xstats sum_ystats = self._ystats + that._ystats deltax = that._xstats.mean() - self._xstats.mean() deltay = that._ystats.mean() - self._ystats.mean() sum_sxy = ( self._sxy + that._sxy + self._count * that._count * deltax * deltay / sum_count ) self._count = sum_count self._xstats = sum_xstats self._ystats = sum_ystats self._sxy = sum_sxy return self def make_regression(state): """Make Regression object from state.""" return Regression.fromstate(state)
27.966837
79
0.551035
7f5534c8573bae5036dbd860f93da0aea314de22
21,151
py
Python
com/vmware/nsx_policy/infra/deployment_zones_client.py
vishal-12/vsphere-automation-sdk-python
9cf363971db77ea5a12928eecd5cf5170a7fcd8a
[ "MIT" ]
null
null
null
com/vmware/nsx_policy/infra/deployment_zones_client.py
vishal-12/vsphere-automation-sdk-python
9cf363971db77ea5a12928eecd5cf5170a7fcd8a
[ "MIT" ]
null
null
null
com/vmware/nsx_policy/infra/deployment_zones_client.py
vishal-12/vsphere-automation-sdk-python
9cf363971db77ea5a12928eecd5cf5170a7fcd8a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2019 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.nsx_policy.infra.deployment_zones. #--------------------------------------------------------------------------- """ """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class EnforcementPoints(VapiInterface): """ """ _VAPI_SERVICE_ID = 'com.vmware.nsx_policy.infra.deployment_zones.enforcement_points' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _EnforcementPointsStub) def delete(self, deployment_zone_id, enforcementpoint_id, ): """ Delete EnforcementPoint :type deployment_zone_id: :class:`str` :param deployment_zone_id: Deployment zone id (required) :type enforcementpoint_id: :class:`str` :param enforcementpoint_id: enforcementpoint-id (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('delete', { 'deployment_zone_id': deployment_zone_id, 'enforcementpoint_id': enforcementpoint_id, }) def get(self, deployment_zone_id, enforcementpoint_id, ): """ Read an Enforcement Point :type deployment_zone_id: :class:`str` :param deployment_zone_id: Deployment zone id (required) :type enforcementpoint_id: :class:`str` :param enforcementpoint_id: EnforcementPoint id (required) :rtype: :class:`com.vmware.nsx_policy.model_client.EnforcementPoint` :return: com.vmware.nsx_policy.model.EnforcementPoint :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', { 'deployment_zone_id': deployment_zone_id, 'enforcementpoint_id': enforcementpoint_id, }) def list(self, deployment_zone_id, cursor=None, included_fields=None, page_size=None, sort_ascending=None, sort_by=None, ): """ Paginated list of all enforcementpoints for infra. :type deployment_zone_id: :class:`str` :param deployment_zone_id: (required) :type cursor: :class:`str` or ``None`` :param cursor: Opaque cursor to be used for getting next page of records (supplied by current result page) (optional) :type included_fields: :class:`str` or ``None`` :param included_fields: Comma separated list of fields that should be included in query result (optional) :type page_size: :class:`long` or ``None`` :param page_size: Maximum number of results to return in this page (server may return fewer) (optional, default to 1000) :type sort_ascending: :class:`bool` or ``None`` :param sort_ascending: (optional) :type sort_by: :class:`str` or ``None`` :param sort_by: Field by which records are sorted (optional) :rtype: :class:`com.vmware.nsx_policy.model_client.EnforcementPointListResult` :return: com.vmware.nsx_policy.model.EnforcementPointListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'deployment_zone_id': deployment_zone_id, 'cursor': cursor, 'included_fields': included_fields, 'page_size': page_size, 'sort_ascending': sort_ascending, 'sort_by': sort_by, }) def patch(self, deployment_zone_id, enforcementpoint_id, enforcement_point, ): """ If the passed Enforcement Point does not already exist, create a new Enforcement Point. If it already exists, patch it. :type deployment_zone_id: :class:`str` :param deployment_zone_id: Deployment zone id (required) :type enforcementpoint_id: :class:`str` :param enforcementpoint_id: EnforcementPoint id (required) :type enforcement_point: :class:`com.vmware.nsx_policy.model_client.EnforcementPoint` :param enforcement_point: (required) :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('patch', { 'deployment_zone_id': deployment_zone_id, 'enforcementpoint_id': enforcementpoint_id, 'enforcement_point': enforcement_point, }) def update(self, deployment_zone_id, enforcementpoint_id, enforcement_point, ): """ If the passed Enforcement Point does not already exist, create a new Enforcement Point. If it already exists, replace it. :type deployment_zone_id: :class:`str` :param deployment_zone_id: Deployment zone id (required) :type enforcementpoint_id: :class:`str` :param enforcementpoint_id: EnforcementPoint id (required) :type enforcement_point: :class:`com.vmware.nsx_policy.model_client.EnforcementPoint` :param enforcement_point: (required) :rtype: :class:`com.vmware.nsx_policy.model_client.EnforcementPoint` :return: com.vmware.nsx_policy.model.EnforcementPoint :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('update', { 'deployment_zone_id': deployment_zone_id, 'enforcementpoint_id': enforcementpoint_id, 'enforcement_point': enforcement_point, }) class _EnforcementPointsStub(ApiInterfaceStub): def __init__(self, config): # properties for delete operation delete_input_type = type.StructType('operation-input', { 'deployment_zone_id': type.StringType(), 'enforcementpoint_id': type.StringType(), }) delete_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } delete_input_value_validator_list = [ ] delete_output_validator_list = [ ] delete_rest_metadata = OperationRestMetadata( http_method='DELETE', url_template='/policy/api/v1/infra/deployment-zones/{deployment-zone-id}/enforcement-points/{enforcementpoint-id}', path_variables={ 'deployment_zone_id': 'deployment-zone-id', 'enforcementpoint_id': 'enforcementpoint-id', }, query_parameters={ }, content_type='application/json' ) # properties for get operation get_input_type = type.StructType('operation-input', { 'deployment_zone_id': type.StringType(), 'enforcementpoint_id': type.StringType(), }) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ HasFieldsOfValidator() ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/deployment-zones/{deployment-zone-id}/enforcement-points/{enforcementpoint-id}', path_variables={ 'deployment_zone_id': 'deployment-zone-id', 'enforcementpoint_id': 'enforcementpoint-id', }, query_parameters={ }, content_type='application/json' ) # properties for list operation list_input_type = type.StructType('operation-input', { 'deployment_zone_id': type.StringType(), 'cursor': type.OptionalType(type.StringType()), 'included_fields': type.OptionalType(type.StringType()), 'page_size': type.OptionalType(type.IntegerType()), 'sort_ascending': type.OptionalType(type.BooleanType()), 'sort_by': type.OptionalType(type.StringType()), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ HasFieldsOfValidator() ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/policy/api/v1/infra/deployment-zones/{deployment-zone-id}/enforcement-points', path_variables={ 'deployment_zone_id': 'deployment-zone-id', }, query_parameters={ 'cursor': 'cursor', 'included_fields': 'included_fields', 'page_size': 'page_size', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', }, content_type='application/json' ) # properties for patch operation patch_input_type = type.StructType('operation-input', { 'deployment_zone_id': type.StringType(), 'enforcementpoint_id': type.StringType(), 'enforcement_point': type.ReferenceType('com.vmware.nsx_policy.model_client', 'EnforcementPoint'), }) patch_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } patch_input_value_validator_list = [ HasFieldsOfValidator() ] patch_output_validator_list = [ ] patch_rest_metadata = OperationRestMetadata( http_method='PATCH', url_template='/policy/api/v1/infra/deployment-zones/{deployment-zone-id}/enforcement-points/{enforcementpoint-id}', request_body_parameter='enforcement_point', path_variables={ 'deployment_zone_id': 'deployment-zone-id', 'enforcementpoint_id': 'enforcementpoint-id', }, query_parameters={ }, content_type='application/json' ) # properties for update operation update_input_type = type.StructType('operation-input', { 'deployment_zone_id': type.StringType(), 'enforcementpoint_id': type.StringType(), 'enforcement_point': type.ReferenceType('com.vmware.nsx_policy.model_client', 'EnforcementPoint'), }) update_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } update_input_value_validator_list = [ HasFieldsOfValidator() ] update_output_validator_list = [ HasFieldsOfValidator() ] update_rest_metadata = OperationRestMetadata( http_method='PUT', url_template='/policy/api/v1/infra/deployment-zones/{deployment-zone-id}/enforcement-points/{enforcementpoint-id}', request_body_parameter='enforcement_point', path_variables={ 'deployment_zone_id': 'deployment-zone-id', 'enforcementpoint_id': 'enforcementpoint-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'delete': { 'input_type': delete_input_type, 'output_type': type.VoidType(), 'errors': delete_error_dict, 'input_value_validator_list': delete_input_value_validator_list, 'output_validator_list': delete_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'EnforcementPoint'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'EnforcementPointListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'patch': { 'input_type': patch_input_type, 'output_type': type.VoidType(), 'errors': patch_error_dict, 'input_value_validator_list': patch_input_value_validator_list, 'output_validator_list': patch_output_validator_list, 'task_type': TaskType.NONE, }, 'update': { 'input_type': update_input_type, 'output_type': type.ReferenceType('com.vmware.nsx_policy.model_client', 'EnforcementPoint'), 'errors': update_error_dict, 'input_value_validator_list': update_input_value_validator_list, 'output_validator_list': update_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'delete': delete_rest_metadata, 'get': get_rest_metadata, 'list': list_rest_metadata, 'patch': patch_rest_metadata, 'update': update_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx_policy.infra.deployment_zones.enforcement_points', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class StubFactory(StubFactoryBase): _attrs = { 'EnforcementPoints': EnforcementPoints, }
44.622363
127
0.604463
3c8fe959d77775122bfbb76d80b4ae1c2ccf6e8c
4,928
py
Python
tests/test_valid_tzdatetimefield.py
heavenshell/django-timezone-utils
e6a3da069dd3490135c57dc8ca94877e03026ac5
[ "MIT" ]
28
2015-02-06T01:41:15.000Z
2020-12-27T19:23:18.000Z
tests/test_valid_tzdatetimefield.py
heavenshell/django-timezone-utils
e6a3da069dd3490135c57dc8ca94877e03026ac5
[ "MIT" ]
15
2015-02-06T01:41:15.000Z
2022-02-16T02:04:17.000Z
tests/test_valid_tzdatetimefield.py
heavenshell/django-timezone-utils
e6a3da069dd3490135c57dc8ca94877e03026ac5
[ "MIT" ]
10
2015-02-06T01:57:08.000Z
2022-02-14T10:46:38.000Z
# ============================================================================== # IMPORTS # ============================================================================== # Python from datetime import datetime import pytz # Django from django.conf import settings from django.test import TestCase from django.utils.timezone import make_aware # App from tests.models import TZWithGoodStringDefault from .models import (ModelWithDateTimeOnly, CallableTimeStampedModel, StaticTimeStampedModel, ModelWithForeignKeyToTimeZone, NullModelWithDateTimeOnly, ModelWithLocalTimeZone, ModelWithLocalTZCharField, TZTimeFramedModel) # ============================================================================== # TESTS: Valid ateTimeWithTimeZoneField # ============================================================================== class DateTimeWithTimeZoneFieldTestCase(TestCase): def setUp(self): ModelWithDateTimeOnly.objects.create() CallableTimeStampedModel.objects.create() StaticTimeStampedModel.objects.create() NullModelWithDateTimeOnly.objects.create() ModelWithLocalTimeZone.objects.create() location = TZWithGoodStringDefault.objects.create() ModelWithForeignKeyToTimeZone.objects.create(other_model=location) TZTimeFramedModel.objects.create( start=datetime(2014, 1, 1), end=make_aware(datetime(2014, 12, 31), pytz.timezone('US/Eastern')), other_model=location ) def test_that_model_timestamp_is_unaltered(self): """Make sure that we aren't modifying the timezone if one is not provided. """ model_instance = ModelWithDateTimeOnly.objects.get() self.assertEquals( model_instance.timestamp, settings.TEST_DATETIME ) def test_callable_timestamp_time_override(self): model_instance = CallableTimeStampedModel.objects.get() self.assertEquals( model_instance.start.astimezone( pytz.timezone(settings.TIME_ZONE) ).time(), datetime.min.time(), 'Start time does not match datetime.min.time().' ) self.assertEquals( model_instance.end.astimezone( pytz.timezone(settings.TIME_ZONE) ).time(), datetime.max.time(), 'End time does not match datetime.max.time().' ) def test_datetime_time_timestamp_override(self): model_instance = StaticTimeStampedModel.objects.get() tz = pytz.timezone(settings.TIME_ZONE) start_time = tz.normalize( make_aware(datetime(2014, 1, 1, 0, 0, 0, 0), tz) ) end_time = tz.normalize( make_aware(datetime(2014, 1, 1, 23, 59, 59, 999999), tz) ) self.assertEquals( model_instance.start, start_time, 'Start time != datetime.min.time(): ({0} != {1})'.format( repr(model_instance.start), repr(start_time) ) ) self.assertEquals( model_instance.end, end_time, 'End time != datetime.max.time(): ({0} != {1})'.format( repr(model_instance.end), repr(end_time) ) ) def test_populate_from_foreignkey_timezone(self): model_instance = ModelWithForeignKeyToTimeZone.objects.get() self.assertEqual( model_instance.timestamp, settings.TEST_DATETIME, ) def test_populate_from_local_timezone(self): model_instance = ModelWithLocalTimeZone.objects.get() self.assertEqual( model_instance.timestamp, settings.TEST_DATETIME, ) def test_populate_from_local_timezone_charfield(self): model_instance = ModelWithLocalTZCharField.objects.create() self.assertEqual( model_instance.timestamp, settings.TEST_DATETIME ) def test_to_python_conversion(self): model_instance = ModelWithForeignKeyToTimeZone.objects.get() self.assertEqual( model_instance.timestamp, settings.TEST_DATETIME ) self.assertEqual( model_instance.timestamp.tzinfo, pytz.timezone('US/Eastern').normalize( model_instance.timestamp ).tzinfo ) self.assertEqual( str(model_instance.timestamp), '2013-12-31 19:00:00-05:00' ) def test_full_overrides(self): model_instance = TZTimeFramedModel.objects.get() self.assertEqual( str(model_instance.start), '2014-01-01 00:00:00-05:00' ) self.assertEqual( str(model_instance.end), '2014-12-31 23:59:59.999999-05:00' )
33.753425
80
0.576705
1199940b95d378f5b87c8ff37e6af5beb2ef0b3b
4,465
py
Python
examples/surname_classification_with_cnn/surname_dataset.py
Jochen-M/pytorch_nlp
75ffbe60d1a9c383981396f346c6dcbabbb9e5d7
[ "Apache-2.0" ]
1
2019-11-21T13:07:41.000Z
2019-11-21T13:07:41.000Z
examples/surname_classification_with_cnn/surname_dataset.py
Jochen-M/pytorch_nlp
75ffbe60d1a9c383981396f346c6dcbabbb9e5d7
[ "Apache-2.0" ]
null
null
null
examples/surname_classification_with_cnn/surname_dataset.py
Jochen-M/pytorch_nlp
75ffbe60d1a9c383981396f346c6dcbabbb9e5d7
[ "Apache-2.0" ]
null
null
null
# coding: utf8 import json import torch import pandas as pd from torch.utils.data import Dataset from examples.surname_classification_with_cnn.surname_vectorizer import SurnameVectorizer class SurnameDataset(Dataset): def __init__(self, surname_df, vectorizer): """ :param surname_df (pandas.DataFrame): the dataset :param vectorizer (SurnameVectorizer): vectorizer instantiated from dataset """ self.surname_df = surname_df self._vectorizer = vectorizer self.train_df = self.surname_df[self.surname_df.split == "train"] self.train_size = len(self.train_df) self.val_df = self.surname_df[self.surname_df.split == "val"] self.val_size = len(self.val_df) self.test_df = self.surname_df[self.surname_df.split == "test"] self.test_size = len(self.test_df) self._lookup_dict = {"train": (self.train_df, self.train_size), "val": (self.val_df, self.val_size), "test": (self.test_df, self.test_size)} self.set_split("train") # Class weights class_counts = surname_df.nationality.value_counts().to_dict() def sort_key(item): return self._vectorizer.nationality_vocab.lookup_token(item[0]) sorted_counts = sorted(class_counts.items(), key=sort_key) frequencies = [count for _, count in sorted_counts] self.class_weights = 1.0 / torch.tensor(frequencies, dtype=torch.float32) @classmethod def load_dataset_and_make_vectorizer(cls, surname_csv): """ Load dataset and make a new vectorizer from scratch :param surname_csv (str): location of the dataset :return an instance of SurnameDataset """ surname_df = pd.read_csv(surname_csv) return cls(surname_df, SurnameVectorizer.from_dataframe(surname_df)) @classmethod def load_dataset_and_load_vectorizer(cls, surname_csv, vectorizer_filepath): """ Load dataset and the corresponding vectorizer. Used in the case in the vectorizer has been cached for re-use :param surname_csv (str): location of the dataset :param vectorizer_filepath (str): location of the saved vectorizer :return an instance of SurnameDataset """ surname_df = pd.read_csv(surname_csv) vectorizer = cls.load_vectorizer(vectorizer_filepath) return cls(surname_df, vectorizer) @staticmethod def load_vectorizer(vectorizer_filepath): """ A static method for loading the vectorizer from file :param vectorizer_filepath (str): the location of the serialized vectorizer :return an instance of SurnameVectorizer """ with open(vectorizer_filepath) as fp: return SurnameVectorizer.from_serializable(json.load(fp)) def save_vectorizer(self, vectorizer_filepath): """ Saves the vectorizer to disk using json :param vectorizer_filepath (str): the location to save the vectorizer """ with open(vectorizer_filepath, "w") as fp: json.dump(self._vectorizer.to_serializable(), fp) def get_vectorizer(self): """ :return the vectorizer """ return self._vectorizer def set_split(self, split="train"): """ Selects the splits in the dataset using a column in the dataframe :param split (str): one of "train", "val", or "test" :return """ self._target_split = split self._target_df, self._target_size = self._lookup_dict[split] def __len__(self): return self._target_size def __getitem__(self, index): """ The primary entry point method for PyTorch datasets :param index (int): the index to the data point :return a dictionary holding the data point's features (x_data) and label (y_target) """ row = self._target_df.iloc[index] surname_matrix = self._vectorizer.vectorize(row.surname) nationality_index = self._vectorizer.nationality_vocab.lookup_token(row.nationality) return {"x_surname": surname_matrix, "y_nationality": nationality_index} def get_num_batches(self, batch_size): """ Given a batch size, return the number of batches in the dataset :param batch_size (int) :return number of batches in the dataset """ return len(self) // batch_size
36.300813
92
0.663382
37c7c6653da52bab1d4dd0c31c7b66f987f0f2ae
890
py
Python
wdfn-server/waterdata/services/sifta.py
skaymen/waterdataui
3f419360771a007f8b441d631c782cd67a4e78b4
[ "CC0-1.0" ]
null
null
null
wdfn-server/waterdata/services/sifta.py
skaymen/waterdataui
3f419360771a007f8b441d631c782cd67a4e78b4
[ "CC0-1.0" ]
null
null
null
wdfn-server/waterdata/services/sifta.py
skaymen/waterdataui
3f419360771a007f8b441d631c782cd67a4e78b4
[ "CC0-1.0" ]
null
null
null
""" Helpers to retrieve SIFTA cooperator data. """ from waterdata import app from waterdata.utils import execute_get_request def get_cooperators(site_no, district_cd): """ Gets the cooperator data from a json file, currently a feature toggle, and limited to district codes 20 and 51 :param site_no: USGS site number :param district_cd: the district code of the monitoring location """ # Handle feature flag for cooperator data if not app.config['COOPERATOR_LOOKUP_ENABLED'] or ( app.config['COOPERATOR_LOOKUP_ENABLED'] is not True and district_cd not in app.config['COOPERATOR_LOOKUP_ENABLED']): return [] url = app.config['COOPERATOR_SERVICE_PATTERN'].format(site_no=site_no) response = execute_get_request(url) if response.status_code != 200: return [] return response.json().get('Customers', [])
30.689655
114
0.708989
43e229010da2ae4bc7eb6e09e7f0b3b191ea1a4f
21,552
py
Python
python-package/basedosdados/cli/cli.py
ProfLeao/mais
364baa36a21d1189be594ecb9915f6fcc73c8990
[ "MIT" ]
1
2021-02-25T04:04:23.000Z
2021-02-25T04:04:23.000Z
python-package/basedosdados/cli/cli.py
ProfLeao/mais
364baa36a21d1189be594ecb9915f6fcc73c8990
[ "MIT" ]
null
null
null
python-package/basedosdados/cli/cli.py
ProfLeao/mais
364baa36a21d1189be594ecb9915f6fcc73c8990
[ "MIT" ]
null
null
null
import os import time import basedosdados as bd import click from basedosdados.upload.base import Base from basedosdados.upload.dataset import Dataset from basedosdados.upload.storage import Storage from basedosdados.upload.table import Table @click.group() @click.option("--templates", default=None, help="Templates path") @click.option("--bucket_name", default=None, help="Project bucket name") @click.option("--metadata_path", default=None, help="Folder to store metadata") @click.pass_context def cli(ctx, templates, bucket_name, metadata_path): ctx.obj = dict( templates=templates, bucket_name=bucket_name, metadata_path=metadata_path, ) @click.group(name="dataset") @click.pass_context def cli_dataset(ctx): pass @cli_dataset.command(name="init", help="Initialize metadata files of dataset") @click.argument("dataset_id") @click.option( "--replace", is_flag=True, help="Whether to replace current metadata files", ) @click.pass_context def init_dataset(ctx, dataset_id, replace): d = Dataset(dataset_id=dataset_id, **ctx.obj).init(replace=replace) click.echo( click.style( f"Dataset `{dataset_id}` folder and metadata were created at {d.metadata_path}", fg="green", ) ) def mode_text(mode, verb, obj_id): if mode == "all": text = f"Datasets `{obj_id}` and `{obj_id}_staging` were {verb} in BigQuery" elif mode == "staging": text = f"Dataset `{obj_id}_stating` was {verb} in BigQuery" elif mode == "prod": text = f"Dataset `{obj_id}` was {verb} in BigQuery" return text @cli_dataset.command(name="create", help="Create dataset on BigQuery") @click.argument("dataset_id") @click.option( "--mode", "-m", default="all", help="What datasets to create [all|staging|prod]" ) @click.option( "--if_exists", default="raise", help="[raise|update|replace|pass] if dataset alread exists", ) @click.pass_context def create_dataset(ctx, dataset_id, mode, if_exists): Dataset(dataset_id=dataset_id, **ctx.obj).create(mode=mode, if_exists=if_exists) click.echo( click.style( mode_text(mode, "created", dataset_id), fg="green", ) ) @cli_dataset.command(name="update", help="Update dataset on BigQuery") @click.argument("dataset_id") @click.option( "--mode", "-m", default="all", help="What datasets to create [all|staging|prod]" ) @click.pass_context def update_dataset(ctx, dataset_id, mode): Dataset(dataset_id=dataset_id, **ctx.obj).update(mode=mode) click.echo( click.style( mode_text(mode, "updated", dataset_id), fg="green", ) ) @cli_dataset.command(name="publicize", help="Make a dataset public") @click.argument("dataset_id") @click.pass_context def publicize_dataset(ctx, dataset_id): Dataset(dataset_id=dataset_id, **ctx.obj).publicize() click.echo( click.style( f"Dataset `{dataset_id}` became public!", fg="green", ) ) @cli_dataset.command(name="delete", help="Delete dataset") @click.argument("dataset_id") @click.option( "--mode", "-m", default="all", help="What datasets to create [all|staging|prod]" ) @click.pass_context def delete_dataset(ctx, dataset_id, mode): if click.confirm(f"Are you sure you want to delete `{dataset_id}`?"): Dataset(dataset_id=dataset_id, **ctx.obj).delete(mode=mode) click.echo( click.style( mode_text(mode, "deleted", dataset_id), fg="green", ) ) @click.group(name="table") def cli_table(): pass @cli_table.command(name="init", help="Create metadata files") @click.argument("dataset_id") @click.argument("table_id") @click.option( "--data_sample_path", default=None, help="Sample data used to pre-fill metadata", type=click.Path(exists=True), ) @click.option( "--if_folder_exists", default="raise", help="[raise|replace|pass] actions if table folder exists", ) @click.option( "--if_table_config_exists", default="raise", help="[raise|replace|pass] actions if table config files already exist", ) @click.option( "--columns_config_url", default=None, help="google sheets URL. Must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. The sheet must contain the column name: 'coluna' and column description: 'descricao'.", ) @click.pass_context def init_table( ctx, dataset_id, table_id, data_sample_path, if_folder_exists, if_table_config_exists, columns_config_url, ): t = Table(table_id=table_id, dataset_id=dataset_id, **ctx.obj).init( data_sample_path=data_sample_path, if_folder_exists=if_folder_exists, if_table_config_exists=if_table_config_exists, columns_config_url=columns_config_url, ) click.echo( click.style( f"Table `{table_id}` folder and metadata were created at {t.metadata_path}{dataset_id}", fg="green", ) ) @cli_table.command(name="create", help="Create stagging table in BigQuery") @click.argument("dataset_id") @click.argument("table_id") @click.option( "--path", "-p", type=click.Path(exists=True), default=None, help="Path of data folder or file.", ) @click.option( "--job_config_params", default=None, help="File to advanced load config params " ) @click.option( "--if_table_exists", default="raise", help="[raise|replace|pass] actions if table exists", ) @click.option( "--force_dataset", default=True, help="Whether to automatically create the dataset folders and in BigQuery", ) @click.option( "--if_storage_data_exists", default="raise", help="[raise|replace|pass] actions if table data already exists at Storage", ) @click.option( "--if_table_config_exists", default="raise", help="[raise|replace|pass] actions if table config files already exist", ) @click.option( "--columns_config_url", default=None, help="google sheets URL. Must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. The sheet must contain the column name: 'coluna' and column description: 'descricao'.", ) @click.pass_context def create_table( ctx, dataset_id, table_id, path, job_config_params, if_table_exists, force_dataset, if_storage_data_exists, if_table_config_exists, columns_config_url, ): Table(table_id=table_id, dataset_id=dataset_id, **ctx.obj).create( path=path, job_config_params=job_config_params, if_table_exists=if_table_exists, force_dataset=force_dataset, if_storage_data_exists=if_storage_data_exists, if_table_config_exists=if_table_config_exists, columns_config_url=columns_config_url, ) click.echo( click.style( f"Table `{dataset_id}_staging.{table_id}` was created in BigQuery", fg="green", ) ) @cli_table.command(name="update", help="Update tables in BigQuery") @click.argument("dataset_id") @click.argument("table_id") @click.option( "--mode", default="all", help="Choose a table from a dataset to update [all|staging|prod]", ) @click.pass_context def update_table(ctx, dataset_id, table_id, mode): Table(table_id=table_id, dataset_id=dataset_id, **ctx.obj).update( mode=mode, ) click.echo( click.style( f"All tables `{dataset_id}*.{table_id}` were updated in BigQuery", fg="green", ) ) @cli_table.command( name="update_columns", help="Update columns descriptions in tables_config.yaml " ) @click.argument("dataset_id") @click.argument("table_id") @click.option( "--columns_config_url", default=None, help="google sheets URL. Must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. The sheet must contain the column name: 'coluna' and column description: 'descricao'.", ) @click.pass_context def update_columns(ctx, dataset_id, table_id, columns_config_url): Table(table_id=table_id, dataset_id=dataset_id, **ctx.obj).update_columns( columns_config_url=columns_config_url, ) click.echo( click.style( f"All columns descriptions `{dataset_id}*.{table_id}` were updated in table_config.yaml", fg="green", ) ) @cli_table.command(name="publish", help="Publish staging table to prod") @click.argument("dataset_id") @click.argument("table_id") @click.option( "--if_exists", default="raise", help="[raise|replace] actions if table exists", ) @click.pass_context def publish_table(ctx, dataset_id, table_id, if_exists): Table(table_id=table_id, dataset_id=dataset_id, **ctx.obj).publish( if_exists=if_exists, ) click.echo( click.style( f"Table `{dataset_id}.{table_id}` was published in BigQuery", fg="green", ) ) @cli_table.command(name="delete", help="Delete BigQuery table") @click.argument("dataset_id") @click.argument("table_id") @click.option("--mode", help="Which table to delete [all|prod|staging]", required=True) @click.pass_context def delete_table(ctx, dataset_id, table_id, mode): Table(table_id=table_id, dataset_id=dataset_id, **ctx.obj).delete( mode=mode, ) @cli_table.command(name="append", help="Append new data to existing table") @click.argument("dataset_id") @click.argument("table_id") @click.argument("filepath", type=click.Path(exists=True)) @click.option("--partitions", help="Data partition as `value=key/value2=key2`") @click.option( "--if_exists", default="raise", help="[raise|replace|pass] if file alread exists", ) @click.pass_context def upload_table(ctx, dataset_id, table_id, filepath, partitions, if_exists): blob_name = Table(table_id=table_id, dataset_id=dataset_id, **ctx.obj).append( filepath=filepath, partitions=partitions, if_exists=if_exists ) click.echo( click.style( f"Data was added to `{dataset_id}.{table_id}`", fg="green", ) ) @click.group(name="storage") def cli_storage(): pass @cli_storage.command(name="init", help="Create bucket and initial folders") @click.option("--bucket_name", default="basedosdados", help="Bucket name") @click.option( "--replace", is_flag=True, help="Whether to replace current bucket files", ) @click.option( "--very-sure/--not-sure", default=False, help="Are you sure that you want to replace current bucket files?", ) @click.pass_context def init_storage(ctx, bucket_name, replace, very_sure): # TODO: Create config file to store bucket_name, etc... ctx.obj.pop("bucket_name") Storage(bucket_name=bucket_name, **ctx.obj).init( replace=replace, very_sure=very_sure ) click.echo( click.style( f"Bucket `{bucket_name}` was created", fg="green", ) ) @cli_storage.command(name="upload", help="Upload file to bucket") @click.argument("dataset_id") @click.argument("table_id") @click.argument("filepath", type=click.Path(exists=True)) @click.option( "--mode", "-m", required=True, help="[raw|staging] where to save the file" ) @click.option("--partitions", help="Data partition as `value=key/value2=key2`") @click.option( "--if_exists", default="raise", help="[raise|replace|pass] if file alread exists", ) @click.pass_context def upload_storage(ctx, dataset_id, table_id, filepath, mode, partitions, if_exists): ctx.obj.pop("bucket_name") blob_name = Storage(dataset_id, table_id, **ctx.obj).upload( filepath=filepath, mode=mode, partitions=partitions, if_exists=if_exists ) click.echo( click.style( f"Data was added to `{blob_name}`", fg="green", ) ) @cli_storage.command(name="download", help="Download file from bucket") @click.argument("dataset_id") @click.argument("table_id") @click.argument("savepath", type=click.Path(exists=True)) @click.option( "--filename", "-f", default="*", help="filename to download single file. If * downloads all files from bucket folder", ) @click.option( "--mode", "-m", default="raw", help="[raw|staging] where to download data from" ) @click.option("--partitions", help="Data partition as `value=key/value2=key2`") @click.option( "--if_not_exists", default="raise", help="[raise|pass] if file file not found at bucket folder", ) @click.pass_context def download_storage( ctx, dataset_id, table_id, filename, savepath, partitions, mode, if_not_exists ): Storage(dataset_id, table_id, **ctx.obj).download( filename, savepath, partitions, mode, if_not_exists ) click.echo( click.style( f"Data was downloaded to `{savepath}`", fg="green", ) ) @cli_storage.command(name="delete_table", help="Delete table from bucket") @click.argument("dataset_id") @click.argument("table_id") @click.option( "--mode", "-m", required=True, default="staging", help="[raw|staging] where to delete the file from", ) @click.option( "--bucket_name", default=None, help="Bucket from which to delete data, you can change it to delete from a bucket other than yours", ) @click.option("--not_found_ok", default=False, help="what to do if table not found") @click.pass_context def storage_delete_table(ctx, dataset_id, table_id, mode, not_found_ok, bucket_name): Storage(dataset_id, table_id, **ctx.obj).delete_table( mode=mode, not_found_ok=not_found_ok, bucket_name=bucket_name ) click.echo( click.style( f"Data was deleted from bucket `{bucket_name}`", fg="green", ) ) @cli_storage.command(name="copy_table", help="Copy table to your bucket") @click.argument("dataset_id") @click.argument("table_id") @click.option("--source_bucket_name", required=True, default="basedosdados") @click.option( "--dst_bucket_name", default=None, help="Bucket where data will be copied to, defaults to your bucket", ) @click.option( "--mode", "-m", default="staging", help="[raw|staging] which bucket folder to get the table", ) @click.pass_context def storage_copy_table( ctx, dataset_id, table_id, source_bucket_name, dst_bucket_name, mode ): Storage(dataset_id, table_id, **ctx.obj).copy_table( source_bucket_name=source_bucket_name, destination_bucket_name=dst_bucket_name, mode=mode, ) @click.group(name="list") def cli_list(): pass @cli_list.command(name="datasets", help="List datasets available at given project_id") @click.option( "--project_id", default="basedosdados", help="The project which will be queried. You should have list/read permissions", ) @click.option( "--filter_by", default=None, help="Filter your search, must be a string", ) @click.option( "--with_description", default=False, help="[bool]Fetch short description for each dataset", ) @click.pass_context def cli_list_datasets(ctx, project_id, filter_by, with_description): bd.list_datasets( query_project_id=project_id, filter_by=filter_by, with_description=with_description, ) @cli_list.command(name="dataset_tables", help="List tables available at given dataset") @click.argument("dataset_id") @click.option( "--project_id", default="basedosdados", help="The project which will be queried. You should have list/read permissions", ) @click.option( "--filter_by", default=None, help="Filter your search, must be a string", ) @click.option( "--with_description", default=False, help="[bool]Fetch short description for each table", ) @click.pass_context def cli_list_dataset_tables(ctx, dataset_id, project_id, filter_by, with_description): bd.list_dataset_tables( dataset_id=dataset_id, query_project_id=project_id, filter_by=filter_by, with_description=with_description, ) @click.group(name="get") def cli_get(): pass @cli_get.command( name="dataset_description", help="Get the full description for given dataset" ) @click.argument("dataset_id") @click.option( "--project_id", default="basedosdados", help="The project which will be queried. You should have list/read permissions", ) @click.pass_context def cli_get_dataset_description(ctx, dataset_id, project_id): bd.get_dataset_description( dataset_id=dataset_id, query_project_id=project_id, ) @cli_get.command( name="table_description", help="Get the full description for given table" ) @click.argument("dataset_id") @click.argument("table_id") @click.option( "--project_id", default="basedosdados", help="The project which will be queried. You should have list/read permissions", ) @click.pass_context def cli_get_table_description(ctx, dataset_id, table_id, project_id): bd.get_table_description( dataset_id=dataset_id, table_id=table_id, query_project_id=project_id, ) @cli_get.command( name="table_columns", help="Get fields names,types and description for columns at given table", ) @click.argument("dataset_id") @click.argument("table_id") @click.option( "--project_id", default="basedosdados", help="The project which will be queried. You should have list/read permissions", ) @click.pass_context def cli_get_table_columns( ctx, dataset_id, table_id, project_id, ): bd.get_table_columns( dataset_id=dataset_id, table_id=table_id, query_project_id=project_id, ) @click.group(name="config") def cli_config(): pass @cli_config.command(name="init", help="Initialize configuration") @click.option( "--overwrite", default=False, help="Wheteher to overwrite current config", ) @click.pass_context def init(ctx, overwrite): Base(overwrite_cli_config=overwrite, **ctx.obj) @cli_config.command(name="refresh_template", help="Overwrite current templates") @click.pass_context def init_refresh_templates(ctx): Base(**ctx.obj)._refresh_templates() @click.command( name="download", help="Download data. " "You can add extra arguments accepted by `pandas.to_csv`.\n\n" "Examples: --delimiter='|', --index=False", context_settings=dict( ignore_unknown_options=True, allow_extra_args=True, ), ) @click.argument("savepath", type=click.Path(exists=False)) @click.option( "--dataset_id", default=None, help="Dataset_id, enter with table_id to download table", ) @click.option( "--table_id", default=None, help="Table_id, enter with dataset_id to download table ", ) @click.option( "--query", default=None, help="A SQL Standard query to download data from BigQuery", ) @click.option( "--query_project_id", default=None, help="Which project the table lives. You can change this you want to query different projects.", ) @click.option( "--billing_project_id", default=None, help="Project that will be billed. Find your Project ID here https://console.cloud.google.com/projectselector2/home/dashboard", ) @click.option( "--limit", default=None, help="Number of rows returned", ) @click.pass_context def cli_download( ctx, dataset_id, table_id, savepath, query, query_project_id, billing_project_id, limit, ): pandas_kwargs = dict() for item in ctx.args: pandas_kwargs.update([item.replace("--", "").split("=")]) download( savepath=savepath, dataset_id=dataset_id, table_id=table_id, query=query, query_project_id=query_project_id, billing_project_id=billing_project_id, limit=limit, **pandas_kwargs, ) click.echo( click.style( f"Table was downloaded to `{savepath}`", fg="green", ) ) cli.add_command(cli_dataset) cli.add_command(cli_table) cli.add_command(cli_storage) cli.add_command(cli_config) cli.add_command(cli_download) cli.add_command(cli_list) cli.add_command(cli_get) def run_bash(command): stream = os.popen(command) def set_config_file(): if not os.environ.get("GOOGLE_APPLICATION_CREDENTIALS"): project_id = input( "\nWe need to finish setting up your basic enviorinment!\n" "What is your project id? You should easily find it here: " "https://console.developers.google.com/cloud-resource-manager?pli=1\n" "Make sure to copy the ID!\n" "project_id: " ) os.popen("gcloud iam service-accounts create basedosdados-cli") time.sleep(3) os.popen( f"""gcloud projects add-iam-policy-binding {project_id} --member "serviceAccount:basedosdados-cli@{project_id}.iam.gserviceaccount.com" --role "roles/owner" """ ) time.sleep(3) os.popen( f"""gcloud iam service-accounts keys create ~/.basedosdados/iam.json --iam-account basedosdados-cli@{project_id}.iam.gserviceaccount.com""" ) time.sleep(3) print( "\nRun this command and rerun the application:\n" "export GOOGLE_APPLICATION_CREDENTIALS=~/.basedosdados/iam.json" ) exit() # set_config_file() if __name__ == "__main__": cli()
26.872818
211
0.673859
932d3fa3f91b8994038486156652d6e54a31080e
482
py
Python
tests/test_rsp.py
giltom/megastone
0ef02c724d53acf7a06430f58bc5f777676d78a9
[ "MIT" ]
2
2021-04-03T01:55:09.000Z
2021-04-12T15:12:10.000Z
tests/test_rsp.py
giltom/megastone
0ef02c724d53acf7a06430f58bc5f777676d78a9
[ "MIT" ]
null
null
null
tests/test_rsp.py
giltom/megastone
0ef02c724d53acf7a06430f58bc5f777676d78a9
[ "MIT" ]
null
null
null
import pytest from megastone.rsp import connection def test_escape(): data = b'}a$#+b*j' escaped = connection._escape_data(data) assert len(escaped) == len(data) + 4 assert escaped.count(connection.ESCAPE_BYTE) == 4 assert connection._unescape_data(escaped) == data def test_unescape(): data = b'}a}bddd}}a' unescaped = connection._unescape_data(data) assert len(unescaped) == len(data) - 3 assert unescaped.count(connection.ESCAPE_BYTE) == 0
28.352941
55
0.697095
f101e0665ca7e7e98702a9725f431c0326ab86be
1,210
py
Python
src/others/logging.py
husnain-ali21/ctx-rewriter-for-summ
cd172bd934d804aec2c15127fc16276bd60213f4
[ "MIT" ]
22
2021-03-10T14:43:13.000Z
2022-03-18T02:20:12.000Z
src/others/logging.py
husnain-ali21/ctx-rewriter-for-summ
cd172bd934d804aec2c15127fc16276bd60213f4
[ "MIT" ]
2
2021-03-02T09:19:48.000Z
2021-03-14T13:22:09.000Z
src/others/logging.py
husnain-ali21/ctx-rewriter-for-summ
cd172bd934d804aec2c15127fc16276bd60213f4
[ "MIT" ]
3
2021-09-27T09:39:46.000Z
2022-02-05T03:42:06.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import import logging logger = logging.getLogger() def init_logger(log_file=None, log_file_level=logging.NOTSET): log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s") logger = logging.getLogger() logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setFormatter(log_format) logger.handlers = [console_handler] if log_file and log_file != '': file_handler = logging.FileHandler(log_file) file_handler.setLevel(log_file_level) file_handler.setFormatter(log_format) logger.addHandler(file_handler) def set_logger(logger, log_file=None, log_file_level=logging.NOTSET): log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s") logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setFormatter(log_format) logger.handlers = [console_handler] if log_file and log_file != '': file_handler = logging.FileHandler(log_file) file_handler.setLevel(log_file_level) file_handler.setFormatter(log_format) logger.addHandler(file_handler)
32.702703
77
0.726446
941085ac8e0a1044e47bf960dea29a2727972a75
1,605
py
Python
salt/returners/cassandra_return.py
mattrobenolt/salt
e01a4c2d26adc705d8056970777a6313ad10291b
[ "Apache-2.0" ]
4
2015-10-06T22:20:27.000Z
2017-09-04T08:03:44.000Z
salt/returners/cassandra_return.py
mika/salt
8430482c7177356964c894d161830c94d09f1cab
[ "Apache-2.0" ]
null
null
null
salt/returners/cassandra_return.py
mika/salt
8430482c7177356964c894d161830c94d09f1cab
[ "Apache-2.0" ]
null
null
null
''' Return data to a Cassandra ColumnFamily Here's an example Keyspace / ColumnFamily setup that works with this returner:: create keyspace salt; use salt; create column family returns with key_validation_class='UTF8Type' and comparator='UTF8Type' and default_validation_class='UTF8Type'; Required python modules: pycassa ''' import logging try: import pycassa has_pycassa = True except ImportError: has_pycassa = False log = logging.getLogger(__name__) __opts__ = {'cassandra.servers': ['localhost:9160'], 'cassandra.keyspace': 'salt', 'cassandra.column_family': 'returns', 'cassandra.consistency_level': 'ONE'} def __virtual__(): if not has_pycassa: return False return 'cassandra' def returner(ret): ''' Return data to a Cassandra ColumnFamily ''' consistency_level = getattr(pycassa.ConsistencyLevel, __opts__['cassandra.consistency_level']) pool = pycassa.ConnectionPool(__opts__['cassandra.keyspace'], __opts__['cassandra.servers']) cf = pycassa.ColumnFamily(pool, __opts__['cassandra.column_family'], write_consistency_level=consistency_level) columns = {'fun': ret['fun'], 'id': ret['id']} if isinstance(ret['return'], dict): for key, value in ret['return'].items(): columns['return.%s' % (key,)] = str(value) else: columns['return'] = str(ret['return']) log.debug(columns) cf.insert(ret['jid'], columns)
25.887097
72
0.624922
562f4e6956c303d0471482bb5d8fe8841ce911a7
3,379
py
Python
queue.py
deepti-chauhan/Data_Structures_in_python
7a3c88fb636b0b69ed880e2da08802e473da657a
[ "MIT" ]
null
null
null
queue.py
deepti-chauhan/Data_Structures_in_python
7a3c88fb636b0b69ed880e2da08802e473da657a
[ "MIT" ]
null
null
null
queue.py
deepti-chauhan/Data_Structures_in_python
7a3c88fb636b0b69ed880e2da08802e473da657a
[ "MIT" ]
null
null
null
''' Like stack, queue is a linear data structure that stores items in First In First Out (FIFO) manner. With a queue the least recently added item is removed first. A good example of queue is any queue of consumers for a resource where the consumer that came first is served first.''' class Queue(object): def __init__(self, size): self.queue = [] self.size = size def __str__(self): myString = ' '.join(str(i) for i in self.queue) return myString def enqueue(self, item): '''This function adds an item to the rear end of the queue ''' if(self.isFull() != True): self.queue.insert(0, item) else: print('Queue is Full!') def dequeue(self): ''' This function removes an item from the front end of the queue ''' if(self.isEmpty() != True): return self.queue.pop() else: print('Queue is Empty!') def isEmpty(self): ''' This function checks if the queue is empty ''' return self.queue == [] def isFull(self): ''' This function checks if the queue is full ''' return len(self.queue) == self.size def peek(self): ''' This function helps to see the first element at the front end of the queue ''' if(self.isEmpty() != True): return self.queue[-1] else: print('Queue is Empty!') def main(): myQueue = Queue(int(input("Enter size of queue : "))) while(True): print( '------------OPERATIONS-----------\n' '\t1. enqueue\n' '\t2. dequeue\n' '\t3. Front of queue\n' '\t4. check for empty\n' '\t5. check for full\n' '\t6. display Queue\n' '---------------------------------\n' ) #for performing certain operations make a choice ch = int(input('Enter your choice(0 to exit) : ')) print('\n','-'*35) #breaking condition if ch == 0: break #push operation elif ch == 1: e = (input('Enter the element : ')) msg = myQueue.enqueue(e) if msg == -1: print('Queue is full item cannot be enqueued!!') else: print('item enqueued successfully!!') #pop operation elif ch == 2: msg = myQueue.dequeue() if msg == -1: print('Queue is empty item cannot be dequeued!!') else: print(' item dequeued successfully!! \n\n\t item dequeued : ',msg) #peek operation elif ch == 3: print('PEEK SUCCESSFUL! \n\n\t : ',myQueue.peek()) #isEmpty operation elif ch == 4: print('QUEUE EMPTY ? : ',myQueue.isEmpty()) #isFull operation elif ch == 5: print('QUEUE FULL ? : ',myQueue.isFull()) #display operation elif ch == 6: print(myQueue) #default operation else: print('INVALID CHOICE!!!') print('-'*30,'\n') #---------------------calling main function----------------------# if __name__ == '__main__': main()
31
124
0.483575
af198764fda7f5c13e34d6a91c029d9a4a8a1427
12,030
py
Python
test/testers/winforms/numericupdown-regression.py
ABEMBARKA/monoUI
5fda266ad2db8f89580a40b525973d86cd8de939
[ "MIT" ]
1
2019-08-13T15:22:12.000Z
2019-08-13T15:22:12.000Z
test/testers/winforms/numericupdown-regression.py
ABEMBARKA/monoUI
5fda266ad2db8f89580a40b525973d86cd8de939
[ "MIT" ]
null
null
null
test/testers/winforms/numericupdown-regression.py
ABEMBARKA/monoUI
5fda266ad2db8f89580a40b525973d86cd8de939
[ "MIT" ]
1
2019-08-13T15:22:17.000Z
2019-08-13T15:22:17.000Z
#!/usr/bin/env python # vim: set tabstop=4 shiftwidth=4 expandtab ############################################################################## # Written by: Cachen Chen <cachen@novell.com> # Date: 09/08/2008 # Description: main test script of numericupdown # ../samples/winforms/numericupdown.py is the test sample script # numericupdown/* is the wrapper of numericupdown test sample ############################################################################## # The docstring below is used in the generated log file """ Test accessibility of numericupdown widget """ # imports from numericupdown import * from helpers import * from states import * from actions import * from sys import argv app_path = None try: app_path = argv[1] except IndexError: pass #expected # open the numericupdown sample application try: app = launchNumericUpDown(app_path) except IOError, msg: print "ERROR: %s" % msg exit(2) # make sure we got the app back if app is None: exit(4) # just an alias to make things shorter nudFrame = app.numericUpDownFrame ############################## # check numericupdown's states ############################## statesCheck(nudFrame.editable_numericupdown, "NumericUpDown", add_states=["focused"]) statesCheck(nudFrame.uneditable_numericupdown, "NumericUpDown", invalid_states=["editable"]) # move the focused to uneditable_numericupdown then check the states again nudFrame.uneditable_numericupdown.mouseClick() statesCheck(nudFrame.editable_numericupdown, "NumericUpDown") statesCheck(nudFrame.uneditable_numericupdown, "NumericUpDown", invalid_states=["editable"], add_states=["focused"]) ############################## # input numbers from UI ############################## # editable NumericUpDown nudFrame.editable_numericupdown.mouseClick() nudFrame.editable_numericupdown.typeText("20") sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, 1020) nudFrame.assertText(nudFrame.editable_numericupdown, "1020") # uneditable NumericUpDown nudFrame.uneditable_numericupdown.mouseClick() nudFrame.uneditable_numericupdown.typeText("20") sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 10) nudFrame.assertText(nudFrame.uneditable_numericupdown, "10") ############################# # input numbers from AtkText ############################# # editable NumericUpDown nudFrame.enterTextValue(nudFrame.editable_numericupdown, "10") sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, 10) nudFrame.assertText(nudFrame.editable_numericupdown, "10") # uneditable NumericUpDown nudFrame.enterTextValue(nudFrame.uneditable_numericupdown, "100") nudFrame.keyCombo("Enter", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 10) nudFrame.assertText(nudFrame.uneditable_numericupdown, "10") ############################ # change value from AtkValue ############################ # editable NumericUpDown nudFrame.assignValue(nudFrame.editable_numericupdown, 0) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, 0) nudFrame.assertText(nudFrame.editable_numericupdown, "0") nudFrame.assignValue(nudFrame.editable_numericupdown, 100) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, 100) nudFrame.assertText(nudFrame.editable_numericupdown, "100") # uneditable NumericUpDown nudFrame.assignValue(nudFrame.uneditable_numericupdown, 50) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 50) nudFrame.assertText(nudFrame.uneditable_numericupdown, "50") ############################ # set value to max ############################ # set numericupdown's value to maximumValue # enter text value as a float, which is what we get back from # queryValue().currentValue nudFrame.enterTextValue(nudFrame.editable_numericupdown, str(nudFrame.editableMaximumValue)) nudFrame.mouseClick() nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMaximumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMaximumValue))) # try to set the uneditable numericupdown control's text to maximumValue, but # ensure that it doesn't change (since it is readonly) nudFrame.enterTextValue(nudFrame.uneditable_numericupdown, str(int(nudFrame.uneditableMaximumValue))) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 50) nudFrame.assertText(nudFrame.uneditable_numericupdown, "50") ############################ # set value to max + 1 ############################ # set numericupdown's value to maximumValue + 1 nudFrame.enterTextValue(nudFrame.editable_numericupdown, str(int(nudFrame.editableMaximumValue+1))) sleep(config.MEDIUM_DELAY) nudFrame.keyCombo("Enter", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMaximumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMaximumValue))) ############################ # set value to min ############################ # set numericupdown's value to minimumValue nudFrame.enterTextValue(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue))) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue))) nudFrame.enterTextValue(nudFrame.uneditable_numericupdown, str(int(nudFrame.uneditableMinimumValue))) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 50) nudFrame.assertText(nudFrame.uneditable_numericupdown, "50") ############################ # set value to min - 1 ############################ #set numericupdown's value to minimumValue-1 nudFrame.enterTextValue(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue - 1))) sleep(config.MEDIUM_DELAY) nudFrame.keyCombo("Enter", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue))) ############################ # press Up/Down on editab_numericupdown ############################ # test press Up/Down action to check Text and Value by keyCombo to # editable_numericupdown which increment value is 20 nudFrame.keyCombo("Up", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue + 20) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue + 20))) # press "Down" on editable_numericupdown nudFrame.keyCombo("Down", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue))) # press "Down" again on editab_numericupdown and make sure the accessible # text and value do not change (since the control is at its minimum value) nudFrame.keyCombo("Down", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue))) ############################ # press Up/Down on uneditab_numericupdown ############################ # test press Up/Down action to check Text and Value of # uneditable_numericupdown which increment value is 1 nudFrame.uneditable_numericupdown.mouseClick() nudFrame.keyCombo("Up", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 51) nudFrame.assertText(nudFrame.uneditable_numericupdown, "51") # press "Down" on uneditab_numericupdown nudFrame.keyCombo("Down", grabFocus=False) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 50) nudFrame.assertText(nudFrame.uneditable_numericupdown, "50") ############################ # Use assignValue to change NumericUpDown control values ############################ # try to set each of the controls to something crazy, after which they should # both remained unchanged nudFrame.assignValue(nudFrame.editable_numericupdown, 100000) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue))) nudFrame.assignValue(nudFrame.uneditable_numericupdown, -100000) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 50) nudFrame.assertText(nudFrame.uneditable_numericupdown, "50") # set them to min-1 and max+1. Again, they should remain unchanged nudFrame.assignValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, nudFrame.editableMinimumValue) nudFrame.assertText(nudFrame.editable_numericupdown, str(int(nudFrame.editableMinimumValue))) # set both NumericUpDown controls' values to 0 nudFrame.assignValue(nudFrame.editable_numericupdown, 0) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, 0) nudFrame.assertText(nudFrame.editable_numericupdown, "0") nudFrame.assignValue(nudFrame.uneditable_numericupdown, 0) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 0) nudFrame.assertText(nudFrame.uneditable_numericupdown, "0") # set both NumericUpDown controls' values to 1 nudFrame.assignValue(nudFrame.editable_numericupdown, 1) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, 1) nudFrame.assertText(nudFrame.editable_numericupdown, "1") nudFrame.assignValue(nudFrame.uneditable_numericupdown, 1) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 1) nudFrame.assertText(nudFrame.uneditable_numericupdown, "1") # set both NumericUpDown controls' values to -1 nudFrame.assignValue(nudFrame.editable_numericupdown, -1) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, -1) nudFrame.assertText(nudFrame.editable_numericupdown, "-1") nudFrame.assignValue(nudFrame.uneditable_numericupdown, -1) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, -1) nudFrame.assertText(nudFrame.uneditable_numericupdown, "-1") # set both NumericUpDown controls' values to 10 nudFrame.assignValue(nudFrame.editable_numericupdown, 10) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, 10) nudFrame.assertText(nudFrame.editable_numericupdown, "10") nudFrame.assignValue(nudFrame.uneditable_numericupdown, 10) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, 10) nudFrame.assertText(nudFrame.uneditable_numericupdown, "10") # set both NumericUpDown controls' values to -10 nudFrame.assignValue(nudFrame.editable_numericupdown, -10) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.editable_numericupdown, -10) nudFrame.assertText(nudFrame.editable_numericupdown, "-10") nudFrame.assignValue(nudFrame.uneditable_numericupdown, -10) sleep(config.SHORT_DELAY) nudFrame.assertValue(nudFrame.uneditable_numericupdown, -10) nudFrame.assertText(nudFrame.uneditable_numericupdown, "-10") ############################ # End ############################ # close application frame window nudFrame.quit() print "INFO: Log written to: %s" % config.OUTPUT_DIR
39.313725
116
0.738238
bdddf6204a6c0847c23c129705bb231b06e4670a
310
py
Python
packages/pycopy/v2.11.0.1/esp32/stubs/ntptime.py
TheVinhLuong102/micropy-stubs
55ff1773008f7c4dfc3d70a403986486226eb6b3
[ "MIT" ]
18
2019-07-11T13:31:09.000Z
2022-01-27T06:38:40.000Z
packages/pycopy/v2.11.0.1/esp32/stubs/ntptime.py
TheVinhLuong102/micropy-stubs
55ff1773008f7c4dfc3d70a403986486226eb6b3
[ "MIT" ]
9
2019-09-01T21:44:49.000Z
2022-02-04T20:55:08.000Z
packages/pycopy/v2.11.0.1/esp32/stubs/ntptime.py
TheVinhLuong102/micropy-stubs
55ff1773008f7c4dfc3d70a403986486226eb6b3
[ "MIT" ]
6
2019-10-08T05:31:21.000Z
2021-04-22T10:21:01.000Z
""" Module: 'ntptime' on esp32 1.11.0 """ # MCU: (sysname='esp32', nodename='esp32', release='1.11.0', version='v2.11.0.1 on 2019-07-26', machine='ESP32 module with ESP32') # Stubber: 1.2.0 NTP_DELTA = 3155673600 host = 'pool.ntp.org' def settime(): pass socket = None struct = None def time(): pass
19.375
130
0.648387
69b78bce2963194b3d3e2b2a286371b2db336773
810
py
Python
manage.py
yashasvibajpai/UrlShortener
28f9de5309cd3aec7bd5c0f061a5baa87dafa4f2
[ "MIT" ]
64
2017-06-14T14:35:16.000Z
2021-04-20T07:52:53.000Z
manage.py
yashasvibajpai/UrlShortener
28f9de5309cd3aec7bd5c0f061a5baa87dafa4f2
[ "MIT" ]
26
2017-06-04T17:57:05.000Z
2021-09-22T17:38:09.000Z
manage.py
yashasvibajpai/UrlShortener
28f9de5309cd3aec7bd5c0f061a5baa87dafa4f2
[ "MIT" ]
118
2017-06-05T22:08:02.000Z
2020-10-04T07:52:14.000Z
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "UrlShortener.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
35.217391
77
0.644444
9e0bc0e3381df61cb87b4c26e5241fef2a648c4d
7,975
py
Python
decryptoquote/cypherlettermap.py
ROldford/decryptoquote
daa30d5594fac4472e01ed3dd2f83f4520ff0e6d
[ "MIT" ]
null
null
null
decryptoquote/cypherlettermap.py
ROldford/decryptoquote
daa30d5594fac4472e01ed3dd2f83f4520ff0e6d
[ "MIT" ]
6
2020-02-26T19:23:49.000Z
2021-08-04T03:38:35.000Z
decryptoquote/cypherlettermap.py
ROldford/decryptoquote
daa30d5594fac4472e01ed3dd2f83f4520ff0e6d
[ "MIT" ]
null
null
null
from typing import Dict, Optional, List, Tuple from decryptoquote.constants import LETTERS, PUNCTUATION class CypherLetterMap: """ This class maps coded letters to matching decoded letters, or to `None` if no matching value has been determined. """ def __init__(self): self._clmap: Dict[str, Optional[str]] = {} self._past_coded_words: List[Tuple[str, str]] = [] # coded, decoded for letter in LETTERS: self._clmap[letter] = None def __repr__(self): return (f'{self.__class__.__name__}(' f'{self._clmap!r})') def __str__(self): keystring: str = self.keystring() return f"Decoder:\n{LETTERS}\n{keystring}" def __eq__(self, other): try: if self is other: return True else: for key in self._clmap.keys(): if self.get_letter_for_cypher(key) \ != other.get_letter_for_cypher(key): return False return True except AttributeError: return False def __ne__(self, other): return not self.__eq__(other) def get_letter_for_cypher(self, coded_letter: str) -> Optional[str]: """ Get the matching decoded letter for the given coded letter :param coded_letter: given coded letter :return: matching decoded letter, or `None` if no match """ return self._clmap[coded_letter.upper()] def decode(self, coded_text: str) -> str: """ Decrypts coded text based on current cypher letter map. If coded letters do not have decoded matches, the underscore ("_") will be used in its place. :param coded_text: coded text to decrypt :return: decrypted version of coded text, which may have underscores if letters are not decoded """ decoded_text = [] for letter in coded_text.upper(): if letter in self._clmap.keys(): if self._clmap[letter] is None: decoded_text.append('_') else: decoded_text.append(self._clmap[letter]) else: decoded_text.append(letter) return "".join(decoded_text) def add_word_to_mapping(self, coded_word: str, decoded_word: str): """ Updates the cypher letter map using the given coded word and its decoded form. :param coded_word: word from coded puzzle to add :param decoded_word: matching decoded word """ coded_word, decoded_word = self._validate_words(coded_word, decoded_word) self._past_coded_words.append((coded_word, decoded_word)) self._add_word_to_mapping_no_save(coded_word, decoded_word) def remove_last_word_from_mapping(self): """ Updates the cypher letter dictionary by undoing the last word addition. """ # current strategy: remove last word, clear map, rebuild # could be costly? # possible improvement: also store number of "codings" # ie. number of times we see that coded/decoded letter pair # reduce that number each time we remove # only remove letter when codings count <= 0 self._past_coded_words = self._past_coded_words[:-1] # remove last for letter in self._clmap.keys(): self._clmap[letter] = None # clear cl_map for word_pair in self._past_coded_words: coded_word, decoded_word = word_pair self._add_word_to_mapping_no_save(coded_word, decoded_word) def does_word_coding_work( self, coded_word: str, possible_decoded_word: str ) -> bool: """ Checks if this "word coding", or pair of coded word and possible matching decoded word, can be safely added to the mapping without causing coding inconsistencies. Coding inconsistencies include: * Mapping a coded letter that already has a matching decoded letter to a new letter * Adding a decoded letter that already exists in the mapping :param coded_word: coded word to check :param possible_decoded_word: possible decoded word to check :return: True if coded word and possible decoded word could be safely added to the mapping """ try: word_pair = self._validate_words(coded_word, possible_decoded_word) except ValueError: return False coded_word, possible_decoded_word = word_pair for letter_pair in zip(coded_word, possible_decoded_word): coded_letter, decoded_letter = letter_pair if coded_letter in PUNCTUATION or coded_letter == "'": if decoded_letter == coded_letter: continue else: return False if self._clmap[coded_letter] is None: if decoded_letter in self._clmap.values(): return False if decoded_letter in PUNCTUATION: return False else: if self._clmap[coded_letter] != decoded_letter: return False return True def clear(self): self._past_coded_words: List[Tuple[str, str]] = [] # coded, decoded for letter in LETTERS: self._clmap[letter] = None def keystring(self): key: List[str] = [] for letter in LETTERS: if self._clmap[letter] is None: key.append("_") else: key.append(self._clmap[letter]) return ''.join(key) def _add_word_to_mapping_no_save(self, coded_word: str, decoded_word: str): coded_word, decoded_word = self._validate_words(coded_word, decoded_word) word_matches = zip(coded_word, decoded_word) for letter_match in word_matches: coded_letter, decoded_letter = letter_match if coded_letter not in PUNCTUATION \ and decoded_letter not in PUNCTUATION: # pair exists in map: no action if self._clmap[coded_letter] == decoded_letter: continue # old key, new value if self._clmap[coded_letter] is not None: raise ValueError( f"Coded letter {coded_letter} already has a match") # same value for 2 keys if decoded_letter in self._clmap.values(): raise ValueError( f"Decoded letter {decoded_letter} is already mapped to " f"another coded letter") self._clmap[coded_letter] = decoded_letter else: if coded_letter != decoded_letter: raise ValueError( f"Coded word {coded_word} and decoded word {decoded_word} " f"have different punctuation locations") def _validate_words(self, coded_word: str, decoded_word: str): """ Ensures that coded and decoded words are uppercase and of equal length. :param coded_word: coded word to check :param decoded_word: decoded word to check :return: coded and decoded words in upper case :raises ValueError: if words have different lengths """ if len(coded_word) != len(decoded_word): raise ValueError("Coded and decoded words must " "have the same length") return coded_word.upper(), decoded_word.upper()
39.285714
83
0.573417
17c0a1c2c539f118d7131dab17ea861cd4934694
1,221
py
Python
podcast-backend/src/app/__init__.py
cuappdev/archives
061d0f9cccf278363ffaeb27fc655743b1052ae5
[ "MIT" ]
null
null
null
podcast-backend/src/app/__init__.py
cuappdev/archives
061d0f9cccf278363ffaeb27fc655743b1052ae5
[ "MIT" ]
null
null
null
podcast-backend/src/app/__init__.py
cuappdev/archives
061d0f9cccf278363ffaeb27fc655743b1052ae5
[ "MIT" ]
null
null
null
import os import datetime import logging from logging.handlers import RotatingFileHandler from flask import Flask, render_template, jsonify, make_response from flask_sqlalchemy import SQLAlchemy import config # Configure Flask app app = Flask(__name__, static_url_path='/templates') app.config.from_object(os.environ['APP_SETTINGS']) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True # Database db = SQLAlchemy(app) # Import + Register Blueprints from app.pcasts import pcasts as pcasts app.register_blueprint(pcasts) # HTTP error handling @app.errorhandler(404) def not_found(error): return render_template('404.html'), 404 from app.pcasts_logger import PcastsJsonFormatter # Initialize log handler if not app.config['TESTING']: date_tag = datetime.datetime.now().strftime('%Y-%b-%d') logs_path = '{}/logs'.format(app.root_path) if not os.path.exists(logs_path): os.makedirs(logs_path) log_handler = RotatingFileHandler( '{}/info-{}.log'.format(logs_path, date_tag), maxBytes=10*1024*1024, backupCount=5 ) formatter = PcastsJsonFormatter('(timestamp) (level) (message)') log_handler.setFormatter(formatter) log_handler.setLevel(logging.INFO) app.logger.addHandler(log_handler)
29.780488
66
0.773137
78e955ad94734a28b5874d2109859be64aca8802
1,965
py
Python
tests/models/test_clf_evaluation.py
WadhwaniAI/cac-test-release
066c554a354f0043f8ac83c9d6421a8397b17ba5
[ "Apache-2.0" ]
24
2021-05-13T13:34:27.000Z
2022-03-02T13:52:29.000Z
tests/models/test_clf_evaluation.py
WadhwaniAI/cac-test-release
066c554a354f0043f8ac83c9d6421a8397b17ba5
[ "Apache-2.0" ]
2
2021-07-09T08:21:31.000Z
2022-02-11T15:30:55.000Z
tests/models/test_clf_evaluation.py
WadhwaniAI/cac-test-release
066c554a354f0043f8ac83c9d6421a8397b17ba5
[ "Apache-2.0" ]
6
2021-06-10T07:47:48.000Z
2022-01-27T07:36:09.000Z
"""Tests cac.models.classification.ClassificationModel evaluation""" import os from os.path import dirname, join, exists from copy import deepcopy import torch import wandb import unittest from tqdm import tqdm import numpy as np from torch import optim from torch.nn import Conv2d, BatchNorm2d, LeakyReLU from cac.config import Config from cac.utils.logger import set_logger, color from cac.data.dataloader import get_dataloader from cac.models.classification import ClassificationModel from cac.models.utils import get_saved_checkpoint_path class ClassificationModelEvaluationTestCase(unittest.TestCase): """Class to check the evaluation of ClassificationModel""" @classmethod def setUpClass(cls): version = 'default.yml' cls.cfg = Config(version) cls.cfg.data['dataset']['params']['train']['fraction'] = 0.01 cls.cfg.data['dataset']['params']['val']['fraction'] = 0.03 cls.cfg.num_workers = 1 if torch.cuda.is_available() else 10 def test_1_model_fitting(self): """Test model.fit()""" set_logger(join(self.cfg.log_dir, 'train.log')) tester_cfg = deepcopy(self.cfg) tester_cfg.model['epochs'] = 1 classifier = ClassificationModel(tester_cfg) classifier.fit(debug=True, use_wandb=False) def test_2_evaluate(self): """Test model.evaluate()""" set_logger(join(self.cfg.log_dir, 'train.log')) tester_cfg = deepcopy(self.cfg) tester_cfg.model['load']['version'] = 'default' tester_cfg.model['load']['load_best'] = True kwargs = {'threshold': 0.5} model = ClassificationModel(tester_cfg) dataloader, _ = get_dataloader( tester_cfg.data, 'val', tester_cfg.model['batch_size'], num_workers=4, shuffle=False, drop_last=False) model.evaluate(dataloader, 'val', False, **kwargs) if __name__ == "__main__": unittest.main()
33.87931
69
0.678372
28e224389be540007d9d07ecf53ed229b77c3e85
1,928
py
Python
frontend/amundsen_application/proxy/issue_tracker_clients/__init__.py
defendercrypt/amundsen
83c728b646020f60cf2270c12e766fe4af8c9948
[ "Apache-2.0" ]
2,072
2020-08-11T20:16:48.000Z
2022-03-31T07:04:05.000Z
frontend/amundsen_application/proxy/issue_tracker_clients/__init__.py
defendercrypt/amundsen
83c728b646020f60cf2270c12e766fe4af8c9948
[ "Apache-2.0" ]
795
2020-08-11T15:24:39.000Z
2022-03-31T18:56:13.000Z
frontend/amundsen_application/proxy/issue_tracker_clients/__init__.py
defendercrypt/amundsen
83c728b646020f60cf2270c12e766fe4af8c9948
[ "Apache-2.0" ]
671
2020-08-11T20:39:56.000Z
2022-03-31T08:39:07.000Z
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 from flask import current_app as app from threading import Lock from werkzeug.utils import import_string from amundsen_application.base.base_issue_tracker_client import BaseIssueTrackerClient _issue_tracker_client = None _issue_tracker_client_lock = Lock() def get_issue_tracker_client() -> BaseIssueTrackerClient: """ Provides singleton proxy client based on the config :return: Proxy instance of any subclass of BaseProxy """ global _issue_tracker_client if _issue_tracker_client: return _issue_tracker_client with _issue_tracker_client_lock: if _issue_tracker_client: return _issue_tracker_client else: # Gather all the configuration to create an IssueTrackerClient if app.config['ISSUE_TRACKER_CLIENT_ENABLED']: url = app.config['ISSUE_TRACKER_URL'] user = app.config['ISSUE_TRACKER_USER'] password = app.config['ISSUE_TRACKER_PASSWORD'] project_id = app.config['ISSUE_TRACKER_PROJECT_ID'] max_results = app.config['ISSUE_TRACKER_MAX_RESULTS'] issue_labels = app.config['ISSUE_LABELS'] if app.config['ISSUE_TRACKER_CLIENT']: client = import_string(app.config['ISSUE_TRACKER_CLIENT']) _issue_tracker_client = client(issue_labels=issue_labels, issue_tracker_url=url, issue_tracker_user=user, issue_tracker_password=password, issue_tracker_project_id=project_id, issue_tracker_max_results=max_results) return _issue_tracker_client
41.021277
89
0.624481
1a84bb98f04894507afbc980aecf632e023b2343
373
py
Python
setup.py
mcflugen/roms-lite
9c226314d6c81227d311e3348193b66acaf548fe
[ "MIT" ]
null
null
null
setup.py
mcflugen/roms-lite
9c226314d6c81227d311e3348193b66acaf548fe
[ "MIT" ]
null
null
null
setup.py
mcflugen/roms-lite
9c226314d6c81227d311e3348193b66acaf548fe
[ "MIT" ]
null
null
null
#! /usr/bin/env python from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages setup(name='roms_lite', version='0.1.0', author='Eric Hutton', author_email='eric.hutton@colorado.edu', description='Python BMI for ROMS-Lite', long_description=open('README.md').read(), packages=find_packages(), )
24.866667
48
0.697051
f1e30e8d2e10a88ac72831ee99db3b728ac645ca
2,072
py
Python
Collect/GLDASnew/__init__.py
TimHessels/watertools
77bb412a72f068d255d614f4f8a8f2cfb7d78a26
[ "Apache-2.0" ]
3
2021-01-26T11:21:31.000Z
2021-12-31T21:28:18.000Z
Collect/GLDAS/__init__.py
TimHessels/watertools
77bb412a72f068d255d614f4f8a8f2cfb7d78a26
[ "Apache-2.0" ]
null
null
null
Collect/GLDAS/__init__.py
TimHessels/watertools
77bb412a72f068d255d614f4f8a8f2cfb7d78a26
[ "Apache-2.0" ]
4
2019-01-02T06:45:55.000Z
2021-06-30T11:51:38.000Z
# -*- coding: utf-8 -*- """ Authors: Tim Hessels Module: Collect/GLDAS Description: This script automatically downloads GLDAS 2.0 or 2.1 data with a 0.25 degree resolution for different extends based on their opendap server. The time interval available are: three-hourly ('3hour'), daily ('day'), and monthly ('month'). A list of the variables can be printed with the command: GLDAS.VarInfo('daily').descriptions.keys() Futher information of the variable can be printed with the following commands: GLDAS.VarInfo('daily').descriptions['evap'] GLDAS.VarInfo('daily').units['evap'] GLDAS.VarInfo('daily').names['evap'] GLDAS.VarInfo('daily').factors['evap'] Examples: from watertools.Collect import GLDAS GLDAS.three_hourly(Dir='C:/Temp/', Vars=['qair','tair'], Startdate='2004-12-20', Enddate='2005-01-10', latlim=[38, 41], lonlim=[-76, -73], Periods=[4, 5], gldas_version = '2.1') GLDAS.daily(Dir='C:/Temp/', Vars=['qair'], Startdate='2004-12-20', Enddate='2005-01-01', latlim=[38, 41], lonlim=[-76, -73], SumMean=1, Min=1, Max=1, gldas_version = '2.1') GLDAS.monthly(Dir='C:/TempGLDAS', Vars=['swnet'], Startdate='2004-12-20', Enddate='2005-03-10',latlim=[38, 41], lonlim=[-76, -73], gldas_version = '2.1') """ from .three_hourly import main as three_hourly from .daily import main as daily from .monthly import main as monthly from .DataAccess import VariablesInfo as VarInfo from .CLSM_DataAccess import VariablesInfo as CLSM_VarInfo from .CLSM_daily import main as CLSM_daily from .CLSM_monthly import main as CLSM_monthly from .CLSM_three_hourly import main as CLSM_three_hourly from .NOAH_DataAccess import VariablesInfo as NOAH_VarInfo from .NOAH_daily import main as NOAH_daily from .NOAH_monthly import main as NOAH_monthly from .NOAH_three_hourly import main as NOAH_three_hourly __all__ = ['three_hourly', 'daily', 'monthly', 'VarInfo', 'CLSM_VarInfo', 'CLSM_daily', 'CLSM_monthly', 'CLSM_three_hourly', 'NOAH_VarInfo', 'NOAH_daily', 'NOAH_monthly', 'NOAH_three_hourly'] __version__ = '0.1'
45.043478
191
0.725869
b651fdd242c348963262636ab0abc81c3f4bdbd0
1,085
py
Python
libs/astro_data/__init__.py
crazygmr101/Almanac
2309325f21ef06f96c700740162875b2f085678a
[ "MIT" ]
null
null
null
libs/astro_data/__init__.py
crazygmr101/Almanac
2309325f21ef06f96c700740162875b2f085678a
[ "MIT" ]
null
null
null
libs/astro_data/__init__.py
crazygmr101/Almanac
2309325f21ef06f96c700740162875b2f085678a
[ "MIT" ]
null
null
null
""" Copyright 2021 crazygmr101 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .api import *
60.277778
119
0.795392
e9c8ed11528ac1a7a03a9e2e5c4609a301717f9f
7,876
py
Python
test/kernel/test_kernel_cordiv_kernel_in_stream.py
jingjieli95/UnarySim
775b38fa2d6b05a69fd73acb4766e50200a5cc37
[ "MIT" ]
17
2020-04-26T19:38:03.000Z
2022-02-23T02:05:08.000Z
test/kernel/test_kernel_cordiv_kernel_in_stream.py
pan185/UnarySim
c03386efdbb8151f3c33f34b44d1d6a6fc960434
[ "MIT" ]
3
2021-11-03T18:20:29.000Z
2022-02-11T16:30:16.000Z
test/kernel/test_kernel_cordiv_kernel_in_stream.py
pan185/UnarySim
c03386efdbb8151f3c33f34b44d1d6a6fc960434
[ "MIT" ]
9
2019-12-03T05:08:55.000Z
2022-01-04T20:24:55.000Z
# %% import torch from UnarySim.kernel.div import FSUDiv from UnarySim.stream.gen import RNG, SourceGen, BSGen from UnarySim.metric.metric import ProgError import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import ticker, cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import time import math import numpy as np # %% device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # %% def test(mode="unipolar", depth_abs=4, depth_kernel=4, depth_sync=2, shiftreg=False, rng="Sobol", rng_dim=4, bitwidth=8, total_cnt=100, savepdf=False): stype = torch.float btype = torch.float rtype = torch.float print("========================================================") print(mode) print("========================================================") if mode == "unipolar": # all values in unipolar are non-negative # dividend is always non greater than divisor # divisor is non-zero low_bound = 0 up_bound = 2**bitwidth elif mode == "bipolar": # values in bipolar are arbitrarily positive or negative # abs of dividend is always non greater than abs of divisor # abs of divisor is non-zero low_bound = -2**(bitwidth-1) up_bound = 2**(bitwidth-1) divisor_list = [] dividend_list = [] for divisor_val in range(up_bound, low_bound-1, -1): divisor_list.append([]) dividend_list.append([]) for dividend_val in range(low_bound, up_bound+1, 1): divisor_list[up_bound-divisor_val].append(divisor_val) dividend_list[up_bound-divisor_val].append(dividend_val) dividend = torch.tensor(dividend_list).type(torch.float).div(up_bound).to(device) divisor = torch.tensor(divisor_list).type(torch.float).div(up_bound).to(device) quotient = dividend.div(divisor) # find the invalid postions in quotient quotient_nan = torch.isnan(quotient) quotient_inf = torch.isinf(quotient) quotient_mask = quotient_nan + quotient_inf quotient[quotient_mask] = 0 quotient = quotient.clamp(-1, 1) result_pe_total = [] for rand_idx in range(1, total_cnt+1): quotientPE = ProgError(quotient, mode=mode).to(device) dividendPE = ProgError(dividend, mode=mode).to(device) dividendSRC = SourceGen(dividend, bitwidth, mode=mode, rtype=rtype)().to(device) divisorPE = ProgError(divisor, mode=mode).to(device) divisorSRC = SourceGen(divisor, bitwidth, mode=mode, rtype=rtype)().to(device) dut_div = FSUDiv(depth_abs=depth_abs, depth_kernel=depth_kernel, depth_sync=depth_sync, shiftreg_abs=shiftreg, mode=mode, rng=rng, rng_dim=rng_dim, stype=stype, btype=btype).to(device) # define the bit stream regen for dividend and divisor regenRNG = RNG(bitwidth, rand_idx+2, rng, rtype)().to(device) maxCNT = 2**bitwidth - 1 dividendCNT = torch.zeros_like(dividend) + 2**(bitwidth - 1) dividendBS_regen = BSGen(dividendCNT, regenRNG, stype).to(device) divisorCNT = torch.zeros_like(dividend) + 2**(bitwidth - 1) divisorBS_regen = BSGen(divisorCNT, regenRNG, stype).to(device) dividendRNG = RNG(bitwidth, rand_idx, rng, rtype)().to(device) dividendBS = BSGen(dividendSRC, dividendRNG, stype).to(device) divisorRNG = RNG(bitwidth, rand_idx+1, rng, rtype)().to(device) divisorBS = BSGen(divisorSRC, divisorRNG, stype).to(device) with torch.no_grad(): start_time = time.time() for i in range(2**bitwidth): dividend_bs = dividendBS(torch.tensor([i])) dividendPE.Monitor(dividend_bs) divisor_bs = divisorBS(torch.tensor([i])) divisorPE.Monitor(divisor_bs) dividendCNT = (dividendCNT + dividend_bs*2 - 1).clamp(0, maxCNT) dividendBS_regen.source = dividendCNT.clone().detach() dividend_bs_regen = dividendBS_regen(torch.tensor([i])) divisorCNT = ( divisorCNT + divisor_bs*2 - 1).clamp(0, maxCNT) divisorBS_regen.source = divisorCNT.clone().detach() divisor_bs_regen = divisorBS_regen(torch.tensor([i])) quotient_bs = dut_div(dividend_bs_regen, divisor_bs_regen) quotientPE.Monitor(quotient_bs) # get the result for different rng result_pe = quotientPE()[1].cpu().numpy() result_pe[quotient_mask.cpu().numpy()] = np.nan result_pe_total.append(result_pe) # get the result for different rng result_pe_total = np.array(result_pe_total) ####################################################################### # check the error of all simulation ####################################################################### result_pe_total_no_nan = result_pe_total[~np.isnan(result_pe_total)] print("RMSE:{:1.4}".format(math.sqrt(np.mean(result_pe_total_no_nan**2)))) print("MAE: {:1.4}".format(np.mean(np.abs(result_pe_total_no_nan)))) print("bias:{:1.4}".format(np.mean(result_pe_total_no_nan))) print("max: {:1.4}".format(np.max(result_pe_total_no_nan))) print("min: {:1.4}".format(np.min(result_pe_total_no_nan))) ####################################################################### # check the error according to input value ####################################################################### avg_total = np.mean(result_pe_total, axis=0) avg_total[quotient_mask.cpu().numpy()] = 0 fig, ax = plt.subplots() fig.set_size_inches(5.5, 4) axis_len = quotientPE()[1].size()[0] divisor_y_axis = [] dividend_x_axis = [] for axis_index in range(axis_len): divisor_y_axis.append((up_bound-axis_index/(axis_len-1)*(up_bound-low_bound))/up_bound) dividend_x_axis.append((axis_index/(axis_len-1)*(up_bound-low_bound)+low_bound)/up_bound) X, Y = np.meshgrid(dividend_x_axis, divisor_y_axis) Z = avg_total levels = [-0.09, -0.06, -0.03, 0.00, 0.03, 0.06, 0.09] cs = plt.contourf(X, Y, Z, levels, cmap=cm.RdBu, extend="both") cbar = fig.colorbar(cs) # plt.tight_layout() plt.xticks(np.arange(low_bound/up_bound, up_bound/up_bound+0.1, step=0.5)) # ax.xaxis.set_ticklabels([]) plt.yticks(np.arange(low_bound/up_bound, up_bound/up_bound+0.1, step=0.5)) # ax.yaxis.set_ticklabels([]) if savepdf is True: plt.savefig("div-"+mode+"-bw"+str(bitwidth)+"-cordivkernel-in-stream"+".pdf", dpi=300, bbox_inches='tight') plt.show() plt.close() # %% test(mode="unipolar", depth_abs=3, depth_kernel=2, depth_sync=2, shiftreg=False, rng="Sobol", rng_dim=4, bitwidth=8, total_cnt=100, savepdf=False) test(mode="bipolar", depth_abs=3, depth_kernel=2, depth_sync=2, shiftreg=False, rng="Sobol", rng_dim=4, bitwidth=8, total_cnt=100, savepdf=False) # %% fig, ax = plt.subplots() fig.set_size_inches(0.1, 1.6) cmap = cm.RdBu bounds = [-0.12, -0.09, -0.06, -0.03, 0.00, 0.03, 0.06, 0.09, 0.12] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cb = mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, boundaries=bounds, extend='both', spacing='uniform', orientation='vertical') # plt.tight_layout() # plt.savefig("colorbar.pdf", dpi=300, bbox_inches='tight') plt.show() # %%
39.979695
146
0.5871
91c7bc5c1f05ac5a89d6ff3e0448e83520e7bf5d
3,570
py
Python
google/ads/googleads/v6/services/services/topic_view_service/transports/base.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v6/services/services/topic_view_service/transports/base.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v6/services/services/topic_view_service/transports/base.py
wxxlouisa/google-ads-python
f24137966f6bfcb765a9b1fae79f2d23041825fe
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources from google import auth from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.ads.googleads.v6.resources.types import topic_view from google.ads.googleads.v6.services.types import topic_view_service try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution("google-ads",).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class TopicViewServiceTransport(metaclass=abc.ABCMeta): """Abstract transport class for TopicViewService.""" AUTH_SCOPES = ("https://www.googleapis.com/auth/adwords",) def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host # If no credentials are provided, then determine the appropriate # defaults. if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # Save the credentials. self._credentials = credentials # Lifted into its own function so it can be stubbed out during tests. self._prep_wrapped_messages(client_info) def _prep_wrapped_messages(self, client_info): # Precomputed wrapped methods self._wrapped_methods = { self.get_topic_view: gapic_v1.method.wrap_method( self.get_topic_view, default_timeout=None, client_info=client_info, ), } @property def get_topic_view( self, ) -> typing.Callable[ [topic_view_service.GetTopicViewRequest], topic_view.TopicView ]: raise NotImplementedError __all__ = ("TopicViewServiceTransport",)
35
78
0.67619
60e02f1b6c501c976e585b2565c484a9ffbfb59d
7,543
py
Python
battleship/battleship.py
TrustyJAID/FlameCogs
8a3bb1b54fea760b2f9c019e4fb6782453ea4f29
[ "MIT" ]
null
null
null
battleship/battleship.py
TrustyJAID/FlameCogs
8a3bb1b54fea760b2f9c019e4fb6782453ea4f29
[ "MIT" ]
null
null
null
battleship/battleship.py
TrustyJAID/FlameCogs
8a3bb1b54fea760b2f9c019e4fb6782453ea4f29
[ "MIT" ]
null
null
null
import discord from redbot.core import commands from redbot.core import Config from redbot.core import checks import asyncio class Battleship(commands.Cog): """Play battleship with one other person.""" def __init__(self, bot): self.bot = bot self.runningin = [] self.config = Config.get_conf(self, identifier=7345167901) self.config.register_guild( extraHit = True ) @commands.guild_only() @commands.command() async def battleship(self, ctx): """Start a game of battleship.""" if ctx.channel.id in self.runningin: return await ctx.send('There is already a game running in this channel.') self.runningin.append(ctx.channel.id) channel = ctx.message.channel name = [ctx.message.author.display_name] board = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] let = ['A','B','C','D','E','F','G','H','I','J'] letnum = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9} bkey = [{0:'· ',1:'O ',2:'X ',3:'· '},{0:'· ',1:'O ',2:'X ',3:'# '}] pswap = {1:0,0:1} key = [[],[]] key2 = {0:0,1:0,2:0,3:0,4:0} namekey = {0:'5',1:'4',2:'3',3:'3',4:'2'} pid = [ctx.message.author] pmsg = [] def bprint(player,bt): #creates a display of the board for printing b = ' ' for z in range(10): b += let[z]+' ' b += '\n' for y in range(10): #vertical positions b += str(y)+' ' for x in range(10): b += bkey[bt][board[player][(y*10)+x]] #horizontal positions b += '\n' return '```'+b+'```' async def place(player,length,value): #create a ship for player of length at position value hold = {} try: x = letnum[value[0]] except: await pid[player].send('Invalid input, x cord must be a letter from A-J.') return False try: y = int(value[1]) except: await pid[player].send('Invalid input, y cord must be a number from 0-9.') return False try: d = value[2] except: await pid[player].send('Invalid input, d cord must be a direction of d or r.') return False try: if d == 'r': #right if 10 - length < x: #ship would wrap over right edge await pid[player].send('Invalid input, too far to the right.') return False for z in range(length): if board[player][(y*10)+x+z] != 0: #a spot taken by another ship await pid[player].send('Invalid input, another ship is in that range.') return False for z in range(length): board[player][(y*10)+x+z] = 3 hold[(y*10)+x+z] = 0 elif d == 'd': #down for z in range(length): if board[player][((y+z)*10)+x] != 0: #a spot taken by another ship await pid[player].send('Invalid input, another ship is in that range.') return False for z in range(length): board[player][((y+z)*10)+x] = 3 hold[((y+z)*10)+x] = 0 else: await pid[player].send('Invalid input, d cord must be a direction of d or r.') return False except: await pid[player].send('Invalid input, too far down.') return False key[player].append(hold) return True #RUN CODE check = lambda m: m.author != ctx.message.author and m.author.bot == False and m.channel == ctx.message.channel and m.content.lower() == 'i' await ctx.send('Second player, say I.') try: r = await self.bot.wait_for('message', timeout=60, check=check) except asyncio.TimeoutError: self.runningin.remove(ctx.channel.id) return await ctx.send('You took too long, shutting down.') name.append(r.author.display_name) pid.append(r.author) await ctx.send('A game of battleship will be played between '+name[0]+' and '+name[1]+'.') for x in range(2): #each player await ctx.send('Messaging '+name[x]+' for setup now.') await pid[x].send(str(name[x]+', it is your turn to set up your ships.\nPlace ships by entering the top left coordinate and the direction of (r)ight or (d)own in xyd format.')) for k in [5,4,3,3,2]: #each ship length stupid = await pid[x].send(bprint(x,1)+'Place your '+str(k)+' length ship.') while True: try: t = await self.bot.wait_for('message', timeout=120, check=lambda m:m.channel == stupid.channel and m.author.bot == False) except asyncio.TimeoutError: self.runningin.remove(ctx.channel.id) return await ctx.send(name[x]+' took too long, shutting down.') if await place(x,k,t.content.lower()) == True: break m = await pid[x].send(bprint(x,1)) pmsg.append(m) ############################################################### game = True p = 1 while game: p = pswap[p] await ctx.send(name[p]+'\'s turn!\n'+bprint(pswap[p],0)+name[p]+', take your shot.') i = 0 while i == 0: try: s = await self.bot.wait_for('message', timeout=120, check=lambda m: m.author == pid[p] and m.channel == channel and len(m.content) == 2) except asyncio.TimeoutError: self.runningin.remove(ctx.channel.id) return await ctx.send('You took too long, shutting down.') try: #makes sure input is valid x = letnum[s.content[0].lower()] y = int(s.content[1]) board[pswap[p]][(y*10)+x] except: continue if board[pswap[p]][(y*10)+x] == 0: board[pswap[p]][(y*10)+x] = 1 await pmsg[pswap[p]].edit(content=bprint(pswap[p],1)) await ctx.send(bprint(pswap[p],0)+'Miss!') i = 1 elif board[pswap[p]][(y*10)+x] in [1,2]: await ctx.send('You already shot there!') elif board[pswap[p]][(y*10)+x] == 3: board[pswap[p]][(y*10)+x] = 2 await pmsg[pswap[p]].edit(content=bprint(pswap[p],1)) await ctx.send(bprint(pswap[p],0)+'Hit!') l = -1 for a in range(5): if ((y*10)+x) in key[pswap[p]][a]: key[pswap[p]][a][(y*10)+x] = 1 l = 0 for b in key[pswap[p]][a]: if key[pswap[p]][a][b] == 0: #if any position in the ship is still there, l = 1 l = 1 break if l == 0: #if ship destroyed await ctx.send(name[pswap[p]]+'\'s '+namekey[a]+' length ship was destroyed!') key2[a] = 1 #mark ship as destroyed for c in key2: if key2[c] == 0: #if any ship is not destroyed, l = 1 l = 1 break if l == 0: #if all ships destroyed await ctx.send(name[p]+' wins!') self.runningin.remove(ctx.channel.id) game = False i = 1 if game == True: if await self.config.guild(ctx.guild).extraHit() == True: await ctx.send('Take another shot.') else: i = 1 @commands.guild_only() @checks.guildowner() @commands.command() async def battleshipset(self, ctx, value: bool=None): """ Set if an extra shot should be given after a hit. Defaults to True. This value is server specific. """ if value == None: v = await self.config.guild(ctx.guild).extraHit() if v == True: await ctx.send('You are currently able to shoot again after a hit.') else: await ctx.send('You are currently not able to shoot again after a hit.') else: await self.config.guild(ctx.guild).extraHit.set(value) if value == True: await ctx.send('You will now be able to shoot again after a hit.') else: await ctx.send('You will no longer be able to shoot again after a hit.')
38.28934
415
0.593663
a7ce3239986414c113f9cf29d9137991d40366a5
301
py
Python
onnx_coreml/__init__.py
karfly/onnx-coreml
0e423d0b4779af21479c338ed82f3864434e4c21
[ "MIT" ]
null
null
null
onnx_coreml/__init__.py
karfly/onnx-coreml
0e423d0b4779af21479c338ed82f3864434e4c21
[ "MIT" ]
null
null
null
onnx_coreml/__init__.py
karfly/onnx-coreml
0e423d0b4779af21479c338ed82f3864434e4c21
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .converter import convert # onnx-coreml version __version__ = '1.3' __all__ = ['convert'] print("You're using onnx-coreml hacked by @karfly!")
21.5
52
0.803987
9c8028af6de8b854bce77af04ff149d397be3ff9
14,819
py
Python
RobotMovingPanel/interface/interfaceLogic.py
Vlad12344/Pulseapi_Integration
2acf93a17dd2911328141886b8724134fff84f00
[ "MIT" ]
null
null
null
RobotMovingPanel/interface/interfaceLogic.py
Vlad12344/Pulseapi_Integration
2acf93a17dd2911328141886b8724134fff84f00
[ "MIT" ]
null
null
null
RobotMovingPanel/interface/interfaceLogic.py
Vlad12344/Pulseapi_Integration
2acf93a17dd2911328141886b8724134fff84f00
[ "MIT" ]
null
null
null
import os import sys import time from math import radians from PyQt5 import QtWidgets, QtCore, QtGui # from RobotMovingPanel.features import tcp from pulseapi_integration import NewRobotPulse, jog, PulseApiException from pulseapi_integration.utils import position_2_xyzrpw from pulseapi import tool_info, tool_shape, position, pose from PyQt5.QtWidgets import QApplication, QDialog, QFileDialog from .interface import Ui_Dialog from RobotMovingPanel import config from RobotMovingPanel.logger import file_existing_check, append_list_as_row from RobotMovingPanel.utils.jsonWorker import openJson from RobotMovingPanel.interface import model from RobotMovingPanel.model import tcpmodel from RobotMovingPanel.model import robotModel from RobotMovingPanel.model.treewidgetmodel import selectTreeItem class PositionChenger(QtCore.QThread): def __init__(self, mainwindow, parent=None): super().__init__() self.mainwindow = mainwindow def run(self): while True: XYZ = self.mainwindow.robot.get_position()['point'].values() RPW = self.mainwindow.robot.get_position()['rotation'].values() for lineEdit, value in zip(self.mainwindow.lineEdit_position_mapping, [*XYZ, *RPW]): lineEdit.setText(str(round(value, 4))) time.sleep(0.2) class MovingPanel(QtWidgets.QMainWindow, Ui_Dialog): def __init__(self): super().__init__() self.PROG: str = '' self.PROG_PATH: str = '' self.NUMBER_OF_TOOL_CALIBRATION_POINTS = set() self.CURRENT_TOOL_CALIBRATION_NAME = '' self.setupUi(self) self.lineEdit.setVisible(False) self.pushButton_2.setVisible(False) self.pushButton_3.setVisible(False) file_existing_check(config.PATH_2_CSV) # self.move_buttons_maping = [ # (self.button_xUp, {'direction': 1, 'axis': 'x'}), # (self.button_xDown, {'direction': -1, 'axis': 'x'}), # (self.button_yUp, {'direction': 1, 'axis': 'y'}), # (self.button_yDown, {'direction': -1, 'axis': 'y'}), # (self.button_zUp, {'direction': 1, 'axis': 'z'}), # (self.button_zDown, {'direction': -1, 'axis': 'z'}), # (self.button_rollUp, {'direction': 1, 'axis': 'rx'}), # (self.button_rollDown, {'direction': -1, 'axis': 'rx'}), # (self.button_pitchUp, {'direction': 1, 'axis': 'ry'}), # (self.button_pitchDown, {'direction': -1, 'axis': 'ry'}), # (self.button_yawUp, {'direction': 1, 'axis': 'rz'}), # (self.button_yawDown, {'direction': -1, 'axis': 'rz'}) # ] self.move_buttons_maping = [ (self.button_xUp, self.xUp), (self.button_xDown, self.xDown), (self.button_yUp, self.yUp), (self.button_yDown, self.yDown), (self.button_zUp, self.zUp), (self.button_zDown, self.zDown), (self.button_rollUp, self.rxUp), (self.button_rollDown, self.rxDown), (self.button_pitchUp, self.ryUp), (self.button_pitchDown, self.ryDown), (self.button_yawUp, self.rzUp), (self.button_yawDown, self.rzDown) ] self.lineEdit_position_mapping = [ self.lineEdit_x, self.lineEdit_y, self.lineEdit_z, self.lineEdit_roll, self.lineEdit_pitch, self.lineEdit_yaw ] self.lineEdit_joints_mapping = [ self.lineEdit_J_1, self.lineEdit_J_2, self.lineEdit_J_3, self.lineEdit_J_4, self.lineEdit_J_5, self.lineEdit_J_6 ] self.lineEdit_tool_maping = [ self.lineEdit_tollX, self.lineEdit_tool_Y, self.lineEdit_tool_Z, self.lineEdit_tool_RX, self.lineEdit_tool_RY, self.lineEdit_tool_RZ ] # self.positionalChenger_instance = PositionChenger(mainwindow=self) # self.launchPositionChanger() self.move_buttons_handler() self.setToolComboBox() def closeGraphWindow(self): self.stackedWidget_3.setCurrentIndex(0) def openFullScreen(self): self.stackedWidget_3.setCurrentIndex(1) def infoFromLineEdit(self, mapping: list) -> list: return [float(line_edit.text()) for line_edit in mapping] #-------------------TOOL------------------- def besidesDefaultTool(func): def wrapper(self): if self.tollsComboBox.currentIndex() != 0: func(self) pass return wrapper @besidesDefaultTool def openToolSetPoints(self): self.stackedWidget_2.setCurrentIndex(1) self.tollsComboBox.setEnabled(False) def closeTeachTCPWindow(self): self.stackedWidget_2.setCurrentIndex(0) self.tollsComboBox.setEnabled(True) def addToolHandler(self): count = self.tollsComboBox.count() coordinates = self.infoFromLineEdit(self.lineEdit_tool_maping) # tool is a standard name like TCP_0 tool = tcpmodel.addTool(toolNum=count, tcpCoordinates=coordinates) self.tollsComboBox.addItem(tool) self.tollsComboBox.setCurrentText(tool) @besidesDefaultTool def delToolHandler(self): tool_name = self.tollsComboBox.currentText() item_num = self.tollsComboBox.currentIndex() # if not tool_name == 'default': self.tollsComboBox.removeItem(item_num) tcpmodel.delTool(toolName=tool_name) # else: pass @besidesDefaultTool def resetTool(self): tool_name = self.tollsComboBox.currentText() tcpmodel.resetTool(tool_name) for line_edit in self.lineEdit_tool_maping: line_edit.setText('0.0') def setToolComboBox(self): names = tcpmodel.getToolsNames() for name in names: self.tollsComboBox.addItem(name) def setToolHandler(self): coordinates = self.infoFromLineEdit(self.lineEdit_tool_maping) tool_name = self.tollsComboBox.currentText() tcpmodel.updateTCPCoordinates(tool_name, tcpCoordinates=coordinates) # tcpCoordinates = tcpmodel.getTCPCoordinates(tool_name) # robotModel.setTool(tcpCoordinates=tcpCoordinates) def setToolFromItem(self, itemText: str): coords = tcpmodel.getTCPCoordinates(itemText) for line, coord in zip(self.lineEdit_tool_maping, coords): line.setText(str(coord)) def setToolName(self): if self.lineEdit.isVisible() and self.lineEdit.text() != '': self.lineEdit.setCursorPosition(0) new_name = self.lineEdit.text() current_name = self.tollsComboBox.currentText() if not tcpmodel.checkSimilarity(new_name): tcpmodel.updateToolName(new_name, current_name) item_index = self.tollsComboBox.currentIndex() self.tollsComboBox.setItemText(item_index, new_name) self.lineEdit.setVisible(False) else: self.lineEdit.setVisible(False) elif self.lineEdit.isVisible() and self.lineEdit.text() == '': self.lineEdit.setVisible(False) elif self.tollsComboBox.currentIndex() == 0: self.lineEdit.setVisible(False) else: self.lineEdit.clear() self.lineEdit.setVisible(True) def openMoveTabWithSetPointsMode(self, button: str): """param: buttonNum: int number from -2 and etc.""" self.tabWidget.setCurrentIndex(0) self.enableOkCancelButtonOnMovingPanel(True) self.CURRENT_TOOL_CALIBRATION_NAME = button.text() def setCalibratedPoint(self): self.enableOkCancelButtonOnMovingPanel(False) buttonText = self.CURRENT_TOOL_CALIBRATION_NAME toolName = self.tollsComboBox.currentText() xyzrpw = robotModel.getPosition() tcpmodel.updateCalibratedPoints( toolName, buttonText, [*xyzrpw['point'].values(), *xyzrpw['rotation'].values()] ) self.CURRENT_TOOL_CALIBRATION_NAME = '' self.closeMoveTab() def setCalibratedTool(self): tool_name = self.tollsComboBox.currentText() tcpmodel.calculateTCP(tool_name) self.setToolFromItem(tool_name) self.tollsComboBox.setEnabled(True) def teachToolPointsChecker(self, buttonID: int) -> None: self.NUMBER_OF_TOOL_CALIBRATION_POINTS.add(buttonID) if len(self.NUMBER_OF_TOOL_CALIBRATION_POINTS) == 4: self.SetToolPointsButton.setEnabled(True) #-------------------------------------- def closeMoveTab(self): self.tabWidget.setCurrentIndex(1) def enableOkCancelButtonOnMovingPanel(self, state: bool): if state: self.pushButton_2.setVisible(state) self.pushButton_3.setVisible(state) self.pushButton.setVisible(state-1) else: self.pushButton_2.setVisible(state) self.pushButton_3.setVisible(state) self.pushButton.setVisible(state+1) def enableStepEnter(self): state = False if self.radioButton_Step.isChecked(): state = True self.doubleSpinBox_step.setEnabled(state) self.doubleSpinBox_rotation.setEnabled(state) def launchPositionChanger(self): self.positionalChenger_instance.start() def getSpeed(self): return self.horizontalSlider_speed.value()/100 def getLinearStep(self): return self.doubleSpinBox_step.value()/1000 def getRotationStep(self): return self.doubleSpinBox_rotation.value() def move_buttons_handler(self): try: for button, move_func in self.move_buttons_maping: button.pressed.connect(move_func) button.released.connect(self.stopJog) except PulseApiException: print('loh') # def check_state(self): # return self.radioButton_Jogging.isChecked() # def move_button_handler(self): # try: # for button, params in self.move_buttons_maping: # if axis in ['x', 'y', 'z']: # button.pressed.connect( # lambda: robotModel.move( # state=self.check_state(), axis=axis, speed=self.getSpeed(), # moveStep=self.getLinearStep()*direction) # ) # elif axis in ['rx', 'ry', 'rz']: # button.pressed.connect( # lambda: robotModel.move( # state=self.check_state(), axis=axis, speed=self.getSpeed(), # moveStep=self.getRotationStep()*direction) # ) # button.released.connect(self.stopJog) # except PulseApiException: # print('loh') def xUp(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='x', speed=self.getSpeed(), moveStep=self.getLinearStep()) def xDown(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='x', speed=self.getSpeed(), moveStep=self.getLinearStep(), direction=-1) def yUp(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='y', speed=self.getSpeed(), moveStep=self.getLinearStep()) def yDown(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='y', speed=self.getSpeed(), moveStep=self.getLinearStep(), direction=-1) def zUp(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='z', speed=self.getSpeed(), moveStep=self.getLinearStep()) def zDown(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='z', speed=self.getSpeed(), moveStep=self.getLinearStep(), direction=-1) def rxUp(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='rx', speed=self.getSpeed(), moveStep=self.getRotationStep()) def rxDown(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='rx', speed=self.getSpeed(), moveStep=self.getRotationStep(), direction=-1) def ryUp(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='ry', speed=self.getSpeed(), moveStep=self.getRotationStep()) def ryDown(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='ry', speed=self.getSpeed(), moveStep=-self.getRotationStep(), direction=-1) def rzUp(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='rz', speed=self.getSpeed(), moveStep=self.getRotationStep()) def rzDown(self): state = self.radioButton_Jogging.isChecked() robotModel.move( state=state, axis='rz', speed=self.getSpeed(), moveStep=-self.getRotationStep(), direction=-1) def stopJog(self): if self.radioButton_Jogging.isChecked(): robotModel.stopJog() else: pass def getButton_handler(self): robotModel.appendPositionToCSV(self.robot, config.PATH_2_CSV) def getPose_handler(self): print(robotModel.get_pose()) def relaxRobotHandler(self): robotModel.relax() def freezeRobotHandler(self): robotModel.freeze() def enableRelaxButton(self): if self.enableRelaxRadioButton.isChecked(): self.relaxButton.setEnabled(True) else: self.relaxButton.setEnabled(False) def showFileDialog(self): self.PROG_PATH = QFileDialog.getOpenFileName(self, 'Open file', '/home')[0] self.PROG = model.read(self.PROG_PATH) self.textEdit.setText(self.PROG) def saveProgramHandler(self): model.saveProgramFromTextEditor(self.PROG, self.PROG_PATH) def runCode(self): model.runCodeFromTextEditor(self.PROG, self.PROG_PATH) def showProgramEditor(self, item): state, itemNum = selectTreeItem(item.text(0)) if state: self.stackedWidget.setCurrentIndex(itemNum) else: pass def goHome(self): tcp_velocity = self.getSpeed() # print(tcp_velocity) robotModel.goHome(speed=tcp_velocity)
36.680693
106
0.623186
56036887d4a57e51cac65632b323abebb9772fe7
8,626
py
Python
opytimizer/optimizers/swarm/sfo.py
anukaal/opytimizer
5f1ccc0da80e6a4cabd99578fa24cf4f6466f9b9
[ "Apache-2.0" ]
528
2018-10-01T20:00:09.000Z
2022-03-27T11:15:31.000Z
opytimizer/optimizers/swarm/sfo.py
anukaal/opytimizer
5f1ccc0da80e6a4cabd99578fa24cf4f6466f9b9
[ "Apache-2.0" ]
17
2019-10-30T00:47:03.000Z
2022-03-21T11:39:28.000Z
opytimizer/optimizers/swarm/sfo.py
anukaal/opytimizer
5f1ccc0da80e6a4cabd99578fa24cf4f6466f9b9
[ "Apache-2.0" ]
35
2018-10-01T20:03:23.000Z
2022-03-20T03:54:15.000Z
"""Sailfish Optimizer. """ import copy import numpy as np import opytimizer.math.random as r import opytimizer.utils.exception as ex import opytimizer.utils.logging as l from opytimizer.core import Optimizer logger = l.get_logger(__name__) class SFO(Optimizer): """A SFO class, inherited from Optimizer. This is the designed class to define SFO-related variables and methods. References: S. Shadravan, H. Naji and V. Bardsiri. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence (2019). """ def __init__(self, params=None): """Initialization method. Args: params (dict): Contains key-value parameters to the meta-heuristics. """ logger.info('Overriding class: Optimizer -> SFO.') # Overrides its parent class with the receiving params super(SFO, self).__init__() # Percentage of initial sailfishes self.PP = 0.1 # Attack power coefficient self.A = 4 # Attack power decrease self.e = 0.001 # Builds the class self.build(params) logger.info('Class overrided.') @property def PP(self): """float: Percentage of initial sailfishes. """ return self._PP @PP.setter def PP(self, PP): if not isinstance(PP, (float, int)): raise ex.TypeError('`PP` should be a float or integer') if PP < 0 or PP > 1: raise ex.ValueError('`PP` should be between 0 and 1') self._PP = PP @property def A(self): """int: Attack power coefficient. """ return self._A @A.setter def A(self, A): if not isinstance(A, int): raise ex.TypeError('`A` should be an integer') if A <= 0: raise ex.ValueError('`A` should be > 0') self._A = A @property def e(self): """float: Attack power decrease. """ return self._e @e.setter def e(self, e): if not isinstance(e, (float, int)): raise ex.TypeError('`e` should be a float or integer') if e < 0: raise ex.ValueError('`e` should be >= 0') self._e = e @property def sardines(self): """list: List of sardines. """ return self._sardines @sardines.setter def sardines(self, sardines): if not isinstance(sardines, list): raise ex.TypeError('`sardines` should be a list') self._sardines = sardines def compile(self, space): """Compiles additional information that is used by this optimizer. Args: space (Space): A Space object containing meta-information. """ # List of sardines self.sardines = [self._generate_random_agent(space.best_agent) for _ in range(int(space.n_agents / self.PP))] # Sorts the population of sardines self.sardines.sort(key=lambda x: x.fit) def _generate_random_agent(self, agent): """Generates a new random-based agent. Args: agent (Agent): Agent to be copied. Returns: Random-based agent. """ # Makes a deep copy of agent a = copy.deepcopy(agent) # Fills agent with new random positions a.fill_with_uniform() return a def _calculate_lambda_i(self, n_sailfishes, n_sardines): """Calculates the lambda value (eq. 7). Args: n_sailfishes (int): Number of sailfishes. n_sardines (int): Number of sardines. Returns: Lambda value from current iteration. """ # Calculates the prey density (eq. 8) PD = 1 - (n_sailfishes / (n_sailfishes + n_sardines)) # Generates a random uniform number r1 = r.generate_uniform_random_number() # Calculates lambda lambda_i = 2 * r1 * PD - PD return lambda_i def _update_sailfish(self, agent, best_agent, best_sardine, lambda_i): """Updates the sailfish's position (eq. 6). Args: agent (Agent): Current agent's. best_agent (Agent): Best sailfish. best_sardine (Agent): Best sardine. lambda_i (float): Lambda value. Returns: An updated position. """ # Generates a random uniform number r1 = r.generate_uniform_random_number() # Calculates the new position new_position = best_sardine.position - lambda_i * \ (r1 * (best_agent.position - best_sardine.position) / 2 - agent.position) return new_position def update(self, space, function, iteration): """Wraps Sailfish Optimizer over all agents and variables. Args: space (Space): Space containing agents and update-related information. function (Function): A Function object that will be used as the objective function. iteration (int): Current iteration. """ # Gathers the best sardine best_sardine = self.sardines[0] # Calculates the number of sailfishes and sardines n_sailfishes = len(space.agents) n_sardines = len(self.sardines) # Calculates the number of decision variables n_variables = space.agents[0].n_variables # Iterates through every agent for agent in space.agents: # Calculates the lambda value lambda_i = self._calculate_lambda_i(n_sailfishes, n_sardines) # Updates agent's position agent.position = self._update_sailfish(agent, space.best_agent, best_sardine, lambda_i) # Clips agent's limits agent.clip_by_bound() # Re-evaluates agent's fitness agent.fit = function(agent.position) # Calculates the attack power (eq. 10) AP = np.fabs(self.A * (1 - 2 * iteration * self.e)) # Checks if attack power is smaller than 0.5 if AP < 0.5: # Calculates the number of sardines possible replacements (eq. 11) alpha = int(len(self.sardines) * AP) # Calculates the number of variables possible replacements (eq. 12) beta = int(n_variables * AP) # Generates a list of selected sardines selected_sardines = r.generate_integer_random_number(0, n_sardines, size=alpha) # Iterates through every selected sardine for i in selected_sardines: # Generates a list of selected variables selected_vars = r.generate_integer_random_number(0, n_variables, size=beta) # Iterates through every selected variable for j in selected_vars: # Generates a uniform random number r1 = r.generate_uniform_random_number() # Updates the sardine's position (eq. 9) self.sardines[i].position[j] = r1 * \ (space.best_agent.position[j] - self.sardines[i].position[j] + AP) # Clips sardine's limits self.sardines[i].clip_by_bound() # Re-calculates its fitness self.sardines[i].fit = function(self.sardines[i].position) # If attack power is bigger than 0.5 else: # Iterates through every sardine for sardine in self.sardines: # Generates a uniform random number r1 = r.generate_uniform_random_number() # Updates the sardine's position (eq. 9) sardine.position = r1 * (space.best_agent.position - sardine.position + AP) # Clips sardine's limits sardine.clip_by_bound() # Re-calculates its fitness sardine.fit = function(sardine.position) # Sorts the population of agents (sailfishes) and sardines space.agents.sort(key=lambda x: x.fit) self.sardines.sort(key=lambda x: x.fit) # Iterates through every agent for agent in space.agents: # Iterates through every sardine for sardine in self.sardines: # If agent is worse than sardine (eq. 13) if agent.fit > sardine.fit: # Copies sardine to agent agent = copy.deepcopy(sardine) break
28.657807
99
0.585092
a2890b3e014659ba9de1d3be0cdba0b646ed80e1
1,562
py
Python
pype/plugins/maya/create/create_rendersetup.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
pype/plugins/maya/create/create_rendersetup.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
pype/plugins/maya/create/create_rendersetup.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
import avalon.maya import pype.maya.lib as lib from maya import cmds class CreateRenderSetup(avalon.maya.Creator): """Create rendersetup template json data""" name = "rendersetup" label = "Render Setup Preset" family = "rendersetup" icon = "tablet" def __init__(self, *args, **kwargs): super(CreateRenderSetup, self).__init__(*args, **kwargs) # here we can pre-create renderSetup layers, possibly utlizing # presets for it. # _____ # / __\__ # | / __\__ # | | / \ # | | | | # \__| | | # \__| | # \_____/ # from pypeapp import config # import maya.app.renderSetup.model.renderSetup as renderSetup # presets = config.get_presets(project=os.environ['AVALON_PROJECT']) # layer = presets['plugins']['maya']['create']['renderSetup']["layer"] # rs = renderSetup.instance() # rs.createRenderLayer(layer) self.options = {"useSelection": False} # Force no content def process(self): exists = cmds.ls(self.name) assert len(exists) <= 1, ( "More than one renderglobal exists, this is a bug" ) if exists: return cmds.warning("%s already exists." % exists[0]) with lib.undo_chunk(): instance = super(CreateRenderSetup, self).process() self.data["renderSetup"] = "42" null = cmds.sets(name="null_SET", empty=True) cmds.sets([null], forceElement=instance)
28.925926
78
0.567862
dabdebf702e5ca56463c2a35a369cb463da8098a
15,501
py
Python
src/toast/pipeline_tools/madam.py
ziotom78/toast
66aef04c833a28f0928a0bbc221da45882aae475
[ "BSD-2-Clause" ]
null
null
null
src/toast/pipeline_tools/madam.py
ziotom78/toast
66aef04c833a28f0928a0bbc221da45882aae475
[ "BSD-2-Clause" ]
null
null
null
src/toast/pipeline_tools/madam.py
ziotom78/toast
66aef04c833a28f0928a0bbc221da45882aae475
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2019 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. import argparse import copy import os import re import numpy as np from ..timing import function_timer, Timer from ..utils import Logger, Environment from ..todmap import OpMadam def add_madam_args(parser): """ Add libmadam arguments """ parser.add_argument( "--madam-prefix", required=False, default="toast", help="Output map prefix" ) parser.add_argument( "--madam-iter-max", required=False, default=1000, type=np.int, help="Maximum number of CG iterations in Madam", ) parser.add_argument( "--madam-precond-width", required=False, default=100, type=np.int, help="Width of the Madam band preconditioner", ) parser.add_argument( "--madam-precond-width-min", required=False, type=np.int, help="Minimum width of the Madam band preconditioner", ) parser.add_argument( "--madam-precond-width-max", required=False, type=np.int, help="Maximum width of the Madam band preconditioner", ) parser.add_argument( "--madam-baseline-length", required=False, default=10000.0, type=np.float, help="Destriping baseline length (seconds)", ) parser.add_argument( "--madam-baseline-order", required=False, default=0, type=np.int, help="Destriping baseline polynomial order", ) parser.add_argument( "--madam-noisefilter", required=False, default=False, action="store_true", help="Destripe with the noise filter enabled", ) parser.add_argument( "--madam-parfile", required=False, default=None, help="Madam parameter file" ) parser.add_argument( "--madam-allreduce", required=False, action="store_true", help="Use the allreduce commucation pattern in Madam", dest="madam_allreduce", ) parser.add_argument( "--no-madam-allreduce", required=False, action="store_false", help="Do not use the allreduce commucation pattern in Madam", dest="madam_allreduce", ) parser.set_defaults(madam_allreduce=False) parser.add_argument( "--madam-concatenate-messages", required=False, action="store_true", help="Use the alltoallv commucation pattern in Madam", dest="madam_concatenate_messages", ) parser.add_argument( "--no-madam-concatenate-messages", required=False, action="store_false", help="Use the point-to-point commucation pattern in Madam", dest="madam_concatenate_messages", ) parser.set_defaults(madam_concatenate_messages=True) try: parser.add_argument( "--destripe", required=False, action="store_true", help="Write destriped maps [default]", dest="destripe", ) parser.add_argument( "--no-destripe", required=False, action="store_false", help="Do not write destriped maps", dest="destripe", ) parser.set_defaults(destripe=True) except argparse.ArgumentError: pass try: parser.add_argument( "--binmap", required=False, action="store_true", help="Write binned maps [default]", dest="write_binmap", ) parser.add_argument( "--no-binmap", required=False, action="store_false", help="Do not write binned maps", dest="write_binmap", ) parser.set_defaults(write_binmap=True) except argparse.ArgumentError: pass try: parser.add_argument( "--hits", required=False, action="store_true", help="Write hit maps [default]", dest="write_hits", ) parser.add_argument( "--no-hits", required=False, action="store_false", help="Do not write hit maps", dest="write_hits", ) parser.set_defaults(write_hits=True) except argparse.ArgumentError: pass try: parser.add_argument( "--wcov", required=False, action="store_true", help="Write white noise covariance [default]", dest="write_wcov", ) parser.add_argument( "--no-wcov", required=False, action="store_false", help="Do not write white noise covariance", dest="write_wcov", ) parser.set_defaults(write_wcov=True) except argparse.ArgumentError: pass try: parser.add_argument( "--wcov-inv", required=False, action="store_true", help="Write inverse white noise covariance [default]", dest="write_wcov_inv", ) parser.add_argument( "--no-wcov-inv", required=False, action="store_false", help="Do not write inverse white noise covariance", dest="write_wcov_inv", ) parser.set_defaults(write_wcov_inv=True) except argparse.ArgumentError: pass parser.add_argument( "--conserve-memory", dest="conserve_memory", required=False, action="store_true", help="Conserve memory when staging libMadam buffers [default]", ) parser.add_argument( "--no-conserve-memory", dest="conserve_memory", required=False, action="store_false", help="Do not conserve memory when staging libMadam buffers", ) parser.set_defaults(conserve_memory=True) # `nside` may already be added try: parser.add_argument( "--nside", required=False, default=512, type=np.int, help="Healpix NSIDE" ) except argparse.ArgumentError: pass # Common flag mask may already be added try: parser.add_argument( "--common-flag-mask", required=False, default=1, type=np.uint8, help="Common flag mask", ) except argparse.ArgumentError: pass # `sample-rate` may be already added try: parser.add_argument( "--sample-rate", required=False, default=100.0, type=np.float, help="Detector sample rate (Hz)", ) except argparse.ArgumentError: pass return @function_timer def setup_madam(args): """ Create a Madam parameter dictionary. Initialize the Madam parameters from the command line arguments. """ pars = {} cross = args.nside // 2 submap = 16 if submap > args.nside: submap = args.nside pars["temperature_only"] = False pars["force_pol"] = True pars["kfirst"] = args.destripe pars["write_map"] = args.destripe pars["write_binmap"] = args.write_binmap pars["write_matrix"] = args.write_wcov_inv pars["write_wcov"] = args.write_wcov pars["write_hits"] = args.write_hits pars["nside_cross"] = cross pars["nside_submap"] = submap if args.madam_concatenate_messages: # Collective communication is fast but requires memory pars["concatenate_messages"] = True if args.madam_allreduce: # Every process will allocate a copy of every observed submap. pars["allreduce"] = True else: # Every process will allocate complete send and receive buffers pars["allreduce"] = False else: # Slow but memory-efficient point-to-point communication. Allocate # only enough memory to communicate with one process at a time. pars["concatenate_messages"] = False pars["allreduce"] = False pars["reassign_submaps"] = True pars["pixlim_cross"] = 1e-3 pars["pixmode_cross"] = 2 pars["pixlim_map"] = 1e-2 pars["pixmode_map"] = 2 # Instead of fixed detector weights, we'll want to use scaled noise # PSD:s that include the atmospheric noise pars["radiometers"] = True pars["noise_weights_from_psd"] = True if args.madam_parfile is not None: # Parse all available parameters from the supplied # Madam parameter file pat = re.compile(r"\s*(\S+)\s*=\s*(\S+(\s+\S+)*)\s*") comment = re.compile(r"^#.*") with open(args.madam_parfile, "r") as f: for line in f: if comment.match(line) is None: result = pat.match(line) if result is not None: key, value = result.group(1), result.group(2) pars[key] = value pars["base_first"] = args.madam_baseline_length pars["basis_order"] = args.madam_baseline_order # Adaptive preconditioner width width_min = args.madam_precond_width_min width_max = args.madam_precond_width_max if width_min is None: # madam-precond-width has a default value width_min = args.madam_precond_width if width_max is None: # madam-precond-width has a default value width_max = args.madam_precond_width if width_min > width_max: # it is not an error for these two to match width_min = width_max pars["precond_width_min"] = width_min pars["precond_width_max"] = width_max # pars["nside_map"] = args.nside if args.madam_noisefilter: if args.madam_baseline_order != 0: raise RuntimeError( "Madam cannot build a noise filter when baseline" "order is higher than zero." ) pars["kfilter"] = True else: pars["kfilter"] = False pars["fsample"] = args.sample_rate pars["iter_max"] = args.madam_iter_max pars["file_root"] = args.madam_prefix return pars @function_timer def apply_madam( args, comm, data, madampars, outpath, detweights, cache_name, freq=None, time_comms=None, telescope_data=None, first_call=True, extra_prefix=None, verbose=True, bin_only=False, ): """ Use libmadam to bin and optionally destripe data. Bin and optionally destripe all conceivable subsets of the data. Args: freq (str) : Frequency identifier to append to the file prefix time_comms (iterable) : Series of disjoint communicators that map, e.g., seasons and days. Each entry is a tuple of the form (`name`, `communicator`) telescope_data (iterable) : series of disjoint TOAST data objects. Each entry is tuple of the form (`name`, `data`). bin_only (bool) : Disable destriping and only bin the signal, Useful when running Madam as a part of a filter+bin pipeline. """ if comm.comm_world is None: raise RuntimeError("Madam requires MPI") log = Logger.get() total_timer = Timer() total_timer.start() if comm.world_rank == 0 and verbose: log.info("Making maps") pars = copy.deepcopy(madampars) pars["path_output"] = outpath if comm.world_rank == 0: os.makedirs(outpath, exist_ok=True) file_root = pars["file_root"] if extra_prefix is not None: if len(file_root) > 0 and not file_root.endswith("_"): file_root += "_" file_root += "{}".format(extra_prefix) if freq is not None: if len(file_root) > 0 and not file_root.endswith("_"): file_root += "_" file_root += "{:03}".format(int(freq)) if not first_call: # Only the first MC iteration should produce the hits and # white noise matrices pars["write_matrix"] = False pars["write_wcov"] = False pars["write_hits"] = False if bin_only: pars["kfirst"] = False pars["write_map"] = False pars["write_binmap"] = True # Sanity check, is any of the Madam outputs required? outputs = [ pars["write_map"], pars["write_binmap"], pars["write_hits"], pars["write_wcov"], pars["write_matrix"], ] if not np.any(outputs): if comm.world_rank == 0: log.info("No Madam outputs requested. Skipping.") return if args.madam_noisefilter or not pars["kfirst"]: # With the noise filter enabled, we want to enforce continuity # across the Observation. Otherwise we fit each interval # separately. madam_intervals = None else: madam_intervals = "intervals" madam = OpMadam( params=pars, detweights=detweights, name=cache_name, common_flag_mask=args.common_flag_mask, purge_tod=False, intervals=madam_intervals, conserve_memory=args.conserve_memory, ) if "info" in madam.params: info = madam.params["info"] else: info = 3 if time_comms is None: time_comms = [("all", comm.comm_world)] if telescope_data is None: telescope_data = [("all", data)] timer = Timer() for time_name, time_comm in time_comms: for tele_name, tele_data in telescope_data: if len(time_name.split("-")) == 3: # Special rules for daily maps if args.do_daymaps: continue if len(telescope_data) > 1 and tele_name == "all": # Skip daily maps over multiple telescopes continue if first_call: # Do not destripe daily maps kfirst_save = pars["kfirst"] write_map_save = pars["write_map"] write_binmap_save = pars["write_binmap"] pars["kfirst"] = False pars["write_map"] = False pars["write_binmap"] = True timer.start() madam.params["file_root"] = "{}_telescope_{}_time_{}".format( file_root, tele_name, time_name ) if time_comm == comm.comm_world: madam.params["info"] = info else: # Cannot have verbose output from concurrent mapmaking madam.params["info"] = 0 if (time_comm is None or time_comm.rank == 0) and verbose: log.info("Mapping {}".format(madam.params["file_root"])) madam.exec(tele_data, time_comm) if time_comm is not None: time_comm.barrier() if comm.world_rank == 0 and verbose: timer.report_clear("Mapping {}".format(madam.params["file_root"])) if len(time_name.split("-")) == 3 and first_call: # Restore destriping parameters pars["kfirst"] = kfirst_save pars["write_map"] = write_map_save pars["write_binmap"] = write_binmap_save if comm.comm_world is not None: comm.comm_world.barrier() total_timer.stop() if comm.world_rank == 0 and verbose: total_timer.report("Madam total") return
30.817097
85
0.582737
f02943c6aeebccab135dab55c6c24578010567d6
1,479
py
Python
multiAgentEnv/MARL/DDPG/agents/replay_buffer.py
eranbTAU/Closing-the-Reality-Gap-for-a-Multi-Agent-System-Using-GAN
3df5f8ba1069ce3f16f1ab743da9cbdd3bddd43c
[ "MIT" ]
null
null
null
multiAgentEnv/MARL/DDPG/agents/replay_buffer.py
eranbTAU/Closing-the-Reality-Gap-for-a-Multi-Agent-System-Using-GAN
3df5f8ba1069ce3f16f1ab743da9cbdd3bddd43c
[ "MIT" ]
null
null
null
multiAgentEnv/MARL/DDPG/agents/replay_buffer.py
eranbTAU/Closing-the-Reality-Gap-for-a-Multi-Agent-System-Using-GAN
3df5f8ba1069ce3f16f1ab743da9cbdd3bddd43c
[ "MIT" ]
1
2022-02-22T11:06:40.000Z
2022-02-22T11:06:40.000Z
import numpy as np class ReplayBuffer(): def __init__(self, size=10**6, batch_size = 64, state_dim = 14, action_dim = 2): self.buffer_size = size self.states_buffer = np.zeros((size, state_dim), dtype=np.float) self.actions_buffer = np.zeros((size, action_dim), dtype=np.float) self.reward_buffer = np.zeros(size, dtype=np.float) self._states_buffer = np.zeros((size, state_dim), dtype=np.float) self.dones_buffer = np.zeros(size, dtype=np.bool) self.batch_size = batch_size self.cntr = 0 self.rng = np.random.default_rng() def store(self, state, action, reward, state_, done): idx = self.cntr % self.buffer_size self.states_buffer[idx]= state self.actions_buffer[idx]= action self.reward_buffer[idx]= reward self._states_buffer[idx]= state_ self.dones_buffer[idx] = done self.cntr+=1 def sample(self): indices = self.rng.choice(min(self.cntr, self.buffer_size), self.batch_size, replace=False) states_batch = np.take(self.states_buffer, indices, axis=0) actions_batch = np.take(self.actions_buffer, indices, axis=0) reward_batch = np.take(self.reward_buffer, indices, axis=0) _states_batch = np.take(self._states_buffer, indices, axis=0) dones_batch = np.take(self.dones_buffer, indices, axis=0) return states_batch, actions_batch, reward_batch, _states_batch, dones_batch
44.818182
99
0.665991
9fe8dafcc8edd6b80625c61a4a0e783e65b44720
56,526
py
Python
tensorflow/contrib/lookup/lookup_ops_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
36
2016-12-17T15:25:25.000Z
2022-01-29T21:50:53.000Z
tensorflow/contrib/lookup/lookup_ops_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
59
2019-06-17T09:37:49.000Z
2022-01-19T01:21:34.000Z
tensorflow/contrib/lookup/lookup_ops_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
36
2017-07-27T21:12:40.000Z
2022-02-03T16:45:56.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.contrib.lookup.lookup.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.contrib import lookup from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import server_lib class HashTableOpTest(test.TestCase): def testHashTable(self): with self.cached_session(): default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() self.assertAllEqual(3, table.size().eval()) input_string = constant_op.constant(["brain", "salad", "tank"]) output = table.lookup(input_string) self.assertAllEqual([3], output.get_shape()) result = output.eval() self.assertAllEqual([0, 1, -1], result) exported_keys_tensor, exported_values_tensor = table.export() self.assertItemsEqual([b"brain", b"salad", b"surgery"], exported_keys_tensor.eval()) self.assertItemsEqual([0, 1, 2], exported_values_tensor.eval()) def testHashTableFindHighRank(self): with self.cached_session(): default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() self.assertAllEqual(3, table.size().eval()) input_string = constant_op.constant( [["brain", "salad"], ["tank", "tarkus"]]) output = table.lookup(input_string) result = output.eval() self.assertAllEqual([[0, 1], [-1, -1]], result) def testHashTableInitWithPythonArrays(self): with self.cached_session(): default_val = -1 keys = ["brain", "salad", "surgery"] values = [0, 1, 2] table = lookup.HashTable( lookup.KeyValueTensorInitializer( keys, values, value_dtype=dtypes.int64), default_val) table.initializer.run() self.assertAllEqual(3, table.size().eval()) input_string = constant_op.constant(["brain", "salad", "tank"]) output = table.lookup(input_string) result = output.eval() self.assertAllEqual([0, 1, -1], result) def testHashTableInitWithNumPyArrays(self): with self.cached_session(): default_val = -1 keys = np.array(["brain", "salad", "surgery"], dtype=np.str) values = np.array([0, 1, 2], dtype=np.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() self.assertAllEqual(3, table.size().eval()) input_string = constant_op.constant(["brain", "salad", "tank"]) output = table.lookup(input_string) result = output.eval() self.assertAllEqual([0, 1, -1], result) def testMultipleHashTables(self): with self.cached_session() as sess: default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table1 = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table2 = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table3 = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) lookup_ops.tables_initializer().run() self.assertAllEqual(3, table1.size().eval()) self.assertAllEqual(3, table2.size().eval()) self.assertAllEqual(3, table3.size().eval()) input_string = constant_op.constant(["brain", "salad", "tank"]) output1 = table1.lookup(input_string) output2 = table2.lookup(input_string) output3 = table3.lookup(input_string) out1, out2, out3 = sess.run([output1, output2, output3]) self.assertAllEqual([0, 1, -1], out1) self.assertAllEqual([0, 1, -1], out2) self.assertAllEqual([0, 1, -1], out3) def testHashTableWithTensorDefault(self): with self.cached_session(): default_val = constant_op.constant(-1, dtypes.int64) keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() input_string = constant_op.constant(["brain", "salad", "tank"]) output = table.lookup(input_string) result = output.eval() self.assertAllEqual([0, 1, -1], result) def testHashTableWithSparseTensorInput(self): with self.cached_session() as sess: default_val = constant_op.constant(-1, dtypes.int64) keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() sp_indices = [[0, 0], [0, 1], [1, 0]] sp_shape = [2, 2] input_tensor = sparse_tensor.SparseTensor( constant_op.constant(sp_indices, dtypes.int64), constant_op.constant(["brain", "salad", "tank"]), constant_op.constant(sp_shape, dtypes.int64)) output = table.lookup(input_tensor) out_indices, out_values, out_shape = sess.run(output) self.assertAllEqual([0, 1, -1], out_values) self.assertAllEqual(sp_indices, out_indices) self.assertAllEqual(sp_shape, out_shape) def testSignatureMismatch(self): with self.cached_session(): default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() # Ref types do not produce a lookup signature mismatch. input_string_ref = variables.Variable("brain") variables.global_variables_initializer().run() self.assertEqual(0, table.lookup(input_string_ref).eval()) input_string = constant_op.constant([1, 2, 3], dtypes.int64) with self.assertRaises(TypeError): table.lookup(input_string) with self.assertRaises(TypeError): lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), "UNK") def testDTypes(self): with self.cached_session(): default_val = -1 with self.assertRaises(TypeError): lookup.HashTable( lookup.KeyValueTensorInitializer(["a"], [1], [dtypes.string], dtypes.int64), default_val) def testNotInitialized(self): with self.cached_session(): default_val = -1 table = lookup.HashTable( lookup.KeyValueTensorInitializer( ["a"], [1], value_dtype=dtypes.int64), default_val) input_string = constant_op.constant(["brain", "salad", "surgery"]) output = table.lookup(input_string) with self.assertRaisesOpError("Table not initialized"): output.eval() def testInitializeTwice(self): with self.cached_session(): default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() with self.assertRaisesOpError("Table already initialized"): table.initializer.run() def testInitializationWithInvalidDimensions(self): with self.cached_session(): default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2, 3, 4], dtypes.int64) with self.assertRaises(ValueError): lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) def testMultipleSessions(self): # Start a server server = server_lib.Server( { "local0": ["localhost:0"] }, protocol="grpc", start=True) # Create two sessions sharing the same state session1 = session.Session(server.target) session2 = session.Session(server.target) default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val, name="t1") # Init the table in the first session. with session1: table.initializer.run() self.assertAllEqual(3, table.size().eval()) # Init the table in the second session and verify that we do not get a # "Table already initialized" error. with session2: table.initializer.run() self.assertAllEqual(3, table.size().eval()) def testHashTableInt32String(self): with self.cached_session(): default_val = "n/a" keys = constant_op.constant([0, 1, 2], dtypes.int32) values = constant_op.constant(["brain", "salad", "surgery"]) table = lookup.HashTable( lookup.KeyValueTensorInitializer(keys, values), default_val) table.initializer.run() input_tensor = constant_op.constant([0, 1, -1]) output = table.lookup(input_tensor) result = output.eval() self.assertAllEqual([b"brain", b"salad", b"n/a"], result) class IndexTableFromFile(test.TestCase): def _createVocabFile(self, basename, values=("brain", "salad", "surgery")): vocabulary_file = os.path.join(self.get_temp_dir(), basename) with open(vocabulary_file, "w") as f: f.write("\n".join(values) + "\n") return vocabulary_file def test_string_index_table_from_file(self): vocabulary_file = self._createVocabFile("f2i_vocab1.txt") with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, num_oov_buckets=1) ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) def test_string_index_table_from_file_tensor_filename(self): vocabulary_file = self._createVocabFile("f2i_vocab1.txt") with self.cached_session(): vocabulary_file = constant_op.constant(vocabulary_file) table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, num_oov_buckets=1) ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) self.assertEqual(1, len(ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS))) def test_string_index_table_from_file_placeholder_filename(self): vocabulary_file = self._createVocabFile("f2i_vocab1.txt") with self.cached_session(): vocabulary_placeholder = array_ops.placeholder(dtypes.string, []) table = lookup.index_table_from_file( vocabulary_file=vocabulary_placeholder, num_oov_buckets=1) ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) feed_dict = {vocabulary_placeholder.name: vocabulary_file} lookup_ops.tables_initializer().run(feed_dict=feed_dict) self.assertAllEqual((1, 2, 3), ids.eval()) self.assertEqual(0, len(ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS))) def test_int32_index_table_from_file(self): vocabulary_file = self._createVocabFile( "f2i_vocab2.txt", values=("42", "1", "-1000")) with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, num_oov_buckets=1, key_dtype=dtypes.int32) ids = table.lookup( constant_op.constant((1, -1000, 11), dtype=dtypes.int32)) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) def test_int64_index_table_from_file(self): vocabulary_file = self._createVocabFile( "f2i_vocab3.txt", values=("42", "1", "-1000")) with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, num_oov_buckets=1, key_dtype=dtypes.int64) ids = table.lookup( constant_op.constant((1, -1000, 11), dtype=dtypes.int64)) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) def test_index_table_from_file_with_default_value(self): default_value = -42 vocabulary_file = self._createVocabFile("f2i_vocab4.txt") with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, default_value=default_value) ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, default_value), ids.eval()) def test_index_table_from_file_with_oov_buckets(self): vocabulary_file = self._createVocabFile("f2i_vocab5.txt") with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, num_oov_buckets=1000) ids = table.lookup( constant_op.constant(["salad", "surgery", "tarkus", "toccata"])) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual( ( 1, # From vocabulary file. 2, # From vocabulary file. 867, # 3 + fingerprint("tarkus") mod 300. 860), # 3 + fingerprint("toccata") mod 300. ids.eval()) def test_index_table_from_file_fails_with_empty_vocabulary_file_name(self): self.assertRaises( ValueError, lookup.index_table_from_file, vocabulary_file="") def test_index_table_from_file_fails_with_empty_vocabulary(self): self.assertRaises( ValueError, lookup.index_table_from_file, vocabulary_file=None) def test_index_table_from_file_with_vocab_size_too_small(self): vocabulary_file = self._createVocabFile("f2i_vocab6.txt") with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, vocab_size=2) ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, -1, -1), ids.eval()) self.assertEqual(2, table.size().eval()) def test_index_table_from_file_with_vocab_size_too_large(self): vocabulary_file = self._createVocabFile("f2i_vocab7.txt") with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, vocab_size=4) self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "Invalid vocab_size", table.initializer.run) def test_index_table_from_file_with_vocab_size(self): vocabulary_file = self._createVocabFile("f2i_vocab8.txt") self.assertRaises( ValueError, lookup.index_table_from_file, vocabulary_file=vocabulary_file, vocab_size=0) with self.cached_session(): table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, vocab_size=3) ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, -1), ids.eval()) self.assertEqual(3, table.size().eval()) def test_index_table_from_file_with_invalid_hashers(self): vocabulary_file = self._createVocabFile("invalid_hasher.txt") with self.cached_session(): with self.assertRaises(TypeError): lookup.index_table_from_file( vocabulary_file=vocabulary_file, vocab_size=3, num_oov_buckets=1, hasher_spec=1) table = lookup.index_table_from_file( vocabulary_file=vocabulary_file, vocab_size=3, num_oov_buckets=1, hasher_spec=lookup.HasherSpec("my-awesome-hash", None)) self.assertRaises(ValueError, table.lookup, constant_op.constant(["salad", "surgery", "tarkus"])) class KeyValueTensorInitializerTest(test.TestCase): def test_string(self): with ops.Graph().as_default(), self.cached_session(): init = lookup.KeyValueTensorInitializer( ("brain", "salad", "surgery"), (0, 1, 2), dtypes.string, dtypes.int64) table = lookup.HashTable(init, default_value=-1) table.initializer.run() def test_int64(self): with ops.Graph().as_default(), self.cached_session(): init = lookup.KeyValueTensorInitializer( (42, 1, -1000), (0, 1, 2), dtypes.int64, dtypes.int64) table = lookup.HashTable(init, default_value=-1) table.initializer.run() def test_int32(self): with ops.Graph().as_default(), self.cached_session(): init = lookup.KeyValueTensorInitializer( (42, 1, -1000), (0, 1, 2), dtypes.int32, dtypes.int64) table = lookup.HashTable(init, default_value=-1) with self.assertRaisesRegexp( errors_impl.OpError, "No OpKernel was registered"): table.initializer.run() class IndexTableFromTensor(test.TestCase): @test_util.run_in_graph_and_eager_modes def test_index_table_from_tensor_with_tensor_init(self): table = lookup.index_table_from_tensor( mapping=("brain", "salad", "surgery"), num_oov_buckets=1) if not context.executing_eagerly(): with self.assertRaises(errors_impl.OpError): self.evaluate(table.lookup( constant_op.constant(("salad", "surgery", "tarkus")))) else: # Reinitializing a table in eager should work. table = lookup.index_table_from_tensor( mapping=("brain", "salad", "surgery"), num_oov_buckets=1) self.evaluate(lookup_ops.tables_initializer()) ids = table.lookup(constant_op.constant(("salad", "surgery", "tarkus"))) self.assertAllEqual((1, 2, 3), self.evaluate(ids)) def test_int32_index_table_from_tensor_with_tensor_init(self): with self.cached_session(): table = lookup.index_table_from_tensor( mapping=(42, 1, -1000), num_oov_buckets=1, dtype=dtypes.int32) ids = table.lookup( constant_op.constant((1, -1000, 11), dtype=dtypes.int32)) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) def test_int64_index_table_from_tensor_with_tensor_init(self): with self.cached_session(): table = lookup.index_table_from_tensor( mapping=(42, 1, -1000), num_oov_buckets=1, dtype=dtypes.int64) ids = table.lookup( constant_op.constant((1, -1000, 11), dtype=dtypes.int64)) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, 3), ids.eval()) def test_index_table_from_tensor_with_default_value(self): default_value = -42 with self.cached_session(): table = lookup.index_table_from_tensor( mapping=["brain", "salad", "surgery"], default_value=default_value) ids = table.lookup(constant_op.constant(["salad", "surgery", "tarkus"])) self.assertRaises(errors_impl.OpError, ids.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, default_value), ids.eval()) def test_index_table_from_tensor_missing_mapping(self): with self.cached_session(): with self.assertRaisesRegexp(ValueError, "mapping must be specified"): lookup.index_table_from_tensor(mapping=None, num_oov_buckets=1) def test_index_table_from_tensor_empty_mapping(self): with self.cached_session(): table = lookup.index_table_from_tensor( mapping=np.array([], dtype=np.str_), num_oov_buckets=1) ids = table.lookup(constant_op.constant(["salad", "surgery", "brain"])) self.assertRaises(errors_impl.OpError, ids.eval) with self.assertRaisesRegexp( errors_impl.OpError, "keys and values cannot be empty"): lookup_ops.tables_initializer().run() def test_index_table_from_tensor_with_invalid_hashers(self): with self.cached_session(): with self.assertRaises(TypeError): lookup.index_table_from_tensor( mapping=["brain", "salad", "surgery"], num_oov_buckets=1, hasher_spec=1) table = lookup.index_table_from_tensor( mapping=["brain", "salad", "surgery"], num_oov_buckets=1, hasher_spec=lookup.HasherSpec("my-awesome-hash", None)) self.assertRaises(ValueError, table.lookup, constant_op.constant(["salad", "surgery", "tarkus"])) class StringToIndexTest(test.TestCase): def test_string_to_index(self): with self.cached_session(): mapping_strings = constant_op.constant(["brain", "salad", "surgery"]) feats = constant_op.constant(["salad", "surgery", "tarkus"]) indices = lookup.string_to_index(feats, mapping=mapping_strings) self.assertRaises(errors_impl.OpError, indices.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, -1), indices.eval()) def test_duplicate_entries(self): with self.cached_session(): mapping_strings = constant_op.constant(["hello", "hello"]) feats = constant_op.constant(["hello", "hola"]) _ = lookup.string_to_index(feats, mapping=mapping_strings) self.assertRaises(errors_impl.OpError, lookup_ops.tables_initializer().run) def test_string_to_index_with_default_value(self): default_value = -42 with self.cached_session(): mapping_strings = constant_op.constant(["brain", "salad", "surgery"]) feats = constant_op.constant(["salad", "surgery", "tarkus"]) indices = lookup.string_to_index( feats, mapping=mapping_strings, default_value=default_value) self.assertRaises(errors_impl.OpError, indices.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((1, 2, default_value), indices.eval()) class IndexToStringTableFromFileTest(test.TestCase): def _createVocabFile(self, basename): vocabulary_file = os.path.join(self.get_temp_dir(), basename) with open(vocabulary_file, "w") as f: f.write("\n".join(["brain", "salad", "surgery"]) + "\n") return vocabulary_file def test_index_to_string_table(self): vocabulary_file = self._createVocabFile("i2f_vocab1.txt") with self.cached_session(): table = lookup.index_to_string_table_from_file( vocabulary_file=vocabulary_file) features = table.lookup(constant_op.constant([0, 1, 2, 3], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"brain", b"salad", b"surgery", b"UNK"), features.eval()) def test_index_to_string_table_with_default_value(self): default_value = b"NONE" vocabulary_file = self._createVocabFile("f2i_vocab2.txt") with self.cached_session(): table = lookup.index_to_string_table_from_file( vocabulary_file=vocabulary_file, default_value=default_value) features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", default_value), features.eval()) def test_index_to_string_table_with_vocab_size_too_small(self): default_value = b"NONE" vocabulary_file = self._createVocabFile("f2i_vocab2.txt") with self.cached_session(): table = lookup.index_to_string_table_from_file( vocabulary_file=vocabulary_file, vocab_size=2, default_value=default_value) features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"salad", default_value, default_value), features.eval()) def test_index_to_string_table_with_vocab_size_too_large(self): vocabulary_file = self._createVocabFile("f2i_vocab6.txt") with self.cached_session(): table = lookup.index_to_string_table_from_file( vocabulary_file=vocabulary_file, vocab_size=4) features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) init = lookup_ops.tables_initializer() self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "Invalid vocab_size", init.run) def test_index_to_string_table_with_vocab_size(self): vocabulary_file = self._createVocabFile("f2i_vocab7.txt") with self.cached_session(): table = lookup.index_to_string_table_from_file( vocabulary_file=vocabulary_file, vocab_size=3) features = table.lookup(constant_op.constant([1, 2, 4], dtypes.int64)) self.assertRaises(errors_impl.OpError, features.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", b"UNK"), features.eval()) class IndexToStringTableFromTensorTest(test.TestCase): def test_index_to_string_table_from_tensor(self): with self.cached_session(): mapping_strings = constant_op.constant(["brain", "salad", "surgery"]) table = lookup.index_to_string_table_from_tensor( mapping=mapping_strings) indices = constant_op.constant([0, 1, 2, 3], dtypes.int64) features = table.lookup(indices) self.assertRaises(errors_impl.OpError, features.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"brain", b"salad", b"surgery", b"UNK"), features.eval()) def test_duplicate_entries(self): with self.cached_session(): mapping_strings = constant_op.constant(["hello", "hello"]) table = lookup.index_to_string_table_from_tensor( mapping=mapping_strings) indices = constant_op.constant([0, 1, 4], dtypes.int64) features = table.lookup(indices) lookup_ops.tables_initializer().run() self.assertAllEqual((b"hello", b"hello", b"UNK"), features.eval()) def test_index_to_string_with_default_value(self): default_value = b"NONE" with self.cached_session(): mapping_strings = constant_op.constant(["brain", "salad", "surgery"]) table = lookup.index_to_string_table_from_tensor( mapping=mapping_strings, default_value=default_value) indices = constant_op.constant([1, 2, 4], dtypes.int64) features = table.lookup(indices) self.assertRaises(errors_impl.OpError, features.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", default_value), features.eval()) class IndexToStringTest(test.TestCase): def test_index_to_string(self): with self.cached_session(): mapping_strings = constant_op.constant(["brain", "salad", "surgery"]) indices = constant_op.constant([0, 1, 2, 3], dtypes.int64) feats = lookup.index_to_string(indices, mapping=mapping_strings) self.assertRaises(errors_impl.OpError, feats.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"brain", b"salad", b"surgery", b"UNK"), feats.eval()) def test_duplicate_entries(self): with self.cached_session(): mapping_strings = constant_op.constant(["hello", "hello"]) indices = constant_op.constant([0, 1, 4], dtypes.int64) feats = lookup.index_to_string(indices, mapping=mapping_strings) lookup_ops.tables_initializer().run() self.assertAllEqual((b"hello", b"hello", b"UNK"), feats.eval()) self.assertRaises(errors_impl.OpError, lookup_ops.tables_initializer().run) def test_index_to_string_with_default_value(self): default_value = b"NONE" with self.cached_session(): mapping_strings = constant_op.constant(["brain", "salad", "surgery"]) indices = constant_op.constant([1, 2, 4], dtypes.int64) feats = lookup.index_to_string( indices, mapping=mapping_strings, default_value=default_value) self.assertRaises(errors_impl.OpError, feats.eval) lookup_ops.tables_initializer().run() self.assertAllEqual((b"salad", b"surgery", default_value), feats.eval()) class InitializeTableFromFileOpTest(test.TestCase): def _createVocabFile(self, basename, values=("brain", "salad", "surgery")): vocabulary_file = os.path.join(self.get_temp_dir(), basename) with open(vocabulary_file, "w") as f: f.write("\n".join(values) + "\n") return vocabulary_file @test_util.run_in_graph_and_eager_modes def testInitializeStringTable(self): vocabulary_file = self._createVocabFile("one_column_1.txt") default_value = -1 table = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value) self.evaluate(table.initializer) output = table.lookup(constant_op.constant(["brain", "salad", "tank"])) result = self.evaluate(output) self.assertAllEqual([0, 1, -1], result) def testInitializeInt64Table(self): vocabulary_file = self._createVocabFile( "one_column_int64.txt", values=("42", "1", "-1000")) with self.cached_session(): default_value = -1 table = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.int64, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value) table.initializer.run() output = table.lookup( constant_op.constant((42, 1, 11), dtype=dtypes.int64)) result = output.eval() self.assertAllEqual([0, 1, -1], result) def testInitializeIndexTable(self): vocabulary_file = self._createVocabFile("one_column_2.txt") with self.cached_session(): default_value = "UNK" key_index = lookup.TextFileIndex.LINE_NUMBER value_index = lookup.TextFileIndex.WHOLE_LINE table = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.int64, key_index, dtypes.string, value_index), default_value) table.initializer.run() input_values = constant_op.constant([0, 1, 2, 3], dtypes.int64) output = table.lookup(input_values) result = output.eval() self.assertAllEqual([b"brain", b"salad", b"surgery", b"UNK"], result) def testMultiColumn(self): vocabulary_file = os.path.join(self.get_temp_dir(), "three_columns.txt") with open(vocabulary_file, "w") as f: f.write("\n".join(["0\tbrain\t1", "1\tsalad\t5", "2\tsurgery\t6"]) + "\n") with self.cached_session(): default_value = -1 key_index = 1 value_index = 2 table = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.string, key_index, dtypes.int64, value_index), default_value) table.initializer.run() input_string = constant_op.constant(["brain", "salad", "surgery"]) output = table.lookup(input_string) result = output.eval() self.assertAllEqual([1, 5, 6], result) def testInvalidDataTypeInMultiColumn(self): vocabulary_file = os.path.join(self.get_temp_dir(), "three_columns.txt") with open(vocabulary_file, "w") as f: f.write("\n".join(["0\tbrain\t1", "1\tsalad\t5", "2\tsurgery\t6"]) + "\n") with self.cached_session(): default_value = -1 key_index = 2 value_index = 1 table = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.string, key_index, dtypes.int64, value_index), default_value) with self.assertRaisesOpError("is not a valid"): table.initializer.run() def testInvalidDataType(self): vocabulary_file = self._createVocabFile("one_column_3.txt") with self.cached_session(): default_value = "UNK" key_index = lookup.TextFileIndex.WHOLE_LINE value_index = lookup.TextFileIndex.LINE_NUMBER with self.assertRaises(ValueError): lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.int64, key_index, dtypes.string, value_index), default_value) def testInvalidIndex(self): vocabulary_file = self._createVocabFile("one_column_4.txt") with self.cached_session(): default_value = -1 key_index = 1 # second column of the line value_index = lookup.TextFileIndex.LINE_NUMBER table = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.string, key_index, dtypes.int64, value_index), default_value) with self.assertRaisesOpError("Invalid number of columns"): table.initializer.run() def testInitializeSameTableWithMultipleNodes(self): vocabulary_file = self._createVocabFile("one_column_5.txt") with self.cached_session() as sess: shared_name = "shared-one-columm" default_value = -1 table1 = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value, shared_name=shared_name) table2 = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value, shared_name=shared_name) table3 = lookup.HashTable( lookup.TextFileInitializer(vocabulary_file, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value, shared_name=shared_name) lookup_ops.tables_initializer().run() input_string = constant_op.constant(["brain", "salad", "tank"]) output1 = table1.lookup(input_string) output2 = table2.lookup(input_string) output3 = table3.lookup(input_string) out1, out2, out3 = sess.run([output1, output2, output3]) self.assertAllEqual([0, 1, -1], out1) self.assertAllEqual([0, 1, -1], out2) self.assertAllEqual([0, 1, -1], out3) def testInitializeTableWithNoFilename(self): with self.cached_session(): default_value = -1 with self.assertRaises(ValueError): lookup.HashTable( lookup.TextFileInitializer( "", dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value) def testInitializeWithVocabSize(self): with self.cached_session(): default_value = -1 vocab_size = 3 vocabulary_file1 = self._createVocabFile("one_column6.txt") table1 = lookup.HashTable( lookup.TextFileInitializer( vocabulary_file1, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER, vocab_size=vocab_size), default_value) # Initialize from file. table1.initializer.run() self.assertEquals(vocab_size, table1.size().eval()) vocabulary_file2 = self._createVocabFile("one_column7.txt") vocab_size = 5 table2 = lookup.HashTable( lookup.TextFileInitializer( vocabulary_file2, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER, vocab_size=vocab_size), default_value) with self.assertRaisesOpError("Invalid vocab_size"): table2.initializer.run() vocab_size = 1 vocabulary_file3 = self._createVocabFile("one_column3.txt") table3 = lookup.HashTable( lookup.TextFileInitializer( vocabulary_file3, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER, vocab_size=vocab_size), default_value) # Smaller vocab size reads only vocab_size records. table3.initializer.run() self.assertEquals(vocab_size, table3.size().eval()) def testFeedVocabularyName(self): vocabulary_file = self._createVocabFile("feed_vocabulary.txt") with self.cached_session(): default_value = -1 table = lookup.HashTable( lookup.TextFileInitializer("old_file.txt", dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value) # Initialize with non existing file (old_file.txt) should fail. # TODO(yleon): Update message, which might change per FileSystem. with self.assertRaisesOpError("old_file.txt"): table.initializer.run() # Initialize the model feeding the vocabulary file. filenames = ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS) table.initializer.run(feed_dict={filenames[0]: vocabulary_file}) input_string = constant_op.constant(["brain", "salad", "tank"]) output = table.lookup(input_string) result = output.eval() self.assertAllEqual([0, 1, -1], result) def testInvalidFilenames(self): vocabulary_file = self._createVocabFile("filename_shape.txt") with self.cached_session(): default_value = -1 # Invalid data type other_type = constant_op.constant(1) with self.assertRaises(ValueError): lookup.HashTable( lookup.TextFileInitializer( other_type, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value) # Non-scalar filename filenames = constant_op.constant([vocabulary_file, vocabulary_file]) with self.assertRaises(ValueError): lookup.HashTable( lookup.TextFileInitializer( filenames, dtypes.string, lookup.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup.TextFileIndex.LINE_NUMBER), default_value) def testIdToStringTable(self): vocab_file = self._createVocabFile("feat_to_id_1.txt") with self.cached_session(): default_value = "UNK" vocab_size = 3 table = lookup.HashTable( lookup.TextFileStringTableInitializer( vocab_file, vocab_size=vocab_size), default_value) table.initializer.run() input_values = constant_op.constant([0, 1, 2, 3], dtypes.int64) out = table.lookup(input_values) self.assertAllEqual([b"brain", b"salad", b"surgery", b"UNK"], out.eval()) self.assertEquals(vocab_size, table.size().eval()) def testStringToIdTable(self): vocab_file = self._createVocabFile("feat_to_id_2.txt") with self.cached_session(): default_value = -1 vocab_size = 3 table = lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value) table.initializer.run() input_string = constant_op.constant(["brain", "salad", "surgery", "UNK"]) out = table.lookup(input_string) self.assertAllEqual([0, 1, 2, -1], out.eval()) self.assertEquals(vocab_size, table.size().eval()) def testInt64ToIdTable(self): vocab_file = self._createVocabFile( "feat_to_id_3.txt", values=("42", "1", "-1000")) with self.cached_session(): default_value = -1 vocab_size = 3 table = lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size, key_dtype=dtypes.int64), default_value) table.initializer.run() out = table.lookup( constant_op.constant((42, 1, -1000, 11), dtype=dtypes.int64)) self.assertAllEqual((0, 1, 2, -1), out.eval()) self.assertEquals(vocab_size, table.size().eval()) class IdTableWithHashBucketsTest(test.TestCase): def _createVocabFile(self, basename, values=("brain", "salad", "surgery")): vocabulary_file = os.path.join(self.get_temp_dir(), basename) with open(vocabulary_file, "w") as f: f.write("\n".join(values) + "\n") return vocabulary_file def testStringIdTableWithHashBuckets(self): vocab_file = self._createVocabFile("feat_to_id_1.txt") with self.cached_session(): default_value = -1 vocab_size = 3 oov_buckets = 1 table = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value), oov_buckets) table.initializer.run() input_string = constant_op.constant(["brain", "salad", "surgery", "UNK"]) out = table.lookup(input_string) self.assertAllEqual([0, 1, 2, 3], out.eval()) self.assertEquals(vocab_size + oov_buckets, table.size().eval()) def testInt32IdTableWithHashBuckets(self): vocab_file = self._createVocabFile("feat_to_id_2.txt", ("42", "1", "-1000")) with self.cached_session(): default_value = -1 vocab_size = 3 oov_buckets = 1 table = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size, key_dtype=dtypes.int64), default_value), oov_buckets, key_dtype=dtypes.int32) table.initializer.run() values = constant_op.constant((42, 1, -1000, 11), dtype=dtypes.int32) out = table.lookup(values) self.assertAllEqual([0, 1, 2, 3], out.eval()) self.assertEquals(vocab_size + oov_buckets, table.size().eval()) def testInt64IdTableWithHashBuckets(self): vocab_file = self._createVocabFile("feat_to_id_3.txt", ("42", "1", "-1000")) with self.cached_session(): default_value = -1 vocab_size = 3 oov_buckets = 1 table = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size, key_dtype=dtypes.int64), default_value), oov_buckets) table.initializer.run() values = constant_op.constant((42, 1, -1000, 11), dtype=dtypes.int64) out = table.lookup(values) self.assertAllEqual([0, 1, 2, 3], out.eval()) self.assertEquals(vocab_size + oov_buckets, table.size().eval()) def testStringIdTableWithOnlyHashBucket(self): with self.cached_session(): oov_buckets = 5 # Set a table that only uses hash buckets, for each input value returns # an id calculated by fingerprint("input") mod oov_buckets. table = lookup.IdTableWithHashBuckets(None, oov_buckets) table.initializer.run() values = constant_op.constant(("brain", "salad", "surgery")) out = table.lookup(values) self.assertAllEqual( [ 3, # fingerprint("brain") mod 5. 1, # fingerprint("salad") mod 5. 4 # fingerprint("surgery") mod 5 ], out.eval()) self.assertEquals(oov_buckets, table.size().eval()) def testInt32IdTableWithOnlyHashBucket(self): with self.cached_session(): oov_buckets = 5 # Set a table that only uses hash buckets, for each input value returns # an id calculated by fingerprint("input") mod oov_buckets. table = lookup.IdTableWithHashBuckets( None, oov_buckets, key_dtype=dtypes.int32) table.initializer.run() input_string = constant_op.constant([42, 1, -1000], dtype=dtypes.int32) out = table.lookup(input_string) self.assertAllEqual( [ 1, # fingerprint("42") mod 5. 4, # fingerprint("1") mod 5. 2 # fingerprint("-1000") mod 5 ], out.eval()) self.assertEquals(oov_buckets, table.size().eval()) def testFloat64IdTableWithOnlyHashBucket(self): with self.cached_session(): with self.assertRaisesRegexp(TypeError, "Invalid key_dtype"): lookup.IdTableWithHashBuckets( None, num_oov_buckets=5, key_dtype=dtypes.float64) def testBoolIdTableWithOnlyHashBucket(self): with self.cached_session(): with self.assertRaisesRegexp(TypeError, "Invalid key_dtype"): lookup.IdTableWithHashBuckets( None, num_oov_buckets=5, key_dtype=dtypes.bool) def testIdTableWithHashBucketsWithMultipleInitializers(self): vocab_file = self._createVocabFile("feat_to_id_4.txt") with self.cached_session() as sess: default_value = -1 vocab_size = 3 oov_buckets = 3 vocab_table = lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value) table1 = lookup.IdTableWithHashBuckets( vocab_table, oov_buckets, hasher_spec=lookup.FastHashSpec, name="table1") table2 = lookup.IdTableWithHashBuckets( vocab_table, oov_buckets, hasher_spec=lookup.StrongHashSpec((1, 2)), name="table2") lookup_ops.tables_initializer().run() input_string = constant_op.constant( ["fruit", "brain", "salad", "surgery", "UNK"]) out1 = table1.lookup(input_string) out2 = table2.lookup(input_string) out1, out2 = sess.run([out1, out2]) self.assertAllEqual([5, 0, 1, 2, 5], out1) self.assertAllEqual([5, 0, 1, 2, 3], out2) self.assertEquals(vocab_size + oov_buckets, table1.size().eval()) self.assertEquals(vocab_size + oov_buckets, table2.size().eval()) test_util.assert_ops_in_graph({ "table1_Lookup/hash_bucket": "StringToHashBucketFast", "table2_Lookup/hash_bucket": "StringToHashBucketStrong", }, sess.graph) def testIdTableWithHashBucketsInitializationAcrossSessions(self): vocab_file = self._createVocabFile("feat_to_id_5.txt") shared_name = "across-sessions" with self.cached_session(): default_value = -1 vocab_size = 3 oov_buckets = 1 table1 = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value, shared_name=shared_name), oov_buckets) table1.initializer.run() input_string_1 = constant_op.constant( ["brain", "salad", "surgery", "UNK"]) out1 = table1.lookup(input_string_1) self.assertAllEqual([0, 1, 2, 3], out1.eval()) self.assertEquals(vocab_size + oov_buckets, table1.size().eval()) with self.cached_session(): default_value = -1 vocab_size = 3 oov_buckets = 1 # Underlying lookup table already initialized in previous session. # No need to call table2.initializer.run() table2 = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value, shared_name=shared_name), oov_buckets) input_string_2 = constant_op.constant(["fruit", "salad", "UNK"]) out2 = table2.lookup(input_string_2) self.assertAllEqual([3, 1, 3], out2.eval()) self.assertEquals(vocab_size + oov_buckets, table2.size().eval()) def testIdTableWithHashBucketsWithMultipleInitializersDifferentDefault(self): vocab_file = self._createVocabFile("feat_to_id_6.txt") with self.cached_session() as sess: default_value1 = -1 vocab_size = 3 oov_buckets = 0 table1 = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value1), oov_buckets) default_value2 = -2 table2 = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value2), oov_buckets) lookup_ops.tables_initializer().run() input_string_1 = constant_op.constant( ["brain", "salad", "surgery", "UNK"]) input_string_2 = constant_op.constant(["fruit", "salad", "UNK"]) out1 = table1.lookup(input_string_1) out2 = table2.lookup(input_string_2) out1, out2 = sess.run([out1, out2]) self.assertAllEqual([0, 1, 2, -1], out1) self.assertAllEqual([-2, 1, -2], out2) self.assertEquals(vocab_size + oov_buckets, table1.size().eval()) self.assertEquals(vocab_size + oov_buckets, table2.size().eval()) def testSparseTensor(self): vocab_file = self._createVocabFile("feat_to_id_7.txt") input_indices = [[0, 0], [0, 1], [2, 0], [2, 2], [3, 0]] input_shape = [4, 4] with self.cached_session() as sess: sp_features = sparse_tensor.SparseTensor( constant_op.constant(input_indices, dtypes.int64), constant_op.constant(["brain", "salad", "brain", "surgery", "tarkus"], dtypes.string), constant_op.constant(input_shape, dtypes.int64)) table = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=3), -1), 1) table.initializer.run() sp_ids = table.lookup(sp_features) self.assertAllEqual([5], sp_ids.values._shape_as_list()) sp_ids_ind, sp_ids_val, sp_ids_shape = sess.run( [sp_ids.indices, sp_ids.values, sp_ids.dense_shape]) self.assertAllEqual(input_indices, sp_ids_ind) self.assertAllEqual([0, 1, 0, 2, 3], sp_ids_val) self.assertAllEqual(input_shape, sp_ids_shape) def testInt32SparseTensor(self): input_indices = [[0, 0], [0, 1], [2, 0], [2, 2], [3, 0]] input_shape = [4, 4] with self.cached_session() as sess: sp_features = sparse_tensor.SparseTensor( constant_op.constant(input_indices, dtypes.int64), constant_op.constant([42, 1, 42, -1000, 11], dtypes.int32), constant_op.constant(input_shape, dtypes.int64)) table = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.KeyValueTensorInitializer( (42, 1, -1000), (0, 1, 2), dtypes.int64, dtypes.int64), -1), 1, key_dtype=dtypes.int32) table.initializer.run() sp_ids = table.lookup(sp_features) self.assertAllEqual([5], sp_ids.values._shape_as_list()) sp_ids_ind, sp_ids_val, sp_ids_shape = sess.run( [sp_ids.indices, sp_ids.values, sp_ids.dense_shape]) self.assertAllEqual(input_indices, sp_ids_ind) self.assertAllEqual([0, 1, 0, 2, 3], sp_ids_val) self.assertAllEqual(input_shape, sp_ids_shape) def testInt64SparseTensor(self): input_indices = [[0, 0], [0, 1], [2, 0], [2, 2], [3, 0]] input_shape = [4, 4] with self.cached_session() as sess: sp_features = sparse_tensor.SparseTensor( constant_op.constant(input_indices, dtypes.int64), constant_op.constant([42, 1, 42, -1000, 11], dtypes.int64), constant_op.constant(input_shape, dtypes.int64)) table = lookup.IdTableWithHashBuckets( lookup.HashTable( lookup.KeyValueTensorInitializer( (42, 1, -1000), (0, 1, 2), dtypes.int64, dtypes.int64), -1), 1, key_dtype=dtypes.int64) table.initializer.run() sp_ids = table.lookup(sp_features) self.assertAllEqual([5], sp_ids.values._shape_as_list()) sp_ids_ind, sp_ids_val, sp_ids_shape = sess.run( [sp_ids.indices, sp_ids.values, sp_ids.dense_shape]) self.assertAllEqual(input_indices, sp_ids_ind) self.assertAllEqual([0, 1, 0, 2, 3], sp_ids_val) self.assertAllEqual(input_shape, sp_ids_shape) def testIdTableWithHashBucketsWithInvalidHashers(self): vocab_file = self._createVocabFile("feat_to_id_4.txt") with self.cached_session(): default_value = -1 vocab_size = 3 oov_buckets = 1 lookup_table = lookup.HashTable( lookup.TextFileIdTableInitializer( vocab_file, vocab_size=vocab_size), default_value) with self.assertRaises(TypeError): lookup.IdTableWithHashBuckets( lookup_table, oov_buckets, hasher_spec=1) table = lookup.IdTableWithHashBuckets( lookup_table, oov_buckets, hasher_spec=lookup.HasherSpec("my-awesome-hash", None)) input_string = constant_op.constant(["brain", "salad", "surgery", "UNK"]) with self.assertRaises(ValueError): table.lookup(input_string) with self.assertRaises(ValueError): table = lookup.IdTableWithHashBuckets( lookup_table, oov_buckets, hasher_spec=lookup.StrongHashSpec([])) with self.assertRaises(ValueError): table = lookup.IdTableWithHashBuckets( lookup_table, oov_buckets, hasher_spec=lookup.StrongHashSpec([1, 2, 3])) with self.assertRaises(TypeError): table = lookup.IdTableWithHashBuckets( lookup_table, oov_buckets, hasher_spec=lookup.StrongHashSpec([None, 2])) if __name__ == "__main__": test.main()
38.01345
80
0.657768
0351b80de5a7bdd33a3a4c42bcbf248e41f2532f
54,240
py
Python
biothings/hub/databuild/differ.py
sirloon/biothings.api
8a981fa2151e368d0ca76aaf226eb565d794d4fb
[ "Apache-2.0" ]
null
null
null
biothings/hub/databuild/differ.py
sirloon/biothings.api
8a981fa2151e368d0ca76aaf226eb565d794d4fb
[ "Apache-2.0" ]
null
null
null
biothings/hub/databuild/differ.py
sirloon/biothings.api
8a981fa2151e368d0ca76aaf226eb565d794d4fb
[ "Apache-2.0" ]
null
null
null
import os, re, shutil, copy import time, hashlib import pickle, json from datetime import datetime from pprint import pformat, pprint import asyncio from functools import partial import glob, random from biothings.utils.common import timesofar, iter_n, get_timestamp, \ dump, rmdashfr, loadobj, md5sum from biothings.utils.mongo import id_feeder, get_target_db, get_previous_collection from biothings.utils.hub_db import get_src_build, get_source_fullname from biothings.utils.loggers import get_logger from biothings.utils.diff import diff_docs_jsonpatch from biothings.hub.databuild.backend import generate_folder from biothings import config as btconfig from biothings.utils.manager import BaseManager, ManagerError from .backend import create_backend, merge_src_build_metadata from .syncer import SyncerManager from biothings.utils.backend import DocMongoBackend import biothings.utils.aws as aws from biothings.utils.jsondiff import make as jsondiff from biothings.utils.hub import publish_data_version from biothings.hub import DIFFER_CATEGORY, DIFFMANAGER_CATEGORY from biothings.hub.datarelease import set_pending_to_release_note logging = btconfig.logger class DifferException(Exception): pass class BaseDiffer(object): # diff type name, identifying the diff algorithm # must be set in sub-class diff_type = None def __init__(self, diff_func, job_manager, log_folder): self.old = None self.new = None self.log_folder = log_folder self.job_manager = job_manager self.diff_func = diff_func self.timestamp = datetime.now() self.logfile = None self.setup_log() self.ti = time.time() self.metadata = {} # diff metadata self.metadata_filename = None def setup_log(self): self.logger, self.logfile = get_logger('diff_%s' % self.__class__.diff_type,self.log_folder) def get_predicates(self): return [] def get_pinfo(self): """ Return dict containing information about the current process (used to report in the hub) """ pinfo = {"category" : DIFFER_CATEGORY, "source" : "", "step" : "", "description" : ""} preds = self.get_predicates() if preds: pinfo["__predicates__"] = preds return pinfo def register_status(self,status,transient=False,init=False,**extra): src_build = get_src_build() job_info = { 'status': status, 'step_started_at': datetime.now(), 'logfile': self.logfile, } diff_key = self.old.target_name diff_info = { "diff": { diff_key : { } } } if transient: # record some "in-progress" information job_info['pid'] = os.getpid() else: # only register time when it's a final state job_info["time"] = timesofar(self.ti) t1 = round(time.time() - self.ti, 0) job_info["time_in_s"] = t1 diff_info["diff"][diff_key]["created_at"] = datetime.now() if "diff" in extra: diff_info["diff"][diff_key].update(extra["diff"]) if "job" in extra: job_info.update(extra["job"]) # since the base is the merged collection, we register info there # as the new collection (diff results are associated to the most recent colleciton) build = src_build.find_one({'_id': self.new.target_name}) if not build: self.logger.info("Can't find build document '%s', no status to register" % self.new.target_name) return if init: # init timer for this step self.ti = time.time() src_build.update({'_id': self.new.target_name}, {"$push": {'jobs': job_info}}) # now refresh/sync build = src_build.find_one({'_id': self.new.target_name}) else: # merge extra at root level # (to keep building data...) and update the last one # (it's been properly created before when init=True) build["jobs"] and build["jobs"][-1].update(job_info) def merge_info(target,d): if "__REPLACE__" in d.keys(): d.pop("__REPLACE__") target = d else: for k,v in d.items(): if type(v) == dict: # only merge if both are dict (otherwise replace/set with d) if k in target and type(target[k]) == dict: target[k] = merge_info(target[k],v) else: v.pop("__REPLACE__",None) # merge v with "nothing" just to make sure to remove any "__REPLACE__" v = merge_info({},v) target[k] = v else: target[k] = v return target build = merge_info(build,diff_info) src_build.replace_one({"_id" : build["_id"]}, build) @asyncio.coroutine def diff_cols(self, old_db_col_names, new_db_col_names, batch_size, steps, mode=None, exclude=[]): """ Compare new with old collections and produce diff files. Root keys can be excluded from comparison with "exclude" parameter *_db_col_names can be: 1. a colleciton name (as a string) asusming they are in the target database. 2. tuple with 2 elements, the first one is then either "source" or "target" to respectively specify src or target database, and the second element is the collection name. 3. tuple with 3 elements (URI,db,collection), looking like: ("mongodb://user:pass@host","dbname","collection"), allowing to specify any connection on any server steps: - 'content' will perform diff on actual content. - 'mapping' will perform diff on ES mappings (if target collection involved) - 'reduce' will merge diff files, trying to avoid having many small files - 'post' is a hook to do stuff once everything is merged (override method post_diff_cols) mode: 'purge' will remove any existing files for this comparison while 'resume' will happily ignore existing data and to whatever it's requested (like running steps="post" on existing diff folder...) """ # these ones are used to point to the build doc, not the underlying backned # (ie. if link builder has been used, it refers a colleciton in src_db, but # we need the metadata from the build doc too) self.new = create_backend(new_db_col_names,follow_ref=False) self.old = create_backend(old_db_col_names,follow_ref=False) # these point to the actual collection containing data content_new = create_backend(new_db_col_names,follow_ref=True) content_old = create_backend(old_db_col_names,follow_ref=True) # check what to do if type(steps) == str: steps = [steps] diff_folder = generate_folder(btconfig.DIFF_PATH,old_db_col_names,new_db_col_names) if mode != "force" and os.path.exists(diff_folder) and "content" in steps: if mode == "purge" and os.path.exists(diff_folder): rmdashfr(diff_folder) elif mode != "resume": raise FileExistsError("Found existing files in '%s', use mode='purge'" % diff_folder) if not os.path.exists(diff_folder): os.makedirs(diff_folder) # create metadata file storing info about how we created the diff # and some summary data diff_stats = {"update":0, "add":0, "delete":0, "mapping_changed": False} self.metadata_filename = os.path.join(diff_folder,"metadata.json") if os.path.exists(self.metadata_filename): # load previous metadata in case we try to update/complete diff self.metadata = json.load(open(self.metadata_filename)) else: assert self.old.version, "Version for 'old' collection not defined" self.metadata = { "diff" : { "type" : self.diff_type, "func" : self.diff_func.__name__, "version" : "%s.%s" % (self.old.version,self.new.version), "stats": diff_stats, # ref to diff_stats "files": [], # when "new" is a target collection: "mapping_file": None, "info" : { "generated_on": str(datetime.now()), "exclude": exclude, "steps": steps, "mode": mode, "batch_size": batch_size } }, "old": { "backend" : old_db_col_names, "version" : self.old.version }, "new": { "backend" : new_db_col_names, "version": self.new.version }, # when "new" is a mongodb target collection: "_meta" : {}, "build_config": {}, } if isinstance(self.new,DocMongoBackend) and self.new.target_collection.database.name == btconfig.DATA_TARGET_DATABASE: new_doc = get_src_build().find_one({"_id":self.new.target_collection.name}) if not new_doc: raise DifferException("Collection '%s' has no corresponding build document" % \ self.new.target_collection.name) self.metadata["_meta"] = self.get_metadata() self.metadata["build_config"] = new_doc.get("build_config") got_error = False if "mapping" in steps: def diff_mapping(old,new,diff_folder): summary = {} old_build = get_src_build().find_one({"_id":old.target_collection.name}) new_build = get_src_build().find_one({"_id":new.target_collection.name}) if old_build and new_build: # mapping diff always in jsondiff mapping_diff = jsondiff(old_build["mapping"], new_build["mapping"]) if mapping_diff: file_name = os.path.join(diff_folder,"mapping.pyobj") dump(mapping_diff, file_name) md5 = md5sum(file_name) summary["mapping_file"] = { "name" : os.path.basename(file_name), "md5sum" : md5, "size" : os.stat(file_name).st_size } else: self.logger.info("Neither '%s' nor '%s' have mappings associated to them, skip" % \ (old.target_collection.name,new.target_collection.name)) return summary def mapping_diffed(f): res = f.result() self.register_status("success",job={"step":"diff-mapping"}) if res.get("mapping_file"): nonlocal got_error # check mapping differences: only "add" ops are allowed, as any others actions would be # ingored by ES once applied (you can't update/delete elements of an existing mapping) mf = os.path.join(diff_folder,res["mapping_file"]["name"]) ops = loadobj(mf) for op in ops: if op["op"] != "add": err = DifferException("Found diff operation '%s' in mapping file, " % op["op"] + \ " only 'add' operations are allowed. You can still produce the " + \ "diff by removing 'mapping' from 'steps' arguments. " + \ "Ex: steps=['content']. Diff operation was: %s" % op) got_error = err self.metadata["diff"]["mapping_file"] = res["mapping_file"] diff_stats["mapping_changed"] = True json.dump(self.metadata,open(self.metadata_filename,"w"),indent=True) self.logger.info("Diff file containing mapping differences generated: %s" % res.get("mapping_file")) pinfo = self.get_pinfo() pinfo["source"] = "%s vs %s" % (self.new.target_name,self.old.target_name) pinfo["step"] = "mapping: old vs new" self.register_status("diffing",transient=True,init=True,job={"step":"diff-mapping"}) job = yield from self.job_manager.defer_to_thread(pinfo, partial(diff_mapping, self.old, self.new, diff_folder)) job.add_done_callback(mapping_diffed) yield from job if got_error: raise got_error if content_old == content_new: self.logger.info("Old and new collections are the same, skipping 'content' step") elif "content" in steps: skip = 0 cnt = 0 jobs = [] pinfo = self.get_pinfo() pinfo["source"] = "%s vs %s" % (content_new.target_name,content_old.target_name) pinfo["step"] = "content: new vs old" data_new = id_feeder(content_new, batch_size=batch_size) selfcontained = "selfcontained" in self.diff_type self.register_status("diffing",transient=True,init=True,job={"step":"diff-content"}) for id_list_new in data_new: cnt += 1 pinfo["description"] = "batch #%s" % cnt def diffed(f): res = f.result() diff_stats["update"] += res["update"] diff_stats["add"] += res["add"] if res.get("diff_file"): self.metadata["diff"]["files"].append(res["diff_file"]) self.logger.info("(Updated: {}, Added: {})".format(res["update"], res["add"])) self.register_status("success",job={"step":"diff-content"}) self.logger.info("Creating diff worker for batch #%s" % cnt) job = yield from self.job_manager.defer_to_process(pinfo, partial(diff_worker_new_vs_old, id_list_new, old_db_col_names, new_db_col_names, cnt , diff_folder, self.diff_func, exclude, selfcontained)) job.add_done_callback(diffed) jobs.append(job) yield from asyncio.gather(*jobs) self.logger.info("Finished calculating diff for the new collection. Total number of docs updated: {}, added: {}".format(diff_stats["update"], diff_stats["add"])) data_old = id_feeder(content_old, batch_size=batch_size) jobs = [] pinfo = self.get_pinfo() pinfo["source"] = "%s vs %s" % (content_old.target_name,content_new.target_name) pinfo["step"] = "content: old vs new" for id_list_old in data_old: cnt += 1 pinfo["description"] = "batch #%s" % cnt def diffed(f): res = f.result() diff_stats["delete"] += res["delete"] if res.get("diff_file"): self.metadata["diff"]["files"].append(res["diff_file"]) self.logger.info("(Deleted: {})".format(res["delete"])) self.logger.info("Creating diff worker for batch #%s" % cnt) job = yield from self.job_manager.defer_to_process(pinfo, partial(diff_worker_old_vs_new, id_list_old, new_db_col_names, cnt , diff_folder)) job.add_done_callback(diffed) jobs.append(job) yield from asyncio.gather(*jobs) self.logger.info("Finished calculating diff for the old collection. Total number of docs deleted: {}".format(diff_stats["delete"])) json.dump(self.metadata,open(self.metadata_filename,"w"),indent=True) self.logger.info("Summary: (Updated: {}, Added: {}, Deleted: {}, Mapping changed: {})".format( diff_stats["update"], diff_stats["add"], diff_stats["delete"], diff_stats["mapping_changed"])) if "reduce" in steps: @asyncio.coroutine def merge_diff(): self.logger.info("Reduce/merge diff files") max_diff_size = getattr(btconfig,"MAX_DIFF_SIZE",10*1024**2) current_size = 0 cnt = 0 final_res = [] tomerge = [] # .done contains original diff files done_folder = os.path.join(diff_folder,".done") try: os.mkdir(done_folder) except FileExistsError: pass def merged(f,cnt): nonlocal got_error nonlocal final_res try: res = f.result() final_res.extend(res) self.logger.info("Diff file #%s created" % cnt) except Exception as e: got_error = e diff_files = [f for f in glob.glob(os.path.join(diff_folder,"*.pyobj")) \ if not os.path.basename(f).startswith("mapping")] self.logger.info("%d diff files to process in total" % len(diff_files)) jobs = [] total = len(diff_files) while diff_files: if len(diff_files) % 100 == 0: self.logger.info("%d diff files to process" % len(diff_files)) if current_size > max_diff_size: job = yield from self.job_manager.defer_to_process(pinfo, partial(reduce_diffs,tomerge,cnt,diff_folder,done_folder)) job.add_done_callback(partial(merged,cnt=cnt)) jobs.append(job) current_size = 0 cnt += 1 tomerge = [] else: diff_file = diff_files.pop() current_size += os.stat(diff_file).st_size tomerge.append(diff_file) assert not diff_files if tomerge: job = yield from self.job_manager.defer_to_process(pinfo, partial(reduce_diffs,tomerge,cnt,diff_folder,done_folder)) job.add_done_callback(partial(merged,cnt=cnt)) jobs.append(job) yield from job yield from asyncio.gather(*jobs) return final_res pinfo = self.get_pinfo() pinfo["source"] = "diff_folder" pinfo["step"] = "reduce" #job = yield from self.job_manager.defer_to_thread(pinfo,merge_diff) self.register_status("diffing",transient=True,init=True,job={"step":"diff-reduce"}) res = yield from merge_diff() self.metadata["diff"]["files"] = res json.dump(self.metadata,open(self.metadata_filename,"w"),indent=True) if got_error: self.logger.exception("Failed to reduce diff files: %s" % got_error,extra={"notify":True}) raise got_error self.register_status("success",job={"step":"diff-reduce"}) if "post" in steps: pinfo = self.get_pinfo() pinfo["source"] = "diff_folder" pinfo["step"] = "post" self.register_status("diffing",transient=True,init=True,job={"step":"diff-post"}) job = yield from self.job_manager.defer_to_thread(pinfo, partial(self.post_diff_cols, old_db_col_names, new_db_col_names, batch_size, steps, mode=mode, exclude=exclude)) def posted(f): nonlocal got_error try: res = f.result() self.register_status("success",job={"step":"diff-post"},diff={"post": res}) self.logger.info("Post diff process successfully run: %s" % res) except Exception as e: got_error = e job.add_done_callback(posted) yield from job json.dump(self.metadata,open(self.metadata_filename,"w"),indent=True) if got_error: self.logger.exception("Failed to run post diff process: %s" % got_error,extra={"notify":True}) raise got_error strargs = "[old=%s,new=%s,steps=%s,diff_stats=%s]" % (old_db_col_names,new_db_col_names,steps,diff_stats) self.logger.info("success %s" % strargs,extra={"notify":True}) # remove some metadata key for diff registering (some are already in build doc, it would be duplication) self.metadata.pop("_meta",None) self.metadata.pop("build_config",None) # record diff_folder so it's available for later without re-computing it self.metadata["diff_folder"] = diff_folder self.register_status("success",diff=self.metadata) return diff_stats def diff(self,old_db_col_names, new_db_col_names, batch_size=100000, steps=["content","mapping","reduce","post"], mode=None, exclude=[]): """wrapper over diff_cols() coroutine, return a task""" job = asyncio.ensure_future(self.diff_cols(old_db_col_names, new_db_col_names, batch_size, steps, mode, exclude)) return job def get_metadata(self): new_doc = get_src_build().find_one({"_id":self.new.target_collection.name}) if not new_doc: raise DifferException("Collection '%s' has no corresponding build document" % \ self.new.target_collection.name) return new_doc.get("_meta",{}) def post_diff_cols(self, old_db_col_names, new_db_col_names, batch_size, steps, mode=None, exclude=[]): """Post diff process hook. This coroutine will in a dedicated thread""" return class ColdHotDiffer(BaseDiffer): @asyncio.coroutine def diff_cols(self, old_db_col_names, new_db_col_names, *args,**kwargs): self.new = create_backend(new_db_col_names) new_doc = get_src_build().find_one({"_id":self.new.target_collection.name}) assert "cold_collection" in new_doc.get("build_config",{}), "%s document doesn't have " % self.new.target_collection.name + \ "a premerge collection declared. Is it really a hot merges collection ?" self.cold = create_backend(new_doc["build_config"]["cold_collection"]) return super(ColdHotDiffer,self).diff_cols(old_db_col_names, new_db_col_names, *args, **kwargs) def get_metadata(self): new_doc = get_src_build().find_one({"_id":self.new.target_collection.name}) cold_doc = get_src_build().find_one({"_id":self.cold.target_collection.name}) if not new_doc: raise DifferException("Collection '%s' has no corresponding build document" % \ self.new.target_collection.name) if not cold_doc: raise DifferException("Collection '%s' has no corresponding build document" % \ self.cold.target_collection.name) return merge_src_build_metadata([cold_doc,new_doc]) class ColdHotJsonDifferBase(ColdHotDiffer): def post_diff_cols(self, old_db_col_names, new_db_col_names, batch_size, steps, mode=None, exclude=[]): """ Post-process the diff files by adjusting some jsondiff operation. Here's the process. For updated documents, some operations might illegal in the context of cold/hot merged collections. Case #1: "remove" op in an update from a cold/premerge collection, we have that doc: coldd = {"_id":1, "A":"123", "B":"456", "C":True} from the previous hot merge we have this doc: prevd = {"_id":1, "D":"789", "C":True, "E":"abc"} At that point, the final document, fully merged and indexed is: finald = {"_id":1, "A":"123", "B":"456", "C":True, "D":"789", "E":"abc"} We can notice field "C" is common to coldd and prevd. from the new hot merge, we have: newd = {"_id":1, "E","abc"} # C and D don't exist anymore Diffing prevd vs. newd will give jssondiff operations: [{'op': 'remove', 'path': '/C'}, {'op': 'remove', 'path': '/D'}] The problem here is 'C' is removed while it was already in cold merge, it should stay because it has come with some resource involved in the premerge (dependent keys, eg. myvariant, "observed" key comes with certain sources) => the jsondiff opetation on "C" must be discarded. Note: If operation involved a root key (not '/a/c' for instance) and if that key is found in the premerge, then then remove the operation. (note we just consider root keys, if the deletion occurs deeper in the document, it's just a legal operation updating innder content) For deleted documents, the same kind of logic applies Case #2: "delete" from a cold/premerge collection, we have that doc: coldd = {"_id":1, "A":"123", "B":"456", "C":True} from the previous hot merge we have this doc: prevd = {"_id":1, "D":"789", "C":True} fully merged doc: finald = {"_id":1, "A":"123", "B":"456", "C":True, "D":"789"} from the new hot merge, we have: newd = {} # document doesn't exist anymore Diffing prevd vs. newd will mark document with _id == 1 to be deleted The problem is we have data for _id=1 on the premerge collection, if we delete the whole document we'd loose too much information. => the deletion must converted into specific "remove" jsondiff operations, for the root keys found in prevd on not in coldd (in that case: [{'op':'remove', 'path':'/D'}], and not "C" as C is in premerge) """ # we should be able to find a cold_collection definition in the src_build doc # and it should be the same for both old and new old_doc = get_src_build().find_one({"_id":old_db_col_names}) new_doc = get_src_build().find_one({"_id":new_db_col_names}) assert "build_config" in old_doc and "cold_collection" in old_doc["build_config"], \ "No cold collection defined in src_build for %s" % old_db_col_names assert "build_config" in new_doc and "cold_collection" in new_doc["build_config"], \ "No cold collection defined in src_build for %s" % new_db_col_names assert old_doc["build_config"]["cold_collection"] == new_doc["build_config"]["cold_collection"], \ "Cold collections are different in src_build docs %s and %s" % (old_db_col_names,new_db_col_names) coldcol = get_target_db()[new_doc["build_config"]["cold_collection"]] assert coldcol.count() > 0, "Cold collection is empty..." diff_folder = generate_folder(btconfig.DIFF_PATH,old_db_col_names,new_db_col_names) diff_files = glob.glob(os.path.join(diff_folder,"diff_*.pyobj")) fixed = 0 for diff_file in diff_files: dirty = False self.logger.info("Post-processing diff file %s" % diff_file) data = loadobj(diff_file) # update/remove case #1 for updt in data["update"]: toremove = [] for patch in updt["patch"]: pathk = patch["path"].split("/")[1:] # remove / at the beginning of the path if patch["op"] == "remove" and \ len(pathk) == 1: # let's query the premerge coldd = coldcol.find_one({"_id" : updt["_id"]}) if coldd and pathk[0] in coldd: self.logger.info("Fixed a root key in cold collection that should be preserved: '%s' (for doc _id '%s')" % (pathk[0],updt["_id"])) toremove.append(patch) fixed += 1 dirty = True for p in toremove: updt["patch"].remove(p) # delete case #2 toremove = [] prevcol = get_target_db()[old_doc["target_name"]] for delid in data["delete"]: coldd = coldcol.find_one({"_id":delid}) if not coldd: # true deletion is required continue else: prevd = prevcol.find_one({"_id":delid}) prevs = set(prevd.keys()) colds = set(coldd.keys()) keys = prevs.difference(colds) # keys exclusively in prevd that should be removed patches = [] for k in keys: patches.append({"op":"remove","path":"/%s" % k}) data["update"].append({"_id":delid,"patch":patches}) self.logger.info("Fixed a delete document by converting to update/remove jsondiff operations for keys: %s (_id: '%s')" % (keys,delid)) fixed += 1 dirty = True toremove.append(delid) for i in toremove: data["delete"].remove(i) if dirty: dump(data,diff_file,compress="lzma") name = os.path.basename(diff_file) md5 = md5sum(diff_file) # find info to adjust md5sum found = False for i,df in enumerate(self.metadata["diff"]["files"]): if df["name"] == name: found = True break assert found, "Couldn't find file information in metadata (with md5 value), try to rebuild_diff_file_list() ?" size = os.stat(diff_ile).st_size self.metadata["diff"]["files"][i] = {"name":name,"md5sum":md5,"size":size} self.logger.info(self.metadata["diff"]["files"]) self.logger.info("Post-diff process fixing jsondiff operations done: %s fixed" % fixed) return {"fixed":fixed} class JsonDiffer(BaseDiffer): diff_type = "jsondiff" def __init__(self, diff_func=diff_docs_jsonpatch, *args, **kwargs): super(JsonDiffer,self).__init__(diff_func=diff_func,*args,**kwargs) class SelfContainedJsonDiffer(JsonDiffer): diff_type = "jsondiff-selfcontained" class ColdHotJsonDiffer(ColdHotJsonDifferBase, JsonDiffer): diff_type = "coldhot-jsondiff" class ColdHotSelfContainedJsonDiffer(ColdHotJsonDifferBase, SelfContainedJsonDiffer): diff_type = "coldhot-jsondiff-selfcontained" def diff_worker_new_vs_old(id_list_new, old_db_col_names, new_db_col_names, batch_num, diff_folder, diff_func, exclude=[], selfcontained=False): new = create_backend(new_db_col_names,follow_ref=True) old = create_backend(old_db_col_names,follow_ref=True) docs_common = old.mget_from_ids(id_list_new) ids_common = [_doc['_id'] for _doc in docs_common] id_in_new = list(set(id_list_new) - set(ids_common)) _updates = [] if len(ids_common) > 0: _updates = diff_func(old, new, list(ids_common), exclude_attrs=exclude) file_name = os.path.join(diff_folder,"%s.pyobj" % str(batch_num)) _result = {'add': id_in_new, 'update': _updates, 'delete': [], 'source': new.target_name, 'timestamp': get_timestamp()} if selfcontained: # consume generator as result will be pickled _result["add"] = [d for d in new.mget_from_ids(id_in_new)] summary = {"add" : len(id_in_new), "update" : len(_updates), "delete" : 0} if len(_updates) != 0 or len(id_in_new) != 0: dump(_result, file_name) # compute md5 so when downloaded, users can check integreity md5 = md5sum(file_name) summary["diff_file"] = { "name" : os.path.basename(file_name), "md5sum" : md5, "size" : os.stat(file_name).st_size } return summary def diff_worker_old_vs_new(id_list_old, new_db_col_names, batch_num, diff_folder): new = create_backend(new_db_col_names,follow_ref=True) docs_common = new.mget_from_ids(id_list_old) ids_common = [_doc['_id'] for _doc in docs_common] id_in_old = list(set(id_list_old)-set(ids_common)) file_name = os.path.join(diff_folder,"%s.pyobj" % str(batch_num)) _result = {'delete': id_in_old, 'add': [], 'update': [], 'source': new.target_name, 'timestamp': get_timestamp()} summary = {"add" : 0, "update": 0, "delete" : len(id_in_old)} if len(id_in_old) != 0: dump(_result, file_name) # compute md5 so when downloaded, users can check integreity md5 = md5sum(file_name) summary["diff_file"] = { "name" : os.path.basename(file_name), "md5sum" : md5, "size" : os.stat(file_name).st_size } return summary def diff_worker_count(id_list, db_col_names, batch_num): col = create_backend(db_col_names,follow_ref=True) docs = col.mget_from_ids(id_list) res = {} for doc in docs: for k in doc: res.setdefault(k,0) res[k] += 1 return res class DiffReportRendererBase(object): def __init__(self, max_reported_ids=None, max_randomly_picked=None, detailed=False): self.max_reported_ids = max_reported_ids or hasattr(btconfig,"MAX_REPORTED_IDS") and \ btconfig.MAX_REPORTED_IDS or 1000 self.max_randomly_picked = max_randomly_picked or hasattr(btconfig,"MAX_RANDOMLY_PICKED") and \ btconfig.MAX_RANDOMLY_PICKED or 10 self.detailed = detailed def save(self,report,filename): """ Save report output (rendered) into filename """ raise NotImplementedError("implement me") class DiffReportTxt(DiffReportRendererBase): def save(self, report, filename="report.txt"): try: import prettytable except ImportError: raise ImportError("Please install prettytable to use this rendered") def build_id_table(subreport): if self.detailed: table = prettytable.PrettyTable(["IDs","Root keys"]) table.align["IDs"] = "l" table.align["Root keys"] = "l" else: table = prettytable.PrettyTable(["IDs"]) table.align["IDs"] = "l" if subreport["count"] <= self.max_reported_ids: ids = subreport["ids"] else: ids = [random.choice(subreport["ids"]) for i in range(self.max_reported_ids)] for dat in ids: if self.detailed: # list of [_id,[keys]] table.add_row([dat[0],", ".join(dat[1])]) else: table.add_row([dat]) return table txt = "" title = "Diff report (generated on %s)" % datetime.now() txt += title + "\n" txt += "".join(["="] * len(title)) + "\n" txt += "\n" txt += "Metadata\n" txt += "--------\n" if report.get("metadata",{}): txt += "Old collection: %s\n" % repr(report["metadata"].get("old")) txt += "New collection: %s\n" % repr(report["metadata"].get("new")) txt += "Batch size: %s\n" % report["metadata"]["diff"]["info"].get("batch_size") txt += "Steps: %s\n" % report["metadata"]["diff"]["info"].get("steps") txt += "Key(s) excluded: %s\n" % report["metadata"]["diff"]["info"].get("exclude") txt += "Diff generated on: %s\n" % report["metadata"]["diff"]["info"].get("generated_on") else: txt+= "No metadata found in report\n" txt += "\n" txt += "Summary\n" txt += "-------\n" txt += "Added documents: %s\n" % report["added"]["count"] txt += "Deleted documents: %s\n" % report["deleted"]["count"] txt += "Updated documents: %s\n" % report["updated"]["count"] txt += "\n" root_keys = report.get("metadata",{}).get("diff",{}).get("stats",{}).get("root_keys",{}) if root_keys: for src in sorted(root_keys): txt += "%s: %s\n" % (src,root_keys[src]) else: txt += "No root keys count found in report\n" txt += "\n" txt += "Added documents (%s randomly picked from report)\n" % self.max_reported_ids txt += "------------------------------------------------\n" if report["added"]["count"]: table = build_id_table(report["added"]) txt += table.get_string() txt += "\n" else: txt += "No added document found in report\n" txt += "\n" txt += "Deleted documents (%s randomly picked from report)\n" % self.max_reported_ids txt += "--------------------------------------------------\n" if report["deleted"]["count"]: table = build_id_table(report["deleted"]) txt += table.get_string() txt += "\n" else: txt += "No deleted document found in report\n" txt += "\n" txt += "Updated documents (%s examples randomly picked from report)\n" % self.max_randomly_picked txt += "-----------------------------------------------------------\n" txt += "\n" for op in sorted(report["updated"]): if op == "count": continue # already displayed if report["updated"][op]: table = prettytable.PrettyTable([op,"Count","Examples"]) table.sortby = "Count" table.reversesort = True table.align[op] = "l" table.align["Count"] = "r" table.align["Examples"] = "l" for path in report["updated"][op]: info = report["updated"][op][path] row = [path,info["count"]] if info["count"] <= self.max_randomly_picked: row.append(", ".join(info["ids"])) else: row.append(", ".join([random.choice(info["ids"]) for i in range(self.max_randomly_picked)])) table.add_row(row) txt += table.get_string() txt += "\n" else: txt += "No content found for diff operation '%s'\n" % op txt += "\n" txt += "\n" with open(os.path.join(report["diff_folder"],filename),"w") as fout: fout.write(txt) return txt class DifferManager(BaseManager): def __init__(self, poll_schedule=None, *args,**kwargs): """ DifferManager deals with the different differ objects used to create and analyze diff between datasources. """ super(DifferManager,self).__init__(*args,**kwargs) self.log_folder = btconfig.LOG_FOLDER self.timestamp = datetime.now() self.poll_schedule = poll_schedule self.setup_log() def clean_stale_status(self): src_build = get_src_build() for build in src_build.find(): for job in build.get("jobs",[]): if job.get("status") == "diffing": logging.warning("Found stale build '%s', marking diff status as 'canceled'" % build["_id"]) job["status"] = "canceled" src_build.replace_one({"_id":build["_id"]},build) def register_differ(self,klass): if klass.diff_type == None: raise DifferException("diff_type must be defined in %s" % klass) self.register[klass.diff_type] = partial(klass,log_folder=btconfig.LOG_FOLDER, job_manager=self.job_manager) def configure(self, partial_differs=[JsonDiffer,SelfContainedJsonDiffer]): for pdiffer in partial_differs: self.register_differ(pdiffer) def setup_log(self): self.logger, self.logfile = get_logger('diffmanager') def get_predicates(self): def no_other_diffmanager_step_running(job_manager): """DiffManager deals with diff report, release note, publishing, none of them should run more than one at a time""" # Note: report output is part a publish_diff, release_note is impacted by diff content, # overall we keep things simple and don't allow more than one diff manager job to run # at the same time return len([j for j in job_manager.jobs.values() if j["category"] == DIFFMANAGER_CATEGORY]) == 0 return [no_other_diffmanager_step_running] def get_pinfo(self): """ Return dict containing information about the current process (used to report in the hub) """ pinfo = {"category" : DIFFMANAGER_CATEGORY, "source" : "", "step" : "", "description" : ""} preds = self.get_predicates() if preds: pinfo["__predicates__"] = preds return pinfo def __getitem__(self,diff_type): """ Return an instance of a builder for the build named 'build_name' Note: each call returns a different instance (factory call behind the scene...) """ # we'll get a partial class but will return an instance pclass = BaseManager.__getitem__(self,diff_type) return pclass() def diff(self, diff_type, old, new, batch_size=100000, steps=["content","mapping","reduce","post"], mode=None, exclude=["_timestamp"]): """ Run a diff to compare old vs. new collections. using differ algorithm diff_type. Results are stored in a diff folder. Steps can be passed to choose what to do: - count: will count root keys in new collections and stores them as statistics. - content: will diff the content between old and new. Results (diff files) format depends on diff_type """ # Note: _timestamp is excluded by default since it's an internal field (and exists in mongo doc, # but not in ES "_source" document (there's a root timestamp under control of # _timestamp : {enable:true} in mapping try: differ = self[diff_type] old = old or get_previous_collection(new) job = differ.diff(old, new, batch_size=batch_size, steps=steps, mode=mode, exclude=exclude) def diffed(f): try: res = f.result() set_pending_to_release_note(new) except Exception as e: self.logger.error("Error during diff: %s" % e) raise job.add_done_callback(diffed) return job except KeyError as e: raise DifferException("No such differ '%s' (error: %s)" % (diff_type,e)) def diff_report(self, old_db_col_names, new_db_col_names, report_filename="report.txt", format="txt", detailed=True, max_reported_ids=None, max_randomly_picked=None, mode=None): max_reported_ids = max_reported_ids or hasattr(btconfig,"MAX_REPORTED_IDS") and \ btconfig.MAX_REPORTED_IDS or 1000 max_randomly_picked = max_randomly_picked or hasattr(btconfig,"MAX_RANDOMLY_PICKED") and \ btconfig.MAX_RANDOMLY_PICKED or 10 def do(): if mode == "purge" or not os.path.exists(reportfilepath): assert format == "txt", "Only 'txt' format supported for now" report = self.build_diff_report(diff_folder, detailed, max_reported_ids) render = DiffReportTxt(max_reported_ids=max_reported_ids, max_randomly_picked=max_randomly_picked, detailed=detailed) return render.save(report,report_filename) else: self.logger.debug("Report already generated, now using it") return open(reportfilepath).read() @asyncio.coroutine def main(diff_folder): got_error = False pinfo = self.get_pinfo() pinfo["step"] = "report" pinfo["source"] = diff_folder pinfo["description"] = report_filename job = yield from self.job_manager.defer_to_thread(pinfo,do) def reported(f): nonlocal got_error try: res = f.result() self.logger.info("Diff report ready, saved in %s" % reportfilepath,extra={"notify":True,"attach":reportfilepath}) except Exception as e: got_error = e job.add_done_callback(reported) yield from job if got_error: self.logger.exception("Failed to create diff report: %s" % got_error,extra={"notify":True}) raise got_error diff_folder = generate_folder(btconfig.DIFF_PATH,old_db_col_names,new_db_col_names) reportfilepath = os.path.join(diff_folder,report_filename) job = asyncio.ensure_future(main(diff_folder)) return job def build_diff_report(self, diff_folder, detailed=True, max_reported_ids=None): """ Analyze diff files in diff_folder and give a summy of changes. max_reported_ids is the number of IDs contained in the report for each part. detailed will trigger a deeper analysis, takes more time. """ max_reported_ids = max_reported_ids or hasattr(btconfig,"MAX_REPORTED_IDS") and \ btconfig.MAX_REPORTED_IDS or 1000 update_details = { "add": {},# "count": 0, "data": {} }, "remove": {}, # "count": 0, "data": {} }, "replace": {}, # "count": 0, "data": {} }, "move": {}, # "count": 0, "data": {} }, "count": 0, } adds = {"count": 0, "ids": []} dels = {"count": 0, "ids": []} sources = {} if os.path.isabs(diff_folder): data_folder = diff_folder else: data_folder = os.path.join(btconfig.DIFF_PATH,diff_folder) metadata = {} try: metafile = os.path.join(data_folder,"metadata.json") metadata = json.load(open(metafile)) except FileNotFoundError: logging.warning("Not metadata found in diff folder") if detailed: raise Exception("Can't perform detailed analysis without a metadata file") def analyze(diff_file, detailed): data = loadobj(diff_file) sources[data["source"]] = 1 if detailed: # TODO: if self-contained, no db connection needed new_col = create_backend(metadata["new"]["backend"],follow_ref=True) old_col = create_backend(metadata["old"]["backend"],follow_ref=True) if len(adds["ids"]) < max_reported_ids: if detailed: # look for which root keys were added in new collection for _id in data["add"]: # selfcontained = dict for whole doc (see TODO above) if type(_id) == dict: _id = _id["_id"] doc = new_col.get_from_id(_id) rkeys = sorted(doc.keys()) adds["ids"].append([_id,rkeys]) else: if data["add"] and type(data["add"][0]) == dict: adds["ids"].extend([d["_id"] for d in data["add"]]) else: adds["ids"].extend(data["add"]) adds["count"] += len(data["add"]) if len(dels["ids"]) < max_reported_ids: if detailed: # look for which root keys were deleted in old collection for _id in data["delete"]: doc = old_col.get_from_id(_id) rkeys = sorted(doc.keys()) dels["ids"].append([_id,rkeys]) else: dels["ids"].extend(data["delete"]) dels["count"] += len(data["delete"]) for up in data["update"]: for patch in up["patch"]: update_details[patch["op"]].setdefault(patch["path"],{"count": 0, "ids": []}) if len(update_details[patch["op"]][patch["path"]]["ids"]) < max_reported_ids: update_details[patch["op"]][patch["path"]]["ids"].append(up["_id"]) update_details[patch["op"]][patch["path"]]["count"] += 1 update_details["count"] += len(data["update"]) assert len(sources) == 1, "Should have one datasource from diff files, got: %s" % [s for s in sources] # we randomize files order b/c we randomly pick some examples from those # files. If files contains data in order (like chrom 1, then chrom 2) # we won't have a representative sample files = glob.glob(os.path.join(data_folder,"*.pyobj")) random.shuffle(files) total = len(files) for i,f in enumerate(files): if os.path.basename(f).startswith("mapping"): logging.debug("Skip mapping file") continue logging.info("Running report worker for '%s' (%d/%d)" % (f,i+1,total)) analyze(f, detailed) return {"added" : adds, "deleted": dels, "updated" : update_details, "diff_folder" : diff_folder, "detailed": detailed, "metadata": metadata} def poll(self,state,func): super(DifferManager,self).poll(state,func,col=get_src_build()) def trigger_diff(self,diff_type,doc,**kwargs): """ Launch a diff given a src_build document. In order to know the first collection to diff against, get_previous_collection() method is used. """ new_db_col_names = doc["_id"] old_db_col_names = get_previous_collection(new_db_col_names) self.diff(diff_type, old_db_col_names, new_db_col_names, **kwargs) def rebuild_diff_file_list(self,diff_folder): diff_files = glob.glob(os.path.join(diff_folder,"*.pyobj")) metadata = json.load(open(os.path.join(diff_folder,"metadata.json"))) try: metadata["diff"]["files"] = [] if not "mapping_file" in metadata["diff"]: metadata["diff"]["mapping_file"] = None for diff_file in diff_files: name = os.path.basename(diff_file) md5 = md5sum(diff_file) info = {"md5sum" : md5,"name" : name,"size" : os.stat(diff_file).st_size} if "mapping" in diff_file: # dirty... metadata["diff"]["mapping"] = info else: metadata["diff"]["files"].append(info) json.dump(metadata,open(os.path.join(diff_folder,"metadata.json"),"w"),indent=True) self.logger.info("Successfully rebuild diff_files list with all files found in %s" % diff_folder) except KeyError as e: self.logging.error("Metadata is too much damaged, can't rebuild diff_files list: %s" % e) def diff_info(self): dtypes = self.register.keys() res = {} for typ in dtypes: res[typ] = {} return res def reduce_diffs(diffs, num, diff_folder, done_folder): assert diffs res = [] fn = "diff_%s.pyobj" % num logging.info("Merging %s => %s" % ([os.path.basename(f) for f in diffs],fn)) if len(diffs) == 1: # just rename outf = os.path.join(diff_folder,fn) shutil.copyfile(diffs[0],outf) res.append({"name":fn,"md5sum":md5sum(outf),"size" : os.stat(outf).st_size}) os.rename(diffs[0],os.path.join(done_folder,os.path.basename(diffs[0]))) return res merged = loadobj(diffs[0]) os.rename(diffs[0],os.path.join(done_folder,os.path.basename(diffs[0]))) for diff_fn in diffs[1:]: diff = loadobj(diff_fn) assert merged["source"] == diff["source"] for k in ["add","delete","update"]: merged[k].extend(diff[k]) os.rename(diff_fn,os.path.join(done_folder,os.path.basename(diff_fn))) dump(merged,os.path.join(diff_folder,fn),compress="lzma") file_name = os.path.join(diff_folder,fn) res.append({"name":fn,"md5sum":md5sum(file_name),"size" : os.stat(file_name).st_size}) return res def set_pending_to_diff(col_name): src_build = get_src_build() src_build.update({"_id":col_name},{"$addToSet" : {"pending":"diff"} })
47.495622
173
0.556895
3e89a4be790a68625982bd59ec8d0dac460424e6
109,762
py
Python
sympy/core/expr.py
nishithshah2211/sympy
edc620ca662f7163637c7fb5823f22523b7f2fe9
[ "BSD-3-Clause" ]
null
null
null
sympy/core/expr.py
nishithshah2211/sympy
edc620ca662f7163637c7fb5823f22523b7f2fe9
[ "BSD-3-Clause" ]
null
null
null
sympy/core/expr.py
nishithshah2211/sympy
edc620ca662f7163637c7fb5823f22523b7f2fe9
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function, division from .core import C from .sympify import sympify, _sympify, SympifyError from .basic import Basic, Atom from .singleton import S from .evalf import EvalfMixin, pure_complex from .decorators import _sympifyit, call_highest_priority from .cache import cacheit from .compatibility import reduce, as_int, default_sort_key, range from mpmath.libmp import mpf_log, prec_to_dps from collections import defaultdict class Expr(Basic, EvalfMixin): """ Base class for algebraic expressions. Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc). See Also ======== sympy.core.basic.Basic """ __slots__ = [] @property def _diff_wrt(self): """Is it allowed to take derivative wrt to this instance. This determines if it is allowed to take derivatives wrt this object. Subclasses such as Symbol, Function and Derivative should return True to enable derivatives wrt them. The implementation in Derivative separates the Symbol and non-Symbol _diff_wrt=True variables and temporarily converts the non-Symbol vars in Symbols when performing the differentiation. Note, see the docstring of Derivative for how this should work mathematically. In particular, note that expr.subs(yourclass, Symbol) should be well-defined on a structural level, or this will lead to inconsistent results. Examples ======== >>> from sympy import Expr >>> e = Expr() >>> e._diff_wrt False >>> class MyClass(Expr): ... _diff_wrt = True ... >>> (2*MyClass()).diff(MyClass()) 2 """ return False @cacheit def sort_key(self, order=None): coeff, expr = self.as_coeff_Mul() if expr.is_Pow: expr, exp = expr.args else: expr, exp = expr, S.One if expr.is_Dummy: args = (expr.sort_key(),) elif expr.is_Atom: args = (str(expr),) else: if expr.is_Add: args = expr.as_ordered_terms(order=order) elif expr.is_Mul: args = expr.as_ordered_factors(order=order) else: args = expr.args args = tuple( [ default_sort_key(arg, order=order) for arg in args ]) args = (len(args), tuple(args)) exp = exp.sort_key(order=order) return expr.class_key(), args, exp, coeff # *************** # * Arithmetics * # *************** # Expr and its sublcasses use _op_priority to determine which object # passed to a binary special method (__mul__, etc.) will handle the # operation. In general, the 'call_highest_priority' decorator will choose # the object with the highest _op_priority to handle the call. # Custom subclasses that want to define their own binary special methods # should set an _op_priority value that is higher than the default. # # **NOTE**: # This is a temporary fix, and will eventually be replaced with # something better and more powerful. See issue 5510. _op_priority = 10.0 def __pos__(self): return self def __neg__(self): return Mul(S.NegativeOne, self) def __abs__(self): return C.Abs(self) @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return Add(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return Add(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return Add(self, -other) @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return Add(other, -self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return Mul(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return Mul(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def __pow__(self, other): return Pow(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return Pow(other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rdiv__') def __div__(self, other): return Mul(self, Pow(other, S.NegativeOne)) @_sympifyit('other', NotImplemented) @call_highest_priority('__div__') def __rdiv__(self, other): return Mul(other, Pow(self, S.NegativeOne)) __truediv__ = __div__ __rtruediv__ = __rdiv__ @_sympifyit('other', NotImplemented) @call_highest_priority('__rmod__') def __mod__(self, other): return Mod(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mod__') def __rmod__(self, other): return Mod(other, self) def __int__(self): # Although we only need to round to the units position, we'll # get one more digit so the extra testing below can be avoided # unless the rounded value rounded to an integer, e.g. if an # expression were equal to 1.9 and we rounded to the unit position # we would get a 2 and would not know if this rounded up or not # without doing a test (as done below). But if we keep an extra # digit we know that 1.9 is not the same as 1 and there is no # need for further testing: our int value is correct. If the value # were 1.99, however, this would round to 2.0 and our int value is # off by one. So...if our round value is the same as the int value # (regardless of how much extra work we do to calculate extra decimal # places) we need to test whether we are off by one. r = self.round(2) if not r.is_Number: raise TypeError("can't convert complex to int") if r in (S.NaN, S.Infinity, S.NegativeInfinity): raise TypeError("can't convert %s to int" % r) i = int(r) if not i: return 0 # off-by-one check if i == r and not (self - i).equals(0): isign = 1 if i > 0 else -1 x = C.Dummy() # in the following (self - i).evalf(2) will not always work while # (self - r).evalf(2) and the use of subs does; if the test that # was added when this comment was added passes, it might be safe # to simply use sign to compute this rather than doing this by hand: diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 if diff_sign != isign: i -= isign return i __long__ = __int__ def __float__(self): # Don't bother testing if it's a number; if it's not this is going # to fail, and if it is we still need to check that it evalf'ed to # a number. result = self.evalf() if result.is_Number: return float(result) if result.is_number and result.as_real_imag()[1]: raise TypeError("can't convert complex to float") raise TypeError("can't convert expression to float") def __complex__(self): result = self.evalf() re, im = result.as_real_imag() return complex(float(re), float(im)) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if self.is_real and other.is_real: dif = self - other if dif.is_nonnegative is not None and \ dif.is_nonnegative is not dif.is_negative: return sympify(dif.is_nonnegative) return C.GreaterThan(self, other, evaluate=False) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if self.is_real and other.is_real: dif = self - other if dif.is_nonpositive is not None and \ dif.is_nonpositive is not dif.is_positive: return sympify(dif.is_nonpositive) return C.LessThan(self, other, evaluate=False) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if self.is_real and other.is_real: dif = self - other if dif.is_positive is not None and \ dif.is_positive is not dif.is_nonpositive: return sympify(dif.is_positive) return C.StrictGreaterThan(self, other, evaluate=False) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) for me in (self, other): if me.is_complex and me.is_real is False: raise TypeError("Invalid comparison of complex %s" % me) if self.is_real and other.is_real: dif = self - other if dif.is_negative is not None and \ dif.is_negative is not dif.is_nonnegative: return sympify(dif.is_negative) return C.StrictLessThan(self, other, evaluate=False) @staticmethod def _from_mpmath(x, prec): if hasattr(x, "_mpf_"): return C.Float._new(x._mpf_, prec) elif hasattr(x, "_mpc_"): re, im = x._mpc_ re = C.Float._new(re, prec) im = C.Float._new(im, prec)*S.ImaginaryUnit return re + im else: raise TypeError("expected mpmath number (mpf or mpc)") @property def is_number(self): """Returns True if 'self' has no free symbols. It will be faster than `if not self.free_symbols`, however, since `is_number` will fail as soon as it hits a free symbol. Examples ======== >>> from sympy import log, Integral >>> from sympy.abc import x >>> x.is_number False >>> (2*x).is_number False >>> (2 + log(2)).is_number True >>> (2 + Integral(2, x)).is_number False >>> (2 + Integral(2, (x, 1, 2))).is_number True """ return all(obj.is_number for obj in self.args) def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): """Return self evaluated, if possible, replacing free symbols with random complex values, if necessary. The random complex value for each free symbol is generated by the random_complex_number routine giving real and imaginary parts in the range given by the re_min, re_max, im_min, and im_max values. The returned value is evaluated to a precision of n (if given) else the maximum of 15 and the precision needed to get more than 1 digit of precision. If the expression could not be evaluated to a number, or could not be evaluated to more than 1 digit of precision, then None is returned. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y >>> x._random() # doctest: +SKIP 0.0392918155679172 + 0.916050214307199*I >>> x._random(2) # doctest: +SKIP -0.77 - 0.87*I >>> (x + y/2)._random(2) # doctest: +SKIP -0.57 + 0.16*I >>> sqrt(2)._random(2) 1.4 See Also ======== sympy.utilities.randtest.random_complex_number """ free = self.free_symbols prec = 1 if free: from sympy.utilities.randtest import random_complex_number a, c, b, d = re_min, re_max, im_min, im_max reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) for zi in free]))) try: nmag = abs(self.evalf(2, subs=reps)) except (ValueError, TypeError): # if an out of range value resulted in evalf problems # then return None -- XXX is there a way to know how to # select a good random number for a given expression? # e.g. when calculating n! negative values for n should not # be used return None else: reps = {} nmag = abs(self.evalf(2)) if not hasattr(nmag, '_prec'): # e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True return None if nmag._prec == 1: # increase the precision up to the default maximum # precision to see if we can get any significance from mpmath.libmp.libintmath import giant_steps from sympy.core.evalf import DEFAULT_MAXPREC as target # evaluate for prec in giant_steps(2, target): nmag = abs(self.evalf(prec, subs=reps)) if nmag._prec != 1: break if nmag._prec != 1: if n is None: n = max(prec, 15) return self.evalf(n, subs=reps) # never got any significance return None def is_constant(self, *wrt, **flags): """Return True if self is constant, False if not, or None if the constancy could not be determined conclusively. If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, two strategies are tried: 1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if ``wrt`` is different than the free symbols. 2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols. If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag ``failing_number`` is True -- in that case the numerical value will be returned. If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing. Examples ======== >>> from sympy import cos, sin, Sum, S, pi >>> from sympy.abc import a, n, x, y >>> x.is_constant() False >>> S(2).is_constant() True >>> Sum(x, (x, 1, 10)).is_constant() True >>> Sum(x, (x, 1, n)).is_constant() False >>> Sum(x, (x, 1, n)).is_constant(y) True >>> Sum(x, (x, 1, n)).is_constant(n) False >>> Sum(x, (x, 1, n)).is_constant(x) True >>> eq = a*cos(x)**2 + a*sin(x)**2 - a >>> eq.is_constant() True >>> eq.subs({x:pi, a:2}) == eq.subs({x:pi, a:3}) == 0 True >>> (0**x).is_constant() False >>> x.is_constant() False >>> (x**x).is_constant() False >>> one = cos(x)**2 + sin(x)**2 >>> one.is_constant() True >>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 True """ simplify = flags.get('simplify', True) # Except for expressions that contain units, only one of these should # be necessary since if something is # known to be a number it should also know that there are no # free symbols. But is_number quits as soon as it hits a non-number # whereas free_symbols goes until all free symbols have been collected, # thus is_number should be faster. But a double check on free symbols # is made just in case there is a discrepancy between the two. free = self.free_symbols if self.is_number or not free: # if the following assertion fails then that object's free_symbols # method needs attention: if an expression is a number it cannot # have free symbols assert not free return True # if we are only interested in some symbols and they are not in the # free symbols then this expression is constant wrt those symbols wrt = set(wrt) if wrt and not wrt & free: return True wrt = wrt or free # simplify unless this has already been done expr = self if simplify: expr = expr.simplify() # is_zero should be a quick assumptions check; it can be wrong for # numbers (see test_is_not_constant test), giving False when it # shouldn't, but hopefully it will never give True unless it is sure. if expr.is_zero: return True # try numerical evaluation to see if we get two different values failing_number = None if wrt == free: # try 0 (for a) and 1 (for b) try: a = expr.subs(list(zip(free, [0]*len(free))), simultaneous=True) if a is S.NaN: # evaluation may succeed when substitution fails a = expr._random(None, 0, 0, 0, 0) except ZeroDivisionError: a = None if a is not None and a is not S.NaN: try: b = expr.subs(list(zip(free, [1]*len(free))), simultaneous=True) if b is S.NaN: # evaluation may succeed when substitution fails b = expr._random(None, 1, 0, 1, 0) except ZeroDivisionError: b = None if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random real b = expr._random(None, -1, 0, 1, 0) if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random complex b = expr._random() if b is not None and b is not S.NaN: if b.equals(a) is False: return False failing_number = a if a.is_number else b # now we will test each wrt symbol (or all free symbols) to see if the # expression depends on them or not using differentiation. This is # not sufficient for all expressions, however, so we don't return # False if we get a derivative other than 0 with free symbols. for w in wrt: deriv = expr.diff(w) if simplify: deriv = deriv.simplify() if deriv != 0: if not (deriv.is_Number or pure_complex(deriv)): if flags.get('failing_number', False): return failing_number elif deriv.free_symbols: # dead line provided _random returns None in such cases return None return False return True def equals(self, other, failing_expression=False): """Return True if self == other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None. If ``self`` is a Number (or complex number) that is not zero, then the result is False. If ``self`` is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False. """ from sympy.simplify.simplify import nsimplify, simplify from sympy.solvers.solvers import solve from sympy.polys.polyerrors import NotAlgebraic from sympy.polys.numberfields import minimal_polynomial other = sympify(other) if self == other: return True # they aren't the same so see if we can make the difference 0; # don't worry about doing simplification steps one at a time # because if the expression ever goes to 0 then the subsequent # simplification steps that are done will be very fast. diff = factor_terms((self - other).simplify(), radical=True) if not diff: return True if not diff.has(Add, Mod): # if there is no expanding to be done after simplifying # then this can't be a zero return False constant = diff.is_constant(simplify=False, failing_number=True) if constant is False: return False if constant is None and (diff.free_symbols or not diff.is_number): # e.g. unless the right simplification is done, a symbolic # zero is possible (see expression of issue 6829: without # simplification constant will be None). return if constant is True: ndiff = diff._random() if ndiff: return False # sometimes we can use a simplified result to give a clue as to # what the expression should be; if the expression is *not* zero # then we should have been able to compute that and so now # we can just consider the cases where the approximation appears # to be zero -- we try to prove it via minimal_polynomial. if diff.is_number: approx = diff.nsimplify() if not approx: # try to prove via self-consistency surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] # it seems to work better to try big ones first surds.sort(key=lambda x: -x.args[0]) for s in surds: try: # simplify is False here -- this expression has already # been identified as being hard to identify as zero; # we will handle the checking ourselves using nsimplify # to see if we are in the right ballpark or not and if so # *then* the simplification will be attempted. sol = solve(diff, s, check=False, simplify=False) if sol: if s in sol: return True if any(nsimplify(si, [s]) == s and simplify(si) == s for si in sol): return True except NotImplementedError: pass # try to prove with minimal_polynomial but know when # *not* to use this or else it can take a long time. e.g. issue 8354 if True: # change True to condition that assures non-hang try: mp = minimal_polynomial(diff) if mp.is_Symbol: return True return False except (NotAlgebraic, NotImplementedError): pass # diff has not simplified to zero; constant is either None, True # or the number with significance (prec != 1) that was randomly # calculated twice as the same value. if constant not in (True, None) and constant != 0: return False if failing_expression: return diff return None def _eval_is_composite(self): if self.is_integer and self.is_positive and self.is_prime is False: return True def _eval_is_positive(self): from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_real is False: return False try: # check to see that we can get a value n2 = self._eval_evalf(2) if n2 is None: raise AttributeError if n2._prec == 1: # no significance raise AttributeError if n2 == S.NaN: raise AttributeError except (AttributeError, ValueError): return None n, i = self.evalf(2).as_real_imag() if not i.is_Number or not n.is_Number: return False if n._prec != 1 and i._prec != 1: return bool(not i and n > 0) elif n._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_is_negative(self): from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_real is False: return False try: # check to see that we can get a value n2 = self._eval_evalf(2) if n2 is None: raise AttributeError if n2._prec == 1: # no significance raise AttributeError if n2 == S.NaN: raise AttributeError except (AttributeError, ValueError): return None n, i = self.evalf(2).as_real_imag() if not i.is_Number or not n.is_Number: return False if n._prec != 1 and i._prec != 1: return bool(not i and n < 0) elif n._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_interval(self, x, a, b): """ Returns evaluation over an interval. For most functions this is: self.subs(x, b) - self.subs(x, a), possibly using limit() if NaN is returned from subs. If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), respectively. """ from sympy.series import limit, Limit if (a is None and b is None): raise ValueError('Both interval ends cannot be None.') if a is None: A = 0 else: A = self.subs(x, a) if A.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): A = limit(self, x, a) if A is S.NaN: return A if isinstance(A, Limit): raise NotImplementedError("Could not compute limit") if b is None: B = 0 else: B = self.subs(x, b) if B.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): B = limit(self, x, b) if isinstance(B, Limit): raise NotImplementedError("Could not compute limit") return B - A def _eval_power(self, other): # subclass to compute self**other for cases when # other is not NaN, 0, or 1 return None def _eval_conjugate(self): if self.is_real: return self elif self.is_imaginary: return -self def conjugate(self): from sympy.functions.elementary.complexes import conjugate as c return c(self) def _eval_transpose(self): from sympy.functions.elementary.complexes import conjugate if self.is_complex: return self elif self.is_hermitian: return conjugate(self) elif self.is_antihermitian: return -conjugate(self) def transpose(self): from sympy.functions.elementary.complexes import transpose return transpose(self) def _eval_adjoint(self): from sympy.functions.elementary.complexes import conjugate, transpose if self.is_hermitian: return self elif self.is_antihermitian: return -self obj = self._eval_conjugate() if obj is not None: return transpose(obj) obj = self._eval_transpose() if obj is not None: return conjugate(obj) def adjoint(self): from sympy.functions.elementary.complexes import adjoint return adjoint(self) @classmethod def _parse_order(cls, order): """Parse and configure the ordering of terms. """ from sympy.polys.orderings import monomial_key try: reverse = order.startswith('rev-') except AttributeError: reverse = False else: if reverse: order = order[4:] monom_key = monomial_key(order) def neg(monom): result = [] for m in monom: if isinstance(m, tuple): result.append(neg(m)) else: result.append(-m) return tuple(result) def key(term): _, ((re, im), monom, ncpart) = term monom = neg(monom_key(monom)) ncpart = tuple([ e.sort_key(order=order) for e in ncpart ]) coeff = ((bool(im), im), (re, im)) return monom, ncpart, coeff return key, reverse def as_ordered_factors(self, order=None): """Return list of ordered factors (if Mul) else [self].""" return [self] def as_ordered_terms(self, order=None, data=False): """ Transform an expression to an ordered list of terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() [sin(x)**2*cos(x), sin(x)**2, 1] """ key, reverse = self._parse_order(order) terms, gens = self.as_terms() if not any(term.is_Order for term, _ in terms): ordered = sorted(terms, key=key, reverse=reverse) else: _terms, _order = [], [] for term, repr in terms: if not term.is_Order: _terms.append((term, repr)) else: _order.append((term, repr)) ordered = sorted(_terms, key=key, reverse=True) \ + sorted(_order, key=key, reverse=True) if data: return ordered, gens else: return [ term for term, _ in ordered ] def as_terms(self): """Transform an expression to a list of terms. """ from sympy.core import Add, Mul, S from sympy.core.exprtools import decompose_power gens, terms = set([]), [] for term in Add.make_args(self): coeff, _term = term.as_coeff_Mul() coeff = complex(coeff) cpart, ncpart = {}, [] if _term is not S.One: for factor in Mul.make_args(_term): if factor.is_number: try: coeff *= complex(factor) except TypeError: pass else: continue if factor.is_commutative: base, exp = decompose_power(factor) cpart[base] = exp gens.add(base) else: ncpart.append(factor) coeff = coeff.real, coeff.imag ncpart = tuple(ncpart) terms.append((term, (coeff, cpart, ncpart))) gens = sorted(gens, key=default_sort_key) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i result = [] for term, (coeff, cpart, ncpart) in terms: monom = [0]*k for base, exp in cpart.items(): monom[indices[base]] = exp result.append((term, (coeff, tuple(monom), ncpart))) return result, gens def removeO(self): """Removes the additive O(..) symbol if there is one""" return self def getO(self): """Returns the additive O(..) symbol if there is one, else None.""" return None def getn(self): """ Returns the order of the expression. The order is determined either from the O(...) term. If there is no O(...) term, it returns None. Examples ======== >>> from sympy import O >>> from sympy.abc import x >>> (1 + x + O(x**2)).getn() 2 >>> (1 + x).getn() """ o = self.getO() if o is None: return None elif o.is_Order: o = o.expr if o is S.One: return S.Zero if o.is_Symbol: return S.One if o.is_Pow: return o.args[1] if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n for oi in o.args: if oi.is_Symbol: return S.One if oi.is_Pow: syms = oi.atoms(C.Symbol) if len(syms) == 1: x = syms.pop() oi = oi.subs(x, C.Dummy('x', positive=True)) if oi.base.is_Symbol and oi.exp.is_Rational: return abs(oi.exp) raise NotImplementedError('not sure of order of %s' % o) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def args_cnc(self, cset=False, warn=True, split_1=True): """Return [commutative factors, non-commutative factors] of self. self is treated as a Mul and the ordering of the factors is maintained. If ``cset`` is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly supressed by setting ``warn`` to False. Note: -1 is always separated from a Number unless split_1 is False. >>> from sympy import symbols, oo >>> A, B = symbols('A B', commutative=0) >>> x, y = symbols('x y') >>> (-2*x*y).args_cnc() [[-1, 2, x, y], []] >>> (-2.5*x).args_cnc() [[-1, 2.5, x], []] >>> (-2*x*A*B*y).args_cnc() [[-1, 2, x, y], [A, B]] >>> (-2*x*A*B*y).args_cnc(split_1=False) [[-2, x, y], [A, B]] >>> (-2*x*y).args_cnc(cset=True) [set([-1, 2, x, y]), []] The arg is always treated as a Mul: >>> (-2 + x + A).args_cnc() [[], [x - 2 + A]] >>> (-oo).args_cnc() # -oo is a singleton [[-1, oo], []] """ if self.is_Mul: args = list(self.args) else: args = [self] for i, mi in enumerate(args): if not mi.is_commutative: c = args[:i] nc = args[i:] break else: c = args nc = [] if c and split_1 and ( c[0].is_Number and c[0].is_negative and c[0] is not S.NegativeOne): c[:1] = [S.NegativeOne, -c[0]] if cset: clen = len(c) c = set(c) if clen and warn and len(c) != clen: raise ValueError('repeated commutative arguments: %s' % [ci for ci in c if list(self.args).count(ci) > 1]) return [c, nc] def coeff(self, x, n=1, right=False): """ Returns the coefficient from the term(s) containing ``x**n`` or None. If ``n`` is zero then all terms independent of ``x`` will be returned. When x is noncommutative, the coeff to the left (default) or right of x can be returned. The keyword 'right' is ignored when x is commutative. See Also ======== as_coefficient: separate the expression into a coefficient and factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used Examples ======== >>> from sympy import symbols >>> from sympy.abc import x, y, z You can select terms that have an explicit negative in front of them: >>> (-x + 2*y).coeff(-1) x >>> (x - 2*y).coeff(-1) 2*y You can select terms with no Rational coefficient: >>> (x + 2*y).coeff(1) x >>> (3 + 2*x + 4*x**2).coeff(1) 0 You can select terms independent of x by making n=0; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None): >>> (3 + 2*x + 4*x**2).coeff(x, 0) 3 >>> eq = ((x + 1)**3).expand() + 1 >>> eq x**3 + 3*x**2 + 3*x + 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 2] >>> eq -= 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 0] You can select terms that have a numerical term in front of them: >>> (-x - 2*y).coeff(2) -y >>> from sympy import sqrt >>> (x + sqrt(2)*x).coeff(sqrt(2)) x The matching is exact: >>> (3 + 2*x + 4*x**2).coeff(x) 2 >>> (3 + 2*x + 4*x**2).coeff(x**2) 4 >>> (3 + 2*x + 4*x**2).coeff(x**3) 0 >>> (z*(x + y)**2).coeff((x + y)**2) z >>> (z*(x + y)**2).coeff(x + y) 0 In addition, no factoring is done, so 1 + z*(1 + y) is not obtained from the following: >>> (x + z*(x + x*y)).coeff(x) 1 If such factoring is desired, factor_terms can be used first: >>> from sympy import factor_terms >>> factor_terms(x + z*(x + x*y)).coeff(x) z*(y + 1) + 1 >>> n, m, o = symbols('n m o', commutative=False) >>> n.coeff(n) 1 >>> (3*n).coeff(n) 3 >>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 1 + m >>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m m If there is more than one possible coefficient 0 is returned: >>> (n*m + m*n).coeff(n) 0 If there is only one possible coefficient, it is returned: >>> (n*m + x*m*n).coeff(m*n) x >>> (n*m + x*m*n).coeff(m*n, right=1) 1 """ x = sympify(x) if not isinstance(x, Basic): return S.Zero n = as_int(n) if not x: return S.Zero if x == self: if n == 1: return S.One return S.Zero if x is S.One: co = [a for a in Add.make_args(self) if a.as_coeff_Mul()[0] is S.One] if not co: return S.Zero return Add(*co) if n == 0: if x.is_Add and self.is_Add: c = self.coeff(x, right=right) if not c: return S.Zero if not right: return self - Add(*[a*x for a in Add.make_args(c)]) return self - Add(*[x*a for a in Add.make_args(c)]) return self.as_independent(x, as_Add=True)[0] # continue with the full method, looking for this power of x: x = x**n def incommon(l1, l2): if not l1 or not l2: return [] n = min(len(l1), len(l2)) for i in range(n): if l1[i] != l2[i]: return l1[:i] return l1[:] def find(l, sub, first=True): """ Find where list sub appears in list l. When ``first`` is True the first occurance from the left is returned, else the last occurance is returned. Return None if sub is not in l. >> l = range(5)*2 >> find(l, [2, 3]) 2 >> find(l, [2, 3], first=0) 7 >> find(l, [2, 4]) None """ if not sub or not l or len(sub) > len(l): return None n = len(sub) if not first: l.reverse() sub.reverse() for i in range(0, len(l) - n + 1): if all(l[i + j] == sub[j] for j in range(n)): break else: i = None if not first: l.reverse() sub.reverse() if i is not None and not first: i = len(l) - (i + n) return i co = [] args = Add.make_args(self) self_c = self.is_commutative x_c = x.is_commutative if self_c and not x_c: return S.Zero if self_c: xargs = x.args_cnc(cset=True, warn=False)[0] for a in args: margs = a.args_cnc(cset=True, warn=False)[0] if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): co.append(Mul(*resid)) if co == []: return S.Zero elif co: return Add(*co) elif x_c: xargs = x.args_cnc(cset=True, warn=False)[0] for a in args: margs, nc = a.args_cnc(cset=True) if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): co.append(Mul(*(list(resid) + nc))) if co == []: return S.Zero elif co: return Add(*co) else: # both nc xargs, nx = x.args_cnc(cset=True) # find the parts that pass the commutative terms for a in args: margs, nc = a.args_cnc(cset=True) if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): co.append((resid, nc)) # now check the non-comm parts if not co: return S.Zero if all(n == co[0][1] for r, n in co): ii = find(co[0][1], nx, right) if ii is not None: if not right: return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) else: return Mul(*co[0][1][ii + len(nx):]) beg = reduce(incommon, (n[1] for n in co)) if beg: ii = find(beg, nx, right) if ii is not None: if not right: gcdc = co[0][0] for i in range(1, len(co)): gcdc = gcdc.intersection(co[i][0]) if not gcdc: break return Mul(*(list(gcdc) + beg[:ii])) else: m = ii + len(nx) return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) end = list(reversed( reduce(incommon, (list(reversed(n[1])) for n in co)))) if end: ii = find(end, nx, right) if ii is not None: if not right: return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) else: return Mul(*end[ii + len(nx):]) # look for single match hit = None for i, (r, n) in enumerate(co): ii = find(n, nx, right) if ii is not None: if not hit: hit = ii, r, n else: break else: if hit: ii, r, n = hit if not right: return Mul(*(list(r) + n[:ii])) else: return Mul(*n[ii + len(nx):]) return S.Zero def as_expr(self, *gens): """ Convert a polynomial to a SymPy expression. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y >>> f = (x**2 + x*y).as_poly(x, y) >>> f.as_expr() x**2 + x*y >>> sin(x).as_expr() sin(x) """ return self def as_coefficient(self, expr): """ Extracts symbolic coefficient at the given expression. In other words, this functions separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None. Examples ======== >>> from sympy import E, pi, sin, I, Poly >>> from sympy.abc import x >>> E.as_coefficient(E) 1 >>> (2*E).as_coefficient(E) 2 >>> (2*sin(E)*E).as_coefficient(E) Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.) >>> (2*E + x*E).as_coefficient(E) x + 2 >>> _.args[0] # just want the exact match 2 >>> p = Poly(2*E + x*E); p Poly(x*E + 2*E, x, E, domain='ZZ') >>> p.coeff_monomial(E) 2 >>> p.nth(0,1) 2 Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient ``2*x`` is desired then the ``coeff`` method should be used.) >>> (2*E*x + x).as_coefficient(E) >>> (2*E*x + x).coeff(E) 2*x >>> (E*(x + 1) + x).as_coefficient(E) >>> (2*pi*I).as_coefficient(pi*I) 2 >>> (2*I).as_coefficient(pi*I) See Also ======== coeff: return sum of terms have a given factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used """ r = self.extract_multiplicatively(expr) if r and not r.has(expr): return r def as_independent(self, *deps, **hint): """ A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.: * separatevars() to change Mul, Add and Pow (including exp) into Mul * .expand(mul=True) to change Add or Mul into Add * .expand(log=True) to change log expr into an Add The only non-naive thing that is done here is to respect noncommutative ordering of variables. The returned tuple (i, d) has the following interpretation: * i will has no variable that appears in deps * d will be 1 or else have terms that contain variables that are in deps * if self is an Add then self = i + d * if self is a Mul then self = i*d * if self is anything else, either tuple (self, S.One) or (S.One, self) is returned. To force the expression to be treated as an Add, use the hint as_Add=True Examples ======== -- self is an Add >>> from sympy import sin, cos, exp >>> from sympy.abc import x, y, z >>> (x + x*y).as_independent(x) (0, x*y + x) >>> (x + x*y).as_independent(y) (x, x*y) >>> (2*x*sin(x) + y + x + z).as_independent(x) (y + z, 2*x*sin(x) + x) >>> (2*x*sin(x) + y + x + z).as_independent(x, y) (z, 2*x*sin(x) + x + y) -- self is a Mul >>> (x*sin(x)*cos(y)).as_independent(x) (cos(y), x*sin(x)) non-commutative terms cannot always be separated out when self is a Mul >>> from sympy import symbols >>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) >>> (n1 + n1*n2).as_independent(n2) (n1, n1*n2) >>> (n2*n1 + n1*n2).as_independent(n2) (0, n1*n2 + n2*n1) >>> (n1*n2*n3).as_independent(n1) (1, n1*n2*n3) >>> (n1*n2*n3).as_independent(n2) (n1, n2*n3) >>> ((x-n1)*(x-y)).as_independent(x) (1, (x - y)*(x - n1)) -- self is anything else: >>> (sin(x)).as_independent(x) (1, sin(x)) >>> (sin(x)).as_independent(y) (sin(x), 1) >>> exp(x+y).as_independent(x) (1, exp(x + y)) -- force self to be treated as an Add: >>> (3*x).as_independent(x, as_Add=True) (0, 3*x) -- force self to be treated as a Mul: >>> (3+x).as_independent(x, as_Add=False) (1, x + 3) >>> (-3+x).as_independent(x, as_Add=False) (1, x - 3) Note how the below differs from the above in making the constant on the dep term positive. >>> (y*(-3+x)).as_independent(x) (y, x - 3) -- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols >>> from sympy import Integral >>> I = Integral(x, (x, 1, 2)) >>> I.has(x) True >>> x in I.free_symbols False >>> I.as_independent(x) == (I, 1) True >>> (I + x).as_independent(x) == (I, x) True Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values >>> from sympy import separatevars, log >>> separatevars(exp(x+y)).as_independent(x) (exp(y), exp(x)) >>> (x + x*y).as_independent(y) (x, x*y) >>> separatevars(x + x*y).as_independent(y) (x, y + 1) >>> (x*(1 + y)).as_independent(y) (x, y + 1) >>> (x*(1 + y)).expand(mul=True).as_independent(y) (x, x*y) >>> a, b=symbols('a b',positive=True) >>> (log(a*b).expand(log=True)).as_independent(b) (log(a), log(b)) See also: .separatevars(), .expand(log=True), .as_two_terms(), .as_coeff_add(), .as_coeff_mul() """ from sympy.utilities.iterables import sift func = self.func # sift out deps into symbolic and other and ignore # all symbols but those that are in the free symbols sym = set() other = [] for d in deps: if isinstance(d, C.Symbol): # Symbol.is_Symbol is True sym.add(d) else: other.append(d) def has(e): """return the standard has() if there are no literal symbols, else check to see that symbol-deps are in the free symbols.""" has_other = e.has(*other) if not sym: return has_other return has_other or e.has(*(e.free_symbols & sym)) if hint.get('as_Add', func is Add): want = Add else: want = Mul if (want is not func or func is not Add and func is not Mul): if has(self): return (want.identity, self) else: return (self, want.identity) else: if func is Add: args = list(self.args) else: args, nc = self.args_cnc() d = sift(args, lambda x: has(x)) depend = d[True] indep = d[False] if func is Add: # all terms were treated as commutative return (Add(*indep), Add(*depend)) else: # handle noncommutative by stopping at first dependent term for i, n in enumerate(nc): if has(n): depend.extend(nc[i:]) break indep.append(n) return Mul(*indep), Mul(*depend) def as_real_imag(self, deep=True, **hints): """Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method can't be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function. >>> from sympy import symbols, I >>> x, y = symbols('x,y', real=True) >>> (x + y*I).as_real_imag() (x, y) >>> from sympy.abc import z, w >>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z)) """ if hints.get('ignore') == self: return None else: return (C.re(self), C.im(self)) def as_powers_dict(self): """Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary.""" d = defaultdict(int) d.update(dict([self.as_base_exp()])) return d def as_coefficients_dict(self): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ c, m = self.as_coeff_Mul() if not c.is_Rational: c = S.One m = self d = defaultdict(int) d.update({m: c}) return d def as_base_exp(self): # a -> b ** e return self, S.One def as_coeff_mul(self, *deps, **kwargs): """Return the tuple (c, args) where self is written as a Mul, ``m``. c should be a Rational multiplied by any terms of the Mul that are independent of deps. args should be a tuple of all other terms of m; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul. - if you know self is a Mul and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail; - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_mul() (3, ()) >>> (3*x*y).as_coeff_mul() (3, (x, y)) >>> (3*x*y).as_coeff_mul(x) (3*y, (x,)) >>> (3*y).as_coeff_mul(x) (3*y, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.One, (self,) def as_coeff_add(self, *deps): """Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.Zero, (self,) def primitive(self): """Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float). Examples ======== >>> from sympy.abc import x >>> (3*(x + 1)**2).primitive() (3, (x + 1)**2) >>> a = (6*x + 2); a.primitive() (2, 3*x + 1) >>> b = (x/2 + 3); b.primitive() (1/2, x + 6) >>> (a*b).primitive() == (1, a*b) True """ if not self: return S.One, S.Zero c, r = self.as_coeff_Mul(rational=True) if c.is_negative: c, r = -c, -r return c, r def as_content_primitive(self, radical=False): """This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. The primitive need no be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self). Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y, z >>> eq = 2 + 2*x + 2*y*(3 + 3*y) The as_content_primitive function is recursive and retains structure: >>> eq.as_content_primitive() (2, x + 3*y*(y + 1) + 1) Integer powers will have Rationals extracted from the base: >>> ((2 + 6*x)**2).as_content_primitive() (4, (3*x + 1)**2) >>> ((2 + 6*x)**(2*y)).as_content_primitive() (1, (2*(3*x + 1))**(2*y)) Terms may end up joining once their as_content_primitives are added: >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (11, x*(y + 1)) >>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (9, x*(y + 1)) >>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() (1, 6.0*x*(y + 1) + 3*z*(y + 1)) >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() (121, x**2*(y + 1)**2) >>> ((5*(x*(1 + y)) + 2.0*x*(3 + 3*y))**2).as_content_primitive() (1, 121.0*x**2*(y + 1)**2) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) """ return S.One, self def as_numer_denom(self): """ expression -> a/b -> a, b This is just a stub that should be defined by an object's class methods to get anything else. See Also ======== normal: return a/b instead of a, b """ return self, S.One def normal(self): n, d = self.as_numer_denom() if d is S.One: return n return n/d def extract_multiplicatively(self, c): """Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self. >>> from sympy import symbols, Rational >>> x, y = symbols('x,y', real=True) >>> ((x*y)**3).extract_multiplicatively(x**2 * y) x*y**2 >>> ((x*y)**3).extract_multiplicatively(x**4 * y) >>> (2*x).extract_multiplicatively(2) x >>> (2*x).extract_multiplicatively(3) >>> (Rational(1,2)*x).extract_multiplicatively(3) x/6 """ c = sympify(c) if c is S.One: return self elif c == self: return S.One if c.is_Add: cc, pc = c.primitive() if cc is not S.One: c = Mul(cc, pc, evaluate=False) if c.is_Mul: a, b = c.as_two_terms() x = self.extract_multiplicatively(a) if x is not None: return x.extract_multiplicatively(b) quotient = self / c if self.is_Number: if self is S.Infinity: if c.is_positive: return S.Infinity elif self is S.NegativeInfinity: if c.is_negative: return S.Infinity elif c.is_positive: return S.NegativeInfinity elif self is S.ComplexInfinity: if not c.is_zero: return S.ComplexInfinity elif self is S.NaN: return S.NaN elif self.is_Integer: if not quotient.is_Integer: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Rational: if not quotient.is_Rational: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Float: if not quotient.is_Float: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: if quotient.is_Mul and len(quotient.args) == 2: if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: return quotient elif quotient.is_Integer and c.is_Number: return quotient elif self.is_Add: cs, ps = self.primitive() if cs is not S.One: return Mul(cs, ps, evaluate=False).extract_multiplicatively(c) newargs = [] for arg in self.args: newarg = arg.extract_multiplicatively(c) if newarg is not None: newargs.append(newarg) else: return None return Add(*newargs) elif self.is_Mul: args = list(self.args) for i, arg in enumerate(args): newarg = arg.extract_multiplicatively(c) if newarg is not None: args[i] = newarg return Mul(*args) elif self.is_Pow: if c.is_Pow and c.base == self.base: new_exp = self.exp.extract_additively(c.exp) if new_exp is not None: return self.base ** (new_exp) elif c == self.base: new_exp = self.exp.extract_additively(1) if new_exp is not None: return self.base ** (new_exp) def extract_additively(self, c): """Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None. Examples ======== >>> from sympy.abc import x, y >>> e = 2*x + 3 >>> e.extract_additively(x + 1) x + 2 >>> e.extract_additively(3*x) >>> e.extract_additively(4) >>> (y*(x + 1)).extract_additively(x + 1) >>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) (x + 1)*(x + 2*y) + 3 Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases: >>> from sympy import gcd_terms >>> (4*x*(y + 1) + y).extract_additively(x) 4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y >>> gcd_terms(_) x*(4*y + 3) + y See Also ======== extract_multiplicatively coeff as_coefficient """ c = sympify(c) if c is S.Zero: return self elif c == self: return S.Zero elif self is S.Zero: return None if self.is_Number: if not c.is_Number: return None co = self diff = co - c # XXX should we match types? i.e should 3 - .1 succeed? if (co > 0 and diff > 0 and diff < co or co < 0 and diff < 0 and diff > co): return diff return None if c.is_Number: co, t = self.as_coeff_Add() xa = co.extract_additively(c) if xa is None: return None return xa + t # handle the args[0].is_Number case separately # since we will have trouble looking for the coeff of # a number. if c.is_Add and c.args[0].is_Number: # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise h, t = c.as_coeff_Add() sh, st = self.as_coeff_Add() xa = sh.extract_additively(h) if xa is None: return None xa2 = st.extract_additively(t) if xa2 is None: return None return xa + xa2 # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise coeffs = [] for a in Add.make_args(c): ac, at = a.as_coeff_Mul() co = self.coeff(at) if not co: return None coc, cot = co.as_coeff_Add() xa = coc.extract_additively(ac) if xa is None: return None self -= co*at coeffs.append((cot + xa)*at) coeffs.append(self) return Add(*coeffs) def could_extract_minus_sign(self): """Canonical way to choose an element in the set {e, -e} where e is any expression. If the canonical element is e, we have e.could_extract_minus_sign() == True, else e.could_extract_minus_sign() == False. For any expression, the set ``{e.could_extract_minus_sign(), (-e).could_extract_minus_sign()}`` must be ``{True, False}``. >>> from sympy.abc import x, y >>> (x-y).could_extract_minus_sign() != (y-x).could_extract_minus_sign() True """ negative_self = -self self_has_minus = (self.extract_multiplicatively(-1) is not None) negative_self_has_minus = ( (negative_self).extract_multiplicatively(-1) is not None) if self_has_minus != negative_self_has_minus: return self_has_minus else: if self.is_Add: # We choose the one with less arguments with minus signs all_args = len(self.args) negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()]) positive_args = all_args - negative_args if positive_args > negative_args: return False elif positive_args < negative_args: return True elif self.is_Mul: # We choose the one with an odd number of minus signs num, den = self.as_numer_denom() args = Mul.make_args(num) + Mul.make_args(den) arg_signs = [arg.could_extract_minus_sign() for arg in args] negative_args = list(filter(None, arg_signs)) return len(negative_args) % 2 == 1 # As a last resort, we choose the one with greater value of .sort_key() return bool(self.sort_key() < negative_self.sort_key()) def extract_branch_factor(self, allow_half=False): """ Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. Return (z, n). >>> from sympy import exp_polar, I, pi >>> from sympy.abc import x, y >>> exp_polar(I*pi).extract_branch_factor() (exp_polar(I*pi), 0) >>> exp_polar(2*I*pi).extract_branch_factor() (1, 1) >>> exp_polar(-pi*I).extract_branch_factor() (exp_polar(I*pi), -1) >>> exp_polar(3*pi*I + x).extract_branch_factor() (exp_polar(x + I*pi), 1) >>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() (y*exp_polar(2*pi*x), -1) >>> exp_polar(-I*pi/2).extract_branch_factor() (exp_polar(-I*pi/2), 0) If allow_half is True, also extract exp_polar(I*pi): >>> exp_polar(I*pi).extract_branch_factor(allow_half=True) (1, 1/2) >>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) (1, 1) >>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) (1, 3/2) >>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) (1, -1/2) """ from sympy import exp_polar, pi, I, ceiling, Add n = S(0) res = S(1) args = Mul.make_args(self) exps = [] for arg in args: if arg.func is exp_polar: exps += [arg.exp] else: res *= arg piimult = S(0) extras = [] while exps: exp = exps.pop() if exp.is_Add: exps += exp.args continue if exp.is_Mul: coeff = exp.as_coefficient(pi*I) if coeff is not None: piimult += coeff continue extras += [exp] if not piimult.free_symbols: coeff = piimult tail = () else: coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) # round down to nearest multiple of 2 branchfact = ceiling(coeff/2 - S(1)/2)*2 n += branchfact/2 c = coeff - branchfact if allow_half: nc = c.extract_additively(1) if nc is not None: n += S(1)/2 c = nc newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras) if newexp != 0: res *= exp_polar(newexp) return res, n def _eval_is_polynomial(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_polynomial(self, *syms): """ Return True if self is a polynomial in syms and False otherwise. This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, \*syms) should work if and only if expr.is_polynomial(\*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used. This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True). Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> ((x**2 + 1)**4).is_polynomial(x) True >>> ((x**2 + 1)**4).is_polynomial() True >>> (2**x + 1).is_polynomial(x) False >>> n = Symbol('n', nonnegative=True, integer=True) >>> (x**n + 1).is_polynomial(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one. >>> from sympy import sqrt, factor, cancel >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1) >>> a.is_polynomial(y) False >>> factor(a) y + 1 >>> factor(a).is_polynomial(y) True >>> b = (y**2 + 2*y + 1)/(y + 1) >>> b.is_polynomial(y) False >>> cancel(b) y + 1 >>> cancel(b).is_polynomial(y) True See also .is_rational_function() """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant polynomial return True else: return self._eval_is_polynomial(syms) def _eval_is_rational_function(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_rational_function(self, *syms): """ Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True). Examples ======== >>> from sympy import Symbol, sin >>> from sympy.abc import x, y >>> (x/y).is_rational_function() True >>> (x**2).is_rational_function() True >>> (x/sin(y)).is_rational_function(y) False >>> n = Symbol('n', integer=True) >>> (x**n + 1).is_rational_function(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one. >>> from sympy import sqrt, factor >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1)/y >>> a.is_rational_function(y) False >>> factor(a) (y + 1)/y >>> factor(a).is_rational_function(y) True See also is_algebraic_expr(). """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant rational function return True else: return self._eval_is_rational_function(syms) def _eval_is_algebraic_expr(self, syms): if self.free_symbols.intersection(syms) == set([]): return True return False def is_algebraic_expr(self, *syms): """ This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation. Examples ======== >>> from sympy import Symbol, sqrt >>> x = Symbol('x', real=True) >>> sqrt(1 + x).is_rational_function() False >>> sqrt(1 + x).is_algebraic_expr() True This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one. >>> from sympy import exp, factor >>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) >>> a.is_algebraic_expr(x) False >>> factor(a).is_algebraic_expr() True See Also ======== is_rational_function() References ========== - http://en.wikipedia.org/wiki/Algebraic_expression """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set([]): # constant algebraic expression return True else: return self._eval_is_algebraic_expr(syms) ################################################################################### ##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## ################################################################################### def series(self, x=None, x0=0, n=6, dir="+", logx=None): """ Series expansion of "self" around ``x = x0`` yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None. Returns the series expansion of "self" around the point ``x = x0`` with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). If ``x=None`` and ``self`` is univariate, the univariate symbol will be supplied, otherwise an error will be raised. >>> from sympy import cos, exp >>> from sympy.abc import x, y >>> cos(x).series() 1 - x**2/2 + x**4/24 + O(x**6) >>> cos(x).series(n=4) 1 - x**2/2 + O(x**4) >>> cos(x).series(x, x0=1, n=2) cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) >>> e = cos(x + exp(y)) >>> e.series(y, n=2) cos(x + 1) - y*sin(x + 1) + O(y**2) >>> e.series(x, n=2) cos(exp(y)) - x*sin(exp(y)) + O(x**2) If ``n=None`` then a generator of the series terms will be returned. >>> term=cos(x).series(n=None) >>> [next(term) for i in range(2)] [1, -x**2/2] For ``dir=+`` (default) the series is calculated from the right and for ``dir=-`` the series from the left. For smooth functions this flag will not alter the results. >>> abs(x).series(dir="+") x >>> abs(x).series(dir="-") -x """ from sympy import collect if x is None: syms = self.atoms(C.Symbol) if not syms: return self elif len(syms) > 1: raise ValueError('x must be given for multivariate functions.') x = syms.pop() if not self.has(x): if n is None: return (s for s in [self]) else: return self if len(dir) != 1 or dir not in '+-': raise ValueError("Dir must be '+' or '-'") if x0 in [S.Infinity, S.NegativeInfinity]: dir = {S.Infinity: '+', S.NegativeInfinity: '-'}[x0] s = self.subs(x, 1/x).series(x, n=n, dir=dir) if n is None: return (si.subs(x, 1/x) for si in s) return s.subs(x, 1/x) # use rep to shift origin to x0 and change sign (if dir is negative) # and undo the process with rep2 if x0 or dir == '-': if dir == '-': rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx) if n is None: # lseries... return (si.subs(x, rep2 + rep2b) for si in s) return s.subs(x, rep2 + rep2b) # from here on it's x0=0 and dir='+' handling if x.is_positive is x.is_negative is None or x.is_Symbol is not True: # replace x with an x that has a positive assumption xpos = C.Dummy('x', positive=True, finite=True) rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx) if n is None: return (s.subs(xpos, x) for s in rv) else: return rv.subs(xpos, x) if n is not None: # nseries handling s1 = self._eval_nseries(x, n=n, logx=logx) o = s1.getO() or S.Zero if o: # make sure the requested order is returned ngot = o.getn() if ngot > n: # leave o in its current form (e.g. with x*log(x)) so # it eats terms properly, then replace it below if n != 0: s1 += o.subs(x, x**C.Rational(n, ngot)) else: s1 += C.Order(1, x) elif ngot < n: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed for more in range(1, 9): s1 = self._eval_nseries(x, n=n + more, logx=logx) newn = s1.getn() if newn != ngot: ndo = n + (n - ngot)*more/(newn - ngot) s1 = self._eval_nseries(x, n=ndo, logx=logx) while s1.getn() < n: s1 = self._eval_nseries(x, n=ndo, logx=logx) ndo += 1 break else: raise ValueError('Could not calculate %s terms for %s' % (str(n), self)) s1 += C.Order(x**n, x) o = s1.getO() s1 = s1.removeO() else: o = C.Order(x**n, x) if (s1 + o).removeO() == s1: o = S.Zero try: return collect(s1, x) + o except NotImplementedError: return s1 + o else: # lseries handling def yield_lseries(s): """Return terms of lseries one at a time.""" for si in s: if not si.is_Add: yield si continue # yield terms 1 at a time if possible # by increasing order until all the # terms have been returned yielded = 0 o = C.Order(si, x)*x ndid = 0 ndo = len(si.args) while 1: do = (si - yielded + o).removeO() o *= x if not do or do.is_Order: continue if do.is_Add: ndid += len(do.args) else: ndid += 1 yield do if ndid == ndo: break yielded += do return yield_lseries(self.removeO()._eval_lseries(x, logx=logx)) def taylor_term(self, n, x, *previous_terms): """General method for the taylor term. This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms". """ x = sympify(x) _x = C.Dummy('x') return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / C.factorial(n) def lseries(self, x=None, x0=0, dir='+', logx=None): """ Wrapper for series yielding an iterator of the terms of the series. Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms of the sin(x) series:: for term in sin(x).lseries(x): print term The advantage of lseries() over nseries() is that many times you are just interested in the next term in the series (i.e. the first term for example), but you don't know how many you should ask for in nseries() using the "n" parameter. See also nseries(). """ return self.series(x, x0, n=None, dir=dir, logx=logx) def _eval_lseries(self, x, logx=None): # default implementation of lseries is using nseries(), and adaptively # increasing the "n". As you can see, it is not very efficient, because # we are calculating the series over and over again. Subclasses should # override this method and implement much more efficient yielding of # terms. n = 0 series = self._eval_nseries(x, n=n, logx=logx) if not series.is_Order: if series.is_Add: yield series.removeO() else: yield series raise StopIteration while series.is_Order: n += 1 series = self._eval_nseries(x, n=n, logx=logx) e = series.removeO() yield e while 1: while 1: n += 1 series = self._eval_nseries(x, n=n, logx=logx).removeO() if e != series: break yield series - e e = series def nseries(self, x=None, x0=0, n=6, dir='+', logx=None): """ Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we don't have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but gives only an Order term unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) O(log(x)**2) >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y) """ if x and not x in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir) else: return self._eval_nseries(x, n=n, logx=logx) def _eval_nseries(self, x, n, logx): """ Return terms of series for self up to O(x**n) at x=0 from the positive direction. This is a method that should be overridden in subclasses. Users should never call this method directly (use .nseries() instead), so you don't have to write docstrings for _eval_nseries(). """ from sympy.utilities.misc import filldedent raise NotImplementedError(filldedent(""" The _eval_nseries method should be added to %s to give terms up to O(x**n) at x=0 from the positive direction so it is available when nseries calls it.""" % self.func) ) def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return limit(self, x, xlim, dir) def compute_leading_term(self, x, logx=None): """ as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first. """ from sympy.series.gruntz import calculate_series if self.removeO() == 0: return self if logx is None: d = C.Dummy('logx') s = calculate_series(self, x, d).subs(d, C.log(x)) else: s = calculate_series(self, x, logx) return s.as_leading_term(x) @cacheit def as_leading_term(self, *symbols): """ Returns the leading (nonzero) term of the series expansion of self. The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value. Examples ======== >>> from sympy.abc import x >>> (1 + x + x**2).as_leading_term(x) 1 >>> (1/x**2 + x + x**2).as_leading_term(x) x**(-2) """ from sympy import powsimp if len(symbols) > 1: c = self for x in symbols: c = c.as_leading_term(x) return c elif not symbols: return self x = sympify(symbols[0]) if not x.is_Symbol: raise ValueError('expecting a Symbol but got %s' % x) if x not in self.free_symbols: return self obj = self._eval_as_leading_term(x) if obj is not None: return powsimp(obj, deep=True, combine='exp') raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) def _eval_as_leading_term(self, x): return self def as_coeff_exponent(self, x): """ ``c*x**e -> c,e`` where x can be any symbolic expression. """ from sympy import collect s = collect(self, x) c, p = s.as_coeff_mul(x) if len(p) == 1: b, e = p[0].as_base_exp() if b == x: return c, e return s, S.Zero def leadterm(self, x): """ Returns the leading term a*x**b as a tuple (a, b). Examples ======== >>> from sympy.abc import x >>> (1+x+x**2).leadterm(x) (1, 0) >>> (1/x**2+x+x**2).leadterm(x) (1, -2) """ l = self.as_leading_term(x) d = C.Dummy('logx') if l.has(C.log(x)): l = l.subs(C.log(x), d) c, e = l.as_coeff_exponent(x) if x in c.free_symbols: from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" cannot compute leadterm(%s, %s). The coefficient should have been free of x but got %s""" % (self, x, c))) c = c.subs(d, C.log(x)) return c, e def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def as_coeff_Add(self): """Efficiently extract the coefficient of a summation. """ return S.Zero, self ################################################################################### ##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### ################################################################################### def diff(self, *symbols, **assumptions): new_symbols = list(map(sympify, symbols)) # e.g. x, 2, y, z assumptions.setdefault("evaluate", True) return Derivative(self, *new_symbols, **assumptions) ########################################################################### ###################### EXPRESSION EXPANSION METHODS ####################### ########################################################################### # Relevant subclasses should override _eval_expand_hint() methods. See # the docstring of expand() for more info. def _eval_expand_complex(self, **hints): real, imag = self.as_real_imag(**hints) return real + S.ImaginaryUnit*imag @staticmethod def _expand_hint(expr, hint, deep=True, **hints): """ Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. Returns ``(expr, hit)``, where expr is the (possibly) expanded ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and ``False`` otherwise. """ hit = False # XXX: Hack to support non-Basic args # | # V if deep and getattr(expr, 'args', ()) and not expr.is_Atom: sargs = [] for arg in expr.args: arg, arghit = Expr._expand_hint(arg, hint, **hints) hit |= arghit sargs.append(arg) if hit: expr = expr.func(*sargs) if hasattr(expr, hint): newexpr = getattr(expr, hint)(**hints) if newexpr != expr: return (newexpr, True) return (expr, hit) @cacheit def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """ Expand an expression using hints. See the docstring of the expand() function in sympy.core.function for more information. """ from sympy.simplify.simplify import fraction hints.update(power_base=power_base, power_exp=power_exp, mul=mul, log=log, multinomial=multinomial, basic=basic) expr = self if hints.pop('frac', False): n, d = [a.expand(deep=deep, modulus=modulus, **hints) for a in fraction(self)] return n/d elif hints.pop('denom', False): n, d = fraction(self) return n/d.expand(deep=deep, modulus=modulus, **hints) elif hints.pop('numer', False): n, d = fraction(self) return n.expand(deep=deep, modulus=modulus, **hints)/d # Although the hints are sorted here, an earlier hint may get applied # at a given node in the expression tree before another because of how # the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + # x*z) because while applying log at the top level, log and mul are # applied at the deeper level in the tree so that when the log at the # upper level gets applied, the mul has already been applied at the # lower level. # Additionally, because hints are only applied once, the expression # may not be expanded all the way. For example, if mul is applied # before multinomial, x*(x + 1)**2 won't be expanded all the way. For # now, we just use a special case to make multinomial run before mul, # so that at least polynomials will be expanded all the way. In the # future, smarter heuristics should be applied. # TODO: Smarter heuristics def _expand_hint_key(hint): """Make multinomial come before mul""" if hint == 'mul': return 'mulz' return hint for hint in sorted(hints.keys(), key=_expand_hint_key): use_hint = hints[hint] if use_hint: hint = '_eval_expand_' + hint expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) while True: was = expr if hints.get('multinomial', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_multinomial', deep=deep, **hints) if hints.get('mul', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_mul', deep=deep, **hints) if hints.get('log', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_log', deep=deep, **hints) if expr == was: break if modulus is not None: modulus = sympify(modulus) if not modulus.is_Integer or modulus <= 0: raise ValueError( "modulus must be a positive integer, got %s" % modulus) terms = [] for term in Add.make_args(expr): coeff, tail = term.as_coeff_Mul(rational=True) coeff %= modulus if coeff: terms.append(coeff*tail) expr = Add(*terms) return expr ########################################################################### ################### GLOBAL ACTION VERB WRAPPER METHODS #################### ########################################################################### def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def simplify(self, ratio=1.7, measure=None): """See the simplify function in sympy.simplify""" from sympy.simplify import simplify from sympy.core.function import count_ops measure = measure or count_ops return simplify(self, ratio, measure) def nsimplify(self, constants=[], tolerance=None, full=False): """See the nsimplify function in sympy.simplify""" from sympy.simplify import nsimplify return nsimplify(self, constants, tolerance, full) def separate(self, deep=False, force=False): """See the separate function in sympy.simplify""" from sympy.core.function import expand_power_base return expand_power_base(self, deep=deep, force=force) def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): """See the collect function in sympy.simplify""" from sympy.simplify import collect return collect(self, syms, func, evaluate, exact, distribute_order_term) def together(self, *args, **kwargs): """See the together function in sympy.polys""" from sympy.polys import together return together(self, *args, **kwargs) def apart(self, x=None, **args): """See the apart function in sympy.polys""" from sympy.polys import apart return apart(self, x, **args) def ratsimp(self): """See the ratsimp function in sympy.simplify""" from sympy.simplify import ratsimp return ratsimp(self) def trigsimp(self, **args): """See the trigsimp function in sympy.simplify""" from sympy.simplify import trigsimp return trigsimp(self, **args) def radsimp(self): """See the radsimp function in sympy.simplify""" from sympy.simplify import radsimp return radsimp(self) def powsimp(self, deep=False, combine='all'): """See the powsimp function in sympy.simplify""" from sympy.simplify import powsimp return powsimp(self, deep, combine) def combsimp(self): """See the combsimp function in sympy.simplify""" from sympy.simplify import combsimp return combsimp(self) def factor(self, *gens, **args): """See the factor() function in sympy.polys.polytools""" from sympy.polys import factor return factor(self, *gens, **args) def refine(self, assumption=True): """See the refine function in sympy.assumptions""" from sympy.assumptions import refine return refine(self, assumption) def cancel(self, *gens, **args): """See the cancel function in sympy.polys""" from sympy.polys import cancel return cancel(self, *gens, **args) def invert(self, g): """See the invert function in sympy.polys""" from sympy.polys import invert return invert(self, g) def round(self, p=0): """Return x rounded to the given decimal place. If a complex number would results, apply round to the real and imaginary components of the number. Examples ======== >>> from sympy import pi, E, I, S, Add, Mul, Number >>> S(10.5).round() 11. >>> pi.round() 3. >>> pi.round(2) 3.14 >>> (2*pi + E*I).round() 6. + 3.*I The round method has a chopping effect: >>> (2*pi + I/10).round() 6. >>> (pi/10 + 2*I).round() 2.*I >>> (pi/10 + E*I).round(2) 0.31 + 2.72*I Notes ===== Do not confuse the Python builtin function, round, with the SymPy method of the same name. The former always returns a float (or raises an error if applied to a complex value) while the latter returns either a Number or a complex number: >>> isinstance(round(S(123), -2), Number) False >>> isinstance(S(123).round(-2), Number) True >>> isinstance((3*I).round(), Mul) True >>> isinstance((1 + 3*I).round(), Add) True """ x = self if not x.is_number: raise TypeError('%s is not a number' % type(x)) if x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return x if not x.is_real: i, r = x.as_real_imag() return i.round(p) + S.ImaginaryUnit*r.round(p) if not x: return x p = int(p) precs = [f._prec for f in x.atoms(C.Float)] dps = prec_to_dps(max(precs)) if precs else None mag_first_dig = _mag(x) allow = digits_needed = mag_first_dig + p if dps is not None and allow > dps: allow = dps mag = Pow(10, p) # magnitude needed to bring digit p to units place xwas = x x += 1/(2*mag) # add the half for rounding i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1) if i10.is_negative: x = xwas - 1/(2*mag) # should have gone the other way i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1) rv = -(Integer(-i10)//10) else: rv = Integer(i10)//10 q = 1 if p > 0: q = mag elif p < 0: rv /= mag rv = Rational(rv, q) if rv.is_Integer: # use str or else it won't be a float return C.Float(str(rv), digits_needed) else: if not allow and rv > self: allow += 1 return C.Float(rv, allow) class AtomicExpr(Atom, Expr): """ A parent class for object which are both atoms and Exprs. For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_number = False is_Atom = True __slots__ = [] def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _eval_is_polynomial(self, syms): return True def _eval_is_rational_function(self, syms): return True def _eval_is_algebraic_expr(self, syms): return True def _eval_nseries(self, x, n, logx): return self def _mag(x): """Return integer ``i`` such that .1 <= x/10**i < 1 Examples ======== >>> from sympy.core.expr import _mag >>> from sympy import Float >>> _mag(Float(.1)) 0 >>> _mag(Float(.01)) -1 >>> _mag(Float(1234)) 4 """ from math import log10, ceil, log xpos = abs(x.n()) if not xpos: return S.Zero try: mag_first_dig = int(ceil(log10(xpos))) except (ValueError, OverflowError): mag_first_dig = int(ceil(C.Float(mpf_log(xpos._mpf_, 53))/log(10))) # check that we aren't off by 1 if (xpos/10**mag_first_dig) >= 1: assert 1 <= (xpos/10**mag_first_dig) < 10 mag_first_dig += 1 return mag_first_dig from .mul import Mul from .add import Add from .power import Pow from .function import Derivative, Function from .mod import Mod from .exprtools import factor_terms from .numbers import Integer, Rational
34.636163
109
0.524881
287301ccc71e2a8280fe9e14b1ccd360ce80414f
2,254
py
Python
rasa_core/visualize.py
DavidSted/rasa_core
2b072e564373ad680600947521805911f44f3732
[ "Apache-2.0" ]
1
2018-12-05T22:30:43.000Z
2018-12-05T22:30:43.000Z
rasa_core/visualize.py
DavidSted/rasa_core
2b072e564373ad680600947521805911f44f3732
[ "Apache-2.0" ]
6
2020-01-28T22:38:59.000Z
2022-02-10T00:11:15.000Z
rasa_core/visualize.py
DavidSted/rasa_core
2b072e564373ad680600947521805911f44f3732
[ "Apache-2.0" ]
6
2018-09-19T20:53:13.000Z
2018-10-24T14:37:12.000Z
import argparse import logging import os from rasa_core import utils, config, cli from rasa_core.agent import Agent logger = logging.getLogger(__name__) def create_argument_parser(): """Parse all the command line arguments for the visualisation script.""" parser = argparse.ArgumentParser( description='Visualize the stories in a dialogue training file') parser.add_argument( '-o', '--output', required=True, type=str, help="filename of the output path, e.g. 'graph.html") parser.add_argument( '-m', '--max_history', default=2, type=int, help="max history to consider when merging " "paths in the output graph") parser.add_argument( '-nlu', '--nlu_data', default=None, type=str, help="path of the Rasa NLU training data, " "used to insert example messages into the graph") utils.add_logging_option_arguments(parser) cli.arguments.add_config_arg(parser, nargs=1) cli.arguments.add_domain_arg(parser) cli.arguments.add_model_and_story_group(parser, allow_pretrained_model=False) return parser if __name__ == '__main__': arg_parser = create_argument_parser() cmdline_arguments = arg_parser.parse_args() utils.configure_colored_logging(cmdline_arguments.loglevel) policies = config.load(cmdline_arguments.config[0]) agent = Agent(cmdline_arguments.domain, policies=policies) # this is optional, only needed if the `/greet` type of # messages in the stories should be replaced with actual # messages (e.g. `hello`) if cmdline_arguments.nlu_data is not None: from rasa_nlu.training_data import load_data nlu_data = load_data(cmdline_arguments.nlu_data) else: nlu_data = None stories = cli.stories_from_cli_args(cmdline_arguments) logger.info("Starting to visualize stories...") agent.visualize(stories, cmdline_arguments.output, cmdline_arguments.max_history, nlu_training_data=nlu_data) logger.info("Finished graph creation. Saved into file://{}".format( os.path.abspath(cmdline_arguments.output)))
30.876712
76
0.672582
354a5b06363de9e8dcf44e2c8f7978c32b121579
17,765
py
Python
Examples/FanFicFare-master/fanficfare/adapters/base_efiction_adapter.py
TomNorrie/ePubify
89c89bd22cafdea787f3131ca9cdc8336209ed6c
[ "MIT" ]
null
null
null
Examples/FanFicFare-master/fanficfare/adapters/base_efiction_adapter.py
TomNorrie/ePubify
89c89bd22cafdea787f3131ca9cdc8336209ed6c
[ "MIT" ]
null
null
null
Examples/FanFicFare-master/fanficfare/adapters/base_efiction_adapter.py
TomNorrie/ePubify
89c89bd22cafdea787f3131ca9cdc8336209ed6c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2014 Fanficdownloader team, 2017 FanFicFare team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Software: eFiction # import time # import urllib import logging logger = logging.getLogger(__name__) import re import urllib2 import bs4 as bs from ..htmlcleanup import stripHTML from .. import exceptions as exceptions from base_adapter import BaseSiteAdapter, makeDate """ This is a generic adapter for eFiction based archives (see http://fanlore.org/wiki/List_of_eFiction_Archives for a list). Most of them share common traits: * No HTTPS * 'www.' is optional * Default story template is 'viewstory.php' with arguments * 'sid' the storyId * 'chapter' for chapters (will be thrown away anyway by stripURLParameters in base_adapter Use Printable version which is easier to parse and has everything in one page and cache between extractChapterUrlsAndMetadata and getChapterText """ # PHP constants _RUSERSONLY = 'Registered Users Only' _NOSUCHACCOUNT = "There is no such account on our website" _WRONGPASSWORD = "That password doesn't match the one in our database" _USERACCOUNT = 'Member Account' # Regular expressions _REGEX_WARNING_PARAM = re.compile("warning=(?P<warningId>\d+)") _REGEX_CHAPTER_B = re.compile("^(?P<chapterId>\d+)\.") _REGEX_CHAPTER_PARAM = re.compile("chapter=(?P<chapterId>\d+)$") _REGEX_CHAPTER_FRAGMENT = re.compile("^#(?P<chapterId>\d+)$") _REGEX_DOESNT_START_WITH_HTTP = re.compile("^(?!http)") class BaseEfictionAdapter(BaseSiteAdapter): def __init__(self, config, url): BaseSiteAdapter.__init__(self, config, url) self.story.setMetadata('siteabbrev',self.getSiteAbbrev()) self.set_decode(self.getEncoding()) storyId = re.compile(self.getSiteURLPattern()).match(self.url).group('storyId') self.story.setMetadata('storyId', storyId) self._setURL(self.getViewStoryUrl(storyId)) self.triedLoggingIn = False self.triedAcceptWarnings = False self.username = "NoneGiven" # if left empty, site doesn't return any message at all. @classmethod def getConfigSections(cls): "Only needs to be overriden if has additional ini sections." return ['base_efiction',cls.getConfigSection()] @classmethod def getAcceptDomains(cls): return [cls.getSiteDomain(),'www.' + cls.getSiteDomain()] @classmethod def getSiteExampleURLs(cls): return cls.getViewStoryUrl('1234') + ' ' + cls.getViewStoryUrl('1234') + '&chapter=2' @classmethod def getSiteURLPattern(self): return r"https?://(www\.)?%s%s/%s\?sid=(?P<storyId>\d+)" % (self.getSiteDomain(), self.getPathToArchive(), self.getViewStoryPhpName()) @classmethod def getSiteURLFragment(self): return self.getSiteDomain()+self.getPathToArchive() @classmethod def getEncoding(cls): """ Return an array of character encodings to try to decode the HTML with """ return ["Windows-1252", "utf8"] @classmethod def getPathToArchive(cls): """ Get the path segment of the archive, default '/'. In many cases, it's '/archive' or '/fanfiction' """ return "" @classmethod def getViewStoryPhpName(cls): """ Get the name of the story PHP script, by default 'viewstory.php' """ return "viewstory.php" @classmethod def getViewUserPhpName(cls): """ Get the name of the user PHP script, by default 'viewuser.php' """ return "viewuser.php" @classmethod def getUserPhpName(cls): """ Get the name of the user PHP script, by default 'viewuser.php' """ return "user.php" @classmethod def getDateFormat(self): """ Describe the date format of this site in terms of strftime See http://docs.python.org/library/datetime.html#strftime-strptime-behavior """ return "%d %b %Y" @classmethod def getUrlForPhp(self, php): return "http://%s%s/%s" % (self.getSiteDomain(), self.getPathToArchive(), php) @classmethod def getViewStoryUrl(self, storyId): """ Get the URL to a user page on this site. """ return "%s?sid=%s" % (self.getUrlForPhp(self.getViewStoryPhpName()), storyId) @classmethod def getViewUserUrl(self, userId): """ Get the URL to a user page on this site. """ return "%s?uid=%s" % (self.getUrlForPhp(self.getViewUserPhpName()), userId) @classmethod def getLoginUrl(self): """ Get the URL to the login page on this site. """ return "%s?action=login" % self.getUrlForPhp(self.getUserPhpName()) @classmethod def getMessageRegisteredUsersOnly(self): """ Constant _RUSERSONLY defined in languages/en.php """ return _RUSERSONLY @classmethod def getMessageThereIsNoSuchAccount(self): """ Constant _NOSUCHACCOUNT defined in languages/en.php """ return _NOSUCHACCOUNT @classmethod def getMessageWrongPassword(self): """ Constant _WRONGPASSWORD defined in languages/en.php """ return _WRONGPASSWORD @classmethod def getMessageMemberAccount(self): """ Constant _USERACCOUNT defined in languages/en.php """ return _USERACCOUNT ## Login seems to be reasonably standard across eFiction sites. @classmethod def needToLoginCheck(self, html): """ Return whether the HTML contains either of _RUSERSONLY, _NOSUCHACCOUNT or _WRONGPASSWORD """ return getMessageRegisteredUsersOnly() in html \ or getMessageThereIsNoSuchAccount in html \ or getMessageWrongPassword in html def _fetch_to_soup(self, url): """ Fetch a HTML document, fix it and parse it to BeautifulSoup. Replaces old characters, broken meta-tags, non-self-closing hr/br. Makes image links absolute so they can be downloaded """ try: html = self._fetchUrl(url) except urllib2.HTTPError, e: if e.code == 404: raise exceptions.StoryDoesNotExist(self.url) else: raise e # Some site use old, old-school Comments <!- comment -> (single dash) html = re.sub("<!-.+?->", "", html) # There is a problem with meta tags on some sites where spaces aren't # properly encoded html = re.sub("<meta[^<>]+>(.*</meta>)?", "", html) # fix non-closing hr/br html = html.replace("<hr>", "<hr/>") html = html.replace("<br>", "<br/>") soup = self.make_soup(html) ## fix all local image 'src' to absolute for img in soup.findAll("img", {"src": _REGEX_DOESNT_START_WITH_HTTP}): # TODO handle '../../' and so on if img['src'].startswith('/'): img['src'] = img['src'][1:] img['src'] = "http://%s%s/%s" % (self.getSiteDomain(), self.getPathToArchive(), img['src']) return soup def performLogin(self, url): params = {} if self.password: params['penname'] = self.username params['password'] = self.password else: params['penname'] = self.getConfig("username") params['password'] = self.getConfig("password") params['cookiecheck'] = '1' params['submit'] = 'Submit' logger.debug("Will now login to URL (%s) as (%s)" % (self.getLoginUrl(), params['penname'])) d = self._fetchUrl(self.getLoginUrl(), params) if self.getMessageMemberAccount() not in d : #Member Account logger.info("Failed to login to URL <%s> as '%s'" % (self.getLoginUrl(), params['penname'])) raise exceptions.FailedToLogin(url, params['penname']) return False else: return True def handleMetadataPairHTML(self, key, valueHTML): """ Handles a key-value pair of story metadata. Returns straight away if the value is 'None' (that's a string) Allows for handling of HTML values before calling handleMetadataPair() to handle string values. """ if valueHTML == 'None': return elif key == 'Summary': ## will be de-HTML'd inside setDescription if keep_summary_html:false self.setDescription(self.url, valueHTML) else: ## strip trailing line breaks valueStr = re.sub("<br/>", "", valueHTML) valueStr = stripHTML(valueStr) self.handleMetadataPair(key,valueStr) def handleMetadataPair(self, key, value): """ Handles a key-value pair of story metadata. Returns straight away if the value is 'None' (that's a string) Can be overridden by subclasses:: def handleMetadataPair(self, key, value): if key == 'MyCustomKey': self.story.setMetadata('somekye', value) else: super(NameOfMyAdapter, self).handleMetadata(key, value) """ if value == 'None': return elif 'Genre' in key: for val in re.split("\s*,\s*", value): self.story.addToList('genre', val) elif 'Warning' in key: for val in re.split("\s*,\s*", value): self.story.addToList('warnings', val) elif 'Characters' in key: for val in re.split("\s*,\s*", value): self.story.addToList('characters', val) elif 'Categories' in key: for val in re.split("\s*,\s*", value): self.story.addToList('category', val) elif 'Challenges' in key: for val in re.split("\s*,\s*", value): # TODO this should be an official field I guess self.story.addToList('challenge', val) elif key == 'Chapters': self.story.setMetadata('numChapters', int(value)) elif key == 'Rating' or key == 'Rated': self.story.setMetadata('rating', value) elif key == 'Word count': self.story.setMetadata('numWords', value) elif key == 'Completed': if 'Yes' in value: self.story.setMetadata('status', 'Completed') else: self.story.setMetadata('status', 'In-Progress') elif key == 'Read': # TODO this should be an official field I guess self.story.setMetadata('readings', value) elif key == 'Published': self.story.setMetadata('datePublished', makeDate(value, self.getDateFormat())) elif key == 'Updated': self.story.setMetadata('dateUpdated', makeDate(value, self.getDateFormat())) elif key == 'Pairing': for val in re.split("\s*,\s*", value): self.story.addToList('ships', val) elif key == 'Series': ## TODO is not a link in the printable view, so no seriesURL possible self.story.setMetadata('series', value) else: # Any other metadata found, convert label to lower case # w/o spaces and use as key. Still needs to be in # extra_valid_entries to be used. autokey = key.replace(' ','').lower() for val in re.split("\s*,\s*", value): self.story.addToList(autokey, val) logger.debug("Auto metadata: entry:%s %s_label:%s value:%s" % (autokey, autokey, key, value)) def extractChapterUrlsAndMetadata(self): printUrl = self.url + '&action=printable&textsize=0&chapter=' if self.getConfig('bulk_load'): printUrl += 'all' else: printUrl += '1' soup = self._fetch_to_soup(printUrl) ## Handle warnings and login checks errorDiv = soup.find("div", "errortext") if errorDiv is None: errorDiv = soup.find("div", "errormsg") # sometimes different class. while errorDiv is not None: if self.getMessageRegisteredUsersOnly() in errorDiv.prettify(): if not self.triedLoggingIn: self.performLogin(self.url) soup = self._fetch_to_soup(printUrl) errorDiv = soup.find("div", "errortext") self.triedLoggingIn = True else: raise exceptions.FailedToLogin(self.url, unicode(errorDiv)) elif "This story has not been validated" in stripHTML(errorDiv): raise exceptions.AccessDenied(self.getSiteDomain() +" says: "+stripHTML(errorDiv)) else: warningLink = errorDiv.find("a") if warningLink is not None and ( \ 'ageconsent' in warningLink['href'] \ or 'warning' in warningLink['href']): if not self.triedAcceptWarnings: if not (self.is_adult or self.getConfig("is_adult")): raise exceptions.AdultCheckRequired(self.url) # XXX Using this method, we're independent of # getHighestWarningLevel printUrl += "&ageconsent=ok&warning=%s" % (_REGEX_WARNING_PARAM.search(warningLink['href']).group(1)) # printUrl += "&ageconsent=ok&warning=%s" % self.getHighestWarningLevel() soup = self._fetch_to_soup(printUrl) errorDiv = soup.find("div", "errortext") self.triedAcceptWarnings = True else: raise exceptions.FailedToDownload("Error with URL: %s (%s)" % (self.url,stripHTML(errorDiv))) else: raise exceptions.FailedToDownload("Error with URL: %s (%s)" % (self.url,stripHTML(errorDiv))) # title and author pagetitleDiv = soup.find("div", {"id": "pagetitle"}) if pagetitleDiv.find('a') is None: raise exceptions.FailedToDownload("Couldn't find title and author") self.story.setMetadata('title', pagetitleDiv.find("a").string) authorLink = pagetitleDiv.findAll("a")[1] self.story.setMetadata('author', authorLink.string) self.story.setMetadata('authorId', re.search("\d+", authorLink['href']).group(0)) self.story.setMetadata('authorUrl', self.getViewUserUrl(self.story.getMetadata('authorId'))) ## Parse the infobox labelSpans = soup.find("div", "infobox").find("div", "content").findAll("span", "label") for labelSpan in labelSpans: valueStr = "" nextEl = labelSpan.nextSibling while nextEl is not None and not (\ type(nextEl) is bs.Tag \ and nextEl.name == "span" \ and 'label' in nextEl.get('class',[]) \ ): ## must string copy nextEl or nextEl will change trees if (type(nextEl) is bs.Tag): valueStr += nextEl.prettify() else: valueStr += unicode(nextEl) nextEl = nextEl.nextSibling key = labelSpan.string.strip() ## strip trailing colons key = re.sub("\s*:\s*$", "", key) ## strip whitespace key = key.strip() self.handleMetadataPairHTML(key, valueStr) ## Retrieving the story notes sn = soup.find('div', {'class':'noteinfo'}) if sn: self.story.setMetadata('storynotes', stripHTML(sn)) ## Chapter URLs # If we didn't bulk-load the whole chapter we now need to load # the non-printable HTML version of the landing page (i.e. the story # URL to get the Chapter titles if not self.getConfig('bulk_load'): soup = self._fetch_to_soup(self.url + '&index=1') chapterLinks = [] for b in soup.find_all("b"): m = _REGEX_CHAPTER_B.search(stripHTML(b)) if m: chapterId = m.group('chapterId') chapterLink = b.findNext("a") chapterLink['href'] = "%s&chapter=%s" % (self.url, chapterId) if chapterLink.string !='Back to index': self.chapterUrls.append((chapterLink.string, chapterLink['href'])) ## Store reference to soup for getChapterText self.html = soup def getChapterText(self, url): if self.getConfig('bulk_load'): logger.debug('Cached chapter text from <%s>' % url) anchor = _REGEX_CHAPTER_PARAM.search(url).group(1) chapterDiv = self.html.find("a", {"name": anchor}).parent.findNext("div", "chapter") else: logger.debug('Download chapter text from <%s>' % url) soup = self._fetch_to_soup(url + '&action=printable') chapterDiv = soup.find("div", "chapter") return self.utf8FromSoup(self.url, chapterDiv) def getClass(): return BaseEfictionAdapter
38.122318
142
0.590149
f9a95880fd2da2a30d55148539cb1ef04bfc78b0
5,457
py
Python
framework/auth/core.py
shun-nakazawa/RDM-osf.io
cdf0101426e3a3637f76bd7f477897947f163366
[ "Apache-2.0" ]
null
null
null
framework/auth/core.py
shun-nakazawa/RDM-osf.io
cdf0101426e3a3637f76bd7f477897947f163366
[ "Apache-2.0" ]
8
2018-11-09T05:57:09.000Z
2019-07-25T10:27:55.000Z
framework/auth/core.py
shun-nakazawa/RDM-osf.io
cdf0101426e3a3637f76bd7f477897947f163366
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import datetime as dt import logging from django.utils import timezone from django.db.models import Q from django.db.models import Subquery from django.core.validators import URLValidator from flask import request from framework.sessions import session from osf.exceptions import ValidationValueError, ValidationError from osf.utils.requests import check_select_for_update from website import security, settings name_formatters = { 'long': lambda user: user.fullname, 'surname': lambda user: user.family_name if user.family_name else user.fullname, 'initials': lambda user: u'{surname}, {initial}.'.format( surname=user.family_name, initial=user.given_name_initial, ), } logger = logging.getLogger(__name__) def generate_verification_key(verification_type=None): """ Generate a one-time verification key with an optional expiration time. The type of the verification key determines the expiration time defined in `website.settings.EXPIRATION_TIME_DICT`. :param verification_type: None, verify, confirm or claim :return: a string or a dictionary """ token = security.random_string(30) # v1 with only the token if not verification_type: return token # v2 with a token and the expiration time expires = timezone.now() + dt.timedelta(minutes=settings.EXPIRATION_TIME_DICT[verification_type]) return { 'token': token, 'expires': expires, } def validate_year(item): if item: try: int(item) except ValueError: raise ValidationValueError('Please enter a valid year.') else: if len(item) != 4: raise ValidationValueError('Please enter a valid year.') validate_url = URLValidator() def validate_profile_websites(profile_websites): for value in profile_websites or []: try: validate_url(value) except ValidationError: # Reraise with a better message raise ValidationError('Invalid personal URL.') def validate_social(value): validate_profile_websites(value.get('profileWebsites')) def get_current_user_id(): return session._get_current_object() and session.data.get('auth_user_id') # TODO - rename to _get_current_user_from_session /HRYBACKI def _get_current_user(): from osf.models import OSFUser current_user_id = get_current_user_id() if current_user_id: return OSFUser.load(current_user_id, select_for_update=check_select_for_update(request)) else: return None # TODO: This should be a class method of User? def get_user(email=None, password=None, token=None, external_id_provider=None, external_id=None, eppn=None): """ Get an instance of `User` matching the provided params. 1. email 2. email and password 3 token 4. external_id_provider and external_id :param token: the token in verification key :param email: user's email :param password: user's password :param external_id_provider: the external identity provider :param external_id: the external id :rtype User or None """ from osf.models import OSFUser, Email if not any([email, password, token, external_id_provider, external_id_provider, eppn]): return None if password and not email: raise AssertionError('If a password is provided, an email must also be provided.') qs = OSFUser.objects.filter() if email: email = email.strip().lower() qs = qs.filter(Q(Q(username=email) | Q(id=Subquery(Email.objects.filter(address=email).values('user_id'))))) if password: password = password.strip() try: user = qs.get() except Exception as err: logger.error(err) user = None if user and not user.check_password(password): return False return user if eppn: qs = qs.filter(eppn=eppn) if token: qs = qs.filter(verification_key=token) if external_id_provider and external_id: qs = qs.filter(**{'external_identity__{}__{}'.format(external_id_provider, external_id): 'VERIFIED'}) try: user = qs.get() return user except Exception as err: logger.error(err) return None class Auth(object): def __init__(self, user=None, api_node=None, private_key=None): self.user = user self.api_node = api_node self.private_key = private_key def __repr__(self): return ('<Auth(user="{self.user}", ' 'private_key={self.private_key})>').format(self=self) @property def logged_in(self): return self.user is not None @property def private_link(self): if not self.private_key: return None # Avoid circular import from osf.models import PrivateLink try: private_link = PrivateLink.objects.get(key=self.private_key) if private_link.is_deleted: return None except PrivateLink.DoesNotExist: return None return private_link @classmethod def from_kwargs(cls, request_args, kwargs): user = request_args.get('user') or kwargs.get('user') or _get_current_user() private_key = request_args.get('view_only') return cls( user=user, private_key=private_key, )
28.873016
119
0.665934
2682cc0d57503e566e54dfd1368ed46ad7ce1325
1,492
py
Python
setup.py
johnkozina/ansible-pan
335e05daa2f955194ca77328b5bf754b5e3d6751
[ "Apache-2.0" ]
1
2019-04-19T23:08:27.000Z
2019-04-19T23:08:27.000Z
setup.py
johnkozina/ansible-pan
335e05daa2f955194ca77328b5bf754b5e3d6751
[ "Apache-2.0" ]
null
null
null
setup.py
johnkozina/ansible-pan
335e05daa2f955194ca77328b5bf754b5e3d6751
[ "Apache-2.0" ]
2
2019-01-31T02:51:08.000Z
2020-09-03T15:45:52.000Z
from setuptools import setup from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='ansible-pan', version='1.0.1', packages=['library'], # The project's main homepage. url='https://github.com/PaloAltoNetworks/ansible-pan', license='Apache V2.0', author='@ivanbojer', author_email='ijb@networkrift.com', description='Set ot Ansible modules for Palo Alto Networks device configuration', long_description=long_description, # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Information Technology', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: POSIX', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Topic :: System :: Installation/Setup', 'Topic :: System :: Systems Administration', 'Topic :: Utilities', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', ], install_requires=[ 'pan-python>=0.10.0', 'pandevice>=0.4.0' ], )
33.909091
85
0.63807
f0c4c29a6065c6231f7ff7c380d5d992ab5e0d69
5,058
py
Python
frappe/config/settings.py
ektai/frappe3
44aa948b4d5a0d729eacfb3dabdc9c8894ae1799
[ "MIT" ]
null
null
null
frappe/config/settings.py
ektai/frappe3
44aa948b4d5a0d729eacfb3dabdc9c8894ae1799
[ "MIT" ]
null
null
null
frappe/config/settings.py
ektai/frappe3
44aa948b4d5a0d729eacfb3dabdc9c8894ae1799
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import frappe from frappe import _ from frappe.desk.moduleview import add_setup_section def get_data(): data = [ { "label": _("Core"), "items": [ { "type": "doctype", "name": "System Settings", "label": _("System Settings"), "description": _("Language, Date and Time settings"), "hide_count": True }, { "type": "doctype", "name": "Error Log", "description": _("Log of error on automated events (scheduler).") }, { "type": "doctype", "name": "Error Snapshot", "description": _("Log of error during requests.") }, { "type": "doctype", "name": "Domain Settings", "label": _("Domain Settings"), "description": _("Enable / Disable Domains"), "hide_count": True }, ] }, { "label": _("Data"), "items": [ { "type": "doctype", "name": "Data Import", "label": _("Import Data"), "icon": "octicon octicon-cloud-upload", "description": _("Import Data from CSV / Excel files.") }, { "type": "doctype", "name": "Data Export", "label": _("Export Data"), "icon": "octicon octicon-cloud-upload", "description": _("Export Data in CSV / Excel format.") }, { "type": "doctype", "name": "Naming Series", "description": _("Set numbering series for transactions."), "hide_count": True }, { "type": "doctype", "name": "Rename Tool", "label": _("Bulk Rename"), "description": _("Rename many items by uploading a .csv file."), "hide_count": True }, { "type": "doctype", "name": "Bulk Update", "label": _("Bulk Update"), "description": _("Update many values at one time."), "hide_count": True }, { "type": "page", "name": "backups", "label": _("Download Backups"), "description": _("List of backups available for download"), }, { "type": "doctype", "name": "Deleted Document", "label": _("Deleted Documents"), "description": _("Restore or permanently delete a document.") }, ] }, { "label": _("Email / Notifications"), "items": [ { "type": "doctype", "name": "Email Account", "description": _("Add / Manage Email Accounts.") }, { "type": "doctype", "name": "Email Domain", "description": _("Add / Manage Email Domains.") }, { "type": "doctype", "name": "Notification", "description": _("Setup Notifications based on various criteria.") }, { "type": "doctype", "name": "Email Template", "description": _("Email Templates for common queries.") }, { "type": "doctype", "name": "Auto Email Report", "description": _("Setup Reports to be emailed at regular intervals"), }, { "type": "doctype", "name": "Newsletter", "description": _("Create and manage newsletter") }, { "type": "doctype", "route": "Form/Notification Settings/{}".format(frappe.session.user), "name": "Notification Settings", "description": _("Configure notifications for mentions, assignments, energy points and more.") } ] }, { "label": _("Printing"), "items": [ { "type": "page", "label": _("Print Format Builder"), "name": "print-format-builder", "description": _("Drag and Drop tool to build and customize Print Formats.") }, { "type": "doctype", "name": "Print Settings", "description": _("Set default format, page size, print style etc.") }, { "type": "doctype", "name": "Print Format", "description": _("Customized HTML Templates for printing transactions.") }, { "type": "doctype", "name": "Print Style", "description": _("Stylesheets for Print Formats") }, ] }, { "label": _("Workflow"), "items": [ { "type": "doctype", "name": "Workflow", "description": _("Define workflows for forms.") }, { "type": "doctype", "name": "Workflow State", "description": _("States for workflow (e.g. Draft, Approved, Cancelled).") }, { "type": "doctype", "name": "Workflow Action", "description": _("Actions for workflow (e.g. Approve, Cancel).") }, { "type": "doctype", "name": "Assignment Rule", "description": _("Set up rules for user assignments.") } ] }, { "label": _("Automation"), "items": [ { "type": "doctype", "name": "Assignment Rule", "description": _("Set up rules for user assignments.") }, { "type": "doctype", "name": "Milestone", "description": _("Tracks milestones on the lifecycle of a document if it undergoes multiple stages.") }, { "type": "doctype", "name": "Auto Repeat", "description": _("Automatically generates recurring documents.") }, ] }, ] add_setup_section(data, "frappe", "website", _("Website"), "fas fa-globe") return data
24.916256
106
0.546263
9dad61fe5b338e1c2087628999147f8ac573ea96
6,729
py
Python
etc/tf_tutorial/learning_tf/21.py
zhangbo2008/facenet
4dfabcb5cf14f99622dbe5f9f12f0539821c169c
[ "MIT" ]
null
null
null
etc/tf_tutorial/learning_tf/21.py
zhangbo2008/facenet
4dfabcb5cf14f99622dbe5f9f12f0539821c169c
[ "MIT" ]
7
2019-12-16T22:10:01.000Z
2022-02-10T00:27:35.000Z
etc/tf_tutorial/learning_tf/21.py
zhangbo2008/facenet
4dfabcb5cf14f99622dbe5f9f12f0539821c169c
[ "MIT" ]
null
null
null
""" Generative Adversarial Networks (GAN). Using generative adversarial networks (GAN) to generate digit images from a noise distribution. References: - Generative adversarial nets. I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, Y. Bengio. Advances in neural information processing systems, 2672-2680. - Understanding the difficulty of training deep feedforward neural networks. X Glorot, Y Bengio. Aistats 9, 249-256 Links: - [GAN Paper](https://arxiv.org/pdf/1406.2661.pdf). - [MNIST Dataset](http://yann.lecun.com/exdb/mnist/). - [Xavier Glorot Init](www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.../AISTATS2010_Glorot.pdf). Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import division, print_function, absolute_import import matplotlib.pyplot as plt import numpy as np import tensorflow as tf # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("./tmp/data/", one_hot=True) # Training Params num_steps = 1000 batch_size = 128 learning_rate = 0.0002 # Network Params image_dim = 784 # 28*28 pixels gen_hidden_dim = 256 disc_hidden_dim = 256 noise_dim = 100 # Noise data points # A custom initialization (see Xavier Glorot init) def glorot_init(shape): return tf.random_normal(shape=shape, stddev=1. / tf.sqrt(shape[0] / 2.)) # Store layers weight & bias weights = { 'gen_hidden1': tf.Variable(glorot_init([noise_dim, gen_hidden_dim])), 'gen_out': tf.Variable(glorot_init([gen_hidden_dim, image_dim])), 'disc_hidden1': tf.Variable(glorot_init([image_dim, disc_hidden_dim])), 'disc_out': tf.Variable(glorot_init([disc_hidden_dim, 1])), } biases = { 'gen_hidden1': tf.Variable(tf.zeros([gen_hidden_dim])), 'gen_out': tf.Variable(tf.zeros([image_dim])), 'disc_hidden1': tf.Variable(tf.zeros([disc_hidden_dim])), 'disc_out': tf.Variable(tf.zeros([1])), } # Generator def generator(x): hidden_layer = tf.matmul(x, weights['gen_hidden1']) hidden_layer = tf.add(hidden_layer, biases['gen_hidden1']) hidden_layer = tf.nn.relu(hidden_layer) out_layer = tf.matmul(hidden_layer, weights['gen_out']) out_layer = tf.add(out_layer, biases['gen_out']) out_layer = tf.nn.sigmoid(out_layer) ''' 得到的向量是[None,image_dim] image_dim:784 表示28*28的flat后的结果 ''' return out_layer # Discriminator def discriminator(x): hidden_layer = tf.matmul(x, weights['disc_hidden1']) hidden_layer = tf.add(hidden_layer, biases['disc_hidden1']) hidden_layer = tf.nn.relu(hidden_layer) out_layer = tf.matmul(hidden_layer, weights['disc_out']) out_layer = tf.add(out_layer, biases['disc_out']) out_layer = tf.nn.sigmoid(out_layer) return out_layer # Build Networks # Network Inputs ''' 生成假的gen_input ''' gen_input = tf.placeholder(tf.float32, shape=[None, noise_dim], name='input_noise') # Build Generator Network gen_sample = generator(gen_input) ''' gen_sample得到的是得到的向量是[None,image_dim] image_dim:784 表示28*28的flat后的结果 ''' ''' 生成真的disc_input ''' disc_input = tf.placeholder(tf.float32, shape=[None, image_dim], name='disc_input') # Build 2 Discriminator Networks (one from noise input, one from generated samples) disc_real = discriminator(disc_input) disc_fake = discriminator(gen_sample) ''' disc_real和disc_fake是真,假图片提取后的一个在0,1之间的实数! ''' # Build Loss gen_loss = -tf.reduce_mean(tf.log(disc_fake)) disc_loss = -tf.reduce_mean(tf.log(disc_real) + tf.log(1. - disc_fake)) ''' 下面我们要学习的是discriminator这个分类器: 这个分类器好就表示: 这个loss函数为什么用log来计算呢?因为discrimator函数里面有sigmoid函数,所以 极大似然就是log函数. 从函数单调性分析知道:disfake->0: gen_loss->无穷 disreal->1: disc_loss->0 那么为什么需要使用2个loss函数呢? 以为如果只用第一个显然没法评估disc_real的值 如果只用第二个那么disc_real,disc_fake没法区别到底哪个值趋近1哪个值趋近0. 所以也不行.所以必须要用2个loss函数来刻画. ''' # Build Optimizers optimizer_gen = tf.train.AdamOptimizer(learning_rate=learning_rate) optimizer_disc = tf.train.AdamOptimizer(learning_rate=learning_rate) # Training Variables for each optimizer # By default in TensorFlow, all variables are updated by each optimizer, so we # need to precise for each one of them the specific variables to update. # Generator Network Variables ''' 下面几行初始化变量 ''' gen_vars = [weights['gen_hidden1'], weights['gen_out'], biases['gen_hidden1'], biases['gen_out']] # Discriminator Network Variables disc_vars = [weights['disc_hidden1'], weights['disc_out'], biases['disc_hidden1'], biases['disc_out']] # Create training operations train_gen = optimizer_gen.minimize(gen_loss, var_list=gen_vars) train_disc = optimizer_disc.minimize(disc_loss, var_list=disc_vars) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() # Start training with tf.Session() as sess: # Run the initializer sess.run(init) for i in range(1, num_steps+1): # Prepare Data # Get the next batch of MNIST data (only images are needed, not labels) batch_x, _ = mnist.train.next_batch(batch_size) # print(batch_x.shape) 看出是(128.784)类型的.说明图像dimension是1*784类型的. # Generate noise to feed to the generator ''' 高斯噪音 ''' z = np.random.uniform(-1., 1., size=[batch_size, noise_dim]) # Train feed_dict = {disc_input: batch_x, gen_input: z} ''' sess里面run 最后的optimizer即可. ''' _, _, gl, dl = sess.run([train_gen, train_disc, gen_loss, disc_loss], feed_dict=feed_dict) if i % 1000 == 0 or i == 1: print('Step %i: Generator Loss: %f, Discriminator Loss: %f' % (i, gl, dl)) print('33333333333333333') # Generate images from noise, using the generator network. f, a = plt.subplots(4, 10, figsize=(10, 4)) print('11111111111111') for i in range(10): # Noise input. z = np.random.uniform(-1., 1., size=[4, noise_dim]) g = sess.run([gen_sample], feed_dict={gen_input: z}) print('222222222') g = np.reshape(g, newshape=(4, 28, 28, 1)) print('4444444444') # Reverse colours for better display g = -1 * (g - 1) for j in range(4): # Generate image from noise. Extend to 3 channels for matplot figure. img = np.reshape(np.repeat(g[j][:, :, np.newaxis], 3, axis=2), newshape=(28, 28, 3)) a[j][i].imshow(img) print('5555555555') f.show() print('55555555551') plt.draw() print('55555555552') plt.show() # plt.waitforbuttonpress()这个代码在spyder里面跑不了,用cmd跑.这个命令主要是在ion画图模式生成动画用.
33.477612
104
0.685689
1a3f4e05d0e7d1c43ddc01b0a5a35c6e116c78fa
24,656
py
Python
conkycolors/scripts/conkyRhythmbox.py
CarryJzzZ/pithy-conky-colors
573aaa262f86ec510927ed81bc3beb25e2195a9e
[ "MIT" ]
4
2018-08-22T05:28:32.000Z
2018-08-23T06:44:17.000Z
conkycolors/scripts/conkyRhythmbox.py
CarryJzzZ/pithy-conky-colors
573aaa262f86ec510927ed81bc3beb25e2195a9e
[ "MIT" ]
null
null
null
conkycolors/scripts/conkyRhythmbox.py
CarryJzzZ/pithy-conky-colors
573aaa262f86ec510927ed81bc3beb25e2195a9e
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ############################################################################### # conkyRhythmbox.py is a simple python script to gather # details of from Rhythmbox for use in conky. # # Author: Kaivalagi # Created: 23/09/2008 from datetime import datetime from optparse import OptionParser import sys import traceback import codecs import os import shutil import urllib try: import dbus DBUS_AVAIL = True except ImportError: # Dummy D-Bus library class _Connection: get_object = lambda *a: object() class _Interface: __init__ = lambda *a: None ListNames = lambda *a: [] class Dummy: pass dbus = Dummy() dbus.Interface = _Interface dbus.service = Dummy() dbus.service.method = lambda *a: lambda f: f dbus.service.Object = object dbus.SessionBus = _Connection DBUS_AVAIL = False class CommandLineParser: parser = None def __init__(self): self.parser = OptionParser() self.parser.add_option("-t", "--template", dest="template", type="string", metavar="FILE", help=u"define a template file to generate output in one call. A displayable item in the file is in the form [--datatype=TI]. The following are possible options within each item: --datatype,--ratingchar. Note that the short forms of the options are not currently supported! None of these options are applicable at command line when using templates.") self.parser.add_option("-d", "--datatype", dest="datatype", default="TI", type="string", metavar="DATATYPE", help=u"[default: %default] The data type options are: ST (status), CA (coverart), TI (title), AL (album), AR (artist), GE (genre), YR (year), TN (track number), FN (file name), BR (bitrate k/s), LE (length), PP (current position in percent), PT (current position in time), VO (volume), RT (rating). Not applicable at command line when using templates.") self.parser.add_option("-c", "--coverartpath", dest="coverartpath", default="/tmp/cover", type="string", metavar="PATH", help=u"[default: %default] The file where coverart gets copied to if found when using the --datatype=CA option. Note that if set to an empty string i.e. \"\" the original file path is provided for the coverart path.") self.parser.add_option("-r", "--ratingchar", dest="ratingchar", default="*", type="string", metavar="CHAR", help=u"[default: %default] The output character for the ratings scale. Command line option overridden if used in templates.") self.parser.add_option("-s", "--statustext", dest="statustext", default="Playing,Paused,Stopped", type="string", metavar="TEXT", help=u"[default: %default] The text must be comma delimited in the form 'A,B,C'. Command line option overridden if used in templates.") self.parser.add_option("-n", "--nounknownoutput", dest="nounknownoutput", default=False, action="store_true", help=u"Turn off unknown output such as \"Unknown\" for title and \"0:00\" for length. Command line option overridden if used in templates.") self.parser.add_option("-S", "--secondsoutput", dest="secondsoutput", default=False, action="store_true", help=u"Force all position and length output to be in seconds only.") self.parser.add_option("-m", "--maxlength", dest="maxlength", default="0", type="int", metavar="LENGTH", help=u"[default: %default] Define the maximum length of any datatypes output, if truncated the output ends in \"...\"") self.parser.add_option("-v", "--verbose", dest="verbose", default=False, action="store_true", help=u"Request verbose output, not a good idea when running through conky!") self.parser.add_option("-V", "--version", dest="version", default=False, action="store_true", help=u"Displays the version of the script.") self.parser.add_option("--errorlogfile", dest="errorlogfile", type="string", metavar="FILE", help=u"If a filepath is set, the script appends errors to the filepath.") self.parser.add_option("--infologfile", dest="infologfile", type="string", metavar="FILE", help=u"If a filepath is set, the script appends info to the filepath.") def parse_args(self): (options, args) = self.parser.parse_args() return (options, args) def print_help(self): return self.parser.print_help() class MusicData: def __init__(self,status,coverart,title,album,length,artist,tracknumber,genre,year,filename,bitrate,current_position_percent,current_position,rating,volume): self.status = status self.coverart = coverart self.title = title self.album = album self.length = length self.artist = artist self.tracknumber = tracknumber self.genre = genre self.year = year self.filename = filename self.bitrate = bitrate self.current_position_percent = current_position_percent self.current_position = current_position self.rating = rating self.volume = volume class RhythmboxInfo: error = u"" musicData = None def __init__(self, options): self.options = options def testDBus(self, bus, interface): obj = bus.get_object('org.freedesktop.DBus', '/org/freedesktop/DBus') dbus_iface = dbus.Interface(obj, 'org.freedesktop.DBus') avail = dbus_iface.ListNames() return interface in avail def getOutputData(self, datatype, ratingchar, statustext, nounknownoutput, maxlength): output = u"" if nounknownoutput == True: unknown_time = "" unknown_number = "" unknown_string = "" else: unknown_time = "0:00" unknown_number = "0" unknown_string = "Unknown" try: bus = dbus.SessionBus() if self.musicData == None: if self.testDBus(bus, 'org.gnome.Rhythmbox'): self.logInfo("Calling dbus interface for music data") try: self.logInfo("Setting up dbus interface") # setup dbus hooks remote_object_shell = bus.get_object('org.gnome.Rhythmbox', '/org/gnome/Rhythmbox/Shell') iface_shell = dbus.Interface(remote_object_shell, 'org.gnome.Rhythmbox.Shell') remote_object_player = bus.get_object('org.gnome.Rhythmbox', '/org/gnome/Rhythmbox/Player') iface_player = dbus.Interface(remote_object_player, 'org.gnome.Rhythmbox.Player') self.logInfo("Calling dbus interface for music data") # prepare song properties for data retrieval volume = str(int(100*iface_player.getVolume())) uri = iface_player.getPlayingUri() if len(uri) == 0: status = self.getStatusText("stopped", statustext) self.musicData = MusicData(status,None,None,None,None,None,None,None,None,None,None,None,None,None,volume) else: playing = iface_player.getPlaying() if playing == True: status = self.getStatusText("playing", statustext) else: status = self.getStatusText("paused", statustext) props = iface_shell.getSongProperties(uri) #print props # grab the data into variables location = props["location"] # handle a file or stream differently for filename if location.find("file://") != -1: filename = location[location.rfind("/")+1:] elif len(location) > 0: filename = location else: filename = "" # try to get all the normal stuff...the props return an empty string if nothing is available title = props["title"] # if stream song title then use that too (internet radio) if "rb:stream-song-title" in props: title = props["rb:stream-song-title"] + " (" + title + ")" album = props["album"] artist = props["artist"] year = str(props["year"]) tracknumber = str(props["track-number"]) bitrate = str(props["bitrate"])+"k/s" if year == "0": year = "?" if tracknumber == "0": tracknumber = "?" # get coverart url or file link coverart = "" if "rb:coverArt-uri" in props: coverart = props["rb:coverArt-uri"] if coverart.find("http://") != -1: coverart = "" else: coverart = urllib.unquote(coverart).replace("file://","") # common details genre = props["genre"] length_seconds = int(props["duration"]) current_seconds = int(iface_player.getElapsed()) if length_seconds > 0: current_position_percent = str(int((float(current_seconds) / float(props["duration"]))*100)) else: length_seconds = 0 current_position_percent = "0" if self.options.secondsoutput == True: length = str(length_seconds) current_position = str(current_seconds) else: length = str(length_seconds/60).rjust(1,"0")+":"+str(length_seconds%60).rjust(2,"0") current_position = str(int(current_seconds/60)).rjust(1,"0")+":"+str(int(current_seconds%60)).rjust(2,"0") rating = str(int(props["rating"])) self.musicData = MusicData(status,coverart,title,album,length,artist,tracknumber,genre,year,filename,bitrate,current_position_percent,current_position,rating,volume) except Exception, e: self.logError("Issue calling the dbus service:"+e.__str__()) if self.musicData != None: self.logInfo("Preparing output for datatype:"+datatype) if datatype == "ST": #status if self.musicData.status == None or len(self.musicData.status) == 0: output = None else: output = self.musicData.status elif datatype == "CA": #coverart if self.musicData.coverart == None or len(self.musicData.coverart) == 0: output = None else: self.logInfo("Copying coverart from %s to %s"%(self.musicData.coverart, self.options.coverartpath)) shutil.copy(self.musicData.coverart, self.options.coverartpath) self.musicData.coverart = self.options.coverartpath output = self.musicData.coverart elif datatype == "TI": #title if self.musicData.title == None or len(self.musicData.title) == 0: output = None else: output = self.musicData.title elif datatype == "AL": #album if self.musicData.album == None or len(self.musicData.album) == 0: output = None else: output = self.musicData.album elif datatype == "AR": #artist if self.musicData.artist == None or len(self.musicData.artist) == 0: output = None else: output = self.musicData.artist elif datatype == "TN": #tracknumber if self.musicData.tracknumber == None or len(self.musicData.tracknumber) == 0: output = None else: output = self.musicData.tracknumber elif datatype == "GE": #genre if self.musicData.title == genre or len(self.musicData.genre) == 0: output = None else: output = self.musicData.genre elif datatype == "YR": #year if self.musicData.year == None or len(self.musicData.year) == 0: output = None else: output = self.musicData.year elif datatype == "FN": #filename if self.musicData.filename == None or len(self.musicData.filename) == 0: output = None else: output = self.musicData.filename elif datatype == "BR": #bitrate if self.musicData.bitrate == None or len(self.musicData.bitrate) == 0: output = None else: output = self.musicData.bitrate elif datatype == "LE": # length if self.musicData.length == None or len(self.musicData.length) == 0: output = None else: output = self.musicData.length elif datatype == "PP": #current position in percent if self.musicData.current_position_percent == None or len(self.musicData.current_position_percent) == 0: output = None else: output = self.musicData.current_position_percent elif datatype == "PT": #current position in time if self.musicData.current_position == None or len(self.musicData.current_position) == 0: output = None else: output = self.musicData.current_position elif datatype == "VO": #volume if self.musicData.volume == None or len(self.musicData.volume) == 0: output = None else: output = self.musicData.volume elif datatype == "RT": #rating if self.musicData.rating == None or self.isNumeric(self.musicData.rating) == False: output = None else: rating = int(self.musicData.rating) if rating > 0: output = u"".ljust(rating,ratingchar) elif rating == 0: output = u"" else: output = None else: self.logError("Unknown datatype provided: " + datatype) return u"" if output == None or self.musicData == None: if datatype in ["LE","PT"]: if self.options.secondsoutput == True: output = unknown_number else: output = unknown_time elif datatype in ["PP","VO","YR","TN"]: output = unknown_number elif datatype == "CA": output = "" else: output = unknown_string if maxlength > 0 and len(output) > maxlength: output = output[:maxlength-3]+"..." return output except SystemExit: self.logError("System Exit!") return u"" except Exception, e: traceback.print_exc() self.logError("Unknown error when calling getOutputData:" + e.__str__()) return u"" def getStatusText(self, status, statustext): if status != None: statustextparts = statustext.split(",") if status == "playing": return statustextparts[0] elif status == "paused": return statustextparts[1] elif status == "stopped": return statustextparts[2] else: return status def getTemplateItemOutput(self, template_text): # keys to template data DATATYPE_KEY = "datatype" RATINGCHAR_KEY = "ratingchar" STATUSTEXT_KEY = "statustext" NOUNKNOWNOUTPUT_KEY = "nounknownoutput" MAXLENGTH_KEY = "maxlength" datatype = None ratingchar = self.options.ratingchar #default to command line option statustext = self.options.statustext #default to command line option nounknownoutput = self.options.nounknownoutput #default to command line option maxlength = self.options.maxlength #default to command line option for option in template_text.split('--'): if len(option) == 0 or option.isspace(): continue # not using split here...it can't assign both key and value in one call, this should be faster x = option.find('=') if (x != -1): key = option[:x].strip() value = option[x + 1:].strip() if value == "": value = None else: key = option.strip() value = None try: if key == DATATYPE_KEY: datatype = value elif key == RATINGCHAR_KEY: ratingchar = value elif key == STATUSTEXT_KEY: statustext = value elif key == NOUNKNOWNOUTPUT_KEY: nounknownoutput = True elif key == MAXLENGTH_KEY: maxlength = int(value) else: self.logError("Unknown template option: " + option) except (TypeError, ValueError): self.logError("Cannot convert option argument to number: " + option) return u"" if datatype != None: return self.getOutputData(datatype, ratingchar, statustext, nounknownoutput, maxlength) else: self.logError("Template item does not have datatype defined") return u"" def getOutputFromTemplate(self, template): output = u"" end = False a = 0 # a and b are indexes in the template string # moving from left to right the string is processed # b is index of the opening bracket and a of the closing bracket # everything between b and a is a template that needs to be parsed while not end: b = template.find('[', a) if b == -1: b = len(template) end = True # if there is something between a and b, append it straight to output if b > a: output += template[a : b] # check for the escape char (if we are not at the end) if template[b - 1] == '\\' and not end: # if its there, replace it by the bracket output = output[:-1] + '[' # skip the bracket in the input string and continue from the beginning a = b + 1 continue if end: break a = template.find(']', b) if a == -1: self.logError("Missing terminal bracket (]) for a template item") return u"" # if there is some template text... if a > b + 1: output += self.getTemplateItemOutput(template[b + 1 : a]) a = a + 1 return output def writeOutput(self): if self.options.template != None: #load the file try: fileinput = codecs.open(os.path.expanduser(self.options.template), encoding='utf-8') template = fileinput.read() fileinput.close() except Exception, e: self.logError("Error loading template file: " + e.__str__()) else: output = self.getOutputFromTemplate(template) else: output = self.getOutputData(self.options.datatype, self.options.ratingchar, self.options.statustext, self.options.nounknownoutput, self.options.maxlength) print output.encode("utf-8") def isNumeric(self,value): try: temp = int(value) return True except: return False def logInfo(self, text): if self.options.verbose == True: print >> sys.stdout, "INFO: " + text if self.options.infologfile != None: datetimestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") fileoutput = open(self.options.infologfile, "ab") fileoutput.write(datetimestamp+" INFO: "+text+"\n") fileoutput.close() def logError(self, text): print >> sys.stderr, "ERROR: " + text if self.options.errorlogfile != None: datetimestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") fileoutput = open(self.options.errorlogfile, "ab") fileoutput.write(datetimestamp+" ERROR: "+text+"\n") fileoutput.close() def main(): parser = CommandLineParser() (options, args) = parser.parse_args() if options.version == True: print >> sys.stdout,"conkyRhythmbox v.2.17" else: if options.verbose == True: print >> sys.stdout, "*** INITIAL OPTIONS:" print >> sys.stdout, " datatype:", options.datatype print >> sys.stdout, " template:", options.template print >> sys.stdout, " ratingchar:", options.ratingchar print >> sys.stdout, " nounknownoutput:", options.nounknownoutput print >> sys.stdout, " secondsoutput:", options.secondsoutput print >> sys.stdout, " maxlength:", options.maxlength print >> sys.stdout, " verbose:", options.verbose print >> sys.stdout, " errorlogfile:",options.errorlogfile print >> sys.stdout, " infologfile:",options.infologfile rhythmboxinfo = RhythmboxInfo(options) rhythmboxinfo.writeOutput() if __name__ == '__main__': main() sys.exit()
46.96381
470
0.495539
5e22663fd5063c30fa9d38192f940bb174319f4c
888
py
Python
tests/cloud_operations/dns_fine_grained_iam/test_plan.py
00inboxtest/cloud-foundation-fabric
ee25965c895aa4bc3f62090a08b797d45b82d178
[ "Apache-2.0" ]
null
null
null
tests/cloud_operations/dns_fine_grained_iam/test_plan.py
00inboxtest/cloud-foundation-fabric
ee25965c895aa4bc3f62090a08b797d45b82d178
[ "Apache-2.0" ]
null
null
null
tests/cloud_operations/dns_fine_grained_iam/test_plan.py
00inboxtest/cloud-foundation-fabric
ee25965c895aa4bc3f62090a08b797d45b82d178
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest FIXTURES_DIR = os.path.join(os.path.dirname(__file__), 'fixture') def test_resources(e2e_plan_runner): "Test that plan works and the numbers of resources is as expected." modules, resources = e2e_plan_runner(FIXTURES_DIR) assert len(modules) == 8 assert len(resources) == 25
31.714286
74
0.757883
2f710c6cb25795b9ebe2abc7ba6739c8a0fb5a46
629
py
Python
main/migrations/0002_auto_20210817_1406.py
Mneimoh/gestionimmo
b6c631b198537b04e07eaa59b48b2b24f9d2ee0d
[ "MIT" ]
null
null
null
main/migrations/0002_auto_20210817_1406.py
Mneimoh/gestionimmo
b6c631b198537b04e07eaa59b48b2b24f9d2ee0d
[ "MIT" ]
null
null
null
main/migrations/0002_auto_20210817_1406.py
Mneimoh/gestionimmo
b6c631b198537b04e07eaa59b48b2b24f9d2ee0d
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-08-17 21:06 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('main', '0001_initial'), ] operations = [ migrations.AddField( model_name='dossier', name='Paiement', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='main.paiement'), ), migrations.AddField( model_name='paiement', name='uid', field=models.IntegerField(null=True), ), ]
25.16
124
0.600954
7a542a1b120079a9e3ceb28de56c671c182ef69d
5,134
py
Python
venv/lib/python3.8/site-packages/docs/conf.py
OscarJHernandez/qc_portfolio_optimization
30f0e27689ad6bf37fb87880c2813a5b9858608d
[ "Apache-2.0" ]
15
2020-06-29T08:33:39.000Z
2022-02-12T00:28:51.000Z
venv/lib/python3.8/site-packages/docs/conf.py
OscarJHernandez/qc_mentorship_project
30f0e27689ad6bf37fb87880c2813a5b9858608d
[ "Apache-2.0" ]
4
2020-11-27T09:34:13.000Z
2021-04-30T21:13:41.000Z
venv/lib/python3.8/site-packages/docs/conf.py
OscarJHernandez/qc_mentorship_project
30f0e27689ad6bf37fb87880c2813a5b9858608d
[ "Apache-2.0" ]
11
2020-06-29T08:40:24.000Z
2022-02-24T17:39:16.000Z
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) """ Sphinx documentation builder """ import os # Set env flag so that we can doc functions that may otherwise not be loaded # see for example interactive visualizations in qiskit.visualization. os.environ['QISKIT_DOCS'] = 'TRUE' # -- Project information ----------------------------------------------------- project = 'Qiskit Ignis' copyright = '2019, Qiskit Development Team' # pylint: disable=redefined-builtin author = 'Qiskit Development Team' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.5.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.napoleon', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.extlinks', 'sphinx_tabs.tabs', 'jupyter_sphinx', 'sphinx_autodoc_typehints', 'reno.sphinxext', 'IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive', ] html_static_path = ['_static'] templates_path = ['_templates'] html_css_files = [ 'style.css', ] # ----------------------------------------------------------------------------- # Autosummary # ----------------------------------------------------------------------------- autosummary_generate = True # ----------------------------------------------------------------------------- # Autodoc # ----------------------------------------------------------------------------- autodoc_default_options = { 'inherited-members': None, } # If true, figures, tables and code-blocks are automatically numbered if they # have a caption. numfig = True # A dictionary mapping 'figure', 'table', 'code-block' and 'section' to # strings that are used for format of figure numbers. As a special character, # %s will be replaced to figure number. numfig_format = { 'table': 'Table %s' } # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'colorful' # A boolean that decides whether module names are prepended to all object names # (for object types where a “module” of some kind is defined), e.g. for # py:function directives. add_module_names = False # A list of prefixes that are ignored for sorting the Python module index # (e.g., if this is set to ['foo.'], then foo.bar is shown under B, not F). # This can be handy if you document a project that consists of a single # package. Works only for the HTML builder currently. modindex_common_prefix = ['qiskit.'] # -- Configuration for extlinks extension ------------------------------------ # Refer to https://www.sphinx-doc.org/en/master/usage/extensions/extlinks.html # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # use the theme in subdir 'theme' html_logo = 'images/logo.png' #html_sidebars = {'**': ['globaltoc.html']} html_last_updated_fmt = '%Y/%m/%d' html_theme_options = { 'logo_only': True, 'display_version': True, 'prev_next_buttons_location': 'bottom', 'style_external_links': True, 'style_nav_header_background': '#212121', } autoclass_content = 'both'
33.122581
80
0.652513
81b09ea05170b1ac8018627908439318d68c4eab
1,643
py
Python
tests/unit/test_extract_email.py
georgettica/URLExtract
638c0e2d4d8fec077b13b0eefb2c96ffaee112be
[ "MIT" ]
184
2017-03-05T22:17:14.000Z
2022-03-02T22:45:54.000Z
tests/unit/test_extract_email.py
georgettica/URLExtract
638c0e2d4d8fec077b13b0eefb2c96ffaee112be
[ "MIT" ]
93
2017-03-20T21:58:55.000Z
2022-03-16T20:09:37.000Z
tests/unit/test_extract_email.py
georgettica/URLExtract
638c0e2d4d8fec077b13b0eefb2c96ffaee112be
[ "MIT" ]
55
2017-03-19T23:35:36.000Z
2022-03-14T02:58:38.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ .. Licence MIT .. codeauthor:: Jan Lipovský <janlipovsky@gmail.com>, janlipovsky.cz """ import pytest @pytest.mark.parametrize( "text, expected", [ ( "URI with User info in Authority ftp://jan@example.com:123/test", ["ftp://jan@example.com:123/test"], ), ("<email@address.net>", []), ("Do not extract emails by default jan@example.com", []), ], ) def test_extract_email_disabled(urlextract, text, expected): """ Testing find_urls *NOT* returning email addresses from text :param fixture urlextract: fixture holding URLExtract object :param str text: text in which we should find links :param list(str) expected: list of URLs that has to be found in text """ assert expected == urlextract.find_urls(text) @pytest.mark.parametrize( "text, expected", [ ("Do not extract emails by default jan@example.com", ["jan@example.com"]), ("<email@address.net>", ["email@address.net"]), ("Given URIs are not mail jan@example.com/asdasd jan@example.com:1234", []), ("Given URIs are not mail jan@example.com?not jan@example.com#not", []), ], ) def test_extract_email_enabled(urlextract, text, expected): """ Testing find_urls returning all email addresses from text :param fixture urlextract: fixture holding URLExtract object :param str text: text in which we should find links :param list(str) expected: list of URLs that has to be found in text """ urlextract.extract_email = True assert expected == urlextract.find_urls(text)
32.215686
84
0.654291
d0bcf6e2325bf58e84217551512dbc19038223d2
1,163
py
Python
GeneralPython/PyDataStructure/multiValuedDict.py
prashantas/MyOwnR
8db4f288b30840161c6422bde7c7a7770f85c09d
[ "BSD-2-Clause" ]
null
null
null
GeneralPython/PyDataStructure/multiValuedDict.py
prashantas/MyOwnR
8db4f288b30840161c6422bde7c7a7770f85c09d
[ "BSD-2-Clause" ]
null
null
null
GeneralPython/PyDataStructure/multiValuedDict.py
prashantas/MyOwnR
8db4f288b30840161c6422bde7c7a7770f85c09d
[ "BSD-2-Clause" ]
null
null
null
#http://code.activestate.com/recipes/52219-associating-multiple-values-with-each-key-in-a-dic/ #https://www.oreilly.com/library/view/python-cookbook/0596001673/ch01s06.html def repeatedValue(): # this method allows duplicate values for the same key d = dict() # To add a key->value pair, do this: #d.setdefault(key, []).append(value) d.setdefault('a',[]).append('apple') d.setdefault('b',[]).append('ball') d.setdefault('c',[]).append('cat') d.setdefault('a',[]).append('aeroplane') d.setdefault('a',[]).append('anar') d.setdefault('b',[]).append('balloon') #aval = d['a'] print(d) d['a'].remove('apple') print(d) def nonRepeatedValue(): example = {} example.setdefault('a', set()).add('apple') example.setdefault('b', set()).add('ball') example.setdefault('a', set()).add('ant') #example.setdefault('a', set()).add('apple') #example.setdefault('c', {})['cat']=1 #example.setdefault('a', {})['ant']=1 #example.setdefault('a', {})['apple']=1 print(example) d = example['a'] print(d) if __name__ == '__main__': #repeatedValue() nonRepeatedValue()
27.046512
94
0.607051