hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
22d131f503c48f738b5b4902e60813623504e67a
1,940
py
Python
Menus/Main/LevelSelectionEdit/DeleteLevel.py
PyRectangle/GreyRectangle
21c19002f52563a096566e9166040815005b830b
[ "MIT" ]
3
2017-09-28T16:53:09.000Z
2018-03-18T20:01:41.000Z
Menus/Main/LevelSelectionEdit/DeleteLevel.py
PyRectangle/GreyRectangle
21c19002f52563a096566e9166040815005b830b
[ "MIT" ]
null
null
null
Menus/Main/LevelSelectionEdit/DeleteLevel.py
PyRectangle/GreyRectangle
21c19002f52563a096566e9166040815005b830b
[ "MIT" ]
null
null
null
from Frame.gui.Button import Button from pygameImporter import pygame from Frame.Render import Render from Constants import * from Menu import Menu class DeleteLevel(Menu): def __init__(self, menuHandler): super().__init__() self.level = None self.alpha = 0 self.up = True self.do = False self.window = menuHandler.window self.renderObj = Render(menuHandler.window) self.addGui(Button, (menuHandler.edit, (), 40, 900, 400, 100, "Cancel", (100, 100, 100), (0, 0, 0), (100, 100, 255), (0, 0, 0), FONT, True, 30, 30, 0.1, True, [0, -1], None, SOUNDS, menuHandler.window)) self.addGui(Button, (menuHandler.deleteLevel, (), 1000, 900, 400, 100, "Delete", (100, 100, 100), (0, 0, 0), (100, 100, 255), (0, 0, 0), FONT, True, 30, 30, 0.1, True, [0, -1], None, SOUNDS, menuHandler.window)) def update(self): super().update() if self.do: if self.up: self.alpha += self.window.dt if self.alpha > 255: self.alpha = 255 self.do = False else: self.alpha -= self.window.dt if self.alpha < 1: self.do = False self.alpha = 1 def render(self): super().render() text = "Do you really want to delete \"" + self.level.name + "\" ?" self.renderObj.text(FONT, self.renderObj.getTextSizeForWidth(text, 100, SURFACE_SIZE[0], FONT), text, True, (0, 0, 0), None, self.window.surface, addY = -55, alpha = self.alpha) self.renderObj.text(FONT, 100, "It will be lost forever !", True, (0, 0, 0), None, self.window.surface, addY = 55, alpha = self.alpha) self.renderObj.text(FONT, 100, "Delete", True, (0, 0, 0), None, self.window.surface, addY = -400, alpha = self.alpha)
45.116279
169
0.54433
e3c6f66ac9d8485c9fef648d232e2b315f862e9d
6,957
py
Python
CrossMgrImpinj/Impinj2JChip.py
esitarski/CrossMgr
de33b5ed662556ec659e6e2910f5fd0f88f25fa0
[ "MIT" ]
25
2015-02-26T01:26:10.000Z
2022-03-25T15:46:55.000Z
CrossMgrImpinj/Impinj2JChip.py
esitarski/CrossMgr
de33b5ed662556ec659e6e2910f5fd0f88f25fa0
[ "MIT" ]
76
2015-12-09T04:24:30.000Z
2022-02-18T16:39:28.000Z
CrossMgrImpinj/Impinj2JChip.py
esitarski/CrossMgr
de33b5ed662556ec659e6e2910f5fd0f88f25fa0
[ "MIT" ]
17
2015-04-23T07:37:13.000Z
2020-01-22T17:47:16.000Z
import re import os import socket import time import threading import datetime from six.moves.queue import Empty #------------------------------------------------------------------------------ # JChip delimiter (CR, **not** LF) CR = u'\r' #------------------------------------------------------------------------------ # Function to format number, lap and time in JChip format # Z413A35 10:11:16.4433 10 10000 C7 count = 0 def formatMessage( tagID, t ): global count message = u"DA{} {} 10 {:05X} C7 date={}{}".format( tagID, # Tag code in decimal, no leading zeros. t.strftime('%H:%M:%S.%f'), # hh:mm:ss.ff count, # Data index number in hex. t.strftime('%Y%m%d'), # YYYYMMDD CR ) count += 1 return message class Impinj2JChip: def __init__( self, dataQ, messageQ, shutdownQ, crossMgrHost, crossMgrPort ): ''' Queues: dataQ: tag/timestamp data to be written out to CrossMgr. messageQ: queue to write status messages. shutdownQ: queue to receive shutdown message to stop gracefully. ''' self.dataQ = dataQ self.messageQ = messageQ self.shutdownQ = shutdownQ self.crossMgrHost = crossMgrHost self.crossMgrPort = crossMgrPort self.keepGoing = True self.tagCount = 0 def shutdown( self ): self.keepGoing = False def checkKeepGoing( self ): if not self.keepGoing: return False try: d = self.shutdownQ.get( False ) self.keepGoing = False return False except Empty: return True def getCmd( self, sock ): received = '' while self.keepGoing and received[-1:] != CR: try: received += sock.recv(4096).decode() # doing a decode() here only works if there are no multi-byte utf characters (which is true for JChip protocol). except socket.timeout: return received, True return received[:-1], False def runServer( self ): instance_name = u'{}-{}'.format(socket.gethostname(), os.getpid()) while self.checkKeepGoing(): self.messageQ.put( ('Impinj2JChip', 'state', False) ) self.messageQ.put( ('Impinj2JChip', u'Trying to connect to CrossMgr at {}:{} as "{}"...'.format(self.crossMgrHost, self.crossMgrPort, instance_name)) ) sock = None #------------------------------------------------------------------------------ # Connect to the CrossMgr server. # self.tagCount = 0 while self.checkKeepGoing(): try: sock = socket.socket( socket.AF_INET, socket.SOCK_STREAM ) sock.connect((self.crossMgrHost, self.crossMgrPort)) break except socket.error: sock = None self.messageQ.put( ('Impinj2JChip', u'CrossMgr Connection Failed. Trying again at {}:{} as "{}" in 2 sec...'.format(self.crossMgrHost, self.crossMgrPort, instance_name)) ) for t in range(2): time.sleep( 1 ) if not self.checkKeepGoing(): break if not self.checkKeepGoing(): break # Set the timeout with CrossMgr to 2 seconds. If CrossMgr fails to respond within this time, re-establish the connection. sock.settimeout( 2.0 ) #------------------------------------------------------------------------------ # Send client identity. # self.messageQ.put( ('Impinj2JChip', u'state', True) ) self.messageQ.put( ('Impinj2JChip', u'******************************' ) ) self.messageQ.put( ('Impinj2JChip', u'CrossMgr Connection succeeded!' ) ) self.messageQ.put( ('Impinj2JChip', u'Sending identifier "{}"...'.format(instance_name)) ) try: sock.send(u"N0000{}{}".format(instance_name, CR).encode()) except socket.timeout: self.messageQ.put( ('Impinj2JChip', 'CrossMgr connection timed out [1].') ) sock.close() sock = None continue #------------------------------------------------------------------------------ self.messageQ.put( ('Impinj2JChip', 'Waiting for GT (get time) command from CrossMgr...') ) received, timedOut = self.getCmd( sock ) if not self.checkKeepGoing(): break if timedOut: self.messageQ.put( ('Impinj2JChip', u'CrossMgr connection timed out [2].') ) sock.close() sock = None continue self.messageQ.put( ('Impinj2JChip', u'Received: "{}" from CrossMgr'.format(received)) ) if received != 'GT': self.messageQ.put( ('Impinj2JChip', u'Incorrect command (expected GT).') ) sock.close() sock = None continue # Send 'GT' (GetTime response to CrossMgr). self.messageQ.put( ('Impinj2JChip', u'Sending GT (get time) response...') ) # format is GT0HHMMSShh<CR> where hh is 100's of a second. The '0' (zero) after GT is the number of days running, ignored by CrossMgr. dBase = datetime.datetime.now() message = u'GT0{} date={}{}'.format( dBase.strftime('%H%M%S%f'), dBase.strftime('%Y%m%d'), CR) self.messageQ.put( ('Impinj2JChip', message[:-1]) ) try: sock.send( message.encode() ) except socket.timeout: self.messageQ.put( ('Impinj2JChip', u'CrossMgr connection timed out [3].') ) sock.close() sock = None continue #------------------------------------------------------------------------------ if not self.checkKeepGoing(): break self.messageQ.put( ('Impinj2JChip', u'Waiting for S0000 (send) command from CrossMgr...') ) received, timedOut = self.getCmd( sock ) if not self.checkKeepGoing(): break if timedOut: self.messageQ.put( ('Impinj2JChip', u'CrossMgr connection timed out [4].') ) sock.close() sock = None continue self.messageQ.put( ('Impinj2JChip', u'Received: "{}" from CrossMgr'.format(received)) ) if not received.startswith('S'): self.messageQ.put( ('Impinj2JChip', u'Incorrect command (expected S0000).') ) sock.close() sock = None continue #------------------------------------------------------------------------------ # Enter "Send" mode - keep sending data until we get a shutdown. # If the connection fails, return to the outer loop. # self.messageQ.put( ('Impinj2JChip', u'Start sending data to CrossMgr...') ) self.messageQ.put( ('Impinj2JChip', u'Waiting for RFID reader data...') ) while self.checkKeepGoing(): # Get all the entries from the receiver and forward them to CrossMgr. d = self.dataQ.get() if d == 'shutdown': self.keepGoing = False break # Expect message if the form [tag, time]. message = formatMessage( d[0], d[1] ) try: sock.send( message.encode() ) self.tagCount += 1 self.messageQ.put( ('Impinj2JChip', u'Forwarded {}: {}'.format(self.tagCount, message[:-1])) ) except Exception: self.dataQ.put( d ) # Put the data back on the queue for resend. self.messageQ.put( ('Impinj2JChip', u'Lost CrossMgr Connection. Attempting to reconnect...') ) break sock.close() sock = None def CrossMgrServer( dataQ, messageQ, shutdownQ, crossMgrHost, crossMgrPort ): impinj2JChip = Impinj2JChip( dataQ, messageQ, shutdownQ, crossMgrHost, crossMgrPort ) impinj2JChip.runServer()
35.314721
177
0.600834
814e131b935e732720cb4b9db0ae24fb45d2598d
3,672
py
Python
aadnc_benchmarks/benchmark_read_speed.py
telegraphic/fits2hdf
a5d66d104fdc70d67c2dac8103b70e5fe3bb9a01
[ "MIT" ]
22
2015-03-02T21:38:33.000Z
2021-05-09T11:30:41.000Z
aadnc_benchmarks/benchmark_read_speed.py
telegraphic/fits2hdf
a5d66d104fdc70d67c2dac8103b70e5fe3bb9a01
[ "MIT" ]
16
2015-03-01T23:11:49.000Z
2019-08-08T03:18:30.000Z
aadnc_benchmarks/benchmark_read_speed.py
telegraphic/fits2hdf
a5d66d104fdc70d67c2dac8103b70e5fe3bb9a01
[ "MIT" ]
11
2015-03-26T14:50:33.000Z
2021-12-11T13:21:12.000Z
""" benchmark compression --------------------- Generate benchmarks for AANDC paper. """ import numpy as np from os.path import join,exists from shutil import copy2 import os from fits2hdf import idi from fits2hdf.io import hdfio, fitsio import time import h5py from astropy.io import fits as pf def create_image(img_name, data, hdf_opts={}): """ Create HDF and FITS versions of a given image """ output_dir_fits = 'fits_generated' output_dir_hdf = 'hdf_generated' idi_img = idi.IdiHdulist() idi_img.add_image_hdu(img_name, data=data) # Create all the filenames fits_filename = join(output_dir_fits, img_name+'.fits') hdf_filename = join(output_dir_hdf, img_name+'.h5') hdf_comp_filename = join(output_dir_hdf, img_name+'_comp.h5') gzip_comp_filename = join(output_dir_fits, img_name+'.fits.gz') fits_comp_filename = join(output_dir_fits, img_name+'.fits.fz') # Delete files that already exists file_list = [fits_filename, hdf_filename, fits_comp_filename, hdf_comp_filename, gzip_comp_filename] for fname in file_list: if exists(fname): os.remove(fname) print("\nWriting %s to disk" % img_name) t1 = time.time() fitsio.export_fits(idi_img, fits_filename) t2 = time.time() hdfio.export_hdf(idi_img, hdf_filename) t3 = time.time() hdfio.export_hdf(idi_img, hdf_comp_filename, **hdf_opts) t4 = time.time() def read_speed(img_name): output_dir_fits = 'fits_generated' output_dir_hdf = 'hdf_generated' fits_filename = join(output_dir_fits, img_name+'.fits') hdf_filename = join(output_dir_hdf, img_name+'.h5') hdf_comp_filename = join(output_dir_hdf, img_name+'_comp.h5') with pf.open(fits_filename) as a: print("DATA SHAPE: {}".format(a[0].data.shape)) t1 = time.time() for ii in range(a[0].data.shape[0]): d = a[0].data[ii::4, ii::4, ...] t2 = time.time() print(("Time for FITS access: %2.2es" % (t2 - t1))) #%% with h5py.File(hdf_filename,'r',libver='latest') as b: k = b["random_integers_23"]["DATA"] t1 = time.time() for ii in range(d.shape[0]): d = k[ii::4, ii::4, ...] t2 = time.time() print(("Time for HDF access: %2.2es" % (t2 - t1))) if __name__== "__main__": # IMAGE DATA hdf_opts = { 'compression': 'bitshuffle' } print("HDF5 compression options:") for option, optval in hdf_opts.items(): print((" ", option, optval)) #file_info = create_image(img_name, img_data, hdf_opts=hdf_opts) # Generate data with differing levels of entropy print("Generating random integers") max_int = 2**23 #img_data = np.random.random_integers(-1*max_int, max_int, size=(1000, 1000, 1000)).astype('int32') #create_image(img_name, img_data, hdf_opts=hdf_opts) # Open example datasets print("Reading...") for copy_num in range(1, 5): fname = "random_integers_%i.fits" % np.log2(max_int) fname2 = "random_integers_%i%i.fits" % (np.log2(max_int), copy_num) print(("cp fits_generated/%s fits_generated/%s" % (fname, fname2))) copy2(join('fits_generated',fname), join('fits_generated/',fname2)) fname = "random_integers_%i.h5" % np.log2(max_int) fname2 = "random_integers_%i%i.h5" % (np.log2(max_int), copy_num) print(("cp hdf_generated/%s hdf_generated/%s" % (fname, fname2))) copy2(join('hdf_generated',fname), join('hdf_generated/',fname2)) for copy_num in range(1, 5): img_name = "random_integers_%i%i" % (np.log2(max_int), copy_num) read_speed(img_name)
31.384615
103
0.64951
0079fa08a7707f5ec47be57cfb217679ee2a6b8b
6,158
py
Python
pybind/nos/v7_1_0/rbridge_id/router/router_bgp/router_bgp_attributes/neighbor/neighbor_ipv6s/neighbor_ipv6_addr/af_neighbor_capability/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v7_1_0/rbridge_id/router/router_bgp/router_bgp_attributes/neighbor/neighbor_ipv6s/neighbor_ipv6_addr/af_neighbor_capability/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v7_1_0/rbridge_id/router/router_bgp/router_bgp_attributes/neighbor/neighbor_ipv6s/neighbor_ipv6_addr/af_neighbor_capability/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import as4 class af_neighbor_capability(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-rbridge - based on the path /rbridge-id/router/router-bgp/router-bgp-attributes/neighbor/neighbor-ipv6s/neighbor-ipv6-addr/af-neighbor-capability. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__as4',) _yang_name = 'af-neighbor-capability' _rest_name = 'capability' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__as4 = YANGDynClass(base=as4.as4, is_container='container', presence=False, yang_name="as4", rest_name="as4", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set AS4 capability', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'rbridge-id', u'router', u'router-bgp', u'router-bgp-attributes', u'neighbor', u'neighbor-ipv6s', u'neighbor-ipv6-addr', u'af-neighbor-capability'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'rbridge-id', u'router', u'bgp', u'neighbor', u'neighbor-ipv6-addr', u'capability'] def _get_as4(self): """ Getter method for as4, mapped from YANG variable /rbridge_id/router/router_bgp/router_bgp_attributes/neighbor/neighbor_ipv6s/neighbor_ipv6_addr/af_neighbor_capability/as4 (container) """ return self.__as4 def _set_as4(self, v, load=False): """ Setter method for as4, mapped from YANG variable /rbridge_id/router/router_bgp/router_bgp_attributes/neighbor/neighbor_ipv6s/neighbor_ipv6_addr/af_neighbor_capability/as4 (container) If this variable is read-only (config: false) in the source YANG file, then _set_as4 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_as4() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=as4.as4, is_container='container', presence=False, yang_name="as4", rest_name="as4", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set AS4 capability', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """as4 must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=as4.as4, is_container='container', presence=False, yang_name="as4", rest_name="as4", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set AS4 capability', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True)""", }) self.__as4 = t if hasattr(self, '_set'): self._set() def _unset_as4(self): self.__as4 = YANGDynClass(base=as4.as4, is_container='container', presence=False, yang_name="as4", rest_name="as4", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set AS4 capability', u'cli-incomplete-no': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='container', is_config=True) as4 = __builtin__.property(_get_as4, _set_as4) _pyangbind_elements = {'as4': as4, }
49.66129
472
0.714518
8faefcf16dad2d9986f2deef07951bb6489a9770
10,897
py
Python
ruidl.py
calebglawson/ruidl
c255e4aff80f36a21ea6df4851544069e3ee54d7
[ "MIT" ]
null
null
null
ruidl.py
calebglawson/ruidl
c255e4aff80f36a21ea6df4851544069e3ee54d7
[ "MIT" ]
1
2021-08-07T12:26:00.000Z
2021-08-07T12:26:00.000Z
ruidl.py
calebglawson/ruidl
c255e4aff80f36a21ea6df4851544069e3ee54d7
[ "MIT" ]
null
null
null
''' This file contains the necessary components to download images from a subbreddit or redditor. ''' from abc import abstractmethod import os import re import json import hashlib import sys import time import traceback from glob import glob from pathlib import Path from multiprocessing import cpu_count from multiprocessing.pool import ThreadPool import exif import requests import praw import prawcore import typer import wordninja from bs4 import BeautifulSoup APP = typer.Typer() USER_AGENT_HEADER = { 'User-Agent': ( 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:85.0) Gecko/20100101 Firefox/85.0' ) } def _make_config(): ''' Load the config from a file. ''' config = open('./config.json') return json.load(config) def _make_api(config): ''' Make a PRAW api object. ''' api = praw.Reddit( client_id=config.get('client_id'), client_secret=config.get('client_secret'), user_agent='script:com.example.ruidl:v1 (by u/anon)', username=config.get('username'), password=config.get('password') ) return api def _ninjify(url): words = wordninja.split(url.split("/")[-1]) capitalized_words = '' for idx, word in enumerate(words): if idx < 3: capitalized_words = f'{capitalized_words}{word[0].upper()}{word[1:]}' else: capitalized_words = f'{capitalized_words}{word}' return capitalized_words class Ruidl(object): ''' Reddit media downloader. ''' def __init__(self, name, download_directory, verbose): self._name = name self._verbose = verbose self._type = getattr(self, '_type') self._config = _make_config() self._api = _make_api(self._config) dl_dir = f'{download_directory}/' if download_directory else self._config.get( "download_dir", "./" ) self._base_path = f'{dl_dir}{self._type}{self._name.replace("_", "-")}' if not os.path.exists(self._base_path): os.makedirs(self._base_path) self._filetypes = [ '.jpg', '.png', '.gif', '.mp4', '.webm' ] self._invalid_filetypes = [ '.gifv' ] existing_files = [] for file_type in self._filetypes: existing_files.extend(glob(f'{self._base_path}/*{file_type}')) self._filenames = {fn.split('_')[1] for fn in existing_files} self._checksums = { fn.split('_')[0].replace(f'{self._base_path}\\', '') for fn in existing_files } del existing_files wordninja.DEFAULT_LANGUAGE_MODEL = wordninja.LanguageModel( Path('./wordninja_words.txt.gz') ) def _download_file(self, file_url, submission): file_name = f'{self._base_path}/{file_url.split("/")[-1]}' if file_name in self._filenames: return request = requests.get(file_url, headers=USER_AGENT_HEADER) file_hash = hashlib.md5(request.content).hexdigest() if file_hash in self._checksums: return self._checksums.add(file_hash) self._filenames.add(file_name.split("/")[-1].split("?")[0]) new_file_name = f'{self._base_path}/{file_hash}_{file_name.split("/")[-1].split("?")[0]}' if sys.getsizeof(request.content) < self._config.get('file_size_threshold', 10000): return with open(new_file_name, 'wb') as new: new.write(request.content) if any([file_type in file_name for file_type in ['mp4', 'gif', 'png', 'webm']]): return try: with open(new_file_name, 'rb') as new: image = exif.Image(new.read()) image.artist = str(submission.author) image.image_description = str(submission.subreddit) with open(new_file_name, 'wb') as new: new.write(image.get_file()) except Exception as exception: # pylint: disable=broad-except if self._verbose: typer.echo( f'Error writing Exif data: {new_file_name} {exception}' ) def _get_file_urls(self, submission): file_urls = [] if any([ext in submission.url for ext in self._filetypes]): file_urls = [submission.url] elif 'reddit.com/gallery' in submission.url: request = requests.get( submission.url, headers=USER_AGENT_HEADER ) soup = BeautifulSoup(request.content, features='html.parser') file_urls = [ elem.get('href') for elem in soup.find_all( 'a', href=re.compile('preview.redd.it'), attrs={'target': '_blank'} ) ] elif 'imgur.com/a/' in submission.url: # Imgur gallery, multiple images. gallery = submission.url.split("/")[-1] request = requests.get( f'https://imgur.com/ajaxalbums/getimages/{gallery}', headers=USER_AGENT_HEADER ) response = json.loads(request.content) file_urls = [ f'https://i.imgur.com/{image["hash"]}{image["ext"]}' for image in response['data']['images'] # Exclude gifv if image["ext"] not in self._invalid_filetypes ] elif 'imgur.com/' in submission.url: # Single imgur image. image = submission.url.split("/")[-1] file_urls = [f'https://i.imgur.com/{image}.jpg'] elif ( self._config.get('wordninja_trigger') and self._config.get('wordninja_trigger') in submission.url ): file_urls = [ ( f'{self._config.get("wordninja_download_url","")}' f'{_ninjify(submission.url)}.mp4' ) ] elif 'gfycat.com/' in submission.url: file_urls = [ f'https://giant.gfycat.com/{_ninjify(submission.url)}.webm' ] else: if self._verbose: typer.echo( f'No match triggered for this URL: {submission.url} ' f'Permalink: https://reddit.com{submission.permalink}' ) return file_urls def _process_submission(self, submission): try: file_urls = self._get_file_urls(submission) for file_url in file_urls: self._download_file(file_url, submission) except Exception as exception: # pylint: disable=broad-except # Needed so that any exceptions in threads are loud and clear. if self._verbose: typer.echo(exception) typer.echo(traceback.format_exc()) def _handle_submissions(self, submissions): num_threads = cpu_count() if len(submissions) > cpu_count() else len(submissions) if num_threads: if any(character in self._name for character in ['-', '_']): # We only place crumbs when they're needed. Path(f'{self._base_path}/{self._name}.crumb').touch() typer.echo( f'Processing {len(submissions)} submissions with {num_threads} worker thread(s).' ) thread_pool = ThreadPool(num_threads) start_file_num = len(os.listdir(self._base_path)) start = time.time() thread_pool.map_async(self._process_submission, submissions) thread_pool.close() thread_pool.join() end = time.time() end_file_num = len(os.listdir(self._base_path)) typer.echo( f'Downloaded {end_file_num - start_file_num} ' f'files within {int(end - start)} seconds.' ) else: typer.echo('No submissions found, nothing to process.') self._clean_empty_dir() def _clean_empty_dir(self): if len(os.listdir(self._base_path)) == 0: os.rmdir(self._base_path) @abstractmethod def get(self, limit, search): ''' Process the request to Reddit. ''' raise NotImplementedError class Redditor(Ruidl): ''' A Redditor is a Reddit User. ''' def __init__(self, name, download_directory, verbose): self._type = 'redditor/' super().__init__(name, download_directory, verbose) def get(self, limit, search): ''' Download content ''' try: redd = self._api.redditor(self._name) typer.echo('Retrieving submission list.') submissions = [ submission for submission in redd.submissions.new(limit=limit) ] self._handle_submissions(submissions) except prawcore.exceptions.NotFound: typer.echo(f'Could not find redditor {self._name}.') self._clean_empty_dir() class Subreddit(Ruidl): ''' A Subreddit is a community page on Reddit. ''' def __init__(self, name, download_directory, verbose): self._type = 'subreddit/' super().__init__(name, download_directory, verbose) def get(self, limit, search): ''' Download content ''' try: sub = self._api.subreddit(self._name) typer.echo('Retrieving submission list.') submissions = [ submission for submission in ( sub.search( search, sort='new', limit=limit ) if search else sub.new( limit=limit ) ) ] self._handle_submissions(submissions) except prawcore.exceptions.Redirect: typer.echo(f'Could not find subreddit {self._name}.') self._clean_empty_dir() @APP.command() def redditor( name: str, limit: int = typer.Option(None), download_directory: str = typer.Option(None), verbose: bool = typer.Option(False), ): ''' Download from the specified user. ''' Redditor(name, download_directory, verbose).get(limit, search=None) @APP.command() def subreddit( name: str, limit: int = typer.Option(None), search: str = typer.Option(None), download_directory: str = typer.Option(None), verbose: bool = typer.Option(False), ): ''' Download from the specified subreddit. ''' Subreddit(name, download_directory, verbose).get(limit, search) if __name__ == '__main__': APP()
30.269444
97
0.559053
a08f64cd508c405efdf4cbebe1afbd3d8c64b7a1
3,323
bzl
Python
google/cloud/google_cloud_cpp_common.bzl
shaffeeullah/google-cloud-cpp
07396e652e8d738fd51ddd0bbeb04b4ab02ca267
[ "Apache-2.0" ]
null
null
null
google/cloud/google_cloud_cpp_common.bzl
shaffeeullah/google-cloud-cpp
07396e652e8d738fd51ddd0bbeb04b4ab02ca267
[ "Apache-2.0" ]
null
null
null
google/cloud/google_cloud_cpp_common.bzl
shaffeeullah/google-cloud-cpp
07396e652e8d738fd51ddd0bbeb04b4ab02ca267
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # DO NOT EDIT -- GENERATED BY CMake -- Change the CMakeLists.txt file if needed """Automatically generated source lists for google_cloud_cpp_common - DO NOT EDIT.""" google_cloud_cpp_common_hdrs = [ "backoff_policy.h", "common_options.h", "credentials.h", "future.h", "future_generic.h", "future_void.h", "iam_binding.h", "iam_bindings.h", "iam_policy.h", "internal/absl_str_cat_quiet.h", "internal/absl_str_join_quiet.h", "internal/absl_str_replace_quiet.h", "internal/algorithm.h", "internal/api_client_header.h", "internal/attributes.h", "internal/backoff_policy.h", "internal/base64_transforms.h", "internal/big_endian.h", "internal/build_info.h", "internal/compiler_info.h", "internal/credentials_impl.h", "internal/diagnostics_pop.inc", "internal/diagnostics_push.inc", "internal/disable_deprecation_warnings.inc", "internal/disable_msvc_crt_secure_warnings.inc", "internal/filesystem.h", "internal/format_time_point.h", "internal/future_base.h", "internal/future_fwd.h", "internal/future_impl.h", "internal/future_then_impl.h", "internal/future_then_meta.h", "internal/getenv.h", "internal/invoke_result.h", "internal/ios_flags_saver.h", "internal/log_impl.h", "internal/pagination_range.h", "internal/parse_rfc3339.h", "internal/port_platform.h", "internal/random.h", "internal/retry_policy.h", "internal/setenv.h", "internal/strerror.h", "internal/throw_delegate.h", "internal/tuple.h", "internal/type_list.h", "internal/user_agent_prefix.h", "internal/utility.h", "internal/version_info.h", "kms_key_name.h", "log.h", "optional.h", "options.h", "polling_policy.h", "project.h", "status.h", "status_or.h", "stream_range.h", "terminate_handler.h", "tracing_options.h", "version.h", ] google_cloud_cpp_common_srcs = [ "credentials.cc", "iam_bindings.cc", "iam_policy.cc", "internal/api_client_header.cc", "internal/backoff_policy.cc", "internal/base64_transforms.cc", "internal/compiler_info.cc", "internal/credentials_impl.cc", "internal/filesystem.cc", "internal/format_time_point.cc", "internal/future_impl.cc", "internal/getenv.cc", "internal/log_impl.cc", "internal/parse_rfc3339.cc", "internal/random.cc", "internal/retry_policy.cc", "internal/setenv.cc", "internal/strerror.cc", "internal/throw_delegate.cc", "internal/user_agent_prefix.cc", "kms_key_name.cc", "log.cc", "options.cc", "project.cc", "status.cc", "terminate_handler.cc", "tracing_options.cc", "version.cc", ]
29.40708
85
0.683419
493c85b37c20d135f0dc051cc64b9b6479d6c563
64
py
Python
Task/Arrays/Python/arrays-3.py
LaudateCorpus1/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
5
2021-01-29T20:08:05.000Z
2022-03-22T06:16:05.000Z
Task/Arrays/Python/arrays-3.py
seanwallawalla-forks/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
null
null
null
Task/Arrays/Python/arrays-3.py
seanwallawalla-forks/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
1
2018-11-09T22:08:40.000Z
2018-11-09T22:08:40.000Z
myArray = [[0]* width] * height] # DOES NOT WORK AS INTENDED!!!
32
63
0.625
35c24b12f13b68cc002d7f4dc94f45a3d224501c
351
py
Python
arxiv_cli/utils.py
jacquerie/arxiv-cli
ba07ba0f2a6ade3fbb2a9b87e79437e55a2fab17
[ "MIT" ]
8
2017-10-22T15:49:48.000Z
2020-07-31T22:31:42.000Z
arxiv_cli/utils.py
jacquerie/arxiv-cli
ba07ba0f2a6ade3fbb2a9b87e79437e55a2fab17
[ "MIT" ]
2
2017-10-22T12:32:26.000Z
2017-10-22T17:30:27.000Z
arxiv_cli/utils.py
jacquerie/arxiv-cli
ba07ba0f2a6ade3fbb2a9b87e79437e55a2fab17
[ "MIT" ]
1
2018-02-18T16:28:48.000Z
2018-02-18T16:28:48.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from time import sleep def drip(f, l, t=0): result = [] if l: for el in l[:-1]: result.append(f(el)) sleep(t) result.append(f(l[-1])) return result def has(d, k): return k in d and d[k] is not None
15.954545
64
0.555556
c843d706a2d39173c8800fe8938fede5cd92ace3
10,576
py
Python
python/ccxt/async_support/luno.py
KaceyBolman/ccxt
d34a0651b209ac77453f05c4ce31883f0cd2d6b8
[ "MIT" ]
1
2017-10-16T01:59:45.000Z
2017-10-16T01:59:45.000Z
python/ccxt/async_support/luno.py
rerefreshing/ccxt
7c50f338dcb282c0aee4d69a1ac4ca47255fdf15
[ "MIT" ]
null
null
null
python/ccxt/async_support/luno.py
rerefreshing/ccxt
7c50f338dcb282c0aee4d69a1ac4ca47255fdf15
[ "MIT" ]
2
2019-03-14T15:17:46.000Z
2019-09-08T19:26:04.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import base64 from ccxt.base.errors import ExchangeError class luno (Exchange): def describe(self): return self.deep_extend(super(luno, self).describe(), { 'id': 'luno', 'name': 'luno', 'countries': ['GB', 'SG', 'ZA'], 'rateLimit': 10000, 'version': '1', 'has': { 'CORS': False, 'fetchTickers': True, 'fetchOrder': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27766607-8c1a69d8-5ede-11e7-930c-540b5eb9be24.jpg', 'api': 'https://api.mybitx.com/api', 'www': 'https://www.luno.com', 'doc': [ 'https://www.luno.com/en/api', 'https://npmjs.org/package/bitx', 'https://github.com/bausmeier/node-bitx', ], }, 'api': { 'public': { 'get': [ 'orderbook', 'ticker', 'tickers', 'trades', ], }, 'private': { 'get': [ 'accounts/{id}/pending', 'accounts/{id}/transactions', 'balance', 'fee_info', 'funding_address', 'listorders', 'listtrades', 'orders/{id}', 'quotes/{id}', 'withdrawals', 'withdrawals/{id}', ], 'post': [ 'accounts', 'postorder', 'marketorder', 'stoporder', 'funding_address', 'withdrawals', 'send', 'quotes', 'oauth2/grant', ], 'put': [ 'quotes/{id}', ], 'delete': [ 'quotes/{id}', 'withdrawals/{id}', ], }, }, }) async def fetch_markets(self): markets = await self.publicGetTickers() result = [] for p in range(0, len(markets['tickers'])): market = markets['tickers'][p] id = market['pair'] base = id[0:3] quote = id[3:6] base = self.common_currency_code(base) quote = self.common_currency_code(quote) symbol = base + '/' + quote result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'info': market, }) return result async def fetch_balance(self, params={}): await self.load_markets() response = await self.privateGetBalance() balances = response['balance'] result = {'info': response} for b in range(0, len(balances)): balance = balances[b] currency = self.common_currency_code(balance['asset']) reserved = float(balance['reserved']) unconfirmed = float(balance['unconfirmed']) account = { 'free': 0.0, 'used': self.sum(reserved, unconfirmed), 'total': float(balance['balance']), } account['free'] = account['total'] - account['used'] result[currency] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() orderbook = await self.publicGetOrderbook(self.extend({ 'pair': self.market_id(symbol), }, params)) timestamp = orderbook['timestamp'] return self.parse_order_book(orderbook, timestamp, 'bids', 'asks', 'price', 'volume') def parse_order(self, order, market=None): timestamp = order['creation_timestamp'] status = 'open' if (order['state'] == 'PENDING') else 'closed' side = 'sell' if (order['type'] == 'ASK') else 'buy' symbol = None if market: symbol = market['symbol'] price = self.safe_float(order, 'limit_price') amount = self.safe_float(order, 'limit_volume') quoteFee = self.safe_float(order, 'fee_counter') baseFee = self.safe_float(order, 'fee_base') fee = {'currency': None} if quoteFee: fee['side'] = 'quote' fee['cost'] = quoteFee else: fee['side'] = 'base' fee['cost'] = baseFee return { 'id': order['order_id'], 'datetime': self.iso8601(timestamp), 'timestamp': timestamp, 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': None, 'side': side, 'price': price, 'amount': amount, 'filled': None, 'remaining': None, 'trades': None, 'fee': fee, 'info': order, } async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() response = await self.privateGetOrdersId(self.extend({ 'id': id, }, params)) return self.parse_order(response) def parse_ticker(self, ticker, market=None): timestamp = ticker['timestamp'] symbol = None if market: symbol = market['symbol'] last = self.safe_float(ticker, 'last_trade') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': None, 'low': None, 'bid': self.safe_float(ticker, 'bid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'ask'), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'rolling_24_hour_volume'), 'quoteVolume': None, 'info': ticker, } async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() response = await self.publicGetTickers(params) tickers = self.index_by(response['tickers'], 'pair') ids = list(tickers.keys()) result = {} for i in range(0, len(ids)): id = ids[i] market = self.markets_by_id[id] symbol = market['symbol'] ticker = tickers[id] result[symbol] = self.parse_ticker(ticker, market) return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) ticker = await self.publicGetTicker(self.extend({ 'pair': market['id'], }, params)) return self.parse_ticker(ticker, market) def parse_trade(self, trade, market): side = 'buy' if (trade['is_buy']) else 'sell' return { 'info': trade, 'id': None, 'order': None, 'timestamp': trade['timestamp'], 'datetime': self.iso8601(trade['timestamp']), 'symbol': market['symbol'], 'type': None, 'side': side, 'price': self.safe_float(trade, 'price'), 'amount': self.safe_float(trade, 'volume'), } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'pair': market['id'], } if since is not None: request['since'] = since response = await self.publicGetTrades(self.extend(request, params)) return self.parse_trades(response['trades'], market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() method = 'privatePost' order = {'pair': self.market_id(symbol)} if type == 'market': method += 'Marketorder' order['type'] = side.upper() if side == 'buy': order['counter_volume'] = amount else: order['base_volume'] = amount else: method += 'Postorder' order['volume'] = amount order['price'] = price if side == 'buy': order['type'] = 'BID' else: order['type'] = 'ASK' response = await getattr(self, method)(self.extend(order, params)) return { 'info': response, 'id': response['order_id'], } async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() return await self.privatePostStoporder({'order_id': id}) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] + '/' + self.version + '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if query: url += '?' + self.urlencode(query) if api == 'private': self.check_required_credentials() auth = self.encode(self.apiKey + ':' + self.secret) auth = base64.b64encode(auth) headers = {'Authorization': 'Basic ' + self.decode(auth)} return {'url': url, 'method': method, 'body': body, 'headers': headers} async def request(self, path, api='public', method='GET', params={}, headers=None, body=None): response = await self.fetch2(path, api, method, params, headers, body) if 'error' in response: raise ExchangeError(self.id + ' ' + self.json(response)) return response
36.095563
126
0.480144
a47741d10ccb29ce36cf1b59f10e6b6ef47e73e4
7,251
py
Python
tests/test_schema.py
hardbyte/clkhash
b118269a6db3f42f9967786c417a3f03adda125c
[ "Apache-2.0" ]
null
null
null
tests/test_schema.py
hardbyte/clkhash
b118269a6db3f42f9967786c417a3f03adda125c
[ "Apache-2.0" ]
null
null
null
tests/test_schema.py
hardbyte/clkhash
b118269a6db3f42f9967786c417a3f03adda125c
[ "Apache-2.0" ]
null
null
null
from __future__ import unicode_literals import io import json import os import unittest from clkhash import schema from clkhash.schema import SchemaError, MasterSchemaError DATA_DIRECTORY = os.path.join(os.path.dirname(__file__), '..', 'clkhash', 'data') TEST_DATA_DIRECTORY = os.path.join(os.path.dirname(__file__), 'testdata') def _test_data_file_path(file_name): return os.path.join(TEST_DATA_DIRECTORY, file_name) def _schema_dict(dir_name, file_name): with open(os.path.join(dir_name, file_name)) as f: return json.load(f) class TestSchemaValidation(unittest.TestCase): def test_good_schema(self): # These are some perfectly fine schemas. with open(_test_data_file_path('good-schema-v1.json')) as f: schema.from_json_file(f) def test_good_schema_repr(self): with open(_test_data_file_path('good-schema-v1.json')) as f: s = schema.from_json_file(f) schema_repr = repr(s) assert "v2" in schema_repr # v1 schema is converted to v2 assert "12 fields" in schema_repr def test_invalid_schema(self): # This schema is not valid (missing encoding in its feature). with open(_test_data_file_path('bad-schema-v1.json')) as f: with self.assertRaises(SchemaError): schema.from_json_file(f) def test_valid_but_unsupported_schema(self): # This schema has an unsupported version. with open(_test_data_file_path( 'good-but-unsupported-schema-v1.json')) as f: with self.assertRaises(SchemaError): schema.from_json_file(f) def test_invalid_json_schema(self): invalid_schema_file = io.StringIO('{') # Invalid json. msg = 'Invalid JSON in schema should raise SchemaError.' with self.assertRaises(SchemaError, msg=msg): schema.from_json_file(invalid_schema_file) def test_list_schema(self): invalid_schema_file = io.StringIO('[]') # Must be dict instead. msg = 'List as top element should raise SchemaError.' with self.assertRaises(SchemaError, msg=msg): schema.from_json_file(invalid_schema_file) def test_string_schema(self): invalid_schema_file = io.StringIO('"foo"') # Must be dict. msg = 'Literal as top element should raise SchemaError.' with self.assertRaises(SchemaError, msg=msg): schema.from_json_file(invalid_schema_file) def test_no_version(self): invalid_schema_file = io.StringIO('{}') # Missing version. msg = 'Schema with no version should raise SchemaError.' with self.assertRaises(SchemaError, msg=msg): schema.from_json_file(invalid_schema_file) def test_missing_master(self): # This shouldn't happen but we need to be able to handle it if, # for example, we have a corrupt install. original_paths = schema.MASTER_SCHEMA_FILE_NAMES schema.MASTER_SCHEMA_FILE_NAMES = {1: 'nonexistent.json'} msg = 'Missing master schema should raise MasterSchemaError.' with self.assertRaises(MasterSchemaError, msg=msg): schema.validate_schema_dict({'version': 1}) schema.MASTER_SCHEMA_FILE_NAMES = original_paths def test_convert_v1_to_v2(self): schema_v1 = _schema_dict(DATA_DIRECTORY, 'randomnames-schema.json') schema.validate_schema_dict(schema_v1) schema_v2 = schema.convert_v1_to_v2(schema_v1) schema.validate_schema_dict(schema_v2) def test_good_schema2_repr(self): with open(_test_data_file_path('good-schema-v2.json')) as f: s = schema.from_json_file(f) schema_repr = repr(s) assert "v2" in schema_repr assert "12 fields" in schema_repr class TestSchemaLoading(unittest.TestCase): def test_issue_111(self): schema_dict = { 'version': 1, 'clkConfig': { 'l': 1024, 'k': 20, 'hash': { 'type': 'doubleHash'}, 'kdf': { 'type': 'HKDF'}}, 'features': [ { 'identifier': 'rec_id', 'ignored': True}, { 'identifier': 'given_name', 'format': { 'type': 'string', 'encoding': 'utf-8'}, 'hashing': { 'ngram': 2, 'weight': 1}}, { 'identifier': 'surname', 'format': { 'type': 'string', 'encoding': 'utf-8'}, 'hashing': { 'ngram': 2, 'weight': 1}}, { 'identifier': 'street_number', 'format': { 'type': 'integer'}, 'hashing': { 'ngram': 1, 'positional': True, 'weight': 1 }}, { 'identifier': 'address_1', 'format': { 'type': 'string', 'encoding': 'utf-8'}, 'hashing': { 'ngram': 2, 'weight': 1}}, { 'identifier': 'address_2', 'format': { 'type': 'string', 'encoding': 'utf-8'}, 'hashing': { 'ngram': 2, 'weight': 1}}, { 'identifier': 'suburb', 'format': { 'type': 'string', 'encoding': 'utf-8'}, 'hashing': { 'ngram': 2, 'weight': 1}}, { 'identifier': 'postcode', 'format': { 'type': 'integer', 'minimum': 1000, 'maximum': 9999}, 'hashing': { 'ngram': 1, 'positional': True, 'weight': 1}}, { 'identifier': 'state', 'format': { 'type': 'string', 'encoding': 'utf-8', 'maxLength': 3}, 'hashing': { 'ngram': 2, 'weight': 1}}, { 'identifier': 'day_of_birth', 'format': { 'type': 'integer'}, 'hashing': { 'ngram': 1, 'positional': True, 'weight': 1}}, { 'identifier': 'soc_sec_id', 'ignored': True} ] } # This fails in #111. Now it shouldn't. schema.from_json_dict(schema_dict)
36.621212
75
0.481313
c5c4dca5e475665cd860725ae4c757cdcf07464c
1,845
py
Python
test/python/circuit/test_circuit_multi_registers.py
ismaila-at-za-ibm/qiskit-terra
08303ec98ac7b33fde55266dc3a74466fbdcae95
[ "Apache-2.0" ]
1
2020-09-03T12:28:44.000Z
2020-09-03T12:28:44.000Z
test/python/circuit/test_circuit_multi_registers.py
ismaila-at-za-ibm/qiskit-terra
08303ec98ac7b33fde55266dc3a74466fbdcae95
[ "Apache-2.0" ]
null
null
null
test/python/circuit/test_circuit_multi_registers.py
ismaila-at-za-ibm/qiskit-terra
08303ec98ac7b33fde55266dc3a74466fbdcae95
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. # pylint: disable=unused-import # pylint: disable=redefined-builtin """Test Qiskit's QuantumCircuit class for multiple registers.""" import os import tempfile import unittest from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import QiskitError from qiskit.converters.circuit_to_dag import circuit_to_dag from qiskit.test import QiskitTestCase class TestCircuitMultiRegs(QiskitTestCase): """QuantumCircuit Qasm tests.""" def test_circuit_multi(self): """Test circuit multi regs declared at start. """ qreg0 = QuantumRegister(2, 'q0') creg0 = ClassicalRegister(2, 'c0') qreg1 = QuantumRegister(2, 'q1') creg1 = ClassicalRegister(2, 'c1') circ = QuantumCircuit(qreg0, qreg1) circ.x(qreg0[1]) circ.x(qreg1[0]) meas = QuantumCircuit(qreg0, qreg1, creg0, creg1) meas.measure(qreg0, creg0) meas.measure(qreg1, creg1) qc = circ + meas circ2 = QuantumCircuit() circ2.add_register(qreg0) circ2.add_register(qreg1) circ2.x(qreg0[1]) circ2.x(qreg1[0]) meas2 = QuantumCircuit() meas2.add_register(qreg0) meas2.add_register(qreg1) meas2.add_register(creg0) meas2.add_register(creg1) meas2.measure(qreg0, creg0) meas2.measure(qreg1, creg1) qc2 = circ2 + meas2 dag_qc = circuit_to_dag(qc) dag_qc2 = circuit_to_dag(qc2) dag_circ2 = circuit_to_dag(circ2) dag_circ = circuit_to_dag(circ) self.assertEqual(dag_qc, dag_qc2) self.assertEqual(dag_circ, dag_circ2)
27.954545
77
0.663415
c4acf9be2b29cf8f4c1e94757394268d98c28766
987
py
Python
transit-gw-example/transitgw/public_vpc.py
philbasford/adv_networking_demos
4d00cdbcdc563434f9e57bcb27217ee0d8b787be
[ "Apache-2.0" ]
1
2021-07-17T09:43:21.000Z
2021-07-17T09:43:21.000Z
transit-gw-example/transitgw/public_vpc.py
philbasford/adv_networking_demos
4d00cdbcdc563434f9e57bcb27217ee0d8b787be
[ "Apache-2.0" ]
null
null
null
transit-gw-example/transitgw/public_vpc.py
philbasford/adv_networking_demos
4d00cdbcdc563434f9e57bcb27217ee0d8b787be
[ "Apache-2.0" ]
null
null
null
"""The following file is released under the Apache 2 Licence, see LICENCE.txt.""" from aws_cdk import ( aws_ec2 as ec2, core as cdk ) from transitgw.jump_server import JumpServer class PublicVPC(ec2.Vpc): """A VPC that only contains 3 public subnets with not NATs but does contain a IGW. Args: ec2 ([type]): The base VPC class that we will extend to customise the VPC """ def __init__(self, stack: cdk.Stack, prefix, cidr, **kwargs) -> None: super().__init__( stack, id=prefix, cidr=cidr, enable_dns_hostnames=True, enable_dns_support=True, nat_gateways=0, subnet_configuration=[ ec2.SubnetConfiguration( name='public-subnet', subnet_type=ec2.SubnetType.PUBLIC, cidr_mask=24 ) ], max_azs=3 ) JumpServer(stack, prefix, self)
26.675676
86
0.561297
9e10bb9700c3b1ca49e99f5c08f8c1f9ae30051b
4,084
py
Python
travis_pypi_setup.py
vilkasgroup/epages_client
10e63d957ee45dc5d4df741064806f724fb1be1f
[ "MIT" ]
3
2018-01-26T13:44:26.000Z
2020-05-13T13:58:19.000Z
travis_pypi_setup.py
vilkasgroup/epages_client
10e63d957ee45dc5d4df741064806f724fb1be1f
[ "MIT" ]
53
2018-02-05T10:59:22.000Z
2022-01-01T19:31:08.000Z
travis_pypi_setup.py
vilkasgroup/epages_client
10e63d957ee45dc5d4df741064806f724fb1be1f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Update encrypted deploy password in Travis config file.""" from __future__ import print_function import base64 import json import os from getpass import getpass import yaml from cryptography.hazmat.primitives.serialization import load_pem_public_key from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric.padding import PKCS1v15 try: from urllib import urlopen except ImportError: from urllib.request import urlopen GITHUB_REPO = 'vilkasgroup/epages_client' TRAVIS_CONFIG_FILE = os.path.join( os.path.dirname(os.path.abspath(__file__)), '.travis.yml') def load_key(pubkey): """Load public RSA key. Work around keys with incorrect header/footer format. Read more about RSA encryption with cryptography: https://cryptography.io/latest/hazmat/primitives/asymmetric/rsa/ """ try: return load_pem_public_key(pubkey.encode(), default_backend()) except ValueError: # workaround for https://github.com/travis-ci/travis-api/issues/196 pubkey = pubkey.replace('BEGIN RSA', 'BEGIN').replace('END RSA', 'END') return load_pem_public_key(pubkey.encode(), default_backend()) def encrypt(pubkey, password): """Encrypt password using given RSA public key and encode it with base64. The encrypted password can only be decrypted by someone with the private key (in this case, only Travis). """ key = load_key(pubkey) encrypted_password = key.encrypt(password, PKCS1v15()) return base64.b64encode(encrypted_password) def fetch_public_key(repo): """Download RSA public key Travis will use for this repo. Travis API docs: http://docs.travis-ci.com/api/#repository-keys """ keyurl = 'https://api.travis-ci.org/repos/{0}/key'.format(repo) data = json.loads(urlopen(keyurl).read().decode()) if 'key' not in data: errmsg = "Could not find public key for repo: {}.\n".format(repo) errmsg += "Have you already added your GitHub repo to Travis?" raise ValueError(errmsg) return data['key'] def prepend_line(filepath, line): """Rewrite a file adding a line to its beginning.""" with open(filepath) as f: lines = f.readlines() lines.insert(0, line) with open(filepath, 'w') as f: f.writelines(lines) def load_yaml_config(filepath): """Load yaml config file at the given path.""" with open(filepath) as f: return yaml.load(f) def save_yaml_config(filepath, config): """Save yaml config file at the given path.""" with open(filepath, 'w') as f: yaml.dump(config, f, default_flow_style=False) def update_travis_deploy_password(encrypted_password): """Put `encrypted_password` into the deploy section of .travis.yml.""" config = load_yaml_config(TRAVIS_CONFIG_FILE) config['deploy']['password'] = dict(secure=encrypted_password) save_yaml_config(TRAVIS_CONFIG_FILE, config) line = ('# This file was autogenerated and will overwrite' ' each time you run travis_pypi_setup.py\n') prepend_line(TRAVIS_CONFIG_FILE, line) def main(args): """Add a PyPI password to .travis.yml so that Travis can deploy to PyPI. Fetch the Travis public key for the repo, and encrypt the PyPI password with it before adding, so that only Travis can decrypt and use the PyPI password. """ public_key = fetch_public_key(args.repo) password = args.password or getpass('PyPI password: ') update_travis_deploy_password(encrypt(public_key, password.encode())) print("Wrote encrypted password to .travis.yml -- you're ready to deploy") if '__main__' == __name__: import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--repo', default=GITHUB_REPO, help='GitHub repo (default: %s)' % GITHUB_REPO) parser.add_argument('--password', help='PyPI password (will prompt if not provided)') args = parser.parse_args() main(args)
31.90625
79
0.701273
858e9424f3e9281d8c2a7bc3f08490974af3eb1c
3,981
py
Python
setup.py
PierreARM/lisa
e9cfbd63b25821518f1254ed7905b505a5073450
[ "Apache-2.0" ]
null
null
null
setup.py
PierreARM/lisa
e9cfbd63b25821518f1254ed7905b505a5073450
[ "Apache-2.0" ]
null
null
null
setup.py
PierreARM/lisa
e9cfbd63b25821518f1254ed7905b505a5073450
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2018, Arm Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import itertools from setuptools import setup, find_namespace_packages with open('README.rst', 'r') as f: long_description = f.read() with open('LICENSE.txt', 'r') as f: license_txt = f.read() with open("lisa/version.py") as f: version_globals = dict() exec(f.read(), version_globals) lisa_version = version_globals['__version__'] packages = find_namespace_packages(where='lisa', include=['lisa*']) package_data = { package: ['*'] for package in packages if package.startswith('lisa.assets.') } package_data['lisa.assets'] = ['*'] extras_require={ "notebook": [ "jupyterlab", "ipympl", # For %matplotlib widget under jupyter lab "sphobjinv", # To open intersphinx inventories ], "test": [ "pytest", ], "wa": [ "wlauto", ], } extras_require["doc"] = [ "sphinx >= 1.8", "sphinx_rtd_theme", "sphinxcontrib-plantuml", "nbsphinx", # Add all the other optional dependencies to ensure all modules from lisa # can safely be imported *itertools.chain.from_iterable(extras_require.values()) ] setup( name='LISA', license=license_txt, version=lisa_version, author='Arm Ltd', # TODO: figure out which email to put here # author_email= packages=packages, url='https://github.com/ARM-software/lisa', project_urls={ "Bug Tracker": "https://github.com/ARM-software/lisa/issues", "Documentation": "https://lisa-linux-integrated-system-analysis.readthedocs.io/", "Source Code": "https://github.com/ARM-software/lisa", }, description='A stick to probe the kernel with', long_description=long_description, python_requires='>= 3.6', install_requires=[ "psutil >= 4.4.2", # Figure.savefig() (without pyplot) does not work in matplotlib < # 3.1.0, and that is used for non-interactive plots when building the # doc. "matplotlib >= 3.1.0", # Pandas >= 1.0.0 has support for new nullable dtypes # Pandas 1.2.0 has broken barplots: # https://github.com/pandas-dev/pandas/issues/38947 "pandas >= 1.0.0", "numpy", "scipy", # Earlier versions have broken __slots__ deserialization "ruamel.yaml >= 0.16.6", # For the HTML output of analysis plots "docutils", # For pandas.to_parquet() dataframe storage "pyarrow", "ipython", "ipywidgets", "mplcursors", # Depdendencies that are shipped as part of the LISA repo as # subtree/submodule "devlib", ], extras_require=extras_require, package_data=package_data, classifiers=[ "Programming Language :: Python :: 3 :: Only", # This is not a standard classifier, as there is nothing defined for # Apache 2.0 yet: # https://pypi.org/classifiers/ "License :: OSI Approved :: Apache Software License 2.0 (Apache-2.0)", # It has not been tested under any other OS "Operating System :: POSIX :: Linux", "Topic :: System :: Operating System Kernels :: Linux", "Topic :: Software Development :: Testing", "Intended Audience :: Developers", ], ) # vim :set tabstop=4 shiftwidth=4 textwidth=80 expandtab
29.932331
89
0.642301
e4a9be5224cea88db68cb6008068a5c6ccb0cfaa
789
py
Python
django_deployer/paas_templates/gondor/settings_gondor.py
natea/django-deployer
5ce7d972db2f8500ec53ad89e7eb312d3360d074
[ "MIT" ]
19
2015-02-06T06:14:39.000Z
2021-01-06T22:27:03.000Z
django_deployer/paas_templates/gondor/settings_gondor.py
natea/django-deployer
5ce7d972db2f8500ec53ad89e7eb312d3360d074
[ "MIT" ]
null
null
null
django_deployer/paas_templates/gondor/settings_gondor.py
natea/django-deployer
5ce7d972db2f8500ec53ad89e7eb312d3360d074
[ "MIT" ]
2
2015-12-22T17:22:15.000Z
2016-03-02T12:15:01.000Z
import os import dj_database_url from .settings import * DEBUG = True TEMPLATE_DEBUG = DEBUG DATABASES = { "default": dj_database_url.config(env="GONDOR_DATABASE_URL"), } MEDIA_ROOT = os.path.join(os.environ["GONDOR_DATA_DIR"], "site_media", "media") LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "simple": { "format": "%(levelname)s %(message)s" }, }, "handlers": { "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "simple" } }, "loggers": { "": { "handlers": ["console"], "level": "INFO", }, "django.request": { "propagate": True, }, } }
19.725
79
0.505703
aa2904d64fbb70236f86bd6597f6aef941bef118
4,278
py
Python
idf_to_hyetograph.py
yuriishizawa/idf_to_hyetograph
833040cf08dd9aee676c9aaaf454711322446f36
[ "MIT" ]
null
null
null
idf_to_hyetograph.py
yuriishizawa/idf_to_hyetograph
833040cf08dd9aee676c9aaaf454711322446f36
[ "MIT" ]
null
null
null
idf_to_hyetograph.py
yuriishizawa/idf_to_hyetograph
833040cf08dd9aee676c9aaaf454711322446f36
[ "MIT" ]
null
null
null
""" Created by Yuri Ishizawa e-mail: yuriishizawa@gmail.com 2021 """ import csv import matplotlib.pyplot as plt import pandas as pd class idf_to_hyetograph: def __init__(self, K, a, b, c, T, td, dt): self.K, self.a, self.b, self.c, self.T, self.td, self.dt = K, a, b, c, T, td, dt if td%dt == 0 and td >= dt: print("Módulo iniciado") elif td%dt != 0 and td >= dt: print("ATENÇÃO: O passo de tempo (dt) deve ser um divisor do tempo de duração (td) da chuva") else: print("ATENÇÃO: O passo de tempo (dt) deve ser menor que o tempo de duração (td) da chuva") def idf(self,t): intensity = ((self.K*(self.T**self.a))/((t + self.b)**self.c)) return intensity def calc_dP_t(self): intensity = [] P = [] dP = [] self.dP_t = [] for i,j in enumerate(list(range(self.dt,self.td+1,self.dt))): intensity.append(self.idf(j)) P.append(intensity[i]*j/60) if j == self.dt: dP.append(P[i]) else: dP.append(P[i] - P[i-1]) self.dP_t.append(dP[i]*60/self.dt) self.dP_t.sort() def calc_h(self): self.calc_dP_t() self.h = [] #Para quantidade par de blocos if len(self.dP_t)%2 == 0: #Lado esquerdo do hietograma for i in list(range(1,len(self.dP_t),2)): self.h.append(self.dP_t[i]) #Lado direito do hietograma for i in list(range(len(self.dP_t)-2,1,-2)): self.h.append(self.dP_t[i]) self.h.append(self.dP_t[0]) #Para quantidade ímpar de blocos else: #Lado esquerdo do hietograma for i in list(range(0,len(self.dP_t),2)): self.h.append(self.dP_t[i]) #Lado direito do hietograma for i in list(range(len(self.dP_t)-2,0,-2)): self.h.append(self.dP_t[i]) return self.h def save_txt(self): self.calc_h() #Gravando o hietograma em txt csvfile = str(self.td)+"min_"+str(self.T)+"anos.txt" with open(csvfile, "w") as output: writer = csv.writer(output, lineterminator='\n') for i,val in enumerate(self.h): writer.writerow([(i+1)*self.dt,val]) print("Arquivo txt salvo no mesmo diretório deste programa") def export_df(self): self.calc_h() h_list = [] for i,val in enumerate(self.h): h_list.append([(i+1)*self.dt,val]) df = pd.DataFrame(h_list,columns=['dt','intensity']) return df def plot_graph(self): self.calc_h() y_axis = self.h x_axis = [] for i in list(range(self.dt,self.td+1,self.dt)): x_axis.append(i) fig = plt.figure() ax = fig.add_subplot(111) #ax.set_aspect(aspect=1) plt.bar(x_axis, y_axis, align='center', color="blue", width=self.dt/2) plt.text((self.td/2)+self.dt, self.dP_t[-2] + self.dt,f'td = {self.td} min, T = {self.T} anos') plt.title("Distribuição da chuva") plt.ylabel("Intensidade (mm/h)") plt.xlabel('Tempo (min)') plt.xticks(x_axis, rotation = 35) plt.tick_params(axis = 'x', which = 'major', labelsize = 8) return fig def plot_save_graph(self): self.calc_h() y_axis = self.h x_axis = [] for i in list(range(self.dt,self.td+1,self.dt)): x_axis.append(i) fig = plt.figure() ax = fig.add_subplot(111) #ax.set_aspect(aspect=1) plt.bar(x_axis, y_axis, align='center', color="blue", width=self.dt/2) plt.text((self.td/2)+self.dt, self.dP_t[-2] + self.dt,f'td = {self.td} min, T = {self.T} anos') plt.title("Distribuição da chuva") plt.ylabel("Intensidade (mm/h)") plt.xlabel('Tempo (min)') plt.xticks(x_axis, rotation = 35) plt.tick_params(axis = 'x', which = 'major', labelsize = 8) plt.savefig(str(self.td)+"min_"+str(self.T)+"anos") plt.show() print("Gráfico do hietograma salvo no mesmo diretório deste programa")
33.952381
105
0.536466
85350882785d007299f4136f498487078ac828f1
1,893
py
Python
src/commands/nickname.py
seisatsu/DennisMUD-ESP32
b63d4b914c5e8d0f9714042997c64919b20be842
[ "MIT" ]
19
2018-10-02T03:58:46.000Z
2021-04-09T13:09:23.000Z
commands/nickname.py
seisatsu/Dennis
8f1892f21beba6b21b4f7b9ba3062296bb1dc4b9
[ "MIT" ]
100
2018-09-22T22:54:35.000Z
2021-04-16T17:46:34.000Z
src/commands/nickname.py
seisatsu/DennisMUD-ESP32
b63d4b914c5e8d0f9714042997c64919b20be842
[ "MIT" ]
1
2022-01-03T02:21:56.000Z
2022-01-03T02:21:56.000Z
####################### # Dennis MUD # # nickname.py # # Copyright 2018-2020 # # Michael D. Reiley # ####################### # ********** # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ********** NAME = "nickname" CATEGORIES = ["users"] USAGE = "nickname <username>" DESCRIPTION = """Lookup the nickname of a user by their <username>. You can also lookup a user's username by their nickname with the `realname` command. Ex. `nickname seisatsu`""" def COMMAND(console, args): # Perform initial checks. if not COMMON.check(NAME, console, args, argmin=1): return False # Make sure the named user exists. targetuser = COMMON.check_user(NAME, console, args[0].lower()) if not targetuser: return False # Show the user's nickname. console.msg("{0}: {1}".format(targetuser["name"], targetuser["nick"])) return True
36.403846
84
0.699419
07f83f42e19aea0b4cb81574380f9f98aec136eb
236
py
Python
ocp_resources/installplan.py
kbidarkar/openshift-python-wrapper
3cd4d6d3b71c82ff87f032a51510d9c9d207f6cb
[ "Apache-2.0" ]
9
2021-07-05T18:35:55.000Z
2021-12-31T03:09:39.000Z
ocp_resources/installplan.py
kbidarkar/openshift-python-wrapper
3cd4d6d3b71c82ff87f032a51510d9c9d207f6cb
[ "Apache-2.0" ]
418
2021-07-04T13:12:09.000Z
2022-03-30T08:37:45.000Z
ocp_resources/installplan.py
kbidarkar/openshift-python-wrapper
3cd4d6d3b71c82ff87f032a51510d9c9d207f6cb
[ "Apache-2.0" ]
28
2021-07-04T12:48:18.000Z
2022-02-22T15:19:30.000Z
from ocp_resources.resource import NamespacedResource class InstallPlan(NamespacedResource): api_group = NamespacedResource.ApiGroup.OPERATORS_COREOS_COM class Status(NamespacedResource.Status): COMPLETE = "Complete"
26.222222
64
0.800847
6f505d4b3223a2c863981605191cb408e76fa36a
319
py
Python
showdata.py
Telemin/buddhabrot
a7dc257064fc303b11491bc49819b0782139f81b
[ "Unlicense" ]
null
null
null
showdata.py
Telemin/buddhabrot
a7dc257064fc303b11491bc49819b0782139f81b
[ "Unlicense" ]
null
null
null
showdata.py
Telemin/buddhabrot
a7dc257064fc303b11491bc49819b0782139f81b
[ "Unlicense" ]
1
2019-02-25T23:51:50.000Z
2019-02-25T23:51:50.000Z
#!/usr/bin/env python3 import sys import matplotlib.pyplot as plt import numpy as np import matplotlib.colors as mc def main(): data = np.loadtxt(sys.argv[1]) + 1 plt.hist(data.flatten()) plt.show() plt.pcolor(data, cmap='gray') plt.show() return(0) if __name__ == "__main__": main()
15.95
38
0.639498
e82f1a96bcfb38e8f26dba57a3914d379ac12a42
4,176
py
Python
wts/tests/csp/csp_default-src_cross-origin_style.py
Acidburn0zzz/web-testing-service
1b46978e27a2e04f322d0f05f606ee96716642aa
[ "BSD-3-Clause" ]
null
null
null
wts/tests/csp/csp_default-src_cross-origin_style.py
Acidburn0zzz/web-testing-service
1b46978e27a2e04f322d0f05f606ee96716642aa
[ "BSD-3-Clause" ]
null
null
null
wts/tests/csp/csp_default-src_cross-origin_style.py
Acidburn0zzz/web-testing-service
1b46978e27a2e04f322d0f05f606ee96716642aa
[ "BSD-3-Clause" ]
null
null
null
def main(request, response): import simplejson as json f = file('config.json') source = f.read() s = json.JSONDecoder().decode(source) url1 = "http://" + s['host'] + ":" + str(s['ports']['http'][1]) url2 = "http://" + s['host'] + ":" + str(s['ports']['http'][0]) _CSP = "default-src " + url1 + ";script-src 'self' 'unsafe-inline'" response.headers.set("Content-Security-Policy", _CSP) response.headers.set("X-Content-Security-Policy", _CSP) response.headers.set("X-WebKit-CSP", _CSP) return """<!DOCTYPE html> <!-- Copyright (c) 2013 Intel Corporation. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of works must retain the original copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the original copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this work without specific prior written permission. THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Authors: Hao, Yunfei <yunfeix.hao@intel.com> --> <html> <head> <title>CSP Test: csp_default-src_cross-origin_style</title> <link rel="author" title="Intel" href="http://www.intel.com"/> <link rel="help" href="http://www.w3.org/TR/2012/CR-CSP-20121115/#default-src"/> <meta name="flags" content=""/> <meta charset="utf-8"/> <script src="../resources/testharness.js"></script> <script src="../resources/testharnessreport.js"></script> <link rel="stylesheet" type="text/css" href='""" + url1 + """/tests/csp/support/w3c/canvas-index.css'/> <link rel="stylesheet" type="text/css" href='""" + url2+ """/tests/csp/support/w3c/a-green.css'/> <link rel="stylesheet" type="text/css" href="support/blue-100x100.css"/> <style> #test-green { background-color: green; } </style> </head> <body> <div id="log"></div> <div id="test-blue"></div> <h3>ext-css:""" + url1 + """/tests/csp/support/w3c/canvas-index.css</h3> <div id="test-ext-a" class="a"></div> <div id="test-green"></div> <script> test(function() { var div = document.querySelector("h3"); var fix = getComputedStyle(div)["display"]; assert_equals(fix, "inline", "style setted incorrectly"); }, document.title + "_allowed"); test(function() { var div = document.querySelector("#test-ext-a"); var fix = getComputedStyle(div)["color"]; assert_not_equals(fix, "rgb(0, 128, 0)", "style setted incorrectly"); }, document.title + "_blocked"); test(function() { var div = document.querySelector("#test-blue"); var fix = getComputedStyle(div)["backgroundColor"]; assert_not_equals(fix, "rgb(0, 0, 255)", "style setted incorrectly"); }, document.title + "_blocked_int"); test(function() { var div = document.querySelector("#test-green"); var fix = getComputedStyle(div)["backgroundColor"]; assert_not_equals(fix, "rgb(0, 128, 0)", "style setted incorrectly"); }, document.title + "_blocked_inline"); </script> </body> </html> """
43.957895
107
0.663314
9230a4a58aca6e866f8a29ca06cd77d3f928edfe
1,932
py
Python
all_data_norm.py
anikaanzum/NetworkDataAnalysis
13f008233ccb4e7c16a576a6e068daf9c14510d6
[ "MIT" ]
null
null
null
all_data_norm.py
anikaanzum/NetworkDataAnalysis
13f008233ccb4e7c16a576a6e068daf9c14510d6
[ "MIT" ]
null
null
null
all_data_norm.py
anikaanzum/NetworkDataAnalysis
13f008233ccb4e7c16a576a6e068daf9c14510d6
[ "MIT" ]
1
2022-03-16T10:15:06.000Z
2022-03-16T10:15:06.000Z
import sys import xlrd import csv import pandas import os import glob import os.path def read_csv(filename): data=[] with open(filename) as csvfile: readCSV = csv.reader(csvfile) for row in readCSV: data.append(row) #print(data) header=data[0] #print(header) return header def get_csv_info(path,Tag): header=read_csv(path) pop=[] area=[] for i in header: if(Tag==i): #print("Found") with open(path) as f: reader = csv.DictReader(f, delimiter=',') for row in reader: pop.append(row[Tag]) area.append(row['Areaname']) return area,pop my_path = os.path.abspath(os.path.dirname(__file__)) path = os.path.join(my_path, "CensusData/CountyData/") extension = 'csv' os.chdir(path) result = [i for i in glob.glob('*.{}'.format(extension))] file_name='PopulationNormalized2009.csv' path = os.path.join(path, file_name) Tag='NormalizedPopulation' pop_area,pop_arr=get_csv_info(path,Tag) path = os.path.join(my_path, "CensusData/CountyData/") file_name='IncomeNormalized2009.csv' path = os.path.join(path, file_name) Tag='NormalizedIncome' income_area,income_arr=get_csv_info(path,Tag) path = os.path.join(my_path, "CensusData/CountyData/") file_name='EducationNormalized2009.csv' path = os.path.join(path, file_name) Tag='NormalizedEducation' edu_area,edu_arr=get_csv_info(path,Tag) data=[['area','pop_norm','income_norm','edu_norm']] for i in range(len(pop_area)): incomeTemp=-1 eduTemp=-1 for j in range(len(income_area)): if(income_area[j]==pop_area[i]): incomeTemp=income_arr[j] break for j in range(len(edu_area)): if(edu_area[j]==pop_area[i]): eduTemp=edu_arr[j] break if(incomeTemp!=-1 and eduTemp!=-1): data.append([pop_area[i],pop_arr[i],incomeTemp,eduTemp]) with open('../CountyData/NormalizedData.csv', 'w') as csvFile: writer = csv.writer(csvFile) writer.writerows(data)
20.125
62
0.693064
818b395b7b55a334449416eeaca5db9b3ca51cb5
34,606
py
Python
google/appengine/api/images/__init__.py
qsnake/google_appengine
6efcc6e4dd38fe2d2c210b57d3444c26b428af1f
[ "Apache-2.0" ]
1
2015-10-28T21:28:29.000Z
2015-10-28T21:28:29.000Z
google/appengine/api/images/__init__.py
lann/python-google-appengine
2f1fe26e8429f491b034a5417f7c0c8f3a0247ab
[ "Apache-2.0" ]
null
null
null
google/appengine/api/images/__init__.py
lann/python-google-appengine
2f1fe26e8429f491b034a5417f7c0c8f3a0247ab
[ "Apache-2.0" ]
5
2016-05-26T18:35:17.000Z
2020-04-15T06:53:24.000Z
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Image manipulation API. Classes defined in this module: Image: class used to encapsulate image information and transformations for that image. The current manipulations that are available are resize, rotate, horizontal_flip, vertical_flip, crop and im_feeling_lucky. It should be noted that each transform can only be called once per image per execute_transforms() call. """ import struct from google.appengine.api import apiproxy_stub_map from google.appengine.api.images import images_service_pb from google.appengine.runtime import apiproxy_errors JPEG = images_service_pb.OutputSettings.JPEG PNG = images_service_pb.OutputSettings.PNG OUTPUT_ENCODING_TYPES = frozenset([JPEG, PNG]) TOP_LEFT = images_service_pb.CompositeImageOptions.TOP_LEFT TOP_CENTER = images_service_pb.CompositeImageOptions.TOP TOP_RIGHT = images_service_pb.CompositeImageOptions.TOP_RIGHT CENTER_LEFT = images_service_pb.CompositeImageOptions.LEFT CENTER_CENTER = images_service_pb.CompositeImageOptions.CENTER CENTER_RIGHT = images_service_pb.CompositeImageOptions.RIGHT BOTTOM_LEFT = images_service_pb.CompositeImageOptions.BOTTOM_LEFT BOTTOM_CENTER = images_service_pb.CompositeImageOptions.BOTTOM BOTTOM_RIGHT = images_service_pb.CompositeImageOptions.BOTTOM_RIGHT ANCHOR_TYPES = frozenset([TOP_LEFT, TOP_CENTER, TOP_RIGHT, CENTER_LEFT, CENTER_CENTER, CENTER_RIGHT, BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT]) MAX_TRANSFORMS_PER_REQUEST = 10 MAX_COMPOSITES_PER_REQUEST = 16 class Error(Exception): """Base error class for this module.""" class TransformationError(Error): """Error while attempting to transform the image.""" class BadRequestError(Error): """The parameters given had something wrong with them.""" class NotImageError(Error): """The image data given is not recognizable as an image.""" class BadImageError(Error): """The image data given is corrupt.""" class LargeImageError(Error): """The image data given is too large to process.""" class InvalidBlobKeyError(Error): """The provided blob key was invalid.""" class BlobKeyRequiredError(Error): """A blobkey is required for this operation.""" class UnsupportedSizeError(Error): """Specified size is not supported by requested operation.""" class Image(object): """Image object to manipulate.""" def __init__(self, image_data=None, blob_key=None): """Constructor. Args: image_data: str, image data in string form. blob_key: str, image data as a blobstore blob key. Raises: NotImageError if the given data is empty. """ if not image_data and not blob_key: raise NotImageError("Empty image data.") if image_data and blob_key: raise NotImageError("Can only take one image or blob key.") self._image_data = image_data self._blob_key = blob_key self._transforms = [] self._width = None self._height = None def _check_transform_limits(self): """Ensure some simple limits on the number of transforms allowed. Raises: BadRequestError if MAX_TRANSFORMS_PER_REQUEST transforms have already been requested for this image """ if len(self._transforms) >= MAX_TRANSFORMS_PER_REQUEST: raise BadRequestError("%d transforms have already been requested on this " "image." % MAX_TRANSFORMS_PER_REQUEST) def _update_dimensions(self): """Updates the width and height fields of the image. Raises: NotImageError if the image data is not an image. BadImageError if the image data is corrupt. """ if not self._image_data: raise NotImageError("Dimensions unavailable for blob key input") size = len(self._image_data) if size >= 6 and self._image_data.startswith("GIF"): self._update_gif_dimensions() elif size >= 8 and self._image_data.startswith("\x89PNG\x0D\x0A\x1A\x0A"): self._update_png_dimensions() elif size >= 2 and self._image_data.startswith("\xff\xD8"): self._update_jpeg_dimensions() elif (size >= 8 and (self._image_data.startswith("II\x2a\x00") or self._image_data.startswith("MM\x00\x2a"))): self._update_tiff_dimensions() elif size >= 2 and self._image_data.startswith("BM"): self._update_bmp_dimensions() elif size >= 4 and self._image_data.startswith("\x00\x00\x01\x00"): self._update_ico_dimensions() else: raise NotImageError("Unrecognized image format") def _update_gif_dimensions(self): """Updates the width and height fields of the gif image. Raises: BadImageError if the image string is not a valid gif image. """ size = len(self._image_data) if size >= 10: self._width, self._height = struct.unpack("<HH", self._image_data[6:10]) else: raise BadImageError("Corrupt GIF format") def _update_png_dimensions(self): """Updates the width and height fields of the png image. Raises: BadImageError if the image string is not a valid png image. """ size = len(self._image_data) if size >= 24 and self._image_data[12:16] == "IHDR": self._width, self._height = struct.unpack(">II", self._image_data[16:24]) else: raise BadImageError("Corrupt PNG format") def _update_jpeg_dimensions(self): """Updates the width and height fields of the jpeg image. Raises: BadImageError if the image string is not a valid jpeg image. """ size = len(self._image_data) offset = 2 while offset < size: while offset < size and ord(self._image_data[offset]) != 0xFF: offset += 1 while offset < size and ord(self._image_data[offset]) == 0xFF: offset += 1 if (offset < size and ord(self._image_data[offset]) & 0xF0 == 0xC0 and ord(self._image_data[offset]) != 0xC4): offset += 4 if offset + 4 <= size: self._height, self._width = struct.unpack( ">HH", self._image_data[offset:offset + 4]) break else: raise BadImageError("Corrupt JPEG format") elif offset + 3 <= size: offset += 1 offset += struct.unpack(">H", self._image_data[offset:offset + 2])[0] else: raise BadImageError("Corrupt JPEG format") if self._height is None or self._width is None: raise BadImageError("Corrupt JPEG format") def _update_tiff_dimensions(self): """Updates the width and height fields of the tiff image. Raises: BadImageError if the image string is not a valid tiff image. """ size = len(self._image_data) if self._image_data.startswith("II"): endianness = "<" else: endianness = ">" ifd_offset = struct.unpack(endianness + "I", self._image_data[4:8])[0] if ifd_offset + 14 <= size: ifd_size = struct.unpack( endianness + "H", self._image_data[ifd_offset:ifd_offset + 2])[0] ifd_offset += 2 for unused_i in range(0, ifd_size): if ifd_offset + 12 <= size: tag = struct.unpack( endianness + "H", self._image_data[ifd_offset:ifd_offset + 2])[0] if tag == 0x100 or tag == 0x101: value_type = struct.unpack( endianness + "H", self._image_data[ifd_offset + 2:ifd_offset + 4])[0] if value_type == 3: format = endianness + "H" end_offset = ifd_offset + 10 elif value_type == 4: format = endianness + "I" end_offset = ifd_offset + 12 else: format = endianness + "B" end_offset = ifd_offset + 9 if tag == 0x100: self._width = struct.unpack( format, self._image_data[ifd_offset + 8:end_offset])[0] if self._height is not None: break else: self._height = struct.unpack( format, self._image_data[ifd_offset + 8:end_offset])[0] if self._width is not None: break ifd_offset += 12 else: raise BadImageError("Corrupt TIFF format") if self._width is None or self._height is None: raise BadImageError("Corrupt TIFF format") def _update_bmp_dimensions(self): """Updates the width and height fields of the bmp image. Raises: BadImageError if the image string is not a valid bmp image. """ size = len(self._image_data) if size >= 18: header_length = struct.unpack("<I", self._image_data[14:18])[0] if ((header_length == 40 or header_length == 108 or header_length == 124 or header_length == 64) and size >= 26): self._width, self._height = struct.unpack("<II", self._image_data[18:26]) elif header_length == 12 and size >= 22: self._width, self._height = struct.unpack("<HH", self._image_data[18:22]) else: raise BadImageError("Corrupt BMP format") else: raise BadImageError("Corrupt BMP format") def _update_ico_dimensions(self): """Updates the width and height fields of the ico image. Raises: BadImageError if the image string is not a valid ico image. """ size = len(self._image_data) if size >= 8: self._width, self._height = struct.unpack("<BB", self._image_data[6:8]) if not self._width: self._width = 256 if not self._height: self._height = 256 else: raise BadImageError("Corrupt ICO format") def resize(self, width=0, height=0): """Resize the image maintaining the aspect ratio. If both width and height are specified, the more restricting of the two values will be used when resizing the photo. The maximum dimension allowed for both width and height is 4000 pixels. Args: width: int, width (in pixels) to change the image width to. height: int, height (in pixels) to change the image height to. Raises: TypeError when width or height is not either 'int' or 'long' types. BadRequestError when there is something wrong with the given height or width or if MAX_TRANSFORMS_PER_REQUEST transforms have already been requested on this image. """ if (not isinstance(width, (int, long)) or not isinstance(height, (int, long))): raise TypeError("Width and height must be integers.") if width < 0 or height < 0: raise BadRequestError("Width and height must be >= 0.") if not width and not height: raise BadRequestError("At least one of width or height must be > 0.") if width > 4000 or height > 4000: raise BadRequestError("Both width and height must be <= 4000.") self._check_transform_limits() transform = images_service_pb.Transform() transform.set_width(width) transform.set_height(height) self._transforms.append(transform) def rotate(self, degrees): """Rotate an image a given number of degrees clockwise. Args: degrees: int, must be a multiple of 90. Raises: TypeError when degrees is not either 'int' or 'long' types. BadRequestError when there is something wrong with the given degrees or if MAX_TRANSFORMS_PER_REQUEST transforms have already been requested. """ if not isinstance(degrees, (int, long)): raise TypeError("Degrees must be integers.") if degrees % 90 != 0: raise BadRequestError("degrees argument must be multiple of 90.") degrees = degrees % 360 self._check_transform_limits() transform = images_service_pb.Transform() transform.set_rotate(degrees) self._transforms.append(transform) def horizontal_flip(self): """Flip the image horizontally. Raises: BadRequestError if MAX_TRANSFORMS_PER_REQUEST transforms have already been requested on the image. """ self._check_transform_limits() transform = images_service_pb.Transform() transform.set_horizontal_flip(True) self._transforms.append(transform) def vertical_flip(self): """Flip the image vertically. Raises: BadRequestError if MAX_TRANSFORMS_PER_REQUEST transforms have already been requested on the image. """ self._check_transform_limits() transform = images_service_pb.Transform() transform.set_vertical_flip(True) self._transforms.append(transform) def _validate_crop_arg(self, val, val_name): """Validate the given value of a Crop() method argument. Args: val: float, value of the argument. val_name: str, name of the argument. Raises: TypeError if the args are not of type 'float'. BadRequestError when there is something wrong with the given bounding box. """ if type(val) != float: raise TypeError("arg '%s' must be of type 'float'." % val_name) if not (0 <= val <= 1.0): raise BadRequestError("arg '%s' must be between 0.0 and 1.0 " "(inclusive)" % val_name) def crop(self, left_x, top_y, right_x, bottom_y): """Crop the image. The four arguments are the scaling numbers to describe the bounding box which will crop the image. The upper left point of the bounding box will be at (left_x*image_width, top_y*image_height) the lower right point will be at (right_x*image_width, bottom_y*image_height). Args: left_x: float value between 0.0 and 1.0 (inclusive). top_y: float value between 0.0 and 1.0 (inclusive). right_x: float value between 0.0 and 1.0 (inclusive). bottom_y: float value between 0.0 and 1.0 (inclusive). Raises: TypeError if the args are not of type 'float'. BadRequestError when there is something wrong with the given bounding box or if MAX_TRANSFORMS_PER_REQUEST transforms have already been requested for this image. """ self._validate_crop_arg(left_x, "left_x") self._validate_crop_arg(top_y, "top_y") self._validate_crop_arg(right_x, "right_x") self._validate_crop_arg(bottom_y, "bottom_y") if left_x >= right_x: raise BadRequestError("left_x must be less than right_x") if top_y >= bottom_y: raise BadRequestError("top_y must be less than bottom_y") self._check_transform_limits() transform = images_service_pb.Transform() transform.set_crop_left_x(left_x) transform.set_crop_top_y(top_y) transform.set_crop_right_x(right_x) transform.set_crop_bottom_y(bottom_y) self._transforms.append(transform) def im_feeling_lucky(self): """Automatically adjust image contrast and color levels. This is similar to the "I'm Feeling Lucky" button in Picasa. Raises: BadRequestError if MAX_TRANSFORMS_PER_REQUEST transforms have already been requested for this image. """ self._check_transform_limits() transform = images_service_pb.Transform() transform.set_autolevels(True) self._transforms.append(transform) def _set_imagedata(self, imagedata): """Fills in an ImageData PB from this Image instance. Args: imagedata: An ImageData PB instance """ if self._blob_key: imagedata.set_content("") imagedata.set_blob_key(self._blob_key) else: imagedata.set_content(self._image_data) def execute_transforms(self, output_encoding=PNG, quality=None): """Perform transformations on given image. Args: output_encoding: A value from OUTPUT_ENCODING_TYPES. quality: A value between 1 and 100 to specify the quality of the encoding. This value is only used for JPEG quality control. Returns: str, image data after the transformations have been performed on it. Raises: BadRequestError when there is something wrong with the request specifications. NotImageError when the image data given is not an image. BadImageError when the image data given is corrupt. LargeImageError when the image data given is too large to process. InvalidBlobKeyError when the blob key provided is invalid. TransformtionError when something errors during image manipulation. Error when something unknown, but bad, happens. """ if output_encoding not in OUTPUT_ENCODING_TYPES: raise BadRequestError("Output encoding type not in recognized set " "%s" % OUTPUT_ENCODING_TYPES) if not self._transforms: raise BadRequestError("Must specify at least one transformation.") if quality is not None: if not isinstance(quality, (int, long)): raise TypeError("Quality must be an integer.") if quality > 100 or quality < 1: raise BadRequestError("Quality must be between 1 and 100.") request = images_service_pb.ImagesTransformRequest() response = images_service_pb.ImagesTransformResponse() self._set_imagedata(request.mutable_image()) for transform in self._transforms: request.add_transform().CopyFrom(transform) request.mutable_output().set_mime_type(output_encoding) if ((output_encoding == JPEG) and (quality is not None)): request.mutable_output().set_quality(quality) try: apiproxy_stub_map.MakeSyncCall("images", "Transform", request, response) except apiproxy_errors.ApplicationError, e: if (e.application_error == images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA): raise BadRequestError() elif (e.application_error == images_service_pb.ImagesServiceError.NOT_IMAGE): raise NotImageError() elif (e.application_error == images_service_pb.ImagesServiceError.BAD_IMAGE_DATA): raise BadImageError() elif (e.application_error == images_service_pb.ImagesServiceError.IMAGE_TOO_LARGE): raise LargeImageError() elif (e.application_error == images_service_pb.ImagesServiceError.INVALID_BLOB_KEY): raise InvalidBlobKeyError() elif (e.application_error == images_service_pb.ImagesServiceError.UNSPECIFIED_ERROR): raise TransformationError() else: raise Error() self._image_data = response.image().content() self._blob_key = None self._transforms = [] self._width = None self._height = None return self._image_data @property def width(self): """Gets the width of the image.""" if self._width is None: self._update_dimensions() return self._width @property def height(self): """Gets the height of the image.""" if self._height is None: self._update_dimensions() return self._height def histogram(self): """Calculates the histogram of the image. Returns: 3 256-element lists containing the number of occurences of each value of each color in the order RGB. As described at http://en.wikipedia.org/wiki/Color_histogram for N = 256. i.e. the first value of the first list contains the number of pixels with a red value of 0, the second the number with a red value of 1. Raises: NotImageError when the image data given is not an image. BadImageError when the image data given is corrupt. LargeImageError when the image data given is too large to process. Error when something unknown, but bad, happens. """ request = images_service_pb.ImagesHistogramRequest() response = images_service_pb.ImagesHistogramResponse() self._set_imagedata(request.mutable_image()) try: apiproxy_stub_map.MakeSyncCall("images", "Histogram", request, response) except apiproxy_errors.ApplicationError, e: if (e.application_error == images_service_pb.ImagesServiceError.NOT_IMAGE): raise NotImageError() elif (e.application_error == images_service_pb.ImagesServiceError.BAD_IMAGE_DATA): raise BadImageError() elif (e.application_error == images_service_pb.ImagesServiceError.IMAGE_TOO_LARGE): raise LargeImageError() elif (e.application_error == images_service_pb.ImagesServiceError.INVALID_BLOB_KEY): raise InvalidBlobKeyError() else: raise Error() histogram = response.histogram() return [histogram.red_list(), histogram.green_list(), histogram.blue_list()] def resize(image_data, width=0, height=0, output_encoding=PNG): """Resize a given image file maintaining the aspect ratio. If both width and height are specified, the more restricting of the two values will be used when resizing the photo. The maximum dimension allowed for both width and height is 4000 pixels. Args: image_data: str, source image data. width: int, width (in pixels) to change the image width to. height: int, height (in pixels) to change the image height to. output_encoding: a value from OUTPUT_ENCODING_TYPES. Raises: TypeError when width or height not either 'int' or 'long' types. BadRequestError when there is something wrong with the given height or width. Error when something went wrong with the call. See Image.ExecuteTransforms for more details. """ image = Image(image_data) image.resize(width, height) return image.execute_transforms(output_encoding=output_encoding) def rotate(image_data, degrees, output_encoding=PNG): """Rotate a given image a given number of degrees clockwise. Args: image_data: str, source image data. degrees: value from ROTATE_DEGREE_VALUES. output_encoding: a value from OUTPUT_ENCODING_TYPES. Raises: TypeError when degrees is not either 'int' or 'long' types. BadRequestError when there is something wrong with the given degrees. Error when something went wrong with the call. See Image.ExecuteTransforms for more details. """ image = Image(image_data) image.rotate(degrees) return image.execute_transforms(output_encoding=output_encoding) def horizontal_flip(image_data, output_encoding=PNG): """Flip the image horizontally. Args: image_data: str, source image data. output_encoding: a value from OUTPUT_ENCODING_TYPES. Raises: Error when something went wrong with the call. See Image.ExecuteTransforms for more details. """ image = Image(image_data) image.horizontal_flip() return image.execute_transforms(output_encoding=output_encoding) def vertical_flip(image_data, output_encoding=PNG): """Flip the image vertically. Args: image_data: str, source image data. output_encoding: a value from OUTPUT_ENCODING_TYPES. Raises: Error when something went wrong with the call. See Image.ExecuteTransforms for more details. """ image = Image(image_data) image.vertical_flip() return image.execute_transforms(output_encoding=output_encoding) def crop(image_data, left_x, top_y, right_x, bottom_y, output_encoding=PNG): """Crop the given image. The four arguments are the scaling numbers to describe the bounding box which will crop the image. The upper left point of the bounding box will be at (left_x*image_width, top_y*image_height) the lower right point will be at (right_x*image_width, bottom_y*image_height). Args: image_data: str, source image data. left_x: float value between 0.0 and 1.0 (inclusive). top_y: float value between 0.0 and 1.0 (inclusive). right_x: float value between 0.0 and 1.0 (inclusive). bottom_y: float value between 0.0 and 1.0 (inclusive). output_encoding: a value from OUTPUT_ENCODING_TYPES. Raises: TypeError if the args are not of type 'float'. BadRequestError when there is something wrong with the given bounding box. Error when something went wrong with the call. See Image.ExecuteTransforms for more details. """ image = Image(image_data) image.crop(left_x, top_y, right_x, bottom_y) return image.execute_transforms(output_encoding=output_encoding) def im_feeling_lucky(image_data, output_encoding=PNG): """Automatically adjust image levels. This is similar to the "I'm Feeling Lucky" button in Picasa. Args: image_data: str, source image data. output_encoding: a value from OUTPUT_ENCODING_TYPES. Raises: Error when something went wrong with the call. See Image.ExecuteTransforms for more details. """ image = Image(image_data) image.im_feeling_lucky() return image.execute_transforms(output_encoding=output_encoding) def composite(inputs, width, height, color=0, output_encoding=PNG, quality=None): """Composite one or more images onto a canvas. Args: inputs: a list of tuples (image_data, x_offset, y_offset, opacity, anchor) where image_data: str, source image data. x_offset: x offset in pixels from the anchor position y_offset: y offset in piyels from the anchor position opacity: opacity of the image specified as a float in range [0.0, 1.0] anchor: anchoring point from ANCHOR_POINTS. The anchor point of the image is aligned with the same anchor point of the canvas. e.g. TOP_RIGHT would place the top right corner of the image at the top right corner of the canvas then apply the x and y offsets. width: canvas width in pixels. height: canvas height in pixels. color: canvas background color encoded as a 32 bit unsigned int where each color channel is represented by one byte in order ARGB. output_encoding: a value from OUTPUT_ENCODING_TYPES. quality: A value between 1 and 100 to specify the quality of the encoding. This value is only used for JPEG quality control. Returns: str, image data of the composited image. Raises: TypeError If width, height, color, x_offset or y_offset are not of type int or long or if opacity is not a float BadRequestError If more than MAX_TRANSFORMS_PER_REQUEST compositions have been requested, if the canvas width or height is greater than 4000 or less than or equal to 0, if the color is invalid or if for any composition option, the opacity is outside the range [0,1] or the anchor is invalid. """ if (not isinstance(width, (int, long)) or not isinstance(height, (int, long)) or not isinstance(color, (int, long))): raise TypeError("Width, height and color must be integers.") if output_encoding not in OUTPUT_ENCODING_TYPES: raise BadRequestError("Output encoding type '%s' not in recognized set " "%s" % (output_encoding, OUTPUT_ENCODING_TYPES)) if quality is not None: if not isinstance(quality, (int, long)): raise TypeError("Quality must be an integer.") if quality > 100 or quality < 1: raise BadRequestError("Quality must be between 1 and 100.") if not inputs: raise BadRequestError("Must provide at least one input") if len(inputs) > MAX_COMPOSITES_PER_REQUEST: raise BadRequestError("A maximum of %d composition operations can be" "performed in a single request" % MAX_COMPOSITES_PER_REQUEST) if width <= 0 or height <= 0: raise BadRequestError("Width and height must be > 0.") if width > 4000 or height > 4000: raise BadRequestError("Width and height must be <= 4000.") if color > 0xffffffff or color < 0: raise BadRequestError("Invalid color") if color >= 0x80000000: color -= 0x100000000 image_map = {} request = images_service_pb.ImagesCompositeRequest() response = images_service_pb.ImagesTransformResponse() for (image, x, y, opacity, anchor) in inputs: if not image: raise BadRequestError("Each input must include an image") if (not isinstance(x, (int, long)) or not isinstance(y, (int, long)) or not isinstance(opacity, (float))): raise TypeError("x_offset, y_offset must be integers and opacity must" "be a float") if x > 4000 or x < -4000: raise BadRequestError("xOffsets must be in range [-4000, 4000]") if y > 4000 or y < -4000: raise BadRequestError("yOffsets must be in range [-4000, 4000]") if opacity < 0 or opacity > 1: raise BadRequestError("Opacity must be in the range 0.0 to 1.0") if anchor not in ANCHOR_TYPES: raise BadRequestError("Anchor type '%s' not in recognized set %s" % (anchor, ANCHOR_TYPES)) if image not in image_map: image_map[image] = request.image_size() if isinstance(image, Image): image._set_imagedata(request.add_image()) else: request.add_image().set_content(image) option = request.add_options() option.set_x_offset(x) option.set_y_offset(y) option.set_opacity(opacity) option.set_anchor(anchor) option.set_source_index(image_map[image]) request.mutable_canvas().mutable_output().set_mime_type(output_encoding) request.mutable_canvas().set_width(width) request.mutable_canvas().set_height(height) request.mutable_canvas().set_color(color) if ((output_encoding == JPEG) and (quality is not None)): request.mutable_canvas().mutable_output().set_quality(quality) try: apiproxy_stub_map.MakeSyncCall("images", "Composite", request, response) except apiproxy_errors.ApplicationError, e: if (e.application_error == images_service_pb.ImagesServiceError.BAD_TRANSFORM_DATA): raise BadRequestError() elif (e.application_error == images_service_pb.ImagesServiceError.NOT_IMAGE): raise NotImageError() elif (e.application_error == images_service_pb.ImagesServiceError.BAD_IMAGE_DATA): raise BadImageError() elif (e.application_error == images_service_pb.ImagesServiceError.IMAGE_TOO_LARGE): raise LargeImageError() elif (e.application_error == images_service_pb.ImagesServiceError.INVALID_BLOB_KEY): raise InvalidBlobKeyError() elif (e.application_error == images_service_pb.ImagesServiceError.UNSPECIFIED_ERROR): raise TransformationError() else: raise Error() return response.image().content() def histogram(image_data): """Calculates the histogram of the given image. Args: image_data: str, source image data. Returns: 3 256-element lists containing the number of occurences of each value of each color in the order RGB. Raises: NotImageError when the image data given is not an image. BadImageError when the image data given is corrupt. LargeImageError when the image data given is too large to process. Error when something unknown, but bad, happens. """ image = Image(image_data) return image.histogram() IMG_SERVING_SIZES_LIMIT = 1600 IMG_SERVING_SIZES = [ 32, 48, 64, 72, 80, 90, 94, 104, 110, 120, 128, 144, 150, 160, 200, 220, 288, 320, 400, 512, 576, 640, 720, 800, 912, 1024, 1152, 1280, 1440, 1600] IMG_SERVING_CROP_SIZES = [32, 48, 64, 72, 80, 104, 136, 144, 150, 160] def get_serving_url(blob_key, size=None, crop=False): """Obtain a url that will serve the underlying image. This URL is served by a high-performance dynamic image serving infrastructure. This URL format also allows dynamic resizing and crop with certain restrictions. To get dynamic resizing and cropping, specify size and crop arguments, or simply append options to the end of the default url obtained via this call. Here is an example: get_serving_url -> "http://lh3.ggpht.com/SomeCharactersGoesHere" To get a 32 pixel sized version (aspect-ratio preserved) simply append "=s32" to the url: "http://lh3.ggpht.com/SomeCharactersGoesHere=s32" To get a 32 pixel cropped version simply append "=s32-c": "http://lh3.ggpht.com/SomeCharactersGoesHere=s32-c" Available sizes are any interger in the range [0, 1600] and is available as IMG_SERVING_SIZES_LIMIT. Args: size: int, size of resulting images crop: bool, True requests a cropped image, False a resized one. Returns: str, a url Raises: BlobKeyRequiredError: when no blobkey was specified in the ctor. UnsupportedSizeError: when size parameters uses unsupported sizes. BadRequestError: when crop/size are present in wrong combination. """ if not blob_key: raise BlobKeyRequiredError("A Blobkey is required for this operation.") if crop and not size: raise BadRequestError("Size should be set for crop operation") if size and (size > IMG_SERVING_SIZES_LIMIT or size < 0): raise UnsupportedSizeError("Unsupported size") request = images_service_pb.ImagesGetUrlBaseRequest() response = images_service_pb.ImagesGetUrlBaseResponse() request.set_blob_key(blob_key) try: apiproxy_stub_map.MakeSyncCall("images", "GetUrlBase", request, response) except apiproxy_errors.ApplicationError, e: if (e.application_error == images_service_pb.ImagesServiceError.NOT_IMAGE): raise NotImageError() elif (e.application_error == images_service_pb.ImagesServiceError.BAD_IMAGE_DATA): raise BadImageError() elif (e.application_error == images_service_pb.ImagesServiceError.IMAGE_TOO_LARGE): raise LargeImageError() elif (e.application_error == images_service_pb.ImagesServiceError.INVALID_BLOB_KEY): raise InvalidBlobKeyError() else: raise Error() url = response.url() if size: url += "=s%s" % size if crop: url += "-c" return url
34.9909
81
0.683408
cb86844490805357512bf0f15acfbb8e8a019e8e
225
py
Python
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 24/24.py
jaswinder9051998/Resources
fd468af37bf24ca57555d153ee64693c018e822e
[ "MIT" ]
101
2021-12-20T11:57:11.000Z
2022-03-23T09:49:13.000Z
50-Python-Exercises/Exercises/Exercise 24/24.py
kuwarkapur/Hacktoberfest-2022
efaafeba5ce51d8d2e2d94c6326cc20bff946f17
[ "MIT" ]
4
2022-01-12T11:55:56.000Z
2022-02-12T04:53:33.000Z
50-Python-Exercises/Exercises/Exercise 24/24.py
kuwarkapur/Hacktoberfest-2022
efaafeba5ce51d8d2e2d94c6326cc20bff946f17
[ "MIT" ]
38
2022-01-12T11:56:16.000Z
2022-03-23T10:07:52.000Z
#Complete the script so it prints out the expected output d = dict(a = list(range(1, 11)), b = list(range(11, 21)), c = list(range(21, 31))) print(d.items()) for key, value in d.items(): print(key, "has value", value)
25
82
0.64
bfe01c3332b83459fe6d42bc4931ef5ad2855b92
633
py
Python
hammr/__init__.py
MaxTakahashi/hammr
cfe593ccfdddb7f98185e561feed6a40a866b585
[ "Apache-2.0" ]
null
null
null
hammr/__init__.py
MaxTakahashi/hammr
cfe593ccfdddb7f98185e561feed6a40a866b585
[ "Apache-2.0" ]
null
null
null
hammr/__init__.py
MaxTakahashi/hammr
cfe593ccfdddb7f98185e561feed6a40a866b585
[ "Apache-2.0" ]
null
null
null
# Copyright 2007-2015 UShareSoft SAS, All rights reserved # # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License.
45.214286
78
0.731438
020843088f6293c261fb21ef6b97446c7e3a4e6f
20,523
py
Python
sdk/synapse/azure-synapse-accesscontrol/azure/synapse/accesscontrol/operations/_access_control_client_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/synapse/azure-synapse-accesscontrol/azure/synapse/accesscontrol/operations/_access_control_client_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/synapse/azure-synapse-accesscontrol/azure/synapse/accesscontrol/operations/_access_control_client_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class AccessControlClientOperationsMixin(object): def get_role_definitions( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.RolesListResponse"] """List roles. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RolesListResponse or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.synapse.accesscontrol.models.RolesListResponse] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RolesListResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.get_role_definitions.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('RolesListResponse', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorContract, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error) return pipeline_response return ItemPaged( get_next, extract_data ) get_role_definitions.metadata = {'url': '/rbac/roles'} # type: ignore def get_role_definition_by_id( self, role_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.SynapseRole" """Get role by role Id. :param role_id: Synapse Built-In Role Id. :type role_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SynapseRole, or the result of cls(response) :rtype: ~azure.synapse.accesscontrol.models.SynapseRole :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SynapseRole"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" # Construct URL url = self.get_role_definition_by_id.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'roleId': self._serialize.url("role_id", role_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorContract, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('SynapseRole', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_role_definition_by_id.metadata = {'url': '/rbac/roles/{roleId}'} # type: ignore def create_role_assignment( self, create_role_assignment_options, # type: "_models.RoleAssignmentOptions" **kwargs # type: Any ): # type: (...) -> "_models.RoleAssignmentDetails" """Create role assignment. :param create_role_assignment_options: Details of role id and object id. :type create_role_assignment_options: ~azure.synapse.accesscontrol.models.RoleAssignmentOptions :keyword callable cls: A custom type or function that will be passed the direct response :return: RoleAssignmentDetails, or the result of cls(response) :rtype: ~azure.synapse.accesscontrol.models.RoleAssignmentDetails :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RoleAssignmentDetails"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_role_assignment.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(create_role_assignment_options, 'RoleAssignmentOptions') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorContract, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('RoleAssignmentDetails', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_role_assignment.metadata = {'url': '/rbac/roleAssignments'} # type: ignore def get_role_assignments( self, role_id=None, # type: Optional[str] principal_id=None, # type: Optional[str] continuation_token_parameter=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> List["_models.RoleAssignmentDetails"] """List role assignments. :param role_id: Synapse Built-In Role Id. :type role_id: str :param principal_id: Object ID of the AAD principal or security-group. :type principal_id: str :param continuation_token_parameter: Continuation token. :type continuation_token_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of RoleAssignmentDetails, or the result of cls(response) :rtype: list[~azure.synapse.accesscontrol.models.RoleAssignmentDetails] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.RoleAssignmentDetails"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" # Construct URL url = self.get_role_assignments.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if role_id is not None: query_parameters['roleId'] = self._serialize.query("role_id", role_id, 'str') if principal_id is not None: query_parameters['principalId'] = self._serialize.query("principal_id", principal_id, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if continuation_token_parameter is not None: header_parameters['x-ms-continuation'] = self._serialize.header("continuation_token_parameter", continuation_token_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorContract, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-continuation']=self._deserialize('str', response.headers.get('x-ms-continuation')) deserialized = self._deserialize('[RoleAssignmentDetails]', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_role_assignments.metadata = {'url': '/rbac/roleAssignments'} # type: ignore def get_role_assignment_by_id( self, role_assignment_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.RoleAssignmentDetails" """Get role assignment by role assignment Id. :param role_assignment_id: The ID of the role assignment. :type role_assignment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RoleAssignmentDetails, or the result of cls(response) :rtype: ~azure.synapse.accesscontrol.models.RoleAssignmentDetails :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RoleAssignmentDetails"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" # Construct URL url = self.get_role_assignment_by_id.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'roleAssignmentId': self._serialize.url("role_assignment_id", role_assignment_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorContract, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('RoleAssignmentDetails', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_role_assignment_by_id.metadata = {'url': '/rbac/roleAssignments/{roleAssignmentId}'} # type: ignore def delete_role_assignment_by_id( self, role_assignment_id, # type: str **kwargs # type: Any ): # type: (...) -> None """Delete role assignment by role assignment Id. :param role_assignment_id: The ID of the role assignment. :type role_assignment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" # Construct URL url = self.delete_role_assignment_by_id.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'roleAssignmentId': self._serialize.url("role_assignment_id", role_assignment_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorContract, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) delete_role_assignment_by_id.metadata = {'url': '/rbac/roleAssignments/{roleAssignmentId}'} # type: ignore def get_caller_role_assignments( self, **kwargs # type: Any ): # type: (...) -> List[str] """List role assignments of the caller. :keyword callable cls: A custom type or function that will be passed the direct response :return: list of str, or the result of cls(response) :rtype: list[str] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" # Construct URL url = self.get_caller_role_assignments.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorContract, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[str]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_caller_role_assignments.metadata = {'url': '/rbac/getMyAssignedRoles'} # type: ignore
46.222973
144
0.655411
4bb9be3e8038b885810a8d692e4f35e6bec65ccd
2,118
py
Python
mooringlicensing/helpers.py
GraemeMuller/mooringlicensing
2b2594189fb88f4add3fbc979a60a05397aaa491
[ "Apache-2.0" ]
null
null
null
mooringlicensing/helpers.py
GraemeMuller/mooringlicensing
2b2594189fb88f4add3fbc979a60a05397aaa491
[ "Apache-2.0" ]
2
2021-03-05T06:48:11.000Z
2021-03-26T08:14:17.000Z
mooringlicensing/helpers.py
GraemeMuller/mooringlicensing
2b2594189fb88f4add3fbc979a60a05397aaa491
[ "Apache-2.0" ]
15
2021-03-02T01:40:12.000Z
2022-02-15T08:26:09.000Z
from __future__ import unicode_literals from ledger.accounts.models import EmailUser from django.conf import settings import logging logger = logging.getLogger(__name__) def belongs_to(user, group_name): """ Check if the user belongs to the given group. :param user: :param group_name: :return: """ return user.groups.filter(name=group_name).exists() def is_model_backend(request): # Return True if user logged in via single sign-on (i.e. an internal) return 'ModelBackend' in request.session.get('_auth_user_backend') def is_email_auth_backend(request): # Return True if user logged in via social_auth (i.e. an external user signing in with a login-token) return 'EmailAuth' in request.session.get('_auth_user_backend') def is_mooringlicensing_admin(request): #logger.info('settings.ADMIN_GROUP: {}'.format(settings.ADMIN_GROUP)) return request.user.is_authenticated() and is_model_backend(request) and in_dbca_domain(request) and (belongs_to(request.user, settings.ADMIN_GROUP)) def in_dbca_domain(request): user = request.user domain = user.email.split('@')[1] if domain in settings.DEPT_DOMAINS: if not user.is_staff: # hack to reset department user to is_staff==True, if the user logged in externally (external departmentUser login defaults to is_staff=False) user.is_staff = True user.save() return True return False def is_in_organisation_contacts(request, organisation): return request.user.email in organisation.contacts.all().values_list('email', flat=True) def is_departmentUser(request): return request.user.is_authenticated() and is_model_backend(request) and in_dbca_domain(request) def is_customer(request): # return request.user.is_authenticated() and is_email_auth_backend(request) return request.user.is_authenticated() and (is_model_backend(request) or is_email_auth_backend(request)) def is_internal(request): return is_departmentUser(request) def get_all_officers(): return EmailUser.objects.filter(groups__name='Commercial Operator Admin')
37.821429
154
0.752597
e5aac0dc5b07eb1018cf4c7046cae715f8f4b3ff
4,022
py
Python
test/functional/p2p_zpos_fakestake.py
pacificao/agrarian
184ece190c9f531f16546f4e9d3f8f2ee5d28a28
[ "MIT" ]
null
null
null
test/functional/p2p_zpos_fakestake.py
pacificao/agrarian
184ece190c9f531f16546f4e9d3f8f2ee5d28a28
[ "MIT" ]
null
null
null
test/functional/p2p_zpos_fakestake.py
pacificao/agrarian
184ece190c9f531f16546f4e9d3f8f2ee5d28a28
[ "MIT" ]
1
2022-02-10T12:39:58.000Z
2022-02-10T12:39:58.000Z
#!/usr/bin/env python3 # Copyright (c) 2019 The PIVX developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Covers the scenario of a zPoS block where the coinstake input is a zerocoin spend of an already spent coin. ''' from time import sleep from test_framework.authproxy import JSONRPCException from fake_stake.base_test import Agrarian_FakeStakeTest class zPoSFakeStake(Agrarian_FakeStakeTest): def run_test(self): self.description = "Covers the scenario of a zPoS block where the coinstake input is a zerocoin spend of an already spent coin." self.init_test() DENOM_TO_USE = 5000 # zc denomination INITAL_MINED_BLOCKS = 321 # First mined blocks (rewards collected to mint) MORE_MINED_BLOCKS = 301 # More blocks mined before spending zerocoins self.NUM_BLOCKS = 2 # Number of spammed blocks # 1) Starting mining blocks self.log.info("Mining %d blocks to get to zPOS activation...." % INITAL_MINED_BLOCKS) self.node.generate(INITAL_MINED_BLOCKS) sleep(2) # 2) Collect the possible prevouts and mint zerocoins with those self.log.info("Collecting all unspent coins which we generated from mining...") balance = self.node.getbalance("*", 100) self.log.info("Minting zerocoins...") initial_mints = 0 while balance > DENOM_TO_USE: try: self.node.mintzerocoin(DENOM_TO_USE) except JSONRPCException: break sleep(1) initial_mints += 1 self.node.generate(1) sleep(1) if initial_mints % 5 == 0: self.log.info("Minted %d coins" % initial_mints) if initial_mints >= 70: break balance = self.node.getbalance("*", 100) self.log.info("Minted %d coins in the %d-denom, remaining balance %d", initial_mints, DENOM_TO_USE, balance) sleep(2) # 3) mine more blocks self.log.info("Mining %d more blocks ... and getting spendable zerocoins" % MORE_MINED_BLOCKS) self.node.generate(MORE_MINED_BLOCKS) sleep(2) mints = self.node.listmintedzerocoins(True, True) mints_hashes = [x["serial hash"] for x in mints] # This mints are not ready spendable, only few of them. self.log.info("Got %d confirmed mints" % len(mints_hashes)) # 4) spend mints self.log.info("Spending mints in block %d..." % self.node.getblockcount()) spends = 0 spent_mints = [] for mint in mints_hashes: # create a single element list to pass to RPC spendzerocoinmints mint_arg = [] mint_arg.append(mint) try: self.node.spendzerocoinmints(mint_arg) sleep(1) spends += 1 spent_mints.append(mint) except JSONRPCException as e: self.log.warning(str(e)) continue sleep(1) self.log.info("Successfully spent %d mints" % spends) # 5) Start mining again so that spends get confirmed in a block. self.log.info("Mining 5 more blocks...") self.node.generate(5) sleep(2) # 6) Collect some prevouts for random txes self.log.info("Collecting inputs for txes...") spending_utxo_list = self.node.listunspent() sleep(1) # 7) Create "Fake Stake" blocks and send them self.log.info("Creating Fake stake zPoS blocks...") err_msgs = self.test_spam("Main", mints, spending_utxo_list=spending_utxo_list, fZPoS=True) if not len(err_msgs) == 0: self.log.error("result: " + " | ".join(err_msgs)) raise AssertionError("TEST FAILED") self.log.info("%s PASSED" % self.__class__.__name__) if __name__ == '__main__': zPoSFakeStake().main()
37.588785
136
0.618846
f042407c11c1bc588dc2a12b65909abd5dfb47a4
4,913
py
Python
sdk/python/pulumi_azure_native/documentdb/v20191212/get_sql_resource_sql_database.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/documentdb/v20191212/get_sql_resource_sql_database.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/documentdb/v20191212/get_sql_resource_sql_database.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetSqlResourceSqlDatabaseResult', 'AwaitableGetSqlResourceSqlDatabaseResult', 'get_sql_resource_sql_database', ] @pulumi.output_type class GetSqlResourceSqlDatabaseResult: """ An Azure Cosmos DB SQL database. """ def __init__(__self__, id=None, location=None, name=None, resource=None, tags=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if resource and not isinstance(resource, dict): raise TypeError("Expected argument 'resource' to be a dict") pulumi.set(__self__, "resource", resource) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ The unique resource identifier of the ARM resource. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ The location of the resource group to which the resource belongs. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the ARM resource. """ return pulumi.get(self, "name") @property @pulumi.getter def resource(self) -> Optional['outputs.SqlDatabaseGetPropertiesResponseResource']: return pulumi.get(self, "resource") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Tags are a list of key-value pairs that describe the resource. These tags can be used in viewing and grouping this resource (across resource groups). A maximum of 15 tags can be provided for a resource. Each tag must have a key no greater than 128 characters and value no greater than 256 characters. For example, the default experience for a template type is set with "defaultExperience": "Cassandra". Current "defaultExperience" values also include "Table", "Graph", "DocumentDB", and "MongoDB". """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ The type of Azure resource. """ return pulumi.get(self, "type") class AwaitableGetSqlResourceSqlDatabaseResult(GetSqlResourceSqlDatabaseResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSqlResourceSqlDatabaseResult( id=self.id, location=self.location, name=self.name, resource=self.resource, tags=self.tags, type=self.type) def get_sql_resource_sql_database(account_name: Optional[str] = None, database_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSqlResourceSqlDatabaseResult: """ An Azure Cosmos DB SQL database. :param str account_name: Cosmos DB database account name. :param str database_name: Cosmos DB database name. :param str resource_group_name: Name of an Azure resource group. """ __args__ = dict() __args__['accountName'] = account_name __args__['databaseName'] = database_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:documentdb/v20191212:getSqlResourceSqlDatabase', __args__, opts=opts, typ=GetSqlResourceSqlDatabaseResult).value return AwaitableGetSqlResourceSqlDatabaseResult( id=__ret__.id, location=__ret__.location, name=__ret__.name, resource=__ret__.resource, tags=__ret__.tags, type=__ret__.type)
37.219697
505
0.65113
d93b19b41e62c991ed4f600393fd0c2c3ec7da00
23,640
py
Python
tests/test_utils.py
portoise-yin/aihwkit
856530f7d782046fb094d1dc6ce5d9ce0159d8ff
[ "Apache-2.0" ]
null
null
null
tests/test_utils.py
portoise-yin/aihwkit
856530f7d782046fb094d1dc6ce5d9ce0159d8ff
[ "Apache-2.0" ]
null
null
null
tests/test_utils.py
portoise-yin/aihwkit
856530f7d782046fb094d1dc6ce5d9ce0159d8ff
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # (C) Copyright 2020, 2021 IBM. All Rights Reserved. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test for different utility functionality.""" from tempfile import TemporaryFile from copy import deepcopy from unittest import SkipTest from numpy import array from numpy.random import rand from numpy.testing import assert_array_almost_equal, assert_raises from torch import Tensor, load, save, device, manual_seed from torch.nn import Module, Sequential from torch.nn import Linear as torch_linear from torch.nn.functional import mse_loss from torch.optim import SGD from aihwkit.nn import AnalogConv2d, AnalogSequential from aihwkit.optim import AnalogSGD from aihwkit.simulator.configs import SingleRPUConfig, FloatingPointRPUConfig from aihwkit.simulator.configs.devices import ConstantStepDevice, LinearStepDevice from aihwkit.simulator.configs.utils import IOParameters, UpdateParameters from aihwkit.simulator.rpu_base import cuda from aihwkit.exceptions import TileError, ModuleError from aihwkit.nn.conversion import convert_to_analog from .helpers.decorators import parametrize_over_layers from .helpers.layers import Conv2d, Conv2dCuda, Linear, LinearCuda from .helpers.testcases import ParametrizedTestCase from .helpers.tiles import FloatingPoint, ConstantStep, Inference @parametrize_over_layers( layers=[Linear, Conv2d, LinearCuda, Conv2dCuda], tiles=[FloatingPoint, ConstantStep, Inference], biases=[True, False] ) class SerializationTest(ParametrizedTestCase): """Tests for serialization.""" @staticmethod def train_model(model, loss_func, x_b, y_b): """Train the model.""" opt = AnalogSGD(model.parameters(), lr=0.5) opt.regroup_param_groups(model) epochs = 1 for _ in range(epochs): pred = model(x_b) loss = loss_func(pred, y_b) loss.backward() opt.step() opt.zero_grad() @staticmethod def get_layer_and_tile_weights(model): """Return the weights and biases of the model and the tile.""" weight = model.weight.data.detach().cpu().numpy() if model.use_bias: bias = model.bias.data.detach().cpu().numpy() else: bias = None analog_weight, analog_bias = model.analog_tile.get_weights() analog_weight = analog_weight.detach().cpu().numpy().reshape(weight.shape) if model.use_bias: analog_bias = analog_bias.detach().cpu().numpy() else: analog_bias = None return weight, bias, analog_weight, analog_bias def test_save_load_state_dict_train(self): """Test saving and loading using a state dict after training.""" model = self.get_layer() # Perform an update in order to modify tile weights and biases. loss_func = mse_loss if isinstance(model, AnalogConv2d): input_x = Tensor(rand(2, 2, 3, 3))*0.2 input_y = Tensor(rand(2, 3, 4, 4))*0.2 else: input_x = Tensor(rand(2, model.in_features))*0.2 input_y = Tensor(rand(2, model.out_features))*0.2 if self.use_cuda: input_x = input_x.cuda() input_y = input_y.cuda() self.train_model(model, loss_func, input_x, input_y) # Keep track of the current weights and biases for comparing. (model_weights, model_biases, tile_weights, tile_biases) = self.get_layer_and_tile_weights(model) # now the tile weights should be out of sync assert_raises(AssertionError, assert_array_almost_equal, model_weights, tile_weights) if self.bias: assert_raises(AssertionError, assert_array_almost_equal, model_biases, tile_biases) # Save the model to a file. with TemporaryFile() as file: save(model.state_dict(), file) # Create a new model and load its state dict. file.seek(0) new_model = self.get_layer() new_model.load_state_dict(load(file)) # Compare the new model weights and biases. they should now be in sync (new_model_weights, new_model_biases, new_tile_weights, new_tile_biases) = self.get_layer_and_tile_weights(new_model) assert_array_almost_equal(tile_weights, new_model_weights) assert_array_almost_equal(tile_weights, new_tile_weights) if self.bias: assert_array_almost_equal(tile_biases, new_model_biases) assert_array_almost_equal(tile_biases, new_tile_biases) def test_save_load_model(self): """Test saving and loading a model directly.""" model = self.get_layer() # Keep track of the current weights and biases for comparing. (model_weights, model_biases, tile_weights, tile_biases) = self.get_layer_and_tile_weights(model) assert_array_almost_equal(model_weights, tile_weights) if self.bias: assert_array_almost_equal(model_biases, tile_biases) # Save the model to a file. with TemporaryFile() as file: save(model, file) # Load the model. file.seek(0) new_model = load(file) # Compare the new model weights and biases. (new_model_weights, new_model_biases, new_tile_weights, new_tile_biases) = self.get_layer_and_tile_weights(new_model) assert_array_almost_equal(model_weights, new_model_weights) assert_array_almost_equal(tile_weights, new_tile_weights) if self.bias: assert_array_almost_equal(model_biases, new_model_biases) assert_array_almost_equal(tile_biases, new_tile_biases) # Asserts over the AnalogContext of the new model. self.assertTrue(hasattr(new_model.analog_tile.analog_ctx, 'analog_tile')) self.assertIsInstance(new_model.analog_tile.analog_ctx.analog_tile, model.analog_tile.__class__) self.assertTrue(new_model.analog_tile.is_cuda == model.analog_tile.is_cuda) def test_save_load_model_cross_device(self): """Test saving and loading a model directly.""" if not cuda.is_compiled(): raise SkipTest('CUDA not available.') model = self.get_layer() map_location = 'cuda' if model.analog_tile.is_cuda: map_location = 'cpu' # Keep track of the current weights and biases for comparing. (model_weights, model_biases, tile_weights, tile_biases) = self.get_layer_and_tile_weights(model) assert_array_almost_equal(model_weights, tile_weights) if self.bias: assert_array_almost_equal(model_biases, tile_biases) # Save the model to a file. with TemporaryFile() as file: save(model, file) # Load the model. file.seek(0) new_model = load(file, map_location=device(map_location)) # Compare the new model weights and biases. (new_model_weights, new_model_biases, new_tile_weights, new_tile_biases) = self.get_layer_and_tile_weights(new_model) assert_array_almost_equal(model_weights, new_model_weights) assert_array_almost_equal(tile_weights, new_tile_weights) if self.bias: assert_array_almost_equal(model_biases, new_model_biases) assert_array_almost_equal(tile_biases, new_tile_biases) # Asserts over the AnalogContext of the new model. self.assertTrue(hasattr(new_model.analog_tile.analog_ctx, 'analog_tile')) self.assertIsInstance(new_model.analog_tile.analog_ctx.analog_tile, model.analog_tile.__class__) self.assertTrue(new_model.analog_tile.is_cuda != model.analog_tile.is_cuda) if model.analog_tile.shared_weights is not None: self.assertTrue(new_model.analog_tile.shared_weights.device.type == map_location) def test_save_load_meta_parameter(self): """Test saving and loading a device with custom parameters.""" # Create the device and the array. rpu_config = SingleRPUConfig( forward=IOParameters(inp_noise=0.321), backward=IOParameters(inp_noise=0.456), update=UpdateParameters(desired_bl=78), device=ConstantStepDevice(w_max=0.987) ) model = self.get_layer(rpu_config=rpu_config) # Save the model to a file. with TemporaryFile() as file: save(model, file) # Load the model. file.seek(0) new_model = load(file) # Assert over the new model tile parameters. parameters = new_model.analog_tile.tile.get_parameters() self.assertAlmostEqual(parameters.forward_io.inp_noise, 0.321) self.assertAlmostEqual(parameters.backward_io.inp_noise, 0.456) self.assertAlmostEqual(parameters.update.desired_bl, 78) self.assertTrue(new_model.analog_tile.is_cuda == model.analog_tile.is_cuda) def test_save_load_hidden_parameters(self): """Test saving and loading a device with hidden parameters.""" # Create the device and the array. model = self.get_layer() hidden_parameters = model.analog_tile.tile.get_hidden_parameters() # Save the model to a file. with TemporaryFile() as file: save(model, file) # Load the model. file.seek(0) new_model = load(file) # Assert over the new model tile parameters. new_hidden_parameters = new_model.analog_tile.tile.get_hidden_parameters() assert_array_almost_equal(hidden_parameters, new_hidden_parameters) def test_save_load_alpha_scale(self): """Test saving and loading a device with alpha_scale.""" # Create the device and the array. model = self.get_layer() alpha = 2.0 model.analog_tile.tile.set_alpha_scale(alpha) # Save the model to a file. with TemporaryFile() as file: save(model, file) # Load the model. file.seek(0) new_model = load(file) # Assert over the new model tile parameters. alpha_new = new_model.analog_tile.tile.get_alpha_scale() assert_array_almost_equal(array(alpha), array(alpha_new)) def test_save_load_shared_weights(self): """Test saving and loading a device with shared_weights.""" if isinstance(self.get_rpu_config(), FloatingPointRPUConfig): raise SkipTest('Not available for FP') # Create the device and the array. model = self.get_layer() shared_weights = None if model.analog_tile.shared_weights is not None: shared_weights = model.analog_tile.shared_weights.detach().cpu().numpy() # Save the model to a file. with TemporaryFile() as file: save(model, file) # Load the model. file.seek(0) new_model = load(file) # Assert over the new model tile parameters. if shared_weights is not None: new_shared_weights = new_model.analog_tile.shared_weights assert_array_almost_equal(shared_weights, new_shared_weights.detach().cpu().numpy()) def test_save_load_weight_scaling_omega(self): """Test saving and loading a device with weight scaling omega.""" model = self.get_layer(weight_scaling_omega=0.5) alpha = model.analog_tile.tile.get_alpha_scale() self.assertNotEqual(alpha, 1.0) # Save the model to a file. with TemporaryFile() as file: save(model, file) # Load the model. file.seek(0) new_model = load(file) # Assert over the new model tile parameters. alpha_new = new_model.analog_tile.tile.get_alpha_scale() assert_array_almost_equal(array(alpha), array(alpha_new)) def test_save_load_state_dict_hidden_parameters(self): """Test saving and loading via state_dict with hidden parameters.""" # Create the device and the array. model = self.get_layer() hidden_parameters = model.analog_tile.tile.get_hidden_parameters() # Save the model to a file. with TemporaryFile() as file: save(model.state_dict(), file) # Load the model. file.seek(0) new_model = self.get_layer() new_model.load_state_dict(load(file)) # Assert over the new model tile parameters. new_hidden_parameters = new_model.analog_tile.tile.get_hidden_parameters() assert_array_almost_equal(hidden_parameters, new_hidden_parameters) def test_state_dict_children_layers_sequential(self): """Test using the state_dict with children analog layers via Sequential.""" children_layer = self.get_layer() model = Sequential(children_layer) # Keep track of the current weights and biases for comparing. (model_weights, model_biases, tile_weights, tile_biases) = self.get_layer_and_tile_weights(children_layer) self.assertIn('0.analog_tile_state', model.state_dict()) # Update the state_dict of a new model. new_children_layer = self.get_layer() new_model = Sequential(new_children_layer) new_model.load_state_dict(model.state_dict()) # Compare the new model weights and biases. (new_model_weights, new_model_biases, new_tile_weights, new_tile_biases) = \ self.get_layer_and_tile_weights(new_children_layer) assert_array_almost_equal(model_weights, new_model_weights) assert_array_almost_equal(tile_weights, new_tile_weights) if self.bias: assert_array_almost_equal(model_biases, new_model_biases) assert_array_almost_equal(tile_biases, new_tile_biases) def test_state_dict_children_layers_subclassing(self): """Test using the state_dict with children analog layers via subclassing.""" class CustomModule(Module): """Module that defines its children layers via custom attributes.""" # pylint: disable=abstract-method def __init__(self, layer: Module): super().__init__() self.custom_child = layer children_layer = self.get_layer() model = CustomModule(children_layer) # Keep track of the current weights and biases for comparing. (model_weights, model_biases, tile_weights, tile_biases) = \ self.get_layer_and_tile_weights(children_layer) self.assertIn('custom_child.analog_tile_state', model.state_dict()) # Update the state_dict of a new model. new_children_layer = self.get_layer() new_model = CustomModule(new_children_layer) new_model.load_state_dict(model.state_dict()) # Compare the new model weights and biases. (new_model_weights, new_model_biases, new_tile_weights, new_tile_biases) = \ self.get_layer_and_tile_weights(new_children_layer) assert_array_almost_equal(model_weights, new_model_weights) assert_array_almost_equal(tile_weights, new_tile_weights) if self.bias: assert_array_almost_equal(model_biases, new_model_biases) assert_array_almost_equal(tile_biases, new_tile_biases) def test_state_dict_analog_strict(self): """Test the `strict` flag for analog layers.""" model = self.get_layer() state_dict = model.state_dict() # Remove the analog key from the state dict. del state_dict['analog_tile_state'] # Check that it fails when using `strict`. with self.assertRaises(RuntimeError) as context: model.load_state_dict(state_dict, strict=True) self.assertIn('Missing key', str(context.exception)) # Check that it passes when not using `strict`. model.load_state_dict(state_dict, strict=False) def test_state_dict(self): """Test creating a new model using a state dict, without saving to disk.""" model = self.get_layer() state_dict = model.state_dict() new_model = self.get_layer() new_model.load_state_dict(state_dict) # Asserts over the AnalogContext of the new model. self.assertTrue(hasattr(new_model.analog_tile.analog_ctx, 'analog_tile')) self.assertIsInstance(new_model.analog_tile.analog_ctx.analog_tile, model.analog_tile.__class__) def test_hidden_parameter_mismatch(self): """Test for error if tile structure mismatches.""" model = self.get_layer() state_dict = model.state_dict() # Create the device and the array. rpu_config = SingleRPUConfig( device=LinearStepDevice() # different hidden structure ) new_model = self.get_layer(rpu_config=rpu_config) if new_model.analog_tile.__class__.__name__ != model.analog_tile.__class__.__name__: with self.assertRaises(TileError): self.assertRaises(new_model.load_state_dict(state_dict)) def test_load_state_load_rpu_config(self): """Test creating a new model using a state dict, while using a different RPU config.""" # Create the device and the array. rpu_config_org = self.get_rpu_config() # Skipped for FP if isinstance(rpu_config_org, FloatingPointRPUConfig): raise SkipTest('Not available for FP') rpu_config_org.forward.is_perfect = False old_value = 0.11 rpu_config_org.forward.inp_noise = old_value model = self.get_layer(rpu_config=rpu_config_org) state_dict = model.state_dict() rpu_config = deepcopy(rpu_config_org) new_value = 0.51 rpu_config.forward.inp_noise = new_value # Test restore_rpu_config=False new_model = self.get_layer(rpu_config=rpu_config) new_model.load_state_dict(state_dict, load_rpu_config=False) parameters = new_model.analog_tile.tile.get_parameters() self.assertAlmostEqual(parameters.forward_io.inp_noise, new_value) # Test restore_rpu_config=True new_model = self.get_layer(rpu_config=rpu_config) new_model.load_state_dict(state_dict, load_rpu_config=True) parameters = new_model.analog_tile.tile.get_parameters() self.assertAlmostEqual(parameters.forward_io.inp_noise, old_value) def test_load_state_load_rpu_config_sequential(self): """Test creating a new model using a state dict, while using a different RPU config.""" # Create the device and the array. rpu_config_org = self.get_rpu_config() # Skipped for FP if isinstance(rpu_config_org, FloatingPointRPUConfig): raise SkipTest('Not available for FP') rpu_config_org.forward.is_perfect = False old_value = 0.11 rpu_config_org.forward.inp_noise = old_value model = AnalogSequential(self.get_layer(rpu_config=rpu_config_org)) state_dict = model.state_dict() rpu_config = deepcopy(rpu_config_org) new_value = 0.51 rpu_config.forward.inp_noise = new_value # Test restore_rpu_config=False new_model = AnalogSequential(self.get_layer(rpu_config=rpu_config)) new_model.load_state_dict(state_dict, load_rpu_config=False) parameters = new_model[0].analog_tile.tile.get_parameters() self.assertAlmostEqual(parameters.forward_io.inp_noise, new_value) # Test restore_rpu_config=True new_model = AnalogSequential(self.get_layer(rpu_config=rpu_config)) new_model.load_state_dict(state_dict, load_rpu_config=True) parameters = new_model[0].analog_tile.tile.get_parameters() self.assertAlmostEqual(parameters.forward_io.inp_noise, old_value) def test_load_state_load_rpu_config_wrong(self): """Test creating a new model using a state dict, while using a different RPU config.""" # Skipped for FP if isinstance(self.get_rpu_config(), FloatingPointRPUConfig): raise SkipTest('Not available for FP') # Create the device and the array. model = self.get_layer() state_dict = model.state_dict() rpu_config = FloatingPointRPUConfig() new_model = self.get_layer(rpu_config=rpu_config) assert_raises(ModuleError, new_model.load_state_dict, state_dict, load_rpu_config=False) @parametrize_over_layers( layers=[Linear, LinearCuda], tiles=[FloatingPoint], biases=[False] ) class SerializationTestExtended(ParametrizedTestCase): """Tests for serialization.""" @staticmethod def train_model_torch(model, loss_func, x_b, y_b): """Train the model with torch SGD.""" opt = SGD(model.parameters(), lr=0.5) epochs = 100 for _ in range(epochs): opt.zero_grad() pred = model(x_b) loss = loss_func(pred, y_b) loss.backward() opt.step() @staticmethod def get_torch_model(use_cuda: bool): """ Returns a torch model.""" manual_seed(4321) torch_model = Sequential( torch_linear(4, 3), torch_linear(3, 3), Sequential( torch_linear(3, 1), torch_linear(1, 1) ) ) if use_cuda: torch_model.cuda() return torch_model def test_load_state_dict_conversion(self): """Test loading and setting conversion with alpha.""" # Create the device and the array. x_b = Tensor([[0.1, 0.2, 0.3, 0.4], [0.2, 0.4, 0.3, 0.1]]) y_b = Tensor([[0.3], [0.6]]) if self.use_cuda: x_b = x_b.cuda() y_b = y_b.cuda() model = self.get_torch_model(self.use_cuda) self.train_model_torch(model, mse_loss, x_b, y_b) analog_model = convert_to_analog(model, self.get_rpu_config(), weight_scaling_omega=1.0) analog_loss = mse_loss(analog_model(x_b), y_b) with TemporaryFile() as file: save(analog_model.state_dict(), file) # Load the model. file.seek(0) model = self.get_torch_model(self.use_cuda) new_analog_model = convert_to_analog(model, self.get_rpu_config(), weight_scaling_omega=1.0) state_dict = load(file) new_analog_model.load_state_dict(state_dict, load_rpu_config=True) new_state_dict = new_analog_model.state_dict() for key in new_state_dict.keys(): if not key.endswith('analog_tile_state'): continue state1 = new_state_dict[key] state2 = state_dict[key] assert_array_almost_equal(state1['analog_tile_weights'], state2['analog_tile_weights']) assert_array_almost_equal(state1['analog_alpha_scale'], state2['analog_alpha_scale']) new_analog_loss = mse_loss(new_analog_model(x_b), y_b) self.assertTensorAlmostEqual(new_analog_loss, analog_loss)
39.20398
96
0.669712
58bb506593c3ae35a98974a457423ccd5ad968e8
3,432
py
Python
main.py
loadedice/brainfuck
2d069ed54deb5fcae317ff0797568206a050f71f
[ "MIT" ]
1
2017-03-17T17:14:35.000Z
2017-03-17T17:14:35.000Z
main.py
loadedice/brainfuck
2d069ed54deb5fcae317ff0797568206a050f71f
[ "MIT" ]
null
null
null
main.py
loadedice/brainfuck
2d069ed54deb5fcae317ff0797568206a050f71f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from sys import stderr, stdin, argv from ctypes import c_ubyte def bf_parse(program, strict=False): """ Takes a brainfuck string, if strict == True checks that it's all valid brainfuck returns a dictionary to help deal with jumping around in the program I had other ideas about how to do this, but this was the easiest to do and I think it's kinda nice but also not very efficient in terms of memory usage If you can't tell I'm just playing by ear here and things are probably not very good. """ stack = [] jump_dict = {} for position, symbol in enumerate(program): if symbol == '[': stack.append(position) elif symbol == ']': if len(stack) == 0: raise SyntaxError("`[` at character {p} does not have a corresponding `[`".format(p=position)) destination = stack.pop() # Because we may need to jump back up to the '[' to check the condition to see if we need to jump out # This could probably be done with a stack in the bf_eval function. Oh well. jump_dict[position] = destination jump_dict[destination] = position elif strict and symbol not in "><+-.,": raise SyntaxError("`{s}` at character {p} is not a valid brainfuck symbol".format(s=symbol, p=position)) if len(stack) != 0: raise SyntaxError("Square brackets are not balanced") return jump_dict def bf_eval(program, memory_size=30000): """ Takes brainfuck string and evaluates it. each cell is fixed at being 8 bits memory_size defines how many cells there are in memory """ jump_dict = bf_parse(program) data = [c_ubyte(0) for _ in range(memory_size)] # Memory data_pointer = 0 # index in the memory program_counter = 0 # index in the program while program_counter < len(program): symbol = program[program_counter] # Because Python lets you index arrays with negative indices... if 0 > data_pointer or 0 > program_counter: raise IndexError("Index out of bounds") if symbol == '>': data_pointer += 1 elif symbol == '<': data_pointer -= 1 elif symbol == '+': data[data_pointer].value += 1 elif symbol == '-': data[data_pointer].value -= 1 elif symbol == '.': print(chr(data[data_pointer].value), end='') elif symbol == ',': char = stdin.read(1) # If we read an empty string then make it 0 if char == '': char = '\0' data[data_pointer] = c_ubyte(ord(char)) elif symbol == '[': # If it is false then jump to the end. # the program counter will be incremented after this block if not data[data_pointer]: program_counter = jump_dict[program_counter] elif symbol == ']': program_counter = jump_dict[program_counter] continue program_counter += 1 print() def main(): if len(argv) > 2: print("Usage: {} [path to file]".format(argv[0]), file=stderr) return elif len(argv) == 2: with open(argv[1], 'r') as f: program = f.read().strip() else: program = input("Enter the brainfuck program: ") bf_eval(program) if __name__ == '__main__': main()
33.980198
116
0.593823
862b07a91d738f63686acb639bcf957e6e778b47
381
py
Python
ML/ML/asgi.py
Nagababu91768/house-price-prediction-ml-app
5a7a1e3b6306359f96ed1d9ff7f6ed558d9d3926
[ "MIT" ]
null
null
null
ML/ML/asgi.py
Nagababu91768/house-price-prediction-ml-app
5a7a1e3b6306359f96ed1d9ff7f6ed558d9d3926
[ "MIT" ]
null
null
null
ML/ML/asgi.py
Nagababu91768/house-price-prediction-ml-app
5a7a1e3b6306359f96ed1d9ff7f6ed558d9d3926
[ "MIT" ]
null
null
null
""" ASGI config for ML project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ML.settings') application = get_asgi_application()
22.411765
78
0.779528
2c1d1e59ae4fde16cf4f162fca6b47280bd15e85
9,350
py
Python
DataConnectors/ZoomReports/ZoomSentinelConnector/__init__.py
johnbilliris/Azure-Sentinel
ef3c2e3919023e80e15a94544e06e37623e7c1d3
[ "MIT" ]
2,227
2019-02-25T09:34:46.000Z
2022-03-31T21:30:59.000Z
DataConnectors/ZoomReports/ZoomSentinelConnector/__init__.py
johnbilliris/Azure-Sentinel
ef3c2e3919023e80e15a94544e06e37623e7c1d3
[ "MIT" ]
1,728
2019-02-25T17:18:16.000Z
2022-03-31T23:49:18.000Z
DataConnectors/ZoomReports/ZoomSentinelConnector/__init__.py
johnbilliris/Azure-Sentinel
ef3c2e3919023e80e15a94544e06e37623e7c1d3
[ "MIT" ]
1,624
2019-02-28T16:17:38.000Z
2022-03-31T18:00:02.000Z
import azure.functions as func import jwt import datetime import json import base64 import hashlib import hmac import requests import re import os import logging from .state_manager import StateManager jwt_api_key = os.environ['ZoomApiKey'] jwt_api_secret = os.environ['ZoomApiSecret'] customer_id = os.environ['WorkspaceID'] shared_key = os.environ['WorkspaceKey'] connection_string = os.environ['AzureWebJobsStorage'] logAnalyticsUri = os.environ.get('logAnalyticsUri') table_name = "Zoom" chunksize = 10000 if ((logAnalyticsUri in (None, '') or str(logAnalyticsUri).isspace())): logAnalyticsUri = 'https://' + customer_id + '.ods.opinsights.azure.com' pattern = r'https:\/\/([\w\-]+)\.ods\.opinsights\.azure.([a-zA-Z\.]+)$' match = re.match(pattern,str(logAnalyticsUri)) if(not match): raise Exception("Zoom: Invalid Log Analytics Uri.") class Zoom: def __init__(self): self.api_key = jwt_api_key self.api_secret = jwt_api_secret self.base_url = "https://api.zoom.us/v2" self.jwt_token_exp_hours = 1 self.jwt_token = self.generate_jwt_token() self.from_day,self.to_day = self.generate_date() self.headers = { 'Accept': 'application/json', 'authorization': "Bearer " + self.jwt_token, } def generate_jwt_token(self): payload = { 'iss': self.api_key, 'exp': datetime.datetime.now() + datetime.timedelta(hours=self.jwt_token_exp_hours) } jwt_token = jwt.encode(payload, self.api_secret) return jwt_token def generate_date(self): current_time_day = datetime.datetime.utcnow().replace(second=0, microsecond=0) state = StateManager(connection_string) past_time = state.get() if past_time is not None: logging.info("The last time point is: {}".format(past_time)) else: logging.info("There is no last time point, trying to get events for last week.") past_time = (current_time_day - datetime.timedelta(days=7)).strftime("%Y-%m-%d") state.post(current_time_day.strftime("%Y-%m-%d")) return (past_time, current_time_day.strftime("%Y-%m-%d")) def get_report(self, report_type_suffix,next_page_token = None): query_params = { "page_size": 300, "from": self.from_day, "to": self.to_day } if next_page_token: query_params.update({"next_page_token": next_page_token}) try: r = requests.get(url = self.base_url + report_type_suffix, params = query_params, headers = self.headers) if r.status_code == 200: return r.json() elif r.status_code == 400: logging.error("The requested report cannot be generated for this account because" " this account has not subscribed to toll-free audio conference plan." " Error code: {}".format(r.status_code)) elif r.status_code == 401: logging.error("Invalid access token. Error code: {}".format(r.status_code)) elif r.status_code == 300: logging.error("Only provide report in recent 6 months. Error code: {}".format( r.status_code)) else: logging.error("Something wrong. Error code: {}".format(r.status_code)) except Exception as err: logging.error("Something wrong. Exception error text: {}".format(err)) class Sentinel: def __init__(self): self.logAnalyticsUri = logAnalyticsUri self.success_processed = 0 self.fail_processed = 0 self.table_name = table_name self.chunksize = chunksize def gen_chunks_to_object(self, data, chunksize=100): chunk = [] for index, line in enumerate(data): if (index % chunksize == 0 and index > 0): yield chunk del chunk[:] chunk.append(line) yield chunk def gen_chunks(self, data): for chunk in self.gen_chunks_to_object(data, chunksize=self.chunksize): obj_array = [] for row in chunk: if row != None and row != '': obj_array.append(row) body = json.dumps(obj_array) self.post_data(body, len(obj_array)) def build_signature(self, date, content_length, method, content_type, resource): x_headers = 'x-ms-date:' + date string_to_hash = method + "\n" + str(content_length) + "\n" + content_type + "\n" + x_headers + "\n" + resource bytes_to_hash = bytes(string_to_hash, encoding="utf-8") decoded_key = base64.b64decode(shared_key) encoded_hash = base64.b64encode( hmac.new(decoded_key, bytes_to_hash, digestmod=hashlib.sha256).digest()).decode() authorization = "SharedKey {}:{}".format(customer_id, encoded_hash) return authorization def post_data(self, body, chunk_count): method = 'POST' content_type = 'application/json' resource = '/api/logs' rfc1123date = datetime.datetime.utcnow().strftime('%a, %d %b %Y %H:%M:%S GMT') content_length = len(body) signature = self.build_signature(rfc1123date, content_length, method, content_type, resource) uri = self.logAnalyticsUri + resource + '?api-version=2016-04-01' headers = { 'content-type': content_type, 'Authorization': signature, 'Log-Type': self.table_name, 'x-ms-date': rfc1123date } response = requests.post(uri, data=body, headers=headers) if (response.status_code >= 200 and response.status_code <= 299): logging.info("Chunk was processed({} events)".format(chunk_count)) self.success_processed = self.success_processed + chunk_count else: logging.error("Error during sending events to Azure Sentinel. Response code:{}".format(response.status_code)) self.fail_processed = self.fail_processed + chunk_count def results_array_join(result_element,api_req_id,api_req_name): for element in result_element[api_req_id]: element['event_type'] = api_req_id element['event_name'] = api_req_name results_array.append(element) def get_main_info(): for api_req_id, api_req_info in reports_api_requests_dict.items(): api_req = api_req_info['api_req'] api_req_name = api_req_info['name'] logging.info("Getting report: {}".format(api_req_info['name'])) result = zoom.get_report(report_type_suffix = api_req) if result is not None: next_page_token = result.get('next_page_token') results_array_join(result,api_req_id,api_req_name) else: next_page_token = None while next_page_token: result = zoom.get_report(report_type_suffix=api_req, next_page_token = next_page_token) if result is not None: next_page_token = result.get('next_page_token') results_array_join(result, api_req_id, api_req_name) else: next_page_token = None def main(mytimer: func.TimerRequest) -> None: utc_timestamp = datetime.datetime.utcnow().replace( tzinfo=datetime.timezone.utc).isoformat() if mytimer.past_due: logging.info('The timer is past due!') logging.info('Python timer trigger function ran at %s', utc_timestamp) logging.info('Starting program') global results_array, reports_api_requests_dict, zoom reports_api_requests_dict = \ { "dates": {"api_req": "/report/daily", "name": "Daily Usage Reports."}, "users": {"api_req": "/report/users", "name": "Active/Inactive Host Reports."}, "telephony_usage": {"api_req": "/report/telephone", "name": "Telephone Reports."}, "cloud_recording_storage": {"api_req": "/report/cloud_recording", "name": "Cloud Recording Usage Reports."}, "operation_logs": {"api_req": "/report/operationlogs", "name": "Operation Logs Report."}, "activity_logs": {"api_req": "/report/activities", "name": "Sign In/Sign Out Activity Report."} } results_array = [] zoom = Zoom() sentinel = Sentinel() zoom_class_vars = vars(zoom) from_day, to_day = zoom_class_vars['from_day'], zoom_class_vars['to_day'] logging.info('Trying to get events for period: {} - {}'.format(from_day, to_day)) get_main_info() sentinel.gen_chunks(results_array) sentinel_class_vars = vars(sentinel) success_processed, fail_processed = sentinel_class_vars["success_processed"],\ sentinel_class_vars["fail_processed"] logging.info('Total events processed successfully: {}, failed: {}. Period: {} - {}' .format(success_processed, fail_processed, from_day, to_day))
44.52381
122
0.607059
d565b0605e7c547850eea95409bf1708c77d968c
858
gyp
Python
lib/mac/binding.gyp
abiatarnt/noble
d9c4748e3d2220c807e33a624b2b719c8d76228d
[ "MIT" ]
2
2021-09-24T13:51:09.000Z
2021-09-24T14:08:36.000Z
lib/mac/binding.gyp
stoprocent/noble
ff82ecd83978d8be155ce00e36e72fd6f91ca882
[ "MIT" ]
1
2021-09-28T09:08:15.000Z
2021-09-28T09:08:15.000Z
lib/mac/binding.gyp
stoprocent/noble
ff82ecd83978d8be155ce00e36e72fd6f91ca882
[ "MIT" ]
1
2021-09-24T14:05:29.000Z
2021-09-24T14:05:29.000Z
{ 'targets': [ { 'target_name': 'binding', 'sources': [ 'src/noble_mac.mm', 'src/napi_objc.mm', 'src/ble_manager.mm', 'src/objc_cpp.mm', 'src/callbacks.cc' ], 'include_dirs': ["<!@(node -p \"require('node-addon-api').include\")"], 'dependencies': ["<!(node -p \"require('node-addon-api').gyp\")"], 'cflags!': [ '-fno-exceptions' ], 'cflags_cc!': [ '-fno-exceptions' ], 'xcode_settings': { 'GCC_ENABLE_CPP_EXCEPTIONS': 'YES', 'CLANG_CXX_LIBRARY': 'libc++', 'MACOSX_DEPLOYMENT_TARGET': '10.7', 'OTHER_CFLAGS': [ '-fobjc-arc', ], }, 'link_settings': { 'libraries': [ '$(SDKROOT)/System/Library/Frameworks/CoreBluetooth.framework', ] }, 'product_dir': '../lib/mac/native', } ] }
31.777778
123
0.504662
645f0d632772e7027a2bc622b80488e9356b74e0
32,198
py
Python
sdk/storage/azure-mgmt-storagesync/azure/mgmt/storagesync/aio/operations/_registered_servers_operations.py
mohamedshabanofficial/azure-sdk-for-python
81c585f310cd2ec23d2ad145173958914a075a58
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/storage/azure-mgmt-storagesync/azure/mgmt/storagesync/aio/operations/_registered_servers_operations.py
mohamedshabanofficial/azure-sdk-for-python
81c585f310cd2ec23d2ad145173958914a075a58
[ "MIT" ]
2
2021-11-03T06:10:36.000Z
2021-12-01T06:29:39.000Z
sdk/storage/azure-mgmt-storagesync/azure/mgmt/storagesync/aio/operations/_registered_servers_operations.py
mohamedshabanofficial/azure-sdk-for-python
81c585f310cd2ec23d2ad145173958914a075a58
[ "MIT" ]
1
2021-05-19T02:55:10.000Z
2021-05-19T02:55:10.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RegisteredServersOperations: """RegisteredServersOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.storagesync.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_storage_sync_service( self, resource_group_name: str, storage_sync_service_name: str, **kwargs ) -> AsyncIterable["_models.RegisteredServerArray"]: """Get a given registered server list. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param storage_sync_service_name: Name of Storage Sync Service resource. :type storage_sync_service_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RegisteredServerArray or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.storagesync.models.RegisteredServerArray] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RegisteredServerArray"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_storage_sync_service.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RegisteredServerArray', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.StorageSyncError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_storage_sync_service.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers'} # type: ignore async def get( self, resource_group_name: str, storage_sync_service_name: str, server_id: str, **kwargs ) -> "_models.RegisteredServer": """Get a given registered server. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param storage_sync_service_name: Name of Storage Sync Service resource. :type storage_sync_service_name: str :param server_id: GUID identifying the on-premises server. :type server_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RegisteredServer, or the result of cls(response) :rtype: ~azure.mgmt.storagesync.models.RegisteredServer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RegisteredServer"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), 'serverId': self._serialize.url("server_id", server_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.StorageSyncError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) deserialized = self._deserialize('RegisteredServer', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers/{serverId}'} # type: ignore async def _create_initial( self, resource_group_name: str, storage_sync_service_name: str, server_id: str, parameters: "_models.RegisteredServerCreateParameters", **kwargs ) -> Optional["_models.RegisteredServer"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.RegisteredServer"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), 'serverId': self._serialize.url("server_id", server_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'RegisteredServerCreateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.StorageSyncError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} deserialized = None if response.status_code == 200: response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) deserialized = self._deserialize('RegisteredServer', pipeline_response) if response.status_code == 202: response_headers['Azure-AsyncOperation']=self._deserialize('str', response.headers.get('Azure-AsyncOperation')) response_headers['Location']=self._deserialize('str', response.headers.get('Location')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers/{serverId}'} # type: ignore async def begin_create( self, resource_group_name: str, storage_sync_service_name: str, server_id: str, parameters: "_models.RegisteredServerCreateParameters", **kwargs ) -> AsyncLROPoller["_models.RegisteredServer"]: """Add a new registered server. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param storage_sync_service_name: Name of Storage Sync Service resource. :type storage_sync_service_name: str :param server_id: GUID identifying the on-premises server. :type server_id: str :param parameters: Body of Registered Server object. :type parameters: ~azure.mgmt.storagesync.models.RegisteredServerCreateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RegisteredServer or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.storagesync.models.RegisteredServer] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RegisteredServer"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_initial( resource_group_name=resource_group_name, storage_sync_service_name=storage_sync_service_name, server_id=server_id, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) deserialized = self._deserialize('RegisteredServer', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), 'serverId': self._serialize.url("server_id", server_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers/{serverId}'} # type: ignore async def _delete_initial( self, resource_group_name: str, storage_sync_service_name: str, server_id: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), 'serverId': self._serialize.url("server_id", server_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.StorageSyncError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} if response.status_code == 200: response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) if response.status_code == 202: response_headers['Location']=self._deserialize('str', response.headers.get('Location')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) if cls: return cls(pipeline_response, None, response_headers) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers/{serverId}'} # type: ignore async def begin_delete( self, resource_group_name: str, storage_sync_service_name: str, server_id: str, **kwargs ) -> AsyncLROPoller[None]: """Delete the given registered server. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param storage_sync_service_name: Name of Storage Sync Service resource. :type storage_sync_service_name: str :param server_id: GUID identifying the on-premises server. :type server_id: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, storage_sync_service_name=storage_sync_service_name, server_id=server_id, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), 'serverId': self._serialize.url("server_id", server_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers/{serverId}'} # type: ignore async def _trigger_rollover_initial( self, resource_group_name: str, storage_sync_service_name: str, server_id: str, parameters: "_models.TriggerRolloverRequest", **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._trigger_rollover_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), 'serverId': self._serialize.url("server_id", server_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TriggerRolloverRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.StorageSyncError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} if response.status_code == 200: response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) if response.status_code == 202: response_headers['Location']=self._deserialize('str', response.headers.get('Location')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-correlation-request-id']=self._deserialize('str', response.headers.get('x-ms-correlation-request-id')) if cls: return cls(pipeline_response, None, response_headers) _trigger_rollover_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers/{serverId}/triggerRollover'} # type: ignore async def begin_trigger_rollover( self, resource_group_name: str, storage_sync_service_name: str, server_id: str, parameters: "_models.TriggerRolloverRequest", **kwargs ) -> AsyncLROPoller[None]: """Triggers Server certificate rollover. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param storage_sync_service_name: Name of Storage Sync Service resource. :type storage_sync_service_name: str :param server_id: Server Id. :type server_id: str :param parameters: Body of Trigger Rollover request. :type parameters: ~azure.mgmt.storagesync.models.TriggerRolloverRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._trigger_rollover_initial( resource_group_name=resource_group_name, storage_sync_service_name=storage_sync_service_name, server_id=server_id, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'storageSyncServiceName': self._serialize.url("storage_sync_service_name", storage_sync_service_name, 'str'), 'serverId': self._serialize.url("server_id", server_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_trigger_rollover.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.StorageSync/storageSyncServices/{storageSyncServiceName}/registeredServers/{serverId}/triggerRollover'} # type: ignore
54.114286
256
0.677775
a1c9182828de1979359bb4726296393b868639a7
1,243
py
Python
aiozoom/components/recording.py
vladisa88/aiozoom
5000827650d27c826e895b1b9691377111b3ef6b
[ "MIT" ]
2
2021-02-09T10:40:50.000Z
2021-02-19T07:53:26.000Z
aiozoom/components/recording.py
vladisa88/aiozoom
5000827650d27c826e895b1b9691377111b3ef6b
[ "MIT" ]
null
null
null
aiozoom/components/recording.py
vladisa88/aiozoom
5000827650d27c826e895b1b9691377111b3ef6b
[ "MIT" ]
null
null
null
from aiozoom.components.base import Base class Recording(Base): """ Class describing `Recording` logic of Zoom API learn more: https://marketplace.zoom.us/docs/api-reference/zoom-api/cloud-recording/ """ async def get_recording(self, meeting_id: str) -> dict: """ Get meeting's recording information. """ method = f'/meetings/{meeting_id}/recordings' return await self.base_get_request(method) async def list_recordings(self, email: str) -> dict: """ List all cloud recordings related to user """ method = f'/users/{email}/recordings' return await self.base_get_request(method) async def delete_all_recording_files(self, meeting_id: str) -> dict: """ Delete all recording files of meeting """ method = f'/meetings/{meeting_id}/recordings' return await self.base_delete_request(method) async def delete_recording_file( self, meeting_id: str, recording_id: str) -> dict: """ Delete a sprecific recording file from a meeting """ method = f'/meetings/{meeting_id}/recordings/{recording_id}' return await self.base_delete_request(method)
31.871795
76
0.641191
bc66fa4b05d98fe77c61ec138056961f93eeb27f
351
py
Python
configs/dota_1.5/hbb/retinanet_r50_fpn_1x_dota1.5.py
liuyanyi/mmdetection
d2003536af6f08cb9bd7a75e0444eef03ace4bb3
[ "Apache-2.0" ]
null
null
null
configs/dota_1.5/hbb/retinanet_r50_fpn_1x_dota1.5.py
liuyanyi/mmdetection
d2003536af6f08cb9bd7a75e0444eef03ace4bb3
[ "Apache-2.0" ]
null
null
null
configs/dota_1.5/hbb/retinanet_r50_fpn_1x_dota1.5.py
liuyanyi/mmdetection
d2003536af6f08cb9bd7a75e0444eef03ace4bb3
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../../_base_/models/retinanet_r50_fpn.py', '../../_base_/datasets/dota_detection_v1.5_hbb.py', '../../_base_/schedules/schedule_2x.py', '../../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=16, ) ) optimizer =dict(lr=0.01) work_dir = './work_dirs/retinanet_r50_fpn_1x_dota'
25.071429
78
0.62963
8b8c0fa46dbd651a24431464ff14b52aeacb4abb
553
py
Python
cbench/virtual_call/vtable_reuse_uaf.py
vul337/cfi-eval
7d7801cf44cc650127d692c2a7222434375ac6aa
[ "Apache-2.0" ]
16
2020-11-17T08:17:10.000Z
2022-03-16T07:47:44.000Z
cbench/virtual_call/vtable_reuse_uaf.py
vul337/cfi-eval
7d7801cf44cc650127d692c2a7222434375ac6aa
[ "Apache-2.0" ]
null
null
null
cbench/virtual_call/vtable_reuse_uaf.py
vul337/cfi-eval
7d7801cf44cc650127d692c2a7222434375ac6aa
[ "Apache-2.0" ]
4
2020-12-13T10:44:30.000Z
2021-12-20T13:34:37.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from pwn import * context.log_level = "debug" r = process('./vtable_reuse_uaf') def usenote(): r.recvuntil("4. exit\n") r.sendline("1") def afternote(_len,_data): r.recvuntil("4. exit\n") r.sendline("2") r.recvuntil("len:") r.sendline(_len) r.recvuntil("data:") r.sendline(_data) def freenote(): r.recvuntil("4. exit\n") r.sendline("3") # plz set the vul vtable addr vtable_add =0x401b10 freenote() afternote("48",p64(vtable_add)) usenote() r.interactive()
15.8
33
0.629295
be0a00ab69c8436198704dbd8236ce8831555e5f
613
py
Python
utils/config.py
recogni/tf-hrnet
1f21d9b86211de480f01ca1fda2f58e427e93261
[ "BSD-3-Clause" ]
83
2019-08-19T08:40:35.000Z
2022-03-31T11:00:21.000Z
utils/config.py
Alabenba/tf-hrnet
949beb420d4a1af9974700534906184909e219ea
[ "BSD-3-Clause" ]
14
2019-09-02T09:03:32.000Z
2022-02-09T23:32:18.000Z
netutils/config.py
sramirez/hrnet-pose-tf
5b7498d5fc86e18171f45ee6acfacbfea34a2339
[ "BSD-3-Clause" ]
21
2019-08-20T02:38:55.000Z
2022-01-05T07:13:31.000Z
import configparser import ast def load_net_cfg_from_file(cfgfile): def load_from_options(section, cfg): options = dict() xdict = dict(cfg.items(section)) for key, value in xdict.items(): try: value = ast.literal_eval(value) except: value = value options[key] = value return options cfg = configparser.ConfigParser() cfg.read(cfgfile) sections = cfg.sections() options = dict() for _section in sections: options[_section] = load_from_options(_section, cfg) return options
23.576923
60
0.598695
eaa619295d266558568d47f73256caf95bb64bc0
1,053
py
Python
Autonomous Work/AutonomousWork_2/Question4.py
Aujasvi-Moudgil/Classification-and-Representation-Learning
0ceb461f82d3d92f7d183fa7c8f61e20d53cfb52
[ "MIT" ]
null
null
null
Autonomous Work/AutonomousWork_2/Question4.py
Aujasvi-Moudgil/Classification-and-Representation-Learning
0ceb461f82d3d92f7d183fa7c8f61e20d53cfb52
[ "MIT" ]
null
null
null
Autonomous Work/AutonomousWork_2/Question4.py
Aujasvi-Moudgil/Classification-and-Representation-Learning
0ceb461f82d3d92f7d183fa7c8f61e20d53cfb52
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun Oct 8 13:55:10 2017 @author: Aujasvi """ from numpy import* import matplotlib.pyplot as plt #Load the dataset data = loadtxt('polynome.data') #Seprate the input from the output X = data[:, 0] Y = data[:, 1] #Spliting the data into training & test data X_train_data = X[:int((len(X))*.70)] X_test_data = X[int(len(X)*.70):] Y_train_data = Y[:int((len(Y))*.70)] Y_test_data = Y[int(len(Y)*.70):] print('X_train_data :', X_train_data) print('X_test_data :', X_test_data) print('Y_train_data :', Y_train_data) print('Y_test_data :',Y_test_data) for order in range(1,21): w = polyfit(X_train_data,Y_train_data,order) y = polyval (w,X_test_data) #Genearlization Error on Test set mse = ((Y_test_data-y)**2).mean(axis=None) print('order='+str(order)+', mse='+str(mse)) #In case of overfitting train error is low, test error is high. #In case of order 4 the test error is minimum & it is generalizing well but when we #increasing the degree of polynome then the curve tends to overfit.
28.459459
83
0.690408
35698d18f457f905c436b4433f0d40e293fbe3ac
2,393
py
Python
collabfilter/databunch.py
manikyabard/DashAI
723f4c4ced3838e2872ec27848950f92c6c79b3e
[ "Apache-2.0" ]
7
2020-08-26T09:36:54.000Z
2021-12-21T15:46:32.000Z
collabfilter/databunch.py
JoeRishon/DashAI
68d1b01088a65e2062d96b47b083fa8f5c82b27c
[ "Apache-2.0" ]
16
2020-08-25T18:44:45.000Z
2022-03-25T19:12:36.000Z
collabfilter/databunch.py
JoeRishon/DashAI
68d1b01088a65e2062d96b47b083fa8f5c82b27c
[ "Apache-2.0" ]
10
2020-09-30T19:27:17.000Z
2021-04-04T14:50:31.000Z
from fastai.collab import * from core.databunch import DashDatabunch class DashCollabDatabunch: """ Base DataBunch for collaborative filtering. """ @staticmethod def create_collab_databunch(response): """ Creates a databunch for collaborative filtering using the values specified in response/DashUI. Uses the csv name given in response>collab>input to create the input dataframe. Creates a cat list using the user name and item name provided in the data. Applies the required transformations and creates a collab list using the specified cat list. The collab list is split into training and validation sets using the specified method and then labelled. Finally it is converted to a databunch object and returned. """ path = Path('./') # Step 1: Provide inputs response_col = response['collab'] df = pd.read_csv(path / f'{response_col["input"]["csv_name"]}') procs = list() if response_col["transform"]['FillMissing']: if hasattr(FillStrategy, f"{response_col['transform']['FillMissing']['fill_strategy']}"): fill_strategy = getattr(FillStrategy, f"{response_col['transform']['FillMissing']['fill_strategy']}") procs.append(partial(FillMissing, fill_strategy=fill_strategy, fill_val=response_col['transform']['FillMissing']['fill_val'], add_col=response_col['transform']['FillMissing']['add_col'])) if response_col['transform']['Categorify']: procs.append(Categorify) if response_col['transform']['Normalize']: procs.append(Normalize) procs = listify(procs) user_name = response_col['input']['user_name'] item_name = response_col['input']['item_name'] rating = response_col['input']['rating'] cat_names = [user_name, item_name] src = CollabList.from_df(df, cat_names=cat_names, procs=procs) src = DashDatabunch.split_databunch(response, src) # src = DashDatabunch.label_databunch(response, src) # src=src.split_by_rand_pct(valid_pct=0.2,seed=None) src = src.label_from_df(cols=rating) # if test is not None: src.add_test(CollabList.from_df(test, cat_names=cat_names)) if response["collab"]["input"]['test_df']["has_test"]: test_df = pd.read_csv(path / f"{response['collab']['input']['test_df']['csv_name']}") src.add_test(CollabList.from_df(test_df, cat_names=cat_names)) return DashDatabunch.create_databunch(response, src)
41.982456
107
0.72127
c99e8a9b2a001df22e5de8465191094aa37e6bd6
18,343
py
Python
featuretools/tests/entityset_tests/test_serialization.py
ridicolos/featuretools
0af409da206e0b691ec64a3e0e618a43f1701dd9
[ "BSD-3-Clause" ]
942
2020-11-10T02:59:39.000Z
2022-03-31T16:34:33.000Z
featuretools/tests/entityset_tests/test_serialization.py
167rgc911/featuretools
bbad3f7392b203b7b9c250a93465052e7fc06bbc
[ "BSD-3-Clause" ]
721
2020-11-09T23:12:06.000Z
2022-03-31T22:33:35.000Z
featuretools/tests/entityset_tests/test_serialization.py
167rgc911/featuretools
bbad3f7392b203b7b9c250a93465052e7fc06bbc
[ "BSD-3-Clause" ]
127
2020-11-10T10:12:30.000Z
2022-03-27T08:55:05.000Z
import json import logging import os import tempfile from urllib.request import urlretrieve import boto3 import pandas as pd import pytest import woodwork.type_sys.type_system as ww_type_system from woodwork.logical_types import Datetime, LogicalType, Ordinal from woodwork.serialize import typing_info_to_dict from woodwork.type_sys.utils import list_logical_types from featuretools.entityset import EntitySet, deserialize, serialize from featuretools.entityset.serialize import SCHEMA_VERSION from featuretools.tests.testing_utils import to_pandas from featuretools.utils.gen_utils import Library BUCKET_NAME = "test-bucket" WRITE_KEY_NAME = "test-key" TEST_S3_URL = "s3://{}/{}".format(BUCKET_NAME, WRITE_KEY_NAME) TEST_FILE = "test_serialization_data_entityset_schema_{}_2021_8_31.tar".format(SCHEMA_VERSION) S3_URL = "s3://featuretools-static/" + TEST_FILE URL = "https://featuretools-static.s3.amazonaws.com/" + TEST_FILE TEST_KEY = "test_access_key_es" def test_entityset_description(es): description = serialize.entityset_to_description(es) _es = deserialize.description_to_entityset(description) assert es.metadata.__eq__(_es, deep=True) def test_all_ww_logical_types(): logical_types = list_logical_types()['type_string'].to_list() dataframe = pd.DataFrame(columns=logical_types) es = EntitySet() ltype_dict = {ltype: ltype for ltype in logical_types} ltype_dict['ordinal'] = Ordinal(order=[]) es.add_dataframe(dataframe=dataframe, dataframe_name='all_types', index='integer', logical_types=ltype_dict) description = serialize.entityset_to_description(es) _es = deserialize.description_to_entityset(description) assert es.__eq__(_es, deep=True) def test_with_custom_ww_logical_type(): class CustomLogicalType(LogicalType): pass ww_type_system.add_type(CustomLogicalType) columns = ['integer', 'natural_language', 'custom_logical_type'] dataframe = pd.DataFrame(columns=columns) es = EntitySet() ltype_dict = { 'integer': 'integer', 'natural_language': 'natural_language', 'custom_logical_type': CustomLogicalType, } es.add_dataframe(dataframe=dataframe, dataframe_name='custom_type', index='integer', logical_types=ltype_dict) description = serialize.entityset_to_description(es) _es = deserialize.description_to_entityset(description) assert isinstance(_es['custom_type'].ww.logical_types['custom_logical_type'], CustomLogicalType) assert es.__eq__(_es, deep=True) def test_serialize_invalid_formats(es, tmpdir): error_text = 'must be one of the following formats: {}' error_text = error_text.format(', '.join(serialize.FORMATS)) with pytest.raises(ValueError, match=error_text): serialize.write_data_description(es, path=str(tmpdir), format='') def test_empty_dataframe(es): for df in es.dataframes: description = typing_info_to_dict(df) dataframe = deserialize.empty_dataframe(description) assert dataframe.empty assert all(dataframe.columns == df.columns) def test_to_csv(es, tmpdir): es.to_csv(str(tmpdir), encoding='utf-8', engine='python') new_es = deserialize.read_entityset(str(tmpdir)) assert es.__eq__(new_es, deep=True) df = to_pandas(es['log'], index='id') new_df = to_pandas(new_es['log'], index='id') assert type(df['latlong'][0]) in (tuple, list) assert type(new_df['latlong'][0]) in (tuple, list) # Dask/Koalas don't support auto setting of interesting values with es.add_interesting_values() def test_to_csv_interesting_values(pd_es, tmpdir): pd_es.add_interesting_values() pd_es.to_csv(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert pd_es.__eq__(new_es, deep=True) def test_to_csv_manual_interesting_values(es, tmpdir): es.add_interesting_values(dataframe_name='log', values={'product_id': ['coke_zero']}) es.to_csv(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert es.__eq__(new_es, deep=True) assert new_es['log'].ww['product_id'].ww.metadata['interesting_values'] == ['coke_zero'] # Dask/Koalas do not support to_pickle def test_to_pickle(pd_es, tmpdir): pd_es.to_pickle(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert pd_es.__eq__(new_es, deep=True) assert type(pd_es['log']['latlong'][0]) == tuple assert type(new_es['log']['latlong'][0]) == tuple def test_to_pickle_errors_dask(dask_es, tmpdir): msg = 'DataFrame type not compatible with pickle serialization. Please serialize to another format.' with pytest.raises(ValueError, match=msg): dask_es.to_pickle(str(tmpdir)) def test_to_pickle_errors_koalas(ks_es, tmpdir): msg = 'DataFrame type not compatible with pickle serialization. Please serialize to another format.' with pytest.raises(ValueError, match=msg): ks_es.to_pickle(str(tmpdir)) # Dask/Koalas do not support to_pickle def test_to_pickle_interesting_values(pd_es, tmpdir): pd_es.add_interesting_values() pd_es.to_pickle(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert pd_es.__eq__(new_es, deep=True) # Dask/Koalas do not support to_pickle def test_to_pickle_manual_interesting_values(pd_es, tmpdir): pd_es.add_interesting_values(dataframe_name='log', values={'product_id': ['coke_zero']}) pd_es.to_pickle(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert pd_es.__eq__(new_es, deep=True) assert new_es['log'].ww['product_id'].ww.metadata['interesting_values'] == ['coke_zero'] def test_to_parquet(es, tmpdir): es.to_parquet(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert es.__eq__(new_es, deep=True) df = to_pandas(es['log']) new_df = to_pandas(new_es['log']) assert type(df['latlong'][0]) in (tuple, list) assert type(new_df['latlong'][0]) in (tuple, list) def test_to_parquet_manual_interesting_values(es, tmpdir): es.add_interesting_values(dataframe_name='log', values={'product_id': ['coke_zero']}) es.to_parquet(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert es.__eq__(new_es, deep=True) assert new_es['log'].ww['product_id'].ww.metadata['interesting_values'] == ['coke_zero'] # Dask/Koalas don't support auto setting of interesting values with es.add_interesting_values() def test_to_parquet_interesting_values(pd_es, tmpdir): pd_es.add_interesting_values() pd_es.to_parquet(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert pd_es.__eq__(new_es, deep=True) def test_to_parquet_with_lti(tmpdir, pd_mock_customer): es = pd_mock_customer es.to_parquet(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert es.__eq__(new_es, deep=True) def test_to_pickle_id_none(tmpdir): es = EntitySet() es.to_pickle(str(tmpdir)) new_es = deserialize.read_entityset(str(tmpdir)) assert es.__eq__(new_es, deep=True) # TODO: Fix Moto tests needing to explicitly set permissions for objects @pytest.fixture def s3_client(): _environ = os.environ.copy() from moto import mock_s3 with mock_s3(): s3 = boto3.resource('s3') yield s3 os.environ.clear() os.environ.update(_environ) @pytest.fixture def s3_bucket(s3_client): s3_client.create_bucket(Bucket=BUCKET_NAME, ACL='public-read-write') s3_bucket = s3_client.Bucket(BUCKET_NAME) yield s3_bucket def make_public(s3_client, s3_bucket): obj = list(s3_bucket.objects.all())[0].key s3_client.ObjectAcl(BUCKET_NAME, obj).put(ACL='public-read-write') # TODO: tmp file disappears after deserialize step, cannot check equality with Dask, Koalas def test_serialize_s3_csv(es, s3_client, s3_bucket): if es.dataframe_type != Library.PANDAS.value: pytest.xfail('tmp file disappears after deserialize step, cannot check equality with Dask') es.to_csv(TEST_S3_URL, encoding='utf-8', engine='python') make_public(s3_client, s3_bucket) new_es = deserialize.read_entityset(TEST_S3_URL) assert es.__eq__(new_es, deep=True) # Dask and Koalas do not support to_pickle def test_serialize_s3_pickle(pd_es, s3_client, s3_bucket): pd_es.to_pickle(TEST_S3_URL) make_public(s3_client, s3_bucket) new_es = deserialize.read_entityset(TEST_S3_URL) assert pd_es.__eq__(new_es, deep=True) # TODO: tmp file disappears after deserialize step, cannot check equality with Dask, Koalas def test_serialize_s3_parquet(es, s3_client, s3_bucket): if es.dataframe_type != Library.PANDAS.value: pytest.xfail('tmp file disappears after deserialize step, cannot check equality with Dask or Koalas') es.to_parquet(TEST_S3_URL) make_public(s3_client, s3_bucket) new_es = deserialize.read_entityset(TEST_S3_URL) assert es.__eq__(new_es, deep=True) # TODO: tmp file disappears after deserialize step, cannot check equality with Dask, Koalas def test_serialize_s3_anon_csv(es, s3_client, s3_bucket): if es.dataframe_type != Library.PANDAS.value: pytest.xfail('tmp file disappears after deserialize step, cannot check equality with Dask or Koalas') es.to_csv(TEST_S3_URL, encoding='utf-8', engine='python', profile_name=False) make_public(s3_client, s3_bucket) new_es = deserialize.read_entityset(TEST_S3_URL, profile_name=False) assert es.__eq__(new_es, deep=True) # Dask/Koalas do not support to_pickle def test_serialize_s3_anon_pickle(pd_es, s3_client, s3_bucket): pd_es.to_pickle(TEST_S3_URL, profile_name=False) make_public(s3_client, s3_bucket) new_es = deserialize.read_entityset(TEST_S3_URL, profile_name=False) assert pd_es.__eq__(new_es, deep=True) # TODO: tmp file disappears after deserialize step, cannot check equality with Dask, Koalas def test_serialize_s3_anon_parquet(es, s3_client, s3_bucket): if es.dataframe_type != Library.PANDAS.value: pytest.xfail('tmp file disappears after deserialize step, cannot check equality with Dask') es.to_parquet(TEST_S3_URL, profile_name=False) make_public(s3_client, s3_bucket) new_es = deserialize.read_entityset(TEST_S3_URL, profile_name=False) assert es.__eq__(new_es, deep=True) def create_test_credentials(test_path): with open(test_path, "w+") as f: f.write("[test]\n") f.write("aws_access_key_id=AKIAIOSFODNN7EXAMPLE\n") f.write("aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY\n") def create_test_config(test_path_config): with open(test_path_config, "w+") as f: f.write("[profile test]\n") f.write("region=us-east-2\n") f.write("output=text\n") @pytest.fixture def setup_test_profile(monkeypatch, tmpdir): cache = str(tmpdir.join('.cache').mkdir()) test_path = os.path.join(cache, 'test_credentials') test_path_config = os.path.join(cache, 'test_config') monkeypatch.setenv("AWS_SHARED_CREDENTIALS_FILE", test_path) monkeypatch.setenv("AWS_CONFIG_FILE", test_path_config) monkeypatch.delenv("AWS_ACCESS_KEY_ID", raising=False) monkeypatch.delenv("AWS_SECRET_ACCESS_KEY", raising=False) monkeypatch.setenv("AWS_PROFILE", "test") try: os.remove(test_path) os.remove(test_path_config) except OSError: pass create_test_credentials(test_path) create_test_config(test_path_config) yield os.remove(test_path) os.remove(test_path_config) def test_s3_test_profile(es, s3_client, s3_bucket, setup_test_profile): if es.dataframe_type != Library.PANDAS.value: pytest.xfail('tmp file disappears after deserialize step, cannot check equality with Dask') es.to_csv(TEST_S3_URL, encoding='utf-8', engine='python', profile_name='test') make_public(s3_client, s3_bucket) new_es = deserialize.read_entityset(TEST_S3_URL, profile_name='test') assert es.__eq__(new_es, deep=True) def test_serialize_url_csv(es): error_text = "Writing to URLs is not supported" with pytest.raises(ValueError, match=error_text): es.to_csv(URL, encoding='utf-8', engine='python') def test_serialize_subdirs_not_removed(es, tmpdir): write_path = tmpdir.mkdir("test") test_dir = write_path.mkdir("test_dir") with open(str(write_path.join('data_description.json')), 'w') as f: json.dump('__SAMPLE_TEXT__', f) if es.dataframe_type == Library.KOALAS.value: compression = 'none' else: compression = None serialize.write_data_description(es, path=str(write_path), index='1', sep='\t', encoding='utf-8', compression=compression) assert os.path.exists(str(test_dir)) with open(str(write_path.join('data_description.json')), 'r') as f: assert '__SAMPLE_TEXT__' not in json.load(f) def test_deserialize_local_tar(es): with tempfile.TemporaryDirectory() as tmpdir: temp_tar_filepath = os.path.join(tmpdir, TEST_FILE) urlretrieve(URL, filename=temp_tar_filepath) new_es = deserialize.read_entityset(temp_tar_filepath) assert es.__eq__(new_es, deep=True) def test_deserialize_url_csv(es): new_es = deserialize.read_entityset(URL) assert es.__eq__(new_es, deep=True) def test_default_s3_csv(es): new_es = deserialize.read_entityset(S3_URL) assert es.__eq__(new_es, deep=True) def test_anon_s3_csv(es): new_es = deserialize.read_entityset(S3_URL, profile_name=False) assert es.__eq__(new_es, deep=True) def test_operations_invalidate_metadata(es): new_es = EntitySet(id="test") # test metadata gets created on access assert new_es._data_description is None assert new_es.metadata is not None # generated after access assert new_es._data_description is not None if not isinstance(es['customers'], pd.DataFrame): customers_ltypes = es["customers"].ww.logical_types customers_ltypes['signup_date'] = Datetime else: customers_ltypes = None new_es.add_dataframe(es["customers"], "customers", index=es["customers"].index, logical_types=customers_ltypes) if not isinstance(es['sessions'], pd.DataFrame): sessions_ltypes = es["sessions"].ww.logical_types else: sessions_ltypes = None new_es.add_dataframe(es["sessions"], "sessions", index=es["sessions"].index, logical_types=sessions_ltypes) assert new_es._data_description is None assert new_es.metadata is not None assert new_es._data_description is not None new_es = new_es.add_relationship("customers", "id", "sessions", "customer_id") assert new_es._data_description is None assert new_es.metadata is not None assert new_es._data_description is not None new_es = new_es.normalize_dataframe("customers", "cohort", "cohort") assert new_es._data_description is None assert new_es.metadata is not None assert new_es._data_description is not None new_es.add_last_time_indexes() assert new_es._data_description is None assert new_es.metadata is not None assert new_es._data_description is not None # automatically adding interesting values not supported in Dask or Koalas if new_es.dataframe_type == Library.PANDAS.value: new_es.add_interesting_values() assert new_es._data_description is None assert new_es.metadata is not None assert new_es._data_description is not None def test_reset_metadata(es): assert es.metadata is not None assert es._data_description is not None es.reset_data_description() assert es._data_description is None def test_later_schema_version(es, caplog): def test_version(major, minor, patch, raises=True): version = '.'.join([str(v) for v in [major, minor, patch]]) if raises: warning_text = ('The schema version of the saved entityset' '(%s) is greater than the latest supported (%s). ' 'You may need to upgrade featuretools. Attempting to load entityset ...' % (version, SCHEMA_VERSION)) else: warning_text = None _check_schema_version(version, es, warning_text, caplog, 'warn') major, minor, patch = [int(s) for s in SCHEMA_VERSION.split('.')] test_version(major + 1, minor, patch) test_version(major, minor + 1, patch) test_version(major, minor, patch + 1) test_version(major, minor - 1, patch + 1, raises=False) def test_earlier_schema_version(es, caplog): def test_version(major, minor, patch, raises=True): version = '.'.join([str(v) for v in [major, minor, patch]]) if raises: warning_text = ('The schema version of the saved entityset' '(%s) is no longer supported by this version ' 'of featuretools. Attempting to load entityset ...' % (version)) else: warning_text = None _check_schema_version(version, es, warning_text, caplog, 'log') major, minor, patch = [int(s) for s in SCHEMA_VERSION.split('.')] test_version(major - 1, minor, patch) test_version(major, minor - 1, patch, raises=False) test_version(major, minor, patch - 1, raises=False) def _check_schema_version(version, es, warning_text, caplog, warning_type=None): dataframes = {dataframe.ww.name: typing_info_to_dict(dataframe) for dataframe in es.dataframes} relationships = [relationship.to_dictionary() for relationship in es.relationships] dictionary = { 'schema_version': version, 'id': es.id, 'dataframes': dataframes, 'relationships': relationships, } if warning_type == 'log' and warning_text: logger = logging.getLogger('featuretools') logger.propagate = True deserialize.description_to_entityset(dictionary) assert warning_text in caplog.text logger.propagate = False elif warning_type == 'warn' and warning_text: with pytest.warns(UserWarning) as record: deserialize.description_to_entityset(dictionary) assert record[0].message.args[0] == warning_text else: deserialize.description_to_entityset(dictionary)
38.374477
126
0.71973
65f50cd1ab08b668d8b0446b3706294273164321
11,701
py
Python
mmf/common/registry.py
san2597/mmf
c0812e9281c6e679cb7f00af78a5eda267820aab
[ "BSD-3-Clause" ]
2
2021-02-22T12:15:42.000Z
2021-05-02T15:22:24.000Z
mmf/common/registry.py
san2597/mmf
c0812e9281c6e679cb7f00af78a5eda267820aab
[ "BSD-3-Clause" ]
7
2021-03-01T21:16:26.000Z
2022-02-27T07:07:11.000Z
mmf/common/registry.py
krantirk/MMF
2e4acaad7ca8eee4319e1205a560eed81733a0be
[ "BSD-3-Clause" ]
1
2022-03-04T14:19:43.000Z
2022-03-04T14:19:43.000Z
# Copyright (c) Facebook, Inc. and its affiliates. """ Registry is central source of truth in MMF. Inspired from Redux's concept of global store, Registry maintains mappings of various information to unique keys. Special functions in registry can be used as decorators to register different kind of classes. Import the global registry object using ``from mmf.common.registry import registry`` Various decorators for registry different kind of classes with unique keys - Register a trainer: ``@registry.register_trainer`` - Register a dataset builder: ``@registry.register_builder`` - Register a metric: ``@registry.register_metric`` - Register a loss: ``@registry.register_loss`` - Register a fusion technique: ``@registery.register_fusion`` - Register a model: ``@registry.register_model`` - Register a processor: ``@registry.register_processor`` - Register a optimizer: ``@registry.register_optimizer`` - Register a scheduler: ``@registry.register_scheduler`` - Register a decoder: ``@registry.register_decoder`` """ from mmf.utils.env import setup_imports class Registry: r"""Class for registry object which acts as central source of truth for MMF """ mapping = { # Mappings of builder name to their respective classes # Use `registry.register_builder` to register a builder class # with a specific name # Further, use the name with the class is registered in the # command line or configuration to load that specific dataset "builder_name_mapping": {}, # Similar to the builder_name_mapping above except that this # one is used to keep a mapping for dataset to its trainer class. "trainer_name_mapping": {}, "model_name_mapping": {}, "metric_name_mapping": {}, "loss_name_mapping": {}, "fusion_name_mapping": {}, "optimizer_name_mapping": {}, "scheduler_name_mapping": {}, "processor_name_mapping": {}, "decoder_name_mapping": {}, "state": {}, } @classmethod def register_trainer(cls, name): r"""Register a trainer to registry with key 'name' Args: name: Key with which the trainer will be registered. Usage:: from mmf.common.registry import registry from mmf.trainers.custom_trainer import CustomTrainer @registry.register_trainer("custom_trainer") class CustomTrainer(): ... """ def wrap(trainer_cls): cls.mapping["trainer_name_mapping"][name] = trainer_cls return trainer_cls return wrap @classmethod def register_builder(cls, name): r"""Register a dataset builder to registry with key 'name' Args: name: Key with which the metric will be registered. Usage:: from mmf.common.registry import registry from mmf.datasets.base_dataset_builder import BaseDatasetBuilder @registry.register_builder("vqa2") class VQA2Builder(BaseDatasetBuilder): ... """ def wrap(builder_cls): from mmf.datasets.base_dataset_builder import BaseDatasetBuilder assert issubclass( builder_cls, BaseDatasetBuilder ), "All builders must inherit BaseDatasetBuilder class" cls.mapping["builder_name_mapping"][name] = builder_cls return builder_cls return wrap @classmethod def register_metric(cls, name): r"""Register a metric to registry with key 'name' Args: name: Key with which the metric will be registered. Usage:: from mmf.common.registry import registry from mmf.modules.metrics import BaseMetric @registry.register_metric("r@1") class RecallAt1(BaseMetric): ... """ def wrap(func): from mmf.modules.metrics import BaseMetric assert issubclass( func, BaseMetric ), "All Metric must inherit BaseMetric class" cls.mapping["metric_name_mapping"][name] = func return func return wrap @classmethod def register_loss(cls, name): r"""Register a loss to registry with key 'name' Args: name: Key with which the loss will be registered. Usage:: from mmf.common.registry import registry from torch import nn @registry.register_task("logit_bce") class LogitBCE(nn.Module): ... """ def wrap(func): from torch import nn assert issubclass( func, nn.Module ), "All loss must inherit torch.nn.Module class" cls.mapping["loss_name_mapping"][name] = func return func return wrap @classmethod def register_fusion(cls, name): r"""Register a fusion technique to registry with key 'name' Args: name: Key with which the fusion technique will be registered Usage:: from mmf.common.registry import registry from torch import nn @registry.register_fusion("linear_sum") class LinearSum(): ... """ def wrap(func): from torch import nn assert issubclass( func, nn.Module ), "All Fusion must inherit torch.nn.Module class" cls.mapping["fusion_name_mapping"][name] = func return func return wrap @classmethod def register_model(cls, name): r"""Register a model to registry with key 'name' Args: name: Key with which the model will be registered. Usage:: from mmf.common.registry import registry from mmf.models.base_model import BaseModel @registry.register_task("pythia") class Pythia(BaseModel): ... """ def wrap(func): from mmf.models.base_model import BaseModel assert issubclass( func, BaseModel ), "All models must inherit BaseModel class" cls.mapping["model_name_mapping"][name] = func return func return wrap @classmethod def register_processor(cls, name): r"""Register a processor to registry with key 'name' Args: name: Key with which the processor will be registered. Usage:: from mmf.common.registry import registry from mmf.datasets.processors import BaseProcessor @registry.register_task("glove") class GloVe(BaseProcessor): ... """ def wrap(func): from mmf.datasets.processors.processors import BaseProcessor assert issubclass( func, BaseProcessor ), "All Processor classes must inherit BaseProcessor class" cls.mapping["processor_name_mapping"][name] = func return func return wrap @classmethod def register_optimizer(cls, name): def wrap(func): cls.mapping["optimizer_name_mapping"][name] = func return func return wrap @classmethod def register_scheduler(cls, name): def wrap(func): cls.mapping["scheduler_name_mapping"][name] = func return func return wrap @classmethod def register_decoder(cls, name): r"""Register a decoder to registry with key 'name' Args: name: Key with which the decoder will be registered. Usage:: from mmf.common.registry import registry from mmf.utils.text import TextDecoder @registry.register_decoder("nucleus_sampling") class NucleusSampling(TextDecoder): ... """ def wrap(decoder_cls): from mmf.utils.text import TextDecoder assert issubclass( decoder_cls, TextDecoder ), "All decoders must inherit TextDecoder class" cls.mapping["decoder_name_mapping"][name] = decoder_cls return decoder_cls return wrap @classmethod def register(cls, name, obj): r"""Register an item to registry with key 'name' Args: name: Key with which the item will be registered. Usage:: from mmf.common.registry import registry registry.register("config", {}) """ path = name.split(".") current = cls.mapping["state"] for part in path[:-1]: if part not in current: current[part] = {} current = current[part] current[path[-1]] = obj @classmethod def get_trainer_class(cls, name): return cls.mapping["trainer_name_mapping"].get(name, None) @classmethod def get_builder_class(cls, name): return cls.mapping["builder_name_mapping"].get(name, None) @classmethod def get_model_class(cls, name): return cls.mapping["model_name_mapping"].get(name, None) @classmethod def get_processor_class(cls, name): return cls.mapping["processor_name_mapping"].get(name, None) @classmethod def get_metric_class(cls, name): return cls.mapping["metric_name_mapping"].get(name, None) @classmethod def get_loss_class(cls, name): return cls.mapping["loss_name_mapping"].get(name, None) @classmethod def get_optimizer_class(cls, name): return cls.mapping["optimizer_name_mapping"].get(name, None) @classmethod def get_scheduler_class(cls, name): return cls.mapping["scheduler_name_mapping"].get(name, None) @classmethod def get_decoder_class(cls, name): return cls.mapping["decoder_name_mapping"].get(name, None) @classmethod def get(cls, name, default=None, no_warning=False): r"""Get an item from registry with key 'name' Args: name (string): Key whose value needs to be retrieved. default: If passed and key is not in registry, default value will be returned with a warning. Default: None no_warning (bool): If passed as True, warning when key doesn't exist will not be generated. Useful for MMF's internal operations. Default: False Usage:: from mmf.common.registry import registry config = registry.get("config") """ original_name = name name = name.split(".") value = cls.mapping["state"] for subname in name: value = value.get(subname, default) if value is default: break if ( "writer" in cls.mapping["state"] and value == default and no_warning is False ): cls.mapping["state"]["writer"].write( "Key {} is not present in registry, returning default value " "of {}".format(original_name, default) ) return value @classmethod def unregister(cls, name): r"""Remove an item from registry with key 'name' Args: name: Key which needs to be removed. Usage:: from mmf.common.registry import registry config = registry.unregister("config") """ return cls.mapping["state"].pop(name, None) registry = Registry() setup_imports()
28.539024
80
0.597214
a8baa06a1f4f9569c0e3b5773b6e905103f2b117
5,467
py
Python
UCourse/questions/views.py
Natsu1270/UCourse
e8c814d91e54f5f51e4a0fa2df177ebb59544dc2
[ "MIT" ]
1
2020-08-31T22:40:27.000Z
2020-08-31T22:40:27.000Z
UCourse/questions/views.py
Natsu1270/UCourse
e8c814d91e54f5f51e4a0fa2df177ebb59544dc2
[ "MIT" ]
13
2020-08-05T16:17:09.000Z
2022-03-12T00:18:42.000Z
UCourse/questions/views.py
Natsu1270/UCourse
e8c814d91e54f5f51e4a0fa2df177ebb59544dc2
[ "MIT" ]
null
null
null
from django.db.models import Q from rest_framework import generics, permissions, status from rest_framework.response import Response from questions import serializers from questions.models import Question, Choice from exams.models import Exam from copy import deepcopy class QuestionDetailAPI(generics.RetrieveUpdateDestroyAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = serializers.QuestionSerializer queryset = Question.objects.all() class QuestionListAPI(generics.ListCreateAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = serializers.QuestionSerializer queryset = Question.objects.all() class CreateQuestionAPI(generics.GenericAPIView): serializer_class = serializers.QuestionMinSerializer permission_classes = [ permissions.IsAuthenticated ] def post(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) exam_id = request.data.get('exam', None) choices = request.data.get('choices', []) serializer.is_valid(raise_exception=True) data = serializer.validated_data question = serializer.save() if exam_id is not None: exam = Exam.objects.get(pk=request.data['exam']) question.question_exams.add(exam) question.save() for choice in choices: new_choice = Choice.objects.create(content=choice['content']) question.choices.add(new_choice) if choice['isAnswer'] and choice['isAnswer'] is True: question.answers.add(new_choice) question.created_by = self.request.user question.save() return Response({ "data": serializers.QuestionSerializer(instance=question).data, "result": True, "message": "Register successfully", "status_code": 201 }, status=status.HTTP_201_CREATED) class EditQuestionAPI(generics.GenericAPIView): serializer_class = serializers.QuestionMinSerializer permission_classes = [permissions.IsAuthenticated] def post(self, request, *args, **kwargs): choices = request.data['choices'] question_id = request.data['id'] instance = Question.objects.get(pk=question_id) serializer = self.get_serializer(instance, data=request.data, partial=True) serializer.is_valid(raise_exception=True) question = serializer.save() old_choices = instance.choices old_answers = instance.answers new_choice_ids = list() for choice in choices: if 'id' in choice and choice['id']: new_choice_ids.append(choice['id']) old_choice = old_choices.get(pk=choice['id']) old_choice.content = choice['content'] old_choice.save() is_answers = old_answers.filter(pk=choice['id']) if len(is_answers) == 0 and (choice['isAnswer'] and choice['isAnswer'] is True): question.answers.add(old_choice) if len(is_answers) > 0 and (choice['isAnswer'] is None or choice['isAnswer'] is False): question.answers.remove(old_choice) else: new_choice = Choice.objects.create(content=choice['content']) new_choice_ids.append(new_choice.id) question.choices.add(new_choice) if choice['isAnswer'] and choice['isAnswer'] is True: question.answers.add(new_choice) for choice in old_choices.all(): if choice.id not in new_choice_ids: choice.delete() question = question.save() return Response({ "data": serializers.QuestionSerializer(instance=question).data, "result": True, "message": "Edit question successfully", "status_code": 201 }, status=status.HTTP_200_OK) class GetQuestionsByTeacher(generics.GenericAPIView): permission_classes = [permissions.IsAuthenticated] def get(self, request, *args, **kwargs): user = self.request.user queryset = Question.objects.filter(created_by=user).order_by('-created_date') return Response( data=serializers.QuestionSerializer(instance=queryset, many=True).data, status=status.HTTP_200_OK ) class GetQuestionsByTeacherRemain(generics.GenericAPIView): permission_classes = [permissions.IsAuthenticated] def get(self, request, *args, **kwargs): user = self.request.user exam_id = self.request.query_params.get('examId') exam = Exam.objects.get(pk=exam_id) queryset = Question.objects.filter(Q(created_by=user) & ~Q(question_exams__in=[exam])).order_by('-created_date') return Response( data=serializers.QuestionSerializer(instance=queryset, many=True).data, status=status.HTTP_200_OK ) class AddToExam(generics.GenericAPIView): permission_classes = [permissions.IsAuthenticated] def post(self, request, *args, **kwargs): exam_id = self.request.data.get('examId') exam = Exam.objects.get(pk=exam_id) rows = self.request.data.get('rows') for question_id in rows: exam.questions.add(question_id) exam.save() return Response({ "result": True }, status=status.HTTP_200_OK)
35.5
120
0.651546
4d0dde9e150e96ac17d650e26fcd21708ec64c2f
98
py
Python
IAF/layers/__init__.py
MrHuff/DIF-NLDL
4d032cb0522efd62ea754a6c5d02b7015ef2f62b
[ "MIT" ]
null
null
null
IAF/layers/__init__.py
MrHuff/DIF-NLDL
4d032cb0522efd62ea754a6c5d02b7015ef2f62b
[ "MIT" ]
null
null
null
IAF/layers/__init__.py
MrHuff/DIF-NLDL
4d032cb0522efd62ea754a6c5d02b7015ef2f62b
[ "MIT" ]
null
null
null
from IAF.layers.linear import LinearVariational from IAF.layers.autoregressive import LinearMasked
49
50
0.887755
77291388aef5b8fe94df0a92ffb88ce80d27746d
465
py
Python
minigest/fisco/viewsets/natura_operazione_iva.py
ctrlmaniac/minigest
2bfceb57e41c872e4112e24d0e6991164846888b
[ "MIT" ]
null
null
null
minigest/fisco/viewsets/natura_operazione_iva.py
ctrlmaniac/minigest
2bfceb57e41c872e4112e24d0e6991164846888b
[ "MIT" ]
1
2021-09-22T19:10:20.000Z
2021-09-22T19:10:20.000Z
minigest/fisco/viewsets/natura_operazione_iva.py
ctrlmaniac/minigest
2bfceb57e41c872e4112e24d0e6991164846888b
[ "MIT" ]
null
null
null
from django.conf import settings from rest_framework import permissions, viewsets from ..models import NaturaOperazioneIVA from ..serializers import NaturaOperazioneIVASerializer permission = permissions.AllowAny if settings.DEBUG else permissions.IsAuthenticated class NaturaOperazioneIVAViewSet(viewsets.ModelViewSet): permission_classes = [permission] queryset = NaturaOperazioneIVA.objects.all() serializer_class = NaturaOperazioneIVASerializer
33.214286
84
0.84086
ba8484d67d3402df53526f4655dd8c886a795620
199
py
Python
testData/search/grandChildKeywordArgumentWithPythonClass.py
alek-sun/pydantic-pycharm-plugin
6b07519aadf0ff8b8a644c1f9ede88e09c687c80
[ "Apache-2.0", "MIT" ]
238
2019-08-05T12:46:09.000Z
2022-03-25T08:53:25.000Z
testData/search/grandChildKeywordArgumentWithPythonClass.py
alek-sun/pydantic-pycharm-plugin
6b07519aadf0ff8b8a644c1f9ede88e09c687c80
[ "Apache-2.0", "MIT" ]
415
2019-07-15T17:39:35.000Z
2022-03-31T01:18:38.000Z
testData/search/grandChildKeywordArgumentWithPythonClass.py
collerek/pydantic-pycharm-plugin
7068ece42334cc9fbe927d779d199c86d5139888
[ "Apache-2.0", "MIT" ]
7
2019-08-09T01:03:16.000Z
2022-02-08T03:28:19.000Z
from pydantic import BaseModel, validator class A(BaseModel): pass class B(A): pass class D: pass class C(B, D): pass A(abc='cde') B(abc='cde') C(ab<caret>c='cde') ## count: 0
9.47619
41
0.603015
c4489da0bf4aed6aface1a931557eaff74b55e98
3,986
py
Python
alipay/aop/api/request/ZhimaCreditPeZmgoAgreementQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/ZhimaCreditPeZmgoAgreementQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/ZhimaCreditPeZmgoAgreementQueryRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.ZhimaCreditPeZmgoAgreementQueryModel import ZhimaCreditPeZmgoAgreementQueryModel class ZhimaCreditPeZmgoAgreementQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, ZhimaCreditPeZmgoAgreementQueryModel): self._biz_content = value else: self._biz_content = ZhimaCreditPeZmgoAgreementQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'zhima.credit.pe.zmgo.agreement.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.489655
148
0.64576
e24ada44bd2fdf1df6a5105db9607918a2b01ace
2,526
py
Python
instr.py
frorruchi/HeartCheck
2e2dd3dfaaad2c1166c10ff6352d4170c3a41604
[ "CC0-1.0" ]
null
null
null
instr.py
frorruchi/HeartCheck
2e2dd3dfaaad2c1166c10ff6352d4170c3a41604
[ "CC0-1.0" ]
null
null
null
instr.py
frorruchi/HeartCheck
2e2dd3dfaaad2c1166c10ff6352d4170c3a41604
[ "CC0-1.0" ]
null
null
null
from PyQt5.QtCore import QTime win_x, win_y = 200, 100 win_width, win_height = 1000, 600 txt_hello = 'Добро пожаловать в программу по определению состояния здоровья!' txt_next = 'Начать' txt_instruction = ('Данное приложение позволит вам с помощью теста Руфье провести первичную диагностику вашего здоровья.\n' 'Проба Руфье представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке.\n' 'У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют частоту пульса за 15 секунд;\n' 'затем в течение 45 секунд испытуемый выполняет 30 приседаний.\n' 'После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 секунд,\n' 'а потом — за последние 15 секунд первой минуты периода восстановления.\n' 'Важно! Если в процессе проведения испытания вы почувствуете себя плохо (появится головокружение, шум в\n' 'ушах, сильная одышка и др.), то тест необходимо прервать и обратиться к врачу.' ) txt_title = 'Здоровье' txt_name = 'Введите Ф.И.О.:' txt_hintname = "Ф.И.О." txt_hintage = "0" txt_test1 = 'Лягте на спину и замерьте пульс за 15 секунд. Нажмите кнопку "Начать первый тест", чтобы запустить таймер.\nРезультат запишите в соответствующее поле.' txt_test2 = 'Выполните 30 приседаний за 45 секунд. Для этого нажмите кнопку "Начать делать приседания",\nчтобы запустить счетчик приседаний.' txt_test3 = 'Лягте на спину и замерьте пульс сначала за первые 15 секунд минуты, затем за последние 15 секунд.\nНажмите кнопку "Начать финальный тест", чтобы запустить таймер.\nЗеленым обозначены секунды, в течение которых необходимо \nпроводить измерения, черным - минуты без замера пульсаций. Результаты запишите в соответствующие поля.' txt_sendresults = 'Отправить результаты' txt_hinttest1 = '0' txt_hinttest2 = '0' txt_hinttest3 = '0' txt_starttest1 = 'Начать первый тест' txt_starttest2 = 'Начать делать приседания' txt_starttest3 = 'Начать финальный тест' time = QTime(0, 0, 15) txt_timer = time.toString("hh:mm:ss") txt_age = 'Полных лет:' txt_finalwin = 'Результаты' txt_index = 'Индекс Руфье: ' txt_workheart = 'Работоспособность сердца: ' txt_res1 = "низкая. Срочно обратитесь к врачу!" txt_res2 = "удовлетворительная. Обратитесь к врачу!" txt_res3 = "средняя. Возможно, стоит дополнительно обследоваться у врача." txt_res4 = "выше среднего" txt_res5 = "высокая"
60.142857
339
0.743864
81315adf065f888b24ce615f455cdf34ec25c8de
2,557
py
Python
mmfashion/models/embed_extractor/embed_extract.py
RyanJiang0416/mmfashion
89f56e3e631b4f5c1403f7e8897396cc02b5aa91
[ "Apache-2.0" ]
952
2019-10-31T01:49:07.000Z
2022-03-29T11:33:27.000Z
mmfashion/models/embed_extractor/embed_extract.py
RyanJiang0416/mmfashion
89f56e3e631b4f5c1403f7e8897396cc02b5aa91
[ "Apache-2.0" ]
135
2019-11-02T07:09:04.000Z
2022-03-17T06:08:11.000Z
mmfashion/models/embed_extractor/embed_extract.py
RyanJiang0416/mmfashion
89f56e3e631b4f5c1403f7e8897396cc02b5aa91
[ "Apache-2.0" ]
239
2019-10-31T02:08:40.000Z
2022-03-22T03:14:38.000Z
import torch.nn as nn from ..builder import build_loss from ..registry import EMBEDEXTRACTOR @EMBEDEXTRACTOR.register_module class EmbedExtractor(nn.Module): def __init__(self, inchannels, inter_channels, loss_id=dict( type='CELoss', ratio=1, weight=None, size_average=None, reduce=None, reduction='mean'), loss_triplet=dict(type='TripletLoss', method='cosine')): super(EmbedExtractor, self).__init__() self.embed_linear = nn.Linear(inchannels, inter_channels[0]) self.bn = nn.BatchNorm1d(inter_channels[0], inter_channels[1]) self.id_linear = nn.Linear(inter_channels[0], inter_channels[1]) self.loss_id = build_loss(loss_id) if loss_triplet is not None: self.loss_triplet = build_loss(loss_triplet) else: self.loss_triplet = None def forward_train(self, x, id, triplet, pos, neg, triplet_pos_label, triplet_neg_label): embed = self.embed_linear(x) id_pred = self.id_linear(embed) loss_id = self.loss_id(id_pred, id) if triplet: pos_embed = self.embed_linear(pos) neg_embed = self.embed_linear(neg) loss_triplet = self.loss_triplet(embed, pos_embed, neg_embed, triplet_pos_label, triplet_neg_label) return loss_id + loss_triplet else: return loss_id def forward_test(self, x): embed = self.embed_linear(x) return embed def forward(self, x, id, return_loss=False, triplet=False, pos=None, neg=None, triplet_pos_label=None, triplet_neg_label=None): if return_loss: return self.forward_train(x, id, triplet, pos, neg, triplet_pos_label, triplet_neg_label) else: return self.forward_test(x) def init_weights(self): nn.init.xavier_uniform_(self.embed_linear.weight) if self.embed_linear.bias is not None: self.embed_linear.bias.data.fill_(0.01) nn.init.xavier_uniform_(self.id_linear.weight) if self.id_linear.bias is not None: self.id_linear.bias.data.fill_(0.01)
33.644737
75
0.550645
c8361bcef7c06cb1273dbad3f1c02709bf4674b0
9,356
py
Python
tests/integration/popular_repos/popular_repos.py
hiro511/rules_go
a9a8548ceb9abdd7293df1a77e3917238ddfdccd
[ "Apache-2.0" ]
null
null
null
tests/integration/popular_repos/popular_repos.py
hiro511/rules_go
a9a8548ceb9abdd7293df1a77e3917238ddfdccd
[ "Apache-2.0" ]
null
null
null
tests/integration/popular_repos/popular_repos.py
hiro511/rules_go
a9a8548ceb9abdd7293df1a77e3917238ddfdccd
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from subprocess import check_output, call from sys import exit POPULAR_REPOS = [ dict( name = "org_golang_x_crypto", importpath = "golang.org/x/crypto", urls = ["https://codeload.github.com/golang/crypto/zip/81e90905daefcd6fd217b62423c0908922eadb30"], strip_prefix = "crypto-81e90905daefcd6fd217b62423c0908922eadb30", type = "zip", excludes = [ "ssh/agent:go_default_test", "ssh:go_default_test", "ssh/test:go_default_test", ], ), dict( name = "org_golang_x_net", importpath = "golang.org/x/net", commit = "57efc9c3d9f91fb3277f8da1cff370539c4d3dc5", excludes = [ "bpf:go_default_test", # Needs testdata directory "html/charset:go_default_test", # Needs testdata directory "http2:go_default_test", # Needs testdata directory "icmp:go_default_xtest", # icmp requires adjusting kernel options. "nettest:go_default_test", # "lif:go_default_test", ], darwin_tests = [ "route:go_default_test", # Not supported on linux ] ), dict( name = "org_golang_x_sys", importpath = "golang.org/x/sys", commit = "0b25a408a50076fbbcae6b7ac0ea5fbb0b085e79", excludes = [ "unix:go_default_xtest", # TODO(#413): External test depends on symbols defined in internal test. ], ), dict( name = "org_golang_x_text", importpath = "golang.org/x/text", commit = "a9a820217f98f7c8a207ec1e45a874e1fe12c478", excludes = [ "encoding/japanese:go_default_test", # Needs testdata directory "encoding/korean:go_default_test", # Needs testdata directory "encoding/charmap:go_default_test", # Needs testdata directory "encoding/simplifiedchinese:go_default_test", # Needs testdata directory "encoding/traditionalchinese:go_default_test", # Needs testdata directory "encoding/unicode/utf32:go_default_test", # Needs testdata directory "encoding/unicode:go_default_test", # Needs testdata directory ], ), dict( name = "org_golang_x_tools", importpath = "golang.org/x/tools", commit = "663269851cdddc898f963782f74ea574bcd5c814", excludes = [ "cmd/bundle:go_default_test", # Needs testdata directory "cmd/callgraph:go_default_test", # Needs testdata directory "cmd/cover:go_default_xtest", # Needs testdata directory "cmd/guru:go_default_xtest", # Needs testdata directory "cmd/stringer:go_default_test", # Needs testdata directory "go/buildutil:go_default_xtest", # Needs testdata directory "go/callgraph/cha:go_default_xtest", # Needs testdata directory "go/callgraph/rta:go_default_xtest", # Needs testdata directory "go/gccgoexportdata:go_default_xtest", # Needs testdata directory "go/gcexportdata:go_default_xtest", # Needs testdata directory "go/gcimporter15:go_default_test", # Needs testdata directory "go/internal/gccgoimporter:go_default_test", # Needs testdata directory "go/loader:go_default_xtest", # Needs testdata directory "go/pointer:go_default_xtest", # Needs testdata directory "go/ssa/interp:go_default_xtest", # Needs testdata directory "go/ssa/ssautil:go_default_xtest", # Needs testdata directory "go/ssa:go_default_xtest", # Needs testdata directory "refactor/eg:go_default_xtest", # Needs testdata directory "cmd/fiximports:go_default_test", # requires working GOROOT, not present in CI. "cmd/godoc:go_default_xtest", # TODO(#417) "cmd/gorename:go_default_xtest", # TODO(#417) "go/gcimporter15:go_default_xtest", # TODO(#417) "refactor/importgraph:go_default_xtest", # TODO(#417) "refactor/rename:go_default_test", # TODO(#417) "cmd/guru/testdata/src/referrers:go_default_xtest", # Not a real test "cmd/guru/testdata/src/referrers:go_default_test", # Not a real test "container/intsets:go_default_xtest", # TODO(#413): External test depends on symbols defined in internal test. ], ), dict( name = "org_golang_google_grpc", importpath = "google.golang.org/grpc", commit = "3f10311ccf076b6b7cba28273df3290d42e60982", # GRPC has already-generated protobuf definitions, and we don't currently # register any protobuf toolchains in this WORKSPACE. As such, the build # should fail if we try to generate protobuf rules, but succeed if we # disable generation. build_file_proto_mode = "disable", excludes = [ "test:go_default_test", "examples/route_guide/mock_routeguide:go_default_xtest", "examples/helloworld/mock_helloworld:go_default_xtest", "credentials:go_default_test", ":go_default_test", ], ), dict( name = "com_github_mattn_go_sqlite3", importpath = "github.com/mattn/go-sqlite3", commit = "83772a7051f5e30d8e59746a9e43dfa706b72f3b", excludes = [], ), ] COPYRIGHT_HEADER = """ # Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################## # Generated file, do not edit! ############################## """.strip() BZL_HEADER = COPYRIGHT_HEADER + """ load("@io_bazel_rules_go//go/private:go_repository.bzl", "go_repository") def _maybe(repo_rule, name, **kwargs): if name not in native.existing_rules(): repo_rule(name=name, **kwargs) def popular_repos(): """ BUILD_HEADER = COPYRIGHT_HEADER DOCUMENTATION_HEADER = """ Popular repository tests ======================== These tests are designed to check that gazelle and rules_go together can cope with a list of popluar repositories people depend on. It helps catch changes that might break a large number of users. .. contents:: """.lstrip() def popular_repos_bzl(): with open("popular_repos.bzl", "w") as f: f.write(BZL_HEADER) for repo in POPULAR_REPOS: f.write(" _maybe(\n go_repository,\n") for k in ["name", "importpath", "commit", "strip_prefix", "type", "build_file_proto_mode"]: if k in repo: f.write(' {}="{}",\n'.format(k, repo[k])) for k in ["urls"]: if k in repo: f.write(' {}={},\n'.format(k, repo[k])) f.write(" )\n") def build_bazel(): with open("BUILD.bazel", "w") as f: f.write(BUILD_HEADER) for repo in POPULAR_REPOS: name = repo["name"] tests = check_output(["bazel", "query", "kind(go_test, \"@{}//...\")".format(name)]).split("\n") excludes = ["@{}//{}".format(name, l) for l in repo.get("excludes", [])] for k in repo: if k.endswith("_excludes") or k.endswith("_tests"): excludes.extend(["@{}//{}".format(name, l) for l in repo[k]]) invalid_excludes = [t for t in excludes if not t in tests] if invalid_excludes: exit("Invalid excludes found: {}".format(invalid_excludes)) f.write('\ntest_suite(\n') f.write(' name = "{}",\n'.format(name)) f.write(' tests = [\n') actual = [] for test in sorted(tests, key=lambda test: test.replace(":", "!")): if test in excludes or not test: continue f.write(' "{}",\n'.format(test)) actual.append(test) f.write(' ],\n') #TODO: add in the platform "select" tests f.write(')\n') repo["actual"] = actual def readme_rst(): with open("README.rst", "w") as f: f.write(DOCUMENTATION_HEADER) for repo in POPULAR_REPOS: name = repo["name"] f.write("{}\n{}\n\n".format(name, "_"*len(name))) f.write("This runs tests from the repository `{0} <https://{0}>`_\n\n".format(repo["importpath"])) for test in repo["actual"]: f.write("* {}\n".format(test)) f.write("\n\n") def main(): popular_repos_bzl() build_bazel() readme_rst() if __name__ == "__main__": main()
39.476793
122
0.639376
6db641f33d18662a78aff01101cd79de86cf0fcd
3,566
py
Python
mantra/mantra_solver.py
durandtibo/mantra-python
a35dfd93f92f7f510a212ee5356ae4d776a27849
[ "MIT" ]
1
2019-02-22T09:48:04.000Z
2019-02-22T09:48:04.000Z
mantra/mantra_solver.py
durandtibo/mantra-python
a35dfd93f92f7f510a212ee5356ae4d776a27849
[ "MIT" ]
null
null
null
mantra/mantra_solver.py
durandtibo/mantra-python
a35dfd93f92f7f510a212ee5356ae4d776a27849
[ "MIT" ]
null
null
null
import time from mantra.util.data.labeled_object import LabeledObject from mantra.util.solver.loss import Loss from mantra.util.solver.sgd_solver import SGDSolver from mantra.util.solver.ssg_solver import SSGSolver class MantraLoss(Loss): def __str__(self): return "MantraLoss" def evaluate(self, model, x, y): """ Evaluate the loss for the given model, pattern and label. The return value is a scalar. - model: model - x: pattern - y: label """ # compute the loss augmented inference y_star, h_star = self.max_oracle(model, x, y) # compute the best latent value for label y h_bar = model.predict(x, y) # compute the loss term return model.loss(y, y_star) + model.value_of(x, y_star, h_star) - model.value_of(x, y, h_bar) def compute_gradient(self, model, x, y, y_star2=None): """ Compute the gradient of the hinge loss for the given model, pattern and label. The return value is a vector. - model: model - x: pattern - y: label """ if y_star2 is None: # compute the loss augmented inference y_star, h_star = self.max_oracle(model, x, y) else: y_star, h_star = y_star2 if y_star == y: # for this case, the gradient is zero return None # compute the best latent value for label y h_bar = model.predict(x, y) # compute the gradient of the loss return model.sub(model.feature_map(x, y_star, h_star), x, y, h_bar) def error(self, model, y_truth, y): """ Compute the loss function - y_truth: label - y: label """ return model.loss(y_truth, y) def max_oracle(self, model, x, y_star): """ Compute the loss-augmented inference defined in model for pattern x and label y - x: pattern - y_star: label return (label, (h^+, h^-)) """ return model.max_oracle(x, y_star) def initialize_mantra_data(model, data): initialized_data = list() for i in range(len(data)): pattern = data[i].pattern label = data[i].label latent = model.initialize_latent(pattern, label) initialized_data.append(LabeledObject(pattern, (label, latent))) return initialized_data ############################################################################### # MantraWithSGD ############################################################################### class MantraWithSGD: def __init__(self, lambdaa=1e-4, num_epochs=25, sample='perm', seed=1, verbose=1, show_debug_every=0): self.lambdaa = lambdaa self.num_epochs = num_epochs self.sample = sample self.seed = seed self.verbose = verbose self.show_debug_every = int(show_debug_every) def optimize(self, model, data, val_data=None): solver = SGDSolver(MantraLoss(), self.lambdaa, self.num_epochs, self.sample, self.seed, self.verbose, self.show_debug_every) return solver.optimize(model, data, val_data) ############################################################################### # MantraWithSSG ############################################################################### class MantraWithSSG: def __init__(self, lambdaa=1e-4, num_epochs=25, sample='perm', do_weighted_averaging=False, seed=1, verbose=1, show_debug_every=0): self.lambdaa = lambdaa self.num_epochs = num_epochs self.sample = sample self.do_weighted_averaging = do_weighted_averaging self.seed = seed self.verbose = verbose self.show_debug_every = int(show_debug_every) def optimize(self, model, data, val_data=None): solver = SSGSolver(MantraLoss(), self.lambdaa, self.num_epochs, self.sample, self.do_weighted_averaging, self.seed, self.verbose, self.show_debug_every) return solver.optimize(model, data, val_data)
29.966387
154
0.661526
9f1032b25a86a7922e2ba9f8bf85956e1680122c
922
py
Python
data_processing/cut_and_remove_stop_words.py
lvyufeng/cnki_h5_papers_auto_downloader
8b2f92cbee2f3de9afa3754ee971cdc60712310e
[ "MIT" ]
2
2020-10-14T11:44:16.000Z
2021-08-30T13:43:30.000Z
data_processing/cut_and_remove_stop_words.py
lvyufeng/cnki_h5_papers_auto_downloader
8b2f92cbee2f3de9afa3754ee971cdc60712310e
[ "MIT" ]
null
null
null
data_processing/cut_and_remove_stop_words.py
lvyufeng/cnki_h5_papers_auto_downloader
8b2f92cbee2f3de9afa3754ee971cdc60712310e
[ "MIT" ]
null
null
null
import jieba import pymongo def stop_words_list(): stop_words = [line.strip() for line in open('stopword.txt','r+',encoding='UTF-8').readlines()] return stop_words def cut_words(sentence): sentence_cut = jieba.cut(sentence.strip()) stop_words = stop_words_list() output = '' for word in sentence_cut: if word not in stop_words: output += word output += ' ' return output output_filename = 'abstracts.txt' outputs = open(output_filename,'w+',encoding='UTF-8') client = pymongo.MongoClient('202.202.5.140') collection = client['cnki_papers'] db = collection['paper_detail'] for i in db.find(): try: line = cut_words(i['a_abstract'].replace('\n摘    要:\n','')) outputs.write(i['filename']+ '\t' + i['top-title'].strip() + '\t' + line + '\n') except Exception as e: print(i['filename']) db.remove(i) outputs.close()
23.641026
98
0.621475
a4b56c8a5c8c22471b9971824ea5601877f8a412
914
py
Python
DAEGC/utils.py
JLUVicent/DAEGC
9a4cc50e40e8521fafb00960d1adf8216674c8f6
[ "MIT" ]
32
2021-03-26T13:15:34.000Z
2022-03-14T06:07:57.000Z
DAEGC/utils.py
JLUVicent/DAEGC
9a4cc50e40e8521fafb00960d1adf8216674c8f6
[ "MIT" ]
3
2021-06-05T12:06:57.000Z
2021-12-10T03:09:20.000Z
DAEGC/utils.py
JLUVicent/DAEGC
9a4cc50e40e8521fafb00960d1adf8216674c8f6
[ "MIT" ]
8
2021-04-25T01:32:22.000Z
2022-03-30T08:16:20.000Z
import numpy as np import torch from sklearn.preprocessing import normalize from torch_geometric.datasets import Planetoid def get_dataset(dataset): datasets = Planetoid('./dataset', dataset) return datasets def data_preprocessing(dataset): dataset.adj = torch.sparse_coo_tensor( dataset.edge_index, torch.ones(dataset.edge_index.shape[1]), torch.Size([dataset.x.shape[0], dataset.x.shape[0]]) ).to_dense() dataset.adj_label = dataset.adj dataset.adj += torch.eye(dataset.x.shape[0]) dataset.adj = normalize(dataset.adj, norm="l1") dataset.adj = torch.from_numpy(dataset.adj).to(dtype=torch.float) return dataset def get_M(adj): adj_numpy = adj.cpu().numpy() # t_order t=2 tran_prob = normalize(adj_numpy, norm="l1", axis=0) M_numpy = sum([np.linalg.matrix_power(tran_prob, i) for i in range(1, t + 1)]) / t return torch.Tensor(M_numpy)
27.69697
121
0.702407
081b3b75dd2cf5d1e7ea32e0173a33362e465e5b
2,173
py
Python
coogger/cooggerapi/serializers.py
adilkhan8000/coogger
0d9350116bec29c0c4f5229118e4045c9e64d796
[ "MIT" ]
null
null
null
coogger/cooggerapi/serializers.py
adilkhan8000/coogger
0d9350116bec29c0c4f5229118e4045c9e64d796
[ "MIT" ]
null
null
null
coogger/cooggerapi/serializers.py
adilkhan8000/coogger
0d9350116bec29c0c4f5229118e4045c9e64d796
[ "MIT" ]
null
null
null
from rest_framework import serializers # models from cooggerapp.models import ( Content, OtherInformationOfUsers, SearchedWords, UserFollow) from django_steemconnect.models import SteemConnectUser, Community class SearchedWordsSerializer(serializers.ModelSerializer): class Meta: model = SearchedWords fields = ("word", "hmany") class UserFollowSerializer(serializers.ModelSerializer): class Meta: model = UserFollow fields = ("username", "choices", "adress") class CommunitySerializer(serializers.ModelSerializer): class Meta: model = Community fields = ("name", "host_name", "redirect_url", "client_id", "app_secret", "login_redirect", "scope", "icon_address", "ms", "management_user", "management","active") class SteemConnectUserSerializer(serializers.ModelSerializer): class Meta: model = SteemConnectUser fields = ( 'user', "username", "access_token", "refresh_token", "code", "community", "community_name" ) class UserSerializer(serializers.ModelSerializer): class Meta: model = OtherInformationOfUsers fields = ( "user", 'username', "about", "cooggerup_confirmation", "cooggerup_percent", "vote_percent", "beneficiaries", "sponsor", "total_votes", "total_vote_value", ) class ContentsSerializer(serializers.ModelSerializer): class Meta: model = Content fields = ( "community", "community_name", "user", 'username', 'title', 'permlink', 'content', "tag", "category", "language", "definition", "topic", "status", "time", "dor", "views", "read", "lastmod", "mod", "modusername", "cooggerup", )
23.619565
90
0.525541
44a686e61455375dc99ff3ab4de0ba790454f6ea
24,431
py
Python
neutron/tests/unit/ml2/drivers/test_l2population.py
plumgrid/plumgrid-quantum
dbd7e472ca28d22d694eeeba47e0738985583961
[ "Apache-2.0" ]
1
2016-04-23T21:33:31.000Z
2016-04-23T21:33:31.000Z
neutron/tests/unit/ml2/drivers/test_l2population.py
plumgrid/plumgrid-quantum
dbd7e472ca28d22d694eeeba47e0738985583961
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/ml2/drivers/test_l2population.py
plumgrid/plumgrid-quantum
dbd7e472ca28d22d694eeeba47e0738985583961
[ "Apache-2.0" ]
4
2015-04-14T10:06:51.000Z
2019-10-02T01:28:34.000Z
# Copyright (c) 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # @author: Sylvain Afchain, eNovance SAS # @author: Francois Eleouet, Orange # @author: Mathieu Rohon, Orange import mock from neutron.common import constants from neutron.common import topics from neutron import context from neutron.db import agents_db from neutron.db import api as db_api from neutron.extensions import portbindings from neutron.extensions import providernet as pnet from neutron import manager from neutron.openstack.common import timeutils from neutron.plugins.ml2 import config as config from neutron.plugins.ml2.drivers.l2pop import constants as l2_consts from neutron.plugins.ml2 import managers from neutron.plugins.ml2 import rpc from neutron.tests.unit import test_db_plugin as test_plugin HOST = 'my_l2_host' L2_AGENT = { 'binary': 'neutron-openvswitch-agent', 'host': HOST, 'topic': constants.L2_AGENT_TOPIC, 'configurations': {'tunneling_ip': '20.0.0.1', 'tunnel_types': ['vxlan']}, 'agent_type': constants.AGENT_TYPE_OVS, 'tunnel_type': [], 'start_flag': True } L2_AGENT_2 = { 'binary': 'neutron-openvswitch-agent', 'host': HOST + '_2', 'topic': constants.L2_AGENT_TOPIC, 'configurations': {'tunneling_ip': '20.0.0.2', 'tunnel_types': ['vxlan']}, 'agent_type': constants.AGENT_TYPE_OVS, 'tunnel_type': [], 'start_flag': True } L2_AGENT_3 = { 'binary': 'neutron-openvswitch-agent', 'host': HOST + '_3', 'topic': constants.L2_AGENT_TOPIC, 'configurations': {'tunneling_ip': '20.0.0.2', 'tunnel_types': []}, 'agent_type': constants.AGENT_TYPE_OVS, 'tunnel_type': [], 'start_flag': True } PLUGIN_NAME = 'neutron.plugins.ml2.plugin.Ml2Plugin' NOTIFIER = 'neutron.plugins.ml2.rpc.AgentNotifierApi' class TestL2PopulationRpcTestCase(test_plugin.NeutronDbPluginV2TestCase): def setUp(self): # Enable the test mechanism driver to ensure that # we can successfully call through to all mechanism # driver apis. config.cfg.CONF.set_override('mechanism_drivers', ['openvswitch', 'linuxbridge', 'l2population'], 'ml2') super(TestL2PopulationRpcTestCase, self).setUp(PLUGIN_NAME) self.addCleanup(config.cfg.CONF.reset) self.adminContext = context.get_admin_context() self.type_manager = managers.TypeManager() self.notifier = rpc.AgentNotifierApi(topics.AGENT) self.callbacks = rpc.RpcCallbacks(self.notifier, self.type_manager) self.orig_supported_agents = l2_consts.SUPPORTED_AGENT_TYPES l2_consts.SUPPORTED_AGENT_TYPES = [constants.AGENT_TYPE_OVS] net_arg = {pnet.NETWORK_TYPE: 'vxlan', pnet.SEGMENTATION_ID: '1'} self._network = self._make_network(self.fmt, 'net1', True, arg_list=(pnet.NETWORK_TYPE, pnet.SEGMENTATION_ID,), **net_arg) notifier_patch = mock.patch(NOTIFIER) notifier_patch.start() self.fanout_topic = topics.get_topic_name(topics.AGENT, topics.L2POPULATION, topics.UPDATE) fanout = ('neutron.openstack.common.rpc.proxy.RpcProxy.fanout_cast') fanout_patch = mock.patch(fanout) self.mock_fanout = fanout_patch.start() cast = ('neutron.openstack.common.rpc.proxy.RpcProxy.cast') cast_patch = mock.patch(cast) self.mock_cast = cast_patch.start() uptime = ('neutron.plugins.ml2.drivers.l2pop.db.L2populationDbMixin.' 'get_agent_uptime') uptime_patch = mock.patch(uptime, return_value=190) uptime_patch.start() self.addCleanup(mock.patch.stopall) self.addCleanup(db_api.clear_db) def tearDown(self): l2_consts.SUPPORTED_AGENT_TYPES = self.orig_supported_agents super(TestL2PopulationRpcTestCase, self).tearDown() def _register_ml2_agents(self): callback = agents_db.AgentExtRpcCallback() callback.report_state(self.adminContext, agent_state={'agent_state': L2_AGENT}, time=timeutils.strtime()) callback.report_state(self.adminContext, agent_state={'agent_state': L2_AGENT_2}, time=timeutils.strtime()) callback.report_state(self.adminContext, agent_state={'agent_state': L2_AGENT_3}, time=timeutils.strtime()) def test_fdb_add_called(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg) as port1: with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg): p1 = port1['port'] device = 'tap' + p1['id'] self.mock_fanout.reset_mock() self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) p1_ips = [p['ip_address'] for p in p1['fixed_ips']] expected = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.1': [[p1['mac_address'], p1_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'add_fdb_entries'} self.mock_fanout.assert_called_with( mock.ANY, expected, topic=self.fanout_topic) def test_fdb_add_not_called_type_local(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST + '_3'} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg) as port1: with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg): p1 = port1['port'] device = 'tap' + p1['id'] self.mock_fanout.reset_mock() self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) self.assertFalse(self.mock_fanout.called) def test_fdb_add_two_agents(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST, 'admin_state_up': True} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID, 'admin_state_up',), **host_arg) as port1: host_arg = {portbindings.HOST_ID: HOST + '_2', 'admin_state_up': True} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID, 'admin_state_up',), **host_arg) as port2: p1 = port1['port'] p2 = port2['port'] device = 'tap' + p1['id'] self.mock_cast.reset_mock() self.mock_fanout.reset_mock() self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) p1_ips = [p['ip_address'] for p in p1['fixed_ips']] p2_ips = [p['ip_address'] for p in p2['fixed_ips']] expected1 = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.2': [constants.FLOODING_ENTRY, [p2['mac_address'], p2_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'add_fdb_entries'} topic = topics.get_topic_name(topics.AGENT, topics.L2POPULATION, topics.UPDATE, HOST) self.mock_cast.assert_called_with(mock.ANY, expected1, topic=topic) expected2 = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.1': [constants.FLOODING_ENTRY, [p1['mac_address'], p1_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'add_fdb_entries'} self.mock_fanout.assert_called_with( mock.ANY, expected2, topic=self.fanout_topic) def test_fdb_add_called_two_networks(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST + '_2'} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg) as port1: with self.subnet(cidr='10.1.0.0/24') as subnet2: with self.port(subnet=subnet2, arg_list=(portbindings.HOST_ID,), **host_arg): host_arg = {portbindings.HOST_ID: HOST} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg) as port3: p1 = port1['port'] p3 = port3['port'] device = 'tap' + p3['id'] self.mock_cast.reset_mock() self.mock_fanout.reset_mock() self.callbacks.update_device_up( self.adminContext, agent_id=HOST, device=device) p1_ips = [p['ip_address'] for p in p1['fixed_ips']] expected1 = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.2': [constants.FLOODING_ENTRY, [p1['mac_address'], p1_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'add_fdb_entries'} topic = topics.get_topic_name(topics.AGENT, topics.L2POPULATION, topics.UPDATE, HOST) self.mock_cast.assert_called_with(mock.ANY, expected1, topic=topic) p3_ips = [p['ip_address'] for p in p3['fixed_ips']] expected2 = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.1': [constants.FLOODING_ENTRY, [p3['mac_address'], p3_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'add_fdb_entries'} self.mock_fanout.assert_called_with( mock.ANY, expected2, topic=self.fanout_topic) def test_fdb_remove_called_from_rpc(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg): with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg) as port: p1 = port['port'] device = 'tap' + p1['id'] self.mock_fanout.reset_mock() self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) self.callbacks.update_device_down(self.adminContext, agent_id=HOST, device=device) p1_ips = [p['ip_address'] for p in p1['fixed_ips']] expected = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.1': [[p1['mac_address'], p1_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'remove_fdb_entries'} self.mock_fanout.assert_called_with( mock.ANY, expected, topic=self.fanout_topic) def test_fdb_remove_called(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg): with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg) as port: p1 = port['port'] device = 'tap' + p1['id'] self.mock_fanout.reset_mock() self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) p1_ips = [p['ip_address'] for p in p1['fixed_ips']] expected = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.1': [[p1['mac_address'], p1_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'remove_fdb_entries'} self.mock_fanout.assert_any_call( mock.ANY, expected, topic=self.fanout_topic) def test_fdb_remove_called_last_port(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST} with self.port(subnet=subnet, arg_list=(portbindings.HOST_ID,), **host_arg) as port: p1 = port['port'] device = 'tap' + p1['id'] self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) p1_ips = [p['ip_address'] for p in p1['fixed_ips']] expected = {'args': {'fdb_entries': {p1['network_id']: {'ports': {'20.0.0.1': [constants.FLOODING_ENTRY, [p1['mac_address'], p1_ips[0]]]}, 'network_type': 'vxlan', 'segment_id': 1}}}, 'namespace': None, 'method': 'remove_fdb_entries'} self.mock_fanout.assert_any_call( mock.ANY, expected, topic=self.fanout_topic) def test_fixed_ips_changed(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST} with self.port(subnet=subnet, cidr='10.0.0.0/24', arg_list=(portbindings.HOST_ID,), **host_arg) as port1: p1 = port1['port'] device = 'tap' + p1['id'] self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) self.mock_fanout.reset_mock() data = {'port': {'fixed_ips': [{'ip_address': '10.0.0.2'}, {'ip_address': '10.0.0.10'}]}} req = self.new_update_request('ports', data, p1['id']) res = self.deserialize(self.fmt, req.get_response(self.api)) ips = res['port']['fixed_ips'] self.assertEqual(len(ips), 2) add_expected = {'args': {'fdb_entries': {'chg_ip': {p1['network_id']: {'20.0.0.1': {'after': [[p1['mac_address'], '10.0.0.10']]}}}}}, 'namespace': None, 'method': 'update_fdb_entries'} self.mock_fanout.assert_any_call( mock.ANY, add_expected, topic=self.fanout_topic) self.mock_fanout.reset_mock() data = {'port': {'fixed_ips': [{'ip_address': '10.0.0.2'}, {'ip_address': '10.0.0.16'}]}} req = self.new_update_request('ports', data, p1['id']) res = self.deserialize(self.fmt, req.get_response(self.api)) ips = res['port']['fixed_ips'] self.assertEqual(len(ips), 2) upd_expected = {'args': {'fdb_entries': {'chg_ip': {p1['network_id']: {'20.0.0.1': {'before': [[p1['mac_address'], '10.0.0.10']], 'after': [[p1['mac_address'], '10.0.0.16']]}}}}}, 'namespace': None, 'method': 'update_fdb_entries'} self.mock_fanout.assert_any_call( mock.ANY, upd_expected, topic=self.fanout_topic) self.mock_fanout.reset_mock() data = {'port': {'fixed_ips': [{'ip_address': '10.0.0.16'}]}} req = self.new_update_request('ports', data, p1['id']) res = self.deserialize(self.fmt, req.get_response(self.api)) ips = res['port']['fixed_ips'] self.assertEqual(len(ips), 1) del_expected = {'args': {'fdb_entries': {'chg_ip': {p1['network_id']: {'20.0.0.1': {'before': [[p1['mac_address'], '10.0.0.2']]}}}}}, 'namespace': None, 'method': 'update_fdb_entries'} self.mock_fanout.assert_any_call( mock.ANY, del_expected, topic=self.fanout_topic) def test_no_fdb_updates_without_port_updates(self): self._register_ml2_agents() with self.subnet(network=self._network) as subnet: host_arg = {portbindings.HOST_ID: HOST} with self.port(subnet=subnet, cidr='10.0.0.0/24', arg_list=(portbindings.HOST_ID,), **host_arg) as port1: p1 = port1['port'] device = 'tap' + p1['id'] self.callbacks.update_device_up(self.adminContext, agent_id=HOST, device=device) p1['status'] = 'ACTIVE' self.mock_fanout.reset_mock() fanout = ('neutron.plugins.ml2.drivers.l2pop.rpc.' 'L2populationAgentNotifyAPI._notification_fanout') fanout_patch = mock.patch(fanout) mock_fanout = fanout_patch.start() plugin = manager.NeutronManager.get_plugin() plugin.update_port(self.adminContext, p1['id'], port1) self.assertFalse(mock_fanout.called) fanout_patch.stop()
44.179024
78
0.430396
9a7838d1958e4033bd7742faeb1993b416a6a815
601
py
Python
algorithms/symmetric_tree.py
kainonly/leetcode
83a84ad48d517eb7f1377cb2a3aa3fe763da6627
[ "MIT" ]
null
null
null
algorithms/symmetric_tree.py
kainonly/leetcode
83a84ad48d517eb7f1377cb2a3aa3fe763da6627
[ "MIT" ]
null
null
null
algorithms/symmetric_tree.py
kainonly/leetcode
83a84ad48d517eb7f1377cb2a3aa3fe763da6627
[ "MIT" ]
null
null
null
# Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def isSymmetric(self, root: TreeNode) -> bool: def isSame(node1: TreeNode, node2: TreeNode): if not node1 and not node2: return True if not node1 or not node2: return False return node1.val == node2.val and isSame(node1.left, node2.right) and isSame(node1.right, node2.left) return isSame(root.left, root.right)
31.631579
113
0.605657
bba6b30d93593ff8a33d70cad5d3127a62a6dd4c
349,512
py
Python
ogc_server.py
timebackzhou/ogc_server
3355ebfafa4075e700bc9d55dbc727adc3626f09
[ "MIT" ]
null
null
null
ogc_server.py
timebackzhou/ogc_server
3355ebfafa4075e700bc9d55dbc727adc3626f09
[ "MIT" ]
null
null
null
ogc_server.py
timebackzhou/ogc_server
3355ebfafa4075e700bc9d55dbc727adc3626f09
[ "MIT" ]
1
2019-09-16T14:02:28.000Z
2019-09-16T14:02:28.000Z
# -*- coding: utf-8 -*- import codecs import os, sys import copy import random import json import math import decimal import datetime import threading import exceptions import time import base64 import md5 from gevent import socket import urllib, urllib2, urlparse from socket import error import errno import subprocess from multiprocessing import Process, Queue, current_process, freeze_support import shutil import re #from PIL import Image import StringIO import cgi import uuid import copy from contextlib import contextmanager from gevent import pywsgi import gevent import gevent.fileobject from gevent.local import local from gevent.subprocess import check_output import pymongo import gridfs from bson.objectid import ObjectId try: from geventhttpclient import HTTPClient, URL except: print('geventhttpclient import error') try: import geventwebsocket from geventwebsocket.handler import WebSocketHandler except: print('geventwebsocket import error') # try: # from pysimplesoap.server import SoapDispatcher, WSGISOAPHandler # from pysimplesoap.client import SoapClient, SoapFault # except: # print('pysimplesoap import error') try: from PIL import Image except : print('PIL import error') try: from lxml import etree except: print('lxml import error') try: import czml except: print('czml import error') try: from py3o.template import Template except: print('import py3o.template error') import werkzeug from werkzeug.wrappers import Request, BaseResponse from werkzeug.local import LocalProxy from werkzeug.contrib.sessions import FilesystemSessionStore from werkzeug.utils import dump_cookie, parse_cookie from werkzeug.routing import Map, Rule, BaseConverter, ValidationError, HTTPException from sessions import MongoClient, MongodbSessionStore import configobj import db_util import bayes_util from module_locator import module_path, dec, dec1, enc, enc1 ENCODING = None ENCODING1 = None STATICRESOURCE_DIR = None STATICRESOURCE_CSS_DIR = None STATICRESOURCE_JS_DIR = None STATICRESOURCE_IMG_DIR = None UPLOAD_PHOTOS_DIR = None UPLOAD_VOICE_DIR = None gConfig = None gStaticCache = {} gTileCache = {} #deprecated gSatTileCache = {} gMapTileCache = {} gTerrainCache = {} gGreenlets = {} gClusterProcess = {} gLoginToken = {} gSecurityConfig = {} gWebSocketsMap = {} gTcpReconnectCounter = 0 gTcpSock = None gHttpClient = {} gFormTemplate = [] _SPECIAL = re.escape('()<>@,;:\\"/[]?={} \t') _RE_SPECIAL = re.compile('[%s]' % _SPECIAL) _QSTR = '"(?:\\\\.|[^"])*"' # Quoted string _VALUE = '(?:[^%s]+|%s)' % (_SPECIAL, _QSTR) # Save or quoted string _OPTION = '(?:;|^)\s*([^%s]+)\s*=\s*(%s)' % (_SPECIAL, _VALUE) _RE_OPTION = re.compile(_OPTION) # key=value part of an Content-Type like header gSessionStore = None gRequests = None gRequest = None gProxyRequest = None gJoinableQueue = None class BooleanConverter(BaseConverter): def __init__(self, url_map, randomify=False): super(BooleanConverter, self).__init__(url_map) self.regex = '(?:true|false)' def to_python(self, value): return value == 'true' def to_url(self, value): return value and 'true' or 'false' class Py3oItem(object): pass gUrlMap = Map([ Rule('/', endpoint='firstaccess'), Rule('/websocket', endpoint='handle_websocket'), #Rule('/auth_check/<username>/isnew/<bool:isnew>', endpoint='saveuser'), Rule('/get_salt', endpoint='get_salt'), Rule('/auth_check/<username>', endpoint='auth_check'), Rule('/auth_check', endpoint='auth_check'), Rule('/register/<username>/<password>', endpoint='user_add'), Rule('/register/<username>', endpoint='user_add'), Rule('/register', endpoint='user_add'), Rule('/unregister/<username>', endpoint='user_delete'), Rule('/unregister', endpoint='user_delete'), Rule('/login/<username>/<password>', endpoint='login'), Rule('/login/<username>', endpoint='login'), Rule('/login', endpoint='login'), Rule('/logout', endpoint='logout'), Rule('/reset_password/<username>/<password>', endpoint='reset_password'), Rule('/reset_password/<username>', endpoint='reset_password'), Rule('/reset_password', endpoint='reset_password'), Rule('/user_check', endpoint='user_check'), Rule('/user_query', endpoint='user_query'), Rule('/user_update', endpoint='user_update'), Rule('/function_add', endpoint='function_add'), Rule('/function_query', endpoint='function_query'), Rule('/function_update', endpoint='function_update'), Rule('/function_delete', endpoint='function_delete'), Rule('/role_add', endpoint='role_add'), Rule('/role_update', endpoint='role_update'), Rule('/role_query', endpoint='role_query'), Rule('/role_delete', endpoint='role_delete'), Rule('/role_template_save', endpoint='role_template_save'), Rule('/role_template_get', endpoint='role_template_get'), Rule('/workflow_add', endpoint='workflow_add'), Rule('/workflow_query', endpoint='workflow_query'), Rule('/workflow_query/<_id>', endpoint='workflow_query'), Rule('/workflow_update', endpoint='workflow_update'), Rule('/workflow_delete', endpoint='workflow_delete'), Rule('/workflow_delete/<_id>', endpoint='workflow_delete'), Rule('/workflow_template_add', endpoint='workflow_template_add'), Rule('/workflow_template_query', endpoint='workflow_template_query'), Rule('/workflow_template_query/<_id>', endpoint='workflow_template_query'), Rule('/workflow_template_update', endpoint='workflow_template_update'), Rule('/workflow_template_delete', endpoint='workflow_template_delete'), Rule('/workflow_template_delete/<_id>', endpoint='workflow_template_delete'), Rule('/workflow_form_fill', endpoint='workflow_form_fill'), Rule('/workflow_form_blank', endpoint='workflow_form_blank'), Rule('/user_add', endpoint='user_add'), Rule('/user_get', endpoint='user_get'), Rule('/all_user_get', endpoint='all_user_get'), Rule('/user_remove', endpoint='user_remove'), Rule('/group_add', endpoint='group_add'), Rule('/group_get', endpoint='group_get'), Rule('/group_update', endpoint='group_update'), Rule('/group_remove', endpoint='group_remove'), Rule('/user_group_get', endpoint='user_group_get'), Rule('/user_contact_get', endpoint='user_contact_get'), Rule('/chat_broadcast', endpoint='chat_broadcast'), Rule('/chat_log_query', endpoint='chat_log_query'), Rule('/chat_log_remove', endpoint='chat_log_remove'), Rule('/gridfs/upload', endpoint='gridfs_upload'), Rule('/gridfs/get', endpoint='gridfs_get'), Rule('/gridfs/get/<_id>', endpoint='gridfs_get'), Rule('/gridfs/get/<_id>/thumbnail/<width>/<height>', endpoint='gridfs_get'), Rule('/gridfs/query/<width>/<height>', endpoint='gridfs_query'), Rule('/gridfs/query/<width>/<height>/<limit>', endpoint='gridfs_query'), Rule('/gridfs/query/<width>/<height>/<limit>/<skip>', endpoint='gridfs_query'), Rule('/gridfs/delete', endpoint='gridfs_delete'), Rule('/gridfs/delete/<_id>', endpoint='gridfs_delete'), Rule('/antibird/get_equip_list', endpoint='get_equip_list'), Rule('/antibird/get_latest_records_by_imei', endpoint='get_latest_records_by_imei'), Rule('/antibird/equip_tower_mapping', endpoint='equip_tower_mapping'), Rule('/state_examination/save', endpoint='state_examination_save'), Rule('/state_examination/query', endpoint='state_examination_query'), Rule('/state_examination/query/line_names', endpoint='state_examination_query_line_names'), Rule('/state_examination/delete', endpoint='state_examination_delete'), Rule('/state_examination/delete/<_id>', endpoint='state_examination_delete'), Rule('/bayesian/query/graphiz', endpoint='bayesian_query_graphiz'), Rule('/bayesian/query/node', endpoint='bayesian_query_node'), Rule('/bayesian/query/predict', endpoint='bayesian_query_predict'), Rule('/bayesian/save/node', endpoint='bayesian_save_node'), Rule('/bayesian/delete/node', endpoint='bayesian_delete_node'), Rule('/bayesian/delete/node/<_id>', endpoint='bayesian_delete_node'), Rule('/bayesian/query/domains_range', endpoint='bayesian_query_domains_range'), Rule('/bayesian/save/domains_range', endpoint='bayesian_save_domains_range'), Rule('/bayesian/delete/domains_range', endpoint='bayesian_delete_domains_range'), Rule('/bayesian/delete/domains_range/<_id>', endpoint='bayesian_delete_domains_range'), Rule('/bayesian/reset/unit', endpoint='bayesian_reset_unit'), ], converters={'bool': BooleanConverter}) @contextmanager def session_manager(environ): global gRequests, gRequest if gRequests is None: gRequests = local() gRequest = LocalProxy(lambda: gRequests.request) gRequests.request = Request(environ) yield gRequests.request = None def init_global(): global ENCODING, ENCODING1, STATICRESOURCE_DIR, STATICRESOURCE_CSS_DIR, STATICRESOURCE_JS_DIR, STATICRESOURCE_IMG_DIR, UPLOAD_PHOTOS_DIR, UPLOAD_VOICE_DIR global gConfig, gStaticCache, gGreenlets, gClusterProcess, gSecurityConfig, gJoinableQueue ENCODING = 'utf-8' ENCODING1 = 'gb18030' STATICRESOURCE_DIR = os.path.join(module_path(), 'static') #CONFIGFILE = os.path.join(module_path(), 'ogc-config.ini') #gConfig = configobj.ConfigObj(db_util.CONFIGFILE, encoding='UTF8') gConfig = db_util.gConfig if gConfig['web'].has_key('webroot') and len(gConfig['web']['webroot'])>0: if os.path.exists(gConfig['web']['webroot']): STATICRESOURCE_DIR = gConfig['web']['webroot'] STATICRESOURCE_CSS_DIR = os.path.join(STATICRESOURCE_DIR, 'css') STATICRESOURCE_JS_DIR = os.path.join(STATICRESOURCE_DIR, 'js') STATICRESOURCE_IMG_DIR = os.path.join(STATICRESOURCE_DIR, 'img') UPLOAD_PHOTOS_DIR = os.path.join(STATICRESOURCE_DIR,'photos', 'upload') UPLOAD_VOICE_DIR = os.path.join(STATICRESOURCE_DIR,'voice') if gConfig['wsgi']['application'].lower() == 'authorize_platform': gSecurityConfig = db_util.mongo_find_one(gConfig['authorize_platform']['mongodb']['database'], gConfig['authorize_platform']['mongodb']['collection_security_config'], {}, 'authorize_platform' ) if gSecurityConfig is None: gSecurityConfig = {} if gConfig['wsgi']['application'].lower() in ['pay_platform', 'fake_gateway_alipay']: gJoinableQueue = gevent.queue.JoinableQueue(maxsize=int(gConfig['pay_platform']['queue']['max_queue_size'])) l = db_util.mongo_find(gConfig['pay_platform']['mongodb']['database'], gConfig['pay_platform']['mongodb']['collection_config'], {}, 0, 'pay_platform' ) for i in l: del i['_id'] key = i.keys()[0] gSecurityConfig[key] = i[key] if len(l) == 0: gSecurityConfig = {} if gConfig['wsgi']['application'].lower() == 'chat_platform': gJoinableQueue = gevent.queue.JoinableQueue(maxsize=int(gConfig['chat_platform']['queue']['max_queue_size'])) def handle_static(environ, aUrl): global ENCODING, gConfig global STATICRESOURCE_DIR, STATICRESOURCE_JS_DIR, STATICRESOURCE_CSS_DIR, STATICRESOURCE_IMG_DIR, UPLOAD_VOICE_DIR statuscode, contenttype, body = '404 Not Found', 'text/plain;charset=' + ENCODING, '404 Not Found' surl = dec(aUrl)#.replace('//', '').replace('/', os.path.sep) if surl[0:2] == '//': surl = surl[2:] if surl[0] == '/': surl = surl[1:] p = os.path.join(STATICRESOURCE_DIR , surl) isBin = False ext = os.path.splitext(p)[1] if '.' in surl: ext = surl[surl.rindex('.'):] else: ext = os.path.splitext(p)[1] print('handle_static p=%s' % p) if len(ext)>0: if gConfig['mime_type'].has_key(ext): if 'image/' in gConfig['mime_type'][ext]: isBin = True if '/octet-stream' in gConfig['mime_type'][ext]: isBin = True if '/pdf' in gConfig['mime_type'][ext]: isBin = True contenttype = gConfig['mime_type'][ext] if ext == '.js': if not os.path.exists(p): p = os.path.join(STATICRESOURCE_JS_DIR, aUrl[aUrl.rindex('/')+1:]) elif ext == '.css': if not os.path.exists(p): p = os.path.join(STATICRESOURCE_CSS_DIR, aUrl[aUrl.rindex('/')+1:]) elif 'image/' in gConfig['mime_type'][ext]: if not os.path.exists(p): p = os.path.abspath(os.path.join(STATICRESOURCE_IMG_DIR, aUrl[aUrl.rindex('/')+1:])) if not os.path.exists(p): p = os.path.join(STATICRESOURCE_DIR , aUrl) #p = os.path.abspath(p) p = dec(p) if os.path.exists(p): statuscode = '200 OK' mode = 'r' if isBin: mode = 'rb' with open(p, mode) as f: f1 = gevent.fileobject.FileObjectThread(f, mode) body = f1.read() else: statuscode = '404 Not Found' body = '404 Not Found' else: contenttype = 'application/octet-stream' if os.path.exists(p): statuscode = '200 OK' with open(p, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') body = f1.read() else: if ext == '.3gp': id = surl[surl.rindex('/') + 1:] id = id.replace('.3gp', '') fn = get_voice_file_latest(id) if fn: with open(os.path.join(UPLOAD_VOICE_DIR, fn), 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') body = f1.read() statuscode = '200 OK' else: contenttype = 'text/plain;charset=' + ENCODING statuscode = '500 Internal Server Error' body = '500 Internal Server Error' headers = {} headers['Content-Type'] = str(contenttype) return statuscode, headers, body def handle_wfs_GetCapabilities(params): headers = {} headers['Content-Type'] = 'text/xml;charset=' + ENCODING s = create_wfs_GetCapabilities() return '200 OK', headers, s def handle_wfs_GetFeature(params): headers = {} headers['Content-Type'] = 'text/xml;charset=' + ENCODING s = create_wfs_GetFeature() return '200 OK', headers, s def create_wfs_GetCapabilities(): namespace = {'ows':"http://www.opengis.net/ows", 'ogc':"http://www.opengis.net/ogc", 'wfs':"http://www.opengis.net/wfs", 'gml':"http://www.opengis.net/gml", 'xlink':"http://www.w3.org/1999/xlink", 'xsi':"http://www.w3.org/2001/XMLSchema-instance", 'schemaLocation':"http://www.opengis.net/wfs/1.1.0/WFS.xsd", 'my':"http://localhost:88/my" } wfs = '{%s}' % namespace['wfs'] ogc = '{%s}' % namespace['ogc'] ows = '{%s}' % namespace['ows'] xlink = '{%s}' % namespace['xlink'] root = etree.Element(wfs+"WFS_Capabilites", xmlns="http://www.opengis.net/wfs", nsmap=namespace, version="1.1.0", updateSequence="0") #ServiceIdentification ServiceIdentification = etree.SubElement(root, ows + "ServiceIdentification") Title = etree.SubElement(ServiceIdentification, ows + "Title").text = gConfig['wfs']['ServiceIdentification_Title'] ServiceType = etree.SubElement(ServiceIdentification, ows + "ServiceType").text = 'WFS' ServiceTypeVersion = etree.SubElement(ServiceIdentification, ows + "ServiceTypeVersion").text = '1.1.0' #OperationsMetadata OperationsMetadata = etree.SubElement(root, ows + "OperationsMetadata") Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="GetCapabilities") DCP= etree.SubElement(Operation, ows + "DCP") HTTP= etree.SubElement(DCP, ows + "HTTP") href = xlink + 'href' Get= etree.SubElement(HTTP, ows + "Get", {href:gConfig['wfs']['url']}) #Constraint= etree.SubElement(Get, ows + "Constraint", name="GetEncoding") #AllowedValues= etree.SubElement(Constraint, ows + "AllowedValues") #Value= etree.SubElement(AllowedValues, ows + "Value").text = 'KVP' #Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="GetTile") #DCP= etree.SubElement(Operation, ows + "DCP") #HTTP= etree.SubElement(DCP, ows + "HTTP") #Get= etree.SubElement(HTTP, ows + "Get", {href:gConfig['wmts']['url']}) Parameter = etree.SubElement(Operation, ows + "Parameter", name="AcceptVersions") Value = etree.SubElement(Parameter, ows + "Value").text = "1.1.0" Value = etree.SubElement(Parameter, ows + "Value").text = "1.0.0" Parameter = etree.SubElement(Operation, ows + "Parameter", name="AcceptFormats") Value = etree.SubElement(Parameter, ows + "Value").text = "text/xml" Parameter = etree.SubElement(Operation, ows + "Parameter", name="Sections") Value = etree.SubElement(Parameter, ows + "Value").text = "ServiceIdentification" Value = etree.SubElement(Parameter, ows + "Value").text = "OperationsMetadata" Value = etree.SubElement(Parameter, ows + "Value").text = "FeatureTypeList" Value = etree.SubElement(Parameter, ows + "Value").text = "ServesGMLObjectTypeList" Value = etree.SubElement(Parameter, ows + "Value").text = "SupportsGMLObjectTypeList" Value = etree.SubElement(Parameter, ows + "Value").text = "Filter_Capabilities" Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="DescribeFeatureType") DCP= etree.SubElement(Operation, ows + "DCP") HTTP= etree.SubElement(DCP, ows + "HTTP") Get= etree.SubElement(HTTP, ows + "Get", {href:gConfig['wfs']['url']})#+'/wfs.cgi?'}) Post= etree.SubElement(HTTP, ows + "Post", {href:gConfig['wfs']['url']})#+'/wfs.cgi'}) Parameter = etree.SubElement(Operation, ows + "Parameter", name="outputFormat") Value = etree.SubElement(Parameter, ows + "Value").text = "text/xml; subtype=gml/3.1.1" Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="GetFeature") DCP= etree.SubElement(Operation, ows + "DCP") HTTP= etree.SubElement(DCP, ows + "HTTP") Get= etree.SubElement(HTTP, ows + "Get", {href:gConfig['wfs']['url']})#+'/wfs.cgi?'}) Post= etree.SubElement(HTTP, ows + "Post", {href:gConfig['wfs']['url']})#+'/wfs.cgi'}) Parameter = etree.SubElement(Operation, ows + "Parameter", name="resultType") Value = etree.SubElement(Parameter, ows + "Value").text = "results" Value = etree.SubElement(Parameter, ows + "Value").text = "hits" Parameter = etree.SubElement(Operation, ows + "Parameter", name="outputFormat") Value = etree.SubElement(Parameter, ows + "Value").text = "text/xml; subtype=gml/3.1.1" Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="GetFeatureWithLock") DCP= etree.SubElement(Operation, ows + "DCP") HTTP= etree.SubElement(DCP, ows + "HTTP") Post= etree.SubElement(HTTP, ows + "Post", {href:gConfig['wfs']['url']}) Parameter = etree.SubElement(Operation, ows + "Parameter", name="resultType") Value = etree.SubElement(Parameter, ows + "Value").text = "results" Value = etree.SubElement(Parameter, ows + "Value").text = "hits" Parameter = etree.SubElement(Operation, ows + "Parameter", name="outputFormat") Value = etree.SubElement(Parameter, ows + "Value").text = "text/xml; subtype=gml/3.1.1" Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="GetGMLObject") DCP= etree.SubElement(Operation, ows + "DCP") HTTP= etree.SubElement(DCP, ows + "HTTP") Post= etree.SubElement(HTTP, ows + "Post", {href:gConfig['wfs']['url']}) Parameter = etree.SubElement(Operation, ows + "Parameter", name="outputFormat") Value = etree.SubElement(Parameter, ows + "Value").text = "text/xml; subtype=gml/3.1.1" Value = etree.SubElement(Parameter, ows + "Value").text = "text/xhtml" Parameter = etree.SubElement(Operation, ows + "Parameter", name="LocalTraverseXLinkScope") Value = etree.SubElement(Parameter, ows + "Value").text = "0" Value = etree.SubElement(Parameter, ows + "Value").text = "*" Parameter = etree.SubElement(Operation, ows + "Parameter", name="RemoteTraverseXLinkScope") Value = etree.SubElement(Parameter, ows + "Value").text = "0" Value = etree.SubElement(Parameter, ows + "Value").text = "*" Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="LockFeature") DCP= etree.SubElement(Operation, ows + "DCP") HTTP= etree.SubElement(DCP, ows + "HTTP") Post= etree.SubElement(HTTP, ows + "Post", {href:gConfig['wfs']['url']}) Parameter = etree.SubElement(Operation, ows + "Parameter", name="lockAction") Value = etree.SubElement(Parameter, ows + "Value").text = "ALL" Value = etree.SubElement(Parameter, ows + "Value").text = "SOME" Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="Transaction") DCP= etree.SubElement(Operation, ows + "DCP") HTTP= etree.SubElement(DCP, ows + "HTTP") Post= etree.SubElement(HTTP, ows + "Post", {href:gConfig['wfs']['url']}) Parameter = etree.SubElement(Operation, ows + "Parameter", name="inputFormat") Value = etree.SubElement(Parameter, ows + "Value").text = "text/xml; subtype=gml/3.1.1" Parameter = etree.SubElement(Operation, ows + "Parameter", name="idgen") Value = etree.SubElement(Parameter, ows + "Value").text = "GenerateNew" Value = etree.SubElement(Parameter, ows + "Value").text = "UseExisting" Value = etree.SubElement(Parameter, ows + "Value").text = "ReplaceDuplicate" Parameter = etree.SubElement(Operation, ows + "Parameter", name="releaseAction") Value = etree.SubElement(Parameter, ows + "Value").text = "ALL" Value = etree.SubElement(Parameter, ows + "Value").text = "SOME" Parameter = etree.SubElement(OperationsMetadata, ows + "Parameter", name="srsName") Value = etree.SubElement(Parameter, ows + "Value").text = "EPSG:4326" Constraint = etree.SubElement(OperationsMetadata, ows + "Constraint", name="DefaultMaxFeatures") Value = etree.SubElement(Constraint, ows + "Value").text = "10000" Constraint = etree.SubElement(OperationsMetadata, ows + "Constraint", name="LocalTraverseXLinkScope") Value = etree.SubElement(Constraint, ows + "Value").text = "0" Value = etree.SubElement(Constraint, ows + "Value").text = "*" Constraint = etree.SubElement(OperationsMetadata, ows + "Constraint", name="RemoteTraverseXLinkScope") Value = etree.SubElement(Constraint, ows + "Value").text = "0" Value = etree.SubElement(Constraint, ows + "Value").text = "*" Constraint = etree.SubElement(OperationsMetadata, ows + "Constraint", name="DefaultLockExpiry") Value = etree.SubElement(Constraint, ows + "Value").text = "5" FeatureTypeList = etree.SubElement(root, wfs + "FeatureTypeList") FeatureType = etree.SubElement(FeatureTypeList, wfs + "FeatureType") Name = etree.SubElement(FeatureType, wfs + "Name").text = "PointType" Title = etree.SubElement(FeatureType, wfs + "Title").text = "Point Type" DefaultSRS = etree.SubElement(FeatureType, wfs + "DefaultSRS").text = "EPSG:4326" OutputFormats = etree.SubElement(FeatureType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" WGS84BoundingBox = etree.SubElement(FeatureType, ows + "WGS84BoundingBox") LowerCorner = etree.SubElement(WGS84BoundingBox, ows + "LowerCorner").text = "-180 -90" UpperCorner = etree.SubElement(WGS84BoundingBox, ows + "UpperCorner").text = "180 90" ServesGMLObjectTypeList = etree.SubElement(root, wfs + "ServesGMLObjectTypeList") GMLObjectType = etree.SubElement(ServesGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "PointType" Title = etree.SubElement(GMLObjectType, wfs + "Title").text = "Point Type" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" SupportsGMLObjectTypeList = etree.SubElement(root, wfs + "SupportsGMLObjectTypeList") GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:AbstractGMLFeatureType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:PointType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:LineStringType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:PolygonType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:MultiPointType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:MultiCurveType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:MultiSurfaceType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:AbstractMetaDataType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" GMLObjectType = etree.SubElement(SupportsGMLObjectTypeList, wfs + "GMLObjectType") Name = etree.SubElement(GMLObjectType, wfs + "Name").text = "gml:AbstractTopologyType" OutputFormats = etree.SubElement(GMLObjectType, wfs + "OutputFormats") Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xml; subtype=gml/3.1.1" Format = etree.SubElement(OutputFormats, wfs + "Format").text = "text/xhmtl" Filter_Capabilities = etree.SubElement(root, ogc + "Filter_Capabilities") Spatial_Capabilities = etree.SubElement(Filter_Capabilities, ogc + "Spatial_Capabilities") GeometryOperands = etree.SubElement(Spatial_Capabilities, ogc + "GeometryOperands") GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Envelope" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Point" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:LineString" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Polygon" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:ArcByCenterPoint" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:CircleByCenterPoint" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Arc" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Circle" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:ArcByBulge" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Bezier" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Clothoid" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:CubicSpline" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Geodesic" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:OffsetCurve" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Triangle" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:PolyhedralSurface" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:TriangulatedSurface" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Tin" GeometryOperand = etree.SubElement(GeometryOperands, ogc + "GeometryOperand").text = "gml:Solid" SpatialOperators = etree.SubElement(Spatial_Capabilities, ogc + "SpatialOperators") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="BBOX") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Equals") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Disjoint") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Intersects") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Touches") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Crosses") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Within") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Contains") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Overlaps") SpatialOperator = etree.SubElement(GeometryOperands, ogc + "SpatialOperator", name="Beyond") Scalar_Capabilities = etree.SubElement(Filter_Capabilities, ogc + "Scalar_Capabilities") LogicalOperators = etree.SubElement(Scalar_Capabilities, ogc + "LogicalOperators") ComparisonOperators = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperators") ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "LessThan" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "GreaterThan" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "LessThanEqualTo" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "GreaterThanEqualTo" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "EqualTo" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "NotEqualTo" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "Like" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "Between" ComparisonOperator = etree.SubElement(Scalar_Capabilities, ogc + "ComparisonOperator").text = "NullCheck" ArithmeticOperators = etree.SubElement(Scalar_Capabilities, ogc + "ArithmeticOperators") SimpleArithmetic = etree.SubElement(ArithmeticOperators, ogc + "SimpleArithmetic") Functions = etree.SubElement(ArithmeticOperators, ogc + "Functions") FunctionNames = etree.SubElement(Functions, ogc + "FunctionNames") FunctionName = etree.SubElement(FunctionNames, ogc + "FunctionName", nArgs="1").text = "MIN" FunctionName = etree.SubElement(FunctionNames, ogc + "FunctionName", nArgs="1").text = "MAX" FunctionName = etree.SubElement(FunctionNames, ogc + "FunctionName", nArgs="1").text = "SIN" FunctionName = etree.SubElement(FunctionNames, ogc + "FunctionName", nArgs="1").text = "COS" FunctionName = etree.SubElement(FunctionNames, ogc + "FunctionName", nArgs="1").text = "TAN" Id_Capabilities = etree.SubElement(Filter_Capabilities, ogc + "Id_Capabilities") EID = etree.SubElement(Id_Capabilities, ogc + "EID") FID = etree.SubElement(Id_Capabilities, ogc + "FID") #WGS84BoundingBox = etree.SubElement(Layer, ows + "WGS84BoundingBox") #SupportedCRS = etree.SubElement(TileMatrixSet, ows + "SupportedCRS" ).text = gConfig['wmts']['SupportedCRS'] ret = etree.tostring(root, pretty_print=True, xml_declaration=True, encoding=ENCODING) print(ret) return ret def handle_wmts_GetCapabilities(params={}): headers = {} mimetype = 'text/xml;charset=' + ENCODING s = '' if params.has_key('TILETYPE') and params.has_key('SUBTYPE'): s = create_wmts_GetCapabilities(params['TILETYPE'], params['SUBTYPE']) return mimetype, s def create_wmts_GetCapabilities(tiletype, subtype): global gConfig #''' #namespace = {'ows':"http://www.opengis.net/ows/1.1", 'xlink':"http://www.w3.org/1999/xlink", 'xsi':"http://www.w3.org/2001/XMLSchema-instance", 'gml':"http://www.opengis.net/gml", 'schemaLocation':"http://schemas.opengis.net/wmts/1.0/wmtsGetCapabilities_response.xsd"} #ows = '{%s}' % namespace['ows'] #xlink = '{%s}' % namespace['xlink'] #root = etree.Element("Capabilities", xmlns="http://www.opengis.net/wmts/1.0", nsmap=namespace, version="1.0.0") ##ServiceIdentification #ServiceIdentification = etree.SubElement(root, ows + "ServiceIdentification") #Title = etree.SubElement(ServiceIdentification, ows + "Title").text = gConfig['webgis']['wmts']['ServiceIdentification_Title'] #ServiceType = etree.SubElement(ServiceIdentification, ows + "ServiceType").text = 'OGC WMTS' #ServiceTypeVersion = etree.SubElement(ServiceIdentification, ows + "ServiceTypeVersion").text = '1.0.0' ##OperationsMetadata #OperationsMetadata = etree.SubElement(root, ows + "OperationsMetadata") #Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="GetCapabilities") #DCP= etree.SubElement(Operation, ows + "DCP") #HTTP= etree.SubElement(DCP, ows + "HTTP") #href = xlink + 'href' #Get= etree.SubElement(HTTP, ows + "Get", {href:gConfig['webgis']['wmts']['url'] + '?'}) #Constraint= etree.SubElement(Get, ows + "Constraint", name="GetEncoding") #AllowedValues= etree.SubElement(Constraint, ows + "AllowedValues") #Value= etree.SubElement(AllowedValues, ows + "Value").text = 'KVP' #Operation= etree.SubElement(OperationsMetadata, ows + "Operation", name="GetTile") #DCP= etree.SubElement(Operation, ows + "DCP") #HTTP= etree.SubElement(DCP, ows + "HTTP") #Get= etree.SubElement(HTTP, ows + "Get", {href:gConfig['webgis']['wmts']['url'] + '?'}) ##Contents #Contents = etree.SubElement(root, "Contents") #Layer = etree.SubElement(Contents, "Layer") #Title = etree.SubElement(Layer, ows + "Title").text = gConfig['webgis']['wmts']['Layer_Title'] #WGS84BoundingBox = etree.SubElement(Layer, ows + "WGS84BoundingBox") #LowerCorner = etree.SubElement(WGS84BoundingBox, ows + "LowerCorner").text = gConfig['webgis']['wmts']['WGS84BoundingBox']['LowerCorner'] #UpperCorner = etree.SubElement(WGS84BoundingBox, ows + "UpperCorner").text = gConfig['webgis']['wmts']['WGS84BoundingBox']['UpperCorner'] #Identifier = etree.SubElement(Layer, ows + "Identifier").text = gConfig['webgis']['wmts']['Layer_Identifier'] #Style = etree.SubElement(Layer, "Style", isDefault="true") #Title = etree.SubElement(Style, ows + "Title" ).text = 'Default' #Identifier = etree.SubElement(Style, ows + "Identifier" ).text = 'default' #Format = etree.SubElement(Layer, "Format" ).text = gConfig['mime_type'][gConfig['wmts']['format']] #TileMatrixSetLink = etree.SubElement(Layer, "TileMatrixSetLink" ) #TileMatrixSet = etree.SubElement(TileMatrixSetLink, "TileMatrixSet" ).text = gConfig['webgis']['wmts']['TileMatrixSet'] #TileMatrixSet = etree.SubElement(Contents, "TileMatrixSet") #Identifier = etree.SubElement(TileMatrixSet, ows + "Identifier" ).text = gConfig['webgis']['wmts']['TileMatrixSet'] #SupportedCRS = etree.SubElement(TileMatrixSet, ows + "SupportedCRS" ).text = gConfig['webgis']['wmts']['SupportedCRS'] #WellKnownScaleSet = etree.SubElement(TileMatrixSet, "WellKnownScaleSet" ).text = gConfig['webgis']['wmts']['WellKnownScaleSet'] #max_zoom_level, min_zoom_level = int(gConfig['wmts']['max_zoom_level']), int(gConfig['webgis']['wmts']['min_zoom_level']) #if max_zoom_level < min_zoom_level: #max_zoom_level, min_zoom_level = min_zoom_level, max_zoom_level ##zoomlist = range(max_zoom_level,min_zoom_level, -1) #zoomlist = range(min_zoom_level, max_zoom_level+1, 1) #pixelSize = float(gConfig['webgis']['wmts']['pixelSize']) #tileWidth,tileHeight = int(gConfig['webgis']['wmts']['TileWidth']), int(gConfig['webgis']['wmts']['TileHeight']) #minLonLat,maxLonLat = (float(gConfig['webgis']['wmts']['minLonLat'][0]), float(gConfig['webgis']['wmts']['minLonLat'][1])), (float(gConfig['webgis']['wmts']['maxLonLat'][0]), float(gConfig['webgis']['wmts']['maxLonLat'][1])) ##tileMatrixMinX, tileMatrixMaxX = (26.0, 102.0), (26.0, 104.0) ##tileMatrixMinY, tileMatrixMaxY = (24.0, 102.0), (26.0, 102.0) #tileMatrixMinX, tileMatrixMaxX = (maxLonLat[1], minLonLat[0]), (maxLonLat[1], maxLonLat[0]) #tileMatrixMinY, tileMatrixMaxY = (minLonLat[1], minLonLat[0]), (maxLonLat[1], minLonLat[0]) #metersPerUnit = 0.0 #if gConfig['webgis']['wmts'].has_key('metersPerUnit'): #metersPerUnit = float(gConfig['webgis']['wmts']['metersPerUnit']) #else: #metersPerUnitX = mapUtils.countDistanceFromLatLon(tileMatrixMaxX , tileMatrixMinX)/2*1000 ##print('metersPerUnitX=%f' % metersPerUnitX) #metersPerUnitY = mapUtils.countDistanceFromLatLon(tileMatrixMaxY , tileMatrixMinY)/2*1000 ##print('metersPerUnitY=%f' % metersPerUnitY) #metersPerUnit = metersPerUnitY ##print('metersPerUnit=%f' % metersPerUnit) #for i in zoomlist: ##matrixHeight = matrixWidth = mapUtils.tiles_on_level(i) #matrixHeight = matrixWidth = mapUtils.tiles_on_level(max_zoom_level-(i-1)) ##print('%d=%d' % (i , matrixHeight)) ##scaleDenominatorX = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxX , tileMatrixMinX) * 1000./(tileWidth * matrixWidth) ##scaleDenominatorY = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxY , tileMatrixMinY) * 1000./(tileHeight * matrixHeight) ##print('scaleDenominatorX=%f, scaleDenominatorY=%f' % (scaleDenominatorX, scaleDenominatorY)) ##scaleDenominator = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxY , tileMatrixMinY) * 1000. /(tileHeight * matrixHeight) #scaleDenominator = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxY , tileMatrixMinY) /(tileHeight * matrixHeight) #TileMatrix = etree.SubElement(TileMatrixSet, "TileMatrix" ) ##Identifier = etree.SubElement(TileMatrix, ows + "Identifier" ).text = "ynsat_" + str(i) #Identifier = etree.SubElement(TileMatrix, ows + "Identifier" ).text = str(i) #ScaleDenominator = etree.SubElement(TileMatrix, "ScaleDenominator" ).text = '%.8f' % scaleDenominator #TopLeftCorner = etree.SubElement(TileMatrix, "TopLeftCorner" ).text = ['webgis']['wmts']['TopLeftCorner'] #TileWidth = etree.SubElement(TileMatrix, "TileWidth" ).text = str(tileWidth) #TileHeight = etree.SubElement(TileMatrix, "TileHeight" ).text = str(tileHeight) #MatrixWidth = etree.SubElement(TileMatrix, "MatrixWidth" ).text = str(matrixWidth) #MatrixHeight = etree.SubElement(TileMatrix, "MatrixHeight" ).text = str(matrixHeight) #ret = etree.tostring(root, pretty_print=True, xml_declaration=True, encoding=ENCODING) #print(ret) #return ret #''' ret = '''<?xml version="1.0" encoding="UTF-8"?> <Capabilities xmlns="http://www.opengis.net/wmts/1.0" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:gml="http://www.opengis.net/gml" xsi:schemaLocation="http://www.opengis.net/wmts/1.0 http://schemas.opengis.net/wmts/1.0/wmtsGetCapabilities_response.xsd" version="1.0.0"> <ows:ServiceIdentification> <ows:Title>%s</ows:Title> <ows:ServiceType>OGC WMTS</ows:ServiceType> <ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion> </ows:ServiceIdentification> <ows:OperationsMetadata> <ows:Operation name="GetCapabilities"> <ows:DCP> <ows:HTTP> <ows:Get xlink:href="http://%s:%s/wmts?REQUEST=getcapabilities"> <ows:Constraint name="GetEncoding"> <ows:AllowedValues> <ows:Value>KVP</ows:Value> </ows:AllowedValues> </ows:Constraint> </ows:Get> </ows:HTTP> </ows:DCP> </ows:Operation> <ows:Operation name="GetTile"> <ows:DCP> <ows:HTTP> <ows:Get xlink:href="http://%s:%s/wmts?REQUEST=gettile"> <ows:Constraint name="GetEncoding"> <ows:AllowedValues> <ows:Value>KVP</ows:Value> </ows:AllowedValues> </ows:Constraint> </ows:Get> </ows:HTTP> </ows:DCP> </ows:Operation> </ows:OperationsMetadata> <Contents> <Layer> <ows:Title>%s</ows:Title> <ows:WGS84BoundingBox> <ows:LowerCorner>-180.0 -90.0</ows:LowerCorner> <ows:UpperCorner>180.0 90.0</ows:UpperCorner> </ows:WGS84BoundingBox> <ows:Identifier>%s</ows:Identifier> <Style isDefault="true"> <ows:Identifier>_null</ows:Identifier> </Style> <Format>%s</Format> <TileMatrixSetLink> <TileMatrixSet>%s</TileMatrixSet> </TileMatrixSetLink> </Layer> <TileMatrixSet> <ows:Identifier>%s</ows:Identifier> <ows:SupportedCRS>urn:ogc:def:crs:EPSG::900913</ows:SupportedCRS> <TileMatrix> <ows:Identifier>0</ows:Identifier> <ScaleDenominator>5.590822639508929E8</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>1</MatrixWidth> <MatrixHeight>1</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>1</ows:Identifier> <ScaleDenominator>2.7954113197544646E8</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>2</MatrixWidth> <MatrixHeight>2</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>2</ows:Identifier> <ScaleDenominator>1.3977056598772323E8</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>4</MatrixWidth> <MatrixHeight>4</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>3</ows:Identifier> <ScaleDenominator>6.988528299386162E7</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>8</MatrixWidth> <MatrixHeight>8</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>4</ows:Identifier> <ScaleDenominator>3.494264149693081E7</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>16</MatrixWidth> <MatrixHeight>16</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>5</ows:Identifier> <ScaleDenominator>1.7471320748465404E7</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>32</MatrixWidth> <MatrixHeight>32</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>6</ows:Identifier> <ScaleDenominator>8735660.374232702</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>64</MatrixWidth> <MatrixHeight>64</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>7</ows:Identifier> <ScaleDenominator>4367830.187116351</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>128</MatrixWidth> <MatrixHeight>128</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>8</ows:Identifier> <ScaleDenominator>2183915.0935581755</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>256</MatrixWidth> <MatrixHeight>256</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>9</ows:Identifier> <ScaleDenominator>1091957.5467790877</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>512</MatrixWidth> <MatrixHeight>512</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>10</ows:Identifier> <ScaleDenominator>545978.7733895439</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>1024</MatrixWidth> <MatrixHeight>1024</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>11</ows:Identifier> <ScaleDenominator>272989.38669477194</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>2048</MatrixWidth> <MatrixHeight>2048</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>12</ows:Identifier> <ScaleDenominator>136494.69334738597</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>4096</MatrixWidth> <MatrixHeight>4096</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>13</ows:Identifier> <ScaleDenominator>68247.34667369298</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>8192</MatrixWidth> <MatrixHeight>8192</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>14</ows:Identifier> <ScaleDenominator>34123.67333684649</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>16384</MatrixWidth> <MatrixHeight>16384</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>15</ows:Identifier> <ScaleDenominator>17061.836668423246</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>32768</MatrixWidth> <MatrixHeight>32768</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>16</ows:Identifier> <ScaleDenominator>8530.918334211623</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>65536</MatrixWidth> <MatrixHeight>65536</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>17</ows:Identifier> <ScaleDenominator>4265.4591671058115</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>131072</MatrixWidth> <MatrixHeight>131072</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>18</ows:Identifier> <ScaleDenominator>2132.7295835529058</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>262144</MatrixWidth> <MatrixHeight>262144</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>19</ows:Identifier> <ScaleDenominator>1066.3647917764529</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>524288</MatrixWidth> <MatrixHeight>524288</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>20</ows:Identifier> <ScaleDenominator>533.1823958882264</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>1048576</MatrixWidth> <MatrixHeight>1048576</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>21</ows:Identifier> <ScaleDenominator>266.5911979441132</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>2097152</MatrixWidth> <MatrixHeight>2097152</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>22</ows:Identifier> <ScaleDenominator>133.2955989720566</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>4194304</MatrixWidth> <MatrixHeight>4194304</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>23</ows:Identifier> <ScaleDenominator>66.6477994860283</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>8388608</MatrixWidth> <MatrixHeight>8388608</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>24</ows:Identifier> <ScaleDenominator>33.32389974301415</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>16777216</MatrixWidth> <MatrixHeight>16777216</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>25</ows:Identifier> <ScaleDenominator>16.661949871507076</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>33554432</MatrixWidth> <MatrixHeight>33554432</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>26</ows:Identifier> <ScaleDenominator>8.330974935753538</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>67108864</MatrixWidth> <MatrixHeight>67108864</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>27</ows:Identifier> <ScaleDenominator>4.165487467876769</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>134217728</MatrixWidth> <MatrixHeight>134217728</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>28</ows:Identifier> <ScaleDenominator>2.0827437339383845</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>268435456</MatrixWidth> <MatrixHeight>268435456</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>29</ows:Identifier> <ScaleDenominator>1.0413718669691923</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>536870912</MatrixWidth> <MatrixHeight>536870912</MatrixHeight> </TileMatrix> <TileMatrix> <ows:Identifier>30</ows:Identifier> <ScaleDenominator>0.5206859334845961</ScaleDenominator> <TopLeftCorner>-2.003750834E7 2.0037508E7</TopLeftCorner> <TileWidth>256</TileWidth> <TileHeight>256</TileHeight> <MatrixWidth>1073741824</MatrixWidth> <MatrixHeight>1073741824</MatrixHeight> </TileMatrix> </TileMatrixSet> </Contents> </Capabilities>''' % ( str(tiletype), str(gConfig['webgis']['wmts']['host']), str(gConfig['webgis']['wmts']['port']), str(gConfig['webgis']['wmts']['host']), str(gConfig['webgis']['wmts']['port']), str(subtype), str(subtype), str(gConfig['mime_type'][gConfig['webgis'][tiletype][subtype]['mimetype']]), str(subtype), str(subtype), ) #<ServiceMetadataURL xlink:href="http://%s:%s/wmts?REQUEST=getcapabilities"/> return ret def download_callback(*args, **kwargs): global gConfig, gMapTileCache, gSatTileCache, gTerrainCache global STATICRESOURCE_IMG_DIR zoom, col, row = args[1][2], args[1][0], args[1][1] root = os.path.abspath(gConfig['wmts']['tiles_map_root']) if args[2] == mapConst.LAYER_SAT: root = os.path.abspath(gConfig['wmts']['tiles_sat_root']) if args[2] == mapConst.LAYER_MAP: root = os.path.abspath(gConfig['wmts']['tiles_map_root']) p = os.path.join(root, str(zoom), str(col / 1024), str(col % 1024), str(row / 1024), str(row % 1024) + gConfig['wmts']['format'] ) if os.path.exists(p): key = '%d-%d-%d' % (zoom, col, row) with open(p, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') if args[2] == mapConst.LAYER_SAT: gSatTileCache[key] = f1.read() if args[2] == mapConst.LAYER_MAP: gMapTileCache[key] = f1.read() def handle_wmts_GetTile(params): global gConfig mimetype, ret = None, None tiletype = 'webgis/tiles' arr = tiletype.split('/') subtype = None if params.has_key('TILEMATRIXSET'): subtype = params['TILEMATRIXSET'] level, y, x = None, None, None if params.has_key('TILEMATRIX'): level = int(params['TILEMATRIX']) if params.has_key('TILEROW'): y = int(params['TILEROW']) if params.has_key('TILECOL'): x = int(params['TILECOL']) if subtype is not None and level is not None and y is not None and x is not None: tilepath = '%d/%d/%d%s' % (level, x, y, str(gConfig['webgis'][arr[1]][subtype])) d = {} d['x'] = str(x) d['y'] = str(y) d['level'] = str(level) mimetype, ret = db_util.gridfs_tile_find(tiletype, subtype, tilepath, d) return mimetype, ret def handle_tiles(environ): global gConfig, gTileCache global STATICRESOURCE_IMG_DIR def get_blank_tile(image_type): blank_tile = '' picpath = os.path.join(STATICRESOURCE_IMG_DIR, gConfig['webgis']['tiles'][image_type]['missing']) with open(picpath, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') blank_tile = f1.read() return blank_tile headers = {} #path_info = environ['PATH_INFO'] #d = cgi.parse(None, environ) querydict, buf = get_querydict_by_GET_POST(environ) ret = None mimetype = 'image/png' image_type = None #key = path_info.replace('/tiles/','') if querydict.has_key('image_type') and querydict.has_key('x') and querydict.has_key('y') and querydict.has_key('level'): image_type = querydict['image_type'] x, y, level = querydict['x'], querydict['y'], querydict['level'] tilepath = '%s/%s/%s%s' % (level, x, y, gConfig['webgis']['tiles'][image_type]['mimetype']) if not gTileCache.has_key(image_type): gTileCache[image_type] = {} if not gTileCache[image_type].has_key('missing'): gTileCache[image_type]['missing'] = get_blank_tile(image_type) if gTileCache[image_type].has_key(tilepath): ret = gTileCache[image_type][tilepath] else: try: mimetype, ret = db_util.gridfs_tile_find('webgis/tiles', image_type, tilepath, querydict) gTileCache[image_type][tilepath] = ret except: print(sys.exc_info()) ret = gTileCache[image_type]['missing'] else: if image_type: if not gTileCache.has_key(image_type): gTileCache[image_type] = {} if not gTileCache[image_type].has_key('missing'): gTileCache[image_type]['missing'] = get_blank_tile(image_type) ret = gTileCache[image_type]['missing'] else: ret = get_blank_tile('arcgis_sat') if ret is None: ret = gTileCache[image_type]['missing'] headers['Content-Type'] = mimetype return '200 OK', headers, ret def handle_terrain(environ): global gConfig, gTileCache path_info = environ['PATH_INFO'] #d = cgi.parse(None, environ) querydict, buf = get_querydict_by_GET_POST(environ) ret = None headers = {} mimetype = str('application/octet-stream') key = path_info.replace('/terrain/','') terrain_type = 'quantized_mesh' if querydict.has_key('terrain_type'): terrain_type = querydict['terrain_type'] if not gTileCache.has_key(terrain_type): gTileCache[terrain_type] = {} if gTileCache[terrain_type].has_key(key): ret = gTileCache[terrain_type][key] else: tilepath = key if tilepath == 'layer.json': mimetype, ret = db_util.gridfs_tile_find('webgis/terrain', terrain_type, tilepath, querydict) gTileCache[terrain_type][key] = ret headers['Content-Type'] = mimetype return '200 OK', headers, ret else: print('tilepath:%s' % tilepath) mimetype, ret = db_util.gridfs_tile_find('webgis/terrain', terrain_type, tilepath, querydict) if ret: gTileCache[terrain_type][key] = ret headers['Content-Type'] = mimetype return '200 OK', headers, ret else: if not gTileCache[terrain_type].has_key('missing'): print('reading mongo blank_terrain...') tilepath = gConfig['webgis']['terrain'][terrain_type]['missing'] #'0/0/0.terrain' mimetype, ret = db_util.gridfs_tile_find('webgis/terrain', terrain_type, tilepath, querydict) gTileCache[terrain_type]['missing'] = ret ret = gTileCache[terrain_type]['missing'] headers['Content-Type'] = mimetype return '200 OK', headers, ret def handle_terrain1(environ): global gConfig, gMapTileCache, gSatTileCache, gTerrainCache path_info = environ['PATH_INFO'] #d = cgi.parse(None, environ) ret = None headers = {} key = path_info.replace('/terrain/','') if gTerrainCache.has_key(key): ret = gTerrainCache[key] else: arr = key.split('/') tilepath = gConfig['webgis']['terrain']['tiles_dir'] for i in arr: tilepath = os.path.join(tilepath, i) tilepath = os.path.abspath(tilepath) ret = '' if os.path.exists(tilepath): #print('reading %s...' % tilepath) with open(tilepath, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') ret = f1.read() gTerrainCache[key] = ret else: if gTerrainCache.has_key('missing'): ret = gTerrainCache['missing'] else: print('reading blank_terrain...') with open(gConfig['webgis']['terrain']['blank_terrain'], 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') ret = f1.read() gTerrainCache['missing'] = ret headers['Content-Type'] = 'application/octet-stream' return '200 OK', headers, ret def handle_arcgistile(environ): global gConfig, gMapTileCache, gSatTileCache global STATICRESOURCE_IMG_DIR ret = None headers = {} dd = cgi.parse(None, environ) d = {} for k in dd.keys(): d[k] = dd[k][0] if d.has_key('zoom') and d.has_key('col') and d.has_key('row'): zoom = int(d['zoom']) col = int(d['col']) row = int(d['row']) key = '%d-%d-%d' % (zoom, col, row) if not gSatTileCache.has_key(key): try: #picpath = os.path.join(gConfig['wmts']['arcgis_tiles_root'], '_alllayers', 'L%02d' % zoom, 'R%08x' % row, 'C%08x%s' % (col, gConfig['wmts']['format'])) picpath = os.path.join(gConfig['webgis']['wmts']['arcgis_tiles_root'], '%d' % zoom, '%d' % col, '%d%s' % (row, gConfig['webgis']['wmts']['format'])) print('%s, %s' % (key, picpath)) with open(picpath, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') gSatTileCache[key] = f1.read() except: foundit = False if not foundit: key = 'missing' if not gSatTileCache.has_key(key): picpath = os.path.join(STATICRESOURCE_IMG_DIR, gConfig['webgis']['wmts']['missing']) with open(picpath, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') gSatTileCache[key] = f1.read() ret = gSatTileCache[key] elif d.has_key('is_esri') : key = environ['PATH_INFO'].replace('/arcgistile/','') if not gSatTileCache.has_key(key): try: #picpath = os.path.join(gConfig['webgis']['wmts']['arcgis_tiles_root'], '_alllayers', 'L%02d' % zoom, 'R%08x' % row, 'C%08x%s' % (col, gConfig['webgis']['wmts']['format'])) picpath = os.path.join(gConfig['webgis']['wmts']['arcgis_tiles_root'], key) print('%s, %s' % (key, picpath)) with open(picpath, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') gSatTileCache[key] = f1.read() except: foundit = False if not foundit: key = 'missing' if not gSatTileCache.has_key(key): picpath = os.path.join(STATICRESOURCE_IMG_DIR, gConfig['webgis']['wmts']['missing']) with open(picpath, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') gSatTileCache[key] = f1.read() ret = gSatTileCache[key] else: if not gSatTileCache.has_key('missing'): picpath = os.path.join(STATICRESOURCE_IMG_DIR, gConfig['webgis']['wmts']['missing']) with open(picpath, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') gSatTileCache['missing'] = f1.read() ret = gSatTileCache['missing'] headers['Content-Type'] = str(gConfig['mime_type'][gConfig['webgis']['wmts']['format']]) return '200 OK', headers, ret def handle_wmts(environ): dd = cgi.parse(None, environ) d = {} headers = {} mimetype, ret = None, None for k in dd.keys(): d[k.upper()] = dd[k][0] ret, mimetype = None, None if d.has_key('REQUEST') : d['REQUEST'] = d['REQUEST'].replace('/1.0.0/WMTSCapabilities.xml', '') if d.has_key('TILETYPE'): d['TILETYPE'] = d['TILETYPE'].replace('/1.0.0/WMTSCapabilities.xml', '') if d.has_key('SUBTYPE'): d['SUBTYPE'] = d['SUBTYPE'].replace('/1.0.0/WMTSCapabilities.xml', '') if d['REQUEST'].lower() in ['getcapabilities']: mimetype, ret = handle_wmts_GetCapabilities(d) elif d['REQUEST'].lower() in ['gettile']: mimetype, ret = handle_wmts_GetTile(d) headers['Content-Type'] = mimetype return '200 OK', headers, ret def handle_cluster(environ): global gConfig headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING if int(environ['SERVER_PORT'])==int(gConfig['cluster']['manager_port']) and gConfig['cluster']['enable_cluster'] in ['true','True']: op = '' if environ['PATH_INFO']=='/create_cluster': if len(get_pid_from_name('nginx'))==0: op = 'create ok' create_cluster() elif environ['PATH_INFO']=='/kill_cluster': op = 'kill ok' kill_cluster() #print(environ) return '200 OK', headers, json.dumps({'result':op}) else: return '200 OK', headers, json.dumps({'result':'cluster is disabled or not by manager'}) def handle_test(environ): s = '测试OK' headers = {} d = cgi.parse(None, environ) #print(d) headers['Content-Type'] = 'text/json;charset=' + ENCODING #print(s) return '200 OK', headers, s def get_condition_from_dict(dct): cond = '1=1' for k in dct.keys(): if k in ['voltage', 'line_id', 'id', 'tower_id', 'start_tower_id', 'end_tower_id', 'model_code', 'side', 'position']: if k == 'side': if dct[k]=='1': cond += " AND %s='%s'" % (k, u'正') elif dct[k]=='0': cond += " AND %s='%s'" % (k, u'反') else: cond += " AND %s='%s'" % (k, dct[k]) else: cond += " AND %s=%s" % (k, dct[k]) #print(cond) return cond def mongo_get_condition_from_dict(dct): ret = {} for k in dct.keys(): ret[k] = dct[k][0] print(ret) return ret def handle_get_method(environ): global ENCODING global STATICRESOURCE_DIR, UPLOAD_PHOTOS_DIR, UPLOAD_VOICE_DIR global gConfig ret = {} s = '' querydict, buf = get_querydict_by_GET_POST(environ) isgrid = False area = '' data = {} headers = {} clienttype = 'default' if querydict.has_key('clienttype'): clienttype = querydict['clienttype'] if querydict.has_key('grid'): isgrid = True if querydict.has_key('area'): area = querydict['area'] # if querydict.has_key('geojson'): # if querydict['geojson']=='line_towers': # data = db_util.gen_geojson_by_lines(area) # s = json.dumps(data, ensure_ascii=True, indent=4) # elif querydict['geojson']=='tracks': # data = db_util.gen_geojson_tracks(area) # s = json.dumps(data, ensure_ascii=True, indent=4) # else: # k = querydict['geojson'] # p = os.path.abspath(STATICRESOURCE_DIR) # if k == 'potential_risk': # k = 'geojson_%s_%s' % (k, area) # p = os.path.join(p, 'geojson', area, '%s.json' % k) # #print(p) # if os.path.exists(p): # with open(p) as f: # f1 = gevent.fileobject.FileObjectThread(f, 'r') # s = f1.read() # else: # p = os.path.abspath(STATICRESOURCE_DIR) # p = os.path.join(p, 'geojson', '%s.json' % k) # if os.path.exists(p): # with open(p) as f: # f1 = gevent.fileobject.FileObjectThread(f, 'r') # s = f1.read() # # # # if querydict.has_key('table'): # table = querydict['table'] # dbtype = 'odbc' # if querydict.has_key('dbtype'): # dbtype = querydict['dbtype'] # # if dbtype == 'pg': # data = db_util.pg_get_records(table, get_condition_from_dict(querydict)) # else: # data = db_util.odbc_get_records(table, get_condition_from_dict(querydict), area) # if table in ['TABLE_TOWER']: # if querydict.has_key('line_id'): # data = db_util.odbc_get_sorted_tower_by_line(querydict['line_id'], area) # # if isgrid: # data = {'Rows':data} # s = json.dumps(data, ensure_ascii=True, indent=4) # if querydict.has_key('check_file'): # fn = querydict['check_file'] # dir_name = querydict['dir_name'] # ret["result"] = {} # ret["result"]["filename"] = fn # if dir_name == 'voice': # if check_voice_file_by_fault(fn): # ret["result"]["exist"] = "true" # else: # ret["result"]["exist"] = "false" # else: # if os.path.exists(os.path.join(UPLOAD_PHOTOS_DIR, dir_name, fn)): # ret["result"]["exist"] = "true" # else: # ret["result"]["exist"] = "false" # s = json.dumps(ret, ensure_ascii=True, indent=4) # if querydict.has_key('delete_file'): # fn = querydict['delete_file'] # dir_name = querydict['dir_name'] # ret["result"] = {} # ret["result"]["filename"] = fn # if dir_name == 'voice': # pl = get_voice_file_by(fn) # if len(pl)>0: # for i in pl: # p = os.path.join(UPLOAD_VOICE_DIR, fn) # if os.path.exists(p): # os.remove(p) # ret["result"]["removed"] = "true" # else: # ret["result"]["removed"] = "false" # # else: # p = os.path.join(UPLOAD_PHOTOS_DIR, dir_name, fn) # if os.path.exists(p): # os.remove(p) # ret["result"]["removed"] = "true" # else: # ret["result"]["removed"] = "false" # s = json.dumps(ret, ensure_ascii=True, indent=4) # if querydict.has_key('list_file_dir_name'): # dir_name = querydict['list_file_dir_name'] # ret["result"] = {} # ret["result"]["dirs"] = [dir_name, ] # p = os.path.join(UPLOAD_PHOTOS_DIR, dir_name) # if os.path.exists(p): # l = os.listdir(p) # ret["result"]["files"] = l # else: # ret["result"]["files"] = [] # s = json.dumps(ret, ensure_ascii=True, indent=4) # if querydict.has_key('get_voice_files'): # get_voice_files = querydict['get_voice_files'] # ret["result"] = {} # ret["result"]["ids"] = get_voice_file_all() # s = json.dumps(ret, ensure_ascii=True, indent=4) if querydict.has_key('op'): op = querydict['op'] if op == "gridfs": ret = db_util.gridfs_find(querydict, str(gConfig['wsgi']['application'])) if isinstance(ret, tuple) and ret[0] and ret[1]: headers['Content-Type'] = str(ret[0]) if querydict.has_key('attachmentdownload'): headers['Content-Disposition'] = 'attachment;filename="' + enc(ret[2]) + '"' s = ret[1] return '200 OK', headers , s if isinstance(ret, list): s = json.dumps(ret, ensure_ascii=True, indent=4) elif op == "gridfs_delete": try: db_util.gridfs_delete(querydict, str(gConfig['wsgi']['application'])) ret = '' except: ret["result"] = sys.exc_info()[1].message s = json.dumps(ret, ensure_ascii=True, indent=4) headers['Content-Type'] = 'text/json;charset=' + ENCODING if isinstance(ret, dict) and len(ret.keys())==0: ret["result"] = "ok" if isinstance(s, list) and len(s)==0: s = json.dumps(ret, ensure_ascii=True, indent=4) return '200 OK', headers, s def create_upload_xls_dir(): global STATICRESOURCE_DIR p = os.path.join(STATICRESOURCE_DIR, 'upload') if not os.path.exists(p): os.mkdir(p) p = os.path.join(p, 'xls') if not os.path.exists(p): os.mkdir(p) return p def create_voice_dir(): global STATICRESOURCE_DIR, UPLOAD_VOICE_DIR if not os.path.exists(UPLOAD_VOICE_DIR): os.mkdir(UPLOAD_VOICE_DIR) def check_voice_file_by_fault(id): global STATICRESOURCE_DIR, UPLOAD_VOICE_DIR create_voice_dir() ret = False for fn in os.listdir(UPLOAD_VOICE_DIR): if id in fn: ret = True break return ret def get_voice_file_latest(id): global STATICRESOURCE_DIR, UPLOAD_VOICE_DIR create_voice_dir() l = [] for fn in os.listdir(UPLOAD_VOICE_DIR): if id in fn: l.append(fn) ret = None if len(l)>0: l.sort() ret = l[-1] return ret def get_voice_file_by(id): global STATICRESOURCE_DIR, UPLOAD_VOICE_DIR create_voice_dir() l = [] for fn in os.listdir(UPLOAD_VOICE_DIR): if id in fn: l.append(fn) return l def get_voice_file_all(): global STATICRESOURCE_DIR, UPLOAD_VOICE_DIR s = set() for fn in os.listdir(UPLOAD_VOICE_DIR): p = os.path.join(UPLOAD_VOICE_DIR, fn) if os.path.isfile(p): arr = fn.split('@') if len(arr)==3: id = arr[1] s.add(id) return list(s) def create_pic_dir(): global STATICRESOURCE_DIR, UPLOAD_PHOTOS_DIR if not os.path.exists(os.path.join(STATICRESOURCE_DIR,'photos')): os.mkdir(os.path.join(STATICRESOURCE_DIR,'photos')) if not os.path.exists(UPLOAD_PHOTOS_DIR): os.mkdir(UPLOAD_PHOTOS_DIR) def handle_upload_file(querydict, buf): global STATICRESOURCE_DIR, UPLOAD_PHOTOS_DIR, UPLOAD_VOICE_DIR ret = False # root = os.path.abspath(STATICRESOURCE_DIR) try: if querydict.has_key('db'): db_util.gridfs_save(querydict, querydict['filename'], buf) ret = True except Exception,e: raise return ret def import_xls(path, fileobj, area, line_name, voltage, category): with open(path, 'wb') as f: f.write(fileobj) return db_util.import_tower_xls_file(area, line_name, voltage, category, path) def save_file_to(category, dir_id, filename, fileobj): root = os.path.abspath(category) if not os.path.exists(root): os.mkdir(root) p = os.path.join(root, filename) if dir_id: p = os.path.join(root, dir_id) if not os.path.exists(p): os.mkdir(p) p = os.path.join(root, dir_id, filename) with open(p, 'wb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'wb') f1.write(fileobj) def geojson_to_czml(aList): cz = czml.CZML() for i in aList: if i.has_key('properties') and i['properties'].has_key('id'): packet = czml.CZMLPacket(id=i['properties']['id']) #tower if i['properties'].has_key('tower_code'): packet = czml.CZMLPacket(id=i['properties']['id'], name=i['properties']['tower_name']) packet.position = czml.Position(cartographicDegrees = [i['geometry']['coordinates'][0], i['geometry']['coordinates'][1], i['geometry']['coordinates'][2],]) packet.point = czml.Point(show=True, color={'rgba': [255, 255, 0, 255]}, pixelSize=10, outlineColor={'rgba': [0, 0, 0, 255]}, outlineWidth=1) #packet.label = czml.Label(text=i['properties']['tower_name'], show=True, scale=0.5) packet.description = i['properties']['tower_name'] #packet.billboard = czml.Billboard(image='http://localhost:88/img/tower.png') cz.append(packet) return cz def handle_post_method(environ): global ENCODING global gRequest querydict, buf = get_querydict_by_GET_POST(environ) ret = {} is_upload = False is_mongo = False use_czml = False get_extext = False headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING if buf is not None: try: is_upload = handle_upload_file(querydict, buf) except: pass if querydict.has_key('db') and querydict.has_key('collection'): is_mongo = True dbname = querydict['db'] collection = querydict['collection'] action = None data = None if querydict.has_key('action'): action = querydict['action'] del querydict['action'] if querydict.has_key('data'): data = querydict['data'] del querydict['data'] if querydict.has_key('use_czml') and querydict['use_czml']: use_czml = True del querydict['use_czml'] if querydict.has_key('get_extext') and querydict['get_extext']: get_extext = True del querydict['get_extext'] del querydict['db'] del querydict['collection'] if action: if 'markdown_' in action or u'markdown_' in action: l = db_util.mongo_action(dbname, collection, action, data, querydict, 'markdown') else: l = db_util.mongo_action(dbname, collection, action, data, querydict) else: l = db_util.mongo_find(dbname, collection, querydict) if get_extext: l = db_util.find_extent(l) if use_czml: l = geojson_to_czml(l) if isinstance(l, list) and len(l) >= 0: ret = l elif isinstance(l, dict) and len(l.keys()) > 0: ret = l elif isinstance(l, czml.CZML): headers['Content-Type'] = 'text/json;charset=' + ENCODING return '200 OK', headers, enc(l.dumps()) #else: #ret["result"] = "%s.%s return 0 record" % (dbname, collection) #else: #ret["result"] = "unknown query operation" if not is_mongo: if querydict.has_key('thunder_counter'): try: ret = handle_thunder_soap(querydict) except: e = sys.exc_info()[1] if hasattr(e, 'message'): ret['result'] = e.message else: ret['result'] = str(e) elif querydict.has_key('op'): if querydict.has_key('area') and querydict['area'] and len(querydict['area'])>0: if querydict['op'] in ['save','delete','update']: ret = db_util.odbc_save_data_to_table(querydict['table'], querydict['op'], querydict['data'], querydict['line_id'], querydict['start_tower_id'], querydict['end_tower_id'], querydict['area']) else: ret = handle_requset_sync(querydict) elif querydict['op'] in ['alt','height'] : if querydict.has_key('lng') and querydict.has_key('lat') and isinstance(querydict['lng'], float) and isinstance(querydict['lat'], float): ret = db_util.extract_one_altitude(querydict['lng'], querydict['lat']) if querydict.has_key('data') and isinstance(querydict['data'], list): ret = db_util.extract_many_altitudes(querydict['data']) else: ret["result"] = "unknown area" elif querydict.has_key('tracks') and querydict.has_key('area'): ret = db_util.save_tracks(querydict['tracks'], querydict['area']) elif querydict.has_key('mobile_action') and querydict.has_key('area') and querydict.has_key('data'): ret = db_util.mobile_action(querydict['mobile_action'], querydict['area'], querydict['data']) if isinstance(ret, list): pass elif isinstance(ret, str) or isinstance(ret, unicode) or isinstance(ret, int) or isinstance(ret, float): pass elif isinstance(ret, dict): if len(ret.keys())==0: pass elif ret.has_key('result'): if isinstance(ret['result'], exceptions.Exception): if hasattr(ret['result'], 'message'): ret['result'] = ret['result'].message else: ret['result'] = str(ret['result']) elif isinstance(ret['result'], str) or isinstance(ret['result'], unicode) or isinstance(ret['result'], int) or isinstance(ret['result'], float): pass elif isinstance(ret['result'], list) or isinstance(ret['result'], dict): pass else: ret["result"] = "unknown operation" else: ret["result"] = "unknown operation" #time.sleep(6) #print(ret) return '200 OK', headers, json.dumps(ret, ensure_ascii=True, indent=4) # def handle_login(environ): # global ENCODING # global gRequest # buf = environ['wsgi.input'].read() # ret = None # try: # ds_plus = urllib.unquote_plus(buf) # obj = json.loads(dec(ds_plus)) # if obj.has_key(u'db') and obj.has_key(u'collection'): # is_mongo = True # dbname = obj[u'db'] # collection = obj[u'collection'] # action = None # data = None # if obj.has_key(u'action'): # action = obj[u'action'] # del obj[u'action'] # if obj.has_key(u'data'): # data = obj[u'data'] # del obj[u'data'] # if obj.has_key(u'url'): # del obj[u'url'] # if obj.has_key(u'redirect'): # del obj[u'redirect'] # del obj[u'db'] # del obj[u'collection'] # if action: # ret = db_util.mongo_action(dbname, collection, action, data, obj) # except: # raise # return ret def handle_thunder_soap(obj): ret = {} if obj['thunder_counter'] == 'GetFlashofDate': ret = soap_GetFlashofDate(obj['start_time'], obj['end_time']) if obj['thunder_counter'] == 'GetFlashofEnvelope': ret = soap_GetFlashofEnvelope(obj['start_time'], obj['end_time'], obj['lng1'], obj['lng2'], obj['lat1'], obj['lat2']) return ret def dishen_ws_loop(aWebSocket, aHash): while 1: #now = time.strftime('%Y-%m-%d %H:%M:%S')[:10] #ws.send("%d,%f\n" % ((time.time() - time.timezone)*1000, random.random()*10)) #t = (time.time() - time.timezone) * 1000 t = time.time() * 1000 if aWebSocket: #message = aWebSocket.receive() #print("message=%s" % message) aWebSocket.send( '%s\n%d' % (str(aHash),int(t)) ) else: break gevent.sleep(1.0) def check_session(environ, request, session_store): global gConfig def set_cookie(key, value): secure = False if gConfig['listen_port']['enable_ssl'].lower() == 'true': secure = True max_age = int(gConfig['authorize_platform']['session']['session_age']) cookie = ('Set-Cookie', dump_cookie(key, value, domain=str(gConfig['authorize_platform']['session']['session_domain']), max_age=max_age, secure=secure)) return cookie sid = request.cookies.get('authorize_platform_session_id') cookie = None is_expire = False sess = None if sid is None or len(sid)==0: request.session = session_store.new({}) #session_store.save(request.session) is_expire = True cookie = set_cookie('authorize_platform_session_id', request.session.sid ) sess = request.session else: request.session = session_store.get(sid) if request.session: cookie = set_cookie('authorize_platform_session_id', request.session.sid) session_store.save_if_modified(request.session) else: cookie = set_cookie('authorize_platform_session_id', '') is_expire = True sess = request.session return sess, cookie, is_expire def get_token_from_env(environ): global gConfig, gLoginToken cookie = parse_cookie(environ) session_id = None ret = None if cookie.has_key('session_id'): session_id = cookie['session_id'] if gLoginToken.has_key(session_id): ret = gLoginToken[session_id] return session_id, ret def get_session_from_env(environ): global gSessionStore cookie = parse_cookie(environ) session_id = None ret = None if cookie.has_key('session_id'): session_id = cookie['session_id'] ret = gSessionStore.get(session_id) return ret def get_userinfo_from_env(environ): global gConfig, gLoginToken cookie = parse_cookie(environ) session_id = None ret = None if cookie.has_key('session_id'): session_id = cookie['session_id'] if gLoginToken.has_key(session_id): ret = gLoginToken[session_id] return session_id, ret def get_sign_alipay(sign_data): global gConfig ret = '' text = sign_data + gConfig['pay_platform']['alipay']['partner_key'] text = enc_by_code(gConfig['pay_platform']['alipay']['input_charset'], text) if (gConfig['pay_platform']['alipay']['sign_type']).lower() == 'md5': md5.digest_size = 32 ret = md5.new(text).hexdigest() return ret def check_sign_alipay(input_charset, signature, sign_type, original_data): global gConfig text = original_data + gConfig['pay_platform']['alipay']['partner_key'] text = enc_by_code(str(input_charset), text) ret = '' if str(sign_type).lower() == 'md5': md5.digest_size = 32 ret = md5.new(text).hexdigest() return ret == str(signature) def build_query_string(data={}): ret = '' keys = data.keys() keys.sort() for k in keys: ret += '%s=%s' % (k, data[k]) if keys.index(k) < len(keys) - 1: ret += '&' return ret def get_pay_record_by_id(querydict): ret = None if querydict['pay_channel'] == 'alipay': out_trade_no = querydict['out_trade_no'] db_util.mongo_init_client('pay_platform') client = db_util.gClientMongo['pay_platform'] db = client['pay'] if 'pay_log' in db.collection_names(False): collection = db['pay_log'] ret = collection.find_one({"out_trade_no":out_trade_no}) return ret def refund_alipay(querydict): global ENCODING global gConfig, gSecurityConfig, gJoinableQueue headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' href = str(gConfig['pay_platform']['alipay']['submit_gateway']) sign_data = {} sign_data['_input_charset'] = gConfig['pay_platform']['alipay']['input_charset'] sign_data['partner'] = gConfig['pay_platform']['alipay']['partner_id'] sign_data['service'] = 'refund_fastpay_by_platform_pwd' sign_data['refund_date'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") sign_data['batch_no'] = datetime.datetime.now().strftime("%Y%m%d") + str(ObjectId()) sign_data['batch_num'] = '1' querydict['refund_date'] = sign_data['refund_date'] querydict['batch_no'] = sign_data['batch_no'] querydict['batch_num'] = int(sign_data['batch_num']) if len(gConfig['pay_platform']['alipay']['return_url'])>0: sign_data['return_url'] = gConfig['pay_platform']['alipay']['return_url'] if len(gConfig['pay_platform']['alipay']['error_notify_url'])>0: sign_data['error_notify_url'] = gConfig['pay_platform']['alipay']['error_notify_url'] if len(gConfig['pay_platform']['alipay']['notify_url'])>0: sign_data['notify_url'] = gConfig['pay_platform']['alipay']['notify_url'] rec = get_pay_record_by_id(querydict) if rec: if rec.has_key('error_code'): body = json.dumps({'result':'refund_fail_pay_has_fail' }, ensure_ascii=True, indent=4) else: if rec.has_key('seller_email') \ and rec.has_key('trade_no') : trade_no = rec['trade_no'] sign_data['seller_email'] = rec['seller_email'] querydict['seller_email'] = sign_data['seller_email'] querydict['trade_no'] = trade_no detail_data = '%s^%.2f^%s' % (trade_no, float(querydict['refund_fee']), querydict['refund_desc'] ) sign_data['detail_data'] = detail_data if not rec.has_key('seller_email'): body = json.dumps({'result':'refund_fail_seller_email_required' }, ensure_ascii=True, indent=4) if not rec.has_key('trade_no'): body = json.dumps({'result':'refund_fail_trade_no_required' }, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'refund_fail_pay_trade_not_found:%s' % querydict['out_trade_no']}, ensure_ascii=True, indent=4) if len(body) == 0: #querydict['refund_result'] = 'refund_sending_to_alipay' querydict['refund_result'] = 'refund_adding_to_queue' querydict['refund_fee'] = float(querydict['refund_fee']) g = gevent.spawn(update_refund_log, querydict['out_trade_no'], querydict) #g1 = sign_and_send_alipay('post', href, sign_data) #g1.join() #resp = g1.value #s = resp.read() #print('refund response: [%s]' % dec(s)) #body = json.dumps({'result':'refund_sending_to_alipay'}, ensure_ascii=True, indent=4) try: gJoinableQueue.put({'thirdpay':'alipay', 'method':'post', 'url':href, 'data':sign_data}) except gevent.queue.Full: body = json.dumps({'result':'refund_err_queue_full'}, ensure_ascii=True, indent=4) body = json.dumps({'result':'refund_adding_to_queue'}, ensure_ascii=True, indent=4) return statuscode, headers, body def pay_alipay(querydict): global ENCODING global gConfig, gSecurityConfig, gJoinableQueue headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' href = str(gConfig['pay_platform']['alipay']['submit_gateway']) if not href[-1:] == '?': href += '?' sign_data = {} sign_data['_input_charset'] = gConfig['pay_platform']['alipay']['input_charset'] sign_data['total_fee'] = querydict['total_fee'] sign_data['out_trade_no'] = querydict['out_trade_no'] sign_data['partner'] = gConfig['pay_platform']['alipay']['partner_id'] sign_data['payment_type'] = '1' sign_data['seller_email'] = querydict['seller_email'] sign_data['buyer_email'] = querydict['buyer_email'] sign_data['service'] = 'create_direct_pay_by_user' sign_data['subject'] = querydict['subject'] if len(gConfig['pay_platform']['alipay']['return_url'])>0: sign_data['return_url'] = gConfig['pay_platform']['alipay']['return_url'] if len(gConfig['pay_platform']['alipay']['error_notify_url'])>0: sign_data['error_notify_url'] = gConfig['pay_platform']['alipay']['error_notify_url'] if len(gConfig['pay_platform']['alipay']['notify_url'])>0: sign_data['notify_url'] = gConfig['pay_platform']['alipay']['notify_url'] #querydict['trade_status'] = 'pay_sending_to_alipay' querydict['trade_status'] = 'pay_adding_to_queue' querydict['total_fee'] = float(querydict['total_fee']) if querydict.has_key('defaultbank'): if gSecurityConfig['alipay']['bank_code'].has_key(querydict['defaultbank']): sign_data['defaultbank'] = querydict['defaultbank'] sign_data['paymethod'] = 'bankPay' else: body = json.dumps({'result':'pay_fail_wrong_bank_code'}, ensure_ascii=True, indent=4) return statuscode, headers, body if gConfig['pay_platform']['alipay']['need_ctu_check'].lower() == 'true': sign_data['need_ctu_check'] = 'Y' if gConfig['pay_platform']['alipay']['anti_fishing'].lower() == 'true': sign_data['anti_phishing_key'] = '' sign_data['exter_invoke_ip'] = '' g = gevent.spawn(update_pay_log, querydict['out_trade_no'], querydict) #g1 = sign_and_send_alipay('post', href, sign_data) #body = json.dumps({'result':'pay_sending_to_alipay'}, ensure_ascii=True, indent=4) try: gJoinableQueue.put({'thirdpay':'alipay','method':'post', 'url':href, 'data':sign_data}) except gevent.queue.Full: body = json.dumps({'result':'pay_err_queue_full'}, ensure_ascii=True, indent=4) body = json.dumps({'result':'pay_adding_to_queue'}, ensure_ascii=True, indent=4) return statuscode, headers, body def handle_refund(environ): global ENCODING global gConfig headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' querydict = {} if environ.has_key('QUERY_STRING') and len(environ['QUERY_STRING'])>0: querystring = environ['QUERY_STRING'] querystring = urllib.unquote_plus(querystring) querydict = urlparse.parse_qs(dec(querystring)) d = {} for k in querydict.keys(): d[k] = querydict[k][0] querydict = d try: buf = environ['wsgi.input'].read() ds_plus = urllib.unquote_plus(buf) d = json.loads(dec(ds_plus)) for k in d.keys(): querydict[k] = d[k] except: pass if len(querydict.keys()) > 0: if querydict.has_key('out_trade_no') and len(querydict['out_trade_no'])>0\ and querydict.has_key('pay_channel') and len(querydict['pay_channel'])>0\ and querydict.has_key('refund_fee') and len(querydict['refund_fee'])>0\ and querydict.has_key('refund_desc') and len(querydict['refund_desc'])>0: if querydict['pay_channel'] == 'alipay': refund_fee = 0 try: refund_fee = float(querydict['refund_fee']) except: body = json.dumps({'result':'refund_fail_refund_fee_wrong_format'}, ensure_ascii=True, indent=4) refund_fee = 0 if '^' in querydict['refund_desc'] \ or '#' in querydict['refund_desc'] \ or '|' in querydict['refund_desc'] \ or '$' in querydict['refund_desc'] \ or len(querydict['refund_desc'])>128 : refund_fee = 0 body = json.dumps({'result':'refund_fail_refund_desc_wrong_charactor'}, ensure_ascii=True, indent=4) if refund_fee>0: statuscode, headers, body = refund_alipay(querydict) #else: #body = json.dumps({'result':'refund_fail_refund_fee_wrong_format'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'refund_fail_unsupport_pay_channel'}, ensure_ascii=True, indent=4) if not querydict.has_key('out_trade_no') or len(querydict['out_trade_no'])==0: body = json.dumps({'result':'refund_fail_out_trade_no_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('refund_fee') \ or (isinstance(querydict['refund_fee'], unicode) and len(querydict['refund_fee'])==0) \ or (isinstance(querydict['refund_fee'], float) and querydict['refund_fee']==0.0): body = json.dumps({'result':'refund_fail_refund_fee_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('refund_desc') or len(querydict['refund_desc'])==0: body = json.dumps({'result':'refund_fail_refund_desc_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('pay_channel') or len(querydict['pay_channel'])==0: body = json.dumps({'result':'refund_fail_pay_channel_required'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'refund_fail_wrong_data_format'}, ensure_ascii=True, indent=4) return statuscode, headers, body def handle_pay_getinfo(environ): global ENCODING global gConfig, gSecurityConfig def get_collection(collection): ret = None db_util.mongo_init_client('pay_platform') db = db_util.gClientMongo['pay_platform'][gConfig['pay_platform']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret def query_pay_log(condition): ret = [] collection = get_collection(gConfig['pay_platform']['mongodb']['collection_pay_log']) ret = list(collection.find(condition)) #for i in cur: #ret.append(i) return ret headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' querydict = {} if environ.has_key('QUERY_STRING') and len(environ['QUERY_STRING'])>0: querystring = environ['QUERY_STRING'] querystring = urllib.unquote_plus(querystring) querydict = urlparse.parse_qs(dec(querystring)) d = {} for k in querydict.keys(): d[k] = querydict[k][0] querydict = d try: buf = environ['wsgi.input'].read() ds_plus = urllib.unquote_plus(buf) d = json.loads(dec(ds_plus)) for k in d.keys(): querydict[k] = d[k] except: pass if len(querydict.keys()) > 0: if querydict.has_key('q'): if querydict['q'] == 'bank_info': if querydict.has_key('bank_code'): if querydict['bank_code'] == 'all' or len(querydict['bank_code'])==0: body = json.dumps(gSecurityConfig['alipay']['bank_code'], ensure_ascii=True, indent=4) else: if gSecurityConfig['alipay']['bank_code'].has_key(querydict['bank_code']): body = json.dumps(gSecurityConfig['alipay']['bank_code'][querydict['bank_code']], ensure_ascii=True, indent=4) else: body = json.dumps({'result':'wrong_bank_code'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'unknown_query_type'}, ensure_ascii=True, indent=4) elif querydict['q'] == 'error_info': if querydict.has_key('error_code'): if querydict['error_code'] == 'all' or len(querydict['error_code'])==0: body = json.dumps(gSecurityConfig['alipay']['error_code'], ensure_ascii=True, indent=4) else: if gSecurityConfig['alipay']['error_code'].has_key(querydict['error_code']): body = json.dumps(gSecurityConfig['alipay']['error_code'][querydict['error_code']], ensure_ascii=True, indent=4) else: body = json.dumps({'result':'wrong_error_code'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'unknown_query_type'}, ensure_ascii=True, indent=4) elif querydict['q'] == 'trade_status': if querydict.has_key('out_trade_no'): if len(querydict['out_trade_no'])>0: l = [] if isinstance(querydict['out_trade_no'], unicode): l = query_pay_log({'out_trade_no': querydict['out_trade_no']}) elif isinstance(querydict['out_trade_no'], list): idlist = [ObjectId(i) for i in querydict['out_trade_no']] l = query_pay_log({'out_trade_no': {'$in': idlist}}) if len(l) > 0: ll = [] for i in l: o = {} o['out_trade_no'] = i['out_trade_no'] if i.has_key('trade_status'): o['trade_status'] = i['trade_status'] else: o['trade_status'] = None if i.has_key('error_code'): o['error_code'] = i['error_code'] else: o['error_code'] = None if i.has_key('refund_status'): o['refund_status'] = i['refund_status'] else: o['refund_status'] = None ll.append(o) body = json.dumps(db_util.remove_mongo_id(ll), ensure_ascii=True, indent=4) else: body = json.dumps({'result':'out_trade_no_not_exist'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'out_trade_cannot_be_null'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'out_trade_no_required'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'unknown_query_type'}, ensure_ascii=True, indent=4) return statuscode, headers, body def handle_pay(environ): global ENCODING global gConfig headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' querydict = {} if environ.has_key('QUERY_STRING') and len(environ['QUERY_STRING'])>0: querystring = environ['QUERY_STRING'] querystring = urllib.unquote_plus(querystring) querydict = urlparse.parse_qs(dec(querystring)) d = {} for k in querydict.keys(): d[k] = querydict[k][0] querydict = d try: buf = environ['wsgi.input'].read() ds_plus = urllib.unquote_plus(buf) d = json.loads(dec(ds_plus)) for k in d.keys(): querydict[k] = d[k] except: pass if len(querydict.keys()) > 0: if querydict.has_key('out_trade_no') and len(querydict['out_trade_no'])>0 \ and querydict.has_key('subject') and len(querydict['subject'])>0 \ and querydict.has_key('total_fee') and len(querydict['total_fee'])>0 \ and querydict.has_key('buyer_email') and len(querydict['buyer_email'])>0 \ and querydict.has_key('seller_email') and len(querydict['seller_email'])>0 \ and querydict.has_key('pay_channel') and len(querydict['pay_channel'])>0 : if querydict['pay_channel'] == 'alipay': #if querydict.has_key('service'): total_fee = 0 try: total_fee = float(querydict['total_fee']) except: body = json.dumps({'result':'pay_fail_total_fee_wrong_format'}, ensure_ascii=True, indent=4) total_fee = 0 if '^' in querydict['subject'] \ or '#' in querydict['subject'] \ or '|' in querydict['subject'] \ or '$' in querydict['subject'] \ or '%' in querydict['subject'] \ or '&' in querydict['subject'] \ or '+' in querydict['subject'] \ or len(querydict['subject'])>128 : total_fee = 0 body = json.dumps({'result':'pay_fail_subject_wrong_charactor'}, ensure_ascii=True, indent=4) if total_fee>0: statuscode, headers, body = pay_alipay(querydict) else: body = json.dumps({'result':'pay_fail_total_fee_wrong_format'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'pay_fail_unsupport_pay_channel'}, ensure_ascii=True, indent=4) if not querydict.has_key('out_trade_no') or len(querydict['out_trade_no'])==0: body = json.dumps({'result':'pay_fail_out_trade_no_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('subject') or len(querydict['subject'])==0: body = json.dumps({'result':'pay_fail_subject_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('total_fee') \ or (isinstance(querydict['total_fee'], unicode) and len(querydict['total_fee'])==0) \ or (isinstance(querydict['total_fee'], float) and querydict['total_fee']==0.0): body = json.dumps({'result':'pay_fail_total_fee_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('buyer_email') or len(querydict['buyer_email'])==0: body = json.dumps({'result':'pay_fail_buyer_email_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('seller_email') or len(querydict['seller_email'])==0: body = json.dumps({'result':'pay_fail_seller_email_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('pay_channel') or len(querydict['pay_channel'])==0: body = json.dumps({'result':'pay_fail_pay_channel_required'}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'pay_fail_wrong_data_format'}, ensure_ascii=True, indent=4) return statuscode, headers, body def update_refund_log(out_trade_no, data, is_insert=True): db_util.mongo_init_client('pay_platform') client = db_util.gClientMongo['pay_platform'] db = client['pay'] if not 'refund_log' in db.collection_names(False): collection = db.create_collection('refund_log') collection.ensure_index([("out_trade_no", pymongo.ASCENDING),]) else: collection = db['refund_log'] rec = collection.find_one({"out_trade_no":out_trade_no}) if data.has_key('refund_fee') and (isinstance(data['refund_fee'], unicode) or isinstance(data['refund_fee'], str)): data['refund_fee'] = float(data['refund_fee']) if rec: for k in data.keys(): rec[k] = data[k] wr = collection.update({'_id':rec['_id']}, db_util.add_mongo_id(rec), multi=False, upsert=False) if wr and wr['n'] == 0: print('update out_trade_no [%s] failed' % out_trade_no) else: if is_insert: try: _id = collection.insert( db_util.add_mongo_id(data)) #print('refund_log insert _id=%s' % str(_id)) except: print('refund_log insert out_trade_no [%s] failed' % out_trade_no) def update_pay_log(out_trade_no, data, is_insert=True): db_util.mongo_init_client('pay_platform') client = db_util.gClientMongo['pay_platform'] db = client['pay'] if not 'pay_log' in db.collection_names(False): collection = db.create_collection('pay_log') collection.ensure_index([("out_trade_no", pymongo.ASCENDING),]) else: collection = db['pay_log'] rec = collection.find_one({"out_trade_no":out_trade_no}) if data.has_key('total_fee') and (isinstance(data['total_fee'], unicode) or isinstance(data['total_fee'], str)): data['total_fee'] = float(data['total_fee']) if data.has_key('refund_fee') and (isinstance(data['refund_fee'], unicode) or isinstance(data['refund_fee'], str)): data['refund_fee'] = float(data['refund_fee']) if data.has_key('price') and (isinstance(data['price'], unicode) or isinstance(data['price'], str)): data['price'] = float(data['price']) if data.has_key('quantity') and (isinstance(data['quantity'], unicode) or isinstance(data['quantity'], str)): data['quantity'] = int(data['quantity']) if rec: for k in data.keys(): rec[k] = data[k] wr = collection.update({'_id':rec['_id']}, db_util.add_mongo_id(rec), multi=False, upsert=False) #print(wr) if wr and wr['n'] == 0: print('update out_trade_no [%s] failed' % out_trade_no) else: if is_insert: try: _id = collection.insert( db_util.add_mongo_id(data)) #print('pay_log insert _id=%s' % str(_id)) except: print('pay_log insert out_trade_no [%s] failed' % out_trade_no) def handle_alipay_return_url(environ): global ENCODING global gConfig, gSecurityConfig querydict = {} data = {} data['pay_channel'] = 'alipay' querystring = '' if environ.has_key('QUERY_STRING'): querystring = environ['QUERY_STRING'] querystring = urllib.unquote_plus(querystring) querystring = dec_by_code(gConfig['pay_platform']['alipay']['input_charset'], querystring) querydict = urlparse.parse_qs(querystring) d = {} for k in querydict.keys(): d[k] = querydict[k][0] querydict = d if querydict.has_key('notify_type') and 'trade_status_' in querydict['notify_type'] and querydict.has_key('out_trade_no'): if querydict.has_key('is_success'): if querydict['is_success'] == 'T': data['trade_status'] = 'send_to_alipay_success' if querydict.has_key('seller_email'): data['seller_email'] = querydict['seller_email'] if querydict.has_key('buyer_email'): data['buyer_email'] = querydict['buyer_email'] if querydict.has_key('seller_id'): data['seller_id'] = querydict['seller_id'] if querydict.has_key('buyer_id'): data['buyer_id'] = querydict['buyer_id'] if querydict.has_key('notify_time'): data['notify_time'] = querydict['notify_time'] if querydict.has_key('notify_type'): data['notify_type'] = querydict['notify_type'] if querydict.has_key('notify_id'): data['notify_id'] = querydict['notify_id'] if querydict.has_key('out_trade_no'): data['out_trade_no'] = querydict['out_trade_no'] if querydict.has_key('subject'): data['subject'] = querydict['subject'] if querydict.has_key('payment_type'): data['payment_type'] = querydict['payment_type'] if querydict.has_key('trade_no'): data['trade_no'] = querydict['trade_no'] if querydict.has_key('trade_status'): data['trade_status'] = querydict['trade_status'] if gSecurityConfig['alipay']['trade_status'].has_key(data['trade_status']): data['trade_status_desc'] = gSecurityConfig['alipay']['trade_status'][data['trade_status']] if querydict.has_key('gmt_create'): data['gmt_create'] = querydict['gmt_create'] if querydict.has_key('gmt_payment'): data['gmt_payment'] = querydict['gmt_payment'] if querydict.has_key('gmt_close'): data['gmt_close'] = querydict['gmt_close'] if querydict.has_key('gmt_refund'): data['gmt_refund'] = querydict['gmt_refund'] if querydict.has_key('body'): data['body'] = querydict['body'] if querydict.has_key('error_code'): data['error_code'] = querydict['error_code'] if querydict.has_key('bank_seq_no'): data['bank_seq_no'] = querydict['bank_seq_no'] if querydict.has_key('out_channel_type'): data['out_channel_type'] = querydict['out_channel_type'] if querydict.has_key('out_channel_amount'): data['out_channel_amount'] = querydict['out_channel_amount'] if querydict.has_key('out_channel_inst'): data['out_channel_inst'] = querydict['out_channel_inst'] if querydict.has_key('business_scene'): data['business_scene'] = querydict['business_scene'] if querydict.has_key('total_fee'): data['total_fee'] = querydict['total_fee'] if data.has_key('out_trade_no'): g = gevent.spawn(update_pay_log, data['out_trade_no'], data, False) def handle_alipay_notify_url(environ): global gConfig, gSecurityConfig buf = environ['wsgi.input'].read() ds_plus = urllib.unquote_plus(buf) ds_plus = dec_by_code(gConfig['pay_platform']['alipay']['input_charset'], ds_plus) querydict = {} data = {} data['pay_channel'] = 'alipay' try: querydict = urlparse.parse_qs(ds_plus) d = {} for k in querydict.keys(): d[k] = querydict[k][0] querydict = d except: querydict = {} if querydict.has_key('seller_email'): data['seller_email'] = querydict['seller_email'] if querydict.has_key('buyer_email'): data['buyer_email'] = querydict['buyer_email'] if querydict.has_key('seller_id'): data['seller_id'] = querydict['seller_id'] if querydict.has_key('buyer_id'): data['buyer_id'] = querydict['buyer_id'] if querydict.has_key('notify_time'): data['notify_time'] = querydict['notify_time'] if querydict.has_key('notify_id'): data['notify_id'] = querydict['notify_id'] if querydict.has_key('notify_type'): data['notify_type'] = querydict['notify_type'] if querydict.has_key('out_trade_no'): data['out_trade_no'] = querydict['out_trade_no'] if querydict.has_key('subject'): data['subject'] = querydict['subject'] if querydict.has_key('payment_type'): data['payment_type'] = querydict['payment_type'] if querydict.has_key('trade_no'): data['trade_no'] = querydict['trade_no'] if querydict.has_key('trade_status'): data['trade_status'] = querydict['trade_status'] if gSecurityConfig['alipay']['trade_status'].has_key(data['trade_status']): data['trade_status_desc'] = gSecurityConfig['alipay']['trade_status'][data['trade_status']] if querydict.has_key('gmt_create'): data['gmt_create'] = querydict['gmt_create'] if querydict.has_key('gmt_payment'): data['gmt_payment'] = querydict['gmt_payment'] if querydict.has_key('gmt_close'): data['gmt_close'] = querydict['gmt_close'] if querydict.has_key('gmt_refund'): data['gmt_refund'] = querydict['gmt_refund'] if querydict.has_key('body'): data['body'] = querydict['body'] if querydict.has_key('error_code'): data['error_code'] = querydict['error_code'] if querydict.has_key('bank_seq_no'): data['bank_seq_no'] = querydict['bank_seq_no'] if querydict.has_key('out_channel_type'): data['out_channel_type'] = querydict['out_channel_type'] if querydict.has_key('out_channel_amount'): data['out_channel_amount'] = querydict['out_channel_amount'] if querydict.has_key('out_channel_inst'): data['out_channel_inst'] = querydict['out_channel_inst'] if querydict.has_key('business_scene'): data['business_scene'] = querydict['business_scene'] if querydict.has_key('total_fee'): data['total_fee'] = querydict['total_fee'] if querydict.has_key('notify_type') and 'trade_status_' in querydict['notify_type'] and data.has_key('out_trade_no'): g = gevent.spawn(update_pay_log, data['out_trade_no'], data, False) if querydict.has_key('notify_type') and querydict['notify_type'] == 'batch_refund_notify': if querydict.has_key('batch_no'): data['batch_no'] = querydict['batch_no'] if querydict.has_key('success_num'): data['success_num'] = int(querydict['success_num']) if querydict.has_key('result_details'): arr = querydict['result_details'].split('^') trade_no = arr[0] refund_fee = float(arr[1]) refund_status = arr[2] data['trade_no'] = trade_no data['refund_fee'] = refund_fee data['refund_status'] = refund_status g = gevent.spawn(update_refund_log, data['trade_no'], data, False) def handle_alipay_error_notify_url(environ): global gConfig, gSecurityConfig buf = environ['wsgi.input'].read() ds_plus = urllib.unquote_plus(buf) ds_plus = dec_by_code(gConfig['pay_platform']['alipay']['input_charset'], ds_plus) querydict = {} data = {} data['pay_channel'] = 'alipay' try: querydict = urlparse.parse_qs(ds_plus) d = {} for k in querydict.keys(): d[k] = querydict[k][0] querydict = d except: querydict = {} if querydict.has_key('out_trade_no'): data['out_trade_no'] = querydict['out_trade_no'] if querydict.has_key('error_code'): data['error_code'] = querydict['error_code'] if gSecurityConfig['alipay']['error_code'].has_key(data['error_code']): data['error_desc'] = gSecurityConfig['alipay']['error_code'][data['error_code']] if data.has_key('out_trade_no'): g = gevent.spawn(update_pay_log, data['out_trade_no'], data, False) #g.join() def get_querydict_by_GET_POST(environ): querydict = {} buf = None if environ.has_key('QUERY_STRING'): querystring = environ['QUERY_STRING'] querystring = urllib.unquote_plus(querystring) querystring = dec(querystring) try: d = json.loads(querystring) if isinstance(d, dict): for k in d.keys(): querydict[k] = d[k] except: querydict = urlparse.parse_qs(querystring) d = {} for k in querydict.keys(): d[k] = querydict[k][0] querydict = d # try: # # buf = environ['wsgi.input'].read() # buf = stream.read() # print('buf=') # print(buf) # ds_plus = urllib.unquote_plus(buf) # obj = json.loads(dec(ds_plus)) # for k in obj.keys(): # querydict[k] = obj[k] # except: # pass stream, form, files = werkzeug.formparser.parse_form_data(environ, charset='utf-8') if len(form.keys()) > 0: for key in form.keys(): try: if isinstance(key, str): key = dec(key) obj = json.loads(key) if isinstance(obj, dict): for k in obj.keys(): querydict[k] = obj[k] if isinstance(obj, list): querydict = obj except Exception,e: print(e) querydict[key] = form[key] file_storage_list = [] if len(files.keys()) > 0: for key in files.keys(): file_storage_list.extend(files.getlist(key)) for file_storage in file_storage_list: if isinstance(file_storage, werkzeug.datastructures.FileStorage): querydict['filename'] = file_storage.filename querydict['content_type'] = file_storage.content_type querydict['mimetype'] = file_storage.mimetype # querydict['content_length'] = file_storage.content_length buf = file_storage.read() break return querydict, buf def handle_combiz_platform(environ): global ENCODING global gConfig, gRequest, gFormTemplate def get_collection(collection): ret = None db_util.mongo_init_client('combiz_platform') db = db_util.gClientMongo['combiz_platform'][gConfig['combiz_platform']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret #Rule('/workflow_add', endpoint='workflow_add'), #Rule('/workflow_query', endpoint='workflow_query'), #Rule('/workflow_query/<_id>', endpoint='workflow_query'), #Rule('/workflow_update', endpoint='workflow_update'), #Rule('/workflow_delete', endpoint='workflow_delete'), #Rule('/workflow_delete/<_id>', endpoint='workflow_delete'), #Rule('/workflow_template_add', endpoint='workflow_template_add'), #Rule('/workflow_template_query', endpoint='workflow_template_query'), #Rule('/workflow_template_query/<_id>', endpoint='workflow_template_query'), #Rule('/workflow_template_update', endpoint='workflow_template_update'), #Rule('/workflow_template_delete', endpoint='workflow_template_delete'), #Rule('/workflow_template_delete/<_id>', endpoint='workflow_template_delete'), def workflow_add(querydict): ret = '' if querydict.has_key('order_id'): try: collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow']) existone = collection.find_one({'order_id':querydict['order_id']}) if existone: ret = json.dumps({'result':u'workflow_add_order_id_already_exist' }, ensure_ascii=True, indent=4) else: _id = collection.save(querydict) o = collection.find_one({'_id':_id}) ret = json.dumps(db_util.remove_mongo_id(o), ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_add_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_add_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_add_order_id_required' }, ensure_ascii=True, indent=4) return ret def workflow_query(querydict): ret = '' o = None try: #print(querydict) collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow']) limit = 10 skip = 0 ssort = None cond = {} if querydict.has_key('limit'): limit = int(querydict['limit']) if querydict.has_key('offset'): skip = int(querydict['offset']) if querydict.has_key('order'): ssort = [] if querydict['order'] == 'asc': ssort = [('order_id', pymongo.ASCENDING),] if querydict['order'] == 'desc': ssort = [('order_id', pymongo.DESCENDING),] if querydict.has_key('_id'): o = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) elif querydict.has_key('order_id'): if '*' in querydict['order_id']: cond = {'order_id': {'$regex':'^.*' + querydict['order_id'].replace('*', '') + '.*$'}} #print(cond) o = list(collection.find(cond, skip=skip, limit=limit, sort=ssort)) #print(o) else: o = collection.find_one({'order_id':querydict['order_id']}) else: ssort = None cond = {} if querydict.has_key('search_field') and querydict.has_key('search'): cond = {str(querydict['search_field']): {'$regex':'^.*' + querydict['search'].replace('*', '') + '.*$'}} if querydict.has_key('order'): ssort = [] if querydict['order'] == 'asc': ssort = [(str(querydict['search_field']), pymongo.ASCENDING),] if querydict['order'] == 'desc': ssort = [(str(querydict['search_field']), pymongo.DESCENDING),] o = list(collection.find(cond, skip=skip, limit=limit, sort=ssort)) if o: ret = json.dumps(db_util.remove_mongo_id(o), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_query_workflow_not_exist' }, ensure_ascii=True, indent=4) #if not querydict.has_key('_id') and not querydict.has_key('order_id'): #ret = json.dumps({'result':u'workflow_query_id_or_order_id_required' }, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_query_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_query_fail' }, ensure_ascii=True, indent=4) return ret def workflow_update(querydict): ret = '' try: collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow']) if querydict.has_key('_id'): existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.update({'_id':existone['_id']}, {'$set': db_util.add_mongo_id(querydict)}, multi=False, upsert=False) one = collection.find_one(db_util.add_mongo_id({'_id':existone['_id']})) ret = json.dumps(db_util.remove_mongo_id(one), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_update_workflow_not_exist' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_update_id_required' }, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_update_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_update_fail' }, ensure_ascii=True, indent=4) return ret def workflow_delete(querydict): ret = '' try: collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow']) if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.remove({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_delete_workflow_not_exist' }, ensure_ascii=True, indent=4) if isinstance(querydict['_id'], list): ids = db_util.add_mongo_id(querydict['_id']) cond = {'_id':{'$in':ids}} collection.remove(cond) ret = json.dumps(db_util.remove_mongo_id(querydict['_id']), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_delete_id_required' }, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_delete_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_delete_fail' }, ensure_ascii=True, indent=4) return ret def workflow_template_add(querydict): ret = '' if querydict.has_key('name') \ and querydict.has_key('nodes') \ and querydict.has_key('edges'): try: collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow_template']) existone = collection.find_one({'name':querydict['name']}) if existone: ret = json.dumps({'result':u'workflow_template_add_name_already_exist' }, ensure_ascii=True, indent=4) else: _id = collection.save(db_util.add_mongo_id(querydict)) o = collection.find_one({'_id':_id}) ret = json.dumps(db_util.remove_mongo_id(o), ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_template_add_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_add_fail' }, ensure_ascii=True, indent=4) else: if not querydict.has_key('name'): ret = json.dumps({'result':u'workflow_template_add_name_required' }, ensure_ascii=True, indent=4) if not querydict.has_key('nodes'): ret = json.dumps({'result':u'workflow_template_add_nodes_required' }, ensure_ascii=True, indent=4) if not querydict.has_key('edges'): ret = json.dumps({'result':u'workflow_template_add_edges_required' }, ensure_ascii=True, indent=4) return ret def workflow_template_query(querydict): ret = '' o = None try: collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow_template']) o = None limit = 10 skip = 0 ssort = None cond = {} if querydict.has_key('limit'): limit = int(querydict['limit']) if querydict.has_key('offset'): skip = int(querydict['offset']) if querydict.has_key('order'): ssort = [] if querydict['order'] == 'asc': ssort = [('name', pymongo.ASCENDING),] if querydict['order'] == 'desc': ssort = [('name', pymongo.DESCENDING),] if querydict.has_key('name'): if '*' in querydict['name']: cond = {'name': {'$regex':'^.*' + querydict['name'].replace('*', '') + '.*$'}} o = list(collection.find(cond, skip=skip, limit=limit, sort=ssort)) else: o = collection.find_one({'name':querydict['name']}) elif querydict.has_key('_id'): o = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if o: ret = json.dumps(db_util.remove_mongo_id(o), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_query_workflow_not_exist' }, ensure_ascii=True, indent=4) else: ssort = None cond = {} if querydict.has_key('search_field') and querydict.has_key('search'): cond = {str(querydict['search_field']): {'$regex':'^.*' + querydict['search'].replace('*', '') + '.*$'}} if querydict.has_key('order'): ssort = [] if querydict['order'] == 'asc': ssort = [(str(querydict['search_field']), pymongo.ASCENDING),] if querydict['order'] == 'desc': ssort = [(str(querydict['search_field']), pymongo.DESCENDING),] o = list(collection.find(cond, skip=skip, limit=limit, sort=ssort)) ret = json.dumps(db_util.remove_mongo_id(o), ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_template_query_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_query_fail' }, ensure_ascii=True, indent=4) return ret def workflow_template_update(querydict): ret = '' try: collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow_template']) if querydict.has_key('_id'): existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.update({'_id':existone['_id']}, {'$set': db_util.add_mongo_id(querydict)}, multi=False, upsert=False) one = collection.find_one({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(one), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_update_workflow_not_exist' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_update_id_required' }, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_template_update_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_update_fail' }, ensure_ascii=True, indent=4) return ret def workflow_template_delete(querydict): ret = '' try: collection = get_collection(gConfig['combiz_platform']['mongodb']['collection_workflow']) if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.remove({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_delete_workflow_not_exist' }, ensure_ascii=True, indent=4) if isinstance(querydict['_id'], list): ids = db_util.add_mongo_id(querydict['_id']) cond = {'_id':{'$in':ids}} collection.remove(cond) ret = json.dumps(db_util.remove_mongo_id(querydict['_id']), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_delete_id_required' }, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'workflow_template_delete_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'workflow_template_delete_fail' }, ensure_ascii=True, indent=4) return ret def get_form(form_id): global gFormTemplate ret = None for i in gFormTemplate: if i['form_path'] == form_id: ret = i break return ret def get_out_tmp_dir(dirname): out_dir = os.path.join(dirname, 'export_tmp') if not os.path.exists(out_dir): os.mkdir(out_dir) now = time.strftime('%Y-%m-%d %H:%M:%S')[:19].replace('-','').replace(' ','').replace(':','') out_dir = os.path.join(out_dir, '%s-%s' % ( now , uuid.uuid4())) if not os.path.exists(out_dir): os.mkdir(out_dir) return out_dir def form_blank(querydict): global gFormTemplate ret = '' content_type = 'text/json' filename = None if len(gFormTemplate) == 0: p = os.path.join(STATICRESOURCE_DIR, 'form_templates', 'list.json') if os.path.exists(p): try: with open(p, 'r') as f: f1 = gevent.fileobject.FileObjectThread(f, 'r') gFormTemplate = json.loads(f1.read()) except: ret = json.dumps({'result':u'form_blank_list_json_parse_error'}, ensure_ascii=True, indent=4) return ret, content_type, filename else: ret = json.dumps({'result':u'form_blank_list_json_not_exist'}, ensure_ascii=True, indent=4) return ret, content_type, filename if querydict.has_key('form_id'): form = get_form(querydict['form_id']) if form and form.has_key('blank_document'): out_path = form['blank_document'] out_path = os.path.join(STATICRESOURCE_DIR, out_path) if os.path.exists(out_path): ext = 'pdf' if querydict.has_key('format'): ext = querydict['format'] ret,content_type = form_export(out_path, ext) if querydict.has_key('attachmentdownload') and querydict['attachmentdownload'] is True: filename = os.path.basename(form['blank_document']) filename = filename[:filename.rindex('.')] filename = '%s%s.%s' % (filename , u'(空白)', ext) else: ret = json.dumps({'result':u'form_blank_generated_document_not_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'form_blank_blank_document_need_specify_in_list_json'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'form_blank_form_id_required'}, ensure_ascii=True, indent=4) return ret, content_type, filename def form_fill(querydict): global gFormTemplate def check_is_bool(form, fld): ret = False if form.has_key('bool') and isinstance(form['bool'], list): for i in form['bool']: if i == fld: ret = True break return ret def chinese_date(value): ret = value if len(ret) == 19 : if ret[4] == u'-' and ret[7] == u'-' and ret[10] == u' ': ret1 = ret[:4] ret1 += u'年' ret1 += ret[5:7] ret1 += u'月' ret1 += ret[8:10] ret1 += u'日' ret = ret1 return ret def check_is_image(form, fld): ret = False if form.has_key('image') and isinstance(form['image'], list): for i in form['image']: if i == fld: ret = True break return ret def check_is_list(form, fld): ret = False if form.has_key('list') and isinstance(form['list'], list): for i in form['list']: if i == fld: ret = True break return ret def fill_tpl(form, form_data): template_document = os.path.join(STATICRESOURCE_DIR, form['template_document']) dirname = os.path.dirname(template_document) basename = os.path.basename(template_document) basename = basename.replace('_template', '') out_dir = get_out_tmp_dir(dirname) out_path = os.path.join(out_dir, basename) t = Template(template_document, out_path) data = {} document = Py3oItem() file_service_url = '%s://%s:%s/fileservice/rest/file/' % (gConfig['combiz_platform']['proxy_file']['protocol'], gConfig['combiz_platform']['proxy_file']['host'], gConfig['combiz_platform']['proxy_file']['port']) for k in form_data.keys(): #listobj = check_is_list(form, k) if check_is_bool(form, k): if form_data[k] is True: setattr(document, k, u'\u2611') if form_data[k] is False: setattr(document, k, u'\u2610') elif check_is_list(form, k): data[k] = [] for i in form_data[k]: item = Py3oItem() for kk in i.keys(): setattr(item, kk, chinese_date(i[kk])) data[k].append(item) elif check_is_image(form, k): out_path1 = os.path.join(out_dir, form_data[k]) url = URL(file_service_url + form_data[k]) client = HTTPClient.from_url(url) try: response = client.get(url.request_uri) if hasattr(response, 'status_code') and (response.status_code == 200 or response.status_code == 304): with open(out_path1, 'wb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'wb') f1.write(response.read()) if os.path.exists(out_path1): t.set_image_path(k, out_path1) except Exception,e: print(e) out_path1 = os.path.join(STATICRESOURCE_DIR, 'form_templates', 'document', 'no-photo.jpg') t.set_image_path(k, out_path1) else: setattr(document, k, chinese_date(form_data[k])) data['document'] = document #print(dir(data)) t.render(data) return out_path ret = '' content_type = 'text/json' filename = None if len(gFormTemplate) == 0: p = os.path.join(STATICRESOURCE_DIR, 'form_templates', 'list.json') if os.path.exists(p): try: with open(p, 'r') as f: f1 = gevent.fileobject.FileObjectThread(f, 'r') gFormTemplate = json.loads(f1.read()) except: ret = json.dumps({'result':u'form_fill_list_json_parse_error'}, ensure_ascii=True, indent=4) return ret, content_type, filename else: ret = json.dumps({'result':u'form_fill_list_json_not_exist'}, ensure_ascii=True, indent=4) return ret, content_type, filename o = json.loads(workflow_query(querydict)) if o.has_key('result'): ret = json.dumps(o, ensure_ascii=True, indent=4) else: if querydict.has_key('form_id'): if o.has_key('form_data') and isinstance(o['form_data'], dict): if querydict['form_id'] in o['form_data'].keys(): form_data = o['form_data'][querydict['form_id']] form = get_form(querydict['form_id']) if form and form.has_key('template_document'): out_path = fill_tpl(form, form_data) if os.path.exists(out_path): ext = 'pdf' if querydict.has_key('format'): ext = querydict['format'] ret, content_type = form_export(out_path, ext) if querydict.has_key('attachmentdownload') and querydict['attachmentdownload'] is True: filename = os.path.basename(form['template_document']).replace('_template', '') filename = filename[:filename.rindex('.')] filename = '%s%s.%s' % (filename , u'(已填)', ext) else: ret = json.dumps({'result':u'form_fill_generated_document_not_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'form_fill_template_document_need_specify_in_list_json'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'form_fill_form_id_not_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'form_fill_form_data_is_none'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'form_fill_form_id_required'}, ensure_ascii=True, indent=4) return ret, content_type, filename def form_export(src, ext): dirname = os.path.dirname(src) out_dir = get_out_tmp_dir(dirname) out_path = os.path.basename(src) idx = out_path.rindex('.') out_path = out_path[:idx+1] + ext out_path = os.path.join(out_dir, out_path) ret = json.dumps({'result':'unsupport export format.'}, ensure_ascii=True, indent=4) content_type = 'text/json' format = 'pdf' if ext == 'pdf': #format = 'pdf:writer pdf Export' format = 'pdf' content_type = 'application/pdf' elif ext == 'doc': format = 'doc:MS Word 97' content_type = 'application/msword' elif ext == 'docx': format = 'docx:MS Word 2007 XML' content_type = 'application/vnd.openxmlformats-officedocument.wordprocessingml.document' elif ext == 'html': format = 'html:XHTML Writer File' content_type = 'text/html' encfunc = enc if sys.platform == 'win32': encfunc = enc1 cmd = [ encfunc(gConfig['combiz_platform']['libreoffice']['executable_path']), '--headless', '--convert-to', format, '--outdir', encfunc(out_dir), encfunc(src) ] output = check_output(cmd) print(output) #if len(output.strip())>0: #ret = json.dumps({'result':output}, ensure_ascii=True, indent=4) #content_type = 'text/json' if not os.path.exists(out_path): ret = json.dumps({'result':'export failed:file not exist.'}, ensure_ascii=True, indent=4) content_type = 'text/json' if os.path.exists(out_path): with open(out_path, 'rb') as f: f1 = gevent.fileobject.FileObjectThread(f, 'rb') ret = f1.read() return ret, content_type def check_url_token(querydict): is_token_pass = False enable_url_md5_check = False md5prefix = '' if gConfig['combiz_platform'].has_key('security') \ and gConfig['combiz_platform']['security'].has_key('md5prefix'): md5prefix = str(gConfig['combiz_platform']['security']['md5prefix']) if gConfig['combiz_platform'].has_key('security') \ and gConfig['combiz_platform']['security'].has_key('enable_url_md5_check') \ and gConfig['combiz_platform']['security']['enable_url_md5_check'].lower() == 'true': enable_url_md5_check = True else: is_token_pass = True if enable_url_md5_check: print('checking token...') if querydict.has_key('_token'): plain = '%s_|_%s' % (md5prefix, time.strftime('%Y%m%d%H')) token = md5.new(plain).hexdigest() if token == str(querydict['_token']): is_token_pass = True return is_token_pass headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' isnew = False urls = gUrlMap.bind_to_environ(environ) querydict, buf = get_querydict_by_GET_POST(environ) try: endpoint, args = urls.match() if args.has_key('_id'): querydict['_id'] = args['_id'] if endpoint not in []: if not check_url_token(querydict): body = json.dumps({'result': u'invalid_token'}, ensure_ascii=True, indent=4) return statuscode, headers, body if querydict.has_key('_token'): del querydict['_token'] if endpoint == 'workflow_add': body = workflow_add(querydict) elif endpoint == 'workflow_query': body = workflow_query(querydict) elif endpoint == 'workflow_update': body = workflow_update(querydict) elif endpoint == 'workflow_delete': body = workflow_delete(querydict) elif endpoint == 'workflow_template_add': body = workflow_template_add(querydict) elif endpoint == 'workflow_template_query': body = workflow_template_query(querydict) elif endpoint == 'workflow_template_update': body = workflow_template_update(querydict) elif endpoint == 'workflow_template_delete': body = workflow_template_delete(querydict) elif endpoint == 'workflow_form_fill': body, content_type, filename = form_fill(querydict) headers['Content-Type'] = content_type if filename: headers['Content-Disposition'] = 'attachment;filename="' + enc(filename) + '"' elif endpoint == 'workflow_form_blank': body, content_type, filename = form_blank(querydict) headers['Content-Type'] = content_type if filename: headers['Content-Disposition'] = 'attachment;filename="' + enc(filename) + '"' else: body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) except HTTPException, e: body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) return statuscode, headers, body def handle_chat_platform(environ, session): global ENCODING global gConfig, gRequest, gSessionStore, gUrlMap, gSecurityConfig, gWebSocketsMap, gJoinableQueue def get_collection(collection): ret = None db_util.mongo_init_client('chat_platform') db = db_util.gClientMongo['chat_platform'][gConfig['chat_platform']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret def user_query(session, querydict): ret = [] collection = get_collection(gConfig['chat_platform']['mongodb']['collection_users']) q = {} limit = 0 skip = 0 user_detail = False if querydict.has_key('user_detail') and querydict['user_detail'] is True: user_detail = True del querydict['user_detail'] if querydict.has_key('limit'): limit = int(querydict['limit']) del querydict['limit'] if querydict.has_key('skip'): skip = int(querydict['skip']) del querydict['skip'] if querydict.has_key('username'): if isinstance(querydict['username'], str) or isinstance(querydict['username'], unicode): q['username'] = querydict['username'] if isinstance(querydict['username'], list): q['username'] = {'$in': querydict['username']} if isinstance(querydict['username'], dict): q['username'] = querydict['username'] if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): q['_id'] = db_util.add_mongo_id(querydict['_id']) if isinstance(querydict['_id'], list): q['_id'] = {'$in': [db_util.add_mongo_id(i) for i in querydict['_id']]} if isinstance(querydict['_id'], dict): q['_id'] = querydict['_id'] rec = list(collection.find(q).limit(limit).skip(skip)) keys = gWebSocketsMap.keys() for i in rec: if user_detail: if str(i['_id']) in keys: i['online_status'] = 'online' else: i['online_status'] = 'offline' ret.append(i) return ret def group_query(session, querydict={}): ret = [] collection = get_collection(gConfig['chat_platform']['mongodb']['collection_groups']) q = {} limit = 0 skip = 0 if querydict.has_key('limit'): limit = int(querydict['limit']) del querydict['limit'] if querydict.has_key('skip'): skip = int(querydict['skip']) del querydict['skip'] if querydict.has_key('group_name'): if isinstance(querydict['group_name'], str) or isinstance(querydict['group_name'], unicode): q['group_name'] = querydict['group_name'] if isinstance(querydict['group_name'], list): q['group_name'] = {'$in': querydict['group_name']} if isinstance(querydict['group_name'], dict): q['group_name'] = querydict['group_name'] if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): q['_id'] = querydict['_id'] if isinstance(querydict['_id'], list): q['_id'] = {'$in': querydict['_id']} ret = list(collection.find(db_util.add_mongo_id(q)).limit(limit).skip(skip)) if querydict.has_key('user_detail') and querydict['user_detail'] is True: keys = gWebSocketsMap.keys() for i in ret: idx = ret.index(i) detail = [] userlist = user_query(session, {'_id':i['members']}) for j in userlist: if j.has_key('contacts'): del j['contacts'] if j.has_key('password'): del j['password'] if str(j['_id']) in keys: j['online_status'] = 'online' else: j['online_status'] = 'offline' detail.append(j) ret[idx]['members'] = detail return ret def group_get(session, querydict): rec = group_query(session, querydict) if len(rec)>0: ret = json.dumps(db_util.remove_mongo_id(rec), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'query_no_record'}, ensure_ascii=True, indent=4) return ret def user_group_get(session, querydict): ret = [] collection = get_collection(gConfig['chat_platform']['mongodb']['collection_groups']) q = {} if querydict.has_key('username'): if isinstance(querydict['username'], str) or isinstance(querydict['username'], unicode) or isinstance(querydict['username'], dict): q['username'] = querydict['username'] if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): q['_id'] = db_util.add_mongo_id(querydict['_id']) if len(q.keys())>0: users = user_query(session, querydict) if len(users)>0: user0 = users[0] _id = user0['_id'] grps = group_query(session) for i in grps: if i.has_key('members') and _id in i['members']: ret.append(i) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_group_get_user_not_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_group_get_one_user_required'}, ensure_ascii=True, indent=4) return ret def all_user_get(session, querydict): limit = 0 skip = 0 filter_str = '' if querydict.has_key('user_detail') and querydict['user_detail'] is True: user_detail = True del querydict['user_detail'] if querydict.has_key('limit'): try: limit = int(querydict['limit']) except: pass del querydict['limit'] if querydict.has_key('skip'): try: skip = int(querydict['skip']) except: pass del querydict['skip'] if querydict.has_key('filter'): filter_str = querydict['filter'] del querydict['filter'] contactlist = user_query(session, {'username':{'$regex': '^.*' + filter_str + '.*$'}, 'limit':limit, 'skip':skip}) ret = [] keys = gWebSocketsMap.keys() for i in contactlist: for k in i.keys(): if not k in ['_id', 'username', 'display_name', 'avatar']: del i[k] if str(i['_id']) in keys: i['online_status'] = 'online' else: i['online_status'] = 'offline' ret.append(i) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) return ret def user_contact_get(session, querydict): ret = [] collection = get_collection(gConfig['chat_platform']['mongodb']['collection_users']) q = {} if querydict.has_key('username'): if isinstance(querydict['username'], str) or isinstance(querydict['username'], unicode): q['username'] = querydict['username'] del querydict['username'] if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): q['_id'] = db_util.add_mongo_id(querydict['_id']) del querydict['_id'] if len(q.keys())>0: contacts = [] selfid = None rec = collection.find_one(q) if rec and rec.has_key('contacts'): # contacts = rec['contacts'] contacts = [db_util.add_mongo_id(i) for i in rec['contacts']] ret = contacts selfid = rec['_id'] limit = 0 skip = 0 user_detail = False if querydict.has_key('user_detail') and querydict['user_detail'] is True: user_detail = True del querydict['user_detail'] if querydict.has_key('limit'): try: limit = int(querydict['limit']) except: pass del querydict['limit'] if querydict.has_key('skip'): try: skip = int(querydict['skip']) except: pass del querydict['skip'] if user_detail: if querydict.has_key('filter'): contactlist = user_query(session, {'username':{'$regex': '^.*' + querydict['filter'] + '.*$'}, '_id': {'$in':contacts, '$ne':selfid}, 'limit':limit, 'skip':skip}) del querydict['filter'] else: contactlist = user_query(session, {'_id':contacts, 'limit':limit, 'skip':skip}) ret = [] keys = gWebSocketsMap.keys() for i in contactlist: if i.has_key('contacts'): del i['contacts'] if i.has_key('password'): del i['password'] if str(i['_id']) in keys: i['online_status'] = 'online' else: i['online_status'] = 'offline' ret.append(i) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_contact_query_one_user_required'}, ensure_ascii=True, indent=4) return ret def user_get(session, querydict): ret = '' rec = user_query(session, querydict) for i in rec: idx = rec.index(i) if i.has_key('contacts'): del i['contacts'] if i.has_key('password'): del i['password'] rec[idx] = i if len(rec)>0: ret = json.dumps(db_util.remove_mongo_id(rec), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'query_no_record'}, ensure_ascii=True, indent=4) return ret def user_add(session, querydict): ret = '' if querydict.has_key('username') and querydict.has_key('password') and len(querydict['username'])>0 and len(querydict['password'])>0: try: collection = get_collection(gConfig['chat_platform']['mongodb']['collection_users']) existone = collection.find_one({'username':querydict['username']}) if existone: ret = json.dumps({'result':u'user_add_fail_username_already_exist'}, ensure_ascii=True, indent=4) else: obj = {} obj['username'] = querydict['username'] obj['display_name'] = querydict['username'] obj['password'] = querydict['password'] ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) obj['register_date'] = ts obj['update_date'] = ts obj['description'] = '' obj['person_info'] = {} obj['contacts'] = [] obj['avatar'] = None if querydict.has_key('person_info') : obj['person_info'] = querydict['person_info'] if querydict.has_key('contacts') and isinstance(querydict['contacts'], list): obj['contacts'] = querydict['contacts'] if querydict.has_key('avatar') and len(querydict['avatar']) > 0: obj['avatar'] = querydict['avatar'] _id = collection.save(db_util.add_mongo_id(obj)) rec = collection.find_one({'_id':_id}) ret = json.dumps(db_util.remove_mongo_id(rec), ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'user_add_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_add_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_add_fail_username_password_required'}, ensure_ascii=True, indent=4) return ret def user_update(session, querydict): ret = '' if querydict.has_key('_id') and len(querydict['_id'])>0: try: _id = db_util.add_mongo_id(querydict['_id']) collection = get_collection(gConfig['chat_platform']['mongodb']['collection_users']) existone = collection.find_one({'_id':_id}) if existone: del querydict['_id'] querydict['update_date'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) collection.update({'_id':existone['_id']}, {'$set': db_util.add_mongo_id(querydict)}, multi=False, upsert=False) one = collection.find_one({'_id':_id}) ret = json.dumps(db_util.remove_mongo_id(one), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_update_user_not_exist'}, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'user_update_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_update_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_update_fail_user_id_required'}, ensure_ascii=True, indent=4) return ret def user_delete(session, querydict): ret = '' if querydict.has_key('_id') and len(querydict['_id'])>0: try: collection = get_collection(gConfig['chat_platform']['mongodb']['collection_users']) existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.remove({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_remove_user_not_exist'}, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'user_remove_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_remove_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_remove_fail_user_id_required'}, ensure_ascii=True, indent=4) return ret def group_add(session, querydict): ret = '' if querydict.has_key('owner_id')\ and len(querydict['owner_id']) > 0\ and querydict.has_key('group_name')\ and len(querydict['group_name']) > 0: try: collection = get_collection(gConfig['chat_platform']['mongodb']['collection_groups']) existone = collection.find_one({'group_name':querydict['group_name']}) if existone: ret = json.dumps({'result':u'group_add_fail_group_name_already_exist'}, ensure_ascii=True, indent=4) else: obj = {} obj['owner_id'] = querydict['owner_id'] obj['group_name'] = querydict['group_name'] ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) obj['found_date'] = ts obj['update_date'] = ts obj['members'] = [db_util.add_mongo_id(obj['owner_id']), ] if querydict.has_key('avatar') and len(querydict['avatar']) > 0: obj['avatar'] = querydict['avatar'] if querydict.has_key('description') and len(querydict['description']) > 0: obj['description'] = querydict['description'] _id = collection.save(db_util.add_mongo_id(obj)) rec = collection.find_one({'_id':_id}) ret = json.dumps(db_util.remove_mongo_id(rec), ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'group_add_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'group_add_fail' }, ensure_ascii=True, indent=4) else: if not querydict.has_key('owner_id') or len(querydict['owner_id']) == 0: ret = json.dumps({'result':u'group_add_fail_owner_id_required'}, ensure_ascii=True, indent=4) if not querydict.has_key('group_name') or len(querydict['group_name']) == 0: ret = json.dumps({'result':u'group_add_fail_group_name_required'}, ensure_ascii=True, indent=4) return ret def group_update(session, querydict): ret = '' if querydict.has_key('_id') and len(querydict['_id'])>0: try: _id = db_util.add_mongo_id(querydict['_id']) collection = get_collection(gConfig['chat_platform']['mongodb']['collection_groups']) existone = collection.find_one({'_id':_id}) if existone: del querydict['_id'] querydict['update_date'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) collection.update({'_id':existone['_id']}, {'$set': db_util.add_mongo_id(querydict)}, multi=False, upsert=False) one = collection.find_one({'_id':_id}) ret = json.dumps(db_util.remove_mongo_id(one), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'group_update_group_not_exist'}, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'group_update_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'group_update_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'group_update_fail_group_id_required'}, ensure_ascii=True, indent=4) return ret def group_remove(session, querydict): ret = '' if querydict.has_key('_id') and len(querydict['_id']) > 0: try: collection = get_collection(gConfig['chat_platform']['mongodb']['collection_groups']) existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.remove({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'group_remove_fail_group_not_exist'}, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'group_remove_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'group_remove_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'group_remove_fail_found_group_id_required'}, ensure_ascii=True, indent=4) return ret def check_contact_exist(_id, alist): ret = None for i in alist: if i['_id'] == _id: ret = i break return ret def online(user_id, websocket): if user_id and websocket and not websocket.closed: if not gWebSocketsMap.has_key(user_id): gWebSocketsMap[user_id] = [] if not websocket in gWebSocketsMap[user_id]: gWebSocketsMap[user_id].append(websocket) def offline(user_id): if user_id and gWebSocketsMap.has_key(user_id): for i in gWebSocketsMap[user_id]: i.close() del gWebSocketsMap[user_id] chat_save_log({ 'op':'chat/offline', 'from':user_id, 'timestamp':time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) }) def get_destination(session, from_id, _id): ret = [] if isinstance(_id, str) or isinstance(_id, unicode): userlist = user_query(session, {'_id':from_id}) if len(userlist)==0: userlist = user_query(session, {'username':from_id}) if len(userlist)>0: user0 = userlist[0] if user0.has_key('contacts'): toid = _id try: toid = ObjectId(_id) except: ul = user_query(session, {'username':_id}) if len(ul)>0: toid = ul[0]['_id'] if db_util.add_mongo_id(str(toid)) in user0['contacts']: ret.append(str(toid)) elif isinstance(_id, list): userlist = user_query(session, {'_id':from_id}) if len(userlist)==0: userlist = user_query(session, {'username':from_id}) if len(userlist)>0: user0 = userlist[0] if user0.has_key('contacts'): for id in _id: if db_util.add_mongo_id(id) in user0['contacts']: ret.append(id) return ret def get_destination_group(session, from_id, _id): ret = [] userset = set() grps = group_query(session, {'_id':_id}) for grp in grps: if grp.has_key('members') and len(grp['members'])>0: if db_util.add_mongo_id(from_id) in grp['members']: userset = userset.union(set(grp['members'])) userlist = list(userset) for id in userlist: ret.append(id) return ret def resend_offline_msg(session, to_id, limit=10): offlinecol = 'chat_log_offline' if gConfig['chat_platform']['mongodb'].has_key('collection_chat_log_offline'): offlinecol = gConfig['chat_platform']['mongodb']['collection_chat_log_offline'] collection = get_collection(offlinecol) arr = list(collection.find({'to':db_util.add_mongo_id(to_id)}).limit(limit).sort('timestamp', pymongo.DESCENDING)) ids = [i['_id'] for i in arr] collection.remove({'_id':{'$in': ids}}) for i in arr: gJoinableQueue.put(db_util.remove_mongo_id(i)) def chat(session, websocket, obj={}): tolist = [] if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('msg') and len(obj['msg'])>0: if obj.has_key('to') and len(obj['to'])>0: tolist = get_destination(session, obj['from'], obj['to']) if obj.has_key('to_group') and len(obj['to_group']) > 0: tolist = get_destination_group(session, obj['from'], obj['to_group']) for k in tolist: try: d = {'op': 'chat/chat', 'from': obj['from'], 'to': k, 'timestamp': time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), 'msg': obj['msg']} gJoinableQueue.put(d) except gevent.queue.Full: print('chat queue is full') def request_response(session, websocket, obj={}): #'chat/request/contact/add', #'chat/request/contact/remove', #'chat/response/contact/add/accept', #'chat/response/contact/add/reject' #'chat/request/group/join' #'chat/request/group/quit' #'chat/response/group/join/accept', #'chat/response/group/join/reject', tolist = [] try: if obj['op'] == 'chat/response/contact/add/accept': if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('to') and len(obj['to'])>0: collection = get_collection(gConfig['chat_platform']['mongodb']['collection_users']) userlist = user_query(session, {'_id':[obj['from'], obj['to']]}) for user in userlist: if str(user['_id']) == obj['from'] and not db_util.add_mongo_id(obj['to']) in user['contacts']: user['contacts'].append(db_util.add_mongo_id(obj['to'])) if str(user['_id']) == obj['to'] and not db_util.add_mongo_id(obj['from']) in user['contacts']: user['contacts'].append(db_util.add_mongo_id(obj['from'])) user['update_date'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) collection.save(user) fromuser = {} fromuser['op'] = obj['op'] fromuser['_id'] = obj['from'] fromuser['from'] = obj['to'] fromuser['to'] = obj['from'] fromuser['contacts'] = json.loads(user_contact_get(session, {'_id':obj['from'],'user_detail':True})) gJoinableQueue.put(db_util.remove_mongo_id(fromuser)) touser = {} touser['op'] = obj['op'] touser['_id'] = obj['to'] touser['from'] = obj['from'] touser['to'] = obj['to'] touser['contacts'] = json.loads(user_contact_get(session, {'_id':obj['to'],'user_detail':True})) gJoinableQueue.put(db_util.remove_mongo_id(touser)) elif obj['op'] == 'chat/response/contact/add/reject': if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('to') and len(obj['to'])>0: userlist = user_query(session, {'_id':obj['from']}) if len(userlist)>0: user0 = userlist[0] user0['op'] = obj['op'] user0['from'] = obj['from'] user0['to'] = obj['to'] if user0.has_key('password'): del user0['password'] if user0.has_key('contacts'): del user0['contacts'] if obj.has_key('reject_reason') and len(obj['reject_reason'])>0: user0['reject_reason'] = obj['reject_reason'] gJoinableQueue.put(db_util.remove_mongo_id(user0)) elif obj['op'] == 'chat/request/contact/add': if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('to') and len(obj['to'])>0: userlist = user_query(session, {'_id':obj['from']}) if len(userlist)>0: user0 = userlist[0] user0['op'] = obj['op'] user0['from'] = obj['from'] user0['to'] = obj['to'] if user0.has_key('password'): del user0['password'] if user0.has_key('contacts'): del user0['contacts'] gJoinableQueue.put(db_util.remove_mongo_id(user0)) elif obj['op'] == 'chat/request/contact/remove': if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('to') and len(obj['to'])>0: collection = get_collection(gConfig['chat_platform']['mongodb']['collection_users']) userlist = user_query(session, {'_id':[obj['from'], obj['to']]}) remover, removee = None, None for user in userlist: if str(user['_id']) == obj['from'] and db_util.add_mongo_id(obj['to']) in user['contacts']: user['contacts'].remove(db_util.add_mongo_id(obj['to'])) remover = user['display_name'] if str(user['_id']) == obj['to'] and db_util.add_mongo_id(obj['from']) in user['contacts']: user['contacts'].remove(db_util.add_mongo_id(obj['from'])) removee = user['display_name'] user['update_date'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) collection.save(user) fromuser = {} fromuser['op'] = obj['op'] fromuser['_id'] = obj['from'] fromuser['from'] = obj['to'] fromuser['to'] = obj['from'] fromuser['remover'] = remover fromuser['removee'] = removee fromuser['remove_type'] = 'remover' fromuser['contacts'] = json.loads(user_contact_get(session, {'_id':obj['from'], 'user_detail':True})) gJoinableQueue.put(db_util.remove_mongo_id(fromuser)) touser = {} touser['op'] = obj['op'] touser['_id'] = obj['to'] touser['from'] = obj['from'] touser['to'] = obj['to'] touser['remover'] = remover touser['removee'] = removee touser['remove_type'] = 'removee' touser['contacts'] = json.loads(user_contact_get(session, {'_id':obj['to'], 'user_detail':True})) gJoinableQueue.put(db_util.remove_mongo_id(touser)) elif obj['op'] == 'chat/request/group/join': if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('to_group') and len(obj['to_group'])>0: grps = group_query(session, {'_id':obj['to_group']}) if len(grps)>0: grp0 = grps[0] userlist = user_query(session, {'_id':obj['from']}) if len(userlist)>0: user0 = userlist[0] user0['op'] = obj['op'] user0['from'] = obj['from'] user0['request_src'] = obj['from'] user0['to_group'] = obj['to_group'] user0['to'] = grp0['owner_id'] if user0.has_key('password'): del user0['password'] if user0.has_key('contacts'): del user0['contacts'] gJoinableQueue.put(db_util.remove_mongo_id(user0)) elif obj['op'] == 'chat/request/group/quit': if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('to_group') and len(obj['to_group'])>0: grps = group_query(session, {'_id':obj['to_group']}) if len(grps)>0: grp0 = grps[0] members = [] if db_util.add_mongo_id(obj['from']) in grp0['members']: grp0['members'].remove(db_util.add_mongo_id(obj['from'])) members = [str(i) for i in grp0['members']] collection = get_collection(gConfig['chat_platform']['mongodb']['collection_groups']) collection.save(grp0) broadcast(session, websocket, members, {'op':obj['op'], 'from':obj['from'], 'to_group':obj['to_group']} ) elif obj['op'] == 'chat/response/group/join/accept': if obj.has_key('to_group') and len(obj['to_group'])>0 and obj.has_key('request_src') and len(obj['request_src'])>0: grps = group_query(session, {'_id': obj['to_group']}) if len(grps)>0: grp0 = grps[0] if not db_util.add_mongo_id(obj['request_src']) in grp0['members']: grp0['members'].append(db_util.add_mongo_id(obj['request_src'])) collection = get_collection(gConfig['chat_platform']['mongodb']['collection_groups']) collection.save(grp0) members = [str(i) for i in grp0['members']] broadcast(session, websocket, members, obj) elif obj['op'] == 'chat/response/group/join/reject': if obj.has_key('from') and len(obj['from'])>0 and obj.has_key('to') and len(obj['to'])>0 and obj.has_key('to_group') and len(obj['to_group'])>0: userlist = user_query(session, {'_id':obj['from']}) if len(userlist)>0: user0 = userlist[0] user0['op'] = obj['op'] user0['from'] = obj['from'] user0['to'] = obj['to'] user0['to_group'] = obj['to_group'] if user0.has_key('password'): del user0['password'] if user0.has_key('contacts'): del user0['contacts'] if obj.has_key('reject_reason') and len(obj['reject_reason'])>0: user0['reject_reason'] = obj['reject_reason'] gJoinableQueue.put(db_util.remove_mongo_id(user0)) #else: #d = {'op': obj['op'], 'from':obj['from'], 'to':k, 'timestamp':time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),} #gJoinableQueue.put(d) except gevent.queue.Full: print('chat queue is full') def broadcast(session, websocket, alist, obj={}): for i in alist: d = {} #d['timestamp'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) for k in obj.keys(): d[k] = obj[k] if isinstance(i, str) or isinstance(i, unicode): d['to'] = i elif isinstance(i, dict): if i.has_key('_id'): d['to'] = i['_id'] try: gJoinableQueue.put(d) except: pass def handle_websocket(environ): ws = get_websocket(environ) app = gConfig['wsgi']['application'] #session_id = None #channel = '' #if environ.has_key('HTTP_COOKIE'): #arr = environ['HTTP_COOKIE'].split('=') #if len(arr)>1: #session_id = arr[1] interval = 1.0 try: interval = float(gConfig[app]['websocket']['interval_poll']) except: interval = 1.0 while ws and not ws.closed: obj = ws_recv(environ) if obj and isinstance(obj, dict) and obj.has_key('op'): if obj['op'] == 'queue_size': qsize = 0 if gJoinableQueue: qsize = gJoinableQueue.qsize() ws.send(json.dumps({'queue_size':qsize}, ensure_ascii=True, indent=4)) elif obj['op'] == 'chat/online': rec = [] if obj.has_key('_id') and len(obj['_id'])>0: rec = user_query(session, {'_id':obj['_id']}) elif obj.has_key('username') and len(obj['username'])>0: rec = user_query(session, {'username':obj['username']}) if len(rec)>0: r0 = rec[0] _id = str(r0['_id']) online(_id, ws) r0['contacts'] = json.loads(user_contact_get(session, {'_id':_id,'user_detail':True})) r0['groups'] = json.loads(user_group_get(session, {'_id':_id,'user_detail':True})) d = db_util.remove_mongo_id(r0) d['op'] = obj['op'] d['from'] = _id d['to'] = _id d['timestamp'] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) gJoinableQueue.put(d) #ws.send(json.dumps(d, ensure_ascii=True, indent=4)) if obj.has_key('inform_contact') and obj['inform_contact'] is True: other_contacts = gWebSocketsMap.keys()[:] if _id in other_contacts: other_contacts.remove(_id) broadcast(session, ws, other_contacts, {'op':'chat/info/online','from':_id}) limit = 10 if gConfig['chat_platform'].has_key('resend') and gConfig['chat_platform']['resend'].has_key('max_resend_record_num'): try: limit = int(gConfig['chat_platform']['resend']['max_resend_record_num']) except: pass resend_offline_msg(session, _id, limit) else: ws.send(json.dumps({'result':'chat_online_user_not_exist'}, ensure_ascii=True, indent=4)) elif obj['op'] == 'chat/offline': if obj.has_key('_id'): _id = obj['_id'] if obj.has_key('inform_contact') and obj['inform_contact'] is True: other_contacts = gWebSocketsMap.keys()[:] if _id in other_contacts: other_contacts.remove(_id) broadcast(session, ws, other_contacts, {'op':'chat/info/offline','from':_id, 'timestamp': time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}) offline(_id) elif obj.has_key('username'): rec = user_query(session, {'username':obj['username']}) if len(rec)>0: _id = str(rec[0]['_id']) if obj.has_key('inform_contact') and obj['inform_contact'] is True: other_contacts = gWebSocketsMap.keys()[:] if _id in other_contacts: other_contacts.remove(_id) broadcast(session, ws, other_contacts, {'op':'chat/info/offline','from':_id}) offline(_id) else: ws.send(json.dumps({'result':'chat_offline_user_not_exist'}, ensure_ascii=True, indent=4)) else: ws.send(json.dumps({'result':'chat_offline_username_or_id_required'}, ensure_ascii=True, indent=4)) elif obj['op'] == 'chat/chat': chat(session, ws, obj) elif 'chat/request' in obj['op'] or 'chat/response' in obj['op']: request_response(session, ws, obj) else: try: ws.send('') except: _id = None for k in gWebSocketsMap.keys(): if ws in gWebSocketsMap[k] : _id = k break if _id: print('websocket[%s] is closed2' % _id) offline(_id) broadcast(session, None, gWebSocketsMap.keys(), {'op':'chat/info/offline', 'from':_id}) gevent.sleep(interval) if ws and ws.closed: del ws def check_url_token(querydict): is_token_pass = False enable_url_md5_check = False md5prefix = '' if gConfig['chat_platform'].has_key('security') \ and gConfig['chat_platform']['security'].has_key('md5prefix'): md5prefix = str(gConfig['chat_platform']['security']['md5prefix']) if gConfig['chat_platform'].has_key('security') \ and gConfig['chat_platform']['security'].has_key('enable_url_md5_check') \ and gConfig['chat_platform']['security']['enable_url_md5_check'].lower() == 'true': enable_url_md5_check = True else: is_token_pass = True if enable_url_md5_check: print('checking token...') if querydict.has_key('_token'): plain = '%s_|_%s' % (md5prefix, time.strftime('%Y%m%d%H')) token = md5.new(plain).hexdigest() if token == str(querydict['_token']): is_token_pass = True return is_token_pass def chat_broadcast(session, querydict): ret = '{}' tolist = [] if querydict.has_key('from') and len(querydict['from'])>0: if querydict.has_key('to'): if isinstance(querydict['to'], str) or isinstance(querydict['to'], unicode): tolist.append(querydict['to']) if isinstance(querydict['to'], list): tolist.extend(querydict['to']) else: ret = json.dumps({'result':u'chat_broadcast_to_required'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'chat_broadcast_from_required'}, ensure_ascii=True, indent=4) if querydict.has_key('msg') and len(querydict['msg'])>0: for k in tolist: try: d = {'op': 'chat/chat', 'from': querydict['from'], 'to': k, 'timestamp': time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), 'msg': querydict['msg']} gJoinableQueue.put(d) except gevent.queue.Full: print('chat queue is full') ret = json.dumps({'result':u'chat queue is full'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'chat_broadcast_msg_required'}, ensure_ascii=True, indent=4) return ret def chat_log_query(session, querydict): limit = 0 skip = 0 filter_str = '' from_id, to_id = None, None if querydict.has_key('from') and (isinstance(querydict['from'], str) or isinstance(querydict['from'], unicode)) and len(querydict['from'])>0: from_id = querydict['from'] if querydict.has_key('to') and (isinstance(querydict['to'], str) or isinstance(querydict['to'], unicode)) and len(querydict['to'])>0: to_id = querydict['to'] if from_id is None or to_id is None: return json.dumps({'result':u'chat_log_query_from_and_to_required'}, ensure_ascii=True, indent=4) if querydict.has_key('limit'): try: limit = int(querydict['limit']) except: pass del querydict['limit'] if querydict.has_key('skip'): try: skip = int(querydict['skip']) except: pass del querydict['skip'] if querydict.has_key('filter'): filter_str = querydict['filter'] del querydict['filter'] # offlinecol = 'chat_log_offline' # if gConfig['chat_platform']['mongodb'].has_key('collection_chat_log_offline'): # offlinecol = gConfig['chat_platform']['mongodb']['collection_chat_log_offline'] collection1 = get_collection(gConfig['chat_platform']['mongodb']['collection_chat_log']) # collection2 = get_collection(offlinecol) ret = list(collection1.find({'$or':[{'from':db_util.add_mongo_id(from_id), 'to':db_util.add_mongo_id(to_id)}, {'to':db_util.add_mongo_id(from_id), 'from':db_util.add_mongo_id(to_id)}]}).limit(limit).skip(skip).sort('timestamp', pymongo.DESCENDING)) # arr2 = list(collection2.find({'$or':[{'from':db_util.add_mongo_id(from_id), 'to':db_util.add_mongo_id(to_id)}, {'to':db_util.add_mongo_id(from_id), 'from':db_util.add_mongo_id(to_id)}]}).limit(limit).skip(skip).sort('timestamp', pymongo.DESCENDING)) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) return ret def chat_log_remove(session, querydict): return '' headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' isnew = False urls = gUrlMap.bind_to_environ(environ) querydict, buf = get_querydict_by_GET_POST(environ) endpoint = '' try: endpoint, args = urls.match() if endpoint not in ['handle_websocket', 'gridfs_upload', 'gridfs_get', 'gridfs_delete', 'gridfs_query']: if not check_url_token(querydict): body = json.dumps({'result':u'invalid_token'}, ensure_ascii=True, indent=4) return statuscode, headers, body if querydict.has_key('_token'): del querydict['_token'] if endpoint == 'user_add': body = user_add(session, querydict) elif endpoint == 'user_remove': body = user_delete(session, querydict) elif endpoint == 'user_get': body = user_get(session, querydict) elif endpoint == 'all_user_get': body = all_user_get(session, querydict) elif endpoint == 'user_update': body = user_update(session, querydict) elif endpoint == 'group_add': body = group_add(session, querydict) elif endpoint == 'group_get': body = group_get(session, querydict) elif endpoint == 'user_group_get': body = user_group_get(session, querydict) elif endpoint == 'user_contact_get': body = user_contact_get(session, querydict) elif endpoint == 'group_update': body = group_update(session, querydict) elif endpoint == 'group_remove': body = group_remove(session, querydict) elif endpoint == 'handle_websocket': handle_websocket(environ) elif endpoint == 'chat_broadcast': body = chat_broadcast(session, querydict) elif endpoint == 'chat_log_query': body = chat_log_query(session, querydict) elif endpoint == 'chat_log_remove': body = chat_log_remove(session, querydict) elif endpoint == 'gridfs_upload': body = gridfs_upload(environ, querydict, buf) elif endpoint == 'gridfs_get': if args.has_key('_id'): querydict['_id'] = args['_id'] if args.has_key('width'): try: querydict['width'] = int(args['width']) except: querydict['width'] = 64 if args.has_key('height'): try: querydict['height'] = int(args['height']) except: querydict['height'] = 64 statuscode, headers, body = gridfs_get(environ, querydict) elif endpoint == 'gridfs_delete': if args.has_key('_id'): querydict['_id'] = args['_id'] statuscode, headers, body = gridfs_delete(environ, querydict) elif endpoint == 'gridfs_query': if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): if ',' in querydict['_id']: querydict['_id'] = querydict['_id'].split(',') else: querydict['_id'] = [querydict['_id'],] if args.has_key('width'): try: querydict['width'] = int(args['width']) except: querydict['width'] = 64 if args.has_key('height'): try: querydict['height'] = int(args['height']) except: querydict['height'] = 64 if args.has_key('limit'): try: querydict['limit'] = int(args['limit']) except: querydict['limit'] = 10 if args.has_key('skip'): try: querydict['skip'] = int(args['skip']) except: querydict['skip'] = 0 statuscode, headers, body = gridfs_query(environ, querydict) else: body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) except HTTPException, e: body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) if session: gSessionStore.save(session) return statuscode, headers, body def gridfs_get(environ, querydict): global gConfig, ENCODING, STATICRESOURCE_DIR def thumbnail(fp, size, use_base64=False): ret = None if 'image/' in fp.mimetype: im = Image.open(fp) im.thumbnail(size) buf = StringIO.StringIO() #print(im.format) im.save(buf, im.format) ret = buf.getvalue() if use_base64: ret = base64.b64encode(ret) if 'application/' in fp.mimetype or 'text/' in fp.mimetype: thumpath = gConfig['web']['thumbnail']['application/octet-stream'] if gConfig['web']['thumbnail'].has_key(fp.mimetype): thumpath = gConfig['web']['thumbnail'][fp.mimetype] thumpath = os.path.join(STATICRESOURCE_DIR, 'img', 'thumbnail', thumpath) im = Image.open(thumpath) im.thumbnail(size) buf = StringIO.StringIO() im.save(buf, im.format) ret = buf.getvalue() if use_base64: ret = base64.b64encode(ret) return ret headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING body = '' statuscode = '200 OK' if querydict.has_key('_'): del querydict['_'] if querydict.has_key('_random'): del querydict['_random'] if not querydict.has_key('_id'): body = json.dumps({'result': u'gridfs_get_id_required'}, ensure_ascii=True, indent=4) return statuscode, headers, body app = gConfig['wsgi']['application'] if gConfig.has_key(app): collection = 'fs' if gConfig[app].has_key('mongodb') and gConfig[app]['mongodb'].has_key('gridfs_collection'): collection = str(gConfig[app]['mongodb']['gridfs_collection']) if len(collection) == 0: collection = 'fs' db_util.mongo_init_client(app) dbname = gConfig[app]['mongodb']['database'] db = db_util.gClientMongo[app][dbname] fs = gridfs.GridFS(db, collection=collection) _id = db_util.add_mongo_id(querydict['_id']) try: f = fs.get(_id) headers['Content-Type'] = str(f.content_type) if querydict.has_key('width') and querydict.has_key('height') \ and querydict['width']>0 and querydict['width']<8192 \ and querydict['height']>0 and querydict['height']<8192 : if 'image/' in f.content_type: body = thumbnail(f, (querydict['width'], querydict['height']), False) else: body = thumbnail(f, (128, 128), False) headers['Content-Type'] = 'image/png' if body is None: body = json.dumps({'result': u'gridfs_get_error_invalid_image_format'}, ensure_ascii=True, indent=4) else: body = f.read() if querydict.has_key('attachmentdownload'): headers['Content-Disposition'] = 'attachment;filename="' + enc(f.filename) + '"' except gridfs.errors.NoFile: body = json.dumps({'result': u'gridfs_get_file_not_exist'}, ensure_ascii=True, indent=4) except Exception,e: headers['Content-Type'] = 'text/json;charset=' + ENCODING body = json.dumps({'result': u'gridfs_get_error:%s' % e.message}, ensure_ascii=True, indent=4) else: body = json.dumps({'result': u'gridfs_get_cannot_find_wsgi_app [%s]' % app}, ensure_ascii=True, indent=4) return statuscode, headers, body def gridfs_delete(environ, querydict): global gConfig, ENCODING headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING body = '' statuscode = '200 OK' if querydict.has_key('_'): del querydict['_'] if querydict.has_key('_random'): del querydict['_random'] if not querydict.has_key('_id'): body = json.dumps({'result': u'gridfs_delete_id_required'}, ensure_ascii=True, indent=4) return statuscode, headers, body app = gConfig['wsgi']['application'] if gConfig.has_key(app): collection = 'fs' if gConfig[app].has_key('mongodb') and gConfig[app]['mongodb'].has_key('gridfs_collection'): collection = str(gConfig[app]['mongodb']['gridfs_collection']) if len(collection) == 0: collection = 'fs' db_util.mongo_init_client(app) dbname = gConfig[app]['mongodb']['database'] db = db_util.gClientMongo[app][dbname] fs = gridfs.GridFS(db, collection=collection) arr = querydict['_id'].split(',') ids = [] for i in arr: ids.append(db_util.add_mongo_id(i)) try: for i in ids: fs.delete(i) body = json.dumps(querydict, ensure_ascii=True, indent=4) except Exception,e: body = json.dumps({'result': u'gridfs_delete_error:%s' % e.message}, ensure_ascii=True, indent=4) else: body = json.dumps({'result': u'gridfs_delete_cannot_find_wsgi_app [%s]' % app}, ensure_ascii=True, indent=4) return statuscode, headers, body def gridfs_query(environ, querydict): global gConfig, ENCODING, STATICRESOURCE_DIR def thumbnail(fp, size, use_base64=False): ret = None if 'image/' in fp.mimetype: im = Image.open(fp) im.thumbnail(size) buf = StringIO.StringIO() #print(im.format) im.save(buf, im.format) ret = buf.getvalue() if use_base64: ret = base64.b64encode(ret) if 'application/' in fp.mimetype or 'text/' in fp.mimetype: thumpath = gConfig['web']['thumbnail']['application/octet-stream'] if gConfig['web']['thumbnail'].has_key(fp.mimetype): thumpath = gConfig['web']['thumbnail'][fp.mimetype] thumpath = os.path.join(STATICRESOURCE_DIR, 'img', 'thumbnail', thumpath) im = Image.open(thumpath) im.thumbnail(size) buf = StringIO.StringIO() im.save(buf, im.format) ret = buf.getvalue() if use_base64: ret = base64.b64encode(ret) return ret headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING body = '[]' statuscode = '200 OK' app = gConfig['wsgi']['application'] if querydict.has_key('_'): del querydict['_'] if querydict.has_key('_random'): del querydict['_random'] if gConfig.has_key(app): collection = 'fs' if gConfig[app].has_key('mongodb') and gConfig[app]['mongodb'].has_key('gridfs_collection'): collection = str(gConfig[app]['mongodb']['gridfs_collection']) if len(collection) == 0: collection = 'fs' db_util.mongo_init_client(app) dbname = gConfig[app]['mongodb']['database'] db = db_util.gClientMongo[app][dbname] fs = gridfs.GridFS(db, collection=collection) limit = 10 skip = 0 if querydict.has_key('limit'): limit = querydict['limit'] del querydict['limit'] if querydict.has_key('skip'): skip = querydict['skip'] del querydict['skip'] try: if querydict.has_key('width') and querydict.has_key('height') \ and querydict['width']>0 and querydict['width']<8192 \ and querydict['height']>0 and querydict['height']<8192 : w, h = querydict['width'], querydict['height'] del querydict['width'] del querydict['height'] cur = None if querydict.has_key('_id'): ids = db_util.add_mongo_id(querydict['_id']) cur = fs.find({'_id':{'$in':ids}}).limit(limit).skip(skip) else: cur = fs.find(db_util.add_mongo_id(querydict)).limit(limit).skip(skip) arr = [] for f in cur: b64str = thumbnail(f, (w, h), True) if 'application/' in f.content_type: f.mimetype = 'image/png' arr.append({'_id':db_util.remove_mongo_id(f._id), 'mimetype':f.mimetype,'filename':enc(f.filename), 'data': b64str}) body = json.dumps(arr, ensure_ascii=True, indent=4) else: body = json.dumps({'result': u'gridfs_query_size_required'}, ensure_ascii=True, indent=4) except gridfs.errors.NoFile: body = json.dumps({'result': u'gridfs_query_file_not_exist'}, ensure_ascii=True, indent=4) except Exception,e: body = json.dumps({'result': u'gridfs_query_error:%s' % e.message}, ensure_ascii=True, indent=4) else: body = json.dumps({'result': u'gridfs_query_cannot_find_wsgi_app [%s]' % app}, ensure_ascii=True, indent=4) return statuscode, headers, body def gridfs_upload(environ, querydict, buf): global gConfig app = gConfig['wsgi']['application'] body = '' if gConfig.has_key(app): collection = 'fs' if gConfig[app].has_key('mongodb') and gConfig[app]['mongodb'].has_key('gridfs_collection'): collection = str(gConfig[app]['mongodb']['gridfs_collection']) if len(collection) == 0: collection = 'fs' db_util.mongo_init_client(app) dbname = gConfig[app]['mongodb']['database'] db = db_util.gClientMongo[app][dbname] if querydict.has_key('file_id'): del querydict['file_id'] fs = gridfs.GridFS(db, collection=collection) _id = None try: querydict = db_util.add_mongo_id(querydict); if querydict.has_key('_uniqueIndex'): uniqueIndex = querydict['_uniqueIndex'] cond = {} if (isinstance(uniqueIndex, unicode) or isinstance(uniqueIndex, str)) and len(uniqueIndex)>0: arr = uniqueIndex.split(',') for indexName in arr: indexName = indexName.strip() if querydict.has_key(indexName): cond[indexName] = querydict[indexName] if len(cond.keys())>1: idlist = [] cur = fs.find(cond) for i in cur: idlist.append(i._id) for i in idlist: fs.delete(i) del querydict['_uniqueIndex'] _id = fs.put(buf, **querydict) except gridfs.errors.FileExists: if querydict.has_key('_id'): _id = db_util.add_mongo_id(querydict['_id']) fs.delete(_id) _id = fs.put(buf, **querydict) except: raise body = json.dumps({'_id':db_util.remove_mongo_id(_id)}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':u'cannot find wsgi app [%s]' % app}, ensure_ascii=True, indent=4) return body def handle_authorize_platform(environ, session): global ENCODING global gConfig, gRequest, gSessionStore, gUrlMap, gSecurityConfig, gWebSocketsMap, gJoinableQueue def get_collection(collection): ret = None db_util.mongo_init_client('authorize_platform') db = db_util.gClientMongo['authorize_platform'][gConfig['authorize_platform']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret def get_all_functions(): ret = [] collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_functions']) ret = list(collection.find({})) #for i in cur: #ret.append(i) return ret def get_all_roles(exclude_template=False): ret = [] collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_roles']) if exclude_template: ret = list(collection.find({'name':{'$not':re.compile("template")}})) else: ret = list(collection.find({})) #for i in cur: #ret.append(i) return ret def check_role_can_be_delete(_id): def get_id_list(node): reet = [] if node.has_key('roles'): for i in node['roles']: reet.append(i) return reet ret = True for i in get_user(): idlist = get_id_list(i) if _id in idlist: ret = False break return ret def check_function_can_be_delete(_id): def get_id_list(node): reet = [] if node.has_key('_id'): reet.append(node['_id']) if node.has_key('children'): for i in node['children']: reet.extend(get_id_list(i)) return reet ret = True for i in get_all_roles(): idlist = get_id_list(i) if _id in idlist: ret = False break return ret def check_valid_user(session, user=None): ret = False if session and session.has_key('username') and len(session['username'])>0: if user: ret = session['username'] == user else: ret = True return ret def function_add(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_functions']) if querydict.has_key('name'): existone = collection.find_one({'name':querydict['name']}) if existone: ret = json.dumps({'result':u'function_add_fail_name_exist'}, ensure_ascii=True, indent=4) else: _id = collection.save(db_util.add_mongo_id(querydict)) rec = collection.find_one({'_id':_id}) ret = db_util.remove_mongo_id(rec) ret = json.dumps(ret, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'function_add_fail_name_required'}, ensure_ascii=True, indent=4) return ret def function_query(session, querydict): #if not check_valid_user(session, 'admin'): #return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) l = get_all_functions() ret = json.dumps(db_util.remove_mongo_id(l), ensure_ascii=True, indent=4) return ret def function_update(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_functions']) if querydict.has_key('_id'): wr = collection.update({'_id':db_util.add_mongo_id(querydict['_id'])}, db_util.add_mongo_id(querydict), multi=False, upsert=False) rec = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) ret = db_util.remove_mongo_id(rec) ret = json.dumps(ret, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'function_update_fail_id_required'}, ensure_ascii=True, indent=4) return ret def function_delete(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_functions']) if querydict.has_key('_id'): existone = collection.find_one({'_id': db_util.add_mongo_id(querydict['_id'])}) if existone: if check_function_can_be_delete(existone['_id']): wr = collection.remove({'_id':db_util.add_mongo_id(existone['_id'])}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'function_delete_fail_need_deleted_in_role_first'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'function_delete_fail_not_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'function_delete_fail_id_required'}, ensure_ascii=True, indent=4) return ret def role_add(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_roles']) if querydict.has_key('name'): existone = collection.find_one({'name':querydict['name']}) if existone: ret = json.dumps({'result':u'role_add_fail_name_already_exist'}, ensure_ascii=True, indent=4) else: _id = collection.save(db_util.add_mongo_id(querydict)) rec = collection.find_one({'_id':_id}) ret = db_util.remove_mongo_id(rec) ret = json.dumps(ret, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'role_add_fail_name_required'}, ensure_ascii=True, indent=4) return ret def role_query(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) l = get_all_roles(True) ret = json.dumps(db_util.remove_mongo_id(l), ensure_ascii=True, indent=4) return ret def role_update(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_roles']) if querydict.has_key('_id'): wr = collection.update({'_id':db_util.add_mongo_id(querydict['_id'])}, db_util.add_mongo_id(querydict), multi=False, upsert=False) rec = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) ret = db_util.remove_mongo_id(rec) ret = json.dumps(ret, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'role_update_fail_id_required'}, ensure_ascii=True, indent=4) return ret def role_delete(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_roles']) if querydict.has_key('_id'): existone = collection.find_one({'_id': db_util.add_mongo_id(querydict['_id'])}) if existone: if check_role_can_be_delete(existone['_id']): wr = collection.remove({'_id':db_util.add_mongo_id(existone['_id'])}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'role_delete_fail_need_delete_in_user_first'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'role_delete_fail_not_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'role_delete_fail_id_required'}, ensure_ascii=True, indent=4) return ret def role_template_get(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' l = get_all_roles() for i in l: if i['name'] == 'template': ret = json.dumps(db_util.remove_mongo_id(i), ensure_ascii=True, indent=4) break if len(ret) == 0: ret = json.dumps({}, ensure_ascii=True, indent=4) return ret def role_template_save(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_roles']) if querydict.has_key('_id'): wr = collection.update({'_id':db_util.add_mongo_id(querydict['_id'])}, db_util.add_mongo_id(querydict), multi=False, upsert=False) rec = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) ret = db_util.remove_mongo_id(rec) ret = json.dumps(ret, ensure_ascii=True, indent=4) else: #ret = json.dumps({'result':u'role_template_save_fail_id_required'}, ensure_ascii=True, indent=4) _id = collection.save(db_util.add_mongo_id(querydict)) if _id: querydict['_id'] = _id ret = json.dumps(db_util.remove_mongo_id(querydict), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'role_template_save_fail'}, ensure_ascii=True, indent=4) return ret def get_user(user=None): ret = [] collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_user_account']) if user: ret = list(collection.find({'username':user})) else: ret = list(collection.find({})) #for i in cur: #ret.append(i) return ret def get_funclist_by_roles(roles): def get_func_list(node): ret = [] if node.has_key('_id'): if node.has_key('checked') and node['checked'] is True: ret.append(node['_id']) if node.has_key('children'): for i in node['children']: ret.extend(get_func_list(i)) return ret ret = [] rolelist = get_all_roles(True) for node in rolelist: if node.has_key('_id') and node['_id'] in roles: ret.extend(get_func_list(node)) return ret def check_user_has_function(session, querydict): ret = '' if not check_valid_user(session): return json.dumps({'result':u'username_required'}, ensure_ascii=True, indent=4) if querydict.has_key('username') : if querydict.has_key('functions') : if len(querydict['functions'])>0: userlist = get_user(querydict['username']) if len(userlist)>0: if userlist[0].has_key('roles') and isinstance(userlist[0]['roles'], list) and len(userlist[0]['roles'])>0: roles = userlist[0]['roles'] funclist = get_funclist_by_roles(roles) retlist = [] for f in querydict['functions']: o = {} o['_id'] = f if ObjectId(f) in funclist: o['enable'] = True else: o['enable'] = False retlist.append(o) ret = json.dumps(retlist, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'this_user_has_no_role'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'username_not_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'function_id_list_required'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'functions_required'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'username_required'}, ensure_ascii=True, indent=4) return ret def user_query(session, querydict): if not check_valid_user(session, 'admin'): return json.dumps({'result':u'admin_permission_required'}, ensure_ascii=True, indent=4) ret = '' if querydict.has_key('username') and len(querydict['username'])>0: l = get_user(querydict['username']) if len(l)>0: ret = json.dumps(db_util.remove_mongo_id(l[0]), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'username_not_found'}, ensure_ascii=True, indent=4) else: l = get_user() ret = json.dumps(db_util.remove_mongo_id(l), ensure_ascii=True, indent=4) return ret def user_add(session, querydict): ret = '' if querydict.has_key('username') and querydict.has_key('password') and len(querydict['username'])>0 and len(querydict['password'])>0: try: collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_user_account']) existone = collection.find_one({'username':querydict['username']}) if existone: ret = json.dumps({'result':u'register_fail_username_already_exist'}, ensure_ascii=True, indent=4) else: _id = collection.save(db_util.add_mongo_id(querydict)) rec = collection.find_one({'_id':_id}) ret = json.dumps(db_util.remove_mongo_id(rec), ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'register_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'register_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'register_fail_username_password_required'}, ensure_ascii=True, indent=4) return ret def user_delete(session, querydict): ret = '' if querydict.has_key('username') and len(querydict['username'])>0: try: collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_user_account']) existone = collection.find_one({'username':querydict['username']}) if existone: collection.remove({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'unregister_fail_not_exist' }, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'unregister_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'unregister_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'unregister_fail_username_required'}, ensure_ascii=True, indent=4) return ret def reset_password(session, querydict): ret = '' if querydict.has_key('username') and len(querydict['username'])>0 and querydict.has_key('password') and len(querydict['password'])>0: try: collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_user_account']) one = collection.find_one({'username':querydict['username']}) if one: collection.update({'username':querydict['username']}, {'$set':{'password':querydict['password']}}, multi=False, upsert=False) ret = json.dumps(db_util.remove_mongo_id(one), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'reset_password_fail_not_exist'}, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'reset_password_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'reset_password_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'reset_password_fail_username_password_required'}, ensure_ascii=True, indent=4) return ret def user_update(session, querydict): ret = '' if querydict.has_key('username') and len(querydict['username'])>0 : try: collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_user_account']) one = collection.find_one({'username':querydict['username']}) if one: collection.update({'username':querydict['username']}, db_util.add_mongo_id(querydict), multi=False, upsert=False) ret = json.dumps(db_util.remove_mongo_id(one), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_update_fail_not_exist'}, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'user_update_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_update_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'user_update_fail_username_required'}, ensure_ascii=True, indent=4) return ret def login(session, querydict): ok = False ret = '' if querydict.has_key('username') and querydict.has_key('password') and len(querydict['username'])>0 and len(querydict['password'])>0: try: check, ip = session_check_user_ip(environ, querydict['username']) if gSessionStore and not check: ret = json.dumps({'result':u'other_ip_already_login:%s' % ip }, ensure_ascii=True, indent=4) return ret, ok if gSessionStore and session: collection = get_collection(gConfig['authorize_platform']['mongodb']['collection_user_account']) one = collection.find_one({'username':querydict['username'], 'password':querydict['password']}) if one: ret = json.dumps(db_util.remove_mongo_id(one), ensure_ascii=True, indent=4) ok = True else: ret = json.dumps({'result':u'login_fail_wrong_username_or_password' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'login_fail_session_expired' }, ensure_ascii=True, indent=4) except: if hasattr(sys.exc_info()[1], 'message'): ret = json.dumps({'result':u'login_fail:%s' % sys.exc_info()[1].message}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'login_fail' }, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'login_fail_username_password_required'}, ensure_ascii=True, indent=4) return ret, ok def auth_check(session, querydict, isnew): ret = '' if session : if querydict.has_key('username') and len(querydict['username'])>0: if isnew is True: session['username'] = querydict['username'] gSessionStore.save(session) ret = json.dumps({'result':u'auth_check_ok_session_saved'}, ensure_ascii=True, indent=4) else: if session.sid: user = gSessionStore.get_data_by_username(session.sid, querydict['username']) if user: ret = json.dumps({'result':u'auth_check_ok_user_exist'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'auth_check_fail_session_expired'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'auth_check_fail_session_expired'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'auth_check_fail_username_require'}, ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'auth_check_fail_session_expired'}, ensure_ascii=True, indent=4) return ret def sub(uid, channel, websocket): if uid and websocket and not websocket.closed: if not gWebSocketsMap.has_key(uid + '|' + channel): gWebSocketsMap[uid + '|' + channel] = websocket def unsub(uid, channels): keys = channels while len(keys)>0: key = keys[0] if uid and gWebSocketsMap.has_key(uid + '|' + key): del gWebSocketsMap[uid + '|' + key] del keys[0] def handle_websocket(environ): ws = get_websocket(environ) app = gConfig['wsgi']['application'] session_id = None channel = '' if environ.has_key('HTTP_COOKIE'): arr = environ['HTTP_COOKIE'].split('=') if len(arr)>1: session_id = arr[1] interval = 1.0 try: interval = float(gConfig[app]['websocket']['interval_poll']) except: interval = 1.0 while ws and not ws.closed: obj = ws_recv(environ) if obj and isinstance(obj, dict) and obj.has_key('op'): #print(obj) if obj['op'] == 'session_list': ws.send(ws_session_query()) elif obj['op'] == 'subscribe/session_list': sub(session_id, 'session_list', ws) elif obj['op'] == 'unsubscribe/session_list': unsub(session_id, ['session_list',]) elif obj['op'] == 'session_remove': if obj.has_key('id') and len(obj['id'])>0: print('remove session from client:') print(obj['id']) gSessionStore.delete_by_id(obj['id']) elif obj['op'] == 'queue_size': qsize = 0 if gJoinableQueue: qsize = gJoinableQueue.qsize() ws.send(json.dumps({'queue_size':qsize}, ensure_ascii=True, indent=4)) else: try: ws.send('') except: for k in gWebSocketsMap.keys(): if gWebSocketsMap[k] is ws: gWebSocketsMap[k].close() del gWebSocketsMap[k] break gevent.sleep(interval) if ws and ws.closed: del ws headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' isnew = False urls = gUrlMap.bind_to_environ(environ) querydict, buf = get_querydict_by_GET_POST(environ) endpoint = '' try: endpoint, args = urls.match() if args.has_key('username'): querydict['username'] = args['username'] if args.has_key('password'): querydict['password'] = args['password'] if endpoint == 'auth_check': body = auth_check(session, querydict, False) elif endpoint == 'handle_websocket': handle_websocket(environ) elif endpoint == 'get_salt': if len(gSecurityConfig.keys())>0: body = json.dumps({'result':'get_salt_ok','salt':gSecurityConfig['password_salt']}, ensure_ascii=True, indent=4) else: body = json.dumps({'result':'get_salt_fail'}, ensure_ascii=True, indent=4) elif endpoint == 'user_add': body = user_add(session, querydict) elif endpoint == 'user_check': body = check_user_has_function(session, querydict) elif endpoint == 'user_delete': body = user_delete(session, querydict) elif endpoint == 'user_query': body = user_query(session, querydict) elif endpoint == 'user_update': body = user_update(session, querydict) elif endpoint == 'reset_password': body = reset_password(session, querydict) elif endpoint == 'login': body, loginok = login(session, querydict) if loginok: if querydict.has_key('username') and len(querydict['username'])>0: session['username'] = querydict['username'] elif endpoint == 'logout': if gSessionStore and session: gSessionStore.delete(session) session = None body = json.dumps({'result':u'logout_ok'}, ensure_ascii=True, indent=4) elif endpoint == 'function_add': body = function_add(session, querydict) elif endpoint == 'function_query': body = function_query(session, querydict) elif endpoint == 'function_update': body = function_update(session, querydict) elif endpoint == 'function_delete': body = function_delete(session, querydict) elif endpoint == 'role_add': body = role_add(session, querydict) elif endpoint == 'role_update': body = role_update(session, querydict) elif endpoint == 'role_query': body = role_query(session, querydict) elif endpoint == 'role_delete': body = role_delete(session, querydict) elif endpoint == 'role_template_save': body = role_template_save(session, querydict) elif endpoint == 'role_template_get': body = role_template_get(session, querydict) else: body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) except HTTPException, e: body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) if session: gSessionStore.save(session) return statuscode, headers, body def CORS_header(h={}): global gConfig def default_header(h={}): ret = {}; for k in h.keys(): ret[k] = h[k] ret['Access-Control-Allow-Origin'] = '*' ret['Access-Control-Allow-Credentials'] = 'true' ret['Access-Control-Expose-Headers'] = 'true' ret['Access-Control-Max-Age'] = '3600' ret['Access-Control-Allow-Methods'] = 'POST,GET,OPTIONS' return ret headers = {} for k in h.keys(): headers[k] = h[k] if gConfig['web']['cors']['enable_cors'].lower() == 'true': app = gConfig['wsgi']['application'] if gConfig.has_key(app) and gConfig[app].has_key('cors'): try: if gConfig[app]['cors'].has_key('Access-Control-Allow-Origin'): headers['Access-Control-Allow-Origin'] = str(gConfig[app]['cors']['Access-Control-Allow-Origin']) if gConfig[app]['cors'].has_key('Access-Control-Allow-Credentials'): headers['Access-Control-Allow-Credentials'] = str(gConfig[app]['cors']['Access-Control-Allow-Credentials']) if gConfig[app]['cors'].has_key('Access-Control-Expose-Headers'): headers['Access-Control-Expose-Headers'] = str(gConfig[app]['cors']['Access-Control-Expose-Headers']) if gConfig[app]['cors'].has_key('Access-Control-Max-Age'): headers['Access-Control-Max-Age'] = str(gConfig[app]['cors']['Access-Control-Max-Age']) if gConfig[app]['cors'].has_key('Access-Control-Allow-Methods'): s = gConfig[app]['cors']['Access-Control-Allow-Methods'] if isinstance(s, list): s = ','.join(s) headers['Access-Control-Allow-Methods'] = str(s) except: headers = default_header(h) else: try: if gConfig['web']['cors'].has_key('Access-Control-Allow-Origin'): headers['Access-Control-Allow-Origin'] = str(gConfig['web']['cors']['Access-Control-Allow-Origin']) if gConfig['web']['cors'].has_key('Access-Control-Allow-Credentials'): headers['Access-Control-Allow-Credentials'] = str(gConfig['web']['cors']['Access-Control-Allow-Credentials']) if gConfig['web']['cors'].has_key('Access-Control-Expose-Headers'): headers['Access-Control-Expose-Headers'] = str(gConfig['web']['cors']['Access-Control-Expose-Headers']) if gConfig['web']['cors'].has_key('Access-Control-Max-Age'): headers['Access-Control-Max-Age'] = str(gConfig['web']['cors']['Access-Control-Max-Age']) if gConfig['web']['cors'].has_key('Access-Control-Allow-Methods'): s = gConfig['web']['cors']['Access-Control-Allow-Methods'] if isinstance(s, list): s = ','.join(s) headers['Access-Control-Allow-Methods'] = str(s) except: headers = default_header(h) return headers def check_is_static(aUrl): global STATICRESOURCE_DIR global gConfig ret = False surl = dec(aUrl) if surl[0:2] == '//': surl = surl[2:] if surl[0] == '/': surl = surl[1:] p = os.path.join(STATICRESOURCE_DIR , surl) isBin = False ext = os.path.splitext(p)[1] if '.' in surl: ext = surl[surl.rindex('.'):] else: ext = os.path.splitext(p)[1] if len(ext)>0 and gConfig['mime_type'].has_key(ext): ret = True return ret def whitelist_check(environ, start_response): global gConfig ret = True if gConfig['listen_port'].has_key('whitelist') and len(gConfig['listen_port']['whitelist'])>0: if isinstance(gConfig['listen_port']['whitelist'], unicode): s = str(gConfig['listen_port']['whitelist']) rere = re.compile(s) if environ.has_key('REMOTE_ADDR') and len(rere.findall(environ['REMOTE_ADDR']))==0: ret = False elif isinstance(gConfig['listen_port']['whitelist'], list): cnt = 0 ret = False for i in gConfig['listen_port']['whitelist']: s = str(i) rere = re.compile(s) if environ.has_key('REMOTE_ADDR') and len(rere.findall(environ['REMOTE_ADDR']))>0: cnt += 1 if cnt>0: ret = True return ret def blacklist_check(environ, start_response): global gConfig ret = True if gConfig['listen_port'].has_key('blacklist') and len(gConfig['listen_port']['blacklist'])>0: if isinstance(gConfig['listen_port']['blacklist'], unicode): s = str(gConfig['listen_port']['blacklist']) rere = re.compile(s) if environ.has_key('REMOTE_ADDR') and len(rere.findall(environ['REMOTE_ADDR']))>0: ret = False elif isinstance(gConfig['listen_port']['blacklist'], list): cnt = 0 ret = True for i in gConfig['listen_port']['blacklist']: s = str(i) rere = re.compile(s) if environ.has_key('REMOTE_ADDR') and len(rere.findall(environ['REMOTE_ADDR']))>0: cnt += 1 if cnt>0: ret = False return ret def ip_check(environ, start_response): ret = False if whitelist_check(environ, start_response) and blacklist_check(environ, start_response): ret = True return ret def session_check_user_ip(environ, username): global gConfig, gSessionStore ret = True ip = environ['REMOTE_ADDR'] if gConfig['authorize_platform']['session']['session_check_ip'].lower() == 'true': l = gSessionStore.get_list_by_username(username) for i in l: if i.has_key('ip') and i['ip'] != environ['REMOTE_ADDR']: ret = False break return ret, ip def get_websocket(environ): ret = None if environ.has_key("wsgi.websocket") and environ['wsgi.websocket']: ret = environ['wsgi.websocket'] return ret def ws_send(channel=None, string=''): global gWebSocketsMap for k in gWebSocketsMap.keys(): ws = None if channel: if '|' + channel in k: ws = gWebSocketsMap[k] else: ws = gWebSocketsMap[k] if ws and not ws.closed: try: ws.send(string) except geventwebsocket.WebSocketError, e: print('ws_send exception:%s' % str(e)) elif ws and ws.closed: del gWebSocketsMap[k] def ws_session_query(): ret = json.dumps(db_util.remove_mongo_id(gSessionStore.list()), ensure_ascii=True, indent=4) return ret def ws_recv(environ): ret = None ws = get_websocket(environ) if ws and not ws.closed: msg = None try: msg = ws.receive() except geventwebsocket.WebSocketError, e: print('ws_recv exception:%s' % str(e)) if msg: try: ret = json.loads(msg) except: ret = msg return ret def application_combiz_platform(environ, start_response): global STATICRESOURCE_DIR global gConfig, gRequest, gSessionStore def proxy(environ): connection_timeout, network_timeout = 5.0, 10.0 proxy_type = '' if '/proxy_platform' in path_info: proxy_type = 'proxy_platform' if '/proxy_file' in path_info: proxy_type = 'proxy_file' if '/proxy_pay' in path_info: proxy_type = 'proxy_pay' try: connection_timeout = float(gConfig['combiz_platform'][proxy_type]['www_connection_timeout']) except: pass try: network_timeout = float(gConfig['combiz_platform'][proxy_type]['www_network_timeout']) except: pass return handle_http_proxy(environ, proxy_type, gConfig['combiz_platform'][proxy_type]['protocol'], gConfig['combiz_platform'][proxy_type]['host'], gConfig['combiz_platform'][proxy_type]['port'], '', connection_timeout, network_timeout) headers = {} headerslist = [] cookie_header = None body = '' statuscode = '200 OK' if not ip_check(environ, start_response): headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'your_ip_access_deny'}, ensure_ascii=True, indent=4) start_response(statuscode, headerslist) return [body] path_info = environ['PATH_INFO'] statuscode = '200 OK' if path_info[-1:] == '/': headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) elif check_is_static(path_info): statuscode, headers, body = handle_static(environ, path_info) elif len(path_info)>7 and path_info[:7] == '/proxy_': statuscode, headers, body = proxy(environ) else: statuscode, headers, body = handle_combiz_platform(environ) headers = CORS_header(headers) for k in headers: headerslist.append((k, headers[k])) #print(headerslist) start_response(statuscode, headerslist) return [body] def application_authorize_platform(environ, start_response): global STATICRESOURCE_DIR global gConfig, gRequest, gSessionStore headers = {} headerslist = [] cookie_header = None body = '' statuscode = '200 OK' if not ip_check(environ, start_response): headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'your_ip_access_deny'}, ensure_ascii=True, indent=4) start_response(statuscode, headerslist) return [body] path_info = environ['PATH_INFO'] if gSessionStore is None: gSessionStore = MongodbSessionStore(host=gConfig['authorize_platform']['mongodb']['host'], port=int(gConfig['authorize_platform']['mongodb']['port']), replicaset=gConfig['authorize_platform']['mongodb']['replicaset'], db = gConfig['authorize_platform']['mongodb']['database'], collection = gConfig['authorize_platform']['mongodb']['collection_session'], ) is_expire = False statuscode = '200 OK' if path_info[-1:] == '/': #path_info += gConfig['web']['indexpage'] #statuscode, headers, body = handle_static(environ, path_info) headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) elif check_is_static(path_info): statuscode, headers, body = handle_static(environ, path_info) else: with session_manager(environ): sess, cookie_header, is_expire = check_session(environ, gRequest, gSessionStore) if is_expire: headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) statuscode = '200 OK' body = json.dumps({'result':u'session_expired'}, ensure_ascii=True, indent=4) if sess: if not sess.has_key('ip'): sess['ip'] = environ['REMOTE_ADDR'] gSessionStore.save_if_modified(sess) else: statuscode, headers, body = handle_authorize_platform(environ, sess) headers = CORS_header(headers) if cookie_header: headerslist.append(cookie_header) for k in headers: headerslist.append((k, headers[k])) #print(headerslist) start_response(statuscode, headerslist) return [body] def application_chat_platform(environ, start_response): global STATICRESOURCE_DIR global gConfig, gRequest, gSessionStore headers = {} headerslist = [] cookie_header = None body = '' statuscode = '200 OK' if not ip_check(environ, start_response): headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'your_ip_access_deny'}, ensure_ascii=True, indent=4) start_response(statuscode, headerslist) return [body] path_info = environ['PATH_INFO'] #if gSessionStore is None: #gSessionStore = MongodbSessionStore(host=gConfig['chat_platform']['mongodb']['host'], #port=int(gConfig['chat_platform']['mongodb']['port']), #replicaset=gConfig['chat_platform']['mongodb']['replicaset'], #db = gConfig['chat_platform']['mongodb']['database'], #collection = gConfig['chat_platform']['mongodb']['collection_session'], #) #is_expire = False statuscode = '200 OK' if path_info[-1:] == '/': headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) elif check_is_static(path_info): statuscode, headers, body = handle_static(environ, path_info) else: #with session_manager(environ): #sess, cookie_header, is_expire = check_session(environ, gRequest, gSessionStore) #if is_expire: #headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) #statuscode = '200 OK' #body = json.dumps({'result':u'session_expired'}, ensure_ascii=True, indent=4) #if sess: #if not sess.has_key('ip'): #sess['ip'] = environ['REMOTE_ADDR'] #gSessionStore.save_if_modified(sess) #else: statuscode, headers, body = handle_chat_platform(environ, None) headers = CORS_header(headers) if cookie_header: headerslist.append(cookie_header) for k in headers: headerslist.append((k, headers[k])) #print(headerslist) start_response(statuscode, headerslist) return [body] def sign_and_send(thirdpay, method, href, data, need_sign=True): ret = None if thirdpay == 'alipay': ret = sign_and_send_alipay(method, href, data, need_sign) return ret def sign_and_send_alipay(method, href, data, need_sign=True): global gConfig qs = build_query_string(data) if need_sign: signed = get_sign_alipay(qs) qs += '&sign=%s' % signed qs += '&sign_type=%s' % gConfig['pay_platform']['alipay']['sign_type'] text = qs text = enc_by_code(gConfig['pay_platform']['alipay']['input_charset'], text) connection_timeout, network_timeout = float(gConfig['pay_platform']['alipay']['connection_timeout']), float(gConfig['pay_platform']['alipay']['network_timeout']) client = HTTPClient.from_url(href, concurrency=1, connection_timeout=connection_timeout, network_timeout=network_timeout, ) g = None if method == 'get': if not href[-1:] == '?': href += '?' href += urllib.quote(text) g = gevent.spawn(client.get, href) if method == 'post': postdata = urllib.quote(text) headers = {} headers['Content-Type'] = 'application/x-www-form-urlencoded; text/html; charset=%s' % str(gConfig['pay_platform']['alipay']['input_charset']) g = gevent.spawn(client.post, href, body=postdata, headers=headers) return g def fake_gateway_alipay_return(querydict): global gConfig sign_data = {} if querydict['service'] == 'refund_fastpay_by_platform_pwd': sign_data['is_success'] = 'T' #sign_data['refund_result'] = 'TRADE_PENDING' elif querydict['service'] == 'create_direct_pay_by_user': if querydict.has_key('out_trade_no'): sign_data['is_success'] = 'T' sign_data['notify_id'] = str(ObjectId()) sign_data['notify_time'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") sign_data['notify_type'] = 'trade_status_sync' sign_data['out_trade_no'] = querydict['out_trade_no'] sign_data['partner'] = gConfig['fake_gateway_alipay']['alipay']['partner_id'] if querydict.has_key('seller_email'): sign_data['seller_email'] = querydict['seller_email'] if querydict.has_key('subject'): sign_data['subject'] = querydict['subject'] if querydict.has_key('buyer_email'): sign_data['buyer_email'] = querydict['buyer_email'] if querydict.has_key('total_fee'): sign_data['total_fee'] = querydict['total_fee'] #sign_data['trade_no'] = '' sign_data['trade_status'] = 'TRADE_PENDING' href = str(gConfig['pay_platform']['alipay']['return_url']) if querydict.has_key('return_url'): href = querydict['return_url'] sign_and_send_alipay('get', href, sign_data) else: print('fake_gateway_alipay_return out_trade_no required') def fake_gateway_alipay_notify(querydict): global gConfig def get_pay_log_rec_by_trade_no(trade_no): ret = None db_util.mongo_init_client('pay_platform') client = db_util.gClientMongo['pay_platform'] db = client['pay'] if 'pay_log' in db.collection_names(False): collection = db['pay_log'] ret = collection.find_one({"trade_no":trade_no}) return ret data = {} if querydict['service'] == 'refund_fastpay_by_platform_pwd': data['notify_time'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") data['notify_type'] = 'batch_refund_notify' data['notify_id'] = str(ObjectId()) data['batch_no'] = querydict['batch_no'] data['success_num'] = '1' detail_data = querydict['detail_data'] arr = detail_data.split('^') trade_no = arr[0] refund_fee = float(arr[1]) result_details = '%s^%s^%s' % (arr[0], arr[1], 'SUCCESS') data['result_details'] = result_details href = str(gConfig['pay_platform']['alipay']['notify_url']) sign_and_send_alipay('post', href, data) rec = get_pay_log_rec_by_trade_no(trade_no) if rec: data = {} data['notify_type'] = 'trade_status_sync' data['out_trade_no'] = rec['out_trade_no'] data['refund_status'] = 'REFUND_SUCCESS' if refund_fee < rec['total_fee']: data['trade_status'] = 'TRADE_SUCCESS' else: data['trade_status'] = 'TRADE_CLOSED' sign_and_send_alipay('post', href, data) elif querydict['service'] == 'create_direct_pay_by_user': if querydict.has_key('out_trade_no'): data['out_trade_no'] = querydict['out_trade_no'] data['notify_id'] = str(ObjectId()) data['notify_time'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") data['notify_type'] = 'trade_status_sync' data['partner'] = gConfig['fake_gateway_alipay']['alipay']['partner_id'] if querydict.has_key('buyer_email'): data['buyer_email' ] = querydict['buyer_email'] if querydict.has_key('seller_email'): data['seller_email'] = querydict['seller_email'] if querydict.has_key('subject'): data['subject'] = querydict['subject'] if querydict.has_key('total_fee'): data['total_fee'] = querydict['total_fee'] if querydict.has_key('paymethod') and querydict['paymethod'] == 'bankPay': data['bank_seq_no'] = datetime.datetime.now().strftime("%Y%m%d%H%M%S") data['trade_no'] = datetime.datetime.now().strftime("%Y%m%d%H%M%S") + str(ObjectId()) data['trade_status'] = 'TRADE_SUCCESS' href = str(gConfig['pay_platform']['alipay']['notify_url']) sign_and_send_alipay('post', href, data) else: print('fake_gateway_alipay_notify out_trade_no required') def fake_gateway_alipay_error_notify(querydict, error_code): global gConfig data = {} if querydict['service'] == 'refund_fastpay_by_platform_pwd': data['notify_time'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") data['notify_type'] = 'batch_refund_notify' data['notify_id'] = str(ObjectId()) data['batch_no'] = querydict['batch_no'] data['success_num'] = '0' detail_data = querydict['detail_data'] arr = detail_data.split('^') result_details = '%s^%s^%s' % (arr[0], arr[1], error_code) data['result_details'] = result_details href = str(gConfig['pay_platform']['alipay']['notify_url']) if querydict.has_key('notify_url'): href = str(querydict['notify_url']) sign_and_send_alipay('post', href, data) elif querydict['service'] == 'create_direct_pay_by_user': data['partner'] = gConfig['fake_gateway_alipay']['alipay']['partner_id'] if querydict.has_key('out_trade_no'): data['out_trade_no'] = querydict['out_trade_no'] data['error_code'] = error_code if querydict.has_key('buyer_email'): data['buyer_email'] = querydict['buyer_email'] if querydict.has_key('seller_email'): data['seller_email'] = querydict['seller_email'] href = str(gConfig['pay_platform']['alipay']['error_notify_url']) sign_and_send_alipay('post', href, data, need_sign=False) else: print('fake_gateway_alipay_error_notify out_trade_no required') def dec_by_code(code, string): encode, decode, reader, writer = codecs.lookup(str(code)) text = string text, length = decode(text, 'replace') return text def enc_by_code(code, string): encode, decode, reader, writer = codecs.lookup(str(code)) text = string text, length = encode(text, 'replace') return text def handle_fake_gateway_alipay(environ, error_code_pay=None, error_code_refund=None): global ENCODING global gConfig headers = {} headers['Content-Type'] = 'text/json;charset=' + ENCODING statuscode = '200 OK' body = '' d = {} querydict = {} querystring = '' querystring1 = '' if environ.has_key('QUERY_STRING'): querystring = environ['QUERY_STRING'] querydict = urlparse.parse_qs(querystring) for key in querydict.keys(): d[key] = querydict[key][0] querydict = d if not environ.has_key('QUERY_STRING') or len(environ['QUERY_STRING'])==0: buf = environ['wsgi.input'].read() querystring = urllib.unquote_plus(buf) querystring = dec_by_code(gConfig['pay_platform']['alipay']['input_charset'], querystring) querydict = urlparse.parse_qs(querystring) d = {} for key in querydict.keys(): d[key] = querydict[key][0] querydict = d try: querystring1 = querystring[:querystring.index('&sign=')] except: pass try: querystring1 = querystring1[:querystring1.index('&sign_type=')] except: pass signed1 = None if querydict['service'] == 'create_direct_pay_by_user': fake_gateway_alipay_return(querydict) if querydict['service'] == 'refund_fastpay_by_platform_pwd': headers['Content-Type'] = 'text/xml;charset=' + ENCODING body = '<?xml version="1.0" encoding="UTF-8"?><IS_SUCCESS>T</IS_SUCCESS>' gevent.sleep(float(gConfig['fake_gateway_alipay']['alipay']['process_second'])) #print(querydict) if querydict.has_key('sign') and querydict.has_key('sign_type') and querydict.has_key('_input_charset'): ok = check_sign_alipay(querydict['_input_charset'], querydict['sign'], querydict['sign_type'], querystring1) if ok: error_code = error_code_pay if error_code is None: error_code = error_code_refund if error_code: fake_gateway_alipay_error_notify(querydict, error_code) else: fake_gateway_alipay_notify(querydict) else: print('signature check error') fake_gateway_alipay_error_notify(querydict, 'ILLEGAL_SIGN') else: print('need sign or sign_type or _input_charset') return statuscode, headers, body def application_fake_gateway_alipay(environ, start_response): global STATICRESOURCE_DIR global gConfig, gSecurityConfig headers = {} headerslist = [] body = '' statuscode = '200 OK' path_info = environ['PATH_INFO'] statuscode = '200 OK' if path_info[-1:] == '/': headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) elif check_is_static(path_info): statuscode, headers, body = handle_static(environ, path_info) elif path_info == '/gateway.do': error_code_pay = gConfig['fake_gateway_alipay']['alipay']['error_code_pay'] error_code_refund = gConfig['fake_gateway_alipay']['alipay']['error_code_refund'] if len(error_code_pay) == 0: error_code_pay = None if error_code_pay and not gSecurityConfig['alipay']['error_code'].has_key(error_code_pay): error_code_pay = None if len(error_code_refund) == 0: error_code_refund = None if error_code_refund and not gSecurityConfig['alipay']['error_code'].has_key(error_code_refund): error_code_refund = None statuscode, headers, body = handle_fake_gateway_alipay(environ, error_code_pay, error_code_refund) headers = CORS_header(headers) for k in headers: headerslist.append((k, headers[k])) start_response(statuscode, headerslist) return [body] def application_pay_platform(environ, start_response): global STATICRESOURCE_DIR global gConfig, gWebSocketsMap, gJoinableQueue def check_is_static(aUrl): ret = False surl = dec(aUrl) if surl[0:2] == '//': surl = surl[2:] if surl[0] == '/': surl = surl[1:] p = os.path.join(STATICRESOURCE_DIR , surl) isBin = False ext = os.path.splitext(p)[1] if '.' in surl: ext = surl[surl.rindex('.'):] else: ext = os.path.splitext(p)[1] if len(ext)>0 and gConfig['mime_type'].has_key(ext): ret = True return ret def handle_websocket(environ): ws = get_websocket(environ) app = gConfig['wsgi']['application'] interval = 1.0 try: interval = float(gConfig[app]['websocket']['interval_poll']) except: interval = 1.0 while ws and not ws.closed: obj = ws_recv(environ) if obj and isinstance(obj, dict) and obj.has_key('op'): if obj['op'] == 'queue_size': qsize = 0 if gJoinableQueue: qsize = gJoinableQueue.qsize() ws.send(json.dumps({'queue_size':qsize}, ensure_ascii=True, indent=4)) else: try: ws.send('') except: for k in gWebSocketsMap.keys(): if gWebSocketsMap[k] is ws: gWebSocketsMap[k].close() del gWebSocketsMap[k] break gevent.sleep(interval) if ws and ws.closed: del ws headers = {} headerslist = [] body = '' statuscode = '200 OK' if not ip_check(environ, start_response): headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'your_ip_access_deny'}, ensure_ascii=True, indent=4) start_response(statuscode, headerslist) return [body] path_info = environ['PATH_INFO'] headerslist = [] statuscode = '200 OK' #print('path_info=%s' % path_info) if path_info[-1:] == '/': headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) body = json.dumps({'result':u'access_deny'}, ensure_ascii=True, indent=4) elif check_is_static(path_info): statuscode, headers, body = handle_static(environ, path_info) elif path_info == '/pay': statuscode, headers, body = handle_pay(environ) elif path_info == '/refund': statuscode, headers, body = handle_refund(environ) elif path_info == '/query': statuscode, headers, body = handle_pay_getinfo(environ) elif path_info == '/alipay_return_url': headerslist.append(('Content-Type', 'text/plain;charset=' + ENCODING)) handle_alipay_return_url(environ) elif path_info == '/alipay_notify_url': headerslist.append(('Content-Type', 'text/plain;charset=' + ENCODING)) handle_alipay_notify_url(environ) body = 'success' elif path_info == '/alipay_error_notify_url': headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) handle_alipay_error_notify_url(environ) headers = CORS_header(headers) for k in headers: headerslist.append((k, headers[k])) #print(headerslist) start_response(statuscode, headerslist) if path_info == '/websocket': handle_websocket(environ) return [body] def handle_http_proxy(environ, proxy_placeholder='proxy', real_protocol='http', real_host='localhost', real_port='80', token='', connection_timeout=5.0, network_timeout=10.0, request_headers={}): global ENCODING, gHttpClient, gRequest, gProxyRequest path_info = environ['PATH_INFO'] if environ.has_key('QUERY_STRING') and len(environ['QUERY_STRING'])>0: path_info += '?' + environ['QUERY_STRING'] request = None if gProxyRequest is None: request = Request(environ) else: request = gProxyRequest method = request.method.lower() data = request.get_data() headers = {} for i in request.headers: headers[i[0]] = enc(i[1]) for k in request_headers.keys(): headers[k] = request_headers[k] headers['Host'] = real_host #for k in headers.keys(): #print('%s=%s' % (k, headers[k])) href = '%s://%s:%s%s' % (real_protocol, real_host, real_port, path_info.replace('/%s/' % proxy_placeholder, '/')) if '?' in href: href += '&' else: href += '?'; href += 'token=%s&random=%d' % ( token, random.randint(0,100000) ) print('proxy to %s' % href) header = {'Content-Type': 'application/json;charset=' + ENCODING, 'Cache-Control': 'no-cache'} ret = '' url = URL(href) if not gHttpClient.has_key('http_proxy'): gHttpClient['http_proxy'] = HTTPClient(url.host, port=url.port, connection_timeout=connection_timeout, network_timeout=network_timeout, concurrency=200) client = gHttpClient['http_proxy'] response = None try: if method == 'get': response = client.get(url.request_uri, headers) elif method == 'put': response = client.put(url.request_uri, data, headers) elif method == 'delete': response = client.delete(url.request_uri, data, headers) elif method == 'post': response = client.post(url.request_uri, data, headers) except Exception,e: idx = 0 e1 = e while (e1.errno == 10053 or e1.errno == 10054) and idx < 4: idx += 1 print('encounter 10053 error, trying %d reconnecting...' % idx) try: if method == 'get': response = client.get(url.request_uri, headers) elif method == 'put': response = client.put(url.request_uri, data, headers) elif method == 'delete': response = client.delete(url.request_uri, data, headers) elif method == 'post': response = client.post(url.request_uri, data, headers) break except Exception,e2: e1 = e2 if idx >= 4: raise e1 if response: if hasattr(response, 'status_code'): if response.status_code == 200 or response.status_code == 304: ret = response.read() # print(ret) header = {} for k in response._headers_index.keys(): if not k in ['transfer-encoding', ]: v = response._headers_index[k] if '-' in k: k = '-'.join([i.capitalize() for i in k.split('-')]) else: k = k.capitalize() header[k] = v else: msg = 'handle_http_proxy response error:%d' % response.status_code ret = json.dumps({'result':msg}, ensure_ascii=True, indent=4) #raise Exception(msg) else: raise Exception('handle_http_proxy error: response has no status_code') else: raise Exception('handle_http_proxy error') return '200 OK', header, ret def application_webgis(environ, start_response): global ENCODING global gConfig, gRequest, gSessionStore, gWebSocketsMap def handle_websocket(environ): key = str(gevent.getcurrent().__hash__()) ws = get_websocket(environ) if not gWebSocketsMap.has_key(key): gWebSocketsMap[key] = ws app = gConfig['wsgi']['application'] interval = 1.0 try: interval = float(gConfig[app]['websocket']['interval_poll']) except: interval = 1.0 while ws and not ws.closed: obj = ws_recv(environ) if obj and isinstance(obj, dict) and obj.has_key('op'): if obj['op'] == 'queue_size': qsize = 0 if gJoinableQueue: qsize = gJoinableQueue.qsize() ws.send(json.dumps({'queue_size':qsize}, ensure_ascii=True, indent=4)) if obj['op'] == 'turn_on_sound': ws.send('') else: try: ws.send('') except: for k in gWebSocketsMap.keys(): if gWebSocketsMap[k] is ws: gWebSocketsMap[k].close() del gWebSocketsMap[k] break gevent.sleep(interval) if ws and ws.closed: del ws return '200 OK', {}, '' def proxy(environ, request_headers={}): global gConfig connection_timeout, network_timeout = 5.0, 10.0 try: connection_timeout = float(gConfig['webgis']['anti_bird']['www_connection_timeout']) except: pass try: network_timeout = float(gConfig['webgis']['anti_bird']['www_network_timeout']) except: pass token = md5.new('bird%s' % time.strftime('%Y%m%d')).hexdigest() path_info = environ['PATH_INFO'] if '/hasBird' in path_info: request_headers['Content-Type'] = 'application/json' return handle_http_proxy(environ, 'proxy', 'http', gConfig['webgis']['anti_bird']['tcp_host'], gConfig['webgis']['anti_bird']['http_port'], token, connection_timeout, network_timeout, request_headers) # def get_anti_bird_list_from_cache(): # ret = '{"result":"get_anti_bird_list_from_cache_error:cannot connect to db"}' # arr = [] # if gConfig['webgis'].has_key('anti_bird') and gConfig['webgis']['anti_bird'].has_key('mongodb'): # db_util.mongo_init_client('anti_bird') # db = db_util.gClientMongo['anti_bird'][gConfig['webgis']['anti_bird']['mongodb']['database']] # collection = db[gConfig['webgis']['anti_bird']['mongodb']['detector_collection']] # arr = db_util.remove_mongo_id(list(collection.find({}))) # ret = json.dumps(arr, ensure_ascii=True, indent=4) # return ret # # def get_latest_records_from_cache(): # ret = '{"result":"get_latest_records_from_cache_error:cannot connect to db"}' # arr = [] # if gConfig['webgis'].has_key('anti_bird') and gConfig['webgis']['anti_bird'].has_key('mongodb'): # db_util.mongo_init_client('anti_bird') # db = db_util.gClientMongo['anti_bird'][gConfig['webgis']['anti_bird']['mongodb']['database']] # collection = db[gConfig['webgis']['anti_bird']['mongodb']['detector_collection']] # arr = db_util.remove_mongo_id(list(collection.find({}))) # ret = json.dumps(arr, ensure_ascii=True, indent=4) # return ret def set_cookie(key, value): secure = False if gConfig['listen_port']['enable_ssl'].lower() == 'true': secure = True max_age = 60 try: session_age = int(gConfig['webgis']['session']['session_age']) except: pass # cookie = ('Set-Cookie', dump_cookie(key, value, domain=str(gConfig['webgis']['session']['session_domain']), max_age=session_age, secure=secure)) cookie = ('Set-Cookie', dump_cookie(key, value, max_age=session_age, secure=secure)) return cookie def get_cookie_data(request, key=None): string = '{}' if request: string = request.cookies.get('session_data') ret = None if string and len(string)>0: try: ret = json.loads(string) if key and ret.has_key(key): ret = ret[key] else: ret = None except: pass return ret def set_cookie_data(request, data): string = '{}' ret = None if request: string = request.cookies.get('session_data') if string and len(string)>0: try: obj = json.loads(string) if isinstance(obj, dict) and isinstance(data, dict): for key in data.keys(): obj[key] = data[key] string = json.dumps(obj) ret = set_cookie('session_data', string) except: pass return ret def session_handle(environ, request, session_store): sid = get_cookie_data(request, 'session_id') sess = None cookie = None is_expire = False if sid is None or len(sid)==0: request.session = session_store.new() # session_store.save(request.session) sess = request.session cookie = set_cookie_data(None, {'session_id': request.session.sid}) is_expire = True else: request.session = session_store.get(sid) if request.session: o = {'session_id': request.session.sid} for k in request.session.keys(): if not k in [u'password',]: o[k] = request.session[k] cookie = set_cookie_data(request, o) session_store.save_if_modified(request.session) else: cookie = set_cookie('session_data', '{}') is_expire = True # if request.session.should_save: # session_store.save(request.session) sess = request.session return sess, cookie, is_expire def handle_login(environ): ret = None querydict, buf = get_querydict_by_GET_POST(environ) if querydict.has_key('db') and querydict.has_key('collection') and querydict.has_key('username') and querydict.has_key('password'): ret = db_util.mongo_find_one(querydict['db'], querydict['collection'], {'username':querydict['username'], 'password':querydict['password']}) return ret def handle_state_examination(environ): def get_collection(collection): ret = None db_util.mongo_init_client('webgis') db = db_util.gClientMongo['webgis'][gConfig['webgis']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret def state_examination_save(querydict): def modifier(adict = {}): for k in adict.keys(): if not k in ['_id', 'check_year']: adict[k] = adict[k].strip() if k == 'line_name': adict[k] = adict[k].replace('-', '')\ .replace('500kV', '').replace('220kV', '').replace('110kV', '').replace('35kV', '').replace('10kV', '')\ .replace(u'Ⅱ', 'II').replace(u'Ⅰ', 'I') if adict[k][-1] == u'回': adict[k] = adict[k].replace( u'回', u'回线') if not adict[k][-1] == u'线': adict[k] = adict[k] + u'线' if k == 'line_state' or 'unit_' in k: adict[k] = adict[k].replace(u'正常', 'I').replace(u'注意', 'II').replace(u'异常', 'III').replace(u'严重', 'IV') return adict ret = [] collection = get_collection('state_examination') if isinstance(querydict, dict) and querydict.has_key('line_name') and querydict.has_key('check_year'): querydict['line_name'] = querydict['line_name'].strip() existone = collection.find_one({'line_name':querydict['line_name'].strip(), 'check_year':querydict['check_year']}) if existone: querydict['_id'] = str(existone['_id']) querydict = modifier(querydict) _id = collection.save(db_util.add_mongo_id(querydict)) ret = collection.find_one({'_id':_id}) if ret: ret = db_util.remove_mongo_id(ret) if isinstance(querydict, list): for i in querydict: i = modifier(i) existone = collection.find_one({'line_name':i['line_name'], 'check_year':i['check_year']}) if existone: i['_id'] = str(existone['_id']) collection.save(db_util.add_mongo_id(i)) return json.dumps(ret, ensure_ascii=True, indent=4) def state_examination_query_line_names(querydict): ret = [] collection = get_collection('state_examination') pipeline = [ # {'$unwind':'$line_name'}, {"$group": {"_id": "$line_name", "count": {"$sum": 1}}}, ] ret = list(collection.aggregate(pipeline)) ret = map(lambda x:x['_id'], ret) return json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) def state_examination_query(querydict): ret = [] collection = get_collection('state_examination') if isinstance(querydict, dict): # print(querydict) ret = list(collection.find(db_util.add_mongo_id(querydict))) return json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) def state_examination_delete(querydict): ret = [] collection = get_collection('state_examination') if isinstance(querydict, dict): if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.remove({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'record_not_exist' }, ensure_ascii=True, indent=4) if isinstance(querydict['_id'], list): ids = db_util.add_mongo_id(querydict['_id']) cond = {'_id':{'$in':ids}} collection.remove(cond) ret = json.dumps(db_util.remove_mongo_id(querydict['_id']), ensure_ascii=True, indent=4) return json.dumps(ret, ensure_ascii=True, indent=4) statuscode, headers, body = '200 OK', {}, '' urls = gUrlMap.bind_to_environ(environ) querydict, buf = get_querydict_by_GET_POST(environ) endpoint, args = urls.match() if args.has_key('_id') and isinstance(querydict, dict): querydict['_id'] = args['_id'] if endpoint == 'state_examination_save': body = state_examination_save(querydict) elif endpoint == 'state_examination_query': body = state_examination_query(querydict) elif endpoint == 'state_examination_delete': body = state_examination_delete(querydict) elif endpoint == 'state_examination_query_line_names': body = state_examination_query_line_names(querydict) return statuscode, headers, body def handle_antibird(environ): global gConfig, gUrlMap, ENCODING def init_list(environ): ret = [] s = '{"result":"unknown how to get anti bird list"}' # if gConfig['webgis'].has_key('anti_bird') and gConfig['webgis']['anti_bird'].has_key('fetch_from_www') and gConfig['webgis']['anti_bird']['fetch_from_www'].lower() == 'true': if True: environ['PATH_INFO'] = '/proxy/api/detector' environ['QUERY_STRING'] = '' code, header, s = proxy(environ) # if gConfig['webgis'].has_key('anti_bird') and gConfig['webgis']['anti_bird'].has_key('fetch_from_www') and gConfig['webgis']['anti_bird']['fetch_from_www'].lower() == 'false': # if False: # s = get_anti_bird_list_from_cache() try: if len(s)>0: obj = json.loads(s) if isinstance(obj, dict) : if obj.has_key('result'): print('antibird/init_list error:%s' % obj['result']) else: if obj.has_key('_id'): if obj.has_key('imei'): obj['label'] = obj['imei'] obj['value'] = obj['imei'] ret = [obj, ] else: print('antibird/init_list error: unknown error') ret = [] elif isinstance(obj, list) : for i in obj: idx = obj.index(i) if i.has_key('imei'): i['label'] = i['imei'] i['value'] = i['imei'] obj[idx] = i ret = obj except Exception,e: raise return ret def get_latest_records(environ, querydict): ret = [] objstr = '' if querydict.has_key('imei') and len(querydict['imei'])>0: records_num = 1 if querydict.has_key('records_num') and len(querydict['records_num'])>0: records_num = int(querydict['records_num']) href = '/proxy/api/detector/%s/log/%d' % (querydict['imei'], records_num) environ['PATH_INFO'] = href environ['QUERY_STRING'] = '' status, header, objstr = proxy(environ) if len(objstr)>0: try: obj = json.loads(objstr) if isinstance(obj, dict) : if obj.has_key('result'): print('antibird/get_latest_records error:%s' % obj['result']) else: if obj.has_key('_id'): ret = [obj, ] else: print('antibird/get_latest_records error: unknown error') ret = [] elif isinstance(obj, list) : ret = obj except: e = sys.exc_info()[1] if hasattr(e, 'message'): print('antibird/get_latest_records error:%s' % e.message) else: print('antibird/get_latest_records error:%s' % str(e)) for item in ret: idx = ret.index(item) if item.has_key('picture') and isinstance(item['picture'], list): for i in item['picture']: idx1 = item['picture'].index(i) item['picture'][idx1] = '/proxy/api/image/%s' % i ret[idx] = item return ret def get_latest_records_by_imei(environ, querydict): ret = get_latest_records(environ, querydict) return json.dumps(ret, ensure_ascii=True, indent=4) def get_equip_list(environ, querydict): ret = '' is_filter_used=False if querydict.has_key('is_filter_used') and querydict['is_filter_used'] is True: is_filter_used = True equip_list = init_list(environ) if not is_filter_used: ret = json.dumps(equip_list, ensure_ascii=True, indent=4) else: exist = [] l = db_util.mongo_find( gConfig['webgis']['mongodb']['database'], 'features', { "properties.webgis_type":"point_tower", "properties.metals":{ "$elemMatch":{ "type":u"多功能驱鸟装置" } } }, 0, 'webgis' ) for i in l: for j in i['properties']['metals']: if isinstance(j, dict) and j.has_key('imei'): if not j['imei'] in exist: exist.append(j['imei']) while len(exist)>0: i0 = exist[0] for i in equip_list: if i['imei'] == i0: equip_list.remove(i) exist.remove(i0) break ret = json.dumps(equip_list, ensure_ascii=True, indent=4) return ret def equip_tower_mapping(querydict): ret = {} if querydict.has_key('imei'): l = db_util.mongo_find( gConfig['webgis']['mongodb']['database'], 'features', { "properties.webgis_type":"point_tower", "properties.metals":{ "$elemMatch":{ "type":u"多功能驱鸟装置", "imei":querydict['imei'] } } }, 0, 'webgis' ) if len(l)>0: obj = {} obj['tower_id'] = l[0]['_id'] obj['name'] = l[0]['properties']['name'] obj['lng'] = l[0]['geometry']['coordinates'][0] obj['lat'] = l[0]['geometry']['coordinates'][1] obj['alt'] = l[0]['geometry']['coordinates'][2] ret[querydict['imei']] = obj else: l = db_util.mongo_find( gConfig['webgis']['mongodb']['database'], 'features', { "properties.webgis_type":"point_tower", "properties.metals":{ "$elemMatch":{ "type":u"多功能驱鸟装置", } } }, 0, 'webgis' ) for i in l: for j in i['properties']['metals']: if j.has_key('type') and j['type'] == u'多功能驱鸟装置' and j.has_key('imei') and len(j['imei'])>0: obj = {} obj['tower_id'] = i['_id'] obj['name'] = i['properties']['name'] obj['lng'] = i['geometry']['coordinates'][0] obj['lat'] = i['geometry']['coordinates'][1] obj['alt'] = i['geometry']['coordinates'][2] ret[j['imei']] = obj ret = json.dumps(ret, ensure_ascii=True, indent=4) return ret statuscode, headers, body = '200 OK', {}, '' urls = gUrlMap.bind_to_environ(environ) querydict, buf = get_querydict_by_GET_POST(environ) endpoint, args = urls.match() if args.has_key('_id') and isinstance(querydict, dict): querydict['_id'] = args['_id'] if args.has_key('imei') and isinstance(querydict, dict): querydict['imei'] = args['imei'] if args.has_key('records_num') and isinstance(querydict, dict): querydict['records_num'] = args['records_num'] if endpoint == 'get_equip_list': body = get_equip_list(environ, querydict) elif endpoint == 'get_latest_records_by_imei': body = get_latest_records_by_imei(environ, querydict) elif endpoint == 'equip_tower_mapping': body = equip_tower_mapping(querydict) return statuscode, headers, body def handle_bayesian(environ): def get_collection(collection): ret = None db_util.mongo_init_client('webgis') db = db_util.gClientMongo['webgis'][gConfig['webgis']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret # def convert_strkey_to_bool(obj): # if isinstance(obj, list): # for i in range(0, len(obj)): # obj[i] = convert_strkey_to_bool(obj[i]) # if isinstance(obj, dict): # for k in obj.keys(): # if k in ['true', u'true']: # obj[True] = obj[k] # del obj['true'] # del obj[u'true'] # elif k in ['false', u'false']: # obj[False] = obj[k] # del obj['false'] # del obj[u'false'] # obj[k] = convert_strkey_to_bool(obj[k]) # # return obj def save_by_id(querydict, collection_name): ret = [] collection = get_collection(collection_name) if isinstance(querydict, list): ids = [] for i in querydict: if i['_id'] is None: del i['_id'] id = collection.save(db_util.add_mongo_id(i)) if id: ids.append(id) ret = list(collection.find({'_id':{'$in':ids}})) elif isinstance(querydict, dict): id = collection.save(db_util.add_mongo_id(querydict)) ret = collection.find_one({'_id':id}) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) return ret def delete_by_id(querydict, collection_name): ret = '' collection = get_collection(collection_name) if querydict.has_key('_id'): if isinstance(querydict['_id'], str) or isinstance(querydict['_id'], unicode): existone = collection.find_one({'_id':db_util.add_mongo_id(querydict['_id'])}) if existone: collection.remove({'_id':existone['_id']}) ret = json.dumps(db_util.remove_mongo_id(existone), ensure_ascii=True, indent=4) else: ret = json.dumps({'result':u'record_not_exist' }, ensure_ascii=True, indent=4) if isinstance(querydict['_id'], list): ids = db_util.add_mongo_id(querydict['_id']) cond = {'_id':{'$in':ids}} collection.remove(cond) ret = json.dumps(db_util.remove_mongo_id(querydict['_id']), ensure_ascii=True, indent=4) return ret def bayesian_query_domains_range(querydict): ret = [] collection = get_collection('bayesian_domains_range') ret = list(collection.find({})) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) return ret def bayesian_save_domains_range(querydict): return save_by_id(querydict, 'bayesian_domains_range') def bayesian_delete_domains_range(querydict): return delete_by_id(querydict, 'bayesian_domains_range') def bayesian_query_node(querydict): ret = [] if querydict.has_key('line_name') and len(querydict['line_name']): collection = get_collection('bayesian_nodes') ret = list(collection.find({'line_name':querydict['line_name']})) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) return ret def bayesian_query_graphiz(querydict): ret = '' if querydict.has_key('line_name') and len(querydict['line_name']): g = create_bbn_by_line_name(querydict['line_name']) dpi = 100 rankdir = 'LL' if querydict.has_key('dpi') and len(querydict['dpi']): dpi = int(querydict['dpi']) if querydict.has_key('rankdir') and len(querydict['rankdir']): rankdir = querydict['rankdir'] ret = g.get_graphviz_source(dpi, rankdir) return enc(ret) def bayesian_save_node(querydict): return save_by_id(querydict, 'bayesian_nodes') def bayesian_delete_node(querydict): ret = '[]' delete_by_id(querydict, 'bayesian_nodes') collection = get_collection('bayesian_nodes') if querydict.has_key('names'): if isinstance(querydict['names'], list): # names = [str(i) for i in querydict['names']] names = querydict['names'] l = list(collection.find({'conditions': {'$elemMatch': {'$elemMatch': {'$elemMatch': {'$elemMatch':{'$in': names}}}}}})) for i in l: existlist = [] conditions = [] for ii in i['conditions']: idx = i['conditions'].index(ii) tmp = [] for iii in ii[0]: # idx1 = ii[0].index(iii) if not iii[0] in names: tmp.append(iii) ii[0] = tmp i['conditions'][idx] = ii for ii in i['conditions']: key = '' for iii in ii[0]: key += iii[0] + ':' + iii[1] + '|' if not key in existlist: existlist.append(key) conditions.append(ii) i['conditions'] = conditions collection.save(i) if querydict.has_key('line_name') and len(querydict['line_name'])>0: ret = bayesian_query_node(querydict) return ret def bayesian_query_predict(querydict): ret = [] if querydict.has_key('line_name') and len(querydict['line_name']): g = create_bbn_by_line_name(querydict['line_name']) del querydict['line_name'] qd = {} querymulti = False for k in querydict.keys(): if isinstance(querydict[k], unicode): qd[str(k)] = str(querydict[k]) elif isinstance(querydict[k], list) and k == u'line_state': querymulti = True else: qd[str(k)] = querydict[k] if querymulti: for i in querydict['line_state']: qd['line_state'] = str(i) ret.append({'line_state':i, 'result':bayes_util.query_bbn_condition(g, **qd)}) else: ret = bayes_util.query_bbn_condition(g, **qd) ret = json.dumps(ret, ensure_ascii=True, indent=4) return ret def reset_unit_by_line_name(line_name): collection = get_collection('bayesian_nodes') units = list(collection.find({'line_name':line_name, 'name':{'$regex':'^unit_[0-9]$'}})) data = bayes_util.get_state_examination_data_by_line_name(line_name) o = bayes_util.calc_probability_unit(data) for unit in units: if o.has_key(unit['name']): unit['conditions'] = o[unit['name']] # print(unit['name']) # print(unit['conditions']) collection.save(unit) ret = list(collection.find({'line_name':line_name}).sort('name', pymongo.ASCENDING)) return ret def bayesian_reset_unit(querydict): ret = [] if querydict.has_key('line_name') and len(querydict['line_name']): ret = reset_unit_by_line_name(querydict['line_name']) ret = json.dumps(db_util.remove_mongo_id(ret), ensure_ascii=True, indent=4) return ret def build_additional_condition(line_name, cond): ret = cond collection = get_collection('bayesian_nodes') l = list(collection.find({'line_name':line_name})) for node in l: ret[node['name']] = node['conditions'] return ret def create_bbn_by_line_name(line_name): cond = bayes_util.build_state_examination_condition(line_name) cond = build_additional_condition(line_name, cond) g = None if bayes_util.USE_C_MODULE: print('using c-accelerate module...') g = bayes_util.build_bbn_from_conditionals(cond) else: print('using pure-python module...') g = bayes_util.build_bbn_from_conditionals_plus(cond) return g statuscode, headers, body = '200 OK', {}, '' urls = gUrlMap.bind_to_environ(environ) querydict, buf = get_querydict_by_GET_POST(environ) endpoint, args = urls.match() if args.has_key('_id') and isinstance(querydict, dict): querydict['_id'] = args['_id'] if endpoint == 'bayesian_query_node': body = bayesian_query_node(querydict) elif endpoint == 'bayesian_save_node': body = bayesian_save_node(querydict) elif endpoint == 'bayesian_query_predict': body = bayesian_query_predict(querydict) elif endpoint == 'bayesian_reset_unit': body = bayesian_reset_unit(querydict) elif endpoint == 'bayesian_query_graphiz': body = bayesian_query_graphiz(querydict) headers['Content-Type'] = 'text/plain' elif endpoint == 'bayesian_delete_node': body = bayesian_delete_node(querydict) elif endpoint == 'bayesian_save_domains_range': body = bayesian_save_domains_range(querydict) elif endpoint == 'bayesian_delete_domains_range': body = bayesian_delete_domains_range(querydict) elif endpoint == 'bayesian_query_domains_range': body = bayesian_query_domains_range(querydict) return statuscode, headers, body headers = {} headerslist = [] cookie_header = None statuscode = '200 OK' body = '' path_info = environ['PATH_INFO'] if 'proxy.cgi' in path_info: statuscode, headers, body = handle_proxy_cgi(environ) elif path_info == '/test': statuscode, headers, body = handle_test(environ) elif path_info == '/get': statuscode, headers, body = handle_get_method(environ) elif path_info == '/post': statuscode, headers, body = handle_post_method(environ) elif path_info == '/wmts': statuscode, headers, body = handle_wmts(environ) elif path_info == '/tiles': statuscode, headers, body = handle_tiles(environ) elif '/arcgistile' in path_info: statuscode, headers, body = handle_arcgistile(environ) elif path_info == '/terrain/layer.json' or path_info[-8:] == '.terrain': statuscode, headers, body = handle_terrain(environ) #elif path_info[-8:] == '.terrain': #return handle_terrain1(environ) # elif path_info == '/wfs': # statuscode, headers, body = handle_wfs(environ) elif path_info =='/create_cluster' or path_info =='/kill_cluster': statuscode, headers, body = handle_cluster(environ) elif path_info == '/websocket': statuscode, headers, body = handle_websocket(environ) elif len(path_info)>6 and path_info[:6] == '/proxy': statuscode, headers, body = proxy(environ) headers['Cache-Control'] = 'no-cache' # elif path_info == '/anti_bird_equip_list': # statuscode, headers, body = anti_bird_equip_list(environ) # elif path_info == '/anti_bird_equip_tower_mapping': # statuscode, headers, body = anti_bird_equip_tower_mapping(environ) # elif path_info == '/anti_bird_get_latest_records_by_imei': # statuscode, headers, body = anti_bird_get_latest_records_by_imei(environ) else: if path_info[-1:] == '/': path_info = gConfig['web']['indexpage'] if str(gConfig['webgis']['session']['enable_session'].lower()) == 'true' : # and path_info in ['/login', '/logout', gConfig['web']['loginpage'], gConfig['web']['indexpage'], gConfig['web']['mainpage']]: if gSessionStore is None: gSessionStore = FilesystemSessionStore() is_expire = False with session_manager(environ): sess, cookie_header, is_expire = session_handle(environ, gRequest, gSessionStore) if path_info == str(gConfig['web']['unauthorizedpage']): if not sess.has_key('ip'): sess['ip'] = environ['REMOTE_ADDR'] gSessionStore.save_if_modified(sess) headerslist.append(('Content-Type', str(gConfig['mime_type']['.html']))) headerslist.append(cookie_header) statuscode, headers, body = handle_static(environ, gConfig['web']['unauthorizedpage']) start_response('401 Unauthorized', headerslist) return [body] if path_info == '/logout': gSessionStore.delete(sess) sess, cookie_header, is_expire = session_handle(environ, gRequest, gSessionStore) headerslist.append(cookie_header) headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) start_response('200 OK', headerslist) return [json.dumps({'result':u'ok'}, ensure_ascii=True, indent=4)] if is_expire: if not sess.has_key('ip'): sess['ip'] = environ['REMOTE_ADDR'] gSessionStore.save_if_modified(sess) headerslist.append(('Content-Type', str(gConfig['mime_type']['.html']))) headerslist.append(cookie_header) statuscode, headers, body = handle_static(environ, gConfig['web']['unauthorizedpage']) start_response('401 Unauthorized', headerslist) return [body] # headerslist.append(('Location', str(gConfig['web']['expirepage']))) # start_response('302 Redirect', headerslist) # return [''] # headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) # statuscode = '200 OK' # body = json.dumps({'result':u'session_expired'}, ensure_ascii=True, indent=4) if path_info == '/login': user = handle_login(environ) if user: sess = gSessionStore.session_class(user, sess.sid, False) sess['username'] = user['username'] cookie_header = set_cookie_data(gRequest, {'_id':user['_id'], 'username': user['username'], 'displayname': user['displayname']}) gSessionStore.save_if_modified(sess) headerslist.append(cookie_header) headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) start_response('200 OK', headerslist) return [json.dumps(sess, ensure_ascii=True, indent=4)] else: headerslist.append(cookie_header) headerslist.append(('Content-Type', 'text/json;charset=' + ENCODING)) start_response('200 OK', headerslist) return [json.dumps({'result':u'用户名或密码错误'}, ensure_ascii=True, indent=4)] if path_info == str(gConfig['web']['mainpage']): #401 Unauthorized #if session_id is None or token is None: headerslist.append(('Content-Type', str(gConfig['mime_type']['.html']))) headerslist.append(cookie_header) if sess is None or len(sess.keys())==0 or len(sess.sid)==0 or not sess.has_key('username'): statuscode, headers, body = handle_static(environ, gConfig['web']['unauthorizedpage']) statuscode = '401 Unauthorized' start_response(statuscode, headerslist) return [body] if not is_expire and len(sess.sid)>0: if 'state_examination' in path_info: statuscode, headers, body = handle_state_examination(environ) elif 'bayesian/' in path_info: statuscode, headers, body = handle_bayesian(environ) elif 'antibird/' in path_info: statuscode, headers, body = handle_antibird(environ) else: statuscode, headers, body = handle_static(environ, path_info) else: if path_info == '/login' and str(gConfig['webgis']['session']['enable_session'].lower()) != 'true': path_info = gConfig['web']['mainpage'] if 'state_examination/' in path_info: statuscode, headers, body = handle_state_examination(environ) elif 'antibird/' in path_info: statuscode, headers, body = handle_antibird(environ) elif 'bayesian/' in path_info: statuscode, headers, body = handle_bayesian(environ) else: statuscode, headers, body = handle_static(environ, path_info) #headkeys = set([i[0] for i in headerslist]) headers = CORS_header(headers) if cookie_header: headerslist.append(cookie_header) for k in headers: headerslist.append((k, headers[k])) #print(headerslist) # headerslist = add_to_headerlist(headerslist, 'Cache-Control', 'no-cache') # print(headerslist) start_response(statuscode, headerslist) return [body] def add_to_headerlist(headerslist, key, value): ret = headerslist existidx = -1 for i in ret: if i[0] == key: existidx = ret.index(i) break if existidx < 0: ret.append((key, value)) else: ret[existidx] = (key, value) return ret def application_markdown(environ, start_response): global gConfig, gRequest, gSessionStore headers = {} headerslist = [] path_info = environ['PATH_INFO'] if path_info == '/get': statuscode, headers, body = handle_get_method(environ) elif path_info == '/post': statuscode, headers, body = handle_post_method(environ) else: if path_info[-1:] == '/': path_info += gConfig['web']['indexpage'] statuscode, headers, body = handle_static(environ, path_info) headers = CORS_header(headers) for k in headers: headerslist.append((k, headers[k])) start_response(statuscode, headerslist) return [body] def handle_proxy_cgi(environ): global gConfig, gHttpClient method = environ['REQUEST_METHOD'] post_data = '' if method == "POST": qs = environ['PATH_INFO'] buf = environ['wsgi.input'].read() post_data = urllib.unquote_plus(buf) d = cgi.parse(None, environ) if d.has_key("url"): url = d["url"][0] else: url = 'http://XIEJUN-DESKTOP:88' else: fs = cgi.FieldStorage() url = fs.getvalue('url', "http://XIEJUN-DESKTOP:88") s = '' headers = {'Content-Type': 'text/plain;charset=' + ENCODING} try: if url.startswith("http://") or url.startswith("https://"): request = None response = None http = None urlobj = URL(url) if not gHttpClient.has_key('proxy_cgi'): gHttpClient['proxy_cgi'] = HTTPClient(urlobj.host, port=urlobj.port, concurrency=100) client = gHttpClient['proxy_cgi'] if method == "POST": #length = int(environ["CONTENT_LENGTH"]) headers["Content-Type"] = environ["CONTENT_TYPE"] response = client.post(urlobj.request_uri, post_data, headers) else: response = client.get(urlobj.request_uri) if response: h = str(response.info()) #if i.has_key("Content-Type"): #print("Content-Type: %s" % (i["Content-Type"])) hh = eval(h) responseh = [] for i in hh: if i[0] in ['Content-Type', 'Date', 'Server', ]: responseh.append(i) s = response.read() client.close() headers['Content-Length'] = str(len(s)) else: s += "Illegal request." except Exception, E: s += "Status: 500 Unexpected Error" s += "Content-Type: text/plain" s += "Some unexpected error occurred. Error text was:%s" % E.message return '200 OK', headers, s def get_host_ip(): ret = [] if sys.platform == 'win32': ret.append('127.0.0.1') localIP = socket.gethostbyname(socket.gethostname()) #print ("local ip:%s " % localIP) ipList = socket.gethostbyname_ex(socket.gethostname()) for i in ipList: if i != localIP: #if isinstance(i, str): #print(re.findall('\d+\.\d+\.\d+\.\d+',i)) if isinstance(i, list): for ii in i: if len(re.findall('\d+\.\d+\.\d+\.\d+',ii))>0: ret.append(ii) #print("external IP:%s" % i ) elif 'linux' in sys.platform: import commands ips = commands.getoutput("/sbin/ifconfig | grep -i \"inet\" | grep -iv \"inet6\" | awk {'print $2'} | sed -ne 's/addr\:/ /p'") arr = ips.split('\n') for i in arr: ret.append(i.strip()) return ret def clear_tmp(): tmp_dir = r'C:\Users\Jeffrey\AppData\Local\ESRI\Local Caches\MapCacheV1' if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) tmp_dir = r'C:\Users\Jeffrey\AppData\Local\ESRI\Local Caches\GlobeCache' if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) def get_scaleDenominator(zoomlist): #tileMatrixMaxX = tileMatrixMinX + tileWidth * (scaleDenominator * pixelSize / metersPerUnit) * matrixWidth #tileMatrixMinY = tileMatrixMaxY - tileHeight * (scaleDenominator * pixelSize / metersPerUnit) * matrixHeight #tileWidth * (scaleDenominator * pixelSize / metersPerUnit) * matrixWidth = tileMatrixMaxX - tileMatrixMinX #tileHeight * (scaleDenominator * pixelSize / metersPerUnit) * matrixHeight = tileMatrixMaxY - tileMatrixMinY #scaleDenominator * pixelSize / metersPerUnit = (tileMatrixMaxX - tileMatrixMinX)/(tileWidth * matrixWidth) #scaleDenominator * pixelSize / metersPerUnit = (tileMatrixMaxY - tileMatrixMinY)/(tileHeight * matrixHeight) #scaleDenominator * pixelSize = metersPerUnit * (tileMatrixMaxX - tileMatrixMinX)/(tileWidth * matrixWidth) #scaleDenominator * pixelSize = metersPerUnit * (tileMatrixMaxY - tileMatrixMinY)/(tileHeight * matrixHeight) #scaleDenominator = metersPerUnit/pixelSize * (tileMatrixMaxX - tileMatrixMinX)/(tileWidth * matrixWidth) #scaleDenominator = metersPerUnit/pixelSize * (tileMatrixMaxY - tileMatrixMinY)/(tileHeight * matrixHeight) metersPerUnit = float(gConfig['wmts']['metersPerUnit']) pixelSize = float(gConfig['wmts']['pixelSize']) tileWidth,tileHeight = 256.0, 256.0 tileMatrixMinX, tileMatrixMaxX = (26.0, 102.0), (26.0, 104.0) tileMatrixMinY, tileMatrixMaxY = (24.0, 102.0), (26.0, 102.0) for i in zoomlist: #print('%d=%d' % (i , mapUtils.tiles_on_level(i))) #mapUtils.countDistanceFromLatLon() matrixHeight = matrixWidth = mapUtils.tiles_on_level(i) print('%d=%d' % (i , matrixHeight)) #scaleDenominatorX = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxX , tileMatrixMinX) * 1000./(tileWidth * matrixWidth) #scaleDenominatorY = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxY , tileMatrixMinY) * 1000./(tileHeight * matrixHeight) #print('scaleDenominatorX=%f, scaleDenominatorY=%f' % (scaleDenominatorX, scaleDenominatorY)) #scaleDenominator = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxY , tileMatrixMinY) * 1000. /(tileHeight * matrixHeight) scaleDenominator = metersPerUnit/pixelSize * mapUtils.countDistanceFromLatLon(tileMatrixMaxY , tileMatrixMinY) /(tileHeight * matrixHeight) print('scaleDenominator=%f' % scaleDenominator) def ToGeographic(mercatorX_lon, mercatorY_lat): if abs(mercatorX_lon) < 180 and abs(mercatorY_lat) < 90: return 0, 0 if abs(mercatorX_lon) > 20037508.3427892 or abs(mercatorY_lat) > 20037508.3427892 : return 0, 0 x = mercatorX_lon; y = mercatorY_lat; num3 = x / 6378137.0; num4 = num3 * 57.295779513082323; num5 = math.floor(float(num4 + 180.0) / 360.0) num6 = num4 - (num5 * 360.0) num7 = 1.5707963267948966 - (2.0 * math.atan(math.exp((-1.0 * y) / 6378137.0))) lon = num6 lat = num7 * 57.295779513082323 return lon, lat def ToWebMercator(lon, lat): if abs(lon) > 180 or abs(lat) > 90: return 0, 0 num = lon * 0.017453292519943295 x = 6378137.0 * num a = lat * 0.017453292519943295 mercatorX_lon = x mercatorY_lat = 3189068.5 * math.log((1.0 + math.sin(a)) / (1.0 - math.sin(a))) return mercatorX_lon, mercatorY_lat def handle_requset_sync(obj): ret = {'result':''} if obj.has_key('area') and obj['area'] and len(obj['area'])>0: kmgd, kmgdgeo, kmgdgeotmp = db_util.create_sde_conn(obj['area']) if obj.has_key('odbc'): if obj['odbc'] == 'TABLE_LINE': l = db_util.odbc_get_records('TABLE_LINE', '1=1', obj['area']) ret['result']= l elif obj['odbc'] == 'TABLE_TOWER': l = db_util.odbc_get_records('TABLE_TOWER', '1=1', obj['area']) ret['result']= l elif obj.has_key('op'): if obj['op']=='download_task': condition = '1=1' if obj.has_key('team_id'): condition += " AND team_id='%s'" % obj['team_id'] l = db_util.odbc_get_records('VIEW_TASK_ITEM', condition, obj['area']) ret['result']= l #elif obj['op']=='get_latest_stamp': #f = '%Y-%m-%d %H:%M:%S' #if obj.has_key('format'): #f = obj['format'] #ret['result']= db_util.get_latest_stamp(f, obj['area']) #elif obj['op']=='get_latest_3dd_stamp': #f = '%Y-%m-%d %H:%M:%S' #if obj.has_key('format'): #f = obj['format'] #ret['result']= db_util.get_latest_3dd_stamp(f, obj['area']) else: print('unknown area') ret['result'] = [] return ret def soap_login(): client = SoapClient(wsdl='%s?wsdl' % gConfig['webservice']['location'], namespace = gConfig['webservice']['namespace'], timeout=int(gConfig['webservice']['timeout'])) response = client.login(username='', password='') result = response['Result'] return result def parse_thunder_counter_xml(xml): ret = [] root = etree.fromstring(xml) if root: for Flash in root: obj = {} for child in Flash: obj[child.tag] = child.text ret.append(obj) return ret def soap_GetFlashofDate(start_time, end_time): ret = {} try: client = SoapClient(wsdl='%s?wsdl' % gConfig['webservice']['location'], namespace = gConfig['webservice']['namespace'], timeout=int(gConfig['webservice']['timeout'])) response = client.GetFlashofDate(in0=start_time, in1=end_time) result = response['Result'] ret = parse_thunder_counter_xml(result) except: if hasattr(sys.exc_info()[1], 'message'): ret['err'] = sys.exc_info()[1].message if hasattr(sys.exc_info()[1], 'reason'): ret['err'] = str(sys.exc_info()[1].reason) return ret def soap_GetFlashofEnvelope(start_time, end_time, lng1, lng2, lat1, lat2): ret = {} try: client = SoapClient(wsdl='%s?wsdl' % gConfig['webservice']['location'], namespace = gConfig['webservice']['namespace'], timeout=int(gConfig['webservice']['timeout'])) response = client.GetFlashofEnvelope(in0=start_time, in1=end_time, in2=lng1, in3=lng2, in4=lat1, in5=lat2) result = response['Result'] ret = parse_thunder_counter_xml(result) except: if hasattr(sys.exc_info()[1], 'message'): ret['err'] = sys.exc_info()[1].message if hasattr(sys.exc_info()[1], 'reason'): ret['err'] = str(sys.exc_info()[1].reason) return ret def delete_expired_session(interval): global gSessionStore while 1: gevent.sleep(interval) if gSessionStore: #print('session recycle checking') gSessionStore.delete_expired_list() ws_send('session_list', ws_session_query()) def joinedqueue_consumer_pay(): global gConfig, gJoinableQueue interval = float(gConfig['pay_platform']['queue']['queue_consume_interval']) while 1: gevent.sleep(interval) item = None try: item = gJoinableQueue.get() except: item = None if item: try: sign_and_send(item['thirdpay'], item['method'], item['url'], item['data']) finally: gJoinableQueue.task_done() def chat_offline_save_log(obj): global gConfig, gClientMongo def get_collection(collection): ret = None db_util.mongo_init_client('chat_platform') db = db_util.gClientMongo['chat_platform'][gConfig['chat_platform']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret id = None if obj['op'] not in ['chat/online', 'chat/offline', 'chat/info/online', 'chat/info/offline', 'chat/request/contact/remove', 'chat/request/group/quit'] and obj.has_key('to'): offlinecol = 'chat_log_offline' if gConfig['chat_platform']['mongodb'].has_key('collection_chat_log_offline'): offlinecol = gConfig['chat_platform']['mongodb']['collection_chat_log_offline'] collection = get_collection(offlinecol) id = collection.save(db_util.add_mongo_id(obj)) return id def chat_save_log(obj): global gConfig, gClientMongo def get_collection(collection): ret = None db_util.mongo_init_client('chat_platform') db = db_util.gClientMongo['chat_platform'][gConfig['chat_platform']['mongodb']['database']] if not collection in db.collection_names(False): ret = db.create_collection(collection) else: ret = db[collection] return ret id = None if obj.has_key('op') and obj['op'] in ['chat/chat', 'chat/online', 'chat/offline']: collection = get_collection(gConfig['chat_platform']['mongodb']['collection_chat_log']) # if obj.has_key('timestamp'): # obj['timestamp'] = datetime.datetime.fromtimestamp(obj['timestamp']/1000).strftime('%Y-%m-%d %H:%M:%S') if obj['op'] in ['chat/online', 'chat/offline']: obj1 = copy.deepcopy(obj) for k in obj1.keys(): if not k in ['from', 'timestamp', 'op', 'to']: del obj1[k] if obj1.has_key('_id'): del obj1['_id'] id = collection.save(db_util.add_mongo_id(obj1)) else: id = collection.save(db_util.add_mongo_id(obj)) return id def joinedqueue_consumer_chat(): global gConfig, gJoinableQueue, gWebSocketsMap interval = float(gConfig['chat_platform']['queue']['queue_consume_interval']) while 1: gevent.sleep(interval) item = None try: item = gJoinableQueue.get() except: item = None if item: try: g = gevent.spawn(chat_save_log, item) k = item['to'] if gWebSocketsMap.has_key(k): for ws in gWebSocketsMap[k]: if not ws.closed: ws.send(json.dumps(item, ensure_ascii=True, indent=4)) else: gevent.spawn(chat_offline_save_log, item) finally: gJoinableQueue.task_done() def tcp_reconnect_check(interval=1): global gConfig, gTcpReconnectCounter, gTcpSock tcp_reconnect_threshold = int(gConfig['webgis']['anti_bird']['tcp_reconnect_threshold']) gTcpReconnectCounter = tcp_reconnect_threshold while 1: gTcpReconnectCounter += interval #print(gTcpReconnectCounter) if gTcpReconnectCounter > tcp_reconnect_threshold: gTcpReconnectCounter = 0 print('[%s]Trying to reconnect to anti-bird tcpserver [%s:%s]...' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), gConfig['webgis']['anti_bird']['tcp_host'], gConfig['webgis']['anti_bird']['tcp_port'])) if gTcpSock: if not gTcpSock.closed: gTcpSock.close() del gTcpSock gTcpSock = None gevent.sleep(interval) def tcp_print_exception(): e = sys.exc_info()[1] message = '' if hasattr(e, 'strerror'): message = e.strerror if message is None and hasattr(e, 'message'): message = e.message elif hasattr(e, 'message'): message = e.message else: message = str(e) print('connecting anti-bird server fail:%s' % message) def tcp_connect(): global gConfig tcp_host = gConfig['webgis']['anti_bird']['tcp_host'] tcp_port = int(gConfig['webgis']['anti_bird']['tcp_port']) timeout = 5.0 try: timeout = float(gConfig['webgis']['anti_bird']['tcp_timeout']) except: timeout = 5.0 sock = socket.create_connection((tcp_host, tcp_port), timeout=timeout) sock.settimeout(None) #sock = socket.create_connection((tcp_host, tcp_port)) sock.send("bird") return sock def tcp_recv(sock=None): global gConfig, gWebSocketsMap, gTcpReconnectCounter, gTcpSock def get_packet(astr): ret = '' rest = astr if '###' in astr: idx0 = astr.index('###') + 3 astr = astr[idx0:] if '###' in astr: idx1 = astr.index('###') ret = astr[:idx1] rest = astr[idx1+3:] return ret, rest def get_packets(astr): ret = [] p, rest = get_packet(astr) while len(p)>0: ret.append(p) p, rest = get_packet(rest) return ret, rest def send_to_client(packets): for imei in packets: try: obj = {'imei':imei} for k in gWebSocketsMap.keys(): ws = gWebSocketsMap[k] if not ws.closed: ws.send(json.dumps(obj, ensure_ascii=True, indent=4)) except: e = sys.exc_info()[1] if hasattr(e, 'message'): print('send_to_client error:%s' % e.message) else: print('send_to_client error:%s' % str(e)) def save_to_cache(astr): pass MAX_MSGLEN = int(gConfig['webgis']['anti_bird']['max_msg_len']) tcp_reconnect_threshold = int(gConfig['webgis']['anti_bird']['tcp_reconnect_threshold']) recvstr = '' while 1: try: if gTcpSock is None: gTcpSock = tcp_connect() if gTcpSock and not gTcpSock.closed: buf = bytearray(b"\n" * MAX_MSGLEN) gTcpSock.recv_into(buf) recvstr += buf.strip().decode("utf-8") if len(recvstr)>0: gTcpReconnectCounter = 0; print('[%s]%s' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), recvstr)) packets, recvstr = get_packets(recvstr) if gConfig['webgis'].has_key('anti_bird') and gConfig['webgis']['anti_bird'].has_key('update_to_cache') and gConfig['webgis']['anti_bird']['update_to_cache'].lower() == 'true': save_to_cache(packets) send_to_client(packets) except: recvstr = '' tcp_print_exception() if gTcpSock: if not gTcpSock.closed: gTcpSock.close() del gTcpSock gTcpSock = None gevent.sleep(0.01) def cycles_task(): global gConfig, gJoinableQueue if gConfig['wsgi']['application'].lower() == 'authorize_platform': gevent.spawn(delete_expired_session, int(gConfig['authorize_platform']['session']['session_cycle_check_interval'])) elif gConfig['wsgi']['application'].lower() == 'pay_platform' and gJoinableQueue: gevent.spawn(joinedqueue_consumer_pay) elif gConfig['wsgi']['application'].lower() == 'chat_platform' and gJoinableQueue: gevent.spawn(joinedqueue_consumer_chat) elif gConfig['wsgi']['application'].lower() == 'webgis': if gConfig['webgis']['anti_bird'].has_key('enable_fetch') and gConfig['webgis']['anti_bird']['enable_fetch'].lower() == 'true': interval = 1 if gConfig['webgis']['anti_bird'].has_key('cycle_interval'): interval = int(gConfig['webgis']['anti_bird']['cycle_interval']) gevent.spawn(tcp_recv, None) gevent.spawn(tcp_reconnect_check, interval) def mainloop_single( port=None, enable_cluster=False, enable_ssl=False): global gConfig gen_model_app_cache() server = None app = None key = 'application_' + gConfig['wsgi']['application'] if globals().has_key(key): print('application ready to start:%s' % gConfig['wsgi']['application']) app = globals()[key] else: print('unknown application:%s' % gConfig['wsgi']['application']) return cycles_task() if port and not enable_cluster: if enable_ssl: print('listening at host 127.0.0.1, port %d with ssl crypted' % port) server = pywsgi.WSGIServer(('127.0.0.1', port), app, handler_class = WebSocketHandler, keyfile = gConfig['listen_port']['keyfile'], certfile = gConfig['listen_port']['certfile']) else: print('listening at host 127.0.0.1, port %d' % port) server = pywsgi.WSGIServer(('127.0.0.1', port), app, handler_class = WebSocketHandler) server.start() server.serve_forever() else: if enable_ssl: pport = port if not pport: pport = gConfig['listen_port']['ssl_port'] else: pport = port if not pport: pport = gConfig['listen_port']['port'] host_list = get_host_ip() admin = '' if enable_cluster: admin = 'cluster manager ' print('%slistening at host %s, port %s' % (admin, str(host_list), str(pport))) servers = [] #if gConfig['webservice']['enable'] in [u'true', u'TRUE']: #h, p = gConfig['webservice']['host'], int(gConfig['webservice']['port']) #print('listening webservice at http://%s:%d/webservice' % (h, p)) #server = pywsgi.WSGIServer((h, p), get_wsapplication()) #servers.append(server) #server.start() if len(host_list)>0: idx = 0 if isinstance(pport, int): for i in host_list: if enable_ssl: server = pywsgi.WSGIServer((i, pport), app, handler_class = WebSocketHandler, keyfile = gConfig['listen_port']['keyfile'], certfile = gConfig['listen_port']['certfile']) else: server = pywsgi.WSGIServer((i, pport), app, handler_class = WebSocketHandler) servers.append(server) if idx < len(host_list)-1: server.start() idx += 1 servers[-1].serve_forever() elif isinstance(pport, unicode): for i in host_list: if enable_ssl: server = pywsgi.WSGIServer((i, int(pport)), app, handler_class = WebSocketHandler, keyfile = gConfig['listen_port']['keyfile'], certfile = gConfig['listen_port']['certfile']) else: server = pywsgi.WSGIServer((i, int(pport)), app, handler_class = WebSocketHandler) servers.append(server) if idx < len(host_list)-1: server.start() idx += 1 servers[-1].serve_forever() elif isinstance(pport, list): for i in host_list: for j in pport: if enable_ssl: server = pywsgi.WSGIServer((i, int(j)), app, handler_class = WebSocketHandler, keyfile = gConfig['listen_port']['keyfile'], certfile = gConfig['listen_port']['certfile']) else: server = pywsgi.WSGIServer((i, int(j)), app, handler_class = WebSocketHandler) servers.append(server) if idx < len(host_list) * len(pport)-1: server.start() idx += 1 servers[-1].serve_forever() else: print('wrong host or port in %s' % db_util.CONFIGFILE) return server def mainloop_nginx(popen): while True: stdoutdata, stderrdata = popen.communicate() #if stdoutdata: #queue.put(stdoutdata) gevent.sleep(0.01) def mainloop_manager(queue): while True: qget = q.get() if qget: print(qget) gevent.sleep(0.01) def create_cluster(): #global gConfig, gClusterProcess conf = '' with open(gConfig['cluster']['nginx_conf_template']) as f: conf = f.read() rg = gConfig['cluster']['port_range'] node_list = '\n' for port in range(int(rg[0]), int(rg[1]), int(rg[2])): node_list += ' server 127.0.0.1:%d;\n' % port listen_port = gConfig['listen_port']['port'] access_log = gConfig['cluster']['nginx_log'] host = get_host_ip() host.append('localhost') server_name = ' '.join(host) conf = conf.replace('[node_list]', str(node_list)) conf = conf.replace('[listen_port]', str(listen_port)) conf = conf.replace('[access_log]', str(access_log)) conf = conf.replace('[server_name]', str(server_name)) p = os.path.abspath(gConfig['cluster']['nginx_conf_template']) p = os.path.join(os.path.dirname(p), 'nginx.conf') #print(conf) with open(p, 'w') as f: f.write(conf) idx = 0 for port in range(int(rg[0]), int(rg[1]), int(rg[2])): print('process%d is starting...' % idx) proc = Process(target=mainloop_single, args=(port, False, False)) proc.start() #gClusterProcess[str(proc.pid)] = proc idx += 1 print('nginx is starting...') popen = subprocess.Popen([os.path.abspath(gConfig['cluster']['nginx_exe']), '-c', p ]) def get_pid_from_name(name): out = subprocess.check_output(['tasklist','/SVC']) #print(out) l = out.split('\r\n') findlist = [] for i in l: arr = i.split(' ') for j in arr: if len(j)>0 and name in j: for k in arr: if arr.index(k)==0: continue if len(k)>0: try: pid = int(k) findlist.append(pid) break except: continue break #print(findlist) if current_process().pid in findlist: findlist.remove(current_process().pid) return findlist def kill_cluster(): #global gClusterProcess print('kill nginx...') for pid in get_pid_from_name('nginx'): try: out = subprocess.check_output(['taskkill', '/F', '/PID', str(pid), '/T']) print(out) except: pass for pid in get_pid_from_name('python'): print('kill python.exe[%s]...' % pid) out = subprocess.check_output(['taskkill', '/F', '/PID', str(pid), '/T']) print(out) #for pid in gClusterProcess.keys(): #print('kill python.exe[%s]...' % pid) #gClusterProcess[pid].terminate() print('kill done') def create_self_signed_cert(cert_dir, year=10): from OpenSSL import crypto, SSL CERT_FILE = "ssl_certificate.crt" KEY_FILE = "ssl_self_signed.key" if not os.path.exists(os.path.join(cert_dir, CERT_FILE)) or not os.path.exists(os.path.join(cert_dir, KEY_FILE)): k = crypto.PKey() k.generate_key(crypto.TYPE_RSA, 4096) cert = crypto.X509() cert.get_subject().C = "AQ" cert.get_subject().ST = "State" cert.get_subject().L = "City" cert.get_subject().O = "Company" cert.get_subject().OU = "Organization" cert.get_subject().CN = socket.gethostname() cert.set_serial_number(1000) cert.gmtime_adj_notBefore(0) cert.gmtime_adj_notAfter(year*365*24*60*60) cert.set_issuer(cert.get_subject()) cert.set_pubkey(k) cert.sign(k, 'sha1') with open(os.path.join(cert_dir, CERT_FILE), "wt") as f: f.write(crypto.dump_certificate(crypto.FILETYPE_PEM, cert)) with open(os.path.join(cert_dir, KEY_FILE), "wt") as f: f.write(crypto.dump_privatekey(crypto.FILETYPE_PEM, k)) #create_self_signed_cert('.') print('Create SSL key and cert done') else: print('SSL key and cert already exist') def gen_model_app_cache(): global gConfig if not gConfig.has_key('web_cache'): return s = 'CACHE MANIFEST\n' s += '#' + gConfig['web_cache']['version'] + '\n' if gConfig['web_cache']['gltf_cache_enable'].lower() == u'true': modelsdir = os.path.join(STATICRESOURCE_DIR, 'gltf') if not os.path.exists(modelsdir): return l = os.listdir(modelsdir) for i in l: s += '/gltf/' + i + '\n' file_or_dir_cache = gConfig['web_cache']['file_or_dir_cache'] if len(file_or_dir_cache) > 0 : for root, dirs, files in os.walk(STATICRESOURCE_DIR, topdown=False): for name in dirs: if name in file_or_dir_cache: p = os.path.join(root, name) for root1, dirs1, files1 in os.walk(p, topdown=False): for name1 in files1: p1 = os.path.join(root1, name1) p1 = p1.replace(STATICRESOURCE_DIR, '').replace('\\', '/') s += p1 + '\n' for name in files: if name in file_or_dir_cache: p = os.path.join(root, name) p = p.replace(STATICRESOURCE_DIR, '').replace('\\', '/') s += p + '\n' s += 'NETWORK:\n' s += '*\n' with open(os.path.join(STATICRESOURCE_DIR, 'kmgd.appcache'), 'w') as f: f.write(s) if __name__=="__main1__": freeze_support() options = db_util.init_global() #print(options) init_global() s = get_sign_alipay(u'dsadsadsadsadsadsa') print(s) print(len(s)) #print(gSecurityConfig) #key = 'application_' + gConfig['wsgi']['application'] #if globals().has_key(key): #app = globals()[key] #else: #print('unknown application:%s' % gConfig['wsgi']['application']) if __name__=="__main__": freeze_support() options = db_util.init_global() init_global() if options.signcert_enable: create_self_signed_cert( options.signcert_directory, options.signcert_year) elif options.batch_download_tile_enable: db_util.command_batch_tile_download(options) else: if options.cluster_enable: mainloop_single(int(gConfig['cluster']['manager_port']), True, False) else: if gConfig['listen_port']['enable_ssl'].lower() == u'true': port = 443 try: port = int(gConfig['listen_port']['ssl_port']) except: pass mainloop_single(port, False, True) else: mainloop_single() class Win32ServiceHandler(object): # no parameters are permitted; all configuration should be placed in the # configuration file and handled in the Initialize() method def __init__(self): pass # called when the service is starting def Initialize(self, configFileName): self.server = None self.stopEvent = threading.Event() self.stopRequestedEvent = threading.Event() # called when the service is starting immediately after Initialize() # use this to perform the work of the service; don't forget to set or check # for the stop event or the service GUI will not respond to requests to # stop the service def Run(self): #self.stopRequestedEvent.wait() self.stopEvent.set() init_global() self.server = mainloop_single() # called when the service is being stopped by the service manager GUI def Stop(self): self.stopRequestedEvent.set() self.stopEvent.wait() if self.server: self.server.stop()
45.568709
273
0.569165
25bf64e0e63e81ecc1320268515b02375195678f
13,699
py
Python
cumulusci/cli/service.py
SFDO-Tooling/CumulusCI
08bb30eb24eae0b33cff755dfba40760317d7c0f
[ "BSD-3-Clause" ]
163
2018-09-13T18:49:34.000Z
2022-03-25T08:37:15.000Z
cumulusci/cli/service.py
SFDO-Tooling/CumulusCI
08bb30eb24eae0b33cff755dfba40760317d7c0f
[ "BSD-3-Clause" ]
1,280
2018-09-11T20:09:37.000Z
2022-03-31T18:40:21.000Z
cumulusci/cli/service.py
SFDO-Tooling/CumulusCI
08bb30eb24eae0b33cff755dfba40760317d7c0f
[ "BSD-3-Clause" ]
93
2018-09-13T07:29:22.000Z
2022-03-26T23:15:48.000Z
import json import os from pathlib import Path from typing import Callable, Optional import click from cumulusci.core.config import ServiceConfig from cumulusci.core.exceptions import CumulusCIException, ServiceNotConfigured from cumulusci.core.utils import import_class, import_global from .runtime import pass_runtime from .ui import CliTable @click.group("service", help="Commands for connecting services to the keychain") def service(): pass # Commands for group: service @service.command(name="list", help="List services available for configuration and use") @click.option("--plain", is_flag=True, help="Print the table using plain ascii.") @click.option("--json", "print_json", is_flag=True, help="Print a json string") @pass_runtime(require_project=False, require_keychain=True) def service_list(runtime, plain, print_json): services = ( runtime.project_config.services if runtime.project_config is not None else runtime.universal_config.services ) supported_service_types = list(services.keys()) supported_service_types.sort() if print_json: click.echo(json.dumps(services)) return None configured_services = runtime.keychain.list_services() plain = plain or runtime.universal_config.cli__plain_output data = [["Default", "Type", "Name", "Description"]] for service_type in supported_service_types: if service_type not in configured_services: data.append( [False, service_type, "", services[service_type]["description"]] ) continue default_service_for_type = runtime.keychain._default_services.get(service_type) description = services[service_type]["description"] for alias in configured_services[service_type]: data.append( [ alias == default_service_for_type, service_type, alias, description, ] ) rows_to_dim = [row_index for row_index, row in enumerate(data) if not row[2]] table = CliTable( data, title="Services", dim_rows=rows_to_dim, ) table.echo(plain) class ConnectServiceCommand(click.MultiCommand): def _get_services_config(self, runtime): return ( runtime.project_config.services if runtime.project_config else runtime.universal_config.services ) def list_commands(self, ctx): """list the services that can be configured""" runtime = ctx.obj services = self._get_services_config(runtime) return sorted(services.keys()) def _build_param(self, attribute: str, details: dict) -> click.Option: req = details["required"] default_factory: Optional[Callable] = self._get_callable_default( details.get("default_factory") ) prompt = None if default_factory else req kwargs = { "prompt": prompt, "required": req, "help": details.get("description"), "default": default_factory, } return click.Option((f"--{attribute}",), **kwargs) def _get_callable_default(self, default_factory_path) -> Optional[Callable]: """ Given a class_path, return a callable providing a default value for click.Option. """ default_factory: Optional[Callable] = None if default_factory_path: default_factory = import_global(default_factory_path) return default_factory def _get_default_options(self, runtime): options = [] options.append( click.Option( ("--default",), is_flag=True, help="Set this service as the global default.", ) ) if runtime.project_config is not None: options.append( click.Option( ("--project",), is_flag=True, help="Set this service as the default for this project only.", ) ) return options def get_command(self, ctx, service_type): runtime = ctx.obj runtime._load_keychain() services = self._get_services_config(runtime) try: service_config = services[service_type] except KeyError: raise click.UsageError( f"Sorry, I don't know about the '{service_type}' service." ) attributes = service_config["attributes"].items() params = [self._build_param(attr, cnfg) for attr, cnfg in attributes] params.extend(self._get_default_options(runtime)) def callback(*args, **kwargs): service_name = kwargs.get("service_name") if not service_name: click.echo( "No service name specified. Using 'default' as the service name." ) service_name = "default" configured_services = runtime.keychain.list_services() if ( service_type in configured_services and service_name in configured_services[service_type] ): click.confirm( f"There is already a {service_type}:{service_name} service. Do you want to overwrite it?", abort=True, ) prompt_to_default_service = f"A default service already exists for service type {service_type}. Would you like to set this service as the new default?" default_service_exists = ( True if runtime.keychain.get_default_service_name(service_type) is not None else False ) set_as_default = default_service_exists and click.confirm( prompt_to_default_service ) if runtime.project_config is None: set_project_default = False else: set_project_default = kwargs.pop("project", False) set_global_default = kwargs.pop("default", False) serv_conf = dict( (k, v) for k, v in list(kwargs.items()) if v is not None ) # remove None values # A service can define a callable to validate the service config validator_path = service_config.get("validator") if validator_path: validator = import_global(validator_path) updated_conf: dict = validator(serv_conf) if updated_conf: serv_conf.update(updated_conf) ConfigClass = ServiceConfig if "class_path" in service_config: class_path = service_config["class_path"] try: ConfigClass = import_class(class_path) except (AttributeError, ModuleNotFoundError): raise CumulusCIException( f"Unrecognized class_path for service: {class_path}" ) # Establish OAuth2 connection if required by this service if hasattr(ConfigClass, "connect"): oauth_dict = ConfigClass.connect(runtime.keychain, kwargs) serv_conf.update(oauth_dict) config_instance = ConfigClass(serv_conf, service_name, runtime.keychain) runtime.keychain.set_service( service_type, service_name, config_instance, ) click.echo(f"Service {service_type}:{service_name} is now connected") if set_as_default: runtime.keychain.set_default_service(service_type, service_name) click.echo( f"Service {service_type}:{service_name} is now the default for service type: {service_type}." ) if set_global_default: runtime.keychain.set_default_service( service_type, service_name, project=False ) click.echo( f"Service {service_type}:{service_name} is now the default for all CumulusCI projects" ) if set_project_default: runtime.keychain.set_default_service( service_type, service_name, project=True ) project_name = runtime.project_config.project__name click.echo( f"Service {service_type}:{service_name} is now the default for project '{project_name}'" ) params.append(click.Argument(["service_name"], required=False)) return click.Command(service_type, params=params, callback=callback) @service.command( cls=ConnectServiceCommand, name="connect", help="Connect an external service to CumulusCI", ) def service_connect(): pass @service.command(name="info", help="Show the details of a connected service") @click.argument("service_type") @click.argument("service_name", required=False) @click.option("--plain", is_flag=True, help="Print the table using plain ascii.") @pass_runtime(require_project=False, require_keychain=True) def service_info(runtime, service_type, service_name, plain): try: plain = plain or runtime.universal_config.cli__plain_output service_config = runtime.keychain.get_service(service_type, service_name) service_data = [["Key", "Value"]] service_data.extend( [ [click.style(k, bold=True), str(v)] for k, v in service_config.config.items() if k != "service_name" ] ) default_service = runtime.keychain.get_default_service_name(service_type) service_name = default_service if not service_name else service_name service_table = CliTable(service_data, title=f"{service_type}:{service_name}") service_table.echo(plain) except ServiceNotConfigured: click.echo( f"{service_type} is not configured for this project. Use service connect {service_type} to configure." ) @service.command( name="default", help="Set the default service for a given service type." ) @click.argument("service_type") @click.argument("service_name") @click.option( "--project", is_flag=True, help="Sets the service as the default for the current project.", ) @pass_runtime(require_project=False, require_keychain=True) def service_default(runtime, service_type, service_name, project): try: runtime.keychain.set_default_service(service_type, service_name, project) except ServiceNotConfigured as e: click.echo(f"An error occurred setting the default service: {e}") return if project: project_name = Path(runtime.keychain.project_local_dir).name click.echo( f"Service {service_type}:{service_name} is now the default for project '{project_name}'" ) else: click.echo( f"Service {service_type}:{service_name} is now the default for all CumulusCI projects" ) @service.command(name="rename", help="Rename a service") @click.argument("service_type") @click.argument("current_name") @click.argument("new_name") @pass_runtime(require_project=False, require_keychain=True) def service_rename(runtime, service_type, current_name, new_name): try: runtime.keychain.rename_service(service_type, current_name, new_name) except ServiceNotConfigured as e: click.echo(f"An error occurred renaming the service: {e}") return click.echo(f"Service {service_type}:{current_name} has been renamed to {new_name}") @service.command(name="remove", help="Remove a service") @click.argument("service_type") @click.argument("service_name") @pass_runtime(require_project=False, require_keychain=True) def service_remove(runtime, service_type, service_name): # cannot remove services defined via env vars env_var_name = ( f"{runtime.keychain.env_service_var_prefix}{service_type}__{service_name}" ) if os.environ.get(env_var_name): message = ( f"The service {service_type}:{service_name} is defined by environment variables. " f"If you would like it removed please delete the environment variable with name: {env_var_name}" ) click.echo(message) return new_default = None if len( runtime.keychain.services.get(service_type, {}).keys() ) > 2 and service_name == runtime.keychain._default_services.get(service_type): click.echo( f"The service you would like to remove is currently the default for {service_type} services." ) click.echo("Your other services of the same type are:") for alias in runtime.keychain.list_services()[service_type]: if alias != service_name: click.echo(alias) new_default = click.prompt( "Enter the name of the service you would like as the new default" ) if new_default not in runtime.keychain.list_services()[service_type]: click.echo(f"No service of type {service_type} with name: {new_default}") return try: runtime.keychain.remove_service(service_type, service_name) if new_default: runtime.keychain.set_default_service(service_type, new_default) except ServiceNotConfigured as e: click.echo(f"An error occurred removing the service: {e}") return click.echo(f"Service {service_type}:{service_name} has been removed.")
37.842541
163
0.628294
0532d73c938a1ee33d7f7889b9bf3affbabc5a55
2,983
py
Python
model/sample.py
telatin/qi-irida-uploader
c3e64857dd8d02045062afbf0eb9f9989951a429
[ "Apache-2.0" ]
1
2019-04-10T12:37:00.000Z
2019-04-10T12:37:00.000Z
model/sample.py
telatin/qi-irida-uploader
c3e64857dd8d02045062afbf0eb9f9989951a429
[ "Apache-2.0" ]
null
null
null
model/sample.py
telatin/qi-irida-uploader
c3e64857dd8d02045062afbf0eb9f9989951a429
[ "Apache-2.0" ]
2
2019-04-10T11:58:24.000Z
2020-02-07T17:06:17.000Z
""" A Sample will store (key: value) pairs using a dictionary. Keys from a sequencer include: 'sampleName','description' Keys from Irida will include these AND many others """ from cerberus import Validator, TypeDefinition from copy import deepcopy from .sequence_file import SequenceFile class Sample: # Define SequenceFile as a type for validation _sample_type = TypeDefinition('sequence_file', (SequenceFile,), ()) Validator.types_mapping['sequence_file'] = _sample_type uploadable_schema = {'_sequence_file': { 'type': 'sequence_file', 'nullable': False, 'required': True, }, '_sample_name': { 'type': 'string', 'nullable': False, 'required': True, 'minlength': 3 # Minimum sample name length is 3 }, '_description': { 'type': 'string', 'nullable': True, 'required': False }, '_sample_number': { 'anyof_type': ['string', 'integer'], 'nullable': True, 'required': False }} def __init__(self, sample_name, description='', sample_number=None, samp_dict=None): self._sample_name = sample_name self._description = description self._sample_number = sample_number if samp_dict is None: samp_dict = {} self._sample_dict = dict(samp_dict) self._sequence_file = None @property def sample_name(self): return self._sample_name @property def description(self): return self._description @property def sample_number(self): return self._sample_number @property def sequence_file(self): return self._sequence_file @sequence_file.setter def sequence_file(self, sq): self._sequence_file = sq def get_irida_id(self): if "identifier" in self._sample_dict: return self.get("identifier") else: return None def get_uploadable_dict(self): # formatting for sending to irida when creating a project uploadable_dict = deepcopy(self._sample_dict) uploadable_dict['sampleName'] = self.sample_name uploadable_dict['description'] = self.description return uploadable_dict def __getitem__(self, key): if key in self._sample_dict: return self._sample_dict[key] return None def get(self, key): return self.__getitem__(key) def __str__(self): return str(self.get_uploadable_dict) + str(self.sequence_file) def get_dict(self): return self.__dict__
31.072917
93
0.552464
7786bcfd48c992c2046454a1b9ba51f9cfa0a079
3,975
py
Python
ibis/backends/pandas/tests/test_aggcontext.py
GrapeBaBa/ibis
507bb14efdcfd719a0487ee23fe1c85c177517f6
[ "Apache-2.0" ]
986
2017-06-07T07:33:01.000Z
2022-03-31T13:00:46.000Z
ibis/backends/pandas/tests/test_aggcontext.py
GrapeBaBa/ibis
507bb14efdcfd719a0487ee23fe1c85c177517f6
[ "Apache-2.0" ]
2,623
2017-06-07T18:29:11.000Z
2022-03-31T20:27:31.000Z
ibis/backends/pandas/tests/test_aggcontext.py
GrapeBaBa/ibis
507bb14efdcfd719a0487ee23fe1c85c177517f6
[ "Apache-2.0" ]
238
2017-06-26T19:02:58.000Z
2022-03-31T15:18:29.000Z
import numpy as np import pandas as pd import pytest from pandas.util import testing as tm from pytest import param from ..aggcontext import Summarize, window_agg_udf df = pd.DataFrame( { 'id': [1, 2, 1, 2], 'v1': [1.0, 2.0, 3.0, 4.0], 'v2': [10.0, 20.0, 30.0, 40.0], } ) @pytest.mark.parametrize( ('agg_fn', 'expected_fn'), [ param( lambda v1: v1.mean(), lambda df: df['v1'].mean(), id='udf', ), param( 'mean', lambda df: df['v1'].mean(), id='string', ), ], ) def test_summarize_single_series(agg_fn, expected_fn): """Test Summarize.agg operating on a single Series.""" aggcontext = Summarize() result = aggcontext.agg(df['v1'], agg_fn) expected = expected_fn(df) assert result == expected @pytest.mark.parametrize( ('agg_fn', 'expected_fn'), [ param( lambda v1: v1.mean(), lambda df: df['v1'].mean(), id='udf', ), param( 'mean', lambda df: df['v1'].mean(), id='string', ), ], ) def test_summarize_single_seriesgroupby(agg_fn, expected_fn): """Test Summarize.agg operating on a single SeriesGroupBy.""" aggcontext = Summarize() df_grouped = df.sort_values('id').groupby('id') result = aggcontext.agg(df_grouped['v1'], agg_fn) expected = expected_fn(df_grouped) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('agg_fn', 'expected_fn'), [ param( lambda v1, v2: v1.mean() - v2.mean(), lambda df: df['v1'].mean() - df['v2'].mean(), id='two-column', ), # Two columns, but only the second one is actually used in UDF param( lambda v1, v2: v2.mean(), lambda df: df['v2'].mean(), id='redundant-column', ), ], ) def test_summarize_multiple_series(agg_fn, expected_fn): """Test Summarize.agg operating on many Series.""" aggcontext = Summarize() args = [df['v1'], df['v2']] result = aggcontext.agg(args[0], agg_fn, *args[1:]) expected = expected_fn(df) assert result == expected @pytest.mark.parametrize( 'param', [ ( pd.Series([True, True, True, True]), pd.Series([1.0, 2.0, 2.0, 3.0]), ), ( pd.Series([False, True, True, False]), pd.Series([np.NaN, 2.0, 2.0, np.NaN]), ), ], ) def test_window_agg_udf(param): """Test passing custom window indices for window aggregation.""" mask, expected = param grouped_data = df.sort_values('id').groupby('id')['v1'] result_index = grouped_data.obj.index window_lower_indices = pd.Series([0, 0, 2, 2]) window_upper_indices = pd.Series([1, 2, 3, 4]) result = window_agg_udf( grouped_data, lambda s: s.mean(), window_lower_indices, window_upper_indices, mask, result_index, dtype='float', max_lookback=None, ) expected.index = grouped_data.obj.index tm.assert_series_equal(result, expected) def test_window_agg_udf_different_freq(): """Test that window_agg_udf works when the window series and data series have different frequencies. """ time = pd.Series([pd.Timestamp('20200101'), pd.Timestamp('20200201')]) data = pd.Series([1, 2, 3, 4, 5, 6]) window_lower_indices = pd.Series([0, 4]) window_upper_indices = pd.Series([5, 7]) mask = pd.Series([True, True]) result_index = time.index result = window_agg_udf( data, lambda s: s.mean(), window_lower_indices, window_upper_indices, mask, result_index, 'float', None, ) expected = pd.Series([data.iloc[0:5].mean(), data.iloc[4:7].mean()]) tm.assert_series_equal(result, expected)
23.802395
76
0.562767
c87f883e259e68fae1024be49a65e850a4f4dcd8
591
py
Python
pydle/features/__init__.py
Rixxan/pydle
6ec21f0167d99fbe1faef02ca03c12c0d7c0db99
[ "BSD-3-Clause" ]
150
2015-02-18T04:19:16.000Z
2022-03-29T20:39:45.000Z
pydle/features/__init__.py
Rixxan/pydle
6ec21f0167d99fbe1faef02ca03c12c0d7c0db99
[ "BSD-3-Clause" ]
112
2015-04-18T02:48:38.000Z
2022-03-28T03:50:44.000Z
pydle/features/__init__.py
Rixxan/pydle
6ec21f0167d99fbe1faef02ca03c12c0d7c0db99
[ "BSD-3-Clause" ]
51
2015-01-30T19:40:30.000Z
2022-03-22T07:32:29.000Z
from . import rfc1459, account, ctcp, tls, isupport, whox, ircv3 from .rfc1459 import RFC1459Support from .account import AccountSupport from .ctcp import CTCPSupport from .tls import TLSSupport from .isupport import ISUPPORTSupport from .whox import WHOXSupport from .ircv3 import IRCv3Support, IRCv3_1Support, IRCv3_2Support from .rpl_whoishost import RplWhoisHostSupport ALL = [IRCv3Support, WHOXSupport, ISUPPORTSupport, CTCPSupport, AccountSupport, TLSSupport, RFC1459Support, RplWhoisHostSupport] LITE = [WHOXSupport, ISUPPORTSupport, CTCPSupport, TLSSupport, RFC1459Support]
39.4
107
0.824027
3e22a833db655b96f026370c6d4f4acfddd327fe
2,132
py
Python
yolo_asff/configs.py
HirataYurina/yoloV3-keras-sibyl
15f6c5f021dfc80d753df6bcdd579ae1139edfb9
[ "MIT" ]
6
2020-08-30T15:00:24.000Z
2021-12-08T02:46:45.000Z
yolo_asff/configs.py
HirataYurina/yoloV3-keras-sibyl
15f6c5f021dfc80d753df6bcdd579ae1139edfb9
[ "MIT" ]
1
2021-12-21T14:02:34.000Z
2021-12-21T14:03:06.000Z
yolo_asff/configs.py
HirataYurina/yoloV3-keras-sibyl
15f6c5f021dfc80d753df6bcdd579ae1139edfb9
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- # author:平手友梨奈ii # e-mail:1353593259@qq.com # datetime:1993/12/01 # filename:configs.py # software: PyCharm import easydict CONFIG = easydict.EasyDict() # evaluation CONFIG.DETECT = easydict.EasyDict() CONFIG.DETECT.SCORE = 0.3 CONFIG.DETECT.IOU = 0.43 CONFIG.DETECT.RESOLUTION = (416, 416) CONFIG.DETECT.mAP_THRES = 0.85 # prediction CONFIG.PREDICT = easydict.EasyDict() CONFIG.PREDICT.WEIGHTS = '../logs/gaussian_yolo3/ep340-loss-5.042.h5' CONFIG.PREDICT.ANCHOR_PATH = '../model_data/yolo_anchors.txt' CONFIG.PREDICT.CLASS_PATH = '../model_data/danger_source_classes.txt' CONFIG.PREDICT.SCORE = 0.3 CONFIG.PREDICT.IOU = 0.43 CONFIG.PREDICT.RESOLUTION = (416, 416) CONFIG.PREDICT.MAX_BOXES = 40 # train CONFIG.TRAIN = easydict.EasyDict() CONFIG.TRAIN.LR_STAGE = 0.001 CONFIG.TRAIN.BATCH = 4 # it is depending on you GPU memory CONFIG.TRAIN.EPOCH = 350 # it is enough for transfer training in stage 1 CONFIG.TRAIN.IOU_THRESHOLD = 0.3 # CONFIG.TRAIN.COS_INTERVAL = [0.05, 0.15, 0.30, 0.50] # cosine anneal CONFIG.TRAIN.COS_INTERVAL = [0.01] # cosine anneal CONFIG.TRAIN.ANNO_PATH = '../2088_trainval.txt' CONFIG.TRAIN.VALID_PATH = '../2088_test.txt' CONFIG.TRAIN.TEST_PATH = '' CONFIG.TRAIN.CLASS_PATH = '../model_data/danger_source_classes.txt' CONFIG.TRAIN.ANCHOR_PATH = '../model_data/yolo_anchors.txt' CONFIG.TRAIN.PRE_TRAINED_MODEL = '../logs/yolo3_weights.h5' CONFIG.TRAIN.SAVE_PATH = '../logs/yolo_asff/' CONFIG.TRAIN.SAVE_PERIOD = 10 CONFIG.TRAIN.RESOLUTION = (416, 416) CONFIG.TRAIN.IGNORE_THRES = 0.7 CONFIG.TRAIN.CONFIDENCE_FOCAL = False CONFIG.TRAIN.CLASS_FOCAL = False CONFIG.TRAIN.USE_DIOU = False CONFIG.TRAIN.USE_CIOU = True # use scale xy to eliminate grid sensitivity # CONFIG.TRAIN.SCALE_XY = [1.05, 1.1, 1.2] CONFIG.TRAIN.FREEZE_LAYERS = 249 # freeze 249 layers in YOLOv3 # Augment CONFIG.AUG = easydict.EasyDict() CONFIG.AUG.MAX_BOXES = 50 # dataset CONFIG.DATASET = easydict.EasyDict() CONFIG.DATASET.MULTIPROCESS = False # windows can not support multiprocessing in python CONFIG.DATASET.MOSAIC_AUG = False CONFIG.DATASET.WORKERS = 1 CONFIG.DATASET.MAX_QUEUE = 128
28.810811
88
0.755159
883b3e35eb4f7eaf9a23f841c2cac77318e6213b
3,542
py
Python
jenkinsapi/jenkinsbase.py
Neofonie/jenkinsapi
5b523ce3141cb196363abf30d2e3308ec29bb988
[ "MIT" ]
null
null
null
jenkinsapi/jenkinsbase.py
Neofonie/jenkinsapi
5b523ce3141cb196363abf30d2e3308ec29bb988
[ "MIT" ]
null
null
null
jenkinsapi/jenkinsbase.py
Neofonie/jenkinsapi
5b523ce3141cb196363abf30d2e3308ec29bb988
[ "MIT" ]
null
null
null
""" Module for JenkinsBase class """ import ast import pprint import logging from jenkinsapi import config from jenkinsapi.custom_exceptions import JenkinsAPIException class JenkinsBase(object): """ This appears to be the base object that all other jenkins objects are inherited from """ RETRY_ATTEMPTS = 1 def __repr__(self): return """<%s.%s %s>""" % (self.__class__.__module__, self.__class__.__name__, str(self)) def __str__(self): raise NotImplementedError def __init__(self, baseurl, poll=True): """ Initialize a jenkins connection """ self._data = None self.baseurl = self.strip_trailing_slash(baseurl) if poll: self.poll() def get_jenkins_obj(self): raise NotImplementedError( 'Please implement this method on %s' % self.__class__.__name__) def __eq__(self, other): """ Return true if the other object represents a connection to the same server """ if not isinstance(other, self.__class__): return False if not other.baseurl == self.baseurl: return False return True @classmethod def strip_trailing_slash(cls, url): while url.endswith('/'): url = url[:-1] return url def poll(self, tree=None): data = self._poll(tree=tree) if 'jobs' in data: data['jobs'] = self.resolve_job_folders(data['jobs']) if not tree: self._data = data else: return data def _poll(self, tree=None): url = self.python_api_url(self.baseurl) return self.get_data(url, tree=tree) def get_data(self, url, params=None, tree=None): requester = self.get_jenkins_obj().requester if tree: if not params: params = {'tree': tree} else: params.update({'tree': tree}) response = requester.get_url(url, params) if response.status_code != 200: logging.error('Failed request at %s with params: %s %s', url, params, tree if tree else '') response.raise_for_status() try: return ast.literal_eval(response.text) except Exception: logging.exception('Inappropriate content found at %s', url) raise JenkinsAPIException('Cannot parse %s' % response.content) def pprint(self): """ Print out all the data in this object for debugging. """ pprint.pprint(self._data) def resolve_job_folders(self, jobs): for job in list(jobs): if 'color' not in job.keys(): jobs.remove(job) jobs += self.process_job_folder(job) return jobs def process_job_folder(self, folder): data = self.get_data(self.python_api_url(folder['url'])) result = [] for job in data.get('jobs', []): if 'color' not in job.keys(): result += self.process_job_folder(job) else: result.append(job) return result @classmethod def python_api_url(cls, url): if url.endswith(config.JENKINS_API): return url else: if url.endswith(r"/"): fmt = "%s%s" else: fmt = "%s/%s" return fmt % (url, config.JENKINS_API)
28.111111
75
0.554489
015d59b516e94ef0fe322fefda403b7bec7b1804
17,913
py
Python
python/paddle/distributed/fleet/launch.py
jiansowa/Paddle
488152a6d076eac91ef0921ff6e16c65777f814d
[ "Apache-2.0" ]
null
null
null
python/paddle/distributed/fleet/launch.py
jiansowa/Paddle
488152a6d076eac91ef0921ff6e16c65777f814d
[ "Apache-2.0" ]
null
null
null
python/paddle/distributed/fleet/launch.py
jiansowa/Paddle
488152a6d076eac91ef0921ff6e16c65777f814d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ fleetrun is a module that spawns multiple distributed process on each training node for gpu training and cpu training. Usage: In both of single node training or multiple node training, this module launch a process on each of the given gpu card or cpu machine. GPU training: 1. for single node training with all visible gpu cards: fleetrun your_training_py (arg1 arg2 and all others) 2. for single node training with [0,4) cards fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others) 3. for multiple node training such as two node:192.168.0.16, 192.168.0.17 on 192.168.0.16: fleetrun --ips="192.168.0.16,192.168.0.17" \ your_training_py (arg1 arg2 and all others) on 192.168.0.17: fleetrun --ips="192.168.0.16,192.168.0.17" \ your_training_py (arg1 arg2 and all others) CPU training: 1. for single node training with multi servers and workers: fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others) 2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \ with 2 servers and 4 workers. on 192.168.0.16: fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \ --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \ your_training_py (arg1 arg2 and all others) on 192.168.0.17: fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \ --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \ your_training_py (arg1 arg2 and all others) 3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \ with 2 servers and 4 workers. (workers should set port) on 192.168.0.16: fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \ --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \ your_training_py (arg1 arg2 and all others) on 192.168.0.17: fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \ --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \ your_training_py (arg1 arg2 and all others) """ from __future__ import print_function import shutil import sys import tempfile from sys import version import subprocess import os import time import six import copy from argparse import ArgumentParser, REMAINDER import paddle import paddle.fluid as fluid from paddle.distributed.fleet.launch_utils import * import paddle.distributed.fleet.cloud_utils as cloud_utils def _print_arguments(args): print("----------- Configuration Arguments -----------") for arg, value in sorted(six.iteritems(vars(args))): print("%s: %s" % (arg, value)) print("------------------------------------------------") def _parse_args(): """ Helper function parsing the command line options @retval ArgumentParser """ parser = ArgumentParser( description='''start paddle training using multi-process mode. see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2- ''') # Optional arguments for the launch helper parser.add_argument( "--ips", type=str, default="127.0.0.1", help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..") parser.add_argument( "--gpus", type=str, default=None, help="It's for gpu training and the training process will run on the gpus," "each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training." ) parser.add_argument( "--servers", type=str, default="", help="User defined servers ip:port") parser.add_argument( "--workers", type=str, default="", help="User defined workers ip:port") parser.add_argument("--worker_num", type=int, help="number of workers") parser.add_argument("--server_num", type=int, help="number of servers") parser.add_argument( "--log_dir", type=str, default="log", help="The path for each process's log.If it's not set, the log will printed to default pipe." ) # positional parser.add_argument( "training_script", type=str, help="The full path to the single GPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script") # rest from the training program parser.add_argument('training_script_args', nargs=REMAINDER) return parser.parse_args() def get_cluster_from_args(args, gpus): node_ips = [x.strip() for x in args.ips.split(',')] if len(node_ips) == 1: node_ip = node_ips[0] else: _, node_ip = get_host_name_ip() # node_ip = args.node_ip assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \ % (node_ip, node_ips) node_rank = node_ips.index(node_ip) logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format( node_ips, node_ip, node_rank)) free_ports = None if not cloud_utils.use_paddlecloud() and len( node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None: free_ports = find_free_ports(len(gpus)) if free_ports is not None: free_ports = list(free_ports) else: start_port = 6070 if os.environ.get('FLAGS_START_PORT') is not None: start_port = int(os.environ.get('FLAGS_START_PORT')) free_ports = [x for x in range(start_port, start_port + len(gpus))] trainer_endpoints = [] for ip in node_ips: trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports]) return get_cluster(node_ips, node_ip, trainer_endpoints, gpus) def get_gpus(gpus): if gpus is None: gpus_num = fluid.core.get_cuda_device_count() res_gpus = [str(x) for x in range(0, gpus_num)] else: cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES") if cuda_visible_devices is None or cuda_visible_devices == "": res_gpus = [x.strip() for x in gpus.split(',')] else: # change gpus into relative values # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7; # therefore gpus=0,1,2,3 cuda_visible_devices_list = cuda_visible_devices.split(',') for x in gpus.split(','): assert x in cuda_visible_devices_list, "Can't find "\ "your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\ % (x, cuda_visible_devices) res_gpus = [ cuda_visible_devices_list.index(x.strip()) for x in gpus.split(',') ] logger.info("Change selected_gpus into reletive values. --ips:{} " "will change into relative_ips:{} according to your " "CUDA_VISIBLE_DEVICES:{}".format( gpus, res_gpus, cuda_visible_devices_list)) return res_gpus def launch_collective(args): # parse arguments, used for cloud-single-machine and local gpus = get_gpus(args.gpus) trainers_num = cloud_utils.get_trainers_num() logger.debug("parsed from args trainerss_num:{} gpus:{}".format( trainers_num, gpus)) cluster = None pod = None start_port = 6170 if os.environ.get('FLAGS_START_PORT') is not None: start_port = os.environ.get('FLAGS_START_PORT') if cloud_utils.use_paddlecloud() and trainers_num != 1: cluster, pod = cloud_utils.get_cloud_cluster(args.ips, gpus, start_port) logger.debug("get cluster from cloud:{}".format(cluster)) else: # trainers_num = 1 or not use paddlecloud ips="a,b" cluster, pod = get_cluster_from_args(args, gpus) logger.debug("get cluster from args:{}".format(cluster)) global_envs = copy.copy(os.environ.copy()) gloo_rendezvous_dir = tempfile.mkdtemp() # add gloo env global_envs["PADDLE_WITH_GLOO"] = "1" global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3" global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir procs = start_local_trainers( cluster, pod, training_script=args.training_script, training_script_args=args.training_script_args, log_dir=args.log_dir, envs=global_envs) while True: alive = watch_local_trainers(procs, cluster.trainers_nranks()) if not alive: logger.info("Local processes completed.") logger.debug("POD info:{}".format(pod)) break time.sleep(3) if os.path.exists(gloo_rendezvous_dir): shutil.rmtree(gloo_rendezvous_dir) def launch_ps(args): ports = None start_port = 6170 if args.server_num: server_num = args.server_num ports = get_ports(server_num, 0) server_endpoints = ",".join(["127.0.0.1:" + str(x) for x in ports]) else: assert args.servers != "", "The setting of CPU mode must be either server_num or servers." server_endpoints = args.servers server_endpoints_ips = [ x.strip().split(":")[0] for x in server_endpoints.split(",") ] server_endpoints_port = [ x.strip().split(":")[1] for x in server_endpoints.split(",") ] server_num = len(server_endpoints_ips) if args.worker_num: worker_num = args.worker_num ports = get_ports(worker_num, server_num) worker_endpoints = ",".join(["127.0.0.1:" + str(x) for x in ports]) else: assert args.workers != "", "The setting of CPU mode must be either worker_num or workers." worker_endpoints = args.workers worker_endpoints_ips = [ x.strip().split(":")[0] for x in worker_endpoints.split(",") ] worker_num = len(worker_endpoints_ips) node_ips = list(set(server_endpoints_ips + worker_endpoints_ips)) worker_endpoints_len = [ len(x.strip().split(":")) for x in worker_endpoints.split(",") ] if 1 in worker_endpoints_len: # if no port value in worker_endpoints, will set default port values. worker_endpoints_port = range(start_port + server_num, start_port + server_num + worker_num, 1) else: worker_endpoints_port = [ x.strip().split(":")[1] for x in worker_endpoints.split(",") ] # local train if len(set(node_ips)) == 1: current_node_ip = node_ips[0] else: _, current_node_ip = get_host_name_ip() assert current_node_ip in node_ips, "Can't find your local ip {%s} in args.servers and args.workers ips: {%s}" \ % (current_node_ip, node_ips) node_rank = node_ips.index(current_node_ip) logger.debug( "parsed from args: node_ips:{} current_node_ip:{} node_rank:{}, server_ports:{}". format(node_ips, current_node_ip, node_rank, server_endpoints_port)) cluster = Cluster(hdfs=None) server_rank = 0 worker_rank = 0 for node_rank, ip in enumerate(node_ips): pod = Pod() pod.rank = node_rank pod.addr = ip for i in range(len(server_endpoints_ips)): if ip == server_endpoints_ips[i]: server = Trainer() server.endpoint = "%s:%s" % (ip, server_endpoints_port[i]) server.rank = server_rank server_rank += 1 pod.servers.append(server) for j in range(len(worker_endpoints_ips)): if ip == worker_endpoints_ips[j]: worker = Trainer() worker.endpoint = "%s:%s" % (ip, worker_endpoints_port[i]) worker.rank = worker_rank worker_rank += 1 pod.workers.append(worker) cluster.pods.append(pod) pod_rank = node_ips.index(current_node_ip) pod = cluster.pods[pod_rank] default_env = os.environ.copy() current_env = copy.copy(default_env) gloo_rendezvous_dir = tempfile.mkdtemp() # add gloo env current_env["PADDLE_WITH_GLOO"] = "1" current_env["PADDLE_GLOO_RENDEZVOUS"] = "3" current_env["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir current_env.pop("http_proxy", None) current_env.pop("https_proxy", None) procs = [] cmds = [] log_fns = [] for idx, cur_server in enumerate(pod.servers): proc_env = { "PADDLE_PSERVERS_IP_PORT_LIST": server_endpoints, "PADDLE_TRAINER_ENDPOINTS": worker_endpoints, "PADDLE_PORT": cur_server.endpoint.split(":")[1], "TRAINING_ROLE": "PSERVER", "PADDLE_TRAINERS_NUM": str(worker_num), "POD_IP": cur_server.endpoint.split(":")[0] } current_env.update(proc_env) cmd = [sys.executable, "-u", args.training_script ] + args.training_script_args cmds.append(cmd) if idx == 0: logger.info( "Local server start {} processes. First process distributed " "environment info (Only For Debug): {}".format( len(pod.servers), pretty_print_envs(proc_env, ("Distributed Envs", "Value")))) if args.log_dir is not None: os.system("mkdir -p {}".format(args.log_dir)) fn = open("%s/serverlog.%d" % (args.log_dir, idx), "w") log_fns.append(fn) proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn) else: proc = subprocess.Popen(cmd, env=current_env) tp = TrainerProc() tp.proc = proc tp.rank = cur_server.rank tp.local_rank = idx tp.log_fn = fn tp.log_offset = fn.tell() if fn else None tp.cmd = cmd procs.append(tp) for idx, cur_worker in enumerate(pod.workers): proc_env = { "PADDLE_PSERVERS_IP_PORT_LIST": server_endpoints, "PADDLE_TRAINER_ENDPOINTS": worker_endpoints, "PADDLE_TRAINERS_NUM": str(worker_num), "TRAINING_ROLE": "TRAINER", "PADDLE_TRAINER_ID": str(cur_worker.rank) } current_env.update(proc_env) cmd = [sys.executable, "-u", args.training_script ] + args.training_script_args cmds.append(cmd) if idx == 0: logger.info( "Local worker start {} processes. First process distributed " "environment info (Only For Debug): {}".format( len(pod.workers), pretty_print_envs(proc_env, ("Distributed Envs", "Value")))) if args.log_dir is not None: os.system("mkdir -p {}".format(args.log_dir)) fn = open("%s/workerlog.%d" % (args.log_dir, idx), "w") log_fns.append(fn) proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn) else: proc = subprocess.Popen(cmd, env=current_env) tp = TrainerProc() tp.proc = proc tp.rank = cur_worker.rank tp.local_rank = idx tp.log_fn = fn tp.log_offset = fn.tell() if fn else None tp.cmd = cmd procs.append(tp) logger.info( "Please check servers and workers logs in {}/workerlog.* and {}/serverlog.*". format(args.log_dir, args.log_dir)) # only wait worker to finish here for i, proc in enumerate(procs): if i < len(pod.servers): continue procs[i].proc.wait() if len(log_fns) > 0: log_fns[i].close() print("all workers exit, going to finish parameter server", file=sys.stderr) for i in range(len(pod.servers)): if len(log_fns) > 0: log_fns[i].close() procs[i].proc.terminate() print("all parameter server are killed", file=sys.stderr) if os.path.exists(gloo_rendezvous_dir): shutil.rmtree(gloo_rendezvous_dir) def launch(): args = _parse_args() logger = get_logger() _print_arguments(args) ps_args = ['--worker_num', '--server_num', '--servers', '--workers'] collective_args = ['--ips', '--gpus'] has_ps_args = [ ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1]) ] has_collective_args = [ co_arg for co_arg in collective_args if co_arg in " ".join(sys.argv[1:-1]) ] if fluid.core.is_compiled_with_cuda(): cuda_device_num = fluid.core.get_cuda_device_count() else: cuda_device_num = 0 if len(has_ps_args) > 0 or cuda_device_num == 0: logger.info("Run parameter-sever cpu mode. pserver arguments:{}".format( has_ps_args)) launch_ps(args) elif len(has_collective_args) > 0: logger.info("Run collective gpu mode. gpu arguments:{}, cuda count:{}". format(has_collective_args, cuda_device_num)) launch_collective(args) else: logger.warning( "Not found distinct arguments. Default use gpu collective mode") launch_collective(args) if __name__ == "__main__": launch()
37.39666
124
0.618713
911a936e1f61a8ce19e1396e0c088523cb65a74c
1,768
py
Python
aliyun-python-sdk-ccc/aliyunsdkccc/request/v20200701/DeleteSkillGroupRequest.py
jorsonzen/aliyun-openapi-python-sdk
0afbfa8e5f9e19455695aa799f7dcc1cd853d827
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-ccc/aliyunsdkccc/request/v20200701/DeleteSkillGroupRequest.py
jorsonzen/aliyun-openapi-python-sdk
0afbfa8e5f9e19455695aa799f7dcc1cd853d827
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-ccc/aliyunsdkccc/request/v20200701/DeleteSkillGroupRequest.py
jorsonzen/aliyun-openapi-python-sdk
0afbfa8e5f9e19455695aa799f7dcc1cd853d827
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkccc.endpoint import endpoint_data class DeleteSkillGroupRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'CCC', '2020-07-01', 'DeleteSkillGroup','CCC') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_InstanceId(self): return self.get_query_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_query_param('InstanceId',InstanceId) def get_SkillGroupId(self): return self.get_query_params().get('SkillGroupId') def set_SkillGroupId(self,SkillGroupId): self.add_query_param('SkillGroupId',SkillGroupId) def get_Force(self): return self.get_query_params().get('Force') def set_Force(self,Force): self.add_query_param('Force',Force)
35.36
75
0.763575
988cfaaf5a73f32e56dd53617c00638401fb9a4c
26,620
py
Python
src/sentry/testutils/fixtures.py
ygnoh/sentry
e34653cac10b63e3c5c732a5c52eaa5bf3484d5b
[ "BSD-3-Clause" ]
null
null
null
src/sentry/testutils/fixtures.py
ygnoh/sentry
e34653cac10b63e3c5c732a5c52eaa5bf3484d5b
[ "BSD-3-Clause" ]
null
null
null
src/sentry/testutils/fixtures.py
ygnoh/sentry
e34653cac10b63e3c5c732a5c52eaa5bf3484d5b
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ sentry.testutils.fixtures ~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import, print_function, unicode_literals import copy import json import os import petname import random import six import warnings from django.db import IntegrityError, transaction from django.utils import timezone from django.utils.text import slugify from exam import fixture from hashlib import sha1 from loremipsum import Generator from uuid import uuid4 from sentry.constants import SentryAppStatus from sentry.mediators.sentry_apps import Creator as SentryAppCreator from sentry.mediators.service_hooks import Creator as ServiceHookCreator from sentry.models import ( Activity, Environment, Event, EventError, EventMapping, Group, Organization, OrganizationMember, OrganizationMemberTeam, Project, Team, User, UserEmail, Release, Commit, ReleaseCommit, CommitAuthor, Repository, CommitFileChange, ProjectDebugFile, File, UserPermission, EventAttachment ) from sentry.utils.canonical import CanonicalKeyDict loremipsum = Generator() def make_sentence(words=None): if words is None: words = int(random.weibullvariate(8, 3)) return ' '.join(random.choice(loremipsum.words) for _ in range(words)) def make_word(words=None): if words is None: words = int(random.weibullvariate(8, 3)) return random.choice(loremipsum.words) DEFAULT_EVENT_DATA = { 'extra': { 'loadavg': [0.97607421875, 0.88330078125, 0.833984375], 'sys.argv': [ '/Users/dcramer/.virtualenvs/sentry/bin/raven', 'test', 'https://ebc35f33e151401f9deac549978bda11:f3403f81e12e4c24942d505f086b2cad@sentry.io/1' ], 'user': 'dcramer' }, 'modules': { 'raven': '3.1.13' }, 'request': { 'cookies': {}, 'data': {}, 'env': {}, 'headers': {}, 'method': 'GET', 'query_string': '', 'url': 'http://example.com', }, 'stacktrace': { 'frames': [ { 'abs_path': 'www/src/sentry/models/foo.py', 'context_line': ' string_max_length=self.string_max_length)', 'filename': 'sentry/models/foo.py', 'function': 'build_msg', 'in_app': True, 'lineno': 29, 'module': 'raven.base', 'post_context': [ ' },', ' })', '', " if 'stacktrace' in data:", ' if self.include_paths:' ], 'pre_context': [ '', ' data.update({', " 'stacktrace': {", " 'frames': get_stack_info(frames,", ' list_max_length=self.list_max_length,' ], 'vars': { 'culprit': 'raven.scripts.runner', 'date': 'datetime.datetime(2013, 2, 14, 20, 6, 33, 479471)', 'event_id': '598fb19363e745ec8be665e6ba88b1b2', 'event_type': 'raven.events.Message', 'frames': '<generator object iter_stack_frames at 0x103fef050>', 'handler': '<raven.events.Message object at 0x103feb710>', 'k': 'logentry', 'public_key': None, 'result': { 'logentry': "{'message': 'This is a test message generated using ``raven test``', 'params': []}" }, 'self': '<raven.base.Client object at 0x104397f10>', 'stack': True, 'tags': None, 'time_spent': None, }, }, { 'abs_path': '/Users/dcramer/.virtualenvs/sentry/lib/python2.7/site-packages/raven/base.py', 'context_line': ' string_max_length=self.string_max_length)', 'filename': 'raven/base.py', 'function': 'build_msg', 'in_app': False, 'lineno': 290, 'module': 'raven.base', 'post_context': [ ' },', ' })', '', " if 'stacktrace' in data:", ' if self.include_paths:' ], 'pre_context': [ '', ' data.update({', " 'stacktrace': {", " 'frames': get_stack_info(frames,", ' list_max_length=self.list_max_length,' ], 'vars': { 'culprit': 'raven.scripts.runner', 'date': 'datetime.datetime(2013, 2, 14, 20, 6, 33, 479471)', 'event_id': '598fb19363e745ec8be665e6ba88b1b2', 'event_type': 'raven.events.Message', 'frames': '<generator object iter_stack_frames at 0x103fef050>', 'handler': '<raven.events.Message object at 0x103feb710>', 'k': 'logentry', 'public_key': None, 'result': { 'logentry': "{'message': 'This is a test message generated using ``raven test``', 'params': []}" }, 'self': '<raven.base.Client object at 0x104397f10>', 'stack': True, 'tags': None, 'time_spent': None, }, }, ], }, 'tags': [], 'platform': 'python', } class Fixtures(object): @fixture def projectkey(self): return self.create_project_key(project=self.project) @fixture def user(self): return self.create_user('admin@localhost', is_superuser=True) @fixture def organization(self): # XXX(dcramer): ensure that your org slug doesnt match your team slug # and the same for your project slug return self.create_organization( name='baz', slug='baz', owner=self.user, ) @fixture def team(self): team = self.create_team( organization=self.organization, name='foo', slug='foo', ) # XXX: handle legacy team fixture queryset = OrganizationMember.objects.filter( organization=self.organization, ) for om in queryset: OrganizationMemberTeam.objects.create( team=team, organizationmember=om, is_active=True, ) return team @fixture def project(self): return self.create_project( name='Bar', slug='bar', teams=[self.team], ) @fixture def environment(self): return self.create_environment( name='development', project=self.project, ) @fixture def group(self): return self.create_group(message=u'\u3053\u3093\u306b\u3061\u306f') @fixture def event(self): return self.create_event( event_id='a' * 32, message=u'\u3053\u3093\u306b\u3061\u306f', ) @fixture def activity(self): return Activity.objects.create( group=self.group, project=self.project, type=Activity.NOTE, user=self.user, data={} ) def create_organization(self, name=None, owner=None, **kwargs): if not name: name = petname.Generate(2, ' ', letters=10).title() org = Organization.objects.create(name=name, **kwargs) if owner: self.create_member( organization=org, user=owner, role='owner', ) return org def create_member(self, teams=None, **kwargs): kwargs.setdefault('role', 'member') om = OrganizationMember.objects.create(**kwargs) if teams: for team in teams: self.create_team_membership( team=team, member=om, ) return om def create_team_membership(self, team, member=None, user=None): if member is None: member, _ = OrganizationMember.objects.get_or_create( user=user, organization=team.organization, defaults={ 'role': 'member', } ) return OrganizationMemberTeam.objects.create( team=team, organizationmember=member, is_active=True, ) def create_team(self, **kwargs): if not kwargs.get('name'): kwargs['name'] = petname.Generate(2, ' ', letters=10).title() if not kwargs.get('slug'): kwargs['slug'] = slugify(six.text_type(kwargs['name'])) if not kwargs.get('organization'): kwargs['organization'] = self.organization members = kwargs.pop('members', None) team = Team.objects.create(**kwargs) if members: for user in members: self.create_team_membership(team=team, user=user) return team def create_environment(self, **kwargs): project = kwargs.get('project', self.project) name = kwargs.get('name', petname.Generate(3, ' ', letters=10)[:64]) env = Environment.objects.create( organization_id=project.organization_id, project_id=project.id, name=name, ) env.add_project(project) return env def create_project(self, **kwargs): teams = kwargs.pop('teams', None) if teams is None: teams = [self.team] if not kwargs.get('name'): kwargs['name'] = petname.Generate(2, ' ', letters=10).title() if not kwargs.get('slug'): kwargs['slug'] = slugify(six.text_type(kwargs['name'])) if not kwargs.get('organization'): kwargs['organization'] = teams[0].organization project = Project.objects.create(**kwargs) for team in teams: project.add_team(team) return project def create_project_key(self, project): return project.key_set.get_or_create()[0] # TODO(maxbittker) make new fixtures less hardcoded def create_release(self, project, user=None, version=None): if version is None: version = os.urandom(20).encode('hex') release = Release.objects.create( version=version, organization_id=project.organization_id, ) release.add_project(project) Activity.objects.create( type=Activity.RELEASE, project=project, ident=Activity.get_version_ident(version), user=user, data={'version': version}, ) # add commits if user: author = self.create_commit_author(project, user) repo = self.create_repo(project, name='organization-{}'.format(project.slug)) commit = self.create_commit( project=project, repo=repo, author=author, release=release, key='deadbeef', message='placeholder commit message', ) release.update( authors=[six.text_type(author.id)], commit_count=1, last_commit_id=commit.id, ) return release def create_repo(self, project, name=None): repo = Repository.objects.create( organization_id=project.organization_id, name=name or '{}-{}'.format(petname.Generate(2, '', letters=10), random.randint(1000, 9999)), ) return repo def create_commit(self, project, repo, author=None, release=None, message=None, key=None, date_added=None): commit = Commit.objects.get_or_create( organization_id=project.organization_id, repository_id=repo.id, key=key or sha1(uuid4().hex).hexdigest(), defaults={ 'message': message or make_sentence(), 'author': author or self.create_commit_author(project), 'date_added': date_added or timezone.now(), } )[0] if release: ReleaseCommit.objects.create( organization_id=project.organization_id, project_id=project.id, release=release, commit=commit, order=1, ) self.create_commit_file_change(commit, project, '/models/foo.py') self.create_commit_file_change(commit, project, '/worsematch/foo.py') self.create_commit_file_change(commit, project, '/models/other.py') return commit def create_commit_author(self, project, user=None): return CommitAuthor.objects.get_or_create( organization_id=project.organization_id, email=user.email if user else '{}@example.com'.format(make_word()), defaults={ 'name': user.name if user else make_word(), } )[0] def create_commit_file_change(self, commit, project, filename): commit_file_change = CommitFileChange.objects.get_or_create( organization_id=project.organization_id, commit=commit, filename=filename, type='M', ) return commit_file_change def create_user(self, email=None, **kwargs): if email is None: email = uuid4().hex + '@example.com' kwargs.setdefault('username', email) kwargs.setdefault('is_staff', True) kwargs.setdefault('is_active', True) kwargs.setdefault('is_superuser', False) user = User(email=email, **kwargs) if not kwargs.get('password'): user.set_password('admin') user.save() # UserEmail is created by a signal assert UserEmail.objects.filter( user=user, email=email, ).update(is_verified=True) return user def create_useremail(self, user, email, **kwargs): if not email: email = uuid4().hex + '@example.com' kwargs.setdefault('is_verified', True) useremail = UserEmail(user=user, email=email, **kwargs) useremail.save() return useremail def create_event(self, event_id=None, **kwargs): if event_id is None: event_id = uuid4().hex if 'group' not in kwargs: kwargs['group'] = self.group kwargs.setdefault('project', kwargs['group'].project) kwargs.setdefault('data', copy.deepcopy(DEFAULT_EVENT_DATA)) kwargs.setdefault('platform', kwargs['data'].get('platform', 'python')) kwargs.setdefault('message', kwargs['data'].get('message', 'message')) if kwargs.get('tags'): tags = kwargs.pop('tags') if isinstance(tags, dict): tags = list(tags.items()) kwargs['data']['tags'] = tags if kwargs.get('stacktrace'): stacktrace = kwargs.pop('stacktrace') kwargs['data']['stacktrace'] = stacktrace kwargs['data'].setdefault( 'errors', [{ 'type': EventError.INVALID_DATA, 'name': 'foobar', }] ) # maintain simple event fixtures by supporting the legacy message # parameter just like our API would if 'logentry' not in kwargs['data']: kwargs['data']['logentry'] = { 'message': kwargs.get('message') or '<unlabeled event>', } if 'type' not in kwargs['data']: kwargs['data'].update( { 'type': 'default', 'metadata': { 'title': kwargs['data']['logentry']['message'], }, } ) kwargs['data'] = CanonicalKeyDict(kwargs.pop('data')) event = Event(event_id=event_id, **kwargs) EventMapping.objects.create( project_id=event.project.id, event_id=event_id, group=event.group, ) # emulate EventManager refs event.data.bind_ref(event) event.save() return event def create_full_event(self, event_id='a', **kwargs): payload = """ { "id": "f5dd88e612bc406ba89dfebd09120769", "project": 11276, "release": "e1b5d1900526feaf20fe2bc9cad83d392136030a", "platform": "javascript", "culprit": "app/components/events/eventEntries in map", "message": "TypeError: Cannot read property '1' of null", "tags": [ ["environment", "prod"], ["sentry_version", "e1b5d1900526feaf20fe2bc9cad83d392136030a"], ["level", "error"], ["logger", "javascript"], ["sentry:release", "e1b5d1900526feaf20fe2bc9cad83d392136030a"], ["browser", "Chrome 48.0"], ["device", "Other"], ["os", "Windows 10"], ["url", "https://sentry.io/katon-direct/localhost/issues/112734598/"], ["sentry:user", "id:41656"] ], "errors": [{ "url": "<anonymous>", "type": "js_no_source" }], "extra": { "session:duration": 40364 }, "exception": { "exc_omitted": null, "values": [{ "stacktrace": { "frames": [{ "function": "batchedUpdates", "abs_path": "webpack:////usr/src/getsentry/src/sentry/~/react/lib/ReactUpdates.js", "pre_context": [" // verify that that's the case. (This is called by each top-level update", " // function, like setProps, setState, forceUpdate, etc.; creation and", " // destruction of top-level components is guarded in ReactMount.)", "", " if (!batchingStrategy.isBatchingUpdates) {"], "post_context": [" return;", " }", "", " dirtyComponents.push(component);", "}"], "filename": "~/react/lib/ReactUpdates.js", "module": "react/lib/ReactUpdates", "colno": 0, "in_app": false, "data": { "orig_filename": "/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js", "orig_abs_path": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js", "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map", "orig_lineno": 37, "orig_function": "Object.s [as enqueueUpdate]", "orig_colno": 16101 }, "context_line": " batchingStrategy.batchedUpdates(enqueueUpdate, component);", "lineno": 176 }], "frames_omitted": null }, "type": "TypeError", "value": "Cannot read property '1' of null", "module": null }] }, "request": { "url": "https://sentry.io/katon-direct/localhost/issues/112734598/", "headers": [ ["Referer", "https://sentry.io/welcome/"], ["User-Agent", "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.109 Safari/537.36"] ] }, "user": { "ip_address": "0.0.0.0", "id": "41656", "email": "test@example.com" }, "version": "7", "breadcrumbs": { "values": [ { "category": "xhr", "timestamp": 1496395011.63, "type": "http", "data": { "url": "/api/path/here", "status_code": "500", "method": "POST" } } ] } }""" return self.create_event(event_id=event_id, platform='javascript', data=json.loads(payload)) def create_group(self, project=None, checksum=None, **kwargs): if checksum: warnings.warn('Checksum passed to create_group', DeprecationWarning) if project is None: project = self.project kwargs.setdefault('message', 'Hello world') kwargs.setdefault('data', {}) if 'type' not in kwargs['data']: kwargs['data'].update( { 'type': 'default', 'metadata': { 'title': kwargs['message'], }, } ) if 'short_id' not in kwargs: kwargs['short_id'] = project.next_short_id() return Group.objects.create(project=project, **kwargs) def create_file(self, **kwargs): return File.objects.create(**kwargs) def create_file_from_path(self, path, name=None, **kwargs): if name is None: name = os.path.basename(path) file = self.create_file(name=name, **kwargs) with open(path) as f: file.putfile(f) return file def create_event_attachment(self, event=None, file=None, **kwargs): if event is None: event = self.event if file is None: file = self.create_file( name='log.txt', size=32, headers={'Content-Type': 'text/plain'}, checksum='dc1e3f3e411979d336c3057cce64294f3420f93a', ) return EventAttachment.objects.create( project_id=event.project_id, group_id=event.group_id, event_id=event.event_id, file=file, **kwargs ) def create_dif_file(self, debug_id=None, project=None, object_name=None, features=None, data=None, file=None, cpu_name=None, **kwargs): if project is None: project = self.project if debug_id is None: debug_id = six.text_type(uuid4()) if object_name is None: object_name = '%s.dSYM' % debug_id if features is not None: if data is None: data = {} data['features'] = features if file is None: file = self.create_file( name=object_name, size=42, headers={'Content-Type': 'application/x-mach-binary'}, checksum='dc1e3f3e411979d336c3057cce64294f3420f93a', ) return ProjectDebugFile.objects.create( debug_id=debug_id, project=project, object_name=object_name, cpu_name=cpu_name or 'x86_64', file=file, data=data, **kwargs ) return ProjectDebugFile.objects.create(project=project, **kwargs) def create_dif_from_path(self, path, object_name=None, **kwargs): if object_name is None: object_name = os.path.basename(path) headers = {'Content-Type': 'application/x-mach-binary'} file = self.create_file_from_path(path, name=object_name, headers=headers) return self.create_dif_file(file=file, object_name=object_name, **kwargs) def add_user_permission(self, user, permission): try: with transaction.atomic(): UserPermission.objects.create(user=user, permission=permission) except IntegrityError: raise def create_sentry_app(self, name=None, organization=None, published=False, scopes=(), webhook_url=None, **kwargs): if not name: name = 'Test App' if not organization: organization = self.create_organization() if not webhook_url: webhook_url = 'https://example.com/webhook' app = SentryAppCreator.run( name=name, organization=organization, scopes=scopes, webhook_url=webhook_url, **kwargs ) if published: app.update(status=SentryAppStatus.PUBLISHED) return app def create_service_hook(self, actor=None, project=None, events=None, url=None, **kwargs): if not actor: actor = self.create_user() if not project: org = self.create_organization(owner=actor) project = self.create_project(organization=org) if not events: events = ('event.created',) if not url: url = 'https://example/sentry/webhook' return ServiceHookCreator.run( actor=actor, project=project, events=events, url=url, **kwargs )
35.683646
324
0.502254
85f6043b210fe316644b8a71ab52d2f73bd2aa5a
3,657
py
Python
tests/test_parser.py
genejiang2012/iTest_httpapi_v2
5edfff2e068ce9b031a9c990c1bfcbfca25469d5
[ "MIT" ]
null
null
null
tests/test_parser.py
genejiang2012/iTest_httpapi_v2
5edfff2e068ce9b031a9c990c1bfcbfca25469d5
[ "MIT" ]
null
null
null
tests/test_parser.py
genejiang2012/iTest_httpapi_v2
5edfff2e068ce9b031a9c990c1bfcbfca25469d5
[ "MIT" ]
null
null
null
# !/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2021/1/6 19:29 # @Author : Gene Jiang # @File : test_parser.py.py # @Description: import pytest from httpapi import parser from loguru import logger def test_parse_string_value(): assert parser.parse_string_value("123") == 123 assert parser.parse_string_value("12.2") == 12.2 assert parser.parse_string_value("abc") == "abc" assert parser.parse_string_value("$var") == "$var" def test_extract_variables(): assert parser.extract_variables("$var") == {"var"} assert parser.extract_variables("$var123") == {"var123"} assert parser.extract_variables("$var_name") == {"var_name"} assert parser.extract_variables("var") == set() assert parser.extract_variables("a$var") == {"var"} assert parser.extract_variables("$v ar") == {"v"} assert parser.extract_variables(" ") == set() assert parser.extract_variables("$abc*") == {"abc"} assert parser.extract_variables("${func()}") == set() assert parser.extract_variables("${func(1,2)}") == set() assert parser.extract_variables("${gen_md5($TOKEN, $data, $random)}") == { "TOKEN", "data", "random"} assert parser.extract_variables("Z:2>1*0*1+1$$1") == set() def test_parse_data(): variables_mapping = { "var_1": "abc", "var_2": "def", "var_3": 123, "var_4": {"a": 1}, "var_5": True, "var_6": None } assert parser.parse_data("$var_1", variables_mapping) == "abc" assert parser.parse_data("${var_1}", variables_mapping) == "abc" assert parser.parse_data("var_1", variables_mapping) == "var_1" assert parser.parse_data("$var_1#XYZ", variables_mapping) == "abc#XYZ" assert parser.parse_data("${var_1}#XYZ", variables_mapping) == "abc#XYZ" assert parser.parse_data("/$var_1/$var_2/var3", variables_mapping) == "/abc/def/var3" assert parser.parse_data("$var_3", variables_mapping) == 123 assert parser.parse_data("$var_4", variables_mapping) == {"a": 1} assert parser.parse_data("$var_5", variables_mapping) == True assert parser.parse_data("abc$var_5", variables_mapping) == 'abcTrue' assert parser.parse_data("abc$var_4", variables_mapping) == "abc{'a': 1}" assert parser.parse_data("$var_6", variables_mapping) == None assert parser.parse_data("/api/$var_1", variables_mapping) == "/api/abc" assert parser.parse_data(["$var_1", "$var_2"], variables_mapping) == ["abc", "def"] assert parser.parse_data({"$var_1": "$var_2"}, variables_mapping) == {"abc": "def"} assert parser.parse_data("ABC$var_1", variables_mapping) == "ABCabc" assert parser.parse_data("ABC${var_1}", variables_mapping) == "ABCabc" assert parser.parse_data("ABC${var_1}/123${var_1}/456", variables_mapping) == "ABCabc/123abc/456" assert parser.parse_data("func1(${var_1}, ${var_3})", variables_mapping) == "func1(abc, 123)" def test_parse_string(): assert parser.parse_string("abc${add_one($num}def", {"num": 3}, {"add_one": lambda x: x + 1}) == "abc4def" def test_parse_variable_mapping(): variables = {"varA": "$varB", "varB": "$varC", "varC": "123", "a": 1, "b": 2} parsed_variable = parser.parse_variable_mapping(variables) logger.info(f"The parsed value is {parsed_variable}") assert parsed_variable["varA"] == "123" assert parsed_variable["varB"] == "123"
43.535714
84
0.604047
19b41eb32f2547b422f2cdf98e7d14d99eb88593
7,060
py
Python
testcodes/check_encoding.py
Intel-tensorflow/SSD_tensorflow_VOC
839c4291926e4c9f2cf5e028d666766daa873b7c
[ "Apache-2.0" ]
70
2017-04-27T03:42:18.000Z
2022-02-19T06:55:48.000Z
testcodes/check_encoding.py
Intel-tensorflow/SSD_tensorflow_VOC
839c4291926e4c9f2cf5e028d666766daa873b7c
[ "Apache-2.0" ]
33
2017-04-26T01:48:40.000Z
2021-06-11T02:21:34.000Z
testcodes/check_encoding.py
Intel-tensorflow/SSD_tensorflow_VOC
839c4291926e4c9f2cf5e028d666766daa873b7c
[ "Apache-2.0" ]
32
2017-07-13T12:58:04.000Z
2021-05-17T08:41:46.000Z
from datasets import pascalvoc_datasets import tensorflow as tf import matplotlib.pyplot as plt import tensorflow.contrib.slim as slim # from nets import nets_factory from preprocessing import preprocessing_factory import numpy as np import cv2 from utility import visualization from nets.ssd import g_ssd_model from preprocessing.ssd_vgg_preprocessing import np_image_unwhitened from preprocessing.ssd_vgg_preprocessing import preprocess_for_train from preprocessing.ssd_vgg_preprocessing import preprocess_for_eval import tf_utils import math class CheckEncoding(object): def __init__(self): self.batch_size = 32 return def __preprocess_data(self, image, labels, bboxes): out_shape = g_ssd_model.img_shape if self.is_training_data: image, labels, bboxes = preprocess_for_train(image, labels, bboxes, out_shape = out_shape) else: image, labels, bboxes, _ = preprocess_for_eval(image, labels, bboxes, out_shape = out_shape) return image, labels, bboxes def __get_images_labels_bboxes(self,data_sources, num_samples,is_training_data): self.dataset = pascalvoc_datasets.get_dataset_info(data_sources, num_samples) self.is_training_data = is_training_data if self.is_training_data: shuffle = True #make sure most samples can be fetched in one epoch self.num_readers = 2 else: #make sure data is fetchd in sequence shuffle = False self.num_readers = 1 provider = slim.dataset_data_provider.DatasetDataProvider( self.dataset, shuffle=shuffle, num_readers=self.num_readers, common_queue_capacity=30 * self.batch_size, common_queue_min=10 * self.batch_size) # Get for SSD network: image, labels, bboxes. [image, shape, format, self.filename, glabels, gbboxes,gdifficults] = provider.get(['image', 'shape', 'format','filename', 'object/label', 'object/bbox', 'object/difficult']) # Pre-processing image, labels and bboxes. self.image, self.glabels, self.gbboxes = self.__preprocess_data(image, glabels, gbboxes) # anchors_1 = g_ssd_model.get_allanchors(minmaxformat=False) anchors = g_ssd_model.get_allanchors(minmaxformat=True) print(anchors[-1][-4:]) #flattent the anchors temp_anchors = [] for i in range(len(anchors)): temp_anchors.append(tf.reshape(anchors[i], [-1, 4])) anchors = tf.concat(temp_anchors, axis=0) self.jaccard = g_ssd_model.compute_jaccard(self.gbboxes, anchors) # Assign groundtruth information for all default/anchor boxes # gclasses, glocalisations, gscores = g_ssd_model.tf_ssd_bboxes_encode(glabels, gbboxes) return def __disp_image(self, img, classes, bboxes): bvalid = (classes !=0) classes = classes[bvalid] bboxes = bboxes[bvalid] scores =np.full(classes.shape, 1.0) visualization.plt_bboxes(img, classes, scores, bboxes,title='Ground Truth') return def __disp_matched_anchors(self,img, target_labels_data, target_localizations_data, target_scores_data): found_matched = False all_anchors = g_ssd_model.get_allanchors() for i, target_score_data in enumerate(target_scores_data): num_pos = (target_score_data > 0.5).sum() if (num_pos == 0): continue print('Found {} matched default boxes in layer {}'.format(num_pos,g_ssd_model.feat_layers[i])) pos_sample_inds = (target_score_data > 0.5).nonzero() pos_sample_inds = [pos_sample_inds[0],pos_sample_inds[1],pos_sample_inds[2]] classes = target_labels_data[i][pos_sample_inds] scores = target_scores_data[i][pos_sample_inds] bboxes_default= g_ssd_model.get_allanchors(minmaxformat=True)[i][pos_sample_inds] bboxes_gt = g_ssd_model.decode_bboxes_layer(target_localizations_data[i][pos_sample_inds], all_anchors[i][pos_sample_inds]) print("default box minimum, {} gt box minimum, {}".format(bboxes_default.min(), bboxes_gt.min())) marks_default = np.full(classes.shape, True) marks_gt = np.full(classes.shape, False) scores_gt = np.full(scores.shape, 1.0) bboxes = bboxes_default neg_marks = marks_default add_gt = True if add_gt : bboxes = np.vstack([bboxes_default,bboxes_gt]) neg_marks = np.hstack([marks_default,marks_gt]) classes = np.tile(classes, 2) scores = np.hstack([scores, scores_gt]) title = "Default boxes: Layer {}".format(g_ssd_model.feat_layers[i]) visualization.plt_bboxes(img, classes, scores, bboxes,neg_marks=neg_marks,title=title) found_matched = True return found_matched def get_voc_2007_test_data(self): data_sources = "../../data/voc/tfrecords/voc_test_2007*.tfrecord" num_samples = pascalvoc_datasets.DATASET_SIZE['2007_test'] return self.__get_images_labels_bboxes(data_sources, num_samples, False) def run(self): with tf.Graph().as_default(): self.get_voc_2007_test_data() with tf.Session('') as sess: init = tf.global_variables_initializer() sess.run(init) with slim.queues.QueueRunners(sess): image, glabels, gbboxes,filename,jaccard= sess.run([self.image, self.glabels, self.gbboxes,self.filename,self.jaccard]) print(filename) print(glabels) print(gbboxes) print(jaccard) #selet the first image in the batch image_data = np_image_unwhitened(image) self.__disp_image(image_data, glabels, gbboxes) # found_matched = self.__disp_matched_anchors(image_data,target_labels_data, target_localizations_data, target_scores_data) plt.show() return if __name__ == "__main__": obj= CheckEncoding() obj.run()
39.222222
167
0.581586
8f6b46fa12249e3c73350c1756f92cbce7eda900
8,828
py
Python
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/applibprofile/applibflow/applibflow.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/applibprofile/applibflow/applibflow.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/applibprofile/applibflow/applibflow.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files from typing import List, Any, Union class AppLibFlow(Base): """This object specifies the particular application library flow related properties. The AppLibFlow class encapsulates a list of appLibFlow resources that are managed by the system. A list of resources can be retrieved from the server using the AppLibFlow.find() method. """ __slots__ = () _SDM_NAME = 'appLibFlow' _SDM_ATT_MAP = { 'ConfigId': 'configId', 'ConnectionCount': 'connectionCount', 'Description': 'description', 'FlowId': 'flowId', 'FlowSize': 'flowSize', 'Name': 'name', 'Parameters': 'parameters', 'Percentage': 'percentage', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(AppLibFlow, self).__init__(parent, list_op) @property def Connection(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.trafficitem.applibprofile.applibflow.connection.connection.Connection): An instance of the Connection class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.trafficitem.applibprofile.applibflow.connection.connection import Connection if self._properties.get('Connection', None) is not None: return self._properties.get('Connection') else: return Connection(self) @property def Parameter(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.trafficitem.applibprofile.applibflow.parameter.parameter.Parameter): An instance of the Parameter class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.trafficitem.applibprofile.applibflow.parameter.parameter import Parameter if self._properties.get('Parameter', None) is not None: return self._properties.get('Parameter') else: return Parameter(self) @property def ConfigId(self): # type: () -> int """ Returns ------- - number: The internal config id asociated with this flow. """ return self._get_attribute(self._SDM_ATT_MAP['ConfigId']) @property def ConnectionCount(self): # type: () -> int """ Returns ------- - number: Number of connections in this flow. """ return self._get_attribute(self._SDM_ATT_MAP['ConnectionCount']) @property def Description(self): # type: () -> str """ Returns ------- - str: Brief description of what the flow does. """ return self._get_attribute(self._SDM_ATT_MAP['Description']) @property def FlowId(self): # type: () -> str """ Returns ------- - str: The identifier of the flow. """ return self._get_attribute(self._SDM_ATT_MAP['FlowId']) @property def FlowSize(self): # type: () -> int """ Returns ------- - number: The size of the flow in bytes. """ return self._get_attribute(self._SDM_ATT_MAP['FlowSize']) @property def Name(self): # type: () -> str """ Returns ------- - str: the name of the Flow. """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @property def Parameters(self): # type: () -> List[str] """ Returns ------- - list(str): Array containing configurable parameters per flow. """ return self._get_attribute(self._SDM_ATT_MAP['Parameters']) @property def Percentage(self): # type: () -> int """ Returns ------- - number: The amount of traffic generated for this flows. """ return self._get_attribute(self._SDM_ATT_MAP['Percentage']) @Percentage.setter def Percentage(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['Percentage'], value) def update(self, Percentage=None): # type: (int) -> AppLibFlow """Updates appLibFlow resource on the server. Args ---- - Percentage (number): The amount of traffic generated for this flows. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def add(self, Percentage=None): # type: (int) -> AppLibFlow """Adds a new appLibFlow resource on the json, only valid with config assistant Args ---- - Percentage (number): The amount of traffic generated for this flows. Returns ------- - self: This instance with all currently retrieved appLibFlow resources using find and the newly added appLibFlow resources available through an iterator or index Raises ------ - Exception: if this function is not being used with config assistance """ return self._add_xpath(self._map_locals(self._SDM_ATT_MAP, locals())) def find(self, ConfigId=None, ConnectionCount=None, Description=None, FlowId=None, FlowSize=None, Name=None, Parameters=None, Percentage=None): # type: (int, int, str, str, int, str, List[str], int) -> AppLibFlow """Finds and retrieves appLibFlow resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve appLibFlow resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all appLibFlow resources from the server. Args ---- - ConfigId (number): The internal config id asociated with this flow. - ConnectionCount (number): Number of connections in this flow. - Description (str): Brief description of what the flow does. - FlowId (str): The identifier of the flow. - FlowSize (number): The size of the flow in bytes. - Name (str): the name of the Flow. - Parameters (list(str)): Array containing configurable parameters per flow. - Percentage (number): The amount of traffic generated for this flows. Returns ------- - self: This instance with matching appLibFlow resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of appLibFlow data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the appLibFlow resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href)
35.740891
178
0.63763
ebaab48b55047f50262ec3ded87c7486a1fd5ca2
1,406
py
Python
test/script/train_embedding_psd_id.py
emorynlp/bert-2018
228b2046d92084ea3cd7c900c1d8af1f0a925cfe
[ "Apache-2.0" ]
17
2019-08-15T01:49:10.000Z
2022-03-28T19:12:04.000Z
test/script/train_embedding_psd_id.py
emorynlp/bert-2018
228b2046d92084ea3cd7c900c1d8af1f0a925cfe
[ "Apache-2.0" ]
2
2020-09-09T02:30:23.000Z
2022-03-28T19:57:21.000Z
test/script/train_embedding_psd_id.py
emorynlp/bert-2018
228b2046d92084ea3cd7c900c1d8af1f0a925cfe
[ "Apache-2.0" ]
1
2020-03-12T03:41:13.000Z
2020-03-12T03:41:13.000Z
# coding: utf-8 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from bertsota.parser.dep_parser import SDPParser if __name__ == '__main__': save_dir = 'data/model/train-embedding-psd-id' parser = SDPParser() parser.train(train_file='data/semeval15/en.psd.conllu', dev_file='data/semeval15/en.id.psd.conllu', test_file='data/semeval15/en.id.psd.conllu', save_dir=save_dir, pretrained_embeddings_file='data/embedding/glove.6B.100d.txt') parser.load(save_dir) parser.evaluate(test_file='data/semeval15/en.id.psd.conllu', save_dir=save_dir, num_buckets_test=10)
42.606061
83
0.720484
a7df44e1e30700bec201dcf9d8da87ea93513b02
12,665
py
Python
core/setup/base.py
fabrickit/fabkit
ca099c7e543efb8f5c1d19453c8ceada0584e563
[ "MIT" ]
null
null
null
core/setup/base.py
fabrickit/fabkit
ca099c7e543efb8f5c1d19453c8ceada0584e563
[ "MIT" ]
null
null
null
core/setup/base.py
fabrickit/fabkit
ca099c7e543efb8f5c1d19453c8ceada0584e563
[ "MIT" ]
null
null
null
# coding: utf-8 from fabkit import env, api, status, log, util import re from types import DictType import inspect from oslo_config import cfg CONF = cfg.CONF @api.task def manage(*args, **kwargs): run_func(args, *args, **kwargs) @api.task def check(*args, **kwargs): run_func(['^check.*'], *args, **kwargs) @api.task def setup(*args, **kwargs): run_func(['^setup.*'], *args, **kwargs) def run_func(func_names=[], *args, **kwargs): fabrun_filter = [] is_filter = False env.is_test = False env.is_help = False if len(args) > 0: if args[0] == 'test': env.is_test = True args = args[1:] elif args[0] == 'help': env.is_help = True args = args[1:] if 'f' in kwargs: fabrun_filter = kwargs['f'].split('+') fabrun_filter = [re.compile(f) for f in fabrun_filter] is_filter = True func_patterns = [re.compile(name) for name in func_names] host_filter = {} for run in env.runs: cluster_name = run['cluster'] cluster = env.cluster_map[run['cluster']] env.cluster = cluster log.init_logger(cluster_name) for cluster_run in run['runs']: run_results = [] script_name = cluster_run['fabscript'] if is_filter: for f in fabrun_filter: if f.search(script_name): break else: continue if env.is_check or env.is_manage: # 二重実行を防ぐ hosts = host_filter.get(script_name, []) tmp_hosts = list(set(cluster_run['hosts']) - set(hosts)) cluster_run['hosts'] = tmp_hosts hosts.extend(tmp_hosts) host_filter[script_name] = hosts if len(cluster_run['hosts']) == 0: continue hosts = [] for host in cluster_run['hosts']: env.node_map[host] = env.node_map.get(host, { 'host': host, 'bootstrap_status': -1, }) if env.node_map[host]['bootstrap_status'] != status.FAILED_CHECK: hosts.append(host) env.script_name = script_name env.hosts = hosts # override env override_env = env.cluster.get('env', {}) override_env.update(cluster_run.get('env', {})) default_env = {} for key, value in override_env.items(): default_env[key] = getattr(env, key, None) setattr(env, key, value) env.cluster_status = env.cluster['__status'] env.node_status_map = env.cluster_status['node_map'] env.fabscript_status_map = env.cluster_status['fabscript_map'] env.fabscript = env.fabscript_status_map[script_name] log.info('hosts: {0}'.format(env.hosts)) log.info('run: {0}: {1}'.format(script_name, env.fabscript)) log.debug('node_status_map: {0}'.format(env.node_status_map)) # check require require = env.cluster['fabscript_map'][script_name]['require'] if env.is_setup: is_require = True for script, status_code in require.items(): required_status = env.fabscript_status_map[script]['status'] if required_status != status_code: log.error('Require Error\n' + '{0} is require {1}:{2}.\nbut {1} status is {3}.'.format( script_name, script, status_code, required_status)) is_require = False break if not is_require: break script = '.'.join([CONF.fabscript_module, script_name.replace('/', '.')]) # importlibは、2.7以上じゃないと使えない # module = importlib.import_module(script) module = __import__(script, globals(), locals(), ['*'], -1) module_funcs = [] for member in inspect.getmembers(module): if inspect.isfunction(member[1]): module_funcs.append(member[0]) if env.is_help and len(func_patterns) == 0: for candidate in module_funcs: func = getattr(module, candidate) print 'Task: {0}'.format(func.__name__) print func.__doc__ continue # func_patterns にマッチしたタスク関数をすべて実行する is_expected = False is_contain_unexpected = False for func_pattern in func_patterns: for candidate in module_funcs: if not func_pattern.match(candidate): continue func = getattr(module, candidate) # taskデコレータの付いているものだけ実行する if not hasattr(func, 'is_task') or not func.is_task: continue if env.is_help: print 'Task: {0}'.format(func.__name__) print func.__doc__ continue results = api.execute(func, *args, **kwargs) # check results data_map = {} tmp_status = None is_contain_failed = False for host, result in results.items(): env.node_map[host].update(result['node']) if not result or type(result) is not DictType: result = {} node_result = env.node_status_map[host]['fabscript_map'][script_name] result_status = result.get('status') task_status = result.get('task_status', status.SUCCESS) msg = result.get('msg') if msg is None: if task_status is status.SUCCESS: msg = status.FABSCRIPT_SUCCESS_MSG else: msg = status.FABSCRIPT_FAILED_MSG if func.is_bootstrap: if task_status == status.FAILED_CHECK or \ task_status == status.FAILED_CHECK_PING: env.node_map[host]['bootstrap_status'] = status.FAILED_CHECK else: env.node_map[host]['bootstrap_status'] = status.SUCCESS node_result['task_status'] = task_status tmp_data_map = result.get('data_map') if tmp_data_map is not None: for map_name, tmp_map_data in tmp_data_map.items(): if tmp_map_data['type'] == 'table': map_data = data_map.get(map_name, { 'name': map_name, 'type': 'table', 'data': [], }) tmp_data = {'!!host': host} tmp_data.update(tmp_map_data['data']) map_data['data'].append(tmp_data) data_map[map_name] = map_data elif tmp_map_data['type'] == 'multi-table': map_data = data_map.get(map_name, { 'name': map_name, 'type': 'multi-table', 'data': [], }) tmp_data = {'!!host': host} tmp_data.update(tmp_map_data['data']) map_data['data'].append(tmp_data) data_map[map_name] = map_data elif tmp_map_data['type'] == 'line-chart': map_data = data_map.get(map_name, { 'name': map_name, 'type': 'line-chart', 'data': [], }) map_data['ex_data'] = tmp_map_data['ex_data'] map_data['layout'] = tmp_map_data['layout'] tmp_data = {'!!host': host} tmp_data.update(tmp_map_data['data']) map_data['data'].append(tmp_data) data_map[map_name] = map_data if env.is_setup: node_result['msg'] = msg if result_status is not None: tmp_status = result_status node_result['status'] = result_status expected = cluster_run['expected_status'] if expected == result_status: is_expected = True log.info('{0}: {1} is expected status.'.format( host, msg, result_status)) else: is_contain_unexpected = True log.error('expected status is {0}, bad status is {1}.'.format( # noqa expected, result_status), host) elif env.is_check: node_result['check_msg'] = msg if result_status is None: result_status = status.SUCCESS node_result.update({ 'check_status': result_status, }) if result_status != status.SUCCESS: log.error('Failed check {0}.{1} [{2}]. {3}'.format( # noqa script_name, candidate, result_status, msg), host) if task_status == status.SUCCESS: log.info('Success task {0}.{1} [{2}]. {3}'.format( script_name, candidate, task_status, msg), host) else: log.error('Failed task {0}.{1} [{2}]. {3}'.format( script_name, candidate, task_status, msg), host) is_contain_failed = True # end for host, result in results.items(): if len(data_map) > 0: util.dump_datamap(data_map) if is_contain_failed: log.error('Failed task {0}.{1}. Exit setup.'.format( script_name, candidate)) util.dump_status() exit() if tmp_status is not None: env.fabscript['tmp_status'] = tmp_status # for candidate in module_funcs: # for func_pattern in func_patterns: if env.is_setup: if is_expected and not is_contain_unexpected or cluster_run['expected_status'] == 0: env.cluster['__status']['fabscript_map'][script_name] = { 'status': cluster_run['expected_status'], 'task_status': status.SUCCESS, } util.dump_status() else: log.error('bad status.') exit() elif env.is_check: env.cluster['__status']['fabscript_map'][script_name]['task_status'] = status.SUCCESS # noqa util.dump_status() elif env.is_manage: env.cluster['__status']['fabscript_map'][script_name]['task_status'] = status.SUCCESS # noqa util.dump_status() # reset env for key, value in default_env.items(): if value is not None: setattr(env, key, value) # end for cluster_run in run['runs']: # end for run in env.runs:
41.661184
110
0.442953
85631ca7fe375d1f3bd69210ac4640aedd1bbd8b
470
py
Python
titan/react_pkg/uikit/__init__.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
titan/react_pkg/uikit/__init__.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
titan/react_pkg/uikit/__init__.py
mnieber/gen
65f8aa4fb671c4f90d5cbcb1a0e10290647a31d9
[ "MIT" ]
null
null
null
from pathlib import Path from moonleap import add, create from titan.project_pkg.service import Tool from titan.react_pkg.nodepackage import load_node_package_config class UIkit(Tool): pass base_tags = [("uikit", ["tool"])] @create("uikit") def create_uikit(term): uikit = UIkit(name="uikit") uikit.add_template_dir(Path(__file__).parent / "templates") uikit.output_path = "src" add(uikit, load_node_package_config(__file__)) return uikit
21.363636
64
0.738298
dcd4702743d09df31d6d98330bb7952de30d9f91
3,450
py
Python
src/oscartest/getcrndetails/models.py
AlexanderPuckhaber/django-oscar-scraper
b58d8f0414572085fdec01aa991852cebb6cb290
[ "MIT" ]
1
2021-01-12T22:09:39.000Z
2021-01-12T22:09:39.000Z
src/oscartest/getcrndetails/models.py
AlexanderPuckhaber/django-oscar-scraper
b58d8f0414572085fdec01aa991852cebb6cb290
[ "MIT" ]
null
null
null
src/oscartest/getcrndetails/models.py
AlexanderPuckhaber/django-oscar-scraper
b58d8f0414572085fdec01aa991852cebb6cb290
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. from django.db.models import UniqueConstraint class Semester(models.Model): semester_str = models.CharField(primary_key=True, max_length=200) semester_str_readable = models.CharField(max_length=200) phase1_start_date = models.DateTimeField('start of Phase 1 registration', blank=True, null=True) phase1_end_date = models.DateTimeField('end of Phase 1 registration', blank=True, null=True) phase2_start_date = models.DateTimeField('start of Phase 2 registration', blank=True, null=True) phase2_end_date = models.DateTimeField('end of Phase 2 registration', blank=True, null=True) def __str__(self): return self.semester_str class Course(models.Model): course_str = models.CharField(primary_key=True, max_length=50) semester = models.ForeignKey(Semester, on_delete=models.CASCADE) active = models.BooleanField(default=True) def __str__(self): return str(self.semester) + '/' + self.course_str def course_str_as_list(self): return self.course_str.split(' ') class Section(models.Model): semester = models.ForeignKey(Semester, on_delete=models.CASCADE) crn = models.IntegerField(primary_key=True) code = models.CharField(max_length=10, blank=True, null=True) active=models.BooleanField(default=True) course = models.ForeignKey(Course, on_delete=models.CASCADE, blank=True, null=True) def __str__(self): return str(self.course) + ':' + str(self.code)+ ':' + str(self.crn) class SectionCapacities(models.Model): section_crn = models.ForeignKey(Section, on_delete=models.CASCADE) seats_capacity = models.IntegerField(default=0) seats_actual = models.IntegerField(default=0) seats_remaining = models.IntegerField(default=0) seats_waitlist_capacity = models.IntegerField(default=0) seats_waitlist_actual = models.IntegerField(default=0) seats_waitlist_remaining = models.IntegerField(default=0) def capacities_as_dict(self): return { 'seats_capacity': self.seats_capacity, 'seats_actual': self.seats_actual, 'seats_remaining': self.seats_remaining, 'seats_waitlist_capacity': self.seats_waitlist_capacity, 'seats_waitlist_actual': self.seats_waitlist_actual, 'seats_waitlist_remaining': self.seats_waitlist_remaining, 'get_date': self.get_date } def capacities_as_list(self): caps_list = [0]*7 # [list, declaration] not working here ;/ caps_list[0] = self.seats_capacity caps_list[1] = self.seats_actual caps_list[2] = self.seats_remaining caps_list[3] = self.seats_waitlist_capacity caps_list[4] = self.seats_waitlist_actual caps_list[5] = self.seats_waitlist_remaining caps_list[6] = self.get_date return caps_list get_date = models.DateTimeField() class Meta: constraints=[ models.UniqueConstraint(fields=['section_crn', 'get_date'], name='unique_section_date') ] def __str__(self): return str(self.section_crn) + ' date: ' + str(self.get_date) + \ ' seats: ' + str(self.seats_capacity) + ',' + str(self.seats_actual) + ',' \ + str(self.seats_remaining) + ',' + ' waitlist: ' + str(self.seats_waitlist_capacity) + ',' \ + str(self.seats_waitlist_actual) + ',' + str(self.seats_waitlist_remaining)
40.588235
100
0.698841
d0ac68f8300ac131674fce185fec79f951a6f8ea
2,422
py
Python
Utils/py/RL_ActionSelection/env_0/tools/naoth/math3d.py
BerlinUnited/NaoTH
02848ac10c16a5349f1735da8122a64d601a5c75
[ "ECL-2.0", "Apache-2.0" ]
15
2015-01-12T10:46:29.000Z
2022-03-28T05:13:14.000Z
Utils/py/RL_ActionSelection/env_0/tools/naoth/math3d.py
BerlinUnited/NaoTH
02848ac10c16a5349f1735da8122a64d601a5c75
[ "ECL-2.0", "Apache-2.0" ]
2
2019-01-20T21:07:50.000Z
2020-01-22T14:00:28.000Z
Utils/py/RL_ActionSelection/env_0/tools/naoth/math3d.py
BerlinUnited/NaoTH
02848ac10c16a5349f1735da8122a64d601a5c75
[ "ECL-2.0", "Apache-2.0" ]
5
2018-02-07T18:18:10.000Z
2019-10-15T17:01:41.000Z
import math class Vector3: def __init__(self, x=0, y=0, z=0): self.x = x self.y = y self.z = z def __add__(self, other): return Vector3(self.x + other.x, self.y + other.y, self.z + other.z) def __sub__(self, other): return Vector3(self.x - other.x, self.y - other.y, self.z - other.z) def __neg__(self): return Vector3(-self.x, -self.y, -self.z) def abs(self): return math.sqrt(self * self) def __mul__(self, other): if isinstance(other, Vector3): return self.x * other.x + self.y * other.y + self.z * other.z elif isinstance(other, (int, float, long)): return Vector3(self.x * other, self.y * other, self.z * other) else: return NotImplemented def __str__(self): return "({0},{1},{2})".format(self.x, self.y, self.z) class Matrix3x3: def __init__(self, c1=Vector3(), c2=Vector3(), c3=Vector3()): self.c1 = c1 self.c2 = c2 self.c3 = c3 def __mul__(self, other): if isinstance(other, Matrix3x3): return Matrix3x3(self * other.c1, self * other.c2, self * other.c3) elif isinstance(other, Vector3): return self.c1 * other.x + self.c2 * other.y + self.c3 * other.z else: return NotImplemented def transpose(self): return Matrix3x3( Vector3(self.c1.x, self.c2.x, self.c3.x), Vector3(self.c1.y, self.c2.y, self.c3.y), Vector3(self.c1.z, self.c2.z, self.c3.z)) @classmethod def eye(Matrix3x3): return Matrix3x3( Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1) ) def __str__(self): return "{0} {1} {2}\n{3} {4} {5}\n{6} {7} {8}".format( self.c1.x, self.c2.x, self.c3.x, self.c1.y, self.c2.y, self.c3.y, self.c1.z, self.c2.z, self.c3.z) class Pose3D: def __init__(self): self.translation = Vector3() self.rotation = Matrix3x3.eye() def __mul__(self, other): if isinstance(other, Vector3): return self.rotation * other + self.translation else: return NotImplemented def __invert__(self): p = Pose3D() p.rotation = self.rotation.transpose() p.translation = p.rotation * (Vector3() - self.translation) return p
28.494118
79
0.545417
759874c6d87e12fa478595d2b1509e3be00b09a1
1,630
py
Python
kajaas/index/forms.py
bandarupallibnk/azuretest
9829f603465e2f21811592f3ec1c6f688e0085e4
[ "MIT" ]
null
null
null
kajaas/index/forms.py
bandarupallibnk/azuretest
9829f603465e2f21811592f3ec1c6f688e0085e4
[ "MIT" ]
null
null
null
kajaas/index/forms.py
bandarupallibnk/azuretest
9829f603465e2f21811592f3ec1c6f688e0085e4
[ "MIT" ]
null
null
null
from flask import Flask from flask_wtf import FlaskForm from wtforms import StringField,SubmitField,BooleanField,PasswordField,RadioField,DateField,SelectField from wtforms.fields.html5 import EmailField from wtforms.validators import DataRequired,EqualTo class clsignup(FlaskForm): username = StringField("User Name") firstname = StringField("First Name") lastname = StringField("Last Name") #currently not using email = EmailField("Email Id",validators=[DataRequired()]) password = PasswordField("Password",validators=[EqualTo('confirmpassword')]) confirmpassword = PasswordField("Confirm Password",validators=[DataRequired()]) ageo18 = BooleanField("Confirm your age is over 18 years") submit = SubmitField("Submit") class clslogin(FlaskForm): username = StringField("User Name") password = PasswordField("Password") login = SubmitField("Login") class clsspongesignup(FlaskForm): sfirstname = StringField("First Name") smiddlename = StringField("Middle Name") slastname = StringField("Last Name") sdob = StringField("Date of Birth") sgender = SelectField('Gender', choices=[('',''),('F','Female'),('M','Male'),('O','Other')]) semail = EmailField("Email Id") susername = StringField("User Name") spassword = PasswordField("Password",validators=[EqualTo('sconfirmpassword')]) sconfirmpassword = PasswordField("Confirm Password",validators=[DataRequired()]) ssubmit = SubmitField("Submit") class clsspongelogin(FlaskForm): susername = StringField("User Name") spassword = PasswordField("Password") slogin = SubmitField("Login")
40.75
103
0.730675
29f01d7a1f9792e89bd63c991d8878d664db7d09
12,660
py
Python
py-scripts/test_generic.py
shivamcandela/lanforge-scripts
285c91d7d414567f9c6a136f1556ab9fe7546efb
[ "BSD-2-Clause-FreeBSD", "BSD-3-Clause" ]
1
2021-09-27T08:45:56.000Z
2021-09-27T08:45:56.000Z
py-scripts/test_generic.py
shivamcandela/lanforge-scripts
285c91d7d414567f9c6a136f1556ab9fe7546efb
[ "BSD-2-Clause-FreeBSD", "BSD-3-Clause" ]
null
null
null
py-scripts/test_generic.py
shivamcandela/lanforge-scripts
285c91d7d414567f9c6a136f1556ab9fe7546efb
[ "BSD-2-Clause-FreeBSD", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import pprint import sys import os if sys.version_info[0] != 3: print("This script requires Python 3") exit(1) if 'py-json' not in sys.path: sys.path.append(os.path.join(os.path.abspath('..'), 'py-json')) import argparse from LANforge.lfcli_base import LFCliBase from LANforge import LFUtils import realm import time import datetime import json class GenTest(LFCliBase): def __init__(self, host, port, ssid, security, passwd, sta_list, name_prefix, upstream, number_template="000", test_duration="5m", type="lfping", dest=None, cmd =None, interval=1, radio=None, speedtest_min_up=None, speedtest_min_dl=None, speedtest_max_ping=None, _debug_on=False, _exit_on_error=False, _exit_on_fail=False,): super().__init__(host, port, _local_realm=realm.Realm(host,port), _debug=_debug_on, _halt_on_error=_exit_on_error, _exit_on_fail=_exit_on_fail) self.ssid = ssid self.radio = radio self.upstream = upstream self.sta_list = sta_list self.security = security self.passwd = passwd self.number_template = number_template self.name_prefix = name_prefix self.test_duration = test_duration if (speedtest_min_up is not None): self.speedtest_min_up = float(speedtest_min_up) if (speedtest_min_dl is not None): self.speedtest_min_dl = float(speedtest_min_dl) if (speedtest_max_ping is not None): self.speedtest_max_ping = float(speedtest_max_ping) self.debug = _debug_on self.station_profile = self.local_realm.new_station_profile() self.generic_endps_profile = self.local_realm.new_generic_endp_profile() self.station_profile.lfclient_url = self.lfclient_url self.station_profile.ssid = self.ssid self.station_profile.ssid_pass = self.passwd, self.station_profile.security = self.security self.station_profile.number_template_ = self.number_template self.station_profile.mode = 0 self.generic_endps_profile.name = name_prefix self.generic_endps_profile.type = type self.generic_endps_profile.dest = dest self.generic_endps_profile.cmd = cmd self.generic_endps_profile.interval = interval def choose_ping_command(self): gen_results = self.json_get("generic/list?fields=name,last+results", debug_=self.debug) if self.debug: print(gen_results) if gen_results['endpoints'] is not None: for name in gen_results['endpoints']: for k, v in name.items(): if v['name'] in self.generic_endps_profile.created_endp and not v['name'].endswith('1'): if v['last results'] != "" and "Unreachable" not in v['last results']: return True, v['name'] else: return False, v['name'] def choose_lfcurl_command(self): return False, '' def choose_speedtest_command(self): gen_results = self.json_get("generic/list?fields=name,last+results", debug_=self.debug) if gen_results['endpoints'] is not None: for name in gen_results['endpoints']: for k, v in name.items(): if v['last results'] is not None and v['name'] in self.generic_endps_profile.created_endp and v['last results'] != '': last_results = json.loads(v['last results']) if last_results['download'] is None and last_results['upload'] is None and last_results['ping'] is None: return False, v['name'] elif last_results['download'] >= self.speedtest_min_dl and \ last_results['upload'] >= self.speedtest_min_up and \ last_results['ping'] <= self.speedtest_max_ping: return True, v['name'] def choose_generic_command(self): gen_results = self.json_get("generic/list?fields=name,last+results", debug_=self.debug) if (gen_results['endpoints'] is not None): for name in gen_results['endpoints']: for k, v in name.items(): if v['name'] in self.generic_endps_profile.created_endp and not v['name'].endswith('1'): if v['last results'] != "" and "not known" not in v['last results']: return True, v['name'] else: return False, v['name'] def start(self, print_pass=False, print_fail=False): self.station_profile.admin_up() temp_stas = [] for station in self.sta_list.copy(): temp_stas.append(self.local_realm.name_to_eid(station)[2]) if self.debug: pprint.pprint(self.station_profile.station_names) LFUtils.wait_until_ports_admin_up(base_url=self.lfclient_url, port_list=self.station_profile.station_names) if self.local_realm.wait_for_ip(temp_stas): self._pass("All stations got IPs") else: self._fail("Stations failed to get IPs") self.exit_fail() cur_time = datetime.datetime.now() passes = 0 expected_passes = 0 self.generic_endps_profile.start_cx() time.sleep(15) end_time = self.local_realm.parse_time("30s") + cur_time print("Starting Test...") result = False while cur_time < end_time: cur_time = datetime.datetime.now() if self.generic_endps_profile.type == "lfping": result = self.choose_ping_command() elif self.generic_endps_profile.type == "generic": result = self.choose_generic_command() elif self.generic_endps_profile.type == "lfcurl": result = self.choose_lfcurl_command() elif self.generic_endps_profile.type == "speedtest": result = self.choose_speedtest_command() elif self.generic_endps_profile.type == "iperf3": result = self.choose_iperf3_command() else: continue expected_passes += 1 # pprint.pprint(result) if result is not None: if result[0]: passes += 1 else: self._fail("%s Failed to ping %s " % (result[1], self.generic_endps_profile.dest)) break time.sleep(1) if passes == expected_passes: self._pass("PASS: All tests passed") def stop(self): print("Stopping Test...") self.generic_endps_profile.stop_cx() self.station_profile.admin_down() def build(self): self.station_profile.use_security(self.security, self.ssid, self.passwd) self.station_profile.set_number_template(self.number_template) print("Creating stations") self.station_profile.set_command_flag("add_sta", "create_admin_down", 1) self.station_profile.set_command_param("set_port", "report_timer", 1500) self.station_profile.set_command_flag("set_port", "rpt_timer", 1) self.station_profile.create(radio=self.radio, sta_names_=self.sta_list, debug=self.debug) self.generic_endps_profile.create(ports=self.station_profile.station_names, sleep_time=.5) self._pass("PASS: Station build finished") def cleanup(self, sta_list): self.generic_endps_profile.cleanup() self.station_profile.cleanup(sta_list) LFUtils.wait_until_ports_disappear(base_url=self.lfclient_url, port_list=sta_list, debug=self.debug) def main(): lfjson_port = 8080 parser = LFCliBase.create_basic_argparse( prog='test_generic.py', formatter_class=argparse.RawTextHelpFormatter, epilog='''Create generic endpoints and test for their ability to execute chosen commands\n''', description='''test_generic.py -------------------- Generic command example: python3 ./test_generic.py --mgr localhost (optional) --mgr_port 4122 (optional) --upstream_port eth1 (optional) --radio wiphy0 (required) --num_stations 3 (optional) --security {open|wep|wpa|wpa2|wpa3} (required) --ssid netgear (required) --passwd admin123 (required) --type lfping {generic|lfping|iperf3-client | speedtest | iperf3-server |lf_curl} (required) --dest 10.40.0.1 (required - also target for iperf3) --test_duration 2m --interval 1s --debug Example commands: LFPING: ./test_generic.py --mgr localhost --mgr_port 4122 --radio wiphy0 --num_stations 7 --ssid jedway-wpa2-x2048-4-1 --passwd jedway-wpa2-x2048-4-1 --type lfping --dest 10.40.0.1 --security wpa2 LFCURL (under construction): ./test_generic.py --mgr localhost --mgr_port 4122 --radio wiphy1 --num_stations 26 --ssid jedway-wpa2-x2048-4-1 --passwd jedway-wpa2-x2048-4-1 --security wpa2 --type lfcurl --dest 10.40.0.1 GENERIC: ./test_generic.py --mgr localhost--mgr_port 4122 --radio wiphy1 --num_stations 2 --ssid jedway-wpa2-x2048-4-1 --passwd jedway-wpa2-x2048-4-1 --security wpa2 --type generic SPEEDTEST: ./test_generic.py --mgr localhost --mgr_port 4122 --radio wiphy2 --num_stations 13 --ssid jedway-wpa2-x2048-4-1 --passwd jedway-wpa2-x2048-4-1 --type speedtest --speedtest_min_up 20 --speedtest_min_dl 20 --speedtest_max_ping 150 --security wpa2 IPERF3 (under construction): ./test_generic.py --mgr localhost --mgr_port 4122 --radio wiphy1 --num_stations 3 --ssid jedway-wpa2-x2048-4-1 --passwd jedway-wpa2-x2048-4-1 --security wpa2 --type iperf3 ''') parser.add_argument('--type', help='type of command to run: generic, lfping, iperf3-client, iperf3-server, lfcurl', default="lfping") parser.add_argument('--cmd', help='specifies command to be run by generic type endp', default='') parser.add_argument('--dest', help='destination IP for command', default="10.40.0.1") parser.add_argument('--test_duration', help='duration of the test eg: 30s, 2m, 4h', default="2m") parser.add_argument('--interval', help='interval to use when running lfping (1s, 1m)', default=1) parser.add_argument('--speedtest_min_up', help='sets the minimum upload threshold for the speedtest type', default=None) parser.add_argument('--speedtest_min_dl', help='sets the minimum download threshold for the speedtest type', default=None) parser.add_argument('--speedtest_max_ping', help='sets the minimum ping threshold for the speedtest type', default=None) args = parser.parse_args() num_sta = 2 if (args.num_stations is not None) and (int(args.num_stations) > 0): num_stations_converted = int(args.num_stations) num_sta = num_stations_converted station_list = LFUtils.portNameSeries(radio=args.radio, prefix_="sta", start_id_=0, end_id_=num_sta-1, padding_number_=100) generic_test = GenTest(host=args.mgr, port=args.mgr_port, number_template="00", radio=args.radio, sta_list=station_list, name_prefix="GT", type=args.type, dest=args.dest, cmd=args.cmd, interval=1, ssid=args.ssid, upstream=args.upstream_port, passwd=args.passwd, security=args.security, test_duration=args.test_duration, speedtest_min_up=args.speedtest_min_up, speedtest_min_dl=args.speedtest_min_dl, speedtest_max_ping=args.speedtest_max_ping, _debug_on=args.debug) generic_test.cleanup(station_list) generic_test.build() if not generic_test.passes(): print(generic_test.get_fail_message()) generic_test.exit_fail() generic_test.start() if not generic_test.passes(): print(generic_test.get_fail_message()) generic_test.exit_fail() generic_test.stop() time.sleep(30) generic_test.cleanup(station_list) if generic_test.passes(): generic_test.exit_success() if __name__ == "__main__": main()
46.036364
194
0.620932
fb1e7f914e3409e305df1bdd927295deb9f9e84a
4,953
py
Python
cheque_management/api.py
cstkyrilos/cheque_management
d290a5ccda684bb1c7eaab2dcdd9dab7d0a1e4c7
[ "MIT" ]
null
null
null
cheque_management/api.py
cstkyrilos/cheque_management
d290a5ccda684bb1c7eaab2dcdd9dab7d0a1e4c7
[ "MIT" ]
null
null
null
cheque_management/api.py
cstkyrilos/cheque_management
d290a5ccda684bb1c7eaab2dcdd9dab7d0a1e4c7
[ "MIT" ]
1
2021-08-22T16:13:30.000Z
2021-08-22T16:13:30.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2017, Direction and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe, erpnext from frappe.utils import flt, cstr, nowdate, comma_and from frappe import throw, msgprint, _ def pe_before_submit(self, method): if self.mode_of_payment == "Cheque" and self.payment_type == "Receive": notes_acc = frappe.db.get_value("Company", self.company, "receivable_notes_account") if not notes_acc: frappe.throw(_("Receivable Notes Account not defined in the company setup page")) rec_acc = frappe.db.get_value("Company", self.company, "default_receivable_account") if not rec_acc: frappe.throw(_("Default Receivable Account not defined in the company setup page")) self.db_set("paid_to", notes_acc) self.db_set("paid_from", rec_acc) if self.mode_of_payment == "Cheque" and self.payment_type == "Pay": notes_acc = frappe.db.get_value("Company", self.company, "payable_notes_account") if not notes_acc: frappe.throw(_("Payable Notes Account not defined in the company setup page")) rec_acc = frappe.db.get_value("Company", self.company, "default_payable_account") if not rec_acc: frappe.throw(_("Default Payable Account not defined in the company setup page")) self.db_set("paid_from", notes_acc) self.db_set("paid_to", rec_acc) def pe_on_submit(self, method): hh_currency = erpnext.get_company_currency(self.company) if self.mode_of_payment == "Cheque" and self.paid_from_account_currency != hh_currency: frappe.throw(_("You cannot use foreign currencies with Mode of Payment Cheque")) if self.mode_of_payment == "Cheque" and self.paid_to_account_currency != hh_currency: frappe.throw(_("You cannot use foreign currencies with Mode of Payment Cheque")) if self.mode_of_payment == "Cheque" and self.payment_type == "Receive": notes_acc = frappe.db.get_value("Company", self.company, "receivable_notes_account") if not notes_acc: frappe.throw(_("Receivable Notes Account not defined in the company setup page")) self.db_set("paid_to", notes_acc) rec_acc = frappe.db.get_value("Company", self.company, "default_receivable_account") if not rec_acc: frappe.throw(_("Default Receivable Account not defined in the company setup page")) rc = frappe.new_doc("Receivable Cheques") rc.cheque_no = self.reference_no rc.cheque_date = self.reference_date rc.customer = self.party rc.company = self.company rc.payment_entry = self.name if self.project: rc.project = self.project rc.currency = hh_currency rc.amount = self.base_received_amount rc.exchange_rate = 1 rc.remarks = self.remarks #rc.cheque_status = 1 rc.set("status_history", [ { "status": "Cheque Received", "transaction_date": nowdate(), "credit_account": rec_acc, "debit_account": notes_acc } ]) rc.insert(ignore_permissions=True) rc.submit() message = """<a href="#Form/Receivable Cheques/%s" target="_blank">%s</a>""" % (rc.name, rc.name) msgprint(_("Receivable Cheque {0} created").format(comma_and(message))) if self.mode_of_payment == "Cheque" and self.payment_type == "Pay": notes_acc = frappe.db.get_value("Company", self.company, "payable_notes_account") if not notes_acc: frappe.throw(_("Payable Notes Account not defined in the company setup page")) self.db_set("paid_from", notes_acc) rec_acc = frappe.db.get_value("Company", self.company, "default_payable_account") if not rec_acc: frappe.throw(_("Default Payable Account not defined in the company setup page")) pc = frappe.new_doc("Payable Cheques") pc.cheque_no = self.reference_no pc.cheque_date = self.reference_date pc.party_type = self.party_type pc.party = self.party pc.company = self.company pc.payment_entry = self.name if self.project: pc.project = self.project pc.currency = hh_currency pc.amount = self.base_paid_amount pc.exchange_rate = 1 pc.remarks = self.remarks #pc.cheque_status = 1 pc.set("status_history", [ { "status": "Cheque Issued", "transaction_date": nowdate(), "credit_account": notes_acc, "debit_account": rec_acc } ]) pc.insert(ignore_permissions=True) pc.submit() message = """<a href="#Form/Payable Cheques/%s" target="_blank">%s</a>""" % (pc.name, pc.name) msgprint(_("Payable Cheque {0} created").format(comma_and(message))) def pe_on_cancel(self, method): if frappe.db.sql("""select name from `tabReceivable Cheques` where payment_entry=%s and docstatus<>2 and not cheque_status in ("Cheque Cancelled","Cheque Rejected")""" , (self.name)): frappe.throw(_("Cannot Cancel this Payment Entry as it is Linked with Receivable Cheque")) if frappe.db.sql("""select name from `tabPayable Cheques` where payment_entry=%s and docstatus<>2 and cheque_status<>'Cheque Cancelled'""" , (self.name)): frappe.throw(_("Cannot Cancel this Payment Entry as it is Linked with Payable Cheque")) return
43.831858
102
0.732889
d988acf8e010a32416ff96bc7831aab1c3a79e14
3,283
py
Python
config/settings.py
mpita/ox
04910527c6502c97b87010f833b0ac11294103bd
[ "MIT" ]
null
null
null
config/settings.py
mpita/ox
04910527c6502c97b87010f833b0ac11294103bd
[ "MIT" ]
1
2020-10-17T00:52:01.000Z
2020-10-23T23:42:27.000Z
config/settings.py
mpita/ox
04910527c6502c97b87010f833b0ac11294103bd
[ "MIT" ]
null
null
null
""" Django settings for config project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import environ # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent env = environ.Env() environ.Env.read_env() # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env("DJANGO_SECRET_KEY", default="<Your-secret-key>") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DJANGO_DEBUG", False) ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", # THIRD APPS "versatileimagefield", # LOCAL APPS "apps.account.apps.AccountConfig", ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "config.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "config.wsgi.application" # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": BASE_DIR / "db.sqlite3", } } AUTH_USER_MODEL = "account.User" # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = "/static/"
25.061069
91
0.697228
1c17d1a795ad8df50e9817d4e3cd96d147ea8e45
6,313
py
Python
homeassistant/components/notify/__init__.py
EmitKiwi/home-assistant
0999e2ddc476f4bddf710005168b082f03a7cdc0
[ "Apache-2.0" ]
4
2019-05-14T20:33:43.000Z
2021-09-25T14:56:08.000Z
homeassistant/components/notify/__init__.py
EmitKiwi/home-assistant
0999e2ddc476f4bddf710005168b082f03a7cdc0
[ "Apache-2.0" ]
null
null
null
homeassistant/components/notify/__init__.py
EmitKiwi/home-assistant
0999e2ddc476f4bddf710005168b082f03a7cdc0
[ "Apache-2.0" ]
null
null
null
""" Provides functionality to notify people. For more details about this component, please refer to the documentation at https://home-assistant.io/components/notify/ """ import asyncio import logging import os from functools import partial import voluptuous as vol from homeassistant.setup import async_prepare_setup_platform from homeassistant.exceptions import HomeAssistantError from homeassistant.loader import bind_hass import homeassistant.helpers.config_validation as cv from homeassistant.config import load_yaml_config_file from homeassistant.const import CONF_NAME, CONF_PLATFORM from homeassistant.helpers import config_per_platform, discovery from homeassistant.util import slugify _LOGGER = logging.getLogger(__name__) # Platform specific data ATTR_DATA = 'data' # Text to notify user of ATTR_MESSAGE = 'message' # Target of the notification (user, device, etc) ATTR_TARGET = 'target' # Title of notification ATTR_TITLE = 'title' ATTR_TITLE_DEFAULT = "Home Assistant" DOMAIN = 'notify' SERVICE_NOTIFY = 'notify' PLATFORM_SCHEMA = vol.Schema({ vol.Required(CONF_PLATFORM): cv.string, vol.Optional(CONF_NAME): cv.string, }, extra=vol.ALLOW_EXTRA) NOTIFY_SERVICE_SCHEMA = vol.Schema({ vol.Required(ATTR_MESSAGE): cv.template, vol.Optional(ATTR_TITLE): cv.template, vol.Optional(ATTR_TARGET): vol.All(cv.ensure_list, [cv.string]), vol.Optional(ATTR_DATA): dict, }) @bind_hass def send_message(hass, message, title=None, data=None): """Send a notification message.""" info = { ATTR_MESSAGE: message } if title is not None: info[ATTR_TITLE] = title if data is not None: info[ATTR_DATA] = data hass.services.call(DOMAIN, SERVICE_NOTIFY, info) @asyncio.coroutine def async_setup(hass, config): """Set up the notify services.""" descriptions = yield from hass.async_add_job( load_yaml_config_file, os.path.join(os.path.dirname(__file__), 'services.yaml')) targets = {} @asyncio.coroutine def async_setup_platform(p_type, p_config=None, discovery_info=None): """Set up a notify platform.""" if p_config is None: p_config = {} if discovery_info is None: discovery_info = {} platform = yield from async_prepare_setup_platform( hass, config, DOMAIN, p_type) if platform is None: _LOGGER.error("Unknown notification service specified") return _LOGGER.info("Setting up %s.%s", DOMAIN, p_type) notify_service = None try: if hasattr(platform, 'async_get_service'): notify_service = yield from \ platform.async_get_service(hass, p_config, discovery_info) elif hasattr(platform, 'get_service'): notify_service = yield from hass.async_add_job( platform.get_service, hass, p_config, discovery_info) else: raise HomeAssistantError("Invalid notify platform.") if notify_service is None: _LOGGER.error( "Failed to initialize notification service %s", p_type) return except Exception: # pylint: disable=broad-except _LOGGER.exception('Error setting up platform %s', p_type) return notify_service.hass = hass @asyncio.coroutine def async_notify_message(service): """Handle sending notification message service calls.""" kwargs = {} message = service.data[ATTR_MESSAGE] title = service.data.get(ATTR_TITLE) if title: title.hass = hass kwargs[ATTR_TITLE] = title.async_render() if targets.get(service.service) is not None: kwargs[ATTR_TARGET] = [targets[service.service]] elif service.data.get(ATTR_TARGET) is not None: kwargs[ATTR_TARGET] = service.data.get(ATTR_TARGET) message.hass = hass kwargs[ATTR_MESSAGE] = message.async_render() kwargs[ATTR_DATA] = service.data.get(ATTR_DATA) yield from notify_service.async_send_message(**kwargs) if hasattr(notify_service, 'targets'): platform_name = ( p_config.get(CONF_NAME) or discovery_info.get(CONF_NAME) or p_type) for name, target in notify_service.targets.items(): target_name = slugify('{}_{}'.format(platform_name, name)) targets[target_name] = target hass.services.async_register( DOMAIN, target_name, async_notify_message, descriptions.get(SERVICE_NOTIFY), schema=NOTIFY_SERVICE_SCHEMA) platform_name = ( p_config.get(CONF_NAME) or discovery_info.get(CONF_NAME) or SERVICE_NOTIFY) platform_name_slug = slugify(platform_name) hass.services.async_register( DOMAIN, platform_name_slug, async_notify_message, descriptions.get(SERVICE_NOTIFY), schema=NOTIFY_SERVICE_SCHEMA) return True setup_tasks = [async_setup_platform(p_type, p_config) for p_type, p_config in config_per_platform(config, DOMAIN)] if setup_tasks: yield from asyncio.wait(setup_tasks, loop=hass.loop) @asyncio.coroutine def async_platform_discovered(platform, info): """Handle for discovered platform.""" yield from async_setup_platform(platform, discovery_info=info) discovery.async_listen_platform(hass, DOMAIN, async_platform_discovered) return True class BaseNotificationService(object): """An abstract class for notification services.""" hass = None def send_message(self, message, **kwargs): """Send a message. kwargs can contain ATTR_TITLE to specify a title. """ raise NotImplementedError() def async_send_message(self, message, **kwargs): """Send a message. kwargs can contain ATTR_TITLE to specify a title. This method must be run in the event loop and returns a coroutine. """ return self.hass.async_add_job( partial(self.send_message, message, **kwargs))
31.723618
78
0.656423
3a3a8e1dc760993c607735e7aad62a78c98bba42
1,583
py
Python
src/pretalx/common/console.py
Hydro2shine/sprout
7dfa5e9fa0a7ef9157517ad0752e393599053873
[ "Apache-2.0" ]
null
null
null
src/pretalx/common/console.py
Hydro2shine/sprout
7dfa5e9fa0a7ef9157517ad0752e393599053873
[ "Apache-2.0" ]
null
null
null
src/pretalx/common/console.py
Hydro2shine/sprout
7dfa5e9fa0a7ef9157517ad0752e393599053873
[ "Apache-2.0" ]
null
null
null
BOLD = '\033[1m' RESET = '\033[0m' UD = '│' LR = '─' SEPARATORS = { (False, True, True, False): '┬', (True, False, False, True): '┴', (False, False, True, True): '┤', (True, True, False, False): '├', (False, True, False, True): '┼', (True, False, True, False): '┼', } def get_seperator(*args): """(upright, downright, downleft, upleft): Tuple[bool] -> seperator: str""" if sum(args) >= 3: return '┼' elif sum(args) == 1: return ('└', '┌', '┐', '┘')[args.index(True)] return SEPARATORS[tuple(args)] def start_box(size): try: print('┏' + '━' * size + '┓') except (UnicodeDecodeError, UnicodeEncodeError): print('-' * (size + 2)) def end_box(size): try: print('┗' + '━' * size + '┛') except (UnicodeDecodeError, UnicodeEncodeError): print('-' * (size + 2)) def print_line(string, box=False, bold=False, color=None, size=None): text_length = len(string) alt_string = string if bold: string = f'{BOLD}{string}{RESET}' if color: string = f'{color}{string}{RESET}' if box: if size: if text_length + 2 < size: string += ' ' * (size - text_length - 2) alt_string += ' ' * (size - text_length - 2) string = f'┃ {string} ┃' alt_string = f'| {string} |' try: print(string) except (UnicodeDecodeError, UnicodeEncodeError): try: print(alt_string) except (UnicodeDecodeError, UnicodeEncodeError): print('unprintable setting')
26.830508
79
0.527479
5e5aef57289562fa0af368906ed3a5a45c46f647
24
py
Python
__init__.py
poloarol/pathway-finder
a43616f581079b065074b5ecf9d20b725fee9ea3
[ "MIT" ]
1
2019-06-06T19:51:14.000Z
2019-06-06T19:51:14.000Z
__init__.py
poloarol/pathway-finder
a43616f581079b065074b5ecf9d20b725fee9ea3
[ "MIT" ]
1
2019-06-13T19:40:23.000Z
2019-06-13T19:40:23.000Z
__init__.py
poloarol/pathway-finder
a43616f581079b065074b5ecf9d20b725fee9ea3
[ "MIT" ]
null
null
null
name = 'pathway_finder'
12
23
0.75
925dd4e07d2bb09b1faa2fff4046a7ac8f15cafd
282
py
Python
tornado/sleep_task.py
dongweiming/speakerdeck
497352767a6ec57629f28d5c85f70bef38fc1914
[ "Apache-2.0" ]
6
2015-03-02T06:01:28.000Z
2016-06-03T09:55:34.000Z
tornado/sleep_task.py
dongweiming/speakerdeck
497352767a6ec57629f28d5c85f70bef38fc1914
[ "Apache-2.0" ]
null
null
null
tornado/sleep_task.py
dongweiming/speakerdeck
497352767a6ec57629f28d5c85f70bef38fc1914
[ "Apache-2.0" ]
5
2015-02-01T13:48:58.000Z
2018-11-27T02:10:59.000Z
import time from celery import Celery celery = Celery("tasks", broker="amqp://guest:guest@localhost:5672") celery.conf.CELERY_RESULT_BACKEND = "amqp" @celery.task def sleep(seconds): time.sleep(float(seconds)) return seconds if __name__ == "__main__": celery.start()
20.142857
68
0.72695
28685d31a768bbb31f2a2ef1fc5e4ba87c4c8dbf
2,398
py
Python
src/replaybuffer.py
sheelabhadra/Learning2Drive
f93cb5651c08b87b66b3f2ffc8a3512a9af73db4
[ "MIT" ]
6
2020-04-09T01:58:07.000Z
2021-12-10T23:24:13.000Z
src/replaybuffer.py
sheelabhadra/Learning2Drive
f93cb5651c08b87b66b3f2ffc8a3512a9af73db4
[ "MIT" ]
7
2019-12-28T07:26:43.000Z
2022-03-30T21:01:59.000Z
src/replaybuffer.py
sheelabhadra/Learning2Drive
f93cb5651c08b87b66b3f2ffc8a3512a9af73db4
[ "MIT" ]
2
2020-07-08T08:01:48.000Z
2022-01-06T06:05:43.000Z
""" Data structure for implementing experience replay """ from collections import deque, namedtuple import random import numpy as np Transition = namedtuple('Transition', ['state', 'action', 'reward', 'terminal', 'next_state']) class ReplayBuffer(object): def __init__(self, buffer_size, random_seed=1234): self.buffer_size = buffer_size self.count = 0 # Right side of deque contains newest experience self.buffer = deque() random.seed(random_seed) def add(self, state, action, reward, terminal, next_state): experience = Transition(state, action, reward, terminal, next_state) if self.count < self.buffer_size: self.buffer.append(experience) self.count += 1 else: self.buffer.popleft() self.buffer.append(experience) def size(self): return self.count def sample_batch(self, batch_size): batch = [] if self.count < batch_size: batch = random.sample(self.buffer, self.count) else: batch = random.sample(self.buffer, batch_size) return map(np.array, zip(*batch)) def clear(self): self.buffer.clear() self.count = 0 class ReplayBuffer2(object): def __init__(self, buffer_size, random_seed=1234): self.buffer_size = buffer_size self.count_positive = 0 self.count_negative = 0 self.buffer_positive = deque() self.buffer_negative = deque() random.seed(random_seed) def add(self, state, action, reward, terminal, next_state): experience = Transition(state, action, reward, terminal, next_state) if reward >= 0: if self.count_positive < self.buffer_size: self.buffer_positive.append(experience) self.count_positive += 1 else: self.buffer_positive.popleft() self.buffer_positive.append(experience) else: if self.count_negative < self.buffer_size: self.buffer_negative.append(experience) self.count_negative += 1 else: self.buffer_negative.popleft() self.buffer_negative.append(experience) def size(self): return self.count_negative + self.count_positive def sample_batch(self, batch_size): batch = []
31.142857
94
0.618015
1ff7cb94cb612116d0a7da5825f51c5bb086c3e6
65,783
py
Python
sympy/core/power.py
shubhsherl/sympy
b4f1aa3540fe68d078d76e78ba59d022dd6df39f
[ "BSD-3-Clause" ]
null
null
null
sympy/core/power.py
shubhsherl/sympy
b4f1aa3540fe68d078d76e78ba59d022dd6df39f
[ "BSD-3-Clause" ]
null
null
null
sympy/core/power.py
shubhsherl/sympy
b4f1aa3540fe68d078d76e78ba59d022dd6df39f
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function, division from math import log as _log from .sympify import _sympify from .cache import cacheit from .singleton import S from .expr import Expr from .evalf import PrecisionExhausted from .function import (_coeff_isneg, expand_complex, expand_multinomial, expand_mul) from .logic import fuzzy_bool, fuzzy_not, fuzzy_and from .compatibility import as_int, range from .parameters import global_parameters from sympy.utilities.iterables import sift from mpmath.libmp import sqrtrem as mpmath_sqrtrem from math import sqrt as _sqrt def isqrt(n): """Return the largest integer less than or equal to sqrt(n).""" if n < 0: raise ValueError("n must be nonnegative") n = int(n) # Fast path: with IEEE 754 binary64 floats and a correctly-rounded # math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n < # 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either # IEEE 754 format floats *or* correct rounding of math.sqrt, so check the # answer and fall back to the slow method if necessary. if n < 4503599761588224: s = int(_sqrt(n)) if 0 <= n - s*s <= 2*s: return s return integer_nthroot(n, 2)[0] def integer_nthroot(y, n): """ Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y). Examples ======== >>> from sympy import integer_nthroot >>> integer_nthroot(16, 2) (4, True) >>> integer_nthroot(26, 2) (5, False) To simply determine if a number is a perfect square, the is_square function should be used: >>> from sympy.ntheory.primetest import is_square >>> is_square(26) False See Also ======== sympy.ntheory.primetest.is_square integer_log """ y, n = as_int(y), as_int(n) if y < 0: raise ValueError("y must be nonnegative") if n < 1: raise ValueError("n must be positive") if y in (0, 1): return y, True if n == 1: return y, True if n == 2: x, rem = mpmath_sqrtrem(y) return int(x), not rem if n > y: return 1, False # Get initial estimate for Newton's method. Care must be taken to # avoid overflow try: guess = int(y**(1./n) + 0.5) except OverflowError: exp = _log(y, 2)/n if exp > 53: shift = int(exp - 53) guess = int(2.0**(exp - shift) + 1) << shift else: guess = int(2.0**exp) if guess > 2**50: # Newton iteration xprev, x = -1, guess while 1: t = x**(n - 1) xprev, x = x, ((n - 1)*x + y//t)//n if abs(x - xprev) < 2: break else: x = guess # Compensate t = x**n while t < y: x += 1 t = x**n while t > y: x -= 1 t = x**n return int(x), t == y # int converts long to int if possible def integer_log(y, x): r""" Returns ``(e, bool)`` where e is the largest nonnegative integer such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$. Examples ======== >>> from sympy import integer_log >>> integer_log(125, 5) (3, True) >>> integer_log(17, 9) (1, False) >>> integer_log(4, -2) (2, True) >>> integer_log(-125,-5) (3, True) See Also ======== integer_nthroot sympy.ntheory.primetest.is_square sympy.ntheory.factor_.multiplicity sympy.ntheory.factor_.perfect_power """ if x == 1: raise ValueError('x cannot take value as 1') if y == 0: raise ValueError('y cannot take value as 0') if x in (-2, 2): x = int(x) y = as_int(y) e = y.bit_length() - 1 return e, x**e == y if x < 0: n, b = integer_log(y if y > 0 else -y, -x) return n, b and bool(n % 2 if y < 0 else not n % 2) x = as_int(x) y = as_int(y) r = e = 0 while y >= x: d = x m = 1 while y >= d: y, rem = divmod(y, d) r = r or rem e += m if y > d: d *= d m *= 2 return e, r == 0 and y == 1 class Pow(Expr): """ Defines the expression x**y as "x raised to a power y" Singleton definitions involving (0, 1, -1, oo, -oo, I, -I): +--------------+---------+-----------------------------------------------+ | expr | value | reason | +==============+=========+===============================================+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. | +--------------+---------+-----------------------------------------------+ | z**1 | z | | +--------------+---------+-----------------------------------------------+ | (-oo)**(-1) | 0 | | +--------------+---------+-----------------------------------------------+ | (-1)**-1 | -1 | | +--------------+---------+-----------------------------------------------+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be | | | | undefined, but is convenient in some contexts | | | | where the base is assumed to be positive. | +--------------+---------+-----------------------------------------------+ | 1**-1 | 1 | | +--------------+---------+-----------------------------------------------+ | oo**-1 | 0 | | +--------------+---------+-----------------------------------------------+ | 0**oo | 0 | Because for all complex numbers z near | | | | 0, z**oo -> 0. | +--------------+---------+-----------------------------------------------+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be | | | | oscillating between positive and negative | | | | values or rotating in the complex plane. | | | | It is convenient, however, when the base | | | | is positive. | +--------------+---------+-----------------------------------------------+ | 1**oo | nan | Because there are various cases where | | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | | | | but lim( x(t)**y(t), t) != 1. See [3]. | +--------------+---------+-----------------------------------------------+ | b**zoo | nan | Because b**z has no limit as z -> zoo | +--------------+---------+-----------------------------------------------+ | (-1)**oo | nan | Because of oscillations in the limit. | | (-1)**(-oo) | | | +--------------+---------+-----------------------------------------------+ | oo**oo | oo | | +--------------+---------+-----------------------------------------------+ | oo**-oo | 0 | | +--------------+---------+-----------------------------------------------+ | (-oo)**oo | nan | | | (-oo)**-oo | | | +--------------+---------+-----------------------------------------------+ | oo**I | nan | oo**e could probably be best thought of as | | (-oo)**I | | the limit of x**e for real x as x tends to | | | | oo. If e is I, then the limit does not exist | | | | and nan is used to indicate that. | +--------------+---------+-----------------------------------------------+ | oo**(1+I) | zoo | If the real part of e is positive, then the | | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value | | | | is zoo. | +--------------+---------+-----------------------------------------------+ | oo**(-1+I) | 0 | If the real part of e is negative, then the | | -oo**(-1+I) | | limit is 0. | +--------------+---------+-----------------------------------------------+ Because symbolic computations are more flexible that floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits. See Also ======== sympy.core.numbers.Infinity sympy.core.numbers.NegativeInfinity sympy.core.numbers.NaN References ========== .. [1] https://en.wikipedia.org/wiki/Exponentiation .. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms """ is_Pow = True __slots__ = ['is_commutative'] @cacheit def __new__(cls, b, e, evaluate=None): if evaluate is None: evaluate = global_parameters.evaluate from sympy.functions.elementary.exponential import exp_polar b = _sympify(b) e = _sympify(e) # XXX: Maybe only Expr should be allowed... from sympy.core.relational import Relational if isinstance(b, Relational) or isinstance(e, Relational): raise TypeError('Relational can not be used in Pow') if evaluate: if e is S.ComplexInfinity: return S.NaN if e is S.Zero: return S.One elif e is S.One: return b elif e == -1 and not b: return S.ComplexInfinity # Only perform autosimplification if exponent or base is a Symbol or number elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\ e.is_integer and _coeff_isneg(b): if e.is_even: b = -b elif e.is_odd: return -Pow(-b, e) if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0 return S.NaN elif b is S.One: if abs(e).is_infinite: return S.NaN return S.One else: # recognize base as E if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar): from sympy import numer, denom, log, sign, im, factor_terms c, ex = factor_terms(e, sign=False).as_coeff_Mul() den = denom(ex) if isinstance(den, log) and den.args[0] == b: return S.Exp1**(c*numer(ex)) elif den.is_Add: s = sign(im(b)) if s.is_Number and s and den == \ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: return S.Exp1**(c*numer(ex)) obj = b._eval_power(e) if obj is not None: return obj obj = Expr.__new__(cls, b, e) obj = cls._exec_constructor_postprocessors(obj) if not isinstance(obj, Pow): return obj obj.is_commutative = (b.is_commutative and e.is_commutative) return obj @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @classmethod def class_key(cls): return 3, 2, cls.__name__ def _eval_refine(self, assumptions): from sympy.assumptions.ask import ask, Q b, e = self.as_base_exp() if ask(Q.integer(e), assumptions) and _coeff_isneg(b): if ask(Q.even(e), assumptions): return Pow(-b, e) elif ask(Q.odd(e), assumptions): return -Pow(-b, e) def _eval_power(self, other): from sympy import Abs, arg, exp, floor, im, log, re, sign b, e = self.as_base_exp() if b is S.NaN: return (b**e)**other # let __new__ handle it s = None if other.is_integer: s = 1 elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)... s = 1 elif e.is_extended_real is not None: # helper functions =========================== def _half(e): """Return True if the exponent has a literal 2 as the denominator, else None.""" if getattr(e, 'q', None) == 2: return True n, d = e.as_numer_denom() if n.is_integer and d == 2: return True def _n2(e): """Return ``e`` evaluated to a Number with 2 significant digits, else None.""" try: rv = e.evalf(2, strict=True) if rv.is_Number: return rv except PrecisionExhausted: pass # =================================================== if e.is_extended_real: # we need _half(other) with constant floor or # floor(S.Half - e*arg(b)/2/pi) == 0 # handle -1 as special case if e == -1: # floor arg. is 1/2 + arg(b)/2/pi if _half(other): if b.is_negative is True: return S.NegativeOne**other*Pow(-b, e*other) if b.is_extended_real is False: return Pow(b.conjugate()/Abs(b)**2, other) elif e.is_even: if b.is_extended_real: b = abs(b) if b.is_imaginary: b = abs(im(b))*S.ImaginaryUnit if (abs(e) < 1) == True or e == 1: s = 1 # floor = 0 elif b.is_extended_nonnegative: s = 1 # floor = 0 elif re(b).is_extended_nonnegative and (abs(e) < 2) == True: s = 1 # floor = 0 elif fuzzy_not(im(b).is_zero) and abs(e) == 2: s = 1 # floor = 0 elif _half(other): s = exp(2*S.Pi*S.ImaginaryUnit*other*floor( S.Half - e*arg(b)/(2*S.Pi))) if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None else: # e.is_extended_real is False requires: # _half(other) with constant floor or # floor(S.Half - im(e*log(b))/2/pi) == 0 try: s = exp(2*S.ImaginaryUnit*S.Pi*other* floor(S.Half - im(e*log(b))/2/S.Pi)) # be careful to test that s is -1 or 1 b/c sign(I) == I: # so check that s is real if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None except PrecisionExhausted: s = None if s is not None: return s*Pow(b, e*other) def _eval_Mod(self, q): r"""A dispatched function to compute `b^e \bmod q`, dispatched by ``Mod``. Notes ===== Algorithms: 1. For unevaluated integer power, use built-in ``pow`` function with 3 arguments, if powers are not too large wrt base. 2. For very large powers, use totient reduction if e >= lg(m). Bound on m, is for safe factorization memory wise ie m^(1/4). For pollard-rho to be faster than built-in pow lg(e) > m^(1/4) check is added. 3. For any unevaluated power found in `b` or `e`, the step 2 will be recursed down to the base and the exponent such that the `b \bmod q` becomes the new base and ``\phi(q) + e \bmod \phi(q)`` becomes the new exponent, and then the computation for the reduced expression can be done. """ from sympy.ntheory import totient from .mod import Mod base, exp = self.base, self.exp if exp.is_integer and exp.is_positive: if q.is_integer and base % q == 0: return S.Zero if base.is_Integer and exp.is_Integer and q.is_Integer: b, e, m = int(base), int(exp), int(q) mb = m.bit_length() if mb <= 80 and e >= mb and e.bit_length()**4 >= m: phi = totient(m) return Integer(pow(b, phi + e%phi, m)) return Integer(pow(b, e, m)) if isinstance(base, Pow) and base.is_integer and base.is_number: base = Mod(base, q) return Mod(Pow(base, exp, evaluate=False), q) if isinstance(exp, Pow) and exp.is_integer and exp.is_number: bit_length = int(q).bit_length() # XXX Mod-Pow actually attempts to do a hanging evaluation # if this dispatched function returns None. # May need some fixes in the dispatcher itself. if bit_length <= 80: phi = totient(q) exp = phi + Mod(exp, phi) return Mod(Pow(base, exp, evaluate=False), q) def _eval_is_even(self): if self.exp.is_integer and self.exp.is_positive: return self.base.is_even def _eval_is_negative(self): ext_neg = Pow._eval_is_extended_negative(self) if ext_neg is True: return self.is_finite return ext_neg def _eval_is_positive(self): ext_pos = Pow._eval_is_extended_positive(self) if ext_pos is True: return self.is_finite return ext_pos def _eval_is_extended_positive(self): from sympy import log if self.base == self.exp: if self.base.is_extended_nonnegative: return True elif self.base.is_positive: if self.exp.is_extended_real: return True elif self.base.is_extended_negative: if self.exp.is_even: return True if self.exp.is_odd: return False elif self.base.is_zero: if self.exp.is_extended_real: return self.exp.is_zero elif self.base.is_extended_nonpositive: if self.exp.is_odd: return False elif self.base.is_imaginary: if self.exp.is_integer: m = self.exp % 4 if m.is_zero: return True if m.is_integer and m.is_zero is False: return False if self.exp.is_imaginary: return log(self.base).is_imaginary def _eval_is_extended_negative(self): if self.base.is_extended_negative: if self.exp.is_odd and self.base.is_finite: return True if self.exp.is_even: return False elif self.base.is_extended_positive: if self.exp.is_extended_real: return False elif self.base.is_zero: if self.exp.is_extended_real: return False elif self.base.is_extended_nonnegative: if self.exp.is_extended_nonnegative: return False elif self.base.is_extended_nonpositive: if self.exp.is_even: return False elif self.base.is_extended_real: if self.exp.is_even: return False def _eval_is_zero(self): if self.base.is_zero: if self.exp.is_extended_positive: return True elif self.exp.is_extended_nonpositive: return False elif self.base.is_zero is False: if self.exp.is_negative: return self.base.is_infinite elif self.exp.is_nonnegative: return False elif self.exp.is_infinite: if (1 - abs(self.base)).is_extended_positive: return self.exp.is_extended_positive elif (1 - abs(self.base)).is_extended_negative: return self.exp.is_extended_negative else: # when self.base.is_zero is None return None def _eval_is_integer(self): b, e = self.args if b.is_rational: if b.is_integer is False and e.is_positive: return False # rat**nonneg if b.is_integer and e.is_integer: if b is S.NegativeOne: return True if e.is_nonnegative or e.is_positive: return True if b.is_integer and e.is_negative and (e.is_finite or e.is_integer): if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero): return False if b.is_Number and e.is_Number: check = self.func(*self.args) return check.is_Integer def _eval_is_extended_real(self): from sympy import arg, exp, log, Mul real_b = self.base.is_extended_real if real_b is None: if self.base.func == exp and self.base.args[0].is_imaginary: return self.exp.is_imaginary return real_e = self.exp.is_extended_real if real_e is None: return if real_b and real_e: if self.base.is_extended_positive: return True elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative: return True elif self.exp.is_integer and self.base.is_extended_nonzero: return True elif self.exp.is_integer and self.exp.is_nonnegative: return True elif self.base.is_extended_negative: if self.exp.is_Rational: return False if real_e and self.exp.is_extended_negative and self.base.is_zero is False: return Pow(self.base, -self.exp).is_extended_real im_b = self.base.is_imaginary im_e = self.exp.is_imaginary if im_b: if self.exp.is_integer: if self.exp.is_even: return True elif self.exp.is_odd: return False elif im_e and log(self.base).is_imaginary: return True elif self.exp.is_Add: c, a = self.exp.as_coeff_Add() if c and c.is_Integer: return Mul( self.base**c, self.base**a, evaluate=False).is_extended_real elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit): if (self.exp/2).is_integer is False: return False if real_b and im_e: if self.base is S.NegativeOne: return True c = self.exp.coeff(S.ImaginaryUnit) if c: if self.base.is_rational and c.is_rational: if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero: return False ok = (c*log(self.base)/S.Pi).is_integer if ok is not None: return ok if real_b is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi return i.is_integer def _eval_is_complex(self): if all(a.is_complex for a in self.args) and self._eval_is_finite(): return True def _eval_is_imaginary(self): from sympy import arg, log if self.base.is_imaginary: if self.exp.is_integer: odd = self.exp.is_odd if odd is not None: return odd return if self.exp.is_imaginary: imlog = log(self.base).is_imaginary if imlog is not None: return False # I**i -> real; (2*I)**i -> complex ==> not imaginary if self.base.is_extended_real and self.exp.is_extended_real: if self.base.is_positive: return False else: rat = self.exp.is_rational if not rat: return rat if self.exp.is_integer: return False else: half = (2*self.exp).is_integer if half: return self.base.is_negative return half if self.base.is_extended_real is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi isodd = (2*i).is_odd if isodd is not None: return isodd if self.exp.is_negative: return (1/self).is_imaginary def _eval_is_odd(self): if self.exp.is_integer: if self.exp.is_positive: return self.base.is_odd elif self.exp.is_nonnegative and self.base.is_odd: return True elif self.base is S.NegativeOne: return True def _eval_is_finite(self): if self.exp.is_negative: if self.base.is_zero: return False if self.base.is_infinite or self.base.is_nonzero: return True c1 = self.base.is_finite if c1 is None: return c2 = self.exp.is_finite if c2 is None: return if c1 and c2: if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero): return True def _eval_is_prime(self): ''' An integer raised to the n(>=2)-th power cannot be a prime. ''' if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive: return False def _eval_is_composite(self): """ A power is composite if both base and exponent are greater than 1 """ if (self.base.is_integer and self.exp.is_integer and ((self.base - 1).is_positive and (self.exp - 1).is_positive or (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)): return True def _eval_is_polar(self): return self.base.is_polar def _eval_subs(self, old, new): from sympy import exp, log, Symbol def _check(ct1, ct2, old): """Return (bool, pow, remainder_pow) where, if bool is True, then the exponent of Pow `old` will combine with `pow` so the substitution is valid, otherwise bool will be False. For noncommutative objects, `pow` will be an integer, and a factor `Pow(old.base, remainder_pow)` needs to be included. If there is no such factor, None is returned. For commutative objects, remainder_pow is always None. cti are the coefficient and terms of an exponent of self or old In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y) will give y**2 since (b**x)**2 == b**(2*x); if that equality does not hold then the substitution should not occur so `bool` will be False. """ coeff1, terms1 = ct1 coeff2, terms2 = ct2 if terms1 == terms2: if old.is_commutative: # Allow fractional powers for commutative objects pow = coeff1/coeff2 try: as_int(pow, strict=False) combines = True except ValueError: combines = isinstance(Pow._eval_power( Pow(*old.as_base_exp(), evaluate=False), pow), (Pow, exp, Symbol)) return combines, pow, None else: # With noncommutative symbols, substitute only integer powers if not isinstance(terms1, tuple): terms1 = (terms1,) if not all(term.is_integer for term in terms1): return False, None, None try: # Round pow toward zero pow, remainder = divmod(as_int(coeff1), as_int(coeff2)) if pow < 0 and remainder != 0: pow += 1 remainder -= as_int(coeff2) if remainder == 0: remainder_pow = None else: remainder_pow = Mul(remainder, *terms1) return True, pow, remainder_pow except ValueError: # Can't substitute pass return False, None, None if old == self.base: return new**self.exp._subs(old, new) # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2 if isinstance(old, self.func) and self.exp == old.exp: l = log(self.base, old.base) if l.is_Number: return Pow(new, l) if isinstance(old, self.func) and self.base == old.base: if self.exp.is_Add is False: ct1 = self.exp.as_independent(Symbol, as_Add=False) ct2 = old.exp.as_independent(Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2 result = self.func(new, pow) if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2)) oarg = old.exp new_l = [] o_al = [] ct2 = oarg.as_coeff_mul() for a in self.exp.args: newa = a._subs(old, new) ct1 = newa.as_coeff_mul() ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: new_l.append(new**pow) if remainder_pow is not None: o_al.append(remainder_pow) continue elif not old.is_commutative and not newa.is_integer: # If any term in the exponent is non-integer, # we do not do any substitutions in the noncommutative case return o_al.append(newa) if new_l: expo = Add(*o_al) new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base) return Mul(*new_l) if isinstance(old, exp) and self.exp.is_extended_real and self.base.is_positive: ct1 = old.args[0].as_independent(Symbol, as_Add=False) ct2 = (self.exp*log(self.base)).as_independent( Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result def as_base_exp(self): """Return base and exp of self. If base is 1/Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments Examples ======== >>> from sympy import Pow, S >>> p = Pow(S.Half, 2, evaluate=False) >>> p.as_base_exp() (2, -2) >>> p.args (1/2, 2) """ b, e = self.args if b.is_Rational and b.p == 1 and b.q != 1: return Integer(b.q), -e return b, e def _eval_adjoint(self): from sympy.functions.elementary.complexes import adjoint i, p = self.exp.is_integer, self.base.is_positive if i: return adjoint(self.base)**self.exp if p: return self.base**adjoint(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return adjoint(expanded) def _eval_conjugate(self): from sympy.functions.elementary.complexes import conjugate as c i, p = self.exp.is_integer, self.base.is_positive if i: return c(self.base)**self.exp if p: return self.base**c(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return c(expanded) if self.is_extended_real: return self def _eval_transpose(self): from sympy.functions.elementary.complexes import transpose i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite) if p: return self.base**self.exp if i: return transpose(self.base)**self.exp if i is False and p is False: expanded = expand_complex(self) if expanded != self: return transpose(expanded) def _eval_expand_power_exp(self, **hints): """a**(n + m) -> a**n*a**m""" b = self.base e = self.exp if e.is_Add and e.is_commutative: expr = [] for x in e.args: expr.append(self.func(self.base, x)) return Mul(*expr) return self.func(b, e) def _eval_expand_power_base(self, **hints): """(a*b)**n -> a**n * b**n""" force = hints.get('force', False) b = self.base e = self.exp if not b.is_Mul: return self cargs, nc = b.args_cnc(split_1=False) # expand each term - this is top-level-only # expansion but we have to watch out for things # that don't have an _eval_expand method if nc: nc = [i._eval_expand_power_base(**hints) if hasattr(i, '_eval_expand_power_base') else i for i in nc] if e.is_Integer: if e.is_positive: rv = Mul(*nc*e) else: rv = Mul(*[i**-1 for i in nc[::-1]]*-e) if cargs: rv *= Mul(*cargs)**e return rv if not cargs: return self.func(Mul(*nc), e, evaluate=False) nc = [Mul(*nc)] # sift the commutative bases other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False, binary=True) def pred(x): if x is S.ImaginaryUnit: return S.ImaginaryUnit polar = x.is_polar if polar: return True if polar is None: return fuzzy_bool(x.is_extended_nonnegative) sifted = sift(maybe_real, pred) nonneg = sifted[True] other += sifted[None] neg = sifted[False] imag = sifted[S.ImaginaryUnit] if imag: I = S.ImaginaryUnit i = len(imag) % 4 if i == 0: pass elif i == 1: other.append(I) elif i == 2: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) else: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) other.append(I) del imag # bring out the bases that can be separated from the base if force or e.is_integer: # treat all commutatives the same and put nc in other cargs = nonneg + neg + other other = nc else: # this is just like what is happening automatically, except # that now we are doing it for an arbitrary exponent for which # no automatic expansion is done assert not e.is_Integer # handle negatives by making them all positive and putting # the residual -1 in other if len(neg) > 1: o = S.One if not other and neg[0].is_Number: o *= neg.pop(0) if len(neg) % 2: o = -o for n in neg: nonneg.append(-n) if o is not S.One: other.append(o) elif neg and other: if neg[0].is_Number and neg[0] is not S.NegativeOne: other.append(S.NegativeOne) nonneg.append(-neg[0]) else: other.extend(neg) else: other.extend(neg) del neg cargs = nonneg other += nc rv = S.One if cargs: rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) if other: rv *= self.func(Mul(*other), e, evaluate=False) return rv def _eval_expand_multinomial(self, **hints): """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" base, exp = self.args result = self if exp.is_Rational and exp.p > 0 and base.is_Add: if not exp.is_Integer: n = Integer(exp.p // exp.q) if not n: return result else: radical, result = self.func(base, exp - n), [] expanded_base_n = self.func(base, n) if expanded_base_n.is_Pow: expanded_base_n = \ expanded_base_n._eval_expand_multinomial() for term in Add.make_args(expanded_base_n): result.append(term*radical) return Add(*result) n = int(exp) if base.is_commutative: order_terms, other_terms = [], [] for b in base.args: if b.is_Order: order_terms.append(b) else: other_terms.append(b) if order_terms: # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) f = Add(*other_terms) o = Add(*order_terms) if n == 2: return expand_multinomial(f**n, deep=False) + n*f*o else: g = expand_multinomial(f**(n - 1), deep=False) return expand_mul(f*g, deep=False) + n*g*o if base.is_number: # Efficiently expand expressions of the form (a + b*I)**n # where 'a' and 'b' are real numbers and 'n' is integer. a, b = base.as_real_imag() if a.is_Rational and b.is_Rational: if not a.is_Integer: if not b.is_Integer: k = self.func(a.q * b.q, n) a, b = a.p*b.q, a.q*b.p else: k = self.func(a.q, n) a, b = a.p, a.q*b elif not b.is_Integer: k = self.func(b.q, n) a, b = a*b.q, b.p else: k = 1 a, b, c, d = int(a), int(b), 1, 0 while n: if n & 1: c, d = a*c - b*d, b*c + a*d n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 I = S.ImaginaryUnit if k == 1: return c + I*d else: return Integer(c)/k + I*d/k p = other_terms # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 # in this particular example: # p = [x,y]; n = 3 # so now it's easy to get the correct result -- we get the # coefficients first: from sympy import multinomial_coefficients from sympy.polys.polyutils import basic_from_dict expansion_dict = multinomial_coefficients(len(p), n) # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} # and now construct the expression. return basic_from_dict(expansion_dict, *p) else: if n == 2: return Add(*[f*g for f in base.args for g in base.args]) else: multi = (base**(n - 1))._eval_expand_multinomial() if multi.is_Add: return Add(*[f*g for f in base.args for g in multi.args]) else: # XXX can this ever happen if base was an Add? return Add(*[f*multi for f in base.args]) elif (exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q): return 1 / self.func(base, -exp)._eval_expand_multinomial() elif exp.is_Add and base.is_Number: # a + b a b # n --> n n , where n, a, b are Numbers coeff, tail = S.One, S.Zero for term in exp.args: if term.is_Number: coeff *= self.func(base, term) else: tail += term return coeff * self.func(base, tail) else: return result def as_real_imag(self, deep=True, **hints): from sympy import atan2, cos, im, re, sin from sympy.polys.polytools import poly if self.exp.is_Integer: exp = self.exp re_e, im_e = self.base.as_real_imag(deep=deep) if not im_e: return self, S.Zero a, b = symbols('a b', cls=Dummy) if exp >= 0: if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial(self.base**exp) if expr != self: return expr.as_real_imag() expr = poly( (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp else: mag = re_e**2 + im_e**2 re_e, im_e = re_e/mag, -im_e/mag if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp) if expr != self: return expr.as_real_imag() expr = poly((a + b)**-exp) # Terms with even b powers will be real r = [i for i in expr.terms() if not i[0][1] % 2] re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) # Terms with odd b powers will be imaginary r = [i for i in expr.terms() if i[0][1] % 4 == 1] im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) r = [i for i in expr.terms() if i[0][1] % 4 == 3] im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}), im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e})) elif self.exp.is_Rational: re_e, im_e = self.base.as_real_imag(deep=deep) if im_e.is_zero and self.exp is S.Half: if re_e.is_extended_nonnegative: return self, S.Zero if re_e.is_extended_nonpositive: return S.Zero, (-self.base)**self.exp # XXX: This is not totally correct since for x**(p/q) with # x being imaginary there are actually q roots, but # only a single one is returned from here. r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half) t = atan2(im_e, re_e) rp, tp = self.func(r, self.exp), t*self.exp return (rp*cos(tp), rp*sin(tp)) else: if deep: hints['complex'] = False expanded = self.expand(deep, **hints) if hints.get('ignore') == expanded: return None else: return (re(expanded), im(expanded)) else: return (re(self), im(self)) def _eval_derivative(self, s): from sympy import log dbase = self.base.diff(s) dexp = self.exp.diff(s) return self * (dexp * log(self.base) + dbase * self.exp/self.base) def _eval_evalf(self, prec): base, exp = self.as_base_exp() base = base._evalf(prec) if not exp.is_Integer: exp = exp._evalf(prec) if exp.is_negative and base.is_number and base.is_extended_real is False: base = base.conjugate() / (base * base.conjugate())._evalf(prec) exp = -exp return self.func(base, exp).expand() return self.func(base, exp) def _eval_is_polynomial(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return bool(self.base._eval_is_polynomial(syms) and self.exp.is_Integer and (self.exp >= 0)) else: return True def _eval_is_rational(self): # The evaluation of self.func below can be very expensive in the case # of integer**integer if the exponent is large. We should try to exit # before that if possible: if (self.exp.is_integer and self.base.is_rational and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))): return True p = self.func(*self.as_base_exp()) # in case it's unevaluated if not p.is_Pow: return p.is_rational b, e = p.as_base_exp() if e.is_Rational and b.is_Rational: # we didn't check that e is not an Integer # because Rational**Integer autosimplifies return False if e.is_integer: if b.is_rational: if fuzzy_not(b.is_zero) or e.is_nonnegative: return True if b == e: # always rational, even for 0**0 return True elif b.is_irrational: return e.is_zero def _eval_is_algebraic(self): def _is_one(expr): try: return (expr - 1).is_zero except ValueError: # when the operation is not allowed return False if self.base.is_zero or _is_one(self.base): return True elif self.exp.is_rational: if self.base.is_algebraic is False: return self.exp.is_zero if self.base.is_zero is False: if self.exp.is_nonzero: return self.base.is_algebraic elif self.base.is_algebraic: return True if self.exp.is_positive: return self.base.is_algebraic elif self.base.is_algebraic and self.exp.is_algebraic: if ((fuzzy_not(self.base.is_zero) and fuzzy_not(_is_one(self.base))) or self.base.is_integer is False or self.base.is_irrational): return self.exp.is_rational def _eval_is_rational_function(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_rational_function(syms) and \ self.exp.is_Integer else: return True def _eval_is_algebraic_expr(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_algebraic_expr(syms) and \ self.exp.is_Rational else: return True def _eval_rewrite_as_exp(self, base, expo, **kwargs): from sympy import exp, log, I, arg if base.is_zero or base.has(exp) or expo.has(exp): return base**expo if base.has(Symbol): # delay evaluation if expo is non symbolic # (as exp(x*log(5)) automatically reduces to x**5) return exp(log(base)*expo, evaluate=expo.has(Symbol)) else: return exp((log(abs(base)) + I*arg(base))*expo) def as_numer_denom(self): if not self.is_commutative: return self, S.One base, exp = self.as_base_exp() n, d = base.as_numer_denom() # this should be the same as ExpBase.as_numer_denom wrt # exponent handling neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) int_exp = exp.is_integer # the denominator cannot be separated from the numerator if # its sign is unknown unless the exponent is an integer, e.g. # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the # denominator is negative the numerator and denominator can # be negated and the denominator (now positive) separated. if not (d.is_extended_real or int_exp): n = base d = S.One dnonpos = d.is_nonpositive if dnonpos: n, d = -n, -d elif dnonpos is None and not int_exp: n = base d = S.One if neg_exp: n, d = d, n exp = -exp if exp.is_infinite: if n is S.One and d is not S.One: return n, self.func(d, exp) if n is not S.One and d is S.One: return self.func(n, exp), d return self.func(n, exp), self.func(d, exp) def matches(self, expr, repl_dict={}, old=False): expr = _sympify(expr) # special case, pattern = 1 and expr.exp can match to 0 if expr is S.One: d = repl_dict.copy() d = self.exp.matches(S.Zero, d) if d is not None: return d # make sure the expression to be matched is an Expr if not isinstance(expr, Expr): return None b, e = expr.as_base_exp() # special case number sb, se = self.as_base_exp() if sb.is_Symbol and se.is_Integer and expr: if e.is_rational: return sb.matches(b**(e/se), repl_dict) return sb.matches(expr**(1/se), repl_dict) d = repl_dict.copy() d = self.base.matches(b, d) if d is None: return None d = self.exp.xreplace(d).matches(e, d) if d is None: return Expr.matches(self, expr, repl_dict) return d def _eval_nseries(self, x, n, logx): # NOTE! This function is an important part of the gruntz algorithm # for computing limits. It has to return a generalized power # series with coefficients in C(log, log(x)). In more detail: # It has to return an expression # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i are # expressions involving only numbers, the log function, and log(x). from sympy import ceiling, collect, exp, log, O, Order, powsimp b, e = self.args if e.is_Integer: if e > 0: # positive integer powers are easy to expand, e.g.: # sin(x)**4 = (x - x**3/3 + ...)**4 = ... return expand_multinomial(self.func(b._eval_nseries(x, n=n, logx=logx), e), deep=False) elif e is S.NegativeOne: # this is also easy to expand using the formula: # 1/(1 + x) = 1 - x + x**2 - x**3 ... # so we need to rewrite base to the form "1 + x" nuse = n cf = 1 try: ord = b.as_leading_term(x) cf = Order(ord, x).getn() if cf and cf.is_Number: nuse = n + 2*ceiling(cf) else: cf = 1 except NotImplementedError: pass b_orig, prefactor = b, O(1, x) while prefactor.is_Order: nuse += 1 b = b_orig._eval_nseries(x, n=nuse, logx=logx) prefactor = b.as_leading_term(x) # express "rest" as: rest = 1 + k*x**l + ... + O(x**n) rest = expand_mul((b - prefactor)/prefactor) if rest.is_Order: return 1/prefactor + rest/prefactor + O(x**n, x) k, l = rest.leadterm(x) if l.is_Rational and l > 0: pass elif l.is_number and l > 0: l = l.evalf() elif l == 0: k = k.simplify() if k == 0: # if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to # factor the w**4 out using collect: return 1/collect(prefactor, x) else: raise NotImplementedError() else: raise NotImplementedError() if cf < 0: cf = S.One/abs(cf) try: dn = Order(1/prefactor, x).getn() if dn and dn < 0: pass else: dn = 0 except NotImplementedError: dn = 0 terms = [1/prefactor] for m in range(1, ceiling((n - dn + 1)/l*cf)): new_term = terms[-1]*(-rest) if new_term.is_Pow: new_term = new_term._eval_expand_multinomial( deep=False) else: new_term = expand_mul(new_term, deep=False) terms.append(new_term) terms.append(O(x**n, x)) return powsimp(Add(*terms), deep=True, combine='exp') else: # negative powers are rewritten to the cases above, for # example: # sin(x)**(-4) = 1/(sin(x)**4) = ... # and expand the denominator: nuse, denominator = n, O(1, x) while denominator.is_Order: denominator = (b**(-e))._eval_nseries(x, n=nuse, logx=logx) nuse += 1 if 1/denominator == self: return self # now we have a type 1/f(x), that we know how to expand return (1/denominator)._eval_nseries(x, n=n, logx=logx) if e.has(Symbol): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx) # see if the base is as simple as possible bx = b while bx.is_Pow and bx.exp.is_Rational: bx = bx.base if bx == x: return self # work for b(x)**e where e is not an Integer and does not contain x # and hopefully has no other symbols def e2int(e): """return the integer value (if possible) of e and a flag indicating whether it is bounded or not.""" n = e.limit(x, 0) infinite = n.is_infinite if not infinite: # XXX was int or floor intended? int used to behave like floor # so int(-Rational(1, 2)) returned -1 rather than int's 0 try: n = int(n) except TypeError: # well, the n is something more complicated (like 1 + log(2)) try: n = int(n.evalf()) + 1 # XXX why is 1 being added? except TypeError: pass # hope that base allows this to be resolved n = _sympify(n) return n, infinite order = O(x**n, x) ei, infinite = e2int(e) b0 = b.limit(x, 0) if infinite and (b0 is S.One or b0.has(Symbol)): # XXX what order if b0 is S.One: resid = (b - 1) if resid.is_positive: return S.Infinity elif resid.is_negative: return S.Zero raise ValueError('cannot determine sign of %s' % resid) return b0**ei if (b0 is S.Zero or b0.is_infinite): if infinite is not False: return b0**e # XXX what order if not ei.is_number: # if not, how will we proceed? raise ValueError( 'expecting numerical exponent but got %s' % ei) nuse = n - ei if e.is_extended_real and e.is_positive: lt = b.as_leading_term(x) # Try to correct nuse (= m) guess from: # (lt + rest + O(x**m))**e = # lt**e*(1 + rest/lt + O(x**m)/lt)**e = # lt**e + ... + O(x**m)*lt**(e - 1) = ... + O(x**n) try: cf = Order(lt, x).getn() nuse = ceiling(n - cf*(e - 1)) except NotImplementedError: pass bs = b._eval_nseries(x, n=nuse, logx=logx) terms = bs.removeO() if terms.is_Add: bs = terms lt = terms.as_leading_term(x) # bs -> lt + rest -> lt*(1 + (bs/lt - 1)) return ((self.func(lt, e) * self.func((bs/lt).expand(), e).nseries( x, n=nuse, logx=logx)).expand() + order) if bs.is_Add: from sympy import O # So, bs + O() == terms c = Dummy('c') res = [] for arg in bs.args: if arg.is_Order: arg = c*arg.expr res.append(arg) bs = Add(*res) rv = (bs**e).series(x).subs(c, O(1, x)) rv += order return rv rv = bs**e if terms != bs: rv += order return rv # either b0 is bounded but neither 1 nor 0 or e is infinite # b -> b0 + (b - b0) -> b0 * (1 + (b/b0 - 1)) o2 = order*(b0**-e) z = (b/b0 - 1) o = O(z, x) if o is S.Zero or o2 is S.Zero: infinite = True else: if o.expr.is_number: e2 = log(o2.expr*x)/log(x) else: e2 = log(o2.expr)/log(o.expr) n, infinite = e2int(e2) if infinite: # requested accuracy gives infinite series, # order is probably non-polynomial e.g. O(exp(-1/x), x). r = 1 + z else: l = [] g = None for i in range(n + 2): g = self._taylor_term(i, z, g) g = g.nseries(x, n=n, logx=logx) l.append(g) r = Add(*l) return expand_mul(r*b0**e) + order def _eval_as_leading_term(self, x): from sympy import exp, log if not self.exp.has(x): return self.func(self.base.as_leading_term(x), self.exp) return exp(self.exp * log(self.base)).as_leading_term(x) @cacheit def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e from sympy import binomial return binomial(self.exp, n) * self.func(x, n) def _sage_(self): return self.args[0]._sage_()**self.args[1]._sage_() def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> sqrt(4 + 4*sqrt(2)).as_content_primitive() (2, sqrt(1 + sqrt(2))) >>> sqrt(3 + 3*sqrt(2)).as_content_primitive() (1, sqrt(3)*sqrt(1 + sqrt(2))) >>> from sympy import expand_power_base, powsimp, Mul >>> from sympy.abc import x, y >>> ((2*x + 2)**2).as_content_primitive() (4, (x + 1)**2) >>> (4**((1 + y)/2)).as_content_primitive() (2, 4**(y/2)) >>> (3**((1 + y)/2)).as_content_primitive() (1, 3**((y + 1)/2)) >>> (3**((5 + y)/2)).as_content_primitive() (9, 3**((y + 1)/2)) >>> eq = 3**(2 + 2*x) >>> powsimp(eq) == eq True >>> eq.as_content_primitive() (9, 3**(2*x)) >>> powsimp(Mul(*_)) 3**(2*x + 2) >>> eq = (2 + 2*x)**y >>> s = expand_power_base(eq); s.is_Mul, s (False, (2*x + 2)**y) >>> eq.as_content_primitive() (1, (2*(x + 1))**y) >>> s = expand_power_base(_[1]); s.is_Mul, s (True, 2**y*(x + 1)**y) See docstring of Expr.as_content_primitive for more examples. """ b, e = self.as_base_exp() b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear)) ce, pe = e.as_content_primitive(radical=radical, clear=clear) if b.is_Rational: #e #= ce*pe #= ce*(h + t) #= ce*h + ce*t #=> self #= b**(ce*h)*b**(ce*t) #= b**(cehp/cehq)*b**(ce*t) #= b**(iceh + r/cehq)*b**(ce*t) #= b**(iceh)*b**(r/cehq)*b**(ce*t) #= b**(iceh)*b**(ce*t + r/cehq) h, t = pe.as_coeff_Add() if h.is_Rational: ceh = ce*h c = self.func(b, ceh) r = S.Zero if not c.is_Rational: iceh, r = divmod(ceh.p, ceh.q) c = self.func(b, iceh) return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) e = _keep_coeff(ce, pe) # b**e = (h*t)**e = h**e*t**e = c*m*t**e if e.is_Rational and b.is_Mul: h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive c, m = self.func(h, e).as_coeff_Mul() # so c is positive m, me = m.as_base_exp() if m is S.One or me == e: # probably always true # return the following, not return c, m*Pow(t, e) # which would change Pow into Mul; we let sympy # decide what to do by using the unevaluated Mul, e.g # should it stay as sqrt(2 + 2*sqrt(5)) or become # sqrt(2)*sqrt(1 + sqrt(5)) return c, self.func(_keep_coeff(m, t), e) return S.One, self.func(b, e) def is_constant(self, *wrt, **flags): expr = self if flags.get('simplify', True): expr = expr.simplify() b, e = expr.as_base_exp() bz = b.equals(0) if bz: # recalculate with assumptions in case it's unevaluated new = b**e if new != expr: return new.is_constant() econ = e.is_constant(*wrt) bcon = b.is_constant(*wrt) if bcon: if econ: return True bz = b.equals(0) if bz is False: return False elif bcon is None: return None return e.equals(0) def _eval_difference_delta(self, n, step): b, e = self.args if e.has(n) and not b.has(n): new_e = e.subs(n, n + step) return (b**(new_e - e) - 1) * self from .add import Add from .numbers import Integer from .mul import Mul, _keep_coeff from .symbol import Symbol, Dummy, symbols
37.397953
98
0.467872
e5ac9fe129b72c2c8d5c60b00b11734b8a533d67
3,277
py
Python
tests/contrib/operators/test_emr_add_steps_operator.py
RyanMagnusson/incubator-airflow
ad81412fba2e8510442db73d9c905cac5eed8ebd
[ "Apache-2.0" ]
2
2018-03-07T12:25:05.000Z
2018-03-19T01:00:10.000Z
tests/contrib/operators/test_emr_add_steps_operator.py
RyanMagnusson/incubator-airflow
ad81412fba2e8510442db73d9c905cac5eed8ebd
[ "Apache-2.0" ]
null
null
null
tests/contrib/operators/test_emr_add_steps_operator.py
RyanMagnusson/incubator-airflow
ad81412fba2e8510442db73d9c905cac5eed8ebd
[ "Apache-2.0" ]
1
2020-07-14T09:45:54.000Z
2020-07-14T09:45:54.000Z
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datetime import timedelta from mock import MagicMock, patch from airflow import DAG, configuration from airflow.contrib.operators.emr_add_steps_operator import EmrAddStepsOperator from airflow.models import TaskInstance from airflow.utils import timezone DEFAULT_DATE = timezone.datetime(2017, 1, 1) ADD_STEPS_SUCCESS_RETURN = { 'ResponseMetadata': { 'HTTPStatusCode': 200 }, 'StepIds': ['s-2LH3R5GW3A53T'] } class TestEmrAddStepsOperator(unittest.TestCase): # When _config = [{ 'Name': 'test_step', 'ActionOnFailure': 'CONTINUE', 'HadoopJarStep': { 'Jar': 'command-runner.jar', 'Args': [ '/usr/lib/spark/bin/run-example', '{{ macros.ds_add(ds, -1) }}', '{{ ds }}' ] } }] def setUp(self): configuration.load_test_config() args = { 'owner': 'airflow', 'start_date': DEFAULT_DATE } # Mock out the emr_client (moto has incorrect response) self.emr_client_mock = MagicMock() self.operator = EmrAddStepsOperator( task_id='test_task', job_flow_id='j-8989898989', aws_conn_id='aws_default', steps=self._config, dag=DAG('test_dag_id', default_args=args) ) def test_init(self): self.assertEqual(self.operator.job_flow_id, 'j-8989898989') self.assertEqual(self.operator.aws_conn_id, 'aws_default') def test_render_template(self): ti = TaskInstance(self.operator, DEFAULT_DATE) ti.render_templates() expected_args = [{ 'Name': 'test_step', 'ActionOnFailure': 'CONTINUE', 'HadoopJarStep': { 'Jar': 'command-runner.jar', 'Args': [ '/usr/lib/spark/bin/run-example', (DEFAULT_DATE - timedelta(days=1)).strftime("%Y-%m-%d"), DEFAULT_DATE.strftime("%Y-%m-%d"), ] } }] self.assertListEqual(self.operator.steps, expected_args) def test_execute_returns_step_id(self): self.emr_client_mock.add_job_flow_steps.return_value = ADD_STEPS_SUCCESS_RETURN # Mock out the emr_client creator emr_session_mock = MagicMock() emr_session_mock.client.return_value = self.emr_client_mock self.boto3_session_mock = MagicMock(return_value=emr_session_mock) with patch('boto3.session.Session', self.boto3_session_mock): self.assertEqual(self.operator.execute(None), ['s-2LH3R5GW3A53T']) if __name__ == '__main__': unittest.main()
31.509615
87
0.627708
ce0fe024420e5205c65baac06451da8fc0b538f3
2,777
py
Python
setup.py
jbcurtin/bert
956e1647b590ac13b679579231b085895778d807
[ "MIT" ]
2
2019-08-28T21:39:50.000Z
2019-12-17T10:53:28.000Z
setup.py
jbcurtin/bert
956e1647b590ac13b679579231b085895778d807
[ "MIT" ]
19
2019-09-04T21:19:12.000Z
2021-03-28T22:10:32.000Z
setup.py
jbcurtin/bert
956e1647b590ac13b679579231b085895778d807
[ "MIT" ]
1
2019-08-28T21:39:53.000Z
2019-08-28T21:39:53.000Z
import os import sys from setuptools import find_packages, setup # Hacky, but functional file_dir: str = os.path.dirname(__file__) bert_path: str = os.path.join(file_dir, 'bert') if not os.path.exists(bert_path): raise NotImplementedError sys.path.append(file_dir) import bert # Always reference code-origin # https://github.com/django/django/blob/master/setup.py#L7 CURRENT_PYTHON = sys.version_info[:2] REQUIRED_PYTHON = (3, 6) if CURRENT_PYTHON < REQUIRED_PYTHON: sys.stderr.write(""" ========================== Unsupported Python version ========================== This version of bert-etl requires Python {}.{}, but you're trying to install it on Python {}.{}. This may be because you are using a version of pip that doesn't understand the python_requires classifier. Make sure you have pip >= 9.0 and setuptools >= 24.2, then try again: $ python -m pip install --upgrade pip setuptools $ python -m pip install bert This will install the latest version of bert-etl which works on your version of Python """.format(*(REQUIRED_PYTHON + CURRENT_PYTHON))) sys.exit(1) EXCLUDE_FROM_PACKAGES = ['bert.bin'] version = '0.4.77' description = 'A microframework for simple ETL solutions' def read(fname): with open(os.path.join(os.path.dirname(__file__), fname)) as f: return f.read() setup( name='bert-etl', version=version, python_requires='>={}.{}'.format(*REQUIRED_PYTHON), url='https://github.com/jbcurtin/bert', author="Joseph Curtin <42@jbcurtin.io", author_email='bert@jbcurtin.io', description=description, long_description=read('README.md'), license='MIT', packages=find_packages(exclude=EXCLUDE_FROM_PACKAGES), include_package_data=True, scripts=[], install_requires=[ 'redis==3.3.5', 'marshmallow==2.19.5', 'boto3==1.9.251', 'pyyaml==5.1.2', 'GitPython==3.1.1', ], entry_points={ 'console_scripts': [ 'bert-example.py = bert.example.factory:run_from_cli', 'bert-deploy.py = bert.deploy.factory:run_from_cli', 'bert-runner.py = bert.runner.factory:run_from_cli', 'bert-secrets.py = bert.secrets.factory:run_from_cli', 'bert-roles.py = bert.roles.factory:run_from_cli', 'bert-debug.py = bert.debug.factory:run_from_cli', ] }, zip_safe=False, classifiers=[ 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3 :: Only', ], project_urls={} )
30.516484
68
0.656824
6c692ab9e6f916ef135ba2435de22443ab86b790
10,237
py
Python
requests_cache/backends/base.py
parkerhancock/requests-cache
e3ae526cba37a4ea2d8a48b05aaeff062847c644
[ "BSD-2-Clause" ]
1
2021-05-27T17:25:45.000Z
2021-05-27T17:25:45.000Z
requests_cache/backends/base.py
parkerhancock/requests-cache
e3ae526cba37a4ea2d8a48b05aaeff062847c644
[ "BSD-2-Clause" ]
null
null
null
requests_cache/backends/base.py
parkerhancock/requests-cache
e3ae526cba37a4ea2d8a48b05aaeff062847c644
[ "BSD-2-Clause" ]
null
null
null
import pickle import warnings from abc import ABC from collections import UserDict from collections.abc import MutableMapping from datetime import datetime from logging import getLogger from typing import Iterable, Iterator, Tuple, Union from ..cache_control import ExpirationTime from ..cache_keys import create_key, remove_ignored_params, url_to_key from ..models import AnyRequest, AnyResponse, CachedResponse from ..serializers import init_serializer # Specific exceptions that may be raised during deserialization DESERIALIZE_ERRORS = (AttributeError, ImportError, TypeError, ValueError, pickle.PickleError) ResponseOrKey = Union[CachedResponse, str] logger = getLogger(__name__) class BaseCache: """Base class for cache implementations, which can also be used as in-memory cache. See :ref:`advanced_usage:custom backends` for details on creating your own implementation. """ def __init__( self, *args, include_get_headers: bool = False, ignored_parameters: Iterable[str] = None, **kwargs, ): self.name: str = '' self.redirects: BaseStorage = DictStorage() self.responses: BaseStorage = DictStorage() self.include_get_headers = include_get_headers self.ignored_parameters = ignored_parameters @property def urls(self) -> Iterator[str]: """Get all URLs currently in the cache (excluding redirects)""" for response in self.values(): yield response.url def save_response(self, response: AnyResponse, key: str = None, expires: datetime = None): """Save response to cache Args: key: key for this response response: response to save expire_after: Time in seconds until this cache item should expire """ key = key or self.create_key(response.request) cached_response = CachedResponse.from_response(response, expires=expires) cached_response.request = remove_ignored_params(cached_response.request, self.ignored_parameters) self.responses[key] = cached_response def save_redirect(self, request: AnyRequest, response_key: str): """ Map a redirect request to a response. This makes it possible to associate many keys with a single response. Args: request: Request object for redirect URL response_key: Cache key which can be found in ``responses`` """ self.redirects[self.create_key(request)] = response_key def get_response(self, key: str, default=None) -> CachedResponse: """Retrieves response for `key` if it's stored in cache, otherwise returns `default` Args: key: Key of resource default: Value to return if `key` is not in cache """ try: if key not in self.responses: key = self.redirects[key] response = self.responses[key] response.reset() # In case response was in memory and content has already been read return response except KeyError: return default except DESERIALIZE_ERRORS as e: logger.error(f'Unable to deserialize response with key {key}: {str(e)}') logger.debug(e, exc_info=True) return default def delete(self, key: str): """Delete a response or redirect from the cache, as well any associated redirect history""" # If it's a response key, first delete any associated redirect history try: for r in self.responses[key].history: del self.redirects[create_key(r.request, self.ignored_parameters)] except (KeyError, *DESERIALIZE_ERRORS): pass # Then delete the response itself, or just the redirect if it's a redirect key for cache in [self.responses, self.redirects]: try: del cache[key] except KeyError: pass def delete_url(self, url: str): """Delete a cached response + redirects for ``GET <url>``""" self.delete(url_to_key(url, self.ignored_parameters)) def bulk_delete(self, keys: Iterable[str]): """Remove multiple responses and their associated redirects from the cache""" self.responses.bulk_delete(keys) # Remove any redirects that no longer point to an existing response invalid_redirects = [k for k, v in self.redirects.items() if v not in self.responses] self.redirects.bulk_delete(set(keys) | set(invalid_redirects)) def clear(self): """Delete all items from the cache""" logger.info('Clearing all items from the cache') self.responses.clear() self.redirects.clear() def remove_expired_responses(self, expire_after: ExpirationTime = None): """Remove expired and invalid responses from the cache, optionally with revalidation Args: expire_after: A new expiration time used to revalidate the cache """ logger.info( 'Removing expired responses.' + (f'Revalidating with: {expire_after}' if expire_after else '') ) keys_to_update = {} keys_to_delete = [] for key, response in self._get_valid_responses(delete=True): # If we're revalidating and it's not yet expired, update the cached item's expiration if expire_after is not None and not response.revalidate(expire_after): keys_to_update[key] = response if response.is_expired: keys_to_delete.append(key) # Delay updates & deletes until the end, to avoid conflicts with _get_valid_responses() logger.debug(f'Deleting {len(keys_to_delete)} expired responses') self.bulk_delete(keys_to_delete) if expire_after is not None: logger.debug(f'Updating {len(keys_to_update)} revalidated responses') for key, response in keys_to_update.items(): self.responses[key] = response def remove_old_entries(self, *args, **kwargs): msg = 'BaseCache.remove_old_entries() is deprecated; please use CachedSession.remove_expired_responses()' warnings.warn(DeprecationWarning(msg)) self.remove_expired_responses(*args, **kwargs) def create_key(self, request: AnyRequest, **kwargs) -> str: """Create a normalized cache key from a request object""" return create_key(request, self.ignored_parameters, self.include_get_headers, **kwargs) # type: ignore def has_key(self, key: str) -> bool: """Returns `True` if cache has `key`, `False` otherwise""" return key in self.responses or key in self.redirects def has_url(self, url: str) -> bool: """Returns `True` if cache has `url`, `False` otherwise. Works only for GET request urls""" return self.has_key(url_to_key(url, self.ignored_parameters)) # noqa: W601 def keys(self, check_expiry=False) -> Iterator[str]: """Get all cache keys for redirects and valid responses combined""" yield from self.redirects.keys() for key, _ in self._get_valid_responses(check_expiry=check_expiry): yield key def values(self, check_expiry=False) -> Iterator[CachedResponse]: """Get all valid response objects from the cache""" for _, response in self._get_valid_responses(check_expiry=check_expiry): yield response def response_count(self, check_expiry=False) -> int: """Get the number of responses in the cache, excluding invalid (unusable) responses. Can also optionally exclude expired responses. """ return len(list(self.values(check_expiry=check_expiry))) def _get_valid_responses( self, check_expiry=False, delete=False ) -> Iterator[Tuple[str, CachedResponse]]: """Get all responses from the cache, and skip (+ optionally delete) any invalid ones that can't be deserialized. Can also optionally check response expiry and exclude expired responses. """ invalid_keys = [] for key in self.responses.keys(): try: response = self.responses[key] if check_expiry and response.is_expired: invalid_keys.append(key) else: yield key, response except DESERIALIZE_ERRORS: invalid_keys.append(key) # Delay deletion until the end, to improve responsiveness when used as a generator if delete: logger.debug(f'Deleting {len(invalid_keys)} invalid/expired responses') self.bulk_delete(invalid_keys) def __str__(self): """Show a count of total **rows** currently stored in the backend. For performance reasons, this does not check for invalid or expired responses. """ return f'Total rows: {len(self.responses)} responses, {len(self.redirects)} redirects' def __repr__(self): return f'<{self.__class__.__name__}(name={self.name})>' class BaseStorage(MutableMapping, ABC): """Base class for backend storage implementations Args: secret_key: Optional secret key used to sign cache items for added security salt: Optional salt used to sign cache items serializer: Custom serializer that provides ``loads`` and ``dumps`` methods """ def __init__( self, serializer=None, **kwargs, ): self.serializer = init_serializer(serializer, **kwargs) logger.debug(f'Initializing {type(self).__name__} with serializer: {self.serializer}') def bulk_delete(self, keys: Iterable[str]): """Delete multiple keys from the cache. Does not raise errors for missing keys. This is a basic version that subclasses should override with a more efficient backend-specific version, if possible. """ for k in keys: try: del self[k] except KeyError: pass def __str__(self): return str(list(self.keys())) class DictStorage(UserDict, BaseStorage): """A basic dict wrapper class for non-persistent storage"""
40.462451
113
0.654196
598cc5c8bff3bf2e2aa26b77d5e292ba6b6145c1
522
py
Python
tests/core/test_bugzilla.py
moisesguimaraes/trellozilla
09779fbc29df5896c895aaa30e8a49ac57b7c1fc
[ "Apache-2.0" ]
2
2019-09-26T10:04:51.000Z
2021-01-28T16:18:31.000Z
tests/core/test_bugzilla.py
moisesguimaraes/trellozilla
09779fbc29df5896c895aaa30e8a49ac57b7c1fc
[ "Apache-2.0" ]
null
null
null
tests/core/test_bugzilla.py
moisesguimaraes/trellozilla
09779fbc29df5896c895aaa30e8a49ac57b7c1fc
[ "Apache-2.0" ]
1
2021-01-19T14:11:00.000Z
2021-01-19T14:11:00.000Z
import unittest from unittest import mock from trellozilla.core import bugzilla class TestBugzilla(unittest.TestCase): """Tests for `trellozilla.core.bugzilla`.""" def test_get_client_api(self): with mock.patch("bugzilla.Bugzilla") as trello_client_mock: conf_mock = mock.Mock() bugzilla.get_api_client(conf_mock) trello_client_mock.assert_called_once_with( conf_mock.bugzilla.url, api_key=conf_mock.bugzilla.api_key, )
26.1
67
0.666667
2ebc372b208427233b147f52a7f6450ab23534c5
1,832
py
Python
TestHelper.py
garethsb-sony/nmos-testing
2436972ff495c5942bb29cd0f440cb848eb04ccd
[ "Apache-2.0" ]
null
null
null
TestHelper.py
garethsb-sony/nmos-testing
2436972ff495c5942bb29cd0f440cb848eb04ccd
[ "Apache-2.0" ]
null
null
null
TestHelper.py
garethsb-sony/nmos-testing
2436972ff495c5942bb29cd0f440cb848eb04ccd
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2018 Riedel Communications GmbH & Co. KG # # Modifications Copyright 2018 British Broadcasting Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests def ordered(obj): if isinstance(obj, dict): return sorted((k, ordered(v)) for k, v in obj.items()) if isinstance(obj, list): return sorted(ordered(x) for x in obj) else: return obj def compare_json(json1, json2): """Compares two json objects for equality""" return ordered(json1) == ordered(json2) def do_request(method, url, data=None): """Perform a basic HTTP request with appropriate error handling""" try: s = requests.Session() req = None if data is not None: req = requests.Request(method, url, json=data) else: req = requests.Request(method, url) prepped = req.prepare() r = s.send(prepped) return True, r except requests.exceptions.Timeout: return False, "Connection timeout" except requests.exceptions.TooManyRedirects: return False, "Too many redirects" except requests.exceptions.ConnectionError as e: return False, str(e) except requests.exceptions.RequestException as e: return False, str(e)
33.309091
75
0.663755
af2016a00dc3d30cfb5968d422e424c20d19378e
3,181
py
Python
aliyun-python-sdk-ecs/aliyunsdkecs/request/v20140526/DescribePhysicalConnectionsRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-ecs/aliyunsdkecs/request/v20140526/DescribePhysicalConnectionsRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-ecs/aliyunsdkecs/request/v20140526/DescribePhysicalConnectionsRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkecs.endpoint import endpoint_data class DescribePhysicalConnectionsRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'DescribePhysicalConnections','ecs') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_ClientToken(self): return self.get_query_params().get('ClientToken') def set_ClientToken(self,ClientToken): self.add_query_param('ClientToken',ClientToken) def get_PageNumber(self): return self.get_query_params().get('PageNumber') def set_PageNumber(self,PageNumber): self.add_query_param('PageNumber',PageNumber) def get_PageSize(self): return self.get_query_params().get('PageSize') def set_PageSize(self,PageSize): self.add_query_param('PageSize',PageSize) def get_UserCidr(self): return self.get_query_params().get('UserCidr') def set_UserCidr(self,UserCidr): self.add_query_param('UserCidr',UserCidr) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_Filters(self): return self.get_query_params().get('Filters') def set_Filters(self,Filters): for i in range(len(Filters)): for j in range(len(Filters[i].get('Values'))): if Filters[i].get('Values')[j] is not None: self.add_query_param('Filter.' + str(i + 1) + '.Value.'+str(j + 1), Filters[i].get('Values')[j]) if Filters[i].get('Key') is not None: self.add_query_param('Filter.' + str(i + 1) + '.Key' , Filters[i].get('Key'))
34.956044
102
0.747564
1d6fd137c4cf79bd554ca6c1b04cc88669bfa909
20,667
py
Python
lmp/model/_rnn.py
shangrex/language-model-playground
d3aaf768f6cd57c5c2b263da46a36ffd23fcd51b
[ "Beerware" ]
9
2020-07-31T10:27:28.000Z
2021-12-23T05:58:03.000Z
lmp/model/_rnn.py
shangrex/language-model-playground
d3aaf768f6cd57c5c2b263da46a36ffd23fcd51b
[ "Beerware" ]
10
2020-07-28T05:32:52.000Z
2022-03-04T06:36:23.000Z
lmp/model/_rnn.py
shangrex/language-model-playground
d3aaf768f6cd57c5c2b263da46a36ffd23fcd51b
[ "Beerware" ]
20
2020-07-08T07:05:39.000Z
2021-09-22T07:20:46.000Z
r"""Vanilla RNN language model.""" import argparse from typing import ClassVar, Dict, List, Optional import torch import torch.nn as nn import torch.nn.functional as F from lmp.model._base import BaseModel from lmp.tknzr._base import BaseTknzr class RNNModel(BaseModel): r"""Vanilla RNN language model. Use ``self.loss_fn`` for training and use ``self.pred`` for inference. Both are depended on forward pass alogorithm ``self.forward``. Parameters ========== d_emb: int Token embedding dimension. Must be bigger than or equal to ``1``. d_hid: int Hidden dimension for Feed-Forward layers and RNN layers. Must be bigger than or equal to ``1``. kwargs: Dict, optional Useless parameter. Intently left for subclass parameters extension. n_hid_lyr: int Number of RNN layers. Must be bigger than or equal to ``1``. n_post_hid_lyr: int Number of Feed-Forward layers after RNN layers. All layers are paired with ReLU activatons except for the last one. Must be bigger than or equal to ``1``. n_pre_hid_lyr: int Number of Feed-Forward layers before RNN layers. All layers are paired with ReLU activatons. Must be bigger than or equal to ``1``. p_emb: float Dropout probability for token embeddings. Must satisfy ``0.0 <= p_emb <= 1.0``. p_hid: float Dropout probability for every hidden representations. Must satisfy ``0.0 <= p_hid <= 1.0``. tknzr: lmp.tknzr.BaseTknzr Tokenizer instance with attributes ``pad_tkid`` and ``vocab_size``. Attributes ========== emb: torch.nn.Embedding Token embedding lookup matrix. Use token ids to lookup token embeddings. emb_dp: torch.nn.Dropout Token embedding dropout. Drop embedding features with probability ``p_emb``. hid: torch.nn.RNN Vanilla RNN which encode temporal features. Each time step's hidden state depends on current input and previous hidden state. Dropout temporal features with probability ``p_hid`` if ``n_hid_lyr > 1``. model_name: ClassVar[str] Model name is ``RNN``. Used for command line argument parsing. post_hid: torch.nn.Sequential Rectified Feed-Forward layers which transform temporal features from hidden dimension ``d_hid`` to embedding dimension ``d_emb``. Drop rectified units with probability ``p_hid``. pre_hid: torch.nn.Sequential Rectified Feed-Forward layers which transform token embeddings from embedding dimension ``d_emb`` to hidden dimension ``d_hid``. Drop rectified units with probability ``p_hid``. """ model_name: ClassVar[str] = 'RNN' def __init__( self, *, d_emb: int, d_hid: int, n_hid_lyr: int, n_post_hid_lyr: int, n_pre_hid_lyr: int, p_emb: float, p_hid: float, tknzr: BaseTknzr, **kwargs: Optional[Dict], ): super().__init__() ####################################################################### # Required parameters section. ####################################################################### # --------------------------------------------------------------------- # Checking parameter `d_emb`. if not isinstance(d_emb, int): raise TypeError('`d_emb` must be an instance of `int`.') if d_emb < 1: raise ValueError('`d_emb` must be bigger than or equal to `1`.') # Finish checking parameter `d_emb`. # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Checking parameter `d_hid`. if not isinstance(d_hid, int): raise TypeError('`d_hid` must be an instance of `int`.') if d_hid < 1: raise ValueError('`d_hid` must be bigger than or equal to `1`.') # Finish checking parameter `d_hid`. # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Checking parameter `n_hid_lyr`. if not isinstance(n_hid_lyr, int): raise TypeError('`n_hid_lyr` must be an instance of `int`.') if n_hid_lyr < 1: raise ValueError( '`n_hid_lyr` must be bigger than or equal to `1`.') # Finish checking parameter `n_hid_lyr`. # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Checking parameter `n_post_hid_lyr`. if not isinstance(n_post_hid_lyr, int): raise TypeError('`n_post_hid_lyr` must be an instance of `int`.') if n_post_hid_lyr < 1: raise ValueError( '`n_post_hid_lyr` must be bigger than or equal to `1`.' ) # Finish checking parameter `n_post_hid_lyr`. # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Checking parameter `n_pre_hid_lyr`. if not isinstance(n_pre_hid_lyr, int): raise TypeError('`n_pre_hid_lyr` must be an instance of `int`.') if n_pre_hid_lyr < 1: raise ValueError( '`n_pre_hid_lyr` must be bigger than or equal to `1`.' ) # Finish checking parameter `n_pre_hid_lyr`. # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Checking parameter `p_emb`. if not isinstance(p_emb, float): raise TypeError('`p_emb` must be an instance of `float`.') if not (0.0 <= p_emb <= 1.0): raise ValueError( '`p_emb` must be in the range from `0.0` to `1.0`.' ) # Finish checking parameter `p_emb`. # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Checking parameter `p_hid`. if not isinstance(p_hid, float): raise TypeError('`p_hid` must be an instance of `float`.') if not (0.0 <= p_hid <= 1.0): raise ValueError( '`p_hid` must be in the range from `0.0` to `1.0`.' ) # Finish checking parameter `p_hid`. # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Checking parameter `tknzr`. if not isinstance(tknzr, BaseTknzr): raise TypeError('`tknzr` must be an instance of `BaseTknzr`.') # Finish checking parameter `tknzr`. # --------------------------------------------------------------------- # Token embedding layer. # Use token ids to lookup token embeddings. # Input tensor : Batch of token ids. # Input shape : `(B, S)`. # Input dtype : `torch.int64`. # Output tensor: Batch of token embeddings. # Output shape : `(B, S, E)`. # Output dtype : `torch.float32`. self.emb = nn.Embedding( num_embeddings=tknzr.vocab_size, embedding_dim=d_emb, padding_idx=tknzr.pad_tkid, ) # Token embedding dropout layer. # Drop embedding features with probability `p_emb`. # Input tensor : Output of `self.emb`. # Input shape : `(B, S, E)`. # Input dtype : `torch.float32`. # Output tensor: Batch of sparse token embeddings. # Output shape : `(B, S, E)`. # Output dtype : `torch.float32`. self.emb_dp = nn.Dropout(p=p_emb) # Rectified Feed-Forward layers which transform token embeddings from # embedding dimension `d_emb` to hidden dimension `d_hid`. # Drop rectified units with probability `p_hid`. # Input tensor : Output of `self.emb_dp`. # Input shape : `(B, S, E)`. # Input dtype : `torch.float32`. # Output tensor: Batch of sparse rectified token representation. # Output shape : `(B, S, H)`. # Output dtype : `torch.float32`. pre_hid: List[nn.Module] = [ nn.Linear(in_features=d_emb, out_features=d_hid), nn.ReLU(), nn.Dropout(p=p_hid), ] for _ in range(n_pre_hid_lyr - 1): pre_hid.append(nn.Linear(in_features=d_hid, out_features=d_hid)) pre_hid.append(nn.ReLU()) pre_hid.append(nn.Dropout(p=p_hid)) self.pre_hid = nn.Sequential(*pre_hid) # Vanilla RNN which encode temporal features. # Each time step's hidden state depends on current input and previous # hidden state. # Dropout temporal features if `n_hid_lyr > 1`. # Input tensor : Output of `self.pre_hid`. # Input shape : `(B, S, H)`. # Input dtype : `torch.float32`. # Output tensor: Batch of recurrent token hidden states. # Output shape : `(B, S, H)`. # Output dtype : `torch.float32`. self.hid: nn.Module if n_hid_lyr == 1: self.hid = nn.RNN( input_size=d_hid, hidden_size=d_hid, batch_first=True, ) else: self.hid = nn.RNN( input_size=d_hid, hidden_size=d_hid, num_layers=n_hid_lyr, dropout=p_hid, batch_first=True, ) # Rectified Feed-Forward layers which transform temporal features from # hidden dimension `d_hid` to embedding dimension `d_emb`. # Drop rectified units with probability `p_hid`. # Input tensor : Output of `self.hid`. # Input shape : `(B, S, H)`. # Input dtype : `torch.float32`. # Output tensor: Batch of sparse rectified next token embeddings. # Output shape : `(B, S, E)`. # Output dtype : `torch.float32`. post_hid: List[nn.Module] = [] for _ in range(n_post_hid_lyr - 1): post_hid.append(nn.Dropout(p=p_hid)) post_hid.append(nn.Linear(in_features=d_hid, out_features=d_hid)) post_hid.append(nn.ReLU()) post_hid.append(nn.Dropout(p=p_hid)) post_hid.append(nn.Linear(in_features=d_hid, out_features=d_emb)) self.post_hid = nn.Sequential(*post_hid) # Calculate cross entropy loss for all non-padding tokens. self.loss_ignore_padding = nn.CrossEntropyLoss( ignore_index=tknzr.pad_tkid ) def forward(self, batch_prev_tkids: torch.Tensor) -> torch.Tensor: r"""Perform forward pass. Forward pass algorithm is structured as follow: #. Input batch of previous token ids. (shape: ``(B, S)``) #. Use batch of previous token ids to perform token embeddings lookup on ``self.emb``. (shape: ``(B, S, E)``) #. Use ``self.emb_dp`` to drop some features in token embeddings. (shape: ``(B, S, E)``) #. Use ``self.pre_hid`` to transform token embeddings from embedding dimension ``E`` to hidden dimension ``H``. (shape: ``(B, S, H)``) #. Use ``self.hid`` to encode temporal features. (shape: ``(B, S, H)``) #. Use ``self.post_hid`` to transform temporal features from hidden dimension ``H`` to embedding dimension ``E``. (shape: ``(B, S, E)``) #. Find the most possible next token id in embedding matrix ``self.emb`` using inner product. This reduce parameters since we share weight on token embedding and output projection. (shape: ``(B, S, V)``) #. Return logits. Used with ``self.pred`` to convert logit into prediction. Used wtih ``self.loss_fn`` to perform optimization. (shape: ``(B, S, V)``) Parameters ========== batch_prev_tkids: torch.Tensor Batch of previous token ids encoded by :py:class:`lmp.tknzr.BaseTknzr` subclass instance. ``batch_prev_tkids`` has shape ``(B, S)`` and ``dtype == torch.int64``. Returns ======= torch.Tensor Next token logits for each token id in batch. Logits has shape ``(B, S, V)`` and ``dtype == torch.float32``. """ # Token embedding lookup. # Input shape: `(B, S)`. # Output shape: `(B, S, E)`. batch = self.emb(batch_prev_tkids) # Token embedding dropout. # Input shape: `(B, S, E)`. # Output shape: `(B, S, E)`. batch = self.emb_dp(batch) # Transform from embedding dimension to hidden dimension. # Input shape: `(B, S, E)`. # Output shape: `(B, S, H)`. batch = self.pre_hid(batch) # Encode temporal features. # Input shape: `(B, S, H)`. # Output shape: `(B, S, H)`. batch, _ = self.hid(batch) # Transform from hidden dimension to embedding dimension. # Input shape: `(B, S, H)`. # Output shape: `(B, S, E)`. batch = self.post_hid(batch) # Transform from embedding dimension to vocabulary dimension by # multiplying transpose of embedding matrix. # Reduce model parameters by sharing embedding matrix with output. # Input shape: `(B, S, E)`. # Output shape: `(B, S, V)`. return batch @ self.emb.weight.transpose(0, 1) def loss_fn( self, batch_next_tkids: torch.Tensor, batch_prev_tkids: torch.Tensor, ) -> torch.Tensor: r"""Calculate language model training loss. Use forward pass to get logits and then use cross-entropy to calculate next token prediction loss. Use teacher forcing to implement this method. Parameters ========== batch_next_tkids: torch.Tensor Prediction targets. Batch of next token ids encoded by :py:class:`lmp.tknzr.BaseTknzr` subclass instance. ``batch_next_tkids`` has same shape and ``dtype`` as ``batch_prev_tkids``. batch_prev_tkids: torch.Tensor Batch of previous token ids encoded by :py:class:`lmp.tknzr.BaseTknzr` subclass instance. ``batch_prev_tkids`` has shape ``(B, S)`` and ``dtype == torch.int64``. Returns ======= torch.Tensor Average next token prediction loss. Returned tensor has shape ``(1)`` and ``dtype == torch.float32``. """ # Forward pass. # Input shape: `(B, S)`. # Output shape: `(B, S, V)`. logits = self(batch_prev_tkids) # Reshape logits to calculate loss. # Input shape: `(B, S, V)`. # Output shape: `(BxS, V)`. logits = logits.reshape(-1, self.emb.num_embeddings) # Reshape target to calculate loss. # Input shape: `(B, S)`. # Output shape: `(BxS)`. batch_next_tkids = batch_next_tkids.reshape(-1) # Loss function of next token prediction. # All logits are used since we use teacher forcing to optimize. # Logits tensor: Batch of next token prediction logits. # Logits shape : `(BxS, V)`. # Logits dtype : `torch.float32`. # Target tensor: Batch of next token prediction target. # Target shape : `(BxS)`. # Target dtype : `torch.int64`. # Output tensor: Average next tokens prediction loss. # Output shape : `(1)`. # Output dtype : `torch.float32`. return self.loss_ignore_padding(logits, batch_next_tkids) def pred(self, batch_prev_tkids: torch.Tensor) -> torch.Tensor: r"""Next token prediction. Use forward pass ouput logits to choose the most possible token id from vocabulary as next token. Parameters ========== batch_prev_tkids: torch.Tensor Batch of previous token ids encoded by :py:class:`lmp.tknzr.BaseTknzr` subclass instance. ``batch_prev_tkids`` has shape ``(B, S)`` and ``dtype == torch.int64``. Returns ======= torch.Tensor Softmax predicition for next token. Return tensor has shape ``(B, S, V)`` and ``dtype == torch.float32``. """ # Forward pass. # Input shape: `(B, S)`. # Output shape: `(B, S, V)`. logits = self(batch_prev_tkids) # Convert logits to probabilities using softmax. # Input tensor : Batch of next token prediction logits. # Input shape : `(B, S, V)`. # Input dtype : `torch.float32`. # Output tensor: Batch of next token prediction probabilities. # Output shape : `(B, S, V)`. # Output dtype : `torch.float32`. return F.softmax(logits, dim=-1) @staticmethod def train_parser(parser: argparse.ArgumentParser) -> None: r"""Training vanilla RNN language model CLI arguments parser. Parameters ========== parser: argparse.ArgumentParser Parser for CLI arguments. See Also ======== lmp.model.BaseModel.train_parser Training language model CLI arguments. lmp.script.train_model Language model training script. Examples ======== >>> import argparse >>> from lmp.model import RNNModel >>> parser = argparse.ArgumentParser() >>> RNNModel.train_parser(parser) >>> args = parser.parse_args([ ... '--batch_size', '32', ... '--beta1', '0.9', ... '--beta2', '0.99', ... '--ckpt_step', '1000', ... '--dset_name', 'wikitext-2', ... '--eps', '1e-8', ... '--exp_name', 'my_exp', ... '--log_step', '200', ... '--lr', '1e-4', ... '--max_norm', '1', ... '--n_epoch', '10', ... '--tknzr_exp_name', 'my_tknzr_exp', ... '--ver', 'train', ... '--wd', '1e-2', ... '--d_emb', '100', ... '--d_hid', '300', ... '--n_hid_lyr', '2', ... '--n_post_hid_lyr', '1', ... '--n_pre_hid_lyr', '1', ... '--p_emb', '0.1', ... '--p_hid', '0.1', ... ]) >>> args.d_emb == 100 True >>> args.d_hid == 300 True >>> args.n_hid_lyr == 2 True >>> args.n_post_hid_lyr == 1 True >>> args.n_pre_hid_lyr == 1 True >>> args.p_emb == 0.1 True >>> args.p_hid == 0.1 True """ # Load common arguments. BaseModel.train_parser(parser=parser) # Required arguments. group = parser.add_argument_group('model arguments') group.add_argument( '--d_emb', help='Token embedding dimension.', required=True, type=int, ) group.add_argument( '--d_hid', help='Hidden dimension for Feed-Forward layers and RNN layers.', required=True, type=int, ) group.add_argument( '--n_hid_lyr', help='Number of RNN layers.', required=True, type=int, ) group.add_argument( '--n_post_hid_lyr', help='Number of Feed-Forward layers after RNN layers.', required=True, type=int, ) group.add_argument( '--n_pre_hid_lyr', help='Number of Feed-Forward layers before RNN layers.', required=True, type=int, ) group.add_argument( '--p_emb', help='Dropout probability for token embeddings.', required=True, type=float, ) group.add_argument( '--p_hid', help='Dropout probability for hidden representation.', required=True, type=float, )
36.578761
79
0.515217
80885fd9ef1392e5c4fcc253964789d5546497fb
326,332
py
Python
pandas/core/generic.py
Web-Application-Project/Main-Project
9183396ec9ab660a49bc6bd41cfd2bbc98f54db7
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/generic.py
Web-Application-Project/Main-Project
9183396ec9ab660a49bc6bd41cfd2bbc98f54db7
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/generic.py
Web-Application-Project/Main-Project
9183396ec9ab660a49bc6bd41cfd2bbc98f54db7
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
# pylint: disable=W0231,E1101 import collections import functools import warnings import operator import weakref import gc import json import numpy as np import pandas as pd from pandas._libs import tslib, properties from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, is_scalar, is_number, is_integer, is_bool, is_bool_dtype, is_categorical_dtype, is_numeric_dtype, is_datetime64_dtype, is_timedelta64_dtype, is_datetime64tz_dtype, is_list_like, is_dict_like, is_re_compilable, is_period_arraylike, pandas_dtype) from pandas.core.dtypes.cast import maybe_promote, maybe_upcast_putmask from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core.dtypes.generic import ABCSeries, ABCPanel, ABCDataFrame from pandas.core.base import PandasObject, SelectionMixin from pandas.core.index import (Index, MultiIndex, _ensure_index, InvalidIndexError, RangeIndex) import pandas.core.indexing as indexing from pandas.core.indexing import maybe_convert_indices from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex, Period from pandas.core.internals import BlockManager import pandas.core.algorithms as algos import pandas.core.common as com import pandas.core.missing as missing from pandas.io.formats.printing import pprint_thing from pandas.io.formats.format import format_percentiles, DataFrameFormatter from pandas.tseries.frequencies import to_offset from pandas import compat from pandas.compat.numpy import function as nv from pandas.compat import (map, zip, lzip, lrange, string_types, to_str, isidentifier, set_function_name, cPickle as pkl) from pandas.core.ops import _align_method_FRAME import pandas.core.nanops as nanops from pandas.util._decorators import (Appender, Substitution, deprecate_kwarg) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core import config # goal is to be able to define the docs close to function, while still being # able to share _shared_docs = dict() _shared_doc_kwargs = dict( axes='keywords for axes', klass='NDFrame', axes_single_arg='int or labels for object', args_transpose='axes to permute (int or label for object)', optional_by=""" by : str or list of str Name or list of names to sort by""") def _single_replace(self, to_replace, method, inplace, limit): """ Replaces values in a Series using the fill method specified when no replacement value is given in the replace method """ if self.ndim != 1: raise TypeError('cannot replace {0} with method {1} on a {2}' .format(to_replace, method, type(self).__name__)) orig_dtype = self.dtype result = self if inplace else self.copy() fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if values.dtype == orig_dtype and inplace: return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result._data) return return result class NDFrame(PandasObject, SelectionMixin): """ N-dimensional analogue of DataFrame. Store multi-dimensional in a size-mutable, labeled data structure Parameters ---------- data : BlockManager axes : list copy : boolean, default False """ _internal_names = ['_data', '_cacher', '_item_cache', '_cache', '_is_copy', '_subtyp', '_name', '_index', '_default_kind', '_default_fill_value', '_metadata', '__array_struct__', '__array_interface__'] _internal_names_set = set(_internal_names) _accessors = frozenset([]) _deprecations = frozenset(['as_blocks', 'blocks', 'consolidate', 'convert_objects', 'is_copy']) _metadata = [] _is_copy = None def __init__(self, data, axes=None, copy=False, dtype=None, fastpath=False): if not fastpath: if dtype is not None: data = data.astype(dtype) elif copy: data = data.copy() if axes is not None: for i, ax in enumerate(axes): data = data.reindex_axis(ax, axis=i) object.__setattr__(self, '_is_copy', None) object.__setattr__(self, '_data', data) object.__setattr__(self, '_item_cache', {}) @property def is_copy(self): warnings.warn("Attribute 'is_copy' is deprecated and will be removed " "in a future version.", FutureWarning, stacklevel=2) return self._is_copy @is_copy.setter def is_copy(self, msg): warnings.warn("Attribute 'is_copy' is deprecated and will be removed " "in a future version.", FutureWarning, stacklevel=2) self._is_copy = msg def _repr_data_resource_(self): """ Not a real Jupyter special repr method, but we use the same naming convention. """ if config.get_option("display.html.table_schema"): data = self.head(config.get_option('display.max_rows')) payload = json.loads(data.to_json(orient='table'), object_pairs_hook=collections.OrderedDict) return payload def _validate_dtype(self, dtype): """ validate the passed dtype """ if dtype is not None: dtype = pandas_dtype(dtype) # a compound dtype if dtype.kind == 'V': raise NotImplementedError("compound dtypes are not implemented" " in the {0} constructor" .format(self.__class__.__name__)) return dtype def _init_mgr(self, mgr, axes=None, dtype=None, copy=False): """ passed a manager and a axes dict """ for a, axe in axes.items(): if axe is not None: mgr = mgr.reindex_axis(axe, axis=self._get_block_manager_axis(a), copy=False) # make a copy if explicitly requested if copy: mgr = mgr.copy() if dtype is not None: # avoid further copies if we can if len(mgr.blocks) > 1 or mgr.blocks[0].values.dtype != dtype: mgr = mgr.astype(dtype=dtype) return mgr # ---------------------------------------------------------------------- # Construction @property def _constructor(self): """Used when a manipulation result has the same dimensions as the original. """ raise com.AbstractMethodError(self) def __unicode__(self): # unicode representation based upon iterating over self # (since, by definition, `PandasContainers` are iterable) prepr = '[%s]' % ','.join(map(pprint_thing, self)) return '%s(%s)' % (self.__class__.__name__, prepr) def _dir_additions(self): """ add the string-like attributes from the info_axis. If info_axis is a MultiIndex, it's first level values are used. """ additions = {c for c in self._info_axis.unique(level=0)[:100] if isinstance(c, string_types) and isidentifier(c)} return super(NDFrame, self)._dir_additions().union(additions) @property def _constructor_sliced(self): """Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing. """ raise com.AbstractMethodError(self) @property def _constructor_expanddim(self): """Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() and DataFrame.to_panel() """ raise NotImplementedError # ---------------------------------------------------------------------- # Axis @classmethod def _setup_axes(cls, axes, info_axis=None, stat_axis=None, aliases=None, slicers=None, axes_are_reversed=False, build_axes=True, ns=None, docs=None): """Provide axes setup for the major PandasObjects. Parameters ---------- axes : the names of the axes in order (lowest to highest) info_axis_num : the axis of the selector dimension (int) stat_axis_num : the number of axis for the default stats (int) aliases : other names for a single axis (dict) slicers : how axes slice to others (dict) axes_are_reversed : boolean whether to treat passed axes as reversed (DataFrame) build_axes : setup the axis properties (default True) """ cls._AXIS_ORDERS = axes cls._AXIS_NUMBERS = {a: i for i, a in enumerate(axes)} cls._AXIS_LEN = len(axes) cls._AXIS_ALIASES = aliases or dict() cls._AXIS_IALIASES = {v: k for k, v in cls._AXIS_ALIASES.items()} cls._AXIS_NAMES = dict(enumerate(axes)) cls._AXIS_SLICEMAP = slicers or None cls._AXIS_REVERSED = axes_are_reversed # typ setattr(cls, '_typ', cls.__name__.lower()) # indexing support cls._ix = None if info_axis is not None: cls._info_axis_number = info_axis cls._info_axis_name = axes[info_axis] if stat_axis is not None: cls._stat_axis_number = stat_axis cls._stat_axis_name = axes[stat_axis] # setup the actual axis if build_axes: def set_axis(a, i): setattr(cls, a, properties.AxisProperty(i, docs.get(a, a))) cls._internal_names_set.add(a) if axes_are_reversed: m = cls._AXIS_LEN - 1 for i, a in cls._AXIS_NAMES.items(): set_axis(a, m - i) else: for i, a in cls._AXIS_NAMES.items(): set_axis(a, i) # addtl parms if isinstance(ns, dict): for k, v in ns.items(): setattr(cls, k, v) def _construct_axes_dict(self, axes=None, **kwargs): """Return an axes dictionary for myself.""" d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d @staticmethod def _construct_axes_dict_from(self, axes, **kwargs): """Return an axes dictionary for the passed axes.""" d = {a: ax for a, ax in zip(self._AXIS_ORDERS, axes)} d.update(kwargs) return d def _construct_axes_dict_for_slice(self, axes=None, **kwargs): """Return an axes dictionary for myself.""" d = {self._AXIS_SLICEMAP[a]: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d def _construct_axes_from_arguments(self, args, kwargs, require_all=False): """Construct and returns axes if supplied in args/kwargs. If require_all, raise if all axis arguments are not supplied return a tuple of (axes, kwargs). """ # construct the args args = list(args) for a in self._AXIS_ORDERS: # if we have an alias for this axis alias = self._AXIS_IALIASES.get(a) if alias is not None: if a in kwargs: if alias in kwargs: raise TypeError("arguments are mutually exclusive " "for [%s,%s]" % (a, alias)) continue if alias in kwargs: kwargs[a] = kwargs.pop(alias) continue # look for a argument by position if a not in kwargs: try: kwargs[a] = args.pop(0) except IndexError: if require_all: raise TypeError("not enough/duplicate arguments " "specified!") axes = {a: kwargs.pop(a, None) for a in self._AXIS_ORDERS} return axes, kwargs @classmethod def _from_axes(cls, data, axes, **kwargs): # for construction from BlockManager if isinstance(data, BlockManager): return cls(data, **kwargs) else: if cls._AXIS_REVERSED: axes = axes[::-1] d = cls._construct_axes_dict_from(cls, axes, copy=False) d.update(kwargs) return cls(data, **d) def _get_axis_number(self, axis): axis = self._AXIS_ALIASES.get(axis, axis) if is_integer(axis): if axis in self._AXIS_NAMES: return axis else: try: return self._AXIS_NUMBERS[axis] except KeyError: pass raise ValueError('No axis named {0} for object type {1}' .format(axis, type(self))) def _get_axis_name(self, axis): axis = self._AXIS_ALIASES.get(axis, axis) if isinstance(axis, string_types): if axis in self._AXIS_NUMBERS: return axis else: try: return self._AXIS_NAMES[axis] except KeyError: pass raise ValueError('No axis named {0} for object type {1}' .format(axis, type(self))) def _get_axis(self, axis): name = self._get_axis_name(axis) return getattr(self, name) def _get_block_manager_axis(self, axis): """Map the axis to the block_manager axis.""" axis = self._get_axis_number(axis) if self._AXIS_REVERSED: m = self._AXIS_LEN - 1 return m - axis return axis def _get_axis_resolvers(self, axis): # index or columns axis_index = getattr(self, axis) d = dict() prefix = axis[0] for i, name in enumerate(axis_index.names): if name is not None: key = level = name else: # prefix with 'i' or 'c' depending on the input axis # e.g., you must do ilevel_0 for the 0th level of an unnamed # multiiindex key = '{prefix}level_{i}'.format(prefix=prefix, i=i) level = i level_values = axis_index.get_level_values(level) s = level_values.to_series() s.index = axis_index d[key] = s # put the index/columns itself in the dict if isinstance(axis_index, MultiIndex): dindex = axis_index else: dindex = axis_index.to_series() d[axis] = dindex return d def _get_index_resolvers(self): d = {} for axis_name in self._AXIS_ORDERS: d.update(self._get_axis_resolvers(axis_name)) return d @property def _info_axis(self): return getattr(self, self._info_axis_name) @property def _stat_axis(self): return getattr(self, self._stat_axis_name) @property def shape(self): """Return a tuple of axis dimensions""" return tuple(len(self._get_axis(a)) for a in self._AXIS_ORDERS) @property def axes(self): """Return index label(s) of the internal NDFrame""" # we do it this way because if we have reversed axes, then # the block manager shows then reversed return [self._get_axis(a) for a in self._AXIS_ORDERS] @property def ndim(self): """ Return an int representing the number of axes / array dimensions. Return 1 if Series. Otherwise return 2 if DataFrame. See Also -------- ndarray.ndim Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.ndim 1 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.ndim 2 """ return self._data.ndim @property def size(self): """ Return an int representing the number of elements in this object. Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. See Also -------- ndarray.size Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.size 3 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.size 4 """ return np.prod(self.shape) @property def _selected_obj(self): """ internal compat with SelectionMixin """ return self @property def _obj_with_exclusions(self): """ internal compat with SelectionMixin """ return self def _expand_axes(self, key): new_axes = [] for k, ax in zip(key, self.axes): if k not in ax: if type(k) != ax.dtype.type: ax = ax.astype('O') new_axes.append(ax.insert(len(ax), k)) else: new_axes.append(ax) return new_axes def set_axis(self, labels, axis=0, inplace=None): """ Assign desired index to given axis. Indexes for column or row labels can be changed by assigning a list-like or Index. .. versionchanged:: 0.21.0 The signature is now `labels` and `axis`, consistent with the rest of pandas API. Previously, the `axis` and `labels` arguments were respectively the first and second positional arguments. Parameters ---------- labels : list-like, Index The values for the new index. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to update. The value 0 identifies the rows, and 1 identifies the columns. inplace : boolean, default None Whether to return a new %(klass)s instance. .. warning:: ``inplace=None`` currently falls back to to True, but in a future version, will default to False. Use inplace=True explicitly rather than relying on the default. Returns ------- renamed : %(klass)s or None An object of same type as caller if inplace=False, None otherwise. See Also -------- pandas.DataFrame.rename_axis : Alter the name of the index or columns. Examples -------- **Series** >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0, inplace=False) a 1 b 2 c 3 dtype: int64 The original object is not modified. >>> s 0 1 1 2 2 3 dtype: int64 **DataFrame** >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index', inplace=False) A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns', inplace=False) I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6 """ if is_scalar(labels): warnings.warn( 'set_axis now takes "labels" as first argument, and ' '"axis" as named parameter. The old form, with "axis" as ' 'first parameter and \"labels\" as second, is still supported ' 'but will be deprecated in a future version of pandas.', FutureWarning, stacklevel=2) labels, axis = axis, labels if inplace is None: warnings.warn( 'set_axis currently defaults to operating inplace.\nThis ' 'will change in a future version of pandas, use ' 'inplace=True to avoid this warning.', FutureWarning, stacklevel=2) inplace = True if inplace: setattr(self, self._get_axis_name(axis), labels) else: obj = self.copy() obj.set_axis(labels, axis=axis, inplace=True) return obj def _set_axis(self, axis, labels): self._data.set_axis(axis, labels) self._clear_item_cache() _shared_docs['transpose'] = """ Permute the dimensions of the %(klass)s Parameters ---------- args : %(args_transpose)s copy : boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy Examples -------- >>> p.transpose(2, 0, 1) >>> p.transpose(2, 0, 1, copy=True) Returns ------- y : same as input """ @Appender(_shared_docs['transpose'] % _shared_doc_kwargs) def transpose(self, *args, **kwargs): # construct the args axes, kwargs = self._construct_axes_from_arguments(args, kwargs, require_all=True) axes_names = tuple(self._get_axis_name(axes[a]) for a in self._AXIS_ORDERS) axes_numbers = tuple(self._get_axis_number(axes[a]) for a in self._AXIS_ORDERS) # we must have unique axes if len(axes) != len(set(axes)): raise ValueError('Must specify %s unique axes' % self._AXIS_LEN) new_axes = self._construct_axes_dict_from(self, [self._get_axis(x) for x in axes_names]) new_values = self.values.transpose(axes_numbers) if kwargs.pop('copy', None) or (len(args) and args[-1]): new_values = new_values.copy() nv.validate_transpose_for_generic(self, kwargs) return self._constructor(new_values, **new_axes).__finalize__(self) def swapaxes(self, axis1, axis2, copy=True): """ Interchange axes and swap values axes appropriately Returns ------- y : same as input """ i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if i == j: if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes).__finalize__(self) def pop(self, item): """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Column label to be popped Returns ------- popped : Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ result = self[item] del self[item] try: result._reset_cacher() except AttributeError: pass return result def squeeze(self, axis=None): """ Squeeze length 1 dimensions. Parameters ---------- axis : None, integer or string axis name, optional The axis to squeeze if 1-sized. .. versionadded:: 0.20.0 Returns ------- scalar if 1-sized, else original object """ axis = (self._AXIS_NAMES if axis is None else (self._get_axis_number(axis),)) try: return self.iloc[ tuple(0 if i in axis and len(a) == 1 else slice(None) for i, a in enumerate(self.axes))] except Exception: return self def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : type of caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ axis = self._get_axis_number(axis) result = self.copy() labels = result._data.axes[axis] result._data.set_axis(axis, labels.swaplevel(i, j)) return result # ---------------------------------------------------------------------- # Rename # TODO: define separate funcs for DataFrame, Series and Panel so you can # get completion on keyword arguments. _shared_docs['rename'] = """ Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value (Series only). Parameters ---------- %(optional_mapper)s %(axes)s : scalar, list-like, dict-like or function, optional Scalar or list-like will alter the ``Series.name`` attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis' values %(optional_axis)s copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new %(klass)s. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- renamed : %(klass)s (new object) See Also -------- pandas.NDFrame.rename_axis Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 Since ``DataFrame`` doesn't have a ``.name`` attribute, only mapping-type arguments are allowed. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(2) Traceback (most recent call last): ... TypeError: 'int' object is not callable ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 See the :ref:`user guide <basics.rename>` for more. """ @Appender(_shared_docs['rename'] % dict(axes='axes keywords for this' ' object', klass='NDFrame', optional_mapper='', optional_axis='')) def rename(self, *args, **kwargs): axes, kwargs = self._construct_axes_from_arguments(args, kwargs) copy = kwargs.pop('copy', True) inplace = kwargs.pop('inplace', False) level = kwargs.pop('level', None) axis = kwargs.pop('axis', None) if axis is not None: axis = self._get_axis_number(axis) if kwargs: raise TypeError('rename() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) if com._count_not_none(*axes.values()) == 0: raise TypeError('must pass an index to rename') # renamer function if passed a dict def _get_rename_function(mapper): if isinstance(mapper, (dict, ABCSeries)): def f(x): if x in mapper: return mapper[x] else: return x else: f = mapper return f self._consolidate_inplace() result = self if inplace else self.copy(deep=copy) # start in the axis order to eliminate too many copies for axis in lrange(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if v is None: continue f = _get_rename_function(v) baxis = self._get_block_manager_axis(axis) if level is not None: level = self.axes[axis]._get_level_number(level) result._data = result._data.rename_axis(f, axis=baxis, copy=copy, level=level) result._clear_item_cache() if inplace: self._update_inplace(result._data) else: return result.__finalize__(self) rename.__doc__ = _shared_docs['rename'] def rename_axis(self, mapper, axis=0, copy=True, inplace=False): """ Alter the name of the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set as the axis name attribute. axis : {0 or 'index', 1 or 'columns'}, default 0 The index or the name of the axis. copy : boolean, default True Also copy underlying data. inplace : boolean, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- renamed : Series, DataFrame, or None The same type as the caller or None if `inplace` is True. Notes ----- Prior to version 0.21.0, ``rename_axis`` could also be used to change the axis *labels* by passing a mapping or scalar. This behavior is deprecated and will be removed in a future version. Use ``rename`` instead. See Also -------- pandas.Series.rename : Alter Series index labels or name pandas.DataFrame.rename : Alter DataFrame index labels or name pandas.Index.rename : Set new names on index Examples -------- **Series** >>> s = pd.Series([1, 2, 3]) >>> s.rename_axis("foo") foo 0 1 1 2 2 3 dtype: int64 **DataFrame** >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename_axis("foo") A B foo 0 1 4 1 2 5 2 3 6 >>> df.rename_axis("bar", axis="columns") bar A B 0 1 4 1 2 5 2 3 6 """ inplace = validate_bool_kwarg(inplace, 'inplace') non_mapper = is_scalar(mapper) or (is_list_like(mapper) and not is_dict_like(mapper)) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: msg = ("Using 'rename_axis' to alter labels is deprecated. " "Use '.rename' instead") warnings.warn(msg, FutureWarning, stacklevel=2) axis = self._get_axis_name(axis) d = {'copy': copy, 'inplace': inplace} d[axis] = mapper return self.rename(**d) def _set_axis_name(self, name, axis=0, inplace=False): """ Alter the name or names of the axis. Parameters ---------- name : str or list of str Name for the Index, or list of names for the MultiIndex axis : int or str 0 or 'index' for the index; 1 or 'columns' for the columns inplace : bool whether to modify `self` directly or return a copy .. versionadded:: 0.21.0 Returns ------- renamed : type of caller or None if inplace=True See Also -------- pandas.DataFrame.rename pandas.Series.rename pandas.Index.rename Examples -------- >>> df._set_axis_name("foo") A foo 0 1 1 2 2 3 >>> df.index = pd.MultiIndex.from_product([['A'], ['a', 'b', 'c']]) >>> df._set_axis_name(["bar", "baz"]) A bar baz A a 1 b 2 c 3 """ axis = self._get_axis_number(axis) idx = self._get_axis(axis).set_names(name) inplace = validate_bool_kwarg(inplace, 'inplace') renamed = self if inplace else self.copy() renamed.set_axis(idx, axis=axis, inplace=True) if not inplace: return renamed # ---------------------------------------------------------------------- # Comparisons def _indexed_same(self, other): return all(self._get_axis(a).equals(other._get_axis(a)) for a in self._AXIS_ORDERS) def __neg__(self): values = com._values_from_object(self) if is_bool_dtype(values): arr = operator.inv(values) elif (is_numeric_dtype(values) or is_timedelta64_dtype(values)): arr = operator.neg(values) else: raise TypeError("Unary negative expects numeric dtype, not {}" .format(values.dtype)) return self.__array_wrap__(arr) def __pos__(self): values = com._values_from_object(self) if (is_bool_dtype(values) or is_period_arraylike(values)): arr = values elif (is_numeric_dtype(values) or is_timedelta64_dtype(values)): arr = operator.pos(values) else: raise TypeError("Unary plus expects numeric dtype, not {}" .format(values.dtype)) return self.__array_wrap__(arr) def __invert__(self): try: arr = operator.inv(com._values_from_object(self)) return self.__array_wrap__(arr) except Exception: # inv fails with 0 len if not np.prod(self.shape): return self raise def equals(self, other): """ Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal. """ if not isinstance(other, self._constructor): return False return self._data.equals(other._data) # ------------------------------------------------------------------------- # Label or Level Combination Helpers # # A collection of helper methods for DataFrame/Series operations that # accept a combination of column/index labels and levels. All such # operations should utilize/extend these methods when possible so that we # have consistent precedence and validation logic throughout the library. def _is_level_reference(self, key, axis=0): """ Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key: str Potential level name for the given axis axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level: bool """ axis = self._get_axis_number(axis) if self.ndim > 2: raise NotImplementedError( "_is_level_reference is not implemented for {type}" .format(type=type(self))) return (key is not None and is_hashable(key) and key in self.axes[axis].names and not self._is_label_reference(key, axis=axis)) def _is_label_reference(self, key, axis=0): """ Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool """ axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self.ndim > 2: raise NotImplementedError( "_is_label_reference is not implemented for {type}" .format(type=type(self))) return (key is not None and is_hashable(key) and any(key in self.axes[ax] for ax in other_axes)) def _is_label_or_level_reference(self, key, axis=0): """ Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool """ if self.ndim > 2: raise NotImplementedError( "_is_label_or_level_reference is not implemented for {type}" .format(type=type(self))) return (self._is_level_reference(key, axis=axis) or self._is_label_reference(key, axis=axis)) def _check_label_or_level_ambiguity(self, key, axis=0, stacklevel=1): """ Check whether `key` matches both a level of the input `axis` and a label of the other axis and raise a ``FutureWarning`` if this is the case. Note: This method will be altered to raise an ambiguity exception in a future version. Parameters ---------- key: str or object label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) stacklevel: int, default 1 Stack level used when a FutureWarning is raised (see below). Returns ------- ambiguous: bool Raises ------ FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version """ axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self.ndim > 2: raise NotImplementedError( "_check_label_or_level_ambiguity is not implemented for {type}" .format(type=type(self))) if (key is not None and is_hashable(key) and key in self.axes[axis].names and any(key in self.axes[ax] for ax in other_axes)): # Build an informative and grammatical warning level_article, level_type = (('an', 'index') if axis == 0 else ('a', 'column')) label_article, label_type = (('a', 'column') if axis == 0 else ('an', 'index')) msg = ("'{key}' is both {level_article} {level_type} level and " "{label_article} {label_type} label.\n" "Defaulting to {label_type}, but this will raise an " "ambiguity error in a future version" ).format(key=key, level_article=level_article, level_type=level_type, label_article=label_article, label_type=label_type) warnings.warn(msg, FutureWarning, stacklevel=stacklevel + 1) return True else: return False def _get_label_or_level_values(self, key, axis=0, stacklevel=1): """ Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) stacklevel: int, default 1 Stack level used when a FutureWarning is raised (see below). Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version """ axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self.ndim > 2: raise NotImplementedError( "_get_label_or_level_values is not implemented for {type}" .format(type=type(self))) if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis, stacklevel=stacklevel + 1) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) # Check for duplicates if values.ndim > 1: if other_axes and isinstance( self._get_axis(other_axes[0]), MultiIndex): multi_message = ('\n' 'For a multi-index, the label must be a ' 'tuple with elements corresponding to ' 'each level.') else: multi_message = '' label_axis_name = 'column' if axis == 0 else 'index' raise ValueError(("The {label_axis_name} label '{key}' " "is not unique.{multi_message}") .format(key=key, label_axis_name=label_axis_name, multi_message=multi_message)) return values def _drop_labels_or_levels(self, keys, axis=0): """ Drop labels and/or levels for the given `axis`. For each key in `keys`: - (axis=0): If key matches a column label then drop the column. Otherwise if key matches an index level then drop the level. - (axis=1): If key matches an index label then drop the row. Otherwise if key matches a column level then drop the level. Parameters ---------- keys: str or list of str labels or levels to drop axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- dropped: DataFrame Raises ------ ValueError if any `keys` match neither a label nor a level """ axis = self._get_axis_number(axis) if self.ndim > 2: raise NotImplementedError( "_drop_labels_or_levels is not implemented for {type}" .format(type=type(self))) # Validate keys keys = com._maybe_make_list(keys) invalid_keys = [k for k in keys if not self._is_label_or_level_reference(k, axis=axis)] if invalid_keys: raise ValueError(("The following keys are not valid labels or " "levels for axis {axis}: {invalid_keys}") .format(axis=axis, invalid_keys=invalid_keys)) # Compute levels and labels to drop levels_to_drop = [k for k in keys if self._is_level_reference(k, axis=axis)] labels_to_drop = [k for k in keys if not self._is_level_reference(k, axis=axis)] # Perform copy upfront and then use inplace operations below. # This ensures that we always perform exactly one copy. # ``copy`` and/or ``inplace`` options could be added in the future. dropped = self.copy() if axis == 0: # Handle dropping index levels if levels_to_drop: dropped.reset_index(levels_to_drop, drop=True, inplace=True) # Handle dropping columns labels if labels_to_drop: dropped.drop(labels_to_drop, axis=1, inplace=True) else: # Handle dropping column levels if levels_to_drop: if isinstance(dropped.columns, MultiIndex): # Drop the specified levels from the MultiIndex dropped.columns = dropped.columns.droplevel(levels_to_drop) else: # Drop the last level of Index by replacing with # a RangeIndex dropped.columns = RangeIndex(dropped.columns.size) # Handle dropping index labels if labels_to_drop: dropped.drop(labels_to_drop, axis=0, inplace=True) return dropped # ---------------------------------------------------------------------- # Iteration def __hash__(self): raise TypeError('{0!r} objects are mutable, thus they cannot be' ' hashed'.format(self.__class__.__name__)) def __iter__(self): """Iterate over infor axis""" return iter(self._info_axis) # can we get a better explanation of this? def keys(self): """Get the 'info axis' (see Indexing for more) This is index for Series, columns for DataFrame and major_axis for Panel. """ return self._info_axis def iteritems(self): """Iterate over (label, values) on info axis This is index for Series, columns for DataFrame, major_axis for Panel, and so on. """ for h in self._info_axis: yield h, self[h] def __len__(self): """Returns length of info axis""" return len(self._info_axis) def __contains__(self, key): """True if the key is in the info axis""" return key in self._info_axis @property def empty(self): """ Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True See also -------- pandas.Series.dropna pandas.DataFrame.dropna """ return any(len(self._get_axis(a)) == 0 for a in self._AXIS_ORDERS) def __nonzero__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." .format(self.__class__.__name__)) __bool__ = __nonzero__ def bool(self): """Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean """ v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError("bool cannot act on a non-boolean single element " "{0}".format(self.__class__.__name__)) self.__nonzero__() def __abs__(self): return self.abs() def __round__(self, decimals=0): return self.round(decimals) # ---------------------------------------------------------------------- # Array Interface def __array__(self, dtype=None): return com._values_from_object(self) def __array_wrap__(self, result, context=None): d = self._construct_axes_dict(self._AXIS_ORDERS, copy=False) return self._constructor(result, **d).__finalize__(self) # ideally we would define this to avoid the getattr checks, but # is slower # @property # def __array_interface__(self): # """ provide numpy array interface method """ # values = self.values # return dict(typestr=values.dtype.str,shape=values.shape,data=values) def to_dense(self): """Return dense representation of NDFrame (as opposed to sparse)""" # compat return self # ---------------------------------------------------------------------- # Picklability def __getstate__(self): meta = {k: getattr(self, k, None) for k in self._metadata} return dict(_data=self._data, _typ=self._typ, _metadata=self._metadata, **meta) def __setstate__(self, state): if isinstance(state, BlockManager): self._data = state elif isinstance(state, dict): typ = state.get('_typ') if typ is not None: # set in the order of internal names # to avoid definitional recursion # e.g. say fill_value needing _data to be # defined meta = set(self._internal_names + self._metadata) for k in list(meta): if k in state: v = state[k] object.__setattr__(self, k, v) for k, v in state.items(): if k not in meta: object.__setattr__(self, k, v) else: self._unpickle_series_compat(state) elif isinstance(state[0], dict): if len(state) == 5: self._unpickle_sparse_frame_compat(state) else: self._unpickle_frame_compat(state) elif len(state) == 4: self._unpickle_panel_compat(state) elif len(state) == 2: self._unpickle_series_compat(state) else: # pragma: no cover # old pickling format, for compatibility self._unpickle_matrix_compat(state) self._item_cache = {} # ---------------------------------------------------------------------- # IO def _repr_latex_(self): """ Returns a LaTeX representation for a particular object. Mainly for use with nbconvert (jupyter notebook conversion to pdf). """ if config.get_option('display.latex.repr'): return self.to_latex() else: return None # ---------------------------------------------------------------------- # I/O Methods _shared_docs['to_excel'] = """ Write %(klass)s to an excel sheet %(versionadded_to_excel)s Parameters ---------- excel_writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default 'Sheet1' Name of sheet which will contain DataFrame na_rep : string, default '' Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame engine : string, default None write engine to use - you can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : boolean, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding: string, default None encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : string, default 'inf' Representation for infinity (there is no native representation for infinity in Excel) freeze_panes : tuple of integer (length 2), default None Specifies the one-based bottommost row and rightmost column that is to be frozen .. versionadded:: 0.20.0 Notes ----- If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook: >>> writer = pd.ExcelWriter('output.xlsx') >>> df1.to_excel(writer,'Sheet1') >>> df2.to_excel(writer,'Sheet2') >>> writer.save() For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing. """ def to_json(self, path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression=None, index=True): """ Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path_or_buf : string or file handle, optional File path or object. If not specified, the result is returned as a string. orient : string Indication of expected JSON string format. * Series - default is 'index' - allowed values are: {'split','records','index'} * DataFrame - default is 'columns' - allowed values are: {'split','records','index','columns','values'} * The format of the JSON string - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} describing the data, and the data component is like ``orient='records'``. .. versionchanged:: 0.20.0 date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : boolean, default True Force encoded string to be ASCII. date_unit : string, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : boolean, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. .. versionadded:: 0.19.0 compression : {None, 'gzip', 'bz2', 'zip', 'xz'} A string representing the compression to use in the output file, only used when the first argument is a filename. .. versionadded:: 0.21.0 index : boolean, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. .. versionadded:: 0.23.0 See Also -------- pandas.read_json Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}' Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> df.to_json(orient='values') '[["a","b"],["c","d"]]' Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ from pandas.io import json if date_format is None and orient == 'table': date_format = 'iso' elif date_format is None: date_format = 'epoch' return json.to_json(path_or_buf=path_or_buf, obj=self, orient=orient, date_format=date_format, double_precision=double_precision, force_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler, lines=lines, compression=compression, index=index) def to_hdf(self, path_or_buf, key, **kwargs): """ Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. For more information see the :ref:`user guide <io.html#io-hdf5>`. Parameters ---------- path_or_buf : str or pandas.HDFStore File path or HDFStore object. key : str Identifier for the group in the store. mode : {'a', 'w', 'r+'}, default 'a' Mode to open file: - 'w': write, a new file is created (an existing file with the same name would be deleted). - 'a': append, an existing file is opened for reading and writing, and if the file does not exist it is created. - 'r+': similar to 'a', but the file must already exist. format : {'fixed', 'table'}, default 'fixed' Possible values: - 'fixed': Fixed format. Fast writing/reading. Not-appendable, nor searchable. - 'table': Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. append : bool, default False For Table formats, append the input data to the existing. data_columns : list of columns or True, optional List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See `here <http://pandas.pydata.org/pandas-docs/stable/io.html#query-via-data-columns>`__. Applicable only to format='table'. complevel : {0-9}, optional Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. fletcher32 : bool, default False If applying compression use the fletcher32 checksum. dropna : bool, default False If true, ALL nan rows will not be written to store. See Also -------- DataFrame.read_hdf : Read from HDF file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. DataFrame.to_sql : Write to a sql table. DataFrame.to_feather : Write out feather-format for DataFrames. DataFrame.to_csv : Write out to a csv file. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64 Deleting file with data: >>> import os >>> os.remove('data.h5') """ from pandas.io import pytables return pytables.to_hdf(path_or_buf, key, self, **kwargs) def to_msgpack(self, path_or_buf=None, encoding='utf-8', **kwargs): """ msgpack (serialize) object to input file path THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release. Parameters ---------- path : string File path, buffer-like, or None if None, return generated string append : boolean whether to append to an existing msgpack (default is False) compress : type of compressor (zlib or blosc), default to None (no compression) """ from pandas.io import packers return packers.to_msgpack(path_or_buf, self, encoding=encoding, **kwargs) def to_sql(self, name, con, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten. Parameters ---------- name : string Name of SQL table. con : sqlalchemy.engine.Engine or sqlite3.Connection Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. schema : string, optional Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {'fail', 'replace', 'append'}, default 'fail' How to behave if the table already exists. * fail: Raise a ValueError. * replace: Drop the table before inserting new values. * append: Insert new values to the existing table. index : boolean, default True Write DataFrame index as a column. Uses `index_label` as the column name in the table. index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, optional Rows will be written in batches of this size at a time. By default, all rows will be written at once. dtype : dict, optional Specifying the datatype for columns. The keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. Raises ------ ValueError When the table already exists and `if_exists` is 'fail' (the default). See Also -------- pandas.read_sql : read a DataFrame from a table References ---------- .. [1] http://docs.sqlalchemy.org .. [2] https://www.python.org/dev/peps/pep-0249/ Examples -------- Create an in-memory SQLite database. >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) Create a table from scratch with 3 rows. >>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']}) >>> df name 0 User 1 1 User 2 2 User 3 >>> df.to_sql('users', con=engine) >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')] >>> df1 = pd.DataFrame({'name' : ['User 4', 'User 5']}) >>> df1.to_sql('users', con=engine, if_exists='append') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'), (0, 'User 4'), (1, 'User 5')] Overwrite the table with just ``df1``. >>> df1.to_sql('users', con=engine, if_exists='replace', ... index_label='id') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 4'), (1, 'User 5')] Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars. >>> df = pd.DataFrame({"A": [1, None, 2]}) >>> df A 0 1.0 1 NaN 2 2.0 >>> from sqlalchemy.types import Integer >>> df.to_sql('integers', con=engine, index=False, ... dtype={"A": Integer()}) >>> engine.execute("SELECT * FROM integers").fetchall() [(1,), (None,), (2,)] """ from pandas.io import sql sql.to_sql(self, name, con, schema=schema, if_exists=if_exists, index=index, index_label=index_label, chunksize=chunksize, dtype=dtype) def to_pickle(self, path, compression='infer', protocol=pkl.HIGHEST_PROTOCOL): """ Pickle (serialize) object to file. Parameters ---------- path : str File path where the pickled object will be stored. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, \ default 'infer' A string representing the compression to use in the output file. By default, infers from the file extension in specified path. .. versionadded:: 0.20.0 protocol : int Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible values for this parameter depend on the version of Python. For Python 2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value. For Python >= 3.4, 4 is a valid value. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. .. [1] https://docs.python.org/3/library/pickle.html .. versionadded:: 0.21.0 See Also -------- read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Examples -------- >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl") >>> unpickled_df = pd.read_pickle("./dummy.pkl") >>> unpickled_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> import os >>> os.remove("./dummy.pkl") """ from pandas.io.pickle import to_pickle return to_pickle(self, path, compression=compression, protocol=protocol) def to_clipboard(self, excel=True, sep=None, **kwargs): r""" Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters ---------- excel : bool, default True - True, use the provided separator, writing in a csv format for allowing easy pasting into excel. - False, write a string representation of the object to the clipboard. sep : str, default ``'\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. See Also -------- DataFrame.to_csv : Write a DataFrame to a comma-separated values (csv) file. read_clipboard : Read text from clipboard and pass to read_table. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `gtk` or `PyQt4` modules) - Windows : none - OS X : none Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 """ from pandas.io import clipboards clipboards.to_clipboard(self, excel=excel, sep=sep, **kwargs) def to_xarray(self): """ Return an xarray object from the pandas object. Returns ------- a DataArray for a Series a Dataset for a DataFrame a DataArray for higher dims Examples -------- >>> df = pd.DataFrame({'A' : [1, 1, 2], 'B' : ['foo', 'bar', 'foo'], 'C' : np.arange(4.,7)}) >>> df A B C 0 1 foo 4.0 1 1 bar 5.0 2 2 foo 6.0 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 3) Coordinates: * index (index) int64 0 1 2 Data variables: A (index) int64 1 1 2 B (index) object 'foo' 'bar' 'foo' C (index) float64 4.0 5.0 6.0 >>> df = pd.DataFrame({'A' : [1, 1, 2], 'B' : ['foo', 'bar', 'foo'], 'C' : np.arange(4.,7)} ).set_index(['B','A']) >>> df C B A foo 1 4.0 bar 1 5.0 foo 2 6.0 >>> df.to_xarray() <xarray.Dataset> Dimensions: (A: 2, B: 2) Coordinates: * B (B) object 'bar' 'foo' * A (A) int64 1 2 Data variables: C (B, A) float64 5.0 nan 4.0 6.0 >>> p = pd.Panel(np.arange(24).reshape(4,3,2), items=list('ABCD'), major_axis=pd.date_range('20130101', periods=3), minor_axis=['first', 'second']) >>> p <class 'pandas.core.panel.Panel'> Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis) Items axis: A to D Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00 Minor_axis axis: first to second >>> p.to_xarray() <xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)> array([[[ 0, 1], [ 2, 3], [ 4, 5]], [[ 6, 7], [ 8, 9], [10, 11]], [[12, 13], [14, 15], [16, 17]], [[18, 19], [20, 21], [22, 23]]]) Coordinates: * items (items) object 'A' 'B' 'C' 'D' * major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03 # noqa * minor_axis (minor_axis) object 'first' 'second' Notes ----- See the `xarray docs <http://xarray.pydata.org/en/stable/>`__ """ try: import xarray except ImportError: # Give a nice error message raise ImportError("the xarray library is not installed\n" "you can install via conda\n" "conda install xarray\n" "or via pip\n" "pip install xarray\n") if self.ndim == 1: return xarray.DataArray.from_series(self) elif self.ndim == 2: return xarray.Dataset.from_dataframe(self) # > 2 dims coords = [(a, self._get_axis(a)) for a in self._AXIS_ORDERS] return xarray.DataArray(self, coords=coords, ) _shared_docs['to_latex'] = r""" Render an object to a tabular environment table. You can splice this into a LaTeX document. Requires \\usepackage{booktabs}. .. versionchanged:: 0.20.2 Added to Series `to_latex`-specific options: bold_rows : boolean, default False Make the row labels bold in the output column_format : str, default None The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g 'rcl' for 3 columns longtable : boolean, default will be read from the pandas config module Default: False. Use a longtable environment instead of tabular. Requires adding a \\usepackage{longtable} to your LaTeX preamble. escape : boolean, default will be read from the pandas config module Default: True. When set to False prevents from escaping latex special characters in column names. encoding : str, default None A string representing the encoding to use in the output file, defaults to 'ascii' on Python 2 and 'utf-8' on Python 3. decimal : string, default '.' Character recognized as decimal separator, e.g. ',' in Europe. .. versionadded:: 0.18.0 multicolumn : boolean, default True Use \multicolumn to enhance MultiIndex columns. The default will be read from the config module. .. versionadded:: 0.20.0 multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` The default will be read from the config module. .. versionadded:: 0.20.0 multirow : boolean, default False Use \multirow to enhance MultiIndex rows. Requires adding a \\usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. .. versionadded:: 0.20.0 """ @Substitution(header='Write out the column names. If a list of strings ' 'is given, it is assumed to be aliases for the ' 'column names.') @Appender(_shared_docs['to_latex'] % _shared_doc_kwargs) def to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None): # Get defaults from the pandas config if self.ndim == 1: self = self.to_frame() if longtable is None: longtable = config.get_option("display.latex.longtable") if escape is None: escape = config.get_option("display.latex.escape") if multicolumn is None: multicolumn = config.get_option("display.latex.multicolumn") if multicolumn_format is None: multicolumn_format = config.get_option( "display.latex.multicolumn_format") if multirow is None: multirow = config.get_option("display.latex.multirow") formatter = DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, index_names=index_names, escape=escape, decimal=decimal) formatter.to_latex(column_format=column_format, longtable=longtable, encoding=encoding, multicolumn=multicolumn, multicolumn_format=multicolumn_format, multirow=multirow) if buf is None: return formatter.buf.getvalue() # ---------------------------------------------------------------------- # Fancy Indexing @classmethod def _create_indexer(cls, name, indexer): """Create an indexer like _name in the class.""" if getattr(cls, name, None) is None: _indexer = functools.partial(indexer, name) setattr(cls, name, property(_indexer, doc=indexer.__doc__)) def get(self, key, default=None): """ Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Parameters ---------- key : object Returns ------- value : type of items contained in object """ try: return self[key] except (KeyError, ValueError, IndexError): return default def __getitem__(self, item): return self._get_item_cache(item) def _get_item_cache(self, item): """Return the cached item, item represents a label indexer.""" cache = self._item_cache res = cache.get(item) if res is None: values = self._data.get(item) res = self._box_item_values(item, values) cache[item] = res res._set_as_cached(item, self) # for a chain res._is_copy = self._is_copy return res def _set_as_cached(self, item, cacher): """Set the _cacher attribute on the calling object with a weakref to cacher. """ self._cacher = (item, weakref.ref(cacher)) def _reset_cacher(self): """Reset the cacher.""" if hasattr(self, '_cacher'): del self._cacher def _iget_item_cache(self, item): """Return the cached item, item represents a positional indexer.""" ax = self._info_axis if ax.is_unique: lower = self._get_item_cache(ax[item]) else: lower = self._take(item, axis=self._info_axis_number, convert=True) return lower def _box_item_values(self, key, values): raise com.AbstractMethodError(self) def _maybe_cache_changed(self, item, value): """The object has called back to us saying maybe it has changed. """ self._data.set(item, value, check=False) @property def _is_cached(self): """Return boolean indicating if self is cached or not.""" return getattr(self, '_cacher', None) is not None def _get_cacher(self): """return my cacher or None""" cacher = getattr(self, '_cacher', None) if cacher is not None: cacher = cacher[1]() return cacher @property def _is_view(self): """Return boolean indicating if self is view of another array """ return self._data.is_view def _maybe_update_cacher(self, clear=False, verify_is_copy=True): """ See if we need to update our parent cacher if clear, then clear our cache. Parameters ---------- clear : boolean, default False clear the item cache verify_is_copy : boolean, default True provide is_copy checks """ cacher = getattr(self, '_cacher', None) if cacher is not None: ref = cacher[1]() # we are trying to reference a dead referant, hence # a copy if ref is None: del self._cacher else: try: ref._maybe_cache_changed(cacher[0], self) except Exception: pass if verify_is_copy: self._check_setitem_copy(stacklevel=5, t='referant') if clear: self._clear_item_cache() def _clear_item_cache(self, i=None): if i is not None: self._item_cache.pop(i, None) else: self._item_cache.clear() def _slice(self, slobj, axis=0, kind=None): """ Construct a slice of this container. kind parameter is maintained for compatibility with Series slicing. """ axis = self._get_block_manager_axis(axis) result = self._constructor(self._data.get_slice(slobj, axis=axis)) result = result.__finalize__(self) # this could be a view # but only in a single-dtyped view slicable case is_copy = axis != 0 or result._is_view result._set_is_copy(self, copy=is_copy) return result def _set_item(self, key, value): self._data.set(key, value) self._clear_item_cache() def _set_is_copy(self, ref=None, copy=True): if not copy: self._is_copy = None else: if ref is not None: self._is_copy = weakref.ref(ref) else: self._is_copy = None def _check_is_chained_assignment_possible(self): """ Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check. Should be called just near setting a value Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting. """ if self._is_view and self._is_cached: ref = self._get_cacher() if ref is not None and ref._is_mixed_type: self._check_setitem_copy(stacklevel=4, t='referant', force=True) return True elif self._is_copy: self._check_setitem_copy(stacklevel=4, t='referant') return False def _check_setitem_copy(self, stacklevel=4, t='setting', force=False): """ Parameters ---------- stacklevel : integer, default 4 the level to show of the stack when the error is output t : string, the type of setting error force : boolean, default False if True, then force showing an error validate if we are doing a settitem on a chained copy. If you call this function, be sure to set the stacklevel such that the user will see the error *at the level of setting* It is technically possible to figure out that we are setting on a copy even WITH a multi-dtyped pandas object. In other words, some blocks may be views while other are not. Currently _is_view will ALWAYS return False for multi-blocks to avoid having to handle this case. df = DataFrame(np.arange(0,9), columns=['count']) df['group'] = 'b' # This technically need not raise SettingWithCopy if both are view # (which is not # generally guaranteed but is usually True. However, # this is in general not a good practice and we recommend using .loc. df.iloc[0:5]['group'] = 'a' """ if force or self._is_copy: value = config.get_option('mode.chained_assignment') if value is None: return # see if the copy is not actually referred; if so, then dissolve # the copy weakref try: gc.collect(2) if not gc.get_referents(self._is_copy()): self._is_copy = None return except Exception: pass # we might be a false positive try: if self._is_copy().shape == self.shape: self._is_copy = None return except Exception: pass # a custom message if isinstance(self._is_copy, string_types): t = self._is_copy elif t == 'referant': t = ("\n" "A value is trying to be set on a copy of a slice from a " "DataFrame\n\n" "See the caveats in the documentation: " "http://pandas.pydata.org/pandas-docs/stable/" "indexing.html#indexing-view-versus-copy" ) else: t = ("\n" "A value is trying to be set on a copy of a slice from a " "DataFrame.\n" "Try using .loc[row_indexer,col_indexer] = value " "instead\n\nSee the caveats in the documentation: " "http://pandas.pydata.org/pandas-docs/stable/" "indexing.html#indexing-view-versus-copy" ) if value == 'raise': raise com.SettingWithCopyError(t) elif value == 'warn': warnings.warn(t, com.SettingWithCopyWarning, stacklevel=stacklevel) def __delitem__(self, key): """ Delete item """ deleted = False maybe_shortcut = False if hasattr(self, 'columns') and isinstance(self.columns, MultiIndex): try: maybe_shortcut = key not in self.columns._engine except TypeError: pass if maybe_shortcut: # Allow shorthand to delete all columns whose first len(key) # elements match key: if not isinstance(key, tuple): key = (key, ) for col in self.columns: if isinstance(col, tuple) and col[:len(key)] == key: del self[col] deleted = True if not deleted: # If the above loop ran and didn't delete anything because # there was no match, this call should raise the appropriate # exception: self._data.delete(key) # delete from the caches try: del self._item_cache[key] except KeyError: pass _shared_docs['_take'] = """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. This is the internal version of ``.take()`` and will contain a wider selection of parameters useful for internal use but not as suitable for public usage. Parameters ---------- indices : array-like An array of ints indicating which positions to take. axis : int, default 0 The axis on which to select elements. "0" means that we are selecting rows, "1" means that we are selecting columns, etc. convert : bool, default True Whether to convert negative indices into positive ones. For example, ``-1`` would map to the ``len(axis) - 1``. The conversions are similar to the behavior of indexing a regular Python list. is_copy : bool, default True Whether to return a copy of the original object or not. Returns ------- taken : type of caller An array-like containing the elements taken from the object. See Also -------- numpy.ndarray.take numpy.take """ @Appender(_shared_docs['_take']) def _take(self, indices, axis=0, convert=True, is_copy=True): self._consolidate_inplace() if convert: indices = maybe_convert_indices(indices, len(self._get_axis(axis))) new_data = self._data.take(indices, axis=self._get_block_manager_axis(axis), verify=True) result = self._constructor(new_data).__finalize__(self) # Maybe set copy if we didn't actually change the index. if is_copy: if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result _shared_docs['take'] = """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. axis : {0 or 'index', 1 or 'columns', None}, default 0 The axis on which to select elements. ``0`` means that we are selecting rows, ``1`` means that we are selecting columns. convert : bool, default True Whether to convert negative indices into positive ones. For example, ``-1`` would map to the ``len(axis) - 1``. The conversions are similar to the behavior of indexing a regular Python list. .. deprecated:: 0.21.0 In the future, negative indices will always be converted. is_copy : bool, default True Whether to return a copy of the original object or not. **kwargs For compatibility with :meth:`numpy.take`. Has no effect on the output. Returns ------- taken : type of caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN Take elements at positions 0 and 3 along the axis 0 (default). Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That's because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3. >>> df.take([0, 3]) name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN Take elements at indices 1 and 2 along the axis 1 (column selection). >>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists. >>> df.take([-1, -2]) name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5 """ @Appender(_shared_docs['take']) def take(self, indices, axis=0, convert=None, is_copy=True, **kwargs): if convert is not None: msg = ("The 'convert' parameter is deprecated " "and will be removed in a future version.") warnings.warn(msg, FutureWarning, stacklevel=2) else: convert = True convert = nv.validate_take(tuple(), kwargs) return self._take(indices, axis=axis, convert=convert, is_copy=is_copy) def xs(self, key, axis=0, level=None, drop_level=True): """ Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0). Parameters ---------- key : object Some label contained in the index, or partially in a MultiIndex axis : int, default 0 Axis to retrieve cross-section on level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. drop_level : boolean, default True If False, returns object with same levels as self. Examples -------- >>> df A B C a 4 5 2 b 4 0 9 c 9 7 3 >>> df.xs('a') A 4 B 5 C 2 Name: a >>> df.xs('C', axis=1) a 2 b 9 c 3 Name: C >>> df A B C D first second third bar one 1 4 1 8 9 two 1 7 5 5 0 baz one 1 6 6 8 0 three 2 5 3 5 3 >>> df.xs(('baz', 'three')) A B C D third 2 5 3 5 3 >>> df.xs('one', level=1) A B C D first third bar 1 4 1 8 9 baz 1 6 6 8 0 >>> df.xs(('baz', 2), level=[0, 'third']) A B C D second three 5 3 5 3 Returns ------- xs : Series or DataFrame Notes ----- xs is only for getting, not setting values. MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see :ref:`MultiIndex Slicers <advanced.mi_slicers>` """ axis = self._get_axis_number(axis) labels = self._get_axis(axis) if level is not None: loc, new_ax = labels.get_loc_level(key, level=level, drop_level=drop_level) # create the tuple of the indexer indexer = [slice(None)] * self.ndim indexer[axis] = loc indexer = tuple(indexer) result = self.iloc[indexer] setattr(result, result._get_axis_name(axis), new_ax) return result if axis == 1: return self[key] self._consolidate_inplace() index = self.index if isinstance(index, MultiIndex): loc, new_index = self.index.get_loc_level(key, drop_level=drop_level) else: loc = self.index.get_loc(key) if isinstance(loc, np.ndarray): if loc.dtype == np.bool_: inds, = loc.nonzero() return self._take(inds, axis=axis, convert=False) else: return self._take(loc, axis=axis, convert=True) if not is_scalar(loc): new_index = self.index[loc] if is_scalar(loc): new_values = self._data.fast_xs(loc) # may need to box a datelike-scalar # # if we encounter an array-like and we only have 1 dim # that means that their are list/ndarrays inside the Series! # so just return them (GH 6394) if not is_list_like(new_values) or self.ndim == 1: return com._maybe_box_datetimelike(new_values) result = self._constructor_sliced( new_values, index=self.columns, name=self.index[loc], dtype=new_values.dtype) else: result = self.iloc[loc] result.index = new_index # this could be a view # but only in a single-dtyped view slicable case result._set_is_copy(self, copy=not result._is_view) return result _xs = xs def select(self, crit, axis=0): """Return data corresponding to axis labels matching criteria .. deprecated:: 0.21.0 Use df.loc[df.index.map(crit)] to select via labels Parameters ---------- crit : function To be called on each index (label). Should return True or False axis : int Returns ------- selection : type of caller """ warnings.warn("'select' is deprecated and will be removed in a " "future release. You can use " ".loc[labels.map(crit)] as a replacement", FutureWarning, stacklevel=2) axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis_values = self._get_axis(axis) if len(axis_values) > 0: new_axis = axis_values[ np.asarray([bool(crit(label)) for label in axis_values])] else: new_axis = axis_values return self.reindex(**{axis_name: new_axis}) def reindex_like(self, other, method=None, copy=True, limit=None, tolerance=None): """Return an object with matching indices to myself. Parameters ---------- other : Object method : string or None copy : boolean, default True limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between labels of the other object and this object for inexact matches. Can be list-like. .. versionadded:: 0.21.0 (list-like tolerance) Notes ----- Like calling s.reindex(index=other.index, columns=other.columns, method=...) Returns ------- reindexed : same as input """ d = other._construct_axes_dict(axes=self._AXIS_ORDERS, method=method, copy=copy, limit=limit, tolerance=tolerance) return self.reindex(**d) def drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'): inplace = validate_bool_kwarg(inplace, 'inplace') if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and " "'index'/'columns'") axis_name = self._get_axis_name(axis) axes = {axis_name: labels} elif index is not None or columns is not None: axes, _ = self._construct_axes_from_arguments((index, columns), {}) else: raise ValueError("Need to specify at least one of 'labels', " "'index' or 'columns'") obj = self for axis, labels in axes.items(): if labels is not None: obj = obj._drop_axis(labels, axis, level=level, errors=errors) if inplace: self._update_inplace(obj) else: return obj def _drop_axis(self, labels, axis, level=None, errors='raise'): """ Drop labels from specified axis. Used in the ``drop`` method internally. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. """ axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis, axis_ = self._get_axis(axis), axis if axis.is_unique: if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError('axis must be a MultiIndex') new_axis = axis.drop(labels, level=level, errors=errors) else: new_axis = axis.drop(labels, errors=errors) dropped = self.reindex(**{axis_name: new_axis}) try: dropped.axes[axis_].set_names(axis.names, inplace=True) except AttributeError: pass result = dropped else: labels = _ensure_object(com._index_labels_to_array(labels)) if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError('axis must be a MultiIndex') indexer = ~axis.get_level_values(level).isin(labels) else: indexer = ~axis.isin(labels) if errors == 'raise' and indexer.all(): raise KeyError('{} not found in axis'.format(labels)) slicer = [slice(None)] * self.ndim slicer[self._get_axis_number(axis_name)] = indexer result = self.loc[tuple(slicer)] return result def _update_inplace(self, result, verify_is_copy=True): """ Replace self internals with result. Parameters ---------- verify_is_copy : boolean, default True provide is_copy checks """ # NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future. self._reset_cache() self._clear_item_cache() self._data = getattr(result, '_data', result) self._maybe_update_cacher(verify_is_copy=verify_is_copy) def add_prefix(self, prefix): """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ new_data = self._data.add_prefix(prefix) return self._constructor(new_data).__finalize__(self) def add_suffix(self, suffix): """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add after each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ new_data = self._data.add_suffix(suffix) return self._constructor(new_data).__finalize__(self) _shared_docs['sort_values'] = """ Sort by the values along either axis Parameters ----------%(optional_by)s axis : %(axes_single_arg)s, default 0 Axis to be sorted ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False if True, perform operation in-place kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' `first` puts NaNs at the beginning, `last` puts NaNs at the end Returns ------- sorted_obj : %(klass)s Examples -------- >>> df = pd.DataFrame({ ... 'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2' : [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4 Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 3 NaN 8 4 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 """ def sort_values(self, by=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): """ NOT IMPLEMENTED: do not call this method, as sorting values is not supported for Panel objects and will raise an error. """ raise NotImplementedError("sort_values has not been implemented " "on Panel or Panel4D objects.") _shared_docs['sort_index'] = """ Sort object by labels (along an axis) Parameters ---------- axis : %(axes)s to direct sorting level : int or level name or list of ints or list of level names if not None, sort on values in specified index level(s) ascending : boolean, default True Sort ascending vs. descending inplace : bool, default False if True, perform operation in-place kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' `first` puts NaNs at the beginning, `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True if true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level Returns ------- sorted_obj : %(klass)s """ @Appender(_shared_docs['sort_index'] % dict(axes="axes", klass="NDFrame")) def sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True): inplace = validate_bool_kwarg(inplace, 'inplace') axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) labels = self._get_axis(axis) if level is not None: raise NotImplementedError("level is not implemented") if inplace: raise NotImplementedError("inplace is not implemented") sort_index = labels.argsort() if not ascending: sort_index = sort_index[::-1] new_axis = labels.take(sort_index) return self.reindex(**{axis_name: new_axis}) _shared_docs['reindex'] = """ Conform %(klass)s to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters ---------- %(optional_labels)s %(axes)s : array-like, optional (should be specified using keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data %(optional_axis)s method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}, optional method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * default: don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value limit : int, default None Maximum number of consecutive elements to forward or backward fill tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = pd.DataFrame({ ... 'http_status': [200,200,404,404,301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned ``NaN``. >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404.0 0.07 Iceweasel NaN NaN Comodo Dragon NaN NaN IE10 404.0 0.08 Chrome 200.0 0.02 We can fill in the missing values by passing a value to the keyword ``fill_value``. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword ``method`` to fill the ``NaN`` values. >>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02 >>> df.reindex(new_index, fill_value='missing') http_status response_time Safari 404 0.07 Iceweasel missing missing Comodo Dragon missing missing IE10 404 0.08 Chrome 200 0.02 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN Or we can use "axis-style" keyword arguments >>> df.reindex(['http_status', 'user_agent'], axis="columns") http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN To further illustrate the filling functionality in ``reindex``, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates). >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2 prices 2010-01-01 100 2010-01-02 101 2010-01-03 NaN 2010-01-04 100 2010-01-05 89 2010-01-06 88 Suppose we decide to expand the dataframe to cover a wider date range. >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2) prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100 2010-01-02 101 2010-01-03 NaN 2010-01-04 100 2010-01-05 89 2010-01-06 88 2010-01-07 NaN The index entries that did not have a value in the original data frame (for example, '2009-12-29') are by default filled with ``NaN``. If desired, we can fill in the missing values using one of several options. For example, to backpropagate the last valid value to fill the ``NaN`` values, pass ``bfill`` as an argument to the ``method`` keyword. >>> df2.reindex(date_index2, method='bfill') prices 2009-12-29 100 2009-12-30 100 2009-12-31 100 2010-01-01 100 2010-01-02 101 2010-01-03 NaN 2010-01-04 100 2010-01-05 89 2010-01-06 88 2010-01-07 NaN Please note that the ``NaN`` value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the ``NaN`` values present in the original dataframe, use the ``fillna()`` method. See the :ref:`user guide <basics.reindexing>` for more. Returns ------- reindexed : %(klass)s """ # TODO: Decide if we care about having different examples for different # kinds @Appender(_shared_docs['reindex'] % dict(axes="axes", klass="NDFrame", optional_labels="", optional_axis="")) def reindex(self, *args, **kwargs): # construct the args axes, kwargs = self._construct_axes_from_arguments(args, kwargs) method = missing.clean_reindex_fill_method(kwargs.pop('method', None)) level = kwargs.pop('level', None) copy = kwargs.pop('copy', True) limit = kwargs.pop('limit', None) tolerance = kwargs.pop('tolerance', None) fill_value = kwargs.pop('fill_value', np.nan) # Series.reindex doesn't use / need the axis kwarg # We pop and ignore it here, to make writing Series/Frame generic code # easier kwargs.pop("axis", None) if kwargs: raise TypeError('reindex() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) self._consolidate_inplace() # if all axes that are requested to reindex are equal, then only copy # if indicated must have index names equal here as well as values if all(self._get_axis(axis).identical(ax) for axis, ax in axes.items() if ax is not None): if copy: return self.copy() return self # check if we are a multi reindex if self._needs_reindex_multi(axes, method, level): try: return self._reindex_multi(axes, copy, fill_value) except Exception: pass # perform the reindex on the axes return self._reindex_axes(axes, level, limit, tolerance, method, fill_value, copy).__finalize__(self) def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): """Perform the reindex for all the axes.""" obj = self for a in self._AXIS_ORDERS: labels = axes[a] if labels is None: continue ax = self._get_axis(a) new_index, indexer = ax.reindex(labels, level=level, limit=limit, tolerance=tolerance, method=method) axis = self._get_axis_number(a) obj = obj._reindex_with_indexers({axis: [new_index, indexer]}, fill_value=fill_value, copy=copy, allow_dups=False) return obj def _needs_reindex_multi(self, axes, method, level): """Check if we do need a multi reindex.""" return ((com._count_not_none(*axes.values()) == self._AXIS_LEN) and method is None and level is None and not self._is_mixed_type) def _reindex_multi(self, axes, copy, fill_value): return NotImplemented _shared_docs[ 'reindex_axis'] = ("""Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False Parameters ---------- labels : array-like New labels / index to conform to. Preferably an Index object to avoid duplicating data axis : %(axes_single_arg)s method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}, optional Method to use for filling holes in reindexed DataFrame: * default: don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap copy : boolean, default True Return a new object, even if the passed indexes are the same level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level limit : int, default None Maximum number of consecutive elements to forward or backward fill tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Examples -------- >>> df.reindex_axis(['A', 'B', 'C'], axis=1) See Also -------- reindex, reindex_like Returns ------- reindexed : %(klass)s """) @Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs) def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=np.nan): msg = ("'.reindex_axis' is deprecated and will be removed in a future " "version. Use '.reindex' instead.") self._consolidate_inplace() axis_name = self._get_axis_name(axis) axis_values = self._get_axis(axis_name) method = missing.clean_reindex_fill_method(method) warnings.warn(msg, FutureWarning, stacklevel=3) new_index, indexer = axis_values.reindex(labels, method, level, limit=limit) return self._reindex_with_indexers({axis: [new_index, indexer]}, fill_value=fill_value, copy=copy) def _reindex_with_indexers(self, reindexers, fill_value=np.nan, copy=False, allow_dups=False): """allow_dups indicates an internal call here """ # reindex doing multiple operations on different axes if indicated new_data = self._data for axis in sorted(reindexers.keys()): index, indexer = reindexers[axis] baxis = self._get_block_manager_axis(axis) if index is None: continue index = _ensure_index(index) if indexer is not None: indexer = _ensure_int64(indexer) # TODO: speed up on homogeneous DataFrame objects new_data = new_data.reindex_indexer(index, indexer, axis=baxis, fill_value=fill_value, allow_dups=allow_dups, copy=copy) if copy and new_data is self._data: new_data = new_data.copy() return self._constructor(new_data).__finalize__(self) def _reindex_axis(self, new_index, fill_method, axis, copy): new_data = self._data.reindex_axis(new_index, axis=axis, method=fill_method, copy=copy) if new_data is self._data and not copy: return self else: return self._constructor(new_data).__finalize__(self) def filter(self, items=None, like=None, regex=None, axis=None): """ Subset rows or columns of dataframe according to labels in the specified index. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters ---------- items : list-like List of info axis to restrict to (must not all be present) like : string Keep info axis where "arg in col == True" regex : string (regular expression) Keep info axis with re.search(regex, col) == True axis : int or string axis name The axis to filter on. By default this is the info axis, 'index' for Series, 'columns' for DataFrame Returns ------- same type as input object Examples -------- >>> df one two three mouse 1 2 3 rabbit 4 5 6 >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6 See Also -------- pandas.DataFrame.loc Notes ----- The ``items``, ``like``, and ``regex`` parameters are enforced to be mutually exclusive. ``axis`` defaults to the info axis that is used when indexing with ``[]``. """ import re nkw = com._count_not_none(items, like, regex) if nkw > 1: raise TypeError('Keyword arguments `items`, `like`, or `regex` ' 'are mutually exclusive') if axis is None: axis = self._info_axis_name labels = self._get_axis(axis) if items is not None: name = self._get_axis_name(axis) return self.reindex( **{name: [r for r in items if r in labels]}) elif like: def f(x): return like in to_str(x) values = labels.map(f) return self.loc(axis=axis)[values] elif regex: def f(x): return matcher.search(to_str(x)) is not None matcher = re.compile(regex) values = labels.map(f) return self.loc(axis=axis)[values] else: raise TypeError('Must pass either `items`, `like`, or `regex`') def head(self, n=5): """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- obj_head : type of caller The first `n` rows of the caller object. See Also -------- pandas.DataFrame.tail: Returns the last `n` rows. Examples -------- >>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon """ return self.iloc[:n] def tail(self, n=5): """ Return the last `n` rows. This function returns last `n` rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- type of caller The last `n` rows of the caller object. See Also -------- pandas.DataFrame.head : The first `n` rows of the caller object. Examples -------- >>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last 5 lines >>> df.tail() animal 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last `n` lines (three in this case) >>> df.tail(3) animal 6 shark 7 whale 8 zebra """ if n == 0: return self.iloc[0:0] return self.iloc[-n:] def sample(self, n=None, frac=None, replace=False, weights=None, random_state=None, axis=None): """ Return a random sample of items from an axis of object. You can use `random_state` for reproducibility. Parameters ---------- n : int, optional Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac` = None. frac : float, optional Fraction of axis items to return. Cannot be used with `n`. replace : boolean, optional Sample with or without replacement. Default = False. weights : str or ndarray-like, optional Default 'None' results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns ------- A new object of same type as caller. Examples -------- Generate an example ``Series`` and ``DataFrame``: >>> s = pd.Series(np.random.randn(50)) >>> s.head() 0 -0.038497 1 1.820773 2 -0.972766 3 -1.598270 4 -1.095526 dtype: float64 >>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD')) >>> df.head() A B C D 0 0.016443 -2.318952 -0.566372 -1.028078 1 -1.051921 0.438836 0.658280 -0.175797 2 -1.243569 -0.364626 -0.215065 0.057736 3 1.768216 0.404512 -0.385604 -1.457834 4 1.072446 -1.137172 0.314194 -0.046661 Next extract a random sample from both of these objects... 3 random elements from the ``Series``: >>> s.sample(n=3) 27 -0.994689 55 -1.049016 67 -0.224565 dtype: float64 And a random 10% of the ``DataFrame`` with replacement: >>> df.sample(frac=0.1, replace=True) A B C D 35 1.981780 0.142106 1.817165 -0.290805 49 -1.336199 -0.448634 -0.789640 0.217116 40 0.823173 -0.078816 1.009536 1.015108 15 1.421154 -0.055301 -1.922594 -0.019696 6 -0.148339 0.832938 1.787600 -1.383767 You can use `random state` for reproducibility: >>> df.sample(random_state=1) A B C D 37 -2.027662 0.103611 0.237496 -0.165867 43 -0.259323 -0.583426 1.516140 -0.479118 12 -1.686325 -0.579510 0.985195 -0.460286 8 1.167946 0.429082 1.215742 -1.636041 9 1.197475 -0.864188 1.554031 -1.505264 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) axis_length = self.shape[axis] # Process random_state argument rs = com._random_state(random_state) # Check weights for compliance if weights is not None: # If a series, align with frame if isinstance(weights, pd.Series): weights = weights.reindex(self.axes[axis]) # Strings acceptable if a dataframe and axis = 0 if isinstance(weights, string_types): if isinstance(self, pd.DataFrame): if axis == 0: try: weights = self[weights] except KeyError: raise KeyError("String passed to weights not a " "valid column") else: raise ValueError("Strings can only be passed to " "weights when sampling from rows on " "a DataFrame") else: raise ValueError("Strings cannot be passed as weights " "when sampling from a Series or Panel.") weights = pd.Series(weights, dtype='float64') if len(weights) != axis_length: raise ValueError("Weights and axis to be sampled must be of " "same length") if (weights == np.inf).any() or (weights == -np.inf).any(): raise ValueError("weight vector may not include `inf` values") if (weights < 0).any(): raise ValueError("weight vector many not include negative " "values") # If has nan, set to zero. weights = weights.fillna(0) # Renormalize if don't sum to 1 if weights.sum() != 1: if weights.sum() != 0: weights = weights / weights.sum() else: raise ValueError("Invalid weights: weights sum to zero") weights = weights.values # If no frac or n, default to n=1. if n is None and frac is None: n = 1 elif n is not None and frac is None and n % 1 != 0: raise ValueError("Only integers accepted as `n` values") elif n is None and frac is not None: n = int(round(frac * axis_length)) elif n is not None and frac is not None: raise ValueError('Please enter a value for `frac` OR `n`, not ' 'both') # Check for negative sizes if n < 0: raise ValueError("A negative number of rows requested. Please " "provide positive value.") locs = rs.choice(axis_length, size=n, replace=replace, p=weights) return self.take(locs, axis=axis, is_copy=False) _shared_docs['pipe'] = (r""" Apply func(self, \*args, \*\*kwargs) Parameters ---------- func : function function to apply to the %(klass)s. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the %(klass)s. args : iterable, optional positional arguments passed into ``func``. kwargs : mapping, optional a dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. Notes ----- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing >>> f(g(h(df), arg1=a), arg2=b, arg3=c) You can write >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(f, arg2=b, arg3=c) ... ) If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``arg2``: >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((f, 'arg2'), arg1=a, arg3=c) ... ) See Also -------- pandas.DataFrame.apply pandas.DataFrame.applymap pandas.Series.map """) @Appender(_shared_docs['pipe'] % _shared_doc_kwargs) def pipe(self, func, *args, **kwargs): return com._pipe(self, func, *args, **kwargs) _shared_docs['aggregate'] = (""" Aggregate using one or more operations over the specified axis. %(versionadded)s Parameters ---------- func : function, string, dictionary, or list of string/functions Function to use for aggregating the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names. Accepted combinations are: - string function name. - function. - list of functions. - dict of column names -> functions (or list of functions). %(axis)s *args Positional arguments to pass to `func`. **kwargs Keyword arguments to pass to `func`. Returns ------- aggregated : %(klass)s Notes ----- `agg` is an alias for `aggregate`. Use the alias. """) _shared_docs['transform'] = (""" Call function producing a like-indexed %(klass)s and return a %(klass)s with the transformed values .. versionadded:: 0.20.0 Parameters ---------- func : callable, string, dictionary, or list of string/callables To apply to column Accepted Combinations are: - string function name - function - list of functions - dict of column names -> functions (or list of functions) Returns ------- transformed : %(klass)s Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'], ... index=pd.date_range('1/1/2000', periods=10)) df.iloc[3:7] = np.nan >>> df.transform(lambda x: (x - x.mean()) / x.std()) A B C 2000-01-01 0.579457 1.236184 0.123424 2000-01-02 0.370357 -0.605875 -1.231325 2000-01-03 1.455756 -0.277446 0.288967 2000-01-04 NaN NaN NaN 2000-01-05 NaN NaN NaN 2000-01-06 NaN NaN NaN 2000-01-07 NaN NaN NaN 2000-01-08 -0.498658 1.274522 1.642524 2000-01-09 -0.540524 -1.012676 -0.828968 2000-01-10 -1.366388 -0.614710 0.005378 See also -------- pandas.%(klass)s.aggregate pandas.%(klass)s.apply """) # ---------------------------------------------------------------------- # Attribute access def __finalize__(self, other, method=None, **kwargs): """ Propagate metadata from other to self. Parameters ---------- other : the object from which to get the attributes that we are going to propagate method : optional, a passed method name ; possibly to take different types of propagation actions based on this """ if isinstance(other, NDFrame): for name in self._metadata: object.__setattr__(self, name, getattr(other, name, None)) return self def __getattr__(self, name): """After regular attribute access, try looking up the name This allows simpler access to columns for interactive use. """ # Note: obj.x will always call obj.__getattribute__('x') prior to # calling obj.__getattr__('x'). if (name in self._internal_names_set or name in self._metadata or name in self._accessors): return object.__getattribute__(self, name) else: if name in self._info_axis: return self[name] return object.__getattribute__(self, name) def __setattr__(self, name, value): """After regular attribute access, try setting the name This allows simpler access to columns for interactive use. """ # first try regular attribute access via __getattribute__, so that # e.g. ``obj.x`` and ``obj.x = 4`` will always reference/modify # the same attribute. try: object.__getattribute__(self, name) return object.__setattr__(self, name, value) except AttributeError: pass # if this fails, go on to more involved attribute setting # (note that this matches __getattr__, above). if name in self._internal_names_set: object.__setattr__(self, name, value) elif name in self._metadata: object.__setattr__(self, name, value) else: try: existing = getattr(self, name) if isinstance(existing, Index): object.__setattr__(self, name, value) elif name in self._info_axis: self[name] = value else: object.__setattr__(self, name, value) except (AttributeError, TypeError): if isinstance(self, ABCDataFrame) and (is_list_like(value)): warnings.warn("Pandas doesn't allow columns to be " "created via a new attribute name - see " "https://pandas.pydata.org/pandas-docs/" "stable/indexing.html#attribute-access", stacklevel=2) object.__setattr__(self, name, value) # ---------------------------------------------------------------------- # Getting and setting elements # ---------------------------------------------------------------------- # Consolidation of internals def _protect_consolidate(self, f): """Consolidate _data -- if the blocks have changed, then clear the cache """ blocks_before = len(self._data.blocks) result = f() if len(self._data.blocks) != blocks_before: self._clear_item_cache() return result def _consolidate_inplace(self): """Consolidate data in place and return None""" def f(): self._data = self._data.consolidate() self._protect_consolidate(f) def _consolidate(self, inplace=False): """ Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray). Parameters ---------- inplace : boolean, default False If False return new object, otherwise modify existing object Returns ------- consolidated : type of caller """ inplace = validate_bool_kwarg(inplace, 'inplace') if inplace: self._consolidate_inplace() else: f = lambda: self._data.consolidate() cons_data = self._protect_consolidate(f) return self._constructor(cons_data).__finalize__(self) def consolidate(self, inplace=False): """Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray). .. deprecated:: 0.20.0 Consolidate will be an internal implementation only. """ # 15483 warnings.warn("consolidate is deprecated and will be removed in a " "future release.", FutureWarning, stacklevel=2) return self._consolidate(inplace) @property def _is_mixed_type(self): f = lambda: self._data.is_mixed_type return self._protect_consolidate(f) @property def _is_numeric_mixed_type(self): f = lambda: self._data.is_numeric_mixed_type return self._protect_consolidate(f) @property def _is_datelike_mixed_type(self): f = lambda: self._data.is_datelike_mixed_type return self._protect_consolidate(f) def _check_inplace_setting(self, value): """ check whether we allow in-place setting with this type of value """ if self._is_mixed_type: if not self._is_numeric_mixed_type: # allow an actual np.nan thru try: if np.isnan(value): return True except Exception: pass raise TypeError('Cannot do inplace boolean setting on ' 'mixed-types with a non np.nan value') return True def _get_numeric_data(self): return self._constructor( self._data.get_numeric_data()).__finalize__(self) def _get_bool_data(self): return self._constructor(self._data.get_bool_data()).__finalize__(self) # ---------------------------------------------------------------------- # Internal Interface Methods def as_matrix(self, columns=None): """Convert the frame to its Numpy-array representation. .. deprecated:: 0.23.0 Use :meth:`DataFrame.values` instead. Parameters ---------- columns: list, optional, default:None If None, return all columns, otherwise, returns specified columns. Returns ------- values : ndarray If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. Notes ----- Return is NOT a Numpy-matrix, rather, a Numpy-array. The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a flot64 dtype. This method is provided for backwards compatibility. Generally, it is recommended to use '.values'. See Also -------- pandas.DataFrame.values """ warnings.warn("Method .as_matrix will be removed in a future version. " "Use .values instead.", FutureWarning, stacklevel=2) self._consolidate_inplace() return self._data.as_array(transpose=self._AXIS_REVERSED, items=columns) @property def values(self): """ Return a Numpy representation of the DataFrame. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- numpy.ndarray The values of the DataFrame. Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]], dtype=int64) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object) Notes ----- The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By :func:`numpy.find_common_type` convention, mixing int64 and uint64 will result in a float64 dtype. See Also -------- pandas.DataFrame.index : Retrievie the index labels pandas.DataFrame.columns : Retrieving the column names """ self._consolidate_inplace() return self._data.as_array(transpose=self._AXIS_REVERSED) @property def _values(self): """internal implementation""" return self.values @property def _get_values(self): # compat return self.values def get_values(self): """ Return an ndarray after converting sparse values to dense. This is the same as ``.values`` for non-sparse data. For sparse data contained in a `pandas.SparseArray`, the data are first converted to a dense representation. Returns ------- numpy.ndarray Numpy representation of DataFrame See Also -------- values : Numpy representation of DataFrame. pandas.SparseArray : Container for sparse data. Examples -------- >>> df = pd.DataFrame({'a': [1, 2], 'b': [True, False], ... 'c': [1.0, 2.0]}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 >>> df.get_values() array([[1, True, 1.0], [2, False, 2.0]], dtype=object) >>> df = pd.DataFrame({"a": pd.SparseArray([1, None, None]), ... "c": [1.0, 2.0, 3.0]}) >>> df a c 0 1.0 1.0 1 NaN 2.0 2 NaN 3.0 >>> df.get_values() array([[ 1., 1.], [nan, 2.], [nan, 3.]]) """ return self.values def get_dtype_counts(self): """ Return counts of unique dtypes in this object. Returns ------- dtype : Series Series with the count of columns with each dtype. See Also -------- dtypes : Return the dtypes in this object. Examples -------- >>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]] >>> df = pd.DataFrame(a, columns=['str', 'int', 'float']) >>> df str int float 0 a 1 1.0 1 b 2 2.0 2 c 3 3.0 >>> df.get_dtype_counts() float64 1 int64 1 object 1 dtype: int64 """ from pandas import Series return Series(self._data.get_dtype_counts()) def get_ftype_counts(self): """ Return counts of unique ftypes in this object. .. deprecated:: 0.23.0 This is useful for SparseDataFrame or for DataFrames containing sparse arrays. Returns ------- dtype : Series Series with the count of columns with each type and sparsity (dense/sparse) See Also -------- ftypes : Return ftypes (indication of sparse/dense and dtype) in this object. Examples -------- >>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]] >>> df = pd.DataFrame(a, columns=['str', 'int', 'float']) >>> df str int float 0 a 1 1.0 1 b 2 2.0 2 c 3 3.0 >>> df.get_ftype_counts() float64:dense 1 int64:dense 1 object:dense 1 dtype: int64 """ warnings.warn("get_ftype_counts is deprecated and will " "be removed in a future version", FutureWarning, stacklevel=2) from pandas import Series return Series(self._data.get_ftype_counts()) @property def dtypes(self): """ Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the ``object`` dtype. See :ref:`the User Guide <basics.dtypes>` for more. Returns ------- pandas.Series The data type of each column. See Also -------- pandas.DataFrame.ftypes : dtype and sparsity information. Examples -------- >>> df = pd.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df.dtypes float float64 int int64 datetime datetime64[ns] string object dtype: object """ from pandas import Series return Series(self._data.get_dtypes(), index=self._info_axis, dtype=np.object_) @property def ftypes(self): """ Return the ftypes (indication of sparse/dense and dtype) in DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the ``object`` dtype. See :ref:`the User Guide <basics.dtypes>` for more. Returns ------- pandas.Series The data type and indication of sparse/dense of each column. See Also -------- pandas.DataFrame.dtypes: Series with just dtype information. pandas.SparseDataFrame : Container for sparse tabular data. Notes ----- Sparse data should have the same dtypes as its dense representation. Examples -------- >>> import numpy as np >>> arr = np.random.RandomState(0).randn(100, 4) >>> arr[arr < .8] = np.nan >>> pd.DataFrame(arr).ftypes 0 float64:dense 1 float64:dense 2 float64:dense 3 float64:dense dtype: object >>> pd.SparseDataFrame(arr).ftypes 0 float64:sparse 1 float64:sparse 2 float64:sparse 3 float64:sparse dtype: object """ from pandas import Series return Series(self._data.get_ftypes(), index=self._info_axis, dtype=np.object_) def as_blocks(self, copy=True): """ Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. .. deprecated:: 0.21.0 NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix) Parameters ---------- copy : boolean, default True Returns ------- values : a dict of dtype -> Constructor Types """ warnings.warn("as_blocks is deprecated and will " "be removed in a future version", FutureWarning, stacklevel=2) return self._to_dict_of_blocks(copy=copy) @property def blocks(self): """ Internal property, property synonym for as_blocks() .. deprecated:: 0.21.0 """ return self.as_blocks() def _to_dict_of_blocks(self, copy=True): """ Return a dict of dtype -> Constructor Types that each is a homogeneous dtype. Internal ONLY """ return {k: self._constructor(v).__finalize__(self) for k, v, in self._data.to_dict(copy=copy).items()} @deprecate_kwarg(old_arg_name='raise_on_error', new_arg_name='errors', mapping={True: 'raise', False: 'ignore'}) def astype(self, dtype, copy=True, errors='raise', **kwargs): """ Cast a pandas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types. copy : bool, default True. Return a copy when ``copy=True`` (be very careful setting ``copy=False`` as changes to values then may propagate to other pandas objects). errors : {'raise', 'ignore'}, default 'raise'. Control raising of exceptions on invalid data for provided dtype. - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object .. versionadded:: 0.20.0 raise_on_error : raise on invalid input .. deprecated:: 0.20.0 Use ``errors`` instead kwargs : keyword arguments to pass on to the constructor Returns ------- casted : type of caller Examples -------- >>> ser = pd.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64 Convert to categorical type: >>> ser.astype('category') 0 1 1 2 dtype: category Categories (2, int64): [1, 2] Convert to ordered categorical type with custom ordering: >>> ser.astype('category', ordered=True, categories=[2, 1]) 0 1 1 2 dtype: category Categories (2, int64): [2 < 1] Note that using ``copy=False`` and changing data on a new pandas object may propagate changes: >>> s1 = pd.Series([1,2]) >>> s2 = s1.astype('int64', copy=False) >>> s2[0] = 10 >>> s1 # note that s1[0] has changed too 0 10 1 2 dtype: int64 See also -------- pandas.to_datetime : Convert argument to datetime. pandas.to_timedelta : Convert argument to timedelta. pandas.to_numeric : Convert argument to a numeric type. numpy.ndarray.astype : Cast a numpy array to a specified type. """ if is_dict_like(dtype): if self.ndim == 1: # i.e. Series if len(dtype) > 1 or self.name not in dtype: raise KeyError('Only the Series name can be used for ' 'the key in Series dtype mappings.') new_type = dtype[self.name] return self.astype(new_type, copy, errors, **kwargs) elif self.ndim > 2: raise NotImplementedError( 'astype() only accepts a dtype arg of type dict when ' 'invoked on Series and DataFrames. A single dtype must be ' 'specified when invoked on a Panel.' ) for col_name in dtype.keys(): if col_name not in self: raise KeyError('Only a column name can be used for the ' 'key in a dtype mappings argument.') results = [] for col_name, col in self.iteritems(): if col_name in dtype: results.append(col.astype(dtype[col_name], copy=copy)) else: results.append(results.append(col.copy() if copy else col)) elif is_categorical_dtype(dtype) and self.ndim > 1: # GH 18099: columnwise conversion to categorical results = (self[col].astype(dtype, copy=copy) for col in self) else: # else, only a single dtype is given new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors, **kwargs) return self._constructor(new_data).__finalize__(self) # GH 19920: retain column metadata after concat result = pd.concat(results, axis=1, copy=False) result.columns = self.columns return result def copy(self, deep=True): """ Make a copy of this object's indices and data. When ``deep=True`` (default), a new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object (see notes below). When ``deep=False``, a new object will be created without copying the calling object's data or index (only references to the data and index are copied). Any changes to the data of the original will be reflected in the shallow copy (and vice versa). Parameters ---------- deep : bool, default True Make a deep copy, including a copy of the data and the indices. With ``deep=False`` neither the indices nor the data are copied. Returns ------- copy : Series, DataFrame or Panel Object type matches caller. Notes ----- When ``deep=True``, data is copied but actual Python objects will not be copied recursively, only the reference to the object. This is in contrast to `copy.deepcopy` in the Standard Library, which recursively copies object data (see examples below). While ``Index`` objects are copied when ``deep=True``, the underlying numpy array is not copied for performance reasons. Since ``Index`` is immutable, the underlying data can be safely shared and a copy is not needed. Examples -------- >>> s = pd.Series([1, 2], index=["a", "b"]) >>> s a 1 b 2 dtype: int64 >>> s_copy = s.copy() >>> s_copy a 1 b 2 dtype: int64 **Shallow copy versus default (deep) copy:** >>> s = pd.Series([1, 2], index=["a", "b"]) >>> deep = s.copy() >>> shallow = s.copy(deep=False) Shallow copy shares data and index with original. >>> s is shallow False >>> s.values is shallow.values and s.index is shallow.index True Deep copy has own copy of data and index. >>> s is deep False >>> s.values is deep.values or s.index is deep.index False Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged. >>> s[0] = 3 >>> shallow[1] = 4 >>> s a 3 b 4 dtype: int64 >>> shallow a 3 b 4 dtype: int64 >>> deep a 1 b 2 dtype: int64 Note that when copying an object containing Python objects, a deep copy will copy the data, but will not do so recursively. Updating a nested data object will be reflected in the deep copy. >>> s = pd.Series([[1, 2], [3, 4]]) >>> deep = s.copy() >>> s[0][0] = 10 >>> s 0 [10, 2] 1 [3, 4] dtype: object >>> deep 0 [10, 2] 1 [3, 4] dtype: object """ data = self._data.copy(deep=deep) return self._constructor(data).__finalize__(self) def __copy__(self, deep=True): return self.copy(deep=deep) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _convert(self, datetime=False, numeric=False, timedelta=False, coerce=False, copy=True): """ Attempt to infer better dtype for object columns Parameters ---------- datetime : boolean, default False If True, convert to date where possible. numeric : boolean, default False If True, attempt to convert to numbers (including strings), with unconvertible values becoming NaN. timedelta : boolean, default False If True, convert to timedelta where possible. coerce : boolean, default False If True, force conversion with unconvertible values converted to nulls (NaN or NaT) copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns ------- converted : same as input object """ return self._constructor( self._data.convert(datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy)).__finalize__(self) def convert_objects(self, convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True): """Attempt to infer better dtype for object columns. .. deprecated:: 0.21.0 Parameters ---------- convert_dates : boolean, default True If True, convert to date where possible. If 'coerce', force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedeltas : boolean, default True If True, convert to timedelta where possible. If 'coerce', force conversion, with unconvertible values becoming NaT. copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. See Also -------- pandas.to_datetime : Convert argument to datetime. pandas.to_timedelta : Convert argument to timedelta. pandas.to_numeric : Return a fixed frequency timedelta index, with day as the default. Returns ------- converted : same as input object """ msg = ("convert_objects is deprecated. To re-infer data dtypes for " "object columns, use {klass}.infer_objects()\nFor all " "other conversions use the data-type specific converters " "pd.to_datetime, pd.to_timedelta and pd.to_numeric." ).format(klass=self.__class__.__name__) warnings.warn(msg, FutureWarning, stacklevel=2) return self._constructor( self._data.convert(convert_dates=convert_dates, convert_numeric=convert_numeric, convert_timedeltas=convert_timedeltas, copy=copy)).__finalize__(self) def infer_objects(self): """ Attempt to infer better dtypes for object columns. Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction. .. versionadded:: 0.21.0 See Also -------- pandas.to_datetime : Convert argument to datetime. pandas.to_timedelta : Convert argument to timedelta. pandas.to_numeric : Convert argument to numeric typeR Returns ------- converted : same type as input object Examples -------- >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3 >>> df.dtypes A object dtype: object >>> df.infer_objects().dtypes A int64 dtype: object """ # numeric=False necessary to only soft convert; # python objects will still be converted to # native numpy numeric types return self._constructor( self._data.convert(datetime=True, numeric=False, timedelta=True, coerce=False, copy=True)).__finalize__(self) # ---------------------------------------------------------------------- # Filling NA's _shared_docs['fillna'] = (""" Fill NA/NaN values using the specified method Parameters ---------- value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap axis : %(axes_single_arg)s inplace : boolean, default False If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) See Also -------- reindex, asfreq Returns ------- filled : %(klass)s Examples -------- >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, 5], ... [np.nan, 3, np.nan, 4]], ... columns=list('ABCD')) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 NaN 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4 We can also propagate non-null values forward or backward. >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 Only replace the first NaN element. >>> df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 """) @Appender(_shared_docs['fillna'] % _shared_doc_kwargs) def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None): inplace = validate_bool_kwarg(inplace, 'inplace') value, method = validate_fillna_kwargs(value, method) self._consolidate_inplace() # set the default here, so functions examining the signaure # can detect if something was set (e.g. in groupby) (GH9221) if axis is None: axis = 0 axis = self._get_axis_number(axis) from pandas import DataFrame if value is None: if self._is_mixed_type and axis == 1: if inplace: raise NotImplementedError() result = self.T.fillna(method=method, limit=limit).T # need to downcast here because of all of the transposes result._data = result._data.downcast() return result # > 3d if self.ndim > 3: raise NotImplementedError('Cannot fillna with a method for > ' '3dims') # 3d elif self.ndim == 3: # fill in 2d chunks result = {col: s.fillna(method=method, value=value) for col, s in self.iteritems()} new_obj = self._constructor.\ from_dict(result).__finalize__(self) new_data = new_obj._data else: # 2d or less new_data = self._data.interpolate(method=method, axis=axis, limit=limit, inplace=inplace, coerce=True, downcast=downcast) else: if len(self._get_axis(axis)) == 0: return self if self.ndim == 1: if isinstance(value, (dict, ABCSeries)): from pandas import Series value = Series(value) elif not is_list_like(value): pass else: raise TypeError('"value" parameter must be a scalar, dict ' 'or Series, but you passed a ' '"{0}"'.format(type(value).__name__)) new_data = self._data.fillna(value=value, limit=limit, inplace=inplace, downcast=downcast) elif isinstance(value, (dict, ABCSeries)): if axis == 1: raise NotImplementedError('Currently only can fill ' 'with dict/Series column ' 'by column') result = self if inplace else self.copy() for k, v in compat.iteritems(value): if k not in result: continue obj = result[k] obj.fillna(v, limit=limit, inplace=True, downcast=downcast) return result if not inplace else None elif not is_list_like(value): new_data = self._data.fillna(value=value, limit=limit, inplace=inplace, downcast=downcast) elif isinstance(value, DataFrame) and self.ndim == 2: new_data = self.where(self.notna(), value) else: raise ValueError("invalid fill value with a %s" % type(value)) if inplace: self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def ffill(self, axis=None, inplace=False, limit=None, downcast=None): """ Synonym for :meth:`DataFrame.fillna(method='ffill') <DataFrame.fillna>` """ return self.fillna(method='ffill', axis=axis, inplace=inplace, limit=limit, downcast=downcast) def bfill(self, axis=None, inplace=False, limit=None, downcast=None): """ Synonym for :meth:`DataFrame.fillna(method='bfill') <DataFrame.fillna>` """ return self.fillna(method='bfill', axis=axis, inplace=inplace, limit=limit, downcast=downcast) _shared_docs['replace'] = (""" Replace values given in 'to_replace' with 'value'. Parameters ---------- to_replace : str, regex, list, dict, Series, numeric, or None * numeric, str or regex: - numeric: numeric values equal to ``to_replace`` will be replaced with ``value`` - str: string exactly matching ``to_replace`` will be replaced with ``value`` - regex: regexs matching ``to_replace`` will be replaced with ``value`` * list of str, regex, or numeric: - First, if ``to_replace`` and ``value`` are both lists, they **must** be the same length. - Second, if ``regex=True`` then all of the strings in **both** lists will be interpreted as regexs otherwise they will match directly. This doesn't matter much for ``value`` since there are only a few possible substitution regexes you can use. - str, regex and numeric rules apply as above. * dict: - Dicts can be used to specify different replacement values for different existing values. For example, {'a': 'b', 'y': 'z'} replaces the value 'a' with 'b' and 'y' with 'z'. To use a dict in this way the ``value`` parameter should be ``None``. - For a DataFrame a dict can specify that different values should be replaced in different columns. For example, {'a': 1, 'b': 'z'} looks for the value 1 in column 'a' and the value 'z' in column 'b' and replaces these values with whatever is specified in ``value``. The ``value`` parameter should not be ``None`` in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. - For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are read as follows: look in column 'a' for the value 'b' and replace it with NaN. The ``value`` parameter should be ``None`` to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions. * None: - This means that the ``regex`` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If ``value`` is also ``None`` then this **must** be a nested dictionary or ``Series``. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to replace any values matching ``to_replace`` with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : boolean, default False If True, in place. Note: this will modify any other views on this object (e.g. a column from a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill regex : bool or same types as ``to_replace``, default False Whether to interpret ``to_replace`` and/or ``value`` as regular expressions. If this is ``True`` then ``to_replace`` *must* be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case ``to_replace`` must be ``None``. method : string, optional, {'pad', 'ffill', 'bfill'} The method to use when for replacement, when ``to_replace`` is a scalar, list or tuple and ``value`` is None. .. versionchanged:: 0.23.0 Added to DataFrame See Also -------- %(klass)s.fillna : Fill NA/NaN values %(klass)s.where : Replace values based on boolean condition Returns ------- filled : %(klass)s Raises ------ AssertionError * If ``regex`` is not a ``bool`` and ``to_replace`` is not ``None``. TypeError * If ``to_replace`` is a ``dict`` and ``value`` is not a ``list``, ``dict``, ``ndarray``, or ``Series`` * If ``to_replace`` is ``None`` and ``regex`` is not compilable into a regular expression or is a list, dict, ndarray, or Series. * When replacing multiple ``bool`` or ``datetime64`` objects and the arguments to ``to_replace`` does not match the type of the value being replaced ValueError * If a ``list`` or an ``ndarray`` is passed to ``to_replace`` and `value` but they are not the same length. Notes ----- * Regex substitution is performed under the hood with ``re.sub``. The rules for substitution for ``re.sub`` are the same. * Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers *are* strings, then you can do this. * This method has *a lot* of options. You are encouraged to experiment and play with this method to gain intuition about how it works. Examples -------- >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.replace(0, 5) 0 5 1 1 2 2 3 3 4 4 dtype: int64 >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 0 1 3 2 3 3 3 4 4 dtype: int64 >>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={r'^ba.$':'new', 'foo':'xyz'}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Note that when replacing multiple ``bool`` or ``datetime64`` objects, the data types in the ``to_replace`` parameter must match the data type of the value being replaced: >>> df = pd.DataFrame({'A': [True, False, True], ... 'B': [False, True, False]}) >>> df.replace({'a string': 'new value', True: False}) # raises TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str' This raises a ``TypeError`` because one of the ``dict`` keys is not of the correct type for replacement. """) @Appender(_shared_docs['replace'] % _shared_doc_kwargs) def replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None): inplace = validate_bool_kwarg(inplace, 'inplace') if not is_bool(regex) and to_replace is not None: raise AssertionError("'to_replace' must be 'None' if 'regex' is " "not a bool") if axis is not None: warnings.warn('the "axis" argument is deprecated ' 'and will be removed in' 'v0.13; this argument has no effect') self._consolidate_inplace() if value is None: # passing a single value that is scalar like # when value is None (GH5319), for compat if not is_dict_like(to_replace) and not is_dict_like(regex): to_replace = [to_replace] if isinstance(to_replace, (tuple, list)): if isinstance(self, pd.DataFrame): return self.apply(_single_replace, args=(to_replace, method, inplace, limit)) return _single_replace(self, to_replace, method, inplace, limit) if not is_dict_like(to_replace): if not is_dict_like(regex): raise TypeError('If "to_replace" and "value" are both None' ' and "to_replace" is not a list, then ' 'regex must be a mapping') to_replace = regex regex = True items = list(compat.iteritems(to_replace)) keys, values = lzip(*items) or ([], []) are_mappings = [is_dict_like(v) for v in values] if any(are_mappings): if not all(are_mappings): raise TypeError("If a nested mapping is passed, all values" " of the top level mapping must be " "mappings") # passed a nested dict/Series to_rep_dict = {} value_dict = {} for k, v in items: keys, values = lzip(*v.items()) or ([], []) if set(keys) & set(values): raise ValueError("Replacement not allowed with " "overlapping keys and values") to_rep_dict[k] = list(keys) value_dict[k] = list(values) to_replace, value = to_rep_dict, value_dict else: to_replace, value = keys, values return self.replace(to_replace, value, inplace=inplace, limit=limit, regex=regex) else: # need a non-zero len on all axes for a in self._AXIS_ORDERS: if not len(self._get_axis(a)): return self new_data = self._data if is_dict_like(to_replace): if is_dict_like(value): # {'A' : NA} -> {'A' : 0} res = self if inplace else self.copy() for c, src in compat.iteritems(to_replace): if c in value and c in self: # object conversion is handled in # series.replace which is called recursivelly res[c] = res[c].replace(to_replace=src, value=value[c], inplace=False, regex=regex) return None if inplace else res # {'A': NA} -> 0 elif not is_list_like(value): keys = [(k, src) for k, src in compat.iteritems(to_replace) if k in self] keys_len = len(keys) - 1 for i, (k, src) in enumerate(keys): convert = i == keys_len new_data = new_data.replace(to_replace=src, value=value, filter=[k], inplace=inplace, regex=regex, convert=convert) else: raise TypeError('value argument must be scalar, dict, or ' 'Series') elif is_list_like(to_replace): # [NA, ''] -> [0, 'missing'] if is_list_like(value): if len(to_replace) != len(value): raise ValueError('Replacement lists must match ' 'in length. Expecting %d got %d ' % (len(to_replace), len(value))) new_data = self._data.replace_list(src_list=to_replace, dest_list=value, inplace=inplace, regex=regex) else: # [NA, ''] -> 0 new_data = self._data.replace(to_replace=to_replace, value=value, inplace=inplace, regex=regex) elif to_replace is None: if not (is_re_compilable(regex) or is_list_like(regex) or is_dict_like(regex)): raise TypeError("'regex' must be a string or a compiled " "regular expression or a list or dict of " "strings or regular expressions, you " "passed a" " {0!r}".format(type(regex).__name__)) return self.replace(regex, value, inplace=inplace, limit=limit, regex=True) else: # dest iterable dict-like if is_dict_like(value): # NA -> {'A' : 0, 'B' : -1} new_data = self._data for k, v in compat.iteritems(value): if k in self: new_data = new_data.replace(to_replace=to_replace, value=v, filter=[k], inplace=inplace, regex=regex) elif not is_list_like(value): # NA -> 0 new_data = self._data.replace(to_replace=to_replace, value=value, inplace=inplace, regex=regex) else: msg = ('Invalid "to_replace" type: ' '{0!r}').format(type(to_replace).__name__) raise TypeError(msg) # pragma: no cover if inplace: self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) _shared_docs['interpolate'] = """ Please note that only ``method='linear'`` is supported for DataFrames/Series with a MultiIndex. Parameters ---------- method : {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline', 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'} * 'linear': ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default * 'time': interpolation works on daily and higher resolution data to interpolate given length of interval * 'index', 'values': use the actual numerical values of the index * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial' is passed to ``scipy.interpolate.interp1d``. Both 'polynomial' and 'spline' require that you also specify an `order` (int), e.g. df.interpolate(method='polynomial', order=4). These use the actual numerical values of the index. * 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. For more information on their behavior, see the `scipy documentation <http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation>`__ and `tutorial documentation <http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html>`__ * 'from_derivatives' refers to BPoly.from_derivatives which replaces 'piecewise_polynomial' interpolation method in scipy 0.18 .. versionadded:: 0.18.1 Added support for the 'akima' method Added interpolate method 'from_derivatives' which replaces 'piecewise_polynomial' in scipy 0.18; backwards-compatible with scipy < 0.18 axis : {0, 1}, default 0 * 0: fill column-by-column * 1: fill row-by-row limit : int, default None. Maximum number of consecutive NaNs to fill. Must be greater than 0. limit_direction : {'forward', 'backward', 'both'}, default 'forward' limit_area : {'inside', 'outside'}, default None * None: (default) no fill restriction * 'inside' Only fill NaNs surrounded by valid values (interpolate). * 'outside' Only fill NaNs outside valid values (extrapolate). If limit is specified, consecutive NaNs will be filled in this direction. .. versionadded:: 0.21.0 inplace : bool, default False Update the NDFrame in place if possible. downcast : optional, 'infer' or None, defaults to None Downcast dtypes if possible. kwargs : keyword arguments to pass on to the interpolating function. Returns ------- Series or DataFrame of same shape interpolated at the NaNs See Also -------- reindex, replace, fillna Examples -------- Filling in NaNs >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64 """ @Appender(_shared_docs['interpolate'] % _shared_doc_kwargs) def interpolate(self, method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None, **kwargs): """ Interpolate values according to different methods. """ inplace = validate_bool_kwarg(inplace, 'inplace') if self.ndim > 2: raise NotImplementedError("Interpolate has not been implemented " "on Panel and Panel 4D objects.") if axis == 0: ax = self._info_axis_name _maybe_transposed_self = self elif axis == 1: _maybe_transposed_self = self.T ax = 1 else: _maybe_transposed_self = self ax = _maybe_transposed_self._get_axis_number(ax) if _maybe_transposed_self.ndim == 2: alt_ax = 1 - ax else: alt_ax = ax if (isinstance(_maybe_transposed_self.index, MultiIndex) and method != 'linear'): raise ValueError("Only `method=linear` interpolation is supported " "on MultiIndexes.") if _maybe_transposed_self._data.get_dtype_counts().get( 'object') == len(_maybe_transposed_self.T): raise TypeError("Cannot interpolate with all NaNs.") # create/use the index if method == 'linear': # prior default index = np.arange(len(_maybe_transposed_self._get_axis(alt_ax))) else: index = _maybe_transposed_self._get_axis(alt_ax) if isna(index).any(): raise NotImplementedError("Interpolation with NaNs in the index " "has not been implemented. Try filling " "those NaNs before interpolating.") data = _maybe_transposed_self._data new_data = data.interpolate(method=method, axis=ax, index=index, values=_maybe_transposed_self, limit=limit, limit_direction=limit_direction, limit_area=limit_area, inplace=inplace, downcast=downcast, **kwargs) if inplace: if axis == 1: new_data = self._constructor(new_data).T._data self._update_inplace(new_data) else: res = self._constructor(new_data).__finalize__(self) if axis == 1: res = res.T return res # ---------------------------------------------------------------------- # Timeseries methods Methods def asof(self, where, subset=None): """ The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame) .. versionadded:: 0.19.0 For DataFrame If there is no good value, NaN is returned for a Series a Series of NaN values for a DataFrame Parameters ---------- where : date or array of dates subset : string or list of strings, default None if not None use these columns for NaN propagation Notes ----- Dates are assumed to be sorted Raises if this is not the case Returns ------- where is scalar - value or NaN if input is Series - Series if input is DataFrame where is Index: same shape object as input See Also -------- merge_asof """ if isinstance(where, compat.string_types): from pandas import to_datetime where = to_datetime(where) if not self.index.is_monotonic: raise ValueError("asof requires a sorted index") is_series = isinstance(self, ABCSeries) if is_series: if subset is not None: raise ValueError("subset is not valid for Series") elif self.ndim > 2: raise NotImplementedError("asof is not implemented " "for {type}".format(type=type(self))) else: if subset is None: subset = self.columns if not is_list_like(subset): subset = [subset] is_list = is_list_like(where) if not is_list: start = self.index[0] if isinstance(self.index, PeriodIndex): where = Period(where, freq=self.index.freq).ordinal start = start.ordinal if where < start: if not is_series: from pandas import Series return Series(index=self.columns, name=where) return np.nan # It's always much faster to use a *while* loop here for # Series than pre-computing all the NAs. However a # *while* loop is extremely expensive for DataFrame # so we later pre-compute all the NAs and use the same # code path whether *where* is a scalar or list. # See PR: https://github.com/pandas-dev/pandas/pull/14476 if is_series: loc = self.index.searchsorted(where, side='right') if loc > 0: loc -= 1 values = self._values while loc > 0 and isna(values[loc]): loc -= 1 return values[loc] if not isinstance(where, Index): where = Index(where) if is_list else Index([where]) nulls = self.isna() if is_series else self[subset].isna().any(1) if nulls.all(): if is_series: return self._constructor(np.nan, index=where, name=self.name) elif is_list: from pandas import DataFrame return DataFrame(np.nan, index=where, columns=self.columns) else: from pandas import Series return Series(np.nan, index=self.columns, name=where[0]) locs = self.index.asof_locs(where, ~(nulls.values)) # mask the missing missing = locs == -1 data = self.take(locs, is_copy=False) data.index = where data.loc[missing] = np.nan return data if is_list else data.iloc[-1] # ---------------------------------------------------------------------- # Action Methods _shared_docs['isna'] = """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or :attr:`numpy.NaN`, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- %(klass)s Mask of bool values for each element in %(klass)s that indicates whether an element is not an NA value. See Also -------- %(klass)s.isnull : alias of isna %(klass)s.notna : boolean inverse of isna %(klass)s.dropna : omit axes labels with missing values isna : top-level isna Examples -------- Show which entries in a DataFrame are NA. >>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool """ @Appender(_shared_docs['isna'] % _shared_doc_kwargs) def isna(self): return isna(self).__finalize__(self) @Appender(_shared_docs['isna'] % _shared_doc_kwargs) def isnull(self): return isna(self).__finalize__(self) _shared_docs['notna'] = """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to False values. Returns ------- %(klass)s Mask of bool values for each element in %(klass)s that indicates whether an element is not an NA value. See Also -------- %(klass)s.notnull : alias of notna %(klass)s.isna : boolean inverse of notna %(klass)s.dropna : omit axes labels with missing values notna : top-level notna Examples -------- Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool """ @Appender(_shared_docs['notna'] % _shared_doc_kwargs) def notna(self): return notna(self).__finalize__(self) @Appender(_shared_docs['notna'] % _shared_doc_kwargs) def notnull(self): return notna(self).__finalize__(self) def _clip_with_scalar(self, lower, upper, inplace=False): if ((lower is not None and np.any(isna(lower))) or (upper is not None and np.any(isna(upper)))): raise ValueError("Cannot use an NA value as a clip threshold") result = self.values mask = isna(result) with np.errstate(all='ignore'): if upper is not None: result = np.where(result >= upper, upper, result) if lower is not None: result = np.where(result <= lower, lower, result) if np.any(mask): result[mask] = np.nan axes_dict = self._construct_axes_dict() result = self._constructor(result, **axes_dict).__finalize__(self) if inplace: self._update_inplace(result) else: return result def _clip_with_one_bound(self, threshold, method, axis, inplace): inplace = validate_bool_kwarg(inplace, 'inplace') if axis is not None: axis = self._get_axis_number(axis) # method is self.le for upper bound and self.ge for lower bound if is_scalar(threshold) and is_number(threshold): if method.__name__ == 'le': return self._clip_with_scalar(None, threshold, inplace=inplace) return self._clip_with_scalar(threshold, None, inplace=inplace) subset = method(threshold, axis=axis) | isna(self) # GH #15390 # In order for where method to work, the threshold must # be transformed to NDFrame from other array like structure. if (not isinstance(threshold, ABCSeries)) and is_list_like(threshold): if isinstance(self, ABCSeries): threshold = pd.Series(threshold, index=self.index) else: threshold = _align_method_FRAME(self, np.asarray(threshold), axis) return self.where(subset, threshold, axis=axis, inplace=inplace) def clip(self, lower=None, upper=None, axis=None, inplace=False, *args, **kwargs): """ Trim values at input threshold(s). Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis. Parameters ---------- lower : float or array_like, default None Minimum threshold value. All values below this threshold will be set to it. upper : float or array_like, default None Maximum threshold value. All values above this threshold will be set to it. axis : int or string axis name, optional Align object with lower and upper along the given axis. inplace : boolean, default False Whether to perform the operation in place on the data. .. versionadded:: 0.21.0 *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. See Also -------- clip_lower : Clip values below specified threshold(s). clip_upper : Clip values above specified threshold(s). Returns ------- Series or DataFrame Same type as calling object with the values outside the clip boundaries replaced Examples -------- >>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} >>> df = pd.DataFrame(data) >>> df col_0 col_1 0 9 -2 1 -3 -7 2 0 6 3 -1 8 4 5 -5 Clips per column using lower and upper thresholds: >>> df.clip(-4, 6) col_0 col_1 0 6 -2 1 -3 -4 2 0 6 3 -1 6 4 5 -4 Clips using specific lower and upper thresholds per column element: >>> t = pd.Series([2, -4, -1, 6, 3]) >>> t 0 2 1 -4 2 -1 3 6 4 3 dtype: int64 >>> df.clip(t, t + 4, axis=0) col_0 col_1 0 6 2 1 -3 -4 2 0 3 3 6 8 4 5 3 """ if isinstance(self, ABCPanel): raise NotImplementedError("clip is not supported yet for panels") inplace = validate_bool_kwarg(inplace, 'inplace') axis = nv.validate_clip_with_axis(axis, args, kwargs) if axis is not None: axis = self._get_axis_number(axis) # GH 17276 # numpy doesn't like NaN as a clip value # so ignore if np.any(pd.isnull(lower)): lower = None if np.any(pd.isnull(upper)): upper = None # GH 2747 (arguments were reversed) if lower is not None and upper is not None: if is_scalar(lower) and is_scalar(upper): lower, upper = min(lower, upper), max(lower, upper) # fast-path for scalars if ((lower is None or (is_scalar(lower) and is_number(lower))) and (upper is None or (is_scalar(upper) and is_number(upper)))): return self._clip_with_scalar(lower, upper, inplace=inplace) result = self if lower is not None: result = result.clip_lower(lower, axis, inplace=inplace) if upper is not None: if inplace: result = self result = result.clip_upper(upper, axis, inplace=inplace) return result def clip_upper(self, threshold, axis=None, inplace=False): """ Return copy of input with values above given value(s) truncated. Parameters ---------- threshold : float or array_like axis : int or string axis name, optional Align object with threshold along the given axis. inplace : boolean, default False Whether to perform the operation in place on the data .. versionadded:: 0.21.0 See Also -------- clip Returns ------- clipped : same type as input """ return self._clip_with_one_bound(threshold, method=self.le, axis=axis, inplace=inplace) def clip_lower(self, threshold, axis=None, inplace=False): """ Return copy of the input with values below a threshold truncated. Parameters ---------- threshold : numeric or array-like Minimum value allowed. All values below threshold will be set to this value. * float : every value is compared to `threshold`. * array-like : The shape of `threshold` should match the object it's compared to. When `self` is a Series, `threshold` should be the length. When `self` is a DataFrame, `threshold` should 2-D and the same shape as `self` for ``axis=None``, or 1-D and the same length as the axis being compared. axis : {0 or 'index', 1 or 'columns'}, default 0 Align `self` with `threshold` along the given axis. inplace : boolean, default False Whether to perform the operation in place on the data. .. versionadded:: 0.21.0 See Also -------- Series.clip : Return copy of input with values below and above thresholds truncated. Series.clip_upper : Return copy of input with values above threshold truncated. Returns ------- clipped : same type as input Examples -------- Series single threshold clipping: >>> s = pd.Series([5, 6, 7, 8, 9]) >>> s.clip_lower(8) 0 8 1 8 2 8 3 8 4 9 dtype: int64 Series clipping element-wise using an array of thresholds. `threshold` should be the same length as the Series. >>> elemwise_thresholds = [4, 8, 7, 2, 5] >>> s.clip_lower(elemwise_thresholds) 0 5 1 8 2 7 3 8 4 9 dtype: int64 DataFrames can be compared to a scalar. >>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]}) >>> df A B 0 1 2 1 3 4 2 5 6 >>> df.clip_lower(3) A B 0 3 3 1 3 4 2 5 6 Or to an array of values. By default, `threshold` should be the same shape as the DataFrame. >>> df.clip_lower(np.array([[3, 4], [2, 2], [6, 2]])) A B 0 3 4 1 3 4 2 6 6 Control how `threshold` is broadcast with `axis`. In this case `threshold` should be the same length as the axis specified by `axis`. >>> df.clip_lower(np.array([3, 3, 5]), axis='index') A B 0 3 3 1 3 4 2 5 6 >>> df.clip_lower(np.array([4, 5]), axis='columns') A B 0 4 5 1 4 5 2 5 6 """ return self._clip_with_one_bound(threshold, method=self.ge, axis=axis, inplace=inplace) def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs): """ Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns. Parameters ---------- by : mapping, function, label, or list of labels Used to determine the groups for the groupby. If ``by`` is a function, it's called on each value of the object's index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series' values are first aligned; see ``.align()`` method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in ``self``. Notice that a tuple is interpreted a (single) key. axis : int, default 0 level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels as_index : boolean, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output sort : boolean, default True Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group. group_keys : boolean, default True When calling apply, add group keys to index to identify pieces squeeze : boolean, default False reduce the dimensionality of the return type if possible, otherwise return a consistent type Returns ------- GroupBy object Examples -------- DataFrame results >>> data.groupby(func, axis=0).mean() >>> data.groupby(['col1', 'col2'])['col3'].mean() DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean() Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/groupby.html>`_ for more. See also -------- resample : Convenience method for frequency conversion and resampling of time series. """ from pandas.core.groupby import groupby if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return groupby(self, by=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, **kwargs) def asfreq(self, freq, method=None, how=None, normalize=False, fill_value=None): """ Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values. Returns the original data conformed to a new index with the specified frequency. ``resample`` is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency. Parameters ---------- freq : DateOffset object, or string method : {'backfill'/'bfill', 'pad'/'ffill'}, default None Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present): * 'pad' / 'ffill': propagate last valid observation forward to next valid * 'backfill' / 'bfill': use NEXT valid observation to fill how : {'start', 'end'}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight fill_value: scalar, optional Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). .. versionadded:: 0.20.0 Returns ------- converted : type of caller Examples -------- Start by creating a series with 4 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=4, freq='T') >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index) >>> df = pd.DataFrame({'s':series}) >>> df s 2000-01-01 00:00:00 0.0 2000-01-01 00:01:00 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:03:00 3.0 Upsample the series into 30 second bins. >>> df.asfreq(freq='30S') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 NaN 2000-01-01 00:03:00 3.0 Upsample again, providing a ``fill value``. >>> df.asfreq(freq='30S', fill_value=9.0) s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 9.0 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 9.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 9.0 2000-01-01 00:03:00 3.0 Upsample again, providing a ``method``. >>> df.asfreq(freq='30S', method='bfill') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 2.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 3.0 2000-01-01 00:03:00 3.0 See Also -------- reindex Notes ----- To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ from pandas.core.resample import asfreq return asfreq(self, freq, method=method, how=how, normalize=normalize, fill_value=fill_value) def at_time(self, time, asof=False): """ Select values at particular time of day (e.g. 9:30AM). Parameters ---------- time : datetime.time or string Returns ------- values_at_time : type of caller """ try: indexer = self.index.indexer_at_time(time, asof=asof) return self._take(indexer, convert=False) except AttributeError: raise TypeError('Index must be DatetimeIndex') def between_time(self, start_time, end_time, include_start=True, include_end=True): """ Select values between particular times of the day (e.g., 9:00-9:30 AM). Parameters ---------- start_time : datetime.time or string end_time : datetime.time or string include_start : boolean, default True include_end : boolean, default True Returns ------- values_between_time : type of caller """ try: indexer = self.index.indexer_between_time( start_time, end_time, include_start=include_start, include_end=include_end) return self._take(indexer, convert=False) except AttributeError: raise TypeError('Index must be DatetimeIndex') def resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None): """ Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword. Parameters ---------- rule : string the offset string or object representing target conversion axis : int, optional, default 0 closed : {'right', 'left'} Which side of bin interval is closed. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. label : {'right', 'left'} Which bin edge label to label bucket with. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. convention : {'start', 'end', 's', 'e'} For PeriodIndex only, controls whether to use the start or end of `rule` kind: {'timestamp', 'period'}, optional Pass 'timestamp' to convert the resulting index to a ``DateTimeIndex`` or 'period' to convert it to a ``PeriodIndex``. By default the input representation is retained. loffset : timedelta Adjust the resampled time labels base : int, default 0 For frequencies that evenly subdivide 1 day, the "origin" of the aggregated intervals. For example, for '5min' frequency, base could range from 0 through 4. Defaults to 0 on : string, optional For a DataFrame, column to use instead of index for resampling. Column must be datetime-like. .. versionadded:: 0.19.0 level : string or int, optional For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like. .. versionadded:: 0.19.0 Returns ------- Resampler object Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling>`_ for more. To learn more about the offset strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples -------- Start by creating a series with 9 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin. >>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed value in the resampled bucket with the label ``2000-01-01 00:03:00`` does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one. >>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64 Upsample the series into 30 second bins. >>> series.resample('30S').asfreq()[0:5] #select first 5 rows 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1.0 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``pad`` method. >>> series.resample('30S').pad()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``bfill`` method. >>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Pass a custom function via ``apply`` >>> def custom_resampler(array_like): ... return np.sum(array_like)+5 >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword `convention` can be used to control whether to use the start or end of `rule`. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', freq='A', periods=2)) >>> s 2012 1 2013 2 Freq: A-DEC, dtype: int64 Resample by month using 'start' `convention`. Values are assigned to the first month of the period. >>> s.resample('M', convention='start').asfreq().head() 2012-01 1.0 2012-02 NaN 2012-03 NaN 2012-04 NaN 2012-05 NaN Freq: M, dtype: float64 Resample by month using 'end' `convention`. Values are assigned to the last month of the period. >>> s.resample('M', convention='end').asfreq() 2012-12 1.0 2013-01 NaN 2013-02 NaN 2013-03 NaN 2013-04 NaN 2013-05 NaN 2013-06 NaN 2013-07 NaN 2013-08 NaN 2013-09 NaN 2013-10 NaN 2013-11 NaN 2013-12 2.0 Freq: M, dtype: float64 For DataFrame objects, the keyword ``on`` can be used to specify the column instead of the index for resampling. >>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd']) >>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T') >>> df.resample('3T', on='time').sum() a b c d time 2000-01-01 00:00:00 0 3 6 9 2000-01-01 00:03:00 0 3 6 9 2000-01-01 00:06:00 0 3 6 9 For a DataFrame with MultiIndex, the keyword ``level`` can be used to specify on level the resampling needs to take place. >>> time = pd.date_range('1/1/2000', periods=5, freq='T') >>> df2 = pd.DataFrame(data=10*[range(4)], columns=['a', 'b', 'c', 'd'], index=pd.MultiIndex.from_product([time, [1, 2]]) ) >>> df2.resample('3T', level=0).sum() a b c d 2000-01-01 00:00:00 0 6 12 18 2000-01-01 00:03:00 0 4 8 12 See also -------- groupby : Group by mapping, function, label, or list of labels. """ from pandas.core.resample import (resample, _maybe_process_deprecations) axis = self._get_axis_number(axis) r = resample(self, freq=rule, label=label, closed=closed, axis=axis, kind=kind, loffset=loffset, convention=convention, base=base, key=on, level=level) return _maybe_process_deprecations(r, how=how, fill_method=fill_method, limit=limit) def first(self, offset): """ Convenience method for subsetting initial periods of time series data based on a date offset. Parameters ---------- offset : string, DateOffset, dateutil.relativedelta Examples -------- ts.first('10D') -> First 10 days Returns ------- subset : type of caller """ from pandas.tseries.frequencies import to_offset if not isinstance(self.index, DatetimeIndex): raise NotImplementedError("'first' only supports a DatetimeIndex " "index") if len(self.index) == 0: return self offset = to_offset(offset) end_date = end = self.index[0] + offset # Tick-like, e.g. 3 weeks if not offset.isAnchored() and hasattr(offset, '_inc'): if end_date in self.index: end = self.index.searchsorted(end_date, side='left') return self.iloc[:end] return self.loc[:end] def last(self, offset): """ Convenience method for subsetting final periods of time series data based on a date offset. Parameters ---------- offset : string, DateOffset, dateutil.relativedelta Examples -------- ts.last('5M') -> Last 5 months Returns ------- subset : type of caller """ from pandas.tseries.frequencies import to_offset if not isinstance(self.index, DatetimeIndex): raise NotImplementedError("'last' only supports a DatetimeIndex " "index") if len(self.index) == 0: return self offset = to_offset(offset) start_date = self.index[-1] - offset start = self.index.searchsorted(start_date, side='right') return self.iloc[start:] def rank(self, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False): """ Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 index to direct ranking method : {'average', 'min', 'max', 'first', 'dense'} * average: average rank of group * min: lowest rank in group * max: highest rank in group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups numeric_only : boolean, default None Include only float, int, boolean data. Valid only for DataFrame or Panel objects na_option : {'keep', 'top', 'bottom'} * keep: leave NA values where they are * top: smallest rank if ascending * bottom: smallest rank if descending ascending : boolean, default True False for ranks by high (1) to low (N) pct : boolean, default False Computes percentage rank of data Returns ------- ranks : same type as caller """ axis = self._get_axis_number(axis) if self.ndim > 2: msg = "rank does not make sense when ndim > 2" raise NotImplementedError(msg) def ranker(data): ranks = algos.rank(data.values, axis=axis, method=method, ascending=ascending, na_option=na_option, pct=pct) ranks = self._constructor(ranks, **data._construct_axes_dict()) return ranks.__finalize__(self) # if numeric_only is None, and we can't get anything, we try with # numeric_only=True if numeric_only is None: try: return ranker(self) except TypeError: numeric_only = True if numeric_only: data = self._get_numeric_data() else: data = self return ranker(data) _shared_docs['align'] = (""" Align two objects on their axes with the specified join method for each axis Index Parameters ---------- other : DataFrame or Series join : {'outer', 'inner', 'left', 'right'}, default 'outer' axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None) level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level copy : boolean, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value method : str, default None limit : int, default None fill_axis : %(axes_single_arg)s, default 0 Filling axis, method and limit broadcast_axis : %(axes_single_arg)s, default None Broadcast values along this axis, if aligning two objects of different dimensions Returns ------- (left, right) : (%(klass)s, type of other) Aligned objects """) @Appender(_shared_docs['align'] % _shared_doc_kwargs) def align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None): from pandas import DataFrame, Series method = missing.clean_fill_method(method) if broadcast_axis == 1 and self.ndim != other.ndim: if isinstance(self, Series): # this means other is a DataFrame, and we need to broadcast # self cons = self._constructor_expanddim df = cons({c: self for c in other.columns}, **other._construct_axes_dict()) return df._align_frame(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis) elif isinstance(other, Series): # this means self is a DataFrame, and we need to broadcast # other cons = other._constructor_expanddim df = cons({c: other for c in self.columns}, **self._construct_axes_dict()) return self._align_frame(df, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis) if axis is not None: axis = self._get_axis_number(axis) if isinstance(other, DataFrame): return self._align_frame(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis) elif isinstance(other, Series): return self._align_series(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis) else: # pragma: no cover raise TypeError('unsupported type: %s' % type(other)) def _align_frame(self, other, join='outer', axis=None, level=None, copy=True, fill_value=np.nan, method=None, limit=None, fill_axis=0): # defaults join_index, join_columns = None, None ilidx, iridx = None, None clidx, cridx = None, None is_series = isinstance(self, ABCSeries) if axis is None or axis == 0: if not self.index.equals(other.index): join_index, ilidx, iridx = self.index.join( other.index, how=join, level=level, return_indexers=True) if axis is None or axis == 1: if not is_series and not self.columns.equals(other.columns): join_columns, clidx, cridx = self.columns.join( other.columns, how=join, level=level, return_indexers=True) if is_series: reindexers = {0: [join_index, ilidx]} else: reindexers = {0: [join_index, ilidx], 1: [join_columns, clidx]} left = self._reindex_with_indexers(reindexers, copy=copy, fill_value=fill_value, allow_dups=True) # other must be always DataFrame right = other._reindex_with_indexers({0: [join_index, iridx], 1: [join_columns, cridx]}, copy=copy, fill_value=fill_value, allow_dups=True) if method is not None: left = left.fillna(axis=fill_axis, method=method, limit=limit) right = right.fillna(axis=fill_axis, method=method, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_datetime64tz_dtype(left.index): if left.index.tz != right.index.tz: if join_index is not None: left.index = join_index right.index = join_index return left.__finalize__(self), right.__finalize__(other) def _align_series(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0): is_series = isinstance(self, ABCSeries) # series/series compat, other must always be a Series if is_series: if axis: raise ValueError('cannot align series to a series other than ' 'axis 0') # equal if self.index.equals(other.index): join_index, lidx, ridx = None, None, None else: join_index, lidx, ridx = self.index.join(other.index, how=join, level=level, return_indexers=True) left = self._reindex_indexer(join_index, lidx, copy) right = other._reindex_indexer(join_index, ridx, copy) else: # one has > 1 ndim fdata = self._data if axis == 0: join_index = self.index lidx, ridx = None, None if not self.index.equals(other.index): join_index, lidx, ridx = self.index.join( other.index, how=join, level=level, return_indexers=True) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=1) elif axis == 1: join_index = self.columns lidx, ridx = None, None if not self.columns.equals(other.index): join_index, lidx, ridx = self.columns.join( other.index, how=join, level=level, return_indexers=True) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=0) else: raise ValueError('Must specify axis=0 or 1') if copy and fdata is self._data: fdata = fdata.copy() left = self._constructor(fdata) if ridx is None: right = other else: right = other.reindex(join_index, level=level) # fill fill_na = notna(fill_value) or (method is not None) if fill_na: left = left.fillna(fill_value, method=method, limit=limit, axis=fill_axis) right = right.fillna(fill_value, method=method, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_series or (not is_series and axis == 0): if is_datetime64tz_dtype(left.index): if left.index.tz != right.index.tz: if join_index is not None: left.index = join_index right.index = join_index return left.__finalize__(self), right.__finalize__(other) def _where(self, cond, other=np.nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False): """ Equivalent to public method `where`, except that `other` is not applied as a function even if callable. Used in __setitem__. """ inplace = validate_bool_kwarg(inplace, 'inplace') # align the cond to same shape as myself cond = com._apply_if_callable(cond, self) if isinstance(cond, NDFrame): cond, _ = cond.align(self, join='right', broadcast_axis=1) else: if not hasattr(cond, 'shape'): cond = np.asanyarray(cond) if cond.shape != self.shape: raise ValueError('Array conditional must be same shape as ' 'self') cond = self._constructor(cond, **self._construct_axes_dict()) # make sure we are boolean fill_value = True if inplace else False cond = cond.fillna(fill_value) msg = "Boolean array expected for the condition, not {dtype}" if not isinstance(cond, pd.DataFrame): # This is a single-dimensional object. if not is_bool_dtype(cond): raise ValueError(msg.format(dtype=cond.dtype)) else: for dt in cond.dtypes: if not is_bool_dtype(dt): raise ValueError(msg.format(dtype=dt)) cond = cond.astype(bool, copy=False) cond = -cond if inplace else cond # try to align with other try_quick = True if hasattr(other, 'align'): # align with me if other.ndim <= self.ndim: _, other = self.align(other, join='left', axis=axis, level=level, fill_value=np.nan) # if we are NOT aligned, raise as we cannot where index if (axis is None and not all(other._get_axis(i).equals(ax) for i, ax in enumerate(self.axes))): raise InvalidIndexError # slice me out of the other else: raise NotImplementedError("cannot align with a higher " "dimensional NDFrame") if isinstance(other, np.ndarray): if other.shape != self.shape: if self.ndim == 1: icond = cond.values # GH 2745 / GH 4192 # treat like a scalar if len(other) == 1: other = np.array(other[0]) # GH 3235 # match True cond to other elif len(cond[icond]) == len(other): # try to not change dtype at first (if try_quick) if try_quick: try: new_other = com._values_from_object(self) new_other = new_other.copy() new_other[icond] = other other = new_other except Exception: try_quick = False # let's create a new (if we failed at the above # or not try_quick if not try_quick: dtype, fill_value = maybe_promote(other.dtype) new_other = np.empty(len(icond), dtype=dtype) new_other.fill(fill_value) maybe_upcast_putmask(new_other, icond, other) other = new_other else: raise ValueError('Length of replacements must equal ' 'series length') else: raise ValueError('other must be the same shape as self ' 'when an ndarray') # we are the same shape, so create an actual object for alignment else: other = self._constructor(other, **self._construct_axes_dict()) if axis is None: axis = 0 if self.ndim == getattr(other, 'ndim', 0): align = True else: align = (self._get_axis_number(axis) == 1) block_axis = self._get_block_manager_axis(axis) if inplace: # we may have different type blocks come out of putmask, so # reconstruct the block manager self._check_inplace_setting(other) new_data = self._data.putmask(mask=cond, new=other, align=align, inplace=True, axis=block_axis, transpose=self._AXIS_REVERSED) self._update_inplace(new_data) else: new_data = self._data.where(other=other, cond=cond, align=align, errors=errors, try_cast=try_cast, axis=block_axis, transpose=self._AXIS_REVERSED) return self._constructor(new_data).__finalize__(self) _shared_docs['where'] = (""" Return an object of same shape as self and whose corresponding entries are from self where `cond` is %(cond)s and otherwise are from `other`. Parameters ---------- cond : boolean %(klass)s, array-like, or callable Where `cond` is %(cond)s, keep the original value. Where %(cond_rev)s, replace with corresponding value from `other`. If `cond` is callable, it is computed on the %(klass)s and should return boolean %(klass)s or array. The callable must not change input %(klass)s (though pandas doesn't check it). .. versionadded:: 0.18.1 A callable can be used as cond. other : scalar, %(klass)s, or callable Entries where `cond` is %(cond_rev)s are replaced with corresponding value from `other`. If other is callable, it is computed on the %(klass)s and should return scalar or %(klass)s. The callable must not change input %(klass)s (though pandas doesn't check it). .. versionadded:: 0.18.1 A callable can be used as other. inplace : boolean, default False Whether to perform the operation in place on the data axis : alignment axis if needed, default None level : alignment level if needed, default None errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Note that currently this parameter won't affect the results and will always coerce to a suitable dtype. try_cast : boolean, default False try to cast the result back to the input type (if possible), raise_on_error : boolean, default True Whether to raise on invalid data types (e.g. trying to where on strings) .. deprecated:: 0.21.0 Returns ------- wh : same type as caller Notes ----- The %(name)s method is an application of the if-then idiom. For each element in the calling DataFrame, if ``cond`` is ``%(cond)s`` the element is used; otherwise the corresponding element from the DataFrame ``other`` is used. The signature for :func:`DataFrame.where` differs from :func:`numpy.where`. Roughly ``df1.where(m, df2)`` is equivalent to ``np.where(m, df1, df2)``. For further details and examples see the ``%(name)s`` documentation in :ref:`indexing <indexing.where_mask>`. Examples -------- >>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 >>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN >>> s.where(s > 1, 10) 0 10.0 1 10.0 2 2.0 3 3.0 4 4.0 >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> m = df %% 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True See Also -------- :func:`DataFrame.%(name_other)s` """) @Appender(_shared_docs['where'] % dict(_shared_doc_kwargs, cond="True", cond_rev="False", name='where', name_other='mask')) def where(self, cond, other=np.nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False, raise_on_error=None): if raise_on_error is not None: warnings.warn( "raise_on_error is deprecated in " "favor of errors='raise|ignore'", FutureWarning, stacklevel=2) if raise_on_error: errors = 'raise' else: errors = 'ignore' other = com._apply_if_callable(other, self) return self._where(cond, other, inplace, axis, level, errors=errors, try_cast=try_cast) @Appender(_shared_docs['where'] % dict(_shared_doc_kwargs, cond="False", cond_rev="True", name='mask', name_other='where')) def mask(self, cond, other=np.nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False, raise_on_error=None): if raise_on_error is not None: warnings.warn( "raise_on_error is deprecated in " "favor of errors='raise|ignore'", FutureWarning, stacklevel=2) if raise_on_error: errors = 'raise' else: errors = 'ignore' inplace = validate_bool_kwarg(inplace, 'inplace') cond = com._apply_if_callable(cond, self) return self.where(~cond, other=other, inplace=inplace, axis=axis, level=level, try_cast=try_cast, errors=errors) _shared_docs['shift'] = (""" Shift index by desired number of periods with an optional time freq Parameters ---------- periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, optional Increment to use from the tseries module or time rule (e.g. 'EOM'). See Notes. axis : %(axes_single_arg)s Notes ----- If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. Returns ------- shifted : %(klass)s """) @Appender(_shared_docs['shift'] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0): if periods == 0: return self block_axis = self._get_block_manager_axis(axis) if freq is None: new_data = self._data.shift(periods=periods, axis=block_axis) else: return self.tshift(periods, freq) return self._constructor(new_data).__finalize__(self) def slice_shift(self, periods=1, axis=0): """ Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters ---------- periods : int Number of periods to move, can be positive or negative Notes ----- While the `slice_shift` is faster than `shift`, you may pay for it later during alignment. Returns ------- shifted : same type as caller """ if periods == 0: return self if periods > 0: vslicer = slice(None, -periods) islicer = slice(periods, None) else: vslicer = slice(-periods, None) islicer = slice(None, periods) new_obj = self._slice(vslicer, axis=axis) shifted_axis = self._get_axis(axis)[islicer] new_obj.set_axis(shifted_axis, axis=axis, inplace=True) return new_obj.__finalize__(self) def tshift(self, periods=1, freq=None, axis=0): """ Shift the time index, using the index's frequency if available. Parameters ---------- periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, default None Increment to use from the tseries module or time rule (e.g. 'EOM') axis : int or basestring Corresponds to the axis that contains the Index Notes ----- If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown Returns ------- shifted : NDFrame """ index = self._get_axis(axis) if freq is None: freq = getattr(index, 'freq', None) if freq is None: freq = getattr(index, 'inferred_freq', None) if freq is None: msg = 'Freq was not given and was not set in the index' raise ValueError(msg) if periods == 0: return self if isinstance(freq, string_types): freq = to_offset(freq) block_axis = self._get_block_manager_axis(axis) if isinstance(index, PeriodIndex): orig_freq = to_offset(index.freq) if freq == orig_freq: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods) else: msg = ('Given freq %s does not match PeriodIndex freq %s' % (freq.rule_code, orig_freq.rule_code)) raise ValueError(msg) else: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods, freq) return self._constructor(new_data).__finalize__(self) def truncate(self, before=None, after=None, axis=None, copy=True): """ Truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. Parameters ---------- before : date, string, int Truncate all rows before this index value. after : date, string, int Truncate all rows after this index value. axis : {0 or 'index', 1 or 'columns'}, optional Axis to truncate. Truncates the index (rows) by default. copy : boolean, default is True, Return a copy of the truncated section. Returns ------- type of caller The truncated Series or DataFrame. See Also -------- DataFrame.loc : Select a subset of a DataFrame by label. DataFrame.iloc : Select a subset of a DataFrame by position. Notes ----- If the index being truncated contains only datetime values, `before` and `after` may be specified as strings instead of Timestamps. Examples -------- >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n The columns of a DataFrame can be truncated. >>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j For Series, only rows can be truncated. >>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object The index values in ``truncate`` can be datetimes or string dates. >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.tail() A 2016-01-31 23:59:56 1 2016-01-31 23:59:57 1 2016-01-31 23:59:58 1 2016-01-31 23:59:59 1 2016-02-01 00:00:00 1 >>> df.truncate(before=pd.Timestamp('2016-01-05'), ... after=pd.Timestamp('2016-01-10')).tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Because the index is a DatetimeIndex containing only dates, we can specify `before` and `after` as strings. They will be coerced to Timestamps before truncation. >>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Note that ``truncate`` assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates. >>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) ax = self._get_axis(axis) # GH 17935 # Check that index is sorted if not ax.is_monotonic_increasing and not ax.is_monotonic_decreasing: raise ValueError("truncate requires a sorted index") # if we have a date index, convert to dates, otherwise # treat like a slice if ax.is_all_dates: from pandas.core.tools.datetimes import to_datetime before = to_datetime(before) after = to_datetime(after) if before is not None and after is not None: if before > after: raise ValueError('Truncate: %s must be after %s' % (after, before)) slicer = [slice(None, None)] * self._AXIS_LEN slicer[axis] = slice(before, after) result = self.loc[tuple(slicer)] if isinstance(ax, MultiIndex): setattr(result, self._get_axis_name(axis), ax.truncate(before, after)) if copy: result = result.copy() return result def tz_convert(self, tz, axis=0, level=None, copy=True): """ Convert tz-aware axis to target time zone. Parameters ---------- tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Returns ------- Raises ------ TypeError If the axis is tz-naive. """ axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_convert(ax, tz): if not hasattr(ax, 'tz_convert'): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError('%s is not a valid DatetimeIndex or ' 'PeriodIndex' % ax_name) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_convert(tz) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_convert(ax.levels[level], tz) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError("The level {0} is not valid".format(level)) ax = _tz_convert(ax, tz) result = self._constructor(self._data, copy=copy) result.set_axis(ax, axis=axis, inplace=True) return result.__finalize__(self) def tz_localize(self, tz, axis=0, level=None, copy=True, ambiguous='raise'): """ Localize tz-naive TimeSeries to target time zone. Parameters ---------- tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times Returns ------- Raises ------ TypeError If the TimeSeries is tz-aware and tz is not None. """ axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_localize(ax, tz, ambiguous): if not hasattr(ax, 'tz_localize'): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError('%s is not a valid DatetimeIndex or ' 'PeriodIndex' % ax_name) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_localize(tz, ambiguous=ambiguous) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_localize(ax.levels[level], tz, ambiguous) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError("The level {0} is not valid".format(level)) ax = _tz_localize(ax, tz, ambiguous) result = self._constructor(self._data, copy=copy) result.set_axis(ax, axis=axis, inplace=True) return result.__finalize__(self) # ---------------------------------------------------------------------- # Numeric Methods def abs(self): """ Return a Series/DataFrame with absolute numeric value of each element. This function only applies to elements that are all numeric. Returns ------- abs Series/DataFrame containing the absolute value of each element. Notes ----- For ``complex`` inputs, ``1.2 + 1j``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. Examples -------- Absolute numeric values in a Series. >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 Absolute numeric values in a Series with complex numbers. >>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64 Absolute numeric values in a Series with a Timedelta element. >>> s = pd.Series([pd.Timedelta('1 days')]) >>> s.abs() 0 1 days dtype: timedelta64[ns] Select rows with data closest to certain value using argsort (from `StackOverflow <https://stackoverflow.com/a/17758115>`__). >>> df = pd.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50 See Also -------- numpy.absolute : calculate the absolute value element-wise. """ return np.abs(self) def describe(self, percentiles=None, include=None, exclude=None): """ Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Analyzes both numeric and object series, as well as ``DataFrame`` column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail. Parameters ---------- percentiles : list-like of numbers, optional The percentiles to include in the output. All should fall between 0 and 1. The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and 75th percentiles. include : 'all', list-like of dtypes or None (default), optional A white list of data types to include in the result. Ignored for ``Series``. Here are the options: - 'all' : All columns of the input will be included in the output. - A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit ``numpy.number``. To limit it instead to object columns submit the ``numpy.object`` data type. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To select pandas categorical columns, use ``'category'`` - None (default) : The result will include all numeric columns. exclude : list-like of dtypes or None (default), optional, A black list of data types to omit from the result. Ignored for ``Series``. Here are the options: - A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit ``numpy.number``. To exclude object columns submit the data type ``numpy.object``. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To exclude pandas categorical columns, use ``'category'`` - None (default) : The result will exclude nothing. Returns ------- summary: Series/DataFrame of summary statistics Notes ----- For numeric data, the result's index will include ``count``, ``mean``, ``std``, ``min``, ``max`` as well as lower, ``50`` and upper percentiles. By default the lower percentile is ``25`` and the upper percentile is ``75``. The ``50`` percentile is the same as the median. For object data (e.g. strings or timestamps), the result's index will include ``count``, ``unique``, ``top``, and ``freq``. The ``top`` is the most common value. The ``freq`` is the most common value's frequency. Timestamps also include the ``first`` and ``last`` items. If multiple object values have the highest count, then the ``count`` and ``top`` results will be arbitrarily chosen from among those with the highest count. For mixed data types provided via a ``DataFrame``, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If ``include='all'`` is provided as an option, the result will include a union of attributes of each type. The `include` and `exclude` parameters can be used to limit which columns in a ``DataFrame`` are analyzed for the output. The parameters are ignored when analyzing a ``Series``. Examples -------- Describing a numeric ``Series``. >>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Describing a categorical ``Series``. >>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object Describing a timestamp ``Series``. >>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe() count 3 unique 2 top 2010-01-01 00:00:00 freq 2 first 2000-01-01 00:00:00 last 2010-01-01 00:00:00 dtype: object Describing a ``DataFrame``. By default only numeric fields are returned. >>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'], ... 'numeric': [1, 2, 3], ... 'categorical': pd.Categorical(['d','e','f']) ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Describing all columns of a ``DataFrame`` regardless of data type. >>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN c freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64 Including only numeric columns in a ``DataFrame`` description. >>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Including only string columns in a ``DataFrame`` description. >>> df.describe(include=[np.object]) object count 3 unique 3 top c freq 1 Including only categorical columns from a ``DataFrame`` description. >>> df.describe(include=['category']) categorical count 3 unique 3 top f freq 1 Excluding numeric columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top f c freq 1 1 Excluding object columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.object]) categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0 See Also -------- DataFrame.count DataFrame.max DataFrame.min DataFrame.mean DataFrame.std DataFrame.select_dtypes """ if self.ndim >= 3: msg = "describe is not implemented on Panel objects." raise NotImplementedError(msg) elif self.ndim == 2 and self.columns.size == 0: raise ValueError("Cannot describe a DataFrame without columns") if percentiles is not None: # explicit conversion of `percentiles` to list percentiles = list(percentiles) # get them all to be in [0, 1] self._check_percentile(percentiles) # median should always be included if 0.5 not in percentiles: percentiles.append(0.5) percentiles = np.asarray(percentiles) else: percentiles = np.array([0.25, 0.5, 0.75]) # sort and check for duplicates unique_pcts = np.unique(percentiles) if len(unique_pcts) < len(percentiles): raise ValueError("percentiles cannot contain duplicates") percentiles = unique_pcts formatted_percentiles = format_percentiles(percentiles) def describe_numeric_1d(series): stat_index = (['count', 'mean', 'std', 'min'] + formatted_percentiles + ['max']) d = ([series.count(), series.mean(), series.std(), series.min()] + [series.quantile(x) for x in percentiles] + [series.max()]) return pd.Series(d, index=stat_index, name=series.name) def describe_categorical_1d(data): names = ['count', 'unique'] objcounts = data.value_counts() count_unique = len(objcounts[objcounts != 0]) result = [data.count(), count_unique] if result[1] > 0: top, freq = objcounts.index[0], objcounts.iloc[0] if is_datetime64_dtype(data): asint = data.dropna().values.view('i8') names += ['top', 'freq', 'first', 'last'] result += [tslib.Timestamp(top), freq, tslib.Timestamp(asint.min()), tslib.Timestamp(asint.max())] else: names += ['top', 'freq'] result += [top, freq] return pd.Series(result, index=names, name=data.name) def describe_1d(data): if is_bool_dtype(data): return describe_categorical_1d(data) elif is_numeric_dtype(data): return describe_numeric_1d(data) elif is_timedelta64_dtype(data): return describe_numeric_1d(data) else: return describe_categorical_1d(data) if self.ndim == 1: return describe_1d(self) elif (include is None) and (exclude is None): # when some numerics are found, keep only numerics data = self.select_dtypes(include=[np.number]) if len(data.columns) == 0: data = self elif include == 'all': if exclude is not None: msg = "exclude must be None when include is 'all'" raise ValueError(msg) data = self else: data = self.select_dtypes(include=include, exclude=exclude) ldesc = [describe_1d(s) for _, s in data.iteritems()] # set a convenient order for rows names = [] ldesc_indexes = sorted([x.index for x in ldesc], key=len) for idxnames in ldesc_indexes: for name in idxnames: if name not in names: names.append(name) d = pd.concat(ldesc, join_axes=pd.Index([names]), axis=1) d.columns = data.columns.copy() return d def _check_percentile(self, q): """Validate percentiles (used by describe and quantile).""" msg = ("percentiles should all be in the interval [0, 1]. " "Try {0} instead.") q = np.asarray(q) if q.ndim == 0: if not 0 <= q <= 1: raise ValueError(msg.format(q / 100.0)) else: if not all(0 <= qs <= 1 for qs in q): raise ValueError(msg.format(q / 100.0)) return q _shared_docs['pct_change'] = """ Percentage change between the current and a prior element. Computes the percentage change from the immediately previous row by default. This is useful in comparing the percentage of change in a time series of elements. Parameters ---------- periods : int, default 1 Periods to shift for forming percent change. fill_method : str, default 'pad' How to handle NAs before computing percent changes. limit : int, default None The number of consecutive NAs to fill before stopping. freq : DateOffset, timedelta, or offset alias string, optional Increment to use from time series API (e.g. 'M' or BDay()). **kwargs Additional keyword arguments are passed into `DataFrame.shift` or `Series.shift`. Returns ------- chg : Series or DataFrame The same type as the calling object. See Also -------- Series.diff : Compute the difference of two elements in a Series. DataFrame.diff : Compute the difference of two elements in a DataFrame. Series.shift : Shift the index by some number of periods. DataFrame.shift : Shift the index by some number of periods. Examples -------- **Series** >>> s = pd.Series([90, 91, 85]) >>> s 0 90 1 91 2 85 dtype: int64 >>> s.pct_change() 0 NaN 1 0.011111 2 -0.065934 dtype: float64 >>> s.pct_change(periods=2) 0 NaN 1 NaN 2 -0.055556 dtype: float64 See the percentage change in a Series where filling NAs with last valid observation forward to next valid. >>> s = pd.Series([90, 91, None, 85]) >>> s 0 90.0 1 91.0 2 NaN 3 85.0 dtype: float64 >>> s.pct_change(fill_method='ffill') 0 NaN 1 0.011111 2 0.000000 3 -0.065934 dtype: float64 **DataFrame** Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01. >>> df = pd.DataFrame({ ... 'FR': [4.0405, 4.0963, 4.3149], ... 'GR': [1.7246, 1.7482, 1.8519], ... 'IT': [804.74, 810.01, 860.13]}, ... index=['1980-01-01', '1980-02-01', '1980-03-01']) >>> df FR GR IT 1980-01-01 4.0405 1.7246 804.74 1980-02-01 4.0963 1.7482 810.01 1980-03-01 4.3149 1.8519 860.13 >>> df.pct_change() FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 0.013810 0.013684 0.006549 1980-03-01 0.053365 0.059318 0.061876 Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change between columns. >>> df = pd.DataFrame({ ... '2016': [1769950, 30586265], ... '2015': [1500923, 40912316], ... '2014': [1371819, 41403351]}, ... index=['GOOG', 'APPL']) >>> df 2016 2015 2014 GOOG 1769950 1500923 1371819 APPL 30586265 40912316 41403351 >>> df.pct_change(axis='columns') 2016 2015 2014 GOOG NaN -0.151997 -0.086016 APPL NaN 0.337604 0.012002 """ @Appender(_shared_docs['pct_change'] % _shared_doc_kwargs) def pct_change(self, periods=1, fill_method='pad', limit=None, freq=None, **kwargs): # TODO: Not sure if above is correct - need someone to confirm. axis = self._get_axis_number(kwargs.pop('axis', self._stat_axis_name)) if fill_method is None: data = self else: data = self.fillna(method=fill_method, limit=limit, axis=axis) rs = (data.div(data.shift(periods=periods, freq=freq, axis=axis, **kwargs)) - 1) rs = rs.reindex_like(data) if freq is None: mask = isna(com._values_from_object(data)) np.putmask(rs.values, mask, np.nan) return rs def _agg_by_level(self, name, axis=0, level=0, skipna=True, **kwargs): grouped = self.groupby(level=level, axis=axis, sort=False) if hasattr(grouped, name) and skipna: return getattr(grouped, name)(**kwargs) axis = self._get_axis_number(axis) method = getattr(type(self), name) applyf = lambda x: method(x, axis=axis, skipna=skipna, **kwargs) return grouped.aggregate(applyf) @classmethod def _add_numeric_operations(cls): """Add the operations to the cls; evaluate the doc strings again""" axis_descr, name, name2 = _doc_parms(cls) cls.any = _make_logical_function( cls, 'any', name, name2, axis_descr, _any_desc, nanops.nanany, _any_examples, _any_see_also) cls.all = _make_logical_function( cls, 'all', name, name2, axis_descr, _all_doc, nanops.nanall, _all_examples, _all_see_also) @Substitution(outname='mad', desc="Return the mean absolute deviation of the values " "for the requested axis", name1=name, name2=name2, axis_descr=axis_descr, min_count='', examples='') @Appender(_num_doc) def mad(self, axis=None, skipna=None, level=None): if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level('mad', axis=axis, level=level, skipna=skipna) data = self._get_numeric_data() if axis == 0: demeaned = data - data.mean(axis=0) else: demeaned = data.sub(data.mean(axis=1), axis=0) return np.abs(demeaned).mean(axis=axis, skipna=skipna) cls.mad = mad cls.sem = _make_stat_function_ddof( cls, 'sem', name, name2, axis_descr, "Return unbiased standard error of the mean over requested " "axis.\n\nNormalized by N-1 by default. This can be changed " "using the ddof argument", nanops.nansem) cls.var = _make_stat_function_ddof( cls, 'var', name, name2, axis_descr, "Return unbiased variance over requested axis.\n\nNormalized by " "N-1 by default. This can be changed using the ddof argument", nanops.nanvar) cls.std = _make_stat_function_ddof( cls, 'std', name, name2, axis_descr, "Return sample standard deviation over requested axis." "\n\nNormalized by N-1 by default. This can be changed using the " "ddof argument", nanops.nanstd) @Substitution(outname='compounded', desc="Return the compound percentage of the values for " "the requested axis", name1=name, name2=name2, axis_descr=axis_descr, min_count='', examples='') @Appender(_num_doc) def compound(self, axis=None, skipna=None, level=None): if skipna is None: skipna = True return (1 + self).prod(axis=axis, skipna=skipna, level=level) - 1 cls.compound = compound cls.cummin = _make_cum_function( cls, 'cummin', name, name2, axis_descr, "minimum", lambda y, axis: np.minimum.accumulate(y, axis), "min", np.inf, np.nan, _cummin_examples) cls.cumsum = _make_cum_function( cls, 'cumsum', name, name2, axis_descr, "sum", lambda y, axis: y.cumsum(axis), "sum", 0., np.nan, _cumsum_examples) cls.cumprod = _make_cum_function( cls, 'cumprod', name, name2, axis_descr, "product", lambda y, axis: y.cumprod(axis), "prod", 1., np.nan, _cumprod_examples) cls.cummax = _make_cum_function( cls, 'cummax', name, name2, axis_descr, "maximum", lambda y, axis: np.maximum.accumulate(y, axis), "max", -np.inf, np.nan, _cummax_examples) cls.sum = _make_min_count_stat_function( cls, 'sum', name, name2, axis_descr, 'Return the sum of the values for the requested axis', nanops.nansum, _sum_examples) cls.mean = _make_stat_function( cls, 'mean', name, name2, axis_descr, 'Return the mean of the values for the requested axis', nanops.nanmean) cls.skew = _make_stat_function( cls, 'skew', name, name2, axis_descr, 'Return unbiased skew over requested axis\nNormalized by N-1', nanops.nanskew) cls.kurt = _make_stat_function( cls, 'kurt', name, name2, axis_descr, "Return unbiased kurtosis over requested axis using Fisher's " "definition of\nkurtosis (kurtosis of normal == 0.0). Normalized " "by N-1\n", nanops.nankurt) cls.kurtosis = cls.kurt cls.prod = _make_min_count_stat_function( cls, 'prod', name, name2, axis_descr, 'Return the product of the values for the requested axis', nanops.nanprod, _prod_examples) cls.product = cls.prod cls.median = _make_stat_function( cls, 'median', name, name2, axis_descr, 'Return the median of the values for the requested axis', nanops.nanmedian) cls.max = _make_stat_function( cls, 'max', name, name2, axis_descr, """This method returns the maximum of the values in the object. If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.""", nanops.nanmax) cls.min = _make_stat_function( cls, 'min', name, name2, axis_descr, """This method returns the minimum of the values in the object. If you want the *index* of the minimum, use ``idxmin``. This is the equivalent of the ``numpy.ndarray`` method ``argmin``.""", nanops.nanmin) @classmethod def _add_series_only_operations(cls): """Add the series only operations to the cls; evaluate the doc strings again. """ axis_descr, name, name2 = _doc_parms(cls) def nanptp(values, axis=0, skipna=True): nmax = nanops.nanmax(values, axis, skipna) nmin = nanops.nanmin(values, axis, skipna) return nmax - nmin cls.ptp = _make_stat_function( cls, 'ptp', name, name2, axis_descr, """Returns the difference between the maximum value and the minimum value in the object. This is the equivalent of the ``numpy.ndarray`` method ``ptp``.""", nanptp) @classmethod def _add_series_or_dataframe_operations(cls): """Add the series or dataframe only operations to the cls; evaluate the doc strings again. """ from pandas.core import window as rwindow @Appender(rwindow.rolling.__doc__) def rolling(self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None): axis = self._get_axis_number(axis) return rwindow.rolling(self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed) cls.rolling = rolling @Appender(rwindow.expanding.__doc__) def expanding(self, min_periods=1, center=False, axis=0): axis = self._get_axis_number(axis) return rwindow.expanding(self, min_periods=min_periods, center=center, axis=axis) cls.expanding = expanding @Appender(rwindow.ewm.__doc__) def ewm(self, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0): axis = self._get_axis_number(axis) return rwindow.ewm(self, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na, axis=axis) cls.ewm = ewm @Appender(_shared_docs['transform'] % _shared_doc_kwargs) def transform(self, func, *args, **kwargs): result = self.agg(func, *args, **kwargs) if is_scalar(result) or len(result) != len(self): raise ValueError("transforms cannot produce " "aggregated results") return result cls.transform = transform # ---------------------------------------------------------------------- # Misc methods _shared_docs['valid_index'] = """ Return index for %(position)s non-NA/null value. Notes -------- If all elements are non-NA/null, returns None. Also returns None for empty %(klass)s. Returns -------- scalar : type of index """ def _doc_parms(cls): """Return a tuple of the doc parms.""" axis_descr = "{%s}" % ', '.join(["{0} ({1})".format(a, i) for i, a in enumerate(cls._AXIS_ORDERS)]) name = (cls._constructor_sliced.__name__ if cls._AXIS_LEN > 1 else 'scalar') name2 = cls.__name__ return axis_descr, name, name2 _num_doc = """ %(desc)s Parameters ---------- axis : %(axis_descr)s skipna : boolean, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s numeric_only : boolean, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. %(min_count)s\ Returns ------- %(outname)s : %(name1)s or %(name2)s (if level specified) %(examples)s""" _num_ddof_doc = """ %(desc)s Parameters ---------- axis : %(axis_descr)s skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : boolean, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns ------- %(outname)s : %(name1)s or %(name2)s (if level specified)\n""" _bool_doc = """ %(desc)s Parameters ---------- axis : int, default 0 Select the axis which can be 0 for indices and 1 for columns. skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. bool_only : boolean, default None Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- %(outname)s : %(name1)s or %(name2)s (if level specified) %(see_also)s %(examples)s""" _all_doc = """\ Return whether all elements are True over series or dataframe axis. Returns True if all elements within a series or along a dataframe axis are non-zero, not-empty or not-False.""" _all_examples = """\ Examples -------- Series >>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False Dataframes Create a dataframe from a dictionary. >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False Default behaviour checks if column-wise values all return True. >>> df.all() col1 True col2 False dtype: bool Adding axis=1 argument will check if row-wise values all return True. >>> df.all(axis=1) 0 True 1 False dtype: bool """ _all_see_also = """\ See also -------- pandas.Series.all : Return True if all elements are True pandas.DataFrame.any : Return True if one (or more) elements are True """ _cnum_doc = """ Return cumulative %(desc)s over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative %(desc)s. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The index or the name of the axis. 0 is equivalent to None or 'index'. skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargs : Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- %(outname)s : %(name1)s or %(name2)s\n %(examples)s See also -------- pandas.core.window.Expanding.%(accum_func_name)s : Similar functionality but ignores ``NaN`` values. %(name2)s.%(accum_func_name)s : Return the %(desc)s over %(name2)s axis. %(name2)s.cummax : Return cumulative maximum over %(name2)s axis. %(name2)s.cummin : Return cumulative minimum over %(name2)s axis. %(name2)s.cumsum : Return cumulative sum over %(name2)s axis. %(name2)s.cumprod : Return cumulative product over %(name2)s axis. """ _cummin_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the minimum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0 To iterate over columns and find the minimum in each row, use ``axis=1`` >>> df.cummin(axis=1) A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 """ _cumsum_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 To iterate over columns and find the sum in each row, use ``axis=1`` >>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0 """ _cumprod_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumprod() 0 2.0 1 NaN 2 10.0 3 -10.0 4 -0.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumprod(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the product in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumprod() A B 0 2.0 1.0 1 6.0 NaN 2 6.0 0.0 To iterate over columns and find the product in each row, use ``axis=1`` >>> df.cumprod(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 0.0 """ _cummax_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummax() 0 2.0 1 NaN 2 5.0 3 5.0 4 5.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummax(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the maximum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0 To iterate over columns and find the maximum in each row, use ``axis=1`` >>> df.cummax(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 1.0 """ _any_see_also = """\ See Also -------- pandas.DataFrame.all : Return whether all elements are True. """ _any_desc = """\ Return whether any element is True over requested axis. Unlike :meth:`DataFrame.all`, this performs an *or* operation. If any of the values along the specified axis is True, this will return True.""" _any_examples = """\ Examples -------- **Series** For Series input, the output is a scalar indicating whether any element is True. >>> pd.Series([True, False]).any() True **DataFrame** Whether each column contains at least one True element (the default). >>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0 >>> df.any() A True B True C False dtype: bool Aggregating over the columns. >>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2 >>> df.any(axis='columns') 0 True 1 True dtype: bool >>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0 >>> df.any(axis='columns') 0 True 1 False dtype: bool `any` for an empty DataFrame is an empty Series. >>> pd.DataFrame([]).any() Series([], dtype: bool) """ _sum_examples = """\ Examples -------- By default, the sum of an empty or all-NA Series is ``0``. >>> pd.Series([]).sum() # min_count=0 is the default 0.0 This can be controlled with the ``min_count`` parameter. For example, if you'd like the sum of an empty series to be NaN, pass ``min_count=1``. >>> pd.Series([]).sum(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).sum() 0.0 >>> pd.Series([np.nan]).sum(min_count=1) nan """ _prod_examples = """\ Examples -------- By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([]).prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([]).prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan """ _min_count_stub = """\ min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. .. versionadded :: 0.22.0 Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1. """ def _make_min_count_stat_function(cls, name, name1, name2, axis_descr, desc, f, examples): @Substitution(outname=name, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count=_min_count_stub, examples=examples) @Appender(_num_doc) def stat_func(self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs): nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level(name, axis=axis, level=level, skipna=skipna, min_count=min_count) return self._reduce(f, name, axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count) return set_function_name(stat_func, name, cls) def _make_stat_function(cls, name, name1, name2, axis_descr, desc, f): @Substitution(outname=name, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count='', examples='') @Appender(_num_doc) def stat_func(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs): nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) return self._reduce(f, name, axis=axis, skipna=skipna, numeric_only=numeric_only) return set_function_name(stat_func, name, cls) def _make_stat_function_ddof(cls, name, name1, name2, axis_descr, desc, f): @Substitution(outname=name, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr) @Appender(_num_ddof_doc) def stat_func(self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs): nv.validate_stat_ddof_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level(name, axis=axis, level=level, skipna=skipna, ddof=ddof) return self._reduce(f, name, axis=axis, numeric_only=numeric_only, skipna=skipna, ddof=ddof) return set_function_name(stat_func, name, cls) def _make_cum_function(cls, name, name1, name2, axis_descr, desc, accum_func, accum_func_name, mask_a, mask_b, examples): @Substitution(outname=name, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, accum_func_name=accum_func_name, examples=examples) @Appender(_cnum_doc) def cum_func(self, axis=None, skipna=True, *args, **kwargs): skipna = nv.validate_cum_func_with_skipna(skipna, args, kwargs, name) if axis is None: axis = self._stat_axis_number else: axis = self._get_axis_number(axis) y = com._values_from_object(self).copy() if (skipna and issubclass(y.dtype.type, (np.datetime64, np.timedelta64))): result = accum_func(y, axis) mask = isna(self) np.putmask(result, mask, tslib.iNaT) elif skipna and not issubclass(y.dtype.type, (np.integer, np.bool_)): mask = isna(self) np.putmask(y, mask, mask_a) result = accum_func(y, axis) np.putmask(result, mask, mask_b) else: result = accum_func(y, axis) d = self._construct_axes_dict() d['copy'] = False return self._constructor(result, **d).__finalize__(self) return set_function_name(cum_func, name, cls) def _make_logical_function(cls, name, name1, name2, axis_descr, desc, f, examples, see_also): @Substitution(outname=name, desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, examples=examples, see_also=see_also) @Appender(_bool_doc) def logical_func(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs): nv.validate_logical_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: if bool_only is not None: raise NotImplementedError("Option bool_only is not " "implemented with option level.") return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) return self._reduce(f, axis=axis, skipna=skipna, numeric_only=bool_only, filter_type='bool', name=name) return set_function_name(logical_func, name, cls) # install the indexes for _name, _indexer in indexing.get_indexers_list(): NDFrame._create_indexer(_name, _indexer)
34.528833
102
0.531664
4a0595ecf104c35dd89de5d5f675d93575f6480f
7,411
py
Python
step.py
andrewpo456/pi-thrum
dcbb3576bdff7784ce6ad04e554209593db73e3e
[ "MIT" ]
11
2017-11-01T01:21:37.000Z
2021-12-05T15:20:19.000Z
step.py
andrewpo456/pi-thrum
dcbb3576bdff7784ce6ad04e554209593db73e3e
[ "MIT" ]
null
null
null
step.py
andrewpo456/pi-thrum
dcbb3576bdff7784ce6ad04e554209593db73e3e
[ "MIT" ]
1
2020-11-05T18:03:08.000Z
2020-11-05T18:03:08.000Z
""" This module defines the functionality behind running the 12-step sequencer. For information regarding the circuit setup please refer to 'pi-thrum-schem'. @author Andrew Pope """ import RPi.GPIO as GPIO import pygame import time class Step: # Map the GPIO pins to each button # Note: # * Buttons 0 - 5, play sound AND are used as part of the step seq # * Buttons 6 - 11, are for the step seq only __soundBNTs = [ 4, 18, 17, 27, 22, 23 ] __stepBNTs = [ 24, 25, 5, 6, 12, 13 ] __stepChannels = [ 4, 18, 17, 27, 22, 23, 24, 25, 5, 6, 12, 13 ] __playBNT = 19 __recBNT = 16 __LED = 26 def __init__(self, verbose=False, bpm=120000.0): """ Initialise class variables, GPIO, and sound @param verbose - True for verbose print statements @param bpm - Beats per minute """ # Initialise class variables self.__verbose = verbose self.__playSteps = False self.__recording = False self.__bpm = bpm self.__stepTime = 15000.0 / bpm self.__stepPatterns = [] self.__samples = [] self.__currSamp = None # Initialise pattern for each step (i.e. what sounds will play) for i in range(12): self.__stepPatterns.append([None]) # Initialise GPIO and sound samples self.__GPIOInit() self.__soundInit() def run(self): """ Runs the main program (step-sequencer) when invoked """ # Initialise callbacks - which will start multi-threading self.__initCBs() step = -1 next_time = time.time() # Begin main loop - will halt when user supplies CTRL+C while True: if self.__playSteps: if time.time() >= next_time: step = (step + 1) % 12 self.__playPattern(self.__stepPatterns[step]) next_time += self.__stepTime def cleanup(self): """ Cleanup method which should be invoked before program exit """ # Destroy pygame objects and de-init GPIO pins pygame.quit() GPIO.output(self.__LED, GPIO.LOW) GPIO.cleanup() def __playPattern(self, pattern): """ Plays a collection of sounds called a 'pattern' @param pattern - The collection of sounds """ for sound in pattern: if sound != None: sound.play() def __GPIOInit(self): """ Initialises the GPIO pins for the pi (tested on the Pi3 Model B+) """ # Set mode PIN numbering to BCM, and define GPIO pin functions GPIO.setmode(GPIO.BCM) # Setup Function for input Pins inputBNTs = (self.__soundBNTs + self.__stepBNTs) inputBNTs.append(self.__playBNT) inputBNTs.append(self.__recBNT) for b in inputBNTs: GPIO.setup(b, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Func for ouput Pins GPIO.setup(self.__LED, GPIO.OUT) def __soundInit(self): """ Initialises the pygame module and loads the sound samples """ # Initialise pygame module pygame.mixer.pre_init(44100, -16, 12, 512) # TODO: Tweak values? pygame.init() # Load sounds from samples folder self.__samples.append(pygame.mixer.Sound('samples/Blop-01.wav')) self.__samples.append(pygame.mixer.Sound('samples/Glitch-02.wav')) self.__samples.append(pygame.mixer.Sound('samples/Vocal-03.wav')) self.__samples.append(pygame.mixer.Sound('samples/Noise-04.wav')) self.__samples.append(pygame.mixer.Sound('samples/SFX-05.wav')) self.__samples.append(pygame.mixer.Sound('samples/Strike-06.wav')) for sample in self.__samples: sample.set_volume(.95) def __initCBs(self): """ Initialises the Callback functions for each Input IO pin """ # Sound Button Callbacks: for i in range(6): bnt = self.__soundBNTs[i] smp = self.__samples[i] GPIO.add_event_detect(bnt, GPIO.RISING, callback=lambda x,y=smp: self.__soundCB(x, y), bouncetime=200) # Step Button Callbacks: for bnt in self.__stepBNTs: GPIO.add_event_detect(bnt, GPIO.RISING, callback=lambda x: self.__stepCB(x), bouncetime=200) # Play Button Callback: GPIO.add_event_detect(self.__playBNT, GPIO.RISING, callback=lambda x: self.__playCB(x), bouncetime=200) # Record Button Callback: GPIO.add_event_detect(self.__recBNT, GPIO.RISING, callback=lambda x: self.__recCB(x), bouncetime=200) def __soundCB(self, channel, sound): """ Callback for sound button (a sound button also doubles as a step button) @param channel - The GPIO PIN that the signal was sent on @param sound - The sound to play """ step = self.__stepChannels.index(channel) self.__prtVerb("Sound bnt IO-{0}, Step={1}".format(channel, step)) if self.__recording: self.__toggleStepSample(step, self.__currSamp) else: sound.play() self.__currSamp = sound def __stepCB(self, channel): """ Callback for step button @param channel - The GPIO PIN that the signal was sent on """ step = self.__stepChannels.index(channel) self.__prtVerb("Step bnt IO-{0}, Step={1}".format(channel, step)) if self.__recording: self.__toggleStepSample(step, self.__currSamp) def __playCB(self, channel): """ Callback for play button @param channel - The GPIO PIN that the signal was sent on """ self.__prtVerb("Play bnt IO-{0}".format(channel)) self.__playSteps = not self.__playSteps # Toggle playing def __recCB(self, channel): """ Callback for record button @param channel - The GPIO PIN that the signal was sent on """ self.__prtVerb("Record bnt IO-{0}".format(channel)) GPIO.output(self.__LED, not GPIO.input(self.__LED)) # Toggle LED self.__recording = not self.__recording # Toggle recording def __toggleStepSample(self, step, sample): """ Will either add or remove a sound sample to/from a step 'pattern' @param step - The step to check @param sample - The sample to add or remove """ # Determine if the currently selected sample is 'on' the step # if so - remove it, if not - add it if sample in self.__stepPatterns[step]: self.__stepPatterns[step].remove(sample) else: self.__stepPatterns[step].append(sample) def __prtVerb(self, mesg): """ Verbose message print method @param mesg - The message to print """ if self.__verbose: print(mesg)
34.152074
77
0.564431
e4ef6414dcddde5a6be75bae30e4ef05b5fb7b72
4,724
py
Python
python_modules/dagster/dagster_tests/core_tests/config_types_tests/test_config_spec.py
bitdotioinc/dagster
4fe395a37b206b1a48b956fa5dd72bf698104cca
[ "Apache-2.0" ]
1
2021-04-27T19:49:59.000Z
2021-04-27T19:49:59.000Z
python_modules/dagster/dagster_tests/core_tests/config_types_tests/test_config_spec.py
bitdotioinc/dagster
4fe395a37b206b1a48b956fa5dd72bf698104cca
[ "Apache-2.0" ]
7
2022-03-16T06:55:04.000Z
2022-03-18T07:03:25.000Z
python_modules/dagster/dagster_tests/core_tests/config_types_tests/test_config_spec.py
bitdotioinc/dagster
4fe395a37b206b1a48b956fa5dd72bf698104cca
[ "Apache-2.0" ]
null
null
null
import pytest from dagster import ( DagsterInvalidConfigDefinitionError, Noneable, Permissive, Selector, execute_solid, solid, ) def test_kitchen_sink(): @solid( config_schema={ "str_field": str, "int_field": int, "list_int": [int], "list_list_int": [[int]], "dict_field": {"a_string": str}, "list_dict_field": [{"an_int": int}], "selector_of_things": Selector( {"select_list_dict_field": [{"an_int": int}], "select_int": int} ), # this is a good argument to use () instead of [] for type parameterization in # the config system "optional_list_of_optional_string": Noneable([Noneable(str)]), } ) def kitchen_sink(context): return context.solid_config solid_config_one = { "str_field": "kjf", "int_field": 2, "list_int": [3], "list_list_int": [[1], [2, 3]], "dict_field": {"a_string": "kdjfkd"}, "list_dict_field": [{"an_int": 2}, {"an_int": 4}], "selector_of_things": {"select_int": 3}, "optional_list_of_optional_string": ["foo", None], } assert ( execute_solid( kitchen_sink, run_config={"solids": {"kitchen_sink": {"config": solid_config_one}}}, ).output_value() == solid_config_one ) solid_config_two = { "str_field": "kjf", "int_field": 2, "list_int": [3], "list_list_int": [[1], [2, 3]], "dict_field": {"a_string": "kdjfkd"}, "list_dict_field": [{"an_int": 2}, {"an_int": 4}], "selector_of_things": {"select_list_dict_field": [{"an_int": 5}]}, "optional_list_of_optional_string": None, } assert ( execute_solid( kitchen_sink, run_config={"solids": {"kitchen_sink": {"config": solid_config_two}}}, ).output_value() == solid_config_two ) def test_builtin_dict(): executed = {} @solid(config_schema=dict) def builtin_dict_solid(context): executed["yup"] = True return context.solid_config assert isinstance(builtin_dict_solid.config_schema.config_type, Permissive) assert execute_solid( builtin_dict_solid, run_config={"solids": {"builtin_dict_solid": {"config": {"a": "b"}}}} ).output_value() == {"a": "b"} assert executed["yup"] def test_bad_solid_config_argument(): with pytest.raises(DagsterInvalidConfigDefinitionError) as exc_info: @solid(config_schema="dkjfkd") def _bad_config(_): pass assert str(exc_info.value).startswith( "Error defining config. Original value passed: 'dkjfkd'. 'dkjfkd' cannot be resolved." ) def test_bad_solid_config_argument_nested(): with pytest.raises(DagsterInvalidConfigDefinitionError) as exc_info: @solid(config_schema={"field": "kdjkfjd"}) def _bad_config(_): pass assert str(exc_info.value).startswith( "Error defining config. Original value passed: {'field': 'kdjkfjd'}. " "Error at stack path :field. 'kdjkfjd' cannot be resolved." ) def test_bad_solid_config_argument_list_wrong_length(): with pytest.raises(DagsterInvalidConfigDefinitionError) as exc_info: @solid(config_schema={"bad_list": []}) def _bad_list_config(_): pass assert str(exc_info.value).startswith( "Error defining config. Original value passed: {'bad_list': []}. " "Error at stack path :bad_list. [] cannot be resolved. " "Reason: List must be of length 1." ) def test_bad_solid_config_argument_list_bad_item(): with pytest.raises(DagsterInvalidConfigDefinitionError) as exc_info: @solid(config_schema={"bad_list": ["kdjfkd"]}) def _bad_list_config(_): pass assert str(exc_info.value).startswith( "Error defining config. Original value passed: {'bad_list': ['kdjfkd']}. " "Error at stack path :bad_list. ['kdjfkd'] cannot be resolved. " "Reason: List have a single item and contain a valid type i.e. [int]. " "Got item 'kdjfkd'." ) def test_bad_solid_config_argument_list_bad_nested_item(): with pytest.raises(DagsterInvalidConfigDefinitionError) as exc_info: @solid(config_schema={"bad_nested_list": [{"bad_field": "kjdkfd"}]}) def _bad_list_config(_): pass assert str(exc_info.value).startswith( "Error defining config. Original value passed: {'bad_nested_list': " "[{'bad_field': 'kjdkfd'}]}. Error at stack path " ":bad_nested_list:bad_field. 'kjdkfd' cannot be resolved." )
30.477419
97
0.61431
2a3745d9f2873d5bc4c1b6a58658316217195fc7
3,122
py
Python
app/app/settings.py
sarathp2409/receipe-app-api
be7245198a25103abfc45daeb3ba022806ee3857
[ "MIT" ]
null
null
null
app/app/settings.py
sarathp2409/receipe-app-api
be7245198a25103abfc45daeb3ba022806ee3857
[ "MIT" ]
null
null
null
app/app/settings.py
sarathp2409/receipe-app-api
be7245198a25103abfc45daeb3ba022806ee3857
[ "MIT" ]
null
null
null
""" Django settings for app project. Generated by 'django-admin startproject' using Django 3.0.6. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'daobq_2yniem#waxqlrd_u1)s5y#1v9-o!+3*1@v=x2ei-3u+c' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'core.User'
25.177419
91
0.694427
af3455583180ef09a57028f1ea36e94d03f3c105
822
py
Python
setup.py
brentyi/nca
a018b26b2ac318d10065dac667498cc30ef844a4
[ "MIT" ]
null
null
null
setup.py
brentyi/nca
a018b26b2ac318d10065dac667498cc30ef844a4
[ "MIT" ]
null
null
null
setup.py
brentyi/nca
a018b26b2ac318d10065dac667498cc30ef844a4
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name='torchnca', version='0.1.0', description='Neighbourhood Components Analysis in PyTorch.', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/kevinzakka/nca', author='Kevin Zakka', author_email='kevinarmandzakka@gmail.com', license='MIT', classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', ], keywords='ai metric learning nearest neighbours dimensionality reduction', packages=find_packages(exclude=['examples']), install_requires=[ 'numpy>=1.0.0,<2.0.0', 'torch>=1.0.0,<=1.4.0', ], python_requires='>=3.5', )
28.344828
76
0.695864
ba55c659a8cb3aaef80c73fa1c64948f7b5dfe2c
4,988
py
Python
python/tests/UnicodeSets_test.py
belluzj/sldr
cb7e49476654d915a05e250c406a0f59c49b5827
[ "MIT" ]
null
null
null
python/tests/UnicodeSets_test.py
belluzj/sldr
cb7e49476654d915a05e250c406a0f59c49b5827
[ "MIT" ]
null
null
null
python/tests/UnicodeSets_test.py
belluzj/sldr
cb7e49476654d915a05e250c406a0f59c49b5827
[ "MIT" ]
null
null
null
#!/usr/bin/python # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the University nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. import os import sys import unittest try: from sldr.ldml_exemplars import UCD import sldr.UnicodeSets except ImportError: sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'lib'))) from sldr.ldml_exemplars import UCD import sldr.UnicodeSets class UnicodeSetsTests(unittest.TestCase): def setUp(self): self.ucd = UCD() def tearDown(self): pass def list2us_helper(self, text): """Wrap the list2us() function for ease of use.""" return sldr.UnicodeSets.list2us(text.split(' '), self.ucd) # braces def test_braces(self): """Multiple characters sequences need braces around them.""" self.assertEqual(u'[n {ng}]', self.list2us_helper(u'n ng')) # normalization def test_nfc(self): """NFC text.""" self.assertEqual(u'[\u00E9]', self.list2us_helper(u'\u00e9')) # isolated marks def test_isolated_marks_bmp(self): """Isolated marks (that is, with no base character) need to be escaped.""" self.assertEqual(u'[\\u0300 \\u0301 {\u0105\u0301}]', self.list2us_helper(u'\u0300 \u0301 \u0105\u0301')) def test_isolated_marks_nonbmp(self): """Isolated marks (outside of the BMP as well) need to be escaped.""" self.assertEqual(u'[\U00011315 \\U0001133c]', self.list2us_helper(u'\U00011315 \U0001133C')) # characters used in Unicode Set syntax def ignore_control_escape(self): """Some ASCII control characters should be escaped with a backslash. These maybe already listed in the variable simpleescs. """ self.assertEqual(u'[\u0007 \u0008 \u0009 \u000A \u000B \u000C \u000D]', self.list2us_helper(u'\u0007 \u0008 \u0009 \u000A \u000B \u000C \u000D')) def test_syntax_escape(self): """Some characters used in Unicode Set syntax need to be escaped with a backslash. The following characters are escaped: []{}\\&-|^$: They are all used in Unicode Set format https://unicode.org/reports/tr35/tr35.html#Unicode_Sets except for |. We escape | anyway, it should still work. """ self.assertEqual(u'[\\[ \\] \\{ \\} \\\\ \\& \\- \\| \\^ \\$ \\:]', self.list2us_helper(u'[ ] { } \\ & - | ^ $ :')) # escape some characters with hex digits def test_ignorable(self): """Characters having the Default_Ignorable_Code_Point property need to be escaped.""" self.assertEqual(u'[\\u3164]', self.list2us_helper(u'\u3164')) def test_format(self): """Characters having the format character (general category Cf) property need to be escaped.""" self.assertEqual(u'[\\u06dd]', self.list2us_helper(u'\u06dd')) def test_space(self): """Space like characters need to be escaped.""" self.assertEqual(u'[\\u200a]', self.list2us_helper(u'\u200a')) def test_pua_bmp(self): """PUA characters (in the BMP) need to be escaped.""" self.assertEqual(u'[\\ue000]', self.list2us_helper(u'\ue000')) def test_pua_nonbmp_a(self): """PUA characters (outside of the BMP) need to be escaped.""" self.assertEqual(u'[\\U000fff80]', self.list2us_helper(u'\U000fff80')) def test_pua_nonbmp_b(self): """PUA characters (outside of the BMP and SMP) need to be escaped.""" self.assertEqual(u'[\\U0010ff80]', self.list2us_helper(u'\U0010ff80')) if __name__ == '__main__': unittest.main()
40.225806
113
0.679832
5f025d6ec4453cd92532d92879541576a33cd536
401
py
Python
core-python/Core_Python/file/ByteReadAndWrite.py
theumang100/tutorials-1
497f54c2adb022c316530319a168fca1c007d4b1
[ "MIT" ]
9
2020-04-23T05:24:19.000Z
2022-02-17T16:37:51.000Z
core-python/Core_Python/file/ByteReadAndWrite.py
theumang100/tutorials-1
497f54c2adb022c316530319a168fca1c007d4b1
[ "MIT" ]
5
2020-10-01T05:08:37.000Z
2020-10-12T03:18:10.000Z
core-python/Core_Python/file/ByteReadAndWrite.py
theumang100/tutorials-1
497f54c2adb022c316530319a168fca1c007d4b1
[ "MIT" ]
9
2020-04-28T14:06:41.000Z
2021-10-19T18:32:28.000Z
import os # change your parent dir accordingly parent_dir = "E:/GitHub/1) Git_Tutorials_Repo_Projects/core-python/Core_Python/ExFiles/" with open(os.path.join(parent_dir,"ByteReadAndWrite.txt"),'wb+') as f: f.writelines([b'<----This file is for file pointer example---->',b'\n<----After Writing the pointer change their position---->']) f.seek(0,0) print("Read binary files : ",f.read())
44.555556
133
0.700748
27ec174d935a616f45e0b5fff44a1f3ccadda8c6
1,096
py
Python
saleor/order/migrations/0105_order_total_paid_amount.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
15,337
2015-01-12T02:11:52.000Z
2021-10-05T19:19:29.000Z
saleor/order/migrations/0105_order_total_paid_amount.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
7,486
2015-02-11T10:52:13.000Z
2021-10-06T09:37:15.000Z
saleor/order/migrations/0105_order_total_paid_amount.py
aminziadna/saleor
2e78fb5bcf8b83a6278af02551a104cfa555a1fb
[ "CC-BY-4.0" ]
5,864
2015-01-16T14:52:54.000Z
2021-10-05T23:01:15.000Z
# Generated by Django 3.1.8 on 2021-04-29 07:02 from django.db import migrations, models from django.db.models.functions import Coalesce def update_orders_total_paid_in_db(apps, schema_editor): Order = apps.get_model("order", "Order") Order.objects.update( total_paid_amount=models.Subquery( Order.objects.filter(id=models.OuterRef("id")) .annotate( _total_paid_amount=Coalesce( models.Sum("payments__captured_amount"), 0, output_field=models.DecimalField(), ) ) .values("_total_paid_amount")[:1], ) ) class Migration(migrations.Migration): dependencies = [ ("order", "0104_auto_20210506_0835"), ] operations = [ migrations.AddField( model_name="order", name="total_paid_amount", field=models.DecimalField(decimal_places=3, default=0, max_digits=12), ), migrations.RunPython(update_orders_total_paid_in_db, migrations.RunPython.noop), ]
28.842105
88
0.604927
0daf1cbdab06b8486c89a25039b7b595ec518677
1,900
py
Python
src/cnaas_nms/plugins/nav.py
workfloworchestrator/cnaas-nms
4d45708ccb74f620cd5e3b7bc6bb0249ef31ce3d
[ "BSD-2-Clause-FreeBSD" ]
48
2019-04-08T11:10:03.000Z
2022-03-31T10:47:56.000Z
src/cnaas_nms/plugins/nav.py
workfloworchestrator/cnaas-nms
4d45708ccb74f620cd5e3b7bc6bb0249ef31ce3d
[ "BSD-2-Clause-FreeBSD" ]
143
2019-05-20T13:42:11.000Z
2022-03-29T07:29:29.000Z
src/cnaas_nms/plugins/nav.py
workfloworchestrator/cnaas-nms
4d45708ccb74f620cd5e3b7bc6bb0249ef31ce3d
[ "BSD-2-Clause-FreeBSD" ]
9
2019-04-16T06:40:12.000Z
2021-12-03T09:48:46.000Z
import logging import requests from cnaas_nms.plugins.pluginspec import CnaasBasePlugin, hookimpl from cnaas_nms.tools.log import get_logger logger = get_logger() class Plugin(CnaasBasePlugin): def __init__(self): self.urlbase = None self.apitoken = None self.organizationid = "Undefined" self.snmp_community = "public" self.roomid = "Undefined" pluginvars = self.get_vars(__name__) if 'urlbase' in pluginvars: self.urlbase = pluginvars['urlbase'] if 'apitoken' in pluginvars: self.apitoken = pluginvars['apitoken'] if 'organizationid' in pluginvars: self.organizationid= pluginvars['organizationid'] if 'roomid' in pluginvars: self.roomid = pluginvars['roomid'] if 'snmp_community' in pluginvars: self.snmp_community = pluginvars['snmp_community'] @hookimpl def selftest(self): if self.urlbase and self.apitoken: return True else: return False @hookimpl def new_managed_device(self, hostname, device_type, serial_number, vendor, model, os_version, management_ip): headers = {'Authorization': 'Token '+self.apitoken} data = { "ip": management_ip, "sysname": hostname, "roomid": self.roomid, "organizationid": self.organizationid, "categoryid": "SW", "snmp_version": 2, "read_only": self.snmp_community } r = requests.post(self.urlbase + "/api/1/netbox/", headers=headers, json=data) if not r.status_code == 201: logger.warn("Failed to add device to NAV: code {}: {} (data: {})".format( r.status_code, r.text, data )) return False
32.758621
85
0.577895