hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
e5d4e890453ea8e5fbfe2ebf50562df166f5e0a9
81
py
Python
SimPEG/utils/codeutils.py
jcapriot/simpeg
e88e653673c6b818592b6c075f76ee9215fe82b7
[ "MIT" ]
1
2021-08-07T13:50:54.000Z
2021-08-07T13:50:54.000Z
SimPEG/utils/codeutils.py
jcapriot/simpeg
e88e653673c6b818592b6c075f76ee9215fe82b7
[ "MIT" ]
null
null
null
SimPEG/utils/codeutils.py
jcapriot/simpeg
e88e653673c6b818592b6c075f76ee9215fe82b7
[ "MIT" ]
1
2021-01-05T18:16:54.000Z
2021-01-05T18:16:54.000Z
from .code_utils import * deprecate_module("codeutils", "code_utils", "0.15.0")
20.25
53
0.728395
b6aa8e7f83f7945189678e3be7661d376ffdb8e6
1,629
py
Python
python_project_template/__main__.py
bonginc/python-project-template
44a9fc82f682f8af3e2fb0a0d360845d0eb8e1c4
[ "Unlicense" ]
null
null
null
python_project_template/__main__.py
bonginc/python-project-template
44a9fc82f682f8af3e2fb0a0d360845d0eb8e1c4
[ "Unlicense" ]
null
null
null
python_project_template/__main__.py
bonginc/python-project-template
44a9fc82f682f8af3e2fb0a0d360845d0eb8e1c4
[ "Unlicense" ]
null
null
null
import argparse # pragma: no cover from . import BaseClass, base_function # pragma: no cover def main() -> None: # pragma: no cover """ The main function executes on commands: `python -m python_project_template` and `$ python_project_template `. This is your program's entry point. You can change this function to do whatever you want. Examples: * Run a test suite * Run a server * Do some other stuff * Run a command line application (Click, Typer, ArgParse) * List all available tasks * Run an application (Flask, FastAPI, Django, etc.) """ parser = argparse.ArgumentParser( description="python_project_template.", epilog="Enjoy the python_project_template functionality!", ) # This is required positional argument parser.add_argument( "name", type=str, help="The username", default="bonginc", ) # This is optional named argument parser.add_argument( "-m", "--message", type=str, help="The Message", default="Hello", required=False, ) parser.add_argument( "-v", "--verbose", action="store_true", help="Optionally adds verbosity", ) args = parser.parse_args() print(f"{args.message} {args.name}!") if args.verbose: print("Verbose mode is on.") print("Executing main function") base = BaseClass() print(base.base_method()) print(base_function()) print("End of main function") if __name__ == "__main__": # pragma: no cover main()
26.274194
73
0.605893
e9f0f292ee2a55f5c2bf5289530cbd8afeb12c80
4,100
py
Python
synapse/util/httpresourcetree.py
TheJJ/synapse
1032393dfb0c865fc540539dfe649e7b1a32037a
[ "Apache-2.0" ]
null
null
null
synapse/util/httpresourcetree.py
TheJJ/synapse
1032393dfb0c865fc540539dfe649e7b1a32037a
[ "Apache-2.0" ]
null
null
null
synapse/util/httpresourcetree.py
TheJJ/synapse
1032393dfb0c865fc540539dfe649e7b1a32037a
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from twisted.web.resource import NoResource import logging logger = logging.getLogger(__name__) def create_resource_tree(desired_tree, root_resource): """Create the resource tree for this Home Server. This in unduly complicated because Twisted does not support putting child resources more than 1 level deep at a time. Args: web_client (bool): True to enable the web client. root_resource (twisted.web.resource.Resource): The root resource to add the tree to. Returns: twisted.web.resource.Resource: the ``root_resource`` with a tree of child resources added to it. """ # ideally we'd just use getChild and putChild but getChild doesn't work # unless you give it a Request object IN ADDITION to the name :/ So # instead, we'll store a copy of this mapping so we can actually add # extra resources to existing nodes. See self._resource_id for the key. resource_mappings = {} for full_path, res in desired_tree.items(): # twisted requires all resources to be bytes full_path = full_path.encode("utf-8") logger.info("Attaching %s to path %s", res, full_path) last_resource = root_resource for path_seg in full_path.split(b'/')[1:-1]: if path_seg not in last_resource.listNames(): # resource doesn't exist, so make a "dummy resource" child_resource = NoResource() last_resource.putChild(path_seg, child_resource) res_id = _resource_id(last_resource, path_seg) resource_mappings[res_id] = child_resource last_resource = child_resource else: # we have an existing Resource, use that instead. res_id = _resource_id(last_resource, path_seg) last_resource = resource_mappings[res_id] # =========================== # now attach the actual desired resource last_path_seg = full_path.split(b'/')[-1] # if there is already a resource here, thieve its children and # replace it res_id = _resource_id(last_resource, last_path_seg) if res_id in resource_mappings: # there is a dummy resource at this path already, which needs # to be replaced with the desired resource. existing_dummy_resource = resource_mappings[res_id] for child_name in existing_dummy_resource.listNames(): child_res_id = _resource_id( existing_dummy_resource, child_name ) child_resource = resource_mappings[child_res_id] # steal the children res.putChild(child_name, child_resource) # finally, insert the desired resource in the right place last_resource.putChild(last_path_seg, res) res_id = _resource_id(last_resource, last_path_seg) resource_mappings[res_id] = res return root_resource def _resource_id(resource, path_seg): """Construct an arbitrary resource ID so you can retrieve the mapping later. If you want to represent resource A putChild resource B with path C, the mapping should looks like _resource_id(A,C) = B. Args: resource (Resource): The *parent* Resourceb path_seg (str): The name of the child Resource to be attached. Returns: str: A unique string which can be a key to the child Resource. """ return "%s-%s" % (resource, path_seg)
40.196078
75
0.66561
fe8ae5a09415d01a11e72d657457cf51cdcf56e7
165
py
Python
itlo/admin.py
varundey/itlo
a7b0d46aa1ce2a0163ba0deda44ee2f9ebac5039
[ "MIT" ]
1
2016-07-13T16:15:44.000Z
2016-07-13T16:15:44.000Z
itlo/admin.py
varundey/itlo
a7b0d46aa1ce2a0163ba0deda44ee2f9ebac5039
[ "MIT" ]
null
null
null
itlo/admin.py
varundey/itlo
a7b0d46aa1ce2a0163ba0deda44ee2f9ebac5039
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import State from .models import Keys # Register your models here. admin.site.register(State) admin.site.register(Keys)
27.5
32
0.812121
2fc6374cc3d28df0445ba7399bf6f32d405422a2
444
py
Python
addons/mail/wizard/mail_blacklist_remove.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/mail/wizard/mail_blacklist_remove.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/mail/wizard/mail_blacklist_remove.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from odoo import fields, models class MailBlacklistRemove(models.TransientModel): _name = 'mail.blacklist.remove' _description = 'Remove email from blacklist wizard' email = fields.Char(name="Email", readonly=True, required=True) reason = fields.Char(name="Reason") def action_unblacklist_apply(self): return self.env['mail.blacklist'].action_remove_with_reason(self.email, self.reason)
29.6
92
0.722973
dc455c5d60499b8042e72a0e0291dd6cf7a6aff5
273
py
Python
test.py
Plawn/Fancy_progressbar
cda9b59475c8ce2786a46a41d06b33b4cf217f7d
[ "Apache-2.0" ]
2
2018-11-26T16:09:15.000Z
2021-01-09T14:25:35.000Z
test.py
Plawn/Fancy_progressbar
cda9b59475c8ce2786a46a41d06b33b4cf217f7d
[ "Apache-2.0" ]
null
null
null
test.py
Plawn/Fancy_progressbar
cda9b59475c8ce2786a46a41d06b33b4cf217f7d
[ "Apache-2.0" ]
null
null
null
import Fancy_progressbar as fp import random as rd import time def get_progress(): return 100 * rd.random() b = fp.ProgressBar('test', 'kill_when_finished', 'animated') b.use_progress(get_progress) bh = fp.ProgressBarHandler([b]) bh.start() time.sleep(3) b.finish()
18.2
60
0.736264
65a20553c2d44a4a3c2c0c8a7e1f6b7bce2a45a8
5,626
py
Python
kaleidoscope.py
ES-Alexander/kaleidoscope
86d367333acffbe9bfd950f03bd83a0d2b69beab
[ "MIT" ]
1
2021-02-25T04:59:17.000Z
2021-02-25T04:59:17.000Z
kaleidoscope.py
ES-Alexander/kaleidoscope
86d367333acffbe9bfd950f03bd83a0d2b69beab
[ "MIT" ]
null
null
null
kaleidoscope.py
ES-Alexander/kaleidoscope
86d367333acffbe9bfd950f03bd83a0d2b69beab
[ "MIT" ]
1
2022-01-02T17:12:32.000Z
2022-01-02T17:12:32.000Z
#!/usr/bin/env python3 import cv2 import numpy as np def core(img, N, out, r_start, r_out, c_in, c_out, scale): in_rows, in_cols = img.shape[:2] if c_in is None: c_in = (dim // 2 for dim in (in_rows, in_cols)) c_y, c_x = c_in r_start %= 2 * np.pi width = np.pi / N r_end = r_start + width if out == 'same': out = np.empty((in_rows, in_cols, 3), dtype=np.uint8) elif out == 'full': quarter = np.pi / 2 r_mid = (r_start + r_end) / 2 if 0 <= r_mid < quarter: dy = in_rows - c_y dx = in_cols - c_x elif quarter <= r_mid <= 2 * quarter: dy = in_rows - c_y dx = c_x elif 2 * quarter <= r_mid <= 3 * quarter: dy = c_y dx = c_x else: dy = c_y dx = in_cols - c_x s = int(np.ceil(2 * np.sqrt(dx*dx + dy*dy) * scale)) out = np.empty((s, s, 3), dtype=np.uint8) else: out = np.empty((out, out, 3), dtype=np.uint8) out_rows, out_cols = out.shape[:2] if c_out is None: c_out = (dim // 2 for dim in (out_rows, out_cols)) co_y, co_x = c_out # create sample points and offset to center of output image Xp, Yp = np.meshgrid(np.arange(out_cols), np.arange(out_rows)) Xp -= co_x Yp -= co_y # calculate magnitude and angle of each sample point in input image mag_p = np.sqrt(Xp*Xp + Yp*Yp) / scale theta_p = np.abs(((np.arctan2(Xp, Yp) - r_out) % (2 * width)) - width) \ + r_start # convert to cartesian sample points in input image, offset by c_in Y = (mag_p * np.sin(theta_p) + c_y).astype(np.int64) X = (mag_p * np.cos(theta_p) + c_x).astype(np.int64) # set outside valid region pixels to black (avoid index error) # temporarily use pixel [0,0] of input image old = img[0,0].copy() img[0,0] = (0, 0, 0) bad = (Y < 0) | (Y >= in_rows) | (X < 0) | (X >= in_cols) Y[bad] = 0 X[bad] = 0 # sample input image to set each pixel of out out[:] = img[Y, X] img[0,0] = old # restore input [0,0] to its initial value return out, c_x, c_y, r_start, r_end def add_annotation(img, c_x, c_y, r_start, r_end): in_rows, in_cols = img.shape[:2] # draw a circle at the input c_in cv2.circle(img, (c_x, c_y), 10, (0,0,255), 2) # draw lines from c_in to display sample region in input image l = min(max(c_x, in_cols-c_x), max(c_y, in_rows-c_y)) / 3 cv2.line(img, (c_x, c_y), (int(c_x + l*np.cos(r_start)), int(c_y + l*np.sin(r_start))), (255,0,0), 2) cv2.line(img, (c_x, c_y), (int(c_x + l * np.cos(r_end)), int(c_y + l * np.sin(r_end))), (0,255,0), 2) def kaleido(img, N=10, out='same', r_start=0, r_out=0, c_in=None, c_out=None, scale=1, annotate=False): ''' Return a kaleidoscope from img, with specified parameters. 'img' is a 3-channel uint8 numpy array of image pixels. 'N' is the number of mirrors. 'out' can be 'same', 'full', or a 3-channel uint8 array to fill. 'r_start' is the selection rotation from the input image [clock radians]. 'r_out' is the rotation of the output image result [clock radians]. 'c_in' is the origin point of the sample sector from the input image. If None defaults to the center of the input image [c_y,c_x]. 'c_out' is the center of the kaleidoscope in the output image. If None defaults to the center point of the output image [c_y, c_x]. 'scale' is the scale of the output kaleidoscope. Default 1. 'annotate' is a boolean denoting whether to annotate the input image to display the selected region. Default True. ''' out, c_x, c_y, r_start, r_end = core(img, N, out, r_start, r_out, c_in, c_out, scale) if annotate: add_annotation(img, c_x, c_y, r_start, r_end) return out if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('-f', '--filename', default='test.png', help='path to image file') parser.add_argument('-n', type=int, default=15, help='number of mirrors') parser.add_argument('-o', '--out', default='full', choices=('same', 'full'), help='output size ' '(same as input or full kaleidoscope)') parser.add_argument('--r_start', type=float, default=0.6, help='clockwise radians rotation of input image') parser.add_argument('--r_out', type=float, default=0, help='clockwise radians rotation of output image') parser.add_argument('--c_in', nargs=2, type=int, help='c_y c_x - origin point of the sample sector from' ' the input image') parser.add_argument('--c_out', nargs=2, type=int, help='c_y c_x - center point of the kaleidoscope in ' 'the output image') parser.add_argument('-s', '--scale', type=float, default=1, help='scale of the output kaleidoscope') parser.add_argument('-a', '--annotate', action='store_true') args = parser.parse_args() image = cv2.imread(args.filename) out = kaleido(image, args.n, args.out, args.r_start, args.r_out, args.c_in, args.c_out, args.scale, args.annotate) cv2.imshow('in', image) cv2.imshow('out', out) cv2.waitKey() cv2.destroyAllWindows()
38.013514
79
0.572343
354485b6623b608a5ed68237e299682d7e9dcffe
12,233
py
Python
examples/demo_all.py
hawthorne-stephen-kelley/python-nvd3
fd5d82481500dc72a45e254b74977edcfdacf845
[ "MIT" ]
1
2019-10-03T23:29:06.000Z
2019-10-03T23:29:06.000Z
examples/demo_all.py
hawthorne-stephen-kelley/python-nvd3
fd5d82481500dc72a45e254b74977edcfdacf845
[ "MIT" ]
null
null
null
examples/demo_all.py
hawthorne-stephen-kelley/python-nvd3
fd5d82481500dc72a45e254b74977edcfdacf845
[ "MIT" ]
2
2016-12-29T04:28:38.000Z
2019-12-03T02:02:11.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- """ Examples for Python-nvd3 is a Python wrapper for NVD3 graph library. NVD3 is an attempt to build re-usable charts and chart components for d3.js without taking away the power that d3.js gives you. Project location : https://github.com/areski/python-nvd3 """ from nvd3 import cumulativeLineChart from nvd3 import discreteBarChart from nvd3 import lineChart from nvd3 import linePlusBarChart from nvd3 import lineWithFocusChart from nvd3 import multiBarChart from nvd3 import multiBarHorizontalChart from nvd3 import stackedAreaChart from nvd3 import scatterChart from nvd3 import pieChart import random import datetime import time start_time = int(time.mktime(datetime.datetime(2012, 6, 1).timetuple()) * 1000) nb_element = 100 # Open File for test output_file = open('test_demo_all.html', 'w') # --------------------------------------- html_open = """ <!DOCTYPE html> <html lang="en"> <head> <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script> <link href="https://cdnjs.cloudflare.com/ajax/libs/nvd3/1.7.1/nv.d3.min.css" rel="stylesheet" /> <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/nvd3/1.7.1/nv.d3.min.js"></script> </head> """ output_file.write(html_open) type = "discreteBarChart" chart = discreteBarChart(name='my graphname', height=400, width=800, jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") xdata = ["A", "B", "C", "D", "E", "F", "G"] ydata = [3, 12, -10, 5, 25, -7, 2] extra_serie = {"tooltip": {"y_start": "", "y_end": " cal"}} chart.add_serie(y=ydata, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "pie Chart" chart = pieChart(name=type, color_category='category20c', height=400, width=400, jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") color_list = ['orange', 'yellow', '#C5E946', '#95b43f', 'red', '#FF2259', '#F6A641'] extra_serie = {"tooltip": {"y_start": "", "y_end": " cal"}, "color_list": color_list} xdata = ["Orange", "Banana", "Pear", "Kiwi", "Apple", "Strawberry", "Pineapple"] ydata = [3, 4, 2, 1, 5, 7, 3] chart.add_serie(y=ydata, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- name = "lineChart-different-x-axis" type = "lineChart" chart = lineChart(name=name, height=400, width=800, x_is_date=False, jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + name + "</h2>\n\n") xdata = [1 + x * 2 for x in list(range(nb_element))] xdata10 = [0 + x * 2 for x in list(range(nb_element))] ydata = [i + random.randint(1, 10) for i in range(nb_element)] ydata2 = [x * 2 for x in ydata] #Configure a color for a specific serie kwargs1 = {'color': 'green'} kwargs2 = {'color': 'red'} extra_serie = {"tooltip": {"y_start": "There is ", "y_end": " odd"}} chart.add_serie(name="Odd X-Axis", y=ydata, x=xdata, extra=extra_serie, **kwargs1) extra_serie = {"tooltip": {"y_start": "", "y_end": " even"}} chart.add_serie(name="Even X-Axis", y=ydata2, x=xdata10, extra=extra_serie, **kwargs2) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "lineChart" chart = lineChart(height=400, width=800, x_is_date=True, x_axis_format="%d %b %Y %H", jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") xdata = list(range(nb_element)) xdata = [start_time + x * 1000000000 for x in xdata] ydata = [i + random.randint(1, 10) for i in range(nb_element)] ydata2 = [x * 2 for x in ydata] # Configure a color for a specific serie kwargs1 = {'color': 'green'} kwargs2 = {'color': 'red'} extra_serie = {"tooltip": {"y_start": "There is ", "y_end": " calls"}, "date_format": "%d %b %Y %I:%M:%S %p"} chart.add_serie(name="Count", y=ydata, x=xdata, extra=extra_serie, **kwargs1) extra_serie = {"tooltip": {"y_start": "", "y_end": " min"}} chart.add_serie(name="Duration", y=ydata2, x=xdata, extra=extra_serie, **kwargs2) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "lineChartWithInteractiveGuideline" chart = lineChart(name="lineChart-With-Interactive-Guideline", height=400, width=800, x_is_date=True, x_axis_format="%d %b %Y %H", jquery_on_ready=True, use_interactive_guideline=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") xdata = list(range(nb_element)) xdata = [start_time + x * 1000000000 for x in xdata] ydata = [i + random.randint(1, 10) for i in range(nb_element)] ydata2 = [x * 2 for x in ydata] # Configure a color for a specific serie kwargs1 = {'color': 'green'} kwargs2 = {'color': 'red'} extra_serie = {"tooltip": {"y_start": "There is ", "y_end": " calls"}, "date_format": "%d %b %Y %I:%M:%S %p"} chart.add_serie(name="Count", y=ydata, x=xdata, extra=extra_serie, **kwargs1) extra_serie = {"tooltip": {"y_start": "", "y_end": " min"}} chart.add_serie(name="Duration", y=ydata2, x=xdata, extra=extra_serie, **kwargs2) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "lineWithFocusChart" chart = lineWithFocusChart(color_category='category20b', x_is_date=True, height=400, width=800, x_axis_format="%d %b %Y", jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") xdata = list(range(nb_element)) xdata = [start_time + x * 1000000000 for x in xdata] ydata = [i + random.randint(-10, 10) for i in list(range(nb_element))] ydata2 = [x * 2 for x in ydata] ydata3 = [x * 3 for x in ydata] ydata4 = [x * 4 for x in ydata] extra_serie = {"tooltip": {"y_start": "There is ", "y_end": " calls"}, "date_format": "%d %b %Y %I:%M:%S"} # extra_serie = None chart.add_serie(name="serie 1", y=ydata, x=xdata, extra=extra_serie) chart.add_serie(name="serie 2", y=ydata2, x=xdata, extra=extra_serie) chart.add_serie(name="serie 3", y=ydata3, x=xdata, extra=extra_serie) chart.add_serie(name="serie 4", y=ydata4, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "stackedAreaChart" chart = stackedAreaChart(height=400, width=800, x_is_date=True, x_axis_format="%d %b %Y %I", jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") xdata = list(range(nb_element)) xdata = [start_time + x * 1000000000 for x in xdata] ydata = [i + random.randint(1, 10) for i in list(range(nb_element))] ydata2 = [x * 2 for x in ydata] extra_serie = {"tooltip": {"y_start": "There is ", "y_end": " calls"}, "date_format": "%d %b %Y %I:%M:%S %p"} chart.add_serie(name="serie 1", y=ydata, x=xdata, extra=extra_serie) chart.add_serie(name="serie 2", y=ydata2, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "linePlusBarChart" chart = linePlusBarChart(height=400, width=800, x_is_date=True, x_axis_format="%d %b %Y", jquery_on_ready=True, focus_enable=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") xdata = list(range(nb_element)) xdata = [start_time + x * 1000000000 for x in xdata] ydata = [i + random.randint(1, 10) for i in range(nb_element)] ydata2 = [i + random.randint(1, 10) for i in reversed(list(range(nb_element)))] kwargs = {} kwargs['bar'] = True extra_serie = {"tooltip": {"y_start": "$ ", "y_end": ""}} chart.add_serie(name="Count", y=ydata, x=xdata, extra=extra_serie, **kwargs) extra_serie = {"tooltip": {"y_start": "", "y_end": " min"}} chart.add_serie(name="Duration", y=ydata2, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "cumulativeLineChart" chart = cumulativeLineChart(height=400, width=800, x_is_date=True, x_axis_format="%d %b %Y", jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") xdata = list(range(nb_element)) xdata = [start_time + x * 1000000000 for x in xdata] ydata = [i + random.randint(1, 10) for i in range(nb_element)] ydata2 = [x * 2 for x in ydata] extra_serie = {"tooltip": {"y_start": "", "y_end": " Calls"}} chart.add_serie(name="Count", y=ydata, x=xdata, extra=extra_serie) extra_serie = {"tooltip": {"y_start": "", "y_end": " Min"}} chart.add_serie(name="Duration", y=ydata2, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "multiBarHorizontalChart" chart = multiBarHorizontalChart(height=400, width=800, jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") nb_element = 10 xdata = list(range(nb_element)) ydata = [random.randint(-10, 10) for i in range(nb_element)] ydata2 = [x * 2 for x in ydata] extra_serie = {"tooltip": {"y_start": "", "y_end": " Calls"}} chart.add_serie(name="Count", y=ydata, x=xdata, extra=extra_serie) extra_serie = {"tooltip": {"y_start": "", "y_end": " Min"}} chart.add_serie(name="Duration", y=ydata2, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "multiBarChart" chart = multiBarChart(height=400, width=800, jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") nb_element = 10 xdata = list(range(nb_element)) ydata = [random.randint(1, 10) for i in range(nb_element)] ydata2 = [x * 2 for x in ydata] extra_serie = {"tooltip": {"y_start": "", "y_end": " call"}} chart.add_serie(name="Count", y=ydata, x=xdata, extra=extra_serie) extra_serie = {"tooltip": {"y_start": "", "y_end": " min"}} chart.add_serie(name="Duration", y=ydata2, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "multiBarChartDate" chart = multiBarChart(name=type, height=400, width=800, x_is_date=True, jquery_on_ready=True) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") nb_element = 100 start_time = int(time.mktime(datetime.datetime(2012, 6, 1).timetuple()) * 1000) xdata = range(nb_element) xdata = map(lambda x: start_time + x * 1000000000, xdata) ydata = [i + random.randint(1, 10) for i in range(nb_element)] ydata2 = map(lambda x: x * 2, ydata) tooltip_date = "%d %b %Y %H:%M:%S %p" extra_serie = {"tooltip": {"y_start": "There are ", "y_end": " calls"}, "date_format": tooltip_date} chart.add_serie(name="Count", y=ydata, x=xdata, extra=extra_serie) extra_serie = {"tooltip": {"y_start": "There are ", "y_end": " duration"}, "date_format": tooltip_date} chart.add_serie(name="Duration", y=ydata2, x=xdata, extra=extra_serie) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- type = "scatterChart" chart = scatterChart(name=type, height=350, width=800, x_is_date=False) chart.set_containerheader("\n\n<h2>" + type + "</h2>\n\n") nb_element = 50 xdata = [i + random.randint(1, 10) for i in range(nb_element)] ydata = [i * random.randint(1, 10) for i in range(nb_element)] ydata2 = [x * 2 for x in ydata] ydata3 = [x * 5 for x in ydata] kwargs1 = {'shape': 'circle', 'size': '1'} kwargs2 = {'shape': 'cross', 'size': '10'} kwargs3 = {'shape': 'triangle-up', 'size': '100'} extra_serie = {"tooltip": {"y_start": "", "y_end": " calls"}} chart.add_serie(name="serie 1", y=ydata, x=xdata, extra=extra_serie, **kwargs1) chart.add_serie(name="serie 2", y=ydata2, x=xdata, extra=extra_serie, **kwargs2) chart.add_serie(name="serie 3", y=ydata3, x=xdata, extra=extra_serie, **kwargs3) chart.buildcontent() output_file.write(chart.htmlcontent) # --------------------------------------- html_close = """</body></html>""" output_file.write(html_close) # close Html file output_file.close()
37.182371
100
0.643015
5b52804433b33de7b899971af7c7e8683d2daafc
1,102
py
Python
2020/src/day2.py
Sujatha-Nagarajan/AdventOfCode
afce23c74fd0a72caa29c1604a582b21806e794e
[ "CC0-1.0" ]
1
2020-12-05T06:14:37.000Z
2020-12-05T06:14:37.000Z
2020/src/day2.py
Sujatha-Nagarajan/AdventOfCode
afce23c74fd0a72caa29c1604a582b21806e794e
[ "CC0-1.0" ]
null
null
null
2020/src/day2.py
Sujatha-Nagarajan/AdventOfCode
afce23c74fd0a72caa29c1604a582b21806e794e
[ "CC0-1.0" ]
null
null
null
final_valid_count_a = 0 final_valid_count_b = 0 with open("../input/day2.txt","r") as file: entries = file.readlines() for e in entries: items = e.split(' ') min_value,max_value = items[0].split('-') letter = items[1][0] password = items[2] # first puzzle # the letter should be present between min and max times in the password string count=sum(p==letter for p in password) if count >= int(min_value) and count <= int(max_value): final_valid_count_a += 1 # second puzzle # the letter should be present either in pos1 of the password or pos2 of the password # with index starting from 1 pos1,pos2 = items[0].split('-') pos1 = int(pos1) pos2 = int(pos2) if password[pos1-1] == letter: if password[pos2-1] != letter: final_valid_count_b += 1 elif password[pos2-1] == letter: final_valid_count_b += 1 print("a)", final_valid_count_a) print("b)", final_valid_count_b)
28.25641
93
0.569873
a0925733a5321e428b8a5a06fcfcb13b2cfe2edb
1,078
py
Python
mglib/wrapper.py
mohammed-Emad/mglib
22f5fd6d4a584b01d595c9cc6fffb8fe6b01597c
[ "Apache-2.0" ]
45
2021-01-10T14:33:52.000Z
2022-03-27T14:02:56.000Z
mglib/wrapper.py
mohammed-Emad/mglib
22f5fd6d4a584b01d595c9cc6fffb8fe6b01597c
[ "Apache-2.0" ]
8
2021-01-08T20:02:21.000Z
2022-02-01T13:12:24.000Z
mglib/wrapper.py
mohammed-Emad/mglib
22f5fd6d4a584b01d595c9cc6fffb8fe6b01597c
[ "Apache-2.0" ]
12
2021-01-07T20:03:07.000Z
2022-03-24T04:07:51.000Z
import logging import subprocess logger = logging.getLogger(__name__) class Wrapper: def __init__(self, exec_name, check=True, dry_run=False): self.exec_name = exec_name self.check = check, # usefull for debugging purpose self.dry_run = dry_run def get_cmd(self): cmd = [] if self.exec_name: cmd.extend([self.exec_name]) return cmd def call_no_args(self): cmd = self.get_cmd() self.run(cmd) def run(self, cmd): command_to_run = ' '.join(cmd) if (self.dry_run): logger.debug(f"Dry run: {command_to_run}") logger.debug(f"subprocess: {command_to_run}") ret = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8" ) if ret.returncode != 0: logger.error(( f"returncode={ret.returncode}" f" stdout={ret.stdout}" f" stderr={ret.stderr}" )) return ret
21.56
61
0.538033
5e30e4868679bf252840bd67adf964e277a7aa1a
3,143
py
Python
process-liuk-entities.py
timofeic/life-uk-test
9ae14d465eb44d8dc061d15772e569dc9f99197b
[ "MIT" ]
null
null
null
process-liuk-entities.py
timofeic/life-uk-test
9ae14d465eb44d8dc061d15772e569dc9f99197b
[ "MIT" ]
null
null
null
process-liuk-entities.py
timofeic/life-uk-test
9ae14d465eb44d8dc061d15772e569dc9f99197b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 import sys import csv from ast import literal_eval def checkScore(value): if 0 <= value <= 1: return True sys.exit("Invalid score, please specify a number between 0 and 1 e.g. 0.855") # Given a list of words, return a dictionary of # word-frequency pairs. # Source: https://programminghistorian.org/en/lessons/counting-frequencies def wordListToFreqDict(wordlist): wordfreq = [wordlist.count(p) for p in wordlist] return dict(zip(wordlist,wordfreq)) # Sort a dictionary of word-frequency pairs in # order of descending frequency. # Source: https://programminghistorian.org/en/lessons/counting-frequencies def sortFreqDict(freqdict): aux = [(freqdict[key], key) for key in freqdict] aux.sort() aux.reverse() return aux def main(): common_words = ['UK', 'UKCitizenshipSupport.com', 'UKCitizenshipsupport.com', 'Page', 'Chapter 1', 'Chapter 2', 'Chapter 3', 'Chapter 4', 'Chapter 5', 'United Kingdom', 'British', 'HMSO', 'www.parliament.uk'] if len(sys.argv) == 3: filename = sys.argv[1] min_score = float(sys.argv[2]) checkScore(min_score) textlist = [] print('Opening %s' % filename) lineList = [line.rstrip('\n') for line in open(filename, "r")] print(len(lineList)) # Remove last list item, since it's an errorcode from Comprehend. lineList.pop(-1) with open('liuk-entities.csv', 'w+') as csvfile: writer = csv.writer(csvfile) #Header row writer.writerow(['Text','Type','Score','File','Line Number']) for line in lineList: try: line_dict = literal_eval(line) f = line_dict["File"] line_number = line_dict["Line"] for entity in line_dict["Entities"]: score = entity["Score"] if float(score) <= min_score: break text = entity["Text"] if text in common_words: break # Create a list of texts, so that we can count the frequency textlist.append(text) t = entity["Type"] writer.writerow([text,t,score,f,line_number]) except KeyError: continue csvfile.close() print("Writing entities to file.") dictionary = wordListToFreqDict(textlist) sorteddict = sortFreqDict(dictionary) with open('liuk-entities-freqpairs.csv', 'w+') as csvfile2: writer = csv.writer(csvfile2) #Header row writer.writerow(['Frequency', 'Text']) for row in sorteddict: writer.writerow(row) csvfile2.close() else: sys.exit("Invalid number of arguments, please run with 'python process-liuk-entities.py <filename> <score>' \ where score is a floating point number between 0 and 1 e.g. 0.855") if __name__ == '__main__': main()
37.416667
117
0.571429
1658cb38883954c28c8beeb9d862867018aac0bd
1,052
py
Python
examples/response/alert_bulk_resolve.py
rathnadeep/cbapi-python
55375d8796a9d88d00bd16df13d71a2d8d76dd9c
[ "MIT" ]
3
2019-01-23T19:11:33.000Z
2022-02-25T02:06:51.000Z
examples/response/alert_bulk_resolve.py
rathnadeep/cbapi-python
55375d8796a9d88d00bd16df13d71a2d8d76dd9c
[ "MIT" ]
1
2021-03-31T19:51:07.000Z
2021-03-31T19:51:07.000Z
examples/response/alert_bulk_resolve.py
jjfallete/cbapi-python
8b92584edca5605cd94afa7656fd04c282b875b8
[ "MIT" ]
1
2022-02-25T02:06:52.000Z
2022-02-25T02:06:52.000Z
#!/usr/bin/env python import sys from cbapi.response.models import Alert from cbapi.example_helpers import build_cli_parser, get_cb_response_object import time def main(): parser = build_cli_parser("Bulk resolve alerts") parser.add_argument("--query", action="store", default="", required=True, help="The query string of alerts to resolve. All matching alerts will be resolved.") args = parser.parse_args() cb = get_cb_response_object(args) alert_query = cb.select(Alert).where("-status:Resolved") alert_query = alert_query.where(args.query) alert_count = len(alert_query) if alert_count > 0: print("Resolving {0:d} alerts...".format(len(alert_query))) alert_query.change_status("Resolved") print("Waiting for alert changes to take effect...") time.sleep(25) print("Complete. Resolved {0:d} alerts.".format(alert_count)) else: print("Congratulations! You have no unresolved alerts!") if __name__ == "__main__": sys.exit(main())
28.432432
108
0.679658
447e21655a162991588f07bc7e14884a224f23ed
2,320
py
Python
appEngine-DataStore/labs/fortune-teller/start/main.py
Federickg23/cssi-labs
b5ec2c116c0d075468e8381c6656669f22a60ab3
[ "Apache-2.0" ]
null
null
null
appEngine-DataStore/labs/fortune-teller/start/main.py
Federickg23/cssi-labs
b5ec2c116c0d075468e8381c6656669f22a60ab3
[ "Apache-2.0" ]
null
null
null
appEngine-DataStore/labs/fortune-teller/start/main.py
Federickg23/cssi-labs
b5ec2c116c0d075468e8381c6656669f22a60ab3
[ "Apache-2.0" ]
1
2018-07-21T00:09:06.000Z
2018-07-21T00:09:06.000Z
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import webapp2 import os import random def get_fortune(): #add a list of fortunes to the empty fortune_list array fortune_list=['fortune1', 'fortune2'] #use the random library to return a random element from the array random_fortune = return(random_fortune) #remember, you can get this by searching for jinja2 google app engine jinja_current_directory = "insert jinja2 environment variable here" class FortuneHandler(webapp2.RequestHandler): def get(self): # In part 2, instead of returning this string, # make a function call that returns a random fortune. self.response.write('a response from the FortuneHandler') #add a post method #def post(self): class HelloHandler(webapp2.RequestHandler): def get(self): self.response.write('Hello World. Welcome to the root route of my app') #the route mapping app = webapp2.WSGIApplication([ #this line routes the main url ('/') - also know as #the root route - to the Fortune Handler ('/', HelloHandler), ('/predict', FortuneHandler) #maps '/predict' to the FortuneHandler ], debug=True)
34.117647
79
0.734052
862e7b5bc59d3baa59e973e204700047da0f4260
7,330
py
Python
python/tvm/topi/cuda/dense.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
1
2022-03-06T04:01:26.000Z
2022-03-06T04:01:26.000Z
python/tvm/topi/cuda/dense.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
6
2022-03-23T14:15:51.000Z
2022-03-31T14:35:57.000Z
python/tvm/topi/cuda/dense.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Schedule for dense operator""" import logging import tvm from tvm import te import tvm.autotvm as autotvm from tvm.contrib import cublas from .tensor_intrin import dp4a from .. import tag from .. import generic from ..utils import traverse_inline, get_const_tuple logger = logging.getLogger("topi") def _matmul_cublas_common( cfg, tensor_a, tensor_b, bias=None, out_dtype=None, transpose_a=False, transpose_b=False, ): assert len(tensor_a.shape) == 2 and len(tensor_b.shape) == 2, "only support 2-dim matmul" if bias is not None: assert len(bias.shape) == 1 if out_dtype is None: out_dtype = tensor_a.dtype if out_dtype not in [tensor_a.dtype, "int32"]: assert out_dtype == tensor_a.dtype, "Mixed precision other than int8 + int32 not supported." batch, in_dim = get_const_tuple(tensor_a.shape) out_dim, _ = get_const_tuple(tensor_b.shape) matmul = cublas.matmul(tensor_a, tensor_b, transpose_a, transpose_b, dtype=out_dtype) if all(isinstance(d, int) for d in [batch, in_dim, out_dim]): cfg.add_flop(batch * in_dim * out_dim * 2) if bias is not None: matmul = te.compute( (batch, out_dim), lambda i, j: matmul[i, j] + bias[j], tag=tag.BROADCAST ) return matmul @autotvm.register_topi_compute("matmul_cublas.cuda") def matmul_cublas( cfg, tensor_a, tensor_b, bias=None, out_dtype=None, transpose_a=False, transpose_b=False, ): """Matmul operator on CUDA with CUBLAS""" return _matmul_cublas_common(cfg, tensor_a, tensor_b, bias, out_dtype, transpose_a, transpose_b) @autotvm.register_topi_schedule("matmul_cublas.cuda") def schedule_matmul_cublas(_, outs): """Schedule matmul operator using CUBLAS""" return generic.schedule_extern(outs) @autotvm.register_topi_compute("dense_cublas.cuda") def dense_cublas(cfg, data, weight, bias=None, out_dtype=None): """Dense operator on CUDA with CUBLAS. This is an alias of matmul_nt operator.""" return _matmul_cublas_common(cfg, data, weight, bias, out_dtype, False, True) @autotvm.register_topi_schedule("dense_cublas.cuda") def schedule_dense_cublas(_, outs): """Schedule dense operator using CUBLAS""" return generic.schedule_extern(outs) @autotvm.register_topi_compute("dense_int8.cuda") def dense_int8(cfg, data, weight, bias=None, out_dtype=None): """Dense operator for int8 on CUDA""" if out_dtype is None: out_dtype = data.dtype batch, in_dim = get_const_tuple(data.shape) out_dim, _ = get_const_tuple(weight.shape) k = te.reduce_axis((0, in_dim), name="k") matmul = te.compute( (batch, out_dim), lambda i, j: te.sum( data[i, k].astype(out_dtype) * weight[j, k].astype(out_dtype), axis=[k] ), tag="dense_int8", ) cfg.add_flop(batch * in_dim * out_dim * 2) if bias is not None: matmul = te.compute( (batch, out_dim), lambda i, j: matmul[i, j] + bias[j].astype(out_dtype), tag=tag.BROADCAST, ) cfg.add_flop(batch * out_dim) return matmul @autotvm.register_topi_schedule("dense_int8.cuda") def schedule_dense_int8(cfg, outs): """Dense schedule for int8 on CUDA""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if "dense_int8" in op.tag: _schedule_dense_int8(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_dense_int8(cfg, s, output): data, weight = s[output].op.input_tensors if len(weight.op.input_tensors) == 1 and weight.op.input_tensors[0] == data: s[weight].compute_inline() batch, in_dim = get_const_tuple(data.shape) out_dim, _ = get_const_tuple(weight.shape) in_dim_factor = 4 assert in_dim % in_dim_factor == 0, "Input dimension must divide {}".format(in_dim_factor) if in_dim % 16 == 0: in_dim_factor = 16 # create tuning space cfg.define_split("tile_y", batch, num_outputs=4) cfg.define_split("tile_x", out_dim, num_outputs=4) cfg.define_split("tile_k", in_dim // in_dim_factor, num_outputs=2) cfg.define_knob("auto_unroll_max_step", [0, 512, 1500]) # create cache stage AA = s.cache_read(data, "shared", [output]) WW = s.cache_read(weight, "shared", [output]) CC = s.cache_write(output, "local") # handle bias if output.op not in s.outputs: s[output].compute_inline() output = s.outputs[0].output(0) n, x = s[output].op.axis # this is the scope to attach global config inside this kernel kernel_scope, n = s[output].split(n, nparts=1) ko = CC.op.reduce_axis[0] ko, ki = s[CC].split(ko, factor=4) ko, kt = cfg["tile_k"].apply(s, CC, ko) target = tvm.target.Target.current(allow_none=False) do_tensorize = True if "vulkan" in target.keys: do_tensorize = "+dotprod" in target.mattr or target.supports_integer_dot_product if do_tensorize: dtypes = (data.dtype, weight.dtype) s[CC].tensorize(ki, dp4a("shared", "shared", "local", dtypes)) by, vy, ty, yi = cfg["tile_y"].apply(s, output, n) bx, vx, tx, xi = cfg["tile_x"].apply(s, output, x) s[output].reorder(by, bx, vy, vx, ty, tx, yi, xi) s[output].bind(by, te.thread_axis("blockIdx.y")) s[output].bind(bx, te.thread_axis("blockIdx.x")) s[output].bind(vy, te.thread_axis("vthread")) s[output].bind(vx, te.thread_axis("vthread")) s[output].bind(ty, te.thread_axis("threadIdx.y")) s[output].bind(tx, te.thread_axis("threadIdx.x")) n_ty = cfg["tile_y"].size[2] n_tx = cfg["tile_x"].size[2] s[CC].compute_at(s[output], tx) yo, xo = CC.op.axis[:2] s[CC].reorder(ko, kt, yo, xo, ki) for load in [AA, WW]: s[load].compute_at(s[CC], ko) outer, inner = s[load].split(s[load].op.axis[-1], factor=in_dim_factor) s[load].vectorize(inner) fused = s[load].op.axis[:-1] + [outer] fused = s[load].fuse(*fused) fused, tx = s[load].split(fused, factor=n_tx) fused, ty = s[load].split(fused, factor=n_ty) s[load].bind(tx, te.thread_axis("threadIdx.x")) s[load].bind(ty, te.thread_axis("threadIdx.y")) s[output].pragma(kernel_scope, "auto_unroll_max_step", cfg["auto_unroll_max_step"].val) s[output].pragma(kernel_scope, "unroll_explicit", False) return s
34.252336
100
0.670941
aede9bb9c5474f53763675061161eba6451891a8
943
py
Python
0000_book/pickplace_xarm_grasp_planning.py
takuya-ki/wrs
f6e1009b94332504042fbde9b39323410394ecde
[ "MIT" ]
null
null
null
0000_book/pickplace_xarm_grasp_planning.py
takuya-ki/wrs
f6e1009b94332504042fbde9b39323410394ecde
[ "MIT" ]
null
null
null
0000_book/pickplace_xarm_grasp_planning.py
takuya-ki/wrs
f6e1009b94332504042fbde9b39323410394ecde
[ "MIT" ]
null
null
null
import visualization.panda.world as wd import modeling.geometric_model as gm import modeling.collision_model as cm import grasping.planning.antipodal as gpa import robot_sim.end_effectors.gripper.xarm_gripper.xarm_gripper as xag base = wd.World(cam_pos=[1, 1, 1], lookat_pos=[0, 0, 0]) gm.gen_frame().attach_to(base) object_box = cm.gen_box(extent=[.02, .06, .7]) object_box.set_rgba([.7, .5, .3, .7]) object_box.attach_to(base) # hnd_s gripper_s = xag.XArmGripper() grasp_info_list = gpa.plan_grasps(gripper_s, object_box, openning_direction='loc_y', max_samples=7, min_dist_between_sampled_contact_points=.03) gpa.write_pickle_file('box', grasp_info_list, './', 'xarm_long_box.pickle') for grasp_info in grasp_info_list: jaw_width, gl_jaw_center_pos, gl_jaw_center_rotmat, hnd_pos, hnd_rotmat = grasp_info gripper_s.fix_to(hnd_pos, hnd_rotmat) gripper_s.jaw_to(jaw_width) gripper_s.gen_meshmodel().attach_to(base) base.run()
44.904762
144
0.78685
3223f2cea9f4b3be864aec7f2bddeaf4b2132332
2,024
py
Python
options/options.py
choyingw/CFCNet
828e0c09c646a4669685b3d31b8aa0ae2a5cd351
[ "MIT" ]
33
2019-11-27T02:09:05.000Z
2022-03-08T11:41:28.000Z
options/options.py
Qiu731/CFCNet
7ad0928e52767175669f3c4eb9e88fcbdd2d6b01
[ "MIT" ]
6
2019-12-18T08:59:01.000Z
2021-07-05T21:11:05.000Z
options/options.py
Qiu731/CFCNet
7ad0928e52767175669f3c4eb9e88fcbdd2d6b01
[ "MIT" ]
6
2019-11-20T11:27:17.000Z
2022-03-04T10:23:44.000Z
from .base_options import BaseOptions class AdvanceOptions(BaseOptions): def initialize(self, parser, flag): parser = BaseOptions.initialize(self, parser) parser.add_argument('--print_freq', type=int, default=1, help='frequency of showing training results on console') parser.add_argument('--save_epoch_freq', type=int, default=1, help='frequency of saving checkpoints at the end of epochs') parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...') parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') parser.add_argument('--niter', type=int, default=400, help='# of iter at starting learning rate') parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate for optimizer') parser.add_argument('--momentum', type=float, default=0.9, help='momentum factor for SGD') parser.add_argument('--weight_decay', type=float, default=0.0005, help='momentum factor for optimizer') parser.add_argument('--lr_policy', type=str, default='lambda', help='learning rate policy: lambda|step|plateau|cosine') parser.add_argument('--lr_decay_iters', type=int, default=5000000, help='multiply by a gamma every lr_decay_iters iterations') parser.add_argument('--lr_decay_epochs', type=int, default=100, help='multiply by a gamma every lr_decay_epoch epochs') parser.add_argument('--lr_gamma', type=float, default=0.9, help='gamma factor for lr_scheduler') parser.add_argument('--nP', type=int, default=500, help='number of points') parser.add_argument('--train_path', help='path to the training dataset') parser.add_argument('--test_path', help='path to the testing dataset') self.isTrain = flag return parser
80.96
173
0.708004
12b89f53c67c0d93a0d72c9ec1401de5895b7a5b
5,082
py
Python
satellite_constellation/GroundStation.py
samsipe/SatelliteConstellationCreator
6acc75d652e0d34fa27c1e5bca29beb71a18b0f2
[ "MIT" ]
7
2020-08-24T08:19:54.000Z
2021-05-24T15:37:36.000Z
satellite_constellation/GroundStation.py
samsipe/SatelliteConstellationCreator
6acc75d652e0d34fa27c1e5bca29beb71a18b0f2
[ "MIT" ]
1
2021-05-23T10:31:29.000Z
2021-05-23T10:34:02.000Z
satellite_constellation/GroundStation.py
samsipe/SatelliteConstellationCreator
6acc75d652e0d34fa27c1e5bca29beb71a18b0f2
[ "MIT" ]
8
2019-12-18T04:06:25.000Z
2021-08-22T08:42:21.000Z
import warnings class GroundStation(object): def __init__(self, name, lat, long, elevation, beam_width): self.__name = name self.__lat = lat self.__long = long self.__elevation = elevation self.__beam = beam_width @property def name(self): return self.__name @name.setter def name(self, new_name): self.__name = new_name @property def lat(self): return self.__lat @lat.setter def lat(self, new_lat): if (new_lat < -90) or (new_lat > 90): return ValueError("Latitude must be between -90 and 90") else: self.__lat = new_lat @property def long(self): return self.__long @long.setter def long(self, new_long): if (new_long < -180) or (new_long > 180): return ValueError("Longitude must be between -180 and 180") else: self.__long = new_long @property def elevation(self): return self.__elevation @elevation.setter def elevation(self, new_elev): if new_elev < 0: return ValueError("Elevation must be above 0") if new_elev > 8900: return ValueError("Elevation must be on the ground") else: self.__elevation = new_elev @property def beam(self): return self.__beam @beam.setter def beam(self, new_beam): if (new_beam < 0) or (new_beam > 180): return ValueError("Beam width must be between 0 and 180 degrees") self.__beam = new_beam def as_xml(self): warnings.warn("XML support is depreciated and not supported from PIGI 0.8.5 onward", DeprecationWarning) return '\t\t<Entity Type="GroundStation" Name="{0}">\n' \ '\t\t\t<PropertySection Name="UserProperties">\n' \ '\t\t\t\t<FloatPropertyValue name="Latitude" value="{1}"/>\n' \ '\t\t\t\t<FloatPropertyValue name="Longitude" value="{2}"/>\n' \ '\t\t\t\t<FloatPropertyValue name="Elevation" value="{3}"/>\n' \ '\t\t\t\t<FloatPropertyValue name="BeamWidth" value="{4}"/>\n' \ '\t\t\t\t<StringPropertyValue name="PlanetName" value="Earth"/>\n' \ '\t\t\t</PropertySection>\n' \ '\t\t\t<PropertySection Name="Animation">\n' \ '\t\t\t\t<ArrayPropertyValue name="Position" value="[6339.69, -699.193, 0]"/>\n' \ '\t\t\t\t<ArrayPropertyValue name="Orientation" value="[1, 0, 0, 0]"/>\n' \ '\t\t\t\t<ArrayPropertyValue name="Scale" value="[1, 1, 1]"/>\n' \ '\t\t\t\t<EnumPropertyValue name="Debug" value="0"/>\n' \ '\t\t\t</PropertySection>\n' \ '\t\t\t<PropertySection Name="Time Input">\n' \ '\t\t\t\t<TimestampPropertyValue name="Timepoint" value="2016-May-07 08:32:21.059611"/>\n' \ '\t\t\t\t<DurationPropertyValue name="Duration" value="2"/>\n' \ '\t\t\t\t<DurationPropertyValue name="StartOffset" value="-1"/>\n' \ '\t\t\t\t<DurationPropertyValue name="Timestep" value="0.000694444"/>\n' \ '\t\t\t</PropertySection>\n' \ '\t\t\t<PropertySection Name="Favourite">\n' \ '\t\t\t\t<EnumPropertyValue name="favourite" value="0"/>\n' \ '\t\t\t</PropertySection>\n' \ '\t\t\t<PropertySection Name="Mesh">\n' \ '\t\t\t\t<ArrayPropertyValue name="Position" value="[0, 0, 0]"/>\n' \ '\t\t\t\t<ArrayPropertyValue name="Orientation" value="[1, 0, 0, 0]"/>\n' \ '\t\t\t\t<ArrayPropertyValue name="Scale" value="[500, 500, 500]"/>\n' \ '\t\t\t\t<StringPropertyValue name="name" value="GroundStation.mesh"/>\n' \ '\t\t\t\t<EnumPropertyValue name="Debug" value="0"/>\n' \ '\t\t\t\t<StringPropertyValue name="group" value="SolarSystem"/>\n' \ '\t\t\t\t<EnumPropertyValue name="visibility" value="0"/>\n' \ '\t\t\t</PropertySection>\n' \ '\t\t\t<PropertySection Name="Look Angles">\n' \ '\t\t\t\t<ArrayPropertyValue name="LatLon" value="[0, 0]"/>\n' \ '\t\t\t\t<FloatPropertyValue name="Elevation" value="0"/>\n' \ '\t\t\t</PropertySection>\n' \ '\t\t</Entity>\n'.format(self.name, self.lat, self.long, self.elevation, self.beam) def __repr__(self): return "{0}, {1}, {2}, {3}, {4}".format(self.name, self.lat, self.long, self.elevation, self.beam) def __str__(self): return "Ground Station: {0}\n" \ "Latitude: {1}, Longitude: {2}" \ "Elevation: {3}, Beam Width: [4}".format(self.name, self.lat, self.long, self.elevation, self.beam) def as_dict(self): return {"Name": self.name, "Latitude": self.lat, "Longitude": self.long, "Elevation": self.elevation, "Beam Width": self.beam, "Type": 'station'}
42.35
114
0.547816
ba08f3f74db2cba5f0ba8ce0da9cec12bbf51da9
2,509
py
Python
viewwork/forms.py
pikhovkin/django-viewwork
65597f599ecbd0def37b04eae77017fb8f5dfbe6
[ "MIT" ]
4
2021-12-12T03:56:05.000Z
2022-01-10T08:54:31.000Z
viewwork/forms.py
pikhovkin/django-viewwork
65597f599ecbd0def37b04eae77017fb8f5dfbe6
[ "MIT" ]
null
null
null
viewwork/forms.py
pikhovkin/django-viewwork
65597f599ecbd0def37b04eae77017fb8f5dfbe6
[ "MIT" ]
null
null
null
from operator import attrgetter, itemgetter import sys from django import forms from django.apps import apps from django.conf import settings as dj_settings from django.db.models import BLANK_CHOICE_DASH from django.utils.translation import gettext_lazy as _, get_language from modeltrans.utils import build_localized_fieldname try: from easy_select2 import Select2 except (ImportError, ModuleNotFoundError): Select2 = forms.Select from . import BaseViewWork, settings from .models import Menu __all__ = ( 'MenuAdminForm', ) class MenuAdminForm(forms.ModelForm): view = forms.ChoiceField(label=_('View'), required=False, widget=Select2()) def __init__(self, *args, **kwargs): super(MenuAdminForm, self).__init__(*args, **kwargs) view_choices= [] vw_prefix = attrgetter('vw_prefix') item1 = itemgetter(1) for app_label, opts in BaseViewWork.vw.items(): app = apps.get_app_config(app_label) urls = sys.modules[f'{app.module.__name__}.urls'] namespace = getattr(urls, 'app_name', None) or app.module.__name__ namespace = f'{namespace}:' if settings.USE_APP_NAMESPACE else '' views = filter(lambda v: not vw_prefix(v[1]) or not v[0].startswith(vw_prefix(v[1])), opts.items()) views = list(map(item1, views)) options = [(f'{namespace}{v.vw_name}', f'{v.vw_verbose_name}: {v.vw_name}') for v in views] options.sort(key=item1) view_choices.append((app.verbose_name, options)) view_choices.sort(key=lambda opt: opt[0]) view_choices.insert(0, BLANK_CHOICE_DASH[0]) self.fields['view'].choices = view_choices self.fields['parent'].queryset = Menu.objects.filter(view='').order_by('name_i18n') self.fields['name_i18n'].required = True class Meta: model = Menu fields = '__all__' exclude = ('name',) widgets = { 'parent': Select2() } @staticmethod def _strip(value): return (value or '').strip() def clean_name_i18n(self): return self._strip(self.cleaned_data.get('name_i18n')) def clean(self): cleaned_data = super().clean() for lang in {get_language(), dj_settings.LANGUAGE_CODE}: field_name = build_localized_fieldname('name', lang) cleaned_data[field_name] = self._strip(cleaned_data.get(field_name)) or cleaned_data.get('name_i18n', '') return cleaned_data
34.369863
117
0.658828
7b07fb8f0c9d0d66ddfbb77d100a56d1ee4ba1b3
7,040
py
Python
chatbotv2/my_seq2seq.py
drpreetyrai/ChatBotCourse
352a6672a19d3692c884ff376cbe067fff37e210
[ "MIT" ]
5,087
2016-06-28T08:58:30.000Z
2020-08-18T08:49:46.000Z
chatbotv2/my_seq2seq.py
tta1993/ChatBotCourse
156041d51ec51842592e8a1eeda565197fe31aec
[ "MIT" ]
28
2016-10-26T08:01:18.000Z
2019-10-22T06:41:21.000Z
chatbotv2/my_seq2seq.py
tta1993/ChatBotCourse
156041d51ec51842592e8a1eeda565197fe31aec
[ "MIT" ]
1,691
2016-06-29T07:33:36.000Z
2020-08-18T08:50:02.000Z
# -*- coding: utf-8 -*- import sys import math import tflearn import tensorflow as tf from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import rnn import chardet import numpy as np import struct seq = [] max_w = 50 float_size = 4 word_vector_dict = {} word_vec_dim = 200 max_seq_len = 16 def load_vectors(input): """从vectors.bin加载词向量,返回一个word_vector_dict的词典,key是词,value是200维的向量 """ print "begin load vectors" input_file = open(input, "rb") # 获取词表数目及向量维度 words_and_size = input_file.readline() words_and_size = words_and_size.strip() words = long(words_and_size.split(' ')[0]) size = long(words_and_size.split(' ')[1]) print "words =", words print "size =", size for b in range(0, words): a = 0 word = '' # 读取一个词 while True: c = input_file.read(1) word = word + c if False == c or c == ' ': break if a < max_w and c != '\n': a = a + 1 word = word.strip() vector = [] for index in range(0, size): m = input_file.read(float_size) (weight,) = struct.unpack('f', m) vector.append(float(weight)) # 将词及其对应的向量存到dict中 #word_vector_dict[word.decode('utf-8')] = vector word_vector_dict[word.decode('utf-8')] = vector[0:word_vec_dim] input_file.close() print "load vectors finish" def init_seq(): """读取切好词的文本文件,加载全部词序列 """ file_object = open('zhenhuanzhuan.segment', 'r') vocab_dict = {} while True: line = file_object.readline() if line: for word in line.decode('utf-8').split(' '): if word_vector_dict.has_key(word): seq.append(word_vector_dict[word]) else: break file_object.close() def vector_sqrtlen(vector): len = 0 for item in vector: len += item * item len = math.sqrt(len) return len def vector_cosine(v1, v2): if len(v1) != len(v2): sys.exit(1) sqrtlen1 = vector_sqrtlen(v1) sqrtlen2 = vector_sqrtlen(v2) value = 0 for item1, item2 in zip(v1, v2): value += item1 * item2 return value / (sqrtlen1*sqrtlen2) def vector2word(vector): max_cos = -10000 match_word = '' for word in word_vector_dict: v = word_vector_dict[word] cosine = vector_cosine(vector, v) if cosine > max_cos: max_cos = cosine match_word = word return (match_word, max_cos) class MySeq2Seq(object): """ 思路:输入输出序列一起作为input,然后通过slick和unpack切分 完全按照论文说的编码器解码器来做 输出的时候把解码器的输出按照词向量的200维展平,这样输出就是(?,seqlen*200) 这样就可以通过regression来做回归计算了,输入的y也展平,保持一致 """ def __init__(self, max_seq_len = 16, word_vec_dim = 200): self.max_seq_len = max_seq_len self.word_vec_dim = word_vec_dim def generate_trainig_data(self): load_vectors("./vectors.bin") init_seq() xy_data = [] y_data = [] for i in range(30,40,10): # 问句、答句都是16字,所以取32个 start = i*self.max_seq_len*2 middle = i*self.max_seq_len*2 + self.max_seq_len end = (i+1)*self.max_seq_len*2 sequence_xy = seq[start:end] sequence_y = seq[middle:end] print "right answer" for w in sequence_y: (match_word, max_cos) = vector2word(w) print match_word sequence_y = [np.ones(self.word_vec_dim)] + sequence_y xy_data.append(sequence_xy) y_data.append(sequence_y) return np.array(xy_data), np.array(y_data) def model(self, feed_previous=False): # 通过输入的XY生成encoder_inputs和带GO头的decoder_inputs input_data = tflearn.input_data(shape=[None, self.max_seq_len*2, self.word_vec_dim], dtype=tf.float32, name = "XY") encoder_inputs = tf.slice(input_data, [0, 0, 0], [-1, self.max_seq_len, self.word_vec_dim], name="enc_in") decoder_inputs_tmp = tf.slice(input_data, [0, self.max_seq_len, 0], [-1, self.max_seq_len-1, self.word_vec_dim], name="dec_in_tmp") go_inputs = tf.ones_like(decoder_inputs_tmp) go_inputs = tf.slice(go_inputs, [0, 0, 0], [-1, 1, self.word_vec_dim]) decoder_inputs = tf.concat(1, [go_inputs, decoder_inputs_tmp], name="dec_in") # 编码器 # 把encoder_inputs交给编码器,返回一个输出(预测序列的第一个值)和一个状态(传给解码器) (encoder_output_tensor, states) = tflearn.lstm(encoder_inputs, self.word_vec_dim, return_state=True, scope='encoder_lstm') encoder_output_sequence = tf.pack([encoder_output_tensor], axis=1) # 解码器 # 预测过程用前一个时间序的输出作为下一个时间序的输入 # 先用编码器的最后一个输出作为第一个输入 if feed_previous: first_dec_input = go_inputs else: first_dec_input = tf.slice(decoder_inputs, [0, 0, 0], [-1, 1, self.word_vec_dim]) decoder_output_tensor = tflearn.lstm(first_dec_input, self.word_vec_dim, initial_state=states, return_seq=False, reuse=False, scope='decoder_lstm') decoder_output_sequence_single = tf.pack([decoder_output_tensor], axis=1) decoder_output_sequence_list = [decoder_output_tensor] # 再用解码器的输出作为下一个时序的输入 for i in range(self.max_seq_len-1): if feed_previous: next_dec_input = decoder_output_sequence_single else: next_dec_input = tf.slice(decoder_inputs, [0, i+1, 0], [-1, 1, self.word_vec_dim]) decoder_output_tensor = tflearn.lstm(next_dec_input, self.word_vec_dim, return_seq=False, reuse=True, scope='decoder_lstm') decoder_output_sequence_single = tf.pack([decoder_output_tensor], axis=1) decoder_output_sequence_list.append(decoder_output_tensor) decoder_output_sequence = tf.pack(decoder_output_sequence_list, axis=1) real_output_sequence = tf.concat(1, [encoder_output_sequence, decoder_output_sequence]) net = tflearn.regression(real_output_sequence, optimizer='sgd', learning_rate=0.1, loss='mean_square') model = tflearn.DNN(net) return model def train(self): trainXY, trainY = self.generate_trainig_data() model = self.model(feed_previous=False) model.fit(trainXY, trainY, n_epoch=1000, snapshot_epoch=False) model.save('./model/model') return model def load(self): model = self.model(feed_previous=True) model.load('./model/model') return model if __name__ == '__main__': phrase = sys.argv[1] my_seq2seq = MySeq2Seq(word_vec_dim=word_vec_dim, max_seq_len=max_seq_len) if phrase == 'train': my_seq2seq.train() else: model = my_seq2seq.load() trainXY, trainY = my_seq2seq.generate_trainig_data() predict = model.predict(trainXY) for sample in predict: print "predict answer" for w in sample[1:]: (match_word, max_cos) = vector2word(w) print match_word, max_cos
33.684211
155
0.62642
94b0e997afafff1613db1148e1b4d042248ffd80
1,477
py
Python
utils/code_generator/time_measurement/phase_2/postprocess_programs.py
zehor-l/tiramisu
225b30d3495bee52c0e06ed7794f402f2e58de73
[ "MIT" ]
23
2017-05-03T13:06:34.000Z
2018-06-07T07:12:43.000Z
utils/code_generator/time_measurement/phase_2/postprocess_programs.py
zehor-l/tiramisu
225b30d3495bee52c0e06ed7794f402f2e58de73
[ "MIT" ]
2
2017-04-25T08:59:09.000Z
2017-05-11T16:41:55.000Z
utils/code_generator/time_measurement/phase_2/postprocess_programs.py
zehor-l/tiramisu
225b30d3495bee52c0e06ed7794f402f2e58de73
[ "MIT" ]
5
2017-02-16T14:26:40.000Z
2018-05-30T16:49:27.000Z
""" Fuse the files generated by the execution jobs to a single file. The final file will be a list, where each entry has the following format : (function_id, schedule_id, list of execution times, the median, the speedup) """ import pickle import numpy as np from pathlib import Path # Path to the files generated by the execution jobs src_path = Path("results/parts/") # Path to the file that will contain all the execution files dst_path = "results/final_exec_times.pickle" final_exec_times = [] # Fuse all execution times to a single list for file_path in src_path.iterdir(): if file_path.name.startswith("final_exec_times"): with open(file_path, "rb") as f: final_exec_times.extend(pickle.load(f)) # Compute the medians final_exec_times_median = [] for x in final_exec_times: func_id, sched_id, e = x final_exec_times_median.append((func_id, sched_id, e, np.median(e))) # Compute the speedups ref_progs = dict() for x in final_exec_times_median: func_id, sched_id, _, median = x if sched_id.endswith("no_schedule"): ref_progs[func_id] = median final_exec_times_median_speedup = [] for x in final_exec_times_median: func_id, sched_id, e, median = x speedup = float(ref_progs[func_id] / median) final_exec_times_median_speedup.append((func_id, sched_id, e, median, speedup)) # Save results with open(dst_path, "wb") as f: pickle.dump(final_exec_times_median_speedup, f)
28.403846
83
0.723087
4556cee23ff776bf8806e5d9263552e62030f0a5
21,965
py
Python
venv/lib/python3.9/site-packages/google/cloud/tasks_v2/types/target.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
39
2020-04-17T09:54:54.000Z
2022-03-23T12:28:07.000Z
venv/lib/python3.9/site-packages/google/cloud/tasks_v2/types/target.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
80
2020-02-04T00:48:43.000Z
2022-03-31T22:59:41.000Z
venv/lib/python3.9/site-packages/google/cloud/tasks_v2/types/target.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
9
2020-02-06T01:45:11.000Z
2021-04-14T08:38:08.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.tasks.v2", manifest={ "HttpMethod", "HttpRequest", "AppEngineHttpRequest", "AppEngineRouting", "OAuthToken", "OidcToken", }, ) class HttpMethod(proto.Enum): r"""The HTTP method used to deliver the task.""" HTTP_METHOD_UNSPECIFIED = 0 POST = 1 GET = 2 HEAD = 3 PUT = 4 DELETE = 5 PATCH = 6 OPTIONS = 7 class HttpRequest(proto.Message): r"""HTTP request. The task will be pushed to the worker as an HTTP request. If the worker or the redirected worker acknowledges the task by returning a successful HTTP response code ([``200`` - ``299``]), the task will be removed from the queue. If any other HTTP response code is returned or no response is received, the task will be retried according to the following: - User-specified throttling: [retry configuration][google.cloud.tasks.v2.Queue.retry_config], [rate limits][google.cloud.tasks.v2.Queue.rate_limits], and the [queue's state][google.cloud.tasks.v2.Queue.state]. - System throttling: To prevent the worker from overloading, Cloud Tasks may temporarily reduce the queue's effective rate. User-specified settings will not be changed. System throttling happens because: - Cloud Tasks backs off on all errors. Normally the backoff specified in [rate limits][google.cloud.tasks.v2.Queue.rate_limits] will be used. But if the worker returns ``429`` (Too Many Requests), ``503`` (Service Unavailable), or the rate of errors is high, Cloud Tasks will use a higher backoff rate. The retry specified in the ``Retry-After`` HTTP response header is considered. - To prevent traffic spikes and to smooth sudden increases in traffic, dispatches ramp up slowly when the queue is newly created or idle and if large numbers of tasks suddenly become available to dispatch (due to spikes in create task rates, the queue being unpaused, or many tasks that are scheduled at the same time). Attributes: url (str): Required. The full url path that the request will be sent to. This string must begin with either "http://" or "https://". Some examples are: ``http://acme.com`` and ``https://acme.com/sales:8080``. Cloud Tasks will encode some characters for safety and compatibility. The maximum allowed URL length is 2083 characters after encoding. The ``Location`` header response from a redirect response [``300`` - ``399``] may be followed. The redirect is not counted as a separate attempt. http_method (google.cloud.tasks_v2.types.HttpMethod): The HTTP method to use for the request. The default is POST. headers (Sequence[google.cloud.tasks_v2.types.HttpRequest.HeadersEntry]): HTTP request headers. This map contains the header field names and values. Headers can be set when the [task is created][google.cloud.tasks.v2beta3.CloudTasks.CreateTask]. These headers represent a subset of the headers that will accompany the task's HTTP request. Some HTTP request headers will be ignored or replaced. A partial list of headers that will be ignored or replaced is: - Host: This will be computed by Cloud Tasks and derived from [HttpRequest.url][google.cloud.tasks.v2.HttpRequest.url]. - Content-Length: This will be computed by Cloud Tasks. - User-Agent: This will be set to ``"Google-Cloud-Tasks"``. - X-Google-\*: Google use only. - X-AppEngine-\*: Google use only. ``Content-Type`` won't be set by Cloud Tasks. You can explicitly set ``Content-Type`` to a media type when the [task is created][google.cloud.tasks.v2beta3.CloudTasks.CreateTask]. For example, ``Content-Type`` can be set to ``"application/octet-stream"`` or ``"application/json"``. Headers which can have multiple values (according to RFC2616) can be specified using comma-separated values. The size of the headers must be less than 80KB. body (bytes): HTTP request body. A request body is allowed only if the [HTTP method][google.cloud.tasks.v2.HttpRequest.http_method] is POST, PUT, or PATCH. It is an error to set body on a task with an incompatible [HttpMethod][google.cloud.tasks.v2.HttpMethod]. oauth_token (google.cloud.tasks_v2.types.OAuthToken): If specified, an `OAuth token <https://developers.google.com/identity/protocols/OAuth2>`__ will be generated and attached as an ``Authorization`` header in the HTTP request. This type of authorization should generally only be used when calling Google APIs hosted on \*.googleapis.com. oidc_token (google.cloud.tasks_v2.types.OidcToken): If specified, an `OIDC <https://developers.google.com/identity/protocols/OpenIDConnect>`__ token will be generated and attached as an ``Authorization`` header in the HTTP request. This type of authorization can be used for many scenarios, including calling Cloud Run, or endpoints where you intend to validate the token yourself. """ url = proto.Field(proto.STRING, number=1,) http_method = proto.Field(proto.ENUM, number=2, enum="HttpMethod",) headers = proto.MapField(proto.STRING, proto.STRING, number=3,) body = proto.Field(proto.BYTES, number=4,) oauth_token = proto.Field( proto.MESSAGE, number=5, oneof="authorization_header", message="OAuthToken", ) oidc_token = proto.Field( proto.MESSAGE, number=6, oneof="authorization_header", message="OidcToken", ) class AppEngineHttpRequest(proto.Message): r"""App Engine HTTP request. The message defines the HTTP request that is sent to an App Engine app when the task is dispatched. Using [AppEngineHttpRequest][google.cloud.tasks.v2.AppEngineHttpRequest] requires ```appengine.applications.get`` <https://cloud.google.com/appengine/docs/admin-api/access-control>`__ Google IAM permission for the project and the following scope: ``https://www.googleapis.com/auth/cloud-platform`` The task will be delivered to the App Engine app which belongs to the same project as the queue. For more information, see `How Requests are Routed <https://cloud.google.com/appengine/docs/standard/python/how-requests-are-routed>`__ and how routing is affected by `dispatch files <https://cloud.google.com/appengine/docs/python/config/dispatchref>`__. Traffic is encrypted during transport and never leaves Google datacenters. Because this traffic is carried over a communication mechanism internal to Google, you cannot explicitly set the protocol (for example, HTTP or HTTPS). The request to the handler, however, will appear to have used the HTTP protocol. The [AppEngineRouting][google.cloud.tasks.v2.AppEngineRouting] used to construct the URL that the task is delivered to can be set at the queue-level or task-level: - If [app_engine_routing_override is set on the queue][Queue.app_engine_routing_override], this value is used for all tasks in the queue, no matter what the setting is for the [task-level app_engine_routing][AppEngineHttpRequest.app_engine_routing]. The ``url`` that the task will be sent to is: - ``url =`` [host][google.cloud.tasks.v2.AppEngineRouting.host] ``+`` [relative_uri][google.cloud.tasks.v2.AppEngineHttpRequest.relative_uri] Tasks can be dispatched to secure app handlers, unsecure app handlers, and URIs restricted with ```login: admin`` <https://cloud.google.com/appengine/docs/standard/python/config/appref>`__. Because tasks are not run as any user, they cannot be dispatched to URIs restricted with ```login: required`` <https://cloud.google.com/appengine/docs/standard/python/config/appref>`__ Task dispatches also do not follow redirects. The task attempt has succeeded if the app's request handler returns an HTTP response code in the range [``200`` - ``299``]. The task attempt has failed if the app's handler returns a non-2xx response code or Cloud Tasks does not receive response before the [deadline][google.cloud.tasks.v2.Task.dispatch_deadline]. Failed tasks will be retried according to the [retry configuration][google.cloud.tasks.v2.Queue.retry_config]. ``503`` (Service Unavailable) is considered an App Engine system error instead of an application error and will cause Cloud Tasks' traffic congestion control to temporarily throttle the queue's dispatches. Unlike other types of task targets, a ``429`` (Too Many Requests) response from an app handler does not cause traffic congestion control to throttle the queue. Attributes: http_method (google.cloud.tasks_v2.types.HttpMethod): The HTTP method to use for the request. The default is POST. The app's request handler for the task's target URL must be able to handle HTTP requests with this http_method, otherwise the task attempt will fail with error code 405 (Method Not Allowed). See `Writing a push task request handler <https://cloud.google.com/appengine/docs/java/taskqueue/push/creating-handlers#writing_a_push_task_request_handler>`__ and the documentation for the request handlers in the language your app is written in e.g. `Python Request Handler <https://cloud.google.com/appengine/docs/python/tools/webapp/requesthandlerclass>`__. app_engine_routing (google.cloud.tasks_v2.types.AppEngineRouting): Task-level setting for App Engine routing. - If [app_engine_routing_override is set on the queue][Queue.app_engine_routing_override], this value is used for all tasks in the queue, no matter what the setting is for the [task-level app_engine_routing][AppEngineHttpRequest.app_engine_routing]. relative_uri (str): The relative URI. The relative URI must begin with "/" and must be a valid HTTP relative URI. It can contain a path and query string arguments. If the relative URI is empty, then the root path "/" will be used. No spaces are allowed, and the maximum length allowed is 2083 characters. headers (Sequence[google.cloud.tasks_v2.types.AppEngineHttpRequest.HeadersEntry]): HTTP request headers. This map contains the header field names and values. Headers can be set when the [task is created][google.cloud.tasks.v2.CloudTasks.CreateTask]. Repeated headers are not supported but a header value can contain commas. Cloud Tasks sets some headers to default values: - ``User-Agent``: By default, this header is ``"AppEngine-Google; (+http://code.google.com/appengine)"``. This header can be modified, but Cloud Tasks will append ``"AppEngine-Google; (+http://code.google.com/appengine)"`` to the modified ``User-Agent``. If the task has a [body][google.cloud.tasks.v2.AppEngineHttpRequest.body], Cloud Tasks sets the following headers: - ``Content-Type``: By default, the ``Content-Type`` header is set to ``"application/octet-stream"``. The default can be overridden by explicitly setting ``Content-Type`` to a particular media type when the [task is created][google.cloud.tasks.v2.CloudTasks.CreateTask]. For example, ``Content-Type`` can be set to ``"application/json"``. - ``Content-Length``: This is computed by Cloud Tasks. This value is output only. It cannot be changed. The headers below cannot be set or overridden: - ``Host`` - ``X-Google-\*`` - ``X-AppEngine-\*`` In addition, Cloud Tasks sets some headers when the task is dispatched, such as headers containing information about the task; see `request headers <https://cloud.google.com/tasks/docs/creating-appengine-handlers#reading_request_headers>`__. These headers are set only when the task is dispatched, so they are not visible when the task is returned in a Cloud Tasks response. Although there is no specific limit for the maximum number of headers or the size, there is a limit on the maximum size of the [Task][google.cloud.tasks.v2.Task]. For more information, see the [CreateTask][google.cloud.tasks.v2.CloudTasks.CreateTask] documentation. body (bytes): HTTP request body. A request body is allowed only if the HTTP method is POST or PUT. It is an error to set a body on a task with an incompatible [HttpMethod][google.cloud.tasks.v2.HttpMethod]. """ http_method = proto.Field(proto.ENUM, number=1, enum="HttpMethod",) app_engine_routing = proto.Field( proto.MESSAGE, number=2, message="AppEngineRouting", ) relative_uri = proto.Field(proto.STRING, number=3,) headers = proto.MapField(proto.STRING, proto.STRING, number=4,) body = proto.Field(proto.BYTES, number=5,) class AppEngineRouting(proto.Message): r"""App Engine Routing. Defines routing characteristics specific to App Engine - service, version, and instance. For more information about services, versions, and instances see `An Overview of App Engine <https://cloud.google.com/appengine/docs/python/an-overview-of-app-engine>`__, `Microservices Architecture on Google App Engine <https://cloud.google.com/appengine/docs/python/microservices-on-app-engine>`__, `App Engine Standard request routing <https://cloud.google.com/appengine/docs/standard/python/how-requests-are-routed>`__, and `App Engine Flex request routing <https://cloud.google.com/appengine/docs/flexible/python/how-requests-are-routed>`__. Using [AppEngineRouting][google.cloud.tasks.v2.AppEngineRouting] requires ```appengine.applications.get`` <https://cloud.google.com/appengine/docs/admin-api/access-control>`__ Google IAM permission for the project and the following scope: ``https://www.googleapis.com/auth/cloud-platform`` Attributes: service (str): App service. By default, the task is sent to the service which is the default service when the task is attempted. For some queues or tasks which were created using the App Engine Task Queue API, [host][google.cloud.tasks.v2.AppEngineRouting.host] is not parsable into [service][google.cloud.tasks.v2.AppEngineRouting.service], [version][google.cloud.tasks.v2.AppEngineRouting.version], and [instance][google.cloud.tasks.v2.AppEngineRouting.instance]. For example, some tasks which were created using the App Engine SDK use a custom domain name; custom domains are not parsed by Cloud Tasks. If [host][google.cloud.tasks.v2.AppEngineRouting.host] is not parsable, then [service][google.cloud.tasks.v2.AppEngineRouting.service], [version][google.cloud.tasks.v2.AppEngineRouting.version], and [instance][google.cloud.tasks.v2.AppEngineRouting.instance] are the empty string. version (str): App version. By default, the task is sent to the version which is the default version when the task is attempted. For some queues or tasks which were created using the App Engine Task Queue API, [host][google.cloud.tasks.v2.AppEngineRouting.host] is not parsable into [service][google.cloud.tasks.v2.AppEngineRouting.service], [version][google.cloud.tasks.v2.AppEngineRouting.version], and [instance][google.cloud.tasks.v2.AppEngineRouting.instance]. For example, some tasks which were created using the App Engine SDK use a custom domain name; custom domains are not parsed by Cloud Tasks. If [host][google.cloud.tasks.v2.AppEngineRouting.host] is not parsable, then [service][google.cloud.tasks.v2.AppEngineRouting.service], [version][google.cloud.tasks.v2.AppEngineRouting.version], and [instance][google.cloud.tasks.v2.AppEngineRouting.instance] are the empty string. instance (str): App instance. By default, the task is sent to an instance which is available when the task is attempted. Requests can only be sent to a specific instance if `manual scaling is used in App Engine Standard <https://cloud.google.com/appengine/docs/python/an-overview-of-app-engine?hl=en_US#scaling_types_and_instance_classes>`__. App Engine Flex does not support instances. For more information, see `App Engine Standard request routing <https://cloud.google.com/appengine/docs/standard/python/how-requests-are-routed>`__ and `App Engine Flex request routing <https://cloud.google.com/appengine/docs/flexible/python/how-requests-are-routed>`__. host (str): Output only. The host that the task is sent to. The host is constructed from the domain name of the app associated with the queue's project ID (for example .appspot.com), and the [service][google.cloud.tasks.v2.AppEngineRouting.service], [version][google.cloud.tasks.v2.AppEngineRouting.version], and [instance][google.cloud.tasks.v2.AppEngineRouting.instance]. Tasks which were created using the App Engine SDK might have a custom domain name. For more information, see `How Requests are Routed <https://cloud.google.com/appengine/docs/standard/python/how-requests-are-routed>`__. """ service = proto.Field(proto.STRING, number=1,) version = proto.Field(proto.STRING, number=2,) instance = proto.Field(proto.STRING, number=3,) host = proto.Field(proto.STRING, number=4,) class OAuthToken(proto.Message): r"""Contains information needed for generating an `OAuth token <https://developers.google.com/identity/protocols/OAuth2>`__. This type of authorization should generally only be used when calling Google APIs hosted on \*.googleapis.com. Attributes: service_account_email (str): `Service account email <https://cloud.google.com/iam/docs/service-accounts>`__ to be used for generating OAuth token. The service account must be within the same project as the queue. The caller must have iam.serviceAccounts.actAs permission for the service account. scope (str): OAuth scope to be used for generating OAuth access token. If not specified, "https://www.googleapis.com/auth/cloud-platform" will be used. """ service_account_email = proto.Field(proto.STRING, number=1,) scope = proto.Field(proto.STRING, number=2,) class OidcToken(proto.Message): r"""Contains information needed for generating an `OpenID Connect token <https://developers.google.com/identity/protocols/OpenIDConnect>`__. This type of authorization can be used for many scenarios, including calling Cloud Run, or endpoints where you intend to validate the token yourself. Attributes: service_account_email (str): `Service account email <https://cloud.google.com/iam/docs/service-accounts>`__ to be used for generating OIDC token. The service account must be within the same project as the queue. The caller must have iam.serviceAccounts.actAs permission for the service account. audience (str): Audience to be used when generating OIDC token. If not specified, the URI specified in target will be used. """ service_account_email = proto.Field(proto.STRING, number=1,) audience = proto.Field(proto.STRING, number=2,) __all__ = tuple(sorted(__protobuf__.manifest))
44.9182
143
0.660187
751adf6af2a7e2de015bee1d3a74ee2af03688fb
411
py
Python
Singleton/singleton.py
mst-solar-car/kicad-bom-generator
2aae905056d06f3d25343a8d784049c141d05640
[ "MIT" ]
3
2018-02-26T12:31:41.000Z
2020-10-10T14:14:11.000Z
Singleton/singleton.py
mst-solar-car/kicad-bom-generator
2aae905056d06f3d25343a8d784049c141d05640
[ "MIT" ]
null
null
null
Singleton/singleton.py
mst-solar-car/kicad-bom-generator
2aae905056d06f3d25343a8d784049c141d05640
[ "MIT" ]
null
null
null
class Singleton: def __init__(self, decorated): self._decorated = decorated self._instance = None def __call__(self, *args, **kwargs): """ Return the singleton instance """ if self._instance is None: self._instance = self._decorated(*args, **kwargs) return self._instance def Reset(self): """ Clears a singleton object, only used in tests """ self._instance = None
21.631579
57
0.6618
091b5e9b96508a816c9224f0d251dea6d7d36f80
15,457
py
Python
capture.py
RMichaelSwan/tele-capture
d8ebb6886a7b46c19f677e6a017051ca5f8a7eea
[ "MIT" ]
2
2021-02-17T18:28:31.000Z
2021-02-18T13:40:15.000Z
capture.py
RMichaelSwan/tele-capture
d8ebb6886a7b46c19f677e6a017051ca5f8a7eea
[ "MIT" ]
1
2021-02-18T13:39:54.000Z
2021-02-18T23:06:50.000Z
capture.py
RMichaelSwan/telecap
d8ebb6886a7b46c19f677e6a017051ca5f8a7eea
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ A script to capture the speaker audio and screen TODO: Get ROS audio stream TODO: provide ROS video stream """ import numpy as np import cv2 import time import gi gi.require_version('Gtk', '3.0') gi.require_version('Wnck', '3.0') gi.require_version('Gdk', '3.0') from gi.repository import Gtk, Gdk, Wnck, GdkPixbuf def windows2png(): """Capture all windows and save to file """ screen = Gdk.Screen.get_default() for i, window in enumerate(screen.get_window_stack()): pb = Gdk.pixbuf_get_from_window(window, *window.get_geometry()) pb.savev("{}.png".format(i), "png", (), ()) def array_from_pixbuf(p): """Convert from GdkPixbuf to numpy array" Args: p (GdkPixbuf): The GdkPixbuf provided from some window handle Returns: ndarray: The numpy array arranged for the pixels in height, width, RGBA order """ w,h,c,r=(p.get_width(), p.get_height(), p.get_n_channels(), p.get_rowstride()) assert p.get_colorspace() == GdkPixbuf.Colorspace.RGB assert p.get_bits_per_sample() == 8 if p.get_has_alpha(): assert c == 4 else: assert c == 3 assert r >= w * c a=np.frombuffer(p.get_pixels(),dtype=np.uint8) if a.shape[0] == w*c*h: return a.reshape( (h, w, c), order = 'C' ) else: b=np.zeros((h,w*c),'uint8') for j in range(h): b[j,:]=a[r*j:r*j+w*c] return b.reshape( (h, w, c) ) def array_to_cv2(pix_array, colorspace=cv2.COLOR_RGB2BGR): return cv2.cvtColor(pix_array, colorspace) class WindowCapture(): def __init__(self, window_title="Zoom Meeting", activation_delay = 0.1): """Captures from GUI window of specified title. Serves as a handle on that window as long as it is still available. If the window is covered up by another window after init finishes, the window can still be captured from. Thie captures from specific Gtk windows using Wnck, which means it is likely only compatible on Linux gui environments. Wnck API Reference: https://lazka.github.io/pgi-docs/Wnck-3.0/classes/Screen.html Gdk API Reference: https://lazka.github.io/pgi-docs/Gdk-3.0/classes/Screen.html Args: window_title (str, optional): Name of the window to capture from. Defaults to "Zoom Meeting". activation_delay (float, optional): How long in seconds to wait for a window to be activated so that the correct handle will be acquired. If the wrong window is captured, increase this number. """ self.window, self.window_title, self.activation_delay = None, None, None Gtk.init([]) # necessary since we're not using a Gtk.main() loop self.set_window(window_title=window_title,activation_delay=activation_delay) def _get_active_window_(self): """Gets a handle on the active Gdk window. Returns: Gdk.Window: The window handle. """ screen = Gdk.Screen.get_default() return screen.get_active_window() def _activate_window_(self): """This function uses Wnck to set a window as the active/focused window on the user's screen. It is especially useful when combined with Gdk to get active window pixels. Note: Gdk has no direct way of accessing a window by title. Returns: bool: True if window found and activated, else False """ screen = Wnck.Screen.get_default() screen.force_update() # recommended per Wnck documentation found_win = False for window in screen.get_windows(): name = window.get_name() if (name == self.window_title): found_win = True window.activate(0) time.sleep(self.activation_delay) ##should be the proper solution but Wnck/Pygi is kinda trash; ##the active boolean never returns true and proper activate times fail. # window.activate(int(time.time())) # while(not window.is_active()): # time.sleep(self.activation_delay) break # clean up Wnck (saves resources, check documentation) window = None screen = None Wnck.shutdown() return found_win def set_window(self, window_title, activation_delay = 0.1): """Set the window we are going to capture from Args: window_title ([type]): [description] activation_delay (float, optional): How long in seconds to wait for a window to be activated so that the correct handle will be acquired. Some computers may take longer to do this. Defaults to 0.1. NOTE: This delay is a workaround for Wnck's inability to get window state. Raises: ValueError: [description] """ self.window_title = window_title self.activation_delay = activation_delay if (self._activate_window_()): self.window = self._get_active_window_() else: raise ValueError(f'Unable to get/find window with title "{self.window_title}" for capture.') def test_fps(self, frames = 100): """Gives an estimate of the frames per second capture rate Args: frames (int, optional): Number of frames to aquire for test. Defaults to 100. Returns: float: The determined FPS for capture. """ i = 1 start = time.time() while (i <= frames): pb = Gdk.pixbuf_get_from_window(self.window, *self.window.get_geometry()) i += 1 fps = (frames / (time.time() - start)) print("--- achieved %s fps ---" % fps) return fps def get_cv_img(self): """Get a new frame from window in OpenCV format. Returns: cv::_OutputArray: Most recent window frame in cv output format. """ return cv2.cvtColor(self.get_numpy_img(), cv2.COLOR_RGB2BGR) # cv2 works in BGR colorspace def get_numpy_img(self): """Get a new frame from window as a Numpy array in RGBA format Returns: ndarray: (Height, Width, Channels) shaped array """ pb = Gdk.pixbuf_get_from_window(self.window, *self.window.get_geometry()) return array_from_pixbuf(pb) def save_window_png(self, filename = "0"): """Save current window frame to png Args: filename (str, optional): Filename to save as (without extension). Defaults to "0". """ pb = Gdk.pixbuf_get_from_window(self.window, *self.window.get_geometry()) pb.savev(f"{filename}.png", "png", (), ()) class PartcipantDetector(): def __init__(self, epsilon = 0.01, detect_rate = 1, display_box = False, debug = False, gallery_color_rgba = np.array([26,26,26,255]), active_color_rgba = np.array([35,217,89,255]), crop_percentX = 0.99, crop_percentY = 0.89, aspectRatio = 1.77): """Detects participants in a video call and provides frames/video from that call. Current model assumes use of Zoom in gallery mode. #TODO separate detection code from box detection code (make use of detect_rate) #TODO optimize this for frequent function calls/video streaming. Possible options for optimization include: scaling down image before running box detection, only running detection when major image changes occur. Args: epsilon (float, optional): How sensitive the box detector is. A higher value results in boxes with imperfections being detected more often. Defaults to 0.1. detect_rate (int, optional): How often in Hz to check participant window positions and active participant. Defaults to 1 Hz. display_box (bool, optional): Whether to display detection boxes around frames. Defaults to False. debug (bool, optional): Activates a number of debug outputs gallery_color_rgba (ndarray, optional): The RGBA color surrounding the participant window. Defaults to np.array([26,26,26,255]) which is the Zoom default. active_color_rgba (ndarray, optional): The primary color of the box that highlights the active user.. Defaults to np.array([35,217,89,255]). crop_percentX (float, optional): How much extra content to keep from image window width-wise; lower percents remove more from the right side. Defaults to 0.99. crop_percentY (float, optional): How much extra content to keep from image window height-wise; lower percents remove more from the bottom side. Defaults to 0.89. aspectRatio (float, optional): The predicted aspect ratio of participant videos. Used to filter out false positives. Defaults to 1.77. """ self.epsilon = epsilon self.detect_rate = detect_rate self.display_box = display_box self.debug = debug self.gallery_color = gallery_color_rgba self.active_color = active_color_rgba self.crop_percentX = crop_percentX self.crop_percentY = crop_percentY self.aspectRatio = aspectRatio def detect(self, image): """Do a detection on the provided image. Args: image (ndarray): The RGBA image to work off of. The array is considered mutable while the internal array values are expected to be readonly. Returns: list[ndarray]: A list of participant sub-images if any, else empty list. int: Index of the active participant in previous list """ #crop out extra bars around window edges image = image[0:int(image.shape[0]*self.crop_percentY), 0:int(image.shape[1]*self.crop_percentX),...] if self.debug: print(f"Cropped image array shape: {image.shape}") img = array_to_cv2(image,cv2.COLOR_RGB2BGR) masked = image.copy() gal_mask = (image == self.gallery_color).all(-1) masked[gal_mask] = 255 masked[np.logical_not(gal_mask)] = 0 ##We can find the active partipant using the color... # active_mask = (image == self.active_color).all(-1) # masked[...,:4][active_mask] = [0,0,0,0] #reference: https://stackoverflow.com/a/11427501/5715374 gray = array_to_cv2(masked,cv2.COLOR_RGB2GRAY) if self.debug: cv2.imshow("Full", gray) _,thresh = cv2.threshold(gray,127,255,1) contours,_ = cv2.findContours(thresh,cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) rects = [] # a list of found rects and their area #find the interesting rectangles for cnt in contours: approx = cv2.approxPolyDP(cnt,self.epsilon*cv2.arcLength(cnt,True),True) if len(approx)==4: #rectangles have 4 sides area = cv2.contourArea(cnt) # print(cv2.contourArea(cnt)) if area < 100: #ignore tiny rectangles continue _,_,w,h = cv2.boundingRect(cnt) ar = w/h if (ar > 3*self.aspectRatio or ar < self.aspectRatio/3): #bad aspect ratio if self.debug: print(f"rejected aspect ratio of {ar}") continue if self.debug: print(f"Aspect ratio = {ar}") rects.append((cnt,area)) # Find the active participant--they should have the largest box area due to their window highlight # contours_active = sorted(rects,key=cv2.contourArea,reverse=True) # an alternate method that always puts the active participant first by ignoring original order # active_participant_index = sorted(inds,key=areas, reverse=True)[0] participants = [] active_participant_index = self._get_active_rect_(rects) for i in range(len(rects)): x,y,w,h = cv2.boundingRect(rects[i][0]) participants.append(img[y:y+h, x:x+w]) #crop participant image to bounding box. if self.display_box: if i == active_participant_index: color = (0,255,0) else: color = (0,0,255) cv2.drawContours(img,[rects[i][0]],0,color,2) if self.debug: print(f"Detected {len(rects)} participants.") return participants, active_participant_index def _get_active_rect_(self, contours): """Find the active contour in a list. The current algorithm makes use of the largest window area, which works on the assumption that the active participant is highlighted and thus has a larger detected window size. Args: contours (list[(contour,int)]): A list containing tuples of contours with their associated area Returns: int: Index of the active contour in the list of contours """ greatestArea = 0 activeInd = -1 for i, cont in enumerate(contours): if abs(cont[1]) > greatestArea: greatestArea = cont[1] activeInd = i return activeInd def test_pipeline_fps(wc, pd, frames = 100): """Gives an estimate of the frames per second capture rate for the image capture and box detection pipeline Args: wc (WindowCapture): A handle on the current window capture pd (Participant): A handle on the participant detector frames (int, optional): Number of frames to aquire for test. Defaults to 100. Returns: float: The determined FPS for capture. """ i = 1 start = time.time() while (i <= frames): pd.detect_new(wc.get_numpy_img()) i += 1 fps = (frames / (time.time() - start)) print("--- achieved %s fps ---" % fps) return fps def test(): x = WindowCapture(window_title="Zoom Meeting", activation_delay=0.1) # x.test_fps() detector = PartcipantDetector(debug=True, display_box=False) # test_pipeline_fps(x,detector) while(True): participants = detector.detect(x.get_numpy_img()) for i, part in enumerate(participants): cv2.imshow(f"Participant {i}",part) if cv2.waitKey(1) & 0xFF == ord('q'): break # cv2.waitKey(0) cv2.destroyAllWindows() x = None #TODO: publish separate audio, video, and info streams with same topic order, with arrays of participants for each def main(): x = WindowCapture(window_title="Zoom Meeting", activation_delay=0.1) detector = PartcipantDetector(debug=False, display_box=True) while(True): participants, activeInd = detector.detect(x.get_numpy_img()) for i, part in enumerate(participants): cv2.imshow(f"Participant {i}",part) #TODO insert ROS code and publish here if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() detector = None x = None if __name__ == "__main__": main()
40.891534
169
0.612991
88a4a400c21837c7e7a6b59d1b1dcd3fc7be1648
23,177
py
Python
lib/tests/streamlit/Server_test.py
gzzo/streamlit
c587e0e36a829cbd2133adeb5f20c1874f32880b
[ "Apache-2.0" ]
null
null
null
lib/tests/streamlit/Server_test.py
gzzo/streamlit
c587e0e36a829cbd2133adeb5f20c1874f32880b
[ "Apache-2.0" ]
null
null
null
lib/tests/streamlit/Server_test.py
gzzo/streamlit
c587e0e36a829cbd2133adeb5f20c1874f32880b
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2020 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Server.py unit tests""" import unittest import mock import pytest import tornado.testing import tornado.web import tornado.websocket import errno from mock import MagicMock from mock import patch from tornado import gen import streamlit.server.Server from streamlit import config from streamlit.ReportSession import ReportSession from streamlit.UploadedFileManager import UploadedFile from streamlit.server.Server import MAX_PORT_SEARCH_RETRIES from streamlit.ForwardMsgCache import ForwardMsgCache from streamlit.ForwardMsgCache import populate_hash_if_needed from streamlit.elements import data_frame_proto from streamlit.proto.BlockPath_pb2 import BlockPath from streamlit.proto.ForwardMsg_pb2 import ForwardMsg from streamlit.server.Server import State from streamlit.server.Server import start_listening from streamlit.server.Server import RetriesExceeded from streamlit.server.routes import DebugHandler from streamlit.server.routes import HealthHandler from streamlit.server.routes import MessageCacheHandler from streamlit.server.routes import MetricsHandler from streamlit.server.server_util import is_cacheable_msg from streamlit.server.server_util import is_url_from_allowed_origins from streamlit.server.server_util import serialize_forward_msg from tests.ServerTestCase import ServerTestCase from streamlit.logger import get_logger LOGGER = get_logger(__name__) def _create_dataframe_msg(df, id=1): msg = ForwardMsg() msg.metadata.delta_id = id msg.metadata.parent_block.container = BlockPath.SIDEBAR data_frame_proto.marshall_data_frame(df, msg.delta.new_element.data_frame) return msg def _create_report_finished_msg(status): msg = ForwardMsg() msg.report_finished = status return msg class ServerTest(ServerTestCase): _next_report_id = 0 @tornado.testing.gen_test def test_start_stop(self): """Test that we can start and stop the server.""" with self._patch_report_session(): yield self.start_server_loop() self.assertEqual(State.WAITING_FOR_FIRST_BROWSER, self.server._state) yield self.ws_connect() self.assertEqual(State.ONE_OR_MORE_BROWSERS_CONNECTED, self.server._state) self.server.stop() self.assertEqual(State.STOPPING, self.server._state) yield gen.sleep(0.1) self.assertEqual(State.STOPPED, self.server._state) @tornado.testing.gen_test def test_websocket_connect(self): """Test that we can connect to the server via websocket.""" with self._patch_report_session(): yield self.start_server_loop() self.assertFalse(self.server.browser_is_connected) # Open a websocket connection ws_client = yield self.ws_connect() self.assertTrue(self.server.browser_is_connected) # Get this client's SessionInfo object self.assertEqual(1, len(self.server._session_info_by_id)) session_info = list(self.server._session_info_by_id.values())[0] # Close the connection ws_client.close() yield gen.sleep(0.1) self.assertFalse(self.server.browser_is_connected) # Ensure ReportSession.shutdown() was called, and that our # SessionInfo was cleared. session_info.session.shutdown.assert_called_once() self.assertEqual(0, len(self.server._session_info_by_id)) @tornado.testing.gen_test def test_multiple_connections(self): """Test multiple websockets can connect simultaneously.""" with self._patch_report_session(): yield self.start_server_loop() self.assertFalse(self.server.browser_is_connected) # Open a websocket connection ws_client1 = yield self.ws_connect() self.assertTrue(self.server.browser_is_connected) # Open another ws_client2 = yield self.ws_connect() self.assertTrue(self.server.browser_is_connected) # Assert that our session_infos are sane session_infos = list(self.server._session_info_by_id.values()) self.assertEqual(2, len(session_infos)) self.assertNotEqual( session_infos[0].session.id, session_infos[1].session.id, ) # Close the first ws_client1.close() yield gen.sleep(0.1) self.assertTrue(self.server.browser_is_connected) # Close the second ws_client2.close() yield gen.sleep(0.1) self.assertFalse(self.server.browser_is_connected) @tornado.testing.gen_test def test_websocket_compression(self): with self._patch_report_session(): yield self.start_server_loop() # Connect to the server, and explicitly request compression. ws_client = yield tornado.websocket.websocket_connect( self.get_ws_url("/stream"), compression_options={} ) # Ensure that the "permessage-deflate" extension is returned # from the server. extensions = ws_client.headers.get("Sec-Websocket-Extensions") self.assertIn("permessage-deflate", extensions) @tornado.testing.gen_test def test_websocket_compression_disabled(self): with self._patch_report_session(): config._set_option("server.enableWebsocketCompression", False, "test") yield self.start_server_loop() # Connect to the server, and explicitly request compression. ws_client = yield tornado.websocket.websocket_connect( self.get_ws_url("/stream"), compression_options={} ) # Ensure that the "Sec-Websocket-Extensions" header is not # present in the response from the server. self.assertIsNone(ws_client.headers.get("Sec-Websocket-Extensions")) @tornado.testing.gen_test def test_forwardmsg_hashing(self): """Test that outgoing ForwardMsgs contain hashes.""" with self._patch_report_session(): yield self.start_server_loop() ws_client = yield self.ws_connect() # Get the server's socket and session for this client session_info = list(self.server._session_info_by_id.values())[0] # Create a message and ensure its hash is unset; we're testing # that _send_message adds the hash before it goes out. msg = _create_dataframe_msg([1, 2, 3]) msg.ClearField("hash") self.server._send_message(session_info, msg) received = yield self.read_forward_msg(ws_client) self.assertEqual(populate_hash_if_needed(msg), received.hash) @tornado.testing.gen_test def test_forwardmsg_cacheable_flag(self): """Test that the metadata.cacheable flag is set properly on outgoing ForwardMsgs.""" with self._patch_report_session(): yield self.start_server_loop() ws_client = yield self.ws_connect() # Get the server's socket and session for this client session_info = list(self.server._session_info_by_id.values())[0] config._set_option("global.minCachedMessageSize", 0, "test") cacheable_msg = _create_dataframe_msg([1, 2, 3]) self.server._send_message(session_info, cacheable_msg) received = yield self.read_forward_msg(ws_client) self.assertTrue(cacheable_msg.metadata.cacheable) self.assertTrue(received.metadata.cacheable) config._set_option("global.minCachedMessageSize", 1000, "test") cacheable_msg = _create_dataframe_msg([4, 5, 6]) self.server._send_message(session_info, cacheable_msg) received = yield self.read_forward_msg(ws_client) self.assertFalse(cacheable_msg.metadata.cacheable) self.assertFalse(received.metadata.cacheable) @tornado.testing.gen_test def test_duplicate_forwardmsg_caching(self): """Test that duplicate ForwardMsgs are sent only once.""" with self._patch_report_session(): config._set_option("global.minCachedMessageSize", 0, "test") yield self.start_server_loop() ws_client = yield self.ws_connect() # Get the server's socket and session for this client session_info = list(self.server._session_info_by_id.values())[0] msg1 = _create_dataframe_msg([1, 2, 3], 1) # Send the message, and read it back. It will not have been cached. self.server._send_message(session_info, msg1) uncached = yield self.read_forward_msg(ws_client) self.assertEqual("delta", uncached.WhichOneof("type")) msg2 = _create_dataframe_msg([1, 2, 3], 123) # Send an equivalent message. This time, it should be cached, # and a "hash_reference" message should be received instead. self.server._send_message(session_info, msg2) cached = yield self.read_forward_msg(ws_client) self.assertEqual("ref_hash", cached.WhichOneof("type")) # We should have the *hash* of msg1 and msg2: self.assertEqual(msg1.hash, cached.ref_hash) self.assertEqual(msg2.hash, cached.ref_hash) # And the same *metadata* as msg2: self.assertEqual(msg2.metadata, cached.metadata) @tornado.testing.gen_test def test_cache_clearing(self): """Test that report_run_count is incremented when a report finishes running. """ with self._patch_report_session(): config._set_option("global.minCachedMessageSize", 0, "test") config._set_option("global.maxCachedMessageAge", 1, "test") yield self.start_server_loop() yield self.ws_connect() session = list(self.server._session_info_by_id.values())[0] data_msg = _create_dataframe_msg([1, 2, 3]) def finish_report(success): status = ( ForwardMsg.FINISHED_SUCCESSFULLY if success else ForwardMsg.FINISHED_WITH_COMPILE_ERROR ) finish_msg = _create_report_finished_msg(status) self.server._send_message(session, finish_msg) def is_data_msg_cached(): return self.server._message_cache.get_message(data_msg.hash) is not None def send_data_msg(): self.server._send_message(session, data_msg) # Send a cacheable message. It should be cached. send_data_msg() self.assertTrue(is_data_msg_cached()) # End the report with a compile error. Nothing should change; # compile errors don't increase the age of items in the cache. finish_report(False) self.assertTrue(is_data_msg_cached()) # End the report successfully. Nothing should change, because # the age of the cached message is now 1. finish_report(True) self.assertTrue(is_data_msg_cached()) # Send the message again. This should reset its age to 0 in the # cache, so it won't be evicted when the report next finishes. send_data_msg() self.assertTrue(is_data_msg_cached()) # Finish the report. The cached message age is now 1. finish_report(True) self.assertTrue(is_data_msg_cached()) # Finish again. The cached message age will be 2, and so it # should be evicted from the cache. finish_report(True) self.assertFalse(is_data_msg_cached()) @tornado.testing.gen_test def test_uploaded_file_triggers_rerun(self): """Uploading a file should trigger a re-run in the associated ReportSession.""" with self._patch_report_session(): yield self.start_server_loop() # Connect twice and get associated ReportSessions yield self.ws_connect() yield self.ws_connect() session_info1 = list(self.server._session_info_by_id.values())[0] session_info2 = list(self.server._session_info_by_id.values())[1] file = UploadedFile("file.txt", b"123") # "Upload a file" for Session1 self.server._uploaded_file_mgr.add_files( session_id=session_info1.session.id, widget_id="widget_id", files=[file], ) self.assertEqual( self.server._uploaded_file_mgr.get_files( session_info1.session.id, "widget_id" ), [file], ) # Session1 should have a rerun request; Session2 should not session_info1.session.request_rerun.assert_called_once() session_info2.session.request_rerun.assert_not_called() @tornado.testing.gen_test def test_orphaned_upload_file_deletion(self): """An uploaded file with no associated ReportSession should be deleted.""" with self._patch_report_session(): yield self.start_server_loop() yield self.ws_connect() # "Upload a file" for a session that doesn't exist self.server._uploaded_file_mgr.add_files( session_id="no_such_session", widget_id="widget_id", files=[UploadedFile("file.txt", b"123")], ) self.assertIsNone( self.server._uploaded_file_mgr.get_files("no_such_session", "widget_id") ) @staticmethod def _create_mock_report_session(*args, **kwargs): """Create a mock ReportSession. Each mocked instance will have its own unique ID.""" mock_id = mock.PropertyMock( return_value="mock_id:%s" % ServerTest._next_report_id ) ServerTest._next_report_id += 1 mock_session = mock.MagicMock(ReportSession, autospec=True, *args, **kwargs) type(mock_session).id = mock_id return mock_session def _patch_report_session(self): """Mock the Server's ReportSession import. We don't want actual sessions to be instantiated, or scripts to be run. """ return mock.patch( "streamlit.server.Server.ReportSession", # new_callable must return a function, not an object, or else # there will only be a single ReportSession mock. Hence the lambda. new_callable=lambda: self._create_mock_report_session, ) class ServerUtilsTest(unittest.TestCase): def test_is_url_from_allowed_origins_allowed_domains(self): self.assertTrue(is_url_from_allowed_origins("localhost")) self.assertTrue(is_url_from_allowed_origins("127.0.0.1")) def test_is_url_from_allowed_origins_CORS_off(self): with patch( "streamlit.server.server_util.config.get_option", side_effect=[False] ): self.assertTrue(is_url_from_allowed_origins("does not matter")) def test_is_url_from_allowed_origins_s3_bucket(self): with patch( "streamlit.server.server_util.config.get_option", side_effect=[True, "mybucket"], ): self.assertTrue(is_url_from_allowed_origins("mybucket")) def test_is_url_from_allowed_origins_browser_serverAddress(self): with patch( "streamlit.server.server_util.config.is_manually_set", side_effect=[True] ), patch( "streamlit.server.server_util.config.get_option", side_effect=[True, "browser.server.address"], ): self.assertTrue(is_url_from_allowed_origins("browser.server.address")) def test_is_url_from_allowed_origins_s3_url(self): with patch( "streamlit.server.server_util.config.is_manually_set", side_effect=[True] ), patch( "streamlit.server.server_util.config.get_option", side_effect=[True, "s3.amazon.com"], ): self.assertTrue(is_url_from_allowed_origins("s3.amazon.com")) def test_should_cache_msg(self): """Test server_util.should_cache_msg""" config._set_option("global.minCachedMessageSize", 0, "test") self.assertTrue(is_cacheable_msg(_create_dataframe_msg([1, 2, 3]))) config._set_option("global.minCachedMessageSize", 1000, "test") self.assertFalse(is_cacheable_msg(_create_dataframe_msg([1, 2, 3]))) def test_should_limit_msg_size(self): # Set up a 60MB ForwardMsg string large_msg = _create_dataframe_msg([1, 2, 3]) large_msg.delta.new_element.markdown.body = "X" * 60 * 1000 * 1000 # Create a copy, since serialize_forward_msg modifies the original proto large_msg_copy = ForwardMsg() large_msg_copy.CopyFrom(large_msg) deserialized_msg = ForwardMsg() deserialized_msg.ParseFromString(serialize_forward_msg(large_msg_copy)) # The metadata should be the same, but contents should be replaced self.assertEqual(deserialized_msg.metadata, large_msg.metadata) self.assertNotEqual(deserialized_msg, large_msg) expected = "Data of size 60.0MB exceeds write limit of 50.0MB" self.assertEqual(deserialized_msg.delta.new_element.exception.message, expected) class HealthHandlerTest(tornado.testing.AsyncHTTPTestCase): """Tests the /healthz endpoint""" def setUp(self): super(HealthHandlerTest, self).setUp() self._is_healthy = True def is_healthy(self): return self._is_healthy def get_app(self): return tornado.web.Application( [(r"/healthz", HealthHandler, dict(callback=self.is_healthy))] ) def test_healthz(self): response = self.fetch("/healthz") self.assertEqual(200, response.code) self.assertEqual(b"ok", response.body) self._is_healthy = False response = self.fetch("/healthz") self.assertEqual(503, response.code) def test_healthz_without_csrf(self): config._set_option("server.enableXsrfProtection", False, "test") response = self.fetch("/healthz") self.assertEqual(200, response.code) self.assertEqual(b"ok", response.body) self.assertNotIn("Set-Cookie", response.headers) def test_healthz_with_csrf(self): config._set_option("server.enableXsrfProtection", True, "test") response = self.fetch("/healthz") self.assertEqual(200, response.code) self.assertEqual(b"ok", response.body) self.assertIn("Set-Cookie", response.headers) class PortRotateAHundredTest(unittest.TestCase): """Tests port rotation handles a MAX_PORT_SEARCH_RETRIES attempts then sys exits""" def get_httpserver(self): httpserver = mock.MagicMock() httpserver.listen = mock.Mock() httpserver.listen.side_effect = OSError(errno.EADDRINUSE, "test", "asd") return httpserver def test_rotates_a_hundred_ports(self): app = mock.MagicMock() RetriesExceeded = streamlit.server.Server.RetriesExceeded with pytest.raises(RetriesExceeded) as pytest_wrapped_e: with patch.object( tornado.httpserver, "HTTPServer", return_value=self.get_httpserver() ) as mock_server: start_listening(app) self.assertEqual(pytest_wrapped_e.type, SystemExit) self.assertEqual(pytest_wrapped_e.value.code, errno.EADDRINUSE) self.assertEqual(mock_server.listen.call_count, MAX_PORT_SEARCH_RETRIES) class PortRotateOneTest(unittest.TestCase): """Tests port rotates one port""" which_port = mock.Mock() def get_httpserver(self): httpserver = mock.MagicMock() httpserver.listen = mock.Mock() httpserver.listen.side_effect = OSError(errno.EADDRINUSE, "test", "asd") return httpserver @mock.patch("streamlit.server.Server.config._set_option") @mock.patch("streamlit.server.Server.server_port_is_manually_set") def test_rotates_one_port( self, patched_server_port_is_manually_set, patched__set_option ): app = mock.MagicMock() patched_server_port_is_manually_set.return_value = False with pytest.raises(RetriesExceeded) as pytest_wrapped_e: with patch.object( tornado.httpserver, "HTTPServer", return_value=self.get_httpserver() ) as mock_server: start_listening(app) PortRotateOneTest.which_port.assert_called_with(8502) patched__set_option.assert_called_with( "server.port", 8501, config.ConfigOption.STREAMLIT_DEFINITION ) class MetricsHandlerTest(tornado.testing.AsyncHTTPTestCase): """Tests the /metrics endpoint""" def get_app(self): return tornado.web.Application([(r"/metrics", MetricsHandler)]) def test_metrics(self): config.set_option("global.metrics", False) response = self.fetch("/metrics") self.assertEqual(404, response.code) config.set_option("global.metrics", True) response = self.fetch("/metrics") self.assertEqual(200, response.code) class DebugHandlerTest(tornado.testing.AsyncHTTPTestCase): """Tests the /debugz endpoint""" def get_app(self): return tornado.web.Application([(r"/debugz", DebugHandler)]) def test_debug(self): # TODO - debugz is currently broken pass class MessageCacheHandlerTest(tornado.testing.AsyncHTTPTestCase): def get_app(self): self._cache = ForwardMsgCache() return tornado.web.Application( [(r"/message", MessageCacheHandler, dict(cache=self._cache))] ) def test_message_cache(self): # Create a new ForwardMsg and cache it msg = _create_dataframe_msg([1, 2, 3]) msg_hash = populate_hash_if_needed(msg) self._cache.add_message(msg, MagicMock(), 0) # Cache hit response = self.fetch("/message?hash=%s" % msg_hash) self.assertEqual(200, response.code) self.assertEqual(serialize_forward_msg(msg), response.body) # Cache misses self.assertEqual(404, self.fetch("/message").code) self.assertEqual(404, self.fetch("/message?id=non_existent").code)
38.5
88
0.664236
35b0b6a047eb2b59de4172fc24362e39d65074d9
15,535
py
Python
lib/rucio/api/rule.py
fno2010/rucio
47e93cfbe5887071c70de4ba815c1bbdddfac2ce
[ "Apache-2.0" ]
null
null
null
lib/rucio/api/rule.py
fno2010/rucio
47e93cfbe5887071c70de4ba815c1bbdddfac2ce
[ "Apache-2.0" ]
null
null
null
lib/rucio/api/rule.py
fno2010/rucio
47e93cfbe5887071c70de4ba815c1bbdddfac2ce
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright CERN since 2012 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rucio.api.permission import has_permission from rucio.common.config import config_get_bool from rucio.common.exception import AccessDenied from rucio.common.schema import validate_schema from rucio.common.types import InternalAccount, InternalScope from rucio.common.utils import api_update_return_dict from rucio.core import rule from rucio.db.sqla.session import read_session, stream_session, transactional_session @read_session def is_multi_vo(session=None): """ Check whether this instance is configured for multi-VO returns: Boolean True if running in multi-VO """ return config_get_bool('common', 'multi_vo', raise_exception=False, default=False, session=session) @transactional_session def add_replication_rule(dids, copies, rse_expression, weight, lifetime, grouping, account, locked, subscription_id, source_replica_expression, activity, notify, purge_replicas, ignore_availability, comment, ask_approval, asynchronous, delay_injection, priority, split_container, meta, issuer, vo='def', session=None): """ Adds a replication rule. :param dids: The data identifier set. :param copies: The number of replicas. :param rse_expression: Boolean string expression to give the list of RSEs. :param weight: If the weighting option of the replication rule is used, the choice of RSEs takes their weight into account. :param lifetime: The lifetime of the replication rules (in seconds). :param grouping: ALL - All files will be replicated to the same RSE. DATASET - All files in the same dataset will be replicated to the same RSE. NONE - Files will be completely spread over all allowed RSEs without any grouping considerations at all. :param account: The account owning the rule. :param locked: If the rule is locked, it cannot be deleted. :param subscription_id: The subscription_id, if the rule is created by a subscription. :param source_replica_expression: Only use replicas from this RSE as sources. :param activity: Activity to be passed on to the conveyor. :param notify: Notification setting of the rule. :purge purge_replicas: The purge setting to delete replicas immediately after rule deletion. :param ignore_availability: Option to ignore the availability of RSEs. :param comment: Comment about the rule. :param ask_approval: Ask for approval of this rule. :param asynchronous: Create rule asynchronously by judge-injector. :param priority: Priority of the transfers. :param split_container: Should a container rule be split into individual dataset rules. :param meta: WFMS metadata as a dictionary. :param issuer: The issuing account of this operation. :param vo: The VO to act on. :param session: The database session in use. :returns: List of created replication rules. """ if account is None: account = issuer if activity is None: activity = 'User Subscriptions' kwargs = {'dids': dids, 'copies': copies, 'rse_expression': rse_expression, 'weight': weight, 'lifetime': lifetime, 'grouping': grouping, 'account': account, 'locked': locked, 'subscription_id': subscription_id, 'source_replica_expression': source_replica_expression, 'notify': notify, 'activity': activity, 'purge_replicas': purge_replicas, 'ignore_availability': ignore_availability, 'comment': comment, 'ask_approval': ask_approval, 'asynchronous': asynchronous, 'delay_injection': delay_injection, 'priority': priority, 'split_container': split_container, 'meta': meta} validate_schema(name='rule', obj=kwargs, vo=vo) if not has_permission(issuer=issuer, vo=vo, action='add_rule', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not add replication rule' % (issuer)) account = InternalAccount(account, vo=vo) for d in dids: d['scope'] = InternalScope(d['scope'], vo=vo) return rule.add_rule(account=account, dids=dids, copies=copies, rse_expression=rse_expression, grouping=grouping, weight=weight, lifetime=lifetime, locked=locked, subscription_id=subscription_id, source_replica_expression=source_replica_expression, activity=activity, notify=notify, purge_replicas=purge_replicas, ignore_availability=ignore_availability, comment=comment, ask_approval=ask_approval, asynchronous=asynchronous, delay_injection=delay_injection, priority=priority, split_container=split_container, meta=meta, session=session) @read_session def get_replication_rule(rule_id, issuer, vo='def', session=None): """ Get replication rule by it's id. :param rule_id: The rule_id to get. :param issuer: The issuing account of this operation. :param vo: The VO of the issuer. :param session: The database session in use. """ kwargs = {'rule_id': rule_id} if is_multi_vo(session=session) and not has_permission(issuer=issuer, vo=vo, action='access_rule_vo', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not access rules at other VOs.' % (issuer)) result = rule.get_rule(rule_id, session=session) return api_update_return_dict(result, session=session) @stream_session def list_replication_rules(filters={}, vo='def', session=None): """ Lists replication rules based on a filter. :param filters: dictionary of attributes by which the results should be filtered. :param vo: The VO to act on. :param session: The database session in use. """ # If filters is empty, create a new dict to avoid overwriting the function's default if not filters: filters = {} if 'scope' in filters: scope = filters['scope'] else: scope = '*' filters['scope'] = InternalScope(scope=scope, vo=vo) if 'account' in filters: account = filters['account'] else: account = '*' filters['account'] = InternalAccount(account=account, vo=vo) rules = rule.list_rules(filters, session=session) for r in rules: yield api_update_return_dict(r, session=session) @read_session def list_replication_rule_history(rule_id, issuer, vo='def', session=None): """ Lists replication rule history.. :param rule_id: The rule_id to list. :param issuer: The issuing account of this operation. :param vo: The VO of the issuer. :param session: The database session in use. """ kwargs = {'rule_id': rule_id} if is_multi_vo(session=session) and not has_permission(issuer=issuer, vo=vo, action='access_rule_vo', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not access rules at other VOs.' % (issuer)) return rule.list_rule_history(rule_id, session=session) @stream_session def list_replication_rule_full_history(scope, name, vo='def', session=None): """ List the rule history of a DID. :param scope: The scope of the DID. :param name: The name of the DID. :param vo: The VO to act on. :param session: The database session in use. """ scope = InternalScope(scope, vo=vo) rules = rule.list_rule_full_history(scope, name, session=session) for r in rules: yield api_update_return_dict(r, session=session) @stream_session def list_associated_replication_rules_for_file(scope, name, vo='def', session=None): """ Lists associated replication rules by file. :param scope: Scope of the file.. :param name: Name of the file. :param vo: The VO to act on. :param session: The database session in use. """ scope = InternalScope(scope, vo=vo) rules = rule.list_associated_rules_for_file(scope=scope, name=name, session=session) for r in rules: yield api_update_return_dict(r, session=session) @transactional_session def delete_replication_rule(rule_id, purge_replicas, issuer, vo='def', session=None): """ Deletes a replication rule and all associated locks. :param rule_id: The id of the rule to be deleted :param purge_replicas: Purge the replicas immediately :param issuer: The issuing account of this operation :param vo: The VO to act on. :param session: The database session in use. :raises: RuleNotFound, AccessDenied """ kwargs = {'rule_id': rule_id, 'purge_replicas': purge_replicas} if is_multi_vo(session=session) and not has_permission(issuer=issuer, vo=vo, action='access_rule_vo', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not access rules at other VOs.' % (issuer)) if not has_permission(issuer=issuer, vo=vo, action='del_rule', kwargs=kwargs): raise AccessDenied('Account %s can not remove this replication rule.' % (issuer)) rule.delete_rule(rule_id=rule_id, purge_replicas=purge_replicas, soft=True, session=session) @transactional_session def update_replication_rule(rule_id, options, issuer, vo='def', session=None): """ Update lock state of a replication rule. :param rule_id: The rule_id to lock. :param options: Options dictionary. :param issuer: The issuing account of this operation :param vo: The VO to act on. :param session: The database session in use. :raises: RuleNotFound if no Rule can be found. """ kwargs = {'rule_id': rule_id, 'options': options} if is_multi_vo(session=session) and not has_permission(issuer=issuer, vo=vo, action='access_rule_vo', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not access rules at other VOs.' % (issuer)) if 'approve' in options: if not has_permission(issuer=issuer, vo=vo, action='approve_rule', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not approve/deny this replication rule.' % (issuer)) issuer = InternalAccount(issuer, vo=vo) if options['approve']: rule.approve_rule(rule_id=rule_id, approver=issuer, session=session) else: rule.deny_rule(rule_id=rule_id, approver=issuer, reason=options.get('comment', None), session=session) else: if not has_permission(issuer=issuer, vo=vo, action='update_rule', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not update this replication rule.' % (issuer)) if 'account' in options: options['account'] = InternalAccount(options['account'], vo=vo) rule.update_rule(rule_id=rule_id, options=options, session=session) @transactional_session def reduce_replication_rule(rule_id, copies, exclude_expression, issuer, vo='def', session=None): """ Reduce the number of copies for a rule by atomically replacing the rule. :param rule_id: Rule to be reduced. :param copies: Number of copies of the new rule. :param exclude_expression: RSE Expression of RSEs to exclude. :param issuer: The issuing account of this operation :param vo: The VO to act on. :param session: The database session in use. :raises: RuleReplaceFailed, RuleNotFound """ kwargs = {'rule_id': rule_id, 'copies': copies, 'exclude_expression': exclude_expression} if is_multi_vo(session=session) and not has_permission(issuer=issuer, vo=vo, action='access_rule_vo', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not access rules at other VOs.' % (issuer)) if not has_permission(issuer=issuer, vo=vo, action='reduce_rule', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not reduce this replication rule.' % (issuer)) return rule.reduce_rule(rule_id=rule_id, copies=copies, exclude_expression=exclude_expression, session=session) @read_session def examine_replication_rule(rule_id, issuer, vo='def', session=None): """ Examine a replication rule. :param rule_id: The rule_id to get. :param issuer: The issuing account of this operation. :param vo: The VO of the issuer. :param session: The database session in use. """ kwargs = {'rule_id': rule_id} if is_multi_vo(session=session) and not has_permission(issuer=issuer, vo=vo, action='access_rule_vo', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not access rules at other VOs.' % (issuer)) result = rule.examine_rule(rule_id, session=session) result = api_update_return_dict(result, session=session) if 'transfers' in result: result['transfers'] = [api_update_return_dict(t, session=session) for t in result['transfers']] return result @transactional_session def move_replication_rule(rule_id, rse_expression, override, issuer, vo='def', session=None): """ Move a replication rule to another RSE and, once done, delete the original one. :param rule_id: Rule to be moved. :param rse_expression: RSE expression of the new rule. :param override: Configurations to update for the new rule. :param session: The DB Session. :param vo: The VO to act on. :raises: RuleNotFound, RuleReplaceFailed, InvalidRSEExpression, AccessDenied """ kwargs = { 'rule_id': rule_id, 'rse_expression': rse_expression, 'override': override, } if is_multi_vo(session=session) and not has_permission(issuer=issuer, vo=vo, action='access_rule_vo', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not access rules at other VOs.' % (issuer)) if not has_permission(issuer=issuer, vo=vo, action='move_rule', kwargs=kwargs, session=session): raise AccessDenied('Account %s can not move this replication rule.' % (issuer)) return rule.move_rule(**kwargs, session=session)
47.362805
147
0.659994
e863fa1d724e3582c7975dd274fb07e42b4f72bb
15,980
py
Python
InvenTree/company/views.py
ArakniD/InvenTree
0ebf2ebd832b2d736e895abe054ca56bfd1cc477
[ "MIT" ]
null
null
null
InvenTree/company/views.py
ArakniD/InvenTree
0ebf2ebd832b2d736e895abe054ca56bfd1cc477
[ "MIT" ]
null
null
null
InvenTree/company/views.py
ArakniD/InvenTree
0ebf2ebd832b2d736e895abe054ca56bfd1cc477
[ "MIT" ]
null
null
null
""" Django views for interacting with Company app """ # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.utils.translation import ugettext as _ from django.views.generic import DetailView, ListView, UpdateView from django.urls import reverse from django.forms import HiddenInput from moneyed import CURRENCIES from InvenTree.views import AjaxCreateView, AjaxUpdateView, AjaxDeleteView from InvenTree.helpers import str2bool from InvenTree.views import InvenTreeRoleMixin from .models import Company from .models import SupplierPart from .models import SupplierPriceBreak from part.models import Part from .forms import EditCompanyForm from .forms import CompanyImageForm from .forms import EditSupplierPartForm from .forms import EditPriceBreakForm import common.models import common.settings class CompanyIndex(InvenTreeRoleMixin, ListView): """ View for displaying list of companies """ model = Company template_name = 'company/index.html' context_object_name = 'companies' paginate_by = 50 permission_required = 'company.view_company' def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) # Provide custom context data to the template, # based on the URL we use to access this page lookup = { reverse('supplier-index'): { 'title': _('Suppliers'), 'button_text': _('New Supplier'), 'filters': {'is_supplier': 'true'}, 'create_url': reverse('supplier-create'), 'pagetype': 'suppliers', }, reverse('manufacturer-index'): { 'title': _('Manufacturers'), 'button_text': _('New Manufacturer'), 'filters': {'is_manufacturer': 'true'}, 'create_url': reverse('manufacturer-create'), 'pagetype': 'manufacturers', }, reverse('customer-index'): { 'title': _('Customers'), 'button_text': _('New Customer'), 'filters': {'is_customer': 'true'}, 'create_url': reverse('customer-create'), 'pagetype': 'customers', } } default = { 'title': _('Companies'), 'button_text': _('New Company'), 'filters': {}, 'create_url': reverse('company-create'), 'pagetype': 'companies' } context = None for item in lookup: if self.request.path == item: context = lookup[item] break if context is None: context = default for key, value in context.items(): ctx[key] = value return ctx def get_queryset(self): """ Retrieve the Company queryset based on HTTP request parameters. - supplier: Filter by supplier - customer: Filter by customer """ queryset = Company.objects.all().order_by('name') if self.request.GET.get('supplier', None): queryset = queryset.filter(is_supplier=True) if self.request.GET.get('customer', None): queryset = queryset.filter(is_customer=True) return queryset class CompanyNotes(UpdateView): """ View for editing the 'notes' field of a Company object. """ context_object_name = 'company' template_name = 'company/notes.html' model = Company fields = ['notes'] permission_required = 'company.view_company' def get_success_url(self): return reverse('company-notes', kwargs={'pk': self.get_object().id}) def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx['editing'] = str2bool(self.request.GET.get('edit', '')) return ctx class CompanyDetail(DetailView): """ Detail view for Company object """ context_obect_name = 'company' template_name = 'company/detail.html' queryset = Company.objects.all() model = Company permission_required = 'company.view_company' def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) return ctx class CompanyImage(AjaxUpdateView): """ View for uploading an image for the Company """ model = Company ajax_template_name = 'modal_form.html' ajax_form_title = _('Update Company Image') form_class = CompanyImageForm permission_required = 'company.change_company' def get_data(self): return { 'success': _('Updated company image'), } class CompanyEdit(AjaxUpdateView): """ View for editing a Company object """ model = Company form_class = EditCompanyForm context_object_name = 'company' ajax_template_name = 'modal_form.html' ajax_form_title = _('Edit Company') permission_required = 'company.change_company' def get_data(self): return { 'info': _('Edited company information'), } class CompanyCreate(AjaxCreateView): """ View for creating a new Company object """ model = Company context_object_name = 'company' form_class = EditCompanyForm ajax_template_name = 'modal_form.html' permission_required = 'company.add_company' def get_form_title(self): url = self.request.path if url == reverse('supplier-create'): return _("Create new Supplier") if url == reverse('manufacturer-create'): return _('Create new Manufacturer') if url == reverse('customer-create'): return _('Create new Customer') return _('Create new Company') def get_initial(self): """ Initial values for the form data """ initials = super().get_initial().copy() url = self.request.path if url == reverse('supplier-create'): initials['is_supplier'] = True initials['is_customer'] = False initials['is_manufacturer'] = False elif url == reverse('manufacturer-create'): initials['is_manufacturer'] = True initials['is_supplier'] = True initials['is_customer'] = False elif url == reverse('customer-create'): initials['is_customer'] = True initials['is_manufacturer'] = False initials['is_supplier'] = False return initials def get_data(self): return { 'success': _("Created new company"), } class CompanyDelete(AjaxDeleteView): """ View for deleting a Company object """ model = Company success_url = '/company/' ajax_template_name = 'company/delete.html' ajax_form_title = _('Delete Company') context_object_name = 'company' permission_required = 'company.delete_company' def get_data(self): return { 'danger': _('Company was deleted'), } class SupplierPartDetail(DetailView): """ Detail view for SupplierPart """ model = SupplierPart template_name = 'company/supplier_part_detail.html' context_object_name = 'part' queryset = SupplierPart.objects.all() permission_required = 'purchase_order.view' def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) return ctx class SupplierPartEdit(AjaxUpdateView): """ Update view for editing SupplierPart """ model = SupplierPart context_object_name = 'part' form_class = EditSupplierPartForm ajax_template_name = 'modal_form.html' ajax_form_title = _('Edit Supplier Part') role_required = 'purchase_order.change' def get_form(self): form = super().get_form() supplier_part = self.get_object() # It appears that hiding a MoneyField fails validation # Therefore the idea to set the value before hiding if form.is_valid(): form.cleaned_data['single_pricing'] = supplier_part.unit_pricing # Hide the single-pricing field (only for creating a new SupplierPart!) form.fields['single_pricing'].widget = HiddenInput() return form class SupplierPartCreate(AjaxCreateView): """ Create view for making new SupplierPart """ model = SupplierPart form_class = EditSupplierPartForm ajax_template_name = 'company/supplier_part_create.html' ajax_form_title = _('Create new Supplier Part') context_object_name = 'part' role_required = 'purchase_order.add' def validate(self, part, form): single_pricing = form.cleaned_data.get('single_pricing', None) if single_pricing: # TODO - What validation steps can be performed on the single_pricing field? pass def get_context_data(self): """ Supply context data to the form """ ctx = super().get_context_data() # Add 'part' object form = self.get_form() part = form['part'].value() try: part = Part.objects.get(pk=part) except (ValueError, Part.DoesNotExist): part = None ctx['part'] = part return ctx def save(self, form): """ If single_pricing is defined, add a price break for quantity=1 """ # Save the supplier part object supplier_part = super().save(form) single_pricing = form.cleaned_data.get('single_pricing', None) if single_pricing: supplier_part.add_price_break(1, single_pricing) return supplier_part def get_form(self): """ Create Form instance to create a new SupplierPart object. Hide some fields if they are not appropriate in context """ form = super(AjaxCreateView, self).get_form() if form.initial.get('part', None): # Hide the part field form.fields['part'].widget = HiddenInput() return form def get_initial(self): """ Provide initial data for new SupplierPart: - If 'supplier_id' provided, pre-fill supplier field - If 'part_id' provided, pre-fill part field """ initials = super(SupplierPartCreate, self).get_initial().copy() manufacturer_id = self.get_param('manufacturer') supplier_id = self.get_param('supplier') part_id = self.get_param('part') supplier = None if supplier_id: try: supplier = Company.objects.get(pk=supplier_id) initials['supplier'] = supplier except (ValueError, Company.DoesNotExist): supplier = None if manufacturer_id: try: initials['manufacturer'] = Company.objects.get(pk=manufacturer_id) except (ValueError, Company.DoesNotExist): pass if part_id: try: initials['part'] = Part.objects.get(pk=part_id) except (ValueError, Part.DoesNotExist): pass # Initial value for single pricing if supplier: currency_code = supplier.currency_code else: currency_code = common.settings.currency_code_default() currency = CURRENCIES.get(currency_code, None) if currency_code: initials['single_pricing'] = ('', currency) return initials class SupplierPartDelete(AjaxDeleteView): """ Delete view for removing a SupplierPart. SupplierParts can be deleted using a variety of 'selectors'. - ?part=<pk> -> Delete a single SupplierPart object - ?parts=[] -> Delete a list of SupplierPart objects """ success_url = '/supplier/' ajax_template_name = 'company/partdelete.html' ajax_form_title = _('Delete Supplier Part') role_required = 'purchase_order.delete' parts = [] def get_context_data(self): ctx = {} ctx['parts'] = self.parts return ctx def get_parts(self): """ Determine which SupplierPart object(s) the user wishes to delete. """ self.parts = [] # User passes a single SupplierPart ID if 'part' in self.request.GET: try: self.parts.append(SupplierPart.objects.get(pk=self.request.GET.get('part'))) except (ValueError, SupplierPart.DoesNotExist): pass elif 'parts[]' in self.request.GET: part_id_list = self.request.GET.getlist('parts[]') self.parts = SupplierPart.objects.filter(id__in=part_id_list) def get(self, request, *args, **kwargs): self.request = request self.get_parts() return self.renderJsonResponse(request, form=self.get_form()) def post(self, request, *args, **kwargs): """ Handle the POST action for deleting supplier parts. """ self.request = request self.parts = [] for item in self.request.POST: if item.startswith('supplier-part-'): pk = item.replace('supplier-part-', '') try: self.parts.append(SupplierPart.objects.get(pk=pk)) except (ValueError, SupplierPart.DoesNotExist): pass confirm = str2bool(self.request.POST.get('confirm_delete', False)) data = { 'form_valid': confirm, } if confirm: for part in self.parts: part.delete() return self.renderJsonResponse(self.request, data=data, form=self.get_form()) class PriceBreakCreate(AjaxCreateView): """ View for creating a supplier price break """ model = SupplierPriceBreak form_class = EditPriceBreakForm ajax_form_title = _('Add Price Break') ajax_template_name = 'modal_form.html' role_required = 'purchase_order.add' def get_data(self): return { 'success': _('Added new price break') } def get_part(self): """ Attempt to extract SupplierPart object from the supplied data. """ try: supplier_part = SupplierPart.objects.get(pk=self.request.GET.get('part')) return supplier_part except (ValueError, SupplierPart.DoesNotExist): pass try: supplier_part = SupplierPart.objects.get(pk=self.request.POST.get('part')) return supplier_part except (ValueError, SupplierPart.DoesNotExist): pass return None def get_form(self): form = super(AjaxCreateView, self).get_form() form.fields['part'].widget = HiddenInput() return form def get_initial(self): initials = super(AjaxCreateView, self).get_initial() supplier_part = self.get_part() initials['part'] = self.get_part() if supplier_part is not None: currency_code = supplier_part.supplier.currency_code else: currency_code = common.settings.currency_code_default() # Extract the currency object associated with the code currency = CURRENCIES.get(currency_code, None) if currency: initials['price'] = [1.0, currency] return initials class PriceBreakEdit(AjaxUpdateView): """ View for editing a supplier price break """ model = SupplierPriceBreak form_class = EditPriceBreakForm ajax_form_title = _('Edit Price Break') ajax_template_name = 'modal_form.html' role_required = 'purchase_order.change' def get_form(self): form = super(AjaxUpdateView, self).get_form() form.fields['part'].widget = HiddenInput() return form class PriceBreakDelete(AjaxDeleteView): """ View for deleting a supplier price break """ model = SupplierPriceBreak ajax_form_title = _("Delete Price Break") ajax_template_name = 'modal_delete_form.html' role_required = 'purchase_order.delete'
28.183422
92
0.614831
4a2fa8666de20f1bff4e9df5492e8303a9a8752c
1,397
py
Python
app/twitter-authorize.py
maxnovais/twepy
665782420be7a3574f81f69902685af49e9e8ddd
[ "Apache-2.0" ]
null
null
null
app/twitter-authorize.py
maxnovais/twepy
665782420be7a3574f81f69902685af49e9e8ddd
[ "Apache-2.0" ]
null
null
null
app/twitter-authorize.py
maxnovais/twepy
665782420be7a3574f81f69902685af49e9e8ddd
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 from config import TWITTER_API """ twitter-authorize: - step through the process of creating and authorization a Twitter application. Based on: https://github.com/ideoforms/python-twitter-examples """ import twitter import time print("1. Create a new Twitter application here: https://apps.twitter.com") print("When you have created the application, enter:") print(" your application name: "), app_name = input() if TWITTER_API['consumer_key']: consumer_key = TWITTER_API['consumer_key'] else: print(" your consumer key: "), consumer_key = input() if TWITTER_API['consumer_secret']: consumer_secret = TWITTER_API['consumer_secret'] else: print(" your consumer secret: "), consumer_secret = input() print("2. Now, authorize this application.") print("You'll be forwarded to a web browser in two seconds.") print() time.sleep(2) try: access_key, access_secret = twitter.oauth_dance(app_name, consumer_key, consumer_secret) except Exception as e: print("Error: {}".format(e)) print("Done.") print("Now, replace the credentials in config.py with the below:") print() print("TWITTER_API = {") print(" 'consumer_key': '{}',".format(consumer_key)) print(" 'consumer_secret': '{}',".format(consumer_secret)) print(" 'access_key': '{}',".format(access_key)) print(" 'access_secret': '{}',".format(access_secret)) print("}")
25.87037
92
0.704366
49532eae9033453f9324228392736216faf76860
4,550
py
Python
plugins/backbones/threatbus_rabbitmq/threatbus_rabbitmq/plugin.py
GTrunSec/threatbus
030993a0d10adf25929b85ef0a19bbdc657210f6
[ "BSD-3-Clause" ]
212
2020-01-25T12:05:54.000Z
2022-03-22T05:59:35.000Z
plugins/backbones/threatbus_rabbitmq/threatbus_rabbitmq/plugin.py
GTrunSec/threatbus
030993a0d10adf25929b85ef0a19bbdc657210f6
[ "BSD-3-Clause" ]
57
2020-01-28T14:23:32.000Z
2022-03-10T13:18:11.000Z
plugins/backbones/threatbus_rabbitmq/threatbus_rabbitmq/plugin.py
GTrunSec/threatbus
030993a0d10adf25929b85ef0a19bbdc657210f6
[ "BSD-3-Clause" ]
11
2020-02-01T15:15:15.000Z
2022-01-20T18:37:22.000Z
from collections import defaultdict from dynaconf import Validator from dynaconf.utils.boxing import DynaBox from multiprocessing import JoinableQueue import pika from retry import retry from socket import gethostname from stix2 import Indicator, Sighting import threading import threatbus from threatbus.data import SnapshotRequest, SnapshotEnvelope from threatbus_rabbitmq import RabbitMQConsumer, RabbitMQPublisher from typing import Dict, List, Union """RabbitMQ backbone plugin for Threat Bus""" plugin_name = "rabbitmq" subscriptions: Dict[str, set] = defaultdict(set) lock = threading.Lock() workers: List[threatbus.StoppableWorker] = list() def provision( topic: str, msg: Union[Indicator, Sighting, SnapshotEnvelope, SnapshotRequest] ): """ Provisions the given `msg` to all subscribers of `topic`. @param topic The topic string to use for provisioning @param msg The message to provision """ global subscriptions, lock, logger lock.acquire() for t in filter(lambda t: str(topic).startswith(str(t)), subscriptions.keys()): for outq in subscriptions[t]: outq.put(msg) lock.release() logger.debug(f"Relayed message from RabbitMQ: {msg}") @threatbus.backbone def config_validators() -> List[Validator]: return [ Validator( f"plugins.backbones.{plugin_name}.host", f"plugins.backbones.{plugin_name}.username", f"plugins.backbones.{plugin_name}.password", is_type_of=str, required=True, ), Validator( f"plugins.backbones.{plugin_name}.vhost", is_type_of=str, default="/", ), Validator( f"plugins.backbones.{plugin_name}.exchange_name", default="threatbus", ), Validator( f"plugins.backbones.{plugin_name}.port", is_type_of=int, required=True, ), Validator( f"plugins.backbones.{plugin_name}.queue.durable", f"plugins.backbones.{plugin_name}.queue.lazy", is_type_of=bool, default=True, ), Validator( f"plugins.backbones.{plugin_name}.queue.auto_delete", f"plugins.backbones.{plugin_name}.queue.exclusive", is_type_of=bool, default=False, ), Validator( f"plugins.backbones.{plugin_name}.queue.name_join_symbol", required=True, default=".", ), Validator( f"plugins.backbones.{plugin_name}.queue.name_suffix", default=gethostname(), ), Validator( f"plugins.backbones.{plugin_name}.queue.max_items", is_type_of=int, default=0, ), ] @retry(delay=5) @threatbus.backbone def subscribe(topic: str, q: JoinableQueue): """ Threat Bus' subscribe hook. Used to register new app-queues for certain topics. """ global logger, subscriptions, lock logger.info(f"Adding subscription to: {topic}") lock.acquire() subscriptions[topic].add(q) lock.release() @threatbus.backbone def unsubscribe(topic: str, q: JoinableQueue): """ Threat Bus' unsubscribe hook. Used to deregister app-queues from certain topics. """ global logger, subscriptions, lock logger.info(f"Removing subscription from: {topic}") lock.acquire() if q in subscriptions[topic]: subscriptions[topic].remove(q) lock.release() @threatbus.backbone def run(config: DynaBox, logging: DynaBox, inq: JoinableQueue): global subscriptions, lock, logger, workers assert plugin_name in config, f"Cannot find configuration for {plugin_name} plugin" logger = threatbus.logger.setup(logging, __name__) config = config[plugin_name] credentials = pika.PlainCredentials(config.username, config.password) conn_params = pika.ConnectionParameters( config.host, config.port, config.vhost, credentials ) workers.append( RabbitMQConsumer( conn_params, config.exchange_name, config.queue, provision, logger ) ) workers.append(RabbitMQPublisher(conn_params, config.exchange_name, inq, logger)) for w in workers: w.start() logger.info("RabbitMQ backbone started.") @threatbus.backbone def stop(): global logger, workers for w in workers: if not w.is_alive(): continue w.stop() w.join() logger.info("RabbitMQ backbone stopped")
29.934211
87
0.648132
426c07ca89f3365a8feb3d5f990d722985c3771e
11,801
py
Python
src/python/turicreate/test/test_json.py
Bpowers4/turicreate
73dad213cc1c4f74337b905baea2b3a1e5a0266c
[ "BSD-3-Clause" ]
null
null
null
src/python/turicreate/test/test_json.py
Bpowers4/turicreate
73dad213cc1c4f74337b905baea2b3a1e5a0266c
[ "BSD-3-Clause" ]
null
null
null
src/python/turicreate/test/test_json.py
Bpowers4/turicreate
73dad213cc1c4f74337b905baea2b3a1e5a0266c
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright © 2017 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause # This software may be modified and distributed under the terms # of the BSD license. See the LICENSE file for details. # This file tests invertibility (serializing to/from) the "serializable" format # of variant_type (produced by extensions.json). This extension results in a # naively-JSON-serializable flexible_type that should retain all necessary # information to be rehydrated into the original variant_type. from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ import array import datetime import json # Python built-in JSON module import math import os import pandas import pytest import pytz import six import string import sys import unittest import tempfile from . import util from .. import _json # turicreate._json from ..data_structures.sarray import SArray from ..data_structures.sframe import SFrame from ..data_structures.sgraph import SGraph, Vertex, Edge if sys.version_info.major == 3: long = int class image_info: def __init__(self, url): self.url = url if "png" in url: self.format = "PNG" elif "jpg" in url: self.format = "JPG" if "grey" in url: self.channels = 1 else: self.channels = 3 current_file_dir = os.path.dirname(os.path.realpath(__file__)) image_urls = [ current_file_dir + x for x in [ "/images/nested/sample_grey.jpg", "/images/nested/sample_grey.png", "/images/sample.jpg", "/images/sample.png", ] ] image_info = [image_info(u) for u in image_urls] _SFrameComparer = util.SFrameComparer() class JSONTest(unittest.TestCase): def _assertEqual(self, x, y): if type(x) in [long, int]: self.assertTrue(type(y) in [long, int]) elif isinstance(x, six.string_types): self.assertTrue(isinstance(y, six.string_types)) else: self.assertEqual(type(x), type(y)) if isinstance(x, six.string_types): self.assertEqual(str(x), str(y)) elif isinstance(x, SArray): _SFrameComparer._assert_sarray_equal(x, y) elif isinstance(x, SFrame): _SFrameComparer._assert_sframe_equal(x, y) elif isinstance(x, SGraph): _SFrameComparer._assert_sgraph_equal(x, y) elif isinstance(x, dict): for (k1, v1), (k2, v2) in zip(sorted(x.items()), sorted(y.items())): self._assertEqual(k1, k2) self._assertEqual(v1, v2) elif isinstance(x, list): for v1, v2 in zip(x, y): self._assertEqual(v1, v2) else: self.assertEqual(x, y) def _run_test_case(self, value): # test that JSON serialization is invertible with respect to both # value and type. (data, schema) = _json.to_serializable(value) # ensure that resulting value is actually naively serializable data = json.loads(json.dumps(data, allow_nan=False)) schema = json.loads(json.dumps(schema, allow_nan=False)) # print("----------------------------------") # print("Value: %s" % value) # print("Serializable Data: %s" % data) # print("Serializable Schema: %s" % schema) result = _json.from_serializable(data, schema) # print("Deserialized Result: %s" % result) # print("----------------------------------") self._assertEqual(result, value) # test that JSON serialization gives expected result serialized = _json.dumps(value) deserialized = _json.loads(serialized) self._assertEqual(deserialized, value) @unittest.skipIf(sys.platform == "win32", "Windows long issue") def test_int(self): [ self._run_test_case(value) for value in [ 0, 1, -2147483650, -2147483649, # boundary of accurate representation in JS 64-bit float 2147483648, # boundary of accurate representation in JS 64-bit float 2147483649, ] ] def test_float(self): [ self._run_test_case(value) for value in [-1.1, -1.0, 0.0, 1.0, 1.1, float("-inf"), float("inf"),] ] self.assertTrue( math.isnan(_json.from_serializable(*_json.to_serializable(float("nan")))) ) def test_string_to_json(self): [self._run_test_case(value) for value in ["hello", "a'b", 'a"b', "ɖɞɫɷ",]] def test_vec_to_json(self): [ self._run_test_case(value) for value in [ array.array("d"), array.array("d", [1.5]), array.array("d", [2.1, 2.5, 3.1]), array.array("d", [float("-inf"), float("inf")]), ] ] def test_list_to_json(self): # TODO -- we can't test lists of numbers, due to # Python<->flexible_type not being reversible for lists of numbers. # if `list` of `int` goes into C++, the flexible_type representation # becomes flex_vec (vector<flex_float>). This is a lossy representation. # known issue, can't resolve here. [ self._run_test_case(value) for value in [ [], ["hello", "world"], ["hello", 3, None], [3.14159, None], [{}, {"x": 1, "y": 2}], ["hello", float("-inf"), float("inf")], ] ] def test_dict_to_json(self): [self._run_test_case(value) for value in [{}, {"x": 1, "y": 2},]] def test_date_time_to_json(self): d = datetime.datetime(year=2016, month=3, day=5) [ self._run_test_case(value) for value in [ d, pytz.utc.localize(d), pytz.timezone("US/Arizona").localize(d), ] ] def test_image_to_json(self): from .. import Image [ self._run_test_case(value) for value in [ Image(path=item.url, format=item.format) for item in image_info ] ] def test_sarray_to_json(self): from .. import Image d = datetime.datetime(year=2016, month=3, day=5) [ self._run_test_case(value) for value in [ SArray(), SArray([1, 2, 3]), SArray([1.0, 2.0, 3.0]), SArray([None, 3, None]), SArray(["hello", "world"]), SArray(array.array("d", [2.1, 2.5, 3.1])), SArray( [["hello", None, "world"], ["hello", 3, None], [3.14159, None],] ), SArray([{"x": 1, "y": 2}, {"x": 5, "z": 3},]), SArray( [d, pytz.utc.localize(d), pytz.timezone("US/Arizona").localize(d),] ), SArray( [Image(path=item.url, format=item.format) for item in image_info] ), ] ] def test_sframe_to_json(self): [ self._run_test_case(value) for value in [ SFrame(), SFrame({"foo": [1, 2, 3, 4], "bar": [None, "Hello", None, "World"]}), ] ] def test_sgraph_to_json(self): sg = SGraph() self._run_test_case(sg) sg = sg.add_vertices([Vertex(x) for x in [1, 2, 3, 4]]) sg = sg.add_edges([Edge(x, x + 1) for x in [1, 2, 3]]) self._run_test_case(sg) def test_nested_to_json(self): # not tested in the cases above: nested data, nested schema # (but all flexible_type compatible) [ self._run_test_case(value) for value in [ { "foo": ["a", "b", "c"], "bar": array.array("d", [0.0, float("inf"), float("-inf")]), }, [["a", "b", "c"], array.array("d", [0.0, float("inf"), float("-inf")])], { "baz": { "foo": ["a", "b", "c"], "bar": array.array("d", [0.0, float("inf"), float("-inf")]), }, "qux": [ ["a", "b", "c"], array.array("d", [0.0, float("inf"), float("-inf")]), ], }, ] ] def test_variant_to_json(self): # not tested in the cases above: variant_type other than SFrame-like # but containing SFrame-like (so cannot be a flexible_type) sf = SFrame({"col1": [1, 2], "col2": ["hello", "world"]}) sa = SArray([5.0, 6.0, 7.0]) [self._run_test_case(value) for value in [{"foo": sf, "bar": sa}, [sf, sa],]] def test_malformed_json(self): out = """ [ { "text": "["I", "have", "an", "atlas"]", "label": ["NONE", "NONE", "NONE", "NONE"] }, { "text": ["These", "are", "my", "dogs"], "label": ["NONE", "NONE", "NONE", "PLN"] }, { "text": ["The", "sheep", "are", "fluffy"], "label": ["NONE","PLN","NONE","NONE"] }, { "text": ["Billiards", "is", "my", "favourite", "game"], "label": ["NONE", "NONE", "NONE", "NONE", "NONE"] }, { "text": ["I", "went", "to", "five", "sessions", "today"], "label": ["NONE", "NONE", "NONE", "NONE", "PLN", "NONE"] } ] """ with tempfile.NamedTemporaryFile("w") as f: f.write(out) f.flush() self.assertRaises(RuntimeError, SArray.read_json, f.name) self.assertRaises(RuntimeError, SFrame.read_json, f.name) def test_nonexistant_json(self): self.assertRaises(IOError, SArray.read_json, "/nonexistant.json") self.assertRaises(IOError, SFrame.read_json, "/nonexistant.json") def test_strange_128_char_corner_case(self): json_text = """ {"foo":[{"bar":"Lorem ipsum dolor sit amet, consectetur adipiscing elit. In eget odio velit. Suspendisse potenti. Vivamus a urna feugiat nullam."}]} """ with tempfile.NamedTemporaryFile("w") as f: f.write(json_text) f.flush() df = pandas.read_json(f.name, lines=True) sf_actual = SFrame.read_json(f.name, orient="lines") sf_expected = SFrame(df) _SFrameComparer._assert_sframe_equal(sf_expected, sf_actual) def test_true_false_substitutions(self): expecteda = [["a", "b", "c"], ["a", "b", "c"]] expectedb = [["d", "false", "e", 0, "true", 1, "a"], ["d", "e", "f"]] records_json_file = """ [{"a" : ["a", "b", "c"], "b" : ["d", "false", "e", false, "true", true, "a"]}, {"a" : ["a", "b", "c"], "b" : ["d", "e", "f"]}] """ lines_json_file = """ {"a" : ["a", "b", "c"], "b" : ["d", "false", "e", false, "true", true, "a"]} {"a" : ["a", "b", "c"], "b" : ["d", "e", "f"]} """ with tempfile.NamedTemporaryFile("w") as f: f.write(records_json_file) f.flush() records = SFrame.read_json(f.name, orient="records") self.assertEqual(list(records["a"]), expecteda) self.assertEqual(list(records["b"]), expectedb) with tempfile.NamedTemporaryFile("w") as f: f.write(lines_json_file) f.flush() lines = SFrame.read_json(f.name, orient="lines") self.assertEqual(list(lines["a"]), expecteda) self.assertEqual(list(lines["b"]), expectedb)
33.813754
148
0.528769
e690d27d49143abb2bee86e73f57c1a70085d47e
1,710
py
Python
corehq/apps/hqadmin/pillow_settings.py
kkrampa/commcare-hq
d64d7cad98b240325ad669ccc7effb07721b4d44
[ "BSD-3-Clause" ]
1
2020-05-05T13:10:01.000Z
2020-05-05T13:10:01.000Z
corehq/apps/hqadmin/pillow_settings.py
kkrampa/commcare-hq
d64d7cad98b240325ad669ccc7effb07721b4d44
[ "BSD-3-Clause" ]
1
2019-12-09T14:00:14.000Z
2019-12-09T14:00:14.000Z
corehq/apps/hqadmin/pillow_settings.py
MaciejChoromanski/commcare-hq
fd7f65362d56d73b75a2c20d2afeabbc70876867
[ "BSD-3-Clause" ]
5
2015-11-30T13:12:45.000Z
2019-07-01T19:27:07.000Z
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from copy import deepcopy import json def _get_pillow_configs_from_settings_dict(pillows_by_group): # this sucks, but not sure there's a better way to make it available to fabric from manage import init_hq_python_path init_hq_python_path() from pillowtop.utils import get_pillow_configs_from_settings_dict return get_pillow_configs_from_settings_dict(pillows_by_group) def get_pillows_for_env(pillow_env_configs, pillows_by_group=None): """ :param pillow_env_configs {pillow_name: {params to pass to supervisor generator}} """ if pillows_by_group is None: from django.conf import settings pillows_by_group = settings.PILLOWTOPS return _get_pillows_for_env(pillow_env_configs, pillows_by_group) def _get_pillows_for_env(pillow_env_configs, pillows_by_group): ret = [] pillow_names = set(pillow_env_configs) pillow_configs = _get_pillow_configs_from_settings_dict(pillows_by_group) pillows_for_env = [config for config in pillow_configs if config.name in pillow_names] for config in pillows_for_env: final_config = deepcopy(config) final_config.params.update(pillow_env_configs[config.name]) ret.append(final_config) return ret def test_pillow_settings(env_name, pillows_by_group): from fab.fabfile import load_env from fab.utils import get_pillow_env_config load_env(env_name) pillows = get_pillows_for_env(get_pillow_env_config(env_name), pillows_by_group=pillows_by_group) print("Configured Pillows") print(json.dumps(pillows, sort_keys=True, indent=2))
36.382979
101
0.788304
331957b3c926360a94daffdfa8a349fbde12e0f7
8,941
py
Python
Clean_StreetNames.py
EricSamsonCarto/Clean_StreetName_ArcpyTool
ec12b568baee65fab6583ee2d4d9482666978e1a
[ "CC0-1.0" ]
1
2020-09-22T18:11:28.000Z
2020-09-22T18:11:28.000Z
Clean_StreetNames.py
EricSamsonCarto/Clean_StreetName_ArcpyTool
ec12b568baee65fab6583ee2d4d9482666978e1a
[ "CC0-1.0" ]
null
null
null
Clean_StreetNames.py
EricSamsonCarto/Clean_StreetName_ArcpyTool
ec12b568baee65fab6583ee2d4d9482666978e1a
[ "CC0-1.0" ]
null
null
null
import arcgis import pandas as pd import os import arcpy """-------------------------------------------------------------------------------- Script Name: Clean Street Names Description: This script fixes and cleans a layer with a "FullName" street field. A "FullName" street field includes street name and street prefix. A "FLAG" field is created in the output layer that shows fields with one element in its string or fewer, or 5 elements in the string or more. This field can be used as a inspect field for data integerity. Examples: INPUT OUTPUT --------------------------------------------- walnut blv. ---> WALNUT BLVD MaIn Street. ---> MAIN ST Silver road east ---> E SILVER RD 89 Highway (Eastbound) ---> EB 89 HWY knoll creek ---> KNOLL CR SOUTH / richmond av ---> S RICHMOND AVE An excel sheet is needed in order to run the script. The excel sheet is called "NameABBRVs" and needs to be saved within the same directory as the script. It contains two lists. One with street prefix's and one with street abrvs Created By: Eric Samson. Date: 3/25/2019. ------------------------------------------------------------------------------------""" arcpy.env.overwriteOutput = True #inFC, AS PARAMETER, fcName REPRESENTS PATH TO THE FC, GET INFIELD FROM USER, GET OUTFC FROM USER inFC = arcpy.GetParameterAsText(0) fcName = os.path.basename(inFC) inField = arcpy.GetParameterAsText(1) outFC = arcpy.GetParameterAsText(2) fc_df = pd.DataFrame.spatial.from_featureclass(fcName) fc_df.head() #------------------------------------------------------------------------------------- #UPPERCASE, REMOVE LEADING AND TRAILING WHITE SPACES, REMOVE EXTRA SPACES fc_df[inField] = fc_df[inField].str.upper() fc_df[inField] = fc_df[inField].str.strip() fc_df[inField] = fc_df[inField].replace('\s+', ' ', regex=True) #REMOVE SPECIAL CHARECTERS SpecialCHAR = ['.', '&', ')', '(', '/', '-','{', '}', '*', '$', '%', '^', '@', '!', '_', '~', ':', '?', ']', '[', '='] for x in SpecialCHAR: fc_df[inField] = fc_df[inField].str.replace(x, '') #------------------------------------------------------------------------------------- #REPLACE DIRECTIONW WITH ABBREVIATIONS # REPLACE HEADINGS HeadingsFULL = ['EAST', 'WEST', 'SOUTH', 'NORTH', 'EASTBOUND', 'WESTBOUND', 'SOUTHBOUND', 'NORTHBOUND'] HeadingsABRV = ['E', 'W', 'S', 'N', 'EB', 'WB', 'SB', 'NB'] #------REPLACE ABBRV AND MOVE TO FRONT! fc_df[inField] = fc_df[inField].str.strip() fc_df[inField] = fc_df[inField].replace('\s+', ' ', regex=True) #Copy Over StreetName fc_df['StreetName_Copy'] = fc_df[inField] #LOOP THROUGH, LOOK FOR STRING WITH MORE THAN 2 WORDS def find_LargeStrings(x): if x is not None and len(x.split()) > 2: return x if x is not None and len(x.split()) <= 2: return '' fc_df['StreetName_Copy'] = fc_df['StreetName_Copy'].apply(find_LargeStrings) #REPLACE HEADINGS THAT ARE AT THE END OF THE STRING for x,y in zip(HeadingsFULL, HeadingsABRV): fc_df['StreetName_Copy'] = fc_df['StreetName_Copy'].str.replace(rf'\b{x}\b$', y, regex=True) #MOVE HEADING TO NEW COLUMN fc_df['Headings'] = fc_df['StreetName_Copy'].str.split().str[-1] #LOOP THROUGH, LOOK FOR ABBRIEVIATIONS def fix_direction(x): if x in HeadingsABRV: return x else: return '' fc_df['Headings_Fixed'] = fc_df['Headings'].apply(fix_direction) #If a heading has been fixed, drop that from the streetname fc_df.loc[fc_df['Headings_Fixed'] != '', 'StreetName_Copy'] = fc_df.StreetName_Copy.str.rsplit(' ',1).str[0] fc_df = fc_df.drop(['Headings'], 1) #Repeat REPLACE of last word for duplicates headings: for x,y in zip(HeadingsFULL, HeadingsABRV): fc_df['StreetName_Copy'] = fc_df['StreetName_Copy'].str.replace(rf'\b{x}\b$', y, regex=True) #Move last word to new column fc_df['Headings2'] = fc_df['StreetName_Copy'].str.split().str[-1] #LOOP THROUGH, LOOK FOR ABBRIEVIATIONS def fix_direction(x): if x in HeadingsABRV: return x else: return '' fc_df['Headings_Fixed2'] = fc_df['Headings2'].apply(fix_direction) fc_df = fc_df.drop(['Headings2'], 1) fc_df.loc[fc_df['Headings_Fixed2'] != '', 'StreetName_Copy'] = fc_df.StreetName_Copy.str.rsplit(' ',1).str[0] fc_df['Headings_Final'] = fc_df['Headings_Fixed2'] + ' ' + fc_df['Headings_Fixed'] #Drop Left Over Fields fc_df = fc_df.drop(['Headings_Fixed'], 1) fc_df = fc_df.drop(['Headings_Fixed2'], 1) #Look for large strings greater than 2 again fc_df['StreetName_Clean'] = fc_df['StreetName_Copy'].apply(find_LargeStrings) #REPLACE FIRST Word WITH ABBRV if it's a heading for x,y in zip(HeadingsFULL, HeadingsABRV): fc_df['StreetName_Clean'] = fc_df['StreetName_Clean'].str.replace(rf'^\b{x}\b', y, regex=True) #CLEAN FIELDS fc_df['StreetName_Clean'] = fc_df['StreetName_Clean'].str.strip() fc_df.StreetName_Clean = fc_df.StreetName_Clean.replace('\s+', ' ', regex=True) fc_df['StreetName_Copy'] = fc_df['StreetName_Copy'].str.strip() fc_df.StreetName_Copy = fc_df.StreetName_Copy.replace('\s+', ' ', regex=True) #MOVE FIRST StreetName_Copy OVER WHERE THE SECOND IS NULL fc_df['StreetName_Clean'].loc[(fc_df['StreetName_Clean'] == '')] = fc_df['StreetName_Copy'] #ADD DIRECTIONS TO THE FRONT OF THE STREET NAME fc_df['StreetName_Clean'] = fc_df['Headings_Final'] + ' ' + fc_df['StreetName_Clean'] #WHERE StreetName_Clean IS NULL, REPLACE WITH THE STREETNAME: fc_df['StreetName_Clean'] = fc_df['StreetName_Clean'].str.strip() fc_df.StreetName_Clean = fc_df.StreetName_Clean.replace('\s+', ' ', regex=True) fc_df.loc[fc_df['StreetName_Clean'] == '', 'StreetName_Clean'] = fc_df[inField] #Make new StreetName column fc_df[inField] = fc_df['StreetName_Clean'] #Drop Left Over Fields fc_df = fc_df.drop(['Headings_Final'], 1) fc_df = fc_df.drop(['StreetName_Clean'], 1) fc_df = fc_df.drop(['StreetName_Copy'], 1) #remove WhiteSpace fc_df[inField] = fc_df[inField].str.strip() fc_df[inField] = fc_df[inField].replace('\s+', ' ', regex=True) #----------------------------------------------------------- #Replace street name prefix's with abbrv's #READ CSV OF STREET PREFIX's and ABBREVIATIONS config_file = os.path.join(os.path.dirname(__file__), "NameABBRV.csv") csv_df = pd.read_csv(config_file) csv_df.dropna(inplace = True) csv_df['Streetname'] = csv_df['Streetname'].str.strip() csv_df['Abbrv'] = csv_df['Abbrv'].str.strip() #STREET LISTS streetprefix_list = csv_df['Streetname'].tolist() Abbrv_list = csv_df['Abbrv'].tolist() #OTHERS: Others = ['AV','BLVE','BL','CI','PARKWY','EX','PY','TE','PW','PK','BLV'] Others_re = ['AVE','BLVD','BLVD','CIR','PKY','EXPY','PKWY','TER','PKWY','PARK','BLVD'] #MAKE NEW FIELD WITH ONLY LAST ELEMENT fc_df['ABBRV'] = fc_df[inField].str.split().str[-1] #LOOP THROUGH, LOOK FOR ABBRIEVIATIONS def fix_direction(x): if x in streetprefix_list or x in Others: return x else: return '' #CREATED FIELD WITH ONLY ROAD PREFIX'S, ELSE none's fc_df['ABBRV_fixed'] = fc_df['ABBRV'].apply(fix_direction) #REPLACE PREFIX WITH ABBRV for x,y in zip(streetprefix_list, Abbrv_list): fc_df['ABBRV_fixed'] = fc_df['ABBRV_fixed'].str.replace(rf'\b{x}\b$', y, regex=True) for x,y in zip(Others, Others_re): fc_df['ABBRV_fixed'] = fc_df['ABBRV_fixed'].str.replace(rf'\b{x}\b$', y, regex=True) #LOCATE WHERE THERE ARE Prefix's, REMOVE Prefix FROM STREETNAME COLUMN #Since we just moved it above fc_df.loc[fc_df['ABBRV_fixed'] != '', inField] = fc_df[inField].str.rsplit(' ',1).str[0] #ADD THE abbrv back TO THE END OF FIELD fc_df[inField] = fc_df[inField] + ' ' + fc_df['ABBRV_fixed'] fc_df[inField] = fc_df[inField].str.strip() fc_df[inField] = fc_df[inField].replace('\s+', ' ', regex=True) #Drop remaining fields fc_df = fc_df.drop(['ABBRV_fixed'], 1) fc_df = fc_df.drop(['ABBRV'], 1) #----------------------------------------------------------- #FLAG ROWS WITH LESS THAN ONE ELEMENT (NO PREFIX) #CREATES NEW FIELD CALLED 'FLAG' fc_df['FLAG'] = fc_df[inField] #COUNT ELEMENTS IN EACH ROW OF STREET NAME, OVERWRITE FLAG ROWS WITH ELEMENT COUNT fc_df['FLAG'] = fc_df[inField].str.split().str.len() #SET UP FUNCTION TO ITERATE THROUGH FLAGS, LOOKING FOR WHERE STREETNAME HAS 1 ELEMENT OR LESS, OR 5 ELEMENTS OR MORE def check_elements(x): if x <= 1 or x >= 5: return 'FLAG' else: return '' fc_df['FLAG'] = fc_df['FLAG'].apply(check_elements) #----------------------------------------------------------- #BACK TO FEATURE LAYER, DF TO OUT FC outFC_sp = fc_df.spatial.to_featureclass(os.path.join(outFC)) #PRINT TO MAP outFC_sp
36.493878
119
0.62465
4aecefe825764240c385197d5ff10c3471109fb2
14,236
py
Python
tablemanager/forms.py
parksandwildlife/borgcollector
dab9464f2e58c7dbc039b4805bb894b168547938
[ "BSD-3-Clause" ]
2
2016-01-20T02:26:06.000Z
2016-02-16T02:47:24.000Z
tablemanager/forms.py
parksandwildlife/borgcollector
dab9464f2e58c7dbc039b4805bb894b168547938
[ "BSD-3-Clause" ]
4
2020-02-11T23:40:10.000Z
2021-09-22T04:27:50.000Z
tablemanager/forms.py
dbca-wa/borgcollector
dab9464f2e58c7dbc039b4805bb894b168547938
[ "BSD-3-Clause" ]
4
2016-01-12T02:10:14.000Z
2017-11-09T13:53:16.000Z
import json from itertools import ifilter from django import forms from django.core.exceptions import ObjectDoesNotExist,ValidationError from django.forms.widgets import HiddenInput,TextInput from django.contrib.admin.widgets import RelatedFieldWidgetWrapper from tablemanager.models import (Normalise,NormalTable,Normalise_NormalTable,Publish, Publish_NormalTable,ForeignTable,Input,NormalTable,Workspace,DataSource, PublishChannel,DatasourceType) from borg_utils.form_fields import GroupedModelChoiceField,CachedModelChoiceField from borg_utils.widgets import MultiWidgetLayout from borg_utils.form_fields import GeoserverSettingForm,MetaTilingFactorField,GridSetField,BorgSelect from borg_utils.forms import BorgModelForm from django.template import Context, Template class ForeignTableForm(BorgModelForm): """ A form for ForeignTable Model """ def __init__(self, *args, **kwargs): super(ForeignTableForm, self).__init__(*args, **kwargs) #remove the empty label #self.fields['server'].empty_label=None if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True #remote the "+" icon from html page because this field is readonly self.fields['server'].widget = self.fields['server'].widget.widget self.fields['server'].widget.attrs['readonly'] = True class Meta: model = ForeignTable fields = "__all__" widgets = { 'server': BorgSelect(), } class DataSourceForm(BorgModelForm): """ A form for DataSource Model """ CHANGE_TYPE = 100 def __init__(self, *args, **kwargs): super(DataSourceForm, self).__init__(*args, **kwargs) if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True self.fields['type'].widget.attrs['readonly'] = True def get_mode(self,data): if data and "_change_type" in data: return (DataSourceForm.CHANGE_TYPE,"change_type",True,False,('name','type')) return super(DataSourceForm,self).get_mode(data) def change_type(self): if self.instance.type == DatasourceType.DATABASE: self.data['sql'] = "CREATE SERVER {{self.name}} FOREIGN DATA WRAPPER oracle_fdw OPTIONS (dbserver '//<hostname>/<sid>');" else: self.data['sql'] = "" class Meta: model = DataSource fields = "__all__" widgets = { 'type': BorgSelect(attrs={"onChange":"django.jQuery('#datasource_form').append(\"<input type='hidden' name='_change_type' value=''>\");django.jQuery('#datasource_form').submit()"}), 'description': forms.TextInput(attrs={"style":"width:95%"}) } class InputForm(BorgModelForm): """ A form for Input Model """ INSERT_FIELDS = 100 CHANGE_DATA_SOURCE = 101 CHANGE_FOREIGN_TABLE = 102 foreign_table = CachedModelChoiceField(queryset=ForeignTable.objects.all(),label_func=lambda table:table.name,required=False,choice_family="foreigntable",choice_name="foreigntable_options", widget=BorgSelect(attrs={"onChange":"$('#input_form').append(\"<input type='hidden' name='_change_foreign_table' value=''>\"); $('#input_form').submit()"})) def __init__(self, *args, **kwargs): super(InputForm, self).__init__(*args, **kwargs) #remote the "+" icon from html page because this will trigger onchange event and cause recusive submit html form to server self.fields['data_source'].widget = self.fields['data_source'].widget.widget if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True self.fields['data_source'].widget.attrs['readonly'] = True self.fields['foreign_table'].widget.attrs['readonly'] = True def get_mode(self,data): if data and "_insert_fields" in data: return (InputForm.INSERT_FIELDS,"insert_fields",True,False,None) elif data and "_change_data_source" in data: return (InputForm.CHANGE_DATA_SOURCE,"change_data_source",True,False,('name','data_source')) elif data and "_change_foreign_table" in data: return (InputForm.CHANGE_DATA_SOURCE,"change_foreign_table",True,False,('name','data_source','foreign_table')) return super(InputForm,self).get_mode(data) def insert_fields(self): self.data['source'] = self.instance.source self.fields['foreign_table'].queryset = ForeignTable.objects.filter(server=self.instance.data_source) self.fields['foreign_table'].choice_name = "foreigntable_options_{}".format(self.instance.data_source.name) self.fields['foreign_table'].widget.choices = self.fields['foreign_table'].choices def change_data_source(self): if not hasattr(self.instance,"data_source"): self.data['source'] = "" elif self.instance.data_source.type == DatasourceType.FILE_SYSTEM: self.data['source'] = self.instance.data_source.vrt elif self.instance.data_source.type == DatasourceType.DATABASE: self.fields['foreign_table'].queryset = ForeignTable.objects.filter(server=self.instance.data_source) self.fields['foreign_table'].choice_name = "foreigntable_options_{}".format(self.instance.data_source.name) self.fields['foreign_table'].widget.choices = self.fields['foreign_table'].choices self.data['source'] = "" else: self.data['source'] = "" def change_foreign_table(self): self.data['source'] = str(Template(self.instance.data_source.vrt).render(Context({'self':self.instance,'db':Input.DB_TEMPLATE_CONTEXT}))) self.fields['foreign_table'].queryset = ForeignTable.objects.filter(server=self.instance.data_source) self.fields['foreign_table'].choice_name = "foreigntable_options_{}".format(self.instance.data_source.name) self.fields['foreign_table'].widget.choices = self.fields['foreign_table'].choices class Meta: model = Input fields = "__all__" widgets = { 'data_source': BorgSelect(attrs={"onChange":"$('#input_form').append(\"<input type='hidden' name='_change_data_source' value=''>\"); $('#input_form').submit();"}), } class NormalTableForm(BorgModelForm): """ A form for NormalTable Model """ def __init__(self, *args, **kwargs): super(NormalTableForm, self).__init__(*args, **kwargs) if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True class Meta: model = NormalTable fields = "__all__" class PublishChannelForm(BorgModelForm): """ A form for PublishChannel Model """ def __init__(self, *args, **kwargs): super(PublishChannelForm, self).__init__(*args, **kwargs) if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True class Meta: model = PublishChannel fields = "__all__" class WorkspaceForm(BorgModelForm): """ A form for Workspace Model """ def __init__(self, *args, **kwargs): super(WorkspaceForm, self).__init__(*args, **kwargs) if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True self.fields['publish_channel'].widget = self.fields['publish_channel'].widget.widget self.fields['publish_channel'].widget.attrs['readonly'] = True class Meta: model = Workspace fields = "__all__" widgets = { 'publish_channel': BorgSelect(), } class NormaliseForm(BorgModelForm): """ A form for Normalise Model """ input_table = GroupedModelChoiceField('data_source',queryset=Input.objects.all(),required=True,choice_family="input",choice_name="input_options") dependents = forms.ModelMultipleChoiceField(queryset=NormalTable.objects.all(),required=False) output_table = forms.ModelChoiceField(queryset=NormalTable.objects.all(),required=False,widget=BorgSelect()) def __init__(self, *args, **kwargs): kwargs['initial']=kwargs.get('initial',{}) if 'instance' in kwargs and kwargs['instance']: try: kwargs['initial']['output_table']=kwargs['instance'].normaltable except ObjectDoesNotExist: pass dependents = [] for relation in (kwargs['instance'].relations): if relation: for normal_table in relation.normal_tables: if normal_table: dependents.append(normal_table) kwargs['initial']['dependents'] = dependents super(NormaliseForm, self).__init__(*args, **kwargs) if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True self.fields['output_table'].widget.attrs['readonly'] = True def _post_clean(self): super(NormaliseForm,self)._post_clean() if self.errors: return if 'output_table' in self.cleaned_data: self.instance.normal_table = self.cleaned_data['output_table'] else: self.instance.normal_table = None if 'dependents' in self.cleaned_data: sorted_dependents = self.cleaned_data['dependents'].order_by('pk') else: sorted_dependents = [] pos = 0 normal_table_pos = 0 relation_index = 0 length = len(sorted_dependents) for relation in (self.instance.relations): normal_table_pos = 0 if pos < length: if relation is None: relation = Normalise_NormalTable() self.instance.set_relation(relation_index,relation) if relation is not None: for normal_table in relation.normal_tables: if pos < length: relation.set_normal_table(normal_table_pos, sorted_dependents[pos]) elif relation: relation.set_normal_table(normal_table_pos, None) pos += 1 normal_table_pos += 1 relation_index += 1 class Meta: model = Normalise fields = ('name','input_table','dependents','output_table','sql') class PublishForm(GeoserverSettingForm,BorgModelForm): """ A form for normal table's Publish Model """ create_cache_layer = forms.BooleanField(required=False,label="create_cache_layer",initial=True) create_cache_layer.setting_type = "geoserver_setting" server_cache_expire = forms.IntegerField(label="server_cache_expire",min_value=0,required=False,initial=0,help_text="Expire server cache after n seconds (set to 0 to use source setting)") server_cache_expire.setting_type = "geoserver_setting" client_cache_expire = forms.IntegerField(label="client_cache_expire",min_value=0,required=False,initial=0,help_text="Expire client cache after n seconds (set to 0 to use source setting)") client_cache_expire.setting_type = "geoserver_setting" workspace = GroupedModelChoiceField('publish_channel',queryset=Workspace.objects.all(),required=True,choice_family="workspace",choice_name="workspace_choices",widget=BorgSelect()) input_table = GroupedModelChoiceField('data_source',queryset=Input.objects.all(),required=False,choice_family="input",choice_name="input_options") dependents = forms.ModelMultipleChoiceField(queryset=NormalTable.objects.all(),required=False) def __init__(self, *args, **kwargs): kwargs['initial']=kwargs.get('initial',{}) self.get_setting_from_model(*args,**kwargs) if 'instance' in kwargs and kwargs['instance']: #populate the dependents field value from table data dependents = [] for relation in (kwargs['instance'].relations): if relation: for normal_table in relation.normal_tables: if normal_table: dependents.append(normal_table) kwargs['initial']['dependents'] = dependents super(PublishForm, self).__init__(*args, **kwargs) if 'instance' in kwargs and kwargs['instance'] and kwargs['instance'].pk: self.fields['name'].widget.attrs['readonly'] = True self.fields['workspace'].widget.attrs['readonly'] = True def _post_clean(self): super(PublishForm,self)._post_clean() if self.errors: return #populate the value of the relation columns if 'dependents' in self.cleaned_data: sorted_dependents = self.cleaned_data['dependents'].order_by('pk') else: sorted_dependents = [] pos = 0 normal_table_pos = 0 relation_index = 0 length = len(sorted_dependents) for relation in (self.instance.relations): normal_table_pos = 0 if pos < length: if relation is None: relation = Publish_NormalTable() self.instance.set_relation(relation_index,relation) if relation is not None: for normal_table in relation.normal_tables: if pos < length: relation.set_normal_table(normal_table_pos, sorted_dependents[pos]) elif relation: relation.set_normal_table(normal_table_pos, None) pos += 1 normal_table_pos += 1 relation_index += 1 if self.instance and self.instance.is_spatial: self.set_setting_to_model() class Meta: model = Publish fields = ('name','workspace','interval','status','input_table','dependents','priority','sql','create_extra_index_sql')
44.074303
197
0.650042
ec421df0152904b67af7322daf36adc32ed4e8d5
800
py
Python
schemas/ModuleBuild.py
fresch/maven-build-tracker
ad850f2e290423b77079db64391e403c565cdef1
[ "MIT" ]
null
null
null
schemas/ModuleBuild.py
fresch/maven-build-tracker
ad850f2e290423b77079db64391e403c565cdef1
[ "MIT" ]
null
null
null
schemas/ModuleBuild.py
fresch/maven-build-tracker
ad850f2e290423b77079db64391e403c565cdef1
[ "MIT" ]
null
null
null
from typing import List from datetime import datetime from uuid import UUID from pydantic import BaseModel from .SubModuleBuild import SubModuleBuild, SubModuleBuildResponse from .BuildStatus import BuildStatus class ModuleBuild(BaseModel): module: str build_time: str result: BuildStatus finished_at: datetime maven_opts: str uname: str uuid: UUID cpu: str mem: int submodules: List[SubModuleBuild] class Config: orm_mode = True class ModuleBuildResponse(BaseModel): id: int module: str # build_time: str # result: BuildStatus # finished_at: str # maven_opts: str # uname: str # uuid: UUID # cpu: str # mem: int submodules: List[SubModuleBuildResponse] class Config: orm_mode = True
19.047619
66
0.68625
e6211b378f1643fe6dc1a4b30228853e8d7a8763
10,864
py
Python
src/elasticsearch/addl_index_transformations/portal/translate.py
sennetconsortium/search-api
01a5c0ab8ec6abd147e5b04477ba10f80fedfdc3
[ "MIT" ]
null
null
null
src/elasticsearch/addl_index_transformations/portal/translate.py
sennetconsortium/search-api
01a5c0ab8ec6abd147e5b04477ba10f80fedfdc3
[ "MIT" ]
7
2022-02-08T19:39:14.000Z
2022-03-18T20:26:10.000Z
src/elasticsearch/addl_index_transformations/portal/translate.py
sennetconsortium/search-api
01a5c0ab8ec6abd147e5b04477ba10f80fedfdc3
[ "MIT" ]
null
null
null
from pathlib import Path import re from datetime import datetime from collections import defaultdict from yaml import safe_load as load_yaml from libs.assay_type import AssayType class TranslationException(Exception): pass def _unexpected(s): return f'No translation for "{s}"' def translate(doc): _add_metadata_metadata_placeholder(doc) _translate_file_description(doc) _translate_status(doc) _translate_organ(doc) _translate_donor_metadata(doc) _translate_specimen_type(doc) _translate_data_type(doc) _translate_timestamp(doc) _translate_access_level(doc) _translate_external_consortium(doc) # Utils: _enums_dir = Path(__file__).parent.parent.parent.parent / 'search-schema' / 'data' / 'definitions' / 'enums' _enums = {path.stem: load_yaml(path.read_text()) for path in _enums_dir.iterdir()} def _map(doc, key, map): # The recursion is usually not needed... # but better to do it everywhere than to miss one case. if key in doc: doc[f'mapped_{key}'] = map(doc[key]) if 'donor' in doc: _map(doc['donor'], key, map) if 'origin_sample' in doc: _map(doc['origin_sample'], key, map) if 'source_sample' in doc: for sample in doc['source_sample']: _map(sample, key, map) if 'ancestors' in doc: for ancestor in doc['ancestors']: _map(ancestor, key, map) def _add_metadata_metadata_placeholder(doc): ''' For datasets, the "metadata" used by the portal is actually at "metadata.metadata" and in dev-search, there is a boolean facet that looks for this path. Samples and Donors don't follow this pattern, but to enable the boolean facet, we add a placeholder. >>> doc = {'entity_type': 'Donor', 'metadata': {}} >>> _add_metadata_metadata_placeholder(doc) >>> assert 'metadata' in doc['metadata'] >>> doc = {'entity_type': 'Donor'} >>> _add_metadata_metadata_placeholder(doc) >>> assert 'metadata' not in doc >>> doc = {'entity_type': 'Dataset', 'metadata': {}} >>> _add_metadata_metadata_placeholder(doc) >>> assert 'metadata' not in doc['metadata'] ''' if doc['entity_type'] in ['Donor', 'Sample'] and 'metadata' in doc: doc['metadata']['metadata'] = {'has_metadata': True} # File description: def _translate_file_description(doc): ''' >>> doc = {'files': [{ ... "description": "OME-TIFF pyramid file", ... "edam_term": "EDAM_1.24.format_3727", ... "is_qa_qc": False, ... "rel_path": "ometiff-pyramids/stitched/expressions/reg1_stitched_expressions.ome.tif", ... "size": 123456789, ... "type": "unknown" ... }]} >>> _translate_file_description(doc) >>> from pprint import pprint >>> pprint(doc) {'files': [{'description': 'OME-TIFF pyramid file', 'edam_term': 'EDAM_1.24.format_3727', 'is_qa_qc': False, 'mapped_description': 'OME-TIFF pyramid file (TIF file)', 'rel_path': 'ometiff-pyramids/stitched/expressions/reg1_stitched_expressions.ome.tif', 'size': 123456789, 'type': 'unknown'}]} ''' for file in doc.get('files', []): extension = file['rel_path'].split('.')[-1].upper() file['mapped_description'] = file['description'] + f' ({extension} file)' # Data access level: def _translate_access_level(doc): ''' >>> doc = {'data_access_level': 'consortium'} >>> _translate_access_level(doc); doc {'data_access_level': 'consortium', 'mapped_data_access_level': 'Consortium'} >>> doc = {'data_access_level': 'top-secret'} >>> _translate_access_level(doc); doc {'data_access_level': 'top-secret', 'mapped_data_access_level': 'No translation for "top-secret"'} ''' _map(doc, 'data_access_level', _access_level_map) def _access_level_map(access_level): if access_level not in _enums['data_access_levels'].keys(): return _unexpected(access_level) return access_level.title() # External consortium: def _translate_external_consortium(doc): ''' >>> doc = {} >>> _translate_external_consortium(doc); doc {'mapped_consortium': 'HuBMAP'} >>> doc = {'group_name': 'Inside HuBMAP'} >>> _translate_external_consortium(doc); doc {'group_name': 'Inside HuBMAP', 'mapped_consortium': 'HuBMAP'} >>> doc = {'group_name': 'EXT - Outside HuBMAP'} >>> _translate_external_consortium(doc); doc {'group_name': 'EXT - Outside HuBMAP', 'mapped_external_group_name': 'Outside HuBMAP', 'mapped_consortium': 'Outside HuBMAP'} ''' group_name = doc.get('group_name') if group_name is not None and 'EXT' in group_name: mapped_consortium = group_name.replace('EXT - ', '') doc['mapped_external_group_name'] = mapped_consortium else: mapped_consortium = 'HuBMAP' doc['mapped_consortium'] = mapped_consortium # Timestamp: def _translate_timestamp(doc): ''' >>> doc = { ... 'create_timestamp': '1575489509656', ... 'last_modified_timestamp': 1590017663118 ... } >>> _translate_timestamp(doc) >>> from pprint import pprint >>> pprint(doc) {'create_timestamp': '1575489509656', 'last_modified_timestamp': 1590017663118, 'mapped_create_timestamp': '2019-12-04 19:58:29', 'mapped_last_modified_timestamp': '2020-05-20 23:34:23'} ''' _map(doc, 'create_timestamp', _timestamp_map) _map(doc, 'last_modified_timestamp', _timestamp_map) def _timestamp_map(timestamp): return ( datetime.utcfromtimestamp(int(timestamp) / 1000) .strftime('%Y-%m-%d %H:%M:%S') ) # Status: def _translate_status(doc): ''' >>> doc = {'status': 'New'} >>> _translate_status(doc); doc {'status': 'New', 'mapped_status': 'New'} >>> doc = {'status': 'Foobar'} >>> _translate_status(doc); doc {'status': 'Foobar', 'mapped_status': 'No translation for "Foobar"'} ''' _map(doc, 'status', _status_map) def _status_map(status): if status not in _enums['dataset_status_types'].keys(): return _unexpected(status) return status # Organ: def _translate_organ(doc): ''' >>> doc = {'origin_sample': {'organ': 'RK'}} >>> _translate_organ(doc); doc {'origin_sample': {'organ': 'RK', 'mapped_organ': 'Kidney (Right)'}} >>> doc = {'origin_sample': {'organ': 'ZZ'}} >>> _translate_organ(doc); doc {'origin_sample': {'organ': 'ZZ', 'mapped_organ': 'No translation for "ZZ"'}} ''' _map(doc, 'organ', _organ_map) def _organ_map(k): if k not in _organ_dict: return _unexpected(k) return _organ_dict[k] _organ_dict = { k: v['description'] for k, v in _enums['organ_types'].items() } # Specimen type: def _translate_specimen_type(doc): ''' >>> doc = {'specimen_type': 'fresh_frozen_tissue'} >>> _translate_specimen_type(doc); doc {'specimen_type': 'fresh_frozen_tissue', 'mapped_specimen_type': 'Fresh frozen tissue'} >>> doc = {'specimen_type': 'xyz'} >>> _translate_specimen_type(doc); doc {'specimen_type': 'xyz', 'mapped_specimen_type': 'No translation for "xyz"'} ''' _map(doc, 'specimen_type', _specimen_types_map) def _specimen_types_map(k): if k not in _specimen_types_dict: return _unexpected(k) return _specimen_types_dict[k] _specimen_types_dict = { k: v['description'] for k, v in _enums['tissue_sample_types'].items() } # Assay type: def _translate_data_type(doc): ''' >>> doc = {'data_types': ['AF']} >>> _translate_data_type(doc); doc {'data_types': ['AF'], 'mapped_data_types': ['Autofluorescence Microscopy']} >>> doc = {'data_types': ['image_pyramid', 'AF']} >>> _translate_data_type(doc); doc {'data_types': ['image_pyramid', 'AF'], 'mapped_data_types': ['Autofluorescence Microscopy [Image Pyramid]']} >>> doc = {'data_types': ['salmon_rnaseq_10x_sn']} >>> _translate_data_type(doc); doc {'data_types': ['salmon_rnaseq_10x_sn'], 'mapped_data_types': ['snRNA-seq [Salmon]']} >>> doc = {'data_types': ['xyz', 'image_pyramid']} >>> _translate_data_type(doc); doc {'data_types': ['xyz', 'image_pyramid'], 'mapped_data_types': ['No translation for "[\\'xyz\\', \\'image_pyramid\\']"']} ''' _map(doc, 'data_types', _data_types_map) def _data_types_map(ks): assert len(ks) == 1 or (len(ks) == 2 and ('image_pyramid' in ks or 'Image Pyramid' in ks)), \ f"Maximum 2 types, and one should be image pyramid: {ks}" single_key = ks[0] if len(ks) == 1 else ks try: r = AssayType(single_key).description except RuntimeError: r = _unexpected(single_key) return [r] # Donor metadata: def _translate_donor_metadata(doc): ''' >>> doc = {"metadata": None} >>> _translate_donor_metadata(doc) >>> doc {'metadata': None, 'mapped_metadata': {}} Multi-valued fields are supported: >>> doc = { ... "metadata": { ... "organ_donor_data": [{ ... "preferred_term": "Diabetes", ... "grouping_concept_preferred_term": "Medical history" ... }, ... { ... "preferred_term": "Cancer", ... "grouping_concept_preferred_term": "Medical history" ... }] ... } ... } >>> _translate_donor_metadata(doc) >>> doc['mapped_metadata'] {'medical_history': ['Diabetes', 'Cancer']} Numeric fields are turned into floats, and units are their own field: >>> doc = { ... "metadata": { ... "organ_donor_data": [{ ... "data_type": "Numeric", ... "data_value": "87.6", ... "grouping_concept_preferred_term": "Weight", ... "units": "kg" ... }] ... } ... } >>> _translate_donor_metadata(doc) >>> doc['mapped_metadata'] {'weight_value': [87.6], 'weight_unit': ['kg']} ''' _map(doc, 'metadata', _donor_metadata_map) def _donor_metadata_map(metadata): if metadata is None: return {} donor_metadata = metadata.get('organ_donor_data') or metadata.get('living_donor_data') or {} mapped_metadata = defaultdict(list) for kv in donor_metadata: term = kv['grouping_concept_preferred_term'] key = re.sub(r'\W+', '_', term).lower() value = ( float(kv['data_value']) if 'data_type' in kv and kv['data_type'] == 'Numeric' else kv['preferred_term'] ) if 'units' not in kv or not len(kv['units']): mapped_metadata[key].append(value) continue mapped_metadata[f'{key}_value'].append(value) mapped_metadata[f'{key}_unit'].append(kv['units']) return dict(mapped_metadata)
29.928375
129
0.618925
521702b6f29e8c6adf41e9ec178450a1d95cc54d
2,633
py
Python
test/llc/low-level/Expected/AcceptanceTests/LLCUpdateOneLowLevel/llcpackagelowlevel/rest/params/_request_builders.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
35
2018-04-03T12:15:53.000Z
2022-03-11T14:03:34.000Z
test/llc/low-level/Expected/AcceptanceTests/LLCUpdateOneLowLevel/llcpackagelowlevel/rest/params/_request_builders.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
652
2017-08-28T22:44:41.000Z
2022-03-31T21:20:31.000Z
test/llc/low-level/Expected/AcceptanceTests/LLCUpdateOneLowLevel/llcpackagelowlevel/rest/params/_request_builders.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
29
2017-08-28T20:57:01.000Z
2022-03-11T14:03:38.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.rest import HttpRequest from msrest import Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional _SERIALIZER = Serializer() # fmt: off def build_get_required_request( **kwargs # type: Any ): # type: (...) -> HttpRequest """Get true Boolean value on path. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :keyword parameter3: I am a required parameter and I'm last in Swagger. :paramtype parameter3: str :keyword parameter1: I am a required parameter with a client default value. :paramtype parameter1: str :keyword parameter2: I was a required parameter, but now I'm optional. :paramtype parameter2: str :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest """ parameter3 = kwargs.pop('parameter3') # type: str parameter1 = kwargs.pop('parameter1', "DefaultValue") # type: str parameter2 = kwargs.pop('parameter2', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/llc/parameters') # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['parameter1'] = _SERIALIZER.query("parameter1", parameter1, 'str') if parameter2 is not None: query_parameters['parameter2'] = _SERIALIZER.query("parameter2", parameter2, 'str') query_parameters['parameter3'] = _SERIALIZER.query("parameter3", parameter3, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs )
38.720588
99
0.665021
bf7c4d1af38329e61f041c9501307c378ec4125b
36,354
py
Python
scripts/grace_spatial_maps.py
geodeepak/GRACE_HYDL
5aeeb289f2f8e2d2e29b3b01bded22daf3fb4413
[ "MIT" ]
null
null
null
scripts/grace_spatial_maps.py
geodeepak/GRACE_HYDL
5aeeb289f2f8e2d2e29b3b01bded22daf3fb4413
[ "MIT" ]
null
null
null
scripts/grace_spatial_maps.py
geodeepak/GRACE_HYDL
5aeeb289f2f8e2d2e29b3b01bded22daf3fb4413
[ "MIT" ]
null
null
null
#!/usr/bin/env python u""" grace_spatial_maps.py Written by Tyler Sutterley (10/2021) Reads in GRACE/GRACE-FO spherical harmonic coefficients and exports monthly spatial fields Will correct with the specified GIA model group, destripe/smooth/process, and export the data in specified units Spatial output units: cm w.e., mm geoid height, mm elastic uplift, microgal gravity perturbation or surface pressure (mbar) COMMAND LINE OPTIONS: --help: list the command line options -D X, --directory X: Working data directory -O X, --output-directory X: output directory for spatial files -P X, --file-prefix X: prefix string for input and output files -c X, --center X: GRACE/GRACE-FO processing center -r X, --release X: GRACE/GRACE-FO data release -p X, --product X: GRACE/GRACE-FO Level-2 data product -S X, --start X: starting GRACE/GRACE-FO month -E X, --end X: ending GRACE/GRACE-FO month -N X, --missing X: Missing GRACE/GRACE-FO months --lmin X: minimum spherical harmonic degree -l X, --lmax X: maximum spherical harmonic degree -m X, --mmax X: maximum spherical harmonic order -R X, --radius X: Gaussian smoothing radius (km) -d, --destripe: use decorrelation filter (destriping filter) -n X, --love X: Load Love numbers dataset 0: Han and Wahr (1995) values from PREM 1: Gegout (2005) values from PREM 2: Wang et al. (2012) values from PREM --reference X: Reference frame for load love numbers CF: Center of Surface Figure (default) CM: Center of Mass of Earth System CE: Center of Mass of Solid Earth -F X, --format X: input/output data format ascii netCDF4 HDF5 -G X, --gia X: GIA model type to read IJ05-R2: Ivins R2 GIA Models W12a: Whitehouse GIA Models SM09: Simpson/Milne GIA Models ICE6G: ICE-6G GIA Models Wu10: Wu (2010) GIA Correction AW13-ICE6G: Geruo A ICE-6G GIA Models Caron: Caron JPL GIA Assimilation ICE6G-D: ICE-6G Version-D GIA Models ascii: reformatted GIA in ascii format netCDF4: reformatted GIA in netCDF4 format HDF5: reformatted GIA in HDF5 format --gia-file X: GIA file to read --atm-correction: Apply atmospheric jump correction coefficients --pole-tide: Correct for pole tide drift --geocenter X: Update Degree 1 coefficients with SLR or derived values Tellus: GRACE/GRACE-FO TN-13 coefficients from PO.DAAC SLR: satellite laser ranging coefficients from CSR SLF: Sutterley and Velicogna coefficients, Remote Sensing (2019) Swenson: GRACE-derived coefficients from Sean Swenson GFZ: GRACE/GRACE-FO coefficients from GFZ GravIS --interpolate-geocenter: Least-squares model missing Degree 1 coefficients --slr-c20 X: Replace C20 coefficients with SLR values CSR: use values from CSR (TN-07,TN-09,TN-11) GFZ: use values from GFZ GSFC: use values from GSFC (TN-14) --slr-21 X: Replace C21 and S21 coefficients with SLR values CSR: use values from CSR GFZ: use values from GFZ GravIS GSFC: use values from GSFC --slr-22 X: Replace C22 and S22 coefficients with SLR values CSR: use values from CSR --slr-c30 X: Replace C30 coefficients with SLR values CSR: use values from CSR (5x5 with 6,1) GFZ: use values from GFZ GravIS GSFC: use values from GSFC (TN-14) --slr-c50 X: Replace C50 coefficients with SLR values CSR: use values from CSR (5x5 with 6,1) GSFC: use values from GSFC -U X, --units X: output units 1: cm of water thickness 2: mm of geoid height 3: mm of elastic crustal deformation [Davis 2004] 4: microGal gravitational perturbation 5: mbar equivalent surface pressure --spacing X: spatial resolution of output data (dlon,dlat) --interval X: output grid interval 1: (0:360, 90:-90) 2: (degree spacing/2) 3: non-global grid (set with defined bounds) --bounds X: non-global grid bounding box (minlon,maxlon,minlat,maxlat) --mean-file X: GRACE/GRACE-FO mean file to remove from the harmonic data --mean-format X: Input data format for GRACE/GRACE-FO mean file ascii netCDF4 HDF5 gfc --mask X: Land-sea mask for redistributing land water flux --remove-file X: Monthly files to be removed from the GRACE/GRACE-FO data --remove-format X: Input data format for files to be removed ascii netCDF4 HDF5 index-ascii index-netCDF4 index-HDF5 --redistribute-removed: redistribute removed mass fields over the ocean --log: Output log of files created for each job -V, --verbose: verbose output of processing run -M X, --mode X: Permissions mode of the files created PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html dateutil: powerful extensions to datetime https://dateutil.readthedocs.io/en/stable/ netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html h5py: Pythonic interface to the HDF5 binary data format. https://www.h5py.org/ PROGRAM DEPENDENCIES: grace_input_months.py: Reads GRACE/GRACE-FO files for a specified spherical harmonic degree and order and for a specified date range Includes degree 1 with with Swenson values (if specified) Replaces C20,C21,S21,C22,S22,C30 and C50 with SLR values (if specified) read_GIA_model.py: reads harmonics for a glacial isostatic adjustment model read_love_numbers.py: reads Load Love Numbers from Han and Wahr (1995) plm_holmes.py: Computes fully normalized associated Legendre polynomials gauss_weights.py: Computes the Gaussian weights as a function of degree ocean_stokes.py: converts a land-sea mask to a series of spherical harmonics gen_stokes.py: converts a spatial field into a series of spherical harmonics geocenter.py: converts between spherical harmonics and geocenter variations harmonic_summation.py: calculates a spatial field from spherical harmonics units.py: class for converting GRACE/GRACE-FO Level-2 data to specific units harmonics.py: spherical harmonic data class for processing GRACE/GRACE-FO destripe_harmonics.py: calculates the decorrelation (destriping) filter and filters the GRACE/GRACE-FO coefficients for striping errors ncdf_read_stokes.py: reads spherical harmonic netcdf files ncdf_stokes.py: writes output spherical harmonic data to netcdf hdf5_read_stokes.py: reads spherical harmonic HDF5 files hdf5_stokes.py: writes output spherical harmonic data to HDF5 spatial.py: spatial data class for reading, writing and processing data ncdf_read.py: reads input spatial data from netCDF4 files hdf5_read.py: reads input spatial data from HDF5 files ncdf_write.py: writes output spatial data to netCDF4 hdf5_write.py: writes output spatial data to HDF5 utilities.py: download and management utilities for files UPDATE HISTORY: Updated 11/2021: add GSFC low-degree harmonics Updated 10/2021: using python logging for handling verbose output add more choices for setting input format of the removed files Updated 07/2021: simplified file imports using wrappers in harmonics added path to default land-sea mask for mass redistribution remove choices for argparse processing centers Updated 06/2021: switch from parameter files to argparse arguments Updated 05/2021: define int/float precision to prevent deprecation warning Updated 04/2021: include parameters for replacing C21/S21 and C22/S22 Updated 02/2021: changed remove index to files with specified formats Updated 01/2021: harmonics object output from gen_stokes.py/ocean_stokes.py Updated 12/2020: added more love number options and from gfc for mean files Updated 10/2020: use argparse to set command line parameters Updated 08/2020: use utilities to define path to load love numbers file Updated 06/2020: using spatial data class for output operations Updated 05/2020: for public release """ from __future__ import print_function import sys import os import re import time import logging import numpy as np import argparse import traceback import gravity_toolkit.utilities as utilities from gravity_toolkit.grace_input_months import grace_input_months from gravity_toolkit.read_GIA_model import read_GIA_model from gravity_toolkit.read_love_numbers import read_love_numbers from gravity_toolkit.plm_holmes import plm_holmes from gravity_toolkit.gauss_weights import gauss_weights from gravity_toolkit.ocean_stokes import ocean_stokes from gravity_toolkit.harmonic_summation import harmonic_summation from gravity_toolkit.harmonics import harmonics from gravity_toolkit.spatial import spatial from gravity_toolkit.units import units #-- PURPOSE: keep track of threads def info(args): logging.info(os.path.basename(sys.argv[0])) logging.info(args) logging.info('module name: {0}'.format(__name__)) if hasattr(os, 'getppid'): logging.info('parent process: {0:d}'.format(os.getppid())) logging.info('process id: {0:d}'.format(os.getpid())) #-- PURPOSE: read load love numbers for the range of spherical harmonic degrees def load_love_numbers(LMAX, LOVE_NUMBERS=0, REFERENCE='CF'): """ Reads PREM load Love numbers for the range of spherical harmonic degrees and applies isomorphic parameters Arguments --------- LMAX: maximum spherical harmonic degree Keyword arguments ----------------- LOVE_NUMBERS: Load Love numbers dataset 0: Han and Wahr (1995) values from PREM 1: Gegout (2005) values from PREM 2: Wang et al. (2012) values from PREM REFERENCE: Reference frame for calculating degree 1 love numbers CF: Center of Surface Figure (default) CM: Center of Mass of Earth System CE: Center of Mass of Solid Earth Returns ------- kl: Love number of Gravitational Potential hl: Love number of Vertical Displacement ll: Love number of Horizontal Displacement """ #-- load love numbers file if (LOVE_NUMBERS == 0): #-- PREM outputs from Han and Wahr (1995) #-- https://doi.org/10.1111/j.1365-246X.1995.tb01819.x love_numbers_file = utilities.get_data_path( ['data','love_numbers']) header = 2 columns = ['l','hl','kl','ll'] elif (LOVE_NUMBERS == 1): #-- PREM outputs from Gegout (2005) #-- http://gemini.gsfc.nasa.gov/aplo/ love_numbers_file = utilities.get_data_path( ['data','Load_Love2_CE.dat']) header = 3 columns = ['l','hl','ll','kl'] elif (LOVE_NUMBERS == 2): #-- PREM outputs from Wang et al. (2012) #-- https://doi.org/10.1016/j.cageo.2012.06.022 love_numbers_file = utilities.get_data_path( ['data','PREM-LLNs-truncated.dat']) header = 1 columns = ['l','hl','ll','kl','nl','nk'] #-- LMAX of load love numbers from Han and Wahr (1995) is 696. #-- from Wahr (2007) linearly interpolating kl works #-- however, as we are linearly extrapolating out, do not make #-- LMAX too much larger than 696 #-- read arrays of kl, hl, and ll Love Numbers hl,kl,ll = read_love_numbers(love_numbers_file, LMAX=LMAX, HEADER=header, COLUMNS=columns, REFERENCE=REFERENCE, FORMAT='tuple') #-- return a tuple of load love numbers return (hl,kl,ll) #-- PURPOSE: import GRACE/GRACE-FO files for a given months range #-- Converts the GRACE/GRACE-FO harmonics applying the specified procedures def grace_spatial_maps(base_dir, PROC, DREL, DSET, LMAX, RAD, START=None, END=None, MISSING=None, LMIN=None, MMAX=None, LOVE_NUMBERS=0, REFERENCE=None, DESTRIPE=False, UNITS=None, DDEG=None, INTERVAL=None, BOUNDS=None, GIA=None, GIA_FILE=None, ATM=False, POLE_TIDE=False, DEG1=None, MODEL_DEG1=False, SLR_C20=None, SLR_21=None, SLR_22=None, SLR_C30=None, SLR_C50=None, DATAFORM=None, MEAN_FILE=None, MEANFORM=None, REMOVE_FILES=None, REMOVE_FORMAT=None, REDISTRIBUTE_REMOVED=False, LANDMASK=None, OUTPUT_DIRECTORY=None, FILE_PREFIX=None, VERBOSE=False, MODE=0o775): #-- recursively create output directory if not currently existing if not os.access(OUTPUT_DIRECTORY, os.F_OK): os.makedirs(OUTPUT_DIRECTORY, mode=MODE, exist_ok=True) #-- list object of output files for file logs (full path) output_files = [] #-- file information suffix = dict(ascii='txt', netCDF4='nc', HDF5='H5') #-- read arrays of kl, hl, and ll Love Numbers hl,kl,ll = load_love_numbers(LMAX, LOVE_NUMBERS=LOVE_NUMBERS, REFERENCE=REFERENCE) #-- Calculating the Gaussian smoothing for radius RAD if (RAD != 0): wt = 2.0*np.pi*gauss_weights(RAD,LMAX) gw_str = '_r{0:0.0f}km'.format(RAD) else: #-- else = 1 wt = np.ones((LMAX+1)) gw_str = '' #-- flag for spherical harmonic order MMAX = np.copy(LMAX) if not MMAX else MMAX order_str = 'M{0:d}'.format(MMAX) if (MMAX != LMAX) else '' #-- reading GRACE months for input date range #-- replacing low-degree harmonics with SLR values if specified #-- include degree 1 (geocenter) harmonics if specified #-- correcting for Pole-Tide and Atmospheric Jumps if specified Ylms = grace_input_months(base_dir, PROC, DREL, DSET, LMAX, START, END, MISSING, SLR_C20, DEG1, MMAX=MMAX, SLR_21=SLR_21, SLR_22=SLR_22, SLR_C30=SLR_C30, SLR_C50=SLR_C50, MODEL_DEG1=MODEL_DEG1, ATM=ATM, POLE_TIDE=POLE_TIDE) #-- convert to harmonics object and remove mean if specified GRACE_Ylms = harmonics().from_dict(Ylms) GRACE_Ylms.directory = Ylms['directory'] GRACE_Ylms.title = Ylms['title'] #-- default file prefix if not FILE_PREFIX: FILE_PREFIX = GRACE_Ylms.title #-- use a mean file for the static field to remove if MEAN_FILE: #-- read data form for input mean file (ascii, netCDF4, HDF5, gfc) mean_Ylms = harmonics().from_file(MEAN_FILE,format=MEANFORM,date=False) #-- remove the input mean GRACE_Ylms.subtract(mean_Ylms) else: GRACE_Ylms.mean(apply=True) #-- date information of GRACE/GRACE-FO coefficients nfiles = len(GRACE_Ylms.time) #-- filter GRACE/GRACE-FO coefficients if DESTRIPE: #-- destriping GRACE/GRACE-FO coefficients ds_str = '_FL' GRACE_Ylms = GRACE_Ylms.destripe() else: #-- using standard GRACE/GRACE-FO harmonics ds_str = '' #-- input GIA spherical harmonic datafiles GIA_Ylms_rate = read_GIA_model(GIA_FILE,GIA=GIA,LMAX=LMAX,MMAX=MMAX) #-- calculate the monthly mass change from GIA GIA_Ylms = GRACE_Ylms.zeros_like() GIA_Ylms.time[:] = np.copy(GRACE_Ylms.time) GIA_Ylms.month[:] = np.copy(GRACE_Ylms.month) #-- monthly GIA calculated by gia_rate*time elapsed #-- finding change in GIA each month for t in range(nfiles): GIA_Ylms.clm[:,:,t] = GIA_Ylms_rate['clm']*(GIA_Ylms.time[t]-2003.3) GIA_Ylms.slm[:,:,t] = GIA_Ylms_rate['slm']*(GIA_Ylms.time[t]-2003.3) #-- Read Ocean function and convert to Ylms for redistribution if REDISTRIBUTE_REMOVED: #-- read Land-Sea Mask and convert to spherical harmonics ocean_Ylms = ocean_stokes(LANDMASK,LMAX,MMAX=MMAX,LOVE=(hl,kl,ll)) ocean_str = '_OCN' else: ocean_str = '' #-- input spherical harmonic datafiles to be removed from the GRACE data #-- Remove sets of Ylms from the GRACE data before returning remove_Ylms = GRACE_Ylms.zeros_like() remove_Ylms.time[:] = np.copy(GRACE_Ylms.time) remove_Ylms.month[:] = np.copy(GRACE_Ylms.month) if REMOVE_FILES: #-- extend list if a single format was entered for all files if len(REMOVE_FORMAT) < len(REMOVE_FILES): REMOVE_FORMAT = REMOVE_FORMAT*len(REMOVE_FILES) #-- for each file to be removed for REMOVE_FILE,REMOVEFORM in zip(REMOVE_FILES,REMOVE_FORMAT): if REMOVEFORM in ('ascii','netCDF4','HDF5'): #-- ascii (.txt) #-- netCDF4 (.nc) #-- HDF5 (.H5) Ylms = harmonics().from_file(REMOVE_FILE, format=REMOVEFORM) elif REMOVEFORM in ('index-ascii','index-netCDF4','index-HDF5'): #-- read from index file _,removeform = REMOVEFORM.split('-') #-- index containing files in data format Ylms = harmonics().from_index(REMOVE_FILE, format=removeform) #-- reduce to GRACE/GRACE-FO months and truncate to degree and order Ylms = Ylms.subset(GRACE_Ylms.month).truncate(lmax=LMAX,mmax=MMAX) #-- distribute removed Ylms uniformly over the ocean if REDISTRIBUTE_REMOVED: #-- calculate ratio between total removed mass and #-- a uniformly distributed cm of water over the ocean ratio = Ylms.clm[0,0,:]/ocean_Ylms.clm[0,0] #-- for each spherical harmonic for m in range(0,MMAX+1):#-- MMAX+1 to include MMAX for l in range(m,LMAX+1):#-- LMAX+1 to include LMAX #-- remove the ratio*ocean Ylms from Ylms #-- note: x -= y is equivalent to x = x - y Ylms.clm[l,m,:] -= ratio*ocean_Ylms.clm[l,m] Ylms.slm[l,m,:] -= ratio*ocean_Ylms.slm[l,m] #-- filter removed coefficients if DESTRIPE: Ylms = Ylms.destripe() #-- add data for month t and INDEX_FILE to the total #-- remove_clm and remove_slm matrices #-- redistributing the mass over the ocean if specified remove_Ylms.add(Ylms) #-- Output spatial data object grid = spatial() #-- Output Degree Spacing dlon,dlat = (DDEG[0],DDEG[0]) if (len(DDEG) == 1) else (DDEG[0],DDEG[1]) #-- Output Degree Interval if (INTERVAL == 1): #-- (-180:180,90:-90) nlon = np.int64((360.0/dlon)+1.0) nlat = np.int64((180.0/dlat)+1.0) grid.lon = -180 + dlon*np.arange(0,nlon) grid.lat = 90.0 - dlat*np.arange(0,nlat) elif (INTERVAL == 2): #-- (Degree spacing)/2 grid.lon = np.arange(-180+dlon/2.0,180+dlon/2.0,dlon) grid.lat = np.arange(90.0-dlat/2.0,-90.0-dlat/2.0,-dlat) nlon = len(grid.lon) nlat = len(grid.lat) elif (INTERVAL == 3): #-- non-global grid set with BOUNDS parameter minlon,maxlon,minlat,maxlat = BOUNDS.copy() grid.lon = np.arange(minlon+dlon/2.0,maxlon+dlon/2.0,dlon) grid.lat = np.arange(maxlat-dlat/2.0,minlat-dlat/2.0,-dlat) nlon = len(grid.lon) nlat = len(grid.lat) #-- Computing plms for converting to spatial domain theta = (90.0-grid.lat)*np.pi/180.0 PLM,dPLM = plm_holmes(LMAX,np.cos(theta)) #-- Earth Parameters #-- output spatial units unit_list = ['cmwe', 'mmGH', 'mmCU', u'\u03BCGal', 'mbar'] unit_name = ['Equivalent Water Thickness', 'Geoid Height', 'Elastic Crustal Uplift', 'Gravitational Undulation', 'Equivalent Surface Pressure'] #-- Setting units factor for output #-- dfactor computes the degree dependent coefficients if (UNITS == 1): #-- 1: cmwe, centimeters water equivalent dfactor = units(lmax=LMAX).harmonic(hl,kl,ll).cmwe elif (UNITS == 2): #-- 2: mmGH, mm geoid height dfactor = units(lmax=LMAX).harmonic(hl,kl,ll).mmGH elif (UNITS == 3): #-- 3: mmCU, mm elastic crustal deformation dfactor = units(lmax=LMAX).harmonic(hl,kl,ll).mmCU elif (UNITS == 4): #-- 4: micGal, microGal gravity perturbations dfactor = units(lmax=LMAX).harmonic(hl,kl,ll).microGal elif (UNITS == 5): #-- 5: mbar, millibars equivalent surface pressure dfactor = units(lmax=LMAX).harmonic(hl,kl,ll).mbar else: raise ValueError('Invalid units code {0:d}'.format(UNITS)) #-- output file format file_format = '{0}{1}_L{2:d}{3}{4}{5}_{6:03d}.{7}' #-- converting harmonics to truncated, smoothed coefficients in units #-- combining harmonics to calculate output spatial fields for i,grace_month in enumerate(GRACE_Ylms.month): #-- GRACE/GRACE-FO harmonics for time t Ylms = GRACE_Ylms.index(i) #-- Remove GIA rate for time Ylms.subtract(GIA_Ylms.index(i)) #-- Remove monthly files to be removed Ylms.subtract(remove_Ylms.index(i)) #-- smooth harmonics and convert to output units Ylms.convolve(dfactor*wt) #-- convert spherical harmonics to output spatial grid grid.data = harmonic_summation(Ylms.clm, Ylms.slm, grid.lon, grid.lat, LMIN=LMIN, LMAX=LMAX, MMAX=MMAX, PLM=PLM).T #-- copy time variables for month grid.time = np.copy(Ylms.time) grid.month = np.copy(Ylms.month) #-- output monthly files to ascii, netCDF4 or HDF5 args=(FILE_PREFIX,unit_list[UNITS-1],LMAX,order_str,gw_str, ds_str,grace_month,suffix[DATAFORM]) FILE=os.path.join(OUTPUT_DIRECTORY,file_format.format(*args)) if (DATAFORM == 'ascii'): #-- ascii (.txt) grid.to_ascii(FILE, date=True, verbose=VERBOSE) elif (DATAFORM == 'netCDF4'): #-- netCDF4 grid.to_netCDF4(FILE, date=True, verbose=VERBOSE, units=unit_list[UNITS-1], longname=unit_name[UNITS-1], title='GRACE/GRACE-FO Spatial Data') elif (DATAFORM == 'HDF5'): #-- HDF5 grid.to_HDF5(FILE, date=True, verbose=VERBOSE, units=unit_list[UNITS-1], longname=unit_name[UNITS-1], title='GRACE/GRACE-FO Spatial Data') #-- set the permissions mode of the output files os.chmod(FILE, MODE) #-- add file to list output_files.append(FILE) #-- return the list of output files return output_files #-- PURPOSE: print a file log for the GRACE analysis def output_log_file(arguments,output_files): #-- format: GRACE_processing_run_2002-04-01_PID-70335.log args = (time.strftime('%Y-%m-%d',time.localtime()), os.getpid()) LOGFILE = 'GRACE_processing_run_{0}_PID-{1:d}.log'.format(*args) #-- create a unique log and open the log file DIRECTORY = os.path.expanduser(arguments.output_directory) fid = utilities.create_unique_file(os.path.join(DIRECTORY,LOGFILE)) logging.basicConfig(stream=fid, level=logging.INFO) #-- print argument values sorted alphabetically logging.info('ARGUMENTS:') for arg, value in sorted(vars(arguments).items()): logging.info('{0}: {1}'.format(arg, value)) #-- print output files logging.info('\n\nOUTPUT FILES:') for f in output_files: logging.info('{0}'.format(f)) #-- close the log file fid.close() #-- PURPOSE: print a error file log for the GRACE analysis def output_error_log_file(arguments): #-- format: GRACE_processing_failed_run_2002-04-01_PID-70335.log args = (time.strftime('%Y-%m-%d',time.localtime()), os.getpid()) LOGFILE = 'GRACE_processing_failed_run_{0}_PID-{1:d}.log'.format(*args) #-- create a unique log and open the log file DIRECTORY = os.path.expanduser(arguments.output_directory) fid = utilities.create_unique_file(os.path.join(DIRECTORY,LOGFILE)) logging.basicConfig(stream=fid, level=logging.INFO) #-- print argument values sorted alphabetically logging.info('ARGUMENTS:') for arg, value in sorted(vars(arguments).items()): logging.info('{0}: {1}'.format(arg, value)) #-- print traceback error logging.info('\n\nTRACEBACK ERROR:') traceback.print_exc(file=fid) #-- close the log file fid.close() #-- This is the main part of the program that calls the individual modules def main(): #-- Read the system arguments listed after the program parser = argparse.ArgumentParser( description="""Calculates monthly spatial maps from GRACE/GRACE-FO spherical harmonic coefficients """, fromfile_prefix_chars="@" ) parser.convert_arg_line_to_args = utilities.convert_arg_line_to_args #-- command line parameters #-- working data directory parser.add_argument('--directory','-D', type=lambda p: os.path.abspath(os.path.expanduser(p)), default=os.getcwd(), help='Working data directory') parser.add_argument('--output-directory','-O', type=lambda p: os.path.abspath(os.path.expanduser(p)), default=os.getcwd(), help='Output directory for spatial files') parser.add_argument('--file-prefix','-P', type=str, help='Prefix string for input and output files') #-- Data processing center or satellite mission parser.add_argument('--center','-c', metavar='PROC', type=str, required=True, help='GRACE/GRACE-FO Processing Center') #-- GRACE/GRACE-FO data release parser.add_argument('--release','-r', metavar='DREL', type=str, default='RL06', help='GRACE/GRACE-FO Data Release') #-- GRACE/GRACE-FO Level-2 data product parser.add_argument('--product','-p', metavar='DSET', type=str, default='GSM', help='GRACE/GRACE-FO Level-2 data product') #-- minimum spherical harmonic degree parser.add_argument('--lmin', type=int, default=1, help='Minimum spherical harmonic degree') #-- maximum spherical harmonic degree and order parser.add_argument('--lmax','-l', type=int, default=60, help='Maximum spherical harmonic degree') parser.add_argument('--mmax','-m', type=int, default=None, help='Maximum spherical harmonic order') #-- start and end GRACE/GRACE-FO months parser.add_argument('--start','-S', type=int, default=4, help='Starting GRACE/GRACE-FO month') parser.add_argument('--end','-E', type=int, default=232, help='Ending GRACE/GRACE-FO month') MISSING = [6,7,18,109,114,125,130,135,140,141,146,151,156,162,166,167, 172,177,178,182,187,188,189,190,191,192,193,194,195,196,197,200,201] parser.add_argument('--missing','-N', metavar='MISSING', type=int, nargs='+', default=MISSING, help='Missing GRACE/GRACE-FO months') #-- different treatments of the load Love numbers #-- 0: Han and Wahr (1995) values from PREM #-- 1: Gegout (2005) values from PREM #-- 2: Wang et al. (2012) values from PREM parser.add_argument('--love','-n', type=int, default=0, choices=[0,1,2], help='Treatment of the Load Love numbers') #-- option for setting reference frame for gravitational load love number #-- reference frame options (CF, CM, CE) parser.add_argument('--reference', type=str.upper, default='CF', choices=['CF','CM','CE'], help='Reference frame for load Love numbers') #-- Gaussian smoothing radius (km) parser.add_argument('--radius','-R', type=float, default=0, help='Gaussian smoothing radius (km)') #-- Use a decorrelation (destriping) filter parser.add_argument('--destripe','-d', default=False, action='store_true', help='Use decorrelation (destriping) filter') #-- output units parser.add_argument('--units','-U', type=int, default=1, choices=[1,2,3,4,5], help='Output units') #-- output grid parameters parser.add_argument('--spacing', type=float, nargs='+', default=[0.5,0.5], metavar=('dlon','dlat'), help='Spatial resolution of output data') parser.add_argument('--interval', type=int, default=2, choices=[1,2,3], help=('Output grid interval ' '(1: global, 2: centered global, 3: non-global)')) parser.add_argument('--bounds', type=float, nargs=4, metavar=('lon_min','lon_max','lat_min','lat_max'), help='Bounding box for non-global grid') #-- GIA model type list models = {} models['IJ05-R2'] = 'Ivins R2 GIA Models' models['W12a'] = 'Whitehouse GIA Models' models['SM09'] = 'Simpson/Milne GIA Models' models['ICE6G'] = 'ICE-6G GIA Models' models['Wu10'] = 'Wu (2010) GIA Correction' models['AW13-ICE6G'] = 'Geruo A ICE-6G GIA Models' models['Caron'] = 'Caron JPL GIA Assimilation' models['ICE6G-D'] = 'ICE-6G Version-D GIA Models' models['ascii'] = 'reformatted GIA in ascii format' models['netCDF4'] = 'reformatted GIA in netCDF4 format' models['HDF5'] = 'reformatted GIA in HDF5 format' #-- GIA model type parser.add_argument('--gia','-G', type=str, metavar='GIA', choices=models.keys(), help='GIA model type to read') #-- full path to GIA file parser.add_argument('--gia-file', type=lambda p: os.path.abspath(os.path.expanduser(p)), help='GIA file to read') #-- use atmospheric jump corrections from Fagiolini et al. (2015) parser.add_argument('--atm-correction', default=False, action='store_true', help='Apply atmospheric jump correction coefficients') #-- correct for pole tide drift follow Wahr et al. (2015) parser.add_argument('--pole-tide', default=False, action='store_true', help='Correct for pole tide drift') #-- Update Degree 1 coefficients with SLR or derived values #-- Tellus: GRACE/GRACE-FO TN-13 from PO.DAAC #-- https://grace.jpl.nasa.gov/data/get-data/geocenter/ #-- SLR: satellite laser ranging from CSR #-- ftp://ftp.csr.utexas.edu/pub/slr/geocenter/ #-- SLF: Sutterley and Velicogna, Remote Sensing (2019) #-- https://www.mdpi.com/2072-4292/11/18/2108 #-- Swenson: GRACE-derived coefficients from Sean Swenson #-- https://doi.org/10.1029/2007JB005338 #-- GFZ: GRACE/GRACE-FO coefficients from GFZ GravIS #-- http://gravis.gfz-potsdam.de/corrections parser.add_argument('--geocenter', metavar='DEG1', type=str, choices=['Tellus','SLR','SLF','Swenson','GFZ'], help='Update Degree 1 coefficients with SLR or derived values') parser.add_argument('--interpolate-geocenter', default=False, action='store_true', help='Least-squares model missing Degree 1 coefficients') #-- replace low degree harmonics with values from Satellite Laser Ranging parser.add_argument('--slr-c20', type=str, default=None, choices=['CSR','GFZ','GSFC'], help='Replace C20 coefficients with SLR values') parser.add_argument('--slr-21', type=str, default=None, choices=['CSR','GFZ','GSFC'], help='Replace C21 and S21 coefficients with SLR values') parser.add_argument('--slr-22', type=str, default=None, choices=['CSR','GSFC'], help='Replace C22 and S22 coefficients with SLR values') parser.add_argument('--slr-c30', type=str, default=None, choices=['CSR','GFZ','GSFC','LARES'], help='Replace C30 coefficients with SLR values') parser.add_argument('--slr-c50', type=str, default=None, choices=['CSR','GSFC','LARES'], help='Replace C50 coefficients with SLR values') #-- input data format (ascii, netCDF4, HDF5) parser.add_argument('--format','-F', type=str, default='netCDF4', choices=['ascii','netCDF4','HDF5'], help='Input/output data format') #-- mean file to remove parser.add_argument('--mean-file', type=lambda p: os.path.abspath(os.path.expanduser(p)), help='GRACE/GRACE-FO mean file to remove from the harmonic data') #-- input data format (ascii, netCDF4, HDF5) parser.add_argument('--mean-format', type=str, default='netCDF4', choices=['ascii','netCDF4','HDF5','gfc'], help='Input data format for GRACE/GRACE-FO mean file') #-- monthly files to be removed from the GRACE/GRACE-FO data parser.add_argument('--remove-file', type=lambda p: os.path.abspath(os.path.expanduser(p)), nargs='+', help='Monthly files to be removed from the GRACE/GRACE-FO data') choices = [] choices.extend(['ascii','netCDF4','HDF5']) choices.extend(['index-ascii','index-netCDF4','index-HDF5']) parser.add_argument('--remove-format', type=str, nargs='+', choices=choices, help='Input data format for files to be removed') parser.add_argument('--redistribute-removed', default=False, action='store_true', help='Redistribute removed mass fields over the ocean') #-- land-sea mask for redistributing fluxes lsmask = utilities.get_data_path(['data','landsea_hd.nc']) parser.add_argument('--mask', type=lambda p: os.path.abspath(os.path.expanduser(p)), default=lsmask, help='Land-sea mask for redistributing land water flux') #-- Output log file for each job in forms #-- GRACE_processing_run_2002-04-01_PID-00000.log #-- GRACE_processing_failed_run_2002-04-01_PID-00000.log parser.add_argument('--log', default=False, action='store_true', help='Output log file for each job') #-- print information about each input and output file parser.add_argument('--verbose','-V', default=False, action='store_true', help='Verbose output of run') #-- permissions mode of the local directories and files (number in octal) parser.add_argument('--mode','-M', type=lambda x: int(x,base=8), default=0o775, help='permissions mode of output files') args,_ = parser.parse_known_args() #-- create logger loglevel = logging.INFO if args.verbose else logging.CRITICAL logging.basicConfig(level=loglevel) #-- try to run the analysis with listed parameters try: info(args) #-- run grace_spatial_maps algorithm with parameters output_files = grace_spatial_maps( args.directory, args.center, args.release, args.product, args.lmax, args.radius, START=args.start, END=args.end, MISSING=args.missing, LMIN=args.lmin, MMAX=args.mmax, LOVE_NUMBERS=args.love, REFERENCE=args.reference, DESTRIPE=args.destripe, UNITS=args.units, DDEG=args.spacing, INTERVAL=args.interval, BOUNDS=args.bounds, GIA=args.gia, GIA_FILE=args.gia_file, ATM=args.atm_correction, POLE_TIDE=args.pole_tide, DEG1=args.geocenter, MODEL_DEG1=args.interpolate_geocenter, SLR_C20=args.slr_c20, SLR_21=args.slr_21, SLR_22=args.slr_22, SLR_C30=args.slr_c30, SLR_C50=args.slr_c50, DATAFORM=args.format, MEAN_FILE=args.mean_file, MEANFORM=args.mean_format, REMOVE_FILES=args.remove_file, REMOVE_FORMAT=args.remove_format, REDISTRIBUTE_REMOVED=args.redistribute_removed, LANDMASK=args.mask, OUTPUT_DIRECTORY=args.output_directory, FILE_PREFIX=args.file_prefix, VERBOSE=args.verbose, MODE=args.mode) except Exception as e: #-- if there has been an error exception #-- print the type, value, and stack trace of the #-- current exception being handled logging.critical('process id {0:d} failed'.format(os.getpid())) logging.error(traceback.format_exc()) if args.log:#-- write failed job completion log file output_error_log_file(args) else: if args.log:#-- write successful job completion log file output_log_file(args,output_files) #-- run main program if __name__ == '__main__': main()
43.747292
80
0.653353
a224cc0b77f607859b8ce4ea8a9f31b9182d5bb0
492
py
Python
12_rnn.py
tuhoag/pytorch-zero2all
31bf132265e2765616f18ca4278e832301c27e89
[ "MIT" ]
null
null
null
12_rnn.py
tuhoag/pytorch-zero2all
31bf132265e2765616f18ca4278e832301c27e89
[ "MIT" ]
null
null
null
12_rnn.py
tuhoag/pytorch-zero2all
31bf132265e2765616f18ca4278e832301c27e89
[ "MIT" ]
null
null
null
import torch import torch.nn as nn idx2char = ['h', 'i', 'e', 'l', 'o'] x_data = [[0, 1, 0, 2, 3, 3]] # 'hihell one_hot_lookup = [[]] cell = nn.LSTM(input_size=4, hidden_size=2, batch_first=True) h = [1, 0, 0, 0] e = [0, 1, 0, 0] l = [0, 0, 1, 0] o = [0, 0, 0, 1] inputs = torch.tensor([[h, e, l, l, o], [e, o, l, l, l], [l, l, e, e, l]]).float() print('input size: ', inputs.size()) hidden = torch.randn(1, 3, 2), torch.randn(1, 3, 2) out, hidden = cell(inputs, hidden) print(out.size())
25.894737
82
0.550813
e3e8f56284664afae2d5fbc16ed7b455c7a60653
9,957
py
Python
pybind/slxos/v16r_1_00b/routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/neighbor/af_ipv4_vrf_neighbor_address_holder/af_ipv4_neighbor_addr/af_vrf_neighbor_capability/as4/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/neighbor/af_ipv4_vrf_neighbor_address_holder/af_ipv4_neighbor_addr/af_vrf_neighbor_capability/as4/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/neighbor/af_ipv4_vrf_neighbor_address_holder/af_ipv4_neighbor_addr/af_vrf_neighbor_capability/as4/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class as4(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-common-def - based on the path /routing-system/router/router-bgp/address-family/ipv4/ipv4-unicast/af-vrf/neighbor/af-ipv4-vrf-neighbor-address-holder/af-ipv4-neighbor-addr/af-vrf-neighbor-capability/as4. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__neighbor_as4_enable','__neighbor_as4_disable',) _yang_name = 'as4' _rest_name = 'as4' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__neighbor_as4_enable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="neighbor-as4-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable AS4 capability', u'cli-full-command': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) self.__neighbor_as4_disable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="neighbor-as4-disable", rest_name="disable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Disable AS4 capability', u'cli-full-command': None, u'alt-name': u'disable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'routing-system', u'router', u'router-bgp', u'address-family', u'ipv4', u'ipv4-unicast', u'af-vrf', u'neighbor', u'af-ipv4-vrf-neighbor-address-holder', u'af-ipv4-neighbor-addr', u'af-vrf-neighbor-capability', u'as4'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'router', u'bgp', u'address-family', u'ipv4', u'unicast', u'vrf', u'neighbor', u'af-ipv4-neighbor-addr', u'capability', u'as4'] def _get_neighbor_as4_enable(self): """ Getter method for neighbor_as4_enable, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/neighbor/af_ipv4_vrf_neighbor_address_holder/af_ipv4_neighbor_addr/af_vrf_neighbor_capability/as4/neighbor_as4_enable (empty) """ return self.__neighbor_as4_enable def _set_neighbor_as4_enable(self, v, load=False): """ Setter method for neighbor_as4_enable, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/neighbor/af_ipv4_vrf_neighbor_address_holder/af_ipv4_neighbor_addr/af_vrf_neighbor_capability/as4/neighbor_as4_enable (empty) If this variable is read-only (config: false) in the source YANG file, then _set_neighbor_as4_enable is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_neighbor_as4_enable() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="neighbor-as4-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable AS4 capability', u'cli-full-command': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """neighbor_as4_enable must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="neighbor-as4-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable AS4 capability', u'cli-full-command': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True)""", }) self.__neighbor_as4_enable = t if hasattr(self, '_set'): self._set() def _unset_neighbor_as4_enable(self): self.__neighbor_as4_enable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="neighbor-as4-enable", rest_name="enable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Enable AS4 capability', u'cli-full-command': None, u'alt-name': u'enable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) def _get_neighbor_as4_disable(self): """ Getter method for neighbor_as4_disable, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/neighbor/af_ipv4_vrf_neighbor_address_holder/af_ipv4_neighbor_addr/af_vrf_neighbor_capability/as4/neighbor_as4_disable (empty) """ return self.__neighbor_as4_disable def _set_neighbor_as4_disable(self, v, load=False): """ Setter method for neighbor_as4_disable, mapped from YANG variable /routing_system/router/router_bgp/address_family/ipv4/ipv4_unicast/af_vrf/neighbor/af_ipv4_vrf_neighbor_address_holder/af_ipv4_neighbor_addr/af_vrf_neighbor_capability/as4/neighbor_as4_disable (empty) If this variable is read-only (config: false) in the source YANG file, then _set_neighbor_as4_disable is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_neighbor_as4_disable() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="neighbor-as4-disable", rest_name="disable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Disable AS4 capability', u'cli-full-command': None, u'alt-name': u'disable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """neighbor_as4_disable must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="neighbor-as4-disable", rest_name="disable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Disable AS4 capability', u'cli-full-command': None, u'alt-name': u'disable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True)""", }) self.__neighbor_as4_disable = t if hasattr(self, '_set'): self._set() def _unset_neighbor_as4_disable(self): self.__neighbor_as4_disable = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="neighbor-as4-disable", rest_name="disable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Disable AS4 capability', u'cli-full-command': None, u'alt-name': u'disable'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='empty', is_config=True) neighbor_as4_enable = __builtin__.property(_get_neighbor_as4_enable, _set_neighbor_as4_enable) neighbor_as4_disable = __builtin__.property(_get_neighbor_as4_disable, _set_neighbor_as4_disable) _pyangbind_elements = {'neighbor_as4_enable': neighbor_as4_enable, 'neighbor_as4_disable': neighbor_as4_disable, }
63.018987
457
0.740183
3164f33fb99f64838caa5c4907fdf39d3b6eea25
4,246
py
Python
src/azotea/gui/widgets/about.py
actionprojecteu/azotea-client
cbb6e8a5fcf06bf0686cced222eed7b807195f2c
[ "MIT" ]
null
null
null
src/azotea/gui/widgets/about.py
actionprojecteu/azotea-client
cbb6e8a5fcf06bf0686cced222eed7b807195f2c
[ "MIT" ]
null
null
null
src/azotea/gui/widgets/about.py
actionprojecteu/azotea-client
cbb6e8a5fcf06bf0686cced222eed7b807195f2c
[ "MIT" ]
null
null
null
# ---------------------------------------------------------------------- # Copyright (c) 2020 # # See the LICENSE file for details # see the AUTHORS file for authors # ---------------------------------------------------------------------- ################################# ## APPLICATION SPECIFIC WIDGETS # ################################# #-------------------- # System wide imports # ------------------- import math import gettext import tkinter as tk from tkinter import ttk import tkinter.filedialog # ------------------- # Third party imports # ------------------- import PIL # --------------- # Twisted imports # --------------- from twisted.logger import Logger # ------------- # local imports # ------------- from azotea.gui.widgets.contrib import ToolTip # ---------------- # Module constants # ---------------- # Support for internationalization _ = gettext.gettext NAMESPACE = 'gui' # ----------------------- # Module global variables # ----------------------- log = Logger(namespace=NAMESPACE) # ----------------- # Application Class # ----------------- class AboutDialog(tk.Toplevel): def __init__(self, title, version, descr_path, ack_path, img_path, logos_list, *args, ncols=3, **kwargs): super().__init__(*args, **kwargs) self._title = title self._version = version self._descr_path = descr_path self._ack_path = ack_path self._img_path = img_path self._logos_list = logos_list self._ncols = ncols self.build() self.grab_set() def build(self): self.title(self._title) # TOP superframe top_frame = ttk.Frame(self, borderwidth=2, relief=tk.GROOVE) top_frame.pack(side=tk.TOP, expand=True, fill=tk.X, padx=5, pady=5) # Bottom frame bottom_frame = ttk.Frame(self, borderwidth=2, relief=tk.GROOVE) bottom_frame.pack(side=tk.BOTTOM, expand=True, fill=tk.X, padx=5, pady=5) # Lower Button button = ttk.Button(bottom_frame, text=_("Close"), command=self.onCloseButton) button.pack(side=tk.BOTTOM, padx=10, pady=5) # Right Frame ri_frame = ttk.Frame(top_frame) ri_frame.pack(side=tk.RIGHT, expand=True, fill=tk.BOTH, padx=5, pady=5) text = self._version label = ttk.Label(ri_frame, text=text) label.pack(side=tk.TOP, anchor=tk.W, expand=False, fill=tk.BOTH, padx=5, pady=5) txt = self.loadText(ri_frame, self._descr_path) txt.pack(side=tk.TOP, anchor=tk.W, expand=False, fill=tk.BOTH, padx=5, pady=5) br_frame = ttk.LabelFrame(ri_frame, text=_("Acknowledgements")) br_frame.pack(side=tk.RIGHT, expand=True, fill=tk.BOTH, padx=5, pady=5) txt = self.loadText(br_frame, self._ack_path) txt.pack(side=tk.TOP, expand=True, fill=tk.BOTH, padx=5, pady=5) # Left Frame le_frame = ttk.Frame(top_frame) le_frame.pack(side=tk.LEFT, expand=True, fill=tk.BOTH, padx=5, pady=5) img = self.loadIcon(le_frame, self._img_path) img.pack(side=tk.TOP, expand=True, fill=tk.BOTH, padx=5, pady=5) # List of logos in a lower left frame with grid ll_frame = ttk.Frame(le_frame) ll_frame.pack(side=tk.TOP, expand=True, fill=tk.BOTH, padx=5, pady=5) nrows = math.ceil(len(self._logos_list)/self._ncols) infoiter = iter(self._logos_list) for row in range(nrows): for col in range(self._ncols): try: tip, path = next(infoiter) img = self.loadIcon(ll_frame, path) ToolTip(img, tip) img.grid(row=row, column=col, padx=2, pady=2) except StopIteration: break # Buttons callbacks def onCloseButton(self): self.destroy() def loadIcon(self, parent, path): img = PIL.ImageTk.PhotoImage(PIL.Image.open(path)) icon = ttk.Label(parent, image = img) icon.photo = img return icon def loadText(self, parent, path): with open(path) as fd: text = ' '.join(fd.readlines()) txt = tk.Message(parent, justify=tk.LEFT, text=text) return txt
29.692308
109
0.552285
d2d312a6e7082d02c4fabc986e2736b1c5983e1d
1,433
py
Python
bot/utils.py
rsoorajs/keepTelegram
1039f164cee4a7833254764abe1020e1e7343010
[ "MIT" ]
9
2021-01-01T19:01:02.000Z
2021-11-08T09:52:19.000Z
bot/utils.py
rsoorajs/keepTelegram
1039f164cee4a7833254764abe1020e1e7343010
[ "MIT" ]
15
2021-07-01T19:02:18.000Z
2022-02-01T19:01:48.000Z
bot/utils.py
telegrambotdev/keepTelegram
1039f164cee4a7833254764abe1020e1e7343010
[ "MIT" ]
3
2021-02-17T12:32:36.000Z
2021-11-14T14:38:15.000Z
"""Utils for bot""" from datetime import datetime # ------------ Program variable start ----------- # status_codes = { 0: {'str': 'unready', 'reverse_str': 'ready', 'int': 1}, 1: {'str': 'ready', 'reverse_str': 'unready', 'int': 0}, } note_fields = ['header', 'text', 'time'] buttons_text = { 'get_text': 'Get list of available commands', 'add_text': 'Add a new note'} # ------------ Program variables end ------------ # # ------------ Program functions start ---------- # def note_template(data): """Create note template""" return f""" <strong>Header</strong>: <i>{data[1]}</i> <strong>Text</strong>: <i>{data[2]}</i> <strong>Status</strong>: <i>{status_codes[data[3]].get('str')}</i> <strong>Due time</strong>: <i>{data[4]}</i> """ def statistics_template(data): """Create statistics template""" return f""" \N{memo} Number of <strong>all</strong> notes: <i>{data.get('all_num')}</i> \N{cross mark} Number of <strong>unready</strong> notes: <i>{data.get('unready_num')}</i> \N{check mark} Number of <strong>ready</strong> notes: <i>{data.get('ready_num')}</i> """ def get_time_obj(date_time_str): """Check if date format is correct""" try: date_time_obj = datetime.strptime(date_time_str, '%d/%m/%y %H:%M:%S') return date_time_obj except ValueError as error: print(f'Error: {error}') return None # ------------ Program functions end ------------ #
31.844444
89
0.586881
ca43f43d224f5c487bcbac7ffb5a253c4d783ff0
3,678
py
Python
src/Python/VisualizationAlgorithms/SpikeFran.py
sankhesh/vtk-examples
2d50e847ad62ce0eb71b66c029ad8abb302cd39f
[ "Apache-2.0" ]
null
null
null
src/Python/VisualizationAlgorithms/SpikeFran.py
sankhesh/vtk-examples
2d50e847ad62ce0eb71b66c029ad8abb302cd39f
[ "Apache-2.0" ]
null
null
null
src/Python/VisualizationAlgorithms/SpikeFran.py
sankhesh/vtk-examples
2d50e847ad62ce0eb71b66c029ad8abb302cd39f
[ "Apache-2.0" ]
1
2022-02-16T08:20:41.000Z
2022-02-16T08:20:41.000Z
#!/usr/bin/env python import vtk def main(): fileName = get_program_parameters() colors = vtk.vtkNamedColors() fran = vtk.vtkPolyDataReader() fran.SetFileName(fileName) normals = vtk.vtkPolyDataNormals() normals.SetInputConnection(fran.GetOutputPort()) normals.FlipNormalsOn() franMapper = vtk.vtkPolyDataMapper() franMapper.SetInputConnection(normals.GetOutputPort()) franActor = vtk.vtkActor() franActor.SetMapper(franMapper) franActor.GetProperty().SetColor(colors.GetColor3d('Flesh')) # We subsample the dataset because we want to glyph just a subset of # the points. Otherwise the display is cluttered and cannot be easily # read. The RandomModeOn and SetOnRatio combine to random select one out # of every 10 points in the dataset. # ptMask = vtk.vtkMaskPoints() ptMask.SetInputConnection(normals.GetOutputPort()) ptMask.SetOnRatio(10) ptMask.RandomModeOn() # In this case we are using a cone as a glyph. We transform the cone so # its base is at 0,0,0. This is the point where glyph rotation occurs. cone = vtk.vtkConeSource() cone.SetResolution(6) transform = vtk.vtkTransform() transform.Translate(0.5, 0.0, 0.0) transformF = vtk.vtkTransformPolyDataFilter() transformF.SetInputConnection(cone.GetOutputPort()) transformF.SetTransform(transform) # vtkGlyph3D takes two inputs: the input point set (SetInputConnection) # which can be any vtkDataSet and the glyph (SetSourceConnection) which # must be a vtkPolyData. We are interested in orienting the glyphs by the # surface normals that we previously generated. glyph = vtk.vtkGlyph3D() glyph.SetInputConnection(ptMask.GetOutputPort()) glyph.SetSourceConnection(transformF.GetOutputPort()) glyph.SetVectorModeToUseNormal() glyph.SetScaleModeToScaleByVector() glyph.SetScaleFactor(0.004) spikeMapper = vtk.vtkPolyDataMapper() spikeMapper.SetInputConnection(glyph.GetOutputPort()) spikeActor = vtk.vtkActor() spikeActor.SetMapper(spikeMapper) spikeActor.GetProperty().SetColor(colors.GetColor3d('Emerald_Green')) # Create the RenderWindow, Renderer and Interactor. # ren1 = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # Add the actors to the renderer, set the background and size. # ren1.AddActor(franActor) ren1.AddActor(spikeActor) renWin.SetSize(640, 480) renWin.SetWindowName('SpikeFran') ren1.SetBackground(colors.GetColor3d('SlateGray')) # Render the image. # renWin.Render() ren1.GetActiveCamera().Zoom(1.4) ren1.GetActiveCamera().Azimuth(110) renWin.Render() iren.Start() def get_program_parameters(): import argparse description = 'This example demonstrates the use of glyphing.' epilogue = ''' We also use a mask filter to select a subset of points to glyph. About the data file: This originally was a Cyberware laser digitizer scan of Fran J.'s face. Surface normals are generated based on local geometry (i.e., the polygon normals surrounding each point are averaged). We flip the normals because we want them to point out from Fran's face. ''' parser = argparse.ArgumentParser(description=description, epilog=epilogue, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('filename', help='fran_cut.vtk.') args = parser.parse_args() return args.filename if __name__ == '__main__': main()
31.982609
90
0.712616
ee049930d7cd3e1d826d9ae8e2fe4f88e95d787e
1,328
py
Python
api/ansible_api/serializers/project.py
240325184/KubeOperator
777774050b236abf938a5a9ef505124c26e4916e
[ "Apache-2.0" ]
3
2019-11-29T03:49:08.000Z
2020-07-29T02:52:51.000Z
api/ansible_api/serializers/project.py
240325184/KubeOperator
777774050b236abf938a5a9ef505124c26e4916e
[ "Apache-2.0" ]
27
2021-05-05T02:51:26.000Z
2022-01-04T21:30:21.000Z
api/ansible_api/serializers/project.py
240325184/KubeOperator
777774050b236abf938a5a9ef505124c26e4916e
[ "Apache-2.0" ]
1
2020-07-06T04:53:51.000Z
2020-07-06T04:53:51.000Z
# -*- coding: utf-8 -*- # import re from rest_framework import serializers from django.core.validators import RegexValidator from ..models import Project __all__ = [ "ProjectSerializer" ] class ProjectSerializer(serializers.ModelSerializer): options = serializers.DictField(required=False, default={}) validated_options = ('forks', 'timeout') class Meta: model = Project fields = [ 'id', 'name', 'options', 'comment', 'created_by', 'date_created' ] read_only_fields = ('id', 'created_by', 'date_created') def validate_options(self, values): for k in values: if k not in self.validated_options: raise serializers.ValidationError( "Option {} not in {}".format(k, self.validated_options) ) return values # 因为drf slug field 存在问题所以,重写了 # 见 https://github.com/encode/django-rest-framework/pull/6167/ def get_fields(self): fields = super().get_fields() name_field = fields.get('name') for validator in name_field.validators: if isinstance(validator, RegexValidator): if validator.regex.pattern == r'^[-a-zA-Z0-9_]+$': validator.regex = re.compile(r'^[-\w]+\Z') return fields
28.255319
75
0.601657
3c7764aadb8a1c7b984a886dde6dc14171f47671
959
py
Python
file_encrypter/file_encrypter.py
anshul2807/Automation-scripts
1830437fc9cf5f97b1f5f194a704fb247849ef09
[ "MIT" ]
496
2020-10-07T15:45:34.000Z
2022-03-29T16:40:30.000Z
file_encrypter/file_encrypter.py
anshul2807/Automation-scripts
1830437fc9cf5f97b1f5f194a704fb247849ef09
[ "MIT" ]
550
2020-10-07T15:31:53.000Z
2022-03-20T22:00:38.000Z
file_encrypter/file_encrypter.py
anshul2807/Automation-scripts
1830437fc9cf5f97b1f5f194a704fb247849ef09
[ "MIT" ]
388
2020-10-07T15:45:21.000Z
2022-03-27T14:54:46.000Z
import pyAesCrypt import sys import re bufferSize = 64 * 1024 def check_password(password): """ function to check the strength of password """ regex = re.compile('[@_!#$%^&*()<>?/\\|}{~:]') t1 = len(password) >= 8 t2 = not (regex.search(password) is None) t3 = any(c.islower() for c in password) t4 = any(c.isupper() for c in password) t5 = any(c.isdigit() for c in password) if t1 and t2 and t3 and t4 and t5: return True else: return False password = input("password for encrypting : ") password_strength = check_password(password) while not password_strength: print("WEAK Password") print("Please enter a strong password") password = input("password for encrypting : ") password_strength = check_password(password) pyAesCrypt.encryptFile(sys.argv[1], f"{sys.argv[1]}.aes", password, bufferSize) print(f"FILE HAS BEEN ENCRYPTED SUCCESSFULLY. STORED IN {sys.argv[1]}.aes")
25.918919
79
0.661105
9267600365d9f9fda316fba3f05572d7efd4dd64
522
py
Python
tradeaccounts/urls.py
bizeasy17/investtrack
3840948896573f3906a5df80ea80859a492f4133
[ "MIT" ]
null
null
null
tradeaccounts/urls.py
bizeasy17/investtrack
3840948896573f3906a5df80ea80859a492f4133
[ "MIT" ]
3
2021-07-15T13:23:28.000Z
2021-12-09T03:32:16.000Z
tradeaccounts/urls.py
bizeasy17/investtrack
3840948896573f3906a5df80ea80859a492f4133
[ "MIT" ]
1
2021-08-19T14:42:59.000Z
2021-08-19T14:42:59.000Z
from . import views from django.urls import path, re_path app_name = 'trade_account' urlpatterns = [ path('', views.TradeAccountsHomeView.as_view(), name='index'), path('create/', views.create_tradeaccount, name='create'), path('comments/<ts_code>/<position_id>/', views.position_comments, name='comments'), # path('/positions/', # views.positions, name='all_positions'), # path('/<account_id>/position/', # views.position, name='position_by_account'), ]
30.705882
62
0.639847
be492e22e38027f342c10e35a7fe19ed4cf039b5
416
py
Python
reports/migrations/0014_report_keyword.py
Daniel-Hoerauf/cs3240-f16-team11
0377bcb8ede9599c04daf7683b065abb2a47f893
[ "MIT" ]
null
null
null
reports/migrations/0014_report_keyword.py
Daniel-Hoerauf/cs3240-f16-team11
0377bcb8ede9599c04daf7683b065abb2a47f893
[ "MIT" ]
null
null
null
reports/migrations/0014_report_keyword.py
Daniel-Hoerauf/cs3240-f16-team11
0377bcb8ede9599c04daf7683b065abb2a47f893
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('reports', '0013_report_file_encrypted'), ] operations = [ migrations.AddField( model_name='report', name='keyword', field=models.CharField(default='', max_length=32), ), ]
20.8
62
0.605769
c5d161575be0e6ab71b43ca4d137ce2600ded339
498
py
Python
sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2019_09_30_preview/version.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2019_09_30_preview/version.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2019_09_30_preview/version.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- VERSION = "2019-04-30"
35.571429
76
0.524096
3deefc6d3858b5b59d6884cc927e28b0c35e3935
11,960
py
Python
scripts/TestHarness/testers/RavenFramework.py
dgarrett622/raven
f36cc108f7500b0e2717df4832b69b801b43960d
[ "Apache-2.0" ]
null
null
null
scripts/TestHarness/testers/RavenFramework.py
dgarrett622/raven
f36cc108f7500b0e2717df4832b69b801b43960d
[ "Apache-2.0" ]
null
null
null
scripts/TestHarness/testers/RavenFramework.py
dgarrett622/raven
f36cc108f7500b0e2717df4832b69b801b43960d
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RavenFramework is a tool to test raven inputs. """ from __future__ import absolute_import import os import subprocess import sys import platform from Tester import Tester import OrderedCSVDiffer import UnorderedCSVDiffer import XMLDiff import TextDiff import ExistsDiff import RAVENImageDiff # Set this outside the class because the framework directory is constant for # each instance of this Tester, and in addition, there is a problem with the # path by the time you call it in __init__ that causes it to think its absolute # path is somewhere under tests/framework. # Be aware that if this file changes its location, this variable should also be # changed. myDir = os.path.dirname(os.path.realpath(__file__)) RAVENDIR = os.path.abspath(os.path.join(myDir, '..', '..', '..', 'ravenframework')) RAVENROOTDIR = os.path.abspath(os.path.join(myDir, '..', '..', '..')) #add path so framework is found. sys.path.append(os.path.abspath(os.path.dirname(RAVENDIR))) #Need to add the directory for AMSC for doing module checks. os.environ["PYTHONPATH"] = os.path.join(RAVENDIR, '..', 'install') +\ os.pathsep + os.environ.get("PYTHONPATH", "") scriptDir = os.path.abspath(os.path.join(RAVENDIR, '..', 'scripts')) sys.path.append(scriptDir) import library_handler sys.path.pop() _missingModules, _notQAModules = library_handler.checkLibraries() _checkVersions = library_handler.checkVersions() class RavenFramework(Tester): """ RavenFramework is the class to use for testing standard raven inputs. """ @staticmethod def get_valid_params(): """ Returns the parameters that can be used for this class. @ In, None @ Out, params, _ValidParameters, return the parameters. """ params = Tester.get_valid_params() params.add_required_param('input', "The input file to use for this test.") params.add_param('output', '', "List of output files that the input should create.") params.add_param('csv', '', "List of csv files to check") params.add_param('UnorderedCsv', '', "List of unordered csv files to check") params.add_param('xml', '', "List of xml files to check") params.add_param('UnorderedXml', '', "List of unordered xml files to check") params.add_param('xmlopts', '', "Options for xml checking") params.add_param('text', '', "List of generic text files to check") params.add_param('comment', '-20021986', "Character or string denoting "+ "comments, all text to the right of the symbol will be "+ "ignored in the diff of text files") params.add_param('image', '', "List of image files to check") params.add_param('rel_err', '', 'Relative Error for csv files or floats in xml ones') params.add_param('required_executable', '', 'Skip test if this executable is not found') params.add_param('required_libraries', '', 'Skip test if any of these libraries are not found') params.add_param('minimum_library_versions', '', 'Skip test if the library listed is below the supplied'+ ' version (e.g. minimum_library_versions = \"name1 version1 name2 version2\")') params.add_param('skip_if_env', '', 'Skip test if this environmental variable is defined') params.add_param('skip_if_OS', '', 'Skip test if the operating system defined') params.add_param('test_interface_only', False, 'Test the interface only (without running the driven code') params.add_param('check_absolute_value', False, 'if true the values are compared to the tolerance '+ 'directectly, instead of relatively.') params.add_param('zero_threshold', sys.float_info.min*4.0, 'it represents the value below which a float is'+ 'considered zero (XML comparison only)') params.add_param('remove_whitespace', False, 'Removes whitespace before comparing xml node text if True') params.add_param('remove_unicode_identifier', False, 'if true, then remove u infront of a single quote') params.add_param('interactive', False, 'if true, then RAVEN will be run with interactivity enabled.') params.add_param('python3_only', False, 'if true, then only use with Python3') params.add_param('ignore_sign', False, 'if true, then only compare the absolute values') return params def get_command(self): """ Gets the raven command to run this test. @ In, None @ Out, get_command, string, command to run. """ ravenflag = '' if self.specs['test_interface_only']: ravenflag += ' interfaceCheck ' if self.specs['interactive']: ravenflag += ' interactiveCheck ' return self._get_python_command() + " " + self.driver + " " + ravenflag + self.specs["input"] def __make_differ(self, specName, differClass, extra=None): """ This adds a differ if the specName has files. @ In, specName, string of the list of files to use with the differ. @ In, differClass, subclass of Differ, for use with the files. @ In, extra, dictionary, extra parameters @ Out, None """ if len(self.specs[specName]) == 0: #No files, so quit return differParams = dict(self.specs) differParams["output"] = self.specs[specName] differParams["type"] = differClass.__name__ if extra is not None: differParams.update(extra) self.add_differ(differClass(specName, differParams, self.get_test_dir())) def __init__(self, name, params): Tester.__init__(self, name, params) self.all_files = [] self.__make_differ('output', ExistsDiff.Exists) self.__make_differ('csv', OrderedCSVDiffer.OrderedCSV) self.__make_differ('UnorderedCsv', UnorderedCSVDiffer.UnorderedCSV) self.__make_differ('xml', XMLDiff.XML, {"unordered":False}) self.__make_differ('UnorderedXml', XMLDiff.XML, {"unordered":True}) self.__make_differ('text', TextDiff.Text) self.__make_differ('image', RAVENImageDiff.ImageDiffer) self.required_executable = self.specs['required_executable'] self.required_libraries = self.specs['required_libraries'].split(' ')\ if len(self.specs['required_libraries']) > 0 else [] self.minimum_libraries = self.specs['minimum_library_versions'].split(' ')\ if len(self.specs['minimum_library_versions']) > 0 else [] self.required_executable = self.required_executable.replace("%METHOD%", os.environ.get("METHOD", "opt")) self.specs['scale_refine'] = False self.driver = os.path.join(RAVENROOTDIR, 'raven_framework.py') def check_runnable(self): """ Checks if this test can run. @ In, None @ Out, check_runnable, boolean, if True can run this test. """ # remove tests based on skipping criteria ## required module is missing if _missingModules: self.set_fail('skipped (Missing python modules: '+" ".join([m[0] for m in _missingModules])+ " PYTHONPATH="+os.environ.get("PYTHONPATH", "")+')') return False ## required module is present, but too old if _notQAModules and _checkVersions: self.set_fail('skipped (Incorrectly versioned python modules: ' + " ".join(['required {}-{}, but found {}'.format(*m) for m in _notQAModules]) + " PYTHONPATH="+os.environ.get("PYTHONPATH", "")+')') return False ## an environment varible value causes a skip if len(self.specs['skip_if_env']) > 0: envVar = self.specs['skip_if_env'] if envVar in os.environ: self.set_skip('skipped (found environmental variable "'+envVar+'")') return False ## OS if len(self.specs['skip_if_OS']) > 0: skipOs = [x.strip().lower() for x in self.specs['skip_if_OS'].split(',')] # get simple-name platform (options are Linux, Windows, Darwin, or SunOS that I've seen) currentOs = platform.system().lower() # replace Darwin with more expected "mac" if currentOs == 'darwin': currentOs = 'mac' if currentOs in skipOs: self.set_skip('skipped (OS is "{}")'.format(currentOs)) return False for lib in self.required_libraries: found, _, _ = library_handler.checkSingleLibrary(lib) if not found: self.set_skip('skipped (Unable to import library: "{}")'.format(lib)) return False if self.specs['python3_only'] and not library_handler.inPython3(): self.set_skip('Python 3 only') return False i = 0 if len(self.minimum_libraries) % 2: self.set_skip('skipped (libraries are not matched to versions numbers: ' +str(self.minimum_libraries)+')') return False while i < len(self.minimum_libraries): libraryName = self.minimum_libraries[i] libraryVersion = self.minimum_libraries[i+1] found, _, actualVersion = library_handler.checkSingleLibrary(libraryName, version='check') if not found: self.set_skip('skipped (Unable to import library: "'+libraryName+'")') return False if library_handler.parseVersion(actualVersion) < \ library_handler.parseVersion(libraryVersion): self.set_skip('skipped (Outdated library: "'+libraryName+'" needed version '+str(libraryVersion)+' but had version '+str(actualVersion)+')') return False i += 2 if len(self.required_executable) > 0 and \ not os.path.exists(self.required_executable): self.set_skip('skipped (Missing executable: "'+self.required_executable+'")') return False try: if len(self.required_executable) > 0 and \ subprocess.call([self.required_executable], stdout=subprocess.PIPE) != 0: self.set_skip('skipped (Failing executable: "'+self.required_executable+'")') return False except Exception as exp: self.set_skip('skipped (Error when trying executable: "' +self.required_executable+'")'+str(exp)) return False filenameSet = set() duplicateFiles = [] for filename in self.__get_created_files(): if filename not in filenameSet: filenameSet.add(filename) else: duplicateFiles.append(filename) if len(duplicateFiles) > 0: self.set_skip('[incorrect test] duplicated files specified: '+ " ".join(duplicateFiles)) return False return True def __get_created_files(self): """ Returns all the files used by this test that need to be created by the test. Note that they will be deleted at the start of running the test. @ In, None @ Out, createdFiles, [str], list of files created by the test. """ runpath = self.get_test_dir() removeFiles = self.get_differ_remove_files() return removeFiles+list(os.path.join(runpath, file) for file in self.all_files) def prepare(self): """ Get the test ready to run by removing files that should be created. @ In, None @ Out, None """ for filename in self.__get_created_files(): if os.path.exists(filename): os.remove(filename) def process_results(self, _): """ Check to see if the test has passed. @ In, ignored, string, output of test. @ Out, None """ self.set_success()
43.333333
148
0.666806
221d8ad89f9874562fa463d34b577a3c99252813
600
py
Python
handlers/users/start.py
vlsh1n/ChatBot_PlekhanovUniversity
fa28ee623a2f020b5ddddb45655444bc537f0c53
[ "MIT" ]
null
null
null
handlers/users/start.py
vlsh1n/ChatBot_PlekhanovUniversity
fa28ee623a2f020b5ddddb45655444bc537f0c53
[ "MIT" ]
null
null
null
handlers/users/start.py
vlsh1n/ChatBot_PlekhanovUniversity
fa28ee623a2f020b5ddddb45655444bc537f0c53
[ "MIT" ]
null
null
null
from aiogram import types from aiogram.dispatcher.filters.builtin import CommandStart from keyboards.default import menu from loader import dp # Хэндлер, который обрабатывает команду /start @dp.message_handler(CommandStart()) async def bot_start(message: types.Message): await message.answer(f"Привет, {message.from_user.full_name}!\n" f"Я - чатбот VIII Школы Актива РЭУ им. Г.В.Плеханова!\n" f"У меня ты сможешь узнать всю необходимую информацию, касаемо Школы Актива!") await message.answer('Выберите нужную кнопку', reply_markup=menu)
37.5
103
0.723333
704ca0d87e141ac1e4d61b76781ebc5de76dbe7e
625
py
Python
codes/chapter18-3/henango/urls/resolver.py
uenoka/introduction-to-web-application-with-python
99ec28151fa8388a21c96e5d39902641961c72bb
[ "MIT" ]
22
2020-11-04T01:57:20.000Z
2022-03-16T06:20:32.000Z
codes/chapter18-3/henango/urls/resolver.py
uenoka/introduction-to-web-application-with-python
99ec28151fa8388a21c96e5d39902641961c72bb
[ "MIT" ]
17
2020-11-03T14:28:12.000Z
2022-03-26T08:04:50.000Z
codes/chapter18-3/henango/urls/resolver.py
uenoka/introduction-to-web-application-with-python
99ec28151fa8388a21c96e5d39902641961c72bb
[ "MIT" ]
14
2020-11-04T02:17:49.000Z
2022-03-12T11:32:41.000Z
from typing import Callable, Optional from henango.http.request import HTTPRequest from henango.http.response import HTTPResponse from urls import url_patterns class URLResolver: def resolve(self, request: HTTPRequest) -> Optional[Callable[[HTTPRequest], HTTPResponse]]: """ URL解決を行う pathにマッチするURLパターンが存在した場合は、対応するviewを返す 存在しなかった場合は、Noneを返す """ for url_pattern in url_patterns: match = url_pattern.match(request.path) if match: request.params.update(match.groupdict()) return url_pattern.view return None
28.409091
95
0.6672
33edf3c69c7dfc30869621fd4d8e92ffad84de70
1,598
py
Python
sdk/cognitiveservices/azure-cognitiveservices-formrecognizer/azure/cognitiveservices/formrecognizer/models/extracted_token.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/cognitiveservices/azure-cognitiveservices-formrecognizer/azure/cognitiveservices/formrecognizer/models/extracted_token.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/cognitiveservices/azure-cognitiveservices-formrecognizer/azure/cognitiveservices/formrecognizer/models/extracted_token.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ExtractedToken(Model): """Canonical representation of single extracted text. :param text: String value of the extracted text. :type text: str :param bounding_box: Bounding box of the extracted text. Represents the location of the extracted text as a pair of cartesian co-ordinates. The co-ordinate pairs are arranged by top-left, top-right, bottom-right and bottom-left endpoints box with origin reference from the bottom-left of the page. :type bounding_box: list[float] :param confidence: A measure of accuracy of the extracted text. :type confidence: float """ _attribute_map = { 'text': {'key': 'text', 'type': 'str'}, 'bounding_box': {'key': 'boundingBox', 'type': '[float]'}, 'confidence': {'key': 'confidence', 'type': 'float'}, } def __init__(self, **kwargs): super(ExtractedToken, self).__init__(**kwargs) self.text = kwargs.get('text', None) self.bounding_box = kwargs.get('bounding_box', None) self.confidence = kwargs.get('confidence', None)
38.97561
76
0.621402
bd8807c4c533dbc8d532c18d4049b20334617c9f
224
py
Python
app.py
wang2542/DevOps
cf268609974782a780215d8ceb6c90ff80982262
[ "Apache-2.0" ]
null
null
null
app.py
wang2542/DevOps
cf268609974782a780215d8ceb6c90ff80982262
[ "Apache-2.0" ]
1
2022-02-14T01:46:44.000Z
2022-02-14T01:52:43.000Z
app.py
wang2542/DevOps
cf268609974782a780215d8ceb6c90ff80982262
[ "Apache-2.0" ]
null
null
null
from flask import Flask app = Flask(__name__) COUNTER = 0 @app.route("/") def index(): return "Hello World!" @app.route("/counter") def counter(): global COUNTER COUNTER += 1 return(dict(counter=COUNTER))
14.933333
33
0.651786
d2c8cd7fba7dd605a6a7ed619c97af6edd01ebe5
1,119
py
Python
src/cltl/face_recognition/api.py
leolani/cltl-face-recognition
b98e4791c9943b4a4a91d00e2ede5ead2d5fa61f
[ "MIT" ]
null
null
null
src/cltl/face_recognition/api.py
leolani/cltl-face-recognition
b98e4791c9943b4a4a91d00e2ede5ead2d5fa61f
[ "MIT" ]
null
null
null
src/cltl/face_recognition/api.py
leolani/cltl-face-recognition
b98e4791c9943b4a4a91d00e2ede5ead2d5fa61f
[ "MIT" ]
null
null
null
import abc import dataclasses from typing import List, Optional, Iterable, Tuple import numpy as np from cltl.backend.api.camera import Bounds from emissor.representation.entity import Gender @dataclasses.dataclass class Face: """ Information about a Face. Includes a vector representation of the face and optional meta information. """ # TODO switch to np.typing.ArrayLike embedding: np.ndarray gender: Optional[Gender] age: Optional[int] class FaceDetector(abc.ABC): """ Detect faces in an image. """ def detect(self, image: np.ndarray) -> Tuple[Iterable[Face], Iterable[Bounds]]: """ Detect faces in an image. Parameters ---------- image : np.ndarray The binary image. Returns ------- Iterable[Face] The faces detected in the image. Iterable[Bounds] The positions of the detected faces in the image. """ raise NotImplementedError() def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass
22.38
83
0.623771
5d825b7649293ff9c6241b2d353f07292534dbd5
649
py
Python
blocketwatch/__init__.py
chip2n/blocket-watch
988cb7c6eb4aad0f4655f9ce7dcb1dc75945a4ed
[ "Apache-2.0" ]
null
null
null
blocketwatch/__init__.py
chip2n/blocket-watch
988cb7c6eb4aad0f4655f9ce7dcb1dc75945a4ed
[ "Apache-2.0" ]
null
null
null
blocketwatch/__init__.py
chip2n/blocket-watch
988cb7c6eb4aad0f4655f9ce7dcb1dc75945a4ed
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # coding=UTF8 # # Copyright 2013 Andreas Arvidsson # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from blocketwatch import main
34.157895
74
0.75963
3693ec784eb9f7578e5dc83cd1038410dad5e23e
1,390
py
Python
chrome/test/enterprise/e2e/policy/webprotect_file_download/webprotect_file_download.py
zealoussnow/chromium
fd8a8914ca0183f0add65ae55f04e287543c7d4a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
14,668
2015-01-01T01:57:10.000Z
2022-03-31T23:33:32.000Z
chrome/test/enterprise/e2e/policy/webprotect_file_download/webprotect_file_download.py
zealoussnow/chromium
fd8a8914ca0183f0add65ae55f04e287543c7d4a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
113
2015-05-04T09:58:14.000Z
2022-01-31T19:35:03.000Z
chrome/test/enterprise/e2e/policy/webprotect_file_download/webprotect_file_download.py
zealoussnow/chromium
fd8a8914ca0183f0add65ae55f04e287543c7d4a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
5,941
2015-01-02T11:32:21.000Z
2022-03-31T16:35:46.000Z
# Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os from chrome_ent_test.infra.core import category, environment, before_all, test from infra import ChromeEnterpriseTestCase @category("chrome_only") @environment(file="../webprotect_test.asset.textpb") class WebProtectFileDownloadTest(ChromeEnterpriseTestCase): """Test the WebProtect client behaviour. Here are the set of E2E test cases for testing chrome download behavior when webprotect is enabled. The purpose of these tests is to catch chrome client UI regression. """ @before_all def setup(self): self.InstallChrome('webprotect-1') self.EnableUITest('webprotect-1') @test def test_malware_scan_download(self): self.SetPolicy('win2016-dc', r'CloudManagementEnrollmentToken', '856f301d-cfda-414d-97a6-1bfb46d94293', 'String') instance_name = 'webprotect-1' self.RunCommand(instance_name, 'gpupdate /force') local_dir = os.path.dirname(os.path.abspath(__file__)) output = self.RunUITest( instance_name, os.path.join(local_dir, 'webprotect_file_download_webdriver.py')) self.assertIn('Encrypted blocked', output) self.assertIn('Large file blocked', output) self.assertIn('Unknown malware scanning', output)
34.75
78
0.741007
d0d6ad4ab24f53c62a3876ddce604dae6804e771
5,102
py
Python
ncc/eval/summarization/smoothed_bleu.py
iwangyuezhang/naturalcc
e9d9b4a296b61199fc35779b062db2205935a608
[ "MIT" ]
1
2022-03-30T14:45:42.000Z
2022-03-30T14:45:42.000Z
ncc/eval/summarization/smoothed_bleu.py
hrshy0629/naturalcc
9c3329dd8387c8242deb52bf590ebe3ac795f8de
[ "MIT" ]
null
null
null
ncc/eval/summarization/smoothed_bleu.py
hrshy0629/naturalcc
9c3329dd8387c8242deb52bf590ebe3ac795f8de
[ "MIT" ]
null
null
null
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python implementation of BLEU and smooth-BLEU. This module provides a Python implementation of BLEU and smooth-BLEU. Smooth BLEU is computed following the method outlined in the paper: Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic evaluation metrics for machine translation. COLING 2004. """ import collections import math def _get_ngrams(segment, max_order): """Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred. """ ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i + order]) ngram_counts[ngram] += 1 return ngram_counts def compute_smoothed_bleu(reference_corpus, translation_corpus, max_order=4, smooth=True): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: merged_ref_ngram_counts |= _get_ngrams(reference, max_order) translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts for ngram in overlap: matches_by_order[len(ngram) - 1] += overlap[ngram] for order in range(1, max_order + 1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order - 1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / ratio) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length) def _bleu(ref_file, trans_file, subword_option=None): max_order = 4 smooth = True ref_files = [ref_file] reference_text = [] for reference_filename in ref_files: with open(reference_filename, encoding='utf-8') as fh: reference_text.append(fh.readlines()) per_segment_references = [] for references in zip(*reference_text): reference_list = [] for reference in references: reference_list.append(reference.strip().split()) per_segment_references.append(reference_list) translations = [] with open(trans_file, encoding='utf-8') as fh: for line in fh: translations.append(line.strip().split()) bleu_score, _, _, _, _, _ = compute_bleu(per_segment_references, translations, max_order, smooth) return round(100 * bleu_score, 2)
39.859375
101
0.662681
f9560932d4885c0ac16585aefdafca8a0b807956
205
py
Python
23_Aug_2021_re-exam/project_astro/astronaut/meteorologist.py
vasetousa/OOP
e4fedc497dd149c9800613ea11846e0e770d122c
[ "MIT" ]
null
null
null
23_Aug_2021_re-exam/project_astro/astronaut/meteorologist.py
vasetousa/OOP
e4fedc497dd149c9800613ea11846e0e770d122c
[ "MIT" ]
null
null
null
23_Aug_2021_re-exam/project_astro/astronaut/meteorologist.py
vasetousa/OOP
e4fedc497dd149c9800613ea11846e0e770d122c
[ "MIT" ]
null
null
null
from project_astro.astronaut.astronaut import Astronaut class Meteorologist(Astronaut): def __init__(self, name): super().__init__(name, 90) def breathe(self): self.oxygen -= 15
20.5
55
0.687805
799a677237acd301922d64d0572901167a81052c
732
py
Python
Unit_4/Data_Array_Manipulation.py
coffeelabor/CIS289_Reed_James
6d1bc126d6b50411f2bad1d65cfeebd47b68a6ff
[ "MIT" ]
null
null
null
Unit_4/Data_Array_Manipulation.py
coffeelabor/CIS289_Reed_James
6d1bc126d6b50411f2bad1d65cfeebd47b68a6ff
[ "MIT" ]
null
null
null
Unit_4/Data_Array_Manipulation.py
coffeelabor/CIS289_Reed_James
6d1bc126d6b50411f2bad1d65cfeebd47b68a6ff
[ "MIT" ]
null
null
null
''' /*************************************************************** * Name: Pandas Data and Array Manipulation Program * Author: Reed James * Created: 22 Sept 2021 * Course: CIS 289 - Python * Version: Python 3.8.2 * OS: Windows 10 * Copyright: This is my own original work based on * specifications issued by our instructor * Description: * Input: * Output: * Academic Honesty: I attest that this is my original work. * I have not used unauthorized source code, either modified or * unmodified. I have not given other fellow student(s) access to my program. ***************************************************************/ ''' import pandas as pd if __name__ == "__main__": pass
30.5
76
0.556011
2f2b382066cf85165208a5e3a9e7ca4e4e879687
1,784
py
Python
usuarios/models.py
MarcosBB/E-commerce
2a7c2bfd4512eb212eeec3bd49c65c70a65e6593
[ "MIT" ]
2
2021-07-27T19:27:15.000Z
2021-08-16T18:26:22.000Z
usuarios/models.py
MarcosBB/E-commerce
2a7c2bfd4512eb212eeec3bd49c65c70a65e6593
[ "MIT" ]
null
null
null
usuarios/models.py
MarcosBB/E-commerce
2a7c2bfd4512eb212eeec3bd49c65c70a65e6593
[ "MIT" ]
null
null
null
from django.db import models import uuid from stdimage.models import StdImageField from django.contrib.auth.models import AbstractUser, BaseUserManager def get_file_path(_instance, filename): ext = filename.split('.')[-1] filename = f'{uuid.uuid4()}.{ext}' return filename class UsuarioManager(BaseUserManager): use_in_migrations = True def _create_user(self, email, password, **extra_fields): if not email: raise ValueError('O nome de e-mail é obrigatório!') email = self.normalize_email(email) user = self.model(email=email, username=email, **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_user(self, email, password=None, **extra_fields): extra_fields.setdefault('is_superuser', False) return self._create_user(email, password, **extra_fields) def create_superuser(self, email, password, **extra_fields): extra_fields.setdefault('is_superuser', True) extra_fields.setdefault('is_staff', True) return self._create_user(email, password, **extra_fields) class CustomUsuario(AbstractUser): email = models.EmailField('E-mail', unique=True) apelido = models.CharField('Apelido', max_length=100, unique=True) nome = models.CharField('Nome', max_length=100) sobrenome = models.CharField('Sobrenome', max_length=100) imagem = StdImageField('Imagem', upload_to=get_file_path, variations={'thumb': {'width': 480, 'height': 480, 'crop': True}}) is_staff = models.BooleanField('Membro da equipe', default=True) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['apelido','nome', 'sobrenome', 'imagem'] def __str__(self): return self.email objects = UsuarioManager()
37.166667
128
0.696749
51acd17d9ec1e48eabe884b82c88db8d5eeda3ea
265
py
Python
newdust/graindist/composition/__init__.py
eblur/newdust
7e843ae2604a844826606ea04c459694fdd5c178
[ "BSD-2-Clause" ]
4
2018-02-04T19:04:01.000Z
2022-02-09T04:11:18.000Z
newdust/graindist/composition/__init__.py
eblur/newdust
7e843ae2604a844826606ea04c459694fdd5c178
[ "BSD-2-Clause" ]
21
2017-08-15T21:13:42.000Z
2021-12-23T20:07:24.000Z
newdust/graindist/composition/__init__.py
eblur/newdust
7e843ae2604a844826606ea04c459694fdd5c178
[ "BSD-2-Clause" ]
1
2021-01-28T18:29:12.000Z
2021-01-28T18:29:12.000Z
import os def _find_cmfile(name): root_path = os.path.dirname(__file__).rstrip('composition') data_path = root_path + 'tables/' return data_path + name from .cmdrude import CmDrude from .cmsilicate import CmSilicate from .cmgraphite import CmGraphite
24.090909
63
0.758491
920f43c98c03f2b0a7a1286e87634b8055207966
1,874
gyp
Python
binding.gyp
ionagamed/node-rsvg
bad9eb5e0d52dc9d128ee24ce304f3091a9d2afb
[ "MIT" ]
32
2015-10-04T03:39:54.000Z
2020-11-09T14:59:30.000Z
binding.gyp
ionagamed/node-rsvg
bad9eb5e0d52dc9d128ee24ce304f3091a9d2afb
[ "MIT" ]
16
2016-04-04T14:57:30.000Z
2019-09-09T12:18:58.000Z
binding.gyp
ionagamed/node-rsvg
bad9eb5e0d52dc9d128ee24ce304f3091a9d2afb
[ "MIT" ]
25
2015-10-17T09:58:01.000Z
2021-06-23T07:43:03.000Z
{ "variables": { "GTK_Root%": "c:\\gtk", "conditions": [ [ "OS == 'mac'", { "pkg_env": "PKG_CONFIG_PATH=/opt/X11/lib/pkgconfig" }, { "pkg_env": "" }] ] }, "targets": [ { "target_name": "rsvg", "sources": [ "src/Rsvg.cc", "src/Enums.cc", "src/Autocrop.cc" ], "include_dirs": [ "<!(node -e \"require('nan')\")" ], "variables": { "packages": "librsvg-2.0 cairo-png cairo-pdf cairo-svg", "conditions": [ [ "OS!='win'", { "libraries": "<!(<(pkg_env) pkg-config --libs-only-l <(packages))", "ldflags": "<!(<(pkg_env) pkg-config --libs-only-L --libs-only-other <(packages))", "cflags": "<!(<(pkg_env) pkg-config --cflags <(packages))" }, { # else OS!='win' "include_dirs": "<!(<(python) tools/include_dirs.py <(GTK_Root) <(packages))" } ] ] }, "conditions": [ [ "OS!='mac' and OS!='win'", { "cflags": [ "<@(cflags)", "-std=c++0x" ], "ldflags": [ "<@(ldflags)" ], "libraries": [ "<@(libraries)" ], } ], [ "OS=='mac'", { "xcode_settings": { "OTHER_CFLAGS": [ "<@(cflags)" ], "OTHER_LDFLAGS": [ "<@(ldflags)" ] }, "libraries": [ "<@(libraries)" ], } ], [ "OS=='win'", { "sources+": [ "src/win32-math.cc" ], "include_dirs": [ "<@(include_dirs)" ], "libraries": [ 'librsvg-2.dll.a', 'glib-2.0.lib', 'gobject-2.0.lib', 'cairo.lib' ], "msvs_settings": { 'VCCLCompilerTool': { 'AdditionalOptions': [ "/EHsc" ] } }, "msbuild_settings": { "Link": { "AdditionalLibraryDirectories": [ "<(GTK_Root)\\lib" ], "ImageHasSafeExceptionHandlers": "false" } } } ] ] } ] }
19.93617
89
0.437567
e2ef6413182e0e3d5e3095aab987250265f0a28f
6,904
py
Python
localizedFunc.py
FisherEat/python_ios_projects
1d1bba34d31ff31b732b5ae573c0eca0a4a0fb7b
[ "MIT" ]
null
null
null
localizedFunc.py
FisherEat/python_ios_projects
1d1bba34d31ff31b732b5ae573c0eca0a4a0fb7b
[ "MIT" ]
null
null
null
localizedFunc.py
FisherEat/python_ios_projects
1d1bba34d31ff31b732b5ae573c0eca0a4a0fb7b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import re import sys zhPattern = re.compile(u'[\u4e00-\u9fa5]+') strPattern = re.compile(r'@\"(.*?)(?<!\\)\"') def cur_file_dir(): # python虚拟机的打开路径 path = sys.path[0] # 改为上级目录 if os.path.isdir(path): # return path return os.path.dirname(path) elif os.path.isfile(path): # return os.path.dirname(path) dir = os.path.dirname(path) return os.path.dirname(dir) def outPutlogFile(str): strings = restringTostring(str) rootPath = cur_file_dir() logfile = os.path.join(rootPath, 'log.txt') with open(logfile, 'a', encoding='utf-8') as f: f.write(strings) # localStingPath = os.path.join(cur_file_dir(), 'Localizable.strings') localStingPath = os.path.join(cur_file_dir(), 'SmartHomeV6/zh-Hans.lproj/Localizable.strings') def findkeyforstring(string): key = '' restr = r'"(\w+)"\s*=\s*"%s";'%(string) with open(localStingPath, 'r', encoding='utf-8') as f: text = f.read() match = re.search(restr, text) if match != None: key = match.group(1) return key def findstringforkey(en): string = None restr = r'"%s"\s*=\s*"(.*)";'%(en) with open(localStingPath, 'r', encoding='utf-8') as f: text = f.read() match = re.search(restr, text) if match != None: string = match.group(1) return string global isneedwrite global tempfilelines def dealwithChinese(string, line): global tempfilelines global isneedwrite key = findkeyforstring(string) if key == '': if re.search(r'NSLog\s*\(\s*@"%s"'%string, line) != None: string = 'NSLog'.ljust(30) + string # outPutlogFile(string + "\n") else: outPutlogFile('not find Key'.ljust(30) + string + "\n") print(string) else: isneedwrite = 1 if re.search(r'NSLog\s*\(\s*@"%s"'%string, line): print('pass') elif re.search(r'NSLocalizedString\s*\(\s*@"%s"\s*,\s*([\w\s]+)\s*\)'%string, line) != None: temp = re.sub(r'NSLocalizedString\s*\(\s*@"%s"\s*,\s*([\w\s]+)\s*\)'%string, r'NSLocalizedString(@"%s", \1)'%key, line) tempfilelines.pop() tempfilelines.append(temp) outPutlogFile(string.ljust(30)+ "modify : " +key + "\n") elif re.search(r'@"%s"'%string, line) != None: temp = re.sub(r'@"%s"' % string, 'NSLocalizedString(@"%s", nil)' % key, line) tempfilelines.pop() tempfilelines.append(temp) outPutlogFile(string.ljust(30) + "modify : " + key + "\n") else: print('not need') def dealwithEnglish(string, line): if re.search(r'NSLocalizedString\s*\(\s*@"%s"\s*,\s*([\w\s]+)\s*\)' % string, line) != None: result = findstringforkey(string) if result == None: outPutlogFile(string + "\n") def stringTorestring(string): string = string.replace('\\', '\\\\') string = string.replace('.', '\.') string = string.replace('(', '\(') string = string.replace(')', '\)') string = string.replace('[', '\[') string = string.replace(']', '\]') string = string.replace('{', '\{') string = string.replace('}', '\}') string = string.replace('*', '\*') string = string.replace('+', '\+') string = string.replace('?', '\?') string = string.replace('^', '\^') string = string.replace('$', '\$') return string def restringTostring(string): string = string.replace('\\\\', '\\') string = string.replace('\.', '.') string = string.replace('\(', '(') string = string.replace('\)', ')') string = string.replace('\[', '[') string = string.replace('\]', ']') string = string.replace('\{', '{') string = string.replace('\}', '}') string = string.replace('\*', '*') string = string.replace('\+', '+') string = string.replace('\?', '?') string = string.replace('\^', '^') string = string.replace('\$', '$') return string if __name__ == '__main__': print('shit') print(restringTostring("'hahg\asdlfj.skdjfl/8/'")) # # if __name__ == '__main__': # xlxs2ios.getLocalizedStringFile() # global isneedwrite # isneedwrite = 0 # global tempfilelines # tempfilelines = [] # print(cur_file_dir()) # cur_Path = cur_file_dir() # for root, dirs, files in os.walk(cur_Path): # if root.find("Pods/") < 0 and root.find("Libs/") < 0: # for file in files: # if file.endswith(".m"): # mfile = os.path.join(root, file) # if os.path.isfile(mfile): # with open(mfile, 'r', encoding='utf-8') as f: # tempfilelines = [] # for line in f.readlines(): # tempfilelines.append(line) # for string in strPattern.findall(line): # # if zhPattern.search(string): # print(line) # print('{}\n'.format(string)) # try: # newstring = stringTorestring(string) # # newstring = string # dealwithChinese(newstring, line) # except: # print("Unexpected error:", sys.exc_info()[0]) # dealwithChinese(string, line) # # newstring = stringTorestring(string) # # dealwithChinese(newstring, line) # else: # print('{}\n'.format(string)) # try: # newstring = stringTorestring(string) # # newstring = string # dealwithEnglish(newstring, line) # except: # print("Unexpected error:", sys.exc_info()[0]) # dealwithEnglish(string, line) # # newstring = stringTorestring(string) # # dealwithEnglish(newstring, line) # # if isneedwrite == 1: # with open(mfile, 'w', encoding='utf-8') as f: # f.writelines(tempfilelines)
39.00565
131
0.467265
9ad616e1f75520ff2ca236dca5a0a8792fd18c75
1,385
py
Python
part01-e18_acronyms/test/test_acronyms.py
alekshiidenhovi/Helsinki-University-Data-Analysis-with-Python
bc27fa585d22d630a38312ee7c4b2173d5b80d12
[ "MIT" ]
null
null
null
part01-e18_acronyms/test/test_acronyms.py
alekshiidenhovi/Helsinki-University-Data-Analysis-with-Python
bc27fa585d22d630a38312ee7c4b2173d5b80d12
[ "MIT" ]
null
null
null
part01-e18_acronyms/test/test_acronyms.py
alekshiidenhovi/Helsinki-University-Data-Analysis-with-Python
bc27fa585d22d630a38312ee7c4b2173d5b80d12
[ "MIT" ]
2
2022-02-14T20:07:29.000Z
2022-03-11T07:30:23.000Z
#!/usr/bin/env python3 import unittest from unittest.mock import patch from tmc import points from tmc.utils import load, get_stdout module_name="src.acronyms" acronyms = load(module_name, "acronyms") @points('p01-18.1') class Acronyms(unittest.TestCase): def test_first(self): result = acronyms("""For the purposes of the EU General Data Protection Regulation (GDPR), the controller of your personal information is International Business Machines Corporation (IBM Corp.), 1 New Orchard Road, Armonk, New York, United States, unless indicated otherwise. Where IBM Corp. or a subsidiary it controls (not established in the European Economic Area (EEA)) is required to appoint a legal representative in the EEA, the representative for all such cases is IBM United Kingdom Limited, PO Box 41, North Harbour, Portsmouth, Hampshire, United Kingdom PO6 3AU.""") self.assertIsInstance(result, list, f"acronyms should return a list. Got {type(result)}") self.assertEqual(result, ['EU', 'GDPR', 'IBM', 'IBM', 'EEA', 'EEA', 'IBM', 'PO', 'PO6', '3AU']) def test_empty(self): result = acronyms("") self.assertIsInstance(result, list, f"acronyms should return a list. Got {type(result)}") self.assertEqual(result, [], msg="Empty list expected for empty input string!") if __name__ == '__main__': unittest.main()
46.166667
585
0.712635
b729f835260f114c010289b9cdd35faa4bfdad7f
47,391
py
Python
python-trunk/sfapi2/sfutil/report/sfReportCR.py
raychorn/svn_molten-magma
8aa2ff2340707eecae6514943e86f5afba9cd54a
[ "CC0-1.0" ]
null
null
null
python-trunk/sfapi2/sfutil/report/sfReportCR.py
raychorn/svn_molten-magma
8aa2ff2340707eecae6514943e86f5afba9cd54a
[ "CC0-1.0" ]
null
null
null
python-trunk/sfapi2/sfutil/report/sfReportCR.py
raychorn/svn_molten-magma
8aa2ff2340707eecae6514943e86f5afba9cd54a
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python2.3 """ A class for instantiation by sfNotify to generate a type of report Not intended to stand alone. """ #version = 0.10 # Initial version under development #version = 1.10 # factor common elements out for use by other reports version = 2.0 # 10/25/2004 Moved to new API and Task Branches from sfReportBase import ReportBase from reportSection import ReportSection from sfUtil import * from sfConstant import * import time import cStringIO import re import pprint import copy import textwrap import types class CRReport(ReportBase): def __init__(self, sfTool, userId, contact, sectionList=[]): ReportBase.__init__(self, sfTool, userId, contact) self.sectionList = sectionList self.crList = [] self.modList = [] self.crSectionCore = None ## END __init__ def generateReport(self): """ Central method to build CR report Calls other methods to build chunks of the report. """ print "CR REPORT" date = time.strftime("%A %B %d, %Y", time.localtime(self.sfTool.reportTime)) subject = "CR Report for %s %s on %s" %(self.contact.get('FirstName'), self.contact.get('LastName'), date) self.subject = subject # Assemble the sections, adding them to the body section = 'TestFixes' if section in self.sectionList: # My CRs (MODs, really) With Fixes Available crWithFixSec = CRsWithFixesSection(self.sfTool, self.userId, self.contact) crWithFixTxt = crWithFixSec.getSection() self.body.write(crWithFixTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crWithFixSec.hasContent() section = 'Unassigned' if section in self.sectionList: crSecCore = self.prepCrSectionData() crUnasgSec = UnassignedCrSection(self.sfTool, self.userId, self.contact, crSecCore) crUnasgTxt = crUnasgSec.getSection() self.body.write(crUnasgTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crUnasgSec.hasContent() section = 'RecentClose' if section in self.sectionList: crClosedSec = ClosedCrSection(self.sfTool, self.userId, self.contact) crClosedTxt = crClosedSec.getSection() self.body.write(crClosedTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crClosedSec.hasContent() section = 'SCM' if section in self.sectionList: crSecCore = self.prepCrSectionData() crScmSec = ScmCrSection(self.sfTool, self.userId, self.contact, crSecCore) crScmTxt = crScmSec.getSection() self.body.write(crScmTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crScmSec.hasContent() section = 'Team' if section in self.sectionList: crSecCore = self.prepCrSectionData() crTeamSec = TeamCrSection(self.sfTool, self.userId, self.contact, crSecCore) crTeamTxt = crTeamSec.getSection() self.body.write(crTeamTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crTeamSec.hasContent() section = 'PE' if section in self.sectionList: crSecCore = self.prepCrSectionData() crAppPeSec = AppPeCrSection(self.sfTool, self.userId, self.contact, crSecCore) crAppPeTxt = crAppPeSec.getSection() self.body.write(crAppPeTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crAppPeSec.hasContent() section = 'EngMgr' if section in self.sectionList: crSecCore = self.prepCrSectionData() crAppMgrSec = AppMgrCrSection(self.sfTool, self.userId, self.contact, crSecCore) crAppMgrTxt = crAppMgrSec.getSection() self.body.write(crAppMgrTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crAppMgrSec.hasContent() section = 'Dev' if section in self.sectionList: crSecCore = self.prepCrSectionData() crDevSec = DevCrSection(self.sfTool, self.userId, self.contact, crSecCore) crDevTxt = crDevSec.getSection() self.body.write(crDevTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crDevSec.hasContent() section = 'Untouched' if section in self.sectionList: crSecCore = self.prepCrSectionData() crUntouchSec = UntouchedCrSection(self.sfTool, self.userId, self.contact, crSecCore) crUntouchTxt = crUntouchSec.getSection() self.body.write(crUntouchTxt) # note if we have content for the section or not. self.sectionContentMap[section] = crUntouchSec.hasContent() self.body.write(self.generateReportFooter()) ## END generateReport(self) def prepCrSectionData(self): if self.crSectionCore is None: self.crSectionCore = CrSectionCore(self.sfTool, self.userId, self.contact) return self.crSectionCore ## END prepCrSectionData ## END class CRReport class ReportQueryMixin: """ Provides a collection of queries used to build related reports so that such code may be shared. """ seriesSize = 15 def fetchOriginatorTestingBAs(self): """ Fetch CR Originator BAs which have the status Merged - Testing by Originator and the Approve field is not marked 'Approve' This query will need to change to find BAs which are of role CR Originator, Status = Merged - Testing by Originator and Approve != Approve. returns map of BAs keyed by task (or team?) branch """ baList = [] f1 = ['Approval_Role__c','=','CR Originator'] f2 = ['Status__c','=','Merged - Testing by Originator'] f3 = ['Approve__c','!=','Approve'] f4 = ['Approve__c','!=','Reject'] f5 = ['OwnerId','=',self.userId] where = [f1, 'and', f2, 'and', f3, 'and', f4, 'and', f5] print "QUERY ........ %s" %where baList = self.sfTool.query(BRANCH_APPROVAL_OBJ, where, sc='all') if baList in BAD_INFO_LIST: baList = [] pass baMap = {} tbIdList = [] baByTbCrMap = {} for ba in baList: tbId = ba.get('Task_Branch__c') aeBaCrNum = ba.get('CR_List__c','').lstrip('0') print "Task Branch Id %s .... and CR num %s ..." %(tbId,aeBaCrNum) if tbId is None: continue if tbId not in tbIdList: tbIdList.append(tbId) key = '%s:%s' %(tbId, aeBaCrNum) if baByTbCrMap.has_key(key): msg = "Already saw an AE BA on task branch %s for CR num %s" \ %(tbId, aeBaCrNum) self.sfTool.setLog(msg, 'warn') baByTbCrMap[key] = ba if baMap.has_key(tbId): baMap[tbId].append(ba) else: baMap[tbId] = [ba] pass continue #return baMap return tbIdList, baByTbCrMap ## END fetchUserTestingBAa def retrieveTaskBranches(self, taskBranchIdList): """Performs a retrieve of the supplied task branch list """ tbFieldList = ('Id','Branch_Status__c','Code_Stream__c', 'Merged_Date_Time__c') tbList = self.sfTool.retrieve(taskBranchIdList, TASK_BRANCH_OBJ, fieldList=tbFieldList) if tbList in BAD_INFO_LIST: tbList = [] pass tbMap = {} for tb in tbList: tbMap[tb.get('Id')] = tb continue return tbMap ## END retrieveTaskBranches def fetchBranchCRLinks(self, taskBranchIdList): """Performs a series of queries to find BranchCR links on supplied TaskBranchIds. Returns two maps relating branch IDs to CR IDs and vice versa """ myTbIdList = copy.deepcopy(taskBranchIdList) # divvy ID list into subgroups of no more than seriesSize brCrList = [] while len(myTbIdList) > 0: series = myTbIdList[:self.seriesSize] myTbIdList = myTbIdList[self.seriesSize:] # Build where list for the series and query the links, appending # results to a list where = [] for tbId in series: where.append(['Task_Branch__c','=',tbId]) where.append('or') continue # delete the straggling 'or' if len(where) > 1: where.pop() pass # run the query with the where clause res = self.sfTool.query(BRANCH_CR_LINK_OBJ, where, sc='brcrl') if res not in BAD_INFO_LIST and \ type(res) in [types.ListType, types.TupleType]: brCrList.extend(res) pass continue return self.processFetchedBranchCrLinks(brCrList) ## END fetchBranchCRLinks def fetchCrBranchLinks(self, crIdList): brCrMap = {} crBrMap = {} # divvy ID list into subgroups of no more than seriesSize brCrList = [] while len(crIdList) > 0: series = crIdList[:self.seriesSize] crIdList = crIdList[self.seriesSize:] where = [] for crId in series: #crId = cr['Id'] where.append(['Case__c','=',crId]) where.append('or') continue # delete the straggling 'or' where.pop() # run the query with the where clause res = self.sfTool.query(BRANCH_CR_LINK_OBJ, where, sc='brcrl') if res not in BAD_INFO_LIST and \ type(res) in [types.ListType, types.TupleType]: brCrList.extend(res) pass continue return self.processFetchedBranchCrLinks(brCrList) ## END fetchCRBranchLinks def processFetchedBranchCrLinks(self, brCrList): """ Common """ # slice list into two maps: BranchId -> CrId and CrId -> BranchId brCrMap = {} crBrMap = {} for brCrLink in brCrList: caseId = brCrLink.get('Case__c',None) tbId = brCrLink.get('Task_Branch__c',None) if caseId is not None and tbId is not None: # add to the branch -> cr map if not brCrMap.has_key(tbId): brCrMap[tbId] = [] if caseId not in brCrMap[tbId]: brCrMap[tbId].append(caseId) # add to the cr -> branch map if not crBrMap.has_key(caseId): crBrMap[caseId] = [] if tbId not in crBrMap[caseId]: crBrMap[caseId].append(tbId) continue return brCrMap, crBrMap ## END processFetchedBranchCrLinks def retrieveCRs(self, crIdList): """Performs a retrieve of the supplied CR Id list """ crFieldList = ('Id','OwnerId','CaseNumber','Subject','Status', 'Priority','ExpeditedPriority__c') crList = self.sfTool.retrieve(crIdList, CASE_OBJ, fieldList=crFieldList) if crList in BAD_INFO_LIST: crList = [] pass crMap = {} for cr in crList: crMap[cr.get('Id')] = cr continue return crMap ## END retrieveCRs ## END class ReportQueryMixin class CrSectionCore(ReportSection, ReportQueryMixin): def __init__(self, sfTool, userId, contact): ReportSection.__init__(self, sfTool) self.userId = userId self.contact = contact self.crMap = None self.tbMap = None self.recentClosedCrList = None self.scmCrList = [] self.MgrAppCrList = [] self.PEAppCrList = [] self.TeamCrList = [] self.devCrList = [] self.untouchedCrList = [] self.unassignedCrList = [] self.brCrMap = {} self.crBrMap = {} # This will cause the data to be initialized self.classifyCrs() self.classifyTaskBranches() return ## END __init__ def fetchOpenCreatedCrs(self): """ Query for all open CRs that our user has created. """ if self.crMap is None: crList = [] crMap = {} f1 = ['CreatedById','=',self.userId] f2 = ['IsClosed','=',False] f3a = ['RecordTypeId','=',RECTYPE_CR] f3b = ['RecordTypeId','=',RECTYPE_PVCR] f3c = ['RecordTypeId','=',RECTYPE_PLDCR] where = [f1,'and',f2,'and','(',f3a,'or',f3b,'or',f3c,')'] fields = ('Id','CaseNumber','Subject','Priority', 'OwnerId', 'ExpeditedPriority__c', 'Status', 'CreatedById') res = self.sfTool.query(CASE_OBJ, where, fields) if res not in BAD_INFO_LIST: crList = res pass for cr in crList: crMap[cr['Id']] = cr self.crMap = crMap pass return self.crMap ## END fetchOpenCreatedCrs def fetchBranchesOnCrs(self, crIdList): if self.tbMap is None: self.tbMap = [] # Fetch branch CR links on cases self.brCrMap, self.crBrMap = self.fetchCrBranchLinks(crIdList) # retrieve task branches by ID self.tbMap = self.retrieveTaskBranches(self.brCrMap.keys()) pass return self.tbMap ## END fetchBranchesOnCrs def classifyCrs(self): crMap = self.fetchOpenCreatedCrs() crList = crMap.values() crList.sort(sortCRsByPriority) scmStatusRE = re.compile(r'(^|-)SCM-') approveStatusRE = re.compile(r'Approv') scmCrList = [] approveCrList = [] devCrList = [] untouchedCrList = [] # CR that's been assigned but is still open unassignedCrList = [] unclassCrList = [] # CRs that we don't classify and report on (yet) for cr in crList: status = cr['Status'] if status == 'Open': if cr['CreatedById'] == cr['OwnerId']: # CR hasn't been assigned by the creator unassignedCrList.append(cr) else: # CR has been assigned, but work hasn't yet started on it untouchedCrList.append(cr) pass pass elif status == 'Fixing': # CR is in development devCrList.append(cr) elif scmStatusRE.search(status): # CR is in an SCM state scmCrList.append(cr) elif approveStatusRE.search(status): # CR is approving or has been approved approveCrList.append(cr) else: unclassCrList.append(cr) pass continue self.scmCrList = scmCrList self.approveCrList = approveCrList self.devCrList = devCrList self.untouchedCrList = untouchedCrList self.unassignedCrList = unassignedCrList self.unclassCrList = unclassCrList return ## END classifyCrs def classifyTaskBranches(self): crMap = self.fetchOpenCreatedCrs() tbMap = self.fetchBranchesOnCrs(crMap.keys()) fixingStates = ['Fixing', 'Rejected by Mgr', 'Rejected by PE'] mgrAppStates = ['Approving by Manager'] peAppStates = ['Approving by PE'] teamStates = ['Approved, pending Team Branch'] scmStates = ['Submitted to SCM','SCM-Submitted','SCM-Received','SCM-Need Branch','SCM-QOR Building','SCM-QOR Testing','SCM-QOR Results','SCM-Hold','post_release','SCM-Post-Release','SCM-Ready to Bundle','SCM-Bundle Building','SCM-Bundle Testing','SCM-Bundle Results','SCM-Approved','SCM-Patch-Build-Delayed','SCM-Patch-Building','SCM-Patch-Build Testing','SCM-Patch-Build Results','SCM-Red-Building','SCM-Red-Build Results','SCM-Candidate-Building','SCM-Candidate-Build Testing','SCM-Candidate-Build Results','SCM-Patch-Build Today','SCM-Ready-for-Patch-Build','SCM-Red-Build Today'] testingStates = ['Merged'] devTbList = [] # Branches in Fixing state mgrAppTbList = [] # Branches in Mgr Approving peAppTbList = [] # Branches in PE Approving teamTbList = [] # Branches in Team phase scmTbList = [] # Branches in SCM testTbList = [] # Branches in testing unclassTbList = [] # all other Branches for tbId, tb in tbMap.items(): status = tb.get('Branch_Status__c','') if status in fixingStates: devTbList.append(tb) elif status in mgrAppStates: mgrAppTbList.append(tb) elif status in peAppStates: peAppTbList.append(tb) elif status in teamStates: teamTbList.append(tb) elif status in scmStates: scmTbList.append(tb) elif status in testingStates: testTbList.append(tb) else: unclassTbList.append(tb) pass continue self.devTbList = devTbList self.mgrAppTbList = mgrAppTbList self.peAppTbList = peAppTbList self.teamTbList = teamTbList self.scmTbList = scmTbList self.testTbList = testTbList self.unclassTbList = unclassTbList return ## END def classifyBranches ## END class CrSectionCore class CrTbSectionBase(ReportSection): """ Common bits for CR sections that rely on Task Branch info """ seriesSize = 15 def __init__(self, sfTool, userId, contact, core, tbList): """ sfTool - sfTool instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ ReportSection.__init__(self, sfTool) self.userId = userId self.contact = contact # core is the CrSectionCore instance with the user's CR data in it self.tbList = tbList self.core = core return ## END __init__ def buildSecBody(self): body = cStringIO.StringIO() if len(self.tbList): for tb in self.tbList: tbId = tb['Id'] crIdList = self.core.brCrMap.get(tbId, []) for crId in crIdList: cr = self.core.crMap[crId] tbUrl = "%s/%s" %(self.baseUrl, tbId) tbLine = "%08d (%s in %s)" \ %(int(cr['CaseNumber']), self.sfTool.getCrPriority(cr), tb.get('Code_Stream__c','No Code Stream')) tbLine2 = "%s" %textwrap.fill(cr.get('Subject', 'No CR Subject')) outStr = "%s\n%s\n\tTask Branch: %s\n\n" %(tbLine, tbLine2, tbUrl) body.write(outStr.encode('ascii','replace')) self.hasContentFlag = True return body.getvalue() ## END buildSecBody ## END class CrTbSectionBase class CrSectionBase(ReportSection): """ Common bits for CR sections that don't rely on MOD info """ def __init__(self, sfTool, userId, contact, core, crList): """ sfTool - sfTool instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ ReportSection.__init__(self, sfTool) self.userId = userId self.contact = contact # core is the CrSectionCore instance with the user's CR data in it self.crList = crList self.core = core return ## END __init__ def buildSecBody(self): body = cStringIO.StringIO() if len(self.crList): for cr in self.crList: crUrl = "%s/%s" %(self.baseUrl, cr['Id']) crLine = "%08d (%s)\n%s" \ %(int(cr['CaseNumber']), self.sfTool.getCrPriority(cr), textwrap.fill(cr.get('Subject', 'No Subject'))) outStr = "%s\n\t%s\n\n" %(crLine, crUrl) body.write(outStr.encode('ascii','replace')) continue self.hasContentFlag = True pass return body.getvalue() ## END buildSecBody ## END class CrSectionBase class CRsWithFixesSection(ReportSection, ReportQueryMixin): # First section to convert..... def __init__(self, sfTool, userId, contact): ReportSection.__init__(self, sfTool) self.header = "My CRs With Fixes Available" self.userId = userId self.contact = contact ## END __init__ def buildSecBody(self): body = cStringIO.StringIO() dataList = self.fetchSectionDataFlow() if len(dataList): for dataTuple in dataList: crData = dataTuple[0] tbData = dataTuple[1] baData = dataTuple[2] #baUrl = "Edit Branch Approval: %s/%s/e" \ baUrl = "Branch Approval: %s/%s" \ %(self.baseUrl, baData.get('Id','')) tbUrl = "Task Branch: %s/%s" \ %(self.baseUrl, tbData['Id']) tbLine1 = "%08d (%s in %s)" \ %(int(crData.get('CaseNumber','').lstrip('0')), self.sfTool.getCrPriority(crData), tbData.get('Code_Stream__c','')) tbLine2 = "%s" %textwrap.fill(crData.get('Subject', 'No CR Subject')) outStr = "%s\n%s\n\t%s\n\t%s\n\n" %(tbLine1, tbLine2, baUrl, tbUrl) body.write(outStr.encode('ascii','replace')) # set the section footer so that it gets written self.footer = "(Note: Please test these CRs and mark the Branch Approvals as appropriate)" self.hasContentFlag = True else: body.write("No CRs are available for you to test at this time.\n") return body.getvalue() ## END buildBody(self) def fetchSectionDataFlow(self): """ Contains the flow for assembling this section's data """ tbMap = {} brCrMap = {} crBrMap = {} crMap = {} tbIdList, baByTbCrMap = self.fetchOriginatorTestingBAs() if len(tbIdList): tbMap = self.retrieveTaskBranches(tbIdList) brCrMap, crBrMap = self.fetchBranchCRLinks(tbIdList) if len(crBrMap): crMap = self.retrieveCRs(crBrMap.keys()) pass # now, correlate the data: crList = [] #[ ({crData}, {tbData}, {baData})] # crawl found TBs for tbId, tbData in tbMap.items(): crIdList = brCrMap.get(tbId, []) for crId in crIdList: crData = crMap.get(crId, None) if crData is None: continue crNum = crData.get('CaseNumber','').lstrip('0') baKey = '%s:%s' %(tbId, crNum) baData = baByTbCrMap.get(baKey, None) if crData is not None and baData is not None: crList.append((crData, tbData, baData)) pass continue continue crList.sort(sortBaCrsByPriority) return crList ## END fetchSectionDataFlow ## END class CRsWithFixesSection(ReportSection) class ScmCrSection(CrTbSectionBase): """ Report section on CRs that are in SCM """ def __init__(self, sfTool, userId, contact, core): """ sfTool - SFMagmaTool (or subclass) instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ CrTbSectionBase.__init__(self, sfTool, userId, contact, core, core.scmTbList) self.header = "My CRs in SCM" return ## END __init__ def buildSecBody(self): # Override parent method, but still call it. body = CrTbSectionBase.buildSecBody(self) if self.hasContent(): # set self.footer here to add a footer to the section pass else: body = "You have no CRs in SCM at the time of this report.\n" return body ## END buildSecBody ## END class ScmCrSection class TeamCrSection(CrTbSectionBase): """ Report section on CRs that are in the Team phase """ def __init__(self, sfTool, userId, contact, core): """ sfTool - SFMagmaTool (or subclass) instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ CrTbSectionBase.__init__(self, sfTool, userId, contact, core, core.teamTbList) self.header = "My CRs in the Team Phase" return ## END __init__ def buildSecBody(self): # Override parent method, but still call it. body = CrTbSectionBase.buildSecBody(self) if self.hasContent(): # set self.footer here to add a footer to the section pass else: body = "You have no CRs in the Team Phase at the time of this report.\n" return body ## END buildSecBody ## END class TeamCrSection class AppPeCrSection(CrTbSectionBase): """ Report section on CRs that have branches up for approval by PE """ def __init__(self, sfTool, userId, contact, core): """ sfTool - SFMagmaTool (or subclass) instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ CrTbSectionBase.__init__(self, sfTool, userId, contact, core, core.peAppTbList) self.header = "My CRs in Branches Awaiting PE Approval" # select the PE BAs on the TbList which are "Approving" self.approverMap = self.fetchPEApprovers(core.peAppTbList) return ## END __init__ def fetchPEApprovers(self, tbList): """ Get Approving managers on listed task branches for role """ f1 = ['Status__c','=','Approving'] f2 = ['Approval_Role__c','=','Product Engineer'] fields = ('Id','Task_Branch__c','CR_List__c','OwnerId') approverMap = {} uidList = [] myTbList = copy.deepcopy(tbList) while len(myTbList) > 0: series = myTbList[:self.seriesSize] myTbList = myTbList[self.seriesSize:] where = [f1,'and',f2,'and','('] for tb in series: tbId = tb['Id'] where.append(['Task_Branch__c','=',tbId]) where.append('or') continue where.pop() where += [')'] # run the query with the where clause res = self.sfTool.query('Branch_Approval__c', where, sc=fields) if res not in BAD_INFO_LIST: for ba in res: crListStr = ba.get('CR_List__c') crList = crListStr.split(',') for crNum in crList: if crNum == '': continue crNum = crNum.lstrip('0') key = "%s-%s" %(ba['Task_Branch__c'], crNum) approverMap[key] = ba continue if ba['OwnerId'] not in uidList: uidList.append(ba['OwnerId']) pass continue pass continue # retrieve the list of owner IDs userNameMap = {} fields = ('Id', 'FirstName', 'LastName') res = self.sfTool.retrieve(uidList, 'User', fieldList=fields) if res not in BAD_INFO_LIST: for user in res: userName = "%s %s" %(user.get('FirstName',''), user.get('LastName')) userNameMap[user['Id']] = userName.lstrip() # now match the names up with the approver IDs for key, ba in approverMap.items(): approverId = ba['OwnerId'] ba['OwnerName'] = userNameMap.get(approverId,'Name Not Found') approverMap[key] = ba return approverMap ## END fetchPEApprovers def buildSecBody(self): body = cStringIO.StringIO() if len(self.tbList): for tb in self.tbList: tbId = tb['Id'] crIdList = self.core.brCrMap.get(tbId, []) for crId in crIdList: cr = self.core.crMap[crId] crNum = cr.get('CaseNumber').lstrip('0') key = "%s-%s" %(tbId, crNum) approverInfo = self.approverMap.get(key,{}) approverName = approverInfo.get('OwnerName','') tbUrl = "%s/%s" %(self.baseUrl, tbId) if len(approverName): tbLine = "%08d (%s in %s by %s)" \ %(int(cr['CaseNumber']), self.sfTool.getCrPriority(cr), tb.get('Code_Stream__c','No Code Stream'), approverName) else: tbLine = "%08d (%s in %s)" \ %(int(cr['CaseNumber']), self.sfTool.getCrPriority(cr), tb.get('Code_Stream__c','No Code Stream')) tbLine2 = "%s" %textwrap.fill(cr.get('Subject', 'No CR Subject')) tbLine2 = tbLine2.strip() outStr = "%s\n" %tbLine outStr += "%s\n" %tbLine2 outStr += "\tTask Branch: %s\n\n" %tbUrl body.write(outStr.encode('ascii','replace')) self.hasContentFlag = True if self.hasContent(): # set self.footer here to add a footer to the section # set the section footer so that it gets written self.footer = "(Note: Each of the CRs listed above may have already been\n" self.footer += "approved in the linked task branch, however the task branch\n" self.footer += "may still be waiting for approval by other PEs on other CRs.)" else: body.write("You have no CRs in branches awaiting PE approval at the time of this report.\n") pass return body.getvalue() ## END buildSecBody## END class ScmAppPeSection class AppMgrCrSection(CrTbSectionBase): """ Report section on CRs that have branches up for approval by Eng Mgr. """ def __init__(self, sfTool, userId, contact, core): """ sfTool - SFMagmaTool (or subclass) instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ CrTbSectionBase.__init__(self, sfTool, userId, contact, core, core.mgrAppTbList) self.header = "My CRs in Branches Awaiting Engineering Manager Approval" # select the manager BAs on the TbList which are "Approving" self.approverMap = self.fetchMgrApprovers(core.mgrAppTbList) return ## END __init__ def fetchMgrApprovers(self, tbList): """ Get Approving managers on listed task branches for role """ f1 = ['Status__c','=','Approving'] f2 = ['Approval_Role__c','=','Engineering Manager'] fields = ('Id','Task_Branch__c','OwnerId') approverMap = {} uidList = [] myTbList = copy.deepcopy(tbList) while len(myTbList) > 0: series = myTbList[:self.seriesSize] myTbList = myTbList[self.seriesSize:] where = [f1,'and',f2,'and','('] for tb in series: tbId = tb['Id'] where.append(['Task_Branch__c','=',tbId]) where.append('or') continue where.pop() where += [')'] # run the query with the where clause res = self.sfTool.query('Branch_Approval__c', where, sc=fields) if res not in BAD_INFO_LIST: for ba in res: approverMap[ba['Task_Branch__c']] = ba if ba['OwnerId'] not in uidList: uidList.append(ba['OwnerId']) continue pass continue # retrieve the list of owner IDs userNameMap = {} fields = ('Id', 'FirstName', 'LastName') res = self.sfTool.retrieve(uidList, 'User', fieldList=fields) if res not in BAD_INFO_LIST: for user in res: userName = "%s %s" %(user.get('FirstName',''), user.get('LastName')) userNameMap[user['Id']] = userName.lstrip() # now match the names up with the approver IDs for tbId, ba in approverMap.items(): approverId = ba['OwnerId'] ba['OwnerName'] = userNameMap.get(approverId,'Name Not Found') approverMap[tbId] = ba return approverMap ## END fetchMgrBAs def buildSecBody(self): body = cStringIO.StringIO() if len(self.tbList): for tb in self.tbList: tbId = tb['Id'] crIdList = self.core.brCrMap.get(tbId, []) for crId in crIdList: cr = self.core.crMap[crId] approverInfo = self.approverMap.get(tbId,{}) approverName = approverInfo.get('OwnerName','') tbUrl = "%s/%s" %(self.baseUrl, tbId) if len(approverName): tbLine = "%08d (%s in %s by %s)" \ %(int(cr['CaseNumber']), self.sfTool.getCrPriority(cr), tb.get('Code_Stream__c','No Code Stream'), approverName) else: tbLine = "%08d (%s in %s)" \ %(int(cr['CaseNumber']), self.sfTool.getCrPriority(cr), tb.get('Code_Stream__c','No Code Stream')) tbLine2 = "%s" %textwrap.fill(cr.get('Subject', 'No CR Subject')) tbLine2 = tbLine2.strip() outStr = "%s\n%s\n\tTask Branch: %s\n\n" %(tbLine, tbLine2, tbUrl) body.write(outStr.encode('ascii','replace')) self.hasContentFlag = True if self.hasContent(): # set self.footer here to add a footer to the section pass else: body.write("You have no CRs in branches awaiting mgr. approval at the time of this report.\n") return body.getvalue() ## END buildSecBody ## END class ScmAppMgrSection class DevCrSection(CrTbSectionBase): """ Report section on CRs that are in development """ def __init__(self, sfTool, userId, contact, core): """ sfTool - SFMagmaTool (or subclass) instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ CrTbSectionBase.__init__(self, sfTool, userId, contact, core, core.devTbList) self.header = "My CRs in Development" return ## END __init__ def buildSecBody(self): # Override parent method, but still call it. body = CrTbSectionBase.buildSecBody(self) if self.hasContent(): # set self.footer here to add a footer to the section pass else: body = "You have no CRs in development at the time of this report.\n" return body ## END buildSecBody ## END class DevCrSection class UnassignedCrSection(CrSectionBase): """ Report section on CRs that are owned by creator and status is Open """ def __init__(self, sfTool, userId, contact, core): """ notifier - sfNotify instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ CrSectionBase.__init__(self, sfTool, userId, contact, core, core.unassignedCrList) self.header = "My CRs That I Haven't Assigned Yet" return ## END __init__ def buildSecBody(self): # Override parent method, but still call it. body = CrSectionBase.buildSecBody(self) if self.hasContent(): self.footer = "You may need to assign the CRs in this section to a User or a Queue. See this solution for details: %s/501300000000DiE" %self.baseUrl else: body = "You have no CRs that you may need to assign at the time of this report.\n" return body ## END buildSecBody ## END class UnassignedCrSection class UntouchedCrSection(CrSectionBase): """ Report section on CRs that have been assigned and status is Open """ def __init__(self, sfTool, userId, contact, core): """ notifier - sfNotify instance userId - sfdc user ID of the person we're generating the report for contact - contact record of the person we're writing report for core - CrSectionCore instance """ CrSectionBase.__init__(self, sfTool, userId, contact, core, core.untouchedCrList) self.header = "My CRs Pending Development" return ## END __init__ def buildSecBody(self): # Override parent method, but still call it. body = CrSectionBase.buildSecBody(self) if self.hasContent(): # set self.footer here to add a footer to the section pass else: body = "You have no CRs pending development at the time of this report.\n" return body ## END buildSecBody ## END class UntouchedCrSection class ClosedCrSection(ReportSection): def __init__(self, sfTool, userId, contact): ReportSection.__init__(self, sfTool) self.header = "My CRs That Were Closed Since the Last Report" self.userId = userId self.contact = contact self.recentClosedCrList = [] return ## END __init__ def buildSecBody(self): body = cStringIO.StringIO() self.fetchRecentClosedCrs() if len(self.recentClosedCrList): for cr in self.recentClosedCrList: if cr['closeInfo']['CreatedById'] == self.userId: closerName = "you" else: closerName = "%s %s" %(cr['closeUser'].get('FirstName', ''), cr['closeUser'].get('LastName')) closerName = closerName.strip() # in case no fname crUrl = "%s/%s" %(self.baseUrl, cr['Id']) crLine1 = "%08d (%s) %s" \ %(int(cr['CaseNumber']), self.sfTool.getCrPriority(cr), cr.get('Subject', 'No CR Subject')) crLine2 = "has been closed by %s" %closerName outStr = "%s\n\t%s\n\t%s\n\n" %(crUrl, crLine1, crLine2) body.write(outStr.encode('ascii','replace')) self.hasContentFlag = True else: body.write("No CRs you created have been closed since the last time your report was run.\n") return body.getvalue() ## END buildSecBody def fetchRecentClosedCrs(self): """ Fetch user's CRs which have been closed since the last report run date """ f1a = ['RecordTypeId', '=', RECTYPE_CR] f1b = ['RecordTypeId', '=', RECTYPE_PVCR] f1c = ['RecordTypeId', '=', RECTYPE_PLDCR] f2 = ['CreatedById', '=', self.userId] f3 = ['IsClosed', '=', True] # This is all operated on in UTC (discard, discard, lastReportDate) = self.sfTool.parseLastReportDate(self.contact) f4 = ['LastModifiedDate', '>', lastReportDate] where = ['(',f1a,'or',f1b,'or',f1c,')','and',f2,'and',f3,'and',f4] fields = () crResult = self.sfTool.query(CASE_OBJ, where, sc='all') crList = [] if crResult not in BAD_INFO_LIST: crList = crResult crList.sort(sortCRsByPriority) # annotate each CR with who closed it. # Also throw out false positives (CR which is closed, and # last modified is later than Last Report, but latest # closed history item shows CR was closed earlier newCrList = [] for cr in crList: cr = self.getCrClosureInfo(cr) if cr['closeInfo'] is None: continue else: newCrList.append(cr) self.recentClosedCrList = newCrList return self.recentClosedCrList ## END getRecentClosedCrs def getCrClosureInfo(self, cr): """ Look in case history to see who closed the CR We only care about most recent closure. If no records are found, that means that while the CR may have been modified in the time period we're looking at, it was closed prior. CR map is populated with a closeInfo key and returned. """ (discard, discard, lastReportDate) = self.sfTool.parseLastReportDate(self.contact) f1 = ['CaseId', '=', cr['Id']] f2 = ['Field', '=', 'Status'] f3 = ['NewValue', 'like', 'Closed%'] f4 = ['CreatedDate', '>', lastReportDate] where = [f1, 'and', f2, 'and', f3, 'and', f4] chResult = self.sfTool.query(CASE_HISTORY_OBJ, where, sc='all') if chResult in BAD_INFO_LIST: cr['closeInfo'] = None cr['closeUser'] = None elif len(chResult) >= 1: chResult.sort(lambda a, b: cmp(a['CreatedDate'], b['CreatedDate'])) cr['closeInfo'] = chResult[-1] # Also, grap the user record of who closed it. cr['closeUser'] = self.lookupUserByIdCache(cr['closeInfo']['CreatedById']) return cr ## END getCrClosureInfo ## END class ClosedCrSection def sortBaCrsByPriority(a, b): """ Sort two MODs by their parent CRs (must be included in MOD dict) """ aCr = a[0] bCr = b[0] return sortCRsByPriority(aCr, bCr) ## END sortMODsByPriority(a, b) def sortCRsByPriority(a, b): """ Compare two CRs by their priority fields """ # If priority isn't set, default it to 3 - Medium for sort # If expedite priority isn't set, default it to 2 - No for sort aPriority = a.get('Priority', '3')[:1] aExpPri = a.get('ExpeditedPriority__c', '2')[:1] bPriority = b.get('Priority', '3')[:1] bExpPri = b.get('ExpeditedPriority__c', '2')[:1] aPriVal = "%s%s" %(aPriority, aExpPri) bPriVal = "%s%s" %(bPriority, bExpPri) return cmp(aPriVal,bPriVal) ## END sortCRsByPriority def sortEntityListByCreatedDate(a, b): """ As the name says... The Created Date is an ISO-8601 DateTime which is sortable as a string. """ aDate = a['createdDate'] bDate = b['createdDate'] return cmp(aDate, bDate) ## END sortEntityListByCreatedDate
35.902273
592
0.527674
6b1ff94f639875836cf6c30084d2b32831bcabbd
9,455
py
Python
map.py
sumitsk/algp
dfe7654013ebdcbc1d4624dd59aa56f3e773f4e9
[ "MIT" ]
null
null
null
map.py
sumitsk/algp
dfe7654013ebdcbc1d4624dd59aa56f3e773f4e9
[ "MIT" ]
null
null
null
map.py
sumitsk/algp
dfe7654013ebdcbc1d4624dd59aa56f3e773f4e9
[ "MIT" ]
1
2019-03-01T00:01:47.000Z
2019-03-01T00:01:47.000Z
import numpy as np from utils import manhattan_distance from graph_utils import get_heading, opposite_headings import ipdb class Map(object): def __init__(self, num_gp_rows=15, num_gp_cols=37, num_row_passes=2, row_pass_width=1): super(Map, self).__init__() self.num_gp_rows = num_gp_rows self.num_gp_cols = num_gp_cols self.num_row_passes = num_row_passes self.row_pass_width = row_pass_width assert self.num_gp_rows % (self.num_row_passes + 1) == 0, 'Infeasible row setting' self._shape = self._compute_map_dimensions() self.corridor_len = self.num_gp_rows // (self.num_row_passes + 1) self.row_pass_indices = self._get_row_pass_indices() self.free_cols = np.arange(0, self.shape[1], 2) self.obstacle_cols = np.arange(1, self.shape[1], 2) # 1 if obstacle 0 otherwise self.occupied = self._set_occupancy_grid() @property def shape(self): return self._shape def _set_occupancy_grid(self): # returns the occupancy grid of the map grid = np.full(self._shape, False) grid[:, self.obstacle_cols] = True grid[self.row_pass_indices, :] = False return grid def _compute_map_dimensions(self): # extra row at top and bottom total_rows = self.num_gp_rows + (self.num_row_passes + 2) * self.row_pass_width total_cols = self.num_gp_cols * 2 - 1 return total_rows, total_cols def _get_row_pass_indices(self): # return indices of all the row pass ind = [] t = 0 last = 0 while t < self.num_row_passes + 2: ind += list(range(last, last + self.row_pass_width)) t += 1 last = last + self.row_pass_width + self.corridor_len return np.array(ind) def distance_between_nodes(self, start, goal, heading): # return distance between start and goal and final heading on reaching goal if start == goal: return 0, heading # these cases should never occur if start[0] not in self.row_pass_indices and heading not in [(1,0),(-1,0)]: raise NotImplementedError('Starting location has infeasible heading') if goal[0] in self.row_pass_indices: raise NotImplementedError('Goal location is a junction') # if start and goal are in the same column if start[1] == goal[1]: final_heading = get_heading(start, goal) # if headings align, move to the goal directly if not opposite_headings(heading, final_heading): return manhattan_distance(start, goal), final_heading # if not, move to the junction, then move to the adjacent column (and come back later) and proceed to the goal else: sj = self.get_junction(start, heading) gj = self.get_junction(goal, heading) # start and goal are in different blocks if sj!=gj: total_dist = manhattan_distance(start, sj) + 2*2 + manhattan_distance(sj, goal) return total_dist, (-heading[0], 0) # start and goal are in the same block, need to come back in this block else: node = self.get_junction(goal, (-heading[0], 0)) total_dist = manhattan_distance(start, sj) + 2*2 + manhattan_distance(sj, node) + manhattan_distance(node, goal) return total_dist, heading # start and goal are in different columns else: # move to the junction and then proceed to the goal if heading in [(1,0), (-1,0)]: node = self.get_junction(start, heading) total_dist = manhattan_distance(start, node) + manhattan_distance(node, goal) # shift to the goal column to compute final heading final_heading = get_heading((node[0], goal[1]), goal) final_heading = heading if final_heading is None else final_heading return total_dist, final_heading # start location is a junction and heading is either east or west else: # if heading points towards the goal direction, just move there if (goal[1] >= start[1] and heading[1] > 0) or (goal[1] <= start[1] and heading[1] < 0): total_dist = manhattan_distance(start, goal) # shift to the goal column to compute final heading final_heading = get_heading((start[0], goal[1]), goal) return total_dist, final_heading # if heading points in the opposite direction of goal else: up_node = self.get_up_junction(goal) down_node = self.get_down_junction(goal) # go to down node if up node lies in the same row as start if start[0] == up_node[0]: total_dist = manhattan_distance(start, down_node) + manhattan_distance(down_node, goal) final_heading = (-1,0) # go to up node if down node lies in the same row as start elif start[0] == down_node[0]: total_dist = manhattan_distance(start, up_node) + manhattan_distance(up_node, goal) final_heading = (1,0) else: total_dist = manhattan_distance(start, goal) final_heading = get_heading((start[0], goal[1]), goal) return total_dist, final_heading def distance_between_nodes_with_headings(self, start, start_heading, goal, goal_heading): dist, final_heading = self.distance_between_nodes(start, goal, start_heading) if not opposite_headings(final_heading, goal_heading): return dist # Goal heading is opposite of final_heading perimeter = 4 + 2*(self.corridor_len+1) if start_heading in [(1,0),(-1,0)]: start_junc = self.get_junction(start, start_heading) gj = self.get_junction(goal, start_heading) goal_junc = self.get_junction(goal, (-goal_heading[0], goal_heading[1])) # the agent has to move atleast this distance min_dist = manhattan_distance(start, start_junc) + manhattan_distance(start_junc, goal_junc) + manhattan_distance(goal_junc, goal) # if start and goal are in the same column if start[1]==goal[1]: # same block if start_junc[0]==gj[0]: # top or bottom block if start_junc[0]==0 or start_junc[0]==self.shape[0]-1: extra = perimeter + 4 else: extra = perimeter # different blocks else: extra = 4 # start and goal are in adjacent sampling columns elif abs(start[1]-goal[1])==2: if start_heading == goal_heading: extra = 4 else: extra = 0 else: extra = 0 else: raise NotImplementedError return min_dist + extra def get_junction(self, pose, heading): # return junction in the heading direction if heading == (1,0): return self.get_down_junction(pose) elif heading == (-1,0): return self.get_up_junction(pose) else: return pose def get_up_junction(self, pose): # return up junction (in decreasing x direction) up = max([x for x in self.row_pass_indices if x<=pose[0]]) return (up, pose[1]) def get_down_junction(self, pose): # return down junction (in increasing x direction) down = min([x for x in self.row_pass_indices if x>=pose[0]]) return (down, pose[1]) def nearest_waypoint_path_cost(self, start, start_heading, waypoints, return_seq=False): # return cost of the path formed by always moving to the nearest waypoint nw = len(waypoints) visited = [False]*nw total_cost = 0 node = start heading = start_heading if return_seq: seq = [] costs = [] # final_headings = [] while sum(visited) != nw: # find the nearest waypoint from the current node all_dists = [np.inf]*nw all_final_headings = [(0,0)]*nw for i in range(nw): if visited[i]: continue dist, final_heading = self.distance_between_nodes(node, waypoints[i], heading) all_dists[i] = dist all_final_headings[i] = final_heading idx = np.argmin(all_dists) total_cost += all_dists[idx] node = waypoints[idx] heading = all_final_headings[idx] visited[idx] = True if return_seq: costs.append(all_dists[idx]) seq.append(idx) # final_headings.append(heading) if return_seq: # return costs, seq, final_headings return costs, seq return total_cost
41.469298
142
0.571126
356a654b316e26d9ef53a353863f472c54347a6b
4,621
py
Python
plugins/modules/panos_op.py
Nothing4You/pan-os-ansible
50078a71eef0c5e9a4263020135df6a0e05961bf
[ "Apache-2.0" ]
null
null
null
plugins/modules/panos_op.py
Nothing4You/pan-os-ansible
50078a71eef0c5e9a4263020135df6a0e05961bf
[ "Apache-2.0" ]
null
null
null
plugins/modules/panos_op.py
Nothing4You/pan-os-ansible
50078a71eef0c5e9a4263020135df6a0e05961bf
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2017 Palo Alto Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: panos_op short_description: execute arbitrary OP commands on PANW devices (e.g. show interface all) description: - This module will allow user to pass and execute any supported OP command on the PANW device. author: - Ivan Bojer (@ivanbojer) - Garfield Lee Freeman (@shinmog) version_added: '1.0.0' requirements: - pan-python can be obtained from PyPI U(https://pypi.python.org/pypi/pan-python) - pandevice can be obtained from PyPI U(https://pypi.python.org/pypi/pandevice) - xmltodict notes: - Checkmode is NOT supported. - Panorama is supported. extends_documentation_fragment: - paloaltonetworks.panos.fragments.transitional_provider - paloaltonetworks.panos.fragments.vsys options: cmd: description: - The OP command to be performed. type: str required: true cmd_is_xml: description: - The cmd is already given in XML format, so don't convert it. type: bool default: false vsys: description: - The vsys target where the OP command will be performed. type: str default: "vsys1" ''' EXAMPLES = ''' - name: show list of all interfaces panos_op: provider: '{{ provider }}' cmd: 'show interfaces all' - name: show system info panos_op: provider: '{{ provider }}' cmd: 'show system info' - name: show system info as XML command panos_op: provider: '{{ provider }}' cmd: '<show><system><info/></system></show>' cmd_is_xml: true ''' RETURN = ''' stdout: description: output of the given OP command as JSON formatted string returned: success type: str sample: "{system: {app-release-date: 2017/05/01 15:09:12}}" stdout_xml: description: output of the given OP command as an XML formatted string returned: success type: str sample: "<response status=success><result><system><hostname>fw2</hostname>" ''' from ansible.module_utils.basic import AnsibleModule from ansible_collections.paloaltonetworks.panos.plugins.module_utils.panos import get_connection try: from panos.errors import PanDeviceError except ImportError: try: from pandevice.errors import PanDeviceError except ImportError: pass try: import xmltodict import json HAS_LIB = True except ImportError: HAS_LIB = False def main(): helper = get_connection( vsys=True, with_classic_provider_spec=True, argument_spec=dict( cmd=dict(required=True), cmd_is_xml=dict(default=False, type='bool'), ), ) module = AnsibleModule( argument_spec=helper.argument_spec, supports_check_mode=False, required_one_of=helper.required_one_of, ) if not HAS_LIB: module.fail_json(msg='Missing required libraries.') parent = helper.get_pandevice_parent(module) cmd = module.params['cmd'] cmd_is_xml = module.params['cmd_is_xml'] changed = True safecmd = ['diff', 'show'] xml_output = '' try: xml_output = parent.op(cmd, xml=True, cmd_xml=(not cmd_is_xml)) except PanDeviceError as e1: if cmd_is_xml: module.fail_json(msg='Failed to run XML command : {0} : {1}'.format(cmd, e1)) tokens = cmd.split() tokens[-1] = '"{0}"'.format(tokens[-1]) cmd2 = ' '.join(tokens) try: xml_output = parent.op(cmd2, xml=True) except PanDeviceError as e2: module.fail_json(msg='Failed to run command : {0} : {1}'.format(cmd2, e2)) if tokens[0] in safecmd: changed = False obj_dict = xmltodict.parse(xml_output) json_output = json.dumps(obj_dict) module.exit_json(changed=changed, msg="Done", stdout=json_output, stdout_xml=xml_output) if __name__ == '__main__': main()
28.176829
98
0.664358
8936db7add2b23cf311ab1b0d512951998770534
7,969
py
Python
dynamic_preferences/registries.py
dadoeyad/django-dynamic-preferences
fa012e3012f7149a92bd2daa57efd4c5e0aba32c
[ "BSD-3-Clause" ]
null
null
null
dynamic_preferences/registries.py
dadoeyad/django-dynamic-preferences
fa012e3012f7149a92bd2daa57efd4c5e0aba32c
[ "BSD-3-Clause" ]
null
null
null
dynamic_preferences/registries.py
dadoeyad/django-dynamic-preferences
fa012e3012f7149a92bd2daa57efd4c5e0aba32c
[ "BSD-3-Clause" ]
null
null
null
from django.db.models.fields import FieldDoesNotExist from django.apps import apps # import the logging library import warnings import logging import collections import persisting_theory # Get an instance of a logger logger = logging.getLogger(__name__) #: The package where autodiscover will try to find preferences to register from .managers import PreferencesManager from .settings import preferences_settings from .exceptions import NotFoundInRegistry from .types import StringPreference from .preferences import EMPTY_SECTION, Section class MissingPreference(StringPreference): """ Used as a fallback when the preference object is not found in registries This can happen for example when you delete a preference in the code, but don't remove the corresponding entries in database """ pass class PreferenceModelsRegistry(persisting_theory.Registry): """Store relationships beetween preferences model and preferences registry""" look_into = preferences_settings.REGISTRY_MODULE def register(self, preference_model, preference_registry): self[preference_model] = preference_registry preference_registry.preference_model = preference_model if not hasattr(preference_model, 'registry'): setattr(preference_model, 'registry', preference_registry) self.attach_manager(preference_model, preference_registry) def attach_manager(self, model, registry): if not hasattr(model, 'instance'): return def instance_getter(self): return registry.manager(instance=self) getter = property(instance_getter) instance_class = model._meta.get_field('instance').remote_field.model setattr(instance_class, preferences_settings.MANAGER_ATTRIBUTE, getter) def get_by_preference(self, preference): return self[ preference._meta.proxy_for_model if preference._meta.proxy else preference.__class__ ] def get_by_instance(self, instance): """Return a preference registry using a model instance""" # we iterate throught registered preference models in order to get the instance class # and check if instance is and instance of this class for model, registry in self.items(): try: instance_class = model._meta.get_field('instance').remote_field.model if isinstance(instance, instance_class): return registry except FieldDoesNotExist: # global preferences pass return None preference_models = PreferenceModelsRegistry() class PreferenceRegistry(persisting_theory.Registry): """ Registries are special dictionaries that are used by dynamic-preferences to register and access your preferences. dynamic-preferences has one registry per Preference type: - :py:const:`user_preferences` - :py:const:`site_preferences` - :py:const:`global_preferences` In order to register preferences automatically, you must call :py:func:`autodiscover` in your URLconf. """ look_into = preferences_settings.REGISTRY_MODULE #: a name to identify the registry name = "preferences_registry" preference_model = None #: used to reverse urls for sections in form views/templates section_url_namespace = None def __init__(self, *args, **kwargs): super(PreferenceRegistry, self).__init__(*args, **kwargs) self.section_objects = collections.OrderedDict() def register(self, preference_class): """ Store the given preference class in the registry. :param preference_class: a :py:class:`prefs.Preference` subclass """ preference = preference_class(registry=self) self.section_objects[preference.section.name] = preference.section try: self[preference.section.name][preference.name] = preference except KeyError: self[preference.section.name] = collections.OrderedDict() self[preference.section.name][preference.name] = preference return preference_class def _fallback(self, section_name, pref_name): """ Create a fallback preference object, This is used when you have model instances that do not match any registered preferences, see #41 """ message = ( 'Creating a fallback preference with ' + 'section "{}" and name "{}".' + 'This means you have preferences in your database that ' + 'don\'t match any registered preference. ' + 'If you want to delete these entries, please refer to the ' + 'documentation: https://django-dynamic-preferences.readthedocs.io/en/latest/lifecycle.html') # NOQA warnings.warn(message.format(section_name, pref_name)) class Fallback(MissingPreference): section = Section(name=section_name) if section_name else None name = pref_name default = '' help_text = 'Obsolete: missing in registry' return Fallback() def get(self, name, section=None, fallback=False): """ Returns a previously registered preference :param section: The section name under which the preference is registered :type section: str. :param name: The name of the preference. You can use dotted notation 'section.name' if you want to avoid providing section param :type name: str. :param fallback: Should we return a dummy preference object instead of raising an error if no preference is found? :type name: bool. :return: a :py:class:`prefs.BasePreference` instance """ # try dotted notation try: _section, name = name.split( preferences_settings.SECTION_KEY_SEPARATOR) return self[_section][name] except ValueError: pass # use standard params try: return self[section][name] except KeyError: if fallback: return self._fallback(section_name=section, pref_name=name) raise NotFoundInRegistry("No such preference in {0} with section={1} and name={2}".format( self.__class__.__name__, section, name)) def get_by_name(self, name): """Get a preference by name only (no section)""" for section in self.values(): for preference in section.values(): if preference.name == name: return preference raise NotFoundInRegistry("No such preference in {0} with name={1}".format( self.__class__.__name__, name)) def manager(self, **kwargs): """Return a preference manager that can be used to retrieve preference values""" return PreferencesManager(registry=self, model=self.preference_model, **kwargs) def sections(self): """ :return: a list of apps with registered preferences :rtype: list """ return self.keys() def preferences(self, section=None): """ Return a list of all registered preferences or a list of preferences registered for a given section :param section: The section name under which the preference is registered :type section: str. :return: a list of :py:class:`prefs.BasePreference` instances """ if section is None: return [self[section][name] for section in self for name in self[section]] else: return [self[section][name] for name in self[section]] class PerInstancePreferenceRegistry(PreferenceRegistry): pass class GlobalPreferenceRegistry(PreferenceRegistry): section_url_namespace = 'dynamic_preferences:global.section' def populate(self, **kwargs): return self.models(**kwargs) global_preferences_registry = GlobalPreferenceRegistry()
35.417778
136
0.672732
35625937f426c1039b9033c2d3f3ba68c5e7714a
4,997
py
Python
s_vlan_to_csv.py
zhangineer/securecrt-tools
13e980d3fd3881adc06effd27ef29e4821fa9a26
[ "Apache-2.0" ]
168
2018-01-05T19:17:17.000Z
2022-03-31T06:16:59.000Z
s_vlan_to_csv.py
zhangineer/securecrt-tools
13e980d3fd3881adc06effd27ef29e4821fa9a26
[ "Apache-2.0" ]
19
2018-01-11T02:26:44.000Z
2022-03-31T15:57:10.000Z
s_vlan_to_csv.py
zhangineer/securecrt-tools
13e980d3fd3881adc06effd27ef29e4821fa9a26
[ "Apache-2.0" ]
61
2017-12-21T14:15:30.000Z
2022-03-10T01:39:24.000Z
# $language = "python" # $interface = "1.0" import os import sys import logging # Add script directory to the PYTHONPATH so we can import our modules (only if run from SecureCRT) if 'crt' in globals(): script_dir, script_name = os.path.split(crt.ScriptFullName) if script_dir not in sys.path: sys.path.insert(0, script_dir) else: script_dir, script_name = os.path.split(os.path.realpath(__file__)) # Now we can import our custom modules from securecrt_tools import scripts from securecrt_tools import utilities # Create global logger so we can write debug messages from any function (if debug mode setting is enabled in settings). logger = logging.getLogger("securecrt") logger.debug("Starting execution of {0}".format(script_name)) # ################################################ SCRIPT LOGIC ################################################### def script_main(session): """ | SINGLE device script | Author: Jamie Caesar | Email: jcaesar@presidio.com This script will output the VLAN database to a CSV file. One possibly use of this script is to take the .CSV outputs from 2 or more devices, paste them into a single XLS file and use Excel to highlight duplicate values, so VLAN overlaps can be discovered prior to connecting switches together via direct link, OTV, etc. This could also be used to find missing VLANs between 2 large tables that should have the same VLANs. :param session: A subclass of the sessions.Session object that represents this particular script session (either SecureCRTSession or DirectSession) :type session: sessions.Session """ # Get script object that owns this session, so we can check settings, get textfsm templates, etc script = session.script # Start session with device, i.e. modify term parameters for better interaction (assuming already connected) session.start_cisco_session() # Validate device is running a supported OS session.validate_os(["IOS", "NXOS"]) if session.os == "IOS": template_file = script.get_template("cisco_ios_show_vlan.template") else: template_file = script.get_template("cisco_nxos_show_vlan.template") raw_vlan = session.get_command_output("show vlan brief") fsm_results = utilities.textfsm_parse_to_list(raw_vlan, template_file, add_header=True) normalize_port_list(fsm_results) output_filename = session.create_output_filename("vlan", ext=".csv") utilities.list_of_lists_to_csv(fsm_results, output_filename) # Return terminal parameters back to the original state. session.end_cisco_session() def normalize_port_list(vlan_data): """ When TextFSM processes a VLAN with a long list of ports, each line will be a separate item in the resulting list. This fuction combines all of those entries into a single string that contains all of the ports in a comma-separated list. :param vlan_data: The VLAN data from TextFSM that will be modified in-place """ # VLANs with multiple lines of Ports will have multiple list entries. Combine all into a single string of ports. # Skip first (header) row for entry in vlan_data[1:]: port_list = entry[3] if len(port_list) > 0: port_string = "" for line in port_list: # Empty list entries contain a single entry. Skip them. if line == " ": continue # If port_string is still empty, add our line to this string. if port_string == "": port_string = port_string + line # If there is something in port-string, concatenate strings with a ", " in between. else: port_string = "{0}, {1}".format(port_string, line) entry[3] = port_string else: entry[3] = "" # ################################################ SCRIPT LAUNCH ################################################### # If this script is run from SecureCRT directly, use the SecureCRT specific class if __name__ == "__builtin__": # Initialize script object crt_script = scripts.CRTScript(crt) # Get session object for the SecureCRT tab that the script was launched from. crt_session = crt_script.get_main_session() # Run script's main logic against our session try: script_main(crt_session) except Exception: crt_session.end_cisco_session() raise # Shutdown logging after logging.shutdown() # If the script is being run directly, use the simulation class elif __name__ == "__main__": # Initialize script object direct_script = scripts.DebugScript(os.path.realpath(__file__)) # Get a simulated session object to pass into the script. sim_session = direct_script.get_main_session() # Run script's main logic against our session script_main(sim_session) # Shutdown logging after logging.shutdown()
39.039063
119
0.668201
27ee4b473cec400d4659591487170d37f3a2f800
80
py
Python
profanity/config.py
TrustedMercury/filter-profanity
7c38dbba19e341ad72068338952ff07dc8037e37
[ "MIT" ]
8
2020-08-25T01:33:29.000Z
2021-02-21T12:01:03.000Z
profanity/config.py
TrustedMercury/filter-profanity
7c38dbba19e341ad72068338952ff07dc8037e37
[ "MIT" ]
2
2020-10-20T13:05:05.000Z
2020-10-21T00:19:32.000Z
profanity/config.py
TrustedMercury/filter-profanity
7c38dbba19e341ad72068338952ff07dc8037e37
[ "MIT" ]
3
2020-10-20T12:10:15.000Z
2020-12-05T00:36:10.000Z
from pathlib import Path PROFANE_WORD_LIST_PATH = Path("data/profanity.json")
16
52
0.8
17abda85776f7a4584183fb81beb3167f5260ab9
499
py
Python
service2/app/grpc_channels.py
sneawo/aiohttp-grpcio-example
2d7842f08816cbbd93ba394c374085176edce712
[ "MIT" ]
null
null
null
service2/app/grpc_channels.py
sneawo/aiohttp-grpcio-example
2d7842f08816cbbd93ba394c374085176edce712
[ "MIT" ]
null
null
null
service2/app/grpc_channels.py
sneawo/aiohttp-grpcio-example
2d7842f08816cbbd93ba394c374085176edce712
[ "MIT" ]
null
null
null
import grpc from typing import AsyncGenerator import aiohttp from .grpc.interceptors import RequestIdInterceptor from .grpc import service1_pb2_grpc async def grpc_channels_ctx(app: aiohttp.web.Application) -> AsyncGenerator: grpc_channel_service1 = grpc.aio.insecure_channel( app["config"].SERVICE1_CHANNEL, interceptors=(RequestIdInterceptor(),) ) app["service1_stub"] = service1_pb2_grpc.Service1Stub(grpc_channel_service1) yield await grpc_channel_service1.close()
33.266667
80
0.793587
8effa7714b2b43176ea36e42d7166583b87953ba
1,583
py
Python
loader/input_loader.py
Plux1/imagelab
dd657522c8328e454b214612833650d8ece46e94
[ "MIT" ]
null
null
null
loader/input_loader.py
Plux1/imagelab
dd657522c8328e454b214612833650d8ece46e94
[ "MIT" ]
null
null
null
loader/input_loader.py
Plux1/imagelab
dd657522c8328e454b214612833650d8ece46e94
[ "MIT" ]
null
null
null
from sklearn.utils import shuffle from imutils import paths import progressbar import numpy as np import cv2 # collect image path and extract labels def load_path_and_labels(images_dir): path_list = shuffle(list(paths.list_images(images_dir))) labels = [] # loop over the paths to extract labels for path in path_list: label = path.split('/')[-1].split()[0] labels.append(label) # convert labels into a numpy array labels = np.array(labels) return path_list, labels # DataPreprocessor class class DataLoader: # constrictor def __init__(self, preprocessors=None): self.preprocessors = preprocessors def load_data(self, path_list): data = [] load_widget = ['Load Data: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] progress = progressbar.ProgressBar(maxval=len(path_list), widgets=load_widget).start() # loop over the path list to read and process image data for (i, path) in enumerate(path_list): image = cv2.imread(path) # check to see if preprocessors list is provided if self.preprocessors is not None: # loop over the preprocessor for p in self.preprocessors: image = p.preprocess(image) data.append(image) # update progress bar progress.update(i) # convert to array and resize the pixels data = np.array(data).astype('float32') / 255.0 progress.finish() return data
28.781818
111
0.631712
dd33e3e35769c74a2cd9efe9711f93379eac0f62
225
py
Python
dtc/enums/order_type_enum.py
jseparovic/python-ws-dtc-client
fd3952cdaf7ab8c9d5a26ccf53b5e9acb3a9ea0f
[ "Apache-2.0" ]
15
2020-04-26T05:25:53.000Z
2022-02-11T19:38:42.000Z
dtc/enums/order_type_enum.py
jseparovic/python-ws-dtc-client
fd3952cdaf7ab8c9d5a26ccf53b5e9acb3a9ea0f
[ "Apache-2.0" ]
2
2021-01-08T19:58:08.000Z
2021-11-29T06:08:48.000Z
dtc/enums/order_type_enum.py
jseparovic/python-ws-dtc-client
fd3952cdaf7ab8c9d5a26ccf53b5e9acb3a9ea0f
[ "Apache-2.0" ]
4
2020-11-23T13:38:01.000Z
2021-12-27T13:21:06.000Z
class OrderTypeEnum: ORDER_TYPE_UNSET = 0 ORDER_TYPE_MARKET = 1 ORDER_TYPE_LIMIT = 2 ORDER_TYPE_STOP = 3 ORDER_TYPE_STOP_LIMIT = 4 ORDER_TYPE_MARKET_IF_TOUCHED = 5 ORDER_TYPE_LIMIT_IF_TOUCHED = 6
22.5
36
0.733333
745daec1080cae9e5c12b61d1daac2a582d2329f
1,570
py
Python
Tools.py
Quiltic/DragonTurtle
ababc499d4bad6accb250ec3cb9649df1c4a3fc9
[ "MIT" ]
null
null
null
Tools.py
Quiltic/DragonTurtle
ababc499d4bad6accb250ec3cb9649df1c4a3fc9
[ "MIT" ]
null
null
null
Tools.py
Quiltic/DragonTurtle
ababc499d4bad6accb250ec3cb9649df1c4a3fc9
[ "MIT" ]
null
null
null
# this is for the basic tools for turtle the ones that i use all the time but dont have to have clutering the main file if __name__ == "__main__": # the gunk that is needed for this file. Mostly here so i dont have to get error messages for this file import discord from discord.ext import commands bot = commands.Bot(";") bertle = 275002179763306517 #all of the needed imports import asyncio, subprocess import time, os, sys, requests, math from datetime import datetime from random import randrange # achual needed import """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ###################### Basic Commands ################### """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" #this is to send complex messages and its from old turtle async def sendmsg(ctx, msg = 'test', embed = None): if embed: await ctx.send(embed=embed) else: await ctx.send(msg) async def sendmsgdirect(ctx, msg = 'embd', embed = None): if embed: await ctx.author.send(embed=embed) else: await ctx.author.send(msg) #this is for old commands that dont work without it from message event yeah async def sendmsgorig(message,msg): await message.channel.send(msg) #this is for old commands that dont work without it from message event yeah async def sendmsgorigdirect(message,msg): await message.author.send(msg) # random number, I frankly just wanted this, dont remember why def randomnum(low,high): return randrange(low,high+1)
30.784314
119
0.623567
f246033c9ad769fd7efdd1ba6e4dfa153a00c632
525
py
Python
scripts/aby_tests/zokrates_test_aby.py
elefthei/circ
12fd024f3cbcc403d4a9d51063563562b78a4c1a
[ "Apache-2.0", "MIT" ]
null
null
null
scripts/aby_tests/zokrates_test_aby.py
elefthei/circ
12fd024f3cbcc403d4a9d51063563562b78a4c1a
[ "Apache-2.0", "MIT" ]
null
null
null
scripts/aby_tests/zokrates_test_aby.py
elefthei/circ
12fd024f3cbcc403d4a9d51063563562b78a4c1a
[ "Apache-2.0", "MIT" ]
null
null
null
#!/usr/bin/env python from util import run_tests from test_suite import * if __name__ == "__main__": tests = arithmetic_tests + \ arithmetic_boolean_tests + \ nary_arithmetic_tests + \ bitwise_tests + \ boolean_tests + \ nary_boolean_tests + \ const_arith_tests + \ const_bool_tests + \ loop_tests + \ ite_tests + \ function_tests + \ misc_tests # shift_tests + \ # arr_tests + \ run_tests('zok', tests)
21
36
0.569524
60b8ebb6c3fcc5770d02e79e53be70e4713d20f1
169
py
Python
Lesson04/Code/MySquare1.py
pangmi/learntocode
719a2bfbc897104d0f95dcf4634fe93427e2c397
[ "MIT" ]
null
null
null
Lesson04/Code/MySquare1.py
pangmi/learntocode
719a2bfbc897104d0f95dcf4634fe93427e2c397
[ "MIT" ]
null
null
null
Lesson04/Code/MySquare1.py
pangmi/learntocode
719a2bfbc897104d0f95dcf4634fe93427e2c397
[ "MIT" ]
1
2021-12-19T18:01:06.000Z
2021-12-19T18:01:06.000Z
import turtle turtle.bgcolor('gray') t = turtle.Pen() t.pencolor('blue') t.forward(200) t.left(90) t.forward(200) t.left(90) t.forward(200) t.left(90) t.forward(200)
11.266667
22
0.692308
e9bfdfa1dbba0bf10ea945ebfda60ed165e040de
3,772
py
Python
course_flow/utils.py
SALTISES4/CourseFlow
a55b5966acd6babf688224ec2f57b2ff59545272
[ "Apache-2.0" ]
null
null
null
course_flow/utils.py
SALTISES4/CourseFlow
a55b5966acd6babf688224ec2f57b2ff59545272
[ "Apache-2.0" ]
2
2021-04-20T17:38:27.000Z
2021-12-12T21:38:27.000Z
course_flow/utils.py
SALTISES4/CourseFlow
a55b5966acd6babf688224ec2f57b2ff59545272
[ "Apache-2.0" ]
null
null
null
import time from django.contrib.contenttypes.models import ContentType from django.db.models import Q from course_flow import models owned_throughmodels = [ "node", "nodeweek", "week", "weekworkflow", "workflow", "workflowproject", "project", "columnworkflow", "workflow", "workflowproject", "project", "outcome", "outcomeoutcome", "outcome", ] def get_model_from_str(model_str: str): return ContentType.objects.get(model=model_str).model_class() def get_parent_model_str(model_str: str) -> str: return owned_throughmodels[owned_throughmodels.index(model_str) + 1] def get_parent_model(model_str: str): return ContentType.objects.get( model=get_parent_model_str(model_str) ).model_class() def linkIDMap(link): return link.id def get_project_outcomes(project): # this should probably be replaced with a single recursive raw sql call... # but not by me outcomes = project.outcomes.all() for outcome in outcomes: outcomes = outcomes | get_descendant_outcomes(outcome) return outcomes def get_descendant_outcomes(outcome): return models.Outcome.objects.filter( Q(parent_outcomes=outcome) | Q(parent_outcomes__parent_outcomes=outcome) ) def get_all_outcomes_for_outcome(outcome): outcomes = models.Outcome.objects.filter( Q(parent_outcomes=outcome) | Q(parent_outcomes__parent_outcomes=outcome) ).prefetch_related("outcome_horizontal_links", "child_outcome_links") outcomeoutcomes = models.OutcomeOutcome.objects.filter( Q(parent=outcome) | Q(parent__parent_outcomes=outcome) ) return outcomes, outcomeoutcomes def get_all_outcomes_for_workflow(workflow): outcomes = models.Outcome.objects.filter( Q(workflow=workflow) | Q(parent_outcomes__workflow=workflow) | Q(parent_outcomes__parent_outcomes__workflow=workflow) ).prefetch_related("outcome_horizontal_links", "child_outcome_links") outcomeoutcomes = models.OutcomeOutcome.objects.filter( Q(parent__workflow=workflow) | Q(parent__parent_outcomes__workflow=workflow) ) return outcomes, outcomeoutcomes def get_unique_outcomenodes(node): exclude_outcomes = models.Outcome.objects.filter( Q(parent_outcomes__node=node) | Q(parent_outcomes__parent_outcomes__node=node) ) return node.outcomenode_set.exclude(outcome__in=exclude_outcomes).order_by( "outcome__parent_outcome_links__parent__parent_outcome_links__parent__outcomeworkflow__rank", "outcome__parent_outcome_links__parent__outcomeworkflow__rank", "outcome__outcomeworkflow__rank", "outcome__parent_outcome_links__parent__parent_outcome_links__rank", "outcome__parent_outcome_links__rank" ) def get_unique_outcomehorizontallinks(outcome): exclude_outcomes = models.Outcome.objects.filter( Q(parent_outcomes__reverse_horizontal_outcomes=outcome) | Q( parent_outcomes__parent_outcomes__reverse_horizontal_outcomes=outcome ) ) return outcome.outcome_horizontal_links.exclude( parent_outcome__in=exclude_outcomes ).order_by( "parent_outcome__parent_outcome_links__parent__parent_outcome_links__parent__outcomeworkflow__rank", "parent_outcome__parent_outcome_links__parent__outcomeworkflow__rank", "parent_outcome__outcomeworkflow__rank", "parent_outcome__parent_outcome_links__parent__parent_outcome_links__rank", "parent_outcome__parent_outcome_links__rank" ) def benchmark(identifier, last_time): current_time = time.time() print("Completed " + identifier + " in " + str(current_time - last_time)) return current_time
30.918033
108
0.746819
bd9e5c8c5d7463dd91d4632d6d53f8476c6357c8
781
py
Python
recipes/bwa/run_test.py
faircloth-lab/conda-recipes
75a520a75a357ea47ee80262f3c3a6dfe1b0715f
[ "BSD-3-Clause" ]
2
2018-08-02T22:40:59.000Z
2018-08-30T02:58:49.000Z
recipes/bwa/run_test.py
faircloth-lab/conda-recipes
75a520a75a357ea47ee80262f3c3a6dfe1b0715f
[ "BSD-3-Clause" ]
1
2015-10-21T13:53:30.000Z
2015-10-21T17:14:20.000Z
recipes/bwa/run_test.py
faircloth-lab/conda-recipes
75a520a75a357ea47ee80262f3c3a6dfe1b0715f
[ "BSD-3-Clause" ]
6
2015-09-21T13:37:06.000Z
2020-03-26T14:42:57.000Z
#!/usr/bin/env python # encoding: utf-8 """ File: run_test.py Author: Brant Faircloth Created by Brant Faircloth on 23 December 2013 19:08 PST (-0800) Copyright (c) 2013 Brant C. Faircloth. All rights reserved. """ import os import unittest import subprocess class TestAlignments(unittest.TestCase): def test_samtools(self): cmd = [os.path.join(os.path.join(os.environ["PREFIX"], "bin", "bwa"))] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.stdout, self.stderr = proc.communicate() stderr = self.stderr.split("\n") assert stderr[1] == "Program: bwa (alignment via Burrows-Wheeler transformation)" assert stderr[2] == "Version: 0.7.7-r441" if __name__ == '__main__': unittest.main()
27.892857
89
0.682458
84944e6b3e324454c4e18ffe2ff9cb73673b53a7
1,468
py
Python
AD9/api.py
ReneCapella/pythonTinkering
93a5080e8ef6f67fe8ca0b67eb1fb27370beb26a
[ "MIT" ]
null
null
null
AD9/api.py
ReneCapella/pythonTinkering
93a5080e8ef6f67fe8ca0b67eb1fb27370beb26a
[ "MIT" ]
null
null
null
AD9/api.py
ReneCapella/pythonTinkering
93a5080e8ef6f67fe8ca0b67eb1fb27370beb26a
[ "MIT" ]
null
null
null
# Start with the code in a given example # # Add two more features: # # 1. a way for the user to focus the query on one or more selected keywords # 2. improved output for the query results # Upload your improved code as a .py file for testing. import requests import json categories_response = requests.get("https://api.publicapis.org/categories") val = json.dumps(categories_response.json()) val1 = json.loads(val) selection = 0 while selection < 1 or selection > 2: selection = input(""" Please choose an option from the menu below:\n 1 - Search APIs by Category 2 - Some random API """) selection = int(selection) if selection == 1: categories = val1["categories"] txt = ", " cat_str = txt.join(categories) print("Here are the categories to choose from:\n" + cat_str) choice = "" while not choice in categories: choice = input("Please input a category from the list: ") response = requests.get("https://api.publicapis.org/entries?category=" + choice) else: response = requests.get("https://api.publicapis.org/random") def jprint(obj): # create a formatted string of the Python JSON object print("+++++++++ API +++++++++") val = json.dumps(obj) val1 = json.loads(val) for entry in val1["entries"]: print("--------------------") for key in val1["entries"][0]: print(key, ": " + str(val1["entries"][0][key])) jprint(response.json())
29.959184
84
0.638283
0fa49ae3eaa303a6bb909ced394faac6e6f20ad8
5,731
py
Python
tests/test_util.py
QianWanghhu/SALib
95a3371e503f9253cb917b8f0101c0202b969c2b
[ "MIT" ]
1
2019-12-20T00:32:45.000Z
2019-12-20T00:32:45.000Z
tests/test_util.py
QianWanghhu/SALib
95a3371e503f9253cb917b8f0101c0202b969c2b
[ "MIT" ]
null
null
null
tests/test_util.py
QianWanghhu/SALib
95a3371e503f9253cb917b8f0101c0202b969c2b
[ "MIT" ]
null
null
null
from pytest import raises from numpy.testing import assert_equal, assert_allclose import numpy as np import pytest from SALib.util import (read_param_file, _scale_samples, _unscale_samples, compute_groups_matrix) from SALib.sample import latin @pytest.fixture(scope='function') def setup_param_file_group_dist(make_temporary_file): filename = make_temporary_file with open(filename, "w") as ofile: ofile.write("Test1 0.0 100.0 Group1 unif\n") ofile.write("Test2 5.0 51.0 Group1 triang\n") ofile.write("Test3 10.0 1.0 Group2 norm\n") return filename @pytest.fixture(scope='function') def setup_csv_param_file_space(make_temporary_file): filename = make_temporary_file with open(filename, "w") as ofile: ofile.write("Test 1,0.0,100.0\n") ofile.write("Test 2,5.0,51.0\n") return filename @pytest.fixture(scope='function') def setup_tab_param_file_espace_names(make_temporary_file): filename = make_temporary_file with open(filename, "w") as ofile: ofile.write("Test 1\t0.0\t100.0\n") ofile.write("Test 2\t5.0\t51.0\n") return filename @pytest.fixture(scope='function') def setup_csv_param_file_space_comments(make_temporary_file): filename = make_temporary_file with open(filename, "w") as ofile: ofile.write("# Here is a comment\n") ofile.write("'Test 1',0.0,100.0\n") ofile.write("'Test 2',5.0,51.0\n") return filename def test_readfile(setup_function): """ Tests a standard parameter file is read correctly """ filename = setup_function pf = read_param_file(filename) assert_equal(pf['bounds'], [[0, 100], [5, 51]]) assert_equal(pf['num_vars'], 2) assert_equal(pf['names'], ['Test1', 'Test2']) def test_readfile_group_dist(setup_param_file_group_dist): """ Tests a parameter file with groups and distributions is read correctly """ filename = setup_param_file_group_dist pf = read_param_file(filename) assert_equal(pf['bounds'], [[0, 100], [5, 51], [10, 1]]) assert_equal(pf['num_vars'], 3) assert_equal(pf['names'], ['Test1', 'Test2', 'Test3']) assert_equal(pf['groups'], ['Group1', 'Group1', 'Group2']) assert_equal(pf['dists'], ['unif', 'triang', 'norm']) def test_csv_readfile_with_whitespace(setup_csv_param_file_space): """ A comma delimited parameter file with whitespace in the names """ filename = setup_csv_param_file_space pf = read_param_file(filename) assert_equal(pf['bounds'], [[0, 100], [5, 51]]) assert_equal(pf['num_vars'], 2) assert_equal(pf['names'], ['Test 1', 'Test 2']) def test_tab_readfile_whitespace(setup_tab_param_file_espace_names): """ A tab delimited parameter file with whitespace in the names """ filename = setup_tab_param_file_espace_names pf = read_param_file(filename) assert_equal(pf['bounds'], [[0, 100], [5, 51]]) assert_equal(pf['num_vars'], 2) assert_equal(pf['names'], ['Test 1', 'Test 2']) def test_csv_readfile_comments(setup_csv_param_file_space_comments): """ """ filename = setup_csv_param_file_space_comments pf = read_param_file(filename) print(pf['bounds'], pf['num_vars'], pf['names']) assert_equal(pf['bounds'], [[0, 100], [5, 51]]) assert_equal(pf['num_vars'], 2) assert_equal(pf['names'], ['Test 1', 'Test 2']) # Test scale samples def test_scale_samples(): """ Simple test to ensure that samples are correctly scaled """ params = np.arange(0, 1.1, 0.1).repeat(2).reshape((11, 2)) bounds = [[10, 20], [-10, 10]] desired = np.array( [np.arange(10, 21, 1), np.arange(-10, 12, 2)], dtype=np.float).T _scale_samples(params, bounds) assert_allclose(params, desired, atol=1e-03, rtol=1e-03) def test_unscale_samples(): """ Simple test to unscale samples back to [0,1] range """ params = np.array( [np.arange(10, 21, 1), np.arange(-10, 12, 2)], dtype=np.float).T bounds = [[10, 20], [-10, 10]] desired = np.arange(0, 1.1, 0.1).repeat(2).reshape((11, 2)) _unscale_samples(params, bounds) assert_allclose(params, desired, atol=1e-03, rtol=1e-03) def test_scale_samples_upper_lt_lower(): """ Raise ValueError if upper bound lower than lower bound """ params = np.array([[0, 0], [0.1, 0.1], [0.2, 0.2]]) bounds = [[10, 9], [-10, 10]] with raises(ValueError): _scale_samples(params, bounds) def test_scale_samples_upper_eq_lower(): """ Raise ValueError if upper bound lower equal to lower bound """ params = np.array([[0, 0], [0.1, 0.1], [0.2, 0.2]]) bounds = [[10, 10], [-10, 10]] with raises(ValueError): _scale_samples(params, bounds) def test_compute_groups_from_parameter_file(): """ Tests that a group file is read correctly """ actual_matrix, actual_unique_names = \ compute_groups_matrix(['Group 1', 'Group 2', 'Group 2']) assert_equal(actual_matrix, np.array( [[1, 0], [0, 1], [0, 1]], dtype=np.int)) assert_equal(actual_unique_names, ['Group 1', 'Group 2']) def test_nonuniform_scale_samples_truncnorm(): """ Test the rescaling of samples for truncated normal distribution """ problem = { 'num_vars': 1, 'dists': ['truncnorm'], 'bounds': [[0, 3.14, 2, 1]], 'names': ['x1'] } actual = latin.sample(problem, 10, seed=42) expected = np.array( [[2.68693037], [1.34115848], [0.39811064], [2.09477163], [2.49999031], [3.028063], [1.5564238], [1.11686499], [1.68414443], [1.9022482]] ) np.testing.assert_allclose(actual, expected)
29.239796
74
0.645437
c16da485b57ad27e5f272c51a57967e817d5e5ee
2,692
py
Python
homeassistant/components/plex/services.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
6
2016-11-25T06:36:27.000Z
2021-11-16T11:20:23.000Z
homeassistant/components/plex/services.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
52
2020-07-14T14:12:26.000Z
2022-03-31T06:24:02.000Z
homeassistant/components/plex/services.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
2
2020-05-11T00:38:26.000Z
2021-01-15T13:23:44.000Z
"""Services for the Plex integration.""" import logging from plexapi.exceptions import NotFound import voluptuous as vol from homeassistant.helpers.dispatcher import async_dispatcher_send from .const import ( DOMAIN, PLEX_UPDATE_PLATFORMS_SIGNAL, SERVERS, SERVICE_REFRESH_LIBRARY, SERVICE_SCAN_CLIENTS, ) REFRESH_LIBRARY_SCHEMA = vol.Schema( {vol.Optional("server_name"): str, vol.Required("library_name"): str} ) _LOGGER = logging.getLogger(__package__) async def async_setup_services(hass): """Set up services for the Plex component.""" async def async_refresh_library_service(service_call): await hass.async_add_executor_job(refresh_library, hass, service_call) async def async_scan_clients_service(_): _LOGGER.debug("Scanning for new Plex clients") for server_id in hass.data[DOMAIN][SERVERS]: async_dispatcher_send(hass, PLEX_UPDATE_PLATFORMS_SIGNAL.format(server_id)) hass.services.async_register( DOMAIN, SERVICE_REFRESH_LIBRARY, async_refresh_library_service, schema=REFRESH_LIBRARY_SCHEMA, ) hass.services.async_register( DOMAIN, SERVICE_SCAN_CLIENTS, async_scan_clients_service ) return True def refresh_library(hass, service_call): """Scan a Plex library for new and updated media.""" plex_server_name = service_call.data.get("server_name") library_name = service_call.data["library_name"] plex_server = get_plex_server(hass, plex_server_name) if not plex_server: return try: library = plex_server.library.section(title=library_name) except NotFound: _LOGGER.error( "Library with name '%s' not found in %s", library_name, [x.title for x in plex_server.library.sections()], ) return _LOGGER.debug("Scanning %s for new and updated media", library_name) library.update() def get_plex_server(hass, plex_server_name=None): """Retrieve a configured Plex server by name.""" plex_servers = hass.data[DOMAIN][SERVERS].values() if plex_server_name: plex_server = [x for x in plex_servers if x.friendly_name == plex_server_name] if not plex_server: _LOGGER.error( "Requested Plex server '%s' not found in %s", plex_server_name, [x.friendly_name for x in plex_servers], ) return None elif len(plex_servers) == 1: return next(iter(plex_servers)) _LOGGER.error( "Multiple Plex servers configured and no selection made: %s", [x.friendly_name for x in plex_servers], ) return None
29.26087
87
0.682764
5d530c12a3d14b533198a8b290ee7d9238b148c4
2,330
py
Python
oa/plugins/uri_detail.py
Worteks/OrangeAssassin
21baf0b84fbedd887f6d88e13c624f14fb0b5e06
[ "Apache-2.0" ]
null
null
null
oa/plugins/uri_detail.py
Worteks/OrangeAssassin
21baf0b84fbedd887f6d88e13c624f14fb0b5e06
[ "Apache-2.0" ]
null
null
null
oa/plugins/uri_detail.py
Worteks/OrangeAssassin
21baf0b84fbedd887f6d88e13c624f14fb0b5e06
[ "Apache-2.0" ]
null
null
null
"""URIDetail Plugin.""" from __future__ import absolute_import try: from urllib.parse import unquote from urllib.parse import urlparse except ImportError: from urllib import unquote from urlparse import urlparse import oa.regex import oa.rules.uri import oa.plugins.base import oa.html_parser URI_DRREG = oa.regex.Regex( r"(?P<key>\w*)\s+(?P<op>[\=\!\~]{1,2})\s+(?P<regex>/.*?/)") class URIDetailRule(oa.rules.uri.URIRule): """Implements the uri_detail rule """ _rule_type = "uri_detail" def __init__(self, name, pattern, score=None, desc=None): super(URIDetailRule, self).__init__(name, pattern, score, desc) def check_single_item(self, value): """Checks one item agains the patterns, return True if all matches. """ for key, regex in self._pattern: if key not in value: # Does not match... return False data = value[key] match = regex.match(data) # All items should match to return True. if not match: return False return True def match(self, msg): for key in msg.uri_detail_links: for type in msg.uri_detail_links[key]: value = msg.uri_detail_links[key][type] result = self.check_single_item(value) if result: # At least this link match, return True return True return False @staticmethod def get_rule_kwargs(data): rule_value = data["value"] checks = URI_DRREG.findall(rule_value) patterns = [] for key, oper, regex in checks: pyregex = oa.regex.perl2re(regex, oper) patterns.append((key, pyregex)) kwargs = {"pattern": patterns} return kwargs class URIDetailPlugin(oa.plugins.base.BasePlugin): """Implements URIDetail plugin. """ options = {'uri_detail': ("list", [])} cmds = {"uri_detail": URIDetailRule} def __init__(self, *args, **kwargs): super(URIDetailPlugin, self).__init__(*args, **kwargs) def parsed_metadata(self, msg): """Goes through the URIs, parse them and store them locally in the message""" oa.html_parser.parsed_metadata(msg, self.ctxt)
29.493671
74
0.6
1f64e7369e2d30f5c90fb9a3b22d2fa8ae997ad8
1,339
py
Python
baselines/scikit_knn.py
dericp/digit-recognition
089458ea06f35af0adb809185f1edc60bb7b2674
[ "MIT" ]
null
null
null
baselines/scikit_knn.py
dericp/digit-recognition
089458ea06f35af0adb809185f1edc60bb7b2674
[ "MIT" ]
null
null
null
baselines/scikit_knn.py
dericp/digit-recognition
089458ea06f35af0adb809185f1edc60bb7b2674
[ "MIT" ]
null
null
null
# coding: utf-8 # In[24]: import numpy as np import pandas as pd from sklearn.neighbors import KNeighborsClassifier from matplotlib import pyplot as plt K_VALS = [1, 5, 25, 125, 625] df_train = pd.read_csv("train.csv", nrows = 1000) df_train['intercept'] = 1 trainingData = df_train.drop("label", axis = 1).values trainingResults = df_train["label"].values errors = [] for i in range(len(K_VALS)): k = K_VALS[i] # build the validation set start_index = i * len(trainingData)//len(K_VALS) end_index = len(trainingData)//len(K_VALS) * (i + 1) validation_data = trainingData[start_index:end_index] validation_classifications = trainingResults[start_index:end_index] # build the model model = np.concatenate((trainingData[:start_index], trainingData[end_index:]), axis=0) model_classifications = np.concatenate((trainingResults[:start_index], trainingResults[end_index:]), axis=0) classifier = KNeighborsClassifier(n_neighbors=k, weights='distance') classifier.fit(model, model_classifications) score = classifier.score(validation_data, validation_classifications) errors.append(1 - score) plt.plot(K_VALS, errors) plt.title("K vs. Classification Error") plt.xlabel("k value") plt.xscale('log') plt.ylabel("classification error") plt.savefig('k-nn-libraryimpl.png') plt.show()
30.431818
112
0.732636
ad880f1aaaaa85cd9972a3987f916522feb2565e
776
py
Python
nuclides/utils/fill_db.py
maluethi/nuclides
26d84214c4412849794eec6caf0bdb9bd9707aab
[ "MIT" ]
null
null
null
nuclides/utils/fill_db.py
maluethi/nuclides
26d84214c4412849794eec6caf0bdb9bd9707aab
[ "MIT" ]
null
null
null
nuclides/utils/fill_db.py
maluethi/nuclides
26d84214c4412849794eec6caf0bdb9bd9707aab
[ "MIT" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from nuclides.utils.gen_db import Decays, Nuclides, Elements, Base engine = create_engine('sqlite:///nuclides.db') # Bind the engine to the metadata of the Base class so that the # declaratives can be accessed through a DBSession instance Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() # Insert an Element in the element table new_element = Elements(name="Ma", Z=10, NStart=11, NRange=2) session.add(new_element) session.commit() Ti = session.query(Elements).filter(Elements.Z == 10)[0] print(Ti) # Insert an Address in the address table new_nuclide = Nuclides(Z=10, N=11, mass=1.2, stable=True, element=Ti) session.add(new_nuclide) session.commit()
27.714286
69
0.770619
61e2ff4db578543f9f2694f239f03439bfab2c41
10,042
py
Python
sympy/physics/optics/waves.py
utkarshdeorah/sympy
dcdf59bbc6b13ddbc329431adf72fcee294b6389
[ "BSD-3-Clause" ]
1
2020-09-09T20:40:17.000Z
2020-09-09T20:40:17.000Z
sympy/physics/optics/waves.py
utkarshdeorah/sympy
dcdf59bbc6b13ddbc329431adf72fcee294b6389
[ "BSD-3-Clause" ]
14
2018-02-08T10:11:03.000Z
2019-04-16T10:32:46.000Z
sympy/physics/optics/waves.py
utkarshdeorah/sympy
dcdf59bbc6b13ddbc329431adf72fcee294b6389
[ "BSD-3-Clause" ]
1
2022-02-04T13:50:29.000Z
2022-02-04T13:50:29.000Z
""" This module has all the classes and functions related to waves in optics. **Contains** * TWave """ __all__ = ['TWave'] from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.function import Derivative, Function from sympy.core.numbers import (Number, pi, I) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import _sympify, sympify from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (atan2, cos, sin) from sympy.physics.units import speed_of_light, meter, second c = speed_of_light.convert_to(meter/second) class TWave(Expr): r""" This is a simple transverse sine wave travelling in a one-dimensional space. Basic properties are required at the time of creation of the object, but they can be changed later with respective methods provided. Explanation =========== It is represented as :math:`A \times cos(k*x - \omega \times t + \phi )`, where :math:`A` is the amplitude, :math:`\omega` is the angular frequency, :math:`k` is the wavenumber (spatial frequency), :math:`x` is a spatial variable to represent the position on the dimension on which the wave propagates, and :math:`\phi` is the phase angle of the wave. Arguments ========= amplitude : Sympifyable Amplitude of the wave. frequency : Sympifyable Frequency of the wave. phase : Sympifyable Phase angle of the wave. time_period : Sympifyable Time period of the wave. n : Sympifyable Refractive index of the medium. Raises ======= ValueError : When neither frequency nor time period is provided or they are not consistent. TypeError : When anything other than TWave objects is added. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f') >>> w1 = TWave(A1, f, phi1) >>> w2 = TWave(A2, f, phi2) >>> w3 = w1 + w2 # Superposition of two waves >>> w3 TWave(sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2), f, atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)), 1/f, n) >>> w3.amplitude sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2) >>> w3.phase atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)) >>> w3.speed 299792458*meter/(second*n) >>> w3.angular_velocity 2*pi*f """ def __new__( cls, amplitude, frequency=None, phase=S.Zero, time_period=None, n=Symbol('n')): if time_period is not None: time_period = _sympify(time_period) _frequency = S.One/time_period if frequency is not None: frequency = _sympify(frequency) _time_period = S.One/frequency if time_period is not None: if frequency != S.One/time_period: raise ValueError("frequency and time_period should be consistent.") if frequency is None and time_period is None: raise ValueError("Either frequency or time period is needed.") if frequency is None: frequency = _frequency if time_period is None: time_period = _time_period amplitude = _sympify(amplitude) phase = _sympify(phase) n = sympify(n) obj = Basic.__new__(cls, amplitude, frequency, phase, time_period, n) return obj @property def amplitude(self): """ Returns the amplitude of the wave. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.amplitude A """ return self.args[0] @property def frequency(self): """ Returns the frequency of the wave, in cycles per second. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.frequency f """ return self.args[1] @property def phase(self): """ Returns the phase angle of the wave, in radians. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.phase phi """ return self.args[2] @property def time_period(self): """ Returns the temporal period of the wave, in seconds per cycle. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.time_period 1/f """ return self.args[3] @property def n(self): """ Returns the refractive index of the medium """ return self.args[4] @property def wavelength(self): """ Returns the wavelength (spatial period) of the wave, in meters per cycle. It depends on the medium of the wave. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.wavelength 299792458*meter/(second*f*n) """ return c/(self.frequency*self.n) @property def speed(self): """ Returns the propagation speed of the wave, in meters per second. It is dependent on the propagation medium. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.speed 299792458*meter/(second*n) """ return self.wavelength*self.frequency @property def angular_velocity(self): """ Returns the angular velocity of the wave, in radians per second. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.angular_velocity 2*pi*f """ return 2*pi*self.frequency @property def wavenumber(self): """ Returns the wavenumber of the wave, in radians per meter. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.wavenumber pi*second*f*n/(149896229*meter) """ return 2*pi/self.wavelength def __str__(self): """String representation of a TWave.""" from sympy.printing import sstr return type(self).__name__ + sstr(self.args) __repr__ = __str__ def __add__(self, other): """ Addition of two waves will result in their superposition. The type of interference will depend on their phase angles. """ if isinstance(other, TWave): if self.frequency == other.frequency and self.wavelength == other.wavelength: return TWave(sqrt(self.amplitude**2 + other.amplitude**2 + 2 * self.amplitude*other.amplitude*cos( self.phase - other.phase)), self.frequency, atan2(self.amplitude*sin(self.phase) + other.amplitude*sin(other.phase), self.amplitude*cos(self.phase) + other.amplitude*cos(other.phase)) ) else: raise NotImplementedError("Interference of waves with different frequencies" " has not been implemented.") else: raise TypeError(type(other).__name__ + " and TWave objects cannot be added.") def __mul__(self, other): """ Multiplying a wave by a scalar rescales the amplitude of the wave. """ other = sympify(other) if isinstance(other, Number): return TWave(self.amplitude*other, *self.args[1:]) else: raise TypeError(type(other).__name__ + " and TWave objects cannot be multiplied.") def __sub__(self, other): return self.__add__(-1*other) def __neg__(self): return self.__mul__(-1) def __radd__(self, other): return self.__add__(other) def __rmul__(self, other): return self.__mul__(other) def __rsub__(self, other): return (-self).__radd__(other) def _eval_rewrite_as_sin(self, *args, **kwargs): return self.amplitude*sin(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self.phase + pi/2, evaluate=False) def _eval_rewrite_as_cos(self, *args, **kwargs): return self.amplitude*cos(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self.phase) def _eval_rewrite_as_pde(self, *args, **kwargs): mu, epsilon, x, t = symbols('mu, epsilon, x, t') E = Function('E') return Derivative(E(x, t), x, 2) + mu*epsilon*Derivative(E(x, t), t, 2) def _eval_rewrite_as_exp(self, *args, **kwargs): return self.amplitude*exp(I*(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self.phase))
29.44868
94
0.563732
5c32a27c0a4ca01955275fc93125fb4cc649e952
5,724
py
Python
src/dataset.py
RedHenLab/punctuation-restoration
0f32a37cc4db37a818eb22560b31010c67a63a56
[ "MIT" ]
null
null
null
src/dataset.py
RedHenLab/punctuation-restoration
0f32a37cc4db37a818eb22560b31010c67a63a56
[ "MIT" ]
null
null
null
src/dataset.py
RedHenLab/punctuation-restoration
0f32a37cc4db37a818eb22560b31010c67a63a56
[ "MIT" ]
null
null
null
import torch from config import * from augmentation import * import numpy as np def parse_data(file_path, tokenizer, sequence_len, token_style): """ :param file_path: text file path that contains tokens and punctuations separated by tab in lines :param tokenizer: tokenizer that will be used to further tokenize word for BERT like models :param sequence_len: maximum length of each sequence :param token_style: For getting index of special tokens in config.TOKEN_IDX :return: list of [tokens_index, punctuation_index, attention_masks, punctuation_mask], each having sequence_len punctuation_mask is used to ignore special indices like padding and intermediate sub-word token during evaluation """ data_items = [] with open(file_path, 'r', encoding='utf-8') as f: lines = [line for line in f.read().split('\n') if line.strip()] idx = 0 # loop until end of the entire text while idx < len(lines): x = [TOKEN_IDX[token_style]['START_SEQ']] y = [0] y_mask = [1] # which positions we need to consider while evaluating i.e., ignore pad or sub tokens # loop until we have required sequence length # -1 because we will have a special end of sequence token at the end while len(x) < sequence_len - 1 and idx < len(lines): word, punc = lines[idx].split('\t') tokens = tokenizer.tokenize(word) # if taking these tokens exceeds sequence length we finish current sequence with padding # then start next sequence from this token if len(tokens) + len(x) >= sequence_len: break else: for i in range(len(tokens) - 1): x.append(tokenizer.convert_tokens_to_ids(tokens[i])) y.append(0) y_mask.append(0) if len(tokens) > 0: x.append(tokenizer.convert_tokens_to_ids(tokens[-1])) else: x.append(TOKEN_IDX[token_style]['UNK']) y.append(punctuation_dict[punc]) y_mask.append(1) idx += 1 x.append(TOKEN_IDX[token_style]['END_SEQ']) y.append(0) y_mask.append(1) if len(x) < sequence_len: x = x + [TOKEN_IDX[token_style]['PAD'] for _ in range(sequence_len - len(x))] y = y + [0 for _ in range(sequence_len - len(y))] y_mask = y_mask + [0 for _ in range(sequence_len - len(y_mask))] attn_mask = [1 if token != TOKEN_IDX[token_style]['PAD'] else 0 for token in x] data_items.append([x, y, attn_mask, y_mask]) return data_items class Dataset(torch.utils.data.Dataset): def __init__(self, files, tokenizer, sequence_len, token_style, is_train=False, augment_rate=0.1, augment_type='substitute'): """ :param files: single file or list of text files containing tokens and punctuations separated by tab in lines :param tokenizer: tokenizer that will be used to further tokenize word for BERT like models :param sequence_len: length of each sequence :param token_style: For getting index of special tokens in config.TOKEN_IDX :param augment_rate: token augmentation rate when preparing data :param is_train: if false do not apply augmentation """ if isinstance(files, list): self.data = [] for file in files: self.data += parse_data(file, tokenizer, sequence_len, token_style) else: self.data = parse_data(files, tokenizer, sequence_len, token_style) self.sequence_len = sequence_len self.augment_rate = augment_rate self.token_style = token_style self.is_train = is_train self.augment_type = augment_type def __len__(self): return len(self.data) def _augment(self, x, y, y_mask): x_aug = [] y_aug = [] y_mask_aug = [] for i in range(len(x)): r = np.random.rand() if r < self.augment_rate: AUGMENTATIONS[self.augment_type](x, y, y_mask, x_aug, y_aug, y_mask_aug, i, self.token_style) else: x_aug.append(x[i]) y_aug.append(y[i]) y_mask_aug.append(y_mask[i]) if len(x_aug) > self.sequence_len: # len increased due to insert x_aug = x_aug[0:self.sequence_len] y_aug = y_aug[0:self.sequence_len] y_mask_aug = y_mask_aug[0:self.sequence_len] elif len(x_aug) < self.sequence_len: # len decreased due to delete x_aug = x_aug + [TOKEN_IDX[self.token_style]['PAD'] for _ in range(self.sequence_len - len(x_aug))] y_aug = y_aug + [0 for _ in range(self.sequence_len - len(y_aug))] y_mask_aug = y_mask_aug + [0 for _ in range(self.sequence_len - len(y_mask_aug))] attn_mask = [1 if token != TOKEN_IDX[self.token_style]['PAD'] else 0 for token in x] return x_aug, y_aug, attn_mask, y_mask_aug def __getitem__(self, index): x = self.data[index][0] y = self.data[index][1] attn_mask = self.data[index][2] y_mask = self.data[index][3] if self.is_train and self.augment_rate > 0: x, y, attn_mask, y_mask = self._augment(x, y, y_mask) x = torch.tensor(x) y = torch.tensor(y) attn_mask = torch.tensor(attn_mask) y_mask = torch.tensor(y_mask) return x, y, attn_mask, y_mask
44.372093
117
0.596087
7d0c6c4f62cc46a41b10b45361d77105b1fd49ce
6,830
py
Python
extra_apps/xadmin/plugins/editable.py
txqzzz/831net-backend
c73167124b6a10a774e873389900d31fb15a842c
[ "CC0-1.0" ]
null
null
null
extra_apps/xadmin/plugins/editable.py
txqzzz/831net-backend
c73167124b6a10a774e873389900d31fb15a842c
[ "CC0-1.0" ]
null
null
null
extra_apps/xadmin/plugins/editable.py
txqzzz/831net-backend
c73167124b6a10a774e873389900d31fb15a842c
[ "CC0-1.0" ]
null
null
null
from django import template from django.core.exceptions import PermissionDenied, ObjectDoesNotExist from django.db import models, transaction from django.forms.models import modelform_factory from django.http import Http404, HttpResponse from django.utils.encoding import force_text, smart_text from django.utils.html import escape, conditional_escape from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from xadmin.layout import FormHelper from xadmin.plugins.ajax import JsonErrorDict from xadmin.sites import site from xadmin.util import lookup_field, display_for_field, label_for_field, unquote, boolean_icon from xadmin.views import BaseAdminPlugin, ModelFormAdminView, ListAdminView from xadmin.views.base import csrf_protect_m, filter_hook from xadmin.views.edit import ModelFormAdminUtil from xadmin.views.list import EMPTY_CHANGELIST_VALUE class EditablePlugin(BaseAdminPlugin): list_editable = [] def __init__(self, admin_view): super(EditablePlugin, self).__init__(admin_view) self.editable_need_fields = {} def init_request(self, *args, **kwargs): active = bool(self.request.method == 'GET' and self.admin_view.has_change_permission() and self.list_editable) if active: self.model_form = self.get_model_view(ModelFormAdminUtil, self.model).form_obj return active def result_item(self, item, obj, field_name, row): if self.list_editable and item.field and item.field.editable and (field_name in self.list_editable): pk = getattr(obj, obj._meta.pk.attname) field_label = label_for_field(field_name, obj, model_admin=self.admin_view, return_attr=False ) item.wraps.insert(0, '<span class="editable-field">%s</span>') item.btns.append(( '<a class="editable-handler" title="%s" data-editable-field="%s" data-editable-loadurl="%s">' + '<i class="fa fa-edit"></i></a>') % (_(u"Enter %s") % field_label, field_name, self.admin_view.model_admin_url('patch', pk) + '?fields=' + field_name)) if field_name not in self.editable_need_fields: self.editable_need_fields[field_name] = item.field return item # Media def get_media(self, media): if self.editable_need_fields: media = media + self.model_form.media + \ self.vendor( 'xadmin.plugin.editable.js', 'xadmin.widget.editable.css') return media class EditPatchView(ModelFormAdminView, ListAdminView): def init_request(self, object_id, *args, **kwargs): self.org_obj = self.get_object(unquote(object_id)) # For list view get new field display html self.pk_attname = self.opts.pk.attname if not self.has_change_permission(self.org_obj): raise PermissionDenied if self.org_obj is None: raise Http404(_('%(name)s object with primary key %(key)r does not exist.') % {'name': force_text(self.opts.verbose_name), 'key': escape(object_id)}) def get_new_field_html(self, f): result = self.result_item(self.org_obj, f, {'is_display_first': False, 'object': self.org_obj}) return mark_safe(result.text) if result.allow_tags else conditional_escape(result.text) def _get_new_field_html(self, field_name): try: f, attr, value = lookup_field(field_name, self.org_obj, self) except (AttributeError, ObjectDoesNotExist): return EMPTY_CHANGELIST_VALUE else: allow_tags = False if f is None: allow_tags = getattr(attr, 'allow_tags', False) boolean = getattr(attr, 'boolean', False) if boolean: allow_tags = True text = boolean_icon(value) else: text = smart_text(value) else: if isinstance(f.rel, models.ManyToOneRel): field_val = getattr(self.org_obj, f.name) if field_val is None: text = EMPTY_CHANGELIST_VALUE else: text = field_val else: text = display_for_field(value, f) return mark_safe(text) if allow_tags else conditional_escape(text) @filter_hook def get(self, request, object_id): model_fields = [f.name for f in self.opts.fields] fields = [f for f in request.GET['fields'].split(',') if f in model_fields] defaults = { "form": self.form, "fields": fields, "formfield_callback": self.formfield_for_dbfield, } form_class = modelform_factory(self.model, **defaults) form = form_class(instance=self.org_obj) helper = FormHelper() helper.form_tag = False helper.include_media = False form.helper = helper s = '{% load i18n crispy_forms_tags %}<form method="post" action="{{action_url}}">{% crispy form %}' + \ '<button type="submit" class="btn btn-success btn-block btn-sm">{% trans "Apply" %}</button></form>' t = template.Template(s) c = template.Context({'form': form, 'action_url': self.model_admin_url('patch', self.org_obj.pk)}) return HttpResponse(t.render(c)) @filter_hook @csrf_protect_m @transaction.atomic def post(self, request, object_id): model_fields = [f.name for f in self.opts.fields] fields = [f for f in request.POST.keys() if f in model_fields] defaults = { "form": self.form, "fields": fields, "formfield_callback": self.formfield_for_dbfield, } form_class = modelform_factory(self.model, **defaults) form = form_class( instance=self.org_obj, data=request.POST, files=request.FILES) result = {} if form.is_valid(): form.save(commit=True) result['result'] = 'success' result['new_data'] = form.cleaned_data result['new_html'] = dict( [(f, self.get_new_field_html(f)) for f in fields]) else: result['result'] = 'error' result['errors'] = JsonErrorDict(form.errors, form).as_json() return self.render_response(result) site.register_plugin(EditablePlugin, ListAdminView) site.register_modelview(r'^(.+)/patch/$', EditPatchView, name='%s_%s_patch')
42.160494
132
0.609224
7e4a24ffdfe6aad67bc9196651e1727fe83d2574
2,645
py
Python
homeassistant/components/camera/generic.py
maddox/home-assistant
6624cfefd6ea81b559085779173b91a3dc6bd349
[ "MIT" ]
1
2015-09-13T21:10:09.000Z
2015-09-13T21:10:09.000Z
homeassistant/components/camera/generic.py
maddox/home-assistant
6624cfefd6ea81b559085779173b91a3dc6bd349
[ "MIT" ]
null
null
null
homeassistant/components/camera/generic.py
maddox/home-assistant
6624cfefd6ea81b559085779173b91a3dc6bd349
[ "MIT" ]
1
2020-05-07T08:48:36.000Z
2020-05-07T08:48:36.000Z
""" homeassistant.components.camera.generic ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Support for IP Cameras. This component provides basic support for IP cameras. For the basic support to work you camera must support accessing a JPEG snapshot via a URL and you will need to specify the "still_image_url" parameter which should be the location of the JPEG image. As part of the basic support the following features will be provided: - MJPEG video streaming - Saving a snapshot - Recording(JPEG frame capture) To use this component, add the following to your configuration.yaml file. camera: platform: generic name: Door Camera username: YOUR_USERNAME password: YOUR_PASSWORD still_image_url: http://YOUR_CAMERA_IP_AND_PORT/image.jpg Variables: still_image_url *Required The URL your camera serves the image on, eg. http://192.168.1.21:2112/ name *Optional This parameter allows you to override the name of your camera in Home Assistant. username *Optional The username for accessing your camera. password *Optional The password for accessing your camera. """ import logging from requests.auth import HTTPBasicAuth from homeassistant.helpers import validate_config from homeassistant.components.camera import DOMAIN from homeassistant.components.camera import Camera import requests _LOGGER = logging.getLogger(__name__) # pylint: disable=unused-argument def setup_platform(hass, config, add_devices_callback, discovery_info=None): """ Adds a generic IP Camera. """ if not validate_config({DOMAIN: config}, {DOMAIN: ['still_image_url']}, _LOGGER): return None add_devices_callback([GenericCamera(config)]) # pylint: disable=too-many-instance-attributes class GenericCamera(Camera): """ A generic implementation of an IP camera that is reachable over a URL. """ def __init__(self, device_info): super().__init__() self._name = device_info.get('name', 'Generic Camera') self._username = device_info.get('username') self._password = device_info.get('password') self._still_image_url = device_info['still_image_url'] def camera_image(self): """ Return a still image reponse from the camera. """ if self._username and self._password: response = requests.get( self._still_image_url, auth=HTTPBasicAuth(self._username, self._password)) else: response = requests.get(self._still_image_url) return response.content @property def name(self): """ Return the name of this device. """ return self._name
28.75
79
0.710019
9282732ba80c8819a92ca826149f803d6f25a730
1,060
py
Python
jeu_educatif/python/c_vigenere.py
Charles-Svg/Projet_L3_jeu_educatif
841f70f1368117288128342258f5832ca9028161
[ "MIT" ]
null
null
null
jeu_educatif/python/c_vigenere.py
Charles-Svg/Projet_L3_jeu_educatif
841f70f1368117288128342258f5832ca9028161
[ "MIT" ]
null
null
null
jeu_educatif/python/c_vigenere.py
Charles-Svg/Projet_L3_jeu_educatif
841f70f1368117288128342258f5832ca9028161
[ "MIT" ]
null
null
null
# Ce document est chiffré à l'aide de l'algorithme de vigenère # Vous devrez coder une fonction de DECHIFFREMENT (et non de chiffrement) de vigenère prenant en paramètres : # -Un mot/phrase à déchiffrer (en minuscule) # -Une clé étant une chaine de caractères (en minuscule) # et retournant le mot déchiffré (en minuscule) # # La définition de la fonction vous est déjà donnée, à vous de l'implémenter # # Vous devrez également trouver la valeur de la variable cle. Vous la trouverez peut-être en fouillant le contenu de votre pc # # Aides : # - les fonctions ord(<char>)->int et chr(<int>)->char vous seront utiles # - en ascii, le code des lettres minuscules est compris entre 97 (a) et 122 (z) # - le modulo (noté "%") vous sera utile afin de boucler dans les indices de la clé # - il ne vous est pas demandé de traiter la ponctuation, mais vous devez traiter les espaces # - afin d'obtenir la longueur de la clé, il est possible d'utiliser la méthode len(key) # A compléter cle = None def vigenere(word, key): # A compléter return
42.4
125
0.728302
e4c607b0f86a6fbc51108ab1f5c4814ef616d921
1,158
py
Python
src/features/cross_v1.py
yota-p/kaggle_jane-street-market-prediction
c39d65652d3ce531e99efbc50926cd95cba8b466
[ "MIT" ]
null
null
null
src/features/cross_v1.py
yota-p/kaggle_jane-street-market-prediction
c39d65652d3ce531e99efbc50926cd95cba8b466
[ "MIT" ]
8
2020-12-12T10:06:14.000Z
2020-12-30T07:09:52.000Z
src/features/cross_v1.py
yota-p/kaggle_jane-street-market-prediction
c39d65652d3ce531e99efbc50926cd95cba8b466
[ "MIT" ]
null
null
null
from pathlib import Path import pandas as pd from src.util.get_environment import get_datadir def main(): ''' Function: - Reduce size of train.csv from 2.5GB to 600MB (On memory) Note: Files except train.csv aren't reduced (small enough) - Cut weight <=0 - Calculate action - Create crossed features, such as: - cross_41_42_43 = feature_41 + feature_42 + feature_43 - cross_1_2 = feature_1 / feature_2 Input: - basic_v1/train.pkl Output: - cross_v1/train.pkl ''' DATASET = 'cross_v1' DATA_DIR = get_datadir() IN_DIR = f'{DATA_DIR}/processed/basic_v1' OUT_DIR = f'{DATA_DIR}/processed/{DATASET}' Path(OUT_DIR).mkdir(exist_ok=True, parents=True) df = pd.read_pickle(f'{IN_DIR}/train.pkl') # feature engineering df['cross_41_42_43'] = df['feature_41'] + df['feature_42'] + df['feature_43'] df['cross_1_2'] = df['feature_1'] / (df['feature_2'] + 1e-5) df = df[['cross_41_42_43', 'cross_1_2']] print(f'Created dataset {DATASET}') print(f'Columns: {df.columns}') df.to_pickle(f'{OUT_DIR}/train.pkl') if __name__ == '__main__': main()
27.571429
81
0.645941
97a83783f6f5f52107b773090b4e11f1497e6b82
1,746
py
Python
cieloApi3/payment.py
naripok/API-3.0-Python
3bdd27d321a03f4c761876f7907588a0f4726c70
[ "MIT" ]
null
null
null
cieloApi3/payment.py
naripok/API-3.0-Python
3bdd27d321a03f4c761876f7907588a0f4726c70
[ "MIT" ]
null
null
null
cieloApi3/payment.py
naripok/API-3.0-Python
3bdd27d321a03f4c761876f7907588a0f4726c70
[ "MIT" ]
null
null
null
from .objectJSON import ObjectJSON PAYMENTTYPE_CREDITCARD = "CreditCard" PAYMENTTYPE_DEBITCARD = "DebitCard" PAYMENTTYPE_ELECTRONIC_TRANSFER = "ElectronicTransfer" PAYMENTTYPE_BOLETO = "Boleto" PROVIDER_BRADESCO = "Bradesco" PROVIDER_BANCO_DO_BRASIL = "BancoDoBrasil" PROVIDER_SIMULADO = "Simulado" class Payment(ObjectJSON): def __init__(self, amount, installments=1, credit_card=None): self.amount = amount self.service_tax_amount = None self.installments = installments self.interest = None self.capture = None self.authenticate = None self.recurrent = None self.recurrent_payment = None self.credit_card = credit_card self.proof_of_sale = None self.authorization_code = None self.soft_descriptor = None self.return_url = None self.provider = None self.payment_id = None self.tid = None self.type = None self.received_date = None self.captured_amount = None self.captured_date = None self.currency = None self.country = None self.return_code = None self.return_message = None self.status = None self.links = None self.extra_data_collection = None self.expiration_date = None self.url = None self.number = None self.bar_code_number = None self.digitable_line = None self.address = None #Boleto self.boleto_number = None self.assignor = None self.demonstrative = None self.identification = None self.instructions = None def prepare(self): if self.credit_card: self.type = PAYMENTTYPE_CREDITCARD
27.714286
65
0.64433
77e5aa7f2fffd75c275be5a8d0db8fb86b29f672
4,848
py
Python
configs/vfnet/vfnet_RepVGG_4cls.py
HAOCHENYE/yehc_mmdet
491cc13c6ff769996b7a23b871b10f9a5a1c56fa
[ "Apache-2.0" ]
1
2021-12-25T13:22:39.000Z
2021-12-25T13:22:39.000Z
configs/vfnet/vfnet_RepVGG_4cls.py
HAOCHENYE/yehc_mmdet
491cc13c6ff769996b7a23b871b10f9a5a1c56fa
[ "Apache-2.0" ]
null
null
null
configs/vfnet/vfnet_RepVGG_4cls.py
HAOCHENYE/yehc_mmdet
491cc13c6ff769996b7a23b871b10f9a5a1c56fa
[ "Apache-2.0" ]
1
2021-02-01T13:33:26.000Z
2021-02-01T13:33:26.000Z
dataset_type = 'CocoDataset' data_root = '/media/traindata/coco/' base_lr = 0.32 warmup_iters = 2000 model = dict( type='GFL', backbone=dict( type='RepVGGNet', stem_channels=64, stage_channels=(32, 64, 72, 96, 128, 192), block_per_stage=(1, 3, 6, 8, 6, 6), ), neck=dict( type='YeFPN', in_channels=[64, 72, 96, 128, 192], out_channels=64, conv_cfg=dict(type="NormalConv", info={"norm_cfg": None})), bbox_head=dict( type='VFNetDeployPrivateHead', norm_cfg=dict(type='BN', requires_grad=True), num_classes=4, in_channels=64, stacked_convs=2, feat_channels=64, strides=[8, 16, 32, 64, 128], center_sampling=False, dcn_on_last_conv=False, use_atss=True, use_vfl=True, # bbox_coder=dict(_delete_=True, type='TBLRBBoxCoder', normalizer=4.0), loss_cls=dict( type='VarifocalLoss', use_sigmoid=True, alpha=0.75, gamma=2.0, iou_weighted=True, loss_weight=1.0), loss_bbox=dict(type='CIoULoss', loss_weight=1.5), loss_bbox_refine=dict(type='CIoULoss', loss_weight=2.0))) # training and testing settings train_cfg = dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False) test_cfg = dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100) train_pipline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 480), (1333, 960)], multiscale_mode='range', keep_ratio=True), dict(type='RandomRadiusBlur', prob=0.3, radius=5, std=0), dict(type='PhotoMetricDistortion', brightness_delta=48), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[127.5, 127.5, 127.5], std=[128, 128, 128], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] val_pipline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[127.5, 127.5, 127.5], std=[128, 128, 128], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=36, workers_per_gpu=4, train=dict( type='CocoDataset', ann_file=data_root + "coco_half_person_81_train.json", img_prefix=data_root + 'train2017/images', classes=['person', 'bottle', 'chair', 'potted plant'], pipeline=train_pipline), val=dict( type='CocoDataset', ann_file=data_root + "coco_half_person_81_val.json", img_prefix=data_root + 'val2017/images', classes=['person', 'bottle', 'chair', 'potted plant'], pipeline=val_pipline), test=dict( type='CocoDataset', ann_file=data_root + "coco_half_person_81_val.json", img_prefix=data_root + 'val2017/images', classes=['person', 'bottle', 'chair', 'potted plant'], pipeline=val_pipline)) evaluation = dict(interval=2, metric='bbox', classwise=True) optimizer = dict(type='AdamW', lr=0.001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=2000, warmup_ratio=0.01, step=[90, 110]) # learning policy total_epochs = 120 checkpoint_config = dict(interval=1) log_config = dict( interval=20, hooks=[dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook')]) # custom_hooks = [dict(type="EMAHook", momentum=0.1, interval=2, warm_up=warmup_iters, resume_from=None, priority='HIGHEST')] device_ids = range(0, 2) dist_params = dict(backend='nccl') log_level = 'INFO' # work_dir = 'work_dirs/paa_atss_OSACSP_pafpn_private_SGD_lr0.32_cosine_ema' work_dir = 'work_dirs/vfnet_RepVGG_4cls_81cls/' load_from = None resume_from = None # resume_from = None workflow = [('train', 1)] gpu_ids = range(0, 2)
31.686275
125
0.570132
64e29fc6067a09faca5c76d319f97d043997ebdc
84
py
Python
yearmonth/__init__.py
bsnacks000/yearmonth
c6a6084931e6cc4696de5f8a7f8e48ceca83b944
[ "MIT" ]
null
null
null
yearmonth/__init__.py
bsnacks000/yearmonth
c6a6084931e6cc4696de5f8a7f8e48ceca83b944
[ "MIT" ]
null
null
null
yearmonth/__init__.py
bsnacks000/yearmonth
c6a6084931e6cc4696de5f8a7f8e48ceca83b944
[ "MIT" ]
null
null
null
from ._version import VERSION __version__=VERSION from .yearmonth import YearMonth
16.8
32
0.845238
cec548d995aa2082b5ea273d61b0dec02ca439ef
12,882
py
Python
tests/testlinkaliasapi.py
rjw57/trafficdb
7c895e14a52c8c313981243e36732a5e8dcc909a
[ "MIT" ]
1
2016-12-12T21:23:26.000Z
2016-12-12T21:23:26.000Z
tests/testlinkaliasapi.py
rjw57/trafficdb
7c895e14a52c8c313981243e36732a5e8dcc909a
[ "MIT" ]
null
null
null
tests/testlinkaliasapi.py
rjw57/trafficdb
7c895e14a52c8c313981243e36732a5e8dcc909a
[ "MIT" ]
null
null
null
import datetime import json import logging import random from sqlalchemy import func from trafficdb.blueprint.api import PAGE_LIMIT from trafficdb.models import * from .fixtures import ( create_fake_link_aliases, create_fake_links, create_fake_observations, ) from .util import ApiTestCase as TestCase, API_PREFIX, strip_url log = logging.getLogger(__name__) class TestLinkAliases(TestCase): @classmethod def create_fixtures(cls): create_fake_links(link_count=100) create_fake_link_aliases(alias_count=200) def test_all_link_aliass(self): log.info('Querying all link aliases') n_aliases = 0 n_pages = 0 # Response should look like a JSON document of the following form: # { # "aliases": [ # { # id: <string>, # linkId: <string>, # linkUrl: <url>, # } # ], # "page": { # "count": <number>, # ?"next": <url>, # }, # } # Get all data one page at a time url = API_PREFIX + '/aliases/' while url is not None: # Check we're not looping "forever" assert n_pages < 20 log.info('GET {0}'.format(url)) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertIsNot(response.json, None) self.assertIn('aliases', response.json) self.assertIn('page', response.json) aliases = response.json['aliases'] page = response.json['page'] log.info('Got {0} aliases'.format(len(aliases))) log.info('Page structure: {0}'.format(page)) # Check each alias for v in aliases: self.assertIn('id', v) self.assertIn('linkId', v) self.assertIn('linkUrl', v) n_aliases += len(aliases) self.assertTrue(page['count'] == len(aliases)) n_pages += 1 if 'next' in page: url = strip_url(page['next']) else: url = None log.info('Got information on {0} alias(es)'.format(n_aliases)) self.assertEqual(n_aliases, 200) def test_redirect(self): # Non-canonical links URL should re-direct url = API_PREFIX + '/aliases' log.info('GET {0}'.format(url)) response = self.client.get(url) self.assertEqual(response.status_code, 301) def test_empty_document(self): log.info('Querying page beyond alias maximum') # rationale: using "Z" should be "above" any # random link alias in the db given the ordering used by Postgres. response = self.get_link_aliases(from_='Z') page, aliases = self.parse_link_aliases_response(response) self.assertEqual(len(aliases), 0) self.assertNotIn('next', page) def test_integer_from(self): # In the case of aliases, names can be just about anything and # so they could be an integer. log.info('Querying page with integer from') response = self.get_link_aliases(from_=0) page, aliases = self.parse_link_aliases_response(response) def test_negative_count(self): request_count = -3 log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) # -ve counts should return bad request self.assertEqual(response.status_code, 400) def test_non_number_count(self): request_count = 'one' log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) # non-numeric counts should return bad request self.assertEqual(response.status_code, 400) def test_small_counts(self): request_count = max(1,PAGE_LIMIT >> 1) assert PAGE_LIMIT > request_count log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) page, aliases = self.parse_link_aliases_response(response) self.assertEqual(len(aliases), request_count) self.assertEqual(len(aliases), page['count']) def test_huge_counts(self): log.info('Querying 100 aliases (should be truncated)') request_count = PAGE_LIMIT * 4 log.info('Querying {0} aliases'.format(request_count)) response = self.get_link_aliases(count=request_count) page, aliases = self.parse_link_aliases_response(response) self.assertEqual(len(aliases), page['count']) self.assertTrue(len(aliases) == PAGE_LIMIT) def test_non_json_resolve_body(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='not a json document', content_type='application/json') self.assert_400(response) def test_empty_json_resolve_body(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{}', content_type='application/json') self.assert_400(response) def test_bad_alias_list_resolve_body_1(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{"aliases": 3}', content_type='application/json') self.assert_400(response) def test_bad_alias_list_resolve_body_1(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{"aliases": ["one", 3]}', content_type='application/json') self.assert_400(response) def test_bad_content_type_resolve_body(self): response = self.client.post(API_PREFIX + '/aliases/resolve', data='{"aliases": []}', content_type='text/plain') self.assert_400(response) def test_empty_resolve(self): response = self.make_resolve_link_aliases_request([]) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] self.assertEqual(len(resolutions), 0) def gen_alias_names(self, good_count=3, bad_count=3): good_alias_names = set(r[0] for r in db.session.query(LinkAlias.name)) bad_alias_names = set('_bad_alias_{0}'.format(x) for x in range(bad_count)) alias_names = random.sample(good_alias_names, good_count) + list(bad_alias_names) random.shuffle(alias_names) return dict((n, n in good_alias_names) for n in alias_names) def test_simple_resolve(self): alias_name_map = self.gen_alias_names() query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] log.info('Resolutions: {0}'.format(resolutions)) self.assertEqual(len(resolutions), len(query_names)) for name, res in zip(query_names, resolutions): res_name, res_link = res self.assertEqual(name, res_name) if alias_name_map[name]: # good link self.assertIsNotNone(res_link) self.assertIn('id', res_link) self.assertIn('url', res_link) else: # bad link self.assertIsNone(res_link) def test_single_good_resolve(self): alias_name_map = self.gen_alias_names(good_count=1, bad_count=0) query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] log.info('Resolutions: {0}'.format(resolutions)) self.assertEqual(len(resolutions), len(query_names)) for name, res in zip(query_names, resolutions): res_name, res_link = res self.assertEqual(name, res_name) if alias_name_map[name]: # good link self.assertIsNotNone(res_link) self.assertIn('id', res_link) self.assertIn('url', res_link) else: # bad link self.assertIsNone(res_link) def test_single_bad_resolve(self): alias_name_map = self.gen_alias_names(good_count=0, bad_count=1) query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] log.info('Resolutions: {0}'.format(resolutions)) self.assertEqual(len(resolutions), len(query_names)) for name, res in zip(query_names, resolutions): res_name, res_link = res self.assertEqual(name, res_name) if alias_name_map[name]: # good link self.assertIsNotNone(res_link) self.assertIn('id', res_link) self.assertIn('url', res_link) else: # bad link self.assertIsNone(res_link) def test_too_big_resolve(self): alias_name_map = self.gen_alias_names(good_count=PAGE_LIMIT, bad_count=PAGE_LIMIT) query_names = list(alias_name_map.keys()) log.info('Querying aliases: {0}'.format(query_names)) response = self.make_resolve_link_aliases_request(query_names) self.assert_400(response) ALIASES_PATH = API_PREFIX + '/aliases/' class TestMutation(TestCase): @classmethod def create_fixtures(cls): create_fake_links(link_count=20) def new_alias_request(self, link_data): return self.client.patch(ALIASES_PATH, data=json.dumps(link_data), content_type='application/json') def test_empty_body_request(self): response = self.client.patch(ALIASES_PATH, data='', content_type='application/json') self.assert_400(response) def test_non_json_body_request(self): response = self.client.patch(ALIASES_PATH, data='not json', content_type='application/json') self.assert_400(response) def test_no_content_type_body_request(self): response = self.client.patch(ALIASES_PATH, data='{}') self.assert_400(response) def test_empty_request(self): response = self.new_alias_request({}) self.assert_200(response) def verify_create(self, create, response): self.assert_200(response) self.assertIn('create', response.json) create_resp = response.json['create'] self.assertEqual(create_resp['count'], len(create)) # Verify by resolving response = self.make_resolve_link_aliases_request( list(cr['name'] for cr in create) ) self.assert_200(response) self.assertIn('resolutions', response.json) resolutions = response.json['resolutions'] self.assertEqual(len(resolutions), len(create)) # What do we expect? expected = {} for cr in create: expected[cr['name']] = cr['link'] log.info('resolutions: {0}'.format(resolutions)) log.info('expected: {0}'.format(expected)) for r_n, r_l in resolutions: self.assertIn(r_n, expected) self.assertEqual(r_l['id'], expected[r_n]) def test_create_single(self): create = [ dict(name='new-alias', link=self.get_some_link_id()), ] log.info('Sending create request: {0}'.format(create)) response = self.new_alias_request(dict(create=create)) self.verify_create(create, response) def test_create_multiple_identical(self): create = [ dict(name='new-alias-1', link=self.get_some_link_id()), dict(name='new-alias-1', link=self.get_some_link_id()), dict(name='new-alias-1', link=self.get_some_link_id()), ] log.info('Sending create request: {0}'.format(create)) response = self.new_alias_request(dict(create=create)) self.assert_400(response) def test_create_multiple(self): create = [ dict(name='new-alias-1', link=self.get_some_link_id()), dict(name='new-alias-2', link=self.get_some_link_id()), dict(name='new-alias-3', link=self.get_some_link_id()), ] log.info('Sending create request: {0}'.format(create)) response = self.new_alias_request(dict(create=create)) self.verify_create(create, response)
38.684685
100
0.627077
7c6dac2314617e6e594af5f95ddf3f69ec127758
968
py
Python
sols/1013.py
Paul11100/LeetCode
9896c579dff1812c0c76964db8d60603ee715e35
[ "MIT" ]
null
null
null
sols/1013.py
Paul11100/LeetCode
9896c579dff1812c0c76964db8d60603ee715e35
[ "MIT" ]
null
null
null
sols/1013.py
Paul11100/LeetCode
9896c579dff1812c0c76964db8d60603ee715e35
[ "MIT" ]
null
null
null
class Solution: # Greedy Two Pointers (Accepted), O(n) time, O(1) space def canThreePartsEqualSum(self, arr: List[int]) -> bool: if len(arr) < 3: return False total = sum(arr) target = total / 3 a, b = 0, len(arr)-1 a_tot = b_tot = 0 while a_tot != target or a == 0: if a >= len(arr): return False a_tot += arr[a] a += 1 while b_tot != target or b == len(arr)-1: if b < 0: return False b_tot += arr[b] b -= 1 return a <= b # Count Valid Parts (Top Voted), O(n) time, O(1) space def canThreePartsEqualSum(self, A: List[int]) -> bool: average, remainder, part, cnt = sum(A) // 3, sum(A) % 3, 0, 0 for a in A: part += a if part == average: cnt += 1 part = 0 return not remainder and cnt >= 3
29.333333
69
0.452479
240843929a62873561804b718522912cbc4c751b
1,279
py
Python
core/src/Test/TestConfig.py
mkg20001/Fuzium
d424cd42a92272563fcba2290028c036cb7ce4a1
[ "MIT" ]
null
null
null
core/src/Test/TestConfig.py
mkg20001/Fuzium
d424cd42a92272563fcba2290028c036cb7ce4a1
[ "MIT" ]
null
null
null
core/src/Test/TestConfig.py
mkg20001/Fuzium
d424cd42a92272563fcba2290028c036cb7ce4a1
[ "MIT" ]
null
null
null
import pytest import Config @pytest.mark.usefixtures("resetSettings") class TestConfig: def testParse(self): # Defaults config_test = Config.Config("zeronet.py".split(" ")) config_test.parse(silent=True, parse_config=False) assert not config_test.debug assert not config_test.debug_socket # Test parse command line with unknown parameters (ui_password) config_test = Config.Config("zeronet.py --debug --debug_socket --ui_password hello".split(" ")) config_test.parse(silent=True, parse_config=False) assert config_test.debug assert config_test.debug_socket with pytest.raises(AttributeError): config_test.ui_password # More complex test args = "zeronet.py --unknown_arg --debug --debug_socket --ui_restrict 127.0.0.1 1.2.3.4 " args += "--another_unknown argument --use_openssl False siteSign address privatekey --inner_path users/content.json" config_test = Config.Config(args.split(" ")) config_test.parse(silent=True, parse_config=False) assert config_test.debug assert "1.2.3.4" in config_test.ui_restrict assert not config_test.use_openssl assert config_test.inner_path == "users/content.json"
39.96875
124
0.686474
3dcfde01bf48050ced4e8088a4d8780e0d3970f0
16,645
py
Python
sdk/tables/azure-data-tables/tests/_shared/testcase.py
KarishmaGhiya/azure-sdk-for-python
1216acf1caa13575d3b8cfa0b401e42eefa9f17f
[ "MIT" ]
1
2020-08-17T14:40:09.000Z
2020-08-17T14:40:09.000Z
sdk/tables/azure-data-tables/tests/_shared/testcase.py
KarishmaGhiya/azure-sdk-for-python
1216acf1caa13575d3b8cfa0b401e42eefa9f17f
[ "MIT" ]
null
null
null
sdk/tables/azure-data-tables/tests/_shared/testcase.py
KarishmaGhiya/azure-sdk-for-python
1216acf1caa13575d3b8cfa0b401e42eefa9f17f
[ "MIT" ]
null
null
null
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from __future__ import division from contextlib import contextmanager import copy import inspect import os import os.path import time from datetime import datetime, timedelta from azure.data.tables import ResourceTypes, AccountSasPermissions from azure.data.tables._table_shared_access_signature import generate_account_sas try: import unittest.mock as mock except ImportError: import mock import zlib import math import sys import string import random import re import logging from devtools_testutils import ( AzureMgmtTestCase, AzureMgmtPreparer, ResourceGroupPreparer, StorageAccountPreparer, FakeResource, ) from azure_devtools.scenario_tests import RecordingProcessor, AzureTestError, create_random_name try: from cStringIO import StringIO # Python 2 except ImportError: from io import StringIO from azure.core.credentials import AccessToken #from azure.data.tabless import generate_account_sas, AccountSasPermissions, ResourceTypes from azure.mgmt.storage.models import StorageAccount, Endpoints try: from devtools_testutils import mgmt_settings_real as settings except ImportError: from devtools_testutils import mgmt_settings_fake as settings import pytest LOGGING_FORMAT = '%(asctime)s %(name)-20s %(levelname)-5s %(message)s' class FakeTokenCredential(object): """Protocol for classes able to provide OAuth tokens. :param str scopes: Lets you specify the type of access needed. """ def __init__(self): self.token = AccessToken("YOU SHALL NOT PASS", 0) def get_token(self, *args): return self.token class XMSRequestIDBody(RecordingProcessor): """This process is used for Storage batch call only, to avoid the echo policy. """ def process_response(self, response): content_type = None for key, value in response.get('headers', {}).items(): if key.lower() == 'content-type': content_type = (value[0] if isinstance(value, list) else value).lower() break if content_type and 'multipart/mixed' in content_type: response['body']['string'] = re.sub(b"x-ms-client-request-id: [a-f0-9-]+\r\n", b"", response['body']['string']) return response class GlobalStorageAccountPreparer(AzureMgmtPreparer): def __init__(self): super(GlobalStorageAccountPreparer, self).__init__( name_prefix='', random_name_length=42 ) def create_resource(self, name, **kwargs): storage_account = TableTestCase._STORAGE_ACCOUNT if self.is_live: self.test_class_instance.scrubber.register_name_pair( storage_account.name, "storagename" ) else: name = "storagename" storage_account.name = name storage_account.primary_endpoints.table = 'https://{}.{}.core.windows.net'.format(name, 'table') return { 'location': 'westus', 'resource_group': TableTestCase._RESOURCE_GROUP, 'storage_account': storage_account, 'storage_account_key': TableTestCase._STORAGE_KEY, 'storage_account_cs': TableTestCase._STORAGE_CONNECTION_STRING, } class GlobalResourceGroupPreparer(AzureMgmtPreparer): def __init__(self): super(GlobalResourceGroupPreparer, self).__init__( name_prefix='', random_name_length=42 ) def create_resource(self, name, **kwargs): rg = TableTestCase._RESOURCE_GROUP if self.is_live: self.test_class_instance.scrubber.register_name_pair( rg.name, "rgname" ) else: rg = FakeResource( name="rgname", id="/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/rgname" ) return { 'location': 'westus', 'resource_group': rg, } class TableTestCase(AzureMgmtTestCase): def __init__(self, *args, **kwargs): super(TableTestCase, self).__init__(*args, **kwargs) self.replay_processors.append(XMSRequestIDBody()) def connection_string(self, account, key): return "DefaultEndpointsProtocol=https;AccountName=" + account.name + ";AccountKey=" + str(key) + ";EndpointSuffix=core.windows.net" def account_url(self, account, endpoint_type): """Return an url of storage account. :param str storage_account: Storage account name :param str storage_type: The Storage type part of the URL. Should be "blob", or "queue", etc. """ try: if endpoint_type == "table": return account.primary_endpoints.table.rstrip("/") if endpoint_type == "cosmos": return "https://{}.table.cosmos.azure.com".format(account.name) else: raise ValueError("Unknown storage type {}".format(storage_type)) except AttributeError: # Didn't find "primary_endpoints" return 'https://{}.{}.core.windows.net'.format(account, endpoint_type) def configure_logging(self): try: enable_logging = self.get_settings_value("ENABLE_LOGGING") except AzureTestError: enable_logging = True # That's the default value in fake settings self.enable_logging() if enable_logging else self.disable_logging() def enable_logging(self): handler = logging.StreamHandler() handler.setFormatter(logging.Formatter(LOGGING_FORMAT)) self.logger.handlers = [handler] self.logger.setLevel(logging.INFO) self.logger.propagate = True self.logger.disabled = False def disable_logging(self): self.logger.propagate = False self.logger.disabled = True self.logger.handlers = [] def sleep(self, seconds): if self.is_live: time.sleep(seconds) def get_random_bytes(self, size): # recordings don't like random stuff. making this more # deterministic. return b'a'*size def get_random_text_data(self, size): '''Returns random unicode text data exceeding the size threshold for chunking blob upload.''' checksum = zlib.adler32(self.qualified_test_name.encode()) & 0xffffffff rand = random.Random(checksum) text = u'' words = [u'hello', u'world', u'python', u'啊齄丂狛狜'] while (len(text) < size): index = int(rand.random()*(len(words) - 1)) text = text + u' ' + words[index] return text @staticmethod def _set_test_proxy(service, settings): if settings.USE_PROXY: service.set_proxy( settings.PROXY_HOST, settings.PROXY_PORT, settings.PROXY_USER, settings.PROXY_PASSWORD, ) def assertNamedItemInContainer(self, container, item_name, msg=None): def _is_string(obj): if sys.version_info >= (3,): return isinstance(obj, str) else: return isinstance(obj, basestring) for item in container: if _is_string(item): if item == item_name: return elif item.name == item_name: return elif hasattr(item, 'snapshot') and item.snapshot == item_name: return standardMsg = '{0} not found in {1}'.format( repr(item_name), [str(c) for c in container]) self.fail(self._formatMessage(msg, standardMsg)) def assertNamedItemNotInContainer(self, container, item_name, msg=None): for item in container: if item.name == item_name: standardMsg = '{0} unexpectedly found in {1}'.format( repr(item_name), repr(container)) self.fail(self._formatMessage(msg, standardMsg)) def generate_oauth_token(self): if self.is_live: from azure.identity import ClientSecretCredential return ClientSecretCredential( self.get_settings_value("TENANT_ID"), self.get_settings_value("CLIENT_ID"), self.get_settings_value("CLIENT_SECRET"), ) return self.generate_fake_token() def generate_sas_token(self): fake_key = 'a'*30 + 'b'*30 return '?' + generate_account_sas( account_name = 'test', # name of the storage account account_key = fake_key, # key for the storage account resource_types = ResourceTypes(object=True), permission = AccountSasPermissions(read=True,list=True), start = datetime.now() - timedelta(hours = 24), expiry = datetime.now() + timedelta(days = 8) ) def generate_fake_token(self): return FakeTokenCredential() def not_for_emulator(test): def skip_test_if_targeting_emulator(self): test(self) return skip_test_if_targeting_emulator class RetryCounter(object): def __init__(self): self.count = 0 def simple_count(self, retry_context): self.count += 1 class ResponseCallback(object): def __init__(self, status=None, new_status=None): self.status = status self.new_status = new_status self.first = True self.count = 0 def override_first_status(self, response): if self.first and response.http_response.status_code == self.status: response.http_response.status_code = self.new_status self.first = False self.count += 1 def override_status(self, response): if response.http_response.status_code == self.status: response.http_response.status_code = self.new_status self.count += 1 class LogCaptured(object): def __init__(self, test_case=None): # accept the test case so that we may reset logging after capturing logs self.test_case = test_case def __enter__(self): # enable logging # it is possible that the global logging flag is turned off self.test_case.enable_logging() # create a string stream to send the logs to self.log_stream = StringIO() # the handler needs to be stored so that we can remove it later self.handler = logging.StreamHandler(self.log_stream) self.handler.setFormatter(logging.Formatter(LOGGING_FORMAT)) # get and enable the logger to send the outputs to the string stream self.logger = logging.getLogger('azure.storage') self.logger.level = logging.DEBUG self.logger.addHandler(self.handler) # the stream is returned to the user so that the capture logs can be retrieved return self.log_stream def __exit__(self, exc_type, exc_val, exc_tb): # stop the handler, and close the stream to exit self.logger.removeHandler(self.handler) self.log_stream.close() # reset logging since we messed with the setting self.test_case.configure_logging() @pytest.fixture(scope="session") def storage_account(): test_case = AzureMgmtTestCase("__init__") rg_preparer = ResourceGroupPreparer(random_name_enabled=True, name_prefix='pystorage') storage_preparer = StorageAccountPreparer(random_name_enabled=True, name_prefix='pyacrstorage') # Create subscription_id = os.environ.get("AZURE_SUBSCRIPTION_ID", None) location = os.environ.get("AZURE_LOCATION", "westus") existing_rg_name = os.environ.get("AZURE_RESOURCEGROUP_NAME") existing_storage_name = os.environ.get("AZURE_STORAGE_ACCOUNT_NAME") existing_storage_key = os.environ.get("AZURE_STORAGE_ACCOUNT_KEY") storage_connection_string = os.environ.get("AZURE_STORAGE_CONNECTION_STRING") i_need_to_create_rg = not (existing_rg_name or existing_storage_name or storage_connection_string) got_storage_info_from_env = existing_storage_name or storage_connection_string try: if i_need_to_create_rg: rg_name, rg_kwargs = rg_preparer._prepare_create_resource(test_case) rg = rg_kwargs['resource_group'] else: rg_name = existing_rg_name or "no_rg_needed" rg = FakeResource( name=rg_name, id="/subscriptions/{}/resourceGroups/{}".format(subscription_id, rg_name) ) TableTestCase._RESOURCE_GROUP = rg try: if got_storage_info_from_env: if storage_connection_string: storage_connection_string_parts = dict([ part.split('=', 1) for part in storage_connection_string.split(";") ]) storage_account = None if existing_storage_name: storage_name = existing_storage_name storage_account = StorageAccount( location=location, ) storage_account.name = storage_name storage_account.id = storage_name storage_account.primary_endpoints=Endpoints() storage_account.primary_endpoints.table = 'https://{}.{}.core.windows.net'.format(storage_name, 'table') storage_key = existing_storage_key if not storage_connection_string: # It means I have received a storage name from env storage_connection_string=";".join([ "DefaultEndpointsProtocol=https", "AccountName={}".format(storage_name), "AccountKey={}".format(storage_key), "TableEndpoint={}".format(storage_account.primary_endpoints.table), ]) if not storage_account: # It means I have received a connection string storage_name = storage_connection_string_parts["AccountName"] storage_account = StorageAccount( location=location, ) def build_service_endpoint(service): try: suffix = storage_connection_string_parts["EndpointSuffix"] except KeyError: suffix = "cosmos.azure.com" return "{}://{}.{}.{}".format( storage_connection_string_parts.get("DefaultEndpointsProtocol", "https"), storage_connection_string_parts["AccountName"], service, suffix ) storage_account.name = storage_name storage_account.id = storage_name storage_account.primary_endpoints=Endpoints() storage_account.primary_endpoints.table = storage_connection_string_parts.get("TableEndpoint", build_service_endpoint("table")) storage_account.secondary_endpoints=Endpoints() storage_account.secondary_endpoints.table = storage_connection_string_parts.get("TableSecondaryEndpoint", build_service_endpoint("table")) storage_key = storage_connection_string_parts["AccountKey"] else: storage_name, storage_kwargs = storage_preparer._prepare_create_resource(test_case, **rg_kwargs) storage_account = storage_kwargs['storage_account'] storage_key = storage_kwargs['storage_account_key'] storage_connection_string = storage_kwargs['storage_account_cs'] TableTestCase._STORAGE_ACCOUNT = storage_account TableTestCase._STORAGE_KEY = storage_key TableTestCase._STORAGE_CONNECTION_STRING = storage_connection_string yield finally: if not got_storage_info_from_env: storage_preparer.remove_resource( storage_name, resource_group=rg ) finally: if i_need_to_create_rg: rg_preparer.remove_resource(rg_name) TableTestCase._RESOURCE_GROUP = None
37.573363
158
0.623791
ca72a3698829de734909500a0adb50ec78e6666b
74,705
py
Python
torch/quantization/fx/quantize.py
guoyejun/pytorch
57cba8e60116bfff37d10bc2b4596d8c478ffd0a
[ "Intel" ]
null
null
null
torch/quantization/fx/quantize.py
guoyejun/pytorch
57cba8e60116bfff37d10bc2b4596d8c478ffd0a
[ "Intel" ]
1
2021-04-12T19:49:08.000Z
2021-04-12T19:49:08.000Z
torch/quantization/fx/quantize.py
shmsong/pytorch
90e532f3ef17a9611e9e7a9f1f6189d4168bf084
[ "Intel" ]
1
2022-02-23T02:34:50.000Z
2022-02-23T02:34:50.000Z
import torch from torch.fx import ( GraphModule, Proxy, map_arg ) from torch.fx.graph import ( Graph, Node, ) from torch.fx.node import Argument from torch.quantization import ( propagate_qconfig_, convert, ) from ..quantization_mappings import ( get_default_qat_module_mappings, ) from ..quantize import ( _remove_qconfig, is_activation_post_process ) from ..utils import ( get_combined_dict, get_qconfig_dtypes, get_swapped_custom_module_class, weight_is_quantized, activation_is_statically_quantized, activation_is_int8_quantized, activation_dtype, weight_dtype, ) from .pattern_utils import ( is_match, get_default_quant_patterns, get_default_output_activation_post_process_map, input_output_observed, Pattern, ) from .graph_module import ( is_observed_module, is_observed_standalone_module, ObservedGraphModule, ObservedStandaloneGraphModule, QuantizedGraphModule, ) from .quantization_patterns import ( binary_op_supported_dtypes, binary_reference_op_supported_dtypes, BinaryOpQuantizeHandler, CatQuantizeHandler, CopyNodeQuantizeHandler, CustomModuleQuantizeHandler, DefaultQuantizeHandler, FixedQParamsOpQuantizeHandler, QuantizeHandler, StandaloneModuleQuantizeHandler, ) from .utils import ( _parent_name, all_node_args_have_no_tensors, quantize_node, get_custom_module_class_keys, get_new_attr_name_with_prefix, collect_producer_nodes, graph_module_from_producer_nodes, assert_and_get_unique_device, node_return_type_is_int, ) from .qconfig_utils import ( convert_dict_to_ordered_dict, get_flattened_qconfig_dict, get_object_type_qconfig, get_qconfig, QConfigAny, ) import operator from collections import defaultdict from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union # Define helper types MatchResult = Tuple[Node, List[Node], Optional[Pattern], QuantizeHandler, QConfigAny] # ------------------------ # Helper Functions # ------------------------ def insert_observer( node: Node, observer: torch.quantization.ObserverBase, model: torch.nn.Module, activation_post_process_map: Dict[str, List[str]], activation_post_process_indexes: Dict[str, int], env: Dict[Any, Any], observed_graph: Graph, load_arg: Callable, observed_node_names_set: Set[str], quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]): """Insert observer for node by modifying the observed_graph and attach observer module to the model Args: node: Node observer: observer/fake_quantize module instance """ # In eval mode fixed qparams node are the same as CopyNode and we # won't insert observer for them if not model.training and isinstance(observer, torch.quantization.FixedQParamsFakeQuantize): return # respect device affinity when adding observers model_device = assert_and_get_unique_device(model) if model_device: observer.to(model_device) # add observer module as attribute prefix = node.name + '_activation_post_process_' get_new_observer_name = get_new_attr_name_with_prefix(prefix) observer_name = get_new_observer_name(model) setattr(model, observer_name, observer) # put observer instance activation_post_process map activation_post_process_map[node.name].append(observer_name) # initialize index map for activation_post_process if node.name not in activation_post_process_indexes: activation_post_process_indexes[node.name] = 0 # insert observer call env[node.name] = observed_graph.create_node( 'call_module', observer_name, (load_arg(node),), {}) observed_node_names_set.add(node.name) def maybe_insert_observer_for_special_module( quantize_handler: QuantizeHandler, modules: Dict[str, torch.nn.Module], prepare_custom_config_dict: Any, qconfig: Any, node: Node) -> Optional[List[int]]: """ Insert observer for custom module and standalone module Returns: standalone_module_input_idxs: the indexs for inputs that needs to be observed by parent module """ assert modules is not None standalone_module_input_idxs = None if isinstance(quantize_handler, CustomModuleQuantizeHandler): custom_module = modules[node.target] # type: ignore[index] custom_module_class_mapping = prepare_custom_config_dict.get( "float_to_observed_custom_module_class", {}) observed_custom_module_class = \ get_swapped_custom_module_class( custom_module, custom_module_class_mapping, qconfig) observed_custom_module = \ observed_custom_module_class.from_float(custom_module) parent_name, name = _parent_name(node.target) setattr(modules[parent_name], name, observed_custom_module) elif isinstance(quantize_handler, StandaloneModuleQuantizeHandler): # observe standalone module standalone_module = modules[node.target] # type: ignore[index] standalone_module_name_configs = prepare_custom_config_dict.get("standalone_module_name", []) standalone_module_class_configs = prepare_custom_config_dict.get("standalone_module_class", []) class_config_map = {x[0]: (x[1], x[2]) for x in standalone_module_class_configs} name_config_map = {x[0]: (x[1], x[2]) for x in standalone_module_name_configs} config = class_config_map.get(type(standalone_module), (None, None)) config = name_config_map.get(node.target, config) sm_qconfig_dict = {"": qconfig} if config[0] is None else config[0] sm_prepare_config_dict = {} if config[1] is None else config[1] prepare = \ torch.quantization.quantize_fx._prepare_standalone_module_fx # type: ignore[attr-defined] observed_standalone_module = \ prepare(standalone_module, sm_qconfig_dict, sm_prepare_config_dict) standalone_module_input_idxs = \ observed_standalone_module._standalone_module_input_quantized_idxs.int().tolist() observed_standalone_module = ObservedStandaloneGraphModule( observed_standalone_module, observed_standalone_module.graph) parent_name, name = _parent_name(node.target) setattr(modules[parent_name], name, observed_standalone_module) modules[node.target] = observed_standalone_module # type: ignore[index] return standalone_module_input_idxs def insert_observer_for_output_of_the_node( node: Node, quantize_handler: QuantizeHandler, qconfig: Any, modules: Dict[str, torch.nn.Module], model: torch.nn.Module, pattern: Any, activation_post_process_map: Dict[str, List[str]], activation_post_process_indexes: Dict[str, int], env: Dict[Any, Any], observed_graph: Graph, load_arg: Callable, observed_node_names_set: Set[str], matched_nodes: Optional[List[Node]], standalone_module_input_idxs: Optional[List[int]], quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]): """ Insert observer/fake_quantize module for output of the observed module if needed """ # don't need to insert observer for output if activation does not # need to be statically quantized assert modules is not None # TODO: Add warnings in the quantize handlers that does not support fp16 quantization inserted_observer = False if activation_is_statically_quantized(qconfig): if isinstance(quantize_handler, FixedQParamsOpQuantizeHandler) \ and model.training: # we only insert fake quantize module in qat assert pattern is not None if activation_dtype(qconfig) == torch.float16: activation_post_process_ctr = qconfig.activation else: activation_post_process_ctr = \ get_default_output_activation_post_process_map().get( pattern, None) assert activation_post_process_ctr is not None, \ "activation_post_process constructor not provided " + \ "for pattern:" + str(pattern) insert_observer( node, activation_post_process_ctr(), model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) inserted_observer = True elif (isinstance(quantize_handler, FixedQParamsOpQuantizeHandler) and not model.training): # inserting observers for output of observed module, or # mark the output as observed assert node.op in [ 'call_module', 'call_function', 'call_method'], \ 'FixedQParamsQuantizeHandler of type ' + node.op + ' is not handled' def is_observed(input_arg): if isinstance(input_arg, Node): return input_arg.name in observed_node_names_set elif isinstance(input_arg, list): return all(map(is_observed, input_arg)) # insert observers for fixedqparams ops like sigmoid, since # it supports fp16 static quantization if isinstance(quantize_handler, FixedQParamsOpQuantizeHandler) and \ activation_dtype(qconfig) == torch.float16: insert_observer( node, qconfig.activation(), model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) inserted_observer = True else: # propagate observed property from input if is_observed(node.args[0]): observed_node_names_set.add(node.name) inserted_observer = True elif (isinstance(quantize_handler, BinaryOpQuantizeHandler) and quantize_handler.num_tensor_args == 1): assert matched_nodes is not None input_node = matched_nodes[-1] # first node in the sequence def input_is_observed(arg): return (isinstance(arg, Node) and arg.name in observed_node_names_set) # This is checking if one of the argument of add/mul # is an observed node # If both of the inputs are number, # we will not consider the output to be observed if (input_is_observed(input_node.args[0]) or input_is_observed(input_node.args[1])): observed_node_names_set.add(node.name) inserted_observer = True if activation_dtype(qconfig) == torch.float16: # observer for outputs new_observer = qconfig.activation() insert_observer( node, new_observer, model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) inserted_observer = True elif isinstance(quantize_handler, StandaloneModuleQuantizeHandler): assert node.op == "call_module" assert isinstance(node.target, str) sm_out_qidxs = modules[node.target]._standalone_module_output_quantized_idxs.tolist() # type: ignore[operator] output_is_quantized = 0 in sm_out_qidxs if output_is_quantized: observed_node_names_set.add(node.name) elif (quantize_handler.all_node_args_are_tensors and input_output_observed(quantize_handler)): # observer for outputs new_observer = qconfig.activation() insert_observer( node, new_observer, model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) inserted_observer = True # insert observer for input of standalone module if standalone_module_input_idxs is not None: for idx in standalone_module_input_idxs: if node.args[idx].name not in observed_node_names_set: # type: ignore[union-attr] new_observer = qconfig.activation() insert_observer( node, new_observer, model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) inserted_observer = True # we already inserted activation_post_process for the outputvalue # which is the same as the input value of the next op, so we # can skip inserting one activation_post_process for the input if node.name in quants and inserted_observer: quants[node.name].pop(0) def insert_observer_for_input_arg_of_observed_node( node: Node, observed_node_names_set: Set[str], quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]], model: torch.nn.Module, activation_post_process_map: Dict[str, List[str]], activation_post_process_indexes: Dict[str, int], env: Dict[str, str], observed_graph: Graph, load_arg: Callable): if node.name in quants: quant_act_ctrs = quants[node.name][:] for _, activation_post_process_ctr in quant_act_ctrs: if activation_post_process_ctr is not None: insert_observer( node, activation_post_process_ctr(), model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) def insert_observer_for_output_of_model( node: Node, model: torch.nn.Module, qconfig_map: Dict[str, QConfigAny], activation_post_process_map: Dict[str, List[str]], activation_post_process_indexes: Dict[str, int], env: Dict[Any, Any], observed_graph: Graph, load_arg: Callable, observed_node_names_set: Set[str], quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]): if isinstance(node, Node): assert qconfig_map is not None local_qconfig = qconfig_map[node.name] assert local_qconfig is not None, \ 'qconfig of a node before a quantized output must exist' if node.name not in observed_node_names_set: insert_observer( node, local_qconfig.activation(), model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) elif isinstance(node, list) or isinstance(node, tuple): for n in node: insert_observer_for_output_of_model( n, model, qconfig_map, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) elif isinstance(node, dict): for n in node.values(): insert_observer_for_output_of_model( n, model, qconfig_map, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) else: raise Exception("hardcoding output to be quantized not supported: " + str(type(node))) def insert_observers_for_model( model: GraphModule, modules: Dict[str, torch.nn.Module], matches: Dict[str, MatchResult], quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]], observed_node_names_set: Set[str], qconfig_map: Dict[str, QConfigAny], activation_post_process_map: Dict[str, List[str]], activation_post_process_indexes: Dict[str, int], observed_graph: Graph, prepare_custom_config_dict: Dict[str, Any], input_quantized_idxs: List[int], output_quantized_idxs: List[int]) -> Optional[Node]: env: Dict[Any, Any] = {} def load_arg(a): return map_arg(a, lambda node: env[node.name]) graph_inputs = [node.name for node in model.graph.nodes if node.op == "placeholder"] get_new_observer_name = get_new_attr_name_with_prefix( 'activation_post_process_') placeholder_node_seen_cnt = 0 output_node_seen_cnt = 0 result_node: Optional[Node] = None for node in model.graph.nodes: if node.op == 'output': # If this output is hardcoded to be quantized, insert an # observer on the previous node if it does not already # exist. cur_output_node_idx = output_node_seen_cnt output_node_seen_cnt += 1 if cur_output_node_idx in output_quantized_idxs: prev_node = node.args[0] insert_observer_for_output_of_model( prev_node, model, qconfig_map, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, quants) observed_graph.output(load_arg(node.args[0])) result_node = node continue if node.name in observed_node_names_set: continue root_node, matched_nodes, pattern, obj, qconfig = matches.get( node.name, (None, None, None, None, None)) env[node.name] = observed_graph.node_copy(node, load_arg) if root_node is node: # index for input of custom module that needs to be observed in # parent if qconfig is not None: assert obj is not None standalone_module_input_idxs = \ maybe_insert_observer_for_special_module( obj, modules, prepare_custom_config_dict, qconfig, node) insert_observer_for_output_of_the_node( node, obj, qconfig, modules, model, pattern, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg, observed_node_names_set, matched_nodes, standalone_module_input_idxs, quants) if node.op == 'placeholder': # skip adding observers at the graph input if the input is # overridden to be quantized cur_placeholder_node_idx = placeholder_node_seen_cnt placeholder_node_seen_cnt += 1 if cur_placeholder_node_idx in input_quantized_idxs: observed_node_names_set.add(node.name) continue insert_observer_for_input_arg_of_observed_node( node, observed_node_names_set, quants, model, activation_post_process_map, activation_post_process_indexes, env, observed_graph, load_arg) return result_node def in_nodes(a: Argument, nodes: Set[Node]) -> bool: """ Checks if argument `a` is in the nodes set if it is a list, check if all elements of a is in the nodes set recursively """ if isinstance(a, Node): return a in nodes elif isinstance(a, list) or isinstance(a, tuple): return all([in_nodes(arg, nodes) for arg in a]) return False def handle_copy_nodes( observed_graph: Graph, matches: Dict[str, MatchResult], quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]], qconfig_map: Dict[str, QConfigAny], activation_post_process_map: Dict[str, List[str]], modules: Dict[str, torch.nn.Module]): observed_nodes: Set[Node] = set() copy_nodes: Set[Node] = set() non_tensor_input_binary_op_nodes: Set[Node] = set() unmatched_nodes: Set[Node] = set() actpp_to_remove: Set[Node] = set() env: Dict[Any, Any] = {} def load_arg(a: Argument) -> Argument: return map_arg(a, lambda node: env[node.name]) result_graph = Graph() cache_for_no_tensor_check: Dict[Node, bool] = dict() for node in observed_graph.nodes: root_node, matched_nodes, pattern, quantize_handler, qconfig = matches.get( node.name, (None, None, None, None, None)) if node.op == "call_module" and is_activation_post_process(modules[node.target]): # rule 1: if the input of a copy node is observed, we won't need to # insert observer for the output of copy node if in_nodes(node.args[0], copy_nodes) and in_nodes(node.args[0], observed_nodes): # we'll remove the activation_post_process if the previous node is # an observed copy node actpp_to_remove.add(node) # rule 2: if the previous node is a binary op without tensor input, we can remove the observer if in_nodes(node.args[0], non_tensor_input_binary_op_nodes): actpp_to_remove.add(node) observed_nodes.add(node) if root_node is node and qconfig is not None: if isinstance(quantize_handler, CopyNodeQuantizeHandler): copy_nodes.add(node) # if previous node is observed, the copy node will be observed as well if in_nodes(node.args[0], observed_nodes): prev_node = node.args[0] if ( isinstance(prev_node, Node) and prev_node.op == "call_module" and is_activation_post_process(modules[prev_node.target]) # type: ignore[index] ): prev_prev_node = prev_node.args[0] # If previous node is unmatched, the input to copy node should not # be observed. For example, in the pattern of # # user_node_unmatched -> obs -> copy_node_matched -> next_node # # we delete `obs`, because user_node_unmatched is not quantizeable, # and the input to copy_node_matched does not need observation. if in_nodes(prev_prev_node, unmatched_nodes): actpp_to_remove.add(prev_node) observed_nodes.remove(prev_node) else: observed_nodes.add(node) else: observed_nodes.add(node) if all_node_args_have_no_tensors(node, modules, cache_for_no_tensor_check): non_tensor_input_binary_op_nodes.add(node) if root_node is None and node.op != 'placeholder': unmatched_nodes.add(node) # rule 3: for special node, we'll just remove observer for its input special_nodes = [ ("call_function", operator.getitem), ] if (node.op, node.target) in special_nodes: if in_nodes(node.args[0], observed_nodes): prev_node = node.args[0].args[0] if prev_node.name not in qconfig_map or qconfig_map[prev_node.name] is None: actpp_to_remove.add(node.args[0]) # if the previous node is not quantized, remove node from copy nodes if node in copy_nodes: copy_nodes.remove(node) for node in observed_graph.nodes: if node.op == "output": result_graph.output(map_arg(node.args[0], load_arg)) elif node in actpp_to_remove: env[node.name] = env[node.args[0].name] else: env[node.name] = result_graph.node_copy(node, load_arg) return result_graph def handle_cat_nodes( model: torch.nn.Module, observed_graph: Graph, matches: Dict[str, MatchResult], quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]], activation_post_process_map: Dict[str, List[str]], modules: Dict[str, torch.nn.Module]): observed_nodes: Set[Node] = set() # activation_post_process for cat nodes actpp_for_cat_nodes: Dict[Node, torch.nn.Module] = dict() # we'll set the activation_post_process for all tensor inputs of cat and output # of cat to be the same (the activation_post_process for the first Tensor # input in the list, for example, if we have: # x = torch.cat([x1, x2, x3], ...) # we'll set the activation_post_process for x1, x2, x3 and x to be the # activation_post_proceess of x1: # x1 -> obs1 -> cat -> obs1 -> ... # / # x2 -> obs1 # # note that activation_post_process here needs to work for different # Tensor dimensions, e.g. MinMaxObserver, HistogramObserver, per tensor FakeQuantize for node in observed_graph.nodes: root_node, matched_nodes, pattern, quantize_handler, qconfig = matches.get( node.name, (None, None, None, None, None)) if node.op == "call_module" and is_activation_post_process(modules[node.target]): observed_nodes.add(node) if node.args[0] in actpp_for_cat_nodes: parent_name, name = _parent_name(node.target) actpp_for_cat = actpp_for_cat_nodes[node.args[0]] setattr(modules[parent_name], name, actpp_for_cat) if root_node is node and qconfig is not None: if isinstance(quantize_handler, CatQuantizeHandler): if in_nodes(node.args[0], observed_nodes): # set the activation post process to be the same # input 0 for cat node is a list assert isinstance(node.args[0], list) or \ isinstance(node.args[0], tuple), \ "Expecting first input of cat to be a list or tuple" first_act_post_process = modules[node.args[0][0].target] for arg in node.args[0]: assert arg.op == "call_module" and is_activation_post_process(modules[arg.target]) parent_name, name = _parent_name(arg.target) setattr(modules[parent_name], name, first_act_post_process) actpp_for_cat_nodes[node] = first_act_post_process return observed_graph # A dictionary for querying the weight index for a given op WEIGHT_INDEX_DICT = { torch.nn.functional.conv1d : [1], torch.nn.functional.conv2d : [1], torch.nn.functional.conv3d : [1], torch.nn.functional.linear : [1], } def node_arg_is_weight(node: Node, arg: Any) -> bool: if isinstance(node, Node) and node.op == 'call_function' and \ node.target in WEIGHT_INDEX_DICT: for i, node_arg in enumerate(node.args): if arg is node_arg and i in \ WEIGHT_INDEX_DICT[node.target]: # type: ignore[index] return True return False CONV_OPS_WITH_BIAS = { torch.nn.functional.conv1d, torch.nn.functional.conv2d, torch.nn.functional.conv3d, } CONV_BIAS_ARG_INDEX = 2 def node_arg_is_bias(node: Node, arg: Any) -> bool: if isinstance(node, Node) and node.op == 'call_function': if node.target in CONV_OPS_WITH_BIAS: for i, node_arg in enumerate(node.args): if arg is node_arg and i == CONV_BIAS_ARG_INDEX: return True elif node.target is torch.nn.functional.linear: for kwarg_name, kwarg_value in node.kwargs.items(): if kwarg_name == 'bias' and arg is kwarg_value: return True return False # weight prepacking ops WEIGHT_PREPACK_OPS = { torch._ops.ops.quantized.linear_prepack, torch._ops.ops.quantized.linear_prepack_fp16, torch._ops.ops.quantized.conv1d_prepack, torch._ops.ops.quantized.conv2d_prepack, torch._ops.ops.quantized.conv3d_prepack, } class Quantizer: def __init__(self): # mapping from matched node to full qualified path of activation_post_process # must be filled before convert self.activation_post_process_map: Dict[str, List[str]] = {} # mapping from matched node to the index of activation_post_process that we are # using currently self.activation_post_process_indexes: Dict[str, int] = {} # mapping from node name to qconfig that should be used for that node # filled out for a model during _generate_qconfig_map self.qconfig_map: Dict[str, QConfigAny] = {} # mapping from fully qualified module name to module instance # for example, # { # '': Model(...), # 'linear': Linear(...), # 'linear.weight_fake_quant': PerChannelMinMaxObserver(...), # } self.modules: Dict[str, torch.nn.Module] = {} # mapping from a tuple of nodes in reverse order to uninitialized # QuantizeHandler subclass. For example, # { # # match a single node # (<class 'torch.nn.modules.conv.Conv3d'>: # <class 'torch.quantization.fx.quantize.ConvRelu'>), # # match multiple nodes in reverse order # ((<function relu at 0x7f766a7360d0>, <built-in function add>): # <class 'torch.quantization.fx.quantize.Add'>), # } self.patterns: Dict[Pattern, QuantizeHandler] = {} self.prepare_custom_config_dict: Dict[str, Any] = {} # mapping from node name to the scope of the module which contains the node. self.node_name_to_scope: Dict[str, Tuple[str, type]] = {} def _qat_swap_modules( self, root: torch.nn.Module, additional_qat_module_mapping: Dict[Callable, Callable]) -> None: all_mappings = get_combined_dict( get_default_qat_module_mappings(), additional_qat_module_mapping) convert(root, mapping=all_mappings, inplace=True, remove_qconfig=False) def _generate_qconfig_map( self, root: torch.nn.Module, input_graph: Graph, qconfig_dict: Any, node_name_to_scope: Dict[str, Tuple[str, type]]) -> None: global_qconfig = qconfig_dict.get("", None) self.node_name_to_scope = node_name_to_scope self.qconfig_map = dict() for node in input_graph.nodes: if node.op == "get_attr": module_name, _ = _parent_name(node.target) self.qconfig_map[node.name] = get_qconfig( qconfig_dict, type(self.modules[module_name]), module_name, global_qconfig) elif node.op == "call_function": # precedence: [TODO] module_name_qconfig (need scope support # from fx) # > function_qconfig > global_qconfig # module_name takes precedence over function qconfig function_qconfig = get_object_type_qconfig( qconfig_dict, node.target, global_qconfig) module_path, module_type = node_name_to_scope[node.name] qconfig = get_qconfig( qconfig_dict, module_type, module_path, function_qconfig) self.qconfig_map[node.name] = qconfig elif node.op == "call_method": module_path, module_type = node_name_to_scope[node.name] # use the qconfig of the module that the node belongs to qconfig = get_qconfig( qconfig_dict, module_type, module_path, global_qconfig) self.qconfig_map[node.name] = qconfig elif node.op == 'call_module': module_qconfig = get_qconfig( qconfig_dict, type(self.modules[node.target]), node.target, global_qconfig) # regex is not supported eager mode propagate_qconfig_, we'll # need to set the qconfig explicitly here in case regex # is used self.modules[node.target].qconfig = module_qconfig self.qconfig_map[node.name] = module_qconfig def _match(self, model, graph, standalone_module_names, standalone_module_classes, custom_module_classes) -> Tuple[ Dict[str, MatchResult], Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]]: matches = self._find_matches( graph, self.modules, self.patterns, standalone_module_names, standalone_module_classes, custom_module_classes) # find _inputs_ to matched nodes that are not quantized, these # have to be quantized, which requires measuring stats, # initialize an DefaultQuantizeHandler object for each quants = self._find_quants(graph, self.modules, matches) return matches, quants def _prepare( self, model: GraphModule, qconfig_dict: Any, node_name_to_scope: Dict[str, Tuple[str, type]], prepare_custom_config_dict: Optional[Dict[str, Any]], is_standalone_module: bool) -> ObservedGraphModule: """ standalone_module means it a submodule that is not inlined in parent module, and will be quantized separately as one unit. How the standalone module is observed is specified by `input_quantized_idxs` and `output_quantized_idxs` in the prepare_custom_config for the standalone module Returns: model(GraphModule): prepared standalone module attributes: _standalone_module_input_quantized_idxs(List[Int]): a list of indexes for the graph input that is expected to be quantized, same as input_quantized_idxs configuration provided for the standalone module _standalone_module_output_quantized_idxs(List[Int]): a list of indexs for the graph output that is quantized same as input_quantized_idxs configuration provided for the standalone module """ if prepare_custom_config_dict is None: prepare_custom_config_dict = {} self.prepare_custom_config_dict = prepare_custom_config_dict additional_quant_patterns = \ prepare_custom_config_dict.get("additional_quant_pattern", {}) self.patterns = get_combined_dict( get_default_quant_patterns(), additional_quant_patterns) convert_dict_to_ordered_dict(qconfig_dict) flattened_qconfig_dict = get_flattened_qconfig_dict(qconfig_dict) # TODO: support regex as well propagate_qconfig_(model, flattened_qconfig_dict) if model.training: additional_qat_module_mapping = prepare_custom_config_dict.get( "additional_qat_module_mapping", {}) self._qat_swap_modules(model, additional_qat_module_mapping) self.modules = dict(model.named_modules()) # fill self.qconfig_map, a map from node name to qconfig, used in _find_matches self._generate_qconfig_map(model, model.graph, qconfig_dict, node_name_to_scope) # match the patterns that will get quantized standalone_module_name_configs = prepare_custom_config_dict.get( "standalone_module_name", []) standalone_module_class_configs = prepare_custom_config_dict.get( "standalone_module_class", []) standalone_module_names = [config[0] for config in standalone_module_name_configs] standalone_module_classes = [config[0] for config in standalone_module_class_configs] custom_module_classes = get_custom_module_class_keys( prepare_custom_config_dict, "float_to_observed_custom_module_class") matches, quants = self._match( model, model.graph, standalone_module_names, standalone_module_classes, custom_module_classes) self.activation_post_process_map = defaultdict(list) observed_graph = Graph() observed_node_names_set: Set[str] = set() input_quantized_idxs: List[int] = self.prepare_custom_config_dict.get( "input_quantized_idxs", []) output_quantized_idxs: List[int] = self.prepare_custom_config_dict.get( "output_quantized_idxs", []) result_node = insert_observers_for_model( model, self.modules, matches, quants, observed_node_names_set, self.qconfig_map, self.activation_post_process_map, self.activation_post_process_indexes, observed_graph, prepare_custom_config_dict, input_quantized_idxs, output_quantized_idxs) self.modules = dict(model.named_modules()) matches, quants = self._match( model, observed_graph, standalone_module_names, standalone_module_classes, custom_module_classes) observed_graph = handle_copy_nodes( observed_graph, matches, quants, self.qconfig_map, self.activation_post_process_map, self.modules) self.modules = dict(model.named_modules()) matches, quants = self._match( model, observed_graph, standalone_module_names, standalone_module_classes, custom_module_classes) observed_graph = handle_cat_nodes( model, observed_graph, matches, quants, self.activation_post_process_map, self.modules) self.save_state(model) model = ObservedGraphModule(model, observed_graph) if is_standalone_module: assert result_node is not None assert isinstance(result_node.args[0], Node), \ "standalone module only supports returning simple value currently"\ "(not tuple, dict etc.)" # indicator for whether output is observed or not. # This used for correctly quantize standalone modules output_is_observed = \ result_node.args[0].name in observed_node_names_set # these inputs are observed in parent # converting List[int] to Tensor since module attribute is # Union[Tensor, Module] model._standalone_module_input_quantized_idxs = \ torch.tensor(input_quantized_idxs) model._standalone_module_output_quantized_idxs = torch.tensor(output_quantized_idxs) return model def save_state(self, observed: GraphModule) -> None: observed._activation_post_process_map = \ self.activation_post_process_map # type: ignore[assignment] observed._activation_post_process_indexes = \ self.activation_post_process_indexes # type: ignore[assignment] observed._patterns = self.patterns # type: ignore[assignment] observed._qconfig_map = self.qconfig_map # type: ignore[assignment] observed._prepare_custom_config_dict = \ self.prepare_custom_config_dict # type: ignore[assignment] observed._node_name_to_scope = self.node_name_to_scope # type: ignore[assignment] def restore_state(self, observed: GraphModule) -> None: assert is_observed_module(observed), \ 'incoming model must be produced by prepare_fx' self.activation_post_process_map = \ observed._activation_post_process_map # type: ignore[assignment] self.activation_post_process_indexes = \ observed._activation_post_process_indexes # type: ignore[assignment] self.patterns = observed._patterns # type: ignore[assignment] self.qconfig_map = observed._qconfig_map # type: ignore[assignment] self.prepare_custom_config_dict = \ observed._prepare_custom_config_dict # type: ignore[assignment] self.node_name_to_scope = observed._node_name_to_scope # type: ignore[assignment] def prepare( self, model: GraphModule, qconfig_dict: Any, node_name_to_scope: Dict[str, Tuple[str, type]], prepare_custom_config_dict: Dict[str, Any] = None, is_standalone_module: bool = False) -> ObservedGraphModule: return self._prepare( model, qconfig_dict, node_name_to_scope, prepare_custom_config_dict, is_standalone_module) def _run_weight_observers(self, observed: GraphModule) -> None: r''' Extract the subgraph that produces the weight for dynamic quant or weight only quant node and run the subgraph to observe the weight. Note that the observers of dynamic quant or weight only quant ops are run during the convert step. ''' for node in observed.graph.nodes: if node.op == 'call_function' and node.target in WEIGHT_INDEX_DICT: for i, node_arg in enumerate(node.args): if i in WEIGHT_INDEX_DICT[node.target]: # node_arg is weight weight_observer_nodes = collect_producer_nodes(node_arg) if weight_observer_nodes is not None: weight_observer_module = \ graph_module_from_producer_nodes( observed, weight_observer_nodes) # run the weight observer weight_observer_module() return def _convert(self, model: GraphModule, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None, is_standalone_module: bool = False, _remove_qconfig_flag: bool = True) -> QuantizedGraphModule: """ standalone_module means it a submodule that is not inlined in parent module, and will be quantized separately as one unit. Returns a quantized standalone module, whether input/output is quantized is specified by prepare_custom_config_dict, with input_quantized_idxs, output_quantized_idxs, please see docs for prepare_fx for details """ if convert_custom_config_dict is None: convert_custom_config_dict = {} self.restore_state(model) # always run weight observers in the top level forward method # for dynamic quant ops or weight only quant ops self._run_weight_observers(model) # move to cpu since we only have quantized cpu kernels model.eval().cpu() self.modules = dict(model.named_modules(remove_duplicate=False)) custom_module_classes = get_custom_module_class_keys( convert_custom_config_dict, "observed_to_quantized_custom_module_class") matches = self._find_matches( model.graph, self.modules, self.patterns, custom_module_classes=custom_module_classes) quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]] = \ self._find_quants(model.graph, self.modules, matches) self.quantized_graph = Graph() env: Dict[str, Node] = {} # TODO: merge quant_env with env quant_env: Dict[str, Tuple[Node, torch.dtype]] = {} graph_inputs: List[str] = [] for node in model.graph.nodes: if node.op == 'placeholder': graph_inputs.append(node.name) def load_non_quantized(n: Node) -> Node: if n.name not in env: assert n.name in quant_env, \ 'trying to load float node but did not find ' + \ 'node:' + n.name + \ ' in quantized or non quantized environment, env: ' + \ str(env) + ' quant_env:' + str(quant_env) quantized_node, _ = quant_env[n.name] env[n.name] = Proxy(quantized_node).dequantize().node return env[n.name] def load_quantized(n: Node) -> Node: assert n.name in quant_env, \ 'trying to load quantized node but did not find node:' + \ n.name + ' in quant environment:' + str(quant_env) return quant_env[n.name][0] def load_x(n: Node) -> Node: assert n.name in env or n.name in quant_env, \ 'node ' + n.name + ' does not exist in either environment' if n.name in quant_env: return quant_env[n.name][0] else: return env[n.name] def load_arg(quantized: Optional[Union[List[int], bool, Tuple[int, ...]]] ) -> Callable[[Node], Argument]: """ Input: quantized, which can be None, list, boolean or tuple - if quantized is None, then we'll load the node as long as it exists - if quantized is a boolean, then all args will be quantized/not quantized - if quantized is an empty list or tuple, then it is the same as load_arg(quantized=False) - if quantized is a list or tuple, then arg should be a list and the args with corresponding indexes will be quantized Output: fn which takes arg_or_args, and loads them from the corresponding environment depending on the value of quantized. """ assert quantized is None or \ isinstance(quantized, (tuple, list, bool)), type(quantized) if isinstance(quantized, (tuple, list)) and len(quantized) == 0: # empty tuple or list means nothing is quantized quantized = False def load_arg_impl(arg_or_args): # we'll update the format of `quantized` # to better match arg_or_args updated_quantized: Optional[Union[List[int], bool, Tuple[int, ...]]] = quantized if isinstance(quantized, (tuple, list)) and \ len(quantized) == 1 and isinstance(arg_or_args, Node): # when argument is one Node instead of tuple, we just need to check # 0 is in the quantized list updated_quantized = 0 in quantized if updated_quantized is None: return map_arg(arg_or_args, load_x) if isinstance(updated_quantized, bool): return map_arg( arg_or_args, load_quantized if updated_quantized else load_non_quantized) elif isinstance(updated_quantized, (tuple, list)): assert isinstance(arg_or_args, (tuple, list)), arg_or_args loaded_args = [] # for now, we only support quantizing positional arguments for i, a in enumerate(arg_or_args): if i in updated_quantized: loaded_args.append(map_arg(a, load_quantized)) else: loaded_args.append(map_arg(a, load_non_quantized)) return type(arg_or_args)(loaded_args) return load_arg_impl def node_arg_is_quantized(node_arg: Any) -> bool: if isinstance(node_arg, Node): assert node_arg.name in env or node_arg.name in quant_env, \ 'Expecting node_arg to be in the environment' # there might be nodes appearing in both environemnts, but # quant_env will take precedence if node_arg.name in quant_env: return True elif node_arg.name in env: return False else: return False elif isinstance(node_arg, list): quantized = map(node_arg_is_quantized, node_arg) if all(quantized): return True elif not any(quantized): return False else: raise Exception( "partially quantized inputs in list not handled yet") else: return False def is_output_quantized(node: Node, obj: QuantizeHandler) -> bool: """ Check if output node is quantized or not """ assert self.modules is not None # by default the output for a quantizable node is expected to be quantized quantized = True # Need to get correct quantized/non-quantized state forn the output # of FixedQParamsQuantizeHandler # TODO: we may want to try to remove the special case here # as well if type(obj) in [ CopyNodeQuantizeHandler, FixedQParamsOpQuantizeHandler ]: assert node.op in [ 'call_module', 'call_function', 'call_method'], \ 'FixedQParamsQuantizeHandler of type ' + node.op + ' is not handled' # TODO: need to extend this to consider all relevant args instead of just arg[0] quantized = node_arg_is_quantized(node.args[0]) # the output is unquantized if the node is not a CopyNode # and activation is fp16 (since we will output fp32 currently for fp16 # converter if not activation_is_int8_quantized(qconfig) or \ not input_output_observed(obj): quantized = False if node_return_type_is_int(node): quantized = False return quantized def insert_quantize_node(node: Node) -> None: """ Given a activation_post_process module call node, insert a quantize node""" assert self.modules is not None assert isinstance(node.target, str) observer_module = self.modules[node.target] prev_node = node.args[0] if observer_module.dtype == torch.float32: # copy the observer for fp32 dtype env[node.name] = self.quantized_graph.node_copy( node, load_non_quantized) elif isinstance(prev_node, Node) and prev_node.name in quant_env: # if previous node is already quantized, we'll just remove the # activation_post_process _, prev_dtype = quant_env[prev_node.name] current_dtype = observer_module.dtype if prev_dtype == current_dtype: quant_env[node.name] = quant_env[prev_node.name] else: root_module = self.modules[""] assert isinstance(prev_node, Node) observer_dtype: torch.dtype = observer_module.dtype # type: ignore[assignment] quant_env[node.name] = ( quantize_node(self, load_non_quantized(prev_node), observer_module, node, is_input=True), observer_dtype) else: # replace activation post process with quantization ops root_module = self.modules[""] assert isinstance(node.args[0], Node) dtype: torch.dtype = observer_module.dtype # type: ignore[assignment] quant_env[node.name] = ( quantize_node(self, load_non_quantized(node.args[0]), observer_module, node, is_input=True), dtype) # additional state to override inputs to be quantized, if specified # by the user placeholder_node_seen_cnt = 0 output_node_seen_cnt = 0 input_quantized_idxs: List[int] = self.prepare_custom_config_dict.get( "input_quantized_idxs", []) output_quantized_idxs: List[int] = self.prepare_custom_config_dict.get( "output_quantized_idxs", []) for node in model.graph.nodes: if node.op == "output": cur_output_node_idx = output_node_seen_cnt output_node_seen_cnt += 1 if cur_output_node_idx in output_quantized_idxs: # Result are kept quantized if the user specified the # output_quantized_idxs override. graph_output = map_arg(node.args[0], load_x) else: graph_output = map_arg(node.args[0], load_non_quantized) self.quantized_graph.output(graph_output) continue root_node, matched, matched_pattern, obj, qconfig = \ matches.get(node.name, (None, None, None, None, None)) if root_node is node: is_observed_standalone_module_node = ( node.op == 'call_module' and is_observed_standalone_module( self.modules[node.target]) ) if qconfig is None and not is_observed_standalone_module_node: result = self.quantized_graph.node_copy( node, load_non_quantized) quantized = False else: assert obj is not None # We will get whether the output is quantized or not before # convert for standalone module and after convert # for non-standalone module, since _standalone_module_output_quantized_idxs # is only available in observed standalone module if is_observed_standalone_module_node: out_quant_idxs = self.modules[node.target]._standalone_module_output_quantized_idxs.tolist() # type: ignore[operator] # noqa: B950 assert len(out_quant_idxs) <= 1, "Currently standalone only support one output" quantized = 0 in out_quant_idxs result = obj.convert( self, node, load_arg, is_reference=is_reference, convert_custom_config_dict=convert_custom_config_dict) if not is_observed_standalone_module_node: quantized = is_output_quantized(node, obj) if quantized: quant_env[node.name] = result, activation_dtype(qconfig) else: env[node.name] = result continue elif root_node is not None: if qconfig is None: # This branch is hit if all of these conditions are met: # 1. we are in a fusion pattern of multiple nodes (i.e. add-relu) # 2. the current node is not the "root_node" of the pattern # 3. quantization for this pattern is disabled # # In this case, we need to make sure to populate the env with # intermediate nodes manually, because the QuantizeHandler.convert # function will not be called. result = self.quantized_graph.node_copy( node, load_non_quantized) env[node.name] = result continue # handle activation post process calls if node.op == 'call_module' and \ is_activation_post_process(self.modules[node.target]): insert_quantize_node(node) elif node.op == 'placeholder': cur_placeholder_node_idx = placeholder_node_seen_cnt placeholder_node_seen_cnt += 1 if cur_placeholder_node_idx in input_quantized_idxs: quant_env[node.name] = \ self.quantized_graph.node_copy(node, load_non_quantized), activation_dtype(qconfig) if qconfig else None else: env[node.name] = \ self.quantized_graph.node_copy(node, load_non_quantized) else: # copy quantized or non-quantized node env[node.name] = \ self.quantized_graph.node_copy(node, load_non_quantized) # remove activation post process act_post_process_removed_graph = Graph() env = {} def load_arg_simple(a: Argument) -> Argument: return map_arg(a, lambda node: env[node.name]) for node in self.quantized_graph.nodes: if node.op == 'output': act_post_process_removed_graph.output( map_arg(node.args[0], load_arg_simple)) continue if node.op == 'call_module' and \ is_activation_post_process(self.modules[node.target]): # remove activation post process node env[node.name] = env[node.args[0].name] else: env[node.name] = act_post_process_removed_graph.node_copy( node, load_arg_simple) # removes qconfig and activation_post_process modules if _remove_qconfig_flag: _remove_qconfig(model) model = QuantizedGraphModule(model, act_post_process_removed_graph) return model # Trace back from the weight node util we hit getattr, reconstruct the # graph module with the traced nodes and run the graph module to pack the # weight. then replace the original chain of ops with the packed weight. def _fold_weight(self, quantized: QuantizedGraphModule) -> QuantizedGraphModule: packed_weights = dict() # map from folded node name to the prepacked weight name folded_nodes = dict() # get packed weights for node in quantized.graph.nodes: if node.op == 'call_function' and node.target in WEIGHT_PREPACK_OPS: nodes_to_fold = collect_producer_nodes(node) if nodes_to_fold is not None: for node_to_fold in nodes_to_fold: folded_nodes[node_to_fold.name] = node prepacking_module = graph_module_from_producer_nodes( quantized, nodes_to_fold) packed_weight = prepacking_module() packed_weights[node.name] = packed_weight # remove folded nodes and replace the prepacking node with getattr folded_graph = Graph() env: Dict[Any, Any] = {} def load_arg(a): return map_arg(a, lambda node: env[node.name]) quantized_root = quantized quantized_graph = quantized.graph for node in quantized_graph.nodes: prepack_node = folded_nodes.get(node.name, None) if prepack_node is node: packed_weight = packed_weights[node.name] # add a prepacked attribute to root op_node = list(prepack_node.users)[0] module_path, _ = self.node_name_to_scope[op_node.name] get_new_packed_weight_name = \ get_new_attr_name_with_prefix(module_path + '_packed_weight_') packed_weight_name = get_new_packed_weight_name(quantized_root) setattr(quantized_root, packed_weight_name, packed_weight) # replace prepack node with a getattr node env[node.name] = folded_graph.create_node( 'get_attr', packed_weight_name, (), {}) elif prepack_node is not None: # remove the foled node continue else: # copy other nodes env[node.name] = folded_graph.node_copy(node, load_arg) quantized = QuantizedGraphModule(quantized_root, folded_graph) return quantized def _fold_quant_dequant(self, quantized: QuantizedGraphModule) -> QuantizedGraphModule: """ If quantize op is followed by a dequantize, we fold the ops together and remove the dequant. In the case where the only consumer of quantize_per_tensor is a dequant op, we erase both nodes from the graph, along with the qparams associated with quantize op. """ for node in quantized.graph.nodes: if node.op == 'call_function' and node.target == torch.quantize_per_tensor: quant_uses = list(node.users) quant_args = node.args float_tensor = quant_args[0] for user in quant_uses: is_dequant = user.op == 'call_method' and user.target == "dequantize" if is_dequant: user.replace_all_uses_with(float_tensor) quantized.graph.erase_node(user) # If dequant is the only user of quant node, we erase quant node # and all it's inputs. if len(quant_uses) == 1: quantized.graph.erase_node(node) for arg in quant_args[1:]: if isinstance(arg, Node): quantized.graph.erase_node(arg) return quantized def convert(self, model: GraphModule, is_reference: bool = False, convert_custom_config_dict: Dict[str, Any] = None, is_standalone_module: bool = False, _remove_qconfig: bool = True) -> QuantizedGraphModule: quantized = self._convert( model, is_reference, convert_custom_config_dict, is_standalone_module, _remove_qconfig_flag=_remove_qconfig) if not is_reference: quantized = self._fold_weight(quantized) quantized = self._fold_quant_dequant(quantized) return quantized def _find_matches( self, graph: Graph, modules: Dict[str, torch.nn.Module], patterns: Dict[Pattern, QuantizeHandler], standalone_module_names: List[str] = None, standalone_module_classes: List[Callable] = None, custom_module_classes: List[Any] = None) -> Dict[str, MatchResult]: """ Matches the nodes in the input graph to quantization patterns, and outputs the information needed to quantize them in future steps. Inputs: - graph: an fx.Graph object - modules: a mapping of fully qualified module name to instance, for example, {'foo': ModuleFoo, ...} - patterns: a mapping from a tuple of nodes in reverse order to uninitialized QuantizeHandler subclass. Outputs a map of node_name -> (node, matched_values, matched_pattern, QuantizeHandler instance, qconfig) For example, { 'relu_1': (relu_1, [relu_1], torch.nn.functional.relu, <CopyNodeQuantizeHandler instance>, QConfig(...)), ... } """ if custom_module_classes is None: custom_module_classes = [] if standalone_module_classes is None: standalone_module_classes = [] if standalone_module_names is None: standalone_module_names = [] match_map: Dict[str, MatchResult] = {} all_matched : Set[str] = set() def record_match(pattern, node, matched): if isinstance(pattern, tuple): s, *args = pattern record_match(s, node, matched) if pattern[0] is not getattr: for subpattern, arg in zip(args, node.args): record_match(subpattern, arg, matched) else: matched.append(node) cache_for_no_tensor_check: Dict[Node, bool] = dict() for node in reversed(graph.nodes): if node.name not in match_map and node.name not in all_matched: for pattern, value in patterns.items(): if is_match(modules, node, pattern): skip_this_match = False if value is BinaryOpQuantizeHandler: use_copy_node = all_node_args_have_no_tensors(node, modules, cache_for_no_tensor_check) if use_copy_node: # TODO(future PR): update the pattern to quantize # handler logic to take this into account. value = CopyNodeQuantizeHandler # type: ignore[assignment] # to properly check for dtype support, we need to # navigate to the base node of an add-relu or mul-relu # pattern base_node = node if ( (node.op == 'call_function' and node.target is torch.nn.functional.relu) or (node.op == 'call_module' and isinstance(modules[node.target], torch.nn.ReLU)) ): base_node = node.args[0] this_node_qconfig = \ self.qconfig_map[base_node.name] if this_node_qconfig: dtypes = get_qconfig_dtypes(this_node_qconfig) # TODO(future PR): update the pattern to quantize # handler logic to take this into account. # This needs to handle 3 cases # 1) op and dtype is in either [is_ref or non-ref] list -> don't skip # 2) op is not in either list (i.e. relu) -> don't skip # 3) op is in non-ref list, but not for dtype, and op+dtype not in is_ref list -> skip # note: the value of is_reference is unknown at prepare, so we have to cover both cases # handle is_reference = False skip_match_not_is_reference = ( (base_node.target in binary_op_supported_dtypes) and (dtypes not in binary_op_supported_dtypes[base_node.target]) ) # handle is_reference = True supported_is_reference = ( (base_node.target in binary_reference_op_supported_dtypes) and (dtypes in binary_reference_op_supported_dtypes[base_node.target]) ) # only skip if not reference says skip and is_reference doesn't support skip_this_match = skip_match_not_is_reference and not supported_is_reference if not skip_this_match: matched: List[Any] = [] record_match(pattern, node, matched) for n in matched: match_map[n.name] = ( node, matched, pattern, value(self, node), # type: ignore[operator] self.qconfig_map[n.name]) all_matched.add(n.name) # break after finding the first match break # add custom module instances to the match result assert self.modules is not None for node in graph.nodes: if node.op == 'call_module' and \ type(self.modules[node.target]) in custom_module_classes: custom_module_qconfig = self.qconfig_map[node.name] match_map[node.name] = ( node, [node], None, CustomModuleQuantizeHandler(self, node), custom_module_qconfig) def is_standalone_module(node_target): assert self.modules is not None return ( node_target in standalone_module_names or # type: ignore[operator] type(self.modules[node_target]) in standalone_module_classes # type: ignore[operator] ) # add standalone modules to the match for node in graph.nodes: if node.op == 'call_module' and \ (is_standalone_module(node.target) or is_observed_standalone_module(self.modules[node.target])): # add node to matched nodes custom_module_qconfig = self.qconfig_map[node.name] match_map[node.name] = ( node, [node], None, StandaloneModuleQuantizeHandler(self, node), custom_module_qconfig) return match_map def _find_quants( self, graph: Graph, modules: Dict[str, torch.nn.Module], matches: Dict[str, MatchResult]) -> Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]: """ Takes the nodes in the input graph and pending matches, and finds and returns the input and output nodes which need to be quantized. Inputs: - graph: an fx.Graph object - modules: a dictionary from module path to module - matches: output of self._find_matches function Outputs a map of node_name -> list of (QuantizeHandler instance (always DefaultQuantizeHandler), activation_post_process (observer/fake_quantize module) constructor) the reason why the value is a list is because each node can be configured with multiple qconfigs, for example in a subgraph of functional linear op followed by a sigmoid op, linear is configured with int8 static quantization and sigmoid is configured with float16 static quantization, then the output of linear (and input of sigmoid) needs first to be quantized to int8 and then float16 """ quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]] = defaultdict(list) cache_for_no_tensor_check: Dict[Node, bool] = dict() def visit(node, matched_pattern, qconfig): def visit_arg(arg): is_weight = node_arg_is_weight(node, arg) is_bias = node_arg_is_bias(node, arg) is_activation = not (is_weight or is_bias) no_tensors = all_node_args_have_no_tensors(arg, modules, cache_for_no_tensor_check) # bias needs to be quantized if activation is fp16 and weight is fp16 # this is the case for glow should_add_handler = qconfig is not None and ( (is_activation and activation_is_statically_quantized(qconfig)) or (is_weight and weight_is_quantized(qconfig)) or (is_bias and activation_dtype(qconfig) == torch.float16) and weight_dtype(qconfig) == torch.float16) and \ (not no_tensors) if should_add_handler: act_post_process_ctr = qconfig.weight if is_weight else \ qconfig.activation # overwrite the constructor from qconfig if it is int8 quantized if activation_is_int8_quantized(qconfig): act_post_process_ctr = \ get_default_output_activation_post_process_map().get( matched_pattern, act_post_process_ctr) if len(quants[arg.name]) > 0: _, last_act_post_process_ctr = quants[arg.name][-1] if act_post_process_ctr == last_act_post_process_ctr: # we won't add act_post_process_ctr if it is the same as the # one return visit_arg quants[arg.name].append(( DefaultQuantizeHandler(self, arg), act_post_process_ctr)) return visit_arg for node in graph.nodes: if node.name in matches: root_node, matched_nodes, matched_pattern, quantize_handler, \ qconfig = matches[node.name] if root_node is node and \ input_output_observed(quantize_handler): # matched_nodes[-1] is the first op in the sequence and # matched_nodes[0] is the last op in the sequence # inputs # matched_pattern is set to None for inputs because # we only want to select QuantizeHandler object based # on pattern for output, inputs will always use # DefaultQuantizeHandler map_arg(matched_nodes[-1].args, visit(matched_nodes[-1], None, qconfig)) map_arg(matched_nodes[-1].kwargs, visit(matched_nodes[-1], None, qconfig)) # output # we don't insert observer for output of standalone module if not isinstance( quantize_handler, StandaloneModuleQuantizeHandler): # passing in matched_pattern here so that we can # customize activation_post_process constructor for # output based on the pattern, e.g. # for sigmoid op we'll use # default_affine_fixed_qparam_fake_quant map_arg(matched_nodes[0], visit(None, matched_pattern, qconfig)) return quants
47.043451
155
0.603333
0d963e21716fc51ad0e70fb5fe9d0ca113431ba4
43,076
py
Python
src/sage/logic/boolformula.py
defeo/sage
d8822036a9843bd4d75845024072515ede56bcb9
[ "BSL-1.0" ]
null
null
null
src/sage/logic/boolformula.py
defeo/sage
d8822036a9843bd4d75845024072515ede56bcb9
[ "BSL-1.0" ]
null
null
null
src/sage/logic/boolformula.py
defeo/sage
d8822036a9843bd4d75845024072515ede56bcb9
[ "BSL-1.0" ]
null
null
null
r""" Boolean Formulas Formulas consist of the operators ``&``, ``|``, ``~``, ``^``, ``->``, ``<->``, corresponding to ``and``, ``or``, ``not``, ``xor``, ``if...then``, ``if and only if``. Operators can be applied to variables that consist of a leading letter and trailing underscores and alphanumerics. Parentheses may be used to explicitly show order of operation. EXAMPLES: Create boolean formulas and combine them with :meth:`~sage.logic.boolformula.BooleanFormula.ifthen()` method:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a&((b|c)^a->c)<->b") sage: g = propcalc.formula("boolean<->algebra") sage: (f&~g).ifthen(f) ((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b) We can create a truth table from a formula:: sage: f.truthtable() a b c value False False False True False False True True False True False False False True True False True False False True True False True False True True False True True True True True sage: f.truthtable(end=3) a b c value False False False True False False True True False True False False sage: f.truthtable(start=4) a b c value True False False True True False True False True True False True True True True True sage: propcalc.formula("a").truthtable() a value False False True True Now we can evaluate the formula for a given set of inputs:: sage: f.evaluate({'a':True, 'b':False, 'c':True}) False sage: f.evaluate({'a':False, 'b':False, 'c':True}) True And we can convert a boolean formula to conjunctive normal form:: sage: f.convert_cnf_table() sage: f (a|~b|c)&(a|~b|~c)&(~a|b|~c) sage: f.convert_cnf_recur() sage: f (a|~b|c)&(a|~b|~c)&(~a|b|~c) Or determine if an expression is satisfiable, a contradiction, or a tautology:: sage: f = propcalc.formula("a|b") sage: f.is_satisfiable() True sage: f = f & ~f sage: f.is_satisfiable() False sage: f.is_contradiction() True sage: f = f | ~f sage: f.is_tautology() True The equality operator compares semantic equivalence:: sage: f = propcalc.formula("(a|b)&c") sage: g = propcalc.formula("c&(b|a)") sage: f == g True sage: g = propcalc.formula("a|b&c") sage: f == g False It is an error to create a formula with bad syntax:: sage: propcalc.formula("") Traceback (most recent call last): ... SyntaxError: malformed statement sage: propcalc.formula("a&b~(c|(d)") Traceback (most recent call last): ... SyntaxError: malformed statement sage: propcalc.formula("a&&b") Traceback (most recent call last): ... SyntaxError: malformed statement sage: propcalc.formula("a&b a") Traceback (most recent call last): ... SyntaxError: malformed statement It is also an error to not abide by the naming conventions:: sage: propcalc.formula("~a&9b") Traceback (most recent call last): ... NameError: invalid variable name 9b: identifiers must begin with a letter and contain only alphanumerics and underscores AUTHORS: - Chris Gorecki (2006): initial version - Paul Scurek (2013-08-03): added polish_notation, full_tree, updated docstring formatting - Paul Scurek (2013-08-08): added :meth:`~sage.logic.boolformula.BooleanFormula.implies()` """ from __future__ import absolute_import #***************************************************************************** # Copyright (C) 2006 William Stein <wstein.gmail.com> # Copyright (C) 2006 Chris Gorecki <chris.k.gorecki@gmail.com> # Copyright (C) 2013 Paul Scurek <scurek86@gmail.com> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from . import booleval from . import logictable from . import logicparser # import boolopt from types import TupleType, ListType from sage.misc.flatten import flatten latex_operators = [('&', '\\wedge '), ('|', '\\vee '), ('~', '\\neg '), ('^', '\\oplus '), ('<->', '\\leftrightarrow '), ('->', '\\rightarrow ')] class BooleanFormula(object): """ Boolean formulas. INPUT: - ``self`` -- calling object - ``exp`` -- a string; this contains the boolean expression to be manipulated - ``tree`` -- a list; this contains the parse tree of the expression. - ``vo`` -- a list; this contains the variables in the expression, in the order that they appear; each variable only occurs once in the list """ __expression = "" __tree = [] __vars_order = [] def __init__(self, exp, tree, vo): r""" Initialize the data fields. EXAMPLES: This example illustrates the creation of a statement:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b|~(c|a)") sage: s a&b|~(c|a) """ self.__expression = exp.replace(' ', '') self.__tree = tree self.__vars_order = vo def __repr__(self): r""" Return a string representation of this statement. OUTPUT: A string representation of calling statement EXAMPLES:: sage: import sage.logic.propcalc as propcalc sage: propcalc.formula("man->monkey&human") man->monkey&human """ return self.__expression def _latex_(self): r""" Return a LaTeX representation of this statement. OUTPUT: A string containing the latex code for the statement EXAMPLES:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("man->monkey&human") sage: latex(s) man\rightarrow monkey\wedge human sage: f = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") sage: latex(f) a\wedge ((\neg b\vee c)\oplus a\rightarrow c)\leftrightarrow \neg b """ latex_expression = self.__expression for old, new in latex_operators: latex_expression = latex_expression.replace(old, new) return latex_expression def polish_notation(self): r""" Convert the calling boolean formula into polish notation. OUTPUT: A string representation of the formula in polish notation. EXAMPLES: This example illustrates converting a formula to polish notation:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("~~a|(c->b)") sage: f.polish_notation() '|~~a->cb' sage: g = propcalc.formula("(a|~b)->c") sage: g.polish_notation() '->|a~bc' AUTHORS: - Paul Scurek (2013-08-03) """ return ''.join(flatten(logicparser.polish_parse(repr(self)))) def tree(self): r""" Return the parse tree of this boolean expression. OUTPUT: The parse tree as a nested list EXAMPLES: This example illustrates how to find the parse tree of a boolean formula:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("man -> monkey & human") sage: s.tree() ['->', 'man', ['&', 'monkey', 'human']] :: sage: f = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") sage: f.tree() ['<->', ['&', 'a', ['->', ['^', ['|', ['~', 'b', None], 'c'], 'a'], 'c']], ['~', 'b', None]] .. NOTE:: This function is used by other functions in the logic module that perform semantic operations on a boolean formula. """ return self.__tree def full_tree(self): r""" Return a full syntax parse tree of the calling formula. OUTPUT: The full syntax parse tree as a nested list EXAMPLES: This example shows how to find the full syntax parse tree of a formula:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a->(b&c)") sage: s.full_tree() ['->', 'a', ['&', 'b', 'c']] sage: t = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") sage: t.full_tree() ['<->', ['&', 'a', ['->', ['^', ['|', ['~', 'b'], 'c'], 'a'], 'c']], ['~', 'b']] sage: f = propcalc.formula("~~(a&~b)") sage: f.full_tree() ['~', ['~', ['&', 'a', ['~', 'b']]]] .. NOTE:: This function is used by other functions in the logic module that perform syntactic operations on a boolean formula. AUTHORS: - Paul Scurek (2013-08-03) """ return logicparser.polish_parse(repr(self)) def __or__(self, other): r""" Overload the ``|`` operator to 'or' two statements together. INPUT: - ``other`` -- a boolean formula; this is the statement on the right side of the operator OUTPUT: A boolean formula of the form ``self | other``. EXAMPLES: This example illustrates combining two formulas with ``|``:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s | f (a&b)|(c^d) """ return self.add_statement(other, '|') def __and__(self, other): r""" Overload the ``&`` operator to 'and' two statements together. INPUT: - ``other`` -- a boolean formula; this is the formula on the right side of the operator OUTPUT: A boolean formula of the form ``self & other``. EXAMPLES: This example shows how to combine two formulas with ``&``:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s & f (a&b)&(c^d) """ return self.add_statement(other, '&') def __xor__(self, other): r""" Overload the ``^`` operator to 'xor' two statements together. INPUT: - ``other`` -- a boolean formula; this is the formula on the right side of the operator OUTPUT: A boolean formula of the form ``self ^ other``. EXAMPLES: This example illustrates how to combine two formulas with ``^``:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s ^ f (a&b)^(c^d) """ return self.add_statement(other, '^') def __pow__(self, other): r""" Overload the ``^`` operator to 'xor' two statements together. INPUT: - ``other`` -- a boolean formula; this is the formula on the right side of the operator OUTPUT: A boolean formula of the form ``self ^ other``. EXAMPLES: This example shows how to combine two formulas with ``^``:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s ^ f (a&b)^(c^d) .. TODO:: This function seems to be identical to ``__xor__``. Thus, this function should be replaced with ``__xor__`` everywhere that it appears in the logic module. Then it can be deleted altogether. """ return self.add_statement(other, '^') def __invert__(self): r""" Overload the ``~`` operator to 'not' a statement. OUTPUT: A boolean formula of the form ``~self``. EXAMPLES: This example shows how to negate a boolean formula:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: ~s ~(a&b) """ exp = '~(' + self.__expression + ')' parse_tree, vars_order = logicparser.parse(exp) return BooleanFormula(exp, parse_tree, vars_order) def ifthen(self, other): r""" Combine two formulas with the ``->`` operator. INPUT: - ``other`` -- a boolean formula; this is the formula on the right side of the operator OUTPUT: A boolean formula of the form ``self -> other``. EXAMPLES: This example illustrates how to combine two formulas with '->':: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s.ifthen(f) (a&b)->(c^d) """ return self.add_statement(other, '->') def iff(self, other): r""" Combine two formulas with the ``<->`` operator. INPUT: - ``other`` -- a boolean formula; this is the formula on the right side of the operator OUTPUT: A boolean formula of the form ``self <-> other``. EXAMPLES: This example illustrates how to combine two formulas with '<->':: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s.iff(f) (a&b)<->(c^d) """ return self.add_statement(other, '<->') def __eq__(self, other): r""" Overload the ``==`` operator to deterine logical equivalence. INPUT: - ``other`` -- a boolean formula; this is the formula on the right side of the comparator OUTPUT: A boolean value to be determined as follows: - ``True`` if ``self`` and ``other`` are logically equivalent - ``False`` if ``self`` and ``other`` are not logically equivalent EXAMPLES: This example shows how to determine logical equivalence:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("(a|b)&c") sage: g = propcalc.formula("c&(b|a)") sage: f == g True :: sage: g = propcalc.formula("a|b&c") sage: f == g False """ return self.equivalent(other) def truthtable(self, start=0, end=-1): r""" Return a truth table for the calling formula. INPUT: - ``start`` -- (default: 0) an integer; this is the first row of the truth table to be created - ``end`` -- (default: -1) an integer; this is the laste row of the truth table to be created OUTPUT: The truth table as a 2-D array EXAMPLES: This example illustrates the creation of a truth table:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b|~(c|a)") sage: s.truthtable() a b c value False False False True False False True False False True False True False True True False True False False False True False True False True True False True True True True True We can now create a truthtable of rows 1 to 4, inclusive:: sage: s.truthtable(1, 5) a b c value False False True False False True False True False True True False True False False False .. NOTE:: Each row of the table corresponds to a binary number, with each variable associated to a column of the number, and taking on a true value if that column has a value of 1. Please see the logictable module for details. The function returns a table that start inclusive and end exclusive so ``truthtable(0, 2)`` will include row 0, but not row 2. When sent with no start or end parameters, this is an exponential time function requiring `O(2^n)` time, where `n` is the number of variables in the expression. """ max = 2 ** len(self.__vars_order) if end < 0: end = max if end > max: end = max if start < 0: start = 0 if start > max: start = max keys, table = [], [] vars = {} for var in self.__vars_order: vars[var] = False keys.insert(0, var) keys = list(keys) for i in range(start, end): j = 0 row = [] for key in keys: bit = self.get_bit(i, j) vars[key] = bit j += 1 row.insert(0, bit) row.append(booleval.eval_formula(self.__tree, vars)) table.append(row) keys.reverse() table = logictable.Truthtable(table, keys) return table def evaluate(self, var_values): r""" Evaluate a formula for the given input values. INPUT: - ``var_values`` -- a dictionary; this contains the pairs of variables and their boolean values. OUTPUT: The result of the evaluation as a boolean. EXAMPLES: This example illustrates the evaluation of a boolean formula:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a&b|c") sage: f.evaluate({'a':False, 'b':False, 'c':True}) True sage: f.evaluate({'a':True, 'b':False, 'c':False}) False """ return booleval.eval_formula(self.__tree, var_values) def is_satisfiable(self): r""" Determine if the formula is ``True`` for some assignment of values. OUTPUT: A boolean value to be determined as follows: - ``True`` if there is an assignment of values that makes the formula ``True``. - ``False`` if the formula cannot be made ``True`` by any assignment of values. EXAMPLES: This example illustrates how to check a formula for satisfiability:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a|b") sage: f.is_satisfiable() True sage: g = f & (~f) sage: g.is_satisfiable() False """ table = self.truthtable().get_table_list() for row in table[1:]: if row[-1] is True: return True return False def is_tautology(self): r""" Determine if the formula is always ``True``. OUTPUT: A boolean value to be determined as follows: - ``True`` if the formula is a tautology. - ``False`` if the formula is not a tautology. EXAMPLES: This example illustrates how to check if a formula is a tautology:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a|~a") sage: f.is_tautology() True sage: f = propcalc.formula("a&~a") sage: f.is_tautology() False sage: f = propcalc.formula("a&b") sage: f.is_tautology() False """ return not (~self).is_satisfiable() def is_contradiction(self): r""" Determine if the formula is always ``False``. OUTPUT: A boolean value to be determined as follows: - ``True`` if the formula is a contradiction. - ``False`` if the formula is not a contradiction. EXAMPLES: This example illustrates how to check if a formula is a contradiction. :: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a&~a") sage: f.is_contradiction() True sage: f = propcalc.formula("a|~a") sage: f.is_contradiction() False sage: f = propcalc.formula("a|b") sage: f.is_contradiction() False """ return not self.is_satisfiable() def implies(self, other): r""" Determine if calling formula implies other formula. INPUT: - ``self`` -- calling object - ``other`` -- instance of :class:`BooleanFormula` OUTPUT: A boolean value to be determined as follows: - ``True`` - if ``self`` implies ``other`` - ``False`` - if ``self does not imply ``other`` EXAMPLES: This example illustrates determining if one formula implies another:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a<->b") sage: g = propcalc.formula("b->a") sage: f.implies(g) True :: sage: h = propcalc.formula("a->(a|~b)") sage: i = propcalc.formula("a") sage: h.implies(i) False AUTHORS: - Paul Scurek (2013-08-08) """ # input validation if not isinstance(other, BooleanFormula): raise TypeError("implies() takes an instance of the BooleanFormula() class as input") conditional = self.ifthen(other) return (conditional).is_tautology() def equivalent(self, other): r""" Determine if two formulas are semantically equivalent. INPUT: - ``self`` -- calling object - ``other`` -- instance of BooleanFormula class. OUTPUT: A boolean value to be determined as follows: True - if the two formulas are logically equivalent False - if the two formulas are not logically equivalent EXAMPLES: This example shows how to check for logical equivalence:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("(a|b)&c") sage: g = propcalc.formula("c&(a|b)") sage: f.equivalent(g) True sage: g = propcalc.formula("a|b&c") sage: f.equivalent(g) False """ return self.iff(other).is_tautology() def convert_cnf_table(self): r""" Convert boolean formula to conjunctive normal form. OUTPUT: An instance of :class:`BooleanFormula` in conjunctive normal form. EXAMPLES: This example illustrates how to convert a formula to cnf:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a ^ b <-> c") sage: s.convert_cnf() sage: s (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c) We now show that :meth:`convert_cnf` and :meth:`convert_cnf_table` are aliases:: sage: t = propcalc.formula("a ^ b <-> c") sage: t.convert_cnf_table(); t (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c) sage: t == s True .. NOTE:: This method creates the cnf parse tree by examining the logic table of the formula. Creating the table requires `O(2^n)` time where `n` is the number of variables in the formula. """ str = '' t = self.truthtable() table = t.get_table_list() vars = table[0] for row in table[1:]: if row[-1] is False: str += '(' for i in range(len(row) - 1): if row[i] is True: str += '~' str += vars[i] str += '|' str = str[:-1] + ')&' self.__expression = str[:-1] # in case of tautology if len(self.__expression) == 0: self.__expression = '(' + self.__vars_order[0] + '|~' + self.__vars_order[0] + ')' self.__tree, self.__vars_order = logicparser.parse(self.__expression) convert_cnf = convert_cnf_table def convert_cnf_recur(self): r""" Convert boolean formula to conjunctive normal form. OUTPUT: An instance of :class:`BooleanFormula` in conjunctive normal form. EXAMPLES: This example hows how to convert a formula to conjunctive normal form:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a^b<->c") sage: s.convert_cnf_recur() sage: s (~a|a|c)&(~b|a|c)&(~a|b|c)&(~b|b|c)&(~c|a|b)&(~c|~a|~b) .. NOTE:: This function works by applying a set of rules that are guaranteed to convert the formula. Worst case the converted expression has an `O(2^n)` increase in size (and time as well), but if the formula is already in CNF (or close to) it is only `O(n)`. This function can require an exponential blow up in space from the original expression. This in turn can require large amounts of time. Unless a formula is already in (or close to) being in cnf :meth:`convert_cnf()` is typically preferred, but results can vary. """ self.__tree = logicparser.apply_func(self.__tree, self.reduce_op) self.__tree = logicparser.apply_func(self.__tree, self.dist_not) self.__tree = logicparser.apply_func(self.__tree, self.dist_ors) self.convert_expression() def satformat(self): r""" Return the satformat representation of a boolean formula. OUTPUT: The satformat of the formula as a string. EXAMPLES: This example illustrates how to find the satformat of a formula:: sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a&((b|c)^a->c)<->b") sage: f.convert_cnf() sage: f (a|~b|c)&(a|~b|~c)&(~a|b|~c) sage: f.satformat() 'p cnf 3 0\n1 -2 3 0 1 -2 -3 \n0 -1 2 -3' .. NOTE:: See www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps for a description of satformat. If the instance of boolean formula has not been converted to CNF form by a call to :meth:`convert_cnf()` or :meth:`convert_cnf_recur()`, then :meth:`satformat()` will call :meth:`convert_cnf()`. Please see the notes for :meth:`convert_cnf()` and :meth:`convert_cnf_recur()` for performance issues. """ self.convert_cnf_table() s = '' vars_num = {} i = 0 clauses = 0 for e in self.__vars_order: vars_num[e] = str(i + 1) i += 1 i = 0 w = 1 while i < len(self.__expression): c = self.__expression[i] if c == ')': clauses += 1 if c in '()|': i += 1 continue if c == '~': s += '-' elif c == '&': s += '0 ' else: varname = '' while i < self.__expression[i] not in '|) ': varname += self.__expression[i] i += 1 s += vars_num[varname] + ' ' if len(s) >= (w * 15) and s[-1] != '-': s += '\n' w += 1 i += 1 s = 'p cnf ' + str(len(self.__vars_order)) + ' ' + str(clauses) + '\n' + s return s[:-1] # def simplify(self): # r""" # This function uses the propcalc package to simplify an expression to # its minimal form. # # INPUT: # self -- the calling object. # # OUTPUT: # A simplified expression. # # EXAMPLES: # sage: import sage.logic.propcalc as propcalc # sage: f = propcalc.formula("a&((b|c)^a->c)<->b") # sage: f.truthtable() # a b c value # False False False True # False False True True # False True False False # False True True False # True False False True # True False True False # True True False True # True True True True # sage: f.simplify() # (~a&~b)|(a&~b&~c)|(a&b) # sage: f.truthtable() # a b c value # False False False True # False False True True # False True False False # False True True False # True False False True # True False True False # True True False True # True True True True # # .. NOTES:: # # If the instance of boolean formula has not been converted to # cnf form by a call to convert_cnf() or convert_cnf_recur() # satformat() will call convert_cnf(). Please see the notes for # convert_cnf() and convert_cnf_recur() for performance issues. # """ # exp = '' # self.__tree = logicparser.apply_func(self.__tree, self.reduce_op) # plf = logicparser.apply_func(self.__tree, self.convert_opt) # wff = boolopt.PLFtoWFF()(plf) # convert to positive-normal form # wtd = boolopt.WFFtoDNF() # dnf = wtd(wff) # dnf = wtd.clean(dnf) # if(dnf == [] or dnf == [[]]): # exp = self.__vars_order[0] + '&~' + self.__vars_order[0] + ' ' # opt = boolopt.optimize(dnf) # if(exp == '' and (opt == [] or opt == [[]])): # exp = self.__vars_order[0] + '|~' + self.__vars_order[0] + ' ' # if(exp == ''): # for con in opt: # s = '(' # for prop in con: # if(prop[0] == 'notprop'): # s += '~' # s += prop[1] + '&' # exp += s[:-1] + ')|' # self.__expression = exp[:-1] # self.__tree, self.__vars_order = logicparser.parse(self.__expression) # return BooleanFormula(self.__expression, self.__tree, self.__vars_order) def convert_opt(self, tree): r""" Convert a parse tree to the tuple form used by :meth:`bool_opt()`. INPUT: - ``tree`` -- a list; this is a branch of a parse tree and can only contain the '&', '|' and '~' operators along with variables OUTPUT: A 3-tuple. EXAMPLES: This example illustrates the conversion of a formula into its corresponding tuple:: sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("a&(b|~c)") sage: tree = ['&', 'a', ['|', 'b', ['~', 'c', None]]] sage: logicparser.apply_func(tree, s.convert_opt) ('and', ('prop', 'a'), ('or', ('prop', 'b'), ('not', ('prop', 'c')))) .. NOTE:: This function only works on one branch of the parse tree. To apply the function to every branch of a parse tree, pass the function as an argument in :func:`~sage.logic.logicparser.apply_func()` in :mod:`~sage.logic.logicparser`. """ if not isinstance(tree[1], TupleType) and not (tree[1] is None): lval = ('prop', tree[1]) else: lval = tree[1] if not isinstance(tree[2], TupleType) and not(tree[2] is None): rval = ('prop', tree[2]) else: rval = tree[2] if tree[0] == '~': return ('not', lval) if tree[0] == '&': op = 'and' if tree[0] == '|': op = 'or' return (op, lval, rval) def add_statement(self, other, op): r""" Combine two formulas with the given operator. INPUT: - ``other`` -- instance of :class:`BooleanFormula`; this is the formula on the right of the operator - ``op`` -- a string; this is the operator used to combine the two formulas OUTPUT: The result as an instance of :class:`BooleanFormula`. EXAMPLES: This example shows how to create a new formula from two others:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s.add_statement(f, '|') (a&b)|(c^d) sage: s.add_statement(f, '->') (a&b)->(c^d) """ exp = '(' + self.__expression + ')' + op + '(' + other.__expression + ')' parse_tree, vars_order = logicparser.parse(exp) return BooleanFormula(exp, parse_tree, vars_order) def get_bit(self, x, c): r""" Determine if bit ``c`` of the number ``x`` is 1. INPUT: - ``x`` -- an integer; this is the number from which to take the bit - ``c`` -- an integer; this is the but number to be taken, where 0 is the low order bit OUTPUT: A boolean to be determined as follows: - ``True`` if bit ``c`` of ``x`` is 1. - ``False`` if bit c of x is not 1. EXAMPLES: This example illustrates the use of :meth:`get_bit`:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: s.get_bit(2, 1) True sage: s.get_bit(8, 0) False It is not an error to have a bit out of range:: sage: s.get_bit(64, 7) False Nor is it an error to use a negative number:: sage: s.get_bit(-1, 3) False sage: s.get_bit(64, -1) True sage: s.get_bit(64, -2) False .. NOTE:: The 0 bit is the low order bit. Errors should be handled gracefully by a return of ``False``, and negative numbers ``x`` always return ``False`` while a negative ``c`` will index from the high order bit. """ bits = [] while x > 0: if x % 2 == 0: b = False else: b = True x = int(x / 2) bits.append(b) if c > len(bits) - 1: return False else: return bits[c] def reduce_op(self, tree): r""" Convert if-and-only-if, if-then, and xor operations to operations only involving and/or operations. INPUT: - ``tree`` -- a list; this represents a branch of a parse tree OUTPUT: A new list with no '^', '->', or '<->' as first element of list. EXAMPLES: This example illustrates the use of :meth:`reduce_op` with :func:`apply_func`:: sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("a->b^c") sage: tree = ['->', 'a', ['^', 'b', 'c']] sage: logicparser.apply_func(tree, s.reduce_op) ['|', ['~', 'a', None], ['&', ['|', 'b', 'c'], ['~', ['&', 'b', 'c'], None]]] .. NOTE:: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to :func:`~sage.logic.logicparser.apply_func()` in :mod:`~sage.logic.logicparser`. """ if tree[0] == '<->': # parse tree for (~tree[1]|tree[2])&(~tree[2]|tree[1]) new_tree = ['&', ['|', ['~', tree[1], None], tree[2]], ['|', ['~', tree[2], None], tree[1]]] elif tree[0] == '^': # parse tree for (tree[1]|tree[2])&~(tree[1]&tree[2]) new_tree = ['&', ['|', tree[1], tree[2]], ['~', ['&', tree[1], tree[2]], None]] elif tree[0] == '->': # parse tree for ~tree[1]|tree[2] new_tree = ['|', ['~', tree[1], None], tree[2]] else: new_tree = tree return new_tree def dist_not(self, tree): r""" Distribute '~' operators over '&' and '|' operators. INPUT: - ``tree`` a list; this represents a branch of a parse tree OUTPUT: A new list. EXAMPLES: This example illustrates the distribution of '~' over '&':: sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("~(a&b)") sage: tree = ['~', ['&', 'a', 'b'], None] sage: logicparser.apply_func(tree, s.dist_not) #long time ['|', ['~', 'a', None], ['~', 'b', None]] .. NOTE:: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to :func:`~sage.logic.logicparser.apply_func()` in :mod:`~sage.logic.logicparser`. """ if tree[0] == '~' and isinstance(tree[1], ListType): op = tree[1][0] if op != '~': if op == '&': op = '|' else: op = '&' new_tree = [op, ['~', tree[1][1], None], ['~', tree[1][2], None]] return logicparser.apply_func(new_tree, self.dist_not) else: # cancel double negative return tree[1][1] else: return tree def dist_ors(self, tree): r""" Distribute '|' over '&'. INPUT: - ``tree`` -- a list; this represents a branch of a parse tree OUTPUT: A new list. EXAMPLES: This example illustrates the distribution of '|' over '&':: sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("(a&b)|(a&c)") sage: tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] sage: logicparser.apply_func(tree, s.dist_ors) #long time ['&', ['&', ['|', 'a', 'a'], ['|', 'b', 'a']], ['&', ['|', 'a', 'c'], ['|', 'b', 'c']]] .. NOTE:: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to :func:`~sage.logic.logicparser.apply_func()` in :mod:`~sage.logic.logicparser`. """ if tree[0] == '|' and isinstance(tree[2], ListType) and tree[2][0] == '&': new_tree = ['&', ['|', tree[1], tree[2][1]], ['|', tree[1], tree[2][2]]] return logicparser.apply_func(new_tree, self.dist_ors) if tree[0] == '|' and isinstance(tree[1], ListType) and tree[1][0] == '&': new_tree = ['&', ['|', tree[1][1], tree[2]], ['|', tree[1][2], tree[2]]] return logicparser.apply_func(new_tree, self.dist_ors) return tree def to_infix(self, tree): r""" Convert a parse tree from prefix to infix form. INPUT: - ``tree`` -- a list; this represents a branch of a parse tree OUTPUT: A new list. EXAMPLES: This example shows how to convert a parse tree from prefix to infix form:: sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("(a&b)|(a&c)") sage: tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] sage: logicparser.apply_func(tree, s.to_infix) [['a', '&', 'b'], '|', ['a', '&', 'c']] .. NOTE:: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to :func:`~sage.logic.logicparser.apply_func()` in :mod:`~sage.logic.logicparser`. """ if tree[0] != '~': return [tree[1], tree[0], tree[2]] return tree def convert_expression(self): r""" Convert the string representation of a formula to conjunctive normal form. EXAMPLES:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a^b<->c") sage: s.convert_expression(); s a^b<->c """ ttree = self.__tree[:] ttree = logicparser.apply_func(ttree, self.to_infix) self.__expression = '' str_tree = str(ttree) open_flag = False i = 0 for c in str_tree: if i < len(str_tree) - 1: op = self.get_next_op(str_tree[i:]) if op == '|' and not open_flag: self.__expression += '(' open_flag = True if i < len(str_tree) - 2 and str_tree[i + 1] == '&' and open_flag: open_flag = False self.__expression += ')' if str_tree[i:i + 4] == 'None': i += 4 if i < len(str_tree) and str_tree[i] not in ' \',[]': self.__expression += str_tree[i] i += 1 if open_flag is True: self.__expression += ')' def get_next_op(self, str): r""" Return the next operator in a string. INPUT: - ``str`` -- a string; this contains a logical expression OUTPUT: The next operator as a string. EXAMPLES: This example illustrates how to find the next operator in a formula:: sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("f&p") sage: s.get_next_op("abra|cadabra") '|' .. NOTE:: The parameter ``str`` is not necessarily the string representation of the calling object. """ i = 0 while i < len(str) - 1 and str[i] != '&' and str[i] != '|': i += 1 return str[i]
30.123077
124
0.517016
512378e4b4bdc4f9ff898a11238dd2c0f22457db
5,956
py
Python
example-multiagent/rllib/ppo_agent_one_load_carla.py
AveryWenwenSi/macad-gym
c720c86bc5d13a437c7866955173916d40bb01b3
[ "MIT" ]
null
null
null
example-multiagent/rllib/ppo_agent_one_load_carla.py
AveryWenwenSi/macad-gym
c720c86bc5d13a437c7866955173916d40bb01b3
[ "MIT" ]
null
null
null
example-multiagent/rllib/ppo_agent_one_load_carla.py
AveryWenwenSi/macad-gym
c720c86bc5d13a437c7866955173916d40bb01b3
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from gym.spaces import Box, Discrete import ray from ray import tune from ray.rllib.agents.ppo.ppo import PPOAgent from ray.rllib.agents.ppo.ppo_policy_graph import PPOPolicyGraph from ray.rllib.models import ModelCatalog from ray.rllib.models.preprocessors import Preprocessor from ray.tune import run_experiments from ray.tune.registry import register_env from env_wrappers import wrap_deepmind from models import register_mnih15_shared_weights_net from ray.tune import run_experiments from ray.tune.logger import pretty_print import gym import macad_gym parser = argparse.ArgumentParser() parser.add_argument("--num-iters", type=int, default=20) parser.add_argument( "--num-workers", default=2, type=int, help="Num workers (CPU cores) to use") parser.add_argument( "--num-gpus", default=1, type=int, help="Number of gpus to use. Default=1") parser.add_argument( "--sample-bs-per-worker", default=50, type=int, help="Number of samples in a batch per worker. Default=50") parser.add_argument( "--train-bs", default=128, type=int, help="Train batch size. Use as per available GPU mem. Default=500") parser.add_argument( "--envs-per-worker", default=1, type=int, help="Number of env instances per worker. Default=10") parser.add_argument( "--notes", default=None, help="Custom experiment description to be added to comet logs") register_mnih15_shared_weights_net() model_name = "mnih15_shared_weights" env_name = "HeteNcomIndePOIntrxMATLS1B2C1PTWN3-v0" env = gym.make(env_name) env_actor_configs = env.configs num_framestack = env_actor_configs["env"]["framestack"] def env_creator(env_config): import macad_gym env = gym.make("HeteNcomIndePOIntrxMATLS1B2C1PTWN3-v0") # Apply wrappers to: convert to Grayscale, resize to 84 x 84, # stack frames & some more op env = wrap_deepmind(env, dim=84, num_framestack=num_framestack) return env register_env(env_name, lambda config: env_creator(config)) # Placeholder to enable use of a custom pre-processor class ImagePreproc(Preprocessor): def _init_shape(self, obs_space, options): shape = (84, 84, 3) # Adjust third dim if stacking frames return shape def transform(self, observation): return observation ModelCatalog.register_custom_preprocessor("sq_im_84", ImagePreproc) if __name__ == "__main__": args = parser.parse_args() ray.init() obs_space = Box(0.0, 255.0, shape=(84, 84, 3)) act_space = Discrete(9) def gen_policy(): model_config = { # Model and preprocessor options. "model": { "custom_model": model_name, "custom_options": { # Custom notes for the experiment "notes": { "notes": args.notes }, }, # NOTE:Wrappers are applied by RLlib if custom_preproc is NOT # specified "custom_preprocessor": "sq_im_84", "dim": 84, "free_log_std": False, # if args.discrete_actions else True, "grayscale": True, # conv_filters to be used with the custom CNN model. # "conv_filters": [[16, [4, 4], 2], [32, [3, 3], 2], # [16, [3, 3], 2]] }, # preproc_pref is ignored if custom_preproc is specified # "preprocessor_pref": "deepmind", # env_config to be passed to env_creator "env_config": env_actor_configs } return (PPOPolicyGraph, obs_space, act_space, model_config) policy_graphs = { a_id: gen_policy() for a_id in env_actor_configs["actors"].keys() } # policy_ids = list(policies.keys()) def policy_mapping_fn(agent_id): return "ppo_policy" ppo_trainer = PPOAgent( env=env_name, config={ "multiagent": { "policy_graphs": policy_graphs, "policy_mapping_fn": policy_mapping_fn, # "policies_to_train": ["car1"], }, # disable filters, otherwise we would need to synchronize those # as well to the DQN agent # "observation_filter": "NoFilter", }) # disable DQN exploration when used by the PPO trainer # ppo_trainer.optimizer.foreach_evaluator( # lambda ev: ev.for_policy( # lambda pi: pi.set_epsilon(0.0), policy_id="dqn_policy")) for i in range(args.num_iters): print("== Iteration", i, "==") # improve the PPO policy print(pretty_print(ppo_trainer.train())) print("Pre-training done.") # Start our actual experiment. stop = { "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, "training_iteration": args.stop_iters, } new_trainer = PPOAgent( env=env_name, config={ "multiagent": { "policy_graphs": policy_graphs, "policy_mapping_fn": policy_mapping_fn, "policies_to_train": ["car1"], }, }, stop=stop, ) untrained_weights = ppo_trainer.get_weights() new_trainer.restore(checkpoint) new_trainer.set_weights( {pid: w for pid, w in untrained_weights.items() if pid != "car1"}) new_checkpoint = new_trainer.save() new_trainer.stop() print(".. checkpoint to restore from (all policies reset, " f"except policy_0): {new_checkpoint}") # print("Starting new tune.run") for i in range(args.num_iters): print("== Iteration", i, "==") # improve the PPO policy print("-- PPO --") print(pretty_print(ppo_trainer.train()))
31.183246
79
0.631464
bcbf587d1419457aa67901d39e2a9defa8fcf37f
1,890
py
Python
LeetCode/10-Regular-Expression-Matching☆☆☆☆/Regular-Expression-Matching2.py
hscspring/TheAlgorithms-Python
5c2faea1d2d25a9a81a4786e053b0cc58ab46c6f
[ "MIT" ]
10
2020-07-06T11:00:58.000Z
2022-01-29T09:25:24.000Z
LeetCode/10-Regular-Expression-Matching☆☆☆☆/Regular-Expression-Matching2.py
hscspring/TheAlgorithms-Python
5c2faea1d2d25a9a81a4786e053b0cc58ab46c6f
[ "MIT" ]
null
null
null
LeetCode/10-Regular-Expression-Matching☆☆☆☆/Regular-Expression-Matching2.py
hscspring/TheAlgorithms-Python
5c2faea1d2d25a9a81a4786e053b0cc58ab46c6f
[ "MIT" ]
3
2020-07-13T06:39:23.000Z
2020-08-15T16:29:48.000Z
class Solution: def isMatch(self, s: str, p: str) -> bool: T = [[False] * (len(p) + 1) for _ in range(len(s) + 1)] T[0][0] = True for j in range(len(p)): if p[j] == "*": T[0][j+1] = T[0][j-1] for i in range(len(s)): for j in range(len(p)): if s[i] == p[j] or p[j] == ".": T[i+1][j+1] = T[i][j] elif p[j] == "*": T[i+1][j+1] = T[i+1][j-1] if not T[i+1][j+1]: if p[j-1] == "." or p[j-1] == s[i]: T[i+1][j+1] = T[i][j+1] else: continue return T[-1][-1] if __name__ == '__main__': so = Solution() assert so.isMatch("ab", ".*..c*") == True assert so.isMatch("a", ".*..a*") == False assert so.isMatch("ab", ".*..") == True assert so.isMatch("aa", "a") == False assert so.isMatch("aa", "a*") == True assert so.isMatch("ab", ".*") == True assert so.isMatch("aab", "c*a*b") == True assert so.isMatch("mississippi", "mis*is*p*.") == False assert so.isMatch("ab", "a.") == True assert so.isMatch("aa", "a.") == True assert so.isMatch("a", "a.") == False assert so.isMatch("axb", "a.b*") == True assert so.isMatch("ax", "a.b*") == True assert so.isMatch("axc", "a.b*") == False assert so.isMatch("ac", "a.*") == True assert so.isMatch("abc", "a.*") == True assert so.isMatch("ab", "ab.*") == True assert so.isMatch("abcde", "ab.*") == True assert so.isMatch("ac", "ab.*") == False assert so.isMatch("ab", "a.*b") == True assert so.isMatch("ab", "a.*b*") == True assert so.isMatch("abb", "a.*b*") == True assert so.isMatch("aaa", "a*a") == True assert so.isMatch("aaa", "ab*ac*a") == True assert so.isMatch("aaa", "ab*a*c*a") == True
39.375
63
0.444974
78c5b16e7aa5f91f48fdeafef85bc3504ec1f730
1,498
py
Python
pizza/tests/test_slice_growing.py
purrcat259/n-n-hashcode
98a1c443e6112903bc29a858bc18476a6635d460
[ "MIT" ]
null
null
null
pizza/tests/test_slice_growing.py
purrcat259/n-n-hashcode
98a1c443e6112903bc29a858bc18476a6635d460
[ "MIT" ]
null
null
null
pizza/tests/test_slice_growing.py
purrcat259/n-n-hashcode
98a1c443e6112903bc29a858bc18476a6635d460
[ "MIT" ]
null
null
null
from pizza.input import ExampleInput from pizza.models.slice import Slice """ TTTTT TMMMT TTTTT """ example_input = ExampleInput() example_input.read_file() data = example_input.data class TestSliceGrowing: s = None def setup_method(self): self.s = Slice(data, (0, 0)) def test_grow_row(self): assert 1 == self.s.size() assert 1 == self.s.tomato assert 0 == self.s.mushroom self.s.growRow(data) assert 2 == self.s.size() assert 2 == self.s.tomato assert 0 == self.s.mushroom self.s.growRow(data) assert 3 == self.s.size() assert 3 == self.s.tomato assert 0 == self.s.mushroom def test_grow_column(self): assert 1 == self.s.size() assert 1 == self.s.tomato assert 0 == self.s.mushroom self.s.growCol(data) assert 2 == self.s.size() assert 2 == self.s.tomato assert 0 == self.s.mushroom self.s.growCol(data) assert 3 == self.s.size() assert 3 == self.s.tomato assert 0 == self.s.mushroom def test_grow_both(self): assert 1 == self.s.size() assert 1 == self.s.tomato assert 0 == self.s.mushroom self.s.growBoth(data) assert 4 == self.s.size() assert 3 == self.s.tomato assert 1 == self.s.mushroom self.s.growBoth(data) assert 9 == self.s.size() assert 7 == self.s.tomato assert 2 == self.s.mushroom
24.557377
36
0.570761