hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
0098e5e710a5211ce9b40a8bdbd193c98de9dc92
246
py
Python
tests/test_util.py
yuanz271/vlgp
2f2c9f0c368904f762c75afce6d73dc26a2b911e
[ "MIT" ]
1
2017-09-22T21:03:07.000Z
2017-09-22T21:03:07.000Z
tests/test_util.py
yuanz271/vlgp
2f2c9f0c368904f762c75afce6d73dc26a2b911e
[ "MIT" ]
1
2017-12-07T14:45:45.000Z
2017-12-13T20:09:11.000Z
tests/test_util.py
yuanz271/vlgp
2f2c9f0c368904f762c75afce6d73dc26a2b911e
[ "MIT" ]
null
null
null
def test_save(): import pathlib from vlgp.util import save fit = {"trials": {}, "params": {}, "config": {"path": "test_save.npy"}} save(fit, fit["config"]["path"]) path = pathlib.Path(fit["config"]["path"]) path.unlink()
27.333333
75
0.577236
e44663e78f7ca0adaf226c8d73ec338864009396
22,414
py
Python
core/storage/topic/gae_models.py
arora-ria/oppia
698d5593689f15ee36384a57036cf2e0150bb785
[ "Apache-2.0" ]
1
2021-06-03T20:50:52.000Z
2021-06-03T20:50:52.000Z
core/storage/topic/gae_models.py
arora-ria/oppia
698d5593689f15ee36384a57036cf2e0150bb785
[ "Apache-2.0" ]
null
null
null
core/storage/topic/gae_models.py
arora-ria/oppia
698d5593689f15ee36384a57036cf2e0150bb785
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Models for topics and related constructs.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from constants import constants from core.platform import models import feconf import python_utils (base_models, user_models) = models.Registry.import_models([ models.NAMES.base_model, models.NAMES.user]) datastore_services = models.Registry.import_datastore_services() class TopicSnapshotMetadataModel(base_models.BaseSnapshotMetadataModel): """Storage model for the metadata for a topic snapshot.""" pass class TopicSnapshotContentModel(base_models.BaseSnapshotContentModel): """Storage model for the content of a topic snapshot.""" @staticmethod def get_deletion_policy(): """TopicSnapshotContentModel doesn't contain any data directly corresponding to a user. """ return base_models.DELETION_POLICY.NOT_APPLICABLE class TopicModel(base_models.VersionedModel): """Model for storing Topics. This class should only be imported by the topic services file and the topic model test file. """ SNAPSHOT_METADATA_CLASS = TopicSnapshotMetadataModel SNAPSHOT_CONTENT_CLASS = TopicSnapshotContentModel ALLOW_REVERT = False # The name of the topic. name = datastore_services.StringProperty(required=True, indexed=True) # The canonical name of the topic, created by making `name` lowercase. canonical_name = ( datastore_services.StringProperty(required=True, indexed=True)) # The abbreviated name of the topic. abbreviated_name = ( datastore_services.StringProperty(indexed=True, default='')) # The thumbnail filename of the topic. thumbnail_filename = datastore_services.StringProperty(indexed=True) # The thumbnail background color of the topic. thumbnail_bg_color = datastore_services.StringProperty(indexed=True) # The description of the topic. description = datastore_services.TextProperty(indexed=False) # This consists of the list of objects referencing canonical stories that # are part of this topic. canonical_story_references = ( datastore_services.JsonProperty(repeated=True, indexed=False)) # This consists of the list of objects referencing additional stories that # are part of this topic. additional_story_references = ( datastore_services.JsonProperty(repeated=True, indexed=False)) # The schema version for the story reference object on each of the above 2 # lists. story_reference_schema_version = datastore_services.IntegerProperty( required=True, indexed=True) # This consists of the list of uncategorized skill ids that are not part of # any subtopic. uncategorized_skill_ids = ( datastore_services.StringProperty(repeated=True, indexed=True)) # The list of subtopics that are part of the topic. subtopics = datastore_services.JsonProperty(repeated=True, indexed=False) # The schema version of the subtopic dict. subtopic_schema_version = ( datastore_services.IntegerProperty(required=True, indexed=True)) # The id for the next subtopic. next_subtopic_id = datastore_services.IntegerProperty(required=True) # The ISO 639-1 code for the language this topic is written in. language_code = ( datastore_services.StringProperty(required=True, indexed=True)) # The url fragment of the topic. url_fragment = ( datastore_services.StringProperty(required=True, indexed=True)) # Whether to show practice tab in the Topic viewer page. practice_tab_is_displayed = datastore_services.BooleanProperty( required=True, default=False) # The content of the meta tag in the Topic viewer page. meta_tag_content = datastore_services.StringProperty( indexed=True, default='') @staticmethod def get_deletion_policy(): """TopicModel doesn't contain any data directly corresponding to a user. """ return base_models.DELETION_POLICY.NOT_APPLICABLE def _trusted_commit( self, committer_id, commit_type, commit_message, commit_cmds): """Record the event to the commit log after the model commit. Note that this extends the superclass method. Args: committer_id: str. The user_id of the user who committed the change. commit_type: str. The type of commit. Possible values are in core.storage.base_models.COMMIT_TYPE_CHOICES. commit_message: str. The commit description message. commit_cmds: list(dict). A list of commands, describing changes made in this model, which should give sufficient information to reconstruct the commit. Each dict always contains: cmd: str. Unique command. and then additional arguments for that command. """ super(TopicModel, self)._trusted_commit( committer_id, commit_type, commit_message, commit_cmds) topic_rights = TopicRightsModel.get_by_id(self.id) if topic_rights.topic_is_published: status = constants.ACTIVITY_STATUS_PUBLIC else: status = constants.ACTIVITY_STATUS_PRIVATE topic_commit_log_entry = TopicCommitLogEntryModel.create( self.id, self.version, committer_id, commit_type, commit_message, commit_cmds, status, False ) topic_commit_log_entry.topic_id = self.id topic_commit_log_entry.update_timestamps() topic_commit_log_entry.put() @classmethod def get_by_name(cls, topic_name): """Gets TopicModel by topic_name. Returns None if the topic with name topic_name doesn't exist. Args: topic_name: str. The name of the topic. Returns: TopicModel|None. The topic model of the topic or None if not found. """ return TopicModel.query().filter( cls.canonical_name == topic_name.lower()).filter( cls.deleted == False).get() # pylint: disable=singleton-comparison @classmethod def get_by_url_fragment(cls, url_fragment): """Gets TopicModel by url_fragment. Returns None if the topic with name url_fragment doesn't exist. Args: url_fragment: str. The url fragment of the topic. Returns: TopicModel|None. The topic model of the topic or None if not found. """ # TODO(#10210): Make fetching by URL fragment faster. return TopicModel.query().filter( cls.url_fragment == url_fragment).filter( cls.deleted == False).get() # pylint: disable=singleton-comparison @staticmethod def get_model_association_to_user(): """Model does not contain user data.""" return base_models.MODEL_ASSOCIATION_TO_USER.NOT_CORRESPONDING_TO_USER @classmethod def get_export_policy(cls): """Model does not contain user data.""" return dict(super(cls, cls).get_export_policy(), **{ 'name': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'canonical_name': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'abbreviated_name': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'thumbnail_filename': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'thumbnail_bg_color': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'description': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'canonical_story_references': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'additional_story_references': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'story_reference_schema_version': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'uncategorized_skill_ids': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'subtopics': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'subtopic_schema_version': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'next_subtopic_id': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'language_code': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'meta_tag_content': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'practice_tab_is_displayed': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'url_fragment': base_models.EXPORT_POLICY.NOT_APPLICABLE, }) class TopicCommitLogEntryModel(base_models.BaseCommitLogEntryModel): """Log of commits to topics. A new instance of this model is created and saved every time a commit to TopicModel occurs. The id for this model is of the form 'topic-[topic_id]-[version]'. """ # The id of the topic being edited. topic_id = datastore_services.StringProperty(indexed=True, required=True) @classmethod def _get_instance_id(cls, topic_id, version): """This function returns the generated id for the get_commit function in the parent class. Args: topic_id: str. The id of the topic being edited. version: int. The version number of the topic after the commit. Returns: str. The commit id with the topic id and version number. """ return 'topic-%s-%s' % (topic_id, version) @staticmethod def get_model_association_to_user(): """Model does not contain user data.""" return base_models.MODEL_ASSOCIATION_TO_USER.NOT_CORRESPONDING_TO_USER @classmethod def get_export_policy(cls): """This model is only stored for archive purposes. The commit log of entities is not related to personal user data. """ return dict(super(cls, cls).get_export_policy(), **{ 'topic_id': base_models.EXPORT_POLICY.NOT_APPLICABLE }) class TopicSummaryModel(base_models.BaseModel): """Summary model for an Oppia Topic. This should be used whenever the content blob of the topic is not needed (e.g. search results, etc). A TopicSummaryModel instance stores the following information: id, description, language_code, last_updated, created_on, version, url_fragment. The key of each instance is the topic id. """ # The name of the topic. name = datastore_services.StringProperty(required=True, indexed=True) # The canonical name of the topic, created by making `name` lowercase. canonical_name = ( datastore_services.StringProperty(required=True, indexed=True)) # The ISO 639-1 code for the language this topic is written in. language_code = ( datastore_services.StringProperty(required=True, indexed=True)) # The description of the topic. description = datastore_services.TextProperty(indexed=False) # The url fragment of the topic. url_fragment = ( datastore_services.StringProperty(required=True, indexed=True)) # Time when the topic model was last updated (not to be # confused with last_updated, which is the time when the # topic *summary* model was last updated). topic_model_last_updated = ( datastore_services.DateTimeProperty(required=True, indexed=True)) # Time when the topic model was created (not to be confused # with created_on, which is the time when the topic *summary* # model was created). topic_model_created_on = ( datastore_services.DateTimeProperty(required=True, indexed=True)) # The number of canonical stories that are part of this topic. canonical_story_count = ( datastore_services.IntegerProperty(required=True, indexed=True)) # The number of additional stories that are part of this topic. additional_story_count = ( datastore_services.IntegerProperty(required=True, indexed=True)) # The total number of skills in the topic (including those that are # uncategorized). total_skill_count = ( datastore_services.IntegerProperty(required=True, indexed=True)) # The number of skills that are not part of any subtopic. uncategorized_skill_count = ( datastore_services.IntegerProperty(required=True, indexed=True)) # The number of subtopics of the topic. subtopic_count = ( datastore_services.IntegerProperty(required=True, indexed=True)) # The thumbnail filename of the topic. thumbnail_filename = datastore_services.StringProperty(indexed=True) # The thumbnail background color of the topic. thumbnail_bg_color = datastore_services.StringProperty(indexed=True) version = datastore_services.IntegerProperty(required=True) @staticmethod def get_deletion_policy(): """TopicSummaryModel doesn't contain any data directly corresponding to a user. """ return base_models.DELETION_POLICY.NOT_APPLICABLE @staticmethod def get_model_association_to_user(): """Model does not contain user data.""" return base_models.MODEL_ASSOCIATION_TO_USER.NOT_CORRESPONDING_TO_USER @classmethod def get_export_policy(cls): """Model does not contain user data.""" return dict(super(cls, cls).get_export_policy(), **{ 'name': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'canonical_name': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'language_code': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'description': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'topic_model_last_updated': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'topic_model_created_on': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'canonical_story_count': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'additional_story_count': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'total_skill_count': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'uncategorized_skill_count': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'subtopic_count': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'thumbnail_filename': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'thumbnail_bg_color': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'version': base_models.EXPORT_POLICY.NOT_APPLICABLE, 'url_fragment': base_models.EXPORT_POLICY.NOT_APPLICABLE }) class TopicRightsSnapshotMetadataModel(base_models.BaseSnapshotMetadataModel): """Storage model for the metadata for a topic rights snapshot.""" pass class TopicRightsSnapshotContentModel(base_models.BaseSnapshotContentModel): """Storage model for the content of a topic rights snapshot.""" @staticmethod def get_deletion_policy(): """TopicRightsSnapshotContentModel contains data corresponding to a user: inside the content field there is manager_ids field. The pseudonymization of this model is handled in the wipeout_service in the _pseudonymize_activity_models_with_associated_rights_models(), based on the content_user_ids field of the TopicRightsSnapshotMetadataModel. """ return base_models.DELETION_POLICY.LOCALLY_PSEUDONYMIZE @classmethod def has_reference_to_user_id(cls, user_id): """Check whether TopicRightsSnapshotContentModel references the given user. The manager_ids field is checked through content_user_ids field in the TopicRightsSnapshotMetadataModel. Args: user_id: str. The ID of the user whose data should be checked. Returns: bool. Whether any models refer to the given user ID. """ return TopicRightsSnapshotMetadataModel.query( TopicRightsSnapshotMetadataModel.content_user_ids == user_id ).get(keys_only=True) is not None class TopicRightsModel(base_models.VersionedModel): """Storage model for rights related to a topic. The id of each instance is the id of the corresponding topic. """ SNAPSHOT_METADATA_CLASS = TopicRightsSnapshotMetadataModel SNAPSHOT_CONTENT_CLASS = TopicRightsSnapshotContentModel ALLOW_REVERT = False # The user_ids of the managers of this topic. manager_ids = datastore_services.StringProperty(indexed=True, repeated=True) # Whether this topic is published. topic_is_published = datastore_services.BooleanProperty( indexed=True, required=True, default=False) @staticmethod def get_deletion_policy(): """TopicRightsModel contains data to pseudonymize corresponding to a user: manager_ids field. """ return base_models.DELETION_POLICY.LOCALLY_PSEUDONYMIZE @classmethod def has_reference_to_user_id(cls, user_id): """Check whether TopicRightsModel references user. Args: user_id: str. The ID of the user whose data should be checked. Returns: bool. Whether any models refer to the given user ID. """ return cls.query( cls.manager_ids == user_id ).get(keys_only=True) is not None @classmethod def get_by_user(cls, user_id): """Retrieves the rights object for all topics assigned to given user Args: user_id: str. ID of user. Returns: list(TopicRightsModel). The list of TopicRightsModel objects in which the given user is a manager. """ topic_rights_models = cls.query( cls.manager_ids == user_id ) return topic_rights_models def _trusted_commit( self, committer_id, commit_type, commit_message, commit_cmds): """Record the event to the commit log after the model commit. Note that this extends the superclass method. Args: committer_id: str. The user_id of the user who committed the change. commit_type: str. The type of commit. Possible values are in core.storage.base_models.COMMIT_TYPE_CHOICES. commit_message: str. The commit description message. commit_cmds: list(dict). A list of commands, describing changes made in this model, which should give sufficient information to reconstruct the commit. Each dict always contains: cmd: str. Unique command. and then additional arguments for that command. """ super(TopicRightsModel, self)._trusted_commit( committer_id, commit_type, commit_message, commit_cmds) topic_rights = TopicRightsModel.get_by_id(self.id) if topic_rights.topic_is_published: status = constants.ACTIVITY_STATUS_PUBLIC else: status = constants.ACTIVITY_STATUS_PRIVATE TopicCommitLogEntryModel( id=('rights-%s-%s' % (self.id, self.version)), user_id=committer_id, topic_id=self.id, commit_type=commit_type, commit_message=commit_message, commit_cmds=commit_cmds, version=None, post_commit_status=status, post_commit_community_owned=False, post_commit_is_private=not topic_rights.topic_is_published ).put() snapshot_metadata_model = self.SNAPSHOT_METADATA_CLASS.get( self.get_snapshot_id(self.id, self.version)) snapshot_metadata_model.content_user_ids = list(sorted(set( self.manager_ids))) commit_cmds_user_ids = set() for commit_cmd in commit_cmds: user_id_attribute_names = python_utils.NEXT( cmd['user_id_attribute_names'] for cmd in feconf.TOPIC_RIGHTS_CHANGE_ALLOWED_COMMANDS if cmd['name'] == commit_cmd['cmd'] ) for user_id_attribute_name in user_id_attribute_names: commit_cmds_user_ids.add(commit_cmd[user_id_attribute_name]) snapshot_metadata_model.commit_cmds_user_ids = list( sorted(commit_cmds_user_ids)) snapshot_metadata_model.update_timestamps() snapshot_metadata_model.put() @staticmethod def get_model_association_to_user(): """Model is exported as one instance shared across users since multiple users contribute to topics and their rights. """ return ( base_models .MODEL_ASSOCIATION_TO_USER .ONE_INSTANCE_SHARED_ACROSS_USERS) @classmethod def get_export_policy(cls): """Model contains user data.""" return dict(super(cls, cls).get_export_policy(), **{ 'manager_ids': base_models.EXPORT_POLICY.EXPORTED, 'topic_is_published': base_models.EXPORT_POLICY.NOT_APPLICABLE }) @classmethod def get_field_name_mapping_to_takeout_keys(cls): """Defines the mapping of field names to takeout keys since this model is exported as one instance shared across users. """ return { 'manager_ids': 'managed_topic_ids' } @classmethod def export_data(cls, user_id): """(Takeout) Export user-relevant properties of TopicRightsModel. Args: user_id: str. The user_id denotes which user's data to extract. Returns: dict. The user-relevant properties of TopicRightsModel in a dict format. In this case, we are returning all the ids of the topics this user manages. """ managed_topics = cls.get_all().filter(cls.manager_ids == user_id) managed_topic_ids = [right.id for right in managed_topics] return { 'managed_topic_ids': managed_topic_ids }
40.458484
82
0.690283
c2a75f990c6d1722ddc9afe4af7a279cbe354de7
8,196
py
Python
gazoo_device/tests/unit_tests/utility_tests/host_utils_test.py
google/gazoo-device
f333b386f5993c8d4c9e12c89ebb620a0c4f5506
[ "Apache-2.0" ]
14
2020-11-05T23:23:32.000Z
2022-03-01T18:59:29.000Z
gazoo_device/tests/unit_tests/utility_tests/host_utils_test.py
google/gazoo-device
f333b386f5993c8d4c9e12c89ebb620a0c4f5506
[ "Apache-2.0" ]
null
null
null
gazoo_device/tests/unit_tests/utility_tests/host_utils_test.py
google/gazoo-device
f333b386f5993c8d4c9e12c89ebb620a0c4f5506
[ "Apache-2.0" ]
5
2021-05-20T22:52:51.000Z
2022-02-21T08:46:21.000Z
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for gazoo_device.utility.host_utils.py.""" import os from unittest import mock from gazoo_device import config from gazoo_device import data_types from gazoo_device import extensions from gazoo_device.tests.unit_tests.utils import unit_test_case from gazoo_device.utility import host_utils import immutabledict _TEST_PACKAGE = "foo_package" _EXPECTED_KEY_DIR = os.path.join(config.KEYS_DIRECTORY, _TEST_PACKAGE) _TEST_KEY_SSH_PRIVATE_NAME = "foo_key" _EXPECTED_KEY_SSH_PRIVATE_PATH = os.path.join(_EXPECTED_KEY_DIR, _TEST_KEY_SSH_PRIVATE_NAME) _TEST_KEY_SSH_PUBLIC_NAME = "foo_key.pub" _EXPECTED_KEY_SSH_PUBLIC_PATH = os.path.join(_EXPECTED_KEY_DIR, _TEST_KEY_SSH_PUBLIC_NAME) _TEST_KEY_OTHER_NAME = "bar_key" _EXPECTED_KEY_OTHER_PATH = os.path.join(_EXPECTED_KEY_DIR, _TEST_KEY_OTHER_NAME) _TEST_KEY_SSH_PRIVATE = data_types.KeyInfo( _TEST_KEY_SSH_PRIVATE_NAME, type=data_types.KeyType.SSH, package=_TEST_PACKAGE) _TEST_KEY_SSH_PUBLIC = data_types.KeyInfo( _TEST_KEY_SSH_PUBLIC_NAME, type=data_types.KeyType.SSH, package=_TEST_PACKAGE) _TEST_KEY_OTHER = data_types.KeyInfo( _TEST_KEY_OTHER_NAME, type=data_types.KeyType.OTHER, package=_TEST_PACKAGE) class HostUtilsTests(unit_test_case.UnitTestCase): """Unit tests for gazoo_device.utility.host_utils.py.""" def setUp(self): super().setUp() self.mock_download_key = mock.Mock() extensions_keys_patch = mock.patch.object( extensions, "keys", new=[_TEST_KEY_SSH_PRIVATE, _TEST_KEY_OTHER]) extensions_keys_patch.start() self.addCleanup(extensions_keys_patch.stop) package_info_patch = mock.patch.object( extensions, "package_info", new={ _TEST_PACKAGE: immutabledict.immutabledict({ "version": "0.0.1", "key_download_function": self.mock_download_key, }) }) package_info_patch.start() self.addCleanup(package_info_patch.stop) def test_get_key_path(self): """Test that path returned by get_key_path() is correct.""" self.assertEqual(host_utils.get_key_path(_TEST_KEY_SSH_PRIVATE), _EXPECTED_KEY_SSH_PRIVATE_PATH) @mock.patch.object(os.path, "isdir", side_effect=[False, True]) @mock.patch.object(os, "makedirs") @mock.patch.object(os.path, "exists", return_value=True) @mock.patch.object(host_utils, "_set_key_permissions") def test_download_key_creates_directory_if_its_absent( self, unused_mock_set_key_permissions, unused_mock_exists, mock_makedirs, mock_isdir): """Test that _download_key() creates package key dir if it's absent.""" host_utils._download_key(_TEST_KEY_SSH_PRIVATE) mock_isdir.assert_called_once_with(_EXPECTED_KEY_DIR) mock_makedirs.assert_called_once_with(_EXPECTED_KEY_DIR) self.mock_download_key.assert_called_once_with( _TEST_KEY_SSH_PRIVATE, _EXPECTED_KEY_SSH_PRIVATE_PATH) @mock.patch.object(os.path, "isdir", return_value=True) @mock.patch.object(os, "makedirs") @mock.patch.object(os.path, "exists", return_value=True) @mock.patch.object(host_utils, "_set_key_permissions") def test_download_key_does_not_create_directory_if_its_present( self, unused_mock_set_key_permissions, unused_mock_exists, mock_makedirs, mock_isdir): """Test that _download_key() does not create key dir if it's present.""" host_utils._download_key(_TEST_KEY_SSH_PRIVATE) mock_isdir.assert_called_once_with(_EXPECTED_KEY_DIR) mock_makedirs.assert_not_called() @mock.patch.object(os.path, "isdir", return_value=True) @mock.patch.object(os, "makedirs") @mock.patch.object(os.path, "exists", return_value=False) def test_download_key_raises_if_key_isnt_downloaded( self, mock_exists, unused_mock_makedirs, unused_mock_isdir): """Test that _download_key() raises an error if key isn't downloaded.""" error_regex = r"Key .*{}.* was not downloaded to {}".format( _TEST_KEY_SSH_PRIVATE_NAME, _EXPECTED_KEY_SSH_PRIVATE_PATH) with self.assertRaisesRegex(FileNotFoundError, error_regex): host_utils._download_key(_TEST_KEY_SSH_PRIVATE) mock_exists.assert_called_once_with(_EXPECTED_KEY_SSH_PRIVATE_PATH) @mock.patch.object(os.path, "isdir", return_value=True) @mock.patch.object(os, "makedirs") @mock.patch.object(os.path, "exists", return_value=True) @mock.patch.object(host_utils, "_set_key_permissions") def test_download_key_sets_permissions_for_private_ssh_keys( self, mock_set_key_permissions, unused_mock_exists, unused_mock_makedirs, unused_mock_isdir): """Test that _download_key() changes permissions for SSH keys.""" host_utils._download_key(_TEST_KEY_SSH_PRIVATE) mock_set_key_permissions.assert_called_once_with( _EXPECTED_KEY_SSH_PRIVATE_PATH) @mock.patch.object(os.path, "isdir", return_value=True) @mock.patch.object(os, "makedirs") @mock.patch.object(os.path, "exists", return_value=True) @mock.patch.object(host_utils, "_set_key_permissions") def test_download_key_doesnt_set_permissions_for_non_ssh_keys( self, mock_set_key_permissions, unused_mock_exists, unused_mock_makedirs, unused_mock_isdir): """Test that _download_key() doesn't change permissions for non-SSH keys.""" host_utils._download_key(_TEST_KEY_OTHER) mock_set_key_permissions.assert_not_called() @mock.patch.object(os.path, "isdir", return_value=True) @mock.patch.object(os, "makedirs") @mock.patch.object(os.path, "exists", return_value=True) @mock.patch.object(host_utils, "_set_key_permissions") def test_download_key_doesnt_set_permissions_for_public_ssh_keys( self, mock_set_key_permissions, unused_mock_exists, unused_mock_mkdir, unused_mock_isdir): """Test that _download_key() doesn't set permissions for public SSH keys.""" host_utils._download_key(_TEST_KEY_SSH_PUBLIC) mock_set_key_permissions.assert_not_called() @mock.patch.object(os, "chmod") def test_set_key_permissions_already_correct(self, mock_chmod): """Test _set_key_permissions for already correct permissions.""" mock_stat_result = mock.Mock() mock_stat_result.st_mode = int("400", 8) with mock.patch.object(os, "stat", return_value=mock_stat_result): host_utils._set_key_permissions(_EXPECTED_KEY_SSH_PRIVATE_PATH) mock_chmod.assert_not_called() @mock.patch.object(os, "chmod") def test_set_key_permissions_incorrect_permissions(self, mock_chmod): """Test _set_key_permissions for incorrect permissions.""" mock_stat_result = mock.Mock() mock_stat_result.st_mode = int("644", 8) with mock.patch.object(os, "stat", return_value=mock_stat_result): host_utils._set_key_permissions(_EXPECTED_KEY_SSH_PRIVATE_PATH) mock_chmod.assert_called_once_with(_EXPECTED_KEY_SSH_PRIVATE_PATH, int("400", 8)) @mock.patch.object(os, "chmod", side_effect=OSError("Some failure")) def test_set_key_permissions_incorrect_permissions_failure(self, mock_chmod): """Test _set_key_permissions failing to correct permissions.""" mock_stat_result = mock.Mock() mock_stat_result.st_mode = int("644", 8) with mock.patch.object(os, "stat", return_value=mock_stat_result): with self.assertRaisesRegex(ValueError, "Unable to change permissions"): host_utils._set_key_permissions(_EXPECTED_KEY_SSH_PRIVATE_PATH) mock_chmod.assert_called_once_with(_EXPECTED_KEY_SSH_PRIVATE_PATH, int("400", 8)) if __name__ == "__main__": unit_test_case.main()
46.305085
80
0.757565
fcb0f65a5009e09e280341b38d6c0ef974e8e632
664
py
Python
runtime/python/Tools/scripts/lfcr.py
hwaipy/InteractionFreeNode
88642b68430f57b028fd0f276a5709f89279e30d
[ "MIT" ]
207
2018-10-01T08:53:01.000Z
2022-03-14T12:15:54.000Z
runtime/python/Tools/scripts/lfcr.py
hwaipy/InteractionFreeNode
88642b68430f57b028fd0f276a5709f89279e30d
[ "MIT" ]
8
2019-06-29T14:18:51.000Z
2022-02-19T07:30:27.000Z
runtime/python/Tools/scripts/lfcr.py
hwaipy/InteractionFreeNode
88642b68430f57b028fd0f276a5709f89279e30d
[ "MIT" ]
76
2020-03-16T01:47:46.000Z
2022-03-21T16:37:07.000Z
#! /usr/bin/env python3 "Replace LF with CRLF in argument files. Print names of changed files." import sys, re, os def main(): for filename in sys.argv[1:]: if os.path.isdir(filename): print(filename, "Directory!") continue with open(filename, "rb") as f: data = f.read() if b'\0' in data: print(filename, "Binary!") continue newdata = re.sub(b"\r?\n", b"\r\n", data) if newdata != data: print(filename) with open(filename, "wb") as f: f.write(newdata) if __name__ == '__main__': main()
26.56
73
0.504518
c4f7b1f05de5168ccc03165ca4c3a7ca5f09b852
23,059
py
Python
openpype/modules/ftrack/plugins/publish/integrate_ftrack_api.py
Tilix4/OpenPype
8909bd890170880aa7ec8b673abaa25a9bdf40f2
[ "MIT" ]
1
2022-02-08T15:40:41.000Z
2022-02-08T15:40:41.000Z
openpype/modules/ftrack/plugins/publish/integrate_ftrack_api.py
zafrs/OpenPype
4b8e7e1ed002fc55b31307efdea70b0feaed474f
[ "MIT" ]
null
null
null
openpype/modules/ftrack/plugins/publish/integrate_ftrack_api.py
zafrs/OpenPype
4b8e7e1ed002fc55b31307efdea70b0feaed474f
[ "MIT" ]
null
null
null
"""Integrate components into ftrack Requires: context -> ftrackSession - connected ftrack.Session instance -> ftrackComponentsList - list of components to integrate Provides: instance -> ftrackIntegratedAssetVersionsData # legacy instance -> ftrackIntegratedAssetVersions """ import os import sys import collections import six import pyblish.api import clique class IntegrateFtrackApi(pyblish.api.InstancePlugin): """ Commit components to server. """ order = pyblish.api.IntegratorOrder+0.499 label = "Integrate Ftrack Api" families = ["ftrack"] def process(self, instance): session = instance.context.data["ftrackSession"] context = instance.context component_list = instance.data.get("ftrackComponentsList") if not component_list: self.log.info( "Instance don't have components to integrate to Ftrack." " Skipping." ) return session = instance.context.data["ftrackSession"] context = instance.context parent_entity = None default_asset_name = None # If instance has set "ftrackEntity" or "ftrackTask" then use them from # instance. Even if they are set to None. If they are set to None it # has a reason. (like has different context) if "ftrackEntity" in instance.data or "ftrackTask" in instance.data: task_entity = instance.data.get("ftrackTask") parent_entity = instance.data.get("ftrackEntity") elif "ftrackEntity" in context.data or "ftrackTask" in context.data: task_entity = context.data.get("ftrackTask") parent_entity = context.data.get("ftrackEntity") if task_entity: default_asset_name = task_entity["name"] parent_entity = task_entity["parent"] if parent_entity is None: self.log.info(( "Skipping ftrack integration. Instance \"{}\" does not" " have specified ftrack entities." ).format(str(instance))) return if not default_asset_name: default_asset_name = parent_entity["name"] # Change status on task asset_version_status_ids_by_name = {} project_entity = instance.context.data.get("ftrackProject") if project_entity: project_schema = project_entity["project_schema"] asset_version_statuses = ( project_schema.get_statuses("AssetVersion") ) asset_version_status_ids_by_name = { status["name"].lower(): status["id"] for status in asset_version_statuses } self._set_task_status(instance, project_entity, task_entity, session) # Prepare AssetTypes asset_types_by_short = self._ensure_asset_types_exists( session, component_list ) self._fill_component_locations(session, component_list) asset_versions_data_by_id = {} used_asset_versions = [] # Iterate over components and publish for data in component_list: self.log.debug("data: {}".format(data)) # AssetType asset_type_short = data["assettype_data"]["short"] asset_type_entity = asset_types_by_short[asset_type_short] # Asset asset_data = data.get("asset_data") or {} if "name" not in asset_data: asset_data["name"] = default_asset_name asset_entity = self._ensure_asset_exists( session, asset_data, asset_type_entity["id"], parent_entity["id"] ) # Asset Version asset_version_data = data.get("assetversion_data") or {} asset_version_entity = self._ensure_asset_version_exists( session, asset_version_data, asset_entity["id"], task_entity, asset_version_status_ids_by_name ) # Component self.create_component(session, asset_version_entity, data) # Store asset version and components items that were version_id = asset_version_entity["id"] if version_id not in asset_versions_data_by_id: asset_versions_data_by_id[version_id] = { "asset_version": asset_version_entity, "component_items": [] } asset_versions_data_by_id[version_id]["component_items"].append( data ) # Backwards compatibility if asset_version_entity not in used_asset_versions: used_asset_versions.append(asset_version_entity) instance.data["ftrackIntegratedAssetVersionsData"] = ( asset_versions_data_by_id ) # Backwards compatibility asset_versions_key = "ftrackIntegratedAssetVersions" if asset_versions_key not in instance.data: instance.data[asset_versions_key] = [] for asset_version in used_asset_versions: if asset_version not in instance.data[asset_versions_key]: instance.data[asset_versions_key].append(asset_version) def _set_task_status(self, instance, project_entity, task_entity, session): if not project_entity: self.log.info("Task status won't be set, project is not known.") return if not task_entity: self.log.info("Task status won't be set, task is not known.") return status_name = instance.context.data.get("ftrackStatus") if not status_name: self.log.info("Ftrack status name is not set.") return self.log.debug( "Ftrack status name will be (maybe) set to \"{}\"".format( status_name ) ) project_schema = project_entity["project_schema"] task_statuses = project_schema.get_statuses( "Task", task_entity["type_id"] ) task_statuses_by_low_name = { status["name"].lower(): status for status in task_statuses } status = task_statuses_by_low_name.get(status_name.lower()) if not status: self.log.warning(( "Task status \"{}\" won't be set," " status is now allowed on task type \"{}\"." ).format(status_name, task_entity["type"]["name"])) return self.log.info("Setting task status to \"{}\"".format(status_name)) task_entity["status"] = status try: session.commit() except Exception: tp, value, tb = sys.exc_info() session.rollback() session._configure_locations() six.reraise(tp, value, tb) def _fill_component_locations(self, session, component_list): components_by_location_name = collections.defaultdict(list) components_by_location_id = collections.defaultdict(list) for component_item in component_list: # Location entity can be prefilled # - this is not recommended as connection to ftrack server may # be lost and in that case the entity is not valid when gets # to this plugin location = component_item.get("component_location") if location is not None: continue # Collect location id location_id = component_item.get("component_location_id") if location_id: components_by_location_id[location_id].append( component_item ) continue location_name = component_item.get("component_location_name") if location_name: components_by_location_name[location_name].append( component_item ) continue # Skip if there is nothing to do if not components_by_location_name and not components_by_location_id: return # Query locations query_filters = [] if components_by_location_id: joined_location_ids = ",".join([ '"{}"'.format(location_id) for location_id in components_by_location_id ]) query_filters.append("id in ({})".format(joined_location_ids)) if components_by_location_name: joined_location_names = ",".join([ '"{}"'.format(location_name) for location_name in components_by_location_name ]) query_filters.append("name in ({})".format(joined_location_names)) locations = session.query( "select id, name from Location where {}".format( " or ".join(query_filters) ) ).all() # Fill locations in components for location in locations: location_id = location["id"] location_name = location["name"] if location_id in components_by_location_id: for component in components_by_location_id[location_id]: component["component_location"] = location if location_name in components_by_location_name: for component in components_by_location_name[location_name]: component["component_location"] = location def _ensure_asset_types_exists(self, session, component_list): """Make sure that all AssetType entities exists for integration. Returns: dict: All asset types by short name. """ # Query existing asset types asset_types = session.query("select id, short from AssetType").all() # Stpore all existing short names asset_type_shorts = {asset_type["short"] for asset_type in asset_types} # Check which asset types are missing and store them asset_type_names_by_missing_shorts = {} default_short_name = "upload" for data in component_list: asset_type_data = data.get("assettype_data") or {} asset_type_short = asset_type_data.get("short") if not asset_type_short: # Use default asset type name if not set and change the # input data asset_type_short = default_short_name asset_type_data["short"] = asset_type_short data["assettype_data"] = asset_type_data if ( # Skip if short name exists asset_type_short in asset_type_shorts # Skip if short name was already added to missing types # and asset type name is filled # - if asset type name is missing then try use name from other # data or asset_type_names_by_missing_shorts.get(asset_type_short) ): continue asset_type_names_by_missing_shorts[asset_type_short] = ( asset_type_data.get("name") ) # Create missing asset types if there are any if asset_type_names_by_missing_shorts: self.log.info("Creating asset types with short names: {}".format( ", ".join(asset_type_names_by_missing_shorts.keys()) )) for missing_short, type_name in ( asset_type_names_by_missing_shorts.items() ): # Use short for name if name is not defined if not type_name: type_name = missing_short # Use short name also for name # - there is not other source for 'name' session.create( "AssetType", { "short": missing_short, "name": type_name } ) # Commit creation session.commit() # Requery asset types asset_types = session.query( "select id, short from AssetType" ).all() return {asset_type["short"]: asset_type for asset_type in asset_types} def _ensure_asset_exists( self, session, asset_data, asset_type_id, parent_id ): asset_name = asset_data["name"] asset_entity = self._query_asset( session, asset_name, asset_type_id, parent_id ) if asset_entity is not None: return asset_entity asset_data = { "name": asset_name, "type_id": asset_type_id, "context_id": parent_id } self.log.info("Created new Asset with data: {}.".format(asset_data)) session.create("Asset", asset_data) session.commit() return self._query_asset(session, asset_name, asset_type_id, parent_id) def _query_asset(self, session, asset_name, asset_type_id, parent_id): return session.query( ( "select id from Asset" " where name is \"{}\"" " and type_id is \"{}\"" " and context_id is \"{}\"" ).format(asset_name, asset_type_id, parent_id) ).first() def _ensure_asset_version_exists( self, session, asset_version_data, asset_id, task_entity, status_ids_by_name ): task_id = None if task_entity: task_id = task_entity["id"] status_name = asset_version_data.pop("status_name", None) # Try query asset version by criteria (asset id and version) version = asset_version_data.get("version") or 0 asset_version_entity = self._query_asset_version( session, version, asset_id ) # Prepare comment value comment = asset_version_data.get("comment") or "" if asset_version_entity is not None: changed = False if comment != asset_version_entity["comment"]: asset_version_entity["comment"] = comment changed = True if task_id != asset_version_entity["task_id"]: asset_version_entity["task_id"] = task_id changed = True if changed: session.commit() else: new_asset_version_data = { "version": version, "asset_id": asset_id } if task_id: new_asset_version_data["task_id"] = task_id if comment: new_asset_version_data["comment"] = comment self.log.info("Created new AssetVersion with data {}".format( new_asset_version_data )) session.create("AssetVersion", new_asset_version_data) session.commit() asset_version_entity = self._query_asset_version( session, version, asset_id ) if status_name: status_id = status_ids_by_name.get(status_name.lower()) if not status_id: self.log.info(( "Ftrack status with name \"{}\"" " for AssetVersion was not found." ).format(status_name)) elif asset_version_entity["status_id"] != status_id: asset_version_entity["status_id"] = status_id session.commit() # Set custom attributes if there were any set custom_attrs = asset_version_data.get("custom_attributes") or {} for attr_key, attr_value in custom_attrs.items(): if attr_key in asset_version_entity["custom_attributes"]: try: asset_version_entity["custom_attributes"][attr_key] = ( attr_value ) session.commit() continue except Exception: session.rollback() session._configure_locations() self.log.warning( ( "Custom Attrubute \"{0}\" is not available for" " AssetVersion <{1}>. Can't set it's value to: \"{2}\"" ).format( attr_key, asset_version_entity["id"], str(attr_value) ) ) return asset_version_entity def _query_asset_version(self, session, version, asset_id): return session.query( ( "select id, task_id, comment from AssetVersion" " where version is \"{}\" and asset_id is \"{}\"" ).format(version, asset_id) ).first() def create_component(self, session, asset_version_entity, data): component_data = data.get("component_data") or {} if not component_data.get("name"): component_data["name"] = "main" version_id = asset_version_entity["id"] component_data["version_id"] = version_id component_entity = session.query( ( "select id, name from Component where name is \"{}\"" " and version_id is \"{}\"" ).format(component_data["name"], version_id) ).first() component_overwrite = data.get("component_overwrite", False) location = data.get("component_location", session.pick_location()) # Overwrite existing component data if requested. if component_entity and component_overwrite: origin_location = session.query( "Location where name is \"ftrack.origin\"" ).one() # Removing existing members from location components = list(component_entity.get("members", [])) components += [component_entity] for component in components: for loc in component["component_locations"]: if location["id"] == loc["location_id"]: location.remove_component( component, recursive=False ) # Deleting existing members on component entity for member in component_entity.get("members", []): session.delete(member) del(member) try: session.commit() except Exception: tp, value, tb = sys.exc_info() session.rollback() session._configure_locations() six.reraise(tp, value, tb) # Reset members in memory if "members" in component_entity.keys(): component_entity["members"] = [] # Add components to origin location try: collection = clique.parse(data["component_path"]) except ValueError: # Assume its a single file # Changing file type name, ext = os.path.splitext(data["component_path"]) component_entity["file_type"] = ext origin_location.add_component( component_entity, data["component_path"] ) else: # Changing file type component_entity["file_type"] = collection.format("{tail}") # Create member components for sequence. for member_path in collection: size = 0 try: size = os.path.getsize(member_path) except OSError: pass name = collection.match(member_path).group("index") member_data = { "name": name, "container": component_entity, "size": size, "file_type": os.path.splitext(member_path)[-1] } component = session.create( "FileComponent", member_data ) origin_location.add_component( component, member_path, recursive=False ) component_entity["members"].append(component) # Add components to location. location.add_component( component_entity, origin_location, recursive=True ) data["component"] = component_entity self.log.info( ( "Overwriting Component with path: {0}, data: {1}," " location: {2}" ).format( data["component_path"], component_data, location ) ) # Extracting metadata, and adding after entity creation. This is # due to a ftrack_api bug where you can't add metadata on creation. component_metadata = component_data.pop("metadata", {}) # Create new component if none exists. new_component = False if not component_entity: component_entity = asset_version_entity.create_component( data["component_path"], data=component_data, location=location ) data["component"] = component_entity self.log.info( ( "Created new Component with path: {0}, data: {1}," " metadata: {2}, location: {3}" ).format( data["component_path"], component_data, component_metadata, location ) ) new_component = True # Adding metadata existing_component_metadata = component_entity["metadata"] existing_component_metadata.update(component_metadata) component_entity["metadata"] = existing_component_metadata # if component_data['name'] = 'ftrackreview-mp4-mp4': # assetversion_entity["thumbnail_id"] # Setting assetversion thumbnail if data.get("thumbnail"): asset_version_entity["thumbnail_id"] = component_entity["id"] # Inform user about no changes to the database. if ( component_entity and not component_overwrite and not new_component ): data["component"] = component_entity self.log.info( "Found existing component, and no request to overwrite. " "Nothing has been changed." ) else: # Commit changes. try: session.commit() except Exception: tp, value, tb = sys.exc_info() session.rollback() session._configure_locations() six.reraise(tp, value, tb)
36.718153
79
0.556789
8beb1cb7ec15578cd5f02c2adc90e03a752128e2
13,793
py
Python
tests/test_streams.py
VisionsOfDrifting/pytube
851eb9969c08b2bcb34ec5113380c4569e122651
[ "Unlicense" ]
null
null
null
tests/test_streams.py
VisionsOfDrifting/pytube
851eb9969c08b2bcb34ec5113380c4569e122651
[ "Unlicense" ]
null
null
null
tests/test_streams.py
VisionsOfDrifting/pytube
851eb9969c08b2bcb34ec5113380c4569e122651
[ "Unlicense" ]
null
null
null
import os import random import pytest from datetime import datetime from unittest import mock from unittest.mock import MagicMock, Mock from urllib.error import HTTPError from pytube import request, Stream @mock.patch("pytube.streams.request") def test_stream_to_buffer(mock_request, cipher_signature): # Given stream_bytes = iter( [ bytes(os.urandom(8 * 1024)), bytes(os.urandom(8 * 1024)), bytes(os.urandom(8 * 1024)), ] ) mock_request.stream.return_value = stream_bytes buffer = MagicMock() # When cipher_signature.streams[0].stream_to_buffer(buffer) # Then assert buffer.write.call_count == 3 def test_filesize(cipher_signature): assert cipher_signature.streams[0].filesize == 28282013 def test_filesize_approx(cipher_signature): stream = cipher_signature.streams[0] assert stream.filesize_approx == 28309811 stream.bitrate = None assert stream.filesize_approx == 28282013 def test_default_filename(cipher_signature): expected = "YouTube Rewind 2019 For the Record YouTubeRewind.mp4" stream = cipher_signature.streams[0] assert stream.default_filename == expected def test_title(cipher_signature): expected = "YouTube Rewind 2019: For the Record | #YouTubeRewind" assert cipher_signature.title == expected def test_expiration(cipher_signature): assert cipher_signature.streams[0].expiration >= datetime(2020, 10, 30, 5, 39, 41) def test_caption_tracks(presigned_video): assert len(presigned_video.caption_tracks) == 13 def test_captions(presigned_video): assert len(presigned_video.captions) == 13 def test_description(cipher_signature): expected = ( "In 2018, we made something you didn’t like. " "For Rewind 2019, let’s see what you DID like.\n\n" "Celebrating the creators, music and moments " "that mattered most to you in 2019. \n\n" "To learn how the top lists in Rewind were generated: " "https://rewind.youtube/about\n\n" "Top lists featured the following channels:\n\n" "@1MILLION Dance Studio \n@A4 \n@Anaysa \n" "@Andymation \n@Ariana Grande \n@Awez Darbar \n" "@AzzyLand \n@Billie Eilish \n@Black Gryph0n \n" "@BLACKPINK \n@ChapkisDanceUSA \n@Daddy Yankee \n" "@David Dobrik \n@Dude Perfect \n@Felipe Neto \n" "@Fischer's-フィッシャーズ- \n@Galen Hooks \n@ibighit \n" "@James Charles \n@jeffreestar \n@Jelly \n@Kylie Jenner \n" "@LazarBeam \n@Lil Dicky \n@Lil Nas X \n@LOUD \n@LOUD Babi \n" "@LOUD Coringa \n@Magnet World \n@MrBeast \n" "@Nilson Izaias Papinho Oficial \n@Noah Schnapp\n" "@백종원의 요리비책 Paik's Cuisine \n@Pencilmation \n@PewDiePie \n" "@SethEverman \n@shane \n@Shawn Mendes \n@Team Naach \n" "@whinderssonnunes \n@워크맨-Workman \n@하루한끼 one meal a day \n\n" "To see the full list of featured channels in Rewind 2019, " "visit: https://rewind.youtube/about" ) assert cipher_signature.description == expected def test_rating(cipher_signature): """Test the rating value of a YouTube object. This changes each time we rebuild the json files, so we want to use an estimate of where it will be. The two values seen to make this estimate were 2.073431 and 2.0860765. This represents a range of ~0.007 below and ~0.006 above 2.08. Allowing for up to 0.02 in either direction should provide a steady indicator of correctness. """ assert abs(cipher_signature.rating - 2.08) < 0.02 def test_length(cipher_signature): assert cipher_signature.length == 337 def test_views(cipher_signature): assert cipher_signature.views >= 108531745 @mock.patch( "pytube.streams.request.head", MagicMock(return_value={"content-length": "6796391"}) ) @mock.patch( "pytube.request.stream", MagicMock(return_value=iter([str(random.getrandbits(8 * 1024))])), ) def test_download(cipher_signature): with mock.patch("pytube.streams.open", mock.mock_open(), create=True): stream = cipher_signature.streams[0] stream.download() @mock.patch( "pytube.streams.request.head", MagicMock(return_value={"content-length": "16384"}) ) @mock.patch( "pytube.request.stream", MagicMock(return_value=iter([str(random.getrandbits(8 * 1024))])), ) @mock.patch("pytube.streams.target_directory", MagicMock(return_value="/target")) def test_download_with_prefix(cipher_signature): with mock.patch("pytube.streams.open", mock.mock_open(), create=True): stream = cipher_signature.streams[0] file_path = stream.download(filename_prefix="prefix") assert file_path == os.path.join( "/target", "prefixYouTube Rewind 2019 For the Record YouTubeRewind.mp4" ) @mock.patch( "pytube.streams.request.head", MagicMock(return_value={"content-length": "16384"}) ) @mock.patch( "pytube.request.stream", MagicMock(return_value=iter([str(random.getrandbits(8 * 1024))])), ) @mock.patch("pytube.streams.target_directory", MagicMock(return_value="/target")) def test_download_with_filename(cipher_signature): with mock.patch("pytube.streams.open", mock.mock_open(), create=True): stream = cipher_signature.streams[0] file_path = stream.download(filename="cool name bro") assert file_path == os.path.join( "/target", "cool name bro.mp4" ) @mock.patch( "pytube.streams.request.head", MagicMock(return_value={"content-length": "16384"}) ) @mock.patch( "pytube.request.stream", MagicMock(return_value=iter([str(random.getrandbits(8 * 1024))])), ) @mock.patch("pytube.streams.target_directory", MagicMock(return_value="/target")) @mock.patch("os.path.isfile", MagicMock(return_value=True)) def test_download_with_existing(cipher_signature): with mock.patch("pytube.streams.open", mock.mock_open(), create=True): stream = cipher_signature.streams[0] os.path.getsize = Mock(return_value=stream.filesize) file_path = stream.download() assert file_path == os.path.join( "/target", "YouTube Rewind 2019 For the Record YouTubeRewind.mp4" ) assert not request.stream.called @mock.patch( "pytube.streams.request.head", MagicMock(return_value={"content-length": "16384"}) ) @mock.patch( "pytube.request.stream", MagicMock(return_value=iter([str(random.getrandbits(8 * 1024))])), ) @mock.patch("pytube.streams.target_directory", MagicMock(return_value="/target")) @mock.patch("os.path.isfile", MagicMock(return_value=True)) def test_download_with_existing_no_skip(cipher_signature): with mock.patch("pytube.streams.open", mock.mock_open(), create=True): stream = cipher_signature.streams[0] os.path.getsize = Mock(return_value=stream.filesize) file_path = stream.download(skip_existing=False) assert file_path == os.path.join( "/target", "YouTube Rewind 2019 For the Record YouTubeRewind.mp4" ) assert request.stream.called def test_progressive_streams_return_includes_audio_track(cipher_signature): stream = cipher_signature.streams.filter(progressive=True)[0] assert stream.includes_audio_track def test_progressive_streams_return_includes_video_track(cipher_signature): stream = cipher_signature.streams.filter(progressive=True)[0] assert stream.includes_video_track @mock.patch( "pytube.streams.request.head", MagicMock(return_value={"content-length": "16384"}) ) @mock.patch( "pytube.request.stream", MagicMock(return_value=iter([str(random.getrandbits(8 * 1024))])), ) def test_on_progress_hook(cipher_signature): callback_fn = mock.MagicMock() cipher_signature.register_on_progress_callback(callback_fn) with mock.patch("pytube.streams.open", mock.mock_open(), create=True): stream = cipher_signature.streams[0] stream.download() assert callback_fn.called args, _ = callback_fn.call_args assert len(args) == 3 stream, _, _ = args assert isinstance(stream, Stream) @mock.patch( "pytube.streams.request.head", MagicMock(return_value={"content-length": "16384"}) ) @mock.patch( "pytube.request.stream", MagicMock(return_value=iter([str(random.getrandbits(8 * 1024))])), ) def test_on_complete_hook(cipher_signature): callback_fn = mock.MagicMock() cipher_signature.register_on_complete_callback(callback_fn) with mock.patch("pytube.streams.open", mock.mock_open(), create=True): stream = cipher_signature.streams[0] stream.download() assert callback_fn.called def test_author(cipher_signature): expected = "Test author" cipher_signature._player_response = {"videoDetails": {"author": expected}} assert cipher_signature.author == expected expected = "unknown" cipher_signature.author = None cipher_signature._player_response = {'key': 'value'} assert cipher_signature.author == expected def test_thumbnail_when_in_details(cipher_signature): expected = "some url" cipher_signature._player_response = { "videoDetails": {"thumbnail": {"thumbnails": [{"url": expected}]}} } assert cipher_signature.thumbnail_url == expected def test_thumbnail_when_not_in_details(cipher_signature): expected = "https://img.youtube.com/vi/2lAe1cqCOXo/maxresdefault.jpg" cipher_signature._player_response = {'key': 'value'} assert cipher_signature.thumbnail_url == expected def test_repr_for_audio_streams(cipher_signature): stream = str(cipher_signature.streams.filter(only_audio=True)[0]) expected = ( '<Stream: itag="140" mime_type="audio/mp4" abr="128kbps" ' 'acodec="mp4a.40.2" progressive="False" type="audio">' ) assert stream == expected def test_repr_for_video_streams(cipher_signature): stream = str(cipher_signature.streams.filter(only_video=True)[0]) expected = ( '<Stream: itag="137" mime_type="video/mp4" res="1080p" fps="24fps" ' 'vcodec="avc1.640028" progressive="False" type="video">' ) assert stream == expected def test_repr_for_progressive_streams(cipher_signature): stream = str(cipher_signature.streams.filter(progressive=True)[0]) expected = ( '<Stream: itag="18" mime_type="video/mp4" res="360p" fps="24fps" ' 'vcodec="avc1.42001E" acodec="mp4a.40.2" progressive="True" ' 'type="video">' ) assert stream == expected def test_repr_for_adaptive_streams(cipher_signature): stream = str(cipher_signature.streams.filter(adaptive=True)[0]) expected = ( '<Stream: itag="137" mime_type="video/mp4" res="1080p" fps="24fps" ' 'vcodec="avc1.640028" progressive="False" type="video">' ) assert stream == expected def test_segmented_stream_on_404(cipher_signature): stream = cipher_signature.streams.filter(adaptive=True)[0] with mock.patch('pytube.request.head') as mock_head: with mock.patch('pytube.request.urlopen') as mock_url_open: # Mock the responses to YouTube mock_url_open_object = mock.Mock() # These are our 4 "segments" of a dash stream # The first explains how many pieces there are, and # the rest are those pieces responses = [ b'Raw_data\r\nSegment-Count: 3', b'a', b'b', b'c', ] joined_responses = b''.join(responses) # We create response headers to match the segments response_headers = [ { 'content-length': len(r), 'Content-Range': '0-%s/%s' % (str(len(r)), str(len(r))) } for r in responses ] # Request order for stream: # 1. get(url&sn=0) # 2. head(url&sn=[1,2,3]) # 3. info(url) -> 404 # 4. get(url&sn=0) # 5. get(url&sn=[1,2,3]) # Handle filesize requests mock_head.side_effect = [ HTTPError('', 404, 'Not Found', '', ''), *response_headers[1:], ] # Each response must be followed by None, to break iteration # in the stream() function mock_url_open_object.read.side_effect = [ responses[0], None, responses[1], None, responses[2], None, responses[3], None, ] # This handles the HEAD requests to get content-length mock_url_open_object.info.side_effect = [ HTTPError('', 404, 'Not Found', '', ''), *response_headers ] mock_url_open.return_value = mock_url_open_object with mock.patch('builtins.open', new_callable=mock.mock_open) as mock_open: file_handle = mock_open.return_value.__enter__.return_value fp = stream.download() full_content = b'' for call in file_handle.write.call_args_list: args, kwargs = call full_content += b''.join(args) assert full_content == joined_responses mock_open.assert_called_once_with(fp, 'wb') def test_segmented_only_catches_404(cipher_signature): stream = cipher_signature.streams.filter(adaptive=True)[0] with mock.patch('pytube.request.stream') as mock_stream: mock_stream.side_effect = HTTPError('', 403, 'Forbidden', '', '') with mock.patch("pytube.streams.open", mock.mock_open(), create=True): with pytest.raises(HTTPError): stream.download()
35.366667
88
0.662147
3c7123f5a4314483d89f0f85388d8e38e0c1f273
14,426
py
Python
malib/environments/particle.py
renos/Emergent-Multiagent-Strategies
afaf6acfdd6d505668f06ac23dfb33e872ab2872
[ "MIT" ]
23
2020-07-05T11:13:00.000Z
2022-01-28T00:24:41.000Z
malib/environments/particle.py
renos/Emergent-Multiagent-Strategies
afaf6acfdd6d505668f06ac23dfb33e872ab2872
[ "MIT" ]
2
2020-09-07T19:09:40.000Z
2021-06-02T02:21:51.000Z
malib/environments/particle.py
renos/Emergent-Multiagent-Strategies
afaf6acfdd6d505668f06ac23dfb33e872ab2872
[ "MIT" ]
8
2020-07-06T07:24:37.000Z
2021-09-27T20:28:25.000Z
import gym from gym import spaces import numpy as np from multiagent.multi_discrete import MultiDiscrete from malib.spaces import Box, MASpace, MAEnvSpec # environment for all agents in the multiagent world # currently code assumes that no agents will be created/destroyed at runtime! def make_particle_env(game_name, benchmark=False): import multiagent.scenarios as scenarios scenario = scenarios.load(game_name + ".py").Scenario() # create world world = scenario.make_world() # create multiagent environment if benchmark: env = ParticleEnv(world, scenario.reset_world, scenario.reward, scenario.observation, scenario.benchmark_data) else: env = ParticleEnv(world, scenario.reset_world, scenario.reward, scenario.observation) return env # environment for all agents in the multiagent world # currently code assumes that no agents will be created/destroyed at runtime! class ParticleEnv(gym.Env): metadata = { 'render.modes' : ['human', 'rgb_array'] } def terminate(self): pass def __init__(self, world, reset_callback=None, reward_callback=None, observation_callback=None, info_callback=None, done_callback=None, shared_viewer=True): self.world = world self.agents = self.world.policy_agents # set required vectorized gym env property self.n = len(world.policy_agents) # scenario callbacks self.reset_callback = reset_callback self.reward_callback = reward_callback self.observation_callback = observation_callback self.info_callback = info_callback self.done_callback = done_callback # environment parameters self.discrete_action_space = True # if true, action is a number 0...N, otherwise action is a one-hot N-dimensional vector self.discrete_action_input = False # if true, even the action is continuous, action will be performed discretely self.force_discrete_action = world.discrete_action if hasattr(world, 'discrete_action') else False # if true, every agent has the same reward self.shared_reward = world.collaborative if hasattr(world, 'collaborative') else False self.time = 0 # configure spaces self.action_space = [] self.observation_space = [] obs_shapes = [] self.agent_num = len(self.agents) for agent in self.agents: total_action_space = [] # physical action space if self.discrete_action_space: u_action_space = spaces.Discrete(world.dim_p * 2 + 1) else: u_action_space = spaces.Box(low=-agent.u_range, high=+agent.u_range, shape=(world.dim_p,), dtype=np.float32) if agent.movable: total_action_space.append(u_action_space) # communication action space if self.discrete_action_space: c_action_space = spaces.Discrete(world.dim_c) else: c_action_space = spaces.Box(low=0.0, high=1.0, shape=(world.dim_c,), dtype=np.float32) if not agent.silent: total_action_space.append(c_action_space) # total action space if len(total_action_space) > 1: # all action spaces are discrete, so simplify to MultiDiscrete action space if all([isinstance(act_space, spaces.Discrete) for act_space in total_action_space]): act_space = MultiDiscrete([[0, act_space.n - 1] for act_space in total_action_space]) else: act_space = spaces.Tuple(total_action_space) self.action_space.append(act_space) else: self.action_space.append(total_action_space[0]) # observation space obs_dim = len(observation_callback(agent, self.world)) obs_shapes.append((obs_dim,)) self.observation_space.append(spaces.Box(low=-np.inf, high=+np.inf, shape=(obs_dim,), dtype=np.float32)) agent.action.c = np.zeros(self.world.dim_c) # simpified for non-comm game # self.action_spaces = MASpace(tuple(Box(low=-1., high=1., shape=(1,)) for _ in range(self.agent_num))) # self.observation_spaces = MASpace(tuple(Discrete(1) for _ in range(self.agent_num))) self.action_spaces = MASpace(tuple(Box(low=0., high=1., shape=(world.dim_p * 2 + 1,)) for _ in range(self.agent_num))) # print(obs_shapes) self.observation_spaces = MASpace(tuple(Box(low=-np.inf, high=+np.inf, shape=obs_shape) for obs_shape in obs_shapes)) self.env_specs = MAEnvSpec(self.observation_spaces, self.action_spaces) self.action_range = [0., 1.] # rendering self.shared_viewer = shared_viewer if self.shared_viewer: self.viewers = [None] else: self.viewers = [None] * self.n self._reset_render() def step(self, action_n): obs_n = [] reward_n = [] done_n = [] info_n = {'n': []} self.agents = self.world.policy_agents # set action for each agent for i, agent in enumerate(self.agents): action = np.array(action_n[i]).reshape((5,)) self._set_action(action, agent, self.action_space[i]) # advance world state self.world.step() # record observation for each agent for agent in self.agents: obs_n.append(self._get_obs(agent)) reward_n.append(self._get_reward(agent)) done_n.append(self._get_done(agent)) info_n['n'].append(self._get_info(agent)) # all agents get total reward in cooperative case reward = np.sum(reward_n) if self.shared_reward: reward_n = [reward] * self.n return obs_n, reward_n, done_n, info_n def reset(self): # reset world self.reset_callback(self.world) # reset renderer self._reset_render() # record observations for each agent obs_n = [] self.agents = self.world.policy_agents for agent in self.agents: obs_n.append(self._get_obs(agent)) return obs_n # get info used for benchmarking def _get_info(self, agent): if self.info_callback is None: return {} return self.info_callback(agent, self.world) # get observation for a particular agent def _get_obs(self, agent): if self.observation_callback is None: return np.zeros(0) return self.observation_callback(agent, self.world) # get dones for a particular agent # unused right now -- agents are allowed to go beyond the viewing screen def _get_done(self, agent): if self.done_callback is None: return False return self.done_callback(agent, self.world) # get reward for a particular agent def _get_reward(self, agent): if self.reward_callback is None: return 0.0 return self.reward_callback(agent, self.world) # set env action for a particular agent def _set_action(self, action, agent, action_space, time=None): agent.action.u = np.zeros(self.world.dim_p) agent.action.c = np.zeros(self.world.dim_c) # process action if isinstance(action_space, MultiDiscrete): act = [] size = action_space.high - action_space.low + 1 index = 0 for s in size: act.append(action[index:(index+s)]) index += s action = act else: action = [action] if agent.movable: # physical action if self.discrete_action_input: agent.action.u = np.zeros(self.world.dim_p) # process discrete action if action[0] == 1: agent.action.u[0] = -1.0 if action[0] == 2: agent.action.u[0] = +1.0 if action[0] == 3: agent.action.u[1] = -1.0 if action[0] == 4: agent.action.u[1] = +1.0 else: if self.force_discrete_action: d = np.argmax(action[0]) action[0][:] = 0.0 action[0][d] = 1.0 if self.discrete_action_space: # print('action', action) agent.action.u[0] += action[0][1] - action[0][2] agent.action.u[1] += action[0][3] - action[0][4] else: agent.action.u = action[0] sensitivity = 5.0 if agent.accel is not None: sensitivity = agent.accel agent.action.u *= sensitivity action = action[1:] if not agent.silent: # communication action if self.discrete_action_input: agent.action.c = np.zeros(self.world.dim_c) agent.action.c[action[0]] = 1.0 else: agent.action.c = action[0] action = action[1:] # make sure we used all elements of action assert len(action) == 0 # reset rendering assets def _reset_render(self): self.render_geoms = None self.render_geoms_xform = None # render environment def render(self, mode='human'): if mode == 'human': alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' message = '' for agent in self.world.agents: comm = [] for other in self.world.agents: if other is agent: continue if np.all(other.state.c == 0): word = '_' else: word = alphabet[np.argmax(other.state.c)] message += (other.name + ' to ' + agent.name + ': ' + word + ' ') # print(message) for i in range(len(self.viewers)): # create viewers (if necessary) if self.viewers[i] is None: # import rendering only if we need it (and don't import for headless machines) #from gym.envs.classic_control import rendering from multiagent import rendering self.viewers[i] = rendering.Viewer(700,700) # create rendering geometry if self.render_geoms is None: # import rendering only if we need it (and don't import for headless machines) #from gym.envs.classic_control import rendering from multiagent import rendering self.render_geoms = [] self.render_geoms_xform = [] for entity in self.world.entities: geom = rendering.make_circle(entity.size) xform = rendering.Transform() if 'agent' in entity.name: geom.set_color(*entity.color, alpha=0.5) else: geom.set_color(*entity.color) geom.add_attr(xform) self.render_geoms.append(geom) self.render_geoms_xform.append(xform) # add geoms to viewer for viewer in self.viewers: viewer.geoms = [] for geom in self.render_geoms: viewer.add_geom(geom) results = [] for i in range(len(self.viewers)): from multiagent import rendering # update bounds to center around agent cam_range = 1 if self.shared_viewer: pos = np.zeros(self.world.dim_p) else: pos = self.agents[i].state.p_pos self.viewers[i].set_bounds(pos[0]-cam_range,pos[0]+cam_range,pos[1]-cam_range,pos[1]+cam_range) # update geometry positions for e, entity in enumerate(self.world.entities): self.render_geoms_xform[e].set_translation(*entity.state.p_pos) # render to display or array results.append(self.viewers[i].render(return_rgb_array = mode=='rgb_array')) return results # create receptor field locations in local coordinate frame def _make_receptor_locations(self, agent): receptor_type = 'polar' range_min = 0.05 * 2.0 range_max = 1.00 dx = [] # circular receptive field if receptor_type == 'polar': for angle in np.linspace(-np.pi, +np.pi, 8, endpoint=False): for distance in np.linspace(range_min, range_max, 3): dx.append(distance * np.array([np.cos(angle), np.sin(angle)])) # add origin dx.append(np.array([0.0, 0.0])) # grid receptive field if receptor_type == 'grid': for x in np.linspace(-range_max, +range_max, 5): for y in np.linspace(-range_max, +range_max, 5): dx.append(np.array([x,y])) return dx # vectorized wrapper for a batch of multi-agent environments # assumes all environments have the same observation and action space class BatchMultiAgentEnv(gym.Env): metadata = { 'runtime.vectorized': True, 'render.modes' : ['human', 'rgb_array'] } def __init__(self, env_batch): self.env_batch = env_batch @property def n(self): return np.sum([env.n for env in self.env_batch]) @property def action_space(self): return self.env_batch[0].action_space @property def observation_space(self): return self.env_batch[0].observation_space def step(self, action_n, time): obs_n = [] reward_n = [] done_n = [] info_n = {'n': []} i = 0 for env in self.env_batch: obs, reward, done, _ = env.step(action_n[i:(i+env.n)], time) i += env.n obs_n += obs # reward = [r / len(self.env_batch) for r in reward] reward_n += reward done_n += done return obs_n, reward_n, done_n, info_n def reset(self): obs_n = [] for env in self.env_batch: obs_n += env.reset() return obs_n # render environment def render(self, mode='human', close=True): results_n = [] for env in self.env_batch: results_n += env.render(mode, close) return results_n
38.989189
126
0.584362
581215e6f0601d9890d84d166d10eea43e64b7cb
483
py
Python
python/hackerrank/weightedmean/main.py
imjoseangel/sandbox
bc4ff74981faf91eb1a1f777d01fcfd13d6f5147
[ "MIT" ]
null
null
null
python/hackerrank/weightedmean/main.py
imjoseangel/sandbox
bc4ff74981faf91eb1a1f777d01fcfd13d6f5147
[ "MIT" ]
null
null
null
python/hackerrank/weightedmean/main.py
imjoseangel/sandbox
bc4ff74981faf91eb1a1f777d01fcfd13d6f5147
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import (division, absolute_import, print_function, unicode_literals) def weightedMean(X, W): return round(sum([i[0] * i[1] for i in zip(X, W)]) / sum(W), 1) def main(): n = int(input().strip()) vals = list(map(int, input().rstrip().split())) weights = list(map(int, input().rstrip().split())) print(weightedMean(vals, weights)) if __name__ == '__main__': main()
19.32
67
0.585921
9f739d401b75c8e36e4db122582e8965d1db3f8a
839
py
Python
evan/wsgi.py
eillarra/evan
befe0f8daedd1b1f629097110d92e68534e43da1
[ "MIT" ]
null
null
null
evan/wsgi.py
eillarra/evan
befe0f8daedd1b1f629097110d92e68534e43da1
[ "MIT" ]
20
2021-03-31T20:10:46.000Z
2022-02-15T09:58:13.000Z
evan/wsgi.py
eillarra/evan
befe0f8daedd1b1f629097110d92e68534e43da1
[ "MIT" ]
null
null
null
# https://docs.djangoproject.com/en/dev/howto/deployment/wsgi/ import os import sentry_sdk from django.conf import settings from django.core.wsgi import get_wsgi_application from sentry_sdk.integrations.django import DjangoIntegration from whitenoise import WhiteNoise env = os.environ.get("DJANGO_ENV", None) if env in ["production"]: sentry_sdk.init( dsn=os.environ.get("SENTRY_DSN", "SENTRY_DSN"), release=os.environ.get("GIT_REV", None), environment=env, integrations=[DjangoIntegration()], ignore_errors=["django.security.DisallowedHost"], send_default_pii=True, ) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "evan.settings") os.environ["HTTPS"] = "on" app = get_wsgi_application() app = WhiteNoise(app, root=os.path.join(settings.SITE_ROOT, "www"), max_age=31536000)
29.964286
85
0.734207
00470f41d238170292ab8534c0e5a58a9bbb5899
3,941
py
Python
functorch/__init__.py
LaudateCorpus1/functorch
b07eea9d29fb44f0a9be3c35c042b3f6124bfcf2
[ "BSD-3-Clause" ]
null
null
null
functorch/__init__.py
LaudateCorpus1/functorch
b07eea9d29fb44f0a9be3c35c042b3f6124bfcf2
[ "BSD-3-Clause" ]
null
null
null
functorch/__init__.py
LaudateCorpus1/functorch
b07eea9d29fb44f0a9be3c35c042b3f6124bfcf2
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch import functools import textwrap from . import _C # Top-level APIs. Please think carefully before adding something to the # top-level namespace: # - private helper functions should go into functorch._src # - very experimental things should go into functorch.experimental # - compilation related things should go into functorch.compile # functorch transforms from ._src.vmap import vmap from ._src.eager_transforms import ( grad, grad_and_value, vjp, jacrev, jvp, jacfwd, hessian, ) from ._src.python_key import make_fx # utilities. Maybe these should go in their own namespace in the future? from ._src.make_functional import ( make_functional_with_buffers, make_functional, combine_state_for_ensemble, FunctionalModule, FunctionalModuleWithBuffers, ) try: from .version import __version__ # noqa: F401 except ImportError: pass # Monkeypatching lol _old_cross_entropy = torch.nn.functional.cross_entropy # **kwargs to handle the new label_smoothing arg def cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean', **kwargs): if input.dim() == 1 and target.dim() == 0: input = input.unsqueeze(0) target = target.unsqueeze(0) result = _old_cross_entropy( input, target, weight, size_average, ignore_index, reduce, reduction, **kwargs) if reduction == 'none': return result.squeeze(0) return result torch.nn.functional.cross_entropy = cross_entropy # Monkeypatch .backward() to error out if any transforms are active. # TODO: remove the monkeypatching and add an extension point into PyTorch core _old_backward = torch.Tensor.backward @functools.wraps(_old_backward) def _backward(*args, **kwargs): if _C.are_transforms_active(): raise RuntimeError( "backward() called inside a functorch transform. This is not " "supported, please use functorch.grad or functorch.vjp instead " "or call backward() outside of functorch transforms.") return _old_backward(*args, **kwargs) setattr(torch.Tensor, 'backward', _backward) # Monkeypatch tensor printing in pytorch _old_str = torch._tensor_str._str def prep_value(text, indent=4): first_line_txt = '' lines = text.split('\n') lines[0] = lines[0] lines[0] = ' ' * indent + first_line_txt + lines[0] for i in range(1, len(lines)): lines[i] = ' ' * (indent + len(first_line_txt)) + lines[i] return '\n'.join(lines) @functools.wraps(_old_str) def _functorch_str(tensor): level = _C.maybe_get_level(tensor) if level == -1: return _old_str(tensor) value = _C.get_unwrapped(tensor) dl_enabled = _C.tls_set_is_included() try: # Disable temporarily kDynamicLayerFrontModeKey/kDynamicLayerBackModeKey as included dispatch keys if (dl_enabled): _C._set_dynamic_layer_keys_included(False) value_repr = repr(value) finally: # Reenable kDynamicLayerFrontModeKey/kDynamicLayerBackModeKey as included dispatch keys if (dl_enabled): _C._set_dynamic_layer_keys_included(True) if _C.is_batchedtensor(tensor): bdim = _C.maybe_get_bdim(tensor) assert bdim != -1 return ( f'BatchedTensor(lvl={level}, bdim={bdim}, value=\n' f'{prep_value(value_repr)}\n' f')' ) if _C.is_gradtrackingtensor(tensor): return ( f'GradTrackingTensor(lvl={level}, value=\n' f'{prep_value(value_repr)}\n' f')' ) raise ValueError("We don't know how to print this, please file us an issue") torch._tensor_str._str = _functorch_str
30.550388
106
0.691956
e5a88fdfdcf46c6240445dd0967e191203d897c2
304
py
Python
minos/tasks/vcf_cluster.py
oxfordfun/minos
e7165f1a398b1003e82a8aa00480ef5cd65fa834
[ "MIT" ]
14
2018-01-25T15:20:42.000Z
2022-03-25T07:57:19.000Z
minos/tasks/vcf_cluster.py
oxfordfun/minos
e7165f1a398b1003e82a8aa00480ef5cd65fa834
[ "MIT" ]
41
2018-01-25T15:47:13.000Z
2021-11-04T10:30:21.000Z
minos/tasks/vcf_cluster.py
oxfordfun/minos
e7165f1a398b1003e82a8aa00480ef5cd65fa834
[ "MIT" ]
11
2018-01-25T15:11:32.000Z
2021-11-04T08:59:55.000Z
from cluster_vcf_records import variant_tracking def run(options): tracker = variant_tracking.VariantTracker(options.merge_dir, options.ref_fasta) tracker.cluster( options.outprefix, options.max_ref_len, max_alleles=options.max_alleles, cpus=options.cpus, )
25.333333
83
0.720395
015ddabab3c3ec618e508b8a53c897beb5b227d7
860
py
Python
tests/test_cli.py
nmurtagh/rpmvenv
38784c4500bfa6233cd8ef1ef8c5fd7c9602fd32
[ "MIT" ]
null
null
null
tests/test_cli.py
nmurtagh/rpmvenv
38784c4500bfa6233cd8ef1ef8c5fd7c9602fd32
[ "MIT" ]
null
null
null
tests/test_cli.py
nmurtagh/rpmvenv
38784c4500bfa6233cd8ef1ef8c5fd7c9602fd32
[ "MIT" ]
null
null
null
"""Test suites for the primary entry point of the CLI.""" from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import pytest from rpmvenv import cli @pytest.mark.skipif( not pytest.config.getvalue("python_git_url"), reason="No --python-git-url option was given", ) def test_python_cmd_build(python_source_code, python_config_file, tmpdir): """Test that a default build works without exception.""" with pytest.raises(SystemExit) as exc_info: cli.main( ( python_config_file, '--source', python_source_code, '--destination', str(tmpdir), ) ) rc = exc_info.value.code if type(exc_info.value) == SystemExit else \ exc_info.value assert rc == 0
28.666667
74
0.674419
103edc859e3d2f4bae7b1c5fc418e8d67187355d
1,848
py
Python
pkg_usage.py
akaneko1019/yolact_edge
a9a00281b33b3ac90253a4939773308a8f95e21d
[ "MIT" ]
1,036
2020-12-23T01:48:56.000Z
2022-03-29T11:55:42.000Z
pkg_usage.py
akaneko1019/yolact_edge
a9a00281b33b3ac90253a4939773308a8f95e21d
[ "MIT" ]
184
2020-12-23T05:10:16.000Z
2022-03-30T05:41:25.000Z
pkg_usage.py
akaneko1019/yolact_edge
a9a00281b33b3ac90253a4939773308a8f95e21d
[ "MIT" ]
221
2020-12-23T03:35:35.000Z
2022-03-29T06:26:23.000Z
import numpy as np import urllib import time import cv2 from yolact_edge.inference import YOLACTEdgeInference weights = "yolact_edge_resnet50_54_800000.pth" # All available model configs, depends on which weights # you use. More info could be found in data/config.py. model_configs = [ 'yolact_edge_mobilenetv2_config', 'yolact_edge_vid_config', 'yolact_edge_vid_minimal_config', 'yolact_edge_vid_trainflow_config', 'yolact_edge_youtubevis_config', 'yolact_resnet50_config', 'yolact_resnet152_config', 'yolact_edge_resnet50_config', 'yolact_edge_vid_resnet50_config', 'yolact_edge_vid_trainflow_resnet50_config', 'yolact_edge_youtubevis_resnet50_config', ] config = model_configs[5] # All available model datasets, depends on which weights # you use. More info could be found in data/config.py. datasets = [ 'coco2014_dataset', 'coco2017_dataset', 'coco2017_testdev_dataset', 'flying_chairs_dataset', 'youtube_vis_dataset', ] dataset = datasets[1] # Used tensorrt calibration calib_images = "./data/calib_images" # Override some default configuration config_ovr = { 'use_fast_nms': True, # Does not work with regular nms 'mask_proto_debug': False } model_inference = YOLACTEdgeInference( weights, config, dataset, calib_images, config_ovr) img = None try: with urllib.request.urlopen("http://images.cocodataset.org/val2017/000000439715.jpg") as f: img = np.asarray(bytearray(f.read()), dtype="uint8") img = cv2.imdecode(img, cv2.IMREAD_COLOR) except: pass if img is None: print("Couldn't retrieve image for benchmark...") exit(1) print("Benchmarking performance...") start = time.time() samples = 200 for i in range(samples): p = model_inference.predict(img, False) print(f"Average {1 / ( (time.time() - start) / samples )} FPS")
29.333333
95
0.739177
a1aa1c7f8a6461f1ef9a0f3b461b524d7b273420
505
py
Python
kol/request/OpenChatRequest.py
DamianDominoDavis/cwbot-ndy
53b826232eadb7ef558f568872a945d04d8d4252
[ "BSD-3-Clause" ]
null
null
null
kol/request/OpenChatRequest.py
DamianDominoDavis/cwbot-ndy
53b826232eadb7ef558f568872a945d04d8d4252
[ "BSD-3-Clause" ]
null
null
null
kol/request/OpenChatRequest.py
DamianDominoDavis/cwbot-ndy
53b826232eadb7ef558f568872a945d04d8d4252
[ "BSD-3-Clause" ]
null
null
null
from .GenericRequest import GenericRequest from kol.manager import PatternManager class OpenChatRequest(GenericRequest): def __init__(self, session): super(OpenChatRequest, self).__init__(session) self.url = session.serverURL + "lchat.php" def parseResponse(self): currentChannelPattern = PatternManager.getOrCompilePattern("currentChatChannel") match = currentChannelPattern.search(self.responseText) self.responseData["currentChannel"] = match.group(1)
38.846154
88
0.750495
a5d19a763832911d86c140daea11df751a0d9fa5
1,055
py
Python
plenum/test/input_validation/message_validation/test_consistencyproof_message.py
andkononykhin/plenum
28dc1719f4b7e80d31dafbadb38cfec4da949886
[ "Apache-2.0" ]
148
2017-07-11T19:05:25.000Z
2022-03-16T21:31:20.000Z
plenum/test/input_validation/message_validation/test_consistencyproof_message.py
andkononykhin/plenum
28dc1719f4b7e80d31dafbadb38cfec4da949886
[ "Apache-2.0" ]
561
2017-06-29T17:59:56.000Z
2022-03-09T15:47:14.000Z
plenum/test/input_validation/message_validation/test_consistencyproof_message.py
andkononykhin/plenum
28dc1719f4b7e80d31dafbadb38cfec4da949886
[ "Apache-2.0" ]
378
2017-06-29T17:45:27.000Z
2022-03-26T07:27:59.000Z
import pytest from plenum.common.messages.node_messages import ConsistencyProof from collections import OrderedDict from plenum.common.messages.fields import NonNegativeNumberField, \ LedgerIdField, MerkleRootField, IterableField EXPECTED_ORDERED_FIELDS = OrderedDict([ ("ledgerId", LedgerIdField), ("seqNoStart", NonNegativeNumberField), ("seqNoEnd", NonNegativeNumberField), ("viewNo", NonNegativeNumberField), ("ppSeqNo", NonNegativeNumberField), ("oldMerkleRoot", MerkleRootField), ("newMerkleRoot", MerkleRootField), ("hashes", IterableField), ]) def test_hash_expected_type(): assert ConsistencyProof.typename == "CONSISTENCY_PROOF" def test_has_expected_fields(): actual_field_names = OrderedDict(ConsistencyProof.schema).keys() assert list(actual_field_names) == list(EXPECTED_ORDERED_FIELDS.keys()) def test_has_expected_validators(): schema = dict(ConsistencyProof.schema) for field, validator in EXPECTED_ORDERED_FIELDS.items(): assert isinstance(schema[field], validator)
32.96875
75
0.76872
d59caa9d9568e7231fa52af8017cb636b5294ee0
4,523
py
Python
libs/RedisProtocol.py
mgronhol/h3-tritium
815b863cb0a4fc438273129dcff537ac2633aa82
[ "Apache-2.0" ]
2
2020-09-05T01:34:58.000Z
2020-09-05T01:54:25.000Z
libs/RedisProtocol.py
mgronhol/h3-tritium
815b863cb0a4fc438273129dcff537ac2633aa82
[ "Apache-2.0" ]
null
null
null
libs/RedisProtocol.py
mgronhol/h3-tritium
815b863cb0a4fc438273129dcff537ac2633aa82
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2013 Markus Gronholm <markus@alshain.fi> / Alshain Oy # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class RedisProtocol(object): def __init__( self, conn ): self.conn = conn self.buf = "" def _pack_list( self, data ): #print "packing list", data out = "*%i\r\n" % len( data ) for entry in data: if isinstance( entry, int ): out += ":%i\r\n" % entry elif isinstance( entry, list ): out += self._pack_list( entry ) elif isinstance( entry, dict ): out += self._pack_dict( entry ) else: out += "$%i\r\n" % len( str(entry) ) out += "%s\r\n" % str( entry ) return out def _pack_dict( self, data ): #print "packing dict", data out = "*%i\r\n" % (len( data ) * 2) for (key, value) in data.items(): out += "$%i\r\n" % len( key ) out += "%s\r\n" % key if isinstance( value, int ): out += ":%i\r\n" % value elif isinstance( value, list ): out += self._pack_list( value ) elif isinstance( value, dict ): out += self._pack_dict( value ) else: out += "$%i\r\n" % len( value ) out += "%s\r\n" % value return out def send_response( self, message ): if isinstance( message, str ): self.conn.send( "+%s\r\n" % repr(message)[1:-1]) elif isinstance( message, list ): self.conn.send( self._pack_list( message ) ) elif isinstance( message, dict ): self.conn.send( self._pack_dict( message ) ) elif isinstance( message, int ): self.conn.send(":%i\r\n" % message ) def send_error( self, message ): self.conn.send( '-%s\r\n' % repr(message)[1:-1] ) def recv_bulk( self ): #print "bulk" while '\r\n' not in self.buf: self._recv() if not self.buf.startswith( "$" ): return False (line, rest) = self.buf.split( "\r\n", 1 ) next_bytes = int( line[1:] ) self.buf = rest while len( self.buf ) < next_bytes + 2: self._recv() (line, rest) = self.buf.split( "\r\n", 1 ) self.buf = rest return line def recv_string( self ): #print "string" while '\r\n' not in self.buf: self._recv() if not self.buf.startswith( "+" ): return False (line, rest) = self.buf.split( "\r\n", 1 ) self.buf = rest return line[1:] def recv_error( self ): while '\r\n' not in self.buf: self._recv() if not self.buf.startswith( "-" ): return False (line, rest) = self.buf.split( "\r\n", 1 ) self.buf = rest return line def recv_integer( self ): #print "integer" while '\r\n' not in self.buf: self._recv() if not self.buf.startswith( ":" ): return False (line, rest) = self.buf.split( "\r\n", 1 ) self.buf = rest return int(line[1:]) def recv_multibulk( self ): #print "multibulk" while '\r\n' not in self.buf: self._recv() if not self.buf.startswith( "*" ): return False (line, rest) = self.buf.split( "\r\n", 1 ) self.buf = rest N = int( line[1:] ) #print "Nparams", N out = [] for i in range( N ): while len( self.buf ) < 1: self._recv() #print "multibulk selector", self.buf[0] if self.buf.startswith( "+" ): out.append( self.recv_string() ) elif self.buf.startswith( "-" ): out.append( self.recv_error() ) elif self.buf.startswith( ":" ): out.append( self.recv_integer() ) elif self.buf.startswith( "$" ): out.append( self.recv_bulk() ) else: out.append( self.recv_multibulk() ) return out def _recv( self ): chunk = self.conn.recv(1024) if len( chunk ) < 1: raise IOError self.buf += chunk #print self.buf def receive(self): try: while len( self.buf ) < 1: self._recv() if self.buf.startswith( "+" ): return self.recv_string() elif self.buf.startswith( "-" ): return self.recv_error() elif self.buf.startswith( ":" ): return self.recv_integer() elif self.buf.startswith( "$" ): return self.recv_bulk() elif self.buf.startswith( "*" ): return self.recv_multibulk() except IOError: return False
23.805263
76
0.604024
f4a28fac4b39c7798cb7cb3d8e11f3d681cf8859
1,246
py
Python
msg_handler/__init__.py
OpenUpSA/odac-ford-housing
010d9a0361606b1041e2b64140825f7bff60935a
[ "Apache-2.0" ]
1
2015-04-24T23:47:26.000Z
2015-04-24T23:47:26.000Z
msg_handler/__init__.py
Code4SA/odac-ford-housing
010d9a0361606b1041e2b64140825f7bff60935a
[ "Apache-2.0" ]
null
null
null
msg_handler/__init__.py
Code4SA/odac-ford-housing
010d9a0361606b1041e2b64140825f7bff60935a
[ "Apache-2.0" ]
null
null
null
import logging from flask import Flask from redis import Redis from flask.ext.sqlalchemy import SQLAlchemy import sys redis = Redis() app = Flask(__name__, instance_relative_config=True) app.config.from_pyfile('config.py', silent=True) app.config.from_pyfile('config_private.py', silent=True) db = SQLAlchemy(app) # load log level from config LOG_LEVEL = app.config['LOG_LEVEL'] LOGGER_NAME = app.config['LOGGER_NAME'] # create logger for this application logger = logging.getLogger(LOGGER_NAME) logger.setLevel(LOG_LEVEL) # declare format for logging to file file_formatter = logging.Formatter( '%(asctime)s %(levelname)s: %(message)s ' '[in %(pathname)s:%(lineno)d]' ) # add file handler to application logger from logging.handlers import RotatingFileHandler log_path = app.instance_path[0:app.instance_path.index('instance')] file_handler = RotatingFileHandler(log_path + 'debug.log') file_handler.setLevel(LOG_LEVEL) file_handler.setFormatter(file_formatter) logger.addHandler(file_handler) # also log to stdout stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setLevel(LOG_LEVEL) stream_handler.setFormatter(file_formatter) logger.addHandler(stream_handler) import msg_handler.admin import msg_handler.views
28.318182
67
0.800963
65dc618a41383981ef84d1caa7785a13385dd89b
3,496
py
Python
DXFImporter/lib/ezdxf/math/eulerspiral.py
tapnair/DXFImporter
c86cde0b4420ca7d0c5e3569675acd2d4426667f
[ "MIT" ]
2
2021-07-28T03:52:02.000Z
2021-07-31T05:08:11.000Z
DXFImporter/lib/ezdxf/math/eulerspiral.py
tapnair/DXFImporter
c86cde0b4420ca7d0c5e3569675acd2d4426667f
[ "MIT" ]
1
2020-04-28T17:52:26.000Z
2020-10-07T01:28:56.000Z
DXFImporter/lib/ezdxf/math/eulerspiral.py
tapnair/DXFImporter
c86cde0b4420ca7d0c5e3569675acd2d4426667f
[ "MIT" ]
1
2021-07-31T05:08:12.000Z
2021-07-31T05:08:12.000Z
# Created: 26.03.2010 # License: MIT License from typing import Dict, Iterable from ezdxf.math import Vector from ezdxf.math.bspline import bspline_control_frame, BSpline class EulerSpiral: """ This class represents an euler spiral (clothoid) for `curvature` (Radius of curvature). This is a parametric curve, which always starts at the origin = ``(0, 0)``. Args: curvature: radius of curvature """ def __init__(self, curvature: float = 1.0): self.curvature = curvature # Radius of curvature self.curvature_powers = [curvature ** power for power in range(19)] self._cache = {} # type: Dict[float, Vector] # coordinates cache def radius(self, t: float) -> float: """ Get radius of circle at distance `t`. """ if t > 0.: return self.curvature_powers[2] / t else: return 0. # radius = infinite def tangent(self, t: float) -> Vector: """ Get tangent at distance `t` as :class.`Vector` object. """ angle = t ** 2 / (2. * self.curvature_powers[2]) return Vector.from_angle(angle) def distance(self, radius: float) -> float: """ Get distance L from origin for `radius`. """ return self.curvature_powers[2] / float(radius) def point(self, t: float) -> Vector: """ Get point at distance `t` as :class.`Vector`. """ def term(length_power, curvature_power, const): return t ** length_power / (const * self.curvature_powers[curvature_power]) if t not in self._cache: y = term(3, 2, 6.) - term(7, 6, 336.) + term(11, 10, 42240.) - \ term(15, 14, 9676800.) + term(19, 18, 3530096640.) x = t - term(5, 4, 40.) + term(9, 8, 3456.) - term(13, 12, 599040.) + \ term(17, 16, 175472640.) self._cache[t] = Vector(x, y) return self._cache[t] def approximate(self, length: float, segments: int) -> Iterable[Vector]: """ Approximate curve of length with line segments. Generates segments+1 vertices as :class:`Vector` objects. """ delta_l = float(length) / float(segments) yield Vector(0, 0) for index in range(1, segments + 1): yield self.point(delta_l * index) def circle_center(self, t: float) -> Vector: """ Get circle center at distance `t`. .. versionchanged:: 0.10 renamed from `circle_midpoint` """ p = self.point(t) r = self.radius(t) return p + self.tangent(t).normalize(r).orthogonal() def bspline(self, length: float, segments: int = 10, degree: int = 3, method: str = 'uniform') -> BSpline: """ Approximate euler spiral as B-spline. Args: length: length of euler spiral segments: count of fit points for B-spline calculation degree: degree of BSpline method: calculation method for parameter vector t Returns: :class:`BSpline` """ fit_points = list(self.approximate(length, segments=segments)) spline = bspline_control_frame(fit_points, degree, method=method) knots = [v * length for v in spline.knot_values()] # scale knot values to length spline.basis.knots = knots return spline # backward compatibility circle_midpoint = circle_center
30.938053
110
0.579805
3eb69bd7f3d42f5cd8d6cc6d2d32cc9eb808d9a4
38,110
py
Python
tensorflow/python/keras/engine/topology_test.py
tianyapiaozi/tensorflow
fb3ce0467766a8e91f1da0ad7ada7c24fde7a73a
[ "Apache-2.0" ]
71
2017-05-25T16:02:15.000Z
2021-06-09T16:08:08.000Z
tensorflow/python/keras/engine/topology_test.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
133
2017-04-26T16:49:49.000Z
2019-10-15T11:39:26.000Z
tensorflow/python/keras/engine/topology_test.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
26
2017-04-12T16:25:44.000Z
2018-10-30T10:10:15.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #,============================================================================ """Tests for layer graphs construction & handling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python import keras from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.keras.engine import base_layer from tensorflow.python.keras.engine import input_layer as input_layer_lib from tensorflow.python.keras.engine import network as network_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.platform import test try: import yaml # pylint:disable=g-import-not-at-top except ImportError: yaml = None class TopologyConstructionTest(test.TestCase): def test_get_updates(self): class MyLayer(keras.layers.Layer): def build(self, input_shape): self.a = self.add_variable('a', (1, 1), 'float32', trainable=False) self.b = self.add_variable('b', (1, 1), 'float32', trainable=False) self.add_update(state_ops.assign_add(self.a, [[1.]], name='unconditional_update')) self.built = True def call(self, inputs): self.add_update(state_ops.assign_add(self.b, inputs, name='conditional_update'), inputs=True) return inputs + 1 x1 = input_layer_lib.Input(shape=(1,)) layer = MyLayer() _ = layer.apply(x1) self.assertEqual(len(layer.updates), 2) self.assertEqual(len(layer.get_updates_for(x1)), 1) self.assertEqual(len(layer.get_updates_for(None)), 1) x2 = input_layer_lib.Input(shape=(1,)) y2 = layer.apply(x2) self.assertEqual(len(layer.updates), 3) self.assertEqual(len(layer.get_updates_for(x1)), 1) self.assertEqual(len(layer.get_updates_for(x2)), 1) self.assertEqual(len(layer.get_updates_for(None)), 1) network = network_lib.Network(x2, y2) self.assertEqual(len(network.updates), 2) self.assertEqual(len(network.get_updates_for(x1)), 0) self.assertEqual(len(network.get_updates_for(x2)), 1) self.assertEqual(len(network.get_updates_for(None)), 1) x3 = input_layer_lib.Input(shape=(1,)) _ = layer.apply(x3) self.assertEqual(len(network.updates), 2) x4 = input_layer_lib.Input(shape=(1,)) _ = network(x4) self.assertEqual(len(network.updates), 3) self.assertEqual(len(network.get_updates_for(x2)), 1) self.assertEqual(len(network.get_updates_for(x4)), 1) self.assertEqual(len(network.get_updates_for(None)), 1) network.add_update(state_ops.assign_add(layer.a, [[1]])) self.assertEqual(len(network.updates), 4) self.assertEqual(len(network.get_updates_for(None)), 2) network.add_update(state_ops.assign_add(layer.b, x4), inputs=True) self.assertEqual(len(network.updates), 5) self.assertEqual(len(network.get_updates_for(x4)), 2) def test_get_updates_bn(self): x1 = input_layer_lib.Input(shape=(1,)) layer = keras.layers.BatchNormalization() _ = layer.apply(x1) print('BN updates', layer._updates) self.assertEqual(len(layer.updates), 2) self.assertEqual(len(layer.get_updates_for(x1)), 2) self.assertEqual(len(layer.get_updates_for(None)), 0) def test_get_losses(self): class MyLayer(keras.layers.Layer): def build(self, input_shape): self.a = self.add_variable('a', (1, 1), 'float32', trainable=False) self.b = self.add_variable('b', (1, 1), 'float32', trainable=False) self.add_loss(math_ops.reduce_sum(self.a)) self.built = True def call(self, inputs): self.add_loss(math_ops.reduce_sum(inputs), inputs=True) return inputs + 1 x1 = input_layer_lib.Input(shape=(1,)) layer = MyLayer() _ = layer.apply(x1) self.assertEqual(len(layer.losses), 2) self.assertEqual(len(layer.get_losses_for(x1)), 1) self.assertEqual(len(layer.get_losses_for(None)), 1) x2 = input_layer_lib.Input(shape=(1,)) y2 = layer.apply(x2) self.assertEqual(len(layer.losses), 3) self.assertEqual(len(layer.get_losses_for(x1)), 1) self.assertEqual(len(layer.get_losses_for(x2)), 1) self.assertEqual(len(layer.get_losses_for(None)), 1) network = network_lib.Network(x2, y2) self.assertEqual(len(network.losses), 2) self.assertEqual(len(network.get_losses_for(x1)), 0) self.assertEqual(len(network.get_losses_for(x2)), 1) self.assertEqual(len(network.get_losses_for(None)), 1) x3 = input_layer_lib.Input(shape=(1,)) _ = layer.apply(x3) self.assertEqual(len(network.losses), 2) x4 = input_layer_lib.Input(shape=(1,)) _ = network(x4) self.assertEqual(len(network.losses), 3) self.assertEqual(len(network.get_losses_for(x2)), 1) self.assertEqual(len(network.get_losses_for(x4)), 1) self.assertEqual(len(network.get_losses_for(None)), 1) network.add_loss(math_ops.reduce_sum(layer.a)) self.assertEqual(len(network.losses), 4) self.assertEqual(len(network.get_losses_for(None)), 2) network.add_loss(math_ops.reduce_sum(x4), inputs=True) self.assertEqual(len(network.losses), 5) self.assertEqual(len(network.get_losses_for(x4)), 2) def testTopologicalAttributes(self): # test layer attributes / methods related to cross-layer connectivity. a = input_layer_lib.Input(shape=(32,), name='input_a') b = input_layer_lib.Input(shape=(32,), name='input_b') # test input, output, input_shape, output_shape test_layer = keras.layers.Dense(16, name='test_layer') a_test = test_layer(a) self.assertEqual(test_layer.input, a) self.assertEqual(test_layer.output, a_test) self.assertEqual(test_layer.input_shape, (None, 32)) self.assertEqual(test_layer.output_shape, (None, 16)) # test `get_*_at` methods dense = keras.layers.Dense(16, name='dense_1') a_2 = dense(a) b_2 = dense(b) self.assertEqual(dense.get_input_at(0), a) self.assertEqual(dense.get_input_at(1), b) self.assertEqual(dense.get_output_at(0), a_2) self.assertEqual(dense.get_output_at(1), b_2) self.assertEqual(dense.get_input_shape_at(0), (None, 32)) self.assertEqual(dense.get_input_shape_at(1), (None, 32)) self.assertEqual(dense.get_output_shape_at(0), (None, 16)) self.assertEqual(dense.get_output_shape_at(1), (None, 16)) # Test invalid value for attribute retrieval. with self.assertRaises(ValueError): dense.get_input_at(2) with self.assertRaises(AttributeError): new_dense = keras.layers.Dense(16) _ = new_dense.input with self.assertRaises(AttributeError): new_dense = keras.layers.Dense(16) _ = new_dense.output with self.assertRaises(AttributeError): new_dense = keras.layers.Dense(16) _ = new_dense.output_shape with self.assertRaises(AttributeError): new_dense = keras.layers.Dense(16) _ = new_dense.input_shape with self.assertRaises(AttributeError): new_dense = keras.layers.Dense(16) a = input_layer_lib.Input(shape=(3, 32)) a = input_layer_lib.Input(shape=(5, 32)) a_2 = dense(a) b_2 = dense(b) _ = new_dense.input_shape with self.assertRaises(AttributeError): new_dense = keras.layers.Dense(16) a = input_layer_lib.Input(shape=(3, 32)) a = input_layer_lib.Input(shape=(5, 32)) a_2 = dense(a) b_2 = dense(b) _ = new_dense.output_shape def testTopologicalAttributesMultiOutputLayer(self): class PowersLayer(keras.layers.Layer): def call(self, inputs): return [inputs**2, inputs**3] x = input_layer_lib.Input(shape=(32,)) test_layer = PowersLayer() p1, p2 = test_layer(x) # pylint: disable=not-callable self.assertEqual(test_layer.input, x) self.assertEqual(test_layer.output, [p1, p2]) self.assertEqual(test_layer.input_shape, (None, 32)) self.assertEqual(test_layer.output_shape, [(None, 32), (None, 32)]) def testTopologicalAttributesMultiInputLayer(self): class AddLayer(keras.layers.Layer): def call(self, inputs): assert len(inputs) == 2 return inputs[0] + inputs[1] a = input_layer_lib.Input(shape=(32,)) b = input_layer_lib.Input(shape=(32,)) test_layer = AddLayer() y = test_layer([a, b]) # pylint: disable=not-callable self.assertEqual(test_layer.input, [a, b]) self.assertEqual(test_layer.output, y) self.assertEqual(test_layer.input_shape, [(None, 32), (None, 32)]) self.assertEqual(test_layer.output_shape, (None, 32)) def testBasicNetwork(self): # minimum viable network x = input_layer_lib.Input(shape=(32,)) dense = keras.layers.Dense(2) y = dense(x) network = network_lib.Network(x, y, name='dense_network') # test basic attributes self.assertEqual(network.name, 'dense_network') self.assertEqual(len(network.layers), 2) # InputLayer + Dense self.assertEqual(network.layers[1], dense) self.assertEqual(network.weights, dense.weights) self.assertEqual(network.trainable_weights, dense.trainable_weights) self.assertEqual(network.non_trainable_weights, dense.non_trainable_weights) # test callability on Input x_2 = input_layer_lib.Input(shape=(32,)) y_2 = network(x_2) self.assertEqual(y_2.get_shape().as_list(), [None, 2]) # test callability on regular tensor x_2 = array_ops.placeholder(dtype='float32', shape=(None, 32)) y_2 = network(x_2) self.assertEqual(y_2.get_shape().as_list(), [None, 2]) # test network `trainable` attribute network.trainable = False self.assertEqual(network.weights, dense.weights) self.assertEqual(network.trainable_weights, []) self.assertEqual(network.non_trainable_weights, dense.trainable_weights + dense.non_trainable_weights) def test_trainable_weights(self): a = keras.layers.Input(shape=(2,)) b = keras.layers.Dense(1)(a) model = keras.models.Model(a, b) weights = model.weights self.assertListEqual(model.trainable_weights, weights) self.assertListEqual(model.non_trainable_weights, []) model.trainable = False self.assertListEqual(model.trainable_weights, []) self.assertListEqual(model.non_trainable_weights, weights) model.trainable = True self.assertListEqual(model.trainable_weights, weights) self.assertListEqual(model.non_trainable_weights, []) model.layers[1].trainable = False self.assertListEqual(model.trainable_weights, []) self.assertListEqual(model.non_trainable_weights, weights) # sequential model model = keras.models.Sequential() model.add(keras.layers.Dense(1, input_dim=2)) weights = model.weights self.assertListEqual(model.trainable_weights, weights) self.assertListEqual(model.non_trainable_weights, []) model.trainable = False self.assertListEqual(model.trainable_weights, []) self.assertListEqual(model.non_trainable_weights, weights) model.trainable = True self.assertListEqual(model.trainable_weights, weights) self.assertListEqual(model.non_trainable_weights, []) model.layers[0].trainable = False self.assertListEqual(model.trainable_weights, []) self.assertListEqual(model.non_trainable_weights, weights) def test_learning_phase(self): with self.test_session(): a = keras.layers.Input(shape=(32,), name='input_a') b = keras.layers.Input(shape=(32,), name='input_b') a_2 = keras.layers.Dense(16, name='dense_1')(a) dp = keras.layers.Dropout(0.5, name='dropout') b_2 = dp(b) self.assertFalse(a_2._uses_learning_phase) self.assertTrue(b_2._uses_learning_phase) # test merge m = keras.layers.concatenate([a_2, b_2]) self.assertTrue(m._uses_learning_phase) # Test recursion model = keras.models.Model([a, b], [a_2, b_2]) self.assertTrue(model.uses_learning_phase) c = keras.layers.Input(shape=(32,), name='input_c') d = keras.layers.Input(shape=(32,), name='input_d') c_2, b_2 = model([c, d]) self.assertTrue(c_2._uses_learning_phase) self.assertTrue(b_2._uses_learning_phase) # try actually running graph fn = keras.backend.function( model.inputs + [keras.backend.learning_phase()], model.outputs) input_a_np = np.random.random((10, 32)) input_b_np = np.random.random((10, 32)) fn_outputs_no_dp = fn([input_a_np, input_b_np, 0]) fn_outputs_dp = fn([input_a_np, input_b_np, 1]) # output a: nothing changes self.assertEqual(fn_outputs_no_dp[0].sum(), fn_outputs_dp[0].sum()) # output b: dropout applied self.assertNotEqual(fn_outputs_no_dp[1].sum(), fn_outputs_dp[1].sum()) def test_layer_call_arguments(self): # Test the ability to pass and serialize arguments to `call`. inp = keras.layers.Input(shape=(2,)) x = keras.layers.Dense(3)(inp) x = keras.layers.Dropout(0.5)(x, training=True) model = keras.models.Model(inp, x) self.assertFalse(model.uses_learning_phase) # Test that argument is kept when applying the model inp2 = keras.layers.Input(shape=(2,)) out2 = model(inp2) self.assertFalse(out2._uses_learning_phase) # Test that argument is kept after loading a model config = model.get_config() model = keras.models.Model.from_config(config) self.assertFalse(model.uses_learning_phase) def test_node_construction(self): # test basics a = keras.layers.Input(shape=(32,), name='input_a') b = keras.layers.Input(shape=(32,), name='input_b') with self.assertRaises(ValueError): _ = keras.layers.Input(shape=(32,), batch_shape=(10, 32)) with self.assertRaises(ValueError): _ = keras.layers.Input(shape=(32,), unknown_kwarg=None) self.assertListEqual(a.get_shape().as_list(), [None, 32]) a_layer, a_node_index, a_tensor_index = a._keras_history b_layer, _, _ = b._keras_history self.assertEqual(len(a_layer._inbound_nodes), 1) self.assertEqual(a_tensor_index, 0) node = a_layer._inbound_nodes[a_node_index] self.assertEqual(node.outbound_layer, a_layer) self.assertListEqual(node.inbound_layers, []) self.assertListEqual(node.input_tensors, [a]) self.assertListEqual(node.input_shapes, [(None, 32)]) self.assertListEqual(node.output_tensors, [a]) self.assertListEqual(node.output_shapes, [(None, 32)]) dense = keras.layers.Dense(16, name='dense_1') a_2 = dense(a) b_2 = dense(b) self.assertEqual(len(dense._inbound_nodes), 2) self.assertEqual(len(dense._outbound_nodes), 0) self.assertListEqual(dense._inbound_nodes[0].inbound_layers, [a_layer]) self.assertEqual(dense._inbound_nodes[0].outbound_layer, dense) self.assertListEqual(dense._inbound_nodes[1].inbound_layers, [b_layer]) self.assertEqual(dense._inbound_nodes[1].outbound_layer, dense) self.assertListEqual(dense._inbound_nodes[0].input_tensors, [a]) self.assertListEqual(dense._inbound_nodes[1].input_tensors, [b]) # test layer properties test_layer = keras.layers.Dense(16, name='test_layer') a_test = test_layer(a) self.assertListEqual(test_layer.kernel.get_shape().as_list(), [32, 16]) self.assertEqual(test_layer.input, a) self.assertEqual(test_layer.output, a_test) self.assertEqual(test_layer.input_shape, (None, 32)) self.assertEqual(test_layer.output_shape, (None, 16)) self.assertEqual(dense.get_input_at(0), a) self.assertEqual(dense.get_input_at(1), b) self.assertEqual(dense.get_output_at(0), a_2) self.assertEqual(dense.get_output_at(1), b_2) self.assertEqual(dense.get_input_shape_at(0), (None, 32)) self.assertEqual(dense.get_input_shape_at(1), (None, 32)) self.assertEqual(dense.get_output_shape_at(0), (None, 16)) self.assertEqual(dense.get_output_shape_at(1), (None, 16)) self.assertEqual(dense.get_input_mask_at(0), None) self.assertEqual(dense.get_input_mask_at(1), None) self.assertEqual(dense.get_output_mask_at(0), None) self.assertEqual(dense.get_output_mask_at(1), None) def test_multi_input_layer(self): with self.test_session(): # test multi-input layer a = keras.layers.Input(shape=(32,), name='input_a') b = keras.layers.Input(shape=(32,), name='input_b') dense = keras.layers.Dense(16, name='dense_1') a_2 = dense(a) b_2 = dense(b) merged = keras.layers.concatenate([a_2, b_2], name='merge') self.assertListEqual(merged.get_shape().as_list(), [None, 16 * 2]) merge_layer, merge_node_index, merge_tensor_index = merged._keras_history self.assertEqual(merge_node_index, 0) self.assertEqual(merge_tensor_index, 0) self.assertEqual(len(merge_layer._inbound_nodes), 1) self.assertEqual(len(merge_layer._outbound_nodes), 0) self.assertEqual(len(merge_layer._inbound_nodes[0].input_tensors), 2) self.assertEqual(len(merge_layer._inbound_nodes[0].inbound_layers), 2) c = keras.layers.Dense(64, name='dense_2')(merged) d = keras.layers.Dense(5, name='dense_3')(c) model = keras.models.Model(inputs=[a, b], outputs=[c, d], name='model') self.assertEqual(len(model.layers), 6) output_shapes = model.compute_output_shape([(None, 32), (None, 32)]) self.assertListEqual(output_shapes[0].as_list(), [None, 64]) self.assertListEqual(output_shapes[1].as_list(), [None, 5]) self.assertListEqual( model.compute_mask([a, b], [None, None]), [None, None]) # we don't check names of first 2 layers (inputs) because # ordering of same-level layers is not fixed self.assertListEqual([l.name for l in model.layers][2:], ['dense_1', 'merge', 'dense_2', 'dense_3']) self.assertListEqual([l.name for l in model._input_layers], ['input_a', 'input_b']) self.assertListEqual([l.name for l in model._output_layers], ['dense_2', 'dense_3']) # actually run model fn = keras.backend.function(model.inputs, model.outputs) input_a_np = np.random.random((10, 32)) input_b_np = np.random.random((10, 32)) fn_outputs = fn([input_a_np, input_b_np]) self.assertListEqual([x.shape for x in fn_outputs], [(10, 64), (10, 5)]) # test get_source_inputs self.assertListEqual(keras.engine.get_source_inputs(c), [a, b]) # serialization / deserialization json_config = model.to_json() recreated_model = keras.models.model_from_json(json_config) recreated_model.compile('rmsprop', 'mse') self.assertListEqual([l.name for l in recreated_model.layers][2:], ['dense_1', 'merge', 'dense_2', 'dense_3']) self.assertListEqual([l.name for l in recreated_model._input_layers], ['input_a', 'input_b']) self.assertListEqual([l.name for l in recreated_model._output_layers], ['dense_2', 'dense_3']) fn = keras.backend.function(recreated_model.inputs, recreated_model.outputs) input_a_np = np.random.random((10, 32)) input_b_np = np.random.random((10, 32)) fn_outputs = fn([input_a_np, input_b_np]) self.assertListEqual([x.shape for x in fn_outputs], [(10, 64), (10, 5)]) def test_recursion(self): with self.test_session(): a = keras.layers.Input(shape=(32,), name='input_a') b = keras.layers.Input(shape=(32,), name='input_b') dense = keras.layers.Dense(16, name='dense_1') a_2 = dense(a) b_2 = dense(b) merged = keras.layers.concatenate([a_2, b_2], name='merge') c = keras.layers.Dense(64, name='dense_2')(merged) d = keras.layers.Dense(5, name='dense_3')(c) model = keras.models.Model(inputs=[a, b], outputs=[c, d], name='model') e = keras.layers.Input(shape=(32,), name='input_e') f = keras.layers.Input(shape=(32,), name='input_f') self.assertEqual(len(model.inputs), 2) g, h = model([e, f]) self.assertEqual(len(model.inputs), 2) self.assertEqual(g.name, 'model/dense_2/BiasAdd:0') self.assertListEqual(g.get_shape().as_list(), c.get_shape().as_list()) self.assertListEqual(h.get_shape().as_list(), d.get_shape().as_list()) # test separate manipulation of different layer outputs i = keras.layers.Dense(7, name='dense_4')(h) final_model = keras.models.Model( inputs=[e, f], outputs=[i, g], name='final') self.assertEqual(len(final_model.inputs), 2) self.assertEqual(len(final_model.outputs), 2) self.assertEqual(len(final_model.layers), 4) # we don't check names of first 2 layers (inputs) because # ordering of same-level layers is not fixed self.assertListEqual([layer.name for layer in final_model.layers][2:], ['model', 'dense_4']) self.assertListEqual( model.compute_mask([e, f], [None, None]), [None, None]) self.assertListEqual( final_model.compute_output_shape([(10, 32), (10, 32)]), [(10, 7), (10, 64)]) # run recursive model fn = keras.backend.function(final_model.inputs, final_model.outputs) input_a_np = np.random.random((10, 32)) input_b_np = np.random.random((10, 32)) fn_outputs = fn([input_a_np, input_b_np]) self.assertListEqual([x.shape for x in fn_outputs], [(10, 7), (10, 64)]) # test serialization model_config = final_model.get_config() recreated_model = keras.models.Model.from_config(model_config) fn = keras.backend.function(recreated_model.inputs, recreated_model.outputs) input_a_np = np.random.random((10, 32)) input_b_np = np.random.random((10, 32)) fn_outputs = fn([input_a_np, input_b_np]) self.assertListEqual([x.shape for x in fn_outputs], [(10, 7), (10, 64)]) def test_multi_input_multi_output_recursion(self): with self.test_session(): # test multi-input multi-output a = keras.layers.Input(shape=(32,), name='input_a') b = keras.layers.Input(shape=(32,), name='input_b') dense = keras.layers.Dense(16, name='dense_1') a_2 = dense(a) b_2 = dense(b) merged = keras.layers.concatenate([a_2, b_2], name='merge') c = keras.layers.Dense(64, name='dense_2')(merged) d = keras.layers.Dense(5, name='dense_3')(c) model = keras.models.Model(inputs=[a, b], outputs=[c, d], name='model') j = keras.layers.Input(shape=(32,), name='input_j') k = keras.layers.Input(shape=(32,), name='input_k') _, n = model([j, k]) o = keras.layers.Input(shape=(32,), name='input_o') p = keras.layers.Input(shape=(32,), name='input_p') q, _ = model([o, p]) self.assertListEqual(n.get_shape().as_list(), [None, 5]) self.assertListEqual(q.get_shape().as_list(), [None, 64]) s = keras.layers.concatenate([n, q], name='merge_nq') self.assertListEqual(s.get_shape().as_list(), [None, 64 + 5]) # test with single output as 1-elem list multi_io_model = keras.models.Model([j, k, o, p], [s]) fn = keras.backend.function(multi_io_model.inputs, multi_io_model.outputs) fn_outputs = fn([ np.random.random((10, 32)), np.random.random((10, 32)), np.random.random((10, 32)), np.random.random((10, 32)) ]) self.assertListEqual([x.shape for x in fn_outputs], [(10, 69)]) # test with single output as tensor multi_io_model = keras.models.Model([j, k, o, p], s) fn = keras.backend.function(multi_io_model.inputs, multi_io_model.outputs) fn_outputs = fn([ np.random.random((10, 32)), np.random.random((10, 32)), np.random.random((10, 32)), np.random.random((10, 32)) ]) # note that the output of the function will still be a 1-elem list self.assertListEqual([x.shape for x in fn_outputs], [(10, 69)]) # test serialization model_config = multi_io_model.get_config() recreated_model = keras.models.Model.from_config(model_config) fn = keras.backend.function(recreated_model.inputs, recreated_model.outputs) fn_outputs = fn([ np.random.random((10, 32)), np.random.random((10, 32)), np.random.random((10, 32)), np.random.random((10, 32)) ]) # note that the output of the function will still be a 1-elem list self.assertListEqual([x.shape for x in fn_outputs], [(10, 69)]) config = model.get_config() keras.models.Model.from_config(config) model.summary() json_str = model.to_json() keras.models.model_from_json(json_str) if yaml is not None: yaml_str = model.to_yaml() keras.models.model_from_yaml(yaml_str) def test_invalid_graphs(self): a = keras.layers.Input(shape=(32,), name='input_a') b = keras.layers.Input(shape=(32,), name='input_b') dense = keras.layers.Dense(16, name='dense_1') a_2 = dense(a) b_2 = dense(b) merged = keras.layers.concatenate([a_2, b_2], name='merge') c = keras.layers.Dense(64, name='dense_2')(merged) d = keras.layers.Dense(5, name='dense_3')(c) model = keras.models.Model(inputs=[a, b], outputs=[c, d], name='model') # input is not an Input tensor j = keras.layers.Input(shape=(32,), name='input_j') j = keras.layers.Dense(32)(j) k = keras.layers.Input(shape=(32,), name='input_k') m, n = model([j, k]) with self.assertRaises(Exception): keras.models.Model([j, k], [m, n]) # disconnected graph j = keras.layers.Input(shape=(32,), name='input_j') k = keras.layers.Input(shape=(32,), name='input_k') m, n = model([j, k]) with self.assertRaises(Exception): keras.models.Model([j], [m, n]) # redundant outputs j = keras.layers.Input(shape=(32,), name='input_j') k = keras.layers.Input(shape=(32,), name='input_k') m, n = model([j, k]) keras.models.Model([j, k], [m, n, n]) # redundant inputs j = keras.layers.Input(shape=(32,), name='input_j') k = keras.layers.Input(shape=(32,), name='input_k') m, n = model([j, k]) with self.assertRaises(Exception): keras.models.Model([j, k, j], [m, n]) # i have not idea what I'm doing: garbage as inputs/outputs j = keras.layers.Input(shape=(32,), name='input_j') k = keras.layers.Input(shape=(32,), name='input_k') m, n = model([j, k]) with self.assertRaises(Exception): keras.models.Model([j, k], [m, n, 0]) def test_raw_tf_compatibility(self): # test calling layers/models on TF tensors a = keras.layers.Input(shape=(32,), name='input_a') b = keras.layers.Input(shape=(32,), name='input_b') dense = keras.layers.Dense(16, name='dense_1') a_2 = dense(a) b_2 = dense(b) merged = keras.layers.concatenate([a_2, b_2], name='merge') c = keras.layers.Dense(64, name='dense_2')(merged) d = keras.layers.Dense(5, name='dense_3')(c) model = keras.models.Model(inputs=[a, b], outputs=[c, d], name='model') j = keras.layers.Input(shape=(32,), name='input_j') k = keras.layers.Input(shape=(32,), name='input_k') self.assertEqual(len(model.inputs), 2) m, n = model([j, k]) self.assertEqual(len(model.inputs), 2) tf_model = keras.models.Model([j, k], [m, n]) j_tf = array_ops.placeholder(dtype=dtypes.float32, shape=(None, 32)) k_tf = array_ops.placeholder(dtype=dtypes.float32, shape=(None, 32)) m_tf, n_tf = tf_model([j_tf, k_tf]) self.assertListEqual(m_tf.get_shape().as_list(), [None, 64]) self.assertListEqual(n_tf.get_shape().as_list(), [None, 5]) # test merge keras.layers.concatenate([j_tf, k_tf], axis=1) keras.layers.add([j_tf, k_tf]) # test tensor input x = array_ops.placeholder(shape=(None, 2), dtype=dtypes.float32) keras.layers.InputLayer(input_tensor=x) x = keras.layers.Input(tensor=x) keras.layers.Dense(2)(x) def test_basic_masking(self): a = keras.layers.Input(shape=(10, 32), name='input_a') b = keras.layers.Masking()(a) model = keras.models.Model(a, b) self.assertEqual(model.output_mask.get_shape().as_list(), [None, 10]) def testMaskingSingleInput(self): class MaskedLayer(keras.layers.Layer): def call(self, inputs, mask=None): if mask is not None: return inputs * mask return inputs def compute_mask(self, inputs, mask=None): return array_ops.ones_like(inputs) if context.executing_eagerly(): a = constant_op.constant([2] * 32) mask = constant_op.constant([0, 1] * 16) a._keras_mask = mask b = MaskedLayer().apply(a) self.assertTrue(hasattr(b, '_keras_mask')) self.assertAllEqual( self.evaluate(array_ops.ones_like(mask)), self.evaluate(getattr(b, '_keras_mask'))) self.assertAllEqual(self.evaluate(a * mask), self.evaluate(b)) else: x = input_layer_lib.Input(shape=(32,)) y = MaskedLayer()(x) # pylint: disable=not-callable network = network_lib.Network(x, y) # test callability on Input x_2 = input_layer_lib.Input(shape=(32,)) y_2 = network(x_2) self.assertEqual(y_2.get_shape().as_list(), [None, 32]) # test callability on regular tensor x_2 = array_ops.placeholder(dtype='float32', shape=(None, 32)) y_2 = network(x_2) self.assertEqual(y_2.get_shape().as_list(), [None, 32]) def test_activity_regularization_with_model_composition(self): def reg(x): return math_ops.reduce_sum(x) net_a_input = input_layer_lib.Input((2,)) net_a = net_a_input net_a = keras.layers.Dense(2, kernel_initializer='ones', use_bias=False, activity_regularizer=reg)(net_a) model_a = keras.Model([net_a_input], [net_a]) net_b_input = input_layer_lib.Input((2,)) net_b = model_a(net_b_input) model_b = keras.Model([net_b_input], [net_b]) model_b.compile(optimizer='sgd', loss=None) x = np.ones((1, 2)) loss = model_b.evaluate(x) self.assertEqual(loss, 4.) def test_layer_sharing_at_heterogenous_depth(self): with self.test_session(): x_val = np.random.random((10, 5)) x = input_layer_lib.Input(shape=(5,)) a = keras.layers.Dense(5, name='A') b = keras.layers.Dense(5, name='B') output = a(b(a(b(x)))) m = keras.models.Model(x, output) output_val = m.predict(x_val) config = m.get_config() weights = m.get_weights() m2 = keras.models.Model.from_config(config) m2.set_weights(weights) output_val_2 = m2.predict(x_val) self.assertAllClose(output_val, output_val_2, atol=1e-6) def test_layer_sharing_at_heterogenous_depth_with_concat(self): with self.test_session(): input_shape = (16, 9, 3) input_layer = input_layer_lib.Input(shape=input_shape) a = keras.layers.Dense(3, name='dense_A') b = keras.layers.Dense(3, name='dense_B') c = keras.layers.Dense(3, name='dense_C') x1 = b(a(input_layer)) x2 = a(c(input_layer)) output = keras.layers.concatenate([x1, x2]) m = keras.models.Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = m.predict(x_val) config = m.get_config() weights = m.get_weights() m2 = keras.models.Model.from_config(config) m2.set_weights(weights) output_val_2 = m2.predict(x_val) self.assertAllClose(output_val, output_val_2, atol=1e-6) def test_explicit_training_argument(self): with self.test_session(): a = keras.layers.Input(shape=(2,)) b = keras.layers.Dropout(0.5)(a) base_model = keras.models.Model(a, b) a = keras.layers.Input(shape=(2,)) b = base_model(a, training=False) model = keras.models.Model(a, b) x = np.ones((100, 2)) y = np.ones((100, 2)) model.compile(optimizer='sgd', loss='mse') loss = model.train_on_batch(x, y) self.assertEqual(loss, 0) # In inference mode, output is equal to input. a = keras.layers.Input(shape=(2,)) b = base_model(a, training=True) model = keras.models.Model(a, b) preds = model.predict(x) self.assertEqual(np.min(preds), 0.) # At least one unit was dropped. def test_multi_output_model_with_none_masking(self): with self.test_session(): def func(x): return [x * 0.2, x * 0.3] def output_shape(input_shape): return [input_shape, input_shape] i = keras.layers.Input(shape=(3, 2, 1)) o = keras.layers.Lambda(function=func, output_shape=output_shape)(i) self.assertEqual(keras.backend.int_shape(o[0]), (None, 3, 2, 1)) self.assertEqual(keras.backend.int_shape(o[1]), (None, 3, 2, 1)) o = keras.layers.add(o) model = keras.Model(i, o) i2 = keras.layers.Input(shape=(3, 2, 1)) o2 = model(i2) model2 = keras.Model(i2, o2) x = np.random.random((4, 3, 2, 1)) out = model2.predict(x) assert out.shape == (4, 3, 2, 1) self.assertAllClose(out, x * 0.2 + x * 0.3, atol=1e-4) class DeferredModeTest(test.TestCase): def testDeferredTensorAttributes(self): x = base_layer.DeferredTensor(shape=(None, 2), dtype='float32', name='x') self.assertEqual(str(x), 'DeferredTensor(\'x\', shape=(?, 2), dtype=float32)') self.assertEqual(repr(x), '<DeferredTensor \'x\' shape=(?, 2) dtype=float32>') @test_util.run_in_graph_and_eager_modes() def testSimpleNetworkBuilding(self): inputs = input_layer_lib.Input(shape=(32,)) if context.executing_eagerly(): self.assertIsInstance(inputs, base_layer.DeferredTensor) self.assertEqual(inputs.dtype.name, 'float32') self.assertEqual(inputs.shape.as_list(), [None, 32]) x = keras.layers.Dense(2)(inputs) if context.executing_eagerly(): self.assertIsInstance(x, base_layer.DeferredTensor) self.assertEqual(x.dtype.name, 'float32') self.assertEqual(x.shape.as_list(), [None, 2]) outputs = keras.layers.Dense(4)(x) network = network_lib.Network(inputs, outputs) self.assertIsInstance(network, network_lib.Network) if context.executing_eagerly(): # It should be possible to call such a network on EagerTensors. inputs = constant_op.constant( np.random.random((10, 32)).astype('float32')) outputs = network(inputs) self.assertEqual(outputs.shape.as_list(), [10, 4]) @test_util.run_in_graph_and_eager_modes() def testMultiIONetworkbuilding(self): input_a = input_layer_lib.Input(shape=(32,)) input_b = input_layer_lib.Input(shape=(16,)) a = keras.layers.Dense(16)(input_a) class AddLayer(keras.layers.Layer): def call(self, inputs): return inputs[0] + inputs[1] def compute_output_shape(self, input_shape): return input_shape[0] c = AddLayer()([a, input_b]) # pylint: disable=not-callable c = keras.layers.Dense(2)(c) network = network_lib.Network([input_a, input_b], [a, c]) if context.executing_eagerly(): a_val = constant_op.constant( np.random.random((10, 32)).astype('float32')) b_val = constant_op.constant( np.random.random((10, 16)).astype('float32')) outputs = network([a_val, b_val]) self.assertEqual(len(outputs), 2) self.assertEqual(outputs[0].shape.as_list(), [10, 16]) self.assertEqual(outputs[1].shape.as_list(), [10, 2]) class GraphUtilsTest(test.TestCase): def testGetReachableFromInputs(self): with self.test_session(): pl_1 = array_ops.placeholder(shape=None, dtype='float32') pl_2 = array_ops.placeholder(shape=None, dtype='float32') pl_3 = array_ops.placeholder(shape=None, dtype='float32') x_1 = pl_1 + pl_2 x_2 = pl_2 * 2 x_3 = pl_3 + 1 x_4 = x_1 + x_2 x_5 = x_3 * pl_1 self.assertEqual( keras.utils.tf_utils.get_reachable_from_inputs([pl_1]), {pl_1, x_1, x_4, x_5, x_1.op, x_4.op, x_5.op}) self.assertEqual( keras.utils.tf_utils.get_reachable_from_inputs([pl_1, pl_2]), {pl_1, pl_2, x_1, x_2, x_4, x_5, x_1.op, x_2.op, x_4.op, x_5.op}) self.assertEqual( keras.utils.tf_utils.get_reachable_from_inputs([pl_3]), {pl_3, x_3, x_5, x_3.op, x_5.op}) self.assertEqual( keras.utils.tf_utils.get_reachable_from_inputs([x_3]), {x_3, x_5, x_5.op}) if __name__ == '__main__': test.main()
37.695351
80
0.652611
66757a9498d7bb876cfd2f548886a2ace8af3d09
2,143
py
Python
cogs/userinfo_ja.py
PLM912/Keter
0dc24d33732fccf36406010e2f8e1519ecdfa4b1
[ "MIT" ]
6
2020-09-01T08:20:49.000Z
2021-01-21T15:23:33.000Z
cogs/userinfo_ja.py
PLM912/Keter
0dc24d33732fccf36406010e2f8e1519ecdfa4b1
[ "MIT" ]
3
2020-11-04T23:25:38.000Z
2021-01-21T17:01:20.000Z
cogs/userinfo_ja.py
PLM912/Keter
0dc24d33732fccf36406010e2f8e1519ecdfa4b1
[ "MIT" ]
11
2020-09-01T08:04:17.000Z
2021-02-07T13:12:16.000Z
import discord from discord.ext import commands from evs import default class Userinfo_Ja(commands.Cog): def __init__(self, bot): self.bot = bot self.config = default.get("config.json") # Commands @commands.command(aliases=['ユーザー情報', 'ユーザ情報', 'ユザー情報', 'ユザ情報']) async def __userinfo(self, ctx): if (ctx.message.mentions.__len__() > 0): for user in ctx.message.mentions: embed = discord.Embed(title="**" + user.name + "さんのプロフィール", description="", color=0xeff0f1) embed.add_field(name="**ID**", value=user.id, inline=True) embed.add_field(name="**ニックネーム**", value=user.display_name, inline=True) embed.add_field(name="**ステイタス**", value=user.status, inline=True) embed.add_field(name="**メンション**", value="<@" + str(user.id) + ">", inline=True) embed.set_thumbnail(url=user.avatar_url) await ctx.send(embed=embed) else: embed = discord.Embed(title=ctx.author.name + "さんのプロフィール", description="", color=0xeff0f1) embed.add_field(name="**ID**", value=ctx.author.id, inline=True) embed.add_field(name="**ニックネーム**", value=ctx.author.display_name, inline=True) embed.add_field(name="**ステイタス**", value=ctx.author.status, inline=True) embed.add_field(name="**メンション**", value="<@" + str(ctx.author.id) + ">", inline=True) embed.set_thumbnail(url=ctx.author.avatar_url) await ctx.send(embed=embed) def setup(bot): bot.add_cog(Userinfo_Ja(bot))
42.019608
91
0.451237
6d7e630f7dba7a532391d6d2371dea495b65b56e
2,410
py
Python
sharpy-sc2/sharpy/plans/acts/protoss/chrono_unit.py
etzhang416/sharpy-bot-eco
badc68ad1aa903dfa1bbc33f6225608e433ff353
[ "Unlicense" ]
null
null
null
sharpy-sc2/sharpy/plans/acts/protoss/chrono_unit.py
etzhang416/sharpy-bot-eco
badc68ad1aa903dfa1bbc33f6225608e433ff353
[ "Unlicense" ]
null
null
null
sharpy-sc2/sharpy/plans/acts/protoss/chrono_unit.py
etzhang416/sharpy-bot-eco
badc68ad1aa903dfa1bbc33f6225608e433ff353
[ "Unlicense" ]
null
null
null
import warnings from sc2 import UnitTypeId, AbilityId from sc2.ids.buff_id import BuffId from sc2.unit import Unit, UnitOrder from sharpy.knowledges import Knowledge from sharpy.plans.acts.act_base import ActBase class ChronoUnit(ActBase): # Use Chronoboost on unit production def __init__(self, name: UnitTypeId, from_building: UnitTypeId, count: int = 0): """ Chrono boosts unit production. @param name: Unit type for which to chronoboost @param from_building: Which building to chrono @param count: Amount of times to cast chronoboost, use 0 for infinite """ assert name is not None and isinstance(name, UnitTypeId) assert from_building is not None and isinstance(from_building, UnitTypeId) self.unit_type = name self.from_building = from_building self.count = count self.casted = 0 super().__init__() async def start(self, knowledge: "Knowledge"): await super().start(knowledge) unit = self.ai._game_data.units[self.unit_type.value] self.creation_ability = unit.creation_ability.id async def execute(self) -> bool: if self.casted > 0 and self.count < self.casted: return True for target in self.cache.own(self.from_building).ready: # type: Unit if target.orders and target.orders[0].ability.id == self.creation_ability: # boost here! if not target.has_buff(BuffId.CHRONOBOOSTENERGYCOST): for nexus in self.cache.own(UnitTypeId.NEXUS): if self.cd_manager.is_ready( nexus.tag, AbilityId.EFFECT_CHRONOBOOSTENERGYCOST ) and self.allow_new_action(nexus): self.do(nexus(AbilityId.EFFECT_CHRONOBOOSTENERGYCOST, target)) self.print(f"Chrono {self.creation_ability.name}") self.casted += 1 return True # TODO: better solution for real time, to prevent multiple duplicate chronos return True # Never block class ChronoUnitProduction(ChronoUnit): def __init__(self, name: UnitTypeId, from_building: UnitTypeId): warnings.warn("'ChronoUnitProduction' is deprecated, use 'ChronoUnit' instead", DeprecationWarning, 2) super().__init__(name, from_building)
43.035714
117
0.645643
cec860a2787b03b552074aabd4aba8f77808e8a4
380
py
Python
Dependencies/gyp-master/test/actions/src/subdir3/generate_main.py
knight666/exlibris
b21b46e0c84e5c4f81f8048022cda88e7bb3dca2
[ "MIT" ]
null
null
null
Dependencies/gyp-master/test/actions/src/subdir3/generate_main.py
knight666/exlibris
b21b46e0c84e5c4f81f8048022cda88e7bb3dca2
[ "MIT" ]
null
null
null
Dependencies/gyp-master/test/actions/src/subdir3/generate_main.py
knight666/exlibris
b21b46e0c84e5c4f81f8048022cda88e7bb3dca2
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2009 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys contents = """ #include <stdio.h> int main(void) { printf("Hello from generate_main.py\\n"); return 0; } """ open(sys.argv[1], 'w').write(contents) sys.exit(0)
17.272727
73
0.644737
f27d22249289a0544d33e9458cb99727c6602acf
315
py
Python
Programas basicos/ex005.py
RuanSampaio-code/Python-Journey
678bfc5e3df22c3082b00e2b6e1e29d4814d470b
[ "MIT" ]
null
null
null
Programas basicos/ex005.py
RuanSampaio-code/Python-Journey
678bfc5e3df22c3082b00e2b6e1e29d4814d470b
[ "MIT" ]
null
null
null
Programas basicos/ex005.py
RuanSampaio-code/Python-Journey
678bfc5e3df22c3082b00e2b6e1e29d4814d470b
[ "MIT" ]
null
null
null
print('==== PROGRAMA PARA DESCOBRIR ANTECESSOR E SUCESSOR DE UM NUMERO ====') num = int(input('\033[30;7m Digite um número:\033[m')) anter = num - 1 suces = num + 1 print(' O número \033[1m{}\033[m tem como o antecessor ' 'o numero \033[1m{}\033[m e sucessor o número \033[1;3m{}.'.format(num, anter,suces,))
45
92
0.650794
839e837fd4b5d0faddbb2bd057ed8dd5d1436de2
960
py
Python
config.py
mellonixie/Cartoonization-Style-Transfer
3f8720df23bb9d846133a4d523c8dbd37abc0446
[ "Apache-2.0" ]
null
null
null
config.py
mellonixie/Cartoonization-Style-Transfer
3f8720df23bb9d846133a4d523c8dbd37abc0446
[ "Apache-2.0" ]
null
null
null
config.py
mellonixie/Cartoonization-Style-Transfer
3f8720df23bb9d846133a4d523c8dbd37abc0446
[ "Apache-2.0" ]
1
2021-09-01T13:31:10.000Z
2021-09-01T13:31:10.000Z
import cv2 from torchvision import transforms, models style_dict = {} style_dict['dog'] = "images/anime3.png" real_img = "images/golder-retriever-puppy.jpeg" net = cv2.dnn.readNet("YOLO/yolov3.weights", "YOLO/yolov3.cfg") classes = [] with open("YOLO/coco.names", "r") as f: classes = [line.strip() for line in f.readlines()] print("YOLO donee") layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] ## GET WEIGHTS style_weights = {'conv1_1': 1., 'conv2_1': 0.75, 'conv3_1': 0.2, 'conv4_1': 0.2, 'conv5_1': 0.2} content_weight = 1 # alpha style_weight = 1e9 # beta in_transform = transforms.Compose([transforms.Resize((256,256)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
30
80
0.577083
da7e399e420e194e82b38bec5a1cfdac66800fb7
35,937
py
Python
absl/testing/tests/xml_reporter_test.py
yuhc/abseil-py
1fe0726fa42bc687c36cb6eba3a6d5dfd5173013
[ "Apache-2.0" ]
null
null
null
absl/testing/tests/xml_reporter_test.py
yuhc/abseil-py
1fe0726fa42bc687c36cb6eba3a6d5dfd5173013
[ "Apache-2.0" ]
null
null
null
absl/testing/tests/xml_reporter_test.py
yuhc/abseil-py
1fe0726fa42bc687c36cb6eba3a6d5dfd5173013
[ "Apache-2.0" ]
1
2019-09-09T21:20:17.000Z
2019-09-09T21:20:17.000Z
# Copyright 2017 The Abseil Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import subprocess import sys import tempfile import threading import time import unittest from xml.etree import ElementTree from xml.parsers import expat from absl import logging from absl.testing import _bazelize_command from absl.testing import absltest from absl.testing import parameterized from absl.testing import xml_reporter from absl.third_party import unittest3_backport import mock import six class StringIOWriteLn(six.StringIO): def writeln(self, line): self.write(line + '\n') class MockTest(absltest.TestCase): failureException = AssertionError def __init__(self, name): super(MockTest, self).__init__() self.name = name def id(self): return self.name def runTest(self): return def shortDescription(self): return "This is this test's description." # str(exception_type) is different between Python 2 and 3. def xml_escaped_exception_type(exception_type): return xml_reporter._escape_xml_attr(str(exception_type)) OUTPUT_STRING = '\n'.join([ r'<\?xml version="1.0"\?>', '<testsuites name="" tests="%(tests)d" failures="%(failures)d"' ' errors="%(errors)d" time="%(run_time).1f">', '<testsuite name="%(suite_name)s" tests="%(tests)d"' ' failures="%(failures)d" errors="%(errors)d" time="%(run_time).1f">', ' <testcase name="%(test_name)s" status="%(status)s" result="%(result)s"' ' time="%(run_time).1f" classname="%(classname)s">%(message)s', ' </testcase>', '</testsuite>', '</testsuites>']) FAILURE_MESSAGE = r""" <failure message="e" type="{}"><!\[CDATA\[Traceback \(most recent call last\): File ".*xml_reporter_test\.py", line \d+, in get_sample_failure raise AssertionError\(\'e\'\) AssertionError: e \]\]></failure>""".format(xml_escaped_exception_type(AssertionError)) ERROR_MESSAGE = r""" <error message="invalid&#x20;literal&#x20;for&#x20;int\(\)&#x20;with&#x20;base&#x20;10:&#x20;(&apos;)?a(&apos;)?" type="{}"><!\[CDATA\[Traceback \(most recent call last\): File ".*xml_reporter_test\.py", line \d+, in get_sample_error int\('a'\) ValueError: invalid literal for int\(\) with base 10: '?a'? \]\]></error>""".format(xml_escaped_exception_type(ValueError)) UNICODE_MESSAGE = r""" <%s message="{0}" type="{1}"><!\[CDATA\[Traceback \(most recent call last\): File ".*xml_reporter_test\.py", line \d+, in get_unicode_sample_failure raise AssertionError\(u'\\xe9'\) AssertionError: {0} \]\]></%s>""".format( r'\\xe9' if six.PY2 else r'\xe9', xml_escaped_exception_type(AssertionError)) NEWLINE_MESSAGE = r""" <%s message="{0}" type="{1}"><!\[CDATA\[Traceback \(most recent call last\): File ".*xml_reporter_test\.py", line \d+, in get_newline_message_sample_failure raise AssertionError\(\'{2}'\) AssertionError: {3} \]\]></%s>""".format( 'new&#xA;line', xml_escaped_exception_type(AssertionError), r'new\\nline', 'new\nline') UNEXPECTED_SUCCESS_MESSAGE = '\n'.join([ '', r' <error message="" type=""><!\[CDATA\[Test case ' r'__main__.MockTest.unexpectedly_passing_test should have failed, ' r'but passed.\]\]></error>']) UNICODE_ERROR_MESSAGE = UNICODE_MESSAGE % ('error', 'error') NEWLINE_ERROR_MESSAGE = NEWLINE_MESSAGE % ('error', 'error') class TextAndXMLTestResultTest(absltest.TestCase): def setUp(self): self.stream = StringIOWriteLn() self.xml_stream = six.StringIO() def _make_result(self, times): timer = mock.Mock() timer.side_effect = times return xml_reporter._TextAndXMLTestResult(self.xml_stream, self.stream, 'foo', 0, timer) def _assert_match(self, regex, output): self.assertRegex(output, regex) def _assert_valid_xml(self, xml_output): try: expat.ParserCreate().Parse(xml_output) except expat.ExpatError as e: raise AssertionError('Bad XML output: {}\n{}'.format(e, xml_output)) def _simulate_error_test(self, test, result): result.startTest(test) result.addError(test, self.get_sample_error()) result.stopTest(test) def _simulate_failing_test(self, test, result): result.startTest(test) result.addFailure(test, self.get_sample_failure()) result.stopTest(test) def _simulate_passing_test(self, test, result): result.startTest(test) result.addSuccess(test) result.stopTest(test) def test_with_passing_test(self): start_time = 0 end_time = 2 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.passing_test') result.startTest(test) result.addSuccess(test) result.stopTest(test) result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 0, 'run_time': run_time, 'test_name': 'passing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ''} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_with_passing_subtest(self): start_time = 0 end_time = 2 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.passing_test') if six.PY3: subtest = unittest.case._SubTest(test, 'msg', None) else: subtest = unittest3_backport.case._SubTest(test, 'msg', None) result.startTest(test) result.addSubTest(test, subtest, None) result.stopTestRun() result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 0, 'run_time': run_time, 'test_name': r'passing_test&#x20;\[msg\]', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ''} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_with_passing_subtest_with_dots_in_parameter_name(self): start_time = 0 end_time = 2 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.passing_test') if six.PY3: subtest = unittest.case._SubTest(test, 'msg', {'case': 'a.b.c'}) else: # In Python 3 subTest uses a ChainMap to hold the parameters, but ChainMap # does not exist in Python 2, so a list of dict is used to simulate the # behavior of a ChainMap. This is why a list is provided as a parameter # here. subtest = unittest3_backport.case._SubTest(test, 'msg', [{'case': 'a.b.c'}]) result.startTest(test) result.addSubTest(test, subtest, None) result.stopTestRun() result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 0, 'run_time': run_time, 'test_name': r'passing_test&#x20;\[msg\]&#x20;\(case=&apos;a.b.c&apos;\)', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ''} self._assert_match(expected_re, self.xml_stream.getvalue()) def get_sample_error(self): try: int('a') except ValueError: error_values = sys.exc_info() return error_values def get_sample_failure(self): try: raise AssertionError('e') except AssertionError: error_values = sys.exc_info() return error_values def get_newline_message_sample_failure(self): try: raise AssertionError('new\nline') except AssertionError: error_values = sys.exc_info() return error_values def get_unicode_sample_failure(self): try: raise AssertionError(u'\xe9') except AssertionError: error_values = sys.exc_info() return error_values def get_terminal_escape_sample_failure(self): try: raise AssertionError('\x1b') except AssertionError: error_values = sys.exc_info() return error_values def test_with_failing_test(self): start_time = 10 end_time = 20 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) result.addFailure(test, self.get_sample_failure()) result.stopTest(test) result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 1, 'errors': 0, 'run_time': run_time, 'test_name': 'failing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': FAILURE_MESSAGE} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_with_failing_subtest(self): start_time = 10 end_time = 20 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') if six.PY3: subtest = unittest.case._SubTest(test, 'msg', None) else: subtest = unittest3_backport.case._SubTest(test, 'msg', None) result.startTest(test) result.addSubTest(test, subtest, self.get_sample_failure()) result.stopTestRun() result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 1, 'errors': 0, 'run_time': run_time, 'test_name': r'failing_test&#x20;\[msg\]', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': FAILURE_MESSAGE} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_with_error_test(self): start_time = 100 end_time = 200 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) result.addError(test, self.get_sample_error()) result.stopTest(test) result.printErrors() xml = self.xml_stream.getvalue() self._assert_valid_xml(xml) run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 1, 'run_time': run_time, 'test_name': 'failing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ERROR_MESSAGE} self._assert_match(expected_re, xml) def test_with_error_subtest(self): start_time = 10 end_time = 20 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.error_test') if six.PY3: subtest = unittest.case._SubTest(test, 'msg', None) else: subtest = unittest3_backport.case._SubTest(test, 'msg', None) result.startTest(test) result.addSubTest(test, subtest, self.get_sample_error()) result.stopTestRun() result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 1, 'run_time': run_time, 'test_name': r'error_test&#x20;\[msg\]', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ERROR_MESSAGE} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_with_fail_and_error_test(self): """Tests a failure and subsequent error within a single result.""" start_time = 123 end_time = 456 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) result.addFailure(test, self.get_sample_failure()) # This could happen in tearDown result.addError(test, self.get_sample_error()) result.stopTest(test) result.printErrors() xml = self.xml_stream.getvalue() self._assert_valid_xml(xml) run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 1, # Only the failure is tallied (because it was first). 'errors': 0, 'run_time': run_time, 'test_name': 'failing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', # Messages from failure and error should be concatenated in order. 'message': FAILURE_MESSAGE+ERROR_MESSAGE} self._assert_match(expected_re, xml) def test_with_error_and_fail_test(self): """Tests an error and subsequent failure within a single result.""" start_time = 123 end_time = 456 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) result.addError(test, self.get_sample_error()) result.addFailure(test, self.get_sample_failure()) result.stopTest(test) result.printErrors() xml = self.xml_stream.getvalue() self._assert_valid_xml(xml) run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 1, # Only the error is tallied (because it was first). 'run_time': run_time, 'test_name': 'failing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', # Messages from error and failure should be concatenated in order. 'message': ERROR_MESSAGE+FAILURE_MESSAGE} self._assert_match(expected_re, xml) def test_with_newline_error_test(self): start_time = 100 end_time = 200 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) result.addError(test, self.get_newline_message_sample_failure()) result.stopTest(test) result.printErrors() xml = self.xml_stream.getvalue() self._assert_valid_xml(xml) run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 1, 'run_time': run_time, 'test_name': 'failing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': NEWLINE_ERROR_MESSAGE} + '\n' self._assert_match(expected_re, xml) def test_with_unicode_error_test(self): start_time = 100 end_time = 200 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) result.addError(test, self.get_unicode_sample_failure()) result.stopTest(test) result.printErrors() xml = self.xml_stream.getvalue() self._assert_valid_xml(xml) run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 1, 'run_time': run_time, 'test_name': 'failing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': UNICODE_ERROR_MESSAGE} self._assert_match(expected_re, xml) def test_with_terminal_escape_error(self): start_time = 100 end_time = 200 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) result.addError(test, self.get_terminal_escape_sample_failure()) result.stopTest(test) result.printErrors() self._assert_valid_xml(self.xml_stream.getvalue()) def test_with_expected_failure_test(self): start_time = 100 end_time = 200 result = self._make_result((start_time, end_time)) error_values = '' try: raise RuntimeError('Test expectedFailure') except RuntimeError: error_values = sys.exc_info() test = MockTest('__main__.MockTest.expected_failing_test') result.startTest(test) result.addExpectedFailure(test, error_values) result.stopTest(test) result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 0, 'run_time': run_time, 'test_name': 'expected_failing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ''} self._assert_match(re.compile(expected_re, re.DOTALL), self.xml_stream.getvalue()) def test_with_unexpected_success_error_test(self): start_time = 100 end_time = 200 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.unexpectedly_passing_test') result.startTest(test) result.addUnexpectedSuccess(test) result.stopTest(test) result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 1, 'run_time': run_time, 'test_name': 'unexpectedly_passing_test', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': UNEXPECTED_SUCCESS_MESSAGE} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_with_skipped_test(self): start_time = 100 end_time = 100 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.skipped_test_with_reason') result.startTest(test) result.addSkip(test, 'b"r') result.stopTest(test) result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 0, 'run_time': run_time, 'test_name': 'skipped_test_with_reason', 'classname': '__main__.MockTest', 'status': 'notrun', 'result': 'suppressed', 'message': ''} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_suite_time(self): start_time1 = 100 end_time1 = 200 start_time2 = 400 end_time2 = 700 name = '__main__.MockTest.failing_test' result = self._make_result((start_time1, end_time1, start_time2, end_time2)) test = MockTest('%s1' % name) result.startTest(test) result.addSuccess(test) result.stopTest(test) test = MockTest('%s2' % name) result.startTest(test) result.addSuccess(test) result.stopTest(test) result.printErrors() run_time1 = end_time1 - start_time1 run_time2 = end_time2 - start_time2 expected_prefix = """<?xml version="1.0"?> <testsuites name="" tests="2" failures="0" errors="0" time="%.1f"> <testsuite name="MockTest" tests="2" failures="0" errors="0" time="%.1f"> """ % (run_time1 + run_time2, run_time1 + run_time2) self.failUnless(self.xml_stream.getvalue().startswith(expected_prefix)) def test_with_no_suite_name(self): start_time = 1000 end_time = 1200 result = self._make_result((start_time, end_time)) test = MockTest('__main__.MockTest.bad_name') result.startTest(test) result.addSuccess(test) result.stopTest(test) result.printErrors() run_time = end_time - start_time expected_re = OUTPUT_STRING % { 'suite_name': 'MockTest', 'tests': 1, 'failures': 0, 'errors': 0, 'run_time': run_time, 'test_name': 'bad_name', 'classname': '__main__.MockTest', 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ''} self._assert_match(expected_re, self.xml_stream.getvalue()) def test_unnamed_parameterized_testcase(self): """Test unnamed parameterized test cases. Unnamed parameterized test cases might have non-alphanumeric characters in their test method names. This test ensures xml_reporter handles them correctly. """ class ParameterizedTest(parameterized.TestCase): @parameterized.parameters(('a (b.c)',)) def test_prefix(self, case): self.assertTrue(case.startswith('a')) start_time = 1000 end_time = 1200 result = self._make_result((start_time, end_time)) test = ParameterizedTest(methodName='test_prefix0') result.startTest(test) result.addSuccess(test) result.stopTest(test) result.printErrors() run_time = end_time - start_time classname = xml_reporter._escape_xml_attr( unittest.util.strclass(test.__class__)) expected_re = OUTPUT_STRING % { 'suite_name': 'ParameterizedTest', 'tests': 1, 'failures': 0, 'errors': 0, 'run_time': run_time, 'test_name': re.escape('test_prefix(&apos;a&#x20;(b.c)&apos;)'), 'classname': classname, 'status': 'run', 'result': 'completed', 'attributes': '', 'message': ''} self._assert_match(expected_re, self.xml_stream.getvalue()) def teststop_test_without_pending_test(self): end_time = 1200 result = self._make_result((end_time,)) test = MockTest('__main__.MockTest.bad_name') result.stopTest(test) # Just verify that this doesn't crash def test_text_and_xmltest_runner(self): runner = xml_reporter.TextAndXMLTestRunner(self.xml_stream, self.stream, 'foo', 1) result1 = runner._makeResult() result2 = xml_reporter._TextAndXMLTestResult(None, None, None, 0, None) self.failUnless(type(result1) is type(result2)) def test_timing_with_time_stub(self): """Make sure that timing is correct even if time.time is stubbed out.""" try: saved_time = time.time time.time = lambda: -1 reporter = xml_reporter._TextAndXMLTestResult(self.xml_stream, self.stream, 'foo', 0) test = MockTest('bar') reporter.startTest(test) self.failIf(reporter.start_time == -1) finally: time.time = saved_time def test_concurrent_add_and_delete_pending_test_case_result(self): """Make sure adding/deleting pending test case results are thread safe.""" result = xml_reporter._TextAndXMLTestResult(None, self.stream, None, 0, None) def add_and_delete_pending_test_case_result(test_name): test = MockTest(test_name) result.addSuccess(test) result.delete_pending_test_case_result(test) for i in range(50): add_and_delete_pending_test_case_result('add_and_delete_test%s' % i) self.assertEqual(result.pending_test_case_results, {}) def test_concurrent_test_runs(self): """Make sure concurrent test runs do not race each other.""" num_passing_tests = 20 num_failing_tests = 20 num_error_tests = 20 total_num_tests = num_passing_tests + num_failing_tests + num_error_tests times = [i for i in range(2*total_num_tests)] result = self._make_result(times) threads = [] names = [] for i in range(num_passing_tests): name = 'passing_concurrent_test_%s' % i names.append(name) test_name = '__main__.MockTest.%s' % name # xml_reporter uses id(test) as the test identifier. # In a real testing scenario, all the test instances are created before # running them. So all ids will be unique. # We must do the same here: create test instance beforehand. test = MockTest(test_name) threads.append(threading.Thread( target=self._simulate_passing_test, args=(test, result))) for i in range(num_failing_tests): name = 'failing_concurrent_test_%s' % i names.append(name) test_name = '__main__.MockTest.%s' % name test = MockTest(test_name) threads.append(threading.Thread( target=self._simulate_failing_test, args=(test, result))) for i in range(num_error_tests): name = 'error_concurrent_test_%s' % i names.append(name) test_name = '__main__.MockTest.%s' % name test = MockTest(test_name) threads.append(threading.Thread( target=self._simulate_error_test, args=(test, result))) for t in threads: t.start() for t in threads: t.join() result.printErrors() tests_not_in_xml = [] for tn in names: if tn not in self.xml_stream.getvalue(): tests_not_in_xml.append(tn) msg = ('Expected xml_stream to contain all test %s results, but %s tests ' 'are missing. List of missing tests: %s' % ( total_num_tests, len(tests_not_in_xml), tests_not_in_xml)) self.assertEqual([], tests_not_in_xml, msg) def test_add_failure_during_stop_test(self): """Tests an addFailure() call from within a stopTest() call stack.""" result = self._make_result((0, 2)) test = MockTest('__main__.MockTest.failing_test') result.startTest(test) # Replace parent stopTest method from unittest3_backport.TextTestResult with # a version that calls self.addFailure(). with mock.patch.object( unittest3_backport.TextTestResult, 'stopTest', side_effect=lambda t: result.addFailure(t, self.get_sample_failure())): # Run stopTest in a separate thread since we are looking to verify that # it does not deadlock, and would otherwise prevent the test from # completing. stop_test_thread = threading.Thread(target=result.stopTest, args=(test,)) stop_test_thread.daemon = True stop_test_thread.start() stop_test_thread.join(10.0) self.assertFalse(stop_test_thread.is_alive(), 'result.stopTest(test) call failed to complete') class XMLTest(absltest.TestCase): def test_escape_xml(self): self.assertEqual(xml_reporter._escape_xml_attr('"Hi" <\'>\t\r\n'), '&quot;Hi&quot;&#x20;&lt;&apos;&gt;&#x9;&#xD;&#xA;') class XmlReporterFixtureTest(absltest.TestCase): def _run_test_and_get_xml(self, flag): """Runs xml_reporter_helper_test and returns an Element instance. Runs xml_reporter_helper_test in a new process so that it can exercise the entire test infrastructure, and easily test issues in the test fixture. Args: flag: flag to pass to xml_reporter_helper_test Returns: The Element instance of the XML output. """ xml_fhandle, xml_fname = tempfile.mkstemp() os.close(xml_fhandle) try: binary_name = 'absl/testing/tests/xml_reporter_helper_test' args = [_bazelize_command.get_executable_path(binary_name), flag, '--xml_output_file=%s' % xml_fname] ret = subprocess.call(args) self.assertNotEqual(ret, 0) xml = ElementTree.parse(xml_fname).getroot() finally: os.remove(xml_fname) return xml def _run_test(self, flag, num_errors, num_failures, suites): xml_fhandle, xml_fname = tempfile.mkstemp() os.close(xml_fhandle) try: binary_name = 'absl/testing/tests/xml_reporter_helper_test' args = [_bazelize_command.get_executable_path(binary_name), flag, '--xml_output_file=%s' % xml_fname] ret = subprocess.call(args) self.assertNotEqual(ret, 0) xml = ElementTree.parse(xml_fname).getroot() logging.info('xml output is:\n%s', ElementTree.tostring(xml)) finally: os.remove(xml_fname) self.assertEqual(int(xml.attrib['errors']), num_errors) self.assertEqual(int(xml.attrib['failures']), num_failures) self.assertLen(xml, len(suites)) actual_suites = sorted( xml.findall('testsuite'), key=lambda x: x.attrib['name']) suites = sorted(suites, key=lambda x: x['name']) for actual_suite, expected_suite in zip(actual_suites, suites): self.assertEqual(actual_suite.attrib['name'], expected_suite['name']) self.assertLen(actual_suite, len(expected_suite['cases'])) actual_cases = sorted(actual_suite.findall('testcase'), key=lambda x: x.attrib['name']) expected_cases = sorted(expected_suite['cases'], key=lambda x: x['name']) for actual_case, expected_case in zip(actual_cases, expected_cases): self.assertEqual(actual_case.attrib['name'], expected_case['name']) self.assertEqual(actual_case.attrib['classname'], expected_case['classname']) if 'error' in expected_case: actual_error = actual_case.find('error') self.assertEqual(actual_error.attrib['message'], expected_case['error']) if 'failure' in expected_case: actual_failure = actual_case.find('failure') self.assertEqual(actual_failure.attrib['message'], expected_case['failure']) return xml def _test_for_error(self, flag, message): """Run the test and look for an Error with the specified message.""" ret, xml = self._run_test_with_subprocess(flag) self.assertNotEqual(ret, 0) self.assertEqual(int(xml.attrib['errors']), 1) self.assertEqual(int(xml.attrib['failures']), 0) for msg in xml.iter('error'): if msg.attrib['message'] == message: break else: self.fail(msg='Did not find message: "%s" in xml\n%s' % ( message, ElementTree.tostring(xml))) def _test_for_failure(self, flag, message): """Run the test and look for a Failure with the specified message.""" ret, xml = self._run_test_with_subprocess(flag) self.assertNotEqual(ret, 0) self.assertEqual(int(xml.attrib['errors']), 0) self.assertEqual(int(xml.attrib['failures']), 1) for msg in xml.iter('failure'): if msg.attrib['message'] == message: break else: self.fail(msg='Did not find message: "%s"' % message) def test_set_up_module_error(self): self._run_test( flag='--set_up_module_error', num_errors=1, num_failures=0, suites=[{'name': '__main__', 'cases': [{'name': 'setUpModule', 'classname': '__main__', 'error': 'setUpModule Errored!'}]}]) def test_tear_down_module_error(self): self._run_test( flag='--tear_down_module_error', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest'}]}, {'name': '__main__', 'cases': [{'name': 'tearDownModule', 'classname': '__main__', 'error': 'tearDownModule Errored!'}]}]) def test_set_up_class_error(self): self._run_test( flag='--set_up_class_error', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'setUpClass', 'classname': '__main__.FailableTest', 'error': 'setUpClass Errored!'}]}]) def test_tear_down_class_error(self): self._run_test( flag='--tear_down_class_error', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest'}, {'name': 'tearDownClass', 'classname': '__main__.FailableTest', 'error': 'tearDownClass Errored!'}]}]) def test_set_up_error(self): self._run_test( flag='--set_up_error', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'error': 'setUp Errored!'}]}]) def test_tear_down_error(self): self._run_test( flag='--tear_down_error', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'error': 'tearDown Errored!'}]}]) def test_test_error(self): self._run_test( flag='--test_error', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'error': 'test Errored!'}]}]) def test_set_up_failure(self): if six.PY2: # A failure in setUp() produces an error (not a failure), which is # inconsistent with the Python unittest documentation. In Python # 2.7, the bug appears to be in unittest.TestCase.run() method. # Although it correctly checks for a SkipTest exception, it does # not check for a failureException. self._run_test( flag='--set_up_fail', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'error': 'setUp Failed!'}]}]) else: self._run_test( flag='--set_up_fail', num_errors=0, num_failures=1, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'failure': 'setUp Failed!'}]}]) def test_tear_down_failure(self): if six.PY2: # See comment in test_set_up_failure(). self._run_test( flag='--tear_down_fail', num_errors=1, num_failures=0, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'error': 'tearDown Failed!'}]}]) else: self._run_test( flag='--tear_down_fail', num_errors=0, num_failures=1, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'failure': 'tearDown Failed!'}]}]) def test_test_fail(self): self._run_test( flag='--test_fail', num_errors=0, num_failures=1, suites=[{'name': 'FailableTest', 'cases': [{'name': 'test', 'classname': '__main__.FailableTest', 'failure': 'test Failed!'}]}]) if __name__ == '__main__': absltest.main()
33.492078
173
0.629045
3c9863dbafde39a229c9be910c165c625cd7a4d2
14,578
py
Python
sql/views.py
gaotuan/Archery
5b218521e1538e265306855484af9bbfee744c6b
[ "Apache-2.0" ]
1
2020-06-05T06:17:52.000Z
2020-06-05T06:17:52.000Z
sql/views.py
gaotuan/Archery
5b218521e1538e265306855484af9bbfee744c6b
[ "Apache-2.0" ]
null
null
null
sql/views.py
gaotuan/Archery
5b218521e1538e265306855484af9bbfee744c6b
[ "Apache-2.0" ]
null
null
null
# -*- coding: UTF-8 -*- import os import traceback import simplejson as json from django.conf import settings from django.contrib.auth.decorators import permission_required from django.contrib.auth.models import Group from django.core.exceptions import PermissionDenied from django.shortcuts import render, get_object_or_404 from django.http import HttpResponseRedirect, FileResponse from django.urls import reverse from archery import settings from common.config import SysConfig from sql.engines import get_engine from common.utils.permission import superuser_required from sql.engines.models import ReviewResult, ReviewSet from sql.utils.tasks import task_info from .models import Users, SqlWorkflow, QueryPrivileges, ResourceGroup, \ QueryPrivilegesApply, Config, SQL_WORKFLOW_CHOICES, InstanceTag, Instance, QueryLog from sql.utils.workflow_audit import Audit from sql.utils.sql_review import can_execute, can_timingtask, can_cancel, can_view, can_rollback from common.utils.const import Const, WorkflowDict from sql.utils.resource_group import user_groups import logging logger = logging.getLogger('default') def index(request): index_path_url = SysConfig().get('index_path_url', 'sqlworkflow') return HttpResponseRedirect(f"/{index_path_url.strip('/')}/") def login(request): """登录页面""" if request.user and request.user.is_authenticated: return HttpResponseRedirect('/') return render(request, 'login.html', context={'sign_up_enabled': SysConfig().get('sign_up_enabled')}) @permission_required('sql.menu_dashboard', raise_exception=True) def dashboard(request): """dashboard页面""" return render(request, 'dashboard.html') def sqlworkflow(request): """SQL上线工单列表页面""" user = request.user # 过滤筛选项的数据 filter_dict = dict() # 管理员,可查看所有工单 if user.is_superuser: pass # 非管理员,拥有审核权限、资源组粒度执行权限的,可以查看组内所有工单 elif user.has_perm('sql.sql_review') or user.has_perm('sql.sql_execute_for_resource_group'): # 先获取用户所在资源组列表 group_list = user_groups(user) group_ids = [group.group_id for group in group_list] filter_dict['group_id__in'] = group_ids # 其他人只能查看自己提交的工单 else: filter_dict['engineer'] = user.username instance_id = SqlWorkflow.objects.filter(**filter_dict).values('instance_id').distinct() instance = Instance.objects.filter(pk__in=instance_id) resource_group_id = SqlWorkflow.objects.filter(**filter_dict).values('group_id').distinct() resource_group = ResourceGroup.objects.filter(group_id__in=resource_group_id) return render(request, 'sqlworkflow.html', {'status_list': SQL_WORKFLOW_CHOICES, 'instance': instance, 'resource_group': resource_group}) @permission_required('sql.sql_submit', raise_exception=True) def submit_sql(request): """提交SQL的页面""" user = request.user # 获取组信息 group_list = user_groups(user) # 获取所有有效用户,通知对象 active_user = Users.objects.filter(is_active=1) # 获取系统配置 archer_config = SysConfig() # 主动创建标签 InstanceTag.objects.get_or_create(tag_code='can_write', defaults={'tag_name': '支持上线', 'active': True}) context = {'active_user': active_user, 'group_list': group_list, 'enable_backup_switch': archer_config.get('enable_backup_switch')} return render(request, 'sqlsubmit.html', context) def detail(request, workflow_id): """展示SQL工单详细页面""" workflow_detail = get_object_or_404(SqlWorkflow, pk=workflow_id) if not can_view(request.user, workflow_id): raise PermissionDenied if workflow_detail.status in ['workflow_finish', 'workflow_exception']: rows = workflow_detail.sqlworkflowcontent.execute_result else: rows = workflow_detail.sqlworkflowcontent.review_content # 自动审批不通过的不需要获取下列信息 if workflow_detail.status != 'workflow_autoreviewwrong': # 获取当前审批和审批流程 audit_auth_group, current_audit_auth_group = Audit.review_info(workflow_id, 2) # 是否可审核 is_can_review = Audit.can_review(request.user, workflow_id, 2) # 是否可执行 is_can_execute = can_execute(request.user, workflow_id) # 是否可定时执行 is_can_timingtask = can_timingtask(request.user, workflow_id) # 是否可取消 is_can_cancel = can_cancel(request.user, workflow_id) # 是否可查看回滚信息 is_can_rollback = can_rollback(request.user, workflow_id) # 获取审核日志 try: audit_id = Audit.detail_by_workflow_id(workflow_id=workflow_id, workflow_type=WorkflowDict.workflow_type['sqlreview']).audit_id last_operation_info = Audit.logs(audit_id=audit_id).latest('id').operation_info except Exception as e: logger.debug(f'无审核日志记录,错误信息{e}') last_operation_info = '' else: audit_auth_group = '系统自动驳回' current_audit_auth_group = '系统自动驳回' is_can_review = False is_can_execute = False is_can_timingtask = False is_can_cancel = False is_can_rollback = False last_operation_info = None # 获取定时执行任务信息 if workflow_detail.status == 'workflow_timingtask': job_id = Const.workflowJobprefix['sqlreview'] + '-' + str(workflow_id) job = task_info(job_id) if job: run_date = job.next_run else: run_date = '' else: run_date = '' # 获取是否开启手工执行确认 manual = SysConfig().get('manual') review_result = ReviewSet() if rows: try: # 检验rows能不能正常解析 loaded_rows = json.loads(rows) # 兼容旧数据'[[]]'格式,转换为新格式[{}] if isinstance(loaded_rows[-1], list): for r in loaded_rows: review_result.rows += [ReviewResult(inception_result=r)] rows = review_result.json() except IndexError: review_result.rows += [ReviewResult( id=1, sql=workflow_detail.sqlworkflowcontent.sql_content, errormessage="Json decode failed." "执行结果Json解析失败, 请联系管理员" )] rows = review_result.json() except json.decoder.JSONDecodeError: review_result.rows += [ReviewResult( id=1, sql=workflow_detail.sqlworkflowcontent.sql_content, # 迫于无法单元测试这里加上英文报错信息 errormessage="Json decode failed." "执行结果Json解析失败, 请联系管理员" )] rows = review_result.json() else: rows = workflow_detail.sqlworkflowcontent.review_content context = {'workflow_detail': workflow_detail, 'rows': rows, 'last_operation_info': last_operation_info, 'is_can_review': is_can_review, 'is_can_execute': is_can_execute, 'is_can_timingtask': is_can_timingtask, 'is_can_cancel': is_can_cancel, 'is_can_rollback': is_can_rollback, 'audit_auth_group': audit_auth_group, 'manual': manual, 'current_audit_auth_group': current_audit_auth_group, 'run_date': run_date} return render(request, 'detail.html', context) def rollback(request): """展示回滚的SQL页面""" workflow_id = request.GET.get('workflow_id') if not can_rollback(request.user, workflow_id): raise PermissionDenied download = request.GET.get('download') if workflow_id == '' or workflow_id is None: context = {'errMsg': 'workflow_id参数为空.'} return render(request, 'error.html', context) workflow = SqlWorkflow.objects.get(id=int(workflow_id)) try: query_engine = get_engine(instance=workflow.instance) list_backup_sql = query_engine.get_rollback(workflow=workflow) except Exception as msg: logger.error(traceback.format_exc()) context = {'errMsg': msg} return render(request, 'error.html', context) # 获取数据,存入目录 path = os.path.join(settings.BASE_DIR, 'downloads/rollback') os.makedirs(path, exist_ok=True) file_name = f'{path}/rollback_{workflow_id}.sql' with open(file_name, 'w') as f: for sql in list_backup_sql: f.write(f'/*{sql[0]}*/\n{sql[1]}\n') # 回滚语句大于4M强制转换为下载,此时前端无法自动填充 if os.path.getsize(file_name) > 4194304 or download: response = FileResponse(open(file_name, 'rb')) response['Content-Type'] = 'application/octet-stream' response['Content-Disposition'] = f'attachment;filename="rollback_{workflow_id}.sql"' return response # 小于4M的删除文件 else: os.remove(file_name) rollback_workflow_name = f"【回滚工单】原工单Id:{workflow_id} ,{workflow.workflow_name}" context = {'list_backup_sql': list_backup_sql, 'workflow_detail': workflow, 'rollback_workflow_name': rollback_workflow_name} return render(request, 'rollback.html', context) @permission_required('sql.menu_sqlanalyze', raise_exception=True) def sqlanalyze(request): """SQL分析页面""" return render(request, 'sqlanalyze.html') @permission_required('sql.menu_query', raise_exception=True) def sqlquery(request): """SQL在线查询页面""" # 主动创建标签 InstanceTag.objects.get_or_create(tag_code='can_read', defaults={'tag_name': '支持查询', 'active': True}) # 收藏语句 user = request.user favorites = QueryLog.objects.filter(username=user.username, favorite=True).values('id', 'alias') return render(request, 'sqlquery.html', {'favorites': favorites}) @permission_required('sql.menu_queryapplylist', raise_exception=True) def queryapplylist(request): """查询权限申请列表页面""" user = request.user # 获取资源组 group_list = user_groups(user) context = {'group_list': group_list} return render(request, 'queryapplylist.html', context) def queryapplydetail(request, apply_id): """查询权限申请详情页面""" workflow_detail = QueryPrivilegesApply.objects.get(apply_id=apply_id) # 获取当前审批和审批流程 audit_auth_group, current_audit_auth_group = Audit.review_info(apply_id, 1) # 是否可审核 is_can_review = Audit.can_review(request.user, apply_id, 1) # 获取审核日志 if workflow_detail.status == 2: try: audit_id = Audit.detail_by_workflow_id(workflow_id=apply_id, workflow_type=1).audit_id last_operation_info = Audit.logs(audit_id=audit_id).latest('id').operation_info except Exception as e: logger.debug(f'无审核日志记录,错误信息{e}') last_operation_info = '' else: last_operation_info = '' context = {'workflow_detail': workflow_detail, 'audit_auth_group': audit_auth_group, 'last_operation_info': last_operation_info, 'current_audit_auth_group': current_audit_auth_group, 'is_can_review': is_can_review} return render(request, 'queryapplydetail.html', context) def queryuserprivileges(request): """查询权限管理页面""" # 获取所有用户 user_list = QueryPrivileges.objects.filter(is_deleted=0).values('user_display').distinct() context = {'user_list': user_list} return render(request, 'queryuserprivileges.html', context) @permission_required('sql.menu_sqladvisor', raise_exception=True) def sqladvisor(request): """SQL优化工具页面""" return render(request, 'sqladvisor.html') @permission_required('sql.menu_slowquery', raise_exception=True) def slowquery(request): """SQL慢日志页面""" return render(request, 'slowquery.html') @permission_required('sql.menu_instance', raise_exception=True) def instance(request): """实例管理页面""" # 获取实例标签 tags = InstanceTag.objects.filter(active=True) return render(request, 'instance.html', {'tags': tags}) @permission_required('sql.menu_instance_account', raise_exception=True) def instanceaccount(request): """实例账号管理页面""" return render(request, 'instanceaccount.html') @permission_required('sql.menu_database', raise_exception=True) def database(request): """实例数据库管理页面""" # 获取所有有效用户,通知对象 active_user = Users.objects.filter(is_active=1) return render(request, 'database.html', {"active_user": active_user}) @permission_required('sql.menu_dbdiagnostic', raise_exception=True) def dbdiagnostic(request): """会话管理页面""" return render(request, 'dbdiagnostic.html') @permission_required('sql.menu_data_dictionary', raise_exception=True) def data_dictionary(request): """数据字典页面""" return render(request, 'data_dictionary.html', locals()) @permission_required('sql.menu_param', raise_exception=True) def instance_param(request): """实例参数管理页面""" return render(request, 'param.html') @permission_required('sql.menu_binlog2sql', raise_exception=True) def binlog2sql(request): """binlog2sql页面""" return render(request, 'binlog2sql.html') @permission_required('sql.menu_schemasync', raise_exception=True) def schemasync(request): """数据库差异对比页面""" return render(request, 'schemasync.html') @superuser_required def config(request): """配置管理页面""" # 获取所有资源组名称 group_list = ResourceGroup.objects.all() # 获取所有权限组 auth_group_list = Group.objects.all() # 获取所有配置项 all_config = Config.objects.all().values('item', 'value') sys_config = {} for items in all_config: sys_config[items['item']] = items['value'] context = {'group_list': group_list, 'auth_group_list': auth_group_list, 'config': sys_config, 'WorkflowDict': WorkflowDict} return render(request, 'config.html', context) @superuser_required def group(request): """资源组管理页面""" return render(request, 'group.html') @superuser_required def groupmgmt(request, group_id): """资源组组关系管理页面""" group = ResourceGroup.objects.get(group_id=group_id) return render(request, 'groupmgmt.html', {'group': group}) def workflows(request): """待办列表页面""" return render(request, "workflow.html") def workflowsdetail(request, audit_id): """待办详情""" # 按照不同的workflow_type返回不同的详情 audit_detail = Audit.detail(audit_id) if audit_detail.workflow_type == WorkflowDict.workflow_type['query']: return HttpResponseRedirect(reverse('sql:queryapplydetail', args=(audit_detail.workflow_id,))) elif audit_detail.workflow_type == WorkflowDict.workflow_type['sqlreview']: return HttpResponseRedirect(reverse('sql:detail', args=(audit_detail.workflow_id,))) @permission_required('sql.menu_document', raise_exception=True) def dbaprinciples(request,pname): """SQL文档页面""" # 读取MD文件 file = os.path.join(settings.BASE_DIR, 'docs/'+pname) with open(file, 'r') as f: md = f.read().replace('\n', '\\n') return render(request, 'dbaprinciples.html', {'md': md})
34.792363
120
0.688023
2089115a7928bd6eb2f6a45f87a48d43f528c7bb
148
py
Python
SphereNet_PyTorch/spherenet/__init__.py
ustundag/2D-3D-Semantics
6f79be0082e2bfd6b7940c2314972a603e55f201
[ "Apache-2.0" ]
null
null
null
SphereNet_PyTorch/spherenet/__init__.py
ustundag/2D-3D-Semantics
6f79be0082e2bfd6b7940c2314972a603e55f201
[ "Apache-2.0" ]
null
null
null
SphereNet_PyTorch/spherenet/__init__.py
ustundag/2D-3D-Semantics
6f79be0082e2bfd6b7940c2314972a603e55f201
[ "Apache-2.0" ]
null
null
null
from .sphere_cnn import SphereConv2D from .sphere_cnn import SphereMaxPool2D #from .dataset import OmniMNIST #from .dataset import OmniFashionMNIST
29.6
39
0.851351
3598a42aba799cbc6f2b60fae4ce22058661a7a0
1,960
py
Python
cwbot/modules/messages/CashoutModule.py
DamianDominoDavis/cwbot-ndy
53b826232eadb7ef558f568872a945d04d8d4252
[ "BSD-3-Clause" ]
null
null
null
cwbot/modules/messages/CashoutModule.py
DamianDominoDavis/cwbot-ndy
53b826232eadb7ef558f568872a945d04d8d4252
[ "BSD-3-Clause" ]
null
null
null
cwbot/modules/messages/CashoutModule.py
DamianDominoDavis/cwbot-ndy
53b826232eadb7ef558f568872a945d04d8d4252
[ "BSD-3-Clause" ]
null
null
null
from cwbot.modules.BaseKmailModule import BaseKmailModule from kol.database.ItemDatabase import getItemFromId class CashoutModule(BaseKmailModule): """ A module that "cashes out" items withheld due to ronin/HC status. No configuration options. """ requiredCapabilities = ['kmail'] _name = "cashout" def __init__(self, manager, identity, config): super(CashoutModule, self).__init__(manager, identity, config) def _processKmail(self, message): if message.text.strip().lower() == "cashout": self.log("Cashout message: {}".format(message)) try: self.parent.director.cashout(message.uid) return self.newMessage(-1) except IndexError: return self.newMessage(message.uid, "I don't have any items " "stored for you.") elif message.text.strip().lower() == "balance": (meat, items) = self.parent.director.balance(message.uid) if meat == 0 and len(items) == 0: return self.newMessage(message.uid, "I don't have any items " "stored for you.") text = "Your balance: \n" for iid, qty in list(items.items()): text += ("\n{}: {}".format(qty, getItemFromId(iid).get( 'name', "item ID {}".format(iid)))) if meat > 0: text += "\n{} meat".format(meat) return self.newMessage(message.uid, text) def _kmailDescription(self): return ("CASHING OUT: If I am holding any items for you, send a kmail " "with the text \"cashout\" to get your stuff back. You can " "send a kmail with the text \"balance\" to get a list of what " "I am holding for you.")
43.555556
80
0.529592
f8462435a451b6e3fce07109be4f6ab9090e657f
3,506
py
Python
homeassistant/components/thinkingcleaner/sensor.py
shanbs/home-assistant
818776d2b4f11e4f51992dc88bc0a6f9055833b2
[ "Apache-2.0" ]
2
2017-10-26T19:43:55.000Z
2017-12-30T23:29:00.000Z
homeassistant/components/thinkingcleaner/sensor.py
shanbs/home-assistant
818776d2b4f11e4f51992dc88bc0a6f9055833b2
[ "Apache-2.0" ]
3
2021-09-08T03:29:36.000Z
2022-03-12T00:59:48.000Z
homeassistant/components/thinkingcleaner/sensor.py
shanbs/home-assistant
818776d2b4f11e4f51992dc88bc0a6f9055833b2
[ "Apache-2.0" ]
1
2019-09-28T07:06:08.000Z
2019-09-28T07:06:08.000Z
"""Support for ThinkingCleaner sensors.""" import logging from datetime import timedelta from homeassistant import util from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) REQUIREMENTS = ['pythinkingcleaner==0.0.3'] MIN_TIME_BETWEEN_SCANS = timedelta(seconds=10) MIN_TIME_BETWEEN_FORCED_SCANS = timedelta(milliseconds=100) SENSOR_TYPES = { 'battery': ['Battery', '%', 'mdi:battery'], 'state': ['State', None, None], 'capacity': ['Capacity', None, None], } STATES = { 'st_base': 'On homebase: Not Charging', 'st_base_recon': 'On homebase: Reconditioning Charging', 'st_base_full': 'On homebase: Full Charging', 'st_base_trickle': 'On homebase: Trickle Charging', 'st_base_wait': 'On homebase: Waiting', 'st_plug': 'Plugged in: Not Charging', 'st_plug_recon': 'Plugged in: Reconditioning Charging', 'st_plug_full': 'Plugged in: Full Charging', 'st_plug_trickle': 'Plugged in: Trickle Charging', 'st_plug_wait': 'Plugged in: Waiting', 'st_stopped': 'Stopped', 'st_clean': 'Cleaning', 'st_cleanstop': 'Stopped with cleaning', 'st_clean_spot': 'Spot cleaning', 'st_clean_max': 'Max cleaning', 'st_delayed': 'Delayed cleaning will start soon', 'st_dock': 'Searching Homebase', 'st_pickup': 'Roomba picked up', 'st_remote': 'Remote control driving', 'st_wait': 'Waiting for command', 'st_off': 'Off', 'st_error': 'Error', 'st_locate': 'Find me!', 'st_unknown': 'Unknown state', } def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the ThinkingCleaner platform.""" from pythinkingcleaner import Discovery discovery = Discovery() devices = discovery.discover() @util.Throttle(MIN_TIME_BETWEEN_SCANS, MIN_TIME_BETWEEN_FORCED_SCANS) def update_devices(): """Update all devices.""" for device_object in devices: device_object.update() dev = [] for device in devices: for type_name in SENSOR_TYPES: dev.append(ThinkingCleanerSensor(device, type_name, update_devices)) add_entities(dev) class ThinkingCleanerSensor(Entity): """Representation of a ThinkingCleaner Sensor.""" def __init__(self, tc_object, sensor_type, update_devices): """Initialize the ThinkingCleaner.""" self.type = sensor_type self._tc_object = tc_object self._update_devices = update_devices self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] self._state = None @property def name(self): """Return the name of the sensor.""" return '{} {}'.format(self._tc_object.name, SENSOR_TYPES[self.type][0]) @property def icon(self): """Icon to use in the frontend, if any.""" return SENSOR_TYPES[self.type][2] @property def state(self): """Return the state of the device.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement def update(self): """Update the sensor.""" self._update_devices() if self.type == 'battery': self._state = self._tc_object.battery elif self.type == 'state': self._state = STATES[self._tc_object.status] elif self.type == 'capacity': self._state = self._tc_object.capacity
31.026549
79
0.651169
2b86c65d5052be9e8fce8307fa13ad5fa2c3f11d
64
py
Python
software/models/common_components/multisense_sl/mit_modifications/jointNameMap.py
liangfok/oh-distro
eeee1d832164adce667e56667dafc64a8d7b8cee
[ "BSD-3-Clause" ]
92
2016-01-14T21:03:50.000Z
2021-12-01T17:57:46.000Z
software/models/common_components/multisense_sl/mit_modifications/jointNameMap.py
liangfok/oh-distro
eeee1d832164adce667e56667dafc64a8d7b8cee
[ "BSD-3-Clause" ]
62
2016-01-16T18:08:14.000Z
2016-03-24T15:16:28.000Z
software/models/common_components/multisense_sl/mit_modifications/jointNameMap.py
liangfok/oh-distro
eeee1d832164adce667e56667dafc64a8d7b8cee
[ "BSD-3-Clause" ]
41
2016-01-14T21:26:58.000Z
2022-03-28T03:10:39.000Z
jointNameMap = {"head_hokuyo_joint": "head_hokuyo_fixed_joint"}
32
63
0.8125
f2528d3216364331761e553855635e84849018d7
2,566
py
Python
pythonScripts/images.py
FuckBrains/videoAutoProduction
e6988c1d2debd511b63968a55e29c4d2373c5ab6
[ "MIT" ]
18
2019-10-02T13:04:25.000Z
2022-03-01T03:24:10.000Z
pythonScripts/images.py
JDuggal760/videoAutoProduction
e6988c1d2debd511b63968a55e29c4d2373c5ab6
[ "MIT" ]
1
2021-04-28T14:33:36.000Z
2022-01-28T09:43:21.000Z
pythonScripts/images.py
JDuggal760/videoAutoProduction
e6988c1d2debd511b63968a55e29c4d2373c5ab6
[ "MIT" ]
7
2020-01-02T14:48:51.000Z
2021-11-15T17:05:50.000Z
import nltk from datetime import datetime from os import listdir, mkdir, remove import extractImages from subprocess import run from PIL import Image date = datetime.now().strftime('%Y-%m-%d') path = f'/home/sr1/Projects/Others/videoAUTO/News/{date}' mkdir(f'{path}/Images') files = [] for f in listdir(f'{path}/Articles'): if f.endswith('.txt') and f.startswith('HEADLINE') is not True: files.append(f) for filename in files: filename = filename.replace('.txt', '') filename = filename.replace(';', ' ') filename = filename.replace("'", " ") tokens = nltk.word_tokenize(filename) # Article's headline is less than 6 words if len(tokens) < 6: images_path = f'{path}/Images/{filename}' mkdir(images_path) extractImages.run(filename, images_path, 10) # Removes corrupt image files for image in listdir(images_path): try: img = Image.open(f'{images_path}/{image}') img.verify() except Exception as e: print(e) remove(f'{images_path}/{image}') # print(images_path) # print(filename) # Article's headline more or equal to 6 words else: tagged_sent = nltk.pos_tag(tokens) # scope to further experiment proper_noun = [word for word, pos in tagged_sent if pos == 'NNP' or pos == 'NN' or pos == 'NNS' or pos == 'JJ' or pos == 'CD'] nnp_string = ' '.join(list(dict.fromkeys(proper_noun))) images_path = f'{path}/Images/{filename}' mkdir(images_path) extractImages.run(nnp_string, images_path, 10) # Remove any corrupted image that might have downloaded for image in listdir(images_path): try: img = Image.open(f'{images_path}/{image}') img.verify() except Exception as e: print(e) remove(f'{images_path}/{image}') # print(images_path) # print(nnp_string) # Renaming images with numbers in extension (ex: photo.jpg1) try: run('../shellScripts/nameCleanup.sh') except Exception as e: print(e) print('nameCleanup.sh script did not work!') # To manually delete non-related images print(f'\nCheck all your images before you continue.') num = 1 for image_folders in listdir(f'{path}/Images'): print(f'\n\n{num}. {image_folders}') # using sxiv to view the images, you can replace it with your program run(f'sxiv {path}/Images/"{image_folders}"/*', shell=True) num += 1
28.831461
134
0.613016
d5bd47319134e86e5d34fd69633d5336a7376e6e
5,142
py
Python
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/wider.py
TolyaTalamanov/open_model_zoo
1697e60712df4ca72635a2080a197b9d3bc24129
[ "Apache-2.0" ]
2,201
2018-10-15T14:37:19.000Z
2020-07-16T02:05:51.000Z
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/wider.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
759
2018-10-18T07:43:55.000Z
2020-07-16T01:23:12.000Z
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/wider.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
808
2018-10-16T14:03:49.000Z
2020-07-15T11:41:45.000Z
""" Copyright (c) 2018-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from ..config import NumberField, PathField from ..representation import DetectionAnnotation from ..utils import convert_bboxes_xywh_to_x1y1x2y2, read_txt, check_file_existence, read_json from .format_converter import BaseFormatConverter, ConverterReturn, verify_label_map class WiderFormatConverter(BaseFormatConverter): __provider__ = 'wider' annotation_types = (DetectionAnnotation, ) @classmethod def parameters(cls): configuration_parameters = super().parameters() configuration_parameters.update({ 'annotation_file': PathField( description="Path to xml file, which contains ground truth data in WiderFace dataset format." ), 'label_start': NumberField( value_type=int, optional=True, default=1, description="Specifies face label index in label map. Default value is 1. " "You can provide another value, if you want to use this" ), 'images_dir': PathField( is_directory=True, optional=True, description='path to dataset images, used only for content existence check' ), 'dataset_meta_file': PathField( description='path to json file with dataset meta (e.g. label_map, color_encoding)', optional=True ) }) return configuration_parameters def configure(self): self.annotation_file = self.get_value_from_config('annotation_file') self.label_start = self.get_value_from_config('label_start') self.images_dir = self.get_value_from_config('images_dir') or self.annotation_file.parent self.dataset_meta = self.get_value_from_config('dataset_meta_file') def convert(self, check_content=False, progress_callback=None, progress_interval=100, **kwargs): image_annotations = read_txt(self.annotation_file) content_errors = None if not check_content else [] image_ids = [image_id for image_id, line in enumerate(image_annotations) if '.jpg' in line] meta = self.get_meta() annotations = [] num_iterations = len(image_ids) for index, image_id in enumerate(image_ids): identifier = image_annotations[image_id] if check_content: if not check_file_existence(self.images_dir / identifier): content_errors.append('{}: does not exist'.format(self.images_dir / identifier)) bbox_count = image_annotations[image_id + 1] bbox_lines = image_annotations[image_id + 2:image_id + 2 + int(bbox_count)] x_mins, y_mins, x_maxs, y_maxs = [], [], [], [] for bbox in bbox_lines: x_min, y_min, x_max, y_max = convert_bboxes_xywh_to_x1y1x2y2(*(map(float, (bbox.split(' ')[0:4])))) x_mins.append(x_min) y_mins.append(y_min) x_maxs.append(x_max) y_maxs.append(y_max) annotations.append(DetectionAnnotation( identifier, [self.label_start] * len(x_mins), x_mins, y_mins, x_maxs, y_maxs )) if progress_callback and index % progress_interval == 0: progress_callback(index * 100 / num_iterations) return ConverterReturn(annotations, meta, content_errors) def get_meta(self): if not self.dataset_meta: if self.label_start != 0: return {'label_map': {0: '__background__', self.label_start: 'face'}, 'background_label': 0} return {'label_map': {self.label_start: 'face'}} dataset_meta = read_json(self.dataset_meta) background_label = dataset_meta.get('background_label', -1) labels = dataset_meta.get('labels') label_map = {0: '__background__', self.label_start: 'face'} if labels: label_map = { label_id + self.label_start if label not in ('background', '__background__') else 0: label for label_id, label in enumerate(labels) } label_map[background_label] = '__background__' label_map = verify_label_map(dataset_meta.get('label_map', label_map)) valid_labels = [key for key in label_map if key != background_label] self.background_label = background_label self.label_start = sorted(valid_labels)[0] meta = {'label_map': label_map} if background_label != -1: meta['background_label'] = background_label return meta
44.327586
115
0.653637
a7a528b0142fd2a9df1bc75b3518dc509b76e286
5,453
py
Python
domain/analysis.py
sirsean/espn-fantasy-football-analyzer
f7565821d4a558a692cd7c3a07d56a14d5c47faf
[ "MIT" ]
1
2016-05-08T22:44:08.000Z
2016-05-08T22:44:08.000Z
domain/analysis.py
sirsean/espn-fantasy-football-analyzer
f7565821d4a558a692cd7c3a07d56a14d5c47faf
[ "MIT" ]
1
2015-12-08T17:09:19.000Z
2015-12-08T22:01:56.000Z
domain/analysis.py
sirsean/espn-fantasy-football-analyzer
f7565821d4a558a692cd7c3a07d56a14d5c47faf
[ "MIT" ]
null
null
null
""" Represents a team in the league. Keep track of the team's actual record and optimum record, as well as the players who scored above their average against this team. """ class Team: def __init__(self, name): self.name = name self.actualWins = 0 self.actualLosses = 0 self.actualTies = 0 self.optimumWins = 0 self.optimumLosses = 0 self.optimumTies = 0 self.actualPointsFor = 0 self.actualPointsAgainst = 0 self.optimumPointsFor = 0 self.optimumPointsAgainst = 0 self.aboveAverageOpposingPlayerPointsLines = [] self.highScoringBenchPlayers = [] self.lowScoringStarters = [] """ Add a player points line to this team, to keep track of those players who scored above their average against this team. """ def addAboveAverageOpposingPlayerPointsLine(self, line): self.aboveAverageOpposingPlayerPointsLines.append(line) self.aboveAverageOpposingPlayerPointsLines.sort(PlayerPointsLine.sortByDifferenceFromAverage) """ Add a player points line to the high scoring bench players list. """ def addHighScoringBenchPlayerPointsLine(self, line): self.highScoringBenchPlayers.append(line) self.highScoringBenchPlayers.sort(PlayerPointsLine.sortByName) """ Add a player points line to the low scoring starters list. """ def addLowScoringStarterPlayerPointsLine(self, line): self.lowScoringStarters.append(line) self.lowScoringStarters.sort(PlayerPointsLine.sortByName) """ Get the total number of points scored against this team, over the course of the whole season, by players who scored more than their average in the game in which they faced this team. """ def getTotalOpposingPlayersPointsAboveAverage(self): total = 0 for line in self.aboveAverageOpposingPlayerPointsLines: total += line.weekPoints - line.averagePoints return total """ Sorting function to help sort teams by optimum points, in descending order. """ def sortByOptimumPointsForDescending(team1, team2): return cmp(team2.optimumPointsFor, team1.optimumPointsFor) """ Sorting function to help sort teams by optimum wins, in descending order. """ def sortByOptimumWinsDescending(team1, team2): return cmp(team2.optimumWins, team1.optimumWins) """ Represents a single player. This is a definitive datasource; there should only be one instance of this object per player. Contains a list of the player's weekly scoring lines, and calculates total/average points. """ class Player: def __init__(self, playerId, name): self.scoreLines = [] self.playerId = playerId self.name = name self.totalPoints = 0 self.averagePoints = 0 self.linesAboveAverage = [] self.linesBelowAverage = [] """ Add a PlayerScoreLine to this player's record. """ def addScoreLine(self, scoreLine): self.scoreLines.append(scoreLine) """ Analyze the scores for this player over the course of the season. Compiles the total points and the average weekly points, then calculates which games were above and below average. """ def analyzeScores(self): # first sum the points self.totalPoints = 0 for scoreLine in self.scoreLines: self.totalPoints += scoreLine.points # calculate the average self.averagePoints = (self.totalPoints * 1.0) / len(self.scoreLines) # determine which lines are above and below average self.linesAboveAverage = [] self.linesBelowAverage = [] for scoreLine in self.scoreLines: if scoreLine.points > self.averagePoints: self.linesAboveAverage.append(PlayerPointsLine(self, scoreLine)) elif scoreLine.points < self.averagePoints: self.linesBelowAverage.append(PlayerPointsLine(self, scoreLine)) """ Get this player's points line for the given week. """ def getAboveAverageWeeklyPointsLine(self, week): for line in self.linesAboveAverage: if line.playerId == self.playerId and line.week == week: return line else: return None """ A simple class to represent the points a player scored in a given week, compared to their average points. There will be many of these for each player, depending on how often they scored above/below average against various teams. This is not a definitive data source for anything; it's created on the fly from the actual score line. """ class PlayerPointsLine: def __init__(self, player, playerScoreLine): self.scoreLine = playerScoreLine self.playerId = player.playerId self.name = player.name self.averagePoints = player.averagePoints self.week = playerScoreLine.week self.weekPoints = playerScoreLine.points """ Determine if this line represents a high scoring bench player. """ def isHighScoringBenchPlayer(self): return (self.scoreLine.slot == 'Bench' and self.weekPoints > 12) #return (self.scoreLine.slot == 'Bench' and self.weekPoints > self.averagePoints) """ Determine if this line represents a low scoring starter. """ def isLowScoringStarter(self): return (self.scoreLine.slot != 'Bench' and self.scoreLine.slot != 'IR' and self.weekPoints < 10) #return (self.scoreLine.slot != 'Bench' and self.scoreLine.slot != 'IR' and self.weekPoints < self.averagePoints) """ Sorting function to sort by the difference between the week's points and the player's average, in descending order. """ def sortByDifferenceFromAverage(lineA, lineB): return cmp(lineB.weekPoints - lineB.averagePoints, lineA.weekPoints - lineA.averagePoints) """ Sorting function to sort by the player's name. """ def sortByName(lineA, lineB): return cmp(lineA.name, lineB.name)
32.652695
183
0.758115
09f88b781864f7bd704de61823aea3ff5b26b934
8,446
py
Python
pinax/stripe/actions/charges.py
code-kitchen/pinax-stripe
8fb33bba6f7b23ea589094f3c76456ad8e73f909
[ "MIT" ]
null
null
null
pinax/stripe/actions/charges.py
code-kitchen/pinax-stripe
8fb33bba6f7b23ea589094f3c76456ad8e73f909
[ "MIT" ]
null
null
null
pinax/stripe/actions/charges.py
code-kitchen/pinax-stripe
8fb33bba6f7b23ea589094f3c76456ad8e73f909
[ "MIT" ]
1
2020-03-23T10:21:07.000Z
2020-03-23T10:21:07.000Z
import decimal from django.conf import settings from django.db.models import Q import stripe from six import string_types from .. import hooks, models, utils def calculate_refund_amount(charge, amount=None): """ Calculate refund amount given a charge and optional amount. Args: charge: a pinax.stripe.models.Charge object amount: optionally, the decimal.Decimal amount you wish to refund """ eligible_to_refund = charge.amount - (charge.amount_refunded or 0) if amount: return min(eligible_to_refund, amount) return eligible_to_refund def capture(charge, amount=None, idempotency_key=None): """ Capture the payment of an existing, uncaptured, charge. Args: charge: a pinax.stripe.models.Charge object amount: the decimal.Decimal amount of the charge to capture idempotency_key: Any string that allows retries to be performed safely. """ amount = utils.convert_amount_for_api( amount if amount else charge.amount, charge.currency ) stripe_charge = stripe.Charge( charge.stripe_id, stripe_account=charge.stripe_account_stripe_id, ).capture( amount=amount, idempotency_key=idempotency_key, expand=["balance_transaction"], ) sync_charge_from_stripe_data(stripe_charge) def _validate_create_params(customer, source, amount, application_fee, destination_account, destination_amount, on_behalf_of): if not customer and not source: raise ValueError("Must provide `customer` or `source`.") if not isinstance(amount, decimal.Decimal): raise ValueError( "You must supply a decimal value for `amount`." ) if application_fee and not isinstance(application_fee, decimal.Decimal): raise ValueError( "You must supply a decimal value for `application_fee`." ) if application_fee and not destination_account: raise ValueError( "You can only specify `application_fee` with `destination_account`" ) if application_fee and destination_account and destination_amount: raise ValueError( "You can't specify `application_fee` with `destination_amount`" ) if destination_account and on_behalf_of: raise ValueError( "`destination_account` and `on_behalf_of` are mutualy exclusive") def create( amount, customer=None, source=None, currency="usd", description=None, send_receipt=settings.PINAX_STRIPE_SEND_EMAIL_RECEIPTS, capture=True, email=None, destination_account=None, destination_amount=None, application_fee=None, on_behalf_of=None, idempotency_key=None, ): """ Create a charge for the given customer or source. If both customer and source are provided, the source must belong to the customer. See https://stripe.com/docs/api#create_charge-customer. Args: amount: should be a decimal.Decimal amount customer: the Customer object to charge source: the Stripe id of the source to charge currency: the currency with which to charge the amount in description: a description of the charge send_receipt: send a receipt upon successful charge capture: immediately capture the charge instead of doing a pre-authorization destination_account: stripe_id of a connected account destination_amount: amount to transfer to the `destination_account` without creating an application fee application_fee: used with `destination_account` to add a fee destined for the platform account on_behalf_of: Stripe account ID that these funds are intended for. Automatically set if you use the destination parameter. idempotency_key: Any string that allows retries to be performed safely. Returns: a pinax.stripe.models.Charge object """ # Handle customer as stripe_id for backward compatibility. if customer and not isinstance(customer, models.Customer): customer, _ = models.Customer.objects.get_or_create(stripe_id=customer) _validate_create_params(customer, source, amount, application_fee, destination_account, destination_amount, on_behalf_of) kwargs = dict( amount=utils.convert_amount_for_api(amount, currency), # find the final amount currency=currency, source=source, customer=customer.stripe_id, stripe_account=customer.stripe_account_stripe_id, description=description, capture=capture, idempotency_key=idempotency_key, ) if destination_account: kwargs["destination"] = {"account": destination_account} if destination_amount: kwargs["destination"]["amount"] = utils.convert_amount_for_api( destination_amount, currency ) if application_fee: kwargs["application_fee"] = utils.convert_amount_for_api( application_fee, currency ) elif on_behalf_of: kwargs["on_behalf_of"] = on_behalf_of stripe_charge = stripe.Charge.create( **kwargs ) charge = sync_charge_from_stripe_data(stripe_charge) if send_receipt: hooks.hookset.send_receipt(charge, email) return charge def retrieve(stripe_id, stripe_account=None): """Retrieve a Charge plus its balance info.""" return stripe.Charge.retrieve( stripe_id, stripe_account=stripe_account, expand=["balance_transaction"] ) def sync_charges_for_customer(customer): """ Populate database with all the charges for a customer. Args: customer: a pinax.stripe.models.Customer object """ for charge in customer.stripe_customer.charges().data: sync_charge_from_stripe_data(charge) def sync_charge(stripe_id, stripe_account=None): """Sync a charge given a Stripe charge ID.""" return sync_charge_from_stripe_data( retrieve(stripe_id, stripe_account=stripe_account) ) def sync_charge_from_stripe_data(data): """ Create or update the charge represented by the data from a Stripe API query. Args: data: the data representing a charge object in the Stripe API Returns: a pinax.stripe.models.Charge object """ source = data.get('source', {}) source_id = source.get('id') if source is not None else str(data.get('payment_method', '')) obj, _ = models.Charge.objects.get_or_create(stripe_id=data["id"]) obj.customer = models.Customer.objects.filter(stripe_id=data["customer"]).first() obj.source = source_id obj.currency = data["currency"] obj.invoice = models.Invoice.objects.filter(stripe_id=data["invoice"]).first() obj.amount = utils.convert_amount_for_db(data["amount"], obj.currency) obj.paid = data["paid"] obj.refunded = data["refunded"] obj.captured = data["captured"] obj.disputed = data["dispute"] is not None obj.charge_created = utils.convert_tstamp(data, "created") if data.get("description"): obj.description = data["description"] if data.get("amount_refunded"): obj.amount_refunded = utils.convert_amount_for_db(data["amount_refunded"], obj.currency) if data["refunded"]: obj.amount_refunded = obj.amount balance_transaction = data.get("balance_transaction") if balance_transaction and not isinstance(balance_transaction, string_types): obj.available = balance_transaction["status"] == "available" obj.available_on = utils.convert_tstamp( balance_transaction, "available_on" ) obj.fee = utils.convert_amount_for_db( balance_transaction["fee"], balance_transaction["currency"] ) obj.fee_currency = balance_transaction["currency"] obj.transfer_group = data.get("transfer_group") obj.outcome = data.get("outcome") obj.save() return obj def update_charge_availability(): """ Update `available` and `available_on` attributes of Charges. We only bother checking those Charges that can become available. """ charges = models.Charge.objects.filter( paid=True, captured=True ).exclude( Q(available=True) | Q(refunded=True) ).select_related( "customer" ) for c in charges.iterator(): sync_charge( c.stripe_id, stripe_account=c.customer.stripe_account )
36.248927
130
0.692044
5f0095e9ec6cff31d46cccf0356605b24d06f9e3
2,488
py
Python
update-sha1sums.py
devices-ng/android_device_gigaset_mt6763-common
2bc486ae6efaecdf144556910ad309b4fbee62ea
[ "FTL" ]
2
2021-08-12T10:59:55.000Z
2021-11-15T11:16:05.000Z
update-sha1sums.py
devices-ng/android_device_gigaset_mt6763-common
2bc486ae6efaecdf144556910ad309b4fbee62ea
[ "FTL" ]
null
null
null
update-sha1sums.py
devices-ng/android_device_gigaset_mt6763-common
2bc486ae6efaecdf144556910ad309b4fbee62ea
[ "FTL" ]
4
2021-08-07T05:15:14.000Z
2022-03-02T22:42:24.000Z
#!/usr/bin/env python # # Copyright (C) 2016 The CyanogenMod Project # Copyright (C) 2017-2020 The LineageOS Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys from hashlib import sha1 DEVICE = 'mt6763-common' VENDOR = 'gigaset' VENDOR_PATH = os.path.join( *['..', '..', '..', 'vendor', VENDOR, DEVICE, 'proprietary']) class Updater: def __init__(self, filename): self.filename = filename with open(self.filename, 'r') as f: self.lines = f.read().splitlines() def write(self): with open(self.filename, 'w') as f: f.write('\n'.join(self.lines) + '\n') def cleanup(self): for index, line in enumerate(self.lines): # Skip empty or commented lines if len(line) == 0 or line[0] == '#' or '|' not in line: continue # Drop SHA1 hash, if existing self.lines[index] = line.split('|')[0] self.write() def update(self): need_sha1 = False for index, line in enumerate(self.lines): # Skip empty lines if len(line) == 0: continue # Check if we need to set SHA1 hash for the next files if line[0] == '#': need_sha1 = (' - from' in line) continue if need_sha1: # Remove existing SHA1 hash line = line.split('|')[0] file_path = line.split(';')[0].split(':')[-1] if file_path[0] == '-': file_path = file_path[1:] with open(os.path.join(VENDOR_PATH, file_path), 'rb') as f: hash = sha1(f.read()).hexdigest() self.lines[index] = '{}|{}'.format(line, hash) self.write() for file in ['proprietary-files.txt']: updater = Updater(file) if len(sys.argv) == 2 and sys.argv[1] == '-c': updater.cleanup() else: updater.update()
29.619048
75
0.569534
c1be7ee6b5622befaafe13de6f606183a20c5e1b
174
py
Python
getBMR.py
fixture94/super-duper-sortmabob
b3c2eabe4ff2cccbcafae8d1fb7d88263705168c
[ "MIT" ]
null
null
null
getBMR.py
fixture94/super-duper-sortmabob
b3c2eabe4ff2cccbcafae8d1fb7d88263705168c
[ "MIT" ]
null
null
null
getBMR.py
fixture94/super-duper-sortmabob
b3c2eabe4ff2cccbcafae8d1fb7d88263705168c
[ "MIT" ]
null
null
null
def getBMR(weightLBS, heightINCHES, age): weightKG = weightLBS*.453592 heightCM = heightINCHES*2.54 BMR = 10*weightKG+.25*heightCM-5*age+5 return BMR
29
45
0.666667
24d66635b23b08e74fcf1f0cbf820c8b3c57a56c
223
py
Python
twitter_media_tweets/twitter/forms.py
rmotr-group-projects/wdd-w2-twitter-media-tweets
970889ea23a5a692a841be0e2f0e097f74b30f71
[ "MIT" ]
null
null
null
twitter_media_tweets/twitter/forms.py
rmotr-group-projects/wdd-w2-twitter-media-tweets
970889ea23a5a692a841be0e2f0e097f74b30f71
[ "MIT" ]
6
2020-06-05T22:14:42.000Z
2022-01-13T01:30:01.000Z
twitter_media_tweets/twitter/forms.py
ine-rmotr-projects/wdd-w3-twitter-media-tweets
970889ea23a5a692a841be0e2f0e097f74b30f71
[ "MIT" ]
null
null
null
from django import forms from .models import Tweet class TweetForm(forms.Form): content = forms.CharField(max_length=140) image_url = forms.URLField(required=False) video_url = forms.URLField(required=False)
22.3
46
0.757848
068140e07ff22ec0e1788a3a70252b008c329b69
716
py
Python
run_postpred.py
deapplegate/wtgpipeline
9693e8562022cc97bf5a96427e22965e1a5e8497
[ "MIT" ]
1
2019-03-15T04:01:19.000Z
2019-03-15T04:01:19.000Z
run_postpred.py
deapplegate/wtgpipeline
9693e8562022cc97bf5a96427e22965e1a5e8497
[ "MIT" ]
5
2017-12-11T00:11:39.000Z
2021-07-09T17:05:16.000Z
run_postpred.py
deapplegate/wtgpipeline
9693e8562022cc97bf5a96427e22965e1a5e8497
[ "MIT" ]
2
2017-08-15T21:19:11.000Z
2017-10-12T00:36:35.000Z
#!/usr/bin/env python ##################### import sys, glob import pymc, numpy as np import shapedistro, shapedistro_residuals as sdr, ldac ##################### trainingfile = sys.argv[1] testingfile = sys.argv[2] resfile = sys.argv[3] modelname = sys.argv[4] burn = int(sys.argv[5]) outfile = sys.argv[6] training_cat = ldac.openObjectFile(trainingfile) testing_cat = ldac.openObjectFile(testingfile) shapemodel = getattr(shapedistro, modelname) mcmc = sdr.loadResult(training_cat, resfile, shapemodel) postpred_dist = mcmc.trace('postpred_g')[burn:] logp = sdr.calcPostPredLogProb(testing_cat, mcmc.unique_g_true, postpred_dist) output = open(outfile, 'w') output.write('%f\n' % logp) output.close()
21.058824
78
0.710894
ec31bfa84bf7174a714c67eceac31a2f7f8442a8
1,059
py
Python
demoweb/urls.py
biljiang/demoweb
4eb2654f7a8099460339a16dba3d0f78e8cc4115
[ "MIT" ]
null
null
null
demoweb/urls.py
biljiang/demoweb
4eb2654f7a8099460339a16dba3d0f78e8cc4115
[ "MIT" ]
null
null
null
demoweb/urls.py
biljiang/demoweb
4eb2654f7a8099460339a16dba3d0f78e8cc4115
[ "MIT" ]
null
null
null
"""demoweb URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from . import views from django.contrib.auth import views as auth_views urlpatterns = [ path('',views.HomePageView.as_view(), name = "root_index"), path('', include('django.contrib.auth.urls')), path('shdky/', include('shdky.urls')), path('admin/', admin.site.urls), # path('accounts/logout/', views.logout_view, name ="logout_view"), ]
36.517241
77
0.703494
b82dee324a722219487888d21d231e9dba03a31e
5,107
py
Python
scrapper.py
jonboboeva/2021-2-level-ctlr
4a97fd28a416d39c8d36463df781e8c291c334b5
[ "MIT" ]
null
null
null
scrapper.py
jonboboeva/2021-2-level-ctlr
4a97fd28a416d39c8d36463df781e8c291c334b5
[ "MIT" ]
null
null
null
scrapper.py
jonboboeva/2021-2-level-ctlr
4a97fd28a416d39c8d36463df781e8c291c334b5
[ "MIT" ]
null
null
null
""" Scrapper implementation """ from datetime import datetime import json from pathlib import Path import random import shutil from time import sleep from bs4 import BeautifulSoup import requests from core_utils.article import Article from constants import ASSETS_PATH, CRAWLER_CONFIG_PATH, HTTP_PATTERN class IncorrectURLError(Exception): """ Seed URL does not match standard pattern """ class NumberOfArticlesOutOfRangeError(Exception): """ Total number of articles to parse is too big """ class IncorrectNumberOfArticlesError(Exception): """ Total number of articles to parse in not integer """ class Crawler: """ Crawler implementation """ def __init__(self, seed_urls, total_max_articles): self.seed_urls = seed_urls self.total_max_articles = total_max_articles self.urls = [] def _extract_url(self, article_bs): articles_blocks = article_bs.find_all('div', class_='card-article__content') not_full_urls = [] for article_block in articles_blocks: try: not_full_url = article_block.find_parent()['href'] not_full_urls.append(not_full_url) except TypeError: continue for url in not_full_urls: if len(self.urls) < self.total_max_articles and url: full_url = HTTP_PATTERN + url self.urls.append(full_url) def find_articles(self): """ Finds articles """ for seed_url in self.seed_urls: sleep(random.randint(1, 7)) response = requests.get(url=seed_url) response.encoding = 'utf-8' if not response.ok: continue soup = BeautifulSoup(response.text, 'lxml') self._extract_url(soup) def get_search_urls(self): """ Returns seed_urls param """ pass class HTMLParser: def __init__(self, article_url, article_id): self.article_url = article_url self.article_id = article_id self.article = Article(self.article_url, self.article_id) def _fill_article_with_meta_information(self, article_bs): try: self.article.author = article_bs.find('div', class_='article-authors__info').text.strip() except AttributeError: self.article.author = 'NOT FOUND' if self.article.author == 'NOT FOUND': try: self.article.author = article_bs.find('div', class_='article-authors__author').text.strip() except AttributeError: self.article.author = 'NOT FOUND' self.article.topics = article_bs.find('span', class_='tags').text.strip().split(' / ') raw_date = article_bs.find('time')['datetime'][:-10] self.article.date = datetime.strptime(raw_date, '%Y-%m-%dT%H:%M:%S') self.article.title = article_bs.find('h1', class_='article-headline__title').text.strip() def _fill_article_with_text(self, article_bs): self.article.text = article_bs.find('div', class_='article-boxes-list article__boxes').text def parse(self): response = requests.get(url=self.article_url) response.encoding = 'utf-8' article_bs = BeautifulSoup(response.text, 'lxml') self._fill_article_with_text(article_bs) self._fill_article_with_meta_information(article_bs) return self.article def prepare_environment(base_path): """ Creates ASSETS_PATH folder if not created and removes existing folder """ path_for_environment = Path(base_path) if path_for_environment.exists(): shutil.rmtree(base_path) path_for_environment.mkdir(parents=True) def validate_config(crawler_path): """ Validates given config """ with open(crawler_path) as file: configuration = json.load(file) for url in configuration["seed_urls"]: if HTTP_PATTERN not in url: raise IncorrectURLError seed_urls = configuration["seed_urls"] total_articles_to_find_and_parse = configuration["total_articles_to_find_and_parse"] if not seed_urls: raise IncorrectURLError if not isinstance(total_articles_to_find_and_parse, int) or total_articles_to_find_and_parse <= 0: raise IncorrectNumberOfArticlesError if total_articles_to_find_and_parse > 200: raise NumberOfArticlesOutOfRangeError return seed_urls, total_articles_to_find_and_parse if __name__ == '__main__': seed_urls_list, max_articles = validate_config(CRAWLER_CONFIG_PATH) prepare_environment(ASSETS_PATH) crawler = Crawler(seed_urls_list, max_articles) crawler.find_articles() ID = 1 for article_url_main in crawler.urls: article_parser = HTMLParser(article_url=article_url_main, article_id=ID) article = article_parser.parse() article.save_raw() ID += 1
31.331288
108
0.645976
9a2dc1499736f0d32bf8dfb13564b60fae29fe16
766
py
Python
.aux/venv/lib/python3.9/site-packages/auxilium/add_arguments/__init__.py
sonntagsgesicht/regtest
160ef1089f797fbade48160efb0e1a386adbada7
[ "Apache-2.0" ]
null
null
null
.aux/venv/lib/python3.9/site-packages/auxilium/add_arguments/__init__.py
sonntagsgesicht/regtest
160ef1089f797fbade48160efb0e1a386adbada7
[ "Apache-2.0" ]
null
null
null
.aux/venv/lib/python3.9/site-packages/auxilium/add_arguments/__init__.py
sonntagsgesicht/regtest
160ef1089f797fbade48160efb0e1a386adbada7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # auxilium # -------- # Python project for an automated test and deploy toolkit. # # Author: sonntagsgesicht # Version: 0.1.8, copyright Saturday, 02 October 2021 # Website: https://github.com/sonntagsgesicht/auxilium # License: Apache License 2.0 (see LICENSE file) from .root import add_arguments as root # noqa: F401 from .create import add_arguments as create # noqa: F401 from .update import add_arguments as update # noqa: F401 from .test import add_arguments as test # noqa: F401 from .doc import add_arguments as doc # noqa: F401 from .build import add_arguments as build # noqa: F401 from .python import add_arguments as python # noqa: F401 from .formatter import ArgumentDefaultsAndConstsHelpFormatter # noqa: F401
34.818182
75
0.744125
d99ca988d41fe491ac3bf89aeaa4176f9c1987c1
1,185
py
Python
release/stubs.min/System/Windows/Forms/__init___parts/MdiLayout.py
tranconbv/ironpython-stubs
a601759e6c6819beff8e6b639d18a24b7e351851
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Forms/__init___parts/MdiLayout.py
tranconbv/ironpython-stubs
a601759e6c6819beff8e6b639d18a24b7e351851
[ "MIT" ]
null
null
null
release/stubs.min/System/Windows/Forms/__init___parts/MdiLayout.py
tranconbv/ironpython-stubs
a601759e6c6819beff8e6b639d18a24b7e351851
[ "MIT" ]
null
null
null
class MdiLayout(Enum,IComparable,IFormattable,IConvertible): """ Specifies the layout of multiple document interface (MDI) child windows in an MDI parent window. enum MdiLayout,values: ArrangeIcons (3),Cascade (0),TileHorizontal (1),TileVertical (2) """ def Instance(self): """ This function has been arbitrarily put into the stubs""" return MdiLayout() def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass ArrangeIcons=None Cascade=None TileHorizontal=None TileVertical=None value__=None
29.625
215
0.679325
4bb99519c29a4befe9c56b20af27c13f7ed28f63
1,740
py
Python
mock_sensors/lock/lock.py
NGI-Trust-CASSIOPEIA/demonstrator-backend
fd627b393357f799e7203480cd955f04066b684b
[ "MIT" ]
null
null
null
mock_sensors/lock/lock.py
NGI-Trust-CASSIOPEIA/demonstrator-backend
fd627b393357f799e7203480cd955f04066b684b
[ "MIT" ]
null
null
null
mock_sensors/lock/lock.py
NGI-Trust-CASSIOPEIA/demonstrator-backend
fd627b393357f799e7203480cd955f04066b684b
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # encoding=utf-8 import paho.mqtt.client as mqtt import logging import json import time import argparse logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() lock = True def on_connect(client, userdata, flags, rc): logger.debug('Connected with result code {0}'.format(str(rc))) client.subscribe('home-assistant/frontdoor/set', qos=1) client.publish('home-assistant/frontdoor/', 'LOCK', qos=1, retain=True) def on_message(client, userdata, msg): global lock incoming = msg.payload.decode('utf-8') logger.info('Incoming topic (%s): %s', msg.topic, incoming) logger.info('Lock state (before): %s', lock) if incoming == 'LOCK': lock = True elif incoming == 'UNLOCK': lock = False else: logger.warning('Unkown payload: %s', incoming) logger.info('Lock state (after): %s', lock) reply_topic = 'home-assistant/frontdoor/' if lock: msg = 'LOCK' else: msg = 'UNLOCK' logger.info('Reply message: %s', msg) client.publish(reply_topic, msg, qos=1, retain=True) def main(args): client =mqtt.Client('lock') client.on_connect = on_connect client.on_message = on_message client.enable_logger() logger.debug('Connect to %s', args.u) client.connect(args.u, port=args.p) client.loop_start() done = False while not done: time.sleep(1) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Virtual Lock') parser.add_argument('-u', type=str, help='MQTT URL', default='192.168.94.98') parser.add_argument('-p', type=int, help='MQTT Port', default=1883) args = parser.parse_args() main(args)
24.507042
81
0.645402
b6c4e6a2b7c1e1f85c2efd5006a00e8ae67ca9ac
896
py
Python
benchmarks/operator_benchmark/common/tests/random_sample_test.py
jsun94/nimble
e5c899a69677818b1becc58100577441e15ede13
[ "BSD-3-Clause" ]
206
2020-11-28T22:56:38.000Z
2022-03-27T02:33:04.000Z
benchmarks/operator_benchmark/common/tests/random_sample_test.py
jsun94/nimble
e5c899a69677818b1becc58100577441e15ede13
[ "BSD-3-Clause" ]
19
2020-12-09T23:13:14.000Z
2022-01-24T23:24:08.000Z
benchmarks/operator_benchmark/common/tests/random_sample_test.py
jsun94/nimble
e5c899a69677818b1becc58100577441e15ede13
[ "BSD-3-Clause" ]
28
2020-11-29T15:25:12.000Z
2022-01-20T02:16:27.000Z
import operator_benchmark as op_bench import torch configs = op_bench.random_sample_configs( M=[1, 2, 3, 4, 5, 6], N=[7, 8, 9, 10, 11, 12], K=[13, 14, 15, 16, 17, 18], # probs saves the weights of each value probs=op_bench.attr_probs( M=[0.5, 0.2, 0.1, 0.05, 0.03, 0.1], N=[0.1, 0.3, 0.4, 0.02, 0.03, 0.04], K=[0.03, 0.6, 0.04, 0.02, 0.03, 0.01], ), # this is the number of returned inputs total_samples=10, tags=["short"], ) class AddBenchmark(op_bench.TorchBenchmarkBase): def init(self, M, N, K): self.input_one = torch.rand(M, N, K) self.input_two = torch.rand(M, N, K) self.set_module_name("add") def forward(self): return torch.add(self.input_one, self.input_two) op_bench.generate_pt_test(configs, AddBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main()
24.888889
56
0.603795
6094c459ce0be0b0f6631e4a607202c4bc015b94
6,352
py
Python
src/S1Processor.py
Thetaspace/TS_Sen12Mosaicker
69c479b2fab6acb988552dec93d6b08eafb622c6
[ "MIT" ]
1
2022-01-24T22:54:08.000Z
2022-01-24T22:54:08.000Z
src/S1Processor.py
Thetaspace/TS_Sen12Mosaicker
69c479b2fab6acb988552dec93d6b08eafb622c6
[ "MIT" ]
null
null
null
src/S1Processor.py
Thetaspace/TS_Sen12Mosaicker
69c479b2fab6acb988552dec93d6b08eafb622c6
[ "MIT" ]
null
null
null
# extended from https://github.com/wajuqi/Sentinel-1-preprocessing-using-Snappy import snappy from snappy import ProductIO from snappy import HashMap from snappy import GPF import os import zipfile import logging import glob from src.Processor import Processor import numpy as np logger = logging.getLogger('S1ProcessorLogger') logging.basicConfig(level=logging.INFO) class S1Processor(Processor): def __init__(self, zips_path, footprint): super(S1Processor, self).__init__(zips_path, footprint) logger.info('Instanciating S1 processor for S1 files in {0}'.format(self.zips_path)) self.suffix = 'S1' self.dtype = np.float32 self.safe_folders = [] self.basenames = [] self.pols = [] self.polarizations = [] def unzip(self): for zip_file in glob.glob(self.zips_path + '/S1*.zip'): basename = os.path.basename(zip_file)[:-4] self.basenames.append(basename) self.safe_folders.append(os.path.join(self.zips_path, basename) + '.SAFE') with zipfile.ZipFile(zip_file, 'r') as f: f.extractall(self.zips_path) def apply_orbit_file(self, source): logger.info('\tApplying orbit file') parameters = HashMap() parameters.put('Apply-Orbit-File', True) output = GPF.createProduct('Apply-Orbit-File', parameters, source) return output def get_meta(self): for i in range(len(self.safe_folders)): only_safe_folder = os.path.basename(self.safe_folders[i]) modestamp = only_safe_folder.split("_")[1] productstamp = only_safe_folder.split("_")[2] polstamp = only_safe_folder.split("_")[3] polarization = polstamp[2:4] self.polarizations.append(polarization) if polarization == 'DV': self.pols.append('VH,VV') elif polarization == 'DH': self.pols.append('HH,HV') elif polarization == 'SH' or polarization == 'HH': self.pols.append('HH') elif polarization == 'SV': self.pols.append('VV') else: self.pols.append('NaN') logger.info("Polarization error!") def remove_thermal_noise(self, source): logger.info('\tThermal noise removal') parameters = HashMap() parameters.put('removeThermalNoise', True) output = GPF.createProduct('ThermalNoiseRemoval', parameters, source) return output def calibrate(self, source, pol, polarization): logger.info('\tCalibration') parameters = HashMap() parameters.put('outputSigmaBand', True) if polarization == 'DH': parameters.put('sourceBands', 'Intensity_HH,Intensity_HV') elif polarization == 'DV': parameters.put('sourceBands', 'Intensity_VH,Intensity_VV') elif polarization == 'SH' or polarization == 'HH': parameters.put('sourceBands', 'Intensity_HH') elif polarization == 'SV': parameters.put('sourceBands', 'Intensity_VV') else: logger.info("Unknown polarization") parameters.put('selectedPolarisations', pol) parameters.put('outputImageScaleInDb', False) parameters.put('auxFile', 'Product Auxiliary File') parameters.put('outputImageInComplex', False) parameters.put('outputGammaBand', False) parameters.put('outputBetaBand', False) output = GPF.createProduct("Calibration", parameters, source) return output def multi_temporal_despeckling(self): pass return def terrain_correction(self, source): logger.info('\tTerrain correction...') parameters = HashMap() parameters.put('demName', 'SRTM 3Sec') parameters.put('imgResamplingMethod', 'BILINEAR_INTERPOLATION') #parameters.put('mapProjection', 'AUTO:42001') # comment this line if no need to convert to UTM/WGS84, default is WGS84 parameters.put('saveProjectedLocalIncidenceAngle', True) parameters.put('saveSelectedSourceBand', True) #parameters.put('pixelSpacingInMeter', 10.0) #parameters.put('pixelSpacingInDegree', 8.983152841195215E-5) #parameters.put('alignToStandardGrid', False) #parameters.put('standardGridOriginX', 0.0) #parameters.put('standardGridOriginXY', 0.0) parameters.put('nodataValueAtSea', True) parameters.put('saveDEM', False) parameters.put('saveSelectedSourceBand', True) parameters.put('incidenceAngleForSigma0', 'Use projected local incidence angle from DEM') parameters.put('auxFile', 'Latest Auxiliary File') output = GPF.createProduct('Terrain-Correction', parameters, source) return output def subset(self, source): logger.info('\tClipping to AOI') parameters = HashMap() parameters.put('geoRegion', self.footprint) output = GPF.createProduct('Subset', parameters, source) return output def scale_db(self, source): logger.info('\tScaling to dB') parameters = HashMap() parameters.put('sourceBands', 'Sigma0_VV,Sigma0_VH') output = GPF.createProduct("LinearToFromdB", parameters, source) return output def process(self): self.unzip() self.get_meta() for i, safe_folder in enumerate(self.safe_folders): scene = ProductIO.readProduct(safe_folder + '/manifest.safe') applyorbit = self.apply_orbit_file(scene) thermaremoved = self.remove_thermal_noise(applyorbit) calibrated = self.calibrate(thermaremoved, self.pols[i], self.polarizations[i]) tercorrected = self.terrain_correction(calibrated) # subset here if self.footprint: tercorrected = self.subset(tercorrected) scaled_db = self.scale_db(tercorrected) output_path = os.path.join(self.zips_path, self.basenames[i]) + '_VV_VH_dB.tif' ProductIO.writeProduct(scaled_db, output_path, 'GeoTIFF-BigTIFF') scene.dispose() scene.closeIO() self.paths_to_merge.append(output_path) self.merge()
36.930233
133
0.631612
2aa92d455b45534bf9f79cd71d3f212403f0f7e2
857
py
Python
scripts/test_script.py
abraker95/ultimate_osu_analyzer
bea58c997d13c3f461ccbe682f52799f0f88fdea
[ "MIT" ]
23
2019-02-27T06:20:15.000Z
2022-03-31T22:54:11.000Z
scripts/test_script.py
abraker95/ultimate_osu_analyzer
bea58c997d13c3f461ccbe682f52799f0f88fdea
[ "MIT" ]
38
2019-03-03T17:35:39.000Z
2021-08-23T20:43:34.000Z
scripts/test_script.py
abraker95/ultimate_osu_analyzer
bea58c997d13c3f461ccbe682f52799f0f88fdea
[ "MIT" ]
4
2020-03-30T20:43:14.000Z
2022-03-06T19:40:15.000Z
''' Such scripts allow to execute code that is too complex to manage in the embedded console To start enter the following in the embedded console: CmdUtils.run_script('scripts/test_script.py', globals(), locals()) Now try: ret = TestScript().run('hello', 'world') print(ret) All variables accessable in the embedded console are accessible here. Even ones you declared right before loading the script! It is recommended to create your script as a class to lower chances there might be conflicts in variable names. If there are, you may accidentally overwrite or use an unintended variable. ''' class TestScript(): def __init__(self): # Initializing script stuff go here print('hello world') def run(self, param1, param2): # Use run function to execute the script once loaded return param1 + param2
34.28
95
0.725788
c53e6042d6d46f815020d147c70048103d763cfe
11,180
py
Python
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/a10/a10_virtual_server.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
17
2017-06-07T23:15:01.000Z
2021-08-30T14:32:36.000Z
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/a10/a10_virtual_server.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
9
2017-06-25T03:31:52.000Z
2021-05-17T23:43:12.000Z
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/a10/a10_virtual_server.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
3
2018-05-26T21:31:22.000Z
2019-09-28T17:00:45.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2014, Mischa Peters <mpeters@a10networks.com>, # Eric Chou <ericc@a10networks.com> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: a10_virtual_server version_added: 1.8 short_description: Manage A10 Networks AX/SoftAX/Thunder/vThunder devices' virtual servers. description: - Manage SLB (Server Load Balancing) virtual server objects on A10 Networks devices via aXAPIv2. author: - Eric Chou (@ericchou1) - Mischa Peters (@mischapeters) notes: - Requires A10 Networks aXAPI 2.1. extends_documentation_fragment: - a10 - url options: state: description: - If the specified virtual server should exist. choices: ['present', 'absent'] default: present partition: version_added: "2.3" description: - set active-partition virtual_server: description: - The SLB (Server Load Balancing) virtual server name. required: true aliases: ['vip', 'virtual'] virtual_server_ip: description: - The SLB virtual server IPv4 address. aliases: ['ip', 'address'] virtual_server_status: description: - The SLB virtual server status, such as enabled or disabled. default: enable aliases: ['status'] choices: ['enabled', 'disabled'] virtual_server_ports: description: - A list of ports to create for the virtual server. Each list item should be a dictionary which specifies the C(port:) and C(type:), but can also optionally specify the C(service_group:) as well as the C(status:). See the examples below for details. This parameter is required when C(state) is C(present). validate_certs: description: - If C(no), SSL certificates will not be validated. This should only be used on personally controlled devices using self-signed certificates. type: bool default: 'yes' ''' EXAMPLES = ''' # Create a new virtual server - a10_virtual_server: host: a10.mydomain.com username: myadmin password: mypassword partition: mypartition virtual_server: vserver1 virtual_server_ip: 1.1.1.1 virtual_server_ports: - port: 80 protocol: TCP service_group: sg-80-tcp - port: 443 protocol: HTTPS service_group: sg-443-https - port: 8080 protocol: http status: disabled ''' RETURN = ''' content: description: the full info regarding the slb_virtual returned: success type: str sample: "mynewvirtualserver" ''' import json from ansible.module_utils.network.a10.a10 import (axapi_call, a10_argument_spec, axapi_authenticate, axapi_failure, axapi_enabled_disabled, axapi_get_vport_protocol, AXAPI_VPORT_PROTOCOLS) from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.urls import url_argument_spec VALID_PORT_FIELDS = ['port', 'protocol', 'service_group', 'status'] def validate_ports(module, ports): for item in ports: for key in item: if key not in VALID_PORT_FIELDS: module.fail_json(msg="invalid port field (%s), must be one of: %s" % (key, ','.join(VALID_PORT_FIELDS))) # validate the port number is present and an integer if 'port' in item: try: item['port'] = int(item['port']) except Exception: module.fail_json(msg="port definitions must be integers") else: module.fail_json(msg="port definitions must define the port field") # validate the port protocol is present, and convert it to # the internal API integer value (and validate it) if 'protocol' in item: protocol = axapi_get_vport_protocol(item['protocol']) if not protocol: module.fail_json(msg="invalid port protocol, must be one of: %s" % ','.join(AXAPI_VPORT_PROTOCOLS)) else: item['protocol'] = protocol else: module.fail_json(msg="port definitions must define the port protocol (%s)" % ','.join(AXAPI_VPORT_PROTOCOLS)) # convert the status to the internal API integer value if 'status' in item: item['status'] = axapi_enabled_disabled(item['status']) else: item['status'] = 1 # ensure the service_group field is at least present if 'service_group' not in item: item['service_group'] = '' def main(): argument_spec = a10_argument_spec() argument_spec.update(url_argument_spec()) argument_spec.update( dict( state=dict(type='str', default='present', choices=['present', 'absent']), virtual_server=dict(type='str', aliases=['vip', 'virtual'], required=True), virtual_server_ip=dict(type='str', aliases=['ip', 'address'], required=True), virtual_server_status=dict(type='str', default='enabled', aliases=['status'], choices=['enabled', 'disabled']), virtual_server_ports=dict(type='list', required=True), partition=dict(type='str', default=[]), ) ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=False ) host = module.params['host'] username = module.params['username'] password = module.params['password'] partition = module.params['partition'] state = module.params['state'] write_config = module.params['write_config'] slb_virtual = module.params['virtual_server'] slb_virtual_ip = module.params['virtual_server_ip'] slb_virtual_status = module.params['virtual_server_status'] slb_virtual_ports = module.params['virtual_server_ports'] if slb_virtual is None: module.fail_json(msg='virtual_server is required') validate_ports(module, slb_virtual_ports) axapi_base_url = 'https://%s/services/rest/V2.1/?format=json' % host session_url = axapi_authenticate(module, axapi_base_url, username, password) axapi_call(module, session_url + '&method=system.partition.active', json.dumps({'name': partition})) slb_virtual_data = axapi_call(module, session_url + '&method=slb.virtual_server.search', json.dumps({'name': slb_virtual})) slb_virtual_exists = not axapi_failure(slb_virtual_data) changed = False if state == 'present': json_post = { 'virtual_server': { 'name': slb_virtual, 'address': slb_virtual_ip, 'status': axapi_enabled_disabled(slb_virtual_status), 'vport_list': slb_virtual_ports, } } # before creating/updating we need to validate that any # service groups defined in the ports list exist since # since the API will still create port definitions for # them while indicating a failure occurred checked_service_groups = [] for port in slb_virtual_ports: if 'service_group' in port and port['service_group'] not in checked_service_groups: # skip blank service group entries if port['service_group'] == '': continue result = axapi_call(module, session_url + '&method=slb.service_group.search', json.dumps({'name': port['service_group']})) if axapi_failure(result): module.fail_json(msg="the service group %s specified in the ports list does not exist" % port['service_group']) checked_service_groups.append(port['service_group']) if not slb_virtual_exists: result = axapi_call(module, session_url + '&method=slb.virtual_server.create', json.dumps(json_post)) if axapi_failure(result): module.fail_json(msg="failed to create the virtual server: %s" % result['response']['err']['msg']) changed = True else: def needs_update(src_ports, dst_ports): ''' Checks to determine if the port definitions of the src_ports array are in or different from those in dst_ports. If there is a difference, this function returns true, otherwise false. ''' for src_port in src_ports: found = False different = False for dst_port in dst_ports: if src_port['port'] == dst_port['port']: found = True for valid_field in VALID_PORT_FIELDS: if src_port[valid_field] != dst_port[valid_field]: different = True break if found or different: break if not found or different: return True # every port from the src exists in the dst, and none of them were different return False defined_ports = slb_virtual_data.get('virtual_server', {}).get('vport_list', []) # we check for a needed update both ways, in case ports # are missing from either the ones specified by the user # or from those on the device if needs_update(defined_ports, slb_virtual_ports) or needs_update(slb_virtual_ports, defined_ports): result = axapi_call(module, session_url + '&method=slb.virtual_server.update', json.dumps(json_post)) if axapi_failure(result): module.fail_json(msg="failed to create the virtual server: %s" % result['response']['err']['msg']) changed = True # if we changed things, get the full info regarding # the service group for the return data below if changed: result = axapi_call(module, session_url + '&method=slb.virtual_server.search', json.dumps({'name': slb_virtual})) else: result = slb_virtual_data elif state == 'absent': if slb_virtual_exists: result = axapi_call(module, session_url + '&method=slb.virtual_server.delete', json.dumps({'name': slb_virtual})) changed = True else: result = dict(msg="the virtual server was not present") # if the config has changed, save the config unless otherwise requested if changed and write_config: write_result = axapi_call(module, session_url + '&method=system.action.write_memory') if axapi_failure(write_result): module.fail_json(msg="failed to save the configuration: %s" % write_result['response']['err']['msg']) # log out of the session nicely and exit axapi_call(module, session_url + '&method=session.close') module.exit_json(changed=changed, content=result) if __name__ == '__main__': main()
39.22807
138
0.627818
d3db60b7177b5f34d9ad3d9143746c4ae2adbf81
4,437
py
Python
biobb_dna/test/unitests/test_correlation/test_correlation.py
bioexcel/biobb_dna
7b61937d1683629949ffd7e1abb55831dcd25060
[ "Apache-2.0" ]
null
null
null
biobb_dna/test/unitests/test_correlation/test_correlation.py
bioexcel/biobb_dna
7b61937d1683629949ffd7e1abb55831dcd25060
[ "Apache-2.0" ]
1
2021-10-30T07:25:54.000Z
2021-10-30T07:25:54.000Z
biobb_dna/test/unitests/test_correlation/test_correlation.py
bioexcel/biobb_dna
7b61937d1683629949ffd7e1abb55831dcd25060
[ "Apache-2.0" ]
null
null
null
from biobb_common.tools import test_fixtures as fx from biobb_dna.interbp_correlations.interhpcorr import interhpcorr from biobb_dna.interbp_correlations.interseqcorr import interseqcorr from biobb_dna.interbp_correlations.interbpcorr import interbpcorr from biobb_dna.intrabp_correlations.intrahpcorr import intrahpcorr from biobb_dna.intrabp_correlations.intraseqcorr import intraseqcorr from biobb_dna.intrabp_correlations.intrabpcorr import intrabpcorr class TestInterHelparCorrelation(): def setUp(self): fx.test_setup(self, 'interhpcorr') def tearDown(self): fx.test_teardown(self) def test_helparcorrelation(self): returncode = interhpcorr(**self.paths) assert fx.not_empty(self.paths['output_csv_path']) assert fx.not_empty(self.paths['output_jpg_path']) assert fx.exe_success(returncode) assert fx.equal( self.paths['output_csv_path'], self.paths['ref_csv_output']) assert fx.equal( self.paths['output_jpg_path'], self.paths['ref_jpg_output']) class TestInterSequenceCorrelation(): def setUp(self): fx.test_setup(self, 'interseqcorr') def tearDown(self): fx.test_teardown(self) def test_sequencecorrelation(self): returncode = interseqcorr( properties=self.properties, **self.paths) assert fx.not_empty(self.paths['output_csv_path']) assert fx.not_empty(self.paths['output_jpg_path']) assert fx.exe_success(returncode) assert fx.equal( self.paths['output_csv_path'], self.paths['ref_csv_output']) assert fx.equal( self.paths['output_jpg_path'], self.paths['ref_jpg_output']) class TestInterBasepairCorrelation(): def setUp(self): fx.test_setup(self, 'interbpcorr') def tearDown(self): fx.test_teardown(self) def test_basepaircorrelation(self): returncode = interbpcorr( properties=self.properties, **self.paths) assert fx.not_empty(self.paths['output_csv_path']) assert fx.not_empty(self.paths['output_jpg_path']) assert fx.exe_success(returncode) assert fx.equal( self.paths['output_csv_path'], self.paths['ref_csv_output']) assert fx.equal( self.paths['output_jpg_path'], self.paths['ref_jpg_output']) class TestIntraHelparCorrelation(): def setUp(self): fx.test_setup(self, 'intrahpcorr') def tearDown(self): fx.test_teardown(self) def test_helparcorrelation(self): returncode = intrahpcorr(**self.paths) assert fx.not_empty(self.paths['output_csv_path']) assert fx.not_empty(self.paths['output_jpg_path']) assert fx.exe_success(returncode) assert fx.equal( self.paths['output_csv_path'], self.paths['ref_csv_output']) assert fx.equal( self.paths['output_jpg_path'], self.paths['ref_jpg_output']) class TestIntraSequenceCorrelation(): def setUp(self): fx.test_setup(self, 'intraseqcorr') # def tearDown(self): # fx.test_teardown(self) def test_sequencecorrelation(self): returncode = intraseqcorr( properties=self.properties, **self.paths) assert fx.not_empty(self.paths['output_csv_path']) assert fx.not_empty(self.paths['output_jpg_path']) assert fx.exe_success(returncode) assert fx.equal( self.paths['output_csv_path'], self.paths['ref_csv_output']) assert fx.equal( self.paths['output_jpg_path'], self.paths['ref_jpg_output']) class TestIntraBasepairCorrelation(): def setUp(self): fx.test_setup(self, 'intrabpcorr') def tearDown(self): fx.test_teardown(self) def test_basepaircorrelation(self): returncode = intrabpcorr( properties=self.properties, **self.paths) assert fx.not_empty(self.paths['output_csv_path']) assert fx.not_empty(self.paths['output_jpg_path']) assert fx.exe_success(returncode) assert fx.equal( self.paths['output_csv_path'], self.paths['ref_csv_output']) assert fx.equal( self.paths['output_jpg_path'], self.paths['ref_jpg_output'])
32.625
68
0.652243
b4bdd0372fd308a902c6210e987f9f290f9b9fed
16,180
py
Python
git-hound.py
killvxk/git-hound
4cf9be3340f48ff94f94afab8b695199e05acefc
[ "MIT" ]
1
2020-01-07T13:19:08.000Z
2020-01-07T13:19:08.000Z
git-hound.py
killvxk/git-hound
4cf9be3340f48ff94f94afab8b695199e05acefc
[ "MIT" ]
null
null
null
git-hound.py
killvxk/git-hound
4cf9be3340f48ff94f94afab8b695199e05acefc
[ "MIT" ]
null
null
null
import requests import sys import re import urllib.parse import time import hashlib import random import json import yaml import argparse import entropy import fileinput parser = argparse.ArgumentParser( description='Git Hound') parser.add_argument( '--subdomain-file', type=str, help='The file with the subdomains (or other queries).') parser.add_argument( '--output', help='The output file.') parser.add_argument( '--output-type', type=str, help='The output type. [default, json]') parser.add_argument( '--all', default=False, action='store_true', help='Print all URLs, including ones with no pattern match. Otherwise, the scoring system will do the work.') parser.add_argument( '--api-keys', default=False, action='store_true', help='Search for API keys') parser.add_argument( '--regex-file', help='Supply your own regex list') parser.add_argument( '--search-files', help='Supply your own list of files to check (*.env, .htpasswd)') parser.add_argument( '--language-file', help='Supply your own list of file types to check (java, python)') parser.add_argument( '--config-file', help='Custom config file location (default is config.yml)') parser.add_argument( '--results-only', default=False, action='store_true', help='ONLY print the regexed search results in stdout (useful for piping to things)') parser.add_argument( '--pages', type=int, help='Max number of pages to search.') parser.add_argument( '--silent', action='store_true', default=False, help='Don\'t print results to stdout (most reasonably used with --output).') parser.add_argument( '--no-antikeywords', action='store_true', default=False, help='Don\'t attempt to filter out known mass scan databases') parser.add_argument( '--only-filtered', default=False, action='store_true', help='Only search filtered queries (languages and files)') parser.add_argument( '--gist-only', action='store_true', default=False, help='Only search Gists (default searches both repos and gists)') parser.add_argument( '--no-repeated-matches', action='store_true', default=False, help='Don\'t print repeated matches') parser.add_argument( '--debug', default=False, action='store_true', help='Print debug messages') parser.add_argument( '--many-results', default=False, action='store_true', help='Print debug messages') args = parser.parse_args() with open((args.config_file if args.config_file else "config.yml"), 'r') as ymlfile: config = yaml.load(ymlfile, Loader=yaml.SafeLoader) GH_USERNAME = config['github_username'] GH_PASSWORD = config['github_password'] class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def debug_log(data): print(bcolors.OKBLUE + '[debug] ' + bcolors.ENDC + data) def grab_csrf_token(url, session): response = session.get(url) text = response.text csrf = re.search(r"authenticity_token.*\"\s", text).group()[27:] csrf = csrf[:len(csrf) - 2] return csrf def login_to_github(session): csrf = grab_csrf_token('https://github.com/login', session) session.post('https://github.com/session', data = { 'authenticity_token': csrf, 'login': GH_USERNAME, 'password': GH_PASSWORD } ) def search_code(query, sessions, language=None, fileName=None): query = urllib.parse.quote(query.replace("-", "+") + " fork:false") if fileName != None: query += " filename:" + fileName paths = [] path_set = set() delay_time = 5 maximum_pages = args.pages if args.pages else 100 page = 1 if args.debug: debug_log('Querying GitHub projects: `' + query + '`') order = ['asc'] order_index = 0 search_type = ['indexed'] search_type_index = 0 while search_type_index < len(search_type): order_index = 0 while order_index < len(order): if search_type[search_type_index] == '': order_index += 1 continue page = 0 while page < maximum_pages + 1: session = random.choice(sessions) url_string = 'https://github.com/search?o=' + order[order_index] \ + '&p=' + str(page) + '&q=' + query + '&s=' + search_type[search_type_index] + '&type=Code' if language: url_string += '&l=' + language if args.debug: debug_log(url_string) response = session.get(url_string) if response.status_code == 429: delay_time += 5 if not args.results_only: print(bcolors.WARNING + '[!] Rate limited by GitHub. Delaying ' + str(delay_time) + 's...' + bcolors.ENDC) time.sleep(delay_time) continue if delay_time > 10: delay_time -= 1 if page == 1 and order[order_index] == 'asc' and search_type[search_type_index] == 'indexed': match = re.search(r"\bdata\-total\-pages\=\"(\d+)\"", response.text) if match != None: if args.many_results and int(match.group(1)) > maximum_pages - 1: if not args.results_only: print(bcolors.OKBLUE + '[*] Searching ' + str(match.group(1)) + '+ pages of results...' + bcolors.ENDC) order.append('desc') search_type.append('') else: if not args.results_only: print(bcolors.OKBLUE + '[*] Searching ' + str(match.group(1)) + ' pages of results...' + bcolors.ENDC) else: if not args.results_only: print(bcolors.OKBLUE + '[*] Searching 1 page of results...' + bcolors.ENDC) page += 1 if args.debug and page % 20 == 0: debug_log(' Page ' + str(page)) if response.status_code != 200 and response.status_code != 400: break results = re.findall(r"href=\"\/.*blob.*\">", response.text) if len(results) == 0: break for result in results: result = result[7:len(result) - 2] if result in path_set: continue path_set.add(result) if re.match(r"(h1domains|bounty\-targets|url_short|url_list|\.csv|alexa)", result): continue raw_path = result.replace('blob/', '').split('#')[0] paths.append({ 'source': 'github_repo', 'url': 'https://github.com/' + result, 'data_url': 'https://raw.githubusercontent.com/' + raw_path }) time.sleep(delay_time) order_index += 1 search_type_index += 1 return paths def search_gist(query, sessions, language=None, fileName=None): query = urllib.parse.quote(query.replace("-", "+") + " stars:<5 fork:false") if fileName != None: query += " filename:" + fileName paths = [] delay_time = 5 maximum_pages = args.pages if args.pages else 100 page = 1 while page < maximum_pages + 1: session = random.choice(sessions) url_string = 'https://gist.github.com/search?o=asc&p=' + str(page) + '&q=' + query + '&s=indexed' if args.debug: debug_log('Querying Gist: `' + query + '`') if args.debug and page % 20 == 0: debug_log(' . Page ' + str(page)) if language: url_string += '&l=' + language response = session.get(url_string) if response.status_code == 429: delay_time += 5 if not args.results_only: print(bcolors.WARNING + '[!] Rate limited by GitHub. Delaying ' + str(delay_time) + 's...' + bcolors.ENDC) time.sleep(delay_time) continue if delay_time > 10: delay_time -= 1 page += 1 if response.status_code != 200 and response.status_code != 400: break results = re.findall(r"href=\"\/(\w+\/[0-9a-z]{5,})\">", response.text) if len(results) == 0: break result_set = set() for result in results: if result in result_set: continue result_set.add(result) project_page = session.get('https://gist.github.com/' + result) escaped_path = re.escape(result) match = re.search(r"href\=\"(\/" + escaped_path + r"\/raw\/[0-9a-z]{40}\/[\w_\-\.\/\%]{1,255})\"\>", project_page.text) if match != None: paths.append({ 'source': 'gist', 'url': 'https://gist.github.com/' + result, 'data_url': 'https://gist.githubusercontent.com' + match.group(1) }) time.sleep(delay_time) return paths def regex_array(array): regex = r"(" for elm in array: if elm == "": continue regex += elm + r"|" if '.*' in elm: if not args.results_only: print(bcolors.WARNING + "[!] The regex wildcard match .* can be slow if used improperly and may slow down Git Hound." + bcolors.ENDC) regex = regex[:-1] + r")" return re.compile(regex) interesting = {} visited = set() visited_hashes = set() match_string_set = set() def print_paths_highlighted(subdomain, paths, sessions, output_file, regex=None): if not args.results_only: print(bcolors.OKGREEN + subdomain + bcolors.ENDC) if len(paths) == 0: if not args.silent and not args.results_only: print('No results.') custom_regex = regex != None for result in paths: if result['data_url'] in visited: continue visited.add(result['data_url']) session = random.choice(sessions) response = session.get(result['data_url']) checksum = hashlib.md5(response.text.encode('utf-8')) if checksum in visited_hashes: continue visited_hashes.add(checksum) score = 0 domain = '.'.join(subdomain.split(".")[-2:]) if not custom_regex: regex = re.compile(r"\b(sf_username" \ + r"|(stage|staging|atlassian|jira|conflence|zendesk)\." + re.escape(domain) + r"|db_username|db_password" \ + r"|hooks\.slack\.com|pt_token|full_resolution_time_in_minutes" \ + r"|xox[a-zA-Z]-[a-zA-Z0-9-]+" \ + r"|s3\.console\.aws\.amazon\.com\/s3\/buckets|" \ + r"|id_rsa|pg_pass|[\w\.=-]+@" + re.escape(domain) + r")\b", flags=re.IGNORECASE) s_time = 0 if args.debug: s_time = time.time() matches = re.finditer( regex, response.text ) match_set = set() match_text_set = set() for match in matches: if match.start(0) == match.end(0): continue if not match.group(0) in match_text_set: match_set.add(match.group(0)) match_text_set.add(match.group(0)) if custom_regex: score += 2 else: score += 1 if args.debug: debug_log(result['data_url']) debug_log("Time to check definite regexes: " + str(time.time() - s_time) + ".") if args.api_keys: if args.debug: s_time = time.time() generic_api_keys = re.finditer( re.compile(r"(ACCESS|SECRET|LICENSE|CRYPT|PASS|KEY|ADMIn|TOKEN|PWD|Authorization|Bearer)[\w\s:=\"']{0,20}[=:\s'\"]([\w\-+=]{32,})\b", flags=re.IGNORECASE), response.text ) for match in generic_api_keys: if not match.group(2) in match_text_set: if entropy.entropy(match.group(2)) > 3.25: match_set.add(match.group(2)) match_text_set.add(match.group(2)) score += 2 if args.debug: debug_log("Time to find API key regexes: " + str(time.time() - s_time) + ".") if not custom_regex: keywords = re.findall(r"(.sql|.sublime_session|.env|.yml|.ipynb)$", result['data_url'].lower()) if keywords: score += len(keywords) * 2 if not args.no_antikeywords: if re.search(r"(\.html|\.csv|hosts\.txt|host\.txt|registry\.json|readme\.md|" + re.escape('.'.join(subdomain.split(".")[-2:])) + r".txt)$", result['data_url'].lower()): score -= 1 anti_keywords = re.findall(r"(alexa|urls|adblock|domain|dns|top1000|top\-1000|httparchive" + r"|blacklist|hosts|ads|whitelist|crunchbase|tweets|tld|hosts\.txt" + r"|host\.txt|aquatone|recon\-ng|hackerone|bugcrowd|xtreme|list|tracking|malicious|ipv(4|6)|host\.txt)", result['data_url'].lower()) if anti_keywords: score -= 2 ** len(anti_keywords) if score > 0: if args.no_repeated_matches: unique_matches = len(match_set) for match in match_set: if match in match_string_set: unique_matches -= 1 else: match_string_set.add(match) if unique_matches == 0: continue if score > 1: if not args.silent and not args.results_only: print(bcolors.FAIL + result['url'] + bcolors.ENDC) else: if not args.silent and not args.results_only: print(bcolors.WARNING + result['url'] + bcolors.ENDC) interesting[result['url']] = { 'url': result['url'], 'results': [] } if output_file != None: output_file.write(result['url'] + "\n") for match in match_set: truncated = match interesting[result['url']]['results'].append(match) if len(match) == 0: continue if not args.silent: if args.results_only: print(truncated) if output_file != None: output_file.write(match + "\n") else: print(' > ' + truncated) if output_file != None: output_file.write(' > ' + match + "\n") else: if args.all: interesting[result['url']] = { 'url': result['url'], 'results': [] } if not args.silent: print(result['url']) if output_file != None: output_file.write(result['url'] + "\n") if args.output and args.output_type == "json": out_file = open(args.output, 'w+') out_file.write(json.dumps(interesting)) out_file.close() ### subdomains = [] if not sys.stdin.isatty(): for line in fileinput.input(files=('-')): stripped = line.rstrip() if len(stripped) > 0: subdomains.append(stripped) else: if args.subdomain_file: subdomain_file = args.subdomain_file subdomains = open(subdomain_file).read().split("\n") if len(subdomains) == 0: print(bcolors.FAIL + "[!] Please specify some queries (either with stdin or the --subdomain-file flag)." + bcolors.ENDC) exit(1) regex_string = None if args.regex_file: regex_file_array = open(args.regex_file).read().split("\n") regex_string = regex_array(regex_file_array) files = [] if args.search_files: ext_filetypes = open(args.search_files).read().split("\n") for filetype in ext_filetypes: files.append(filetype) languages = [] if args.language_file: ext_languages = open(args.language_file).read().split("\n") for filetype in ext_languages: languages.append(filetype) sessions = [] session = requests.Session() login_to_github(session) sessions.append(session) if not args.results_only: print(bcolors.OKBLUE + '[*] Logged into GitHub.com as ' + GH_USERNAME + bcolors.ENDC) output_file = None if args.output and args.output_type != "json": output_file = open(args.output, 'w+') for subdomain in subdomains: paths = [] # results = [] github_results = 0 if not args.only_filtered: if not args.gist_only: for path in search_code('"' + subdomain + '"', sessions): paths.append(path) github_results = len(paths) for path in search_gist('"' + subdomain + '"', sessions): paths.append(path) for file_type in languages: if not args.gist_only: for path in search_code('"' + subdomain + '"', sessions, language=file_type): paths.append(path) for path in search_gist('"' + subdomain + '"', sessions, language=file_type): paths.append(path) for filename in files: for path in search_code('"' + subdomain + '"', sessions, fileName=filename): paths.append(path) for path in search_gist('"' + subdomain + '"', sessions, fileName=filename): paths.append(path) if args.debug: debug_log('Finished scraping GitHub search results. Will now search for secrets in ' + str(len(paths)) + ' files.') print_paths_highlighted(subdomain, paths, sessions, output_file, regex=regex_string) time.sleep(5) if output_file != None: output_file.close()
34.063158
174
0.618727
45e32d616be78ed0da58476e782d2127a3904f92
165
py
Python
e/mail-relay/web_customer/router_local.py
zhouli121018/nodejsgm
0ccbc8acf61badc812f684dd39253d55c99f08eb
[ "MIT" ]
null
null
null
e/mail-relay/web_customer/router_local.py
zhouli121018/nodejsgm
0ccbc8acf61badc812f684dd39253d55c99f08eb
[ "MIT" ]
18
2020-06-05T18:17:40.000Z
2022-03-11T23:25:21.000Z
e/mail-relay/web_customer/router_local.py
zhouli121018/nodejsgm
0ccbc8acf61badc812f684dd39253d55c99f08eb
[ "MIT" ]
null
null
null
class MyRouter(object): def db_for_read(self, model, **hints): return 'localhost' def db_for_write(self, model, **hints): return 'localhost'
27.5
43
0.642424
991e9cb1c68f5845134145529ab921a4db65c19b
7,774
py
Python
docker/loos/board-meters-app/app.py
sourceperl/tk-dashboard
015ececc670902b02284749ac59f354db4304e48
[ "MIT" ]
null
null
null
docker/loos/board-meters-app/app.py
sourceperl/tk-dashboard
015ececc670902b02284749ac59f354db4304e48
[ "MIT" ]
null
null
null
docker/loos/board-meters-app/app.py
sourceperl/tk-dashboard
015ececc670902b02284749ac59f354db4304e48
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from board_lib import catch_log_except from configparser import ConfigParser import logging import time from pyHMI.DS_ModbusTCP import ModbusTCPDevice from pyHMI.DS_Redis import RedisDevice from pyHMI.Tag import Tag import requests import schedule # some const LTX_IP = '192.168.0.62' # modbus address for IEM 3155 and 2155 AD_3155_LIVE_PWR = 3059 AD_2155_LIVE_PWR = 3053 AD_3155_INDEX_PWR = 3205 AD_2155_INDEX_PWR = 3205 # read config cnf = ConfigParser() cnf.read('/data/conf/board.conf') # redis redis_user = cnf.get('redis', 'user') redis_pass = cnf.get('redis', 'pass') # thingspeak api key ts_pwr_api_key = cnf.get('electric_meter', 'tspeak_pwr_w_key') ts_idx_api_key = cnf.get('electric_meter', 'tspeak_idx_w_key') # some class class Devices(object): # redis datasource rd = RedisDevice(host='board-redis-srv', client_adv_args=dict(username=redis_user, password=redis_pass)) # modbus datasource # meter 'garage' meter_garage = ModbusTCPDevice(LTX_IP, timeout=2.0, refresh=2.0, unit_id=1) meter_garage.add_floats_table(AD_3155_LIVE_PWR) meter_garage.add_longs_table(AD_3155_INDEX_PWR) # meter 'cold water' meter_cold_water = ModbusTCPDevice(LTX_IP, timeout=2.0, refresh=2.0, unit_id=2) meter_cold_water.add_floats_table(AD_3155_LIVE_PWR) meter_cold_water.add_longs_table(AD_3155_INDEX_PWR) # meter 'light' meter_light = ModbusTCPDevice(LTX_IP, timeout=2.0, refresh=2.0, unit_id=3) meter_light.add_floats_table(AD_3155_LIVE_PWR) meter_light.add_longs_table(AD_3155_INDEX_PWR) # meter 'tech' meter_tech = ModbusTCPDevice(LTX_IP, timeout=2.0, refresh=2.0, unit_id=4) meter_tech.add_floats_table(AD_3155_LIVE_PWR) meter_tech.add_longs_table(AD_3155_INDEX_PWR) # meter 'CTA' (air process) meter_cta = ModbusTCPDevice(LTX_IP, timeout=2.0, refresh=2.0, unit_id=5) meter_cta.add_floats_table(AD_3155_LIVE_PWR) meter_cta.add_longs_table(AD_3155_INDEX_PWR) # meter 'heater room' meter_heat = ModbusTCPDevice(LTX_IP, timeout=2.0, refresh=2.0, unit_id=6) meter_heat.add_floats_table(AD_2155_LIVE_PWR) meter_heat.add_longs_table(AD_2155_INDEX_PWR) class Tags(object): # redis tags RD_TOTAL_PWR = Tag(0, src=Devices.rd, ref={'type': 'int', 'key': 'int:loos_elec:pwr_act', 'ttl': 60}) RD_TODAY_WH = Tag(0.0, src=Devices.rd, ref={'type': 'float', 'key': 'float:loos_elec:today_wh', 'ttl': 86400}) RD_YESTERDAY_WH = Tag(0.0, src=Devices.rd, ref={'type': 'float', 'key': 'float:loos_elec:yesterday_wh', 'ttl': 172800}) RD_TIMESTAMP_WH = Tag(0.0, src=Devices.rd, ref={'type': 'float', 'key': 'float:loos_elec:timestamp_wh', 'ttl': 172800}) # modbus tags GARAGE_PWR = Tag(0.0, src=Devices.meter_garage, ref={'type': 'float', 'addr': AD_3155_LIVE_PWR, 'span': 1000}) GARAGE_I_PWR = Tag(0, src=Devices.meter_garage, ref={'type': 'long', 'addr': AD_3155_INDEX_PWR, 'span': 1 / 1000}) COLD_WATER_PWR = Tag(0.0, src=Devices.meter_cold_water, ref={'type': 'float', 'addr': AD_3155_LIVE_PWR, 'span': 1000}) COLD_WATER_I_PWR = Tag(0, src=Devices.meter_cold_water, ref={'type': 'long', 'addr': AD_3155_INDEX_PWR, 'span': 1 / 1000}) LIGHT_PWR = Tag(0.0, src=Devices.meter_light, ref={'type': 'float', 'addr': AD_3155_LIVE_PWR, 'span': 1000}) LIGHT_I_PWR = Tag(0, src=Devices.meter_light, ref={'type': 'long', 'addr': AD_3155_INDEX_PWR, 'span': 1 / 1000}) TECH_PWR = Tag(0.0, src=Devices.meter_tech, ref={'type': 'float', 'addr': AD_3155_LIVE_PWR, 'span': 1000}) TECH_I_PWR = Tag(0, src=Devices.meter_tech, ref={'type': 'long', 'addr': AD_3155_INDEX_PWR, 'span': 1 / 1000}) CTA_PWR = Tag(0.0, src=Devices.meter_cta, ref={'type': 'float', 'addr': AD_3155_LIVE_PWR, 'span': 1000}) CTA_I_PWR = Tag(0, src=Devices.meter_cta, ref={'type': 'long', 'addr': AD_3155_INDEX_PWR, 'span': 1 / 1000}) HEAT_PWR = Tag(0.0, src=Devices.meter_heat, ref={'type': 'float', 'addr': AD_2155_LIVE_PWR, 'span': 1000}) HEAT_I_PWR = Tag(0.0, src=Devices.meter_heat, ref={'type': 'long', 'addr': AD_2155_INDEX_PWR, 'span': 1 / 1000}) # virtual tags # total power consumption TOTAL_PWR = Tag(0.0, get_cmd=lambda: Tags.GARAGE_PWR.val + Tags.COLD_WATER_PWR.val + Tags.LIGHT_PWR.val + Tags.TECH_PWR.val + Tags.CTA_PWR.val + Tags.HEAT_PWR.val) def thingspeak_send(api_key, l_values): """ upload data to thingspeak platform :param api_key: thingspeak write API Key :type api_key: str :param l_values: value to update as a list (map to field1, field2...) :type l_values: list or tuple :return: True if update is a success, False otherwise :rtype: bool """ # format data for request d_data = {'api_key': api_key} for i, value in enumerate(l_values): i += 1 d_data['field%i' % i] = value # do http POST request logging.debug('thingspeak_send: POST data %s' % d_data) r = requests.post('https://api.thingspeak.com/update', data=d_data, timeout=10.0) is_ok = ((r.status_code == 200) and (int(r.text) != 0)) return is_ok @catch_log_except() def db_refresh_job(): since_last_integrate = time.time() - Tags.RD_TIMESTAMP_WH.val Tags.RD_TIMESTAMP_WH.val += since_last_integrate # integrate active power for daily index (if time since last integrate is regular) if 0 < since_last_integrate < 7200: Tags.RD_TODAY_WH.val += Tags.TOTAL_PWR.val * since_last_integrate / 3600 # publish active power Tags.RD_TOTAL_PWR.val = Tags.TOTAL_PWR.e_val @catch_log_except() def db_midnight_job(): # backup daily value to yesterday then reset it for new day start Tags.RD_YESTERDAY_WH.val = Tags.RD_TODAY_WH.val Tags.RD_TODAY_WH.val = 0 @catch_log_except() def web_publish_pwr_job(): l_fields = ( round(Tags.TOTAL_PWR.val), round(Tags.GARAGE_PWR.val), round(Tags.COLD_WATER_PWR.val), round(Tags.LIGHT_PWR.val), round(Tags.TECH_PWR.val), round(Tags.CTA_PWR.val), round(Tags.HEAT_PWR.val), ) thingspeak_send(api_key=ts_pwr_api_key, l_values=l_fields) @catch_log_except() def web_publish_index_job(): l_fields = ( round(Tags.GARAGE_I_PWR.val), round(Tags.COLD_WATER_I_PWR.val), round(Tags.LIGHT_I_PWR.val), round(Tags.TECH_I_PWR.val), round(Tags.CTA_I_PWR.val), round(Tags.HEAT_I_PWR.val), ) thingspeak_send(api_key=ts_idx_api_key, l_values=l_fields) if __name__ == '__main__': # logging setup logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) logging.info('board-meters-app started') # wait DS_ModbusTCP thread start time.sleep(1.0) # init scheduler schedule.every(5).seconds.do(db_refresh_job) schedule.every().day.at('00:00').do(db_midnight_job) schedule.every(2).minutes.do(web_publish_pwr_job) schedule.every().day.at('06:00').do(web_publish_index_job) # first call db_refresh_job() web_publish_pwr_job() # main loop while True: schedule.run_pending() time.sleep(1.0)
41.572193
118
0.638153
4d9fe8abe42098b93dc0d40f7371aa03cc3a0b77
1,692
py
Python
aliyun-python-sdk-actiontrail/aliyunsdkactiontrail/request/v20171204/DeleteTrailRequest.py
DataDog/aliyun-openapi-python-sdk
5cbee29bce6416dd62f61f0c3786b1af6ea0d84f
[ "Apache-2.0" ]
1
2019-12-23T12:36:43.000Z
2019-12-23T12:36:43.000Z
aliyun-python-sdk-actiontrail/aliyunsdkactiontrail/request/v20171204/DeleteTrailRequest.py
liusc27/aliyun-openapi-python-sdk
5e3db3535dd21de987dc5981e71151327d5a884f
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-actiontrail/aliyunsdkactiontrail/request/v20171204/DeleteTrailRequest.py
liusc27/aliyun-openapi-python-sdk
5e3db3535dd21de987dc5981e71151327d5a884f
[ "Apache-2.0" ]
1
2021-02-23T11:27:54.000Z
2021-02-23T11:27:54.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class DeleteTrailRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Actiontrail', '2017-12-04', 'DeleteTrail','actiontrail') def get_Help(self): return self.get_query_params().get('Help') def set_Help(self,Help): self.add_query_param('Help',Help) def get_Format(self): return self.get_query_params().get('Format') def set_Format(self,Format): self.add_query_param('Format',Format) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_Type(self): return self.get_query_params().get('Type') def set_Type(self,Type): self.add_query_param('Type',Type) def get_Version(self): return self.get_query_params().get('Version') def set_Version(self,Version): self.add_query_param('Version',Version)
31.333333
86
0.743499
7dfda37ed9fe7023323d90423724239c06aefa1c
1,285
py
Python
run_linters.py
stevenpelley/gloomhaven-monster-ai
6b9422662e7e2554dc01edb55911b7519d38e01c
[ "MIT" ]
1
2020-09-29T23:12:46.000Z
2020-09-29T23:12:46.000Z
run_linters.py
stevenpelley/gloomhaven-monster-ai
6b9422662e7e2554dc01edb55911b7519d38e01c
[ "MIT" ]
null
null
null
run_linters.py
stevenpelley/gloomhaven-monster-ai
6b9422662e7e2554dc01edb55911b7519d38e01c
[ "MIT" ]
null
null
null
"""Run script for all linters.""" import subprocess import sys import typing def main() -> None: """Run all linters. Linter output will be sent to stdout. This function will exit the script with return code 0 on success, and other value on failure. """ is_success: bool = True for linter_input in [ ['flake8', '--max-complexity', '8', '.'], ['mypy', '--strict', '.'], ['pydocstyle', '.'], ['autopep8', '-r', '-d', '-a', '-a', '--exit-code', '.'] ]: this_success = run_single_linter(linter_input) is_success = is_success and this_success if is_success: print("all linters pass") sys.exit(0) else: print("linter failure") sys.exit(-1) def run_single_linter(args: typing.List[str]) -> bool: """Return true if the linter passes, and false if it fails.""" p = subprocess.run(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) if p.returncode != 0: print("{} failure:".format(args[0])) print(p.stdout) return False else: print("{} success".format(args[0])) return True if __name__ == "__main__": """Run the main function as a script.""" main()
26.770833
79
0.565759
43a4a8d4928d4254e2bfa367bba52c37c52db4e1
1,174
py
Python
projectq/setups/decompositions/globalphase.py
VirtueQuantumCloud/projectqX
fa484fe037a3a1772127bbd00fe4628ddba34611
[ "Apache-2.0" ]
null
null
null
projectq/setups/decompositions/globalphase.py
VirtueQuantumCloud/projectqX
fa484fe037a3a1772127bbd00fe4628ddba34611
[ "Apache-2.0" ]
null
null
null
projectq/setups/decompositions/globalphase.py
VirtueQuantumCloud/projectqX
fa484fe037a3a1772127bbd00fe4628ddba34611
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 ProjectQ-Framework (www.projectq.ch) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Registers a decomposition rule for global phases. Deletes global phase gates (which can be ignored). """ from projectq.cengines import DecompositionRule from projectq.meta import get_control_count from projectq.ops import Ph def _decompose_PhNoCtrl(cmd): """ Throw out global phases (no controls). """ pass def _recognize_PhNoCtrl(cmd): """ Recognize global phases (no controls). """ return get_control_count(cmd) == 0 all_defined_decomposition_rules = [ DecompositionRule(Ph, _decompose_PhNoCtrl, _recognize_PhNoCtrl) ]
30.102564
76
0.746167
3680268a54f56718e3a6d93fe472b716742356d6
554
py
Python
dbt/adapters/sqlite/relation.py
edgarrmondragon/dbt-sqlite
dc578b8e7f7707cb0e9fb8f2bb90b3340d95f5f6
[ "Apache-2.0" ]
43
2020-11-06T20:30:56.000Z
2022-03-12T21:57:37.000Z
dbt/adapters/sqlite/relation.py
edgarrmondragon/dbt-sqlite
dc578b8e7f7707cb0e9fb8f2bb90b3340d95f5f6
[ "Apache-2.0" ]
12
2020-11-07T07:46:01.000Z
2021-12-09T06:07:15.000Z
dbt/adapters/sqlite/relation.py
edgarrmondragon/dbt-sqlite
dc578b8e7f7707cb0e9fb8f2bb90b3340d95f5f6
[ "Apache-2.0" ]
3
2020-11-15T01:41:43.000Z
2021-08-09T20:34:27.000Z
from dataclasses import dataclass from dbt.adapters.base.relation import BaseRelation, Policy @dataclass class SQLiteQuotePolicy(Policy): database: bool = False schema: bool = False identifier: bool = True @dataclass class SQLiteIncludePolicy(Policy): database: bool = False schema: bool = True identifier: bool = True @dataclass(frozen=True, eq=False, repr=False) class SQLiteRelation(BaseRelation): quote_policy: SQLiteQuotePolicy = SQLiteQuotePolicy() include_policy: SQLiteIncludePolicy = SQLiteIncludePolicy()
23.083333
63
0.758123
475a9dd1b954f4c955fce272de2eea64141cb7df
3,009
py
Python
examples/ad_manager/v201911/adjustment_service/update_traffic_adjustments.py
MattCardoso/googleads-python-lib
62f0db9fdb78a1bcdb1e61c82c609d9f47cb48d8
[ "Apache-2.0" ]
null
null
null
examples/ad_manager/v201911/adjustment_service/update_traffic_adjustments.py
MattCardoso/googleads-python-lib
62f0db9fdb78a1bcdb1e61c82c609d9f47cb48d8
[ "Apache-2.0" ]
null
null
null
examples/ad_manager/v201911/adjustment_service/update_traffic_adjustments.py
MattCardoso/googleads-python-lib
62f0db9fdb78a1bcdb1e61c82c609d9f47cb48d8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds a historical adjustment of 110% for New Years Day traffic. """ from __future__ import print_function import datetime # Import appropriate modules from the client library. from googleads import ad_manager ADJUSTMENT_ID = 'INSERT_ADJUSTMENT_ID_HERE' def main(client, adjustment_id): # Initialize the adjustment service. adjustment_service = client.GetService('AdjustmentService', version='v201911') # Create a statement to select a single traffic forecast adjustment by id. statement = ( ad_manager.StatementBuilder( version='v201911').Where('id = :id').WithBindVariable( 'id', adjustment_id)) # Get the forecast traffic adjustment. response = adjustment_service.getTrafficAdjustmentsByStatement( statement.ToStatement()) # Create a new historical adjustment segment for New Year's Day. this_new_years = datetime.date(datetime.date.today().year, 12, 31) next_new_years = datetime.date(datetime.date.today().year + 1, 12, 31) new_years_segment = { 'basisType': 'HISTORICAL', 'historicalAdjustment': { 'targetDateRange': { 'startDate': next_new_years, 'endDate': next_new_years }, 'referenceDateRange': { 'startDate': this_new_years, 'endDate': this_new_years }, 'milliPercentMultiplier': 110000 } } if 'results' in response and len(response['results']): # Update each local traffic adjustment. updated_adjustments = [] for adjustment in response['results']: adjustment['forecastAdjustmentSegments'].append(new_years_segment) updated_adjustments.append(adjustment) # Update traffic adjustments remotely. adjustments = adjustment_service.updateTrafficAdjustments( updated_adjustments) # Display the results. if adjustments: for adjustment in adjustments: print('Traffic forecast adjustment with id %d and %d segments was ' 'created.' % (adjustment['id'], len(adjustment['forecastAdjustmentSegments']))) else: print('No traffic adjustments were updated.') else: print('No traffic adjustments found to update.') if __name__ == '__main__': # Initialize client object. ad_manager_client = ad_manager.AdManagerClient.LoadFromStorage() main(ad_manager_client, ADJUSTMENT_ID)
33.808989
80
0.70123
efb70e6d199971b96fef25ce6491558bc17c5105
697
py
Python
setup.py
techlift-tech/membership_program
265a84345c26670f037beb7363b05acb3f9586f2
[ "MIT" ]
null
null
null
setup.py
techlift-tech/membership_program
265a84345c26670f037beb7363b05acb3f9586f2
[ "MIT" ]
null
null
null
setup.py
techlift-tech/membership_program
265a84345c26670f037beb7363b05acb3f9586f2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import re, ast with open('requirements.txt') as f: install_requires = f.read().strip().split('\n') # get version from __version__ variable in membership_program/__init__.py _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('membership_program/__init__.py', 'rb') as f: version = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) setup( name='membership_program', version=version, description='Membership Program', author='Techlift', author_email='suraj@techlift.in', packages=find_packages(), zip_safe=False, include_package_data=True, install_requires=install_requires )
26.807692
73
0.743185
20f0182720d90cb43e9b7dfc4501b099805c4b05
3,676
py
Python
lib/networks/VGGnet_test.py
Chrisvb95/Claran-repo
a1218faa58fcf148fb352e8674439dceca072ef5
[ "MIT" ]
39
2018-04-09T09:32:46.000Z
2022-03-09T12:05:44.000Z
lib/networks/VGGnet_test.py
Chrisvb95/Claran-repo
a1218faa58fcf148fb352e8674439dceca072ef5
[ "MIT" ]
10
2018-06-29T00:29:50.000Z
2021-10-12T22:52:30.000Z
lib/networks/VGGnet_test.py
Chrisvb95/Claran-repo
a1218faa58fcf148fb352e8674439dceca072ef5
[ "MIT" ]
15
2018-08-28T06:55:48.000Z
2021-08-10T13:05:33.000Z
import tensorflow as tf from networks.network import Network from fast_rcnn.config import cfg n_classes = 7 class VGGnet_test(Network): def __init__(self, trainable=True, anchor_scales=[8, 16, 32], feat_stride=[16, ], low_level_trainable=False, anchor_ratios=[0.5, 1, 2], transform_img=False): self.inputs = [] self._anchor_scales = anchor_scales self._feat_stride = feat_stride self.data = tf.placeholder(tf.float32, shape=[None, None, None, 3]) #target_size = cfg.TEST.SCALES[0] #self.data = tf.placeholder(tf.float32, shape=[1, target_size, target_size, 3]) self.im_info = tf.placeholder(tf.float32, shape=[None, 3]) self.keep_prob = tf.placeholder(tf.float32) self.layers = dict({'data': self.data, 'im_info': self.im_info}) self.trainable = trainable self.low_level_trainable = low_level_trainable self.anchor_ratio_size = len(anchor_ratios) self.anchor_ratios = anchor_ratios self.transform_img = transform_img self.setup() def setup(self): (self.feed('data') #.spatial_transform(name='spt_trans', do_transform=self.transform_img, keep_prob=1) .conv(3, 3, 64, 1, 1, name='conv1_1', trainable=self.low_level_trainable) .conv(3, 3, 64, 1, 1, name='conv1_2', trainable=self.low_level_trainable) .max_pool(2, 2, 2, 2, padding='VALID', name='pool1') .conv(3, 3, 128, 1, 1, name='conv2_1', trainable=self.low_level_trainable) .conv(3, 3, 128, 1, 1, name='conv2_2', trainable=self.low_level_trainable) .max_pool(2, 2, 2, 2, padding='VALID', name='pool2') .conv(3, 3, 256, 1, 1, name='conv3_1') .conv(3, 3, 256, 1, 1, name='conv3_2') .conv(3, 3, 256, 1, 1, name='conv3_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool3') .conv(3, 3, 512, 1, 1, name='conv4_1') .conv(3, 3, 512, 1, 1, name='conv4_2') .conv(3, 3, 512, 1, 1, name='conv4_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool4') .conv(3, 3, 512, 1, 1, name='conv5_1') .conv(3, 3, 512, 1, 1, name='conv5_2') .conv(3, 3, 512, 1, 1, name='conv5_3')) (self.feed('conv5_3') .conv(3, 3, 512, 1, 1, name='rpn_conv/3x3') .conv(1, 1, len(self._anchor_scales) * self.anchor_ratio_size * 2, 1, 1, padding='VALID', relu=False, name='rpn_cls_score')) (self.feed('rpn_conv/3x3') .conv(1, 1, len(self._anchor_scales) * self.anchor_ratio_size * 4, 1, 1, padding='VALID', relu=False, name='rpn_bbox_pred')) (self.feed('rpn_cls_score') .reshape_layer(2, name='rpn_cls_score_reshape') .softmax(name='rpn_cls_prob')) (self.feed('rpn_cls_prob') .reshape_layer(len(self._anchor_scales) * self.anchor_ratio_size * 2, name='rpn_cls_prob_reshape')) (self.feed('rpn_cls_prob_reshape', 'rpn_bbox_pred', 'im_info') .proposal_layer(self._feat_stride, self._anchor_scales, self.anchor_ratios, 'TEST', name='rois')) (self.feed('conv5_3', 'rois') #.roi_pool(7, 7, 1.0/16, name='pool_5') .st_pool(7, 7, 1.0 / 16, name='pool_5', phase='TEST') .fc(4096, name='fc6') .fc(4096, name='fc7') .fc(n_classes, relu=False, name='cls_score') .softmax(name='cls_prob')) (self.feed('fc7') .fc(n_classes * 4, relu=False, name='bbox_pred'))
46.531646
112
0.572361
24cad57cea41dbca1005be334b039e62cd3b8789
240
py
Python
Business/bustemplate/models.py
Kshashank9/Business-Topology-Website
17d0c5ccabb17c52b6162e147640275de32e5169
[ "MIT" ]
null
null
null
Business/bustemplate/models.py
Kshashank9/Business-Topology-Website
17d0c5ccabb17c52b6162e147640275de32e5169
[ "MIT" ]
null
null
null
Business/bustemplate/models.py
Kshashank9/Business-Topology-Website
17d0c5ccabb17c52b6162e147640275de32e5169
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class courses(models.Model): name = models.CharField(max_length=100) desc = models.TextField() img = models.ImageField(upload_to='pics') price = models.IntegerField()
26.666667
45
0.720833
22f415c45c26822a487e38b9ce086234fc867caf
894
py
Python
LeetCode.Test/_0001_0050/Test_020_ValidParentheses.py
BigEggStudy/LeetCode-Py
735e782742fab15bdb046eb6d5fc7b03502cc92d
[ "MIT" ]
1
2021-01-30T04:07:26.000Z
2021-01-30T04:07:26.000Z
LeetCode.Test/_0001_0050/Test_020_ValidParentheses.py
BigEggStudy/LeetCode-Py
735e782742fab15bdb046eb6d5fc7b03502cc92d
[ "MIT" ]
null
null
null
LeetCode.Test/_0001_0050/Test_020_ValidParentheses.py
BigEggStudy/LeetCode-Py
735e782742fab15bdb046eb6d5fc7b03502cc92d
[ "MIT" ]
1
2021-09-09T20:12:25.000Z
2021-09-09T20:12:25.000Z
import unittest import sys sys.path.append('LeetCode/_0001_0050') from _020_ValidParentheses import Solution class Test_020_ValidParentheses(unittest.TestCase): def test_isValid_oneType(self): solution = Solution() self.assertTrue(solution.isValid('()')) def test_isValid_multipleType(self): solution = Solution() self.assertTrue(solution.isValid('()[]{}')) def test_isValid_mismatch(self): solution = Solution() self.assertFalse(solution.isValid('(]')) def test_isValid_earlyExist(self): solution = Solution() self.assertFalse(solution.isValid('([)]')) def test_isValid_multipleType_2(self): solution = Solution() self.assertTrue(solution.isValid('{[]}')) def test_isValid_withOtherCharacter(self): solution = Solution() self.assertFalse(solution.isValid('(123)'))
27.9375
51
0.675615
92c9a9c21debb3de20ccc25eb3d65b19705bf5e9
3,215
py
Python
build.py
Kataiser/radeline
da1fc490556b393623e0c8ced20cbcdb8de68229
[ "MIT" ]
3
2021-03-18T20:00:21.000Z
2022-03-01T04:11:13.000Z
build.py
Kataiser/radeline
da1fc490556b393623e0c8ced20cbcdb8de68229
[ "MIT" ]
1
2021-12-21T23:21:41.000Z
2021-12-21T23:21:41.000Z
build.py
Kataiser/radeline
da1fc490556b393623e0c8ced20cbcdb8de68229
[ "MIT" ]
null
null
null
import os import shutil import site import subprocess import sys import zipfile from io import BytesIO import requests try: import requests_cache except ImportError: requests_cache = None def main(): print("Building Radeline release package\n") if os.path.isdir('Radeline'): print("Deleting old build folder") shutil.rmtree('Radeline') else: print("No old build folder to delete") print('Creating new build folder') os.mkdir('Radeline') os.mkdir('Radeline\\Optimizer') os.mkdir('Radeline\\Optimizer\\Backups') os.mkdir('Radeline\\Simulator') compile_command = f'{sys.executable} "movement sim\\setup.py" build_ext --inplace' subprocess.run(compile_command) print("Copied", shutil.copy('movement sim\\sim_compiled.cp310-win32.pyd', 'Radeline\\Simulator\\')) if requests_cache: print("Using DL cache for interpreter") requests_cache.install_cache('interpreter_dl_cache') else: print("Not using DL cache for interpreter") interpreter_url = 'https://www.python.org/ftp/python/3.10.1/python-3.10.1-embed-win32.zip' print(f"Downloading Python interpreter from {interpreter_url}...") interpreter_data = requests.get(interpreter_url, timeout=30).content with zipfile.ZipFile(BytesIO(interpreter_data), 'r') as interpreter_zip: interpreter_zip.extractall(path=f"Radeline\\{interpreter_url.split('/')[-1][:-4]}\\") packages_dir = site.getsitepackages()[1] needed_packages = ['beautifulsoup4', 'bs4', 'certifi', 'charset_normalizer', 'idna', 'keyboard', 'lxml', 'psutil', 'pyperclip', 'requests', 'soupsieve', 'tqdm', 'urllib3', 'yaml'] for site_package in os.listdir(packages_dir): for needed_package in needed_packages: if needed_package in site_package and os.path.isdir(f'{packages_dir}\\{site_package}'): shutil.copytree(f'{packages_dir}\\{site_package}', f'Radeline\\packages\\{site_package}') break print(f"Copied {len(needed_packages)} packages from {packages_dir} to Radeline\\packages") shutil.rmtree('Radeline\\packages\\psutil\\tests') print("Deleted psutil and bs4 tests") print("Copied", shutil.copy('README.md', 'Radeline')) print("Copied", shutil.copy('LICENSE', 'Radeline')) print("Copied", shutil.copy('optimizer\\main.py', 'Radeline\\Optimizer')) print("Copied", shutil.copy('optimizer\\run.py', 'Radeline\\Optimizer')) print("Copied", shutil.copy('optimizer\\run.bat', 'Radeline\\Optimizer')) print("Copied", shutil.copy('optimizer\\settings.yaml', 'Radeline\\Optimizer')) print("Copied", shutil.copy('movement sim\\run.py', 'Radeline\\Simulator')) print("Copied", shutil.copy('movement sim\\run.bat', 'Radeline\\Simulator')) print("Copied", shutil.copy('movement sim\\config.yaml', 'Radeline\\Simulator')) print("Copied", shutil.copy('movement sim\\input_formatter.py', 'Radeline\\Simulator')) print("Copied", shutil.copy('movement sim\\run_formatter.py', 'Radeline\\Simulator')) print("Copied", shutil.copy('movement sim\\run formatter.bat', 'Radeline\\Simulator')) print("\nBuild finished") if __name__ == '__main__': main()
41.753247
183
0.689891
2adcde52a5b3ef32ba6e7b7d35b0ab1ca66dc5c8
1,913
py
Python
openapi_core/schema/schemas/exceptions.py
plambein/openapi-core
91c346b1846cde66909ffd8b7fab91be525d5e17
[ "BSD-3-Clause" ]
null
null
null
openapi_core/schema/schemas/exceptions.py
plambein/openapi-core
91c346b1846cde66909ffd8b7fab91be525d5e17
[ "BSD-3-Clause" ]
null
null
null
openapi_core/schema/schemas/exceptions.py
plambein/openapi-core
91c346b1846cde66909ffd8b7fab91be525d5e17
[ "BSD-3-Clause" ]
null
null
null
import attr from openapi_core.schema.exceptions import OpenAPIMappingError class OpenAPISchemaError(OpenAPIMappingError): pass @attr.s(hash=True) class NoValidSchema(OpenAPISchemaError): value = attr.ib() def __str__(self): return "No valid schema found for value: {0}".format(self.value) @attr.s(hash=True) class UndefinedItemsSchema(OpenAPISchemaError): type = attr.ib() def __str__(self): return "Null value for schema type {0}".format(self.type) @attr.s(hash=True) class InvalidSchemaValue(OpenAPISchemaError): msg = attr.ib() value = attr.ib() type = attr.ib() def __str__(self): return self.msg.format(value=self.value, type=self.type) @attr.s(hash=True) class InvalidCustomFormatSchemaValue(InvalidSchemaValue): original_exception = attr.ib() def __str__(self): return self.msg.format(value=self.value, type=self.type, exception=self.original_exception) @attr.s(hash=True) class UndefinedSchemaProperty(OpenAPISchemaError): extra_props = attr.ib() def __str__(self): return "Extra unexpected properties found in schema: {0}".format(self.extra_props) @attr.s(hash=True) class InvalidSchemaProperty(OpenAPISchemaError): property_name = attr.ib() original_exception = attr.ib() def __str__(self): return "Invalid schema property {0}: {1}".format(self.property_name, self.original_exception) @attr.s(hash=True) class MissingSchemaProperty(OpenAPISchemaError): property_name = attr.ib() def __str__(self): return "Missing schema property: {0}".format(self.property_name) class UnmarshallerError(OpenAPIMappingError): pass class UnmarshallerStrictTypeError(UnmarshallerError): value = attr.ib() types = attr.ib() def __str__(self): return "Value {value} is not one of types {types}".format( self.value, self.types)
23.9125
101
0.708834
70d25f71ee328024cf0d09a599912dd1203f8f54
619
py
Python
pcbs/ornament2020/fw/gentable.py
Matir/hacks
232cdb5af8a1e8338d9406dd9ee63252bf589b2b
[ "BSD-2-Clause" ]
6
2020-10-21T13:41:16.000Z
2021-12-21T22:48:40.000Z
pcbs/ornament2020/fw/gentable.py
Matir/hacks
232cdb5af8a1e8338d9406dd9ee63252bf589b2b
[ "BSD-2-Clause" ]
2
2021-08-28T19:40:41.000Z
2021-08-29T17:46:27.000Z
pcbs/ornament2020/fw/gentable.py
Matir/hacks
232cdb5af8a1e8338d9406dd9ee63252bf589b2b
[ "BSD-2-Clause" ]
3
2020-05-08T11:48:07.000Z
2021-10-17T21:06:05.000Z
import math import sys gamma = 2.5 template = ''' #include <stdint.h> #include <avr/pgmspace.h> const uint8_t consts_num_steps = %(nsteps)d; const uint8_t gamma_table[] PROGMEM = {%(gamma_table)s}; ''' nsteps = int(sys.argv[1], 0) maxval = int(sys.argv[2], 0) outfile = sys.argv[3] # Gamma adjustment table per Adafruit gamma_vals = [int(math.pow(i/float(nsteps), gamma) * float(maxval) + 0.75) for i in range(nsteps)] # Render them templ = {} templ['nsteps'] = nsteps - 1 templ['gamma_table'] = ', '.join('%d' % x for x in gamma_vals) with open(outfile, 'w') as fp: fp.write(template % templ)
21.344828
74
0.654281
748b056976fbad5b727fb6b4ce0ed0b3234c5ce9
1,227
py
Python
src/pyuwds3/reasoning/estimation/object_pose_estimator.py
LAAS-HRI/uwds3
42390f62ed5701a32710341b01faa10efc448078
[ "MIT" ]
2
2020-08-19T06:15:14.000Z
2021-05-23T09:55:18.000Z
src/pyuwds3/reasoning/estimation/object_pose_estimator.py
LAAS-HRI/uwds3
42390f62ed5701a32710341b01faa10efc448078
[ "MIT" ]
5
2021-01-06T09:00:35.000Z
2021-01-20T13:22:19.000Z
src/pyuwds3/reasoning/estimation/object_pose_estimator.py
LAAS-HRI/uwds3
42390f62ed5701a32710341b01faa10efc448078
[ "MIT" ]
2
2020-11-18T17:34:43.000Z
2021-05-23T16:14:17.000Z
import numpy as np from ...types.vector.vector6d import Vector6D from ...types.vector.vector3d import Vector3D class ObjectPoseEstimator(object): """ Allow to compute the 6D pose in global frame """ def estimate(self, tracks, view_pose, camera): """ Estimate the 6D pose in global frame from bbox (assume same orientation than map) """ view_matrix = view_pose.transform() camera_matrix = camera.camera_matrix() for o in tracks: if o.bbox.depth is not None: if o.is_confirmed(): fx = camera_matrix[0][0] fy = camera_matrix[1][1] cx = camera_matrix[0][2] cy = camera_matrix[1][2] c = o.bbox.center() z = o.bbox.depth x = (c.x - cx) * z / fx y = (c.y - cy) * z / fy sensor_transform = Vector6D(x=x, y=y, z=z).transform() world_pose = Vector6D().from_transform(np.dot(view_matrix, sensor_transform)) position = world_pose.position() rotation = Vector3D() o.update_pose(position, rotation)
40.9
97
0.526487
741c86c9b8924e5c71490d4769650fb7cd3c8517
6,252
py
Python
budgetportal/guide_data.py
d3ft0uch/datamanager
60f2f9d5278d20ae553bb063dcedaf206bb3ab29
[ "MIT" ]
null
null
null
budgetportal/guide_data.py
d3ft0uch/datamanager
60f2f9d5278d20ae553bb063dcedaf206bb3ab29
[ "MIT" ]
null
null
null
budgetportal/guide_data.py
d3ft0uch/datamanager
60f2f9d5278d20ae553bb063dcedaf206bb3ab29
[ "MIT" ]
null
null
null
category_guides = { "adjusted-estimates-of-national-expenditure": "adjusted-estimates-of-national-expenditure", "estimates-of-provincial-expenditure": "estimates-of-provincial-expenditure", "frameworks-for-conditional-grants-to-provinces": "frameworks-for-conditional-grants", "frameworks-for-conditional-grants-to-municipalities": "frameworks-for-conditional-grants", "estimates-of-national-expenditure": "estimates-of-national-expenditure", "performance-and-expenditure-reviews": "performance-and-expenditure-reviews", "in-year-spending": "in-year-spending", } guides = { "adjusted-estimates-of-national-expenditure": { "description": u"This guide relates to the structured adjusted estimates of expenditure data in CSV form the AENE PDF documents on each department page, and the accompanying Excel file with the document\u2019s tables", "name": "Adjusted Estimates of National Expenditure", "selected_sidebar": "guides", "selected_tab": "learning-centre", "title": "Adjusted Estimates of National Expenditure (AENE) - vulekamali", }, "estimates-of-national-expenditure": { "description": "The Estimates of National Expenditure (ENE) publications describe in detail the planned spending in all national government votes over the three-year medium-term expenditure framework (MTEF) period.", "name": "Estimates of National Expenditure", "selected_sidebar": "guides", "selected_tab": "learning-centre", "title": "Estimates of National Expenditure (ENE) - vulekamali", }, "estimates-of-provincial-expenditure": { "description": "The Estimates of Provincial Revenue and Expenditure (EPRE) is considered a summary of the departmental Strategic and Performance Plan to a level at which the legislature and the public can engage the provincial departments.", "name": "Estimates of Provincial Revenue and Expenditure", "selected_sidebar": "guides", "selected_tab": "learning-centre", "title": "Estimates of Provincial Revenue and Expenditure (EPRE) - vulekamali", }, "frameworks-for-conditional-grants": { "description": "Learn where to find the rules for how conditional grants may be spent and how much has been allocated to each municipality and province", "name": "Frameworks for Conditional Grants", "selected_sidebar": "guides", "selected_tab": "learning-centre", "title": "Frameworks for Conditional Grants - vulekamali", }, "in-year-spending": { "description": "The in-year spending dataset provides monthly totals from the transactions of each department.", "name": "In-year spending data", "selected_sidebar": "guides", "selected_tab": "learning-centre", "title": "In-year spending data - vulekamali", }, "index": { "description": "South Africa's National and Provincial budget data from National Treasury in partnership with IMALI YETHU.", "items": [ { "description": u"This guide relates to the structured adjusted estimates of expenditure data in CSV form the AENE PDF documents on each department page, and the accompanying Excel file with the document\u2019s tables", "name": "Adjusted Estimates of National Expenditure", "url_path": "/guides/adjusted-estimates-of-national-expenditure", }, { "description": "The Estimates of National Expenditure (ENE) publications describe in detail the planned spending in all national government votes over the three-year medium-term expenditure framework (MTEF) period.", "name": "Estimates of National Expenditure (ENE)", "url_path": "/guides/estimates-of-national-expenditure", }, { "description": "The Estimates of Provincial Revenue and Expenditure (EPRE) is considered a summary of the departmental Strategic and Performance Plan to a level at which the legislature and the public can engage the provincial departments.", "name": "Estimates of Provincial Revenue and Expenditure", "url_path": "/guides/estimates-of-provincial-expenditure", }, { "description": "Learn where to find the rules for how conditional grants may be spent and how much has been allocated to each municipality and province", "name": "Conditional Grant Frameworks and Allocations", "url_path": "/guides/frameworks-for-conditional-grants", }, { "description": "The in-year spending dataset provides monthly totals from the transactions of each department.", "name": "In-year spending data", "url_path": "/guides/in-year-spending", }, { "description": "A Performance and Expenditure Review (PER) is a process of reviewing government spending on a particular service, and how effective this spending is.", "name": "Performance and Expenditure Reviews (PER)", "url_path": "/guides/performance-and-expenditure-reviews", }, { "description": "Procurement is the process where government buys goods and services using public money. Government buys goods and services in order to deliver services according to its mandate.", "name": "Procurement", "url_path": "https://procurement.vulekamali.gov.za/", }, ], "selected_sidebar": "guides", "selected_tab": "learning-centre", "title": "Guides - vulekamali", }, "performance-and-expenditure-reviews": { "description": "South Africa's National and Provincial budget data from National Treasury in partnership with IMALI YETHU.", "name": "Performance and Expenditure Reviews", "selected_sidebar": "guides", "selected_tab": "learning-centre", "title": "Performance and Expenditure Reviews (PER) - vulekamali", }, } for slug, guide in guides.items(): guide["slug"] = slug guide["url"] = "/guides/%s" % slug
61.294118
257
0.662828
c74dc376ba27219e61387502cc6b223f113a7594
134
py
Python
daxboard/home/urls.py
anderson-joyle/daxboard
39b97ea85d771187a9c8600ee1dd8faa9567c455
[ "MIT" ]
1
2017-12-29T09:44:58.000Z
2017-12-29T09:44:58.000Z
daxboard/home/urls.py
anderson-joyle/Daxboard
39b97ea85d771187a9c8600ee1dd8faa9567c455
[ "MIT" ]
2
2020-02-11T22:42:26.000Z
2020-06-05T18:19:35.000Z
daxboard/home/urls.py
anderson-joyle/Daxboard
39b97ea85d771187a9c8600ee1dd8faa9567c455
[ "MIT" ]
2
2018-11-13T07:33:35.000Z
2020-01-29T07:52:19.000Z
from django.urls import path from . import views urlpatterns = [ path('', views.index), path('logout', views.logout), ]
19.142857
34
0.634328
c4f53ba27932cd262bccdb7b5fa79c53230ce629
1,986
py
Python
src/modelmanager.py
HimanshuMittal01/openSeqNet
b52ae66a6adaeaeaded5c65e8517d95e487bff6c
[ "MIT" ]
null
null
null
src/modelmanager.py
HimanshuMittal01/openSeqNet
b52ae66a6adaeaeaded5c65e8517d95e487bff6c
[ "MIT" ]
null
null
null
src/modelmanager.py
HimanshuMittal01/openSeqNet
b52ae66a6adaeaeaded5c65e8517d95e487bff6c
[ "MIT" ]
null
null
null
import torch from .layer import Layer from .edge import EdgeMatrix class ModelManager: def __init__(self, filepath, canvas): self.filepath = filepath self.canvas = canvas self.model = self._load_torch_model(filepath) self.layers = [] self.weights = [] # Instantiates graph structure self.num_layers = self.get_num_layers() self._create_graph() def _load_torch_model(self, filepath): '''Loads pytorch model ''' # TODO : Handle errors return torch.load(filepath) def _create_graph(self): '''Creates necessary data structures for graph ''' width = self.canvas.winfo_width() height = self.canvas.winfo_height() # TODO: This is not the right thing, collisions may happen gap = width/self.num_layers offset = gap/2 num_layer = 0 for name,param in self.model.named_parameters(): if (name.endswith(".bias")): continue if (num_layer==0): self.layers.append(Layer(param.size()[1], offset+gap*num_layer, self.canvas)) num_layer += 1 self.layers.append(Layer(param.size()[0], offset+gap*num_layer, self.canvas)) self.weights.append(EdgeMatrix(param, self.layers[num_layer-1], self.layers[num_layer], self.canvas)) def get_num_layers(self): '''Returns number of layers ''' num_layers = 1 # For input layer for name,param in self.model.named_parameters(): if (name.endswith(".bias")): continue num_layers+=1 return num_layers def update(self): '''Updates the x and y location of the layers ''' pass def show(self): '''Shows the model on canvas ''' for layer in self.layers: layer.show() for edges in self.weights: edges.show()
31.52381
113
0.576032
1d9a63a6bb7d5cc3321a075576e558bb702050c0
801
py
Python
tensorflow_datasets/import_test.py
shubhamkumaR630/datasets
fe9ee91849cefed0953141ea3588f73b7def78fd
[ "Apache-2.0" ]
2
2022-02-14T09:51:39.000Z
2022-02-14T13:27:49.000Z
tensorflow_datasets/import_test.py
shubhamkumaR630/datasets
fe9ee91849cefed0953141ea3588f73b7def78fd
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/import_test.py
shubhamkumaR630/datasets
fe9ee91849cefed0953141ea3588f73b7def78fd
[ "Apache-2.0" ]
1
2020-12-13T22:11:33.000Z
2020-12-13T22:11:33.000Z
# coding=utf-8 # Copyright 2022 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test import.""" import tensorflow_datasets as tfds class ImportTest(tfds.testing.TestCase): def test_import(self): pass if __name__ == '__main__': tfds.testing.test_main()
27.62069
74
0.751561
de6cb054b10e128b5fa04a23dcae33cf6944c0b1
16,258
py
Python
functions/visualizations.py
CIMAC-CIDC/cidc-cloud-functions
cf6f37d699497a09b68dd5a90000ef5a96f1dd7c
[ "MIT" ]
null
null
null
functions/visualizations.py
CIMAC-CIDC/cidc-cloud-functions
cf6f37d699497a09b68dd5a90000ef5a96f1dd7c
[ "MIT" ]
20
2019-08-05T20:20:32.000Z
2022-02-04T16:14:55.000Z
functions/visualizations.py
CIMAC-CIDC/cidc-cloud-functions
cf6f37d699497a09b68dd5a90000ef5a96f1dd7c
[ "MIT" ]
1
2022-02-15T17:51:36.000Z
2022-02-15T17:51:36.000Z
import json from io import BytesIO from typing import Optional # clustergrammer2 via sklearn uses np.float which is deprecated as of numpy==1.20 import warnings warnings.filterwarnings( action="ignore", category=DeprecationWarning, module="scikit-learn" ) import pandas as pd from clustergrammer2 import Network as CGNetwork from deepdiff import DeepSearch from openpyxl import load_workbook from cidc_api.models import DownloadableFiles, prism, TrialMetadata from .settings import GOOGLE_DATA_BUCKET from .util import ( BackgroundContext, extract_pubsub_data, sqlalchemy_session, get_blob_as_stream, ) # sets the maximum number of divisions within a category ## that is shown on the top of the clustergrammer CLUSTERGRAMMER_MAX_CATEGORY_CARDINALITY = 5 def vis_preprocessing(event: dict, context: BackgroundContext): with sqlalchemy_session() as session: object_url = extract_pubsub_data(event) file_record: DownloadableFiles = DownloadableFiles.get_by_object_url( object_url, session=session ) if not file_record: raise Exception(f"No downloadable file with object URL {object_url} found.") metadata_df = _get_metadata_df(file_record.trial_id) # Apply the transformations and get derivative data for visualization. for transform_name, transform in _get_transforms().items(): vis_json = transform(file_record, metadata_df) if vis_json: # Add the vis config to the file_record setattr(file_record, transform_name, vis_json) # Save the derivative data additions to the database. session.commit() def _get_metadata_df(trial_id: str) -> pd.DataFrame: """ Build a dataframe containing the participant/sample metadata for this trial, joined on CIMAC ID and indexed on CIMAC ID. """ participants_blob = get_blob_as_stream( f"{trial_id}/participants.csv", as_string=True ) samples_blob = get_blob_as_stream(f"{trial_id}/samples.csv", as_string=True) participants_df = pd.read_csv(participants_blob) samples_df = pd.read_csv(samples_blob) metadata_df = pd.merge( participants_df, samples_df, left_on="cimac_participant_id", right_on="participants.cimac_participant_id", how="outer", ) metadata_df.set_index("cimac_id", inplace=True) return metadata_df def _get_transforms() -> dict: """ Get a list of functions taking an open file and that file's downloadable file record as arguments, returning a JSON blob that the frontend will use for visualization. """ return { "clustergrammer": _ClustergrammerTransform(), "ihc_combined_plot": _ihc_combined_transform, "additional_metadata": _add_antibody_metadata, } def _add_antibody_metadata( file_record: DownloadableFiles, metadata_df: pd.DataFrame ) -> Optional[dict]: """ Pseudo transformation to add antibody data to the DownloadableFiles.additional_metadata JSON Only for upload_type in [cytof, elisa, ihc, micsss, and mif] """ transforms = { "cytof": _cytof_antibody_md, "elisa": _elisa_antibody_md, "ihc": _ihc_antibody_md, "micsss": _micsss_antibody_md, "mif": _mif_antibody_md, } upload_type = file_record.upload_type.lower() if upload_type not in transforms.keys(): return None with sqlalchemy_session() as session: ct_md = TrialMetadata.find_by_trial_id( file_record.trial_id, session=session ).metadata_json assay_instances = ct_md.get("assays", {}).get(upload_type, []) # asserting that this will return a list, which is not necessarily true # check cidc-schemas/schemas/assays/components/available_assays.json if isinstance(assay_instances, dict): # only exception to list, eg olink assay_md = assay_instances elif isinstance(assay_instances, list): ds = DeepSearch(assay_instances, file_record.object_url) if "matched_values" in ds: if len(ds["matched_values"]) != 1: raise Exception( f"Issue loading antibodies for {file_record.object_url} in {file_record.trial_id}: {file_record.object_url} is not unique in ct['assays'][{upload_type}]" ) # matched_value = ["root[path][to][matching]"] matching_path = list(ds["matched_values"])[0] index = matching_path.split("[")[1].split("]")[0] if index.isdigit(): # not technically needed, see below assay_md = assay_instances[int(index)] else: # technically can't get here because DeepSearch on assay_instances: list has return bounded to "root[ int ]..." # if some error occurs, need to error or need assay_md defined # testing this doesn't seem necessary, but would likely need patching DeepSearch try: assay_md = assay_instances[index] # should work for all root[...] except: # add a bit of actual context, as any IndexError thrown would not be useful raise Exception( f"Issue loading antibodies for {file_record.object_url} in {file_record.trial_id}: unable to search ct['assays']['{upload_type}']" ) else: raise TypeError( f"Issue loading antibodies for {file_record.object_url} in {file_record.trial_id}: ct['assays']['{upload_type}'] is {type(assay_instances).__name__} not list, dict" ) md = transforms[upload_type](assay_md) if md is None: # no antibody metadata on the assay return None file_md = file_record.additional_metadata if upload_type == "ihc": # for ihc, is only a single antibody file_md["ihc.antibody"] = md else: file_md[f"{upload_type}.antibodies"] = md return file_md def _cytof_antibody_md(assay_md: dict) -> Optional[str]: antibody_md = assay_md.get("cytof_antibodies") if not antibody_md: return None antibodies = [] for ab in antibody_md: if ab["usage"] != "Ignored": entry = f"{ab['stain_type'].lower().split()[0]} {ab['isotope']}-{ab['antibody']}" if ab.get("clone"): entry += f" ({ab['clone']})" antibodies.append(entry) return ", ".join(antibodies) def _elisa_antibody_md(assay_md: dict) -> Optional[str]: antibody_md = assay_md.get("antibodies") if not antibody_md: return None antibodies = [] for ab in antibody_md: if ab["usage"] != "Ignored": entry = f"{ab['stain_type'].lower().split()[0]} {ab['isotope']}-{ab['antibody']}" if ab.get("clone"): entry += f" ({ab['clone']})" antibodies.append(entry) return ", ".join(antibodies) def _ihc_antibody_md(assay_md: dict) -> Optional[str]: antibody_md = assay_md.get("antibody") if not antibody_md: return None antibody = antibody_md["antibody"] if antibody_md.get("clone"): antibody += f" ({antibody_md['clone']})" return antibody def _micsss_antibody_md(assay_md: dict) -> Optional[str]: antibody_md = assay_md.get("antibody") if not antibody_md: return None antibodies = [] for ab in antibody_md: entry = ab["antibody"] if ab.get("clone"): entry += f" ({ab['clone']})" antibodies.append(entry) return ", ".join(antibodies) def _mif_antibody_md(assay_md: dict) -> Optional[str]: antibody_md = assay_md.get("antibodies") if not antibody_md: return None antibodies = [] for ab in antibody_md: if ab.get("export_name"): entry = ab["export_name"] else: entry = ab["antibody"] + " (" if ab.get("clone"): entry += ab["clone"] + " - " entry += str(ab["fluor_wavelength"]) + ")" antibodies.append(entry) return ", ".join(antibodies) def _ihc_combined_transform( file_record: DownloadableFiles, metadata_df: pd.DataFrame ) -> Optional[dict]: """ Prepare an IHC combined file for visualization by joining it with relevant metadata """ if file_record.upload_type.lower() != "ihc marker combined": return None print(f"Generating IHC combined visualization config for file {file_record.id}") data_file = get_blob_as_stream(file_record.object_url) data_df = pd.read_csv(data_file) full_df = data_df.join(metadata_df, on="cimac_id", how="inner") return json.loads(full_df.to_json(orient="records")) class _ClustergrammerTransform: def __call__( self, file_record: DownloadableFiles, metadata_df: pd.DataFrame ) -> Optional[dict]: """ Prepare the data file for visualization in clustergrammer. NOTE: `metadata_df` should contain data from the participants and samples CSVs for this file's trial, joined on CIMAC ID and indexed on CIMAC ID. """ if file_record.object_url.endswith("npx.xlsx"): data_file = get_blob_as_stream(file_record.object_url) return self.npx(data_file, metadata_df) elif file_record.upload_type.lower() in ( "cell counts compartment", "cell counts assignment", "cell counts profiling", ): data_file = get_blob_as_stream(file_record.object_url) return self.cytof_summary(data_file, metadata_df) return None def npx(self, data_file, metadata_df: pd.DataFrame) -> dict: """Prepare an NPX file for visualization in clustergrammer""" # Load the NPX data into a dataframe. npx_df = _npx_to_dataframe(data_file) return self._clustergrammerify(npx_df, metadata_df) def cytof_summary(self, data_file, metadata_df: pd.DataFrame) -> dict: """Prepare CyTOF summary csv for visualization in clustergrammer""" # Load the CyTOF summary data into a dataframe cytof_df = _cytof_summary_to_dataframe(data_file) return self._clustergrammerify(cytof_df, metadata_df) def _clustergrammerify( self, data_df: pd.DataFrame, metadata_df: pd.DataFrame ) -> dict: """ Produce the clustergrammer config for the given data and metadata dfs. `data_df` must be a dataframe with CIMAC ID column headers. """ assert ( data_df.shape[1] > 1 ), "Cannot generate clustergrammer visualization for data with only one sample." data_df.columns = _metadata_to_categories(metadata_df.loc[data_df.columns]) # TODO: find a better way to handle missing values data_df.fillna(0, inplace=True) # Produce a clustergrammer JSON blob for this dataframe. net = CGNetwork() net.load_df(data_df) net.normalize() net.cluster() return net.viz def _metadata_to_categories(metadata_df: pd.DataFrame) -> list: """ Add category information to `data_df`'s column headers in the format that Clustergrammer expects: "([Category 1]: [Value 1], [Category 2]: [Value 2], ...)" """ metadata_df = metadata_df.copy() # so don't modify original CLINICAL_FIELD_PREFIX = "arbitrary_trial_specific_clinical_annotations." columns = [] for c in metadata_df.columns: # go through and check cardinality = # unique # also rename the columns to pretty things cardinality = len(metadata_df[c].unique()) if ( cardinality > CLUSTERGRAMMER_MAX_CATEGORY_CARDINALITY or cardinality <= 1 or cardinality == metadata_df.shape[0] ): # only want if not all the same, not too many, and not each unique to sample if c not in [ "cimac_participant_id", "cohort_name", "collection_event_name", ]: # we want to keep the above no matter what metadata_df.pop(c) continue if "(1=Yes,0=No)" in c: # these are boolean! let's treat them that way metadata_df[c] = metadata_df[c].astype(bool) if c.startswith(CLINICAL_FIELD_PREFIX): # for 10021 participants.csv: ## remove the prefix ## remove any parentheses cat = c[len(CLINICAL_FIELD_PREFIX) :] if "(" in cat and ")" in cat and cat.index(")") > cat.index("("): cat = cat.split("(", 1)[0] + cat.rsplit(")", 1)[1] else: # otherwise ## break up underscores ## title case ## drop 'CIDC' / 'CIMAC' anywhere ## drop trailing 'Name' cat = c.replace("_", " ").title().replace("Cidc", "").replace("Cimac", "") if cat.endswith("Name") and not cat == "Name": cat = cat[:-4] # strip so it's pretty! if cat.strip() not in columns: columns.append(cat.strip()) else: # if it's a repeated name, pop it metadata_df.pop(c) metadata_df.columns = columns print("CG Category options:", ", ".join(columns)) # cut down to only the categories we want columns = [ c for c in [ "Participant Id", "Collection Event", "Cohort", "Treatment", "Disease progression", "RECIST clinical benefit status", ] if c in metadata_df.columns ] columns = sorted(columns, key=lambda c: len(metadata_df[c].unique())) metadata_df = metadata_df[columns] if "Disease progression" in columns: columns[columns.index("Disease progression")] = "Disease prog" if "RECIST clinical benefit status" in columns: columns[columns.index("RECIST clinical benefit status")] = "Clin benefit" metadata_df.columns = columns # build the output str in ClusterGrammer compatible format categories = [] for idx, row in metadata_df.iterrows(): temp = [f"CIMAC Id: {idx}"] for cat, val in row.items(): temp.append(f"{cat}: {val}") categories.append(tuple(temp)) return categories def _npx_to_dataframe(fname, sheet_name="NPX Data") -> pd.DataFrame: """Load raw data from an NPX file into a pandas dataframe.""" wb = load_workbook(fname) if sheet_name not in wb.sheetnames: raise ValueError(f"Couldn't locate expected worksheet '{sheet_name}'.") ws = wb[sheet_name] extract_values = lambda xlsx_row: [cell.value for cell in xlsx_row] # Assay labels (row 5 of the spreadsheet) assay_labels = extract_values(ws[4][1:-2]) # Raw data (row 8 of the spreadsheet onwards) rows = [] num_cols = len(assay_labels) + 1 for row in ws.iter_rows(min_row=8): sample_id = row[0].value # If we hit a blank line, there's no more data to read. if not sample_id: break # Only include rows pertaining to CIMAC ids if prism.cimac_id_regex.match(sample_id): new_row = extract_values(row[0:num_cols]) rows.append(new_row) raw = pd.DataFrame(rows).set_index(0) raw.index.name = "cimac_id" raw.columns = assay_labels # Drop columns that don't have raw data raw.drop(columns=["Plate ID", "QC Warning"], inplace=True) # Data is later z-scored, so remove data that would introduce NaN's raw.drop(columns=raw.columns[raw.std() == 0], inplace=True) return raw.T def _cytof_summary_to_dataframe(csv: BytesIO) -> pd.DataFrame: """Load a CyTOF summary CSV into a dataframe with CIMAC IDs as column headers""" raw_df = pd.read_csv(csv) # Index on CIMAC ID column indexed_df = raw_df.set_index("cimac_id") # Drop unused metadata columns (we should get these from the metadata df) for col in ["cimac_participant_id", "protocol_identifier"]: try: indexed_df.drop(col, axis=1, inplace=True) except KeyError: pass return indexed_df.T
34.444915
176
0.632489
0e7045f517d44e8d73b08bac7ce499f79d2bf80e
9,498
py
Python
tensorflow/python/keras/_impl/keras/preprocessing/sequence_test.py
ashuven63/tf_audio
bc561b81069001da01a1c7df4c16f6b9ba9a400b
[ "Apache-2.0" ]
1
2018-05-30T00:34:05.000Z
2018-05-30T00:34:05.000Z
tensorflow/python/keras/_impl/keras/preprocessing/sequence_test.py
timctho/tensorflow
015c72eac3f4e448dd8ab852843e902771496532
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/_impl/keras/preprocessing/sequence_test.py
timctho/tensorflow
015c72eac3f4e448dd8ab852843e902771496532
[ "Apache-2.0" ]
1
2021-11-16T19:59:48.000Z
2021-11-16T19:59:48.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for sequence data preprocessing utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from math import ceil import numpy as np from tensorflow.python.keras._impl import keras from tensorflow.python.platform import test class TestSequence(test.TestCase): def test_pad_sequences(self): a = [[1], [1, 2], [1, 2, 3]] # test padding b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='pre') self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]]) b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='post') self.assertAllClose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]]) # test truncating b = keras.preprocessing.sequence.pad_sequences( a, maxlen=2, truncating='pre') self.assertAllClose(b, [[0, 1], [1, 2], [2, 3]]) b = keras.preprocessing.sequence.pad_sequences( a, maxlen=2, truncating='post') self.assertAllClose(b, [[0, 1], [1, 2], [1, 2]]) # test value b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, value=1) self.assertAllClose(b, [[1, 1, 1], [1, 1, 2], [1, 2, 3]]) def test_pad_sequences_vector(self): a = [[[1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]] # test padding b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='pre') self.assertAllClose(b, [[[0, 0], [0, 0], [1, 1]], [[0, 0], [2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]) b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='post') self.assertAllClose(b, [[[1, 1], [0, 0], [0, 0]], [[2, 1], [2, 2], [0, 0]], [[3, 1], [3, 2], [3, 3]]]) # test truncating b = keras.preprocessing.sequence.pad_sequences( a, maxlen=2, truncating='pre') self.assertAllClose(b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 2], [3, 3]]]) b = keras.preprocessing.sequence.pad_sequences( a, maxlen=2, truncating='post') self.assertAllClose(b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2]]]) # test value b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, value=1) self.assertAllClose(b, [[[1, 1], [1, 1], [1, 1]], [[1, 1], [2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]) def test_make_sampling_table(self): a = keras.preprocessing.sequence.make_sampling_table(3) self.assertAllClose( a, np.asarray([0.00315225, 0.00315225, 0.00547597]), rtol=.1) def test_skipgrams(self): # test with no window size and binary labels couples, labels = keras.preprocessing.sequence.skipgrams( np.arange(3), vocabulary_size=3) for couple in couples: self.assertIn(couple[0], [0, 1, 2]) self.assertIn(couple[1], [0, 1, 2]) # test window size and categorical labels couples, labels = keras.preprocessing.sequence.skipgrams( np.arange(5), vocabulary_size=5, window_size=1, categorical=True) for couple in couples: self.assertLessEqual(couple[0] - couple[1], 3) for l in labels: self.assertEqual(len(l), 2) def test_TimeseriesGenerator(self): data = np.array([[i] for i in range(50)]) targets = np.array([[i] for i in range(50)]) data_gen = keras.preprocessing.sequence.TimeseriesGenerator( data, targets, length=10, sampling_rate=2, batch_size=2) self.assertEqual(len(data_gen), 20) self.assertAllClose(data_gen[0][0], np.array([[[0], [2], [4], [6], [8]], [[1], [3], [5], [7], [9]]])) self.assertAllClose(data_gen[0][1], np.array([[10], [11]])) self.assertAllClose(data_gen[1][0], np.array([[[2], [4], [6], [8], [10]], [[3], [5], [7], [9], [11]]])) self.assertAllClose(data_gen[1][1], np.array([[12], [13]])) data_gen = keras.preprocessing.sequence.TimeseriesGenerator( data, targets, length=10, sampling_rate=2, reverse=True, batch_size=2) self.assertEqual(len(data_gen), 20) self.assertAllClose(data_gen[0][0], np.array([[[8], [6], [4], [2], [0]], [[9], [7], [5], [3], [1]]])) self.assertAllClose(data_gen[0][1], np.array([[10], [11]])) data_gen = keras.preprocessing.sequence.TimeseriesGenerator( data, targets, length=10, sampling_rate=2, shuffle=True, batch_size=1) batch = data_gen[0] r = batch[1][0][0] self.assertAllClose(batch[0], np.array([[[r - 10], [r - 8], [r - 6], [r - 4], [r - 2]]])) self.assertAllClose(batch[1], np.array([ [r], ])) data_gen = keras.preprocessing.sequence.TimeseriesGenerator( data, targets, length=10, sampling_rate=2, stride=2, batch_size=2) self.assertEqual(len(data_gen), 10) self.assertAllClose(data_gen[1][0], np.array([[[4], [6], [8], [10], [12]], [[6], [8], [10], [12], [14]]])) self.assertAllClose(data_gen[1][1], np.array([[14], [16]])) data_gen = keras.preprocessing.sequence.TimeseriesGenerator( data, targets, length=10, sampling_rate=2, start_index=10, end_index=30, batch_size=2) self.assertEqual(len(data_gen), 6) self.assertAllClose(data_gen[0][0], np.array([[[10], [12], [14], [16], [18]], [[11], [13], [15], [17], [19]]])) self.assertAllClose(data_gen[0][1], np.array([[20], [21]])) data = np.array([np.random.random_sample((1, 2, 3, 4)) for i in range(50)]) targets = np.array([np.random.random_sample((3, 2, 1)) for i in range(50)]) data_gen = keras.preprocessing.sequence.TimeseriesGenerator( data, targets, length=10, sampling_rate=2, start_index=10, end_index=30, batch_size=2) self.assertEqual(len(data_gen), 6) self.assertAllClose(data_gen[0][0], np.array( [np.array(data[10:19:2]), np.array(data[11:20:2])])) self.assertAllClose(data_gen[0][1], np.array([targets[20], targets[21]])) with self.assertRaises(ValueError) as context: keras.preprocessing.sequence.TimeseriesGenerator(data, targets, length=50) error = str(context.exception) self.assertIn('`start_index+length=50 > end_index=49` is disallowed', error) def test_TimeSeriesGenerator_doesnt_miss_any_sample(self): x = np.array([[i] for i in range(10)]) for length in range(3, 10): g = keras.preprocessing.sequence.TimeseriesGenerator( x, x, length=length, batch_size=1) expected = max(0, len(x) - length) actual = len(g) self.assertEqual(expected, actual) if actual > 0: # All elements in range(length, 10) should be used as current step expected = np.arange(length, 10).reshape(-1, 1) y = np.concatenate([g[ix][1] for ix in range(len(g))], axis=0) self.assertAllClose(y, expected) x = np.array([[i] for i in range(23)]) strides = (1, 1, 5, 7, 3, 5, 3) lengths = (3, 3, 4, 3, 1, 3, 7) batch_sizes = (6, 6, 6, 5, 6, 6, 6) shuffles = (False, True, True, False, False, False, False) for stride, length, batch_size, shuffle in zip(strides, lengths, batch_sizes, shuffles): g = keras.preprocessing.sequence.TimeseriesGenerator( x, x, length=length, sampling_rate=1, stride=stride, start_index=0, end_index=None, shuffle=shuffle, reverse=False, batch_size=batch_size) if shuffle: # all batches have the same size when shuffle is True. expected_sequences = ceil( (23 - length) / float(batch_size * stride)) * batch_size else: # last batch will be different if `(samples - length) / stride` # is not a multiple of `batch_size`. expected_sequences = ceil((23 - length) / float(stride)) expected_batches = ceil(expected_sequences / float(batch_size)) y = [g[ix][1] for ix in range(len(g))] actual_sequences = sum(len(iy) for iy in y) actual_batches = len(y) self.assertEqual(expected_sequences, actual_sequences) self.assertEqual(expected_batches, actual_batches) if __name__ == '__main__': test.main()
39.740586
80
0.562645
f6d8a8122ca736019f0c9ffba9b833faf23203ae
3,433
py
Python
myfirst/settings.py
fyunka/django-blog
3cb44c3311ef4bc2a920ec1c4f34eff738b60eea
[ "MIT" ]
null
null
null
myfirst/settings.py
fyunka/django-blog
3cb44c3311ef4bc2a920ec1c4f34eff738b60eea
[ "MIT" ]
null
null
null
myfirst/settings.py
fyunka/django-blog
3cb44c3311ef4bc2a920ec1c4f34eff738b60eea
[ "MIT" ]
null
null
null
""" Django settings for myfirst project. Generated by 'django-admin startproject' using Django 1.11.23. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os, sys # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) PROJECT_ROOT = os.path.dirname(__file__) sys.path.insert(0, os.path.join(PROJECT_ROOT, 'apps')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_46r4imw54-znik&a)60fthi!f4&i8n4r*xy1_%p3%5cl2f@4u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'articles.apps.ArticlesConfig', # 'grappelli', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'myfirst.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(PROJECT_ROOT, 'templates') ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.request', ], }, }, ] WSGI_APPLICATION = 'myfirst.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(PROJECT_ROOT, 'static')
26.206107
91
0.694728
b6df8118746a90fac3bcbb541b9310b08e0fe13b
937
py
Python
ble_uart/process_unit.py
yjlou/blue_uart
442dd2bd7d66efbdca995b071ed0a85765152a10
[ "MIT" ]
null
null
null
ble_uart/process_unit.py
yjlou/blue_uart
442dd2bd7d66efbdca995b071ed0a85765152a10
[ "MIT" ]
null
null
null
ble_uart/process_unit.py
yjlou/blue_uart
442dd2bd7d66efbdca995b071ed0a85765152a10
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """A Process Unit is a component that handles the data flows. It contains 2 flows: flow0: data flow from the BLE to the server side. flow1: data flow from the server side to the BLE. +--------------+ | Process Unit | S | | e B ====> flow 0 ====> r L | | v E <==== flow 1 <==== e | | r +--------------+ """ class Flow(object): def __init__(self): self._egress = None def set_egress(self, egress:callable): self._egress = egress def ingress(self, data:bytearray): """This inputs data to the entrance of the flow. The default behavior is pass-thru. The inheritor can overwrite this. """ if self._egress: self._egress(data) class ProcessUnit(object): def __init__(self): self._flows = [Flow(), Flow()] def flow(self, idx:int): return self._flows[idx]
23.425
82
0.550694
034fe9ef7d5abc690c5de710e383a980cb9eea29
14,734
py
Python
youtube_audio_matcher/database/database.py
nrsyed/youtube-audio-matcher
d6a65d2e824f4e8f363c49341896612978b7318c
[ "MIT" ]
1
2020-11-26T00:55:55.000Z
2020-11-26T00:55:55.000Z
youtube_audio_matcher/database/database.py
nrsyed/youtube-audio-matcher
d6a65d2e824f4e8f363c49341896612978b7318c
[ "MIT" ]
null
null
null
youtube_audio_matcher/database/database.py
nrsyed/youtube-audio-matcher
d6a65d2e824f4e8f363c49341896612978b7318c
[ "MIT" ]
null
null
null
import asyncio import logging import time import sqlalchemy from .schema import Base, Fingerprint, Song def database_obj_to_py(obj, fingerprints_in_song=False): """ Recursively convert Fingerprint and Song sqlalchemy objects to native Python types (lists and dicts). Args: obj (database.schema.Fingerprint|database.schema.Song): ``audio`` module Fingerprint or Song object. fingerprints_in_song (bool): Include each song's fingerprints as a list within the song dict. Returns: py_obj: list|dict """ if isinstance(obj, list): return [ database_obj_to_py(elem, fingerprints_in_song=fingerprints_in_song) for elem in obj ] elif isinstance(obj, Song): song = { "id": obj.id, "duration": obj.duration, "filehash": obj.filehash, "filepath": obj.filepath, "title": obj.title, "youtube_id": obj.youtube_id, } if fingerprints_in_song: song["fingerprints"] = [ database_obj_to_py(fp) for fp in obj.fingerprints ] song["num_fingerprints"] = len(obj.fingerprints) return song elif isinstance(obj, Fingerprint): return { "song_id": obj.song_id, "hash": obj.hash, "offset": obj.offset, } else: raise ValueError("Unsupported object") def _threadsafe_add_fingerprints(db_kwargs, song): logging.info(f"Adding {song['path']} to database...") db = Database(**db_kwargs) song_id = db.add_song( duration=song.get("duration"), filepath=song.get("path"), filehash=song.get("filehash"), title=song.get("title"), youtube_id=song.get("youtube_id") ) db.add_fingerprints(song_id, song["fingerprints"]) del db del song["fingerprints"] # TODO: delete files after fingerprinting async def _update_database(song, loop, executor, db_kwargs): start_t = time.time() delete_file = False try: if "delete" in song: delete_file = True await loop.run_in_executor( executor, _threadsafe_add_fingerprints, db_kwargs, song ) elapsed = time.time() - start_t logging.info(f"Added {song['path']} to database ({elapsed:.2f} s)") except Exception as e: logging.error(f"Error adding {song['path']} to database ({str(e)})") finally: if delete_file: logging.info(f"Deleting file {song['path']}") # TODO delete song # TODO: handle song already existing in database async def update_database(loop, executor, db_kwargs, in_queue): """ Consume fingerprinted songs from an async input queue and add the songs and their fingerprints to the database either concurrently (via a thread pool) or in parallel (via a process pool). Args: loop (asyncio.BaseEventLoop): asyncio EventLoop. executor (concurrent.futures.Executor): `concurrent.futures` ThreadPoolExecutor or ProcessPoolExecutor in which the database connection will be created to update the database. db_kwargs (dict): Dict containing keyword args for instantiating a :class:`Database` object. in_queue (asyncio.queues.Queue): Database queue containing song dicts representing songs (and their fingerprints) to be added to the database. """ start_t = time.time() tasks = [] while True: song = await in_queue.get() if song is None: break task = loop.create_task( _update_database(song, loop, executor, db_kwargs) ) tasks.append(task) # Wrap asyncio.wait() in if statement to avoid ValueError if no tasks. if tasks: await asyncio.wait(tasks) elapsed = time.time() - start_t logging.info(f"All songs added to database ({elapsed:.2f} s)") # TODO: try/except, db rollbacks class Database: """ Class that holds a database connection to perform read/update/delete operations. """ def __init__( self, user, password, db_name, host="localhost", port=None, dialect="postgresql", driver=None ): """ Constructs a sqlalchemy database URL of the form `dialect+driver://username:password@host:port/db_name` to create a sqlalchemy database engine. Refer to `SQLAlchemy Database URLs`_. Args: user (str): User name. password (str): User password. db_name (str): Database name. host (str): Database hostname. port (int): Port on ``host``. dialect (str): SQL database dialect to use. See `SQLAlchemy Dialects`_. driver (str): SQL database driver to use. See `SQLAlchemy Database URLs`_. .. _`SQLAlchemy Dialects`: https://docs.sqlalchemy.org/en/13/dialects/ .. _`SQLAlchemy Database URLs`: https://docs.sqlalchemy.org/en/13/core/engines.html#database-urls """ # TODO: check/add sqlite support. # Construct database URL. driver = f"+{driver}" if driver else "" port = f":{port}" if port is not None else "" # MySQL requires localhost to be specified as 127.0.0.1 to correctly # use TCP. if dialect == "mysql" and host == "localhost": host = "127.0.0.1" url = f"{dialect}{driver}://{user}:{password}@{host}{port}/{db_name}" logging.debug(f"Connecting to database URL {url}") engine = sqlalchemy.create_engine(url) Session = sqlalchemy.orm.sessionmaker(engine) self.session = Session() Base.metadata.create_all(engine) self.base = Base self.engine = engine def __del__(self): self.session.close() def add_song( self, duration=None, filepath=None, filehash=None, title=None, youtube_id=None ): """ Args: duration (float): Song duration. filepath (str): Path to file on local machine. filehash (str): File hash. title (str): Song title. youtube_id (str): YouTube ID, i.e., watch?v=<youtube_id>. Returns: int: id of the inserted song. """ new_song = Song( duration=duration, filepath=filepath, filehash=filehash, title=title, youtube_id=youtube_id ) self.session.add(new_song) self.session.commit() return new_song.id def add_fingerprint(self, song_id, hash_, offset): """ Args: song_id (int): Song id corresponding to song in the Song table. hash_ (str): Fingerprint hash. offset (float): Fingerprint offset. Returns: int: id of the inserted fingerprint. """ new_fingerprint = Fingerprint( song_id=song_id, hash=hash_, offset=offset ) self.session.add(new_fingerprint) self.session.commit() return new_fingerprint.id def add_fingerprints(self, song_id, fingerprints): """ Args: song_id (int): Song table song id the fingerprints correspond to. fingerprints (List[tuple]): A list of (hash, offset) fingerprints. """ new_fingerprints = [ Fingerprint(song_id=song_id, hash=hash_, offset=offset) for hash_, offset in fingerprints ] self.session.bulk_save_objects(new_fingerprints) self.session.commit() def as_dict(self, combine_tables=False): """ Return the database as a Python dictionary. See :func:`database_obj_to_py`. Args: combine_tables (bool): If True, the returned dict will have a single ``songs`` field containing a list of songs, and each song will have a ``fingerprints`` field containing the list of fingerprints belonging to it. If False, the returned dict will contain a ``songs`` field and a ``fingerprints`` field. Returns: dict: tables Dict containing database Fingerprint and Song tables:: { "songs": list, "fingerprints": list } If ``combine_tables=True``, the returned dict will not contain a ``fingerprints`` key. """ songs_table = self.session.query(Song).all() fingerprints_table = self.session.query(Fingerprint).all() if combine_tables: return { "songs": database_obj_to_py(songs_table, fingerprints_in_song=True), } else: return { "songs": database_obj_to_py(songs_table), "fingerprints": database_obj_to_py(fingerprints_table), } def delete_all(self): """ Delete all rows in the Fingerprint and Song tables. """ self.session.query(Fingerprint).delete() self.session.query(Song).delete() self.session.commit() def _drop_tables(self, tables): self.base.metadata.drop_all(bind=self.engine, tables=tables) self.session.commit() def drop_all_tables(self): """ Drop Fingerprint and Song tables. """ self._drop_tables([Fingerprint.__table__, Song.__table__]) def drop_song_table(self): """ Drop Song table. """ self._drop_tables([Song.__table__]) def drop_fingerprint_table(self): """ Drop Fingerprint table. """ self._drop_tables([Fingerprint.__table__]) def query_fingerprints(self, hashes): """ Query the database for a list of matching hashes. Args: hashes (str|List[str]): Hash or list of hashes from a fingerprinted audio signal. Returns: fingerprints: list A list of fingerprints whose hashes match the input hashes. Each fingerprint is a dict containing the hash, song id, and offset (in seconds):: { "song_id": int, "hash": str, "offset": float } """ # Perform query; this is the equivalent of # SELECT * FROM fingerprint WHERE fingerprint.hash IN (`hashes`) query = self.session.query(Fingerprint).filter( Fingerprint.hash.in_(hashes) ) return database_obj_to_py(query.all()) def query_songs( self, id_=None, duration=None, duration_greater_than=None, duration_less_than=None, filehash=None, filepath=None, title=None, youtube_id=None, include_fingerprints=False ): """ Query the database for songs matching the specified criteria. Args: id_ (list|int): Int or list of ints corresponding to the id primary key field of the database Song table. duration (list|float): Float or list of floats corresponding to the duration field of the database Song table. duration_greater_than (float): Only return songs with a duration greater than this value, if one is specified. duration_less_than (float): Only return songs with a duration less than this value, if one is specified. filehash (list|str): A filehash or list of filehashes corresponding to the filehash field of the database Song table. filepath (list|str): A filepath or list of filepaths corresponding to the filepath field of the database Song table. title (list|str): A title or list of titles corresponding to the title field of the database Song table. youtube_id (list|str): A YouTube id or list of YouTube ids corresponding to the youtube_id field of the databse Song table. include_fingerprints (bool): Include the fingerprints of each song as a list within the dict corresponding to the song; see :meth:`query_fingerprints`. Returns: results: List[dict] A list of dicts where each dict represents a song and contains the following keys:: { "id": int, "duration": float, "filehash": str, "filepath": str, "title": str, "youtube_id" str, "fingerprints": list[dict], "num_fingerprints": int } The ``fingerprints`` and ``num_fingerprints`` keys are only included if ``include_fingerprints=True``. Raises: ValueError: if more than one of ``duration``, ``duration_greater_than``, or ``duration_less_than`` are supplied. """ duration_args_bool = [ duration is not None, duration_greater_than is not None, duration_less_than is not None ] if sum(duration_args_bool) > 1: raise ValueError( "Can only choose one of duration, duration_greater_than, " "or duration_less_than" ) query = self.session.query(Song) if duration is not None: query = query.filter(Song.duration == duration) elif duration_greater_than is not None: query = query.filter(Song.duration > duration_greater_than) elif duration_less_than is not None: query = query.filter(Song.duration < duration_less_than) # Handle remaining non-duration args separately. other_args = { "id": id_, "filehash": filehash, "filepath": filepath, "title": title, "youtube_id": youtube_id, } # Make the Song sqlalchemy DeclarativeMeta a dict so we can iterate # over its attributes. Song_ = vars(Song) for arg, val in other_args.items(): if val is not None: if not isinstance(val, (list, tuple)): val = [val] query = query.filter(Song_[arg].in_(val)) return database_obj_to_py( query.all(), fingerprints_in_song=include_fingerprints )
34.75
79
0.579272
a55a8cb055373766c801a93cbe22b800648dbe11
1,143
py
Python
Docker-Swarm-deployment/single-node/databroker/backup/backup-app/backup-watch.py
abhilashvenkatesh/iudx-deployment
d57a31709f196764da6cf1da2c7ae93fc19b6f11
[ "MIT" ]
4
2021-12-24T12:34:15.000Z
2022-02-24T12:59:50.000Z
Docker-Swarm-deployment/single-node/databroker/backup/backup-app/backup-watch.py
abhilashvenkatesh/iudx-deployment
d57a31709f196764da6cf1da2c7ae93fc19b6f11
[ "MIT" ]
null
null
null
Docker-Swarm-deployment/single-node/databroker/backup/backup-app/backup-watch.py
abhilashvenkatesh/iudx-deployment
d57a31709f196764da6cf1da2c7ae93fc19b6f11
[ "MIT" ]
null
null
null
#This python script watches for the changes in file LATEST.LOG and backup the definition #by calling the backup.sh import time import os from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler class OnMyWatch: # Set the directory to watch watchDirectory = "/var/lib/rabbitmq/" def __init__(self): self.observer = Observer() def run(self): event_handler = Handler() #recursively watch files in watchDirectory self.observer.schedule(event_handler, self.watchDirectory, recursive = True) self.observer.start() try: while True: time.sleep(5) except: self.observer.stop() print("Observer Stopped") self.observer.join() class Handler(FileSystemEventHandler): exec_string = f'/usr/share/app/backup.sh' def on_any_event(self,event): file_name=event.src_path.split('/')[-1] if event.is_directory: return None elif event.event_type == 'modified' and file_name == 'LATEST.LOG': #executes the backup script in shell on change of LATEST.LOG file os.system(self.exec_string) if __name__ == '__main__': watch = OnMyWatch() watch.run()
26.581395
88
0.725284
4af03f237452b0e1578b371813b59067f8547cef
10,941
py
Python
data_generator.py
KayqueTeles/MAML-work-in-progress
7a7c793a994a5f93d7a0b259adfc22918ce93a79
[ "MIT" ]
null
null
null
data_generator.py
KayqueTeles/MAML-work-in-progress
7a7c793a994a5f93d7a0b259adfc22918ce93a79
[ "MIT" ]
null
null
null
data_generator.py
KayqueTeles/MAML-work-in-progress
7a7c793a994a5f93d7a0b259adfc22918ce93a79
[ "MIT" ]
null
null
null
""" Code for loading data. """ import numpy as np import os import random import tensorflow as tf import sys from tensorflow.python.platform import flags from utils import get_images FLAGS = flags.FLAGS class DataGenerator(object): """ Data Generator capable of generating batches of sinusoid or Omniglot data. A "class" is considered a class of omniglot digits or a particular sinusoid function. """ def __init__(self, num_samples_per_class, batch_size, config={}): """ Args: num_samples_per_class: num samples to generate per class in one batch batch_size: size of meta batch size (e.g. number of functions) """ print('\n ** Initializing data_generator at data_generator.py ...') self.batch_size = batch_size self.num_samples_per_class = num_samples_per_class self.num_classes = 1 # by default 1 (only relevant for classification problems) if FLAGS.datasource == 'sinusoid': self.generate = self.generate_sinusoid_batch self.amp_range = config.get('amp_range', [0.1, 5.0]) self.phase_range = config.get('phase_range', [0, np.pi]) self.input_range = config.get('input_range', [-5.0, 5.0]) self.dim_input = 1 self.dim_output = 1 elif 'omniglot' in FLAGS.datasource: self.num_classes = config.get('num_classes', FLAGS.num_classes) self.img_size = config.get('img_size'f, (28, 28)) self.dim_input = np.prod(self.img_size) self.dim_output = self.num_classes # data that is pre-resized using PIL with lanczos filter data_folder = config.get('data_folder', './data/omniglot_resized') character_folders = [os.path.join(data_folder, family, character) \ for family in os.listdir(data_folder) \ if os.path.isdir(os.path.join(data_folder, family)) \ for character in os.listdir(os.path.join(data_folder, family))] random.seed(1) random.shuffle(character_folders) num_val = 100 num_train = config.get('num_train', 1200) - num_val self.metatrain_character_folders = character_folders[:num_train] if FLAGS.test_set: self.metaval_character_folders = character_folders[num_train+num_val:] else: self.metaval_character_folders = character_folders[num_train:num_train+num_val] self.rotations = config.get('rotations', [0, 90, 180, 270]) elif FLAGS.datasource == 'miniimagenet': print(' ** Mini-Imagenet predefinitions selected.') self.num_classes = config.get('num_classes', FLAGS.num_classes) print(' ** Defining image data...') self.img_size = config.get('img_size', (84, 84)) #self.img_size = config.get('img_size', (101, 101)) self.dim_input = np.prod(self.img_size)*3 self.dim_output = self.num_classes print(' ** Choosing folders...') metatrain_folder = config.get('metatrain_folder', './data/miniImagenet/train') if FLAGS.test_set: metaval_folder = config.get('metaval_folder', './data/miniImagenet/test') else: metaval_folder = config.get('metaval_folder', './data/miniImagenet/val') print(' ** Defining folder labels...') metatrain_folders = [os.path.join(metatrain_folder, label) \ for label in os.listdir(metatrain_folder) \ if os.path.isdir(os.path.join(metatrain_folder, label)) \ ] metaval_folders = [os.path.join(metaval_folder, label) \ for label in os.listdir(metaval_folder) \ if os.path.isdir(os.path.join(metaval_folder, label)) \ ] print(' -- metaval_folders: ', metaval_folders) print(' ** Checking if data source is reckognized...') self.metatrain_character_folders = metatrain_folders self.metaval_character_folders = metaval_folders self.rotations = config.get('rotations', [0]) else: raise ValueError('Unrecognized data source') def make_data_tensor(self, train=True): print(' ** Creating data tensor...') if train: folders = self.metatrain_character_folders # number of tasks, not number of meta-iterations. (divide by metabatch size to measure) num_total_batches = 200000 else: folders = self.metaval_character_folders print(' -- folders: ', folders) #################################### #testefol = self.metaval_character_folders #print(' -- testelos: ', testelos) num_total_batches = 600 # make list of files print(' ** Generating filenames....') all_filenames = [] print(' -- folders: ', folders) for _ in range(num_total_batches): sampled_character_folders = random.sample(folders, self.num_classes) random.shuffle(sampled_character_folders) labels_and_images = get_images(sampled_character_folders, range(self.num_classes), nb_samples=self.num_samples_per_class, shuffle=False) #print(' -- labels_and_images:', labels_and_images) #LISTA DE DIRETÓRIOS ONDE ESTÃO AS IMAGENS, VEJA: labels_and_images: [(0, './data/miniImagenet/test/n02/img_Y_369.jpg'), (0, './data/miniImagenet/test/n02/img_Y_730.jpg'), # make sure the above isn't randomized order labels = [li[0] for li in labels_and_images] #print(' -- labels:', labels) filenames = [li[1] for li in labels_and_images] all_filenames.extend(filenames) #print(' -- allfilenames: ', all_filenames) print(' ** Generating filename queue....') # make queue for tensorflow to read from filename_queue = tf.train.string_input_producer(tf.convert_to_tensor(all_filenames), shuffle=False) print(' ** Generating image processing ops') image_reader = tf.WholeFileReader() _, image_file = image_reader.read(filename_queue) print(' -- image_reader = ', image_reader) if FLAGS.datasource == 'miniimagenet': image = tf.image.decode_jpeg(image_file, channels=3) print(' -- image = ', image) image.set_shape((self.img_size[0],self.img_size[1],3)) print(' -- image = ', image) image = tf.reshape(image, [self.dim_input]) print(' -- image = ', image) image = tf.cast(image, tf.float32) / 255.0 print(' -- image = ', image) else: image = tf.image.decode_png(image_file) image.set_shape((self.img_size[0],self.img_size[1],1)) image = tf.reshape(image, [self.dim_input]) image = tf.cast(image, tf.float32) / 255.0 image = 1.0 - image # invert num_preprocess_threads = 1 # TODO - enable this to be set to >1 min_queue_examples = 256 examples_per_batch = self.num_classes * self.num_samples_per_class batch_image_size = self.batch_size * examples_per_batch print(' ** Batching images') images = tf.train.batch( [image], batch_size = batch_image_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * batch_image_size, ) print(' -- images = ', images) all_image_batches, all_label_batches = [], [] print(' ** Manipulating image data to be right shape') for i in range(self.batch_size): image_batch = images[i*examples_per_batch:(i+1)*examples_per_batch] if FLAGS.datasource == 'omniglot': # omniglot augments the dataset by rotating digits to create new classes # get rotation per class (e.g. 0,1,2,0,0 if there are 5 classes) rotations = tf.multinomial(tf.log([[1., 1.,1.,1.]]), self.num_classes) label_batch = tf.convert_to_tensor(labels) new_list, new_label_list = [], [] for k in range(self.num_samples_per_class): class_idxs = tf.range(0, self.num_classes) class_idxs = tf.random_shuffle(class_idxs) true_idxs = class_idxs*self.num_samples_per_class + k new_list.append(tf.gather(image_batch,true_idxs)) if FLAGS.datasource == 'omniglot': # and FLAGS.train: new_list[-1] = tf.stack([tf.reshape(tf.image.rot90( tf.reshape(new_list[-1][ind], [self.img_size[0],self.img_size[1],1]), k=tf.cast(rotations[0,class_idxs[ind]], tf.int32)), (self.dim_input,)) for ind in range(self.num_classes)]) new_label_list.append(tf.gather(label_batch, true_idxs)) new_list = tf.concat(new_list, 0) # has shape [self.num_classes*self.num_samples_per_class, self.dim_input] new_label_list = tf.concat(new_label_list, 0) all_image_batches.append(new_list) all_label_batches.append(new_label_list) all_image_batches = tf.stack(all_image_batches) all_label_batches = tf.stack(all_label_batches) all_label_batches = tf.one_hot(all_label_batches, self.num_classes) print(' -- all_image_batches', all_image_batches) part = all_image_batches[0,0:40,] tf.print(' -- part: ', part, output_stream=sys.stdout) print(' ** Data tensor generation COMPLETE!') return all_image_batches, all_label_batches def generate_sinusoid_batch(self, train=True, input_idx=None): print(' ** GENERATING DEF BEING USED!') # Note train arg is not used (but it is used for omniglot method. # input_idx is used during qualitative testing --the number of examples used for the grad update amp = np.random.uniform(self.amp_range[0], self.amp_range[1], [self.batch_size]) phase = np.random.uniform(self.phase_range[0], self.phase_range[1], [self.batch_size]) outputs = np.zeros([self.batch_size, self.num_samples_per_class, self.dim_output]) init_inputs = np.zeros([self.batch_size, self.num_samples_per_class, self.dim_input]) for func in range(self.batch_size): init_inputs[func] = np.random.uniform(self.input_range[0], self.input_range[1], [self.num_samples_per_class, 1]) if input_idx is not None: init_inputs[:,input_idx:,0] = np.linspace(self.input_range[0], self.input_range[1], num=self.num_samples_per_class-input_idx, retstep=False) outputs[func] = amp[func] * np.sin(init_inputs[func]-phase[func]) return init_inputs, outputs, amp, phase
53.370732
238
0.618591
9654e0d4b319cc304bdde3e9bf2583401f96b590
2,090
py
Python
mpl_format/utils/color_utils.py
vahndi/mpl-format
b03f97c37968e55a35c7181d93616eb44fc55f05
[ "MIT" ]
null
null
null
mpl_format/utils/color_utils.py
vahndi/mpl-format
b03f97c37968e55a35c7181d93616eb44fc55f05
[ "MIT" ]
51
2020-05-18T04:18:11.000Z
2022-02-01T02:35:59.000Z
mpl_format/utils/color_utils.py
vahndi/mpl-format
b03f97c37968e55a35c7181d93616eb44fc55f05
[ "MIT" ]
null
null
null
from typing import Iterable, Union, List from matplotlib.colors import to_rgb, to_rgba from compound_types.built_ins import FloatOrFloatIterable from mpl_format.compound_types import Color def cross_fade( from_color: Color, to_color: Color, amount: FloatOrFloatIterable, ) -> Union[Color, List[Color]]: """ Return a new color which fades amount proportion of the way between the 2 colors. :param from_color: The color to fade from. :param to_color: The color to fade to. :param amount: The amount to fade by, from 0.0 to 1.0 """ if isinstance(amount, Iterable): return [ cross_fade(from_color, to_color, amt) for amt in amount ] if isinstance(from_color, str): from_color = to_rgb(from_color) if isinstance(to_color, str): to_color = to_rgb(to_color) return tuple([from_value + amount * (to_value - from_value) for from_value, to_value in zip(from_color, to_color)]) def blacken( color: Color, amount: FloatOrFloatIterable ) -> Union[Color, List[Color]]: """ Return a color or colors amount fraction or fractions of the way from `color` to `black`. :param color: The existing color. :param amount: The proportion to blacken by. """ return cross_fade(from_color=color, to_color='black', amount=amount) def whiten( color: Color, amount: FloatOrFloatIterable ) -> Union[Color, List[Color]]: """ Return a color or colors amount fraction or fractions of the way from `color` to `white`. :param color: The existing color. :param amount: The proportion to blacken by. """ return cross_fade(from_color=color, to_color='white', amount=amount) def set_alpha(color: Color, alpha: float) -> Color: """ Set the alpha level of a color to a given value. :param color: The existing color. :param alpha: The new alpha level """ color = to_rgba(color) color = (color[0], color[1], color[2], alpha) return color
28.630137
77
0.651196
1c76efbc0e58ecb3302fbdd372538a8293a9f49a
40,862
py
Python
control/tests/statesp_test.py
josephcslater/python-control
e080cef44e718c7c0e3a286fcc3adae405936b14
[ "BSD-3-Clause" ]
null
null
null
control/tests/statesp_test.py
josephcslater/python-control
e080cef44e718c7c0e3a286fcc3adae405936b14
[ "BSD-3-Clause" ]
null
null
null
control/tests/statesp_test.py
josephcslater/python-control
e080cef44e718c7c0e3a286fcc3adae405936b14
[ "BSD-3-Clause" ]
null
null
null
"""statesp_test.py - test state space class RMM, 30 Mar 2011 based on TestStateSp from v0.4a) RMM, 14 Jun 2019 statesp_array_test.py coverted from statesp_test.py to test with use_numpy_matrix(False) BG, 26 Jul 2020 merge statesp_array_test.py differences into statesp_test.py convert to pytest """ import numpy as np import pytest import operator from numpy.linalg import solve from scipy.linalg import block_diag, eigvals import control as ct from control.config import defaults from control.dtime import sample_system from control.lti import evalfr from control.statesp import (StateSpace, _convert_to_statespace, drss, rss, ss, tf2ss, _statesp_defaults) from control.tests.conftest import ismatarrayout, slycotonly from control.xferfcn import TransferFunction, ss2tf from .conftest import editsdefaults class TestStateSpace: """Tests for the StateSpace class.""" @pytest.fixture def sys322ABCD(self): """Matrices for sys322""" A322 = [[-3., 4., 2.], [-1., -3., 0.], [2., 5., 3.]] B322 = [[1., 4.], [-3., -3.], [-2., 1.]] C322 = [[4., 2., -3.], [1., 4., 3.]] D322 = [[-2., 4.], [0., 1.]] return (A322, B322, C322, D322) @pytest.fixture def sys322(self, sys322ABCD): """3-states square system (2 inputs x 2 outputs)""" return StateSpace(*sys322ABCD) @pytest.fixture def sys222(self): """2-states square system (2 inputs x 2 outputs)""" A222 = [[4., 1.], [2., -3]] B222 = [[5., 2.], [-3., -3.]] C222 = [[2., -4], [0., 1.]] D222 = [[3., 2.], [1., -1.]] return StateSpace(A222, B222, C222, D222) @pytest.fixture def sys623(self): """sys3: 6 states non square system (2 inputs x 3 outputs)""" A623 = np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0], [0, 0, 0, -4, 0, 0], [0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 3]]) B623 = np.array([[0, -1], [-1, 0], [1, -1], [0, 0], [0, 1], [-1, -1]]) C623 = np.array([[1, 0, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 0, 1, 0, 0, 1]]) D623 = np.zeros((3, 2)) return StateSpace(A623, B623, C623, D623) @pytest.mark.parametrize( "dt", [(), (None, ), (0, ), (1, ), (0.1, ), (True, )], ids=lambda i: "dt " + ("unspec" if len(i) == 0 else str(i[0]))) @pytest.mark.parametrize( "argfun", [pytest.param( lambda ABCDdt: (ABCDdt, {}), id="A, B, C, D[, dt]"), pytest.param( lambda ABCDdt: (ABCDdt[:4], {'dt': dt_ for dt_ in ABCDdt[4:]}), id="A, B, C, D[, dt=dt]"), pytest.param( lambda ABCDdt: ((StateSpace(*ABCDdt), ), {}), id="sys") ]) def test_constructor(self, sys322ABCD, dt, argfun): """Test different ways to call the StateSpace() constructor""" args, kwargs = argfun(sys322ABCD + dt) sys = StateSpace(*args, **kwargs) dtref = defaults['control.default_dt'] if len(dt) == 0 else dt[0] np.testing.assert_almost_equal(sys.A, sys322ABCD[0]) np.testing.assert_almost_equal(sys.B, sys322ABCD[1]) np.testing.assert_almost_equal(sys.C, sys322ABCD[2]) np.testing.assert_almost_equal(sys.D, sys322ABCD[3]) assert sys.dt == dtref @pytest.mark.parametrize("args, exc, errmsg", [((True, ), TypeError, "(can only take in|sys must be) a StateSpace"), ((1, 2), ValueError, "1, 4, or 5 arguments"), ((np.ones((3, 2)), np.ones((3, 2)), np.ones((2, 2)), np.ones((2, 2))), ValueError, "A must be square"), ((np.ones((3, 3)), np.ones((2, 2)), np.ones((2, 3)), np.ones((2, 2))), ValueError, "A and B"), ((np.ones((3, 3)), np.ones((3, 2)), np.ones((2, 2)), np.ones((2, 2))), ValueError, "A and C"), ((np.ones((3, 3)), np.ones((3, 2)), np.ones((2, 3)), np.ones((2, 3))), ValueError, "B and D"), ((np.ones((3, 3)), np.ones((3, 2)), np.ones((2, 3)), np.ones((3, 2))), ValueError, "C and D"), ]) def test_constructor_invalid(self, args, exc, errmsg): """Test invalid input to StateSpace() constructor""" with pytest.raises(exc, match=errmsg): StateSpace(*args) with pytest.raises(exc, match=errmsg): ss(*args) def test_constructor_warns(self, sys322ABCD): """Test ambiguos input to StateSpace() constructor""" with pytest.warns(UserWarning, match="received multiple dt"): sys = StateSpace(*(sys322ABCD + (0.1, )), dt=0.2) np.testing.assert_almost_equal(sys.A, sys322ABCD[0]) np.testing.assert_almost_equal(sys.B, sys322ABCD[1]) np.testing.assert_almost_equal(sys.C, sys322ABCD[2]) np.testing.assert_almost_equal(sys.D, sys322ABCD[3]) assert sys.dt == 0.1 def test_copy_constructor(self): """Test the copy constructor""" # Create a set of matrices for a simple linear system A = np.array([[-1]]) B = np.array([[1]]) C = np.array([[1]]) D = np.array([[0]]) # Create the first linear system and a copy linsys = StateSpace(A, B, C, D) cpysys = StateSpace(linsys) # Change the original A matrix A[0, 0] = -2 np.testing.assert_array_equal(linsys.A, [[-1]]) # original value np.testing.assert_array_equal(cpysys.A, [[-1]]) # original value # Change the A matrix for the original system linsys.A[0, 0] = -3 np.testing.assert_array_equal(cpysys.A, [[-1]]) # original value def test_copy_constructor_nodt(self, sys322): """Test the copy constructor when an object without dt is passed""" sysin = sample_system(sys322, 1.) del sysin.dt sys = StateSpace(sysin) assert sys.dt == defaults['control.default_dt'] # test for static gain sysin = StateSpace([], [], [], [[1, 2], [3, 4]], 1.) del sysin.dt sys = StateSpace(sysin) assert sys.dt is None def test_matlab_style_constructor(self): """Use (deprecated) matrix-style construction string""" with pytest.deprecated_call(): sys = StateSpace("-1 1; 0 2", "0; 1", "1, 0", "0") assert sys.A.shape == (2, 2) assert sys.B.shape == (2, 1) assert sys.C.shape == (1, 2) assert sys.D.shape == (1, 1) for X in [sys.A, sys.B, sys.C, sys.D]: assert ismatarrayout(X) def test_D_broadcast(self, sys623): """Test broadcast of D=0 to the right shape""" # Giving D as a scalar 0 should broadcast to the right shape sys = StateSpace(sys623.A, sys623.B, sys623.C, 0) np.testing.assert_array_equal(sys623.D, sys.D) # Giving D as a matrix of the wrong size should generate an error with pytest.raises(ValueError): sys = StateSpace(sys.A, sys.B, sys.C, np.array([[0]])) # Make sure that empty systems still work sys = StateSpace([], [], [], 1) np.testing.assert_array_equal(sys.D, [[1]]) sys = StateSpace([], [], [], [[0]]) np.testing.assert_array_equal(sys.D, [[0]]) sys = StateSpace([], [], [], [0]) np.testing.assert_array_equal(sys.D, [[0]]) sys = StateSpace([], [], [], 0) np.testing.assert_array_equal(sys.D, [[0]]) def test_pole(self, sys322): """Evaluate the poles of a MIMO system.""" p = np.sort(sys322.pole()) true_p = np.sort([3.34747678408874, -3.17373839204437 + 1.47492908003839j, -3.17373839204437 - 1.47492908003839j]) np.testing.assert_array_almost_equal(p, true_p) def test_zero_empty(self): """Test to make sure zero() works with no zeros in system.""" sys = _convert_to_statespace(TransferFunction([1], [1, 2, 1])) np.testing.assert_array_equal(sys.zero(), np.array([])) @slycotonly def test_zero_siso(self, sys222): """Evaluate the zeros of a SISO system.""" # extract only first input / first output system of sys222. This system is denoted sys111 # or tf111 tf111 = ss2tf(sys222) sys111 = tf2ss(tf111[0, 0]) # compute zeros as root of the characteristic polynomial at the numerator of tf111 # this method is simple and assumed as valid in this test true_z = np.sort(tf111[0, 0].zero()) # Compute the zeros through ab08nd, which is tested here z = np.sort(sys111.zero()) np.testing.assert_almost_equal(true_z, z) @slycotonly def test_zero_mimo_sys322_square(self, sys322): """Evaluate the zeros of a square MIMO system.""" z = np.sort(sys322.zero()) true_z = np.sort([44.41465, -0.490252, -5.924398]) np.testing.assert_array_almost_equal(z, true_z) @slycotonly def test_zero_mimo_sys222_square(self, sys222): """Evaluate the zeros of a square MIMO system.""" z = np.sort(sys222.zero()) true_z = np.sort([-10.568501, 3.368501]) np.testing.assert_array_almost_equal(z, true_z) @slycotonly def test_zero_mimo_sys623_non_square(self, sys623): """Evaluate the zeros of a non square MIMO system.""" z = np.sort(sys623.zero()) true_z = np.sort([2., -1.]) np.testing.assert_array_almost_equal(z, true_z) def test_add_ss(self, sys222, sys322): """Add two MIMO systems.""" A = [[-3., 4., 2., 0., 0.], [-1., -3., 0., 0., 0.], [2., 5., 3., 0., 0.], [0., 0., 0., 4., 1.], [0., 0., 0., 2., -3.]] B = [[1., 4.], [-3., -3.], [-2., 1.], [5., 2.], [-3., -3.]] C = [[4., 2., -3., 2., -4.], [1., 4., 3., 0., 1.]] D = [[1., 6.], [1., 0.]] sys = sys322 + sys222 np.testing.assert_array_almost_equal(sys.A, A) np.testing.assert_array_almost_equal(sys.B, B) np.testing.assert_array_almost_equal(sys.C, C) np.testing.assert_array_almost_equal(sys.D, D) def test_subtract_ss(self, sys222, sys322): """Subtract two MIMO systems.""" A = [[-3., 4., 2., 0., 0.], [-1., -3., 0., 0., 0.], [2., 5., 3., 0., 0.], [0., 0., 0., 4., 1.], [0., 0., 0., 2., -3.]] B = [[1., 4.], [-3., -3.], [-2., 1.], [5., 2.], [-3., -3.]] C = [[4., 2., -3., -2., 4.], [1., 4., 3., 0., -1.]] D = [[-5., 2.], [-1., 2.]] sys = sys322 - sys222 np.testing.assert_array_almost_equal(sys.A, A) np.testing.assert_array_almost_equal(sys.B, B) np.testing.assert_array_almost_equal(sys.C, C) np.testing.assert_array_almost_equal(sys.D, D) def test_multiply_ss(self, sys222, sys322): """Multiply two MIMO systems.""" A = [[4., 1., 0., 0., 0.], [2., -3., 0., 0., 0.], [2., 0., -3., 4., 2.], [-6., 9., -1., -3., 0.], [-4., 9., 2., 5., 3.]] B = [[5., 2.], [-3., -3.], [7., -2.], [-12., -3.], [-5., -5.]] C = [[-4., 12., 4., 2., -3.], [0., 1., 1., 4., 3.]] D = [[-2., -8.], [1., -1.]] sys = sys322 * sys222 np.testing.assert_array_almost_equal(sys.A, A) np.testing.assert_array_almost_equal(sys.B, B) np.testing.assert_array_almost_equal(sys.C, C) np.testing.assert_array_almost_equal(sys.D, D) @pytest.mark.parametrize("omega, resp", [(1., np.array([[ 4.37636761e-05-0.01522976j, -7.92603939e-01+0.02617068j], [-3.31544858e-01+0.0576105j, 1.28919037e-01-0.14382495j]])), (32, np.array([[-1.16548243e-05-3.13444825e-04j, -7.99936828e-01+4.54201816e-06j], [-3.00137118e-01+3.42881660e-03j, 6.32015038e-04-1.21462255e-02j]]))]) @pytest.mark.parametrize("dt", [None, 0, 1e-3]) def test_call(self, dt, omega, resp): """Evaluate the frequency response at single frequencies""" A = [[-2, 0.5], [0.5, -0.3]] B = [[0.3, -1.3], [0.1, 0.]] C = [[0., 0.1], [-0.3, -0.2]] D = [[0., -0.8], [-0.3, 0.]] sys = StateSpace(A, B, C, D) if dt: sys = sample_system(sys, dt) s = np.exp(omega * 1j * dt) else: s = omega * 1j # Correct versions of the call np.testing.assert_allclose(evalfr(sys, s), resp, atol=1e-3) np.testing.assert_allclose(sys(s), resp, atol=1e-3) # Deprecated name of the call (should generate error) with pytest.raises(AttributeError): sys.evalfr(omega) @slycotonly def test_freq_resp(self): """Evaluate the frequency response at multiple frequencies.""" A = [[-2, 0.5], [0.5, -0.3]] B = [[0.3, -1.3], [0.1, 0.]] C = [[0., 0.1], [-0.3, -0.2]] D = [[0., -0.8], [-0.3, 0.]] sys = StateSpace(A, B, C, D) true_mag = [[[0.0852992637230322, 0.00103596611395218], [0.935374692849736, 0.799380720864549]], [[0.55656854563842, 0.301542699860857], [0.609178071542849, 0.0382108097985257]]] true_phase = [[[-0.566195599644593, -1.68063565332582], [3.0465958317514, 3.14141384339534]], [[2.90457947657161, 3.10601268291914], [-0.438157380501337, -1.40720969147217]]] true_omega = [0.1, 10.] mag, phase, omega = sys.frequency_response(true_omega) np.testing.assert_almost_equal(mag, true_mag) np.testing.assert_almost_equal(phase, true_phase) np.testing.assert_equal(omega, true_omega) # Deprecated version of the call (should return warning) with pytest.warns(DeprecationWarning, match="will be removed"): mag, phase, omega = sys.freqresp(true_omega) np.testing.assert_almost_equal(mag, true_mag) def test__isstatic(self): A0 = np.zeros((2,2)) A1 = A0.copy() A1[0,1] = 1.1 B0 = np.zeros((2,1)) B1 = B0.copy() B1[0,0] = 1.3 C0 = A0 C1 = np.eye(2) D0 = 0 D1 = np.ones((2,1)) assert StateSpace(A0, B0, C1, D1)._isstatic() assert not StateSpace(A1, B0, C1, D1)._isstatic() assert not StateSpace(A0, B1, C1, D1)._isstatic() assert not StateSpace(A1, B1, C1, D1)._isstatic() assert StateSpace(A0, B0, C0, D0)._isstatic() assert StateSpace(A0, B0, C0, D1)._isstatic() assert StateSpace(A0, B0, C1, D0)._isstatic() @slycotonly def test_minreal(self): """Test a minreal model reduction.""" # A = [-2, 0.5, 0; 0.5, -0.3, 0; 0, 0, -0.1] A = [[-2, 0.5, 0], [0.5, -0.3, 0], [0, 0, -0.1]] # B = [0.3, -1.3; 0.1, 0; 1, 0] B = [[0.3, -1.3], [0.1, 0.], [1.0, 0.0]] # C = [0, 0.1, 0; -0.3, -0.2, 0] C = [[0., 0.1, 0.0], [-0.3, -0.2, 0.0]] # D = [0 -0.8; -0.3 0] D = [[0., -0.8], [-0.3, 0.]] # sys = ss(A, B, C, D) sys = StateSpace(A, B, C, D) sysr = sys.minreal() assert sysr.nstates == 2 assert sysr.ninputs == sys.ninputs assert sysr.noutputs == sys.noutputs np.testing.assert_array_almost_equal( eigvals(sysr.A), [-2.136154, -0.1638459]) def test_append_ss(self): """Test appending two state-space systems.""" A1 = [[-2, 0.5, 0], [0.5, -0.3, 0], [0, 0, -0.1]] B1 = [[0.3, -1.3], [0.1, 0.], [1.0, 0.0]] C1 = [[0., 0.1, 0.0], [-0.3, -0.2, 0.0]] D1 = [[0., -0.8], [-0.3, 0.]] A2 = [[-1.]] B2 = [[1.2]] C2 = [[0.5]] D2 = [[0.4]] A3 = [[-2, 0.5, 0, 0], [0.5, -0.3, 0, 0], [0, 0, -0.1, 0], [0, 0, 0., -1.]] B3 = [[0.3, -1.3, 0], [0.1, 0., 0], [1.0, 0.0, 0], [0., 0, 1.2]] C3 = [[0., 0.1, 0.0, 0.0], [-0.3, -0.2, 0.0, 0.0], [0., 0., 0., 0.5]] D3 = [[0., -0.8, 0.], [-0.3, 0., 0.], [0., 0., 0.4]] sys1 = StateSpace(A1, B1, C1, D1) sys2 = StateSpace(A2, B2, C2, D2) sys3 = StateSpace(A3, B3, C3, D3) sys3c = sys1.append(sys2) np.testing.assert_array_almost_equal(sys3.A, sys3c.A) np.testing.assert_array_almost_equal(sys3.B, sys3c.B) np.testing.assert_array_almost_equal(sys3.C, sys3c.C) np.testing.assert_array_almost_equal(sys3.D, sys3c.D) def test_append_tf(self): """Test appending a state-space system with a tf""" A1 = [[-2, 0.5, 0], [0.5, -0.3, 0], [0, 0, -0.1]] B1 = [[0.3, -1.3], [0.1, 0.], [1.0, 0.0]] C1 = [[0., 0.1, 0.0], [-0.3, -0.2, 0.0]] D1 = [[0., -0.8], [-0.3, 0.]] s = TransferFunction([1, 0], [1]) h = 1 / (s + 1) / (s + 2) sys1 = StateSpace(A1, B1, C1, D1) sys2 = _convert_to_statespace(h) sys3c = sys1.append(sys2) np.testing.assert_array_almost_equal(sys1.A, sys3c.A[:3, :3]) np.testing.assert_array_almost_equal(sys1.B, sys3c.B[:3, :2]) np.testing.assert_array_almost_equal(sys1.C, sys3c.C[:2, :3]) np.testing.assert_array_almost_equal(sys1.D, sys3c.D[:2, :2]) np.testing.assert_array_almost_equal(sys2.A, sys3c.A[3:, 3:]) np.testing.assert_array_almost_equal(sys2.B, sys3c.B[3:, 2:]) np.testing.assert_array_almost_equal(sys2.C, sys3c.C[2:, 3:]) np.testing.assert_array_almost_equal(sys2.D, sys3c.D[2:, 2:]) np.testing.assert_array_almost_equal(sys3c.A[:3, 3:], np.zeros((3, 2))) np.testing.assert_array_almost_equal(sys3c.A[3:, :3], np.zeros((2, 3))) def test_array_access_ss(self): sys1 = StateSpace([[1., 2.], [3., 4.]], [[5., 6.], [6., 8.]], [[9., 10.], [11., 12.]], [[13., 14.], [15., 16.]], 1) sys1_11 = sys1[0, 1] np.testing.assert_array_almost_equal(sys1_11.A, sys1.A) np.testing.assert_array_almost_equal(sys1_11.B, sys1.B[:, 1:2]) np.testing.assert_array_almost_equal(sys1_11.C, sys1.C[0:1, :]) np.testing.assert_array_almost_equal(sys1_11.D, sys1.D[0, 1]) assert sys1.dt == sys1_11.dt def test_dc_gain_cont(self): """Test DC gain for continuous-time state-space systems.""" sys = StateSpace(-2., 6., 5., 0) np.testing.assert_allclose(sys.dcgain(), 15.) sys2 = StateSpace(-2, [6., 4.], [[5.], [7.], [11]], np.zeros((3, 2))) expected = np.array([[15., 10.], [21., 14.], [33., 22.]]) np.testing.assert_allclose(sys2.dcgain(), expected) sys3 = StateSpace(0., 1., 1., 0.) np.testing.assert_equal(sys3.dcgain(), np.nan) def test_dc_gain_discr(self): """Test DC gain for discrete-time state-space systems.""" # static gain sys = StateSpace([], [], [], 2, True) np.testing.assert_equal(sys.dcgain(), 2) # averaging filter sys = StateSpace(0.5, 0.5, 1, 0, True) np.testing.assert_allclose(sys.dcgain(), 1) # differencer sys = StateSpace(0, 1, -1, 1, True) np.testing.assert_equal(sys.dcgain(), 0) # summer sys = StateSpace(1, 1, 1, 0, True) np.testing.assert_equal(sys.dcgain(), np.nan) @pytest.mark.parametrize("outputs", range(1, 6)) @pytest.mark.parametrize("inputs", range(1, 6)) @pytest.mark.parametrize("dt", [None, 0, 1, True], ids=["dtNone", "c", "dt1", "dtTrue"]) def test_dc_gain_integrator(self, outputs, inputs, dt): """DC gain when eigenvalue at DC returns appropriately sized array of nan. the SISO case is also tested in test_dc_gain_{cont,discr} time systems (dt=0) """ states = max(inputs, outputs) # a matrix that is singular at DC, and has no "useless" states as in # _remove_useless_states a = np.triu(np.tile(2, (states, states))) # eigenvalues all +2, except for ... a[0, 0] = 0 if dt in [0, None] else 1 b = np.eye(max(inputs, states))[:states, :inputs] c = np.eye(max(outputs, states))[:outputs, :states] d = np.zeros((outputs, inputs)) sys = StateSpace(a, b, c, d, dt) dc = np.squeeze(np.full_like(d, np.nan)) np.testing.assert_array_equal(dc, sys.dcgain()) def test_scalar_static_gain(self): """Regression: can we create a scalar static gain? make sure StateSpace internals, specifically ABC matrix sizes, are OK for LTI operations """ g1 = StateSpace([], [], [], [2]) g2 = StateSpace([], [], [], [3]) g3 = g1 * g2 assert 6 == g3.D[0, 0] g4 = g1 + g2 assert 5 == g4.D[0, 0] g5 = g1.feedback(g2) np.testing.assert_allclose(2. / 7, g5.D[0, 0]) g6 = g1.append(g2) np.testing.assert_allclose(np.diag([2, 3]), g6.D) def test_matrix_static_gain(self): """Regression: can we create matrix static gains?""" d1 = np.array([[1, 2, 3], [4, 5, 6]]) d2 = np.array([[7, 8], [9, 10], [11, 12]]) g1 = StateSpace([], [], [], d1) # _remove_useless_states was making A = [[0]] assert (0, 0) == g1.A.shape g2 = StateSpace([], [], [], d2) g3 = StateSpace([], [], [], d2.T) h1 = g1 * g2 np.testing.assert_array_equal(np.dot(d1, d2), h1.D) h2 = g1 + g3 np.testing.assert_array_equal(d1 + d2.T, h2.D) h3 = g1.feedback(g2) np.testing.assert_array_almost_equal( solve(np.eye(2) + np.dot(d1, d2), d1), h3.D) h4 = g1.append(g2) np.testing.assert_array_equal(block_diag(d1, d2), h4.D) def test_remove_useless_states(self): """Regression: _remove_useless_states gives correct ABC sizes.""" g1 = StateSpace(np.zeros((3, 3)), np.zeros((3, 4)), np.zeros((5, 3)), np.zeros((5, 4)), remove_useless_states=True) assert (0, 0) == g1.A.shape assert (0, 4) == g1.B.shape assert (5, 0) == g1.C.shape assert (5, 4) == g1.D.shape assert 0 == g1.nstates @pytest.mark.parametrize("A, B, C, D", [([1], [], [], [1]), ([1], [1], [], [1]), ([1], [], [1], [1]), ([], [1], [], [1]), ([], [1], [1], [1]), ([], [], [1], [1]), ([1], [1], [1], [])]) def test_bad_empty_matrices(self, A, B, C, D): """Mismatched ABCD matrices when some are empty.""" with pytest.raises(ValueError): StateSpace(A, B, C, D) def test_minreal_static_gain(self): """Regression: minreal on static gain was failing.""" g1 = StateSpace([], [], [], [1]) g2 = g1.minreal() np.testing.assert_array_equal(g1.A, g2.A) np.testing.assert_array_equal(g1.B, g2.B) np.testing.assert_array_equal(g1.C, g2.C) np.testing.assert_array_equal(g1.D, g2.D) def test_empty(self): """Regression: can we create an empty StateSpace object?""" g1 = StateSpace([], [], [], []) assert 0 == g1.nstates assert 0 == g1.ninputs assert 0 == g1.noutputs def test_matrix_to_state_space(self): """_convert_to_statespace(matrix) gives ss([],[],[],D)""" with pytest.deprecated_call(): D = np.matrix([[1, 2, 3], [4, 5, 6]]) g = _convert_to_statespace(D) np.testing.assert_array_equal(np.empty((0, 0)), g.A) np.testing.assert_array_equal(np.empty((0, D.shape[1])), g.B) np.testing.assert_array_equal(np.empty((D.shape[0], 0)), g.C) np.testing.assert_array_equal(D, g.D) def test_lft(self): """ test lft function with result obtained from matlab implementation""" # test case A = [[1, 2, 3], [1, 4, 5], [2, 3, 4]] B = [[0, 2], [5, 6], [5, 2]] C = [[1, 4, 5], [2, 3, 0]] D = [[0, 0], [3, 0]] P = StateSpace(A, B, C, D) Ak = [[0, 2, 3], [2, 3, 5], [2, 1, 9]] Bk = [[1, 1], [2, 3], [9, 4]] Ck = [[1, 4, 5], [2, 3, 6]] Dk = [[0, 2], [0, 0]] K = StateSpace(Ak, Bk, Ck, Dk) # case 1 pk = P.lft(K, 2, 1) Amatlab = [1, 2, 3, 4, 6, 12, 1, 4, 5, 17, 38, 61, 2, 3, 4, 9, 26, 37, 2, 3, 0, 3, 14, 18, 4, 6, 0, 8, 27, 35, 18, 27, 0, 29, 109, 144] Bmatlab = [0, 10, 10, 7, 15, 58] Cmatlab = [1, 4, 5, 0, 0, 0] Dmatlab = [0] np.testing.assert_allclose(np.array(pk.A).reshape(-1), Amatlab) np.testing.assert_allclose(np.array(pk.B).reshape(-1), Bmatlab) np.testing.assert_allclose(np.array(pk.C).reshape(-1), Cmatlab) np.testing.assert_allclose(np.array(pk.D).reshape(-1), Dmatlab) # case 2 pk = P.lft(K) Amatlab = [1, 2, 3, 4, 6, 12, -3, -2, 5, 11, 14, 31, -2, -3, 4, 3, 2, 7, 0.6, 3.4, 5, -0.6, -0.4, 0, 0.8, 6.2, 10, 0.2, -4.2, -4, 7.4, 33.6, 45, -0.4, -8.6, -3] Bmatlab = [] Cmatlab = [] Dmatlab = [] np.testing.assert_allclose(np.array(pk.A).reshape(-1), Amatlab) np.testing.assert_allclose(np.array(pk.B).reshape(-1), Bmatlab) np.testing.assert_allclose(np.array(pk.C).reshape(-1), Cmatlab) np.testing.assert_allclose(np.array(pk.D).reshape(-1), Dmatlab) def test_repr(self, sys322): """Test string representation""" ref322 = "\n".join(["StateSpace(array([[-3., 4., 2.],", " [-1., -3., 0.],", " [ 2., 5., 3.]]), array([[ 1., 4.],", " [-3., -3.],", " [-2., 1.]]), array([[ 4., 2., -3.],", " [ 1., 4., 3.]]), array([[-2., 4.],", " [ 0., 1.]]){dt})"]) assert repr(sys322) == ref322.format(dt='') sysd = StateSpace(sys322.A, sys322.B, sys322.C, sys322.D, 0.4) assert repr(sysd), ref322.format(dt=" == 0.4") array = np.array # noqa sysd2 = eval(repr(sysd)) np.testing.assert_allclose(sysd.A, sysd2.A) np.testing.assert_allclose(sysd.B, sysd2.B) np.testing.assert_allclose(sysd.C, sysd2.C) np.testing.assert_allclose(sysd.D, sysd2.D) def test_str(self, sys322): """Test that printing the system works""" tsys = sys322 tref = ("A = [[-3. 4. 2.]\n" " [-1. -3. 0.]\n" " [ 2. 5. 3.]]\n" "\n" "B = [[ 1. 4.]\n" " [-3. -3.]\n" " [-2. 1.]]\n" "\n" "C = [[ 4. 2. -3.]\n" " [ 1. 4. 3.]]\n" "\n" "D = [[-2. 4.]\n" " [ 0. 1.]]\n") assert str(tsys) == tref tsysdtunspec = StateSpace(tsys.A, tsys.B, tsys.C, tsys.D, True) assert str(tsysdtunspec) == tref + "\ndt unspecified\n" sysdt1 = StateSpace(tsys.A, tsys.B, tsys.C, tsys.D, 1.) assert str(sysdt1) == tref + "\ndt = 1.0\n" def test_pole_static(self): """Regression: pole() of static gain is empty array.""" np.testing.assert_array_equal(np.array([]), StateSpace([], [], [], [[1]]).pole()) def test_horner(self, sys322): """Test horner() function""" # Make sure we can compute the transfer function at a complex value sys322.horner(1. + 1.j) # Make sure result agrees with frequency response mag, phase, omega = sys322.frequency_response([1]) np.testing.assert_array_almost_equal( np.squeeze(sys322.horner(1.j)), mag[:, :, 0] * np.exp(1.j * phase[:, :, 0])) class TestRss: """These are tests for the proper functionality of statesp.rss.""" # Maxmimum number of states to test + 1 maxStates = 10 # Maximum number of inputs and outputs to test + 1 maxIO = 5 @pytest.mark.parametrize('states', range(1, maxStates)) @pytest.mark.parametrize('outputs', range(1, maxIO)) @pytest.mark.parametrize('inputs', range(1, maxIO)) def test_shape(self, states, outputs, inputs): """Test that rss outputs have the right state, input, and output size.""" sys = rss(states, outputs, inputs) assert sys.nstates == states assert sys.ninputs == inputs assert sys.noutputs == outputs @pytest.mark.parametrize('states', range(1, maxStates)) @pytest.mark.parametrize('outputs', range(1, maxIO)) @pytest.mark.parametrize('inputs', range(1, maxIO)) def test_pole(self, states, outputs, inputs): """Test that the poles of rss outputs have a negative real part.""" sys = rss(states, outputs, inputs) p = sys.pole() for z in p: assert z.real < 0 class TestDrss: """These are tests for the proper functionality of statesp.drss.""" # Maximum number of states to test + 1 maxStates = 10 # Maximum number of inputs and outputs to test + 1 maxIO = 5 @pytest.mark.parametrize('states', range(1, maxStates)) @pytest.mark.parametrize('outputs', range(1, maxIO)) @pytest.mark.parametrize('inputs', range(1, maxIO)) def test_shape(self, states, outputs, inputs): """Test that drss outputs have the right state, input, and output size.""" sys = drss(states, outputs, inputs) assert sys.nstates == states assert sys.ninputs == inputs assert sys.noutputs == outputs @pytest.mark.parametrize('states', range(1, maxStates)) @pytest.mark.parametrize('outputs', range(1, maxIO)) @pytest.mark.parametrize('inputs', range(1, maxIO)) def test_pole(self, states, outputs, inputs): """Test that the poles of drss outputs have less than unit magnitude.""" sys = drss(states, outputs, inputs) p = sys.pole() for z in p: assert abs(z) < 1 class TestLTIConverter: """Test returnScipySignalLTI method""" @pytest.fixture def mimoss(self, request): """Test system with various dt values""" n = 5 m = 3 p = 2 bx, bu = np.mgrid[1:n + 1, 1:m + 1] cy, cx = np.mgrid[1:p + 1, 1:n + 1] dy, du = np.mgrid[1:p + 1, 1:m + 1] return StateSpace(np.eye(5) + np.eye(5, 5, 1), bx * bu, cy * cx, dy * du, request.param) @pytest.mark.parametrize("mimoss", [None, 0, 0.1, 1, True], indirect=True) def test_returnScipySignalLTI(self, mimoss): """Test returnScipySignalLTI method with strict=False""" sslti = mimoss.returnScipySignalLTI(strict=False) for i in range(mimoss.noutputs): for j in range(mimoss.ninputs): np.testing.assert_allclose(sslti[i][j].A, mimoss.A) np.testing.assert_allclose(sslti[i][j].B, mimoss.B[:, j:j + 1]) np.testing.assert_allclose(sslti[i][j].C, mimoss.C[i:i + 1, :]) np.testing.assert_allclose(sslti[i][j].D, mimoss.D[i:i + 1, j:j + 1]) if mimoss.dt == 0: assert sslti[i][j].dt is None else: assert sslti[i][j].dt == mimoss.dt @pytest.mark.parametrize("mimoss", [None], indirect=True) def test_returnScipySignalLTI_error(self, mimoss): """Test returnScipySignalLTI method with dt=None and strict=True""" with pytest.raises(ValueError): mimoss.returnScipySignalLTI() with pytest.raises(ValueError): mimoss.returnScipySignalLTI(strict=True) class TestStateSpaceConfig: """Test the configuration of the StateSpace module""" @pytest.fixture def matarrayout(self): """Override autoused global fixture within this class""" pass def test_statespace_defaults(self, matarrayout): """Make sure the tests are run with the configured defaults""" for k, v in _statesp_defaults.items(): assert defaults[k] == v, \ "{} is {} but expected {}".format(k, defaults[k], v) # test data for test_latex_repr below LTX_G1 = ([[np.pi, 1e100], [-1.23456789, 5e-23]], [[0], [1]], [[987654321, 0.001234]], [[5]]) LTX_G2 = ([], [], [], [[1.2345, -2e-200], [-1, 0]]) LTX_G1_REF = { 'p3_p' : '\\[\n\\left(\n\\begin{array}{rllrll|rll}\n3.&\\hspace{-1em}14&\\hspace{-1em}\\phantom{\\cdot}&1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{100}&0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n-1.&\\hspace{-1em}23&\\hspace{-1em}\\phantom{\\cdot}&5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-23}&1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\hline\n9.&\\hspace{-1em}88&\\hspace{-1em}\\cdot10^{8}&0.&\\hspace{-1em}00123&\\hspace{-1em}\\phantom{\\cdot}&5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\]', 'p5_p' : '\\[\n\\left(\n\\begin{array}{rllrll|rll}\n3.&\\hspace{-1em}1416&\\hspace{-1em}\\phantom{\\cdot}&1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{100}&0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n-1.&\\hspace{-1em}2346&\\hspace{-1em}\\phantom{\\cdot}&5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-23}&1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\hline\n9.&\\hspace{-1em}8765&\\hspace{-1em}\\cdot10^{8}&0.&\\hspace{-1em}001234&\\hspace{-1em}\\phantom{\\cdot}&5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\]', 'p3_s' : '\\[\n\\begin{array}{ll}\nA = \\left(\\begin{array}{rllrll}\n3.&\\hspace{-1em}14&\\hspace{-1em}\\phantom{\\cdot}&1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{100}\\\\\n-1.&\\hspace{-1em}23&\\hspace{-1em}\\phantom{\\cdot}&5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-23}\\\\\n\\end{array}\\right)\n&\nB = \\left(\\begin{array}{rll}\n0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\\\\nC = \\left(\\begin{array}{rllrll}\n9.&\\hspace{-1em}88&\\hspace{-1em}\\cdot10^{8}&0.&\\hspace{-1em}00123&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n&\nD = \\left(\\begin{array}{rll}\n5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\end{array}\n\\]', 'p5_s' : '\\[\n\\begin{array}{ll}\nA = \\left(\\begin{array}{rllrll}\n3.&\\hspace{-1em}1416&\\hspace{-1em}\\phantom{\\cdot}&1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{100}\\\\\n-1.&\\hspace{-1em}2346&\\hspace{-1em}\\phantom{\\cdot}&5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-23}\\\\\n\\end{array}\\right)\n&\nB = \\left(\\begin{array}{rll}\n0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\\\\nC = \\left(\\begin{array}{rllrll}\n9.&\\hspace{-1em}8765&\\hspace{-1em}\\cdot10^{8}&0.&\\hspace{-1em}001234&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n&\nD = \\left(\\begin{array}{rll}\n5\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\end{array}\n\\]', } LTX_G2_REF = { 'p3_p' : '\\[\n\\left(\n\\begin{array}{rllrll}\n1.&\\hspace{-1em}23&\\hspace{-1em}\\phantom{\\cdot}&-2\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-200}\\\\\n-1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}&0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\]', 'p5_p' : '\\[\n\\left(\n\\begin{array}{rllrll}\n1.&\\hspace{-1em}2345&\\hspace{-1em}\\phantom{\\cdot}&-2\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-200}\\\\\n-1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}&0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\]', 'p3_s' : '\\[\n\\begin{array}{ll}\nD = \\left(\\begin{array}{rllrll}\n1.&\\hspace{-1em}23&\\hspace{-1em}\\phantom{\\cdot}&-2\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-200}\\\\\n-1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}&0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\end{array}\n\\]', 'p5_s' : '\\[\n\\begin{array}{ll}\nD = \\left(\\begin{array}{rllrll}\n1.&\\hspace{-1em}2345&\\hspace{-1em}\\phantom{\\cdot}&-2\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\cdot10^{-200}\\\\\n-1\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}&0\\phantom{.}&\\hspace{-1em}&\\hspace{-1em}\\phantom{\\cdot}\\\\\n\\end{array}\\right)\n\\end{array}\n\\]', } refkey_n = {None: 'p3', '.3g': 'p3', '.5g': 'p5'} refkey_r = {None: 'p', 'partitioned': 'p', 'separate': 's'} @pytest.mark.parametrize(" gmats, ref", [(LTX_G1, LTX_G1_REF), (LTX_G2, LTX_G2_REF)]) @pytest.mark.parametrize("repr_type", [None, "partitioned", "separate"]) @pytest.mark.parametrize("num_format", [None, ".3g", ".5g"]) def test_latex_repr(gmats, ref, repr_type, num_format, editsdefaults): """Test `._latex_repr_` with different config values This is a 'gold image' test, so if you change behaviour, you'll need to regenerate the reference results. Try something like: control.reset_defaults() print(f'p3_p : {g1._repr_latex_()!r}') """ from control import set_defaults if num_format is not None: set_defaults('statesp', latex_num_format=num_format) if repr_type is not None: set_defaults('statesp', latex_repr_type=repr_type) g = StateSpace(*gmats) refkey = "{}_{}".format(refkey_n[num_format], refkey_r[repr_type]) assert g._repr_latex_() == ref[refkey] @pytest.mark.parametrize( "op", [pytest.param(getattr(operator, s), id=s) for s in ('add', 'sub', 'mul')]) @pytest.mark.parametrize( "tf, arr", [pytest.param(ct.tf([1], [0.5, 1]), np.array(2.), id="0D scalar"), pytest.param(ct.tf([1], [0.5, 1]), np.array([2.]), id="1D scalar"), pytest.param(ct.tf([1], [0.5, 1]), np.array([[2.]]), id="2D scalar")]) def test_xferfcn_ndarray_precedence(op, tf, arr): # Apply the operator to the transfer function and array ss = ct.tf2ss(tf) result = op(ss, arr) assert isinstance(result, ct.StateSpace) # Apply the operator to the array and transfer function ss = ct.tf2ss(tf) result = op(arr, ss) assert isinstance(result, ct.StateSpace)
43.012632
835
0.511062
2872f1a1dcba11fefa3f47ef3d354ccdce714a64
1,265
py
Python
three.py/TestTemplate.py
lukestanley/three.py
a3fa99cb3553aca8c74ceabb8203edeb55450803
[ "MIT" ]
80
2019-04-04T13:41:32.000Z
2022-01-12T18:40:19.000Z
three.py/TestTemplate.py
lukestanley/three.py
a3fa99cb3553aca8c74ceabb8203edeb55450803
[ "MIT" ]
9
2019-04-04T14:43:50.000Z
2020-03-29T04:50:53.000Z
three.py/TestTemplate.py
lukestanley/three.py
a3fa99cb3553aca8c74ceabb8203edeb55450803
[ "MIT" ]
17
2019-04-04T14:20:42.000Z
2022-03-03T16:26:29.000Z
from core import * from cameras import * from geometry import * from material import * from helpers import * class TestTemplate(Base): def initialize(self): self.setWindowTitle('Test') self.setWindowSize(800,800) self.renderer = Renderer() self.renderer.setViewportSize(800,800) self.renderer.setClearColor(0.25, 0.25, 0.25) self.scene = Scene() self.camera = PerspectiveCamera() self.camera.transform.setPosition(0, 1, 5) self.camera.transform.lookAt(0, 0, 0) self.cameraControls = FirstPersonController(self.input, self.camera) floorMesh = GridHelper(size=10, divisions=10, gridColor=[0,0,0], centerColor=[1,0,0]) floorMesh.transform.rotateX(-3.14/2, Matrix.LOCAL) self.scene.add(floorMesh) def update(self): self.cameraControls.update() if self.input.resize(): size = self.input.getWindowSize() self.camera.setAspectRatio( size["width"]/size["height"] ) self.renderer.setViewportSize(size["width"], size["height"]) self.renderer.render(self.scene, self.camera) # instantiate and run the program TestTemplate().run()
28.75
93
0.620553
dc47aa0968e0db5a777b4723f5cd0104a26eefe2
22,128
py
Python
pymclevel/minecraft_server.py
gpmidi/MCEdit-Unified
60e1408899fa04113412b89616fd3486db5c8545
[ "0BSD" ]
null
null
null
pymclevel/minecraft_server.py
gpmidi/MCEdit-Unified
60e1408899fa04113412b89616fd3486db5c8545
[ "0BSD" ]
null
null
null
pymclevel/minecraft_server.py
gpmidi/MCEdit-Unified
60e1408899fa04113412b89616fd3486db5c8545
[ "0BSD" ]
null
null
null
import atexit import itertools import logging import os from os.path import dirname, join, basename import random from pymclevel import PocketLeveldbWorld import re import shutil import subprocess import sys import tempfile import time import urllib import json import urllib2 import infiniteworld from directories import getCacheDir from mclevelbase import exhaust, ChunkNotPresent log = logging.getLogger(__name__) __author__ = 'Rio' # Thank you, Stackoverflow # http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python def which(program): def is_exe(f): return os.path.exists(f) and os.access(f, os.X_OK) fpath, _fname = os.path.split(program) if fpath: if is_exe(program): return program else: if sys.platform == "win32": if "SYSTEMROOT" in os.environ: root = os.environ["SYSTEMROOT"] exe_file = os.path.join(root, program) if is_exe(exe_file): return exe_file if "PATH" in os.environ: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] def getVersions(doSnapshot): JAR_VERSION_URL_TEMPLATE = "https://s3.amazonaws.com/Minecraft.Download/versions/{}/minecraft_server.{}.jar" versionSite = urllib2.urlopen("http://s3.amazonaws.com/Minecraft.Download/versions/versions.json") versionSiteResponse = versionSite.read() versionJSON = json.loads(versionSiteResponse) if doSnapshot: version = versionJSON["latest"]["snapshot"] else: version = versionJSON["latest"]["release"] print "Version: " + version URL = JAR_VERSION_URL_TEMPLATE.format(version, version) return URL def sort_nicely(l): """ Sort the given list in the way that humans expect. """ l.sort(key=alphanum_key) class ServerJarStorage(object): cacheDir = os.path.join(getCacheDir(), u"ServerJarStorage") def __init__(self, cacheDir=None): if not os.path.exists(self.cacheDir): os.makedirs(self.cacheDir) readme = os.path.join(self.cacheDir, "README.TXT") if not os.path.exists(readme): with file(readme, "w") as f: f.write(""" About this folder: This folder is used by MCEdit and pymclevel to store different versions of the Minecraft Server to use for terrain generation. It should have one or more subfolders, one for each version of the server. Each subfolder must hold at least one file named minecraft_server.jar, and the subfolder's name should have the server's version plus the names of any installed mods. There may already be a subfolder here (for example, "Release 1.7.10") if you have used the Chunk Create feature in MCEdit to create chunks using the server. Version numbers can be automatically detected. If you place one or more minecraft_server.jar files in this folder, they will be placed automatically into well-named subfolders the next time you run MCEdit. If a file's name begins with "minecraft_server" and ends with ".jar", it will be detected in this way. """) self.reloadVersions() def reloadVersions(self): cacheDirList = os.listdir(self.cacheDir) self.versions = list( reversed(sorted([v for v in cacheDirList if os.path.exists(self.jarfileForVersion(v))], key=alphanum_key))) if MCServerChunkGenerator.javaExe: for f in cacheDirList: p = os.path.join(self.cacheDir, f) if f.startswith("minecraft_server") and f.endswith(".jar") and os.path.isfile(p): print "Unclassified minecraft_server.jar found in cache dir. Discovering version number..." self.cacheNewVersion(p) os.remove(p) print "Minecraft_Server.jar storage initialized." print u"Each server is stored in a subdirectory of {0} named with the server's version number".format( self.cacheDir) print "Cached servers: ", self.versions def downloadCurrentServer(self, getSnapshot): self.snapshot = getSnapshot print "Downloading the latest Minecraft Server..." try: (filename, headers) = urllib.urlretrieve(getVersions(getSnapshot)) except Exception, e: print "Error downloading server: {0!r}".format(e) return self.cacheNewVersion(filename, allowDuplicate=False) def cacheNewVersion(self, filename, allowDuplicate=True): """ Finds the version number from the server jar at filename and copies it into the proper subfolder of the server jar cache folder""" version = MCServerChunkGenerator._serverVersionFromJarFile(filename) print "Found version ", version versionDir = os.path.join(self.cacheDir, version) i = 1 newVersionDir = versionDir while os.path.exists(newVersionDir): if not allowDuplicate: return newVersionDir = versionDir + " (" + str(i) + ")" i += 1 os.mkdir(newVersionDir) shutil.copy2(filename, os.path.join(newVersionDir, "minecraft_server.jar")) if version not in self.versions: self.versions.append(version) def jarfileForVersion(self, v): return os.path.join(self.cacheDir, v, "minecraft_server.jar").encode(sys.getfilesystemencoding()) def checksumForVersion(self, v): jf = self.jarfileForVersion(v) with file(jf, "rb") as f: import hashlib return hashlib.md5(f.read()).hexdigest() broken_versions = ["Beta 1.9 Prerelease {0}".format(i) for i in (1, 2, 3)] @property def latestVersion(self): if len(self.versions) == 0: return None return max((v for v in self.versions if v not in self.broken_versions), key=alphanum_key) def getJarfile(self, version=None): if len(self.versions) == 0: print "No servers found in cache." self.downloadCurrentServer(False) version = version or self.latestVersion if version not in self.versions: return None return self.jarfileForVersion(version) class JavaNotFound(RuntimeError): pass class VersionNotFound(RuntimeError): pass def readProperties(filename): if not os.path.exists(filename): return {} with file(filename) as f: properties = dict((line.split("=", 2) for line in (l.strip() for l in f) if not line.startswith("#"))) return properties def saveProperties(filename, properties): with file(filename, "w") as f: for k, v in properties.iteritems(): f.write("{0}={1}\n".format(k, v)) def findJava(): if sys.platform == "win32": javaExe = which("java.exe") if javaExe is None: KEY_NAME = "HKLM\SOFTWARE\JavaSoft\Java Runtime Environment" try: p = subprocess.Popen(["REG", "QUERY", KEY_NAME, "/v", "CurrentVersion"], stdout=subprocess.PIPE, universal_newlines=True) o, e = p.communicate() lines = o.split("\n") for l in lines: l = l.strip() if l.startswith("CurrentVersion"): words = l.split(None, 2) version = words[-1] p = subprocess.Popen(["REG", "QUERY", KEY_NAME + "\\" + version, "/v", "JavaHome"], stdout=subprocess.PIPE, universal_newlines=True) o, e = p.communicate() lines = o.split("\n") for l in lines: l = l.strip() if l.startswith("JavaHome"): w = l.split(None, 2) javaHome = w[-1] javaExe = os.path.join(javaHome, "bin", "java.exe") print "RegQuery: java.exe found at ", javaExe break except Exception, e: print "Error while locating java.exe using the Registry: ", repr(e) else: javaExe = which("java") return javaExe class MCServerChunkGenerator(object): """Generates chunks using minecraft_server.jar. Uses a ServerJarStorage to store different versions of minecraft_server.jar in an application support folder. from pymclevel import * Example usage: gen = MCServerChunkGenerator() # with no arguments, use the newest # server version in the cache, or download # the newest one automatically level = loadWorldNamed("MyWorld") gen.generateChunkInLevel(level, 12, 24) Using an older version: gen = MCServerChunkGenerator("Beta 1.6.5") """ defaultJarStorage = None javaExe = findJava() jarStorage = None tempWorldCache = {} def __init__(self, version=None, jarfile=None, jarStorage=None): self.jarStorage = jarStorage or self.getDefaultJarStorage() if self.javaExe is None: raise JavaNotFound( "Could not find java. Please check that java is installed correctly. (Could not find java in your PATH environment variable.)") if jarfile is None: jarfile = self.jarStorage.getJarfile(version) if jarfile is None: raise VersionNotFound( "Could not find minecraft_server.jar for version {0}. Please make sure that a minecraft_server.jar is placed under {1} in a subfolder named after the server's version number.".format( version or "(latest)", self.jarStorage.cacheDir)) self.serverJarFile = jarfile self.serverVersion = version or self._serverVersion() @classmethod def getDefaultJarStorage(cls): if cls.defaultJarStorage is None: cls.defaultJarStorage = ServerJarStorage() return cls.defaultJarStorage @classmethod def clearWorldCache(cls): cls.tempWorldCache = {} for tempDir in os.listdir(cls.worldCacheDir): t = os.path.join(cls.worldCacheDir, tempDir) if os.path.isdir(t): shutil.rmtree(t) def createReadme(self): readme = os.path.join(self.worldCacheDir, "README.TXT") if not os.path.exists(readme): with file(readme, "w") as f: f.write(""" About this folder: This folder is used by MCEdit and pymclevel to cache levels during terrain generation. Feel free to delete it for any reason. """) worldCacheDir = os.path.join(tempfile.gettempdir(), "pymclevel_MCServerChunkGenerator") def tempWorldForLevel(self, level): # tempDir = tempfile.mkdtemp("mclevel_servergen") tempDir = os.path.join(self.worldCacheDir, self.jarStorage.checksumForVersion(self.serverVersion), str(level.RandomSeed)) propsFile = os.path.join(tempDir, "server.properties") properties = readProperties(propsFile) tempWorld = self.tempWorldCache.get((self.serverVersion, level.RandomSeed)) if tempWorld is None: if not os.path.exists(tempDir): os.makedirs(tempDir) self.createReadme() worldName = "world" worldName = properties.setdefault("level-name", worldName) tempWorldDir = os.path.join(tempDir, worldName) tempWorld = infiniteworld.MCInfdevOldLevel(tempWorldDir, create=True, random_seed=level.RandomSeed) tempWorld.close() tempWorldRO = infiniteworld.MCInfdevOldLevel(tempWorldDir, readonly=True) self.tempWorldCache[self.serverVersion, level.RandomSeed] = tempWorldRO if level.dimNo == 0: properties["allow-nether"] = "false" else: tempWorld = tempWorld.getDimension(level.dimNo) properties["allow-nether"] = "true" properties["server-port"] = int(32767 + random.random() * 32700) saveProperties(propsFile, properties) return tempWorld, tempDir def generateAtPosition(self, tempWorld, tempDir, cx, cz): return exhaust(self.generateAtPositionIter(tempWorld, tempDir, cx, cz)) @staticmethod def addEULA(tempDir): eulaLines = [ "#By changing the setting below to TRUE you are indicating your agreement to our EULA (https://account.mojang.com/documents/minecraft_eula).\n", "#Wed Jul 23 21:10:11 EDT 2014\n", "eula=true\n"] with open(tempDir + "/" + "eula.txt", "w") as f: f.writelines(eulaLines) def generateAtPositionIter(self, tempWorld, tempDir, cx, cz, simulate=False): tempWorldRW = infiniteworld.MCInfdevOldLevel(tempWorld.filename) tempWorldRW.setPlayerSpawnPosition((cx * 16, 64, cz * 16)) tempWorldRW.saveInPlace() tempWorldRW.close() del tempWorldRW tempWorld.unload() self.addEULA(tempDir) startTime = time.time() proc = self.runServer(tempDir) while proc.poll() is None: line = proc.stdout.readline().strip() log.info(line) yield line # Forge and FML change stderr output, causing MCServerChunkGenerator to wait endlessly. # # Vanilla: # 2012-11-13 11:29:19 [INFO] Done (9.962s)! # # Forge/FML: # 2012-11-13 11:47:13 [INFO] [Minecraft] Done (8.020s)! if "INFO" in line and "Done" in line: if simulate: duration = time.time() - startTime simSeconds = max(8, int(duration) + 1) for i in range(simSeconds): # process tile ticks yield "%2d/%2d: Simulating the world for a little bit..." % (i, simSeconds) time.sleep(1) proc.stdin.write("stop\n") proc.wait() break if "FAILED TO BIND" in line: proc.kill() proc.wait() raise RuntimeError("Server failed to bind to port!") stdout, _ = proc.communicate() if "Could not reserve enough space" in stdout and not MCServerChunkGenerator.lowMemory: MCServerChunkGenerator.lowMemory = True for i in self.generateAtPositionIter(tempWorld, tempDir, cx, cz): yield i (tempWorld.parentWorld or tempWorld).loadLevelDat() # reload version number def copyChunkAtPosition(self, tempWorld, level, cx, cz): if level.containsChunk(cx, cz): return try: tempChunkBytes = tempWorld._getChunkBytes(cx, cz) except ChunkNotPresent, e: raise ChunkNotPresent("While generating a world in {0} using server {1} ({2!r})".format(tempWorld, self.serverJarFile, e), sys.exc_info()[ 2]) if isinstance(level, PocketLeveldbWorld): level.saveGeneratedChunk(cx, cz, tempChunkBytes) else: level.worldFolder.saveChunk(cx, cz, tempChunkBytes) level._allChunks = None def generateChunkInLevel(self, level, cx, cz): assert isinstance(level, infiniteworld.MCInfdevOldLevel) tempWorld, tempDir = self.tempWorldForLevel(level) self.generateAtPosition(tempWorld, tempDir, cx, cz) self.copyChunkAtPosition(tempWorld, level, cx, cz) minRadius = 5 maxRadius = 20 def createLevel(self, level, box, simulate=False, **kw): return exhaust(self.createLevelIter(level, box, simulate, **kw)) def createLevelIter(self, level, box, simulate=False, worldType="DEFAULT", **kw): if isinstance(level, basestring): filename = level level = infiniteworld.MCInfdevOldLevel(filename, create=True, **kw) assert isinstance(level, infiniteworld.MCInfdevOldLevel) minRadius = self.minRadius genPositions = list(itertools.product( xrange(box.mincx, box.maxcx, minRadius * 2), xrange(box.mincz, box.maxcz, minRadius * 2))) for i, (cx, cz) in enumerate(genPositions): log.info("Generating at %s" % ((cx, cz),)) parentDir = dirname(os.path.abspath(level.worldFolder.filename)) propsFile = join(parentDir, "server.properties") props = readProperties(join(dirname(self.serverJarFile), "server.properties")) props["level-name"] = basename(level.worldFolder.filename) props["server-port"] = int(32767 + random.random() * 32700) props["level-type"] = worldType saveProperties(propsFile, props) for p in self.generateAtPositionIter(level, parentDir, cx, cz, simulate): yield i, len(genPositions), p level.close() def generateChunksInLevel(self, level, chunks): return exhaust(self.generateChunksInLevelIter(level, chunks)) def generateChunksInLevelIter(self, level, chunks, simulate=False): tempWorld, tempDir = self.tempWorldForLevel(level) startLength = len(chunks) minRadius = self.minRadius maxRadius = self.maxRadius chunks = set(chunks) while len(chunks): length = len(chunks) centercx, centercz = chunks.pop() chunks.add((centercx, centercz)) # assume the generator always generates at least an 11x11 chunk square. centercx += minRadius centercz += minRadius # boxedChunks = [cPos for cPos in chunks if inBox(cPos)] print "Generating {0} chunks out of {1} starting from {2}".format("XXX", len(chunks), (centercx, centercz)) yield startLength - len(chunks), startLength # chunks = [c for c in chunks if not inBox(c)] for p in self.generateAtPositionIter(tempWorld, tempDir, centercx, centercz, simulate): yield startLength - len(chunks), startLength, p i = 0 for cx, cz in itertools.product( xrange(centercx - maxRadius, centercx + maxRadius), xrange(centercz - maxRadius, centercz + maxRadius)): if level.containsChunk(cx, cz): chunks.discard((cx, cz)) elif ((cx, cz) in chunks and all(tempWorld.containsChunk(ncx, ncz) for ncx, ncz in itertools.product(xrange(cx - 1, cx + 2), xrange(cz - 1, cz + 2))) ): self.copyChunkAtPosition(tempWorld, level, cx, cz) i += 1 chunks.discard((cx, cz)) yield startLength - len(chunks), startLength if length == len(chunks): print "No chunks were generated. Aborting." break level.saveInPlace() def runServer(self, startingDir): if isinstance(startingDir, unicode): startingDir = startingDir.encode(sys.getfilesystemencoding()) return self._runServer(startingDir, self.serverJarFile) lowMemory = False @classmethod def _runServer(cls, startingDir, jarfile): log.info("Starting server %s in %s", jarfile, startingDir) if cls.lowMemory: memflags = [] else: memflags = ["-Xmx1024M", "-Xms1024M", ] proc = subprocess.Popen([cls.javaExe, "-Djava.awt.headless=true"] + memflags + ["-jar", jarfile], executable=cls.javaExe, cwd=startingDir, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, ) atexit.register(proc.terminate) return proc def _serverVersion(self): return self._serverVersionFromJarFile(self.serverJarFile) @classmethod def _serverVersionFromJarFile(cls, jarfile): tempdir = tempfile.mkdtemp("mclevel_servergen") proc = cls._runServer(tempdir, jarfile) version = "Unknown" # out, err = proc.communicate() # for line in err.split("\n"): while proc.poll() is None: line = proc.stdout.readline() if "Preparing start region" in line: break if "Starting minecraft server version" in line: version = line.split("Starting minecraft server version")[1].strip() break if proc.returncode is None: try: proc.kill() except WindowsError: pass # access denied, process already terminated proc.wait() shutil.rmtree(tempdir) if ";)" in version: version = version.replace(";)", "") # Damnit, Jeb! # Versions like "0.2.1" are alphas, and versions like "1.0.0" without "Beta" are releases if version[0] == "0": version = "Alpha " + version elif 'w' in version or 'pre' in version: version = "Snapshot " + version else: try: if int(version[0]) > 0: version = "Release " + version except ValueError: pass return version
36.696517
199
0.592733
227e506ba3748da5e727d00c5e9c475c7051bbcc
289
py
Python
outsource/outsource/pipelines.py
iamjoel/find-outsource-tool
dd799298ffebbc25bd416d54f255ecd8ee8b4fd2
[ "MIT" ]
null
null
null
outsource/outsource/pipelines.py
iamjoel/find-outsource-tool
dd799298ffebbc25bd416d54f255ecd8ee8b4fd2
[ "MIT" ]
null
null
null
outsource/outsource/pipelines.py
iamjoel/find-outsource-tool
dd799298ffebbc25bd416d54f255ecd8ee8b4fd2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class OutsourcePipeline(object): def process_item(self, item, spider): return item
24.083333
65
0.712803
f2c9015e997e8b6b749031eb121f6184265fa6bd
4,662
py
Python
cacheman/autosync.py
Jenyay/py_cache_manager
aa7fa33dcbc30dbd6b2e62cade5f371f6dbbe2cb
[ "BSD-2-Clause" ]
null
null
null
cacheman/autosync.py
Jenyay/py_cache_manager
aa7fa33dcbc30dbd6b2e62cade5f371f6dbbe2cb
[ "BSD-2-Clause" ]
5
2015-02-18T22:17:52.000Z
2018-01-23T05:30:09.000Z
cacheman/autosync.py
Jenyay/py_cache_manager
aa7fa33dcbc30dbd6b2e62cade5f371f6dbbe2cb
[ "BSD-2-Clause" ]
2
2021-05-31T15:18:50.000Z
2022-01-15T16:50:25.000Z
from collections import namedtuple, deque from datetime import datetime from operator import attrgetter from builtins import range from .cachewrap import PersistentCache TimeCount = namedtuple('TimeCount', ['time_length', 'count']) MANY_WRITE_TIME_COUNTS = [TimeCount(60, 1000000), TimeCount(300, 10000), TimeCount(900, 1)] class AutoSyncCacheBase(object): def __init__(self, base_class, cache_name, time_checks=None, time_bucket_size=None, **kwargs): # These are sorted from shortest time frame to longest self.time_checks = sorted(time_checks or [TimeCount(60, 10000), TimeCount(300, 10), TimeCount(900, 1)], key=attrgetter('time_length')) self.time_bucket_size = time_bucket_size or 15 # Seconds self.time_counts = deque(0 for _ in range(self.bucket_count())) self.last_shift_time = datetime.now() self.base_class = base_class self.base_class.__init__(self, cache_name, **kwargs) def bucket_count(self): return self.time_checks[-1].time_length // self.time_bucket_size def _delta_bucket_match(self, delta_shift_time): return max(min(self.bucket_count(), int(delta_shift_time.total_seconds() // self.time_bucket_size)), 0) def find_bucket(self, edit_time): ''' Raises IndexError on times outside bucket range. ''' delta_shift_time = self.last_shift_time - edit_time bucket = self.bucket_count() - 1 - int(delta_shift_time.total_seconds() // self.time_bucket_size) if bucket < 0 or bucket >= self.bucket_count(): raise IndexError('Time of edit since last shift outside bucket bounds') return bucket def time_shift_buckets(self): shift_time = datetime.now() snapped_seconds = self.time_bucket_size * (shift_time.second // self.time_bucket_size) shift_time = shift_time.replace(second=snapped_seconds) delta_buckets = self._delta_bucket_match(shift_time - self.last_shift_time) if delta_buckets: self.time_counts.rotate(-delta_buckets) for i in range(1, delta_buckets + 1): self.time_counts[-i] = 0 self.last_shift_time = shift_time return shift_time def bucket_within_time(self, bucket, time_check): return len(self.time_counts) - 1 - bucket < time_check.time_length // self.time_bucket_size def clear_bucket_counts(self): for i in range(self.bucket_count()): self.time_counts[i] = 0 def check_save_conditions(self): bucket = len(self.time_counts) - 1 for check in self.time_checks: time_count = 0 while bucket >= 0 and self.bucket_within_time(bucket, check): time_count += self.time_counts[bucket] if time_count >= check.count: self.save() return True bucket -= 1 return False def track_edit(self, count=1, edit_time=None): self.time_shift_buckets() if edit_time is None: edit_time = self.last_shift_time try: self.time_counts[self.find_bucket(edit_time)] += count self.check_save_conditions() except IndexError: pass # Edit is too far back or in the future, skip it def __setitem__(self, *args, **kwargs): self._check_contents_present() ret_val = self.contents.__setitem__(*args, **kwargs) self.track_edit() return ret_val def __delitem__(self, *args, **kwargs): self._check_contents_present() ret_val = self.contents.__delitem__(*args, **kwargs) self.track_edit() return ret_val def _build(self, *args, **kwargs): self.clear_bucket_counts() return self.base_class._build(self, *args, **kwargs) def load(self, *args, **kwargs): self.clear_bucket_counts() return self.base_class.load(self, *args, **kwargs) def save(self, *args, **kwargs): self.clear_bucket_counts() return self.base_class.save(self, *args, **kwargs) def delete_saved_content(self, *args, **kwargs): self.clear_bucket_counts() return self.base_class.delete_saved_content(self, *args, **kwargs) class AutoSyncCache(AutoSyncCacheBase, PersistentCache): ''' AutoSyncCache defaults to a pickle basis over PersistentCache. ''' def __init__(self, cache_name, **kwargs): AutoSyncCacheBase.__init__(self, PersistentCache, cache_name, **kwargs)
39.508475
112
0.642428
21dc2d354a807c7e17fa2f111f5e9fc8df47d080
32,102
py
Python
esky/tests/test_esky.py
dmckeone/esky
32b5c874b232390d1fe29ea8044cc27ceffba303
[ "BSD-3-Clause" ]
null
null
null
esky/tests/test_esky.py
dmckeone/esky
32b5c874b232390d1fe29ea8044cc27ceffba303
[ "BSD-3-Clause" ]
null
null
null
esky/tests/test_esky.py
dmckeone/esky
32b5c874b232390d1fe29ea8044cc27ceffba303
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2009-2010, Cloud Matrix Pty. Ltd. # All rights reserved; available under the terms of the BSD License. from __future__ import with_statement import sys import os import unittest from os.path import dirname import subprocess import shutil import zipfile import threading import tempfile import urllib2 import hashlib import tarfile import time from contextlib import contextmanager from SimpleHTTPServer import SimpleHTTPRequestHandler from BaseHTTPServer import HTTPServer from distutils.core import setup as dist_setup from distutils import dir_util import esky import esky.patch import esky.sudo from esky import bdist_esky from esky.bdist_esky import Executable from esky.util import extract_zipfile, deep_extract_zipfile, get_platform, \ ESKY_CONTROL_DIR, files_differ, ESKY_APPDATA_DIR, \ really_rmtree from esky.fstransact import FSTransaction try: import py2exe except ImportError: py2exe = None try: import py2app except ImportError: py2app = None try: import bbfreeze except ImportError: bbfreeze = None try: import cx_Freeze except ImportError: cx_Freeze = None try: import pypy except ImportError: pypy = None sys.path.append(os.path.dirname(__file__)) def assert_freezedir_exists(dist): assert os.path.exists(dist.freeze_dir) if not hasattr(HTTPServer,"shutdown"): import socket def socketserver_shutdown(self): try: self.socket.close() except socket.error: pass HTTPServer.shutdown = socketserver_shutdown @contextmanager def setenv(key,value): oldval = os.environ.get(key,None) os.environ[key] = value yield if oldval is not None: os.environ[key] = oldval else: del os.environ[key] class TestEsky(unittest.TestCase): if py2exe is not None: def test_esky_py2exe(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe"}}) def test_esky_py2exe_bundle1(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "freezer_options": { "bundle_files": 1}}}) def test_esky_py2exe_bundle2(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "freezer_options": { "bundle_files": 2}}}) def test_esky_py2exe_bundle3(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "freezer_options": { "bundle_files": 3}}}) def test_esky_py2exe_skiparchive(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "freezer_options": { "skip_archive": True}}}) def test_esky_py2exe_unbuffered(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "freezer_options": { "unbuffered": True}}}) def test_esky_py2exe_nocustomchainload(self): with setenv("ESKY_NO_CUSTOM_CHAINLOAD","1"): bscode = "_chainload = _orig_chainload\nbootstrap()" self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "bootstrap_code":bscode}}) if esky.sudo.can_get_root(): def test_esky_py2exe_needsroot(self): with setenv("ESKY_NEEDSROOT","1"): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe"}}) if pypy is not None: def test_esky_py2exe_pypy(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "compile_bootstrap_exes":1}}) def test_esky_py2exe_unbuffered_pypy(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2exe", "compile_bootstrap_exes":1, "freezer_options": { "unbuffered": True}}}) if py2app is not None: def test_esky_py2app(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2app"}}) if esky.sudo.can_get_root(): def test_esky_py2app_needsroot(self): with setenv("ESKY_NEEDSROOT","1"): self._run_eskytester({"bdist_esky":{"freezer_module":"py2app"}}) if pypy is not None: def test_esky_py2app_pypy(self): self._run_eskytester({"bdist_esky":{"freezer_module":"py2app", "compile_bootstrap_exes":1}}) if bbfreeze is not None: def test_esky_bbfreeze(self): self._run_eskytester({"bdist_esky":{"freezer_module":"bbfreeze"}}) if sys.platform == "win32": def test_esky_bbfreeze_nocustomchainload(self): with setenv("ESKY_NO_CUSTOM_CHAINLOAD","1"): bscode = "_chainload = _orig_chainload\nbootstrap()" self._run_eskytester({"bdist_esky":{"freezer_module":"bbfreeze", "bootstrap_code":bscode}}) if esky.sudo.can_get_root(): def test_esky_bbfreeze_needsroot(self): with setenv("ESKY_NEEDSROOT","1"): self._run_eskytester({"bdist_esky":{"freezer_module":"bbfreeze"}}) if pypy is not None: def test_esky_bbfreeze_pypy(self): self._run_eskytester({"bdist_esky":{"freezer_module":"bbfreeze", "compile_bootstrap_exes":1}}) if cx_Freeze is not None: def test_esky_cxfreeze(self): self._run_eskytester({"bdist_esky":{"freezer_module":"cxfreeze"}}) if sys.platform == "win32": def test_esky_cxfreeze_nocustomchainload(self): with setenv("ESKY_NO_CUSTOM_CHAINLOAD","1"): bscode = ["_chainload = _orig_chainload",None] self._run_eskytester({"bdist_esky":{"freezer_module":"cxfreeze", "bootstrap_code":bscode}}) if esky.sudo.can_get_root(): def test_esky_cxfreeze_needsroot(self): with setenv("ESKY_NEEDSROOT","1"): self._run_eskytester({"bdist_esky":{"freezer_module":"cxfreeze"}}) if pypy is not None: def test_esky_cxfreeze_pypy(self): with setenv("ESKY_NO_CUSTOM_CHAINLOAD","1"): self._run_eskytester({"bdist_esky":{"freezer_module":"cxfreeze", "compile_bootstrap_exes":1}}) def _run_eskytester(self,options): """Build and run the eskytester app using the given distutils options. The "eskytester" application can be found next to this file, and the sequence of tests performed range across "script1.py" to "script3.py". """ olddir = os.path.abspath(os.curdir) # tdir = os.path.join(os.path.dirname(__file__),"DIST") # if os.path.exists(tdir): # really_rmtree(tdir) # os.mkdir(tdir) tdir = tempfile.mkdtemp() server = None script2 = None try: options.setdefault("build",{})["build_base"] = os.path.join(tdir,"build") options.setdefault("bdist",{})["dist_dir"] = os.path.join(tdir,"dist") # Set some callbacks to test that they work correctly options.setdefault("bdist_esky",{}).setdefault("pre_freeze_callback","esky.tests.test_esky.assert_freezedir_exists") options.setdefault("bdist_esky",{}).setdefault("pre_zip_callback",assert_freezedir_exists) platform = get_platform() deploydir = "deploy.%s" % (platform,) esky_root = dirname(dirname(dirname(__file__))) os.chdir(tdir) shutil.copytree(os.path.join(esky_root,"esky","tests","eskytester"),"eskytester") dir_util._path_created.clear() # Build three increasing versions of the test package. # Version 0.2 will include a bundled MSVCRT on win32. # Version 0.3 will be distributed as a patch. metadata = dict(name="eskytester",packages=["eskytester"],author="rfk", description="the esky test package", data_files=[("data",["eskytester/datafile.txt"])], package_data={"eskytester":["pkgdata.txt"]},) options2 = options.copy() options2["bdist_esky"] = options["bdist_esky"].copy() options2["bdist_esky"]["bundle_msvcrt"] = True script1 = "eskytester/script1.py" script2 = Executable([None,open("eskytester/script2.py")],name="script2") script3 = "eskytester/script3.py" dist_setup(version="0.1",scripts=[script1],options=options,script_args=["bdist_esky"],**metadata) dist_setup(version="0.2",scripts=[script1,script2],options=options2,script_args=["bdist_esky"],**metadata) dist_setup(version="0.3",scripts=[script2,script3],options=options,script_args=["bdist_esky_patch"],**metadata) os.unlink(os.path.join(tdir,"dist","eskytester-0.3.%s.zip"%(platform,))) # Check that the patches apply cleanly uzdir = os.path.join(tdir,"unzip") deep_extract_zipfile(os.path.join(tdir,"dist","eskytester-0.1.%s.zip"%(platform,)),uzdir) with open(os.path.join(tdir,"dist","eskytester-0.3.%s.from-0.1.patch"%(platform,)),"rb") as f: esky.patch.apply_patch(uzdir,f) shutil.rmtree(uzdir) deep_extract_zipfile(os.path.join(tdir,"dist","eskytester-0.2.%s.zip"%(platform,)),uzdir) with open(os.path.join(tdir,"dist","eskytester-0.3.%s.from-0.2.patch"%(platform,)),"rb") as f: esky.patch.apply_patch(uzdir,f) shutil.rmtree(uzdir) # Serve the updates at http://localhost:8000/dist/ print "running local update server" server = HTTPServer(("localhost",8000),SimpleHTTPRequestHandler) server_thread = threading.Thread(target=server.serve_forever) server_thread.daemon = True server_thread.start() # Set up the deployed esky environment for the initial version zfname = os.path.join(tdir,"dist","eskytester-0.1.%s.zip"%(platform,)) os.mkdir(deploydir) extract_zipfile(zfname,deploydir) # Run the scripts in order. if options["bdist_esky"]["freezer_module"] == "py2app": appdir = os.path.join(deploydir,os.listdir(deploydir)[0]) cmd1 = os.path.join(appdir,"Contents","MacOS","script1") cmd2 = os.path.join(appdir,"Contents","MacOS","script2") cmd3 = os.path.join(appdir,"Contents","MacOS","script3") else: appdir = deploydir if sys.platform == "win32": cmd1 = os.path.join(deploydir,"script1.exe") cmd2 = os.path.join(deploydir,"script2.exe") cmd3 = os.path.join(deploydir,"script3.exe") else: cmd1 = os.path.join(deploydir,"script1") cmd2 = os.path.join(deploydir,"script2") cmd3 = os.path.join(deploydir,"script3") print "spawning eskytester script1", options["bdist_esky"]["freezer_module"] os.unlink(os.path.join(tdir,"dist","eskytester-0.1.%s.zip"%(platform,))) p = subprocess.Popen(cmd1) assert p.wait() == 0 os.unlink(os.path.join(appdir,"tests-completed")) print "spawning eskytester script2" os.unlink(os.path.join(tdir,"dist","eskytester-0.2.%s.zip"%(platform,))) p = subprocess.Popen(cmd2) assert p.wait() == 0 os.unlink(os.path.join(appdir,"tests-completed")) print "spawning eskytester script3" p = subprocess.Popen(cmd3) assert p.wait() == 0 os.unlink(os.path.join(appdir,"tests-completed")) finally: if script2: script2.script[1].close() os.chdir(olddir) if sys.platform == "win32": # wait for the cleanup-at-exit pocess to finish time.sleep(4) really_rmtree(tdir) if server: server.shutdown() def test_esky_locking(self): """Test that locking an Esky works correctly.""" platform = get_platform() appdir = tempfile.mkdtemp() try: vdir = os.path.join(appdir,ESKY_APPDATA_DIR,"testapp-0.1.%s" % (platform,)) os.makedirs(vdir) os.mkdir(os.path.join(vdir,ESKY_CONTROL_DIR)) open(os.path.join(vdir,ESKY_CONTROL_DIR,"bootstrap-manifest.txt"),"wb").close() e1 = esky.Esky(appdir,"http://example.com/downloads/") assert e1.name == "testapp" assert e1.version == "0.1" assert e1.platform == platform e2 = esky.Esky(appdir,"http://example.com/downloads/") assert e2.name == "testapp" assert e2.version == "0.1" assert e2.platform == platform locked = []; errors = []; trigger1 = threading.Event(); trigger2 = threading.Event() def runit(e,t1,t2): def runme(): try: e.lock() except Exception, err: errors.append(err) else: locked.append(e) t1.set() t2.wait() return runme t1 = threading.Thread(target=runit(e1,trigger1,trigger2)) t2 = threading.Thread(target=runit(e2,trigger2,trigger1)) t1.start() t2.start() t1.join() t2.join() assert len(locked) == 1 assert (e1 in locked or e2 in locked) assert len(errors) == 1 assert isinstance(errors[0],esky.EskyLockedError) finally: shutil.rmtree(appdir) def test_esky_lock_breaking(self): """Test that breaking the lock on an Esky works correctly.""" appdir = tempfile.mkdtemp() try: os.makedirs(os.path.join(appdir,ESKY_APPDATA_DIR,"testapp-0.1",ESKY_CONTROL_DIR)) open(os.path.join(appdir,ESKY_APPDATA_DIR,"testapp-0.1",ESKY_CONTROL_DIR,"bootstrap-manifest.txt"),"wb").close() e1 = esky.Esky(appdir,"http://example.com/downloads/") e2 = esky.Esky(appdir,"http://example.com/downloads/") trigger1 = threading.Event(); trigger2 = threading.Event() errors = [] def run1(): try: e1.lock() except Exception, err: errors.append(err) trigger1.set() trigger2.wait() def run2(): trigger1.wait() try: e2.lock() except esky.EskyLockedError: pass except Exception, err: errors.append(err) else: errors.append("locked when I shouldn't have") e2.lock_timeout = 0.1 time.sleep(0.5) try: e2.lock() except Exception, err: errors.append(err) trigger2.set() t1 = threading.Thread(target=run1) t2 = threading.Thread(target=run2) t1.start() t2.start() t1.join() t2.join() assert len(errors) == 0, str(errors) finally: shutil.rmtree(appdir) def test_README(self): """Ensure that the README is in sync with the docstring. This test should always pass; if the README is out of sync it just updates it with the contents of esky.__doc__. """ dirname = os.path.dirname readme = os.path.join(dirname(dirname(dirname(__file__))),"README.rst") if not os.path.isfile(readme): f = open(readme,"wb") f.write(esky.__doc__.encode()) f.close() else: f = open(readme,"rb") if f.read() != esky.__doc__: f.close() f = open(readme,"wb") f.write(esky.__doc__.encode()) f.close() class TestFSTransact(unittest.TestCase): """Testcases for FSTransact.""" def setUp(self): self.testdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.testdir) def path(self,path): return os.path.join(self.testdir,path) def setContents(self,path,contents=""): if not os.path.isdir(os.path.dirname(self.path(path))): os.makedirs(os.path.dirname(self.path(path))) with open(self.path(path),"wb") as f: f.write(contents.encode()) def assertContents(self,path,contents): with open(self.path(path),"rb") as f: self.assertEquals(f.read().decode(),contents) def test_no_move_outside_root(self): self.setContents("file1","hello world") trn = FSTransaction(self.testdir) trn.move(self.path("file1"),"file2") trn.commit() self.assertContents("file2","hello world") trn = FSTransaction(self.testdir) self.assertRaises(ValueError,trn.move,self.path("file2"),"../file1") trn.abort() def test_move_file(self): self.setContents("file1","hello world") trn = FSTransaction() trn.move(self.path("file1"),self.path("file2")) self.assertContents("file1","hello world") self.assertFalse(os.path.exists(self.path("file2"))) trn.commit() self.assertContents("file2","hello world") self.assertFalse(os.path.exists(self.path("file1"))) def test_move_file_with_unicode_name(self): self.setContents(u"file\N{SNOWMAN}","hello world") trn = FSTransaction() trn.move(self.path(u"file\N{SNOWMAN}"),self.path("file2")) self.assertContents(u"file\N{SNOWMAN}","hello world") self.assertFalse(os.path.exists(self.path("file2"))) trn.commit() self.assertContents("file2","hello world") self.assertFalse(os.path.exists(self.path(u"file\N{SNOWMAN}"))) def test_copy_file(self): self.setContents("file1","hello world") trn = FSTransaction() trn.copy(self.path("file1"),self.path("file2")) self.assertContents("file1","hello world") self.assertFalse(os.path.exists(self.path("file2"))) trn.commit() self.assertContents("file1","hello world") self.assertContents("file2","hello world") def test_move_dir(self): self.setContents("dir1/file1","hello world") self.setContents("dir1/file2","how are you?") self.setContents("dir1/subdir/file3","fine thanks") trn = FSTransaction() trn.move(self.path("dir1"),self.path("dir2")) self.assertContents("dir1/file1","hello world") self.assertFalse(os.path.exists(self.path("dir2"))) trn.commit() self.assertContents("dir2/file1","hello world") self.assertContents("dir2/file2","how are you?") self.assertContents("dir2/subdir/file3","fine thanks") self.assertFalse(os.path.exists(self.path("dir1"))) def test_copy_dir(self): self.setContents("dir1/file1","hello world") self.setContents("dir1/file2","how are you?") self.setContents("dir1/subdir/file3","fine thanks") trn = FSTransaction() trn.copy(self.path("dir1"),self.path("dir2")) self.assertContents("dir1/file1","hello world") self.assertFalse(os.path.exists(self.path("dir2"))) trn.commit() self.assertContents("dir2/file1","hello world") self.assertContents("dir2/file2","how are you?") self.assertContents("dir2/subdir/file3","fine thanks") self.assertContents("dir1/file1","hello world") self.assertContents("dir1/file2","how are you?") self.assertContents("dir1/subdir/file3","fine thanks") def test_remove(self): self.setContents("dir1/file1","hello there world") trn = FSTransaction() trn.remove(self.path("dir1/file1")) self.assertTrue(os.path.exists(self.path("dir1/file1"))) trn.commit() self.assertFalse(os.path.exists(self.path("dir1/file1"))) self.assertTrue(os.path.exists(self.path("dir1"))) trn = FSTransaction() trn.remove(self.path("dir1")) trn.commit() self.assertFalse(os.path.exists(self.path("dir1"))) def test_remove_abort(self): self.setContents("dir1/file1","hello there world") trn = FSTransaction() trn.remove(self.path("dir1/file1")) self.assertTrue(os.path.exists(self.path("dir1/file1"))) trn.abort() self.assertTrue(os.path.exists(self.path("dir1/file1"))) trn = FSTransaction() trn.remove(self.path("dir1")) trn.abort() self.assertTrue(os.path.exists(self.path("dir1/file1"))) trn = FSTransaction() trn.remove(self.path("dir1")) trn.commit() self.assertFalse(os.path.exists(self.path("dir1"))) def test_move_dir_exists(self): self.setContents("dir1/file0","zero zero zero") self.setContents("dir1/file1","hello world") self.setContents("dir1/file2","how are you?") self.setContents("dir1/subdir/file3","fine thanks") self.setContents("dir2/file1","different contents") self.setContents("dir2/file3","a different file") self.setContents("dir1/subdir/file3","fine thanks") trn = FSTransaction() trn.move(self.path("dir1"),self.path("dir2")) self.assertContents("dir1/file1","hello world") trn.commit() self.assertContents("dir2/file0","zero zero zero") self.assertContents("dir2/file1","hello world") self.assertContents("dir2/file2","how are you?") self.assertFalse(os.path.exists(self.path("dir2/file3"))) self.assertContents("dir2/subdir/file3","fine thanks") self.assertFalse(os.path.exists(self.path("dir1"))) def test_copy_dir_exists(self): self.setContents("dir1/file0","zero zero zero") self.setContents("dir1/file1","hello world") self.setContents("dir1/file2","how are you?") self.setContents("dir1/subdir/file3","fine thanks") self.setContents("dir2/file1","different contents") self.setContents("dir2/file3","a different file") self.setContents("dir1/subdir/file3","fine thanks") trn = FSTransaction() trn.copy(self.path("dir1"),self.path("dir2")) self.assertContents("dir1/file1","hello world") trn.commit() self.assertContents("dir2/file0","zero zero zero") self.assertContents("dir2/file1","hello world") self.assertContents("dir2/file2","how are you?") self.assertFalse(os.path.exists(self.path("dir2/file3"))) self.assertContents("dir2/subdir/file3","fine thanks") self.assertContents("dir1/file0","zero zero zero") self.assertContents("dir1/file1","hello world") self.assertContents("dir1/file2","how are you?") self.assertContents("dir1/subdir/file3","fine thanks") def test_move_dir_over_file(self): self.setContents("dir1/file0","zero zero zero") self.setContents("dir2","actually a file") trn = FSTransaction() trn.move(self.path("dir1"),self.path("dir2")) self.assertContents("dir1/file0","zero zero zero") trn.commit() self.assertContents("dir2/file0","zero zero zero") self.assertFalse(os.path.exists(self.path("dir1"))) def test_copy_dir_over_file(self): self.setContents("dir1/file0","zero zero zero") self.setContents("dir2","actually a file") trn = FSTransaction() trn.copy(self.path("dir1"),self.path("dir2")) self.assertContents("dir1/file0","zero zero zero") trn.commit() self.assertContents("dir2/file0","zero zero zero") self.assertContents("dir1/file0","zero zero zero") def test_move_file_over_dir(self): self.setContents("file0","zero zero zero") self.setContents("dir2/myfile","hahahahaha!") trn = FSTransaction() trn.move(self.path("file0"),self.path("dir2")) self.assertContents("file0","zero zero zero") self.assertContents("dir2/myfile","hahahahaha!") trn.commit() self.assertContents("dir2","zero zero zero") self.assertFalse(os.path.exists(self.path("file0"))) def test_copy_file_over_dir(self): self.setContents("file0","zero zero zero") self.setContents("dir2/myfile","hahahahaha!") trn = FSTransaction() trn.copy(self.path("file0"),self.path("dir2")) self.assertContents("file0","zero zero zero") self.assertContents("dir2/myfile","hahahahaha!") trn.commit() self.assertContents("dir2","zero zero zero") self.assertContents("file0","zero zero zero") class TestPatch(unittest.TestCase): """Testcases for esky.patch.""" _TEST_FILES = ( ("pyenchant-1.2.0.tar.gz","2fefef0868b110b1da7de89c08344dd2"), ("pyenchant-1.5.2.tar.gz","fa1e4f3f3c473edd98c7bb0e46eea352"), ("pyenchant-1.6.0.tar.gz","3fd7336989764d8d379a367236518439"), ) _TEST_FILES_URL = "http://pypi.python.org/packages/source/p/pyenchant/" def setUp(self): self.tests_root = dirname(__file__) platform = get_platform() self.tfdir = tfdir = os.path.join(self.tests_root,"patch-test-files") self.workdir = workdir = os.path.join(self.tests_root,"patch-test-temp."+platform) if not os.path.isdir(tfdir): os.makedirs(tfdir) if not os.path.isdir(workdir): os.makedirs(workdir) # Ensure we have the expected test files. # Download from PyPI if necessary. for (tfname,hash) in self._TEST_FILES: tfpath = os.path.join(tfdir,tfname) if not os.path.exists(tfpath): data = urllib2.urlopen(self._TEST_FILES_URL+tfname).read() assert hashlib.md5(data).hexdigest() == hash with open(tfpath,"wb") as f: f.write(data) def tearDown(self): shutil.rmtree(self.workdir) def test_patch_bigfile(self): tdir = tempfile.mkdtemp() try: data = [os.urandom(100)*10 for i in xrange(6)] for nm in ("source","target"): with open(os.path.join(tdir,nm),"wb") as f: for i in xrange(1000): for chunk in data: f.write(chunk) data[2],data[3] = data[3],data[2] with open(os.path.join(tdir,"patch"),"wb") as f: esky.patch.write_patch(os.path.join(tdir,"source"),os.path.join(tdir,"target"),f) dgst1 = esky.patch.calculate_digest(os.path.join(tdir,"target")) dgst2 = esky.patch.calculate_digest(os.path.join(tdir,"source")) self.assertNotEquals(dgst1,dgst2) with open(os.path.join(tdir,"patch"),"rb") as f: esky.patch.apply_patch(os.path.join(tdir,"source"),f) dgst3 = esky.patch.calculate_digest(os.path.join(tdir,"source")) self.assertEquals(dgst1,dgst3) finally: shutil.rmtree(tdir) def test_diffing_back_and_forth(self): for (tf1,_) in self._TEST_FILES: for (tf2,_) in self._TEST_FILES: path1 = self._extract(tf1,"source") path2 = self._extract(tf2,"target") with open(os.path.join(self.workdir,"patch"),"wb") as f: esky.patch.write_patch(path1,path2,f) if tf1 != tf2: self.assertNotEquals(esky.patch.calculate_digest(path1), esky.patch.calculate_digest(path2)) with open(os.path.join(self.workdir,"patch"),"rb") as f: esky.patch.apply_patch(path1,f) self.assertEquals(esky.patch.calculate_digest(path1), esky.patch.calculate_digest(path2)) def test_apply_patch(self): path1 = self._extract("pyenchant-1.2.0.tar.gz","source") path2 = self._extract("pyenchant-1.6.0.tar.gz","target") path1 = os.path.join(path1,"pyenchant-1.2.0") path2 = os.path.join(path2,"pyenchant-1.6.0") pf = os.path.join(self.tfdir,"v1.2.0_to_v1.6.0.patch") if not os.path.exists(pf): pf = os.path.join(dirname(esky.__file__),"tests","patch-test-files","v1.2.0_to_v1.6.0.patch") with open(pf,"rb") as f: esky.patch.apply_patch(path1,f) self.assertEquals(esky.patch.calculate_digest(path1), esky.patch.calculate_digest(path2)) def test_copying_multiple_targets_from_a_single_sibling(self): join = os.path.join src_dir = src_dir = join(self.workdir, "source") tgt_dir = tgt_dir = join(self.workdir, "target") for dirnm in src_dir, tgt_dir: os.mkdir(dirnm) zf = zipfile.ZipFile(join(self.tfdir, "movefrom-source.zip"), "r") zf.extractall(src_dir) zf = zipfile.ZipFile(join(self.tfdir, "movefrom-target.zip"), "r") zf.extractall(tgt_dir) # The two directory structures should initially be difference. self.assertNotEquals(esky.patch.calculate_digest(src_dir), esky.patch.calculate_digest(tgt_dir)) # Create patch from source to target. patch_fname = join(self.workdir, "patch") with open(patch_fname, "wb") as patchfile: esky.patch.write_patch(src_dir, tgt_dir, patchfile) # Try to apply the patch. with open(patch_fname, "rb") as patchfile: esky.patch.apply_patch(src_dir, patchfile) # Then the two directory structures should be equal. self.assertEquals(esky.patch.calculate_digest(src_dir), esky.patch.calculate_digest(tgt_dir)) def _extract(self,filename,dest): dest = os.path.join(self.workdir,dest) if os.path.exists(dest): really_rmtree(dest) f = tarfile.open(os.path.join(self.tfdir,filename),"r:gz") try: f.extractall(dest) finally: f.close() return dest class TestPatch_cxbsdiff(TestPatch): """Test the patching code with cx-bsdiff rather than bsdiff4.""" def setUp(self): self.__orig_bsdiff4 = esky.patch.bsdiff4 if esky.patch.bsdiff4_cx is not None: esky.patch.bsdiff4 = esky.patch.bsdiff4_cx return super(TestPatch_cxbsdiff,self).setUp() def tearDown(self): esky.patch.bsdiff4 = self.__orig_bsdiff4 return super(TestPatch_cxbsdiff,self).tearDown() class TestPatch_pybsdiff(TestPatch): """Test the patching code with pure-python bsdiff4.""" def setUp(self): self.__orig_bsdiff4 = esky.patch.bsdiff4 esky.patch.bsdiff4 = esky.patch.bsdiff4_py return super(TestPatch_pybsdiff,self).setUp() def tearDown(self): esky.patch.bsdiff4 = self.__orig_bsdiff4 return super(TestPatch_pybsdiff,self).tearDown() class TestFilesDiffer(unittest.TestCase): def setUp(self): self.tdir = tempfile.mkdtemp() def _path(self,*names): return os.path.join(self.tdir,*names) def _differs(self,data1,data2,start=0,stop=None): with open(self._path("file1"),"wb") as f: f.write(data1.encode("ascii")) with open(self._path("file2"),"wb") as f: f.write(data2.encode("ascii")) return files_differ(self._path("file1"),self._path("file2"),start,stop) def test_files_differ(self): assert self._differs("one","two") assert self._differs("onethreetwo","twothreeone") assert self._differs("onethreetwo","twothreeone",3) assert not self._differs("onethreetwo","twothreeone",3,-3) assert self._differs("onethreetwo","twothreeone",2,-3) assert self._differs("onethreetwo","twothreeone",3,-2) def tearDown(self): shutil.rmtree(self.tdir)
40.379874
124
0.605383
4637a000c8cb12b0fa1adbae9a69262d87332964
5,793
py
Python
carla-aebs/aebs.py
kpandey008/carla-aebs
649f230d35b1f161705c5f3511b552f2cc7debd8
[ "MIT" ]
12
2020-11-28T09:47:52.000Z
2022-03-28T09:09:24.000Z
carla-aebs/aebs.py
kpandey008/carla-aebs
649f230d35b1f161705c5f3511b552f2cc7debd8
[ "MIT" ]
2
2021-01-31T08:32:23.000Z
2021-02-01T06:38:33.000Z
carla-aebs/aebs.py
kpandey008/carla-aebs
649f230d35b1f161705c5f3511b552f2cc7debd8
[ "MIT" ]
3
2021-05-25T07:01:37.000Z
2022-02-21T10:25:09.000Z
# Python module to demonstrate AEBS import click import numpy as np import os from models.rl_agent.ddpg_agent import ddpgAgent from models.rl_agent.input_preprocessor import InputPreprocessor from utils.visualize import plot_metrics from world import World @click.command() @click.option( '--mode', type=click.Choice(['out', 'in'], case_sensitive=False), default='in', help='Mode to run the simulation in (Out of distribution / Normal)' ) @click.option('--gui', is_flag=True, default=False, help='Run simulation with GUI') @click.option('--testing', is_flag=True, default=False, help='Run simulation in testing mode') @click.option('--save-path', help='Path to save checkpoints to. Only used during training mode') @click.option('--agent-chkpt-path', help='Path to load checkpoint for the RL agent') @click.option('--perception-chkpt-path', help='Path to load checkpoint for the Perception LEC') @click.option('--calibration-scores', help='Path to pre-computed calibration scores for the in-distribution data') @click.option('--vae-chkpt-path', help='Path to load checkpoint for the VAE') @click.option('--num-episodes', type=int, default=1, help='Number of episodes to run tests for.') @click.option('--generate-plots', is_flag=True, default=False, help='Generate plots after completing the simulation') def aebs( gui=False, testing=False, num_episodes=1, save_path=os.getcwd(), mode='in', agent_chkpt_path=None, perception_chkpt_path=None, vae_chkpt_path=None, generate_plots=False, calibration_scores=None ): """Command to run simulation in train/test mode. For collecting data please refer to the collect command. Sample Usage: python aebs.py --save-path /home/lexent/carla_simulation/rl_agent/ \ --num-episodes 1 \ --agent-chkpt-path /home/lexent/carla_simulation/rl_agent/ \ --perception-chkpt-path /home/lexent/carla_simulation/perception_chkpt/chkpt_87.pt \ --vae-chkpt-path /home/lexent/carla_simulation/vae_chkpt/chkpt_92.pt \ --calibration-scores /home/lexent/carla_simulation/calibration.npy\ --gui --testing --generate-plots --mode in Args: gui (bool, optional): [Run simulation with GUI]. Defaults to False.\n testing (bool, optional): [Run simulation in testing mode]. Defaults to False.\n num_episodes (int, optional): [Number of episodes to run tests for.]. Defaults to 1.\n save_path ([type], optional): [Path to save checkpoints to. Only used during training mode]. Defaults to os.getcwd().\n mode (str, optional): [Mode to run the simulation in (Out of distribution / Normal)]. Defaults to 'in'.\n agent_chkpt_path ([type], optional): [Path to load checkpoint for the RL agent]. Defaults to None.\n """ agent = ddpgAgent(testing=testing, load_path=agent_chkpt_path) world = World( gui=gui, collect=False, testing=testing, perception_chkpt=perception_chkpt_path, vae_chkpt=vae_chkpt_path, calibration_scores=calibration_scores ) input_preprocessor = InputPreprocessor() if mode == 'in': ppt_lower_limit = 0 ppt_upper_limit = 20 elif mode == 'out': ppt_lower_limit = 60 ppt_upper_limit = 100 best_reward = -1000 # Any large negative value will do for episode in range(num_episodes): print(f'Running episode:{episode + 1}') # Sample random distance and velocity values initial_distance = np.random.normal(100, 1) initial_velocity = np.random.uniform(25, 28) # Sample a random precipitation parameter precipitation = np.random.uniform(ppt_lower_limit, ppt_upper_limit) print(f'Precipitation: {precipitation}') # Initialize the world with the sampled params dist, vel, status = world.init(initial_velocity, initial_distance, precipitation) if status == 'FAILED': print(f'Reset failed. Stopping episode {episode + 1} and continuing!') continue # Setup the starting state based on the state returned by resetting the world s = (dist, vel) s = input_preprocessor(s) epsilon = 1.0 - (episode+1) / num_episodes actions = [] while True: a = agent.getAction(s, epsilon) actions.append(a[0][0]) dist, vel, reward, episode_status = world.step(brake=a[0][0]) s_ = (dist, vel) s_ = input_preprocessor(s_) if testing is False: # Train the agent if testing is disabled agent.storeTrajectory(s, a, reward, s_, episode_status) agent.learn() s = s_ if episode_status == "DONE": if reward > best_reward and testing is False: best_save_path = os.path.join(save_path, 'best') os.makedirs(best_save_path, exist_ok=True) agent.save_model(best_save_path) best_reward = reward if testing is False: if np.mod(episode, 10) == 0: agent.save_model(save_path) print(f"Episode {episode + 1} is done, the reward is {reward}") break # Generate plots after the simulation ends for the last episode if generate_plots: comp_distances = np.array(world.computed_distances) gt_distances = np.array(world.gt_distances) p_values = np.array(world.p_values) actions = np.array(actions) plot_metrics(comp_distances, gt_distances, actions, p_values, mode=mode) if __name__ == '__main__': aebs()
47.097561
127
0.646125
969e95b609f47f9eb2e5f6fde7571e7d6d648ce2
1,165
py
Python
venmo-sim/leiden/run_leiden_on_sampled_venmo_dataset.py
akatsarakis/tx_benchmarking
f8233e58bba3f4fb54d82273d7ca8631bae36ebc
[ "MIT" ]
3
2020-07-07T17:08:41.000Z
2022-01-10T19:25:46.000Z
venmo-sim/leiden/run_leiden_on_sampled_venmo_dataset.py
akatsarakis/tx_benchmarking
f8233e58bba3f4fb54d82273d7ca8631bae36ebc
[ "MIT" ]
null
null
null
venmo-sim/leiden/run_leiden_on_sampled_venmo_dataset.py
akatsarakis/tx_benchmarking
f8233e58bba3f4fb54d82273d7ca8631bae36ebc
[ "MIT" ]
null
null
null
import csv import leidenalg import igraph as ig # build igraph from venmo dataset fp = open("cleaned_normalized_txes_sampled.csv", "r") # , encoding='utf-8') venmo_edges = csv.reader(fp) G = ig.Graph(directed=True) # TODO , weighted=True) # directed, weighted (edge weight = multiple of edge) # the data does not specify the amount of each transaction, since Venmo does not make this data public. G.add_vertices(7178381) # For this given dataset, total number of vertices is already known uid_dict = dict() for venmo_edge in venmo_edges: aid = venmo_edge[0] if aid not in uid_dict: uid_dict[aid] = len(uid_dict) anode = uid_dict[aid] tid = venmo_edge[1] if tid not in uid_dict: uid_dict[tid] = len(uid_dict) tnode = uid_dict[tid] try: G.add_edge(anode, tnode) except: print(aid, tid, anode, tnode) break # print(G) # debug fp.close() # run Leiden algorithm part = leidenalg.find_partition(G, leidenalg.ModularityVertexPartition) # print(part) # debug # save result into file fp = open("cleaned_normalized_clustered_venmo_dataset.txt", "w") print(part, file=fp) fp.close()
28.414634
107
0.695279
40bea55f9d0220d34ba36a7b034d6613482bcf2d
25,440
py
Python
samtranslator/open_api/open_api.py
ejafarli/serverless-application-model
6355433d1f0dec8624417180b0c989afd2d2930a
[ "Apache-2.0" ]
1
2020-10-27T14:27:14.000Z
2020-10-27T14:27:14.000Z
samtranslator/open_api/open_api.py
ejafarli/serverless-application-model
6355433d1f0dec8624417180b0c989afd2d2930a
[ "Apache-2.0" ]
null
null
null
samtranslator/open_api/open_api.py
ejafarli/serverless-application-model
6355433d1f0dec8624417180b0c989afd2d2930a
[ "Apache-2.0" ]
null
null
null
import copy import re from six import string_types from samtranslator.model.intrinsics import ref from samtranslator.model.intrinsics import make_conditional from samtranslator.model.intrinsics import is_intrinsic from samtranslator.model.exceptions import InvalidDocumentException, InvalidTemplateException import json class OpenApiEditor(object): """ Wrapper class capable of parsing and generating OpenApi JSON. This implements OpenApi spec just enough that SAM cares about. It is built to handle "partial Swagger" ie. Swagger that is incomplete and won't pass the Swagger spec. But this is necessary for SAM because it iteratively builds the Swagger starting from an empty skeleton. """ _X_APIGW_INTEGRATION = "x-amazon-apigateway-integration" _X_APIGW_TAG_VALUE = "x-amazon-apigateway-tag-value" _X_APIGW_CORS = "x-amazon-apigateway-cors" _CONDITIONAL_IF = "Fn::If" _X_ANY_METHOD = "x-amazon-apigateway-any-method" _ALL_HTTP_METHODS = ["OPTIONS", "GET", "HEAD", "POST", "PUT", "DELETE", "PATCH"] _DEFAULT_PATH = "$default" def __init__(self, doc): """ Initialize the class with a swagger dictionary. This class creates a copy of the Swagger and performs all modifications on this copy. :param dict doc: OpenApi document as a dictionary :raises ValueError: If the input OpenApi document does not meet the basic OpenApi requirements. """ if not OpenApiEditor.is_valid(doc): raise ValueError( "Invalid OpenApi document. " "Invalid values or missing keys for 'openapi' or 'paths' in 'DefinitionBody'." ) self._doc = copy.deepcopy(doc) self.paths = self._doc["paths"] self.security_schemes = self._doc.get("components", {}).get("securitySchemes", {}) self.definitions = self._doc.get("definitions", {}) self.tags = self._doc.get("tags", []) def get_path(self, path): """ Returns the contents of a path, extracting them out of a condition if necessary :param path: path name """ path_dict = self.paths.get(path) if isinstance(path_dict, dict) and self._CONDITIONAL_IF in path_dict: path_dict = path_dict[self._CONDITIONAL_IF][1] return path_dict def has_path(self, path, method=None): """ Returns True if this OpenApi has the given path and optional method :param string path: Path name :param string method: HTTP method :return: True, if this path/method is present in the document """ method = self._normalize_method_name(method) path_dict = self.get_path(path) path_dict_exists = path_dict is not None if method: return path_dict_exists and method in path_dict return path_dict_exists def get_integration_function_logical_id(self, path_name, method_name): """ Retrieves the function logical id in a lambda integration if it exists If it doesn't exist, returns false :param path_name: name of the path :param method_name: name of the method """ if not self.has_integration(path_name, method_name): return False method_name = self._normalize_method_name(method_name) # Get the path path = self.get_path(path_name) # Get the method contents # We only want the first one in case there are multiple (in a conditional) method = self.get_method_contents(path[method_name])[0] integration = method.get(self._X_APIGW_INTEGRATION, {}) # Extract the integration uri out of a conditional if necessary uri = integration.get("uri") if not isinstance(uri, dict): return "" if self._CONDITIONAL_IF in uri: arn = uri[self._CONDITIONAL_IF][1].get("Fn::Sub") else: arn = uri.get("Fn::Sub", "") # Extract lambda integration (${LambdaName.Arn}) and split ".Arn" off from it regex = "([A-Za-z0-9]+\.Arn)" match = re.findall(regex, arn)[0].split(".Arn")[0] return match def method_has_integration(self, method): """ Returns true if the given method contains a valid method definition. This uses the get_method_contents function to handle conditionals. :param dict method: method dictionary :return: true if method has one or multiple integrations """ for method_definition in self.get_method_contents(method): if self.method_definition_has_integration(method_definition): return True return False def method_definition_has_integration(self, method_definition): """ Checks a method definition to make sure it has an apigw integration :param dict method_defintion: method definition dictionary :return: True if an integration exists """ if method_definition.get(self._X_APIGW_INTEGRATION): return True return False def get_method_contents(self, method): """ Returns the swagger contents of the given method. This checks to see if a conditional block has been used inside of the method, and, if so, returns the method contents that are inside of the conditional. :param dict method: method dictionary :return: list of swagger component dictionaries for the method """ if self._CONDITIONAL_IF in method: return method[self._CONDITIONAL_IF][1:] return [method] def has_integration(self, path, method): """ Checks if an API Gateway integration is already present at the given path/method :param string path: Path name :param string method: HTTP method :return: True, if an API Gateway integration is already present """ method = self._normalize_method_name(method) path_dict = self.get_path(path) return ( self.has_path(path, method) and isinstance(path_dict[method], dict) and self.method_has_integration(path_dict[method]) ) # Integration present and non-empty def add_path(self, path, method=None): """ Adds the path/method combination to the Swagger, if not already present :param string path: Path name :param string method: HTTP method :raises ValueError: If the value of `path` in Swagger is not a dictionary """ method = self._normalize_method_name(method) path_dict = self.paths.setdefault(path, {}) if not isinstance(path_dict, dict): # Either customers has provided us an invalid Swagger, or this class has messed it somehow raise InvalidDocumentException( [ InvalidTemplateException( "Value of '{}' path must be a dictionary according to Swagger spec.".format(path) ) ] ) if self._CONDITIONAL_IF in path_dict: path_dict = path_dict[self._CONDITIONAL_IF][1] path_dict.setdefault(method, {}) def add_lambda_integration( self, path, method, integration_uri, method_auth_config=None, api_auth_config=None, condition=None ): """ Adds aws_proxy APIGW integration to the given path+method. :param string path: Path name :param string method: HTTP Method :param string integration_uri: URI for the integration. """ method = self._normalize_method_name(method) if self.has_integration(path, method): # Not throwing an error- we will add lambda integrations to existing swagger if not present return self.add_path(path, method) # Wrap the integration_uri in a Condition if one exists on that function # This is necessary so CFN doesn't try to resolve the integration reference. if condition: integration_uri = make_conditional(condition, integration_uri) path_dict = self.get_path(path) path_dict[method][self._X_APIGW_INTEGRATION] = { "type": "aws_proxy", "httpMethod": "POST", "payloadFormatVersion": "2.0", "uri": integration_uri, } if path == self._DEFAULT_PATH and method == self._X_ANY_METHOD: path_dict[method]["isDefaultRoute"] = True # If 'responses' key is *not* present, add it with an empty dict as value path_dict[method].setdefault("responses", {}) # If a condition is present, wrap all method contents up into the condition if condition: path_dict[method] = make_conditional(condition, path_dict[method]) def make_path_conditional(self, path, condition): """ Wrap entire API path definition in a CloudFormation if condition. :param path: path name :param condition: condition name """ self.paths[path] = make_conditional(condition, self.paths[path]) def iter_on_path(self): """ Yields all the paths available in the Swagger. As a caller, if you add new paths to Swagger while iterating, they will not show up in this iterator :yields string: Path name """ for path, value in self.paths.items(): yield path def add_timeout_to_method(self, api, path, method_name, timeout): """ Adds a timeout to this path/method. :param dict api: Reference to the related Api's properties as defined in the template. :param string path: Path name :param string method_name: Method name :param int timeout: Timeout amount, in milliseconds """ normalized_method_name = self._normalize_method_name(method_name) for method_definition in self.get_method_contents(self.get_path(path)[normalized_method_name]): if self.method_definition_has_integration(method_definition): method_definition[self._X_APIGW_INTEGRATION]["timeoutInMillis"] = timeout def add_path_parameters_to_method(self, api, path, method_name, path_parameters): """ Adds path parameters to this path + method :param dict api: Reference to the related Api's properties as defined in the template. :param string path: Path name :param string method_name: Method name :param list path_parameters: list of strings of path parameters """ normalized_method_name = self._normalize_method_name(method_name) for method_definition in self.get_method_contents(self.get_path(path)[normalized_method_name]): # create path parameter list # add it here if it doesn't exist, merge with existing otherwise. method_definition.setdefault("parameters", []) for param in path_parameters: # find an existing parameter with this name if it exists existing_parameter = next( ( existing_parameter for existing_parameter in method_definition.get("parameters", []) if existing_parameter.get("name") == param ), None, ) if existing_parameter: # overwrite parameter values for existing path parameter existing_parameter["in"] = "path" existing_parameter["required"] = True else: parameter = {"name": param, "in": "path", "required": True} method_definition.get("parameters").append(parameter) def add_payload_format_version_to_method(self, api, path, method_name, payload_format_version="2.0"): """ Adds a payload format version to this path/method. :param dict api: Reference to the related Api's properties as defined in the template. :param string path: Path name :param string method_name: Method name :param string payload_format_version: payload format version sent to the integration """ normalized_method_name = self._normalize_method_name(method_name) for method_definition in self.get_method_contents(self.get_path(path)[normalized_method_name]): if self.method_definition_has_integration(method_definition): method_definition[self._X_APIGW_INTEGRATION]["payloadFormatVersion"] = payload_format_version def add_authorizers_security_definitions(self, authorizers): """ Add Authorizer definitions to the securityDefinitions part of Swagger. :param list authorizers: List of Authorizer configurations which get translated to securityDefinitions. """ self.security_schemes = self.security_schemes or {} for authorizer_name, authorizer in authorizers.items(): self.security_schemes[authorizer_name] = authorizer.generate_openapi() def set_path_default_authorizer(self, path, default_authorizer, authorizers, api_authorizers): """ Adds the default_authorizer to the security block for each method on this path unless an Authorizer was defined at the Function/Path/Method level. This is intended to be used to set the authorizer security restriction for all api methods based upon the default configured in the Serverless API. :param string path: Path name :param string default_authorizer: Name of the authorizer to use as the default. Must be a key in the authorizers param. :param list authorizers: List of Authorizer configurations defined on the related Api. """ for method_name, method in self.get_path(path).items(): normalized_method_name = self._normalize_method_name(method_name) # Excluding parameters section if normalized_method_name == "parameters": continue if normalized_method_name != "options": normalized_method_name = self._normalize_method_name(method_name) # It is possible that the method could have two definitions in a Fn::If block. for method_definition in self.get_method_contents(self.get_path(path)[normalized_method_name]): # If no integration given, then we don't need to process this definition (could be AWS::NoValue) if not self.method_definition_has_integration(method_definition): continue existing_security = method_definition.get("security", []) if existing_security: return authorizer_list = [] if authorizers: authorizer_list.extend(authorizers.keys()) security_dict = dict() security_dict[default_authorizer] = self._get_authorization_scopes( api_authorizers, default_authorizer ) authorizer_security = [security_dict] security = authorizer_security if security: method_definition["security"] = security def add_auth_to_method(self, path, method_name, auth, api): """ Adds auth settings for this path/method. Auth settings currently consist of Authorizers but this method will eventually include setting other auth settings such as Resource Policy, etc. This is used to configure the security for individual functions. :param string path: Path name :param string method_name: Method name :param dict auth: Auth configuration such as Authorizers :param dict api: Reference to the related Api's properties as defined in the template. """ method_authorizer = auth and auth.get("Authorizer") authorization_scopes = auth.get("AuthorizationScopes", []) api_auth = api and api.get("Auth") authorizers = api_auth and api_auth.get("Authorizers") if method_authorizer: self._set_method_authorizer(path, method_name, method_authorizer, authorizers, authorization_scopes) def _set_method_authorizer(self, path, method_name, authorizer_name, authorizers, authorization_scopes=[]): """ Adds the authorizer_name to the security block for each method on this path. This is used to configure the authorizer for individual functions. :param string path: Path name :param string method_name: Method name :param string authorizer_name: Name of the authorizer to use. Must be a key in the authorizers param. :param list authorization_scopes: list of strings that are the auth scopes for this method """ normalized_method_name = self._normalize_method_name(method_name) # It is possible that the method could have two definitions in a Fn::If block. for method_definition in self.get_method_contents(self.get_path(path)[normalized_method_name]): # If no integration given, then we don't need to process this definition (could be AWS::NoValue) if not self.method_definition_has_integration(method_definition): continue existing_security = method_definition.get("security", []) security_dict = dict() security_dict[authorizer_name] = [] if authorizer_name != "NONE": method_authorization_scopes = authorizers[authorizer_name].get("AuthorizationScopes") if authorization_scopes: method_authorization_scopes = authorization_scopes if authorizers[authorizer_name] and method_authorization_scopes: security_dict[authorizer_name] = method_authorization_scopes authorizer_security = [security_dict] # This assumes there are no authorizers already configured in the existing security block security = existing_security + authorizer_security if security: method_definition["security"] = security def add_tags(self, tags): """ Adds tags to the OpenApi definition using an ApiGateway extension for tag values. :param dict tags: dictionary of tagName:tagValue pairs. """ for name, value in tags.items(): # find an existing tag with this name if it exists existing_tag = next((existing_tag for existing_tag in self.tags if existing_tag.get("name") == name), None) if existing_tag: # overwrite tag value for an existing tag existing_tag[self._X_APIGW_TAG_VALUE] = value else: tag = {"name": name, self._X_APIGW_TAG_VALUE: value} self.tags.append(tag) def add_cors( self, allow_origins, allow_headers=None, allow_methods=None, expose_headers=None, max_age=None, allow_credentials=None, ): """ Add CORS configuration to this Api to _X_APIGW_CORS header in open api definition Following this guide: https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-cors.html https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-apigatewayv2-api-cors.html :param list/dict allowed_origins: Comma separate list of allowed origins. Value can also be an intrinsic function dict. :param list/dict allowed_headers: Comma separated list of allowed headers. Value can also be an intrinsic function dict. :param list/dict allowed_methods: Comma separated list of allowed methods. Value can also be an intrinsic function dict. :param list/dict expose_headers: Comma separated list of allowed methods. Value can also be an intrinsic function dict. :param integer/dict max_age: Maximum duration to cache the CORS Preflight request. Value is set on Access-Control-Max-Age header. Value can also be an intrinsic function dict. :param bool/None allowed_credentials: Flags whether request is allowed to contain credentials. """ ALLOW_ORIGINS = "allowOrigins" ALLOW_HEADERS = "allowHeaders" ALLOW_METHODS = "allowMethods" EXPOSE_HEADERS = "exposeHeaders" MAX_AGE = "maxAge" ALLOW_CREDENTIALS = "allowCredentials" cors_headers = [ALLOW_ORIGINS, ALLOW_HEADERS, ALLOW_METHODS, EXPOSE_HEADERS, MAX_AGE, ALLOW_CREDENTIALS] cors_configuration = self._doc.get(self._X_APIGW_CORS, dict()) # intrinsics will not work if cors configuration is defined in open api and as a property to the HttpApi if allow_origins and is_intrinsic(allow_origins): cors_configuration_string = json.dumps(allow_origins) for header in cors_headers: # example: allowOrigins to AllowOrigins keyword = header[0].upper() + header[1:] cors_configuration_string = cors_configuration_string.replace(keyword, header) cors_configuration_dict = json.loads(cors_configuration_string) cors_configuration.update(cors_configuration_dict) else: if allow_origins: cors_configuration[ALLOW_ORIGINS] = allow_origins if allow_headers: cors_configuration[ALLOW_HEADERS] = allow_headers if allow_methods: cors_configuration[ALLOW_METHODS] = allow_methods if expose_headers: cors_configuration[EXPOSE_HEADERS] = expose_headers if max_age is not None: cors_configuration[MAX_AGE] = max_age if allow_credentials is True: cors_configuration[ALLOW_CREDENTIALS] = allow_credentials self._doc[self._X_APIGW_CORS] = cors_configuration def has_api_gateway_cors(self): if self._doc.get(self._X_APIGW_CORS): return True return False @property def openapi(self): """ Returns a **copy** of the OpenApi specification as a dictionary. :return dict: Dictionary containing the OpenApi specification """ # Make sure any changes to the paths are reflected back in output self._doc["paths"] = self.paths if self.tags: self._doc["tags"] = self.tags if self.security_schemes: self._doc.setdefault("components", {}) self._doc["components"]["securitySchemes"] = self.security_schemes return copy.deepcopy(self._doc) @staticmethod def is_valid(data): """ Checks if the input data is a OpenApi document :param dict data: Data to be validated :return: True, if data is valid OpenApi """ if bool(data) and isinstance(data, dict) and isinstance(data.get("paths"), dict): if bool(data.get("openapi")): return OpenApiEditor.safe_compare_regex_with_string( OpenApiEditor.get_openapi_version_3_regex(), data["openapi"] ) return False @staticmethod def gen_skeleton(): """ Method to make an empty swagger file, with just some basic structure. Just enough to pass validator. :return dict: Dictionary of a skeleton swagger document """ return {"openapi": "3.0.1", "info": {"version": "1.0", "title": ref("AWS::StackName")}, "paths": {}} @staticmethod def _get_authorization_scopes(authorizers, default_authorizer): """ Returns auth scopes for an authorizer if present :param authorizers: authorizer definitions :param default_authorizer: name of the default authorizer """ if authorizers is not None: if ( authorizers[default_authorizer] and authorizers[default_authorizer].get("AuthorizationScopes") is not None ): return authorizers[default_authorizer].get("AuthorizationScopes") return [] @staticmethod def _normalize_method_name(method): """ Returns a lower case, normalized version of HTTP Method. It also know how to handle API Gateway specific methods like "ANY" NOTE: Always normalize before using the `method` value passed in as input :param string method: Name of the HTTP Method :return string: Normalized method name """ if not method or not isinstance(method, string_types): return method method = method.lower() if method == "any": return OpenApiEditor._X_ANY_METHOD else: return method @staticmethod def get_openapi_version_3_regex(): openapi_version_3_regex = r"\A3(\.\d)(\.\d)?$" return openapi_version_3_regex @staticmethod def safe_compare_regex_with_string(regex, data): return re.match(regex, str(data)) is not None @staticmethod def get_path_without_trailing_slash(path): return re.sub(r"{([a-zA-Z0-9._-]+|proxy\+)}", "*", path)
43.118644
120
0.64717
0bef6c108f2bed7fe48039d5b00316dca5dfc26e
2,485
py
Python
myDatasets.py
tanaka4463/bippa-detection
c18eece423e334351432dcbf022e3827d97bcfb3
[ "MIT" ]
null
null
null
myDatasets.py
tanaka4463/bippa-detection
c18eece423e334351432dcbf022e3827d97bcfb3
[ "MIT" ]
null
null
null
myDatasets.py
tanaka4463/bippa-detection
c18eece423e334351432dcbf022e3827d97bcfb3
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from torch.utils.data import Dataset import os import json import pandas as pd import numpy as np from PIL import Image class MyDatasets(Dataset): def __init__(self, imgDirectory, transform = None): self.imgDirectory = imgDirectory self.df = self.createDataFrame() self.image_ids = self.df['image_id'].unique() self.transform = transform def __len__(self): return self.image_ids.shape[0] def __getitem__(self, index): image_id = self.image_ids[index] img = Image.open(os.path.join(self.imgDirectory, image_id + '.jpg')) if self.transform: img = self.transform(img, key = 'train') # dataframe df = self.df[self.df['image_id'] == image_id] boxes = torch.tensor(df[['xmin', 'ymin', 'xmax', 'ymax']].values, dtype = torch.float32) area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) area = torch.as_tensor(area, dtype = torch.float32) labels = torch.tensor(df['class'].values.astype(np.int64), dtype = torch.int64) iscrowd = torch.zeros((df.shape[0], ), dtype = torch.int64) # target準備 target = {} target['boxes'] = boxes target['labels'] = labels target['image_id'] = torch.tensor([index]) target['area'] = area target['iscrowd'] = iscrowd return img, target def createDataFrame(self): labelClass = {'bippa': 1} all_files = os.listdir(self.imgDirectory) abs_files = [os.path.join(self.imgDirectory, f) for f in all_files] jsonPaths = [f for f in abs_files if os.path.splitext(f)[1] == '.json'] df = pd.DataFrame(columns = ['image_id', 'xmin', 'ymin', 'xmax', 'ymax', 'class']) for jsonPath in jsonPaths: image_id = os.path.splitext(os.path.basename(jsonPath))[0] fileName = open(jsonPath, 'r', encoding = 'utf-8') jsonData = json.load(fileName) points = jsonData['shapes'] for i in range(len(points)): rect = np.array(points[i]['points']).flatten() df_c = pd.DataFrame([rect], columns = ['xmin', 'ymin', 'xmax', 'ymax']) df_c['image_id'] = image_id df_c['class'] = labelClass['bippa'] df = pd.concat([df, df_c]) return df
37.089552
97
0.558149
2bb6fe560093bacaec289618d3406731ed1efdeb
1,211
py
Python
human/core/api/models/work_experience.py
domenicosolazzo/Human
272bbd939c90e0874a51022b9f716ed47e886fec
[ "MIT" ]
null
null
null
human/core/api/models/work_experience.py
domenicosolazzo/Human
272bbd939c90e0874a51022b9f716ed47e886fec
[ "MIT" ]
null
null
null
human/core/api/models/work_experience.py
domenicosolazzo/Human
272bbd939c90e0874a51022b9f716ed47e886fec
[ "MIT" ]
null
null
null
from place import Place class Employer(object): """ Employer model that represents a real work experience """ from_date = "" to_date = "" place = None summary = "", name = "" title = "" sector = "", keywords = [] def __init__(self, data): self.name = data.get('name', None) self.title = data.get('title', None) self.sector = data.get('sector', None) self.from_date = data.get('from_date', None) self.to_date = data.get('to_date', None) self.summary = data.get('summary', None) keywords = data.get('keywords', []) if not isinstance(keywords, list): keywords = [] self.keywords = keywords place = data.get('place', None) if place is not None: self.place = Place(place) def to_json(self): return { 'name': self.name, 'title': self.title, 'sector': self.sector, 'from_date': self.from_date, 'to_date': self.to_date, 'summary': self.summary, 'keywords': self.keywords, 'place': self.place.to_json() if not self.place is None else None }
28.833333
77
0.535095
131f6f2da3f2c69cf8ca88de131984155cc0cfa4
185
py
Python
accounts/forms.py
iidamakinen/OHSIHA2018
76c4f2d754045cc82d57062453e7248d63e5bf4d
[ "MIT" ]
null
null
null
accounts/forms.py
iidamakinen/OHSIHA2018
76c4f2d754045cc82d57062453e7248d63e5bf4d
[ "MIT" ]
null
null
null
accounts/forms.py
iidamakinen/OHSIHA2018
76c4f2d754045cc82d57062453e7248d63e5bf4d
[ "MIT" ]
null
null
null
from django import forms from .models import Tapahtuma class TapahtumaForm(forms.ModelForm): class Meta: model = Tapahtuma fields = ['name', 'description', 'date']
23.125
48
0.681081
02dc95abb5b6583696e6bdc49adc7c22a82993ce
10,868
py
Python
tests/regression_tests/test_aerostruct.py
kejacobson/mphys
72ff05a1c444461a9431470d32dcf2a7d51752eb
[ "Apache-2.0" ]
null
null
null
tests/regression_tests/test_aerostruct.py
kejacobson/mphys
72ff05a1c444461a9431470d32dcf2a7d51752eb
[ "Apache-2.0" ]
null
null
null
tests/regression_tests/test_aerostruct.py
kejacobson/mphys
72ff05a1c444461a9431470d32dcf2a7d51752eb
[ "Apache-2.0" ]
null
null
null
# --- Python 3.8 --- """ @File : test_aerostruct.py @Time : 2020/12/20 @Author : Josh Anibal @Desc : Aerostructural regression tests used to test if the output produced by MPHYS has changed """ # === Standard Python modules === from __future__ import print_function, division import os import unittest # === External Python modules === import numpy as np from mpi4py import MPI from parameterized import parameterized, parameterized_class # === Extension modules === import openmdao.api as om from openmdao.utils.assert_utils import assert_near_equal from mphys.multipoint import Multipoint from mphys.scenario_aerostructural import ScenarioAeroStructural # these imports will be from the respective codes' repos rather than mphys from mphys.solver_builders.mphys_adflow import ADflowBuilder from tacs.mphys import TacsBuilder from mphys.solver_builders.mphys_meld import MeldBuilder # from mphys.solver_builders.mphys_rlt import RltBuilder from baseclasses import AeroProblem from tacs import elements, constitutive, functions # set these for convenience comm = MPI.COMM_WORLD rank = comm.rank baseDir = os.path.dirname(os.path.abspath(__file__)) # Callback function used to setup TACS element objects and DVs def element_callback(dvNum, compID, compDescript, elemDescripts, specialDVs, **kwargs): rho = 2780.0 # density, kg/m^3 E = 73.1e9 # elastic modulus, Pa nu = 0.33 # poisson's ratio ys = 324.0e6 # yield stress, Pa thickness = 0.003 min_thickness = 0.002 max_thickness = 0.05 # Setup (isotropic) property and constitutive objects prop = constitutive.MaterialProperties(rho=rho, E=E, nu=nu, ys=ys) # Set one thickness dv for every component con = constitutive.IsoShellConstitutive(prop, t=thickness, tNum=dvNum, tlb=min_thickness, tub=max_thickness) # For each element type in this component, # pass back the appropriate tacs element object transform = None elem = elements.Quad4Shell(transform, con) return elem def problem_setup(scenario_name, fea_assembler, problem): """ Helper function to add fixed forces and eval functions to structural problems used in tacs builder """ # Add TACS Functions # Only include mass from elements that belong to pytacs components (i.e. skip concentrated masses) problem.addFunction('mass', functions.StructuralMass) problem.addFunction('ks_vmfailure', functions.KSFailure, safetyFactor=1.0, ksWeight=50.0) # Add gravity load g = np.array([0.0, 0.0, -9.81]) # m/s^2 problem.addInertialLoad(g) class Top(Multipoint): def setup(self): ################################################################################ # ADflow options ################################################################################ aero_options = { # I/O Parameters "gridFile": os.path.join(baseDir, "../input_files/wing_vol.cgns"), "outputDirectory": ".", "monitorvariables": ["resrho", "resturb", "cl", "cd"], "writeTecplotSurfaceSolution": False, # 'writevolumesolution':False, # 'writesurfacesolution':False, # Physics Parameters "equationType": "RANS", # Solver Parameters "smoother": "DADI", "CFL": 1.5, "CFLCoarse": 1.25, "MGCycle": "sg", "MGStartLevel": -1, "nCyclesCoarse": 250, # ANK Solver Parameters "useANKSolver": True, "nsubiterturb": 5, "anksecondordswitchtol": 1e-4, "ankcoupledswitchtol": 1e-6, "ankinnerpreconits": 2, "ankouterpreconits": 2, "anklinresmax": 0.1, # Termination Criteria "L2Convergence": 1e-14, "L2ConvergenceCoarse": 1e-2, "L2ConvergenceRel": 1e-4, "nCycles": 10000, # force integration "forcesAsTractions": self.forcesAsTractions, } aero_builder = ADflowBuilder(aero_options, scenario="aerostructural") aero_builder.initialize(self.comm) self.add_subsystem("mesh_aero", aero_builder.get_mesh_coordinate_subsystem()) ################################################################################ # TACS options ################################################################################ tacs_options = {'element_callback' : element_callback, "problem_setup": problem_setup, 'mesh_file': '../input_files/wingbox.bdf'} struct_builder = TacsBuilder(tacs_options, coupled=True) struct_builder.initialize(self.comm) self.add_subsystem("mesh_struct", struct_builder.get_mesh_coordinate_subsystem()) ################################################################################ # Transfer scheme options ################################################################################ if self.xfer_builder_class == MeldBuilder: xfer_builder = self.xfer_builder_class(aero_builder, struct_builder, isym=1, check_partials=True) else: xfer_builder = self.xfer_builder_class(self.xfer_options, aero_builder, struct_builder, check_partials=True) xfer_builder.initialize(self.comm) ################################################################################ # MPHYS setup ################################################################################ # ivc to keep the top level DVs dvs = self.add_subsystem("dvs", om.IndepVarComp(), promotes=["*"]) nonlinear_solver = om.NonlinearBlockGS(maxiter=25, iprint=2, use_aitken=True, rtol=1e-14, atol=1e-14) linear_solver = om.LinearBlockGS(maxiter=25, iprint=2, use_aitken=True, rtol=1e-14, atol=1e-14) self.mphys_add_scenario( "cruise", ScenarioAeroStructural( aero_builder=aero_builder, struct_builder=struct_builder, ldxfer_builder=xfer_builder ), nonlinear_solver, linear_solver, ) for discipline in ["aero", "struct"]: self.mphys_connect_scenario_coordinate_source("mesh_%s" % discipline, "cruise", discipline) # add the structural thickness DVs ndv_struct = struct_builder.get_ndv() dvs.add_output("dv_struct", np.array(ndv_struct * [0.01])) self.connect("dv_struct", "cruise.dv_struct") def configure(self): super().configure() # create the aero problems for both analysis point. # this is custom to the ADflow based approach we chose here. # any solver can have their own custom approach here, and we don't # need to use a common API. AND, if we wanted to define a common API, # it can easily be defined on the mp group, or the aero group. aoa = 1.5 ap0 = AeroProblem( name="ap0", mach=0.8, altitude=10000, alpha=aoa, areaRef=45.5, chordRef=3.25, evalFuncs=["lift", "drag", "cl", "cd"], ) ap0.addDV("alpha", value=aoa, name="aoa") ap0.addDV("mach", value=0.8, name="mach") # here we set the aero problems for every cruise case we have. # this can also be called set_flow_conditions, we don't need to create and pass an AP, # just flow conditions is probably a better general API # this call automatically adds the DVs for the respective scenario self.cruise.coupling.aero.mphys_set_ap(ap0) self.cruise.aero_post.mphys_set_ap(ap0) # define the aero DVs in the IVC # s0 self.dvs.add_output("aoa0", val=aoa, units="deg") self.dvs.add_output("mach0", val=0.8) # connect to the aero for each scenario self.connect("aoa0", ["cruise.coupling.aero.aoa", "cruise.aero_post.aoa"]) self.connect("mach0", ["cruise.coupling.aero.mach", "cruise.aero_post.mach"]) @parameterized_class( [ { "name": "meld", "xfer_builder_class": MeldBuilder, "xfer_options": {"isym": 1, "n": 200, "beta": 0.5}, "ref_vals": { "xa": 5.44356782419053, "cl": 0.3384087364751269, "func_struct": 0.25177455023767636, "cd": 0.029881839034169452, }, }, # { # "name": "rlt", # # "xfer_builder_class": RltBuilder, # "xfer_options": {"transfergaussorder": 2}, # "ref_vals": {"xa": 5.504999831790868, "func_struct": 0.31363742, "cl": 0.3047756, "cd": 0.0280476}, # }, ] ) class TestAeroStructSolve(unittest.TestCase): N_PROCS = 1 def setUp(self): ################################################################################ # OpenMDAO setup ################################################################################ prob = om.Problem() prob.model = Top() prob.model.xfer_builder_class = self.xfer_builder_class prob.model.xfer_options = self.xfer_options if "meld" in self.name: prob.model.forcesAsTractions = True else: prob.model.forcesAsTractions = False prob.setup() self.prob = prob # om.n2(prob, show_browser=False, outfile='test_as.html') def test_run_model(self): self.prob.run_model() # prob.model.list_outputs() if MPI.COMM_WORLD.rank == 0: print("Scenario 0") print("xa =", np.mean(self.prob.get_val("cruise.coupling.geo_disp.x_aero", get_remote=True))) print("cl =", self.prob.get_val("cruise.aero_post.cl", get_remote=True)[0]) print("cd =", self.prob.get_val("cruise.aero_post.cd", get_remote=True)[0]) print("ks_vmfailure =", self.prob.get_val("cruise.ks_vmfailure", get_remote=True)[0]) assert_near_equal( np.mean(self.prob.get_val("cruise.coupling.geo_disp.x_aero", get_remote=True)), self.ref_vals["xa"], 1e-6, ) assert_near_equal( np.mean(self.prob.get_val("cruise.aero_post.cl", get_remote=True)), self.ref_vals["cl"], 1e-6 ) assert_near_equal( np.mean(self.prob.get_val("cruise.aero_post.cd", get_remote=True)), self.ref_vals["cd"], 1e-6 ) assert_near_equal( np.mean(self.prob.get_val("cruise.ks_vmfailure", get_remote=True)), self.ref_vals["func_struct"], 1e-6, ) if __name__ == "__main__": unittest.main()
37.347079
120
0.568642
3e1fe83d89e15bd049040214762d7a85054d0b95
7,551
py
Python
test_models.py
iqDF/tsn-pytorch
c734ee040fcb245542866f0a7812cdc6e417cb2c
[ "BSD-2-Clause" ]
2
2019-08-15T10:02:17.000Z
2020-03-27T09:45:56.000Z
test_models.py
iqDF/tsn-pytorch
c734ee040fcb245542866f0a7812cdc6e417cb2c
[ "BSD-2-Clause" ]
null
null
null
test_models.py
iqDF/tsn-pytorch
c734ee040fcb245542866f0a7812cdc6e417cb2c
[ "BSD-2-Clause" ]
null
null
null
""" Usage: python3 test_model.py <DATASET> <MODALITY> <VIDEO_FOR_TEST> <CHECKPOINTS_FILE> \ --arch <ARCH> --save_scores <SAVE_SCORES> e.g: python3 test_models.py saag01 ARP ./fighting.mkv checkpoints/SAAG01_BNI_ARP_3_model_best.pth.tar \ --arch BNInception --save_scores scores/ --num_segments 3 --consensus_type avg """ import argparse import time # Computation libs import numpy as np import cv2 import torch.nn.parallel import torch.optim from multiprocessing import Pool, current_process from sklearn.metrics import confusion_matrix from PIL import Image from dataset import TSNDataSet from models import TSN from transforms import * from ops import ConsensusModule from convert_to_ARP import cvApproxRankPooling, Buffer import torch import torchsummary def get_options(): parser = argparse.ArgumentParser( description="Standard video-level testing") parser.add_argument('dataset', type=str, choices=['ucf101', 'hmdb51', 'kinetics', 'saag01']) parser.add_argument('modality', type=str, choices=['RGB', 'Flow', 'RGBDiff', 'ARP']) parser.add_argument('video_path', type=str) parser.add_argument('checkpoint', type=str) parser.add_argument('--arch', type=str, default="resnet101") parser.add_argument('--save_scores', type=str, default=None) parser.add_argument('--num_segments', type=int, default=3) parser.add_argument('--max_num', type=int, default=-1) parser.add_argument('--test_crops', type=int, default=10) parser.add_argument('--input_size', type=int, default=224) parser.add_argument('--consensus_type', type=str, default='avg', choices=['avg', 'max', 'topk']) parser.add_argument('--k', type=int, default=3) parser.add_argument('--dropout', type=float, default=0.7) parser.add_argument('-j', '--workers', default=5, type=int, metavar='N', help='number of data loading workers (default: 5)') parser.add_argument('--print_freq', type=int, default=5) return parser.parse_args() def forward_pass_model(model, processed_input): return model(processed_input) def display_prediction(): pass def run_video_appx_rank_pooling( video_path, num_segments ): """Approximated Rank Pooling (ARP) runner for video input Outputs Rank pooled frames from a video. """ current = current_process() cap = cv2.VideoCapture(video_path) # Find OpenCV version (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') # With webcam get(CV_CAP_PROP_FPS) does not work. # Let's see for ourselves. if int(major_ver) < 3 : num_frames = cap.get(cv2.cv.CAP_PROP_FRAME_COUNT) else : num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) print(".. Number of Frames total in the video is {0}".format(num_frames)) # Number of frames to capture buffer_size = (num_frames+1)//3 # Number of frames to capture buffer = Buffer(buffer_size) success = True rank_pooled_frames = [] while success: success, frame = cap.read() if buffer.isfull(): frames = buffer.clear() rank_pooled = cvApproxRankPooling(frames) rank_pooled = Image.fromarray(np.uint8(rank_pooled)) rank_pooled_frames.append(rank_pooled) buffer.enqueue(frame) cap.release() return rank_pooled_frames def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def sample_frames(frames, sample_indices, new_length): sampled_frames = list() for idx in sample_indices: p = int(idx) for _ in range(new_length): seg_imgs = frames[p] sampled_frames.append(seg_imgs) if p < num_frames: p += 1 return sampled_frames def generate_sample_indices(num_frames, new_length, num_segments): tick = (num_frames - new_length + 1) / float(num_segments) offsets = np.array([int(tick / 2.0 + tick * x) for x in range(num_segments)]) return offsets + 1 def get_group_transforms(args, model): input_mean = model.input_mean input_std = model.input_std length = (3 if args.modality in ('RGB', 'ARP', 'RGBDiff') else 2) if isinstance(input_mean, int): input_mean = [input_mean] * length if isinstance(input_mean, int): input_mean = [input_mean] * length transforms = torchvision.transforms.Compose([ model.get_augmentation(), Stack(roll=True), ToTorchFormatTensor(div=False), GroupNormalize(input_mean, input_std), ]) return transforms def load_model_from_checkpoint( model, checkpointfile, was_data_paralleled=True ): if was_data_paralleled: model = torch.nn.DataParallel(model, device_ids=[0,]).cuda() checkpoint = torch.load(checkpointfile) start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] state_dict = checkpoint['state_dict'] model.load_state_dict(state_dict) return model def init_model(num_classes, new_length, args): model = TSN(num_classes, args.num_segments, args.modality, base_model=args.arch, new_length=new_length, consensus_type=args.consensus_type, dropout=0.5, partial_bn=False) crop_size = model.crop_size scale_size = model.scale_size input_mean = model.input_mean input_size = model.input_size input_std = model.input_std policies = model.get_optim_policies() train_augmentation = model.get_augmentation() cropping = torchvision.transforms.Compose([ GroupScale(scale_size), GroupCenterCrop(input_size), ]) return model def get_num_classes(dataset): if dataset == 'ucf101': num_class = 101 elif dataset == 'hmdb51': num_class = 51 elif dataset == 'kinetics': num_class = 400 elif dataset == 'saag01': num_class = 2 else: raise ValueError('Unknown dataset ' + args.dataset) return num_class def get_data_length(modality): if modality in ['RGB', 'ARP']: data_length = 1 elif modality in ['Flow', 'RGBDiff']: data_length = 5 return data_length if __name__ == '__main__': args = get_options() video_path = args.video_path dataset = args.dataset architecture = args.arch checkpoint = args.checkpoint num_segments = args.num_segments modality = args.modality num_classes = get_num_classes(dataset) data_length = get_data_length(modality) print("--------------------------------------------------------------------------") print("> Model Init: %s" % args.arch) model = init_model(num_classes, data_length, args) print("--------------------------------------------------------------------------") print("> Loading Video to Frames: %s" % video_path) frames = run_video_appx_rank_pooling(video_path, num_segments) num_frames = len(frames) print(".. Frame shape: ", num_frames, frames[0].size) print("--------------------------------------------------------------------------") print("Transforming Frames to dataset:") transformations = get_group_transforms(args, model) processed_input = transformations(frames) print(".. Transformed shape: ", processed_input.size()) print("--------------------------------------------------------------------------") print("> Model Load Checkpoint: %s" % checkpoint) model = load_model_from_checkpoint(model, checkpoint, was_data_paralleled=True) torchsummary.summary(model, processed_input.size()) print("--------------------------------------------------------------------------") print("> Prediction output: ") output = model(processed_input) _, pred = output.topk(1) print(".. class ", pred.item())
28.280899
99
0.696596
fafeb2ee5267de29defe924520b0f17055090c39
2,201
py
Python
src/homescreen.py
Razdeep/BookManagementSystem
6b56e00c52ba57a8fb033a9ec7e6a288d075d2ac
[ "MIT" ]
null
null
null
src/homescreen.py
Razdeep/BookManagementSystem
6b56e00c52ba57a8fb033a9ec7e6a288d075d2ac
[ "MIT" ]
1
2018-11-27T03:52:22.000Z
2018-11-27T03:52:22.000Z
src/homescreen.py
Razdeep/BookManagementSystem
6b56e00c52ba57a8fb033a9ec7e6a288d075d2ac
[ "MIT" ]
null
null
null
import tkinter from core.config import * from submit import Submit class HomeScreen: def __init__(self,master): self.master=master self.master.config(bg="yellow green") navbar=tkinter.Frame(self.master) fictn_nav=tkinter.Button(navbar,text='Fictional Books',relief=tkinter.RAISED,bg="gold",activebackground="white",fg="dark blue",height=2,font=('Comic Sans MS bold',10),command=self.showfictionHere,width=20) fictn_nav.grid(row=0,column=0) nonfictn_nav=tkinter.Button(navbar,text='Non-Fictional Books',relief=tkinter.RAISED,bg="gold",activebackground="white",fg="dark blue",height=2,font=('Comic Sans MS bold',10),command=self.shownonfictionHere,width=20) nonfictn_nav.grid(row=1,column=0) submit_nav=tkinter.Button(navbar,text='Submit/Request Books',relief=tkinter.RAISED,bg="gold",activebackground="white",fg="dark blue",height=2,font=('Comic Sans MS bold',10),command=self.showsubmitHere,width=20) submit_nav.grid(row=2,column=0) del_nav=tkinter.Button(navbar,text='Delivery of Books',relief=tkinter.RAISED,bg="gold",activebackground="white",fg="dark blue",height=2,font=('Comic Sans MS bold',10),command=self.showdeliveryHere,width=20) del_nav.grid(row=3,column=0) navbar.grid(row=0,column=0) self.body=tkinter.Frame(self.master) self.body.grid(row=0,column=1) def showfictionHere(self): self.body.destroy() self.body=tkinter.Frame(self.master) # @TODO self.body.grid(row=0,column=1) def shownonfictionHere(self): self.body.destroy() self.body=tkinter.Frame(self.master) # @TODO self.body.grid(row=0,column=1) def showdeliveryHere(self): self.body.destroy() self.body=tkinter.Frame(self.master) # @TODO self.body.grid(row=0,column=1) def showsubmitHere(self): self.body.destroy() self.body=tkinter.Frame(self.master) Submit(self.body) self.body.grid(row=0,column=1) if __name__=='__main__': root=tkinter.Tk() HomeScreen(root) root.mainloop()
42.326923
224
0.657428
a4ff08cd4d3117255a906809bf49c6fbd3d55961
3,148
py
Python
gym_anytrading/envs/stocks_env.py
tsb4/dayTradingEnv
16d1970a41c8933970152f1f41e504340d48cb08
[ "MIT" ]
null
null
null
gym_anytrading/envs/stocks_env.py
tsb4/dayTradingEnv
16d1970a41c8933970152f1f41e504340d48cb08
[ "MIT" ]
null
null
null
gym_anytrading/envs/stocks_env.py
tsb4/dayTradingEnv
16d1970a41c8933970152f1f41e504340d48cb08
[ "MIT" ]
null
null
null
import numpy as np from .trading_env import TradingEnv#, Actions, Positions class StocksEnv(TradingEnv): def __init__(self, df, window_size, frame_bound): assert len(frame_bound) == 2 self.frame_bound = frame_bound super().__init__(df, window_size) self.trade_fee_bid_percent = 0.01 # unit self.trade_fee_ask_percent = 0.005 # unit def _process_data(self): prices = self.df.loc[:, 'Close'].to_numpy() prices[self.frame_bound[0] - self.window_size] # validate index (TODO: Improve validation) prices = prices[self.frame_bound[0]-self.window_size:self.frame_bound[1]] diff = np.insert(np.diff(prices), 0, 0) signal_features = np.column_stack((prices, diff)) return prices, signal_features def _calculate_reward(self, action): step_reward = 0 trade = False if ((action == Actions.Buy.value and self._position == Positions.Short) or (action == Actions.Sell.value and self._position == Positions.Long)): trade = True if trade: current_price = self.prices[self._current_tick] last_trade_price = self.prices[self._last_trade_tick] price_diff = current_price - last_trade_price if self._position == Positions.Long: step_reward += price_diff return step_reward def _update_profit(self, action): trade = False if ((action == Actions.Buy.value and self._position == Positions.Short) or (action == Actions.Sell.value and self._position == Positions.Long)): trade = True if trade or self._done: current_price = self.prices[self._current_tick] last_trade_price = self.prices[self._last_trade_tick] if self._position == Positions.Long: shares = (self._total_profit * (1 - self.trade_fee_ask_percent)) / last_trade_price self._total_profit = (shares * (1 - self.trade_fee_bid_percent)) * current_price def max_possible_profit(self): current_tick = self._start_tick last_trade_tick = current_tick - 1 profit = 1. while current_tick <= self._end_tick: position = None if self.prices[current_tick] < self.prices[current_tick - 1]: while (current_tick <= self._end_tick and self.prices[current_tick] < self.prices[current_tick - 1]): current_tick += 1 position = Positions.Short else: while (current_tick <= self._end_tick and self.prices[current_tick] >= self.prices[current_tick - 1]): current_tick += 1 position = Positions.Long if position == Positions.Long: current_price = self.prices[current_tick - 1] last_trade_price = self.prices[last_trade_tick] shares = profit / last_trade_price profit = shares * current_price last_trade_tick = current_tick - 1 return profit
34.977778
99
0.606099
b67d70a62d2c8d176090eefce22a1fe9d47379da
212
py
Python
common/errors.py
Hy-Oy/Swipter
fa0c2002816a64c3f00372f1e0f069bb03ff4458
[ "MIT" ]
null
null
null
common/errors.py
Hy-Oy/Swipter
fa0c2002816a64c3f00372f1e0f069bb03ff4458
[ "MIT" ]
null
null
null
common/errors.py
Hy-Oy/Swipter
fa0c2002816a64c3f00372f1e0f069bb03ff4458
[ "MIT" ]
null
null
null
''' 状态码, 业务码 ''' ok = 0 # 系统保留状态码:1000-1999 # 用户系统:2000-2999 PHONE_NUM_ERR = 2001 #手机号码错误 SMS_SEND_ERR = 2002 #发送失败 VERIFY_CODE_ERR = 2003 #验证失败 LOGIN_REQUIRED_ERR = 2004 #未登录 AVATAR_UPLOAD_ERR = 2005 #头像上传失败
15.142857
32
0.726415
b204add0f8a02943d713dc15b0280e2f11174155
18,901
py
Python
surface-tool/statistics_scripts/generate_default_graph.py
sara-nl/SURFsara-Trace-Archive
fb053f241b761c7e6dd863f5b87c8e90428b1f6c
[ "Apache-2.0" ]
1
2020-06-17T09:59:15.000Z
2020-06-17T09:59:15.000Z
surface-tool/statistics_scripts/generate_default_graph.py
sara-nl/SURFace
fb053f241b761c7e6dd863f5b87c8e90428b1f6c
[ "Apache-2.0" ]
null
null
null
surface-tool/statistics_scripts/generate_default_graph.py
sara-nl/SURFace
fb053f241b761c7e6dd863f5b87c8e90428b1f6c
[ "Apache-2.0" ]
null
null
null
from scipy.stats.stats import pearsonr, spearmanr, kendalltau import matplotlib.pyplot as plt import sys, os from pathlib import Path import matplotlib.pylab as pylab import numpy as np import pandas as pd import scipy import seaborn as sns import matplotlib.patches as mpatches sys.path.insert(1, '/home/cmt2002/surfsara-tool/statistics_scripts') sys.path.insert(2, '/home/cmt2002/surfsara-tool/parser') sys.path.insert(3, '/home/cmt2002/surfsara-tool/analysis') from parse_metric import ParseMetric DAY = 24 MID_DAY = int(DAY / 2) WEEK = 7 * DAY TOOL_PATH = Path(os.path.abspath(__file__)).parent.parent MARKERS = ['s', '*', 'o', 'v', '<', 'p', '.', 'd'] COLORS = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] SHOW_PLOT = False # Configure label sizes of graphs params = { 'xtick.labelsize':12, 'ytick.labelsize':12, 'axes.labelsize':16, 'figure.figsize': (18, 8), 'savefig.format': 'pdf', 'axes.titlesize': 16, 'legend.loc': 'best', 'legend.fontsize': "large" } pylab.rcParams.update(params) ########### DEFAULT ANALYSIS: COVID VS NON-COVID + CPU vs GPU nodes ########### class GenerateDefaultGraph: def __init__(self, title, savefig_title, **kargs): from diurnal_analysis import DiurnalAnalysis self.diurnal_analysis = DiurnalAnalysis() self.title = title self.savefig_title = savefig_title self.ylabel = kargs['ylabel'] def figure_daily_per_seasonal( self, df_cpu_dic, df_gpu_dic ): _, ((ax_cpu, ax_cpu_violin), (ax_gpu, ax_gpu_violin)) = plt.subplots(2, 2, figsize=(11, 10), constrained_layout=True, sharey=True) ax_cpu = self.__axes_daily_seasonal_plot( ax=ax_cpu, df_covid=df_cpu_dic["covid"], df_non_covid=df_cpu_dic["non_covid"], ylabel=self.ylabel, title=" Generic nodes" ) ax_cpu_violin = self.__axes_daily_seasonal_violin( ax=ax_cpu_violin, df_covid=df_cpu_dic["covid"], df_non_covid=df_cpu_dic["non_covid"] ) ax_gpu = self.__axes_daily_seasonal_plot( ax=ax_gpu, df_covid=df_gpu_dic["covid"], df_non_covid=df_gpu_dic["non_covid"], ylabel=self.ylabel, title=" ML nodes" ) ax_gpu_violin = self.__axes_daily_seasonal_violin( ax=ax_gpu_violin, df_covid=df_gpu_dic["covid"], df_non_covid=df_gpu_dic["non_covid"], ) ax_cpu.set_xticks([tick for tick in range(MID_DAY-1, WEEK, DAY)]) ax_cpu.set_xticklabels(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"], fontsize=14) ax_gpu.set_xticks([tick for tick in range(MID_DAY-1, WEEK, DAY)]) ax_gpu.set_xticklabels(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"], fontsize=14) plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + self.savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) def figure_daily_per_monthly(self, df_cpu, df_gpu, month_dic): fig, (ax_cpu, ax_gpu) = plt.subplots(2, 1, constrained_layout=True) for name, value in month_dic.items(): df_cpu_month = self.diurnal_analysis.get_daily_month_df(df_cpu, value) df_gpu_month = self.diurnal_analysis.get_daily_month_df(df_gpu, value) ax_cpu.plot(df_cpu_month, marker=MARKERS[value], label=name, color=COLORS[value]) ax_gpu.plot(df_gpu_month, marker=MARKERS[value], label=name, color=COLORS[value]) # After plotting the lines, now construct the graph self.__construct_daily_montly_plots(ax=ax_cpu, ylabel=self.ylabel, title = self.title + " | CPU nodes | aggregated per month") self.__construct_daily_montly_plots(ax=ax_gpu, ylabel=self.ylabel, title = self.title + " | GPU nodes | aggregated per month") ax_cpu.set_xticks([tick for tick in range(MID_DAY-1, WEEK, DAY)]) ax_cpu.set_xticklabels(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]) ax_gpu.set_xticks([tick for tick in range(MID_DAY-1, WEEK, DAY)]) ax_gpu.set_xticklabels(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]) plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + self.savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) def figure_hourly_monthly(self, df_cpu, df_gpu, month_dic): fig, (ax_cpu, ax_gpu) = plt.subplots(2, 1, constrained_layout=True) for name, value in month_dic.items(): df_cpu_month = self.diurnal_analysis.get_hourly_month_df(df_cpu, value) df_gpu_month = self.diurnal_analysis.get_hourly_month_df(df_gpu, value) ax_cpu.plot(df_cpu_month, marker=MARKERS[value], label=name, color=COLORS[value]) ax_gpu.plot(df_gpu_month, marker=MARKERS[value], label=name, color=COLORS[value]) # After plotting the lines, now construct the graph self.__construct_hourly_montly_plots(ax=ax_cpu, ylabel=self.ylabel, title = self.title + " Generic nodes") self.__construct_hourly_montly_plots(ax=ax_gpu, ylabel=self.ylabel, title = self.title + " ML nodes") plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + self.savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) def figure_hourly_seasonal( self, df_cpu_dic, df_gpu_dic ): _, ((ax_cpu, ax_cpu_violin), (ax_gpu, ax_gpu_violin)) = plt.subplots(2, 2, figsize=(11, 10), sharey=True, constrained_layout=True) self.__axes_hourly_plot( ax=ax_cpu, df_covid=df_cpu_dic["covid"], df_non_covid=df_cpu_dic["non_covid"], ylabel=self.ylabel, title="Generic nodes", xlabel="Time [hours]" ) self.__axes_daily_seasonal_violin( ax=ax_cpu_violin, df_covid=df_cpu_dic["covid"], df_non_covid=df_cpu_dic["non_covid"] ) self.__axes_hourly_plot( ax=ax_gpu, df_covid=df_gpu_dic["covid"], df_non_covid=df_gpu_dic["non_covid"], ylabel=self.ylabel, title="ML nodes", xlabel="Time [hours]" ) self.__axes_daily_seasonal_violin( ax=ax_gpu_violin, df_covid=df_gpu_dic["covid"], df_non_covid=df_gpu_dic["non_covid"] ) def set_ticks(ax): ax.set_xticks([i for i in range(24)], minor=True) ax.tick_params('x', length=12, width=2, which='major') ax.tick_params('x', length=8, width=1, which='minor') ax_cpu.set_xticklabels([hour for hour in range(-5, 24, 5)], fontsize=15) ax_gpu.set_xticklabels([hour for hour in range(-5, 24, 5)], fontsize=15) set_ticks(ax_cpu) set_ticks(ax_gpu) plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + self.savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) def figure_rack_analysis(self, df_cpu_dic, df_gpu_dic): _, (ax_violin_cpu, ax_cpu, ax_violin_gpu, ax_gpu) = plt.subplots(4, 1, figsize=(24, 24), constrained_layout=True) self.__axes_rack_barplot( ax=ax_cpu, df_covid=df_cpu_dic["covid"], df_non_covid=df_cpu_dic["non_covid"], subtitle= " Generic racks") self.__axes_rack_violinplot( ax=ax_violin_cpu, df_covid=df_cpu_dic["covid"], df_non_covid=df_cpu_dic["non_covid"], subtitle=" Generic racks") self.__axes_rack_barplot(ax_gpu, df_covid=df_gpu_dic["covid"], df_non_covid=df_gpu_dic["non_covid"], subtitle=" ML racks") self.__axes_rack_violinplot( ax=ax_violin_gpu, df_covid=df_gpu_dic["covid"], df_non_covid=df_gpu_dic["non_covid"], subtitle=" ML racks") # Depict legend on top of the first plot lightcoral_patch = mpatches.Patch(color='lightcoral', label='covid (left)') steelblue_patch = mpatches.Patch(color='steelblue', label='non-covid (right)') ax_violin_cpu.legend(handles=[lightcoral_patch, steelblue_patch], loc="center", bbox_to_anchor=(0.5, 1.17), fontsize=28, ncol=2) plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + self.savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) def scatter_plot(self, title, x, y, savefig_title): _, ax = plt.subplots(figsize=(10, 8)) ax.scatter(x=x, y=y, marker='*') ax.set_xlabel("Read", fontsize=16) ax.set_ylabel("Write", fontsize=16) ax.set_title(title, fontsize=18) ax.set_xlim(0, 1) ax.set_ylim(0, 1) plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) def get_pearsonr(self, x, y): return scipy.stats.pearsonr(x=x, y=y)[0] # Return r which is pearson correlation coefficient def CDF_plot(self, ax_cpu_dic, ax_gpu_dic): def set_components(ax, subtitle): ax.set_title(subtitle) ax.set_ylabel("Density") ax.set_xlabel(self.title + " " + self.ylabel) ax.legend(loc='lower right') fig, (ax_cpu, ax_gpu) = plt.subplots(2, 1) fig.tight_layout(pad=5.0) ax_cpu.hist(x=ax_cpu_dic['covid'], density=True, histtype='step', cumulative=True, color='lightcoral', label='covid', bins=100) # covid ax_cpu.hist(x=ax_cpu_dic['non-covid'], density=True, histtype='step', cumulative=True, color='steelblue', label='non-covid', bins=100) # non-covid ax_gpu.hist(x=ax_gpu_dic['covid'], density=True, histtype='step', cumulative=True, color='lightcoral', label='covid', bins=100) # covid ax_gpu.hist(x=ax_gpu_dic['non-covid'], density=True, histtype='step', cumulative=True, color='steelblue', label='covid', bins=100) # covid set_components(ax_cpu, " Generic Nodes") set_components(ax_gpu, " ML Nodes") plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + self.savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) def entire_period_analysis(self, df_cpu, df_gpu): def set_components(ax, df, subtitle, label, color): ax.plot(df, label=label, color=color) ax.set_ylim(0, ) ax.set_xlabel("2020") ax.set_ylabel(self.ylabel) ax.set_title(self.title + subtitle) ax.legend(loc="upper right", fontsize=18) ax.set_xticklabels(labels=self.__get_converted_xticks(ax)) # Convert index timestamps to utc datetime df_cpu.index = pd.to_datetime(df_cpu.index, utc=True, unit="s") df_gpu.index = pd.to_datetime(df_gpu.index, utc=True, unit="s") # Get the sum and mean of all the nodes df_cpu_sum = df_cpu.aggregate(func=sum, axis=1) df_gpu_sum = df_gpu.aggregate(func=sum, axis=1) df_cpu_mean = df_cpu.mean(axis=1) df_gpu_mean = df_gpu.mean(axis=1) fig, (ax_cpu_sum, ax_gpu_sum, ax_cpu_mean, ax_gpu_mean) = plt.subplots(4, 1, figsize=(11, 5*4), constrained_layout=True) set_components(ax=ax_cpu_sum, df=df_cpu_sum, label="Generic", color=COLORS[0], subtitle=" aggregated values ") set_components(ax=ax_gpu_sum, df=df_gpu_sum, label="ML", color=COLORS[1], subtitle=" aggregated values ") set_components(ax=ax_cpu_mean, df=df_cpu_mean, label="Generic", color=COLORS[0], subtitle=" mean values ") set_components(ax=ax_gpu_mean, df=df_gpu_mean, label="ML", color=COLORS[0], subtitle=" mean values ") plt.savefig(os.path.join(str(TOOL_PATH) + "/plots/" + self.savefig_title + ".pdf"), dpi=100) if SHOW_PLOT: plt.show() plt.pause(0.0001) ##### PRIVATE FUNCTIONS ###### def __get_custom_values(self, df): values = np.array([]) for column in df.columns: arr = df[column].values mask = (np.isnan(arr) | (arr < 0)) arr = arr[~mask] # Filter out NaN values and less than 0 values = np.append(values, arr) return values def __get_max_pdf(self, df): def normalize(df): df = df.value_counts(sort=False, normalize=True).rename_axis('target').reset_index(name='pdf') df["cdf"] = df["pdf"].cumsum() return df df = normalize(df) index_max_pdf = df["pdf"].idxmax() max_value = df.iloc[index_max_pdf] return (max_value["pdf"], max_value["target"]) def __get_converted_xticks(self, ax): """ :param ax: :return list of day strings """ return [pd.to_datetime(tick, unit='d').date().strftime("%d\n%b") for tick in ax.get_xticks()] def __axes_hourly_plot(self, ax, df_covid, df_non_covid, title, ylabel, xlabel=None): ax.plot(df_covid, marker=".", label="covid", color="lightcoral") ax.plot(df_non_covid, marker="*", label="non-covid", color="steelblue") ax.set_ylim(0, ) ax.set_title(title) ax.set_ylabel(ylabel) ax.set_xlabel("Time [hours]", fontsize=16) ax.legend(loc='center') return ax def __axes_daily_seasonal_plot(self, ax, df_covid, df_non_covid, title, ylabel): ax.plot(df_covid, marker=".", label="covid", color="lightcoral") ax.plot(df_non_covid, marker="*", label="non-covid", color="steelblue") ax.set_ylim(0, ) ax.set_title(title, fontsize=14) ax.legend(loc='center') ax.set_xlabel("Time [days]", fontsize=16) ax.set_ylabel(ylabel) xcoords = [0] + [xcoord for xcoord in range(23, WEEK, DAY)] for xc in xcoords: ax.axvline(x=xc, color="gray", lw=0.5) return ax def __axes_daily_seasonal_violin(self, ax, df_covid, df_non_covid): sns.violinplot(data=[df_covid.values, df_non_covid.values], ax=ax, palette=['lightcoral', 'steelblue']) ax.set_ylim(0, ) ax.tick_params(axis='both', which='major', labelsize=16) ax.tick_params(axis='both', which='minor', labelsize=14) ax.yaxis.tick_right() ax.set_xticklabels([" ", " "]) ax.text(x=-0.48, y=self.__get_max_pdf(df_covid)[1] , s="{:.2f}".format(self.__get_max_pdf(df_covid)[0]), fontsize=13, color="black") ax.text(x=1-0.55, y=self.__get_max_pdf(df_non_covid)[1], s="{:.2f}".format(self.__get_max_pdf(df_non_covid)[0]), fontsize=13, color="black") return ax # This function belongs to Laurens Versluis: https://github.com/lfdversluis def __axes_rack_barplot(self, ax, df_covid, df_non_covid, subtitle): rack_nodes = self.__get_rack_nodes(df_covid) # Get the rack nodes index = 0 w = 0.4 ax1, ax2 = plt.axes, plt.axes for rack, columns in rack_nodes.items(): arr_covid = self.__get_custom_values(df_covid[list(columns)]) arr_non_covid = self.__get_custom_values(df_non_covid[list(columns)]) ax1 = ax.bar(x=index - w/2, height=arr_covid.mean(), width=w, yerr=arr_covid.std(), color="lightcoral", capsize=5) ax2 = ax.bar(x=index + w/2, height=arr_non_covid.mean(), width=w, yerr=arr_non_covid.std(), color="steelblue", capsize=5) #if arr_covid.std() > 100: #ax.text(x=index - w/2, y=102.2, s=str(round(arr_covid.std(), 1)), fontsize=22, color="black", va="center") #if arr_non_covid.std() > 100: #ax.text(x=index + w/2, y=102.2, s=str(round(arr_non_covid.std(), 1)), fontsize=22, color="black", va="center") index += 1 ax.tick_params(axis='both', which='major', labelsize=32) ax.tick_params(axis='both', which='minor', labelsize=32) ax.set_ylabel(self.ylabel, fontsize=32) #ax.set_ylim(0, 100) ax.set_ylim(0, ) ax.set_xlabel(subtitle, fontsize=30) ax.set_xticks(np.arange(len(rack_nodes.keys()))) ax.set_xticklabels(rack_nodes.keys(), fontsize=32) def __axes_rack_violinplot(self, ax, df_covid, df_non_covid, subtitle, xlabel=None): rack_nodes = self.__get_rack_nodes(df_covid) # To get the rack nodes rack_values = list() rack_names = list() violin_width = 0.8 for rack, columns in rack_nodes.items(): arr_covid = self.__get_custom_values(df_covid[list(columns)]) arr_non_covid = self.__get_custom_values(df_non_covid[list(columns)]) rack_values.append(arr_covid) rack_values.append(arr_non_covid) rack_names.append(rack) sns.violinplot(data=rack_values, ax=ax, cut=0, width=violin_width, palette=['lightcoral', 'steelblue'] * (int(len(rack_values)/2))) ax.set_ylabel(self.ylabel, fontsize=32) #ax.set_ylim(0, 100) ax.set_ylim(0, ) ax.tick_params(axis='both', which='major', labelsize=32) ax.tick_params(axis='both', which='minor', labelsize=32) ax.set_xticks([i + 0.5 for i in range(0, len(rack_values), 2)]) ax.set_xlabel(subtitle, fontsize=30) # Depcit the values that exceed 100 load #for index, val in enumerate(rack_values): #max_val = np.amax(val) #if max_val > 100: #ax.text(x=index-0.2, y=102.2, s=str(int(max_val)), fontsize=22, color="black", va="center") ax.set_xticklabels( rack_names, ha='center', fontsize=32 ) for i in range(0, len(rack_values), 2): ax.axvline(i + 1.5, lw=2, ls='dashed') def __get_rack_nodes(self, df): rack_nodes = {} for node in df.columns: rack = node.split("n")[0] if rack not in rack_nodes: rack_nodes[rack] = set() rack_nodes[rack].add(node) return rack_nodes def __construct_daily_montly_plots(self, ax, title=None, ylabel=None): ax.set_ylim(0, ) ax.set_title(title) ax.set_ylabel(ylabel) ax.legend(bbox_to_anchor=(1.01, 1), loc='upper left') xcoords = [0] + [xcoord for xcoord in range(23, WEEK, DAY)] for xc in xcoords: ax.axvline(x=xc, color="gray", lw=0.5) def __construct_hourly_montly_plots(self, ax, ylabel, title): ax.set_ylim(0, ) ax.set_title(title) ax.set_ylabel(ylabel) ax.legend(bbox_to_anchor=(1.01, 1), loc='upper left')
41.178649
154
0.611978
99c78de79b9393fae7b2cbe7fd5a83e3f5da2a89
383
py
Python
Arase/HEP/DeleteDate.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
null
null
null
Arase/HEP/DeleteDate.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
1
2021-06-10T22:51:09.000Z
2021-06-10T22:51:09.000Z
Arase/HEP/DeleteDate.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
null
null
null
import numpy as np from ..Tools.Downloading._DeleteDate import _DeleteDate from .. import Globals def DeleteDate(Date,L,prod,Confirm=True): ''' Delete all of the files from a given date ''' idxfname = Globals.DataPath + 'HEP/Index-L{:01d}-{:s}.dat'.format(L,prod) datapath = Globals.DataPath + 'HEP/l{:01d}/{:s}/'.format(L,prod) _DeleteDate(Date,idxfname,datapath,Confirm)
27.357143
74
0.720627
122e44a072af7e2008f795d9d7dc7fe94dc5608c
2,234
py
Python
Visualization-for-Company-Stakeholders/code.py
sdshilpadas/greyatom-python-for-data-science
10fdfd55b1879dfcde3a168132ba35e1d3fe2985
[ "MIT" ]
null
null
null
Visualization-for-Company-Stakeholders/code.py
sdshilpadas/greyatom-python-for-data-science
10fdfd55b1879dfcde3a168132ba35e1d3fe2985
[ "MIT" ]
null
null
null
Visualization-for-Company-Stakeholders/code.py
sdshilpadas/greyatom-python-for-data-science
10fdfd55b1879dfcde3a168132ba35e1d3fe2985
[ "MIT" ]
null
null
null
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Reading the file data=pd.read_csv(path) #Code starts here # Step 1 #Reading the file data = pd.read_csv(path) #Creating a new variable to store the value counts loan_status = data['Loan_Status'].value_counts() #Plotting bar plot loan_status.plot(kind='bar') plt.show() # Step 2 #Plotting an unstacked bar plot property_and_loan = data.groupby(['Property_Area', 'Loan_Status']).size().unstack() property_and_loan.plot(kind='bar', stacked=False) #Changing the x-axis label plt.xlabel('Property Area') #Changing the y-axis label plt.ylabel('Loan Status') #Rotating the ticks of X-axis plt.xticks(rotation=45) plt.show() # Step 3 #Plotting a stacked bar plot education_and_loan = data.groupby(['Education','Loan_Status']).size().unstack() education_and_loan.plot(kind='bar', stacked=True) #Changing the x-axis label plt.xlabel('Education Status') #Changing the y-axis label plt.ylabel('Loan Status') #Rotating the ticks of X-axis plt.xticks(rotation=45) plt.show() # Step 4 #Subsetting the dataframe based on 'Education' column graduate = pd.DataFrame(data[data['Education'] == 'Graduate']) #Subsetting the dataframe based on 'Education' column not_graduate = pd.DataFrame(data[data['Education'] == 'Not Graduate']) #Plotting density plot for 'Graduate' graduate.plot(kind='density',label='Graduate') #Plotting density plot for 'Graduate' not_graduate.plot(kind='density',label='Not Graduate') #For automatic legend display plt.legend() # Step 5 #Setting up the subplots fig, (ax_1, ax_2, ax_3) = plt.subplots(nrows= 3 , ncols=1, figsize=(10, 20)) #Plotting scatter plot ax_1.scatter(data['ApplicantIncome'], data['LoanAmount']) #setting the subplot axis title ax_1.set_title('Applicant Income') #plotting scatter plot ax_2.scatter(data['CoapplicantIncome'], data['LoanAmount']) #set subplot axis title ax_2.set_title('Coapplicant Income') #create a new column TotalIncome data['TotalIncome'] = data['ApplicantIncome'] + data['CoapplicantIncome'] print(data) #plot scatter plot ax_3.scatter(data['ApplicantIncome'], data['LoanAmount']) #Setting the subplot axis title ax_3.set_title('Total Income')
24.282609
83
0.750671
3a249c929e37803984803aeac3d16866641edd11
1,127
py
Python
python/paddle/fluid/tests/unittests/test_dist_mnist_fp16_allreduce.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
11
2016-08-29T07:43:26.000Z
2016-08-29T07:51:24.000Z
python/paddle/fluid/tests/unittests/test_dist_mnist_fp16_allreduce.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/test_dist_mnist_fp16_allreduce.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
1
2021-12-09T08:59:17.000Z
2021-12-09T08:59:17.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from test_dist_base import TestDistBase class TestDistMnist2x2FP16AllReduce(TestDistBase): def _setup_config(self): self._sync_mode = True self._use_reduce = False self._nccl2_mode = True def test_dist_train(self): import paddle.fluid as fluid if fluid.core.is_compiled_with_cuda(): self.check_with_place("dist_mnist_fp16_allreduce.py", delta=1e-5) if __name__ == "__main__": unittest.main()
32.2
77
0.741792
25a94ea0b987f4f7f4092899fab0f251a95b8ac1
1,568
py
Python
prototyping/water_flow.py
brenshanny/project_lob
2eb5aca40b5dfae84bdb0eeb19374c93ae0a7a1f
[ "MIT" ]
1
2018-11-09T19:22:23.000Z
2018-11-09T19:22:23.000Z
prototyping/water_flow.py
brenshanny/project_lob
2eb5aca40b5dfae84bdb0eeb19374c93ae0a7a1f
[ "MIT" ]
null
null
null
prototyping/water_flow.py
brenshanny/project_lob
2eb5aca40b5dfae84bdb0eeb19374c93ae0a7a1f
[ "MIT" ]
null
null
null
#!/usr/bin/env python import RPi.GPIO as GPIO import time, sys class WaterFlowMonitor(object): def __init__(self): self.flow_sensor_pin = 17 self.total_count = 0 self.rate_count = 0 self.timer = 0 self.min_count = 0 self.constant = 0.10 # Setup GPIO GPIO.setmode(GPIO.BCM) GPIO.setup(self.flow_sensor_pin, GPIO.IN, pull_up_down = GPIO.PUD_UP) GPIO.add_event_detect( self.flow_sensor_pin, GPIO.FALLING, callback=self.count_pulse ) def count_pulse(self, channel): self.total_count += 1 self.rate_count += 1 def calc_flow(self): print('Liters/min -> ', round(self.rate_count * self.constant, 4)) print('Total Liters -> ', round(self.total_count * self.constant, 4)) def reset_rate_count(self): self.rate_count = 0 def shut_down(self): GPIO.cleanup() def run(self): self.timer = time.time() + 10 print("Running WaterFlowMonitor") while True: try: if time.time() >= self.timer: self.min_count += 1 self.calc_flow() self.rate_count = 0 self.timer = time.time() + 10 time.sleep(1) except KeyboardInterrupt: print('Shutting down...') self.shut_down() sys.exit() if __name__ == "__main__": waterFlow = WaterFlowMonitor() waterFlow.run()
28
77
0.53699
21fdcf37050226b8c6b166cde5c607dd4d9157e3
3,540
py
Python
2016/11_RadioisotopeThermoelectricGenerators/test_solver.py
deanearlwright/AdventOfCode
ca4cf6315c0efa38bd7748fb6f4bc99e7934871d
[ "MIT" ]
1
2021-01-03T23:09:28.000Z
2021-01-03T23:09:28.000Z
2016/11_RadioisotopeThermoelectricGenerators/test_solver.py
deanearlwright/AdventOfCode
ca4cf6315c0efa38bd7748fb6f4bc99e7934871d
[ "MIT" ]
6
2020-12-26T21:02:42.000Z
2020-12-26T21:02:52.000Z
2016/11_RadioisotopeThermoelectricGenerators/test_solver.py
deanearlwright/AdventOfCode
ca4cf6315c0efa38bd7748fb6f4bc99e7934871d
[ "MIT" ]
null
null
null
# ====================================================================== # Radioisotope Thermoelectric Generators # Advent of Code 2016 Day 11 -- Eric Wastl -- https://adventofcode.com # # Python implementation by Dr. Dean Earl Wright III # ====================================================================== # ====================================================================== # t e s t _ s o l v e r . p y # ====================================================================== "Test solver for Advent of Code 2016 day 11, Radioisotope Thermoelectric Generators" # ---------------------------------------------------------------------- # import # ---------------------------------------------------------------------- import unittest import aoc_11 import solver # ---------------------------------------------------------------------- # constants # ---------------------------------------------------------------------- EXAMPLE_TEXT = """ The first floor contains a hydrogen-compatible microchip and a lithium-compatible microchip. The second floor contains a hydrogen generator. The third floor contains a lithium generator. The fourth floor contains nothing relevant. """ PART_ONE_TEXT = EXAMPLE_TEXT PART_TWO_TEXT = "" PART_ONE_RESULT = 11 PART_TWO_RESULT = None # ====================================================================== # TestSolver # ====================================================================== class TestSolver(unittest.TestCase): # pylint: disable=R0904 "Test Solver object" def test_empty_init(self): "Test the default Solver creation" # 1. Create default Solver object myobj = solver.Solver() # 2. Make sure it has the default values self.assertEqual(myobj.part2, False) self.assertEqual(myobj.text, None) def test_text_init(self): "Test the Solver object creation from text" # 1. Create Solver object from text myobj = solver.Solver(text=aoc_11.from_text(EXAMPLE_TEXT)) # 2. Make sure it has the expected values self.assertEqual(myobj.part2, False) self.assertEqual(len(myobj.text), 4) # 3. Check methods self.assertEqual(myobj.number_moves(), 11) def test_part_one(self): "Test part one example of Solver object" # 1. Create Solver object from text myobj = solver.Solver(text=aoc_11.from_text(PART_ONE_TEXT)) # 2. Check the part one result self.assertEqual(myobj.part_one(verbose=False), PART_ONE_RESULT) def test_part_two(self): "Test part two example of Solver object" # 1. Create Solver object from text myobj = solver.Solver(part2=True, text=aoc_11.from_text(PART_TWO_TEXT)) # 2. Check the part two result self.assertEqual(myobj.part_two(verbose=False), PART_TWO_RESULT) # ---------------------------------------------------------------------- # module initialization # ---------------------------------------------------------------------- if __name__ == '__main__': pass # ====================================================================== # end t e s t _ s o l v e r . p y end # ======================================================================
36.494845
92
0.436723
0f7a48752bb6045552a4995149ed985ba121ed9c
4,574
py
Python
grammar2lale/custom_optimizer.py
oudrea/grammar2pddl
f5936c5b8f831c99c7378d88e86c7dd6983c7b12
[ "Apache-2.0" ]
11
2021-03-18T23:36:13.000Z
2022-02-27T11:06:15.000Z
grammar2lale/custom_optimizer.py
oudrea/grammar2pddl
f5936c5b8f831c99c7378d88e86c7dd6983c7b12
[ "Apache-2.0" ]
3
2021-07-14T22:54:02.000Z
2022-02-22T05:12:28.000Z
grammar2lale/custom_optimizer.py
oudrea/grammar2pddl
f5936c5b8f831c99c7378d88e86c7dd6983c7b12
[ "Apache-2.0" ]
1
2022-02-22T02:54:18.000Z
2022-02-22T02:54:18.000Z
from lale.lib.sklearn import * from lale.lib.xgboost import * from lale.lib.lightgbm import * from lale.lib.lale import ConcatFeatures as Concat from lale.lib.lale import NoOp from lale.pretty_print import to_string import lale.helpers import lale.search.op2hp import hyperopt import statistics import numpy as np import time as time import pandas as pd from grammar2lale.abstract_optimizer import APipelineOptimizer from sklearn.metrics import get_scorer from sklearn.model_selection import train_test_split import traceback import sys import warnings import multiprocessing class CustomOptimizer(APipelineOptimizer): EVALS = 20 def __init__( self, data, scorer='accuracy', evals=20, val_frac=0.2, max_runtime=None ): self.X, self.y = data self.EVALS = evals self.train_X, self.test_X, self.train_y, self.test_y = train_test_split( self.X, self.y, test_size=val_frac, stratify=self.y, random_state=5489 ) self.scorer = get_scorer(scorer) self.start_time = time.time() self.eval_history = { 'loss' : [], 'score': [], 'time_from_start' : [], } self.max_runtime = max_runtime print("Running optimization for " + str(self.max_runtime) + " seconds") def evaluate(self, trained_model): return self.scorer(trained_model, self.X, self.y) def search(self, planned_pipeline): # eval_idx = 0 def point_to_trained(search_point): trainable = lale.helpers.create_instance_from_hyperopt_search_space( planned_pipeline, search_point ) trained = trainable.fit(self.train_X, self.train_y) return trained def objective(search_point): current_time = time.time() if (self.max_runtime != None) and ((current_time - self.start_time) > self.max_runtime) : # If crossed runtime, don't even evaluate since we wish to stop but can't exit hyperopt print('RAN OUT OF TIME') sys.exit(0) loss = None score = None try: with warnings.catch_warnings(record=True) as w: trained = point_to_trained(search_point) score = self.evaluate(trained) loss = 1.0 - score except BaseException as e: loss = 100 score = 0 eval_time = time.time() # eval_idx += 1 # print('Eval %i: %g' % (eval_idx, loss)) self.eval_history['loss'].append(loss) self.eval_history['score'].append(score) self.eval_history['time_from_start'].append(eval_time - self.start_time) return {'loss': loss, 'status': hyperopt.STATUS_OK } search_space = lale.search.op2hp.hyperopt_search_space(planned_pipeline) trials = hyperopt.Trials() # If we want to do multiple runs and aggregate performance, this should be unset rstate = np.random.RandomState(5489) hyperopt.fmin(objective, search_space, hyperopt.tpe.suggest, self.EVALS, trials, rstate) best_point = hyperopt.space_eval(search_space, trials.argmin) result = lale.helpers.create_instance_from_hyperopt_search_space( planned_pipeline, best_point ) best_loss = np.min(trials.losses()) return result, 1.0 - best_loss def evaluate_pipeline(self, pipeline): if 'lale_pipeline' not in pipeline: return pipeline print("Starting to optimize " + pipeline['pipeline']) start_time = time.time() trainable_pipeline = None best_score = 0.0 try: trainable_pipeline, best_score = self.search(pipeline['lale_pipeline']) except Exception as e: print("EXCEPTION OCCURRED: " + str(e)) traceback.print_exc() end_time = time.time() print("Completed optimization for " + pipeline['pipeline']) tlp = pipeline.copy() tlp.update({ 'trained_pipeline': trainable_pipeline, 'best_accuracy': best_score, 'opt_duration': (end_time-start_time) }) return tlp def get_eval_history(self) : return pd.DataFrame.from_dict(self.eval_history) def print_eval_history(self, out_filename) : self.get_eval_history().to_csv(out_filename, header=True, index=False) print('Evaluation history metrics + time saved in ' + out_filename)
37.491803
103
0.629427