hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
3f9c6dc1e2e10c35b26d5b375a5efdcdb4d468b0
3,336
py
Python
rls/algorithms/single/sql.py
StepNeverStop/RLs
25cc97c96cbb19fe859c9387b7547cbada2c89f2
[ "Apache-2.0" ]
371
2019-04-26T00:37:33.000Z
2022-03-31T07:33:12.000Z
rls/algorithms/single/sql.py
BlueFisher/RLs
25cc97c96cbb19fe859c9387b7547cbada2c89f2
[ "Apache-2.0" ]
47
2019-07-21T11:51:57.000Z
2021-08-31T08:45:22.000Z
rls/algorithms/single/sql.py
BlueFisher/RLs
25cc97c96cbb19fe859c9387b7547cbada2c89f2
[ "Apache-2.0" ]
102
2019-06-29T13:11:15.000Z
2022-03-28T13:51:04.000Z
#!/usr/bin/env python3 # encoding: utf-8 import torch.distributions as td from rls.algorithms.base.sarl_off_policy import SarlOffPolicy from rls.common.data import Data from rls.common.decorator import iton from rls.nn.models import CriticQvalueAll from rls.nn.modules.wrappers import TargetTwin from rls.nn.utils import OPLR from rls.utils.torch_utils import n_step_return class SQL(SarlOffPolicy): """ Soft Q-Learning. ref: https://github.com/Bigpig4396/PyTorch-Soft-Q-Learning/blob/master/SoftQ.py NOTE: not the original of the paper, NO SVGD. Reinforcement Learning with Deep Energy-Based Policies: https://arxiv.org/abs/1702.08165 """ policy_mode = 'off-policy' def __init__(self, lr=5.0e-4, alpha=2, polyak=0.995, network_settings=[32, 32], **kwargs): super().__init__(**kwargs) assert not self.is_continuous, 'sql only support discrete action space' self.alpha = alpha self.polyak = polyak self.q_net = TargetTwin(CriticQvalueAll(self.obs_spec, rep_net_params=self._rep_net_params, output_shape=self.a_dim, network_settings=network_settings), self.polyak).to(self.device) self.oplr = OPLR(self.q_net, lr, **self._oplr_params) self._trainer_modules.update(model=self.q_net, oplr=self.oplr) @iton def select_action(self, obs): q_values = self.q_net(obs, rnncs=self.rnncs) # [B, A] self.rnncs_ = self.q_net.get_rnncs() logits = ((q_values - self._get_v(q_values)) / self.alpha).exp() # > 0 # [B, A] logits /= logits.sum(-1, keepdim=True) # [B, A] cate_dist = td.Categorical(logits=logits) actions = cate_dist.sample() # [B,] return actions, Data(action=actions) def _get_v(self, q): v = self.alpha * (q / self.alpha).exp().mean(-1, keepdim=True).log() # [B, 1] or [T, B, 1] return v @iton def _train(self, BATCH): q = self.q_net(BATCH.obs, begin_mask=BATCH.begin_mask) # [T, B, A] q_next = self.q_net.t(BATCH.obs_, begin_mask=BATCH.begin_mask) # [T, B, A] v_next = self._get_v(q_next) # [T, B, 1] q_eval = (q * BATCH.action).sum(-1, keepdim=True) # [T, B, 1] q_target = n_step_return(BATCH.reward, self.gamma, BATCH.done, v_next, BATCH.begin_mask).detach() # [T, B, 1] td_error = q_target - q_eval # [T, B, 1] q_loss = (td_error.square() * BATCH.get('isw', 1.0)).mean() # 1 self.oplr.optimize(q_loss) return td_error, { 'LEARNING_RATE/lr': self.oplr.lr, 'LOSS/loss': q_loss, 'Statistics/q_max': q_eval.max(), 'Statistics/q_min': q_eval.min(), 'Statistics/q_mean': q_eval.mean() } def _after_train(self): super()._after_train() self.q_net.sync()
39.714286
105
0.539568
639b9d983887bc032b974c1738d06b4a4c916d3f
383
py
Python
src/numdifftools/__init__.py
rparini/numdifftools
2c88878df732c9c6629febea56e7a91fd898398d
[ "BSD-3-Clause" ]
null
null
null
src/numdifftools/__init__.py
rparini/numdifftools
2c88878df732c9c6629febea56e7a91fd898398d
[ "BSD-3-Clause" ]
1
2018-03-27T19:12:14.000Z
2018-03-27T19:12:14.000Z
src/numdifftools/__init__.py
rparini/numdifftools
2c88878df732c9c6629febea56e7a91fd898398d
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import import pkg_resources from .info import __doc__ from .core import * from . import extrapolation, limits, step_generators from numpy.testing import Tester try: __version__ = pkg_resources.get_distribution(__name__).version except pkg_resources.DistributionNotFound: __version__ = 'unknown' test = Tester(raise_warnings="release").test
25.533333
66
0.81201
36c2a8e25d355eec8fee149d5352d78c7e740a90
868
py
Python
ComRISB/pyglib/pyglib/iface/test/test_ef_lda.py
comscope/comsuite
d51c43cad0d15dc3b4d1f45e7df777cdddaa9d6c
[ "BSD-3-Clause" ]
18
2019-06-15T18:08:21.000Z
2022-01-30T05:01:29.000Z
ComRISB/pyglib/pyglib/iface/test/test_ef_lda.py
comscope/Comsuite
b80ca9f34c519757d337487c489fb655f7598cc2
[ "BSD-3-Clause" ]
null
null
null
ComRISB/pyglib/pyglib/iface/test/test_ef_lda.py
comscope/Comsuite
b80ca9f34c519757d337487c489fb655f7598cc2
[ "BSD-3-Clause" ]
11
2019-06-05T02:57:55.000Z
2021-12-29T02:54:25.000Z
import h5py from mpi4py import MPI from pyglib.iface.ifwannier import get_wannier_dat from pyglib.estructure.fermi import get_fermi_level from pyglib.estructure.gwannier import get_gmodel, mpiget_bndev kpts, wfwannier_list, bnd_es = get_wannier_dat(path="../wannier") with h5py.File("GPARAMBANDS.h5", "r") as f: num_elec = f['/nelectron'][0] ismear = f["/ismear"][0] delta = f["/delta"][0] comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: print("num of electrons = {}".format(num_elec)) gmodel = get_gmodel() kpts = gmodel.k_uniform_mesh((15, 15, 15)) nk = len(kpts) wklist = [1./nk for k in kpts] bnd_es, bnd_vs = mpiget_bndev(kpts, gmodel, mode="risb") if rank == 0: print(bnd_es[0][0]) efermi = get_fermi_level(bnd_es, wklist, num_elec, delta=delta, ismear=ismear) print("lda fermi level = {}".format(efermi))
28.933333
65
0.693548
673c97755cc7547fe565803b79461dfb158a55ef
10,233
py
Python
src/data_process.py
Du-Jia/model-getting-started
49a84e4cb0e7f283d287a2a6b1c86913ae6827f6
[ "Apache-2.0" ]
null
null
null
src/data_process.py
Du-Jia/model-getting-started
49a84e4cb0e7f283d287a2a6b1c86913ae6827f6
[ "Apache-2.0" ]
null
null
null
src/data_process.py
Du-Jia/model-getting-started
49a84e4cb0e7f283d287a2a6b1c86913ae6827f6
[ "Apache-2.0" ]
1
2021-05-11T14:44:45.000Z
2021-05-11T14:44:45.000Z
"""data process tools""" from __future__ import annotations import csv import os import pickle from typing import List, Dict # from typing import Literal import torch from src.schema import InputExample from src.schema import InputFeatures class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r") as f: reader = csv.reader(f, delimiter=",", quotechar='"') lines = [] for line in reader: lines.append(line) return lines class AgNewsDataProcessor(DataProcessor): """ process the agnews Args: DataProcessor ([type]): [description] """ def get_labels(self): return [1, 2, 3, 4] def get_examples(self, file: str) -> List[InputExample]: lines = self._read_tsv(file) examples: List[InputExample] = [] for index, (label, title, description) in enumerate(lines[1:]): example = InputExample( guid=f'guid-{index}', text_a=title, text_b=description, label=label ) examples.append(example) return examples def get_train_examples(self, data_dir) -> List[InputExample]: return self.get_examples(data_dir) def get_dev_examples(self, data_dir) -> List[InputExample]: return self.get_examples(data_dir) def get_test_examples(self, data_dir): return self.get_examples(data_dir) class THCNewsDataProcessor(DataProcessor): # def __init__(self, vocab: Dict[str, int]): # self.vocab = {} def get_labels(self): return range(9) def get_examples(self, file: str) -> List[InputExample]: lines = self._read_txt(file, encoding='utf-8') examples: List[InputExample] = [] for index, line in enumerate(lines): label = line.split()[-1] title = line[:-len(label)-1].strip() label = (int)(label) assert 0 <= label <= 9 example = InputExample( guid=f'guid-{index}', text_a=title, text_b=None, label=label ) examples.append(example) return examples def get_train_examples(self, data_dir: str) -> List[InputExample]: return self.get_examples(data_dir) def get_dev_examples(self, data_dir) -> List[InputExample]: """ get evaluation examples which is eval in training period """ return self.get_examples(data_dir) def get_test_examples(self, data_dir): return self.get_examples(data_dir) def _read_txt(self, file, encoding='utf-8'): with open(file, 'r', encoding=encoding) as f: return f.readlines() class FeaturesExtractor(): """A base class for extracting standard input from examples""" def __init__(self, vocab: Dict[str, int], examples: List[InputExample], language: str='zh') -> None: """ @parameters: vocab, a dict{str:int}, key is word string, value is id examples, a list of InputExample object language, str, valid value is ['zh', 'en'], means Chinese corpus and English Corpus """ self.vocab = vocab self.examples = examples self.language = language def get_data_iterator(self, batch_size: int, max_len: int) -> DataIterator: """ Get a DataIterator which provides a function called get_batch, user can use this to get data straightly to train or evaluate, test a model. """ features = self._get_features_from_examples() data_iterator = DataIterator(features, batch_size, max_len, padding_fill=len(self.vocab)-1) return data_iterator def _get_features_from_examples(self) -> List[InputFeatures]: """Get a list of features from an list of example""" features = [] examples = self.examples for example in examples: features.append(self._get_feature_from_example(example)) return features def _get_feature_from_example(self, example: InputExample) -> InputFeatures: """ Get an InputFeatures object from example @parameters: example: InputExample @return: InputFeatures """ raise NotImplementedError() class THCNewsFeaturesExtractor(FeaturesExtractor): def _get_feature_from_example(self, example: InputExample) -> InputFeatures: vocab = self.vocab language = self.language if language == 'zh': input_ids = [vocab[char] if char in vocab.keys() else vocab['<UNK>'] for char in example.text_a] elif language == 'en': input_ids = [vocab[char] if char in vocab.keys() else vocab['<UNK>'] for char in example.text_a.split()] else: # TODO: Replace the Exception by a more suitable exception class raise Exception('Invalid language code, Please use zh or en') label_id = example.label feature = InputFeatures( input_ids=input_ids, attention_mask=None, segment_ids=None, label_id=label_id, is_real_example=False ) return feature class DataIterator(object): """ A iterator can get batches from dataset """ def __init__(self, features: List[InputFeatures], batch_size: int, max_len: int, padding_fill: int): """ @parameters: batch_size: int, the number of InputFeatures in each batch max_len: int, the max size of features padding_fill, int, if length of text is less than max_len, fill it by padding_fill. Normally, we choose vocab_size - 1 as padding_fill """ self.features = features self.batch_size = batch_size self.max_len = max_len self.padding_fill = padding_fill def _get_inputs(self, max_len: int, do_test=False) -> ( torch.LongTensor, torch.LongTensor): """A generator returning input matrix for train, eval and test""" """ @parameters: do_test: bool, If do_test is True, Y will be set as None max_len: int, the max size of inputs text """ # set input matrix x, shape [features size, max sequence length] x = torch.LongTensor(len(self.features), max_len) # set input label matrix, shape [features size, 1] y = torch.LongTensor(len(self.features), 1) # if length of inputs is more than max_len, clip inputs, else pad them. for index, feature in enumerate(self.features): input_ids = feature.input_ids if len(input_ids) > max_len: input_ids = input_ids[:max_len] else: padding = [self.padding_fill for _ in range(max_len - len(input_ids))] input_ids.extend(padding) x[index] = torch.LongTensor(input_ids) y[index] = feature.label_id if do_test: y = None return x, y def get_batch(self, do_test=False) -> ( torch.LongTensor, torch.LongTensor): """Return a iterator, the item of iterator shape is [batch_size, max_len]""" x, y = self._get_inputs(max_len=self.max_len) batch_size = self.batch_size batches = len(x) // batch_size if batches * batch_size < len(x): batches += 1 # generate batch data for batch in range(batches): batch_x = x[batch*batch_size:(batch+1)*batch_size] batch_y = y[batch*batch_size:(batch+1)*batch_size] if len(batch_x) < batch_size: batch_x = torch.LongTensor(batch_size, self.max_len) batch_x[:len(x)-batch*batch_size] = x[batch*batch_size:] batch_y = torch.LongTensor(batch_size, 1) batch_y[:len(x)-batch*batch_size] = y[batch * batch_size:] if do_test: y = None yield batch_x, batch_y if __name__ == '__main__': # # test for thcnews data_processor = THCNewsDataProcessor() root = os.path.join(os.path.abspath('..'), 'data') agnews = os.path.join(root, 'THCNews') train_file = os.path.join(agnews, 'train.txt') train_examples = data_processor.get_examples(train_file) dev_file = os.path.join(agnews, 'dev.txt') dev_examples = data_processor.get_examples(dev_file) test_file = os.path.join(agnews, 'test.txt') test_examples = data_processor.get_examples(test_file) print(f'Trainset Length: {len(train_examples)}, Example: {train_examples[0]}') print(f'Dev Length: {len(dev_examples)}, Example: {dev_examples[0]}') print(f'Testset Length: {len(test_examples)}, Example: {test_examples[0]}') vocab = pickle.load(open(r'D:\Project\NLP\model-getting-started\data\pretrained\zh\vocab.pkl', 'rb')) train_iterator = THCNewsFeaturesExtractor(vocab, train_examples).get_data_iterator(batch_size=512, max_len=40, do_test=False) batches = 0 for train_x, train_y in train_iterator.get_batch(): print(f'Batches: {batches}, X: {train_x.shape}, Y: {train_y.shape}') batches += 1
36.41637
105
0.604319
f68fff850628d0b4353aeec266fcf3f5aa0ef4c2
161
py
Python
abfahrt/testutils/test_simulator/__main__.py
Team-Zugig-zum-Erfolg/InformatiCup
788076ac38bf6d8f462465b7fb96db14d13bed30
[ "MIT" ]
1
2022-01-30T14:30:02.000Z
2022-01-30T14:30:02.000Z
abfahrt/testutils/test_simulator/__main__.py
Team-Zugig-zum-Erfolg/InformatiCup
788076ac38bf6d8f462465b7fb96db14d13bed30
[ "MIT" ]
null
null
null
abfahrt/testutils/test_simulator/__main__.py
Team-Zugig-zum-Erfolg/InformatiCup
788076ac38bf6d8f462465b7fb96db14d13bed30
[ "MIT" ]
null
null
null
from abfahrt.testutils.test_simulator.test_simulator import test_simulator if __name__ == '__main__': ts = test_simulator("abfahrt/testfiles") ts.run()
26.833333
74
0.763975
a9b291a64074284d6b52edda2902b1b509f69732
1,726
py
Python
create_tables.py
Karenzhang7717/postgres_data_modelling
6d81550269d1f0ed28e0f324717515c3f32a0456
[ "Apache-2.0" ]
null
null
null
create_tables.py
Karenzhang7717/postgres_data_modelling
6d81550269d1f0ed28e0f324717515c3f32a0456
[ "Apache-2.0" ]
null
null
null
create_tables.py
Karenzhang7717/postgres_data_modelling
6d81550269d1f0ed28e0f324717515c3f32a0456
[ "Apache-2.0" ]
null
null
null
import psycopg2 from sql_queries import create_table_queries, drop_table_queries def create_database(): """ - Creates and connects to the sparkifydb - Returns the connection and cursor to sparkifydb """ # connect to default database conn = psycopg2.connect("host=127.0.0.1 dbname=studentdb user=student password=student") conn.set_session(autocommit=True) cur = conn.cursor() # create sparkify database with UTF8 encoding # cur.execute("DROP DATABASE IF EXISTS sparkifydb") # cur.execute("CREATE DATABASE sparkifydb WITH ENCODING 'utf8' TEMPLATE template0") # # # close connection to default database # conn.close() # connect to sparkify database conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student") cur = conn.cursor() return cur, conn def drop_tables(cur, conn): """ Drops each table using the queries in `drop_table_queries` list. """ for query in drop_table_queries: cur.execute(query) conn.commit() def create_tables(cur, conn): """ Creates each table using the queries in `create_table_queries` list. """ for query in create_table_queries: cur.execute(query) conn.commit() def main(): """ - Drops (if exists) and Creates the sparkify database. - Establishes connection with the sparkify database and gets cursor to it. - Drops all the tables. - Creates all tables needed. - Finally, closes the connection. """ cur, conn = create_database() drop_tables(cur, conn) create_tables(cur, conn) conn.close() if __name__ == "__main__": main()
24.309859
93
0.658749
784c77505bbf5b47d3cae90b072a9d1b11f902f6
228
py
Python
test/wxhello.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
null
null
null
test/wxhello.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
1
2019-10-22T21:28:31.000Z
2019-10-22T21:39:12.000Z
test/wxhello.py
bopopescu/Lauecollect
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
[ "MIT" ]
2
2019-06-06T15:06:46.000Z
2020-07-20T02:03:22.000Z
import wx app = wx.App() window = wx.Frame(None, title = "wxPython Frame", size = (300,200)) panel = wx.Panel(window) label = wx.StaticText(panel, label = "Hello World", pos = (100,50)) window.Show(True) app.MainLoop()
22.8
68
0.653509
075ee27bc50650b498f73fa563272ec750442237
777
py
Python
src/challenges/7-8-20.py
rupol/Algorithms-Lecture
2114857af719511038c9cb85ba7e57a547a6e515
[ "MIT" ]
null
null
null
src/challenges/7-8-20.py
rupol/Algorithms-Lecture
2114857af719511038c9cb85ba7e57a547a6e515
[ "MIT" ]
null
null
null
src/challenges/7-8-20.py
rupol/Algorithms-Lecture
2114857af719511038c9cb85ba7e57a547a6e515
[ "MIT" ]
null
null
null
# Add up and print the sum of the all of the minimum elements of each inner array: # [[8, 4], [90, -1, 3], [9, 62], [-7, -1, -56, -6], [201], [76, 18]] # The expected output is given by: # 4 + -1 + 9 + -56 + 201 + 18 = 175 # You may use whatever programming language you'd like. # Verbalize your thought process as much as possible before writing any code. Run through the UPER problem solving framework while going through your thought process. def sum_mins(arr): smallest = 0 for inner_array in arr: # find min for each inner array # sum all the smallests from the inner array and return smallest += min(inner_array) return smallest my_list = [[8, 4], [90, -1, 3], [9, 62], [-7, -1, -56, -6], [201], [76, 18]] print(sum_mins(my_list))
38.85
166
0.642214
92c9945d63e911b67f6425917b47adb5a1bf63fa
854
py
Python
mirage/generate/url_template.py
fossabot/django-mirage
814b3f2486af31f9dca42ef4bb0215655fe0aea6
[ "Apache-2.0" ]
4
2019-05-16T09:26:21.000Z
2022-02-14T06:21:40.000Z
mirage/generate/url_template.py
fossabot/django-mirage
814b3f2486af31f9dca42ef4bb0215655fe0aea6
[ "Apache-2.0" ]
77
2019-05-10T22:24:54.000Z
2021-07-02T03:11:01.000Z
mirage/generate/url_template.py
fossabot/django-mirage
814b3f2486af31f9dca42ef4bb0215655fe0aea6
[ "Apache-2.0" ]
1
2018-12-08T09:57:54.000Z
2018-12-08T09:57:54.000Z
# -*- coding: utf-8 -*- """ Copyright 2017-2018 Shota Shimazu. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import textwrap def create_url(app): return textwrap.dedent( ''' from django.urls import path urlpatterns = [ path(r'^url_letter/', """YOUR_VIEW_CLASS""".as_view(), name='INSERT NAME HERE'), ] ''').format(app=app).strip()
27.548387
84
0.716628
9617755217e037a5f5305d4400a7869af5dbd47f
3,683
py
Python
czsc/utils/ta.py
fnsoxt/czsc
ae908ca807251eefb1c23c1a3bfa20f36977ba4b
[ "Apache-2.0" ]
206
2021-11-16T03:08:58.000Z
2022-03-30T04:21:47.000Z
czsc/utils/ta.py
fnsoxt/czsc
ae908ca807251eefb1c23c1a3bfa20f36977ba4b
[ "Apache-2.0" ]
20
2021-11-18T09:26:02.000Z
2022-03-19T11:59:34.000Z
czsc/utils/ta.py
fnsoxt/czsc
ae908ca807251eefb1c23c1a3bfa20f36977ba4b
[ "Apache-2.0" ]
124
2021-11-16T08:45:11.000Z
2022-03-30T08:55:27.000Z
# -*- coding: utf-8 -*- """ author: zengbin93 email: zeng_bin8888@163.com create_dt: 2022/1/24 15:01 describe: 常用技术分析指标 """ import numpy as np def SMA(close: np.array, timeperiod=5): """简单移动平均 https://baike.baidu.com/item/%E7%A7%BB%E5%8A%A8%E5%B9%B3%E5%9D%87%E7%BA%BF/217887 :param close: np.array 收盘价序列 :param timeperiod: int 均线参数 :return: np.array """ res = [] for i in range(len(close)): if i < timeperiod: seq = close[0: i+1] else: seq = close[i - timeperiod + 1: i + 1] res.append(seq.mean()) return np.array(res, dtype=np.double).round(4) def EMA(close: np.array, timeperiod=5): """ https://baike.baidu.com/item/EMA/12646151 :param close: np.array 收盘价序列 :param timeperiod: int 均线参数 :return: np.array """ res = [] for i in range(len(close)): if i < 1: res.append(close[i]) else: ema = (2 * close[i] + res[i-1] * (timeperiod-1)) / (timeperiod+1) res.append(ema) return np.array(res, dtype=np.double).round(4) def MACD(close: np.array, fastperiod=12, slowperiod=26, signalperiod=9): """MACD 异同移动平均线 https://baike.baidu.com/item/MACD%E6%8C%87%E6%A0%87/6271283 :param close: np.array 收盘价序列 :param fastperiod: int 快周期,默认值 12 :param slowperiod: int 慢周期,默认值 26 :param signalperiod: int 信号周期,默认值 9 :return: (np.array, np.array, np.array) diff, dea, macd """ ema12 = EMA(close, timeperiod=fastperiod) ema26 = EMA(close, timeperiod=slowperiod) diff = ema12 - ema26 dea = EMA(diff, timeperiod=signalperiod) macd = (diff - dea) * 2 return diff.round(4), dea.round(4), macd.round(4) def KDJ(close: np.array, high: np.array, low: np.array): """ :param close: 收盘价序列 :param high: 最高价序列 :param low: 最低价序列 :return: """ n = 9 hv = [] lv = [] for i in range(len(close)): if i < n: h_ = high[0: i+1] l_ = low[0: i+1] else: h_ = high[i - n + 1: i + 1] l_ = low[i - n + 1: i + 1] hv.append(max(h_)) lv.append(min(l_)) hv = np.around(hv, decimals=2) lv = np.around(lv, decimals=2) rsv = np.where(hv == lv, 0, (close - lv) / (hv - lv) * 100) k = [] d = [] j = [] for i in range(len(rsv)): if i < n: k_ = rsv[i] d_ = k_ else: k_ = (2 / 3) * k[i-1] + (1 / 3) * rsv[i] d_ = (2 / 3) * d[i-1] + (1 / 3) * k_ k.append(k_) d.append(d_) j.append(3 * k_ - 2 * d_) k = np.array(k, dtype=np.double) d = np.array(d, dtype=np.double) j = np.array(j, dtype=np.double) return k.round(4), d.round(4), j.round(4) def RSQ(close: [np.array, list]) -> float: """拟合优度 R Square :param close: 收盘价序列 :return: """ x = list(range(len(close))) y = np.array(close) x_squred_sum = sum([x1 * x1 for x1 in x]) xy_product_sum = sum([x[i] * y[i] for i in range(len(x))]) num = len(x) x_sum = sum(x) y_sum = sum(y) delta = float(num * x_squred_sum - x_sum * x_sum) if delta == 0: return 0 y_intercept = (1 / delta) * (x_squred_sum * y_sum - x_sum * xy_product_sum) slope = (1 / delta) * (num * xy_product_sum - x_sum * y_sum) y_mean = np.mean(y) ss_tot = sum([(y1 - y_mean) * (y1 - y_mean) for y1 in y]) + 0.00001 ss_err = sum([(y[i] - slope * x[i] - y_intercept) * (y[i] - slope * x[i] - y_intercept) for i in range(len(x))]) rsq = 1 - ss_err / ss_tot return round(rsq, 4)
25.054422
116
0.526201
e726d46f373ee5e79001d3d50ba8e9553474d344
103
py
Python
fullstack_application/frontend/views.py
bhardwajRahul/fullstack-Django-React-Redux
10bebe1b130fe73c1550d5919020a43bc2ca9c02
[ "MIT" ]
2
2020-05-30T03:25:07.000Z
2021-03-31T22:23:48.000Z
fullstack_application/frontend/views.py
bhardwajRahul/fullstack-Django-React-Redux
10bebe1b130fe73c1550d5919020a43bc2ca9c02
[ "MIT" ]
8
2020-05-30T08:19:57.000Z
2021-09-22T19:12:16.000Z
fullstack_application/frontend/views.py
Combinativ/fullstack-Django-React-Redux
10bebe1b130fe73c1550d5919020a43bc2ca9c02
[ "MIT" ]
2
2020-05-31T07:11:52.000Z
2020-10-19T15:20:50.000Z
from django.shortcuts import render def index(request): return render(request,'frontend/index.html')
20.6
45
0.796117
d2bc2ed82dbe3dd73db7c77893717ae49ea31719
28,933
py
Python
calwebb_spec2_pytests/auxiliary_code/compare_wcs_mos.py
jhunkeler/nirspec_pipe_testing_tool
04d247e905e6003f51834c8aff024c211b82eb8a
[ "BSD-3-Clause" ]
null
null
null
calwebb_spec2_pytests/auxiliary_code/compare_wcs_mos.py
jhunkeler/nirspec_pipe_testing_tool
04d247e905e6003f51834c8aff024c211b82eb8a
[ "BSD-3-Clause" ]
null
null
null
calwebb_spec2_pytests/auxiliary_code/compare_wcs_mos.py
jhunkeler/nirspec_pipe_testing_tool
04d247e905e6003f51834c8aff024c211b82eb8a
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import os import subprocess from collections import OrderedDict from astropy.io import fits from astropy import wcs from jwst.assign_wcs import nirspec from jwst import datamodels from . import auxiliary_functions as auxfunc """ This script compares pipeline WCS info with ESA results for Multi-Object Spectroscopy (MOS) data. """ # HEADER __author__ = "M. A. Pena-Guerrero" __version__ = "2.1" # HISTORY # Nov 2017 - Version 1.0: initial version completed # May 2018 - Version 2.0: Completely changed script to use the datamodel instead of the compute_world_coordinates # script, and added new routines for plot making and statistics calculations. # Aug 2018 - Version 2.1: Modified slit-y differences to be reported in absolute numbers rather than relative def compare_wcs(infile_name, esa_files_path, msa_conf_name, show_figs=True, save_figs=False, threshold_diff=1.0e-7, mode_used=None, debug=False): """ This function does the WCS comparison from the world coordinates calculated using the pipeline data model with the ESA intermediary files. Args: infile_name: str, name of the output fits file from the assign_wcs step (with full path) esa_files_path: str, full path of where to find all ESA intermediary products to make comparisons for the tests msa_conf_name: str, full path where to find the shutter configuration file show_figs: boolean, whether to show plots or not save_figs: boolean, save the plots or not threshold_diff: float, threshold difference between pipeline output and ESA file mode_used: string, mode used in the PTT configuration file debug: boolean, if true a series of print statements will show on-screen Returns: - plots, if told to save and/or show them. - median_diff: Boolean, True if smaller or equal to threshold - log_msgs: list, all print statements captured in this variable """ log_msgs = [] # get grating and filter info from the rate file header if mode_used is not None and mode_used == "MOS_sim": infile_name = infile_name.replace("assign_wcs", "extract_2d") msg = 'wcs validation test infile_name= '+infile_name print(msg) log_msgs.append(msg) det = fits.getval(infile_name, "DETECTOR", 0) lamp = fits.getval(infile_name, "LAMP", 0) grat = fits.getval(infile_name, "GRATING", 0) filt = fits.getval(infile_name, "FILTER", 0) msametfl = fits.getval(infile_name, "MSAMETFL", 0) msg = "from assign_wcs file --> Detector: "+det+" Grating: "+grat+" Filter: "+filt+" Lamp: "+lamp print(msg) log_msgs.append(msg) # check that shutter configuration file in header is the same as given in PTT_config file if msametfl != os.path.basename(msa_conf_name): msg = "* WARNING! MSA config file name given in PTT_config file does not match the MSAMETFL keyword in main header.\n" print(msg) log_msgs.append(msg) # copy the MSA shutter configuration file into the pytest directory try: subprocess.run(["cp", msa_conf_name, "."]) except FileNotFoundError: msg1 = " * PTT is not able to locate the MSA shutter configuration file. Please make sure that the msa_conf_name variable in" msg2 = " the PTT_config.cfg file is pointing exactly to where the fits file exists (i.e. full path and name). " msg3 = " -> The WCS test is now set to skip and no plots will be generated. " print(msg1) print(msg2) print(msg3) log_msgs.append(msg1) log_msgs.append(msg2) log_msgs.append(msg3) FINAL_TEST_RESULT = "skip" return FINAL_TEST_RESULT, log_msgs # get shutter info from metadata shutter_info = fits.getdata(msa_conf_name, extname="SHUTTER_INFO") # this is generally ext=2 pslit = shutter_info.field("slitlet_id") quad = shutter_info.field("shutter_quadrant") row = shutter_info.field("shutter_row") col = shutter_info.field("shutter_column") msg = 'Using this MSA shutter configuration file: '+msa_conf_name print(msg) log_msgs.append(msg) # get the datamodel from the assign_wcs output file if mode_used is None or mode_used != "MOS_sim": img = datamodels.ImageModel(infile_name) # these commands only work for the assign_wcs ouput file # loop over the slits #slits_list = nirspec.get_open_slits(img) # this function returns all open slitlets as defined in msa meta file, # however, some of them may not be projected on the detector, and those are later removed from the list of open # slitlets. To get the open and projected on the detector slitlets we use the following: slits_list = img.meta.wcs.get_transform('gwa', 'slit_frame').slits #print ('Open slits: ', slits_list, '\n') if debug: print("Instrument Configuration") print("Detector: {}".format(img.meta.instrument.detector)) print("GWA: {}".format(img.meta.instrument.grating)) print("Filter: {}".format(img.meta.instrument.filter)) print("Lamp: {}".format(img.meta.instrument.lamp_state)) print("GWA_XTILT: {}".format(img.meta.instrument.gwa_xtilt)) print("GWA_YTILT: {}".format(img.meta.instrument.gwa_ytilt)) print("GWA_TTILT: {}".format(img.meta.instrument.gwa_tilt)) elif mode_used == "MOS_sim": # this command works for the extract_2d and flat_field output files model = datamodels.MultiSlitModel(infile_name) slits_list = model.slits # list to determine if pytest is passed or not total_test_result = OrderedDict() # loop over the slices for slit in slits_list: name = slit.name msg = "\nWorking with slit: "+str(name) print(msg) log_msgs.append(msg) # get the right index in the list of open shutters pslit_list = pslit.tolist() slitlet_idx = pslit_list.index(int(name)) # Get the ESA trace #raw_data_root_file = "NRSV96215001001P0000000002103_1_491_SE_2016-01-24T01h25m07.cts.fits" # testing only _, raw_data_root_file = auxfunc.get_modeused_and_rawdatrt_PTT_cfg_file() msg = "Using this raw data file to find the corresponding ESA file: "+raw_data_root_file print(msg) log_msgs.append(msg) q, r, c = quad[slitlet_idx], row[slitlet_idx], col[slitlet_idx] msg = "Pipeline shutter info: quadrant= "+str(q)+" row= "+str(r)+" col="+str(c) print(msg) log_msgs.append(msg) specifics = [q, r, c] esafile = auxfunc.get_esafile(esa_files_path, raw_data_root_file, "MOS", specifics) #esafile = "/Users/pena/Documents/PyCharmProjects/nirspec/pipeline/src/sandbox/zzzz/Trace_MOS_3_319_013_V96215001001P0000000002103_41543_JLAB88.fits" # testing only # skip the test if the esafile was not found if "ESA file not found" in esafile: msg1 = " * compare_wcs_mos.py is exiting because the corresponding ESA file was not found." msg2 = " -> The WCS test is now set to skip and no plots will be generated. " print(msg1) print(msg2) log_msgs.append(msg1) log_msgs.append(msg2) FINAL_TEST_RESULT = "skip" return FINAL_TEST_RESULT, log_msgs # Open the trace in the esafile if len(esafile) == 2: print(len(esafile[-1])) if len(esafile[-1]) == 0: esafile = esafile[0] msg = "Using this ESA file: \n"+str(esafile) print(msg) log_msgs.append(msg) with fits.open(esafile) as esahdulist: print ("* ESA file contents ") esahdulist.info() esa_shutter_i = esahdulist[0].header['SHUTTERI'] esa_shutter_j = esahdulist[0].header['SHUTTERJ'] esa_quadrant = esahdulist[0].header['QUADRANT'] if debug: msg = "ESA shutter info: quadrant="+esa_quadrant+" shutter_i="+esa_shutter_i+" shutter_j="+esa_shutter_j print(msg) log_msgs.append(msg) # first check if ESA shutter info is the same as pipeline msg = "For slitlet"+str(name) print(msg) log_msgs.append(msg) if q == esa_quadrant: msg = "\n -> Same quadrant for pipeline and ESA data: "+str(q) print(msg) log_msgs.append(msg) else: msg = "\n -> Missmatch of quadrant for pipeline and ESA data: "+str(q)+esa_quadrant print(msg) log_msgs.append(msg) if r == esa_shutter_i: msg = "\n -> Same row for pipeline and ESA data: "+str(r) print(msg) log_msgs.append(msg) else: msg = "\n -> Missmatch of row for pipeline and ESA data: "+str(r)+esa_shutter_i print(msg) log_msgs.append(msg) if c == esa_shutter_j: msg = "\n -> Same column for pipeline and ESA data: "+str(c)+"\n" print(msg) log_msgs.append(msg) else: msg = "\n -> Missmatch of column for pipeline and ESA data: "+str(c)+esa_shutter_j+"\n" print(msg) log_msgs.append(msg) # Assign variables according to detector skipv2v3test = True if det == "NRS1": try: esa_flux = fits.getdata(esafile, "DATA1") esa_wave = fits.getdata(esafile, "LAMBDA1") esa_slity = fits.getdata(esafile, "SLITY1") esa_msax = fits.getdata(esafile, "MSAX1") esa_msay = fits.getdata(esafile, "MSAY1") pyw = wcs.WCS(esahdulist['LAMBDA1'].header) try: esa_v2v3x = fits.getdata(esafile, "V2V3X1") esa_v2v3y = fits.getdata(esafile, "V2V3Y1") skipv2v3test = False except KeyError: msg = "Skipping tests for V2 and V3 because ESA file does not contain corresponding extensions." print(msg) log_msgs.append(msg) except KeyError: msg = "PTT did not find ESA extensions that match detector NRS1, skipping test for this slitlet..." print(msg) log_msgs.append(msg) continue if det == "NRS2": try: esa_flux = fits.getdata(esafile, "DATA2") esa_wave = fits.getdata(esafile, "LAMBDA2") esa_slity = fits.getdata(esafile, "SLITY2") esa_msax = fits.getdata(esafile, "MSAX2") esa_msay = fits.getdata(esafile, "MSAY2") pyw = wcs.WCS(esahdulist['LAMBDA2'].header) try: esa_v2v3x = fits.getdata(esafile, "V2V3X2") esa_v2v3y = fits.getdata(esafile, "V2V3Y2") skipv2v3test = False except KeyError: msg = "Skipping tests for V2 and V3 because ESA file does not contain corresponding extensions." print(msg) log_msgs.append(msg) except KeyError: msg = "PTT did not find ESA extensions that match detector NRS2, skipping test for this slitlet..." print(msg) log_msgs.append(msg) continue # get the WCS object for this particular slit if mode_used is None or mode_used != "MOS_sim": try: wcs_slice = nirspec.nrs_wcs_set_input(img, name) except: ValueError msg = "* WARNING: Slitlet "+name+" was not found in the model. Skipping test for this slitlet." print(msg) log_msgs.append(msg) continue elif mode_used == "MOS_sim": wcs_slice = model.slits[0].wcs # if we want to print all available transforms, uncomment line below #print(wcs_slice) # The WCS object attribute bounding_box shows all valid inputs, i.e. the actual area of the data according # to the slice. Inputs outside of the bounding_box return NaN values. #bbox = wcs_slice.bounding_box #print('wcs_slice.bounding_box: ', wcs_slice.bounding_box) # In different observing modes the WCS may have different coordinate frames. To see available frames # uncomment line below. #print("Avalable frames: ", wcs_slice.available_frames) if mode_used is None or mode_used != "MOS_sim": if debug: # To get specific pixel values use following syntax: det2slit = wcs_slice.get_transform('detector', 'slit_frame') slitx, slity, lam = det2slit(700, 1080) print("slitx: " , slitx) print("slity: " , slity) print("lambda: " , lam) if debug: # The number of inputs and outputs in each frame can vary. This can be checked with: print('Number on inputs: ', det2slit.n_inputs) print('Number on outputs: ', det2slit.n_outputs) # Create x, y indices using the Trace WCS pipey, pipex = np.mgrid[:esa_wave.shape[0], : esa_wave.shape[1]] esax, esay = pyw.all_pix2world(pipex, pipey, 0) if det == "NRS2": msg = "NRS2 needs a flip" print(msg) log_msgs.append(msg) esax = 2049-esax esay = 2049-esay # Compute pipeline RA, DEC, and lambda slitlet_test_result_list = [] pra, pdec, pwave = wcs_slice(esax-1, esay-1) # => RETURNS: RA, DEC, LAMBDA (lam *= 10**-6 to convert to microns) pwave *= 10**-6 # calculate and print statistics for slit-y and x relative differences slitlet_name = repr(r)+"_"+repr(c) tested_quantity = "Wavelength Difference" rel_diff_pwave_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_wave, pwave, tested_quantity) rel_diff_pwave_img, notnan_rel_diff_pwave, notnan_rel_diff_pwave_stats, print_stats_strings = rel_diff_pwave_data for msg in print_stats_strings: log_msgs.append(msg) result = auxfunc.does_median_pass_tes(notnan_rel_diff_pwave_stats[1], threshold_diff) msg = 'Result for test of ' + tested_quantity + ': ' + result print(msg) log_msgs.append(msg) slitlet_test_result_list.append({tested_quantity: result}) # get the transforms for pipeline slit-y det2slit = wcs_slice.get_transform('detector', 'slit_frame') slitx, slity, _ = det2slit(esax-1, esay-1) tested_quantity = "Slit-Y Difference" # calculate and print statistics for slit-y and x relative differences rel_diff_pslity_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_slity, slity, tested_quantity, abs=False) # calculate and print statistics for slit-y and x absolute differences #rel_diff_pslity_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_slity, slity, tested_quantity, abs=True) rel_diff_pslity_img, notnan_rel_diff_pslity, notnan_rel_diff_pslity_stats, print_stats_strings = rel_diff_pslity_data for msg in print_stats_strings: log_msgs.append(msg) result = auxfunc.does_median_pass_tes(notnan_rel_diff_pslity_stats[1], threshold_diff) msg = 'Result for test of ' + tested_quantity + ': ' + result print(msg) log_msgs.append(msg) slitlet_test_result_list.append({tested_quantity: result}) # do the same for MSA x, y and V2, V3 detector2msa = wcs_slice.get_transform("detector", "msa_frame") pmsax, pmsay, _ = detector2msa(esax-1, esay-1) # => RETURNS: msaX, msaY, LAMBDA (lam *= 10**-6 to convert to microns) # MSA-x tested_quantity = "MSA_X Difference" reldiffpmsax_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_msax, pmsax, tested_quantity) reldiffpmsax_img, notnan_reldiffpmsax, notnan_reldiffpmsax_stats, print_stats_strings = reldiffpmsax_data for msg in print_stats_strings: log_msgs.append(msg) result = auxfunc.does_median_pass_tes(notnan_reldiffpmsax_stats[1], threshold_diff) msg = 'Result for test of ' + tested_quantity + ': ' + result print(msg) log_msgs.append(msg) slitlet_test_result_list.append({tested_quantity: result}) # MSA-y tested_quantity = "MSA_Y Difference" reldiffpmsay_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_msay, pmsay, tested_quantity) reldiffpmsay_img, notnan_reldiffpmsay, notnan_reldiffpmsay_stats, print_stats_strings = reldiffpmsay_data for msg in print_stats_strings: log_msgs.append(msg) result = auxfunc.does_median_pass_tes(notnan_reldiffpmsay_stats[1], threshold_diff) msg = 'Result for test of ' + tested_quantity + ': ' + result print(msg) log_msgs.append(msg) slitlet_test_result_list.append({tested_quantity: result}) # V2 and V3 if not skipv2v3test: detector2v2v3 = wcs_slice.get_transform("detector", "v2v3") pv2, pv3, _ = detector2v2v3(esax-1, esay-1) # => RETURNS: v2, v3, LAMBDA (lam *= 10**-6 to convert to microns) tested_quantity = "V2 difference" # converting to degrees to compare with ESA reldiffpv2_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_v2v3x, pv2, tested_quantity) if reldiffpv2_data[-2][0] > 0.0: print("\nConverting pipeline results to degrees to compare with ESA") pv2 = pv2/3600. reldiffpv2_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_v2v3x, pv2, tested_quantity) reldiffpv2_img, notnan_reldiffpv2, notnan_reldiffpv2_stats, print_stats_strings = reldiffpv2_data for msg in print_stats_strings: log_msgs.append(msg) result = auxfunc.does_median_pass_tes(notnan_reldiffpv2_stats[1], threshold_diff) msg = 'Result for test of '+tested_quantity+': '+result print(msg) log_msgs.append(msg) slitlet_test_result_list.append({tested_quantity: result}) tested_quantity = "V3 difference" # converting to degrees to compare with ESA reldiffpv3_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_v2v3y, pv3, tested_quantity) if reldiffpv3_data[-2][0] > 0.0: print("\nConverting pipeline results to degrees to compare with ESA") pv3 = pv3/3600. reldiffpv3_data = auxfunc.get_reldiffarr_and_stats(threshold_diff, esa_slity, esa_v2v3y, pv3, tested_quantity) reldiffpv3_img, notnan_reldiffpv3, notnan_reldiffpv3_stats, print_stats_strings = reldiffpv3_data for msg in print_stats_strings: log_msgs.append(msg) result = auxfunc.does_median_pass_tes(notnan_reldiffpv3_stats[1], threshold_diff) msg = 'Result for test of '+tested_quantity+': '+result print(msg) log_msgs.append(msg) slitlet_test_result_list.append({tested_quantity: result}) total_test_result[slitlet_name] = slitlet_test_result_list # PLOTS if show_figs or save_figs: # set the common variables basenameinfile_name = os.path.basename(infile_name) main_title = filt+" "+grat+" SLITLET="+slitlet_name+"\n" bins = 15 # binning for the histograms, if None the function will automatically calculate them # lolim_x, uplim_x, lolim_y, uplim_y plt_origin = None # Wavelength title = main_title+r"Relative wavelength difference = $\Delta \lambda$"+"\n" info_img = [title, "x (pixels)", "y (pixels)"] xlabel, ylabel = r"Relative $\Delta \lambda$ = ($\lambda_{pipe} - \lambda_{ESA}) / \lambda_{ESA}$", "N" info_hist = [xlabel, ylabel, bins, notnan_rel_diff_pwave_stats] if notnan_rel_diff_pwave_stats[1] is np.nan: msg = "Unable to create plot of relative wavelength difference." print(msg) log_msgs.append(msg) else: plt_name = infile_name.replace(basenameinfile_name, slitlet_name+"_"+det+"_rel_wave_diffs.pdf") auxfunc.plt_two_2Dimgandhist(rel_diff_pwave_img, notnan_rel_diff_pwave, info_img, info_hist, plt_name=plt_name, plt_origin=plt_origin, show_figs=show_figs, save_figs=save_figs) # Slit-y title = main_title+r"Relative slit position = $\Delta$slit_y"+"\n" info_img = [title, "x (pixels)", "y (pixels)"] xlabel, ylabel = r"Relative $\Delta$slit_y = (slit_y$_{pipe}$ - slit_y$_{ESA}$)/slit_y$_{ESA}$", "N" info_hist = [xlabel, ylabel, bins, notnan_rel_diff_pslity_stats] if notnan_rel_diff_pslity_stats[1] is np.nan: msg = "Unable to create plot of relative slit-y difference." print(msg) log_msgs.append(msg) else: plt_name = infile_name.replace(basenameinfile_name, slitlet_name+"_"+det+"_rel_slitY_diffs.pdf") auxfunc.plt_two_2Dimgandhist(rel_diff_pslity_img, notnan_rel_diff_pslity, info_img, info_hist, plt_name=plt_name, plt_origin=plt_origin, show_figs=show_figs, save_figs=save_figs) # MSA-x title = main_title+r"Relative MSA-x Difference = $\Delta$MSA_x"+"\n" info_img = [title, "x (pixels)", "y (pixels)"] xlabel, ylabel = r"Relative $\Delta$MSA_x = (MSA_x$_{pipe}$ - MSA_x$_{ESA}$)/MSA_x$_{ESA}$", "N" info_hist = [xlabel, ylabel, bins, notnan_reldiffpmsax_stats] if notnan_reldiffpmsax_stats[1] is np.nan: msg = "Unable to create plot of relative MSA-x difference." print(msg) log_msgs.append(msg) else: plt_name = infile_name.replace(basenameinfile_name, slitlet_name+"_"+det+"_rel_MSAx_diffs.pdf") auxfunc.plt_two_2Dimgandhist(reldiffpmsax_img, notnan_reldiffpmsax, info_img, info_hist, plt_name=plt_name, plt_origin=plt_origin, show_figs=show_figs, save_figs=save_figs) # MSA-y title = main_title+r"Relative MSA-y Difference = $\Delta$MSA_y"+"\n" info_img = [title, "x (pixels)", "y (pixels)"] xlabel, ylabel = r"Relative $\Delta$MSA_y = (MSA_y$_{pipe}$ - MSA_y$_{ESA}$)/MSA_y$_{ESA}$", "N" info_hist = [xlabel, ylabel, bins, notnan_reldiffpmsay_stats] if notnan_reldiffpmsay_stats[1] is np.nan: msg = "Unable to create plot of relative MSA-y difference." print(msg) log_msgs.append(msg) else: plt_name = infile_name.replace(basenameinfile_name, slitlet_name+"_"+det+"_rel_MSAy_diffs.pdf") auxfunc.plt_two_2Dimgandhist(reldiffpmsay_img, notnan_reldiffpmsay, info_img, info_hist, plt_name=plt_name, plt_origin=plt_origin, show_figs=show_figs, save_figs=save_figs) if not skipv2v3test: # V2 title = main_title+r"Relative V2 Difference = $\Delta$V2"+"\n" info_img = [title, "x (pixels)", "y (pixels)"] xlabel, ylabel = r"Relative $\Delta$V2 = (V2$_{pipe}$ - V2$_{ESA}$)/V2$_{ESA}$", "N" hist_data = notnan_reldiffpv2 info_hist = [xlabel, ylabel, bins, notnan_reldiffpv2_stats] if notnan_reldiffpv2_stats[1] is np.nan: msg = "Unable to create plot of relative V2 difference." print(msg) log_msgs.append(msg) else: plt_name = infile_name.replace(basenameinfile_name, slitlet_name+"_"+det+"_rel_V2_diffs.pdf") auxfunc.plt_two_2Dimgandhist(reldiffpv2_img, hist_data, info_img, info_hist, plt_name=plt_name, plt_origin=plt_origin, show_figs=show_figs, save_figs=save_figs) # V3 title = main_title+r"Relative V3 Difference = $\Delta$V3"+"\n" info_img = [title, "x (pixels)", "y (pixels)"] xlabel, ylabel = r"Relative $\Delta$V3 = (V3$_{pipe}$ - V3$_{ESA}$)/V3$_{ESA}$", "N" hist_data = notnan_reldiffpv3 info_hist = [xlabel, ylabel, bins, notnan_reldiffpv3_stats] if notnan_reldiffpv3_stats[1] is np.nan: msg = "Unable to create plot of relative V3 difference." print(msg) log_msgs.append(msg) else: plt_name = infile_name.replace(basenameinfile_name, slitlet_name+"_"+det+"_rel_V3_diffs.pdf") auxfunc.plt_two_2Dimgandhist(reldiffpv3_img, hist_data, info_img, info_hist, plt_name=plt_name, plt_origin=plt_origin, show_figs=show_figs, save_figs=save_figs) else: msg = "NO plots were made because show_figs and save_figs were both set to False. \n" print(msg) log_msgs.append(msg) # remove the copy of the MSA shutter configuration file subprocess.run(["rm", msametfl]) # If all tests passed then pytest will be marked as PASSED, else it will be FAILED FINAL_TEST_RESULT = "FAILED" for sl, testlist in total_test_result.items(): for tdict in testlist: for t, tr in tdict.items(): if tr == "FAILED": FINAL_TEST_RESULT = "FAILED" msg = "\n * The test of "+t+" for slitlet "+sl+" FAILED." print(msg) log_msgs.append(msg) else: FINAL_TEST_RESULT = "PASSED" msg = "\n * The test of "+t+" for slitlet "+sl+ " PASSED." print(msg) log_msgs.append(msg) if FINAL_TEST_RESULT == "PASSED": msg = "\n *** Final result for assign_wcs test will be reported as PASSED *** \n" print(msg) log_msgs.append(msg) else: msg = "\n *** Final result for assign_wcs test will be reported as FAILED *** \n" print(msg) log_msgs.append(msg) return FINAL_TEST_RESULT, log_msgs if __name__ == '__main__': # This is a simple test of the code pipeline_path = "/Users/pena/Documents/PyCharmProjects/nirspec/pipeline" # input parameters that the script expects working_dir = pipeline_path+"/src/sandbox/zzzz/first_run_MOSset/" infile_name = working_dir+"jwtest1010001_01101_00001_NRS1_short_assign_wcs.fits" msa_conf_name = working_dir+"V9621500100101_short_msa.fits" #working_dir = pipeline_path+"/src/sandbox/MOS_G395M_test/" #infile_name = working_dir+"g395m_nrs1_gain_scale_assign_wcs.fits" #msa_conf_name = working_dir+"V9621500100101_msa.fits" esa_files_path = "/grp/jwst/wit4/nirspec_vault/prelaunch_data/testing_sets/b7.1_pipeline_testing/test_data_suite/MOS_CV3/ESA_Int_products" #working_dir = pipeline_path+"/src/sandbox/simulation_test/491_results/" #infile_name = working_dir+"F170LP-G235M_MOS_observation-6-c0e0_001_DN_NRS1_mod_updatedHDR_assign_wcs.fits" #msa_conf_name = working_dir+"jw95065006001_0_msa.fits" #msa_conf_name = working_dir+"jw95065006001_0_singles_msa.fits" #esa_files_path="/grp/jwst/wit4/nirspec_vault/prelaunch_data/testing_sets/b7.1_pipeline_testing/test_data_suite/simulations/ESA_Int_products" # choose None or MOS_sim, only for MOS simulations mode_used = "MOS" #mode_used = "MOS_sim" # Run the principal function of the script result = compare_wcs(infile_name, esa_files_path=esa_files_path, msa_conf_name=msa_conf_name, show_figs=False, save_figs=True, threshold_diff=1.0e-7, mode_used=mode_used, debug=False)
50.230903
173
0.619742
41a0950a501af2dd2742997c05b201570aacb74a
350
py
Python
experiments/jacobi-2d/tmp_files/4888.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
experiments/jacobi-2d/tmp_files/4888.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
experiments/jacobi-2d/tmp_files/4888.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/jacobi-2d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/jacobi-2d/tmp_files/4888.c') procedure('kernel_jacobi_2d') loop(0) tile(0,2,16,2) tile(0,4,16,4) tile(1,2,16,2) tile(1,4,16,4)
26.923077
118
0.765714
9fa5f8f83bd237a1edb8f4adcfd56d9e25b8172f
971
py
Python
setup.py
Nandan-unni/Nano
fa7c85c85cfa6cc31ff0d98679aafe5be179e8d1
[ "MIT" ]
2
2021-01-31T17:27:50.000Z
2021-02-12T17:52:43.000Z
setup.py
Nandan-unni/Nano
fa7c85c85cfa6cc31ff0d98679aafe5be179e8d1
[ "MIT" ]
4
2021-02-10T10:25:26.000Z
2021-02-12T15:36:08.000Z
setup.py
Nandan-unni/Nano
fa7c85c85cfa6cc31ff0d98679aafe5be179e8d1
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages with open("README.md", "r") as README: long_description = README.read() setup( name="nanoAPI", version="0.5.0", author="Nandanunni A S", author_email="asnqln@gmail.com", description="A nano web framework", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Nandan-unni/Nano", packages=find_packages(), license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Operating System :: OS Independent" ], python_requires='>=3.6', install_requires=[ "gunicorn==20.0.4", "colorama==0.4.4" ], ) # python3 setup.py sdist bdist_wheel # python3 -m twine upload --repository testpypi dist/* # python3 -m twine upload --repository-url https://upload.pypi.org/legacy/ dist/*
26.972222
81
0.647786
e22756cc722a109a0693f1e3349a4a59402225e8
506
py
Python
send.py
CarlColglazier/libre-rytm-sds
a76ba95ea1d4db847985ef6b51e53ca7e2a6c966
[ "BSD-3-Clause" ]
3
2019-10-28T09:52:35.000Z
2020-09-13T15:26:49.000Z
send.py
CarlColglazier/libre-rytm-sds
a76ba95ea1d4db847985ef6b51e53ca7e2a6c966
[ "BSD-3-Clause" ]
null
null
null
send.py
CarlColglazier/libre-rytm-sds
a76ba95ea1d4db847985ef6b51e53ca7e2a6c966
[ "BSD-3-Clause" ]
null
null
null
import sys import glob import os from pathlib import Path from time import sleep import subprocess hw = sys.argv[1] script_path=os.path.dirname(os.path.realpath(__file__)) bin_path = script_path + "/send-sds/send-sds" for i, f in enumerate(glob.glob("*.sds")): run = [f'{bin_path}', f'{hw}', "0", f'{i}', f'{f}'] runs = 5 while runs > 0: result = subprocess.run(run, capture_output=True) print(result.returncode) if result.returncode == 217: runs = runs - 1 else: break sleep(0.5)
20.24
55
0.673913
e777fdb08cf9fdf4548efc214b1f23164e2e8657
6,878
py
Python
train_ocr_crnn.py
nhh1501/E2E_MLT_VN
dabbc1f7e12b45fbaef965200217cca41793dbc3
[ "MIT" ]
null
null
null
train_ocr_crnn.py
nhh1501/E2E_MLT_VN
dabbc1f7e12b45fbaef965200217cca41793dbc3
[ "MIT" ]
null
null
null
train_ocr_crnn.py
nhh1501/E2E_MLT_VN
dabbc1f7e12b45fbaef965200217cca41793dbc3
[ "MIT" ]
null
null
null
''' Created on Sep 29, 2017 @author: Michal.Busta at gmail.com ''' import numpy as np import torch.nn.functional as F import os import torch import net_utils import argparse import time import ocr_gen import torch.nn as nn from models_crnn import ModelResNetSep_crnn from ocr_test_utils import print_seq_ext from utils import E2Ecollate,E2Edataset,alignCollate,ocrDataset from torchvision import transforms from net_eval import strLabelConverter,eval_ocr_crnn import matplotlib.pyplot as plt device = 'cuda' f = open('codec.txt', 'r') codec = f.readlines()[0] f.close() print(len(codec)) base_lr = 0.001 lr_decay = 0.99 momentum = 0.9 weight_decay = 0.0005 batch_per_epoch = 1000 disp_interval = 200 def main(opts): train_loss = 0 train_loss_lr = 0 cnt = 1 cntt = 0 time_total = 0 now = time.time() converter = strLabelConverter(codec) model_name = 'E2E-MLT' net = ModelResNetSep_crnn(attention=True, multi_scale=True, num_classes=400, fixed_height=opts.norm_height, net='densenet', ) ctc_loss = nn.CTCLoss() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr, weight_decay=weight_decay) # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,factor=0.5 ,patience=5,verbose=True) scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.00007, max_lr=0.0003, step_size_up=3000, cycle_momentum=False) step_start = 0 if opts.cuda: net.to(device) ctc_loss.to(device) if os.path.exists(opts.model): print('loading model from %s' % args.model) step_start, learning_rate = net_utils.load_net(args.model, net, optimizer) else: learning_rate = base_lr for param_group in optimizer.param_groups: param_group['lr'] = base_lr learning_rate = param_group['lr'] print(param_group['lr']) step_start = 0 net.train() # data_generator = ocr_gen.get_batch(num_workers=opts.num_readers, # batch_size=opts.batch_size, # train_list=opts.train_list, in_train=True, norm_height=opts.norm_height, rgb = True) data_dataset = ocrDataset(root=opts.train_list, norm_height=opts.norm_height , in_train=True) data_generator1 = torch.utils.data.DataLoader(data_dataset, batch_size=opts.batch_size, shuffle=True, collate_fn=alignCollate()) val_dataset = ocrDataset(root=opts.valid_list, norm_height=opts.norm_height , in_train=False) val_generator1 = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False, collate_fn=alignCollate()) for step in range(step_start, 300000): # images, labels, label_length = next(data_generator) # im_data = net_utils.np_to_variable(images, is_cuda=opts.cuda).permute(0, 3, 1, 2) try: images, label = next(dataloader_iterator) except: dataloader_iterator = iter(data_generator1) images, label = next(dataloader_iterator) labels, label_length = converter.encode(label) im_data = images.to(device) labels_pred = net.forward_ocr(im_data) # backward probs_sizes = torch.IntTensor( [(labels_pred.size()[0])] * (labels_pred.size()[1]) ) label_sizes = torch.IntTensor( torch.from_numpy(np.array(label_length)).int() ) labels = torch.IntTensor( torch.from_numpy(np.array(labels)).int() ) loss = ctc_loss(labels_pred, labels, probs_sizes, label_sizes) / im_data.size(0) # change 1.9. optimizer.zero_grad() loss.backward() clipping_value = 1.0 torch.nn.utils.clip_grad_norm_(net.parameters(),clipping_value) if not (torch.isnan(loss) or torch.isinf(loss)): optimizer.step() scheduler.step() train_loss += loss.data.cpu().numpy() #net.bbox_loss.data.cpu().numpy()[0] # train_loss += loss.data.cpu().numpy()[0] #net.bbox_loss.data.cpu().numpy()[0] cnt += 1 if opts.debug: dbg = labels_pred.permute(1, 2, 0).data.cpu().numpy() ctc_f = dbg.swapaxes(1, 2) labels = ctc_f.argmax(2) det_text, conf, dec_s,_ = print_seq_ext(labels[0, :], codec) print('{0} \t'.format(det_text)) if step % disp_interval == 0: for param_group in optimizer.param_groups: learning_rate = param_group['lr'] train_loss /= cnt train_loss_lr += train_loss cntt += 1 time_now = time.time() - now time_total += time_now now = time.time() save_log = os.path.join(opts.save_path, 'loss_ocr.txt') # f = open('content/drive/My_Drive/DATA_OCR/backup/ca ca/loss.txt','a') f = open(save_log, 'a') f.write( 'epoch %d[%d], loss_ctc: %.3f,time: %.2f s, lr: %.5f, cnt: %d\n' % ( step / batch_per_epoch, step, train_loss, time_now,learning_rate, cnt)) f.close() print('epoch %d[%d], loss_ctc: %.3f,time: %.2f s, lr: %.5f, cnt: %d\n' % ( step / batch_per_epoch, step, train_loss, time_now,learning_rate, cnt)) train_loss = 0 cnt = 1 if step > step_start and (step % batch_per_epoch == 0): for param_group in optimizer.param_groups: learning_rate = param_group['lr'] # print(learning_rate) save_name = os.path.join(opts.save_path, 'OCR_{}_{}.h5'.format(model_name, step)) state = {'step': step, 'learning_rate': learning_rate, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict()} torch.save(state, save_name) # scheduler.step(train_loss_lr / cntt) # evaluate CER, WER = eval_ocr_crnn(val_generator1, net) # scheduler.step(CER) f = open(save_log, 'a') f.write('time epoch [%d]: %.2f s, loss_total: %.3f, CER = %f, WER = %f' % (step / batch_per_epoch, time_total, train_loss_lr / cntt, CER, WER)) f.close() print('time epoch [%d]: %.2f s, loss_total: %.3f, CER = %f, WER = %f \n' % (step / batch_per_epoch, time_total, train_loss_lr / cntt, CER, WER)) print('save model: {}'.format(save_name)) net.train() time_total = 0 cntt = 0 train_loss_lr = 0 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-train_list', default='/content/data_MLT_crop/gt_vi.txt') parser.add_argument('-valid_list', default='/content/data_MLT_crop/gt_vi_eval.txt') parser.add_argument('-save_path', default='/content/drive/My Drive/DATA_OCR/ocr_lstm') parser.add_argument('-model', default='E2E-MLT_69000.h5') parser.add_argument('-debug', type=int, default=0) parser.add_argument('-batch_size', type=int, default=8) parser.add_argument('-num_readers', type=int, default=2) parser.add_argument('-cuda', type=bool, default=True) parser.add_argument('-norm_height', type=int, default=64) args = parser.parse_args() main(args)
35.822917
150
0.660076
eb23ffcaadf958e04cdbb2ea6e022c211d79ffc7
47,319
py
Python
spyder/plugins/tours/widgets.py
Earthman100/spyder
949ce0f9100a69504c70a5678e8589a05aee7d38
[ "MIT" ]
7,956
2015-02-17T01:19:09.000Z
2022-03-31T21:52:15.000Z
spyder/plugins/tours/widgets.py
Earthman100/spyder
949ce0f9100a69504c70a5678e8589a05aee7d38
[ "MIT" ]
16,326
2015-02-16T23:15:21.000Z
2022-03-31T23:34:34.000Z
spyder/plugins/tours/widgets.py
Earthman100/spyder
949ce0f9100a69504c70a5678e8589a05aee7d38
[ "MIT" ]
1,918
2015-02-20T19:26:26.000Z
2022-03-31T19:03:25.000Z
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """Spyder interactive tours""" # pylint: disable=C0103 # pylint: disable=R0903 # pylint: disable=R0911 # pylint: disable=R0201 # Standard library imports from math import ceil import sys # Third party imports from qtpy.QtCore import (QEasingCurve, QPoint, QPropertyAnimation, QRectF, Qt, Signal) from qtpy.QtGui import (QBrush, QColor, QIcon, QPainter, QPainterPath, QPen, QPixmap, QRegion) from qtpy.QtWidgets import (QAction, QApplication, QComboBox, QDialog, QGraphicsOpacityEffect, QHBoxLayout, QLabel, QLayout, QMainWindow, QMenu, QMessageBox, QPushButton, QSpacerItem, QToolButton, QVBoxLayout, QWidget) # Local imports from spyder import __docs_url__ from spyder.api.panel import Panel from spyder.api.translations import get_translation from spyder.config.base import _ from spyder.plugins.layout.layouts import DefaultLayouts from spyder.py3compat import to_binary_string from spyder.utils.icon_manager import ima from spyder.utils.image_path_manager import get_image_path from spyder.utils.palette import QStylePalette, SpyderPalette from spyder.utils.qthelpers import add_actions, create_action from spyder.utils.stylesheet import DialogStyle MAIN_TOP_COLOR = MAIN_BG_COLOR = QColor(QStylePalette.COLOR_BACKGROUND_1) # Localization _ = get_translation('spyder') MAC = sys.platform == 'darwin' class FadingDialog(QDialog): """A general fade in/fade out QDialog with some builtin functions""" sig_key_pressed = Signal() def __init__(self, parent, opacity, duration, easing_curve): super(FadingDialog, self).__init__(parent) self.parent = parent self.opacity_min = min(opacity) self.opacity_max = max(opacity) self.duration_fadein = duration[0] self.duration_fadeout = duration[-1] self.easing_curve_in = easing_curve[0] self.easing_curve_out = easing_curve[-1] self.effect = None self.anim = None self._fade_running = False self._funcs_before_fade_in = [] self._funcs_after_fade_in = [] self._funcs_before_fade_out = [] self._funcs_after_fade_out = [] self.setModal(False) def _run(self, funcs): for func in funcs: func() def _run_before_fade_in(self): self._run(self._funcs_before_fade_in) def _run_after_fade_in(self): self._run(self._funcs_after_fade_in) def _run_before_fade_out(self): self._run(self._funcs_before_fade_out) def _run_after_fade_out(self): self._run(self._funcs_after_fade_out) def _set_fade_finished(self): self._fade_running = False def _fade_setup(self): self._fade_running = True self.effect = QGraphicsOpacityEffect(self) self.setGraphicsEffect(self.effect) self.anim = QPropertyAnimation( self.effect, to_binary_string("opacity")) # --- public api def fade_in(self, on_finished_connect): self._run_before_fade_in() self._fade_setup() self.show() self.raise_() self.anim.setEasingCurve(self.easing_curve_in) self.anim.setStartValue(self.opacity_min) self.anim.setEndValue(self.opacity_max) self.anim.setDuration(self.duration_fadein) self.anim.finished.connect(on_finished_connect) self.anim.finished.connect(self._set_fade_finished) self.anim.finished.connect(self._run_after_fade_in) self.anim.start() def fade_out(self, on_finished_connect): self._run_before_fade_out() self._fade_setup() self.anim.setEasingCurve(self.easing_curve_out) self.anim.setStartValue(self.opacity_max) self.anim.setEndValue(self.opacity_min) self.anim.setDuration(self.duration_fadeout) self.anim.finished.connect(on_finished_connect) self.anim.finished.connect(self._set_fade_finished) self.anim.finished.connect(self._run_after_fade_out) self.anim.start() def is_fade_running(self): return self._fade_running def set_funcs_before_fade_in(self, funcs): self._funcs_before_fade_in = funcs def set_funcs_after_fade_in(self, funcs): self._funcs_after_fade_in = funcs def set_funcs_before_fade_out(self, funcs): self._funcs_before_fade_out = funcs def set_funcs_after_fade_out(self, funcs): self._funcs_after_fade_out = funcs class FadingCanvas(FadingDialog): """The black semi transparent canvas that covers the application""" def __init__(self, parent, opacity, duration, easing_curve, color, tour=None): """Create a black semi transparent canvas that covers the app.""" super(FadingCanvas, self).__init__(parent, opacity, duration, easing_curve) self.parent = parent self.tour = tour # Canvas color self.color = color # Decoration color self.color_decoration = QColor(SpyderPalette.COLOR_ERROR_2) # Width in pixels for decoration self.stroke_decoration = 2 self.region_mask = None self.region_subtract = None self.region_decoration = None self.widgets = None # The widget to uncover self.decoration = None # The widget to draw decoration self.interaction_on = False self.path_current = None self.path_subtract = None self.path_full = None self.path_decoration = None # widget setup self.setWindowFlags(Qt.Dialog | Qt.FramelessWindowHint) self.setAttribute(Qt.WA_TranslucentBackground) self.setAttribute(Qt.WA_TransparentForMouseEvents) self.setModal(False) self.setFocusPolicy(Qt.NoFocus) self.set_funcs_before_fade_in([self.update_canvas]) self.set_funcs_after_fade_out([lambda: self.update_widgets(None), lambda: self.update_decoration(None)]) def set_interaction(self, value): self.interaction_on = value def update_canvas(self): w, h = self.parent.size().width(), self.parent.size().height() self.path_full = QPainterPath() self.path_subtract = QPainterPath() self.path_decoration = QPainterPath() self.region_mask = QRegion(0, 0, w, h) self.path_full.addRect(0, 0, w, h) # Add the path if self.widgets is not None: for widget in self.widgets: temp_path = QPainterPath() # if widget is not found... find more general way to handle if widget is not None: widget.raise_() widget.show() geo = widget.frameGeometry() width, height = geo.width(), geo.height() point = widget.mapTo(self.parent, QPoint(0, 0)) x, y = point.x(), point.y() temp_path.addRect(QRectF(x, y, width, height)) temp_region = QRegion(x, y, width, height) if self.interaction_on: self.region_mask = self.region_mask.subtracted(temp_region) self.path_subtract = self.path_subtract.united(temp_path) self.path_current = self.path_full.subtracted(self.path_subtract) else: self.path_current = self.path_full if self.decoration is not None: for widgets in self.decoration: if isinstance(widgets, QWidget): widgets = [widgets] geoms = [] for widget in widgets: widget.raise_() widget.show() geo = widget.frameGeometry() width, height = geo.width(), geo.height() point = widget.mapTo(self.parent, QPoint(0, 0)) x, y = point.x(), point.y() geoms.append((x, y, width, height)) x = min([geom[0] for geom in geoms]) y = min([geom[1] for geom in geoms]) width = max([ geom[0] + geom[2] for geom in geoms]) - x height = max([ geom[1] + geom[3] for geom in geoms]) - y temp_path = QPainterPath() temp_path.addRect(QRectF(x, y, width, height)) temp_region_1 = QRegion(x-1, y-1, width+2, height+2) temp_region_2 = QRegion(x+1, y+1, width-2, height-2) temp_region = temp_region_1.subtracted(temp_region_2) if self.interaction_on: self.region_mask = self.region_mask.united(temp_region) self.path_decoration = self.path_decoration.united(temp_path) else: self.path_decoration.addRect(0, 0, 0, 0) # Add a decoration stroke around widget self.setMask(self.region_mask) self.update() self.repaint() def update_widgets(self, widgets): self.widgets = widgets def update_decoration(self, widgets): self.decoration = widgets def paintEvent(self, event): """Override Qt method""" painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing) # Decoration painter.fillPath(self.path_current, QBrush(self.color)) painter.strokePath(self.path_decoration, QPen(self.color_decoration, self.stroke_decoration)) # decoration_fill = QColor(self.color_decoration) # decoration_fill.setAlphaF(0.25) # painter.fillPath(self.path_decoration, decoration_fill) def reject(self): """Override Qt method""" if not self.is_fade_running(): key = Qt.Key_Escape self.key_pressed = key self.sig_key_pressed.emit() def mousePressEvent(self, event): """Override Qt method""" pass def focusInEvent(self, event): """Override Qt method.""" # To be used so tips do not appear outside spyder if self.hasFocus(): self.tour.gain_focus() def focusOutEvent(self, event): """Override Qt method.""" # To be used so tips do not appear outside spyder if self.tour.step_current != 0: self.tour.lost_focus() class FadingTipBox(FadingDialog): """Dialog that contains the text for each frame in the tour.""" def __init__(self, parent, opacity, duration, easing_curve, tour=None, color_top=None, color_back=None, combobox_background=None): super(FadingTipBox, self).__init__(parent, opacity, duration, easing_curve) self.holder = self.anim # needed for qt to work self.parent = parent self.tour = tour self.frames = None self.offset_shadow = 0 self.fixed_width = 300 self.key_pressed = None self.setAttribute(Qt.WA_TranslucentBackground) self.setWindowFlags(Qt.Dialog | Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) self.setModal(False) # Widgets def toolbutton(icon): bt = QToolButton() bt.setAutoRaise(True) bt.setIcon(icon) return bt self.button_close = toolbutton(ima.icon("tour.close")) self.button_home = toolbutton(ima.icon("tour.home")) self.button_previous = toolbutton(ima.icon("tour.previous")) self.button_end = toolbutton(ima.icon("tour.end")) self.button_next = toolbutton(ima.icon("tour.next")) self.button_run = QPushButton(_('Run code')) self.button_disable = None self.button_current = QToolButton() self.label_image = QLabel() self.label_title = QLabel() self.combo_title = QComboBox() self.label_current = QLabel() self.label_content = QLabel() self.label_content.setOpenExternalLinks(True) self.label_content.setMinimumWidth(self.fixed_width) self.label_content.setMaximumWidth(self.fixed_width) self.label_current.setAlignment(Qt.AlignCenter) self.label_content.setWordWrap(True) self.widgets = [self.label_content, self.label_title, self.label_current, self.combo_title, self.button_close, self.button_run, self.button_next, self.button_previous, self.button_end, self.button_home, self.button_current] arrow = get_image_path('hide') self.color_top = color_top self.color_back = color_back self.combobox_background = combobox_background self.stylesheet = '''QComboBox {{ padding-left: 5px; background-color: {} border-width: 0px; border-radius: 0px; min-height:20px; max-height:20px; }} QComboBox::drop-down {{ subcontrol-origin: padding; subcontrol-position: top left; border-width: 0px; }} QComboBox::down-arrow {{ image: url({}); }} '''.format(self.combobox_background.name(), arrow) # Windows fix, slashes should be always in unix-style self.stylesheet = self.stylesheet.replace('\\', '/') self.setFocusPolicy(Qt.StrongFocus) for widget in self.widgets: widget.setFocusPolicy(Qt.NoFocus) widget.setStyleSheet(self.stylesheet) layout_top = QHBoxLayout() layout_top.addWidget(self.combo_title) layout_top.addStretch() layout_top.addWidget(self.button_close) layout_top.addSpacerItem(QSpacerItem(self.offset_shadow, self.offset_shadow)) layout_content = QHBoxLayout() layout_content.addWidget(self.label_content) layout_content.addWidget(self.label_image) layout_content.addSpacerItem(QSpacerItem(5, 5)) layout_run = QHBoxLayout() layout_run.addStretch() layout_run.addWidget(self.button_run) layout_run.addStretch() layout_run.addSpacerItem(QSpacerItem(self.offset_shadow, self.offset_shadow)) layout_navigation = QHBoxLayout() layout_navigation.addWidget(self.button_home) layout_navigation.addWidget(self.button_previous) layout_navigation.addStretch() layout_navigation.addWidget(self.label_current) layout_navigation.addStretch() layout_navigation.addWidget(self.button_next) layout_navigation.addWidget(self.button_end) layout_navigation.addSpacerItem(QSpacerItem(self.offset_shadow, self.offset_shadow)) layout = QVBoxLayout() layout.addLayout(layout_top) layout.addStretch() layout.addSpacerItem(QSpacerItem(15, 15)) layout.addLayout(layout_content) layout.addLayout(layout_run) layout.addStretch() layout.addSpacerItem(QSpacerItem(15, 15)) layout.addLayout(layout_navigation) layout.addSpacerItem(QSpacerItem(self.offset_shadow, self.offset_shadow)) layout.setSizeConstraint(QLayout.SetFixedSize) self.setLayout(layout) self.set_funcs_before_fade_in([self._disable_widgets]) self.set_funcs_after_fade_in([self._enable_widgets, self.setFocus]) self.set_funcs_before_fade_out([self._disable_widgets]) self.setContextMenuPolicy(Qt.CustomContextMenu) # signals and slots # These are defined every time by the AnimatedTour Class def _disable_widgets(self): for widget in self.widgets: widget.setDisabled(True) def _enable_widgets(self): self.setWindowFlags(Qt.Dialog | Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) for widget in self.widgets: widget.setDisabled(False) if self.button_disable == 'previous': self.button_previous.setDisabled(True) self.button_home.setDisabled(True) elif self.button_disable == 'next': self.button_next.setDisabled(True) self.button_end.setDisabled(True) self.button_run.setDisabled(sys.platform == "darwin") def set_data(self, title, content, current, image, run, frames=None, step=None): self.label_title.setText(title) self.combo_title.clear() self.combo_title.addItems(frames) self.combo_title.setCurrentIndex(step) # min_content_len = max([len(f) for f in frames]) # self.combo_title.setMinimumContentsLength(min_content_len) # Fix and try to see how it looks with a combo box self.label_current.setText(current) self.button_current.setText(current) self.label_content.setText(content) self.image = image if image is None: self.label_image.setFixedHeight(1) self.label_image.setFixedWidth(1) else: extension = image.split('.')[-1] self.image = QPixmap(get_image_path(image), extension) self.label_image.setPixmap(self.image) self.label_image.setFixedSize(self.image.size()) if run is None: self.button_run.setVisible(False) else: self.button_run.setVisible(True) if sys.platform == "darwin": self.button_run.setToolTip("Not available on macOS") # Refresh layout self.layout().activate() def set_pos(self, x, y): self.x = ceil(x) self.y = ceil(y) self.move(QPoint(self.x, self.y)) def build_paths(self): geo = self.geometry() radius = 0 shadow = self.offset_shadow x0, y0 = geo.x(), geo.y() width, height = geo.width() - shadow, geo.height() - shadow left, top = 0, 0 right, bottom = width, height self.round_rect_path = QPainterPath() self.round_rect_path.moveTo(right, top + radius) self.round_rect_path.arcTo(right-radius, top, radius, radius, 0.0, 90.0) self.round_rect_path.lineTo(left+radius, top) self.round_rect_path.arcTo(left, top, radius, radius, 90.0, 90.0) self.round_rect_path.lineTo(left, bottom-radius) self.round_rect_path.arcTo(left, bottom-radius, radius, radius, 180.0, 90.0) self.round_rect_path.lineTo(right-radius, bottom) self.round_rect_path.arcTo(right-radius, bottom-radius, radius, radius, 270.0, 90.0) self.round_rect_path.closeSubpath() # Top path header = 36 offset = 2 left, top = offset, offset right = width - (offset) self.top_rect_path = QPainterPath() self.top_rect_path.lineTo(right, top + radius) self.top_rect_path.moveTo(right, top + radius) self.top_rect_path.arcTo(right-radius, top, radius, radius, 0.0, 90.0) self.top_rect_path.lineTo(left+radius, top) self.top_rect_path.arcTo(left, top, radius, radius, 90.0, 90.0) self.top_rect_path.lineTo(left, top + header) self.top_rect_path.lineTo(right, top + header) def paintEvent(self, event): """Override Qt method.""" self.build_paths() painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing) painter.fillPath(self.round_rect_path, self.color_back) painter.fillPath(self.top_rect_path, self.color_top) painter.strokePath(self.round_rect_path, QPen(Qt.gray, 1)) # TODO: Build the pointing arrow? def keyReleaseEvent(self, event): """Override Qt method.""" key = event.key() self.key_pressed = key keys = [Qt.Key_Right, Qt.Key_Left, Qt.Key_Down, Qt.Key_Up, Qt.Key_Escape, Qt.Key_PageUp, Qt.Key_PageDown, Qt.Key_Home, Qt.Key_End, Qt.Key_Menu] if key in keys: if not self.is_fade_running(): self.sig_key_pressed.emit() def mousePressEvent(self, event): """Override Qt method.""" # Raise the main application window on click self.parent.raise_() self.raise_() if event.button() == Qt.RightButton: pass # clicked_widget = self.childAt(event.x(), event.y()) # if clicked_widget == self.label_current: # self.context_menu_requested(event) def focusOutEvent(self, event): """Override Qt method.""" # To be used so tips do not appear outside spyder self.tour.lost_focus() def context_menu_requested(self, event): pos = QPoint(event.x(), event.y()) menu = QMenu(self) actions = [] action_title = create_action(self, _('Go to step: '), icon=QIcon()) action_title.setDisabled(True) actions.append(action_title) # actions.append(create_action(self, _(': '), icon=QIcon())) add_actions(menu, actions) menu.popup(self.mapToGlobal(pos)) def reject(self): """Qt method to handle escape key event""" if not self.is_fade_running(): key = Qt.Key_Escape self.key_pressed = key self.sig_key_pressed.emit() class AnimatedTour(QWidget): """Widget to display an interactive tour.""" def __init__(self, parent): QWidget.__init__(self, parent) self.parent = parent # Variables to adjust self.duration_canvas = [666, 666] self.duration_tips = [333, 333] self.opacity_canvas = [0.0, 0.7] self.opacity_tips = [0.0, 1.0] self.color = Qt.black self.easing_curve = [QEasingCurve.Linear] self.current_step = 0 self.step_current = 0 self.steps = 0 self.canvas = None self.tips = None self.frames = None self.spy_window = None self.initial_fullscreen_state = None self.widgets = None self.dockwidgets = None self.decoration = None self.run = None self.is_tour_set = False self.is_running = False # Widgets self.canvas = FadingCanvas(self.parent, self.opacity_canvas, self.duration_canvas, self.easing_curve, self.color, tour=self) self.tips = FadingTipBox(self.parent, self.opacity_tips, self.duration_tips, self.easing_curve, tour=self, color_top=MAIN_TOP_COLOR, color_back=MAIN_BG_COLOR, combobox_background=MAIN_TOP_COLOR) # Widgets setup # Needed to fix spyder-ide/spyder#2204. self.setAttribute(Qt.WA_TransparentForMouseEvents) # Signals and slots self.tips.button_next.clicked.connect(self.next_step) self.tips.button_previous.clicked.connect(self.previous_step) self.tips.button_close.clicked.connect(self.close_tour) self.tips.button_run.clicked.connect(self.run_code) self.tips.button_home.clicked.connect(self.first_step) self.tips.button_end.clicked.connect(self.last_step) self.tips.button_run.clicked.connect( lambda: self.tips.button_run.setDisabled(True)) self.tips.combo_title.currentIndexChanged.connect(self.go_to_step) # Main window move or resize self.parent.sig_resized.connect(self._resized) self.parent.sig_moved.connect(self._moved) # To capture the arrow keys that allow moving the tour self.tips.sig_key_pressed.connect(self._key_pressed) # To control the focus of tour self.setting_data = False self.hidden = False def _resized(self, event): if self.is_running: geom = self.parent.geometry() self.canvas.setFixedSize(geom.width(), geom.height()) self.canvas.update_canvas() if self.is_tour_set: self._set_data() def _moved(self, event): if self.is_running: geom = self.parent.geometry() self.canvas.move(geom.x(), geom.y()) if self.is_tour_set: self._set_data() def _close_canvas(self): self.tips.hide() self.canvas.fade_out(self.canvas.hide) def _clear_canvas(self): # TODO: Add option to also make it white... might be useful? # Make canvas black before transitions self.canvas.update_widgets(None) self.canvas.update_decoration(None) self.canvas.update_canvas() def _move_step(self): self._set_data() # Show/raise the widget so it is located first! widgets = self.dockwidgets if widgets is not None: widget = widgets[0] if widget is not None: widget.show() widget.raise_() self._locate_tip_box() # Change in canvas only after fadein finishes, for visual aesthetics self.tips.fade_in(self.canvas.update_canvas) self.tips.raise_() def _set_modal(self, value, widgets): platform = sys.platform.lower() if 'linux' in platform: pass elif 'win' in platform: for widget in widgets: widget.setModal(value) widget.hide() widget.show() elif 'darwin' in platform: pass else: pass def _process_widgets(self, names, spy_window): widgets = [] dockwidgets = [] for name in names: try: base = name.split('.')[0] try: temp = getattr(spy_window, name) except AttributeError: temp = None # Check if it is the current editor if 'get_current_editor()' in name: temp = temp.get_current_editor() temp = getattr(temp, name.split('.')[-1]) if temp is None: raise except AttributeError: temp = eval(f"spy_window.{name}") widgets.append(temp) # Check if it is a dockwidget and make the widget a dockwidget # If not return the same widget temp = getattr(temp, 'dockwidget', temp) dockwidgets.append(temp) return widgets, dockwidgets def _set_data(self): """Set data that is displayed in each step of the tour.""" self.setting_data = True step, steps, frames = self.step_current, self.steps, self.frames current = '{0}/{1}'.format(step + 1, steps) frame = frames[step] combobox_frames = [u"{0}. {1}".format(i+1, f['title']) for i, f in enumerate(frames)] title, content, image = '', '', None widgets, dockwidgets, decoration = None, None, None run = None # Check if entry exists in dic and act accordingly if 'title' in frame: title = frame['title'] if 'content' in frame: content = frame['content'] if 'widgets' in frame: widget_names = frames[step]['widgets'] # Get the widgets based on their name widgets, dockwidgets = self._process_widgets(widget_names, self.spy_window) self.widgets = widgets self.dockwidgets = dockwidgets if 'decoration' in frame: widget_names = frames[step]['decoration'] deco, decoration = self._process_widgets(widget_names, self.spy_window) self.decoration = decoration if 'image' in frame: image = frames[step]['image'] if 'interact' in frame: self.canvas.set_interaction(frame['interact']) if frame['interact']: self._set_modal(False, [self.tips]) else: self._set_modal(True, [self.tips]) else: self.canvas.set_interaction(False) self._set_modal(True, [self.tips]) if 'run' in frame: # Assume that the first widget is the console run = frame['run'] self.run = run self.tips.set_data(title, content, current, image, run, frames=combobox_frames, step=step) self._check_buttons() # Make canvas black when starting a new place of decoration self.canvas.update_widgets(dockwidgets) self.canvas.update_decoration(decoration) self.setting_data = False def _locate_tip_box(self): dockwidgets = self.dockwidgets # Store the dimensions of the main window geo = self.parent.frameGeometry() x, y, width, height = geo.x(), geo.y(), geo.width(), geo.height() self.width_main = width self.height_main = height self.x_main = x self.y_main = y delta = 20 offset = 10 # Here is the tricky part to define the best position for the # tip widget if dockwidgets is not None: if dockwidgets[0] is not None: geo = dockwidgets[0].geometry() x, y, width, height = (geo.x(), geo.y(), geo.width(), geo.height()) point = dockwidgets[0].mapToGlobal(QPoint(0, 0)) x_glob, y_glob = point.x(), point.y() # Put tip to the opposite side of the pane if x < self.tips.width(): x = x_glob + width + delta y = y_glob + height/2 - self.tips.height()/2 else: x = x_glob - self.tips.width() - delta y = y_glob + height/2 - self.tips.height()/2 if (y + self.tips.height()) > (self.y_main + self.height_main): y = ( y - (y + self.tips.height() - ( self.y_main + self.height_main)) - offset ) else: # Center on parent x = self.x_main + self.width_main/2 - self.tips.width()/2 y = self.y_main + self.height_main/2 - self.tips.height()/2 self.tips.set_pos(x, y) def _check_buttons(self): step, steps = self.step_current, self.steps self.tips.button_disable = None if step == 0: self.tips.button_disable = 'previous' if step == steps - 1: self.tips.button_disable = 'next' def _key_pressed(self): key = self.tips.key_pressed if ((key == Qt.Key_Right or key == Qt.Key_Down or key == Qt.Key_PageDown) and self.step_current != self.steps - 1): self.next_step() elif ((key == Qt.Key_Left or key == Qt.Key_Up or key == Qt.Key_PageUp) and self.step_current != 0): self.previous_step() elif key == Qt.Key_Escape: self.close_tour() elif key == Qt.Key_Home and self.step_current != 0: self.first_step() elif key == Qt.Key_End and self.step_current != self.steps - 1: self.last_step() elif key == Qt.Key_Menu: pos = self.tips.label_current.pos() self.tips.context_menu_requested(pos) def _hiding(self): self.hidden = True self.tips.hide() # --- public api def run_code(self): codelines = self.run console = self.widgets[0] for codeline in codelines: console.execute_code(codeline) def set_tour(self, index, frames, spy_window): self.spy_window = spy_window self.active_tour_index = index self.last_frame_active = frames['last'] self.frames = frames['tour'] self.steps = len(self.frames) self.is_tour_set = True def _handle_fullscreen(self): if (self.spy_window.isFullScreen() or self.spy_window.layouts._fullscreen_flag): if sys.platform == 'darwin': self.spy_window.setUpdatesEnabled(True) msg_title = _("Request") msg = _("To run the tour, please press the green button on " "the left of the Spyder window's title bar to take " "it out of fullscreen mode.") QMessageBox.information(self, msg_title, msg, QMessageBox.Ok) return True if self.spy_window.layouts._fullscreen_flag: self.spy_window.layouts.toggle_fullscreen() else: self.spy_window.setWindowState( self.spy_window.windowState() & (~ Qt.WindowFullScreen)) return False def start_tour(self): self.spy_window.setUpdatesEnabled(False) if self._handle_fullscreen(): return self.spy_window.layouts.save_current_window_settings( 'layout_current_temp/', section="quick_layouts", ) self.spy_window.layouts.quick_layout_switch( DefaultLayouts.SpyderLayout) geo = self.parent.geometry() x, y, width, height = geo.x(), geo.y(), geo.width(), geo.height() # self.parent_x = x # self.parent_y = y # self.parent_w = width # self.parent_h = height # FIXME: reset step to last used value # Reset step to beginning self.step_current = self.last_frame_active # Adjust the canvas size to match the main window size self.canvas.setFixedSize(width, height) self.canvas.move(QPoint(x, y)) self.spy_window.setUpdatesEnabled(True) self.canvas.fade_in(self._move_step) self._clear_canvas() self.is_running = True def close_tour(self): self.tips.fade_out(self._close_canvas) self.spy_window.setUpdatesEnabled(False) self.canvas.set_interaction(False) self._set_modal(True, [self.tips]) self.canvas.hide() try: # set the last played frame by updating the available tours in # parent. This info will be lost on restart. self.parent.tours_available[self.active_tour_index]['last'] =\ self.step_current except Exception: pass self.is_running = False self.spy_window.layouts.quick_layout_switch('current_temp') self.spy_window.setUpdatesEnabled(True) def hide_tips(self): """Hide tips dialog when the main window loses focus.""" self._clear_canvas() self.tips.fade_out(self._hiding) def unhide_tips(self): """Unhide tips dialog when the main window loses focus.""" self._clear_canvas() self._move_step() self.hidden = False def next_step(self): self._clear_canvas() self.step_current += 1 self.tips.fade_out(self._move_step) def previous_step(self): self._clear_canvas() self.step_current -= 1 self.tips.fade_out(self._move_step) def go_to_step(self, number, id_=None): self._clear_canvas() self.step_current = number self.tips.fade_out(self._move_step) def last_step(self): self.go_to_step(self.steps - 1) def first_step(self): self.go_to_step(0) def lost_focus(self): """Confirm if the tour loses focus and hides the tips.""" if (self.is_running and not self.setting_data and not self.hidden): if sys.platform == 'darwin': if not self.tour_has_focus(): self.hide_tips() if not self.any_has_focus(): self.close_tour() else: if not self.any_has_focus(): self.hide_tips() def gain_focus(self): """Confirm if the tour regains focus and unhides the tips.""" if (self.is_running and self.any_has_focus() and not self.setting_data and self.hidden): self.unhide_tips() def any_has_focus(self): """Returns True if tour or main window has focus.""" f = (self.hasFocus() or self.parent.hasFocus() or self.tour_has_focus() or self.isActiveWindow()) return f def tour_has_focus(self): """Returns true if tour or any of its components has focus.""" f = (self.tips.hasFocus() or self.canvas.hasFocus() or self.tips.isActiveWindow()) return f class OpenTourDialog(QDialog): """Initial widget with tour.""" def __init__(self, parent, tour_function): super().__init__(parent) if MAC: flags = (self.windowFlags() | Qt.WindowStaysOnTopHint & ~Qt.WindowContextHelpButtonHint) else: flags = self.windowFlags() & ~Qt.WindowContextHelpButtonHint self.setWindowFlags(flags) self.tour_function = tour_function # Image images_layout = QHBoxLayout() icon_filename = 'tour-spyder-logo' image_path = get_image_path(icon_filename) image = QPixmap(image_path) image_label = QLabel() image_height = int(image.height() * DialogStyle.IconScaleFactor) image_width = int(image.width() * DialogStyle.IconScaleFactor) image = image.scaled(image_width, image_height, Qt.KeepAspectRatio, Qt.SmoothTransformation) image_label.setPixmap(image) images_layout.addStretch() images_layout.addWidget(image_label) images_layout.addStretch() if MAC: images_layout.setContentsMargins(0, -5, 20, 0) else: images_layout.setContentsMargins(0, -8, 35, 0) # Label tour_label_title = QLabel(_("Welcome to Spyder!")) tour_label_title.setStyleSheet(f"font-size: {DialogStyle.TitleFontSize}") tour_label_title.setWordWrap(True) tour_label = QLabel( _("Check out our interactive tour to " "explore some of Spyder's panes and features.")) tour_label.setStyleSheet(f"font-size: {DialogStyle.ContentFontSize}") tour_label.setWordWrap(True) tour_label.setFixedWidth(340) # Buttons buttons_layout = QHBoxLayout() dialog_tour_color = QStylePalette.COLOR_BACKGROUND_2 start_tour_color = QStylePalette.COLOR_ACCENT_2 start_tour_hover = QStylePalette.COLOR_ACCENT_3 start_tour_pressed = QStylePalette.COLOR_ACCENT_4 dismiss_tour_color = QStylePalette.COLOR_BACKGROUND_4 dismiss_tour_hover = QStylePalette.COLOR_BACKGROUND_5 dismiss_tour_pressed = QStylePalette.COLOR_BACKGROUND_6 font_color = QStylePalette.COLOR_TEXT_1 self.launch_tour_button = QPushButton(_('Start tour')) self.launch_tour_button.setStyleSheet(( "QPushButton {{ " "background-color: {background_color};" "border-color: {border_color};" "font-size: {font_size};" "color: {font_color};" "padding: {padding}}}" "QPushButton:hover:!pressed {{ " "background-color: {color_hover}}}" "QPushButton:pressed {{ " "background-color: {color_pressed}}}" ).format(background_color=start_tour_color, border_color=start_tour_color, font_size=DialogStyle.ButtonsFontSize, font_color=font_color, padding=DialogStyle.ButtonsPadding, color_hover=start_tour_hover, color_pressed=start_tour_pressed)) self.launch_tour_button.setAutoDefault(False) self.dismiss_button = QPushButton(_('Dismiss')) self.dismiss_button.setStyleSheet(( "QPushButton {{ " "background-color: {background_color};" "border-color: {border_color};" "font-size: {font_size};" "color: {font_color};" "padding: {padding}}}" "QPushButton:hover:!pressed {{ " "background-color: {color_hover}}}" "QPushButton:pressed {{ " "background-color: {color_pressed}}}" ).format(background_color=dismiss_tour_color, border_color=dismiss_tour_color, font_size=DialogStyle.ButtonsFontSize, font_color=font_color, padding=DialogStyle.ButtonsPadding, color_hover=dismiss_tour_hover, color_pressed=dismiss_tour_pressed)) self.dismiss_button.setAutoDefault(False) buttons_layout.addStretch() buttons_layout.addWidget(self.launch_tour_button) if not MAC: buttons_layout.addSpacing(10) buttons_layout.addWidget(self.dismiss_button) layout = QHBoxLayout() layout.addLayout(images_layout) label_layout = QVBoxLayout() label_layout.addWidget(tour_label_title) if not MAC: label_layout.addSpacing(3) label_layout.addWidget(tour_label) else: label_layout.addWidget(tour_label) label_layout.addSpacing(10) vertical_layout = QVBoxLayout() if not MAC: vertical_layout.addStretch() vertical_layout.addLayout(label_layout) vertical_layout.addSpacing(20) vertical_layout.addLayout(buttons_layout) vertical_layout.addStretch() else: vertical_layout.addLayout(label_layout) vertical_layout.addLayout(buttons_layout) general_layout = QHBoxLayout() if not MAC: general_layout.addStretch() general_layout.addLayout(layout) general_layout.addSpacing(1) general_layout.addLayout(vertical_layout) general_layout.addStretch() else: general_layout.addLayout(layout) general_layout.addLayout(vertical_layout) self.setLayout(general_layout) self.launch_tour_button.clicked.connect(self._start_tour) self.dismiss_button.clicked.connect(self.close) self.setStyleSheet(f"background-color:{dialog_tour_color}") self.setContentsMargins(18, 40, 18, 40) if not MAC: self.setFixedSize(640, 280) def _start_tour(self): self.close() self.tour_function() # ---------------------------------------------------------------------------- # Used for testing the functionality # ---------------------------------------------------------------------------- class TourTestWindow(QMainWindow): """ """ sig_resized = Signal("QResizeEvent") sig_moved = Signal("QMoveEvent") def __init__(self): super(TourTestWindow, self).__init__() self.setGeometry(300, 100, 400, 600) self.setWindowTitle('Exploring QMainWindow') self.exit = QAction('Exit', self) self.exit.setStatusTip('Exit program') # create the menu bar menubar = self.menuBar() file_ = menubar.addMenu('&File') file_.addAction(self.exit) # create the status bar self.statusBar() # QWidget or its instance needed for box layout self.widget = QWidget(self) self.button = QPushButton('test') self.button1 = QPushButton('1') self.button2 = QPushButton('2') effect = QGraphicsOpacityEffect(self.button2) self.button2.setGraphicsEffect(effect) self.anim = QPropertyAnimation(effect, to_binary_string("opacity")) self.anim.setStartValue(0.01) self.anim.setEndValue(1.0) self.anim.setDuration(500) lay = QVBoxLayout() lay.addWidget(self.button) lay.addStretch() lay.addWidget(self.button1) lay.addWidget(self.button2) self.widget.setLayout(lay) self.setCentralWidget(self.widget) self.button.clicked.connect(self.action1) self.button1.clicked.connect(self.action2) self.tour = AnimatedTour(self) def action1(self): frames = get_tour('test') index = 0 dic = {'last': 0, 'tour': frames} self.tour.set_tour(index, dic, self) self.tour.start_tour() def action2(self): self.anim.start() def resizeEvent(self, event): """Reimplement Qt method""" QMainWindow.resizeEvent(self, event) self.sig_resized.emit(event) def moveEvent(self, event): """Reimplement Qt method""" QMainWindow.moveEvent(self, event) self.sig_moved.emit(event) def local_test(): from spyder.utils.qthelpers import qapplication app = QApplication([]) win = TourTestWindow() win.show() app.exec_() if __name__ == '__main__': local_test()
36.7669
82
0.577802
03bbe6bdb6dc170c5a0156d97f2f14be20bbe753
8,236
py
Python
make_tfrecord.py
ndaidong/tf-ssd-mobilenet
3d6082178b018d9e02c6044d562ef05ca2021899
[ "MIT" ]
null
null
null
make_tfrecord.py
ndaidong/tf-ssd-mobilenet
3d6082178b018d9e02c6044d562ef05ca2021899
[ "MIT" ]
null
null
null
make_tfrecord.py
ndaidong/tf-ssd-mobilenet
3d6082178b018d9e02c6044d562ef05ca2021899
[ "MIT" ]
1
2018-04-18T03:41:09.000Z
2018-04-18T03:41:09.000Z
#!/usr/bin/env python3 import glob import argparse import sys import hashlib import io from os import path, mkdir, remove from shutil import rmtree from random import shuffle from lxml import etree from funcy import compose from tqdm import tqdm from PIL import Image import tensorflow as tf from tflib.object_detection.utils import dataset_util from tflib.object_detection.utils import label_map_util def get_default_label_map(): return 'configs/label_map.pbtxt' def get_default_data_dir(): return 'temp/data' def get_default_extract_count(): return 100 def get_default_split_ratio(): return 0.1 def create_example(entry, label_map_dict): img_path = entry[0] label_path = entry[1] try: with tf.gfile.GFile(label_path, 'r') as fid: xml_str = bytes(bytearray(fid.read(), encoding='utf-8')) xml = etree.fromstring(xml_str) data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] with tf.gfile.GFile(img_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width, height = image.size width = int(width) height = int(height) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] if 'object' in data: for obj in data['object']: difficult_obj.append(int(0)) _xmin = max(float(obj['bndbox']['xmin']), 0) _ymin = max(float(obj['bndbox']['ymin']), 0) _xmax = min(float(obj['bndbox']['xmax']), width) _ymax = min(float(obj['bndbox']['ymax']), height) xmin.append(_xmin / width) ymin.append(_ymin / height) xmax.append(_xmax / width) ymax.append(_ymax / height) class_name = obj['name'] classes_text.append(class_name.encode('utf8')) classes.append(label_map_dict[class_name]) truncated.append(int(0)) poses.append('Unspecified'.encode('utf8')) return tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8') ), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8') ), 'image/key/sha256': dataset_util.bytes_feature( key.encode('utf8') ), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature( 'jpeg'.encode('utf8') ), 'image/object/bbox/xmin': dataset_util.float_list_feature( xmin ), 'image/object/bbox/xmax': dataset_util.float_list_feature( xmax ), 'image/object/bbox/ymin': dataset_util.float_list_feature( ymin ), 'image/object/bbox/ymax': dataset_util.float_list_feature( ymax ), 'image/object/class/text': dataset_util.bytes_list_feature( classes_text ), 'image/object/class/label': dataset_util.int64_list_feature( classes ), 'image/object/difficult': dataset_util.int64_list_feature( difficult_obj ), 'image/object/truncated': dataset_util.int64_list_feature( truncated ), 'image/object/view': dataset_util.bytes_list_feature(poses), })) except ValueError as err: print(img_path) print(label_path) print(err) return None def select(count): def get_subset(arr): shuffle(arr) max_size = min(count, len(arr)) return arr[:max_size] return get_subset def handle(files): arr = [] for i in range(len(files)): imagesrc = str(files[i]) xml_file = imagesrc.replace('images/', 'labels/') xml_file = xml_file.replace('.jpg', '.xml') if path.isfile(xml_file): arr.append([imagesrc, xml_file]) return arr def check(d): files = [] if path.isdir(d): files = glob.glob(d + '/images/*.jpg') return files def load(d, count): return compose(select(count), handle, check)(d) def process(entries, output_dir, label_map, split_ratio): rat = float(split_ratio) if rat >= 1 or rat < 0: rat = get_default_split_ratio() total = len(entries) test_size = round(rat * total) training_size = total - test_size print('test/train/total {}/{}/{}'.format(test_size, training_size, total)) test_set = entries[:test_size] training_set = entries[test_size:] label_map_dict = label_map_util.get_label_map_dict(label_map) print(label_map_dict) tfwriter = tf.python_io.TFRecordWriter print('Handling training set ({})'.format(training_size)) train_writer = tfwriter(output_dir + '/train.record') for entry in tqdm(training_set): try: exp = create_example(entry, label_map_dict) if exp is not None: train_writer.write(exp.SerializeToString()) except ValueError as err: print(err) continue train_writer.close() print('Handling test set ({})'.format(test_size)) test_writer = tfwriter(output_dir + '/eval.record') for entry in tqdm(test_set): try: exp = create_example(entry, label_map_dict) if exp is not None: test_writer.write(exp.SerializeToString()) except ValueError as err: print(err) continue test_writer.close() def preload(input_dir, extracting_count, output_dir, label_map, split_ratio): if path.exists(output_dir): rmtree(output_dir) mkdir(output_dir) files = load(input_dir, int(extracting_count)) total = len(files) if total > 0: print('Selected {} entries to process'.format(total)) return process(files, output_dir, label_map, split_ratio) else: print('No input label & image. Stopped!') def start(): parser = argparse.ArgumentParser() parser.add_argument( '-d', '--dir', help='Path to dataset. Default "../vgg-faces-utils/output"' ) parser.add_argument( '-l', '--labelmap', help='Path to label map. Default "configs/label_map.pbtxt"' ) parser.add_argument( '-e', '--extract', help='How many items? Default 100' ) parser.add_argument( '-o', '--output', help='Path to output dir. Default "temp/data"' ) parser.add_argument( '-r', '--ratio', help='Ratio of Training/Test set. Default 0.1 (9 train/1 eval)' ) args = parser.parse_args() if not args.dir: print('Please specify path to source dir') else: label_map = args.labelmap if label_map is None: label_map = get_default_label_map() count = args.extract if count is None: count = get_default_extract_count() odir = args.output if odir is None: odir = get_default_data_dir() ratio = args.ratio if ratio is None: ratio = get_default_split_ratio() entries = preload( path.normpath(args.dir), count, odir, label_map, ratio ) if __name__ == '__main__': start()
28.898246
78
0.567508
2a1e34f8713434f98e713ea1c4334ac404f9037c
3,625
py
Python
Input.py
JuanCab/ChromaStarPy
b4401a32c607e89375ffb6d8e6e4b3de3340ef24
[ "MIT" ]
null
null
null
Input.py
JuanCab/ChromaStarPy
b4401a32c607e89375ffb6d8e6e4b3de3340ef24
[ "MIT" ]
null
null
null
Input.py
JuanCab/ChromaStarPy
b4401a32c607e89375ffb6d8e6e4b3de3340ef24
[ "MIT" ]
null
null
null
# # #Custom filename tags to distinguish from other runs project = "Project" runVers = "Run" #Default plot #Select ONE only: #makePlot = "none" #makePlot = "structure" #makePlot = "sed" #makePlot = "spectrum" #makePlot = "ldc" #makePlot = "ft" #makePlot = "tlaLine" ###The following two plot variables refer to the partial pressure outpue ("Report 6") makePlot = "ppress" plotSpec = "H" #Spectrum synthesis mode # - uses model in Restart.py with minimal structure calculation #specSynMode = True specSynMode = False #Model atmosphere teff = 6100.0 #, K logg = 4.5 #, cgs #teff = 5777.0 #, K #logg = 4.44 #, cgs log10ZScale = 0.0 # [A/H] massStar = 1.0 #, solar masses xiT = 1.0 #, km/s logHeFe = 0.0 #, [He/Fe] logCO = 0.0 #, [C/O] logAlphaFe = 0.0 #, [alpha-elements/Fe] #Spectrum synthesis #Test #TiO beta #lambdaStart = 560.0 #, nm #lambdaStop = 564.0 #, nm #TiO gamma #lambdaStart = 708.0 #, nm #lambdaStop = 712.0 #, nm #lambdaStart = 715.0 #, nm #lambdaStop = 719.0 #, nm #TiO gamma prime #lambdaStart = 617.0 #, nm #lambdaStop = 621.0 #, nm #TiO epsilon #lambdaStart = 839.0 #, nm #lambdaStop = 843.0 #, nm #TiO delta #lambdaStart = 882.0 #, nm #lambdaStop = 892.0 #, nm #TiO phi #lambdaStart = 1100.0 #, nm #lambdaStop = 1110.0 #, nm #CH A2Delta_X2Pi ("G-band" at 4314 A) lambdaStart = 395.0 #, nm lambdaStop = 400.0 #, nm fileStem = project + "-"\ + str(round(teff, 7)) + "-" + str(round(logg, 3)) + "-" + str(round(log10ZScale, 3))\ + "-" + str(round(lambdaStart, 5)) + "-" + str(round(lambdaStop, 5))\ + "-" + runVers lineThresh = -3.0 #, min log(KapLine/kapCnt) for inclusion at all - areally, being used as "lineVoigt" for now voigtThresh = -3.0 #, min log(KapLine/kapCnt) for treatment as Voigt - currently not used - all lines get Voigt logGammaCol = 0.0 logKapFudge = 0.0 macroV = 1.0 #, km/s rotV = 1.0 #, km/s rotI = 90.0 #, degrees RV = 0.0 #, km/s vacAir = "vacuum" sampling = "fine" #Performance vs realism nOuterIter = 12 #, no of outer Pgas(HSE) - EOS - kappa iterations nInnerIter = 12 #, no of inner (ion fraction) - Pe iterations ifMols = 1 #, where to include TiO JOLA bands in synthesis ifTiO = 0 #Soon to be deprecated #Gaussian filter for limb darkening curve, fourier transform diskLambda = 500.0 #, nm diskSigma = 0.01 #, nm #Two-level atom and spectral line userLam0 = 589.592 #, nm userA12 = 6.24 #, A_12 logarithmic abundance = log_10(N/H_H) = 12 userLogF = -0.495 #, log(f) oscillaotr strength // saturated line userStage = 0 #, ionization stage of user species (0 (I) - 3 (IV) userChiI1 = 5.139 #, ground state chi_I, eV userChiI2 = 47.29 #, 1st ionized state chi_I, eV userChiI3 = 71.62 #, 2nd ionized state chi_I, eV userChiI4 = 98.94 #, 3rd ionized state chi_I, eV userChiL = 0.0 #, lower atomic E-level, eV userGw1 = 2 #, ground state state. weight or partition fn (stage I) - unitless userGw2 = 1 #, ground state state. weight or partition fn (stage II) - unitless userGw3 = 1 #, ground state state. weight or partition fn (stage III) - unitless userGw4 = 1 #, ground state state. weight or partition fn (stage IV) - unitless userGwL = 2 #, lower E-level state. weight - unitless userMass = 22.9 #, amu userLogGammaCol = 1.0 #, log_10 Lorentzian broadening enhancement factor
32.657658
117
0.606069
a8147d7fb267e0842336f49dbc69560959499038
146
py
Python
output/models/saxon_data/cta/cta0025_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/saxon_data/cta/cta0025_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/saxon_data/cta/cta0025_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.saxon_data.cta.cta0025_xsd.cta0025 import ( Doc, Event, When, ) __all__ = [ "Doc", "Event", "When", ]
12.166667
62
0.575342
6e3546106e60f708dadbe72cb2162aff1ae23582
308
py
Python
pinax/projects/basic_project/__init__.py
skabber/pinax
6fdee6b7bbbb597074d45122badf3a6dd75e0b92
[ "MIT" ]
2
2015-12-27T23:07:51.000Z
2016-05-09T08:57:28.000Z
pinax/projects/private_beta_project/__init__.py
SMiGL/pinax
d08b2655fe661566bd13c5c170b1a4cad9e67a1d
[ "MIT" ]
null
null
null
pinax/projects/private_beta_project/__init__.py
SMiGL/pinax
d08b2655fe661566bd13c5c170b1a4cad9e67a1d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __about__ = """ This project comes with the bare minimum set of applications and templates to get you started. It includes no extra tabs–only the profile and notices tabs are included by default. From here you can add any extra functionality and applications that you would like. """
38.5
80
0.762987
e9239bd4b40490f4163d3b428fa6c8af233c46a4
219
py
Python
analyzer/staticinfo_exceptions.py
JayveeHe/senz.app.staticinfo.inferrence
98748506adcbb28b074337e261fe79b2141f31a5
[ "MIT" ]
null
null
null
analyzer/staticinfo_exceptions.py
JayveeHe/senz.app.staticinfo.inferrence
98748506adcbb28b074337e261fe79b2141f31a5
[ "MIT" ]
null
null
null
analyzer/staticinfo_exceptions.py
JayveeHe/senz.app.staticinfo.inferrence
98748506adcbb28b074337e261fe79b2141f31a5
[ "MIT" ]
null
null
null
__author__ = 'Jayvee' class MsgException(Exception): def __init__(self, msg): self.message = msg def __str__(self): return self.message def __unicode__(self): return self.message
16.846154
30
0.639269
58b6503a102c4277bb31bb1fc2a3b23a7b32857d
7,698
py
Python
nobos_commons/tools/decorators/cache_decorator.py
noboevbo/nobos_commons
471e52e10fd2228c106777c72d8439e58b047003
[ "MIT" ]
2
2020-06-03T16:28:44.000Z
2020-10-10T03:07:23.000Z
nobos_commons/tools/decorators/cache_decorator.py
noboevbo/nobos_commons
471e52e10fd2228c106777c72d8439e58b047003
[ "MIT" ]
null
null
null
nobos_commons/tools/decorators/cache_decorator.py
noboevbo/nobos_commons
471e52e10fd2228c106777c72d8439e58b047003
[ "MIT" ]
4
2020-10-10T03:07:25.000Z
2021-09-30T01:11:02.000Z
import collections import hashlib import inspect import json import os import pickle import re import shutil import sys from typing import Callable, List, Any from nobos_commons.data_structures.configs.cache_config import CacheConfig from nobos_commons.tools.decorators.timing_decorator import stopwatch from nobos_commons.tools.log_handler import logger from nobos_commons.utils.file_helper import get_create_path class __Cache(object): __slots__ = ['func_cache_dir', 'func_cache_dir_path', 'func', 'cache_config', 'is_method', 'replacement_args', 'arg_names'] __cache_columns: List[str] = ['func_call_hash', 'func_name', 'func_code', 'func_args', 'func_result', 'date_created'] def __init__(self, func: Callable, cache_config: CacheConfig): """ Cache decorator which currently supports functions with base type, dictionary, list and lambda parameters :param func: """ self.func = func self.cache_config = cache_config try: self.func_cache_dir = self.get_function_hash() except OSError as err: print("OS Error, probably not possible to retrieve source code. Disable cache. Details: '{}'".format(err)) self.cache_config.cache_enabled = False return self.is_method = self.__is_method(self.func) self.func_cache_dir_path = get_create_path(os.path.join(self.cache_config.cache_dir, self.func_cache_dir)) self.arg_names = list(inspect.signature(self.func).parameters.keys()) self.replacement_args = None if self.func.__name__ in self.cache_config.str_args_replacement_dict.keys(): self.replacement_args = self.cache_config.str_args_replacement_dict[self.func.__name__] def get_arg_replaced_cache_value(self, cache_file_path: str, *args): old_args = list(args) for replacement_arg in self.replacement_args: if replacement_arg.arg_name in self.arg_names: arg_index = self.arg_names.index(replacement_arg.arg_name) else: raise ValueError("replacement_arg {0} for function {1} is not in function signature".format( replacement_arg.arg_name, self.func.__name__)) arg_value = args[arg_index] old_args[arg_index] = replacement_arg.arg_replacement_func(arg_value) old_args = tuple(old_args) old_cache_file_path = self.__get_cache_file_path(*old_args) old_cached_value = self.__get_cached_value(old_cache_file_path) if old_cached_value is None: return None shutil.move(old_cache_file_path, cache_file_path) logger.info('Moved cache file \'{}\' to \'{}\''.format(old_cache_file_path, cache_file_path)) return old_cached_value def get_args_hash(self, *args) -> str: arg_hashes: str = '' start = 1 if self.is_method else 0 for i in range(start, len(args)): arg = args[i] if isinstance(arg, collections.Hashable): if isinstance(arg, str): arg_hashes = "{}_{}".format(arg_hashes, hashlib.sha256(bytes(arg.encode('utf-8'))).hexdigest()) elif callable(arg): # is a function, TODO: Mabye use the parameters + func_path as str and hash this raise NotImplementedError( "Type {} is not supported for caching because it is not hashable".format(type(arg))) else: # TODO: OBJS? arg_hashes = "{}_{}".format(arg_hashes, hashlib.sha256(bytes(arg)).hexdigest()) else: if isinstance(arg, dict) or isinstance(arg, list): arg_hashes = "{}_{}".format(arg_hashes, hashlib.sha256( json.dumps(arg, sort_keys=True).encode('utf-8')).hexdigest()) else: raise NotImplementedError( "Type {} is not supported for caching because it is not hashable".format(type(arg))) return hashlib.sha256(arg_hashes.encode("utf-8")).hexdigest() def get_function_hash(self) -> str: func_source = inspect.getsource(self.func) func_source = re.sub("@cache\(.*\)\\n", '', func_source) # remove @cache decorator from func code function_hashes = "{}_{}".format(self.func.__name__, hashlib.sha256(func_source.encode('utf-8')).hexdigest()) return hashlib.sha256(bytes(function_hashes.encode('utf-8'))).hexdigest() def __get_cache_file_path(self, *args) -> str: arg_hash = self.get_args_hash(*args) func_hash = self.get_function_hash() func_call_hashes = "{}_{}".format(func_hash, arg_hash) func_call_hash = hashlib.sha256(bytes(func_call_hashes.encode('utf-8'))).hexdigest() return os.path.join(self.func_cache_dir_path, func_call_hash) def __get_cached_value(self, cache_file_path: str) -> Any: if (self.cache_config.reload_all or self.func.__name__ in self.cache_config.func_names_to_reload) and \ os.path.exists(cache_file_path): logger.info('Deleted cache file \'{}\''.format(cache_file_path)) os.remove(cache_file_path) if os.path.exists(cache_file_path): try: cache_value = pickle.load(open(cache_file_path, 'rb')) logger.info('Loaded {} results from cache file \'{}\''.format(self.func.__name__, cache_file_path)) return cache_value except: os.remove(cache_file_path) return None @stopwatch def __call__(self, *args, **kwargs): """ Checks if a func result is already cached, if yes it's returned if not the func will be executed and the result will be saved to a cache file :param func: The function which produces the result :param cache_file_path: The cache file path :param reload: If a cached file exists it should be updated :return: The requested content, either retrieved from cache or calculated and saved to cache """ if not self.cache_config.cache_enabled: logger.info('Cache disabled for {}'.format(self.func.__name__)) return self.func(*args, **kwargs) if sys.version_info[0] == 2: logger.info( 'Load {} from function, because caching is disabled or incompatible!'.format(self.func.__name__)) return self.func(*args, **kwargs) # pickle bug in Python2 for large datasets cache_file_path = self.__get_cache_file_path(*args) if self.replacement_args is not None: cached_value = self.get_arg_replaced_cache_value(cache_file_path, *args) else: cached_value = self.__get_cached_value(cache_file_path) if cached_value is not None: return cached_value result = self.func(*args, **kwargs) # **kwargs pickle.dump(result, open(cache_file_path, 'wb'), protocol=4) logger.info('Created cache file for {} in \'{}\''.format(self.func.__name__, cache_file_path)) return result def __get__(self, obj, objtype): """Support instance methods.""" import functools return functools.partial(self.__call__, obj) @staticmethod def __is_method(func): spec = inspect.signature(func) if len(spec.parameters) > 0: if list(spec.parameters.keys())[0] == 'self': return True return False def cache(cache_config: CacheConfig): def wrapper(func): return __Cache(func, cache_config) return wrapper
45.821429
127
0.643154
4a2e53158e1a1c7f219fcd1dcbc35e955c922a1e
194
py
Python
processes/gather_exception.py
kinoreel/kino-gather
defc0d6b311651f985467b5bfcfdbf77d73c10ae
[ "MIT" ]
null
null
null
processes/gather_exception.py
kinoreel/kino-gather
defc0d6b311651f985467b5bfcfdbf77d73c10ae
[ "MIT" ]
3
2017-06-03T16:50:56.000Z
2017-10-01T09:24:37.000Z
processes/gather_exception.py
kinoreel/kino-gather
defc0d6b311651f985467b5bfcfdbf77d73c10ae
[ "MIT" ]
null
null
null
class GatherException(Exception): def __init__(self, imdb_id, message): self.message = message self.imdb_id = imdb_id super(GatherException, self).__init__(message)
27.714286
54
0.685567
a3d5e7e48e0b7fece416ee290ee2b05d34c4bfd1
916
py
Python
get_imgs.py
Zhang-Qi7/Cat-vs-Dog-on-web
7a6aff3ec7d3bec01294de0e86fd456a5bba65d2
[ "MIT" ]
2
2020-08-25T02:47:51.000Z
2020-08-25T15:13:43.000Z
get_imgs.py
Zhang-Qi7/Cat-vs-Dog-on-web
7a6aff3ec7d3bec01294de0e86fd456a5bba65d2
[ "MIT" ]
1
2020-08-25T10:23:47.000Z
2020-08-26T07:16:17.000Z
get_imgs.py
Zhang-Qi7/Cat-vs-Dog-on-web
7a6aff3ec7d3bec01294de0e86fd456a5bba65d2
[ "MIT" ]
1
2020-08-25T09:09:06.000Z
2020-08-25T09:09:06.000Z
import os import re import requests def download_baidu(word): url = 'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word=' + word + '&ct=201326592&v=flip' pic_url = re.findall('"objURL":"(.*?)",', requests.get(url).text, re.S) i = 0 for each in pic_url: print(pic_url) try: pic = requests.get(each, timeout=10) except requests.exceptions.ConnectionError: print('exception') continue if word in ['dog','dogs','puppy','狗']: word = 'dog' if word in ['cat','cats','猫']: word = 'cat' string = './train/' + word + '/' + word + '_' + str(i) + '.jpg' fp = open(string, 'wb') fp.write(pic.content) fp.close() i += 1 if __name__ == '__main__': word = input("Input key word: ") download_baidu(word)
26.941176
109
0.505459
64b5a2cb8929ad161a1ee1dc4b0d356c36e7cf8d
2,930
py
Python
distributed_dp/dme_utils.py
AbdulmoneamAli/federated
c54a9f5053d6316f81aa6f6d1eba61068927a33d
[ "Apache-2.0" ]
1
2021-07-29T16:35:21.000Z
2021-07-29T16:35:21.000Z
distributed_dp/dme_utils.py
AbdulmoneamAli/federated
c54a9f5053d6316f81aa6f6d1eba61068927a33d
[ "Apache-2.0" ]
null
null
null
distributed_dp/dme_utils.py
AbdulmoneamAli/federated
c54a9f5053d6316f81aa6f6d1eba61068927a33d
[ "Apache-2.0" ]
null
null
null
# Copyright 2021, Google LLC. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for distributed mean estimation.""" import numpy as np import tensorflow as tf from distributed_dp.modular_clipping_factory import modular_clip_by_value def generate_client_data(d, n, l2_norm=1): """Sample `n` of `d`-dim vectors on the l2 ball with radius `l2_norm`. Args: d: The dimension of the client vector. n: The number of clients. l2_norm: The L2 norm of the sampled vector. Returns: A list of `n` np.array each with shape (d,). """ vectors = np.random.normal(size=(n, d)) unit_vectors = vectors / np.linalg.norm(vectors, axis=-1, keepdims=True) scaled_vectors = unit_vectors * l2_norm # Cast to float32 as TF implementations use float32. return list(scaled_vectors.astype(np.float32)) def compute_dp_average(client_data, dp_query, is_compressed, bits): """Aggregate client data with DPQuery's interface and take average.""" global_state = dp_query.initial_global_state() sample_params = dp_query.derive_sample_params(global_state) client_template = tf.zeros_like(client_data[0]) sample_state = dp_query.initial_sample_state(client_template) if is_compressed: # Achieve compression via modular clipping. Upper bound is exclusive. clip_lo, clip_hi = -(2**(bits - 1)), 2**(bits - 1) # 1. Client pre-processing stage. for x in client_data: record = tf.convert_to_tensor(x) prep_record = dp_query.preprocess_record(sample_params, record) # Client applies modular clip on the preprocessed record. prep_record = modular_clip_by_value(prep_record, clip_lo, clip_hi) sample_state = dp_query.accumulate_preprocessed_record( sample_state, prep_record) # 2. Server applies modular clip on the aggregate. sample_state = modular_clip_by_value(sample_state, clip_lo, clip_hi) else: for x in client_data: record = tf.convert_to_tensor(x) sample_state = dp_query.accumulate_record( sample_params, sample_state, record=record) # Apply server post-processing. agg_result, _ = dp_query.get_noised_result(sample_state, global_state) # The agg_result should have the same input type as client_data. assert agg_result.shape == client_data[0].shape assert agg_result.dtype == client_data[0].dtype # Take the average on the aggregate. return agg_result / len(client_data)
37.088608
74
0.743686
c353c983370f88cd2d93c3297aa089ed064600b5
1,421
py
Python
specpogoda.py
SpecPogoda/PrzewidywaniePogody
6216da176d618e538bfbc8008e35ebdfd1d48713
[ "MIT" ]
null
null
null
specpogoda.py
SpecPogoda/PrzewidywaniePogody
6216da176d618e538bfbc8008e35ebdfd1d48713
[ "MIT" ]
null
null
null
specpogoda.py
SpecPogoda/PrzewidywaniePogody
6216da176d618e538bfbc8008e35ebdfd1d48713
[ "MIT" ]
null
null
null
""" https://colab.research.google.com/drive/1-OdCF3H_XB6XPItV68Lzy1I8fyTzzSz8 """ import tensorflow_probability as tfp import tensorflow as tf import numpy as np weather = [18.3, 21., 13.6, 9.8, 13.5, 12.99, 16., 16.5, 14.3] weatherMean = np.mean(weather) warmDay= [] coldDay= [] for i in weather: if i >= weatherMean: warmDay.append(i) else: coldDay.append(i) wMean = np.mean(warmDay) cMean = np.mean(coldDay) wStanDev = np.std(warmDay) cStanDev = np.std(coldDay) wMean = np.float32(wMean) cMean = np.float32(cMean) wStanDev = np.float32(wStanDev) cStanDev = np.float32(cStanDev) tfd = tfp.distributions if weather[len(weather)-1]>=wMean: initial_distribution = tfd.Categorical(probs = [.2, .8]) else: initial_distribution = tfd.Categorical(probs = [.8, .2]) transition_distribution = tfd.Categorical(probs = [[.7, .3], # zmiana po dniu zimnym [.2,.8]]) # po dniu ciepłym observation_distribution = tfd.Normal(loc = [cMean, wMean], scale = [cStanDev, wStanDev]) model = tfd.HiddenMarkovModel( initial_distribution=initial_distribution, transition_distribution=transition_distribution, observation_distribution=observation_distribution, num_steps=3) mean = model.mean() with tf.compat.v1.Session() as session: print(mean.numpy())
27.862745
90
0.65095
f5fed3179bdec8fafbc8257b6f1de1bfd46c5fbb
383
py
Python
ws/Demos/Demo008_PolicyGradient_PPO_Discrete/lunarlander/test.py
dattaray-basab/RLGames
b12263fe7a4a246be02fc20ed20cfb9fda40d29b
[ "MIT" ]
null
null
null
ws/Demos/Demo008_PolicyGradient_PPO_Discrete/lunarlander/test.py
dattaray-basab/RLGames
b12263fe7a4a246be02fc20ed20cfb9fda40d29b
[ "MIT" ]
null
null
null
ws/Demos/Demo008_PolicyGradient_PPO_Discrete/lunarlander/test.py
dattaray-basab/RLGames
b12263fe7a4a246be02fc20ed20cfb9fda40d29b
[ "MIT" ]
null
null
null
from ws.RLUtils.setup.agent_dispatcher import agent_dispatcher def fn_execute(): agent_mgr = agent_dispatcher(__file__) agent_mgr. \ fn_change_args( { 'TEST_MODE': True, } ). \ fn_run_train() return agent_mgr.APP_INFO.ERROR_MESSAGE_ if __name__ == "__main__": print(fn_execute())
20.157895
63
0.574413
8a71fed39007646ad139ad820b48c198051a41fb
37,473
py
Python
pantulipy/core.py
virtualfunction/pantulipy
e4f5008dfc0b72a0a30154d74e934359ca0bb60d
[ "Unlicense" ]
13
2018-06-07T19:19:10.000Z
2021-12-19T22:26:49.000Z
pantulipy/core.py
kodiakcrypto/pantulipy
cceb042bc5725a1b1cb9c7245bedf06ca0238964
[ "Unlicense" ]
2
2018-11-15T07:38:41.000Z
2020-04-12T00:20:47.000Z
pantulipy/core.py
kodiakcrypto/pantulipy
cceb042bc5725a1b1cb9c7245bedf06ca0238964
[ "Unlicense" ]
7
2018-09-11T00:34:08.000Z
2021-06-05T08:47:35.000Z
# -*- coding:utf-8 -*- import inspect as insp import numpy as np import pandas as pd import tulipy _OHLCV = ['open', 'high', 'low', 'close', 'volume'] _FUNCS = sorted([f for f in dir(tulipy) if f[0].islower() and 'lib' not in f]) _FUNCTIONS_REFERENCES = {fn: n for n, fn in enumerate(_FUNCS)} # Added so you can loop through the rest by just inputting a dataframe # These don't have useful default params we can put in. _DEFAULTLESS_INDICATORS = ['decay', 'edecay', 'lag', 'volatility'] __all__ = ['ad', 'adosc', 'adx', 'adxr', 'ao', 'apo', 'aroon', 'aroonosc', 'atr', 'avgprice', 'bbands', 'bop', 'cci', 'cmo', 'crossany', 'crossover', 'cvi', 'decay', 'dema', 'di', 'dm', 'dpo', 'dx', 'edecay', 'ema', 'emv', 'fisher', 'fosc', 'hma', 'kama', 'kvo', 'lag', 'linreg', 'linregintercept', 'linregslope', 'macd', 'marketfi', 'mass', 'md', 'mfi', 'mom', 'msw', 'natr', 'nvi', 'obv', 'ppo', 'psar', 'pvi', 'qstick', 'roc', 'rocr', 'rsi', 'sma', 'stderr', 'stoch', 'tema', 'tr', 'trima', 'trix', 'tsf', 'typprice', 'ultosc', 'vhf', 'vidya', 'volatility', 'vosc', 'vwma', 'wad', 'wcprice', 'wilders', 'willr', 'wma', 'zlema'] _fx_column_names = { 'DI': ['PLUS', 'MINUS'], 'DM': ['PLUS', 'MINUS'], 'MSW': ['SINE', 'LEAD'], 'AROON': ['DOWN', 'UP'], 'BBANDS': ['LOWER', 'MIDDLE', 'UPPER'], 'FISHER': ['LINE', 'SIGNAL'], 'MACD': ['LINE', 'SIGNAL', 'HISTOGRAM'], 'STOCH': ['LINE', 'MA'] } def _get_ohlcv_arrays(fn, ohlc): sign = list(insp.signature(fn).parameters.keys()) params = ['close' if 'real' in p else p for p in sign if p in _OHLCV or 'real' in p] if isinstance(ohlc, pd.Series): assert len(params) == 1, \ ('{} requires pd.DataFrame with columns {}, not pd.Series' .format(fn.__name__, params)) return np.asarray([ohlc.values]) else: return ohlc[params].T.values def _tup(fn, ohlc, *args, **kwargs): """ Calculate any function from "Tulipy" library from a OHLC Pandas DataFrame. :param function fn: the "Tulipy" function to call :param pd.DataFrame ohlc: a Pandas DataFrame type with open, high, low, close and or volume columns. :param args: function positional params. :param kwargs: function key pair params. :return pd.Series: a Pandas Series with data result. """ fn_params = list(args) + list(kwargs.values()) fn_name = fn.__name__.upper() data = fn(*_get_ohlcv_arrays(fn, ohlc), *fn_params) if data is not None: if type(data) == tuple: data_tmp = pd.DataFrame() i = 0 for arr in data: num_rows = len(ohlc) - len(arr) result = list((np.nan,) * num_rows) + arr.tolist() suffix = _fx_column_names[fn_name][i] if fn_name in _fx_column_names.keys() else i data_tmp = pd.concat([ data_tmp, pd.Series(result, index=ohlc.index, name=f'{fn_name.lower()}_{suffix.lower()}').bfill() ], axis=1) i += 1 data = data_tmp.copy() else: num_rows = len(ohlc) - len(data) result = list((np.nan,) * num_rows) + data.tolist() data = pd.Series(result, index=ohlc.index, name=fn_name.lower()).bfill() return data def ad(data): """ Accumulation/Distribution Line. https://tulipindicators.org/ad :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'ad'), data) def adosc(data, short_period=3, long_period=10): """ Accumulation/Distribution Oscillator: The Accumulation/Distribution Oscillator is also known as the Chaikin Oscillator, after its inventor. https://tulipindicators.org/adosc :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param long_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'adosc'), data, short_period, long_period) def adx(data, period=14): """ Average Directional Movement Index. :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'adx'), data, period) def adxr(data, period=14): """ Average Directional Movement Rating. https://tulipindicators.org/adxr :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'adxr'), data, period) def ao(data): """ Awesome Oscillator. https://tulipindicators.org/ao :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'ao'), data) def apo(data, short_period=20, long_period=26): """ Absolute Price Oscillator. https://tulipindicators.org/apo :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param long_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'apo'), data, short_period, long_period) def aroon(data, period=14): """ Aroon. https://tulipindicators.org/aroon :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'aroon'), data, period) def aroonosc(data, period=14): """ Aroon Oscillator. https://tulipindicators.org/aroonosc :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'aroonosc'), data, period) def atr(data, period=14): """ Average True Range: Average True Range is a measure of volatility. It represents roughly how much you can expect a security to change in price on any given day. It is often used in position sizing formulas. Average true range is calculated by applying Wilders Smoothing to True Range. True range for each day is the greatest of: Day's high minus day's low The absolute value of the day's high minus the previous day's close The absolute value of the day's low minus the previous day's close https://tulipindicators.org/atr :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'atr'), data, period) def avgprice(data): """ Average Price: The average price indicator calculates the mean of the open, high, low, and close of a bar. https://tulipindicators.org/avgprice :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'avgprice'), data) def bbands(data, period=20, stddev=2): """ Bollinger Bands: The Bollinger Bands indicator calculates three results. A middle band, which is a Simple Moving Average Also an upper and lower band, which are spaced off the middle band and calculated using standard deviations. https://tulipindicators.org/bbands :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :param stddev: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'bbands'), data, period, stddev) def bop(data): """ Balance Of Power: Balance of Power compares the strength of buyers and sellers. https://tulipindicators.org/bop :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'bop'), data) def cci(data, period=20): """ Commodity Channel Index. :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'cci'), data, period) def cmo(data, period=14): """ Chande Momentum Oscillator: The Commodity Channel Index indicator is used to detect trends. It works by taking a Simple Moving Average of the Typical Price and comparing it to the amount of volatility in Typical Price. https://tulipindicators.org/cci :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'cmo'), data, period) def crossany(data): """ Crossany: Crossany is a simple function that indicates when two input arrays cross each other. When given two inputs, A and B, cross returns 1 for the periods that A crosses above B. https://tulipindicators.org/crossany :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'crossany'), data) def crossover(data): """ Crossover: Crossover is a simple function that indicates when two input arrays crossover each other. When given two inputs, A and B, cross returns 1 for the periods that A crosses above B. https://tulipindicators.org/crossover :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'crossover'), data) def cvi(data, period=14): """ Chaikin's Volatility: Chaikins Volatility quantifies volatility by comparing the high and low prices. It uses the period but also passes it into the EMA it uses. https://tulipindicators.org/cvi :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'cvi'), data, period) def decay(data, period): """ Linear Decay: Decay is a simple function used to propagate signals from the past into the future. It is useful in conjunction with algorithm trading and machine learning functions. https://tulipindicators.org/decay :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'decay'), data, period) def dema(data, period=50): """ Double Exponential Moving Average. https://tulipindicators.org/dema :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'dema'), data, period) def di(data, period=14): """ Directional Indicator. https://tulipindicators.org/di :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'di'), data, period) def dm(data, period=14): """ Directional Movement. https://tulipindicators.org/dm :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'dm'), data, period) def dpo(data, period=100): """ Detrended Price Oscillator. https://tulipindicators.org/dpo :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'dpo'), data, period) def dx(data, period=14): """ Directional Movement Index. https://tulipindicators.org/dx :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'dx'), data, period) def edecay(data, period): """ Exponential Decay. https://tulipindicators.org/edecay :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'edecay'), data, period) def ema(data, period=100): """ Exponential Moving Average. https://tulipindicators.org/ema :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'ema'), data, period) def emv(data): """ Ease Of Movement. https://tulipindicators.org/emv :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'emv'), data) def fisher(data, period=10): """ Fisher Transform. https://tulipindicators.org/fisher :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'fisher'), data, period) def fosc(data, period=14): """ Forecast Oscillator. https://tulipindicators.org/fosc :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'fosc'), data, period) def hma(data, period=200): """ Hull Moving Average. https://tulipindicators.org/hma :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'hma'), data, period) def kama(data, period=10): """ Kaufman Adaptive Moving Average. https://tulipindicators.org/kama :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'kama'), data, period) def kvo(data, short_period=34, long_period=55): """ Klinger Volume Oscillator. https://tulipindicators.org/kvo :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param long_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'kvo'), data, short_period, long_period) def lag(data, period): """ Lag. https://tulipindicators.org/lag :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'lag'), data, period) def linreg(data, period=50): """ Linear Regression. https://tulipindicators.org/linreg :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'linreg'), data, period) def linregintercept(data, period=10): """ Linear Regression Intercept. https://tulipindicators.org/linregintercept :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'linregintercept'), data, period) def linregslope(data, period=50): """ Linear Regression Slope. https://tulipindicators.org/linregslope :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'linregslope'), data, period) def macd(data, short_period=12, long_period=26, signal_period=9): """ Moving Average Convergence/Divergence. https://tulipindicators.org/macd :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param long_period: TODO :param signal_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'macd'), data, short_period, long_period, signal_period) def marketfi(data): """ Market Facilitation Index. https://tulipindicators.org/marketfi :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'marketfi'), data) def mass(data, period=25): """ Mass Index. https://tulipindicators.org/mass :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'mass'), data, period) def md(data, period=14): """ Mean Deviation Over Period. https://tulipindicators.org/md :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'md'), data, period) def mfi(data, period=14): """ Money Flow Index. https://tulipindicators.org/mfi :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'mfi'), data, period) def mom(data, period=9): """ Momentum. https://tulipindicators.org/mom :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'mom'), data, period) def msw(data, period=25): """ Mesa Sine Wave. https://tulipindicators.org/msw :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'msw'), data, period) def natr(data, period=14): """ Normalized Average True Range. https://tulipindicators.org/natr :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'natr'), data, period) def nvi(data): """ Negative Volume Index: tries to show what smart investors are doing by staying flat on up-volume days and only changing on down-volume days. https://tulipindicators.org/nvi :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'nvi'), data) def obv(data): """ On Balance Volume. https://tulipindicators.org/obv :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'obv'), data) def ppo(data, short_period=12, long_period=26): """ Percentage Price Oscillator. https://tulipindicators.org/ppo :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param long_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'ppo'), data, short_period, long_period) def psar(data, acceleration_factor_step=0.02, acceleration_factor_maximum=0.21): """ Parabolic Sar: lower factor_step = less sensitive SAR lower factor_maximum = less sensitivity https://school.stockcharts.com/doku.php?id=technical_indicators:parabolic_sar https://tulipindicators.org/psar :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param acceleration_factor_step: TODO :param acceleration_factor_maximum: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'psar'), data, acceleration_factor_step, acceleration_factor_maximum) def pvi(data): """ Positive Volume Index: Positive Volume Index is very similar to Negative Volume Index, but changes on volume-up days instead. https://tulipindicators.org/pvi :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'pvi'), data) def qstick(data, period=200): """ Qstick: Qstick can be used to quantify the ratio of recent up-bars to down-bars https://tulipindicators.org/qstick :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'qstick'), data, period) def roc(data, period=9): """ Rate Of Change: The Rate of Change indicator calculates the change between the current price and the price n bars ago. https://tulipindicators.org/roc :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'roc'), data, period) def rocr(data, period=9): """ Rate Of Change Ratio: The Rate of Change Ratio indicator calculates the change between the current price and the price n bars ago https://tulipindicators.org/rocr :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'rocr'), data, period) def rsi(data, period=14): """ Relative Strength Index. https://tulipindicators.org/rsi :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'rsi'), data, period) def sma(data, period=200): """ Simple Moving Average. https://tulipindicators.org/sma :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'sma'), data, period) def stderr(data, period=50): """ Standard Error Over Period. Standard Error, for a specified period, measures how far prices have deviated from a Linear Regression Line for the same period. ... If all the closing prices equaled the corresponding values of the Linear Regression Line, Standard Error would be zero. https://tulipindicators.org/stderr :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'stderr'), data, period) def stoch(data, pct_k_period=14, pct_k_slowing_period=3, pct_d_period=3): """ Stochastic Oscillator. https://tulipindicators.org/stoch :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param %k_period: TODO :param %k_slowing_period: TODO :param %d_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'stoch'), data, pct_k_period, pct_k_slowing_period, pct_d_period) def tema(data, period=200): """ Triple Exponential Moving Average. https://tulipindicators.org/tema :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'tema'), data, period) def tr(data): """ True Range. https://tulipindicators.org/tr :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'tr'), data) def trima(data, period=100): """ Triangular Moving Average: The Triangular Moving Average is similar to the Simple Moving Average but instead places more weight on middle portion of the smoothing period and less weight on the newest and oldest bars in the period. It takes one parameter, the period n. Larger values for n will have a greater smoothing effect on the input data. https://tulipindicators.org/trima :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'trima'), data, period) def trix(data, period=14): """ Trix. https://tulipindicators.org/trix :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'trix'), data, period) def tsf(data, period=10): """ Time Series Forecast. https://tulipindicators.org/tsf :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'tsf'), data, period) def typprice(data): """ Typical Price. https://tulipindicators.org/typprice :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'typprice'), data) def ultosc(data, short_period=7, medium_period=14, long_period=28): """ Ultimate Oscillator. https://tulipindicators.org/ultosc :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param medium_period: TODO :param long_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'ultosc'), data, short_period, medium_period, long_period) def vhf(data, period=50): """ Vertical Horizontal Filter: Vertical Horizontal Filter (VHF) is a trending and ranging indicator authored by Adam White. The VHF uses the highest close minus the lowest close divided by the sum of the absolute value of the difference of the highest and lowest over a user defined time period. https://tulipindicators.org/vhf :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'vhf'), data, period) def vidya(data, short_period=14, long_period=34, alpha=0.2): """ Variable Index Dynamic Average: The Variable Index Dynamic Average indicator modifies the Exponential Moving Average by varying the smoothness based on recent volatility. https://tulipindicators.org/vidya :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param long_period: TODO :param alpha: Smoothing factor :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'vidya'), data, short_period, long_period, alpha) def volatility(data, period): """ Annualized Historical Volatility: The Annualized Historical Volatility indicator calculates the volatility over a moving window. https://tulipindicators.org/volatility :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'volatility'), data, period) def vosc(data, short_period=14, long_period=28): """ Volume Oscillator. https://tulipindicators.org/vosc :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param short_period: TODO :param long_period: TODO :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'vosc'), data, short_period, long_period) def vwma(data, period=100): """ Volume Weighted Moving Average: The Volume Weighted Moving Average is similar to a Simple Moving Average, but it weights each bar by its volume. https://tulipindicators.org/vwma :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'vwma'), data, period) def wad(data): """ Williams Accumulation/Distribution. https://tulipindicators.org/wad :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'wad'), data) def wcprice(data): """ Weighted Close Price. https://tulipindicators.org/wcprice :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'wcprice'), data) def wilders(data, period=50): """ Wilders Smoothing: Larger values for period will have a greater smoothing effect on the input data but will also create more lag. https://tulipindicators.org/wilders :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'wilders'), data, period) def willr(data, period=14): """ Williams %R. https://tulipindicators.org/willr :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'willr'), data, period) def wma(data, period=50): """ Weighted Moving Average: The Weighted Moving Average is similar to the Simple Moving Average but instead places more weight on more recent bars in the smoothing period and less weight on the oldest bars in the period. It takes one parameter, the period. Larger values for period will have a greater smoothing effect on the input data. It is calculated for each bar as the weighted arithmetic mean of the previous n bars. For example, the weights for an n of 4 are: 4, 3, 2, 1. The weights w for a n of 7 are: 7, 6, 5, 4, 3, 2, 1. So in that example, the most recent bar influences the average 7 times as much as the oldest bar. https://tulipindicators.org/wma :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'wma'), data, period) def zlema(data, period=200): """ Zero-Lag Exponential Moving Average. https://tulipindicators.org/zlema :param pd.DataFrame data: a DataFrame instance with data columns (open, high, low, close, volume). :param int period: number of period used for indicators calcs. :return pd.Series: indicator results as pandas Series instance. """ return _tup(getattr(tulipy, 'zlema'), data, period)
36.594727
194
0.679102
c65c6f27288f5250bd86d83e8c00b5883d180a0b
12,211
py
Python
experiments/lidc/train_classification.py
xiaosayin/RibFrac_npz_version
f094d60421c0609558799e24949840e233543415
[ "Apache-2.0" ]
null
null
null
experiments/lidc/train_classification.py
xiaosayin/RibFrac_npz_version
f094d60421c0609558799e24949840e233543415
[ "Apache-2.0" ]
null
null
null
experiments/lidc/train_classification.py
xiaosayin/RibFrac_npz_version
f094d60421c0609558799e24949840e233543415
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 import _init_paths import fire import time import sys import pandas as pd import os import shutil import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torchvision import torch.nn.functional as F from tqdm import tqdm from collections import OrderedDict from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from sklearn.metrics import roc_auc_score,confusion_matrix from mylib.sync_batchnorm import DataParallelWithCallback from lidc_dataset import LIDCTwoClassDataset from mylib.utils import MultiAverageMeter, save_model, log_results, to_var, set_seed, \ to_device, initialize, categorical_to_one_hot, copy_file_backup, redirect_stdout, \ model_to_syncbn from lidc_config import LIDCClassConfig as cfg from lidc_config import LIDCEnv as env from resnet import ClsResNet from densenet import ClsDenseNet from vgg import ClsVGG from acsconv.converters import ACSConverter, Conv3dConverter, Conv2_5dConverter from load_pretrained_weights_funcs import load_mednet_pretrained_weights, load_video_pretrained_weights def main(save_path=cfg.save, n_epochs= cfg.n_epochs, seed=cfg.seed ): # set seed if seed is not None: set_seed(cfg.seed) cudnn.benchmark = True # back up your code os.makedirs(save_path) copy_file_backup(save_path) redirect_stdout(save_path) confusion_path = os.path.join(sys.path[0], 'tmp', 'confusion_matrix') if os.path.exists(confusion_path): shutil.rmtree(confusion_path) os.makedirs(confusion_path) # 保存confusion matrix # Datasets crop_size down train_set = LIDCTwoClassDataset(crop_size=50, move=5, data_path=env.data, train=True) valid_set = None test_set = LIDCTwoClassDataset(crop_size=50, move=5, data_path=env.data, train=False) # Define model model_dict = {'resnet18': ClsResNet, 'vgg16': ClsVGG, 'densenet121': ClsDenseNet} model = model_dict[cfg.backbone](pretrained=cfg.pretrained, num_classes=4, backbone=cfg.backbone) # convert to counterparts and load pretrained weights according to various convolution if cfg.conv=='ACSConv': model = model_to_syncbn(ACSConverter(model)) if cfg.conv=='Conv2_5d': model = model_to_syncbn(Conv2_5dConverter(model)) if cfg.conv=='Conv3d': if cfg.pretrained_3d == 'i3d': model = model_to_syncbn(Conv3dConverter(model, i3d_repeat_axis=-3)) else: model = model_to_syncbn(Conv3dConverter(model, i3d_repeat_axis=None)) if cfg.pretrained_3d == 'video': model = load_video_pretrained_weights(model, env.video_resnet18_pretrain_path) elif cfg.pretrained_3d == 'mednet': model = load_mednet_pretrained_weights(model, env.mednet_resnet18_pretrain_path) print(model) torch.save(model.state_dict(), os.path.join(save_path, 'model.dat')) # train and test the model train(model=model, train_set=train_set, valid_set=valid_set, test_set=test_set, save=save_path, n_epochs=n_epochs) print('Done!') def train(model, train_set, test_set, save, valid_set, n_epochs): ''' Main training function ''' # Dataloaders train_loader = DataLoader(train_set, batch_size=cfg.batch_size, shuffle=True, pin_memory=(torch.cuda.is_available()), num_workers=cfg.num_workers) test_loader = DataLoader(test_set, batch_size=cfg.batch_size, shuffle=False, pin_memory=(torch.cuda.is_available()), num_workers=cfg.num_workers) if valid_set is None: valid_loader = None else: valid_loader = DataLoader(valid_set, batch_size=cfg.batch_size, shuffle=False, pin_memory=(torch.cuda.is_available()), num_workers=cfg.num_workers) # Model on cuda model = to_device(model) # Wrap model for multi-GPUs, if necessary model_wrapper = model if torch.cuda.is_available() and torch.cuda.device_count() > 1: if cfg.use_syncbn: print('Using sync-bn') model_wrapper = DataParallelWithCallback(model).cuda() else: model_wrapper = torch.nn.DataParallel(model).cuda() # optimizer and scheduler optimizer = torch.optim.Adam(model_wrapper.parameters(), lr=cfg.lr) scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,max_lr=cfg.max_lr, epochs=cfg.n_epochs,steps_per_epoch = cfg.batch_size)# steps_per_epoch = len(train_loader # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.milestones, # gamma=cfg.gamma) # Start logging logs = ['loss', 'acc', 'acc0', 'acc1','acc2','acc3'] train_logs = ['train_'+log for log in logs] test_logs = ['test_'+log for log in logs]+['test_auc',] log_dict = OrderedDict.fromkeys(train_logs+test_logs, 0) with open(os.path.join(save, 'logs.csv'), 'w') as f: f.write('epoch,') for key in log_dict.keys(): f.write(key+',') f.write('\n') with open(os.path.join(save, 'loss_logs.csv'), 'w') as f: f.write('iter,train_loss,\n') writer = SummaryWriter(log_dir=os.path.join(save, 'Tensorboard_Results')) # train and test the model best_auc = 0 global iteration iteration = 0 for epoch in range(n_epochs): os.makedirs(os.path.join(cfg.save, 'epoch_{}'.format(epoch))) print('learning rate: ', scheduler.get_lr()) # train epoch train_meters = train_epoch( model=model_wrapper, loader=train_loader, optimizer=optimizer, epoch=epoch, n_epochs=n_epochs, writer=writer ) # test epoch test_meters = test_epoch( model=model_wrapper, loader=test_loader, epoch=epoch, is_test=True, writer = writer ) scheduler.step() # Log results for i, key in enumerate(train_logs): log_dict[key] = train_meters[i] for i, key in enumerate(test_logs): log_dict[key] = test_meters[i] if len(test_meters) > len(test_logs): log_dict['test_auc'] = test_meters[-1] log_results(save, epoch, log_dict, writer=writer) # save model checkpoint if cfg.save_all: torch.save(model.state_dict(), os.path.join(save, 'epoch_{}'.format(epoch)+'model.dat')) if log_dict['test_auc'] > best_auc: torch.save(model.state_dict(), os.path.join(save,'epoch_{}'.format(epoch), 'model.dat')) best_auc = log_dict['test_auc'] print('New best auc: %.4f' % log_dict['test_auc']) else: print('Current best auc: %.4f' % best_auc) # end writer.close() with open(os.path.join(save, 'logs.csv'), 'a') as f: f.write(',,,,best auc,%0.5f\n' % (best_auc)) print('best auc: ', best_auc) def train_epoch(model, loader, optimizer, epoch, n_epochs, print_freq=1, writer=None): ''' One training epoch ''' meters = MultiAverageMeter() # Model on train mode model.train() global iteration end = time.time() pred_all_class_train = [] gt_classes_train = [] for batch_idx, (x, y) in enumerate(loader): # Create vaiables x = to_var(x) y = to_var(y) # forward and backward pred_logits = model(x) loss = F.cross_entropy(pred_logits, y) optimizer.zero_grad() loss.backward() optimizer.step() # calculate metrics pred_class = pred_logits.max(-1)[1] gt_classes_train.append(y.cpu()) pred_all_class_train.append(pred_class.cpu()) batch_size = y.size(0) num_classes = pred_logits.size(1) same = pred_class==y acc = same.sum().item() / batch_size accs = torch.zeros(num_classes) for num_class in range(num_classes): accs[num_class] = (same * (y==num_class)).sum().item() / ((y==num_class).sum().item()+1e-6) # log writer.add_scalar('train_loss_logs', loss.item(), iteration) with open(os.path.join(cfg.save, 'loss_logs.csv'), 'a') as f: f.write('%09d,%0.6f,\n'%((iteration + 1),loss.item(),)) iteration += 1 logs = [loss.item(), acc]+ \ [accs[i].item() for i in range(len(accs))]+ \ [time.time() - end] meters.update(logs, batch_size) end = time.time() # print stats print_freq = 2 // meters.val[-1] + 1 if batch_idx % print_freq == 0: res = '\t'.join([ 'Epoch: [%d/%d]' % (epoch + 1, n_epochs), 'Iter: [%d/%d]' % (batch_idx + 1, len(loader)), 'Time %.3f (%.3f)' % (meters.val[-1], meters.avg[-1]), 'Loss %.4f (%.4f)' % (meters.val[0], meters.avg[0]), 'ACC %.4f (%.4f)' % (meters.val[1], meters.avg[1]), ]) print(res) gt_classes_train = torch.cat(gt_classes_train, 0).numpy() # ground truth pred_all_class_train = torch.cat(pred_all_class_train, 0).numpy() # 预测结果 epoch_dataframe_train = pd.DataFrame([gt_classes_train, pred_all_class_train],index=['gt_classes', 'pred_all_class']).T # 将gt_classes和pred_all_class epoch_dataframe_train.to_csv(os.path.join(sys.path[0], 'tmp', 'confusion_matrix', 'train_'+'epoch_{}_'.format(epoch) + 'confusion_matrix.csv')) return meters.avg[:-1] def test_epoch(model, loader, epoch, print_freq=1, is_test=True, writer=None): ''' One test epoch ''' meters = MultiAverageMeter() # Model on eval mode model.eval() gt_classes = [] pred_all_probs = [] pred_all_class = [] end = time.time() with torch.no_grad(): for batch_idx, (x, y) in enumerate(loader): x = to_var(x) y = to_var(y) # forward pred_logits = model(x) loss = F.cross_entropy(pred_logits, y) # calculate metrics pred_class = pred_logits.max(-1)[1] pred_probs = pred_logits.softmax(-1) pred_all_probs.append(pred_probs.cpu()) pred_all_class.append(pred_class.cpu()) gt_classes.append(y.cpu()) batch_size = y.size(0) num_classes = pred_logits.size(1) same = pred_class==y acc = same.sum().item() / batch_size accs = torch.zeros(num_classes) for num_class in range(num_classes): accs[num_class] = (same * (y==num_class)).sum().item() / ((y==num_class).sum().item()+ 1e-6) logs = [loss.item(), acc]+ \ [accs[i].item() for i in range(len(accs))]+ \ [time.time() - end] meters.update(logs, batch_size) end = time.time() print_freq = 2 // meters.val[-1] + 1 if batch_idx % print_freq == 0: res = '\t'.join([ 'Test' if is_test else 'Valid', 'Iter: [%d/%d]' % (batch_idx + 1, len(loader)), 'Time %.3f (%.3f)' % (meters.val[-1], meters.avg[-1]), 'Loss %.4f (%.4f)' % (meters.val[0], meters.avg[0]), 'ACC %.4f (%.4f)' % (meters.val[1], meters.avg[1]), ]) print(res) gt_classes = torch.cat(gt_classes, 0).numpy() # ground truth pred_all_class = torch.cat(pred_all_class,0).numpy() # 预测结果 pred_all_probs = torch.cat(pred_all_probs, 0).numpy() # 多分类的score epoch_dataframe = pd.DataFrame([gt_classes,pred_all_class],index = ['gt_classes','pred_all_class']).T # 将gt_classes和pred_all_class epoch_dataframe.to_csv(os.path.join(sys.path[0], 'tmp', 'confusion_matrix', 'epoch_{}_'.format(epoch) + 'confusion_matrix.csv')) auc = roc_auc_score(gt_classes, pred_all_probs,average = 'macro', multi_class = 'ovo') print('auc:', auc) return meters.avg[:-1]+[auc,] if __name__ == '__main__': fire.Fire(main)
39.263666
170
0.614692
48abafd7357e824d6afec6c2f307895ec7ac750d
41
py
Python
neuralnet/__init__.py
forumulator/BTP
34af5c349f658480549aaeb3a3c24f672fff2c96
[ "MIT" ]
null
null
null
neuralnet/__init__.py
forumulator/BTP
34af5c349f658480549aaeb3a3c24f672fff2c96
[ "MIT" ]
null
null
null
neuralnet/__init__.py
forumulator/BTP
34af5c349f658480549aaeb3a3c24f672fff2c96
[ "MIT" ]
null
null
null
from neuralnet.run import NeuralNetRunner
41
41
0.902439
6878a5c5b5c2aadc39a734c589fca850df2fa056
3,884
py
Python
venv/Lib/site-packages/botocore/__init__.py
ishatserka/MachineLearningAndDataAnalysisCoursera
e82e772df2f4aec162cb34ac6127df10d14a625a
[ "MIT" ]
null
null
null
venv/Lib/site-packages/botocore/__init__.py
ishatserka/MachineLearningAndDataAnalysisCoursera
e82e772df2f4aec162cb34ac6127df10d14a625a
[ "MIT" ]
null
null
null
venv/Lib/site-packages/botocore/__init__.py
ishatserka/MachineLearningAndDataAnalysisCoursera
e82e772df2f4aec162cb34ac6127df10d14a625a
[ "MIT" ]
null
null
null
# Copyright (c) 2012-2013 Mitch Garnaat http://garnaat.org/ # Copyright 2012-2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import os import re import logging __version__ = '1.9.11' class NullHandler(logging.Handler): def emit(self, record): pass # Configure default logger to do nothing log = logging.getLogger('botocore') log.addHandler(NullHandler()) _first_cap_regex = re.compile('(.)([A-Z][a-z]+)') _number_cap_regex = re.compile('([a-z])([0-9]+)') _end_cap_regex = re.compile('([a-z0-9])([A-Z])') # The regex below handles the special case where some acryonym # name is pluralized, e.g GatewayARNs, ListWebACLs, SomeCNAMEs. _special_case_transform = re.compile('[A-Z]{3,}s$') # Prepopulate the cache with special cases that don't match # our regular transformation. _xform_cache = { ('CreateCachediSCSIVolume', '_'): 'create_cached_iscsi_volume', ('CreateCachediSCSIVolume', '-'): 'create-cached-iscsi-volume', ('DescribeCachediSCSIVolumes', '_'): 'describe_cached_iscsi_volumes', ('DescribeCachediSCSIVolumes', '-'): 'describe-cached-iscsi-volumes', ('DescribeStorediSCSIVolumes', '_'): 'describe_stored_iscsi_volumes', ('DescribeStorediSCSIVolumes', '-'): 'describe-stored-iscsi-volumes', ('CreateStorediSCSIVolume', '_'): 'create_stored_iscsi_volume', ('CreateStorediSCSIVolume', '-'): 'create-stored-iscsi-volume', ('ListHITsForQualificationType', '_'): 'list_hits_for_qualification_type', ('ListHITsForQualificationType', '-'): 'list-hits-for-qualification-type', } # The items in this dict represent partial renames to apply globally to all # services which might have a matching argument or operation. This way a # common mis-translation can be fixed without having to call out each # individual case. _partial_renames = { 'ipv-6': 'ipv6', 'ipv_6': 'ipv6', } ScalarTypes = ('string', 'integer', 'boolean', 'timestamp', 'float', 'double') BOTOCORE_ROOT = os.path.dirname(os.path.abspath(__file__)) # Used to specify anonymous (unsigned) request signature class UNSIGNED(object): def __copy__(self): return self def __deepcopy__(self, memodict): return self UNSIGNED = UNSIGNED() def xform_name(name, sep='_', _xform_cache=_xform_cache, partial_renames=_partial_renames): """Convert camel case to a "pythonic" name. If the name contains the ``sep`` character, then it is returned unchanged. """ if sep in name: # If the sep is in the name, assume that it's already # transformed and return the string unchanged. return name key = (name, sep) if key not in _xform_cache: if _special_case_transform.search(name) is not None: is_special = _special_case_transform.search(name) matched = is_special.group() # Replace something like ARNs, ACLs with _arns, _acls. name = name[:-len(matched)] + sep + matched.lower() s1 = _first_cap_regex.sub(r'\1' + sep + r'\2', name) s2 = _number_cap_regex.sub(r'\1' + sep + r'\2', s1) transformed = _end_cap_regex.sub(r'\1' + sep + r'\2', s2).lower() # Do partial renames for old, new in partial_renames.items(): if old in transformed: transformed = transformed.replace(old, new) _xform_cache[key] = transformed return _xform_cache[key]
36.990476
78
0.689753
5812cdee61d0f267c6852548a0469fb6db5453a5
1,047
py
Python
epsagon/modules/aiohttp.py
clericeon/epsagon-python
387b785708d5b6ac0e8a9f8562c52f56d0825cdf
[ "MIT" ]
null
null
null
epsagon/modules/aiohttp.py
clericeon/epsagon-python
387b785708d5b6ac0e8a9f8562c52f56d0825cdf
[ "MIT" ]
null
null
null
epsagon/modules/aiohttp.py
clericeon/epsagon-python
387b785708d5b6ac0e8a9f8562c52f56d0825cdf
[ "MIT" ]
null
null
null
""" aiohttp patcher module. """ from __future__ import absolute_import import wrapt from ..wrappers.aiohttp import AiohttpMiddleware from ..utils import print_debug, is_lambda_env def _wrapper(wrapped, _instance, args, kwargs): """ Adds `AiohttpMiddleware` into aiohttp app. :param wrapped: wrapt's wrapped :param _instance: wrapt's instance :param args: wrapt's args :param kwargs: wrapt's kwargs """ # Skip on Lambda environment since it's not relevant and might be duplicate if is_lambda_env(): return wrapped(*args, **kwargs) try: if 'middlewares' not in kwargs: kwargs['middlewares'] = [] kwargs['middlewares'].insert(0, AiohttpMiddleware) except Exception: # pylint: disable=broad-except print_debug('Could not add aiohttp wrapper') return wrapped(*args, **kwargs) def patch(): """ Patch module. :return: None """ wrapt.wrap_function_wrapper( 'aiohttp.web', 'Application.__init__', _wrapper )
24.348837
79
0.657116
c66e76825b6d77875c5b7190f29bae12d2c2b700
57
py
Python
chapter-04/exercise007.py
krastin/pp-cs3.0
502be9aac2d84215db176864e443c219e5e26591
[ "MIT" ]
null
null
null
chapter-04/exercise007.py
krastin/pp-cs3.0
502be9aac2d84215db176864e443c219e5e26591
[ "MIT" ]
null
null
null
chapter-04/exercise007.py
krastin/pp-cs3.0
502be9aac2d84215db176864e443c219e5e26591
[ "MIT" ]
null
null
null
num = float(input("Please enter a number: ")) print(num)
19
45
0.684211
3e54ff10c2538d495a80fa9e9a0bd496f0a63988
88,031
py
Python
env/lib/python3.8/site-packages/numpy/lib/npyio.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
1,738
2017-09-21T10:59:12.000Z
2022-03-31T21:05:46.000Z
env/lib/python3.8/site-packages/numpy/lib/npyio.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
427
2017-09-29T22:54:36.000Z
2022-02-15T19:26:50.000Z
env/lib/python3.8/site-packages/numpy/lib/npyio.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
671
2017-09-21T08:04:01.000Z
2022-03-29T14:30:07.000Z
from __future__ import division, absolute_import, print_function import sys import os import re import functools import itertools import warnings import weakref import contextlib from operator import itemgetter, index as opindex import numpy as np from . import format from ._datasource import DataSource from numpy.core import overrides from numpy.core.multiarray import packbits, unpackbits from numpy.core.overrides import set_module from numpy.core._internal import recursive from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _decode_line ) from numpy.compat import ( asbytes, asstr, asunicode, bytes, basestring, os_fspath, os_PathLike, pickle, contextlib_nullcontext ) if sys.version_info[0] >= 3: from collections.abc import Mapping else: from future_builtins import map from collections import Mapping @set_module('numpy') def loads(*args, **kwargs): # NumPy 1.15.0, 2017-12-10 warnings.warn( "np.loads is deprecated, use pickle.loads instead", DeprecationWarning, stacklevel=2) return pickle.loads(*args, **kwargs) __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return list(object.__getattribute__(self, '_obj').keys()) def zipfile_factory(file, *args, **kwargs): """ Create a ZipFile. Allows for Zip64, and the `file` argument can accept file, str, or pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile constructor. """ if not hasattr(file, 'read'): file = os_fspath(file) import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(file, *args, **kwargs) class NpzFile(Mapping): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: False .. versionchanged:: 1.16.3 Made default False in response to CVE-2019-6446. pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> _ = outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> sorted(npz.files) ['x', 'y'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=False, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() # Implement the Mapping ABC def __iter__(self): return iter(self.files) def __len__(self): return len(self.files) def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = False if key in self._files: member = True elif key in self.files: member = True key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) if sys.version_info.major == 3: # deprecate the python 2 dict apis that we supported by accident in # python 3. We forgot to implement itervalues() at all in earlier # versions of numpy, so no need to deprecated it here. def iteritems(self): # Numpy 1.15, 2018-02-20 warnings.warn( "NpzFile.iteritems is deprecated in python 3, to match the " "removal of dict.itertems. Use .items() instead.", DeprecationWarning, stacklevel=2) return self.items() def iterkeys(self): # Numpy 1.15, 2018-02-20 warnings.warn( "NpzFile.iterkeys is deprecated in python 3, to match the " "removal of dict.iterkeys. Use .keys() instead.", DeprecationWarning, stacklevel=2) return self.keys() @set_module('numpy') def load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. .. warning:: Loading files that contain object arrays uses the ``pickle`` module, which is not secure against erroneous or maliciously constructed data. Consider passing ``allow_pickle=False`` to load data that is known not to contain object arrays for the safer handling of untrusted sources. Parameters ---------- file : file-like object, string, or pathlib.Path The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: False .. versionchanged:: 1.16.3 Made default False in response to CVE-2019-6446. fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files in Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of NumPy arrays is loaded # in. Pickle does not pass on the encoding information to # NumPy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} # TODO: Use contextlib.ExitStack once we drop Python 2 if hasattr(file, 'read'): fid = file own_fid = False else: fid = open(os_fspath(file), "rb") own_fid = True try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = b'PK\x03\x04' _ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this N = len(format.MAGIC_PREFIX) magic = fid.read(N) # If the file size is less than N, we need to make sure not # to seek past the beginning of the file fid.seek(-min(N, len(magic)), 1) # back-up if magic.startswith(_ZIP_PREFIX) or magic.startswith(_ZIP_SUFFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) own_fid = False return ret elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("Cannot load file containing pickled data " "when allow_pickle=False") try: return pickle.load(fid, **pickle_kwargs) except Exception: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def _save_dispatcher(file, arr, allow_pickle=None, fix_imports=None): return (arr,) @array_function_dispatch(_save_dispatcher) def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file, str, or pathlib.Path File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string or Path, a ``.npy`` extension will be appended to the filename if it does not already have one. arr : array_like Array data to be saved. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. Any data saved to the file is appended to the end of the file. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> with open('test.npy', 'wb') as f: ... np.save(f, np.array([1, 2])) ... np.save(f, np.array([1, 3])) >>> with open('test.npy', 'rb') as f: ... a = np.load(f) ... b = np.load(f) >>> print(a, b) # [1 2] [1 3] """ own_fid = False if hasattr(file, 'write'): fid = file else: file = os_fspath(file) if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def _savez_dispatcher(file, *args, **kwds): for a in args: yield a for v in kwds.values(): yield v @array_function_dispatch(_savez_dispatcher) def savez(file, *args, **kwds): """Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the filename (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the filename if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. When saving dictionaries, the dictionary keys become filenames inside the ZIP archive. Therefore, keys should be valid filenames. E.g., avoid keys that begin with ``/`` or contain ``.``. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_0', 'arr_1'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> _ = outfile.seek(0) >>> npzfile = np.load(outfile) >>> sorted(npzfile.files) ['x', 'y'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def _savez_compressed_dispatcher(file, *args, **kwds): for a in args: yield a for v in kwds.values(): yield v @array_function_dispatch(_savez_compressed_dispatcher) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored filenames are arr_0, arr_1, etc. Parameters ---------- file : str or file Either the filename (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the filename if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- numpy.save : Save a single array to a binary file in NumPy format. numpy.savetxt : Save an array to a file as plain text. numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is compressed with ``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> test_array = np.random.rand(3, 2) >>> test_vector = np.random.rand(4) >>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector) >>> loaded = np.load('/tmp/123.npz') >>> print(np.array_equal(test_array, loaded['a'])) True >>> print(np.array_equal(test_vector, loaded['b'])) True """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile if not hasattr(file, 'write'): file = os_fspath(file) if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) if sys.version_info >= (3, 6): # Since Python 3.6 it is possible to write directly to a ZIP file. for key, val in namedict.items(): fname = key + '.npy' val = np.asanyarray(val) # always force zip64, gh-10776 with zipf.open(fname, 'w', force_zip64=True) as fid: format.write_array(fid, val, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Stage arrays in a temporary file on disk, before writing to zip. # Import deferred for startup time improvement import tempfile # Since target file might be big enough to exceed capacity of a global # temporary directory, create temp file side-by-side with the target file. file_dir, file_prefix = os.path.split(file) if _is_string_like(file) else (None, 'tmp') fd, tmpfile = tempfile.mkstemp(prefix=file_prefix, dir=file_dir, suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) except IOError as exc: raise IOError("Failed to write to %s: %s" % (tmpfile, exc)) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if '0x' in x: return float.fromhex(x) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, complex): return lambda x: complex(asstr(x).replace('+-', '-')) elif issubclass(typ, np.bytes_): return asbytes elif issubclass(typ, np.unicode_): return asunicode else: return asstr # amount of lines loadtxt reads in one chunk, can be overridden for testing _loadtxt_chunksize = 50000 @set_module('numpy') def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes', max_rows=None): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file, str, or pathlib.Path File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence of str, optional The characters or list of characters used to indicate the start of a comment. None implies no comments. For backwards compatibility, byte strings will be decoded as 'latin1'. The default is '#'. delimiter : str, optional The string used to separate values. For backwards compatibility, byte strings will be decoded as 'latin1'. The default is whitespace. converters : dict, optional A dictionary mapping column number to a function that will parse the column string into the desired value. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines, including comments; default: 0. usecols : int or sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. .. versionchanged:: 1.11.0 When a single column has to be read it is possible to use an integer instead of a tuple. E.g ``usecols = 3`` reads the fourth column the same way as ``usecols = (3,)`` would. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 encoding : str, optional Encoding used to decode the inputfile. Does not apply to input streams. The special value 'bytes' enables backward compatibility workarounds that ensures you receive byte arrays as results if possible and passes 'latin1' encoded strings to converters. Override this value to receive unicode arrays and pass strings as input to converters. If set to None the system default is used. The default value is 'bytes'. .. versionadded:: 1.14.0 max_rows : int, optional Read `max_rows` lines of content after `skiprows` lines. The default is to read all the lines. .. versionadded:: 1.16.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO(u"0 1\\n2 3") >>> np.loadtxt(c) array([[0., 1.], [2., 3.]]) >>> d = StringIO(u"M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([(b'M', 21, 72.), (b'F', 35, 58.)], dtype=[('gender', 'S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO(u"1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([1., 3.]) >>> y array([2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [comments] comments = [_decode_line(x) for x in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile('|'.join(comments)) if delimiter is not None: delimiter = _decode_line(delimiter) user_converters = converters if encoding == 'bytes': encoding = None byte_converters = True else: byte_converters = False if usecols is not None: # Allow usecols to be a single int or a sequence of ints try: usecols_as_list = list(usecols) except TypeError: usecols_as_list = [usecols] for col_idx in usecols_as_list: try: opindex(col_idx) except TypeError as e: e.args = ( "usecols must be an int or a sequence of ints but " "it contains at least one element of type %s" % type(col_idx), ) raise # Fall back to existing code usecols = usecols_as_list fown = False try: if isinstance(fname, os_PathLike): fname = os_fspath(fname) if _is_string_like(fname): fh = np.lib._datasource.open(fname, 'rt', encoding=encoding) fencoding = getattr(fh, 'encoding', 'latin1') fh = iter(fh) fown = True else: fh = iter(fname) fencoding = getattr(fname, 'encoding', 'latin1') except TypeError: raise ValueError('fname must be a string, file handle, or generator') # input may be a python2 io stream if encoding is not None: fencoding = encoding # we must assume local encoding # TODO emit portability warning? elif fencoding is None: import locale fencoding = locale.getpreferredencoding() # not to be confused with the flatten_dtype we import... @recursive def flatten_dtype_internal(self, dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = self(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if tp.ndim > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) @recursive def pack_items(self, items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(self(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. """ line = _decode_line(line, encoding=encoding) if comments is not None: line = regex_comments.split(line, maxsplit=1)[0] line = line.strip('\r\n') if line: return line.split(delimiter) else: return [] def read_data(chunk_size): """Parse each line, including the first. The file read, `fh`, is a global defined above. Parameters ---------- chunk_size : int At most `chunk_size` lines are read at a time, with iteration until all lines are read. """ X = [] line_iter = itertools.chain([first_line], fh) line_iter = itertools.islice(line_iter, max_rows) for i, line in enumerate(line_iter): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[j] for j in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) if len(X) > chunk_size: yield X X = [] if X: yield X try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname, stacklevel=2) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype_internal(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue if byte_converters: # converters may use decode to workaround numpy's old behaviour, # so encode the string again before passing to the user converter def tobytes_first(x, conv): if type(x) is bytes: return conv(x) return conv(x.encode("latin1")) converters[i] = functools.partial(tobytes_first, conv=conv) else: converters[i] = conv converters = [conv if conv is not bytes else lambda x: x.encode(fencoding) for conv in converters] # read data in chunks and fill it into an array via resize # over-allocating and shrinking the array later may be faster but is # probably not relevant compared to the cost of actually reading and # converting the data X = None for x in read_data(_loadtxt_chunksize): if X is None: X = np.array(x, dtype) else: nshape = list(X.shape) pos = nshape[0] nshape[0] += len(x) X.resize(nshape, refcheck=False) X[pos:, ...] = x finally: if fown: fh.close() if X is None: X = np.array([], dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def _savetxt_dispatcher(fname, X, fmt=None, delimiter=None, newline=None, header=None, footer=None, comments=None, encoding=None): return (X,) @array_function_dispatch(_savetxt_dispatcher) def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ', encoding=None): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : 1D or 2D array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: * a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` * a full string specifying every real and imaginary part, e.g. `' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns * a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 encoding : {None, str}, optional Encoding used to encode the outputfile. Does not apply to output streams. If the encoding is something other than 'bytes' or 'latin1' you will not be able to load the file in NumPy versions < 1.14. Default is 'latin1'. .. versionadded:: 1.14.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <https://docs.python.org/library/string.html#format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) class WriteWrap(object): """Convert to unicode in py2 or to bytes on bytestream inputs. """ def __init__(self, fh, encoding): self.fh = fh self.encoding = encoding self.do_write = self.first_write def close(self): self.fh.close() def write(self, v): self.do_write(v) def write_bytes(self, v): if isinstance(v, bytes): self.fh.write(v) else: self.fh.write(v.encode(self.encoding)) def write_normal(self, v): self.fh.write(asunicode(v)) def first_write(self, v): try: self.write_normal(v) self.write = self.write_normal except TypeError: # input is probably a bytestream self.write_bytes(v) self.write = self.write_bytes own_fh = False if isinstance(fname, os_PathLike): fname = os_fspath(fname) if _is_string_like(fname): # datasource doesn't support creating a new file ... open(fname, 'wt').close() fh = np.lib._datasource.open(fname, 'wt', encoding=encoding) own_fh = True # need to convert str to unicode for text io output if sys.version_info[0] == 2: fh = WriteWrap(fh, encoding or 'latin1') elif hasattr(fname, 'write'): # wrap to handle byte output streams fh = WriteWrap(fname, encoding or 'latin1') else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 0 or X.ndim > 2: raise ValueError( "Expected 1D or 2D array, got %dD array instead" % X.ndim) elif X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.names) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, basestring): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(comments + header + newline) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) s = format % tuple(row2) + newline fh.write(s.replace('+-', '-')) else: for row in X: try: v = format % tuple(row) + newline except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) fh.write(v) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(comments + footer + newline) finally: if own_fh: fh.close() @set_module('numpy') def fromregex(file, regexp, dtype, encoding=None): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file Filename or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. encoding : str, optional Encoding used to decode the inputfile. Does not apply to input streams. .. versionadded:: 1.14.0 Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> _ = f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')], dtype=[('num', '<i8'), ('key', 'S3')]) >>> output['num'] array([1312, 1534, 444]) """ own_fh = False if not hasattr(file, "read"): file = np.lib._datasource.open(file, 'rt', encoding=encoding) own_fh = True try: if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) content = file.read() if isinstance(content, bytes) and isinstance(regexp, np.compat.unicode): regexp = asbytes(regexp) elif isinstance(content, np.compat.unicode) and isinstance(regexp, bytes): regexp = asstr(regexp) if not hasattr(regexp, 'match'): regexp = re.compile(regexp) seq = regexp.findall(content) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- @set_module('numpy') def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=''.join(sorted(NameValidator.defaultdeletechars)), replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None, encoding='bytes'): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, pathlib.Path, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first line after the first `skip_header` lines. This line can optionally be proceeded by a comment delimiter. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 encoding : str, optional Encoding used to decode the inputfile. Does not apply when `fname` is a file object. The special value 'bytes' enables backward compatibility workarounds that ensure that you receive byte arrays when possible and passes latin1 encoded strings to converters. Override this value to receive unicode arrays and pass strings as input to converters. If set to None the system default is used. The default value is 'bytes'. .. versionadded:: 1.14.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] NumPy User Guide, section `I/O with NumPy <https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO(u"1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, b'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) Using dtype = None >>> _ = s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, b'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) Specifying dtype and names >>> _ = s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, b'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) An example with fixed-width columns >>> s = StringIO(u"11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, b'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', 'S5')]) An example to show comments >>> f = StringIO(''' ... text,# of chars ... hello world,11 ... numpy,5''') >>> np.genfromtxt(f, dtype='S12,S12', delimiter=',') array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')], dtype=[('f0', 'S12'), ('f1', 'S12')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) if encoding == 'bytes': encoding = None byte_converters = True else: byte_converters = False # Initialize the filehandle, the LineSplitter and the NameValidator try: if isinstance(fname, os_PathLike): fname = os_fspath(fname) if isinstance(fname, basestring): fid = np.lib._datasource.open(fname, 'rt', encoding=encoding) fid_ctx = contextlib.closing(fid) else: fid = fname fid_ctx = contextlib_nullcontext(fid) fhd = iter(fid) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) with fid_ctx: split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip, encoding=encoding) validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows try: for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None while not first_values: first_line = _decode_line(next(fhd), encoding) if (names is True) and (comments is not None): if comments in first_line: first_line = ( ''.join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = '' first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if comments is not None: if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([str(_.strip()) for _ in first_values]) first_line = '' elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () if isinstance(user_missing_values, bytes): user_missing_values = user_missing_values.decode('latin1') # Define the list of missing_values (one column: one list) missing_values = [list(['']) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, basestring): user_value = user_missing_values.split(",") for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None if conv is bytes: user_conv = asbytes elif byte_converters: # converters may use decode to workaround numpy's old behaviour, # so encode the string again before passing to the user converter def tobytes_first(x, conv): if type(x) is bytes: return conv(x) return conv(x.encode("latin1")) user_conv = functools.partial(tobytes_first, conv=conv) else: user_conv = conv converters[i].update(user_conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, user_conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. # miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning, stacklevel=2) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v == np.unicode_] if byte_converters and strcolidx: # convert strings back to bytes for backward compatibility warnings.warn( "Reading unicode strings without specifying the encoding " "argument is deprecated. Set the encoding, use None for the " "system default.", np.VisibleDeprecationWarning, stacklevel=2) def encode_unicode_cols(row_tup): row = list(row_tup) for i in strcolidx: row[i] = row[i].encode('latin1') return tuple(row) try: data = [encode_unicode_cols(r) for r in data] except UnicodeEncodeError: pass else: for i in strcolidx: column_types[i] = np.bytes_ # Update string types to be the right length sized_column_types = column_types[:] for i, col_type in enumerate(column_types): if np.issubdtype(col_type, np.character): n_chars = max(len(row[i]) for row in data) sized_column_types[i] = (col_type, n_chars) if names is None: # If the dtype is uniform (before sizing strings) base = { c_type for c, c_type in zip(converters, column_types) if c._checked} if len(base) == 1: uniform_type, = base (ddtype, mdtype) = (uniform_type, bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(sized_column_types)] if usemask: mdtype = [(defaultfmt % i, bool) for (i, dt) in enumerate(sized_column_types)] else: ddtype = list(zip(names, sized_column_types)) mdtype = list(zip(names, [bool] * len(sized_column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names is not None: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if np.issubdtype(ttype, np.character): ttype = (ttype, max(len(row[i]) for row in data)) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names is not None: mdtype = [(_, bool) for _ in dtype.names] else: mdtype = bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names, converters): missing_values = [conv(_) for _ in conv.missing_values if _ != ''] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. .. deprecated:: 1.17 ndfromtxt` is a deprecated alias of `genfromtxt` which overwrites the ``usemask`` argument with `False` even when explicitly called as ``ndfromtxt(..., usemask=True)``. Use `genfromtxt` instead. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False # Numpy 1.17 warnings.warn( "np.ndfromtxt is a deprecated alias of np.genfromtxt, " "prefer the latter.", DeprecationWarning, stacklevel=2) return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. .. deprecated:: 1.17 np.mafromtxt is a deprecated alias of `genfromtxt` which overwrites the ``usemask`` argument with `True` even when explicitly called as ``mafromtxt(..., usemask=False)``. Use `genfromtxt` instead. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True # Numpy 1.17 warnings.warn( "np.mafromtxt is a deprecated alias of np.genfromtxt, " "prefer the latter.", DeprecationWarning, stacklevel=2) return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
36.972281
95
0.571526
c8ae14678d57aaa23c0636e9b2440a92851d7583
4,428
py
Python
homeassistant/components/accuweather/__init__.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
6
2016-11-25T06:36:27.000Z
2021-11-16T11:20:23.000Z
homeassistant/components/accuweather/__init__.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
56
2020-08-03T07:30:54.000Z
2022-03-31T06:02:04.000Z
homeassistant/components/accuweather/__init__.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
14
2018-08-19T16:28:26.000Z
2021-09-02T18:26:53.000Z
"""The AccuWeather component.""" import asyncio from datetime import timedelta import logging from accuweather import AccuWeather, ApiError, InvalidApiKeyError, RequestsExceededError from aiohttp.client_exceptions import ClientConnectorError from async_timeout import timeout from homeassistant.const import CONF_API_KEY from homeassistant.core import Config, HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed from .const import ( ATTR_FORECAST, CONF_FORECAST, COORDINATOR, DOMAIN, UNDO_UPDATE_LISTENER, ) _LOGGER = logging.getLogger(__name__) PLATFORMS = ["sensor", "weather"] async def async_setup(hass: HomeAssistant, config: Config) -> bool: """Set up configured AccuWeather.""" hass.data.setdefault(DOMAIN, {}) return True async def async_setup_entry(hass, config_entry) -> bool: """Set up AccuWeather as config entry.""" api_key = config_entry.data[CONF_API_KEY] location_key = config_entry.unique_id forecast = config_entry.options.get(CONF_FORECAST, False) _LOGGER.debug("Using location_key: %s, get forecast: %s", location_key, forecast) websession = async_get_clientsession(hass) coordinator = AccuWeatherDataUpdateCoordinator( hass, websession, api_key, location_key, forecast ) await coordinator.async_refresh() if not coordinator.last_update_success: raise ConfigEntryNotReady undo_listener = config_entry.add_update_listener(update_listener) hass.data[DOMAIN][config_entry.entry_id] = { COORDINATOR: coordinator, UNDO_UPDATE_LISTENER: undo_listener, } for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, component) ) return True async def async_unload_entry(hass, config_entry): """Unload a config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(config_entry, component) for component in PLATFORMS ] ) ) hass.data[DOMAIN][config_entry.entry_id][UNDO_UPDATE_LISTENER]() if unload_ok: hass.data[DOMAIN].pop(config_entry.entry_id) return unload_ok async def update_listener(hass, config_entry): """Update listener.""" await hass.config_entries.async_reload(config_entry.entry_id) class AccuWeatherDataUpdateCoordinator(DataUpdateCoordinator): """Class to manage fetching AccuWeather data API.""" def __init__(self, hass, session, api_key, location_key, forecast: bool): """Initialize.""" self.location_key = location_key self.forecast = forecast self.is_metric = hass.config.units.is_metric self.accuweather = AccuWeather(api_key, session, location_key=self.location_key) # Enabling the forecast download increases the number of requests per data # update, we use 32 minutes for current condition only and 64 minutes for # current condition and forecast as update interval to not exceed allowed number # of requests. We have 50 requests allowed per day, so we use 45 and leave 5 as # a reserve for restarting HA. update_interval = ( timedelta(minutes=64) if self.forecast else timedelta(minutes=32) ) _LOGGER.debug("Data will be update every %s", update_interval) super().__init__(hass, _LOGGER, name=DOMAIN, update_interval=update_interval) async def _async_update_data(self): """Update data via library.""" try: async with timeout(10): current = await self.accuweather.async_get_current_conditions() forecast = ( await self.accuweather.async_get_forecast(metric=self.is_metric) if self.forecast else {} ) except ( ApiError, ClientConnectorError, InvalidApiKeyError, RequestsExceededError, ) as error: raise UpdateFailed(error) from error _LOGGER.debug("Requests remaining: %s", self.accuweather.requests_remaining) return {**current, **{ATTR_FORECAST: forecast}}
33.293233
88
0.696251
5d9e140e704cc64204329e6714b499c462049667
2,314
py
Python
src/pdc2/scripts/mafft_wrapper.py
jlanga/smsk_selection
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
4
2021-07-18T05:20:20.000Z
2022-01-03T10:22:33.000Z
src/pdc2/scripts/mafft_wrapper.py
jlanga/smsk_selection
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
1
2017-08-21T07:26:13.000Z
2018-11-08T13:59:48.000Z
src/pdc2/scripts/mafft_wrapper.py
jlanga/smsk_orthofinder
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
2
2021-07-18T05:20:26.000Z
2022-03-31T18:23:31.000Z
""" Takes a directory of fasta files If there are >= 1000 sequences in the direction, use --auto For fasta files with less than 1000 sequences, use the slower but much more accurate algorithm Uncomment the com += "--anysymbol " line if there are "U" or any other unusual charactors in the sequences """ import os,sys import subprocess from seq import read_fasta_file def mafft(DIR,fasta,thread,seqtype): if DIR[-1] != "/": DIR += "/" alignment = fasta+".mafft.aln" if os.path.exists(DIR+alignment) and os.stat(DIR+alignment).st_size>0: return alignment assert seqtype == "aa" or seqtype == "dna","Input data type: dna or aa" seqlist = read_fasta_file(DIR+fasta) seqcount = len(seqlist) maxlen = 0 for s in seqlist: maxlen = max(maxlen,len(s.seq)) assert seqcount >= 2, "less than 4 sequences in "+DIR+fasta if seqtype == "dna": infasta = DIR+fasta seq = "--nuc" else: infasta = DIR+fasta+".temp" seq = "--amino" with open(infasta,"w") as outfile: for s in seqlist: #remove U which is usually not in aa alphabet s.seq = s.seq.replace("U","X") s.seq = s.seq.replace("u","x") #remove stop codon and seq after it if "*" in s.seq: s.seq = s.seq[:s.seq.find("*")] outfile.write(s.get_fasta()) if seqcount >= 1000 or maxlen >= 10000: alg = ["--auto"] #so that the run actually finishes! else: alg = ["--genafpair","--maxiterate","1000"] cmd = ["mafft"]+alg+[seq,"--thread",str(thread)] #com += ["--anysymbol"] # when there are "U"s in aa sequences cmd += [infasta] print " ".join(cmd) out = open(DIR+alignment, 'w') p = subprocess.Popen(cmd,stderr=subprocess.PIPE,stdout=out) out.close() p.communicate() assert p.returncode == 0,"Error mafft" if seqtype == "aa": os.remove(DIR+fasta+".temp") return alignment def main(DIR,infile_ending,thread,seqtype): if DIR[-1] != "/": DIR += "/" filecount = 0 for i in os.listdir(DIR): if i.endswith(infile_ending): filecount += 1 mafft(DIR=DIR,fasta=i,thread=thread,seqtype=seqtype) assert filecount > 0, "No file end with "+file_end+"found in "+DIR if __name__ == "__main__": if len(sys.argv) != 5: print "usage: python mafft_wrapper.py DIR infile_ending thread dna/aa" sys.exit() DIR,infile_ending,thread,seqtype = sys.argv[1:] main(DIR,infile_ending,thread,seqtype)
29.291139
78
0.668539
d8eff340c7e48deb7dc1cb09031160e715720f21
1,219
py
Python
manga_py/providers/zeroscans_com.py
Abijithkrishna/manga-py
03b142ecb944ef37a36e5095ffa580209021e3b0
[ "MIT" ]
337
2019-08-27T16:14:50.000Z
2022-03-29T09:58:22.000Z
manga_py/providers/zeroscans_com.py
Abijithkrishna/manga-py
03b142ecb944ef37a36e5095ffa580209021e3b0
[ "MIT" ]
225
2019-08-25T15:02:01.000Z
2022-03-31T06:36:09.000Z
manga_py/providers/zeroscans_com.py
Abijithkrishna/manga-py
03b142ecb944ef37a36e5095ffa580209021e3b0
[ "MIT" ]
41
2019-10-04T13:28:02.000Z
2022-03-19T08:18:34.000Z
from manga_py.provider import Provider from .helpers.std import Std class ZeroScansCom(Provider, Std): _key = '/comics/' def get_chapter_index(self) -> str: return self.re.search( r'%s[^/]+/(\d+/\d+)' % self._key, self.chapter ).group(1).replace('/', '-') def get_content(self): name = self._get_name(r'%s([^/]+)' % self._key) return self.http_get('%s%s%s/' % ( self.domain, self._key, name )) def get_manga_name(self) -> str: return self._get_name(r'%s\d+-([^/]+)' % self._key) def get_chapters(self): return self._elements('.list .list-item a.text-color') def get_files(self): content = self.http_get(self.chapter) raw_images = self.re.search( r'chapterPages\s?=\s?(\[.+?\])', content ).group(1) images = self.json.loads(raw_images) n = self.http().normalize_uri return [n(i) for i in images] def get_cover(self) -> str: image = self._elements('.media img.media-content') if len(image): return self.parse_background(image) return '' main = ZeroScansCom
25.395833
62
0.545529
47ae4beca724e65a952dd74bc388fc9df9c0aeda
7,269
py
Python
docs/conf.py
crrobinson14/django-jsonit
3c4b10c844b4e45759bac28a5a6dd201f60c6c1d
[ "BSD-3-Clause" ]
3
2015-01-22T19:02:55.000Z
2015-11-08T16:10:08.000Z
docs/conf.py
crrobinson14/django-jsonit
3c4b10c844b4e45759bac28a5a6dd201f60c6c1d
[ "BSD-3-Clause" ]
1
2015-06-06T11:49:32.000Z
2015-06-06T11:49:32.000Z
docs/conf.py
crrobinson14/django-jsonit
3c4b10c844b4e45759bac28a5a6dd201f60c6c1d
[ "BSD-3-Clause" ]
1
2020-05-12T16:41:54.000Z
2020-05-12T16:41:54.000Z
# -*- coding: utf-8 -*- # # django-jsonit documentation build configuration file, created by # sphinx-quickstart on Thu Sep 29 15:20:35 2011. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os from django.conf import global_settings from django.core.management import setup_environ setup_environ(global_settings, original_settings_path='django.conf.global_settings') # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) from jsonit import get_version # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'django-jsonit' copyright = u'2011, Lincoln Loop' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = get_version(major=True) # The full version, including alpha/beta/rc tags. release = get_version() # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'django-jsonitdoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'django-jsonit.tex', u'django-jsonit Documentation', u'Lincoln Loop', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'django-jsonit', u'django-jsonit Documentation', [u'Lincoln Loop'], 1) ]
32.450893
84
0.724859
a76a8379223b78d04e7f6fca2c0afc196019ccbc
18,205
py
Python
Code/bst.py
colo6299/CS-1.3-Core-Data-Structures
2d2b5406029477d0dcfae07fb06cc4be4ff227cd
[ "MIT" ]
null
null
null
Code/bst.py
colo6299/CS-1.3-Core-Data-Structures
2d2b5406029477d0dcfae07fb06cc4be4ff227cd
[ "MIT" ]
5
2020-02-15T17:24:36.000Z
2020-03-09T22:12:56.000Z
Code/bst.py
colo6299/CS-1.3-Core-Data-Structures
2d2b5406029477d0dcfae07fb06cc4be4ff227cd
[ "MIT" ]
null
null
null
from q import ArrayQ from ihop import IHOP_Array as stack class BinaryNode: # NOTE: all of the big O stuff is on the tree class :) def __init__(self, data, left=None, right=None): self.data = data self.left = left self.right = right def __repr__(self): """Return a string representation of this binary tree node.""" return 'BinaryTreeNode({!r})'.format(self.data) def search(self, term): if self.data == term: return self else: if term < self.data: if self.left is not None: l = self.left.search(term) if l is not None: return l else: if self.right is not None: r = self.right.search(term) if r is not None: return r def is_leaf(self): if (self.left is None and self.right is None): return True return False def is_branch(self): return not self.is_leaf() def height(self): left = 0 right = 0 if self.is_leaf(): return 0 if self.left is not None: left = self.left.height() if self.right is not None: right = self.right.height() if left > right: return left + 1 return right + 1 def insert(self, data): if data < self.data: if self.left is not None: self.left.insert(data) else: self.left = BinaryNode(data) else: if self.right is not None: self.right.insert(data) else: self.right = BinaryNode(data) def set_insert(self, data): if data < self.data: if self.left is not None: self.left.insert(data) else: self.left = BinaryNode(data) elif data == self.data: self.data = data return True else: if self.right is not None: self.right.insert(data) else: self.right = BinaryNode(data) def items_pre_order(self, tree): tree.last_ordering.append(self.data) if self.left is not None: self.left.items_pre_order(tree) if self.right is not None: self.right.items_pre_order(tree) def items_in_order(self, tree): if self.left is not None: self.left.items_in_order(tree) tree.last_ordering.append(self.data) if self.right is not None: self.right.items_in_order(tree) def items_post_order(self, tree): if self.left is not None: self.left.items_post_order(tree) if self.right is not None: self.right.items_post_order(tree) tree.last_ordering.append(self.data) def find_parent_node_recursive(self, term, parent=None): """Return the parent node of the node containing the given item (or the parent node of where the given item would be if inserted) in this tree, or None if this tree is empty or has only a root node. Search is performed recursively starting from the given node (give the root node to start recursion).""" if self.data == term: return parent else: if self.left is not None: l = self.left.search(term, self) if l is not None: return l if self.right is not None: r = self.right.search(term, self) if r is not None: return r def find_parent_node_recursive_tuple(self, term, parent=None): """Return the parent node of the node containing the given item (or the parent node of where the given item would be if inserted) in this tree, or None if this tree is empty or has only a root node. Search is performed recursively starting from the given node (give the root node to start recursion).""" if self.data == term: return (parent, self) else: if self.left is not None: l = self.left.find_parent_node_recursive_tuple(term, self) if l is not None: return l if self.right is not None: r = self.right.find_parent_node_recursive_tuple(term, self) if r is not None: return r def predecessor(self, parent=None): if self.right is not None: return self.right.predecessor(self) return parent, self class BinaryTree: def __init__(self, items=None): """Initialize this binary search tree and insert the given items.""" self.root = None self.size = 0 self.last_ordering = [] if items is not None: for item in items: self.insert(item) def __repr__(self): """Return a string representation of this binary search tree.""" return 'BinarySearchTree({} nodes)'.format(self.size) def is_empty(self): """ O(1) Return True if this binary search tree is empty (has no nodes).""" return self.root is None def height(self): """ O(1) """ return self.root.height() def contains(self, term): """ O(log n) time """ if self.search(term) is not None: return True return False def _find_parent_node_recursive(self, term): """O(log n) Return the parent node of the node containing the given item (or the parent node of where the given item would be if inserted) in this tree, or None if this tree is empty or has only a root node. Search is performed recursively starting from the given node (give the root node to start recursion).""" if self.is_empty() is not True: return self.root.find_parent_node_recursive(term) def search(self, term): """ O(log n) time """ node = self.root.search(term) if node is not None: return node.data def insert(self, data): """ O(log n) time """ self.size += 1 if self.root is not None: self.root.insert(data) else: self.root = BinaryNode(data) def set_insert(self, data): """ O(log n) time """ if self.root is not None: if self.root.set_insert(data): self.size += 1 else: self.root = BinaryNode(data) self.size += 1 def delete(self, item): parent_child_nodes = self.root.find_parent_node_recursive_tuple(item) parent_node = parent_child_nodes[0] delete_node = parent_child_nodes[1] left_bool = False if parent_node is not None: if parent_node.left == delete_node: left_bool = True if delete_node.left is not None and delete_node.right is not None: pred = delete_node.left.predecessor() retnode = pred[1] if pred[0] is not None: pred[0].right = pred[1].left pred[1].right = delete_node.right pred[1].left = delete_node.left else: pred[1].right = delete_node.right elif delete_node.left is not None: retnode = delete_node.left elif delete_node.right is not None: retnode = delete_node.right else: retnode = None if parent_node is None: self.root = retnode elif left_bool: parent_node.left = retnode else: parent_node.right = retnode def _find_node_recursive(self, item, node): """ O(log n) time """ return node.search(item) def items_level_order(self): """O(n) time and space Return a level-order list of all items in this binary search tree.""" items = [] if not self.is_empty(): # Traverse tree level-order from root, appending each node's item self._traverse_level_order_iterative(self.root, items.append) # Return level-order list of all items in tree return items def _traverse_level_order_iterative(self, start_node, visit): """ O(n) time and space Traverse this binary tree with iterative level-order traversal (BFS). Start at the given node and visit each node with the given function. TODO: Running time: ??? Why and under what conditions? TODO: Memory usage: ??? Why and under what conditions?""" queue = ArrayQ() queue.enqueue(start_node) while queue.is_empty() is not True: node = queue.dequeue() visit(node.data) if node.left is not None: queue.enqueue(node.left) if node.right is not None: queue.enqueue(node.right) def items_pre_order(self): """ O(n) time, O(log n) space Return a pre-order list of all items in this binary search tree.""" self.last_ordering = [] if True: self.root.items_pre_order(self) return self.last_ordering def items_in_order(self): """ O(n) time, O(log n) space Return a pre-order list of all items in this binary search tree.""" self.last_ordering = [] if True: self.root.items_in_order(self) return self.items_in_order_iterative() def items_post_order(self): """ O(n) time, O(log n) space Return a pre-order list of all items in this binary search tree.""" self.last_ordering = [] if True: self.root.items_post_order(self) return self.last_ordering def items_in_order_iterative(self): """ O(n) time, O(log n) space """ if self.is_empty(): return [] appender_stack = stack([self.root]) visitor_stack = stack([self.root]) items = [] while appender_stack.is_empty() is False: if visitor_stack.is_empty() is False: node = visitor_stack.pop() if node.left is not None: appender_stack.push(node.left) visitor_stack.push(node.left) else: node = appender_stack.pop() items.append(node.data) if node.right is not None: appender_stack.push(node.right) visitor_stack.push(node.right) return items def items_pre_order_iterative(self): """ O(n) time, O(log n) space """ if self.is_empty(): return [] appender_stack = stack([self.root]) visitor_stack = stack([self.root]) items = [] while appender_stack.is_empty() is False: if visitor_stack.is_empty() is False: node = visitor_stack.pop() if node.left is not None: items.append(node.data) appender_stack.push(node.left) visitor_stack.push(node.left) else: node = appender_stack.pop() if node.right is not None: items.append(node.data) appender_stack.push(node.right) visitor_stack.push(node.right) return items def items_post_order_iterative(self): """ O(n) time, O(log n) space """ if self.is_empty(): return [] appender_stack = stack([self.root]) visitor_stack = stack([self.root]) items = [] while appender_stack.is_empty() is False: if visitor_stack.is_empty() is False: node = visitor_stack.pop() if node.left is not None: items.append(node.data) appender_stack.push(node.left) visitor_stack.push(node.left) else: node = appender_stack.pop() if node.right is not None: appender_stack.push(node.right) visitor_stack.push(node.right) return items from hash_browns import Hashbrowns as Hashtable from recomper import Combinator from recomper import Permutator import cProfile import sys import json def dejumbler(jumble, meltionary): melty_word = word_melter(jumble) valid_list = [] if melty_word not in meltionary: return valid_list for valid_word in meltionary[melty_word]: if is_letter_list_permutation(valid_word, jumble): valid_list.append(valid_word) return valid_list def multi_dejumble(jumble_letters, word_lengths, meltionary): retlist = [] for num in word_lengths: retlist.append([]) _multi_word_dejumbler(list(jumble_letters), word_lengths, [], retlist, meltionary) return retlist # out_list should be a list of empty list of length len(word_lengths) i.e. [2, 6] -> [ [], [] ] -> # -> the result is a list of solutions of length [1, 2] def _multi_word_dejumbler(jumble_letters, word_lengths, cur_words, out_list, d, _ndx=-1): c = Combinator() _ndx += 1 if _ndx == len(word_lengths): return for combo, compliment in c.combo_compliments(jumble_letters, word_lengths[_ndx]): valid_words = dejumbler(combo, d) if len(valid_words) == 0: if len(cur_words) != 0: let_list = list(cur_words) longth = len(cur_words) str_comp = ''.join(jumble_letters) let_list.append(str_comp) out_list[len(word_lengths) - longth].append(let_list) for valid_word in valid_words: new_words = list(cur_words) new_words.append(valid_word) _multi_word_dejumbler(compliment, word_lengths, new_words, out_list, d, _ndx) def dictionary_melter(): f = open('big_dict.txt') table = Hashtable() index = -1 while True: index += 1 word = f.readline() word = word.strip().lower() if word is '': f.close() return table melty = word_melter(word) if melty in table: table.get(melty).append(word) else: table.set(melty, [word]) def dictionary_melter_std(): """ I know using the pythomn dict is kind of cheating, but I've had enough of serialization ever since I got into Unity """ f = open('big_dict.txt') table = {} index = -1 while True: index += 1 word = f.readline() word = word.strip().lower() if word is '': f.close() return table melty = word_melter(word) if melty in table: table[melty].append(word) else: table[melty] = [word] def word_melter(word): letter_array = [None] * 27 # 27 is dash (-) for letter in word: if letter == '-': letter_array[26] = True else: letter_array[ord(letter) - 97] = True retstring = '' for index, letter in enumerate(letter_array): if letter is True: retstring += chr(index + 97) return retstring def is_letter_list_permutation(llist_1, llist_2): if len(llist_1) != len(llist_2): return False fraction_l1 = [0] * 27 fraction_l2 = [0] * 27 for letter in llist_1: fraction_l1[ord(letter) - 97] += 1 for letter in llist_2: fraction_l2[ord(letter) - 97] += 1 if fraction_l1 == fraction_l2: return True else: return False def meltionary_writer(meltionary): dd = json.dumps(meltionary) f = open("meltionary.json","w") f.write(dd) f.close() def meltionary_reader(): f = open("meltionary.json","r") ds = json.load(f) f.close() return ds def jumble_runner(meltionary): primary_jumbles = [ ['tefon', '--o-o'], ['sokik', 'oo-o-'], ['niumem', '----o-'], ['siconu', '---oo-'] ] answers = [] for jumble in primary_jumbles: answers.append(dejumbler(jumble[0], meltionary)) secondary_word_lengths = [6, 2] secondary_letters = '' for ndx, jumble in enumerate(primary_jumbles): for index, letter in enumerate(jumble[1]): if letter == 'o': secondary_letters += answers[ndx][0][index] secondary_answers_list = multi_dejumble(secondary_letters, secondary_word_lengths, meltionary) print() print(answers) print() print(secondary_answers_list[1]) print() return (answers, secondary_answers_list) def trash(): """ Just waiting for the garbageman """ """ c = Combinator() combos = c.combinations(list(secondary_letters), seondary_jumble[0]) possible_secondary_answers = [] for combo in combos: compliment = c.compliment(combo, list(secondary_letters)) combo = word_melter(''.join(combo)) compliment = word_melter(''.join(compliment)) answer_1 = dejumbler(combo, meltionary) answer_2 = dejumbler(compliment, meltionary) if len(answer_1) is not 0 and len(answer_2) is not 0: possible_secondary_answers.append((answer_1, answer_2)) probable_secondary_answers = [] for possible_answer in possible_secondary_answers: probable_secondary_answers.append(possible_answer) """ if __name__ == "__main__": #cProfile.run('dictionary_melter()') d = dictionary_melter_std() meltionary_writer(d) d = meltionary_reader() #meltionary_writer(d) #cProfile.run('jumble_runner(d)') jumble_runner(d) #print(dejumbler('short', d)) # sardine
31.013629
106
0.561384
91df38f9659868f86dde86a8d85541eb873602ed
5,917
py
Python
mainGame.py
ProNilabh/PythonShootGame.
1bb9552d9165d842fc1fbffc3634ae1998159f2a
[ "DOC" ]
318
2015-01-12T02:56:45.000Z
2022-03-22T20:30:12.000Z
mainGame.py
ProNilabh/PythonShootGame.
1bb9552d9165d842fc1fbffc3634ae1998159f2a
[ "DOC" ]
4
2016-02-16T07:30:54.000Z
2020-02-15T11:20:10.000Z
mainGame.py
ProNilabh/PythonShootGame.
1bb9552d9165d842fc1fbffc3634ae1998159f2a
[ "DOC" ]
303
2015-01-21T09:30:57.000Z
2022-03-26T21:04:43.000Z
# -*- coding: utf-8 -*- """ Created on Wed Sep 11 11:05:00 2013 @author: Leo """ import pygame from sys import exit from pygame.locals import * from gameRole import * import random # 初始化游戏 pygame.init() screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) pygame.display.set_caption('飞机大战') # 载入游戏音乐 bullet_sound = pygame.mixer.Sound('resources/sound/bullet.wav') enemy1_down_sound = pygame.mixer.Sound('resources/sound/enemy1_down.wav') game_over_sound = pygame.mixer.Sound('resources/sound/game_over.wav') bullet_sound.set_volume(0.3) enemy1_down_sound.set_volume(0.3) game_over_sound.set_volume(0.3) pygame.mixer.music.load('resources/sound/game_music.wav') pygame.mixer.music.play(-1, 0.0) pygame.mixer.music.set_volume(0.25) # 载入背景图 background = pygame.image.load('resources/image/background.png').convert() game_over = pygame.image.load('resources/image/gameover.png') filename = 'resources/image/shoot.png' plane_img = pygame.image.load(filename) # 设置玩家相关参数 player_rect = [] player_rect.append(pygame.Rect(0, 99, 102, 126)) # 玩家精灵图片区域 player_rect.append(pygame.Rect(165, 360, 102, 126)) player_rect.append(pygame.Rect(165, 234, 102, 126)) # 玩家爆炸精灵图片区域 player_rect.append(pygame.Rect(330, 624, 102, 126)) player_rect.append(pygame.Rect(330, 498, 102, 126)) player_rect.append(pygame.Rect(432, 624, 102, 126)) player_pos = [200, 600] player = Player(plane_img, player_rect, player_pos) # 定义子弹对象使用的surface相关参数 bullet_rect = pygame.Rect(1004, 987, 9, 21) bullet_img = plane_img.subsurface(bullet_rect) # 定义敌机对象使用的surface相关参数 enemy1_rect = pygame.Rect(534, 612, 57, 43) enemy1_img = plane_img.subsurface(enemy1_rect) enemy1_down_imgs = [] enemy1_down_imgs.append(plane_img.subsurface(pygame.Rect(267, 347, 57, 43))) enemy1_down_imgs.append(plane_img.subsurface(pygame.Rect(873, 697, 57, 43))) enemy1_down_imgs.append(plane_img.subsurface(pygame.Rect(267, 296, 57, 43))) enemy1_down_imgs.append(plane_img.subsurface(pygame.Rect(930, 697, 57, 43))) enemies1 = pygame.sprite.Group() # 存储被击毁的飞机,用来渲染击毁精灵动画 enemies_down = pygame.sprite.Group() shoot_frequency = 0 enemy_frequency = 0 player_down_index = 16 score = 0 clock = pygame.time.Clock() running = True while running: # 控制游戏最大帧率为60 clock.tick(45) # 控制发射子弹频率,并发射子弹 if not player.is_hit: if shoot_frequency % 15 == 0: bullet_sound.play() player.shoot(bullet_img) shoot_frequency += 1 if shoot_frequency >= 15: shoot_frequency = 0 # 生成敌机 if enemy_frequency % 50 == 0: enemy1_pos = [random.randint(0, SCREEN_WIDTH - enemy1_rect.width), 0] enemy1 = Enemy(enemy1_img, enemy1_down_imgs, enemy1_pos) enemies1.add(enemy1) enemy_frequency += 1 if enemy_frequency >= 100: enemy_frequency = 0 # 移动子弹,若超出窗口范围则删除 for bullet in player.bullets: bullet.move() if bullet.rect.bottom < 0: player.bullets.remove(bullet) # 移动敌机,若超出窗口范围则删除 for enemy in enemies1: enemy.move() # 判断玩家是否被击中 if pygame.sprite.collide_circle(enemy, player): enemies_down.add(enemy) enemies1.remove(enemy) player.is_hit = True game_over_sound.play() break if enemy.rect.top > SCREEN_HEIGHT: enemies1.remove(enemy) # 将被击中的敌机对象添加到击毁敌机Group中,用来渲染击毁动画 enemies1_down = pygame.sprite.groupcollide(enemies1, player.bullets, 1, 1) for enemy_down in enemies1_down: enemies_down.add(enemy_down) # 绘制背景 screen.fill(0) screen.blit(background, (0, 0)) # 绘制玩家飞机 if not player.is_hit: screen.blit(player.image[player.img_index], player.rect) # 更换图片索引使飞机有动画效果 player.img_index = shoot_frequency // 8 else: player.img_index = player_down_index // 8 screen.blit(player.image[player.img_index], player.rect) player_down_index += 1 if player_down_index > 47: running = False # 绘制击毁动画 for enemy_down in enemies_down: if enemy_down.down_index == 0: enemy1_down_sound.play() if enemy_down.down_index > 7: enemies_down.remove(enemy_down) score += 1000 continue screen.blit(enemy_down.down_imgs[enemy_down.down_index // 2], enemy_down.rect) enemy_down.down_index += 1 # 绘制子弹和敌机 player.bullets.draw(screen) enemies1.draw(screen) # 绘制得分 score_font = pygame.font.Font(None, 36) score_text = score_font.render(str(score), True, (128, 128, 128)) text_rect = score_text.get_rect() text_rect.topleft = [10, 10] screen.blit(score_text, text_rect) # 更新屏幕 pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() # 监听键盘事件 key_pressed = pygame.key.get_pressed() # 若玩家被击中,则无效 if not player.is_hit: if key_pressed[K_w] or key_pressed[K_UP]: player.moveUp() if key_pressed[K_s] or key_pressed[K_DOWN]: player.moveDown() if key_pressed[K_a] or key_pressed[K_LEFT]: player.moveLeft() if key_pressed[K_d] or key_pressed[K_RIGHT]: player.moveRight() font = pygame.font.Font(None, 48) text = font.render('Score: '+ str(score), True, (255, 0, 0)) text_rect = text.get_rect() text_rect.centerx = screen.get_rect().centerx text_rect.centery = screen.get_rect().centery + 24 screen.blit(game_over, (0, 0)) screen.blit(text, text_rect) while 1: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() pygame.display.update()
29.883838
87
0.648471
f886732c96a6d91ddbe61c7da1f1b3464530a11c
1,098
py
Python
eyantra_provider/provider/urls.py
Andreaf2395/OpenID-Provider
cdedd42cc49e6f03e3b2570c03fb1f4a2c83be34
[ "MIT" ]
null
null
null
eyantra_provider/provider/urls.py
Andreaf2395/OpenID-Provider
cdedd42cc49e6f03e3b2570c03fb1f4a2c83be34
[ "MIT" ]
4
2021-03-19T08:17:59.000Z
2021-06-10T19:34:36.000Z
eyantra_provider/provider/urls.py
Andreaf2395/OpenID-Provider
cdedd42cc49e6f03e3b2570c03fb1f4a2c83be34
[ "MIT" ]
null
null
null
"""oidc_provider URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('',views.home,name='home'), path('create_client/',views.create_client,name='create_client'), path('oauth/authorize/',views.authorize,name='oauth_authorize'), path('oauth/token/',views.issue_token,name='issue_token'), path('oauth/revoke/',views.revoke_token,name='revoke_token'), path('oauth/login/',views.login,name='oauth_login'), ]
40.666667
77
0.715847
38e836339819dab9ee46a414709ad2f93484da55
2,856
py
Python
art/art_T1049-3.py
blackbotinc/artic2-atomics
83f6ae1269c23f29b361a974455011df80c61945
[ "Apache-2.0" ]
null
null
null
art/art_T1049-3.py
blackbotinc/artic2-atomics
83f6ae1269c23f29b361a974455011df80c61945
[ "Apache-2.0" ]
null
null
null
art/art_T1049-3.py
blackbotinc/artic2-atomics
83f6ae1269c23f29b361a974455011df80c61945
[ "Apache-2.0" ]
1
2022-03-31T11:07:56.000Z
2022-03-31T11:07:56.000Z
from blackbot.core.utils import get_path_in_package from blackbot.core.wss.atomic import Atomic from terminaltables import SingleTable import os import json class Atomic(Atomic): def __init__(self): self.name = 'Discovery/T1049-3' self.controller_type = '' self.external_id = 'T1049' self.blackbot_id = 'T1049-3' self.version = '' self.language = 'boo' self.description = self.get_description() self.last_updated_by = 'Blackbot, Inc. All Rights reserved' self.references = ["System.Management.Automation"] self.options = { 'OutString': { 'Description' : 'Appends Out-String to the PowerShellCode', 'Required' : False, 'Value' : True, }, 'BypassLogging': { 'Description' : 'Bypasses ScriptBlock and Techniques logging', 'Required' : False, 'Value' : True, }, 'BypassAmsi': { 'Description' : 'Bypasses AMSI', 'Required' : False, 'Value' : True, } } def payload(self): with open(get_path_in_package('core/wss/ttp/art/src/powershell.boo'), 'r') as ttp_src: src = ttp_src.read() pwsh_script = get_path_in_package('core/wss/ttp/art/pwsh_ttp/discovery/T1049-3') with open(pwsh_script) as pwsh: src = src.replace("POWERSHELL_SCRIPT", pwsh.read()) src = src.replace("OUT_STRING", str(self.options["OutString"]["Value"]).lower()) src = src.replace("BYPASS_LOGGING", str(self.options["BypassLogging"]["Value"]).lower()) src = src.replace("BYPASS_AMSI", str(self.options["BypassAmsi"]["Value"]).lower()) return src def get_description(self): path = get_path_in_package('core/wss/ttp/art/pwsh_ttp/discovery/T1049-3') with open(path) as text: head = [next(text) for l in range(4)] technique_name = head[0].replace('#TechniqueName: ', '').strip('\n') atomic_name = head[1].replace('#AtomicTestName: ', '').strip('\n') description = head[2].replace('#Description: ', '').strip('\n') language = head[3].replace('#Language: ', '').strip('\n') aux = '' count = 1 for char in description: if char == '&': continue aux += char if count % 126 == 0: aux += '\n' count += 1 out = '{}: {}\n{}\n\n{}\n'.format(technique_name, language, atomic_name, aux) return out
37.090909
104
0.507703
96a35873558e7e20ad49f9b61a0e2daf9d268f55
26,427
py
Python
test/test_comment_sidecar.py
avrona/comment-sidecar
9a148ddb9ffe89d55ca4a481852b87bbbae0d305
[ "MIT" ]
39
2017-07-10T14:03:35.000Z
2021-12-26T02:52:05.000Z
test/test_comment_sidecar.py
avrona/comment-sidecar
9a148ddb9ffe89d55ca4a481852b87bbbae0d305
[ "MIT" ]
3
2020-06-09T15:42:51.000Z
2021-02-24T20:37:26.000Z
test/test_comment_sidecar.py
avrona/comment-sidecar
9a148ddb9ffe89d55ca4a481852b87bbbae0d305
[ "MIT" ]
8
2018-01-07T11:57:54.000Z
2021-08-08T07:53:07.000Z
#!/usr/bin/env python3 import re import pytest import requests from mysql.connector import connect from requests.models import Response import unittest import hashlib import time from path import Path from assertpy import assert_that, fail UNSUBSCRIBE_SUCCESS_MSG = "unsubscribed successfully" UNSUBSCRIBE_ERROR_MSG = "Nothing has been updated. Either the comment doesn't exist or the unsubscribe token is invalid." ADMIN_EMAIL = 'test@localhost.de' DEFAULT_PATH = "/blogpost1/" DEFAULT_SITE = "https://petersworld.com" ERROR_MESSAGE_MISSING_SITE_PATH = "Please submit both query parameters 'site' and 'path'" INVALID_QUERY_PARAMS_UNSUBSCRIBE = "Please submit both query parameters 'commentId' and 'unsubscribeToken'" COMMENT_SIDECAR_URL = 'http://localhost/comment-sidecar.php' UNSUBSCRIBE_URL = 'http://localhost/unsubscribe.php' MAILHOG_BASE_URL = 'http://localhost:8025/api/' MAILHOG_MESSAGES_URL = MAILHOG_BASE_URL + 'v2/messages' MYSQLDB_CONNECTION = {'host': '127.0.0.1', 'port': 3306, 'user': 'root', 'passwd': 'root', 'db': 'comment-sidecar'} @pytest.fixture(scope="module", autouse=True) def db(): # first, run `docker-compose up` db = connect(**MYSQLDB_CONNECTION) cur = db.cursor() with get_file_path('sql/init.sql').open('r') as sql: query = "".join(sql.readlines()) cur.execute(query) return db @pytest.fixture(scope="function", autouse=True) def before_each(): db = connect(**MYSQLDB_CONNECTION) cur = db.cursor() cur.execute("TRUNCATE TABLE comments;") cur.execute("TRUNCATE TABLE ip_addresses;") set_rate_limit_threshold(seconds=0) @pytest.mark.parametrize("queryParams", {'', 'site=&path=', 'site=domain.com', 'path=blogpost1'}) def test_GET_invalid_query_params(queryParams): response = requests.get(f'{COMMENT_SIDECAR_URL}?{queryParams}') assert_that(response.status_code).is_equal_to(400) assert_that(response.json()["message"]).is_equal_to(ERROR_MESSAGE_MISSING_SITE_PATH) def test_GET_empty_array_if_no_comments(): response = get_comments() assert_that(response.text).is_equal_to('[]') def test_POST_and_GET_comment(): post_payload = create_post_payload() timestamp_before = int(time.time()) response = post_comment(post_payload) timestamp_after = int(time.time()) assert_that(response.json()['id']).is_equal_to(1) get_response = get_comments() comments_json = get_response.json() assert_that(comments_json).is_length(1) returned_comment = comments_json[0] assert_that(returned_comment)\ .contains_entry({'id': '1'})\ .contains_entry({'author': post_payload["author"]})\ .contains_entry({'content': post_payload["content"]})\ .does_not_contain_key('replies') assert_timestamp_between(returned_comment["creationTimestamp"], start=timestamp_before, end=timestamp_after) assert_absent_fields(returned_comment) def test_POST_comments_and_replies_and_GET_reply_chain(): # for adhoc debugging: `http "localhost/comment-sidecar.php?site=peterworld%2Ecom&path=%2Fblogpost1%2F&XDEBUG_SESSION_START=IDEA_DEBUG"` # root1 # - reply 1 to root # - reply 2 to root # - reply to reply 2 post_payload = create_post_payload() post_payload['content'] = 'root' response = post_comment(post_payload) root_id = response.json()['id'] post_payload = create_post_payload() post_payload['replyTo'] = root_id post_payload['content'] = 'reply 1 to root' post_comment(post_payload) post_payload = create_post_payload() post_payload['replyTo'] = root_id post_payload['content'] = 'reply 2 to root' response = post_comment(post_payload) reply2_id = response.json()['id'] post_payload = create_post_payload() post_payload['replyTo'] = reply2_id post_payload['content'] = 'reply 3 to reply 2' post_comment(post_payload) get_response = get_comments() # check root comments returned_comments = get_response.json() assert_that(returned_comments).is_length(1) # replies are nested so only one root comment replies = returned_comments[0]['replies'] # check reply level 1 assert_that(replies).is_not_none().is_length(2) assert_replies_contains(replies, { 'content': 'reply 1 to root', 'id': '2', 'author': 'Peter', }) assert_replies_contains(replies, { 'content': 'reply 2 to root', 'id': '3', 'author': 'Peter', }) for reply in replies: assert_absent_fields(reply) # check reply level 2 comment = get_comment_by_content(replies, 'reply 2 to root') replies_to_reply = comment['replies'] assert_that(replies_to_reply).is_length(1) assert_replies_contains(replies_to_reply, { 'content': 'reply 3 to reply 2', 'id': '4', 'author': 'Peter', }) def test_POST_invalid_replyTo_ID(): post_payload = create_post_payload() post_payload['replyTo'] = '989089' response = post_comment(post_payload, assert_success=False) assert_that(response.status_code).described_as("Invalid replyTo ID should be rejected.").is_equal_to(400) assert_that(response.json()['message']).is_equal_to("The replyTo value '989089' refers to a not existing id.") def test_POST_and_GET_comment_with_german_umlauts(): post_payload = create_post_payload() post_payload['content'] = "äöüß - Deutsche Umlaute? Kein Problem für utf-8! ÖÄÜ" post_payload['author'] = "öäüßÖÄÜ" response = post_comment(post_payload) assert_that(response.json()['id']).is_equal_to(1) get_response = get_comments() returned_comment = get_response.json()[0] assert_that(returned_comment)\ .contains_entry({'author': post_payload["author"]})\ .contains_entry({'content': post_payload["content"]}) def test_OPTIONS_CORS_headers_valid_origin(): # before sending a POST, the browser will send an OPTION request as a preflight to see the CORS headers. # the backend will only return the required CORS headers, if the Origin is set to a allowed domain. post_payload = create_post_payload() valid_origin = 'http://testdomain.com' preflight_response = requests.options(url=COMMENT_SIDECAR_URL, json=post_payload, headers={'Origin': valid_origin}) assert_cors_headers_exists(preflight_response, valid_origin) assert_that(preflight_response.text).is_empty() assert_that(get_comments().json())\ .described_as("No comment should have been created after an OPTIONS request")\ .is_empty() def test_OPTIONS_CORS_headers_invalid_origin(): post_payload = create_post_payload() valid_origin = 'http://invalid.com' preflight_response = requests.options(url=COMMENT_SIDECAR_URL, json=post_payload, headers={'Origin': valid_origin}) assert_cors_headers_doesnt_exists(preflight_response) assert_that(preflight_response.text).is_empty() assert_that(get_comments().json()) \ .described_as("No comment should have been created after an OPTIONS request") \ .is_empty() def test_GET_CORS_headers_valid_origin(): # for GETs, the browser will request immediately (without preflight), but will reject the response, if the CORS are not set. # the backend will only return the required CORS headers, if the Origin is set to a allowed domain. valid_origin = 'http://testdomain.com' response = requests.get("{}?site={}&path={}".format(COMMENT_SIDECAR_URL, DEFAULT_SITE, DEFAULT_PATH), headers={'Origin': valid_origin}) assert_cors_headers_exists(response, valid_origin) def test_GET_CORS_headers_invalid_origin(): valid_origin = 'http://invalid.com' response = requests.get("{}?site={}&path={}".format(COMMENT_SIDECAR_URL, DEFAULT_SITE, DEFAULT_PATH), headers={'Origin': valid_origin}) assert_cors_headers_doesnt_exists(response) def test_GET_different_paths(): path_with_two_comments = "/post1/" path_with_one_comment = "/post2/" post_payload = create_post_payload() post_payload['path'] = path_with_two_comments post_comment(post_payload) post_comment(post_payload) post_payload['path'] = path_with_one_comment post_comment(post_payload) response = get_comments(path=path_with_two_comments) assert_that(response.json()).is_length(2) response = get_comments(path=path_with_one_comment) assert_that(response.json()).is_length(1) def test_GET_different_sites(): site_with_two_comments = "mydomain2.com" site_with_one_comment = "mydomain1.com" post_payload = create_post_payload() post_payload['site'] = site_with_two_comments post_comment(post_payload) post_comment(post_payload) post_payload['site'] = site_with_one_comment post_comment(post_payload) response = get_comments(site=site_with_two_comments) assert_that(response.json()).is_length(2) response = get_comments(site=site_with_one_comment) assert_that(response.json()).is_length(1) def test_POST_without_optional_email(): post_payload = create_post_payload() post_payload.pop('email') response = post_comment(post_payload) assert_that(response.json()['id']).is_equal_to(1) @pytest.mark.parametrize("field", {'author', 'content', 'site', 'path'}) def test_POST_missing_fields(field): post_comment_with_missing_field_and_assert_error(field) @pytest.mark.parametrize("field", {'author', 'content', 'site', 'path'}) def test_POST_empty_fields(field): post_comment_with_empty_field_and_assert_error(field) @pytest.mark.parametrize("field", {'author', 'content', 'site', 'path'}) def test_POST_blank_fields(field): post_comment_with_blank_field_and_assert_error(field) def test_POST_to_long_fields(): post_comment_to_long_field_and_assert_error('author', 40) post_comment_to_long_field_and_assert_error('email', 40) post_comment_to_long_field_and_assert_error('site', 40) post_comment_to_long_field_and_assert_error('path', 170) def test_POST_spam_protection_set_url_is_spam(): post_payload = create_post_payload() post_payload['url'] = 'http://only.spambots.will/populate/this/field/' response = post_comment(post_payload, assert_success=False) assert_that(response.status_code)\ .described_as("POST payload with an URL field should be rejected. The URL an hidden form field and used for spam protection.")\ .is_equal_to(400) assert_that(response.json()['message']).is_empty() def test_email_notification_after_successful_POST(): clear_mails() post_payload = create_post_payload() post_comment(post_payload) json = requests.get(MAILHOG_MESSAGES_URL).json() assert_that(json['total']).is_equal_to(1) mail_content = json['items'][0]['Content'] mail_body = mail_content['Body'] assert_that(mail_body).contains(post_payload['site'])\ .contains(post_payload['path'])\ .contains(post_payload['content']) headers = mail_content['Headers'] assert_that(headers['Content-Transfer-Encoding'][0]).is_equal_to('8bit') assert_that(headers['Content-Type'][0]).is_equal_to('text/plain; charset=UTF-8') assert_that(headers['Mime-Version'][0]).is_equal_to('1.0') assert_that(headers['From'][0]).is_equal_to('{}<{}>'.format(post_payload['author'], post_payload['email'])) assert_that(headers['Subject'][0]).is_equal_to('Comment by {} on {}'.format(post_payload['author'], post_payload['path'])) assert_that(headers['To'][0]).is_equal_to(ADMIN_EMAIL) def test_no_email_notification_after_invalid_POST(): clear_mails() post_payload = create_post_payload() post_payload.pop('author') post_comment(post_payload, assert_success=False) json = requests.get(MAILHOG_MESSAGES_URL).json() assert_that(json['total']).is_equal_to(0) def test_POST_spam_protection_empty_url_is_fine(): post_payload = create_post_payload() post_payload['url'] = "" response = post_comment(post_payload) assert_that(response.json()['id']).is_equal_to(1) def test_escaped_HTML_XSS_protection(): post_payload = create_post_payload() post_payload['author'] = "<strong>Peter</strong>" post_payload['content'] = '<script type="text/javascript">document.querySelector("aside#comment-sidecar h1").innerText = "XSS";</script>' response = post_comment(post_payload) assert_that(response.json()['id']).is_equal_to(1) returned_json = get_comments().json()[0] assert_that(returned_json)\ .contains_entry({'author': '&lt;strong&gt;Peter&lt;/strong&gt;'})\ .contains_entry({'content': '&lt;script type=&quot;text/javascript&quot;&gt;document.querySelector(&quot;aside#comment-sidecar h1&quot;).innerText = &quot;XSS&quot;;&lt;/script&gt;'}) def test_subscription_mail_on_reply(): clear_mails() path = "/commented-post/" site = "https://mysupersite.de" parent = create_post_payload() parent["email"] = "root@root.com" parent["path"] = path parent["site"] = site response = post_comment(parent) parent_id = response.json()['id'] reply = create_post_payload() reply["replyTo"] = parent_id reply["path"] = path reply["site"] = site reply["content"] = "Root, I disagree!" reply["email"] = "reply@reply.com!" reply["author"] = "Replyer" post_comment(reply) json = requests.get(MAILHOG_MESSAGES_URL).json() assert_that(json['total']).is_greater_than(1) mail = find_mail_by_sender(items=json['items'], email_from=reply["author"]) if not mail: fail("No notification mail was found! recipient/parent: {}. sender/reply author: {}".format(parent["email"], reply["author"])) assert_that(mail["from"]).contains(reply["author"])\ .does_not_contain(reply["email"]) assert_that(mail).has_subject("Reply to your comment by {}".format(reply["author"]))\ .has_to(parent["email"]) unsubscribe_token = retrieve_unsubscribe_token_from_db(parent_id) unsubscribe_link = "{}?commentId={}&unsubscribeToken={}".format(UNSUBSCRIBE_URL, parent_id, unsubscribe_token) link_to_site = "{}{}#comment-sidecar".format(site, path) assert_that(mail["body"]).contains(reply["content"])\ .contains(unsubscribe_link)\ .contains(link_to_site)\ .contains(reply["author"])\ .does_not_contain(reply["email"]) def test_subscription_no_mail_on_reply_if_no_parent_mail_defined(): clear_mails() root_payload = create_post_payload() root_payload.pop('email') response = post_comment(root_payload) root_id = response.json()['id'] reply_payload = create_post_payload() reply_payload["replyTo"] = root_id reply_payload["content"] = "Root, I disagree!" reply_payload["email"] = "reply@reply.com!" reply_payload["author"] = "Replyer" post_comment(reply_payload) json = requests.get(MAILHOG_MESSAGES_URL).json() assert_no_mail_except_admin_mail(items=json['items']) def test_subscription_no_mail_on_reply_if_unsubscribed(): clear_mails() root_payload = create_post_payload() root_payload["email"] = "root@root.com" response = post_comment(root_payload) root_id = response.json()['id'] unsubscribe_token = retrieve_unsubscribe_token_from_db(root_id) unsubscribe(root_id, unsubscribe_token) reply_payload = create_post_payload() reply_payload["replyTo"] = root_id reply_payload["content"] = "Root, I disagree!" reply_payload["email"] = "reply@reply.com!" reply_payload["author"] = "Replyer" post_comment(reply_payload) json = requests.get(MAILHOG_MESSAGES_URL).json() assert_no_mail_except_admin_mail(items=json['items']) def test_unsubscribe_missing_parameter(): unsubscribe_with_url_assert_error('{}'.format(UNSUBSCRIBE_URL)) unsubscribe_with_url_assert_error('{}?commentId={}'.format(UNSUBSCRIBE_URL, 1)) unsubscribe_with_url_assert_error('{}?unsubscribeToken={}'.format(UNSUBSCRIBE_URL, '12391023')) def test_unsubscribe(): payload = create_post_payload() response = post_comment(payload) id = response.json()["id"] assume_subscription_state_in_db(id, True) unsubscribe_token = retrieve_unsubscribe_token_from_db(id) response = unsubscribe(id, unsubscribe_token) assert_that(response.text).contains(UNSUBSCRIBE_SUCCESS_MSG) assume_subscription_state_in_db(id, False) def test_unsubscribe_twice(): payload = create_post_payload() response = post_comment(payload) id = response.json()["id"] assume_subscription_state_in_db(id, True) unsubscribe_token = retrieve_unsubscribe_token_from_db(id) unsubscribe(id, unsubscribe_token) response = unsubscribe(id, unsubscribe_token) assert_that(response.text).is_equal_to(UNSUBSCRIBE_ERROR_MSG) assume_subscription_state_in_db(id, False) def test_unsubscribe_wrong_token(): payload = create_post_payload() response = post_comment(payload) id = response.json()["id"] assume_subscription_state_in_db(id, True) invalid_unsubscribe_token = "1111jd" response = unsubscribe(id, invalid_unsubscribe_token) assert_that(response.text).is_equal_to(UNSUBSCRIBE_ERROR_MSG) assume_subscription_state_in_db(id, True) def test_unsubscribe_wrong_id(): payload = create_post_payload() response = post_comment(payload) id = response.json()["id"] unsubscribe_token = retrieve_unsubscribe_token_from_db(id) response = unsubscribe(123, unsubscribe_token) assert_that(response.text).is_equal_to(UNSUBSCRIBE_ERROR_MSG) def test_rate_limiting_second_request_is_rejected(): set_rate_limit_threshold(seconds=1) post_comment(create_post_payload(), assert_success=True) response2 = post_comment(create_post_payload(), assert_success=False) assert_that(response2.status_code) \ .described_as("The rate limiting should prevent the second comment post") \ .is_equal_to(400) assert_that(response2.json()['message']).contains("exceeded the maximal number of comments ") def test_rate_limiting_second_request_is_okay_after_waiting_a_while(): set_rate_limit_threshold(seconds=1) post_comment(create_post_payload(), assert_success=True) time.sleep(2) post_comment(create_post_payload(), assert_success=True) def test_use_gzip_encoding(): assert_that(post_comment(create_post_payload()).headers['Content-Encoding']).is_equal_to("gzip") assert_that(get_comments().headers['Content-Encoding']).is_equal_to("gzip") # PRIVATE functions regex = re.compile(r'const RATE_LIMIT_THRESHOLD_SECONDS = ".*";', re.IGNORECASE) # well, it's a little bit hacky to touch the running php code in the source folder during the test # but it doesn't require adding complexity, performance decrease and security issues to the production code. def set_rate_limit_threshold(seconds): new_config_string = None config_path = get_file_path('src/config.php') with config_path.open("r") as config_file: config_string = config_file.read() new_config_string = regex.sub(f'const RATE_LIMIT_THRESHOLD_SECONDS = "{seconds}";', config_string) with config_path.open("w") as config_file: config_file.write(new_config_string) def assume_subscription_state_in_db(comment_id, expected_subscription_state): db = connect(**MYSQLDB_CONNECTION) cur = db.cursor() cur.execute("SELECT subscribed, email FROM comments WHERE id = {}".format(comment_id)) result = cur.fetchone() subscribed = result[0] email = result[1] if expected_subscription_state: assert_that(subscribed).described_as('subscribed state').is_equal_to(1) assert_that(email).described_as('email').is_not_none() else: assert_that(subscribed).described_as('subscribed state').is_equal_to(0) assert_that(email).described_as('email').is_none() def retrieve_unsubscribe_token_from_db(comment_id): db = connect(**MYSQLDB_CONNECTION) cur = db.cursor() cur.execute("SELECT unsubscribe_token FROM comments WHERE id = {}".format(comment_id)) return cur.fetchone()[0] def unsubscribe(comment_id, unsubscribe_token): response = requests.get(url='{}?commentId={}&unsubscribeToken={}&XDEBUG_SESSION_START=IDEA_DEBUG'.format(UNSUBSCRIBE_URL, comment_id, unsubscribe_token)) assert_that(response).has_status_code(200) return response def unsubscribe_with_url_assert_error(url): response = requests.get(url) assert_that(response).has_status_code(400) assert_that(response.json()['message']).is_equal_to(INVALID_QUERY_PARAMS_UNSUBSCRIBE) def assert_cors_headers_exists(preflight_response, exptected_allowed_origin): assert_that(preflight_response.headers)\ .contains_entry({'Access-Control-Allow-Origin': exptected_allowed_origin})\ .contains_entry({'Access-Control-Allow-Methods': 'GET, POST'})\ .contains_entry({'Access-Control-Allow-Headers': 'Content-Type'}) def assert_cors_headers_doesnt_exists(preflight_response): assert_that(preflight_response.headers)\ .does_not_contain_key('Access-Control-Allow-Origin')\ .does_not_contain_key('Access-Control-Allow-Methods')\ .does_not_contain_key('Access-Control-Allow-Headers') def assert_replies_contains(replies, assumed_element): replies_matching_assumed_element = [reply for reply in replies if reply['content'] == assumed_element['content'] and reply['id'] == assumed_element['id'] and reply['author'] == assumed_element['author'] ] assert_that(replies_matching_assumed_element) \ .described_as("Element is not in the list (or more than once).\nassumed_element: {}\nall elements: {}\n".format(assumed_element, replies)) \ .is_length(1) def assert_absent_fields(returned_comment): assert_that(returned_comment).does_not_contain_key('email')\ .does_not_contain_key('path')\ .does_not_contain_key('site')\ .does_not_contain_key('replyTo') def clear_mails(): response = requests.delete(MAILHOG_BASE_URL + 'v1/messages') assert_that(response.status_code).described_as("Test setup failed: Couldn't delete mails in mailhog.")\ .is_equal_to(200) def post_comment_with_missing_field_and_assert_error(missing_field: str): post_payload = create_post_payload() post_payload.pop(missing_field) response = post_comment(post_payload, assert_success=False) assert_that(response.status_code).is_equal_to(400) assert_that(response.json()['message']).is_equal_to(missing_field + " is missing, empty or blank") def post_comment_with_empty_field_and_assert_error(empty_field: str): post_payload = create_post_payload() post_payload[empty_field] = "" response = post_comment(post_payload, assert_success=False) assert_that(response.status_code).is_equal_to(400) assert_that(response.json()['message']).is_equal_to(empty_field + " is missing, empty or blank") def post_comment_with_blank_field_and_assert_error(blank_field: str): post_payload = create_post_payload() post_payload[blank_field] = " " response = post_comment(post_payload, assert_success=False) assert_that(response.status_code).is_equal_to(400) assert_that(response.json()['message']).is_equal_to(blank_field + " is missing, empty or blank") def post_comment_to_long_field_and_assert_error(field: str, max_length: int): post_payload = create_post_payload() post_payload[field] = "x" * (max_length + 1) response = post_comment(post_payload, assert_success=False) assert_that(response.json()['message']).is_equal_to(field + " value exceeds maximal length of " + str(max_length)) assert_that(response.status_code).is_equal_to(400) # valid length (check it to avoid off-by-one-errors) post_payload[field] = "x" * max_length post_comment(post_payload) def assert_timestamp_between(creation_timestamp: str, start: int, end: int): timestamp = int(creation_timestamp) assert_that(timestamp).is_greater_than_or_equal_to(start)\ .is_less_than_or_equal_to(end) def post_comment(post_payload, assert_success: bool=True) -> Response: response = requests.post(url=COMMENT_SIDECAR_URL, json=post_payload) if assert_success: assert_that(response.status_code) \ .described_as("Comment creation failed. Message: " + response.text) \ .is_equal_to(201) return response def get_comments(site: str = DEFAULT_SITE, path: str = DEFAULT_PATH, assert_success: bool=True) -> Response: response = requests.get("{}?site={}&path={}".format(COMMENT_SIDECAR_URL, site, path)) if assert_success: assert_that(response.status_code)\ .described_as("Getting comments failed. Message: " + response.text)\ .is_equal_to(200) return response def get_comment_by_content(replies, content): comments = [comment for comment in replies if comment['content'] == content] assert_that(comments)\ .described_as("There should be at least on comment with the content '{}'. Elements: {}".format(content, str(replies)))\ .is_length(1) return comments[0] def create_post_payload(): return { "author": "Peter", "content": "Peter's comment", "email": "peter@petersworld.com", "path": DEFAULT_PATH, "site": DEFAULT_SITE } def find_mail_by_sender(items, email_from: str): for item in items: content = item['Content'] headers = content['Headers'] if email_from in headers['From'][0]: return { "from": headers['From'][0] , "subject": headers['Subject'][0] , "to": headers['To'][0] , "body": content['Body'] } return None def assert_no_mail_except_admin_mail(items): for item in items: to = item['Content']['Headers']['To'][0] if to != ADMIN_EMAIL: actual_mail = "({}; {}; {}; {})".format(item['Content']['Body'], item['Content']['Headers']['From'][0], item['Content']['Headers']['Subject'][0], item['Content']['Headers']['To'][0]) fail("A mail was sent (despite the admin notification) but that shouldn't happen! " + actual_mail) def get_file_path(path): path = Path(path) # if invoked via make in project root if path.exists(): return path return Path(f'../{path}') # if invoked directly in the IDE if __name__ == '__main__': unittest.main()
42.900974
194
0.722784
40c68c13ec8f64e1c2bc0bb66cc69cae7ccd75d2
4,947
py
Python
gen_best_json.py
crwhite14/nasbench
ddd6f7840a7650f700565c8ec86e791a3cdecca4
[ "Apache-2.0" ]
1
2020-07-06T10:40:13.000Z
2020-07-06T10:40:13.000Z
gen_best_json.py
crwhite14/nasbench
ddd6f7840a7650f700565c8ec86e791a3cdecca4
[ "Apache-2.0" ]
null
null
null
gen_best_json.py
crwhite14/nasbench
ddd6f7840a7650f700565c8ec86e791a3cdecca4
[ "Apache-2.0" ]
1
2021-04-02T00:01:20.000Z
2021-04-02T00:01:20.000Z
from nasbench import api from random import randint import json import numpy as np import os from collections import OrderedDict # Replace this string with the path to the downloaded nasbench.tfrecord before # executing. NASBENCH_TFRECORD = 'data/nasbench_only108.tfrecord' INPUT = 'input' OUTPUT = 'output' CONV1X1 = 'conv1x1-bn-relu' CONV3X3 = 'conv3x3-bn-relu' MAXPOOL3X3 = 'maxpool3x3' def gen_data_point(nasbench): i = 0 epoch = 108 padding = [0, 0, 0, 0, 0, 0, 0] best_val_acc = 0 best_test_acc = 0 tf_data = {} for unique_hash in nasbench.hash_iterator(): fixed_metrics, computed_metrics = nasbench.get_metrics_from_hash(unique_hash) ops_array = transform_operations(fixed_metrics['module_operations']) ops_list = convert_tf_format(ops_array) adj_array = fixed_metrics['module_adjacency'].tolist() print('\nIterating over {} / {} unique models in the dataset.'.format(i, 423623)) test_acc_avg = 0.0 val_acc_avg = 0.0 training_time = 0.0 for repeat_index in range(len(computed_metrics[epoch])): assert len(computed_metrics[epoch])==3, 'len(computed_metrics[epoch]) should be 3' data_point = computed_metrics[epoch][repeat_index] val_acc_avg += data_point['final_validation_accuracy'] test_acc_avg += data_point['final_test_accuracy'] training_time += data_point['final_training_time'] val_acc_avg = val_acc_avg/3.0 test_acc_avg = test_acc_avg/3.0 tf_data[unique_hash] = (adj_array, ops_list, val_acc_avg) training_time_avg = training_time/3.0 adj_array = fixed_metrics['module_adjacency'].tolist() params = fixed_metrics['trainable_parameters'] print('parameters size: {}'.format(params)) model_spec = api.ModelSpec(fixed_metrics['module_adjacency'], fixed_metrics['module_operations']) data = nasbench.query(model_spec, epochs=108) print('api training time: {}'.format(data['training_time'])) print('real training time: {}'.format(training_time_avg)) if len(adj_array) <= 6: for row in range(len(adj_array)): for _ in range(7-len(adj_array)): adj_array[row].append(0) for _ in range(7-len(adj_array)): adj_array.append(padding) if val_acc_avg > best_val_acc: best_val_acc = val_acc_avg if test_acc_avg > best_test_acc: best_test_acc = test_acc_avg print('best val. acc: {:.4f}, best test acc {:.4f}'.format(best_val_acc, best_test_acc)) i += 1 return tf_data def transform_operations(ops): transform_dict = {'input':0, 'conv1x1-bn-relu':1, 'conv3x3-bn-relu':2, 'maxpool3x3':3, 'output':4} ops_array = np.zeros([len(ops),5], dtype='int8') for row, op in enumerate(ops): col = transform_dict[op] ops_array[row, col] = 1 return ops_array def convert_tf_format(ops_array): arr = ops_array[1:len(ops_array)-1] arr = arr[:, 1:-1] arr = np.argmax(arr, axis=-1) arr = np.insert(arr, 0, -1) arr = np.insert(arr, len(arr), -2) return arr.tolist() def gen_json_file(): nasbench = api.NASBench(NASBENCH_TFRECORD) tf_data = gen_data_point(nasbench) return tf_data if __name__ == '__main__': nasbench = api.NASBench(NASBENCH_TFRECORD) optimizer = 'bananas' # re, ls, bananas path = '~/nasbench311/NASLib/nas101_0/cifar10/bananas/' + optimizer seed_dirs = list(os.listdir(path)) seed_dirs = sorted(seed_dirs, key=lambda x: int(x)) topk = 10 shards = {} for seed_dir in seed_dirs: f_path = os.path.join(path, seed_dir) with open(os.path.join(f_path, 'errors.json')) as f: data = json.load(f)[1] ind = np.argsort(data['latest_acc'])[-topk:] for i in ind: model_spec = api.ModelSpec(data['latest_arch'][i][0], data['latest_arch'][i][1]) hash = nasbench.get_hash(model_spec) fixed_metrics, computed_metrics = nasbench.get_metrics_from_hash(hash) val_acc_avg = 0.0 for repeat_index in range(len(computed_metrics[108])): assert len(computed_metrics[108]) == 3, 'len(computed_metrics[epoch]) should be 3' data_point = computed_metrics[108][repeat_index] val_acc_avg += data_point['final_validation_accuracy'] val_acc_avg = val_acc_avg / 3.0 print("actual: {}, predicted: {}".format(val_acc_avg, data['latest_acc'][i])) if hash not in shards: shards[hash] = (data['latest_arch'][i][0], convert_tf_format(transform_operations(data['latest_arch'][i][1]))) print(len(shards)) with open('data/shard_best_{}.json'.format(optimizer), 'w') as outfile: json.dump(shards, outfile)
38.053846
130
0.63776
dc608e4d2a76a9b592bf02f9b504a7146958169e
2,602
py
Python
core/api.py
ans2human/silver-octo-waddle
c3fd566d8f2932966eb3f35ed5a19099fad4b3cb
[ "MIT" ]
484
2018-02-19T00:38:28.000Z
2022-03-26T16:13:51.000Z
core/api.py
30kaltekar/django-channels-chat
827559a7d309bfe07f77f108fb34b7cae4c55779
[ "MIT" ]
17
2019-01-16T19:05:24.000Z
2022-02-08T15:22:48.000Z
core/api.py
30kaltekar/django-channels-chat
827559a7d309bfe07f77f108fb34b7cae4c55779
[ "MIT" ]
159
2018-02-19T01:36:14.000Z
2022-03-26T12:03:33.000Z
from django.db.models import Q from django.shortcuts import get_object_or_404 from django.contrib.auth.models import User from rest_framework.pagination import PageNumberPagination from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from rest_framework.authentication import SessionAuthentication from chat import settings from core.serializers import MessageModelSerializer, UserModelSerializer from core.models import MessageModel class CsrfExemptSessionAuthentication(SessionAuthentication): """ SessionAuthentication scheme used by DRF. DRF's SessionAuthentication uses Django's session framework for authentication which requires CSRF to be checked. In this case we are going to disable CSRF tokens for the API. """ def enforce_csrf(self, request): return class MessagePagination(PageNumberPagination): """ Limit message prefetch to one page. """ page_size = settings.MESSAGES_TO_LOAD class MessageModelViewSet(ModelViewSet): queryset = MessageModel.objects.all() serializer_class = MessageModelSerializer allowed_methods = ('GET', 'POST', 'HEAD', 'OPTIONS') authentication_classes = (CsrfExemptSessionAuthentication,) pagination_class = MessagePagination def list(self, request, *args, **kwargs): self.queryset = self.queryset.filter(Q(recipient=request.user) | Q(user=request.user)) target = self.request.query_params.get('target', None) if target is not None: self.queryset = self.queryset.filter( Q(recipient=request.user, user__username=target) | Q(recipient__username=target, user=request.user)) return super(MessageModelViewSet, self).list(request, *args, **kwargs) def retrieve(self, request, *args, **kwargs): msg = get_object_or_404( self.queryset.filter(Q(recipient=request.user) | Q(user=request.user), Q(pk=kwargs['pk']))) serializer = self.get_serializer(msg) return Response(serializer.data) class UserModelViewSet(ModelViewSet): queryset = User.objects.all() serializer_class = UserModelSerializer allowed_methods = ('GET', 'HEAD', 'OPTIONS') pagination_class = None # Get all user def list(self, request, *args, **kwargs): # Get all users except yourself self.queryset = self.queryset.exclude(id=request.user.id) return super(UserModelViewSet, self).list(request, *args, **kwargs)
38.264706
78
0.697925
eb71f518d0e6e1212af1b1ff5fc1e9ca22733669
1,747
py
Python
setup.py
tohanss/repobee-feedback
76a2333b5bc359675c69a495d8050843f2394a5a
[ "MIT" ]
null
null
null
setup.py
tohanss/repobee-feedback
76a2333b5bc359675c69a495d8050843f2394a5a
[ "MIT" ]
null
null
null
setup.py
tohanss/repobee-feedback
76a2333b5bc359675c69a495d8050843f2394a5a
[ "MIT" ]
null
null
null
import re from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as f: readme = f.read() # parse the version instead of importing it to avoid dependency-related crashes with open("repobee_feedback/__version.py", mode="r", encoding="utf-8") as f: line = f.readline() __version__ = line.split("=")[1].strip(" '\"\n") assert re.match(r"^\d+(\.\d+){2}(-(alpha|beta|rc)(\.\d+)?)?$", __version__) test_requirements = ["pytest", "pytest-cov", "repobee", "codecov"] required = ["repobee>=3.0.0-beta.1"] setup( name="repobee-feedback", version=__version__, description="A plugin that adds the issue-feedback command to RepoBee", long_description=readme, long_description_content_type="text/markdown", author="Simon Larsén", author_email="slarse@kth.se", url="https://github.com/slarse/repobee-feedback", download_url="https://github.com/" "slarse" "/repobee-feedback" "/archive/v{}.tar.gz".format(__version__), license="MIT", packages=find_packages(exclude=("tests", "docs")), tests_require=test_requirements, install_requires=required, extras_require=dict(TEST=test_requirements), include_package_data=True, zip_safe=False, python_requires=">=3.6", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Education", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "License :: OSI Approved :: MIT License", "Operating System :: POSIX", ], )
35.653061
79
0.650258
737f9c05959cf8f64c320b6cb5cfb447c8dc570b
17,739
py
Python
google/cloud/dialogflow_v2beta1/types/audio_config.py
rogers140/python-dialogflow
d9ce91f8590947736560727624fbc0846601ce1c
[ "Apache-2.0" ]
null
null
null
google/cloud/dialogflow_v2beta1/types/audio_config.py
rogers140/python-dialogflow
d9ce91f8590947736560727624fbc0846601ce1c
[ "Apache-2.0" ]
null
null
null
google/cloud/dialogflow_v2beta1/types/audio_config.py
rogers140/python-dialogflow
d9ce91f8590947736560727624fbc0846601ce1c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.protobuf import duration_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.dialogflow.v2beta1", manifest={ "AudioEncoding", "SpeechModelVariant", "SsmlVoiceGender", "OutputAudioEncoding", "TelephonyDtmf", "SpeechContext", "SpeechWordInfo", "InputAudioConfig", "VoiceSelectionParams", "SynthesizeSpeechConfig", "OutputAudioConfig", "TelephonyDtmfEvents", "SpeechToTextConfig", }, ) class AudioEncoding(proto.Enum): r"""Audio encoding of the audio content sent in the conversational query request. Refer to the `Cloud Speech API documentation <https://cloud.google.com/speech-to-text/docs/basics>`__ for more details. """ AUDIO_ENCODING_UNSPECIFIED = 0 AUDIO_ENCODING_LINEAR_16 = 1 AUDIO_ENCODING_FLAC = 2 AUDIO_ENCODING_MULAW = 3 AUDIO_ENCODING_AMR = 4 AUDIO_ENCODING_AMR_WB = 5 AUDIO_ENCODING_OGG_OPUS = 6 AUDIO_ENCODING_SPEEX_WITH_HEADER_BYTE = 7 class SpeechModelVariant(proto.Enum): r"""Variant of the specified [Speech model][google.cloud.dialogflow.v2beta1.InputAudioConfig.model] to use. See the `Cloud Speech documentation <https://cloud.google.com/speech-to-text/docs/enhanced-models>`__ for which models have different variants. For example, the "phone_call" model has both a standard and an enhanced variant. When you use an enhanced model, you will generally receive higher quality results than for a standard model. """ SPEECH_MODEL_VARIANT_UNSPECIFIED = 0 USE_BEST_AVAILABLE = 1 USE_STANDARD = 2 USE_ENHANCED = 3 class SsmlVoiceGender(proto.Enum): r"""Gender of the voice as described in `SSML voice element <https://www.w3.org/TR/speech-synthesis11/#edef_voice>`__. """ SSML_VOICE_GENDER_UNSPECIFIED = 0 SSML_VOICE_GENDER_MALE = 1 SSML_VOICE_GENDER_FEMALE = 2 SSML_VOICE_GENDER_NEUTRAL = 3 class OutputAudioEncoding(proto.Enum): r"""Audio encoding of the output audio format in Text-To-Speech.""" OUTPUT_AUDIO_ENCODING_UNSPECIFIED = 0 OUTPUT_AUDIO_ENCODING_LINEAR_16 = 1 OUTPUT_AUDIO_ENCODING_MP3 = 2 OUTPUT_AUDIO_ENCODING_MP3_64_KBPS = 4 OUTPUT_AUDIO_ENCODING_OGG_OPUS = 3 OUTPUT_AUDIO_ENCODING_MULAW = 5 class TelephonyDtmf(proto.Enum): r"""`DTMF <https://en.wikipedia.org/wiki/Dual-tone_multi-frequency_signaling>`__ digit in Telephony Gateway. """ TELEPHONY_DTMF_UNSPECIFIED = 0 DTMF_ONE = 1 DTMF_TWO = 2 DTMF_THREE = 3 DTMF_FOUR = 4 DTMF_FIVE = 5 DTMF_SIX = 6 DTMF_SEVEN = 7 DTMF_EIGHT = 8 DTMF_NINE = 9 DTMF_ZERO = 10 DTMF_A = 11 DTMF_B = 12 DTMF_C = 13 DTMF_D = 14 DTMF_STAR = 15 DTMF_POUND = 16 class SpeechContext(proto.Message): r"""Hints for the speech recognizer to help with recognition in a specific conversation state. Attributes: phrases (Sequence[str]): Optional. A list of strings containing words and phrases that the speech recognizer should recognize with higher likelihood. This list can be used to: - improve accuracy for words and phrases you expect the user to say, e.g. typical commands for your Dialogflow agent - add additional words to the speech recognizer vocabulary - ... See the `Cloud Speech documentation <https://cloud.google.com/speech-to-text/quotas>`__ for usage limits. boost (float): Optional. Boost for this context compared to other contexts: - If the boost is positive, Dialogflow will increase the probability that the phrases in this context are recognized over similar sounding phrases. - If the boost is unspecified or non-positive, Dialogflow will not apply any boost. Dialogflow recommends that you use boosts in the range (0, 20] and that you find a value that fits your use case with binary search. """ phrases = proto.RepeatedField(proto.STRING, number=1,) boost = proto.Field(proto.FLOAT, number=2,) class SpeechWordInfo(proto.Message): r"""Information for a word recognized by the speech recognizer. Attributes: word (str): The word this info is for. start_offset (google.protobuf.duration_pb2.Duration): Time offset relative to the beginning of the audio that corresponds to the start of the spoken word. This is an experimental feature and the accuracy of the time offset can vary. end_offset (google.protobuf.duration_pb2.Duration): Time offset relative to the beginning of the audio that corresponds to the end of the spoken word. This is an experimental feature and the accuracy of the time offset can vary. confidence (float): The Speech confidence between 0.0 and 1.0 for this word. A higher number indicates an estimated greater likelihood that the recognized word is correct. The default of 0.0 is a sentinel value indicating that confidence was not set. This field is not guaranteed to be fully stable over time for the same audio input. Users should also not rely on it to always be provided. """ word = proto.Field(proto.STRING, number=3,) start_offset = proto.Field(proto.MESSAGE, number=1, message=duration_pb2.Duration,) end_offset = proto.Field(proto.MESSAGE, number=2, message=duration_pb2.Duration,) confidence = proto.Field(proto.FLOAT, number=4,) class InputAudioConfig(proto.Message): r"""Instructs the speech recognizer on how to process the audio content. Attributes: audio_encoding (google.cloud.dialogflow_v2beta1.types.AudioEncoding): Required. Audio encoding of the audio content to process. sample_rate_hertz (int): Required. Sample rate (in Hertz) of the audio content sent in the query. Refer to `Cloud Speech API documentation <https://cloud.google.com/speech-to-text/docs/basics>`__ for more details. language_code (str): Required. The language of the supplied audio. Dialogflow does not do translations. See `Language Support <https://cloud.google.com/dialogflow/docs/reference/language>`__ for a list of the currently supported language codes. Note that queries in the same session do not necessarily need to specify the same language. enable_word_info (bool): If ``true``, Dialogflow returns [SpeechWordInfo][google.cloud.dialogflow.v2beta1.SpeechWordInfo] in [StreamingRecognitionResult][google.cloud.dialogflow.v2beta1.StreamingRecognitionResult] with information about the recognized speech words, e.g. start and end time offsets. If false or unspecified, Speech doesn't return any word-level information. phrase_hints (Sequence[str]): A list of strings containing words and phrases that the speech recognizer should recognize with higher likelihood. See `the Cloud Speech documentation <https://cloud.google.com/speech-to-text/docs/basics#phrase-hints>`__ for more details. This field is deprecated. Please use `speech_contexts <>`__ instead. If you specify both `phrase_hints <>`__ and `speech_contexts <>`__, Dialogflow will treat the `phrase_hints <>`__ as a single additional `SpeechContext <>`__. speech_contexts (Sequence[google.cloud.dialogflow_v2beta1.types.SpeechContext]): Context information to assist speech recognition. See `the Cloud Speech documentation <https://cloud.google.com/speech-to-text/docs/basics#phrase-hints>`__ for more details. model (str): Which Speech model to select for the given request. Select the model best suited to your domain to get best results. If a model is not explicitly specified, then we auto-select a model based on the parameters in the InputAudioConfig. If enhanced speech model is enabled for the agent and an enhanced version of the specified model for the language does not exist, then the speech is recognized using the standard version of the specified model. Refer to `Cloud Speech API documentation <https://cloud.google.com/speech-to-text/docs/basics#select-model>`__ for more details. model_variant (google.cloud.dialogflow_v2beta1.types.SpeechModelVariant): Which variant of the [Speech model][google.cloud.dialogflow.v2beta1.InputAudioConfig.model] to use. single_utterance (bool): If ``false`` (default), recognition does not cease until the client closes the stream. If ``true``, the recognizer will detect a single spoken utterance in input audio. Recognition ceases when it detects the audio's voice has stopped or paused. In this case, once a detected intent is received, the client should close the stream and start a new request with a new stream as needed. Note: This setting is relevant only for streaming methods. Note: When specified, InputAudioConfig.single_utterance takes precedence over StreamingDetectIntentRequest.single_utterance. disable_no_speech_recognized_event (bool): Only used in [Participants.AnalyzeContent][google.cloud.dialogflow.v2beta1.Participants.AnalyzeContent] and [Participants.StreamingAnalyzeContent][google.cloud.dialogflow.v2beta1.Participants.StreamingAnalyzeContent]. If ``false`` and recognition doesn't return any result, trigger ``NO_SPEECH_RECOGNIZED`` event to Dialogflow agent. """ audio_encoding = proto.Field(proto.ENUM, number=1, enum="AudioEncoding",) sample_rate_hertz = proto.Field(proto.INT32, number=2,) language_code = proto.Field(proto.STRING, number=3,) enable_word_info = proto.Field(proto.BOOL, number=13,) phrase_hints = proto.RepeatedField(proto.STRING, number=4,) speech_contexts = proto.RepeatedField( proto.MESSAGE, number=11, message="SpeechContext", ) model = proto.Field(proto.STRING, number=7,) model_variant = proto.Field(proto.ENUM, number=10, enum="SpeechModelVariant",) single_utterance = proto.Field(proto.BOOL, number=8,) disable_no_speech_recognized_event = proto.Field(proto.BOOL, number=14,) class VoiceSelectionParams(proto.Message): r"""Description of which voice to use for speech synthesis. Attributes: name (str): Optional. The name of the voice. If not set, the service will choose a voice based on the other parameters such as language_code and [ssml_gender][google.cloud.dialogflow.v2beta1.VoiceSelectionParams.ssml_gender]. For the list of available voices, please refer to `Supported voices and languages <https://cloud.google.com/text-to-speech/docs/voices>`__. ssml_gender (google.cloud.dialogflow_v2beta1.types.SsmlVoiceGender): Optional. The preferred gender of the voice. If not set, the service will choose a voice based on the other parameters such as language_code and [name][google.cloud.dialogflow.v2beta1.VoiceSelectionParams.name]. Note that this is only a preference, not requirement. If a voice of the appropriate gender is not available, the synthesizer should substitute a voice with a different gender rather than failing the request. """ name = proto.Field(proto.STRING, number=1,) ssml_gender = proto.Field(proto.ENUM, number=2, enum="SsmlVoiceGender",) class SynthesizeSpeechConfig(proto.Message): r"""Configuration of how speech should be synthesized. Attributes: speaking_rate (float): Optional. Speaking rate/speed, in the range [0.25, 4.0]. 1.0 is the normal native speed supported by the specific voice. 2.0 is twice as fast, and 0.5 is half as fast. If unset(0.0), defaults to the native 1.0 speed. Any other values < 0.25 or > 4.0 will return an error. pitch (float): Optional. Speaking pitch, in the range [-20.0, 20.0]. 20 means increase 20 semitones from the original pitch. -20 means decrease 20 semitones from the original pitch. volume_gain_db (float): Optional. Volume gain (in dB) of the normal native volume supported by the specific voice, in the range [-96.0, 16.0]. If unset, or set to a value of 0.0 (dB), will play at normal native signal amplitude. A value of -6.0 (dB) will play at approximately half the amplitude of the normal native signal amplitude. A value of +6.0 (dB) will play at approximately twice the amplitude of the normal native signal amplitude. We strongly recommend not to exceed +10 (dB) as there's usually no effective increase in loudness for any value greater than that. effects_profile_id (Sequence[str]): Optional. An identifier which selects 'audio effects' profiles that are applied on (post synthesized) text to speech. Effects are applied on top of each other in the order they are given. voice (google.cloud.dialogflow_v2beta1.types.VoiceSelectionParams): Optional. The desired voice of the synthesized audio. """ speaking_rate = proto.Field(proto.DOUBLE, number=1,) pitch = proto.Field(proto.DOUBLE, number=2,) volume_gain_db = proto.Field(proto.DOUBLE, number=3,) effects_profile_id = proto.RepeatedField(proto.STRING, number=5,) voice = proto.Field(proto.MESSAGE, number=4, message="VoiceSelectionParams",) class OutputAudioConfig(proto.Message): r"""Instructs the speech synthesizer how to generate the output audio content. If this audio config is supplied in a request, it overrides all existing text-to-speech settings applied to the agent. Attributes: audio_encoding (google.cloud.dialogflow_v2beta1.types.OutputAudioEncoding): Required. Audio encoding of the synthesized audio content. sample_rate_hertz (int): The synthesis sample rate (in hertz) for this audio. If not provided, then the synthesizer will use the default sample rate based on the audio encoding. If this is different from the voice's natural sample rate, then the synthesizer will honor this request by converting to the desired sample rate (which might result in worse audio quality). synthesize_speech_config (google.cloud.dialogflow_v2beta1.types.SynthesizeSpeechConfig): Configuration of how speech should be synthesized. """ audio_encoding = proto.Field(proto.ENUM, number=1, enum="OutputAudioEncoding",) sample_rate_hertz = proto.Field(proto.INT32, number=2,) synthesize_speech_config = proto.Field( proto.MESSAGE, number=3, message="SynthesizeSpeechConfig", ) class TelephonyDtmfEvents(proto.Message): r"""A wrapper of repeated TelephonyDtmf digits. Attributes: dtmf_events (Sequence[google.cloud.dialogflow_v2beta1.types.TelephonyDtmf]): A sequence of TelephonyDtmf digits. """ dtmf_events = proto.RepeatedField(proto.ENUM, number=1, enum="TelephonyDtmf",) class SpeechToTextConfig(proto.Message): r"""Configures speech transcription for [ConversationProfile][google.cloud.dialogflow.v2beta1.ConversationProfile]. Attributes: speech_model_variant (google.cloud.dialogflow_v2beta1.types.SpeechModelVariant): Optional. The speech model used in speech to text. ``SPEECH_MODEL_VARIANT_UNSPECIFIED``, ``USE_BEST_AVAILABLE`` will be treated as ``USE_ENHANCED``. It can be overridden in [AnalyzeContentRequest][google.cloud.dialogflow.v2beta1.AnalyzeContentRequest] and [StreamingAnalyzeContentRequest][google.cloud.dialogflow.v2beta1.StreamingAnalyzeContentRequest] request. """ speech_model_variant = proto.Field(proto.ENUM, number=1, enum="SpeechModelVariant",) __all__ = tuple(sorted(__protobuf__.manifest))
42.539568
121
0.671797
c5cf5fe2b4c21f10e306a9a3f119e125e3cd5822
1,261
py
Python
myCatkin/src/joystick_drivers/wiimote/src/wiimote/wiimoteExceptions.py
sbow/scratch
8ac5cd772c8f6c3def6d25ad0402c3f973af2fae
[ "MIT" ]
3
2021-01-10T10:52:14.000Z
2021-12-31T10:19:25.000Z
src/joystick_drivers/wiimote/src/wiimote/wiimoteExceptions.py
EveVengerov/Gesture-Controlling-Drone
8fe38dbfdc496472e13e76bcdb55b471f51b42ea
[ "MIT" ]
null
null
null
src/joystick_drivers/wiimote/src/wiimote/wiimoteExceptions.py
EveVengerov/Gesture-Controlling-Drone
8fe38dbfdc496472e13e76bcdb55b471f51b42ea
[ "MIT" ]
1
2021-02-04T04:59:32.000Z
2021-02-04T04:59:32.000Z
# ############################################################################### # # File: wiimoteExceptions.py # RCS: $Header: $ # Description: Exception Classes for Wiimote Controller # Author: Andreas Paepcke # Created: Thu Aug 13 09:01:17 2009 # Modified: Mon Aug 17 11:27:02 2009 (Andreas Paepcke) paepcke@anw.willowgarage.com # Language: Python # Package: N/A # Status: Experimental (Do Not Distribute) # # ############################################################################### class WiimoteError(Exception): """Mother of all Wiimote exceptions""" errMsg = None def __init__(self, theErrMsg): self.errMsg = theErrMsg def __str__(self): return self.errMsg class WiimoteNotFoundError(WiimoteError): """Tried to pair but failed.""" class WiimoteEnableError(WiimoteError): """Found wiimote, but couldn't enable it.""" class CallbackStackMultInstError(WiimoteError): """Code attempted to create a second callback stack instance.""" class ResumeNonPausedError(WiimoteError): """Code attempted to resume callbacks without first pausing.""" class CallbackStackEmptyError(WiimoteError): """Attemp to operate on an empty callback stack."""
27.413043
87
0.601903
47af7eb1f277ec6dec1a39b84afb2cf584ab144d
3,517
py
Python
clinical_concept_extraction/model.py
sdoerstling/clinical_concept_extraction
cf6dcde864856462c0e3f9d0c0fc133792b51f6c
[ "MIT" ]
null
null
null
clinical_concept_extraction/model.py
sdoerstling/clinical_concept_extraction
cf6dcde864856462c0e3f9d0c0fc133792b51f6c
[ "MIT" ]
null
null
null
clinical_concept_extraction/model.py
sdoerstling/clinical_concept_extraction
cf6dcde864856462c0e3f9d0c0fc133792b51f6c
[ "MIT" ]
null
null
null
import os import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' flags.DEFINE_float('dropout_rate', 0.5, 'the dropout rate of the CNN or RNN') flags.DEFINE_string('rnn_cell_type', 'lstm', 'Type of RNN cell used') flags.DEFINE_integer('hidden_state', 256, 'Number of hidden state') flags.DEFINE_integer('depth', 2, 'Depth of rnn models') def bidirectional_rnn_func(x, l, train=True): rnn_type = FLAGS.rnn_cell_type if rnn_type.lower() == 'lstm': rnn_func = tf.nn.rnn_cell.BasicLSTMCell elif rnn_type.lower() == 'simplernn': rnn_func = tf.nn.rnn_cell.BasicRNNCell elif rnn_type.lower() == 'gru': rnn_func = tf.nn.rnn_cell.GRUCell else: raise TypeError all_fw_cells = [] all_bw_cells = [] for _ in range(FLAGS.depth): fw_cell = rnn_func(num_units=FLAGS.hidden_state) bw_cell = rnn_func(num_units=FLAGS.hidden_state) if train: fw_cell = tf.nn.rnn_cell.DropoutWrapper(fw_cell, state_keep_prob=FLAGS.dropout_rate) bw_cell = tf.nn.rnn_cell.DropoutWrapper(bw_cell, state_keep_prob=FLAGS.dropout_rate) all_fw_cells.append(fw_cell) all_bw_cells.append(bw_cell) else: all_fw_cells.append(fw_cell) all_bw_cells.append(bw_cell) rnn_fw_cells = tf.nn.rnn_cell.MultiRNNCell(all_fw_cells) rnn_bw_cells = tf.nn.rnn_cell.MultiRNNCell(all_bw_cells) rnn_layer, _ = tf.nn.bidirectional_dynamic_rnn( rnn_fw_cells, rnn_bw_cells, x, sequence_length=l, dtype=tf.float32) rnn_output = tf.concat(rnn_layer, axis=-1) return rnn_output def bidirectional_lstm_func_freeze(x, l): all_fw_cells = [] all_bw_cells = [] for _ in range(2): fw_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=256) bw_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=256) all_fw_cells.append(fw_cell) all_bw_cells.append(bw_cell) rnn_fw_cells = tf.nn.rnn_cell.MultiRNNCell(all_fw_cells) rnn_bw_cells = tf.nn.rnn_cell.MultiRNNCell(all_bw_cells) rnn_layer, _ = tf.nn.bidirectional_dynamic_rnn( rnn_fw_cells, rnn_bw_cells, x, sequence_length=l, dtype=tf.float32) rnn_output = tf.concat(rnn_layer, axis=-1) return rnn_output def annotation_ensemble(x, l, scope='clinical_concept_extraction'): with tf.variable_scope(scope): l = tf.cast(l, tf.int32) all_prediction = [] for model_id in range(10): with tf.variable_scope('copy_' + str(model_id)): weight = tf.get_variable('weight', [3, 1], tf.float32, tf.constant_initializer(1)) n_weight = tf.nn.softmax(weight, axis=0) gamma = tf.get_variable('gamma', [], tf.float32, tf.constant_initializer(1)) token_embedding = tf.tensordot(x, n_weight, [[-1], [0]]) token_embedding = gamma * tf.squeeze(token_embedding, axis=-1) lstm_output = bidirectional_lstm_func_freeze(token_embedding, l) logits = tf.layers.dense(lstm_output, 7, activation=None) transition = tf.get_variable('transitions', shape=[7, 7], dtype=tf.float32) viterbi_sequence, viterbi_score = tf.contrib.crf.crf_decode(logits, transition, l) prediction = tf.cast(viterbi_sequence, tf.int32) all_prediction.append(prediction) all_prediction = tf.stack(all_prediction, axis=-1) return all_prediction,
35.887755
98
0.667899
2195686ee9c7f6b0a7d1121fa8efe33cf3d6cf31
4,982
py
Python
pandas/tests/groupby/test_bin_groupby.py
mtrbean/pandas
c0ff67a22df9c18da1172766e313732ed2ab6c30
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2019-02-18T00:47:14.000Z
2019-02-18T00:47:14.000Z
pandas/tests/groupby/test_bin_groupby.py
mtrbean/pandas
c0ff67a22df9c18da1172766e313732ed2ab6c30
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2019-08-18T16:00:45.000Z
2019-08-18T16:00:45.000Z
pandas/tests/groupby/test_bin_groupby.py
mtrbean/pandas
c0ff67a22df9c18da1172766e313732ed2ab6c30
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2020-11-17T10:02:40.000Z
2020-11-17T10:02:40.000Z
import numpy as np from numpy import nan import pytest from pandas._libs import groupby, lib, reduction from pandas.core.dtypes.common import ensure_int64 from pandas import Index, Series, isna from pandas.core.groupby.ops import generate_bins_generic import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal def test_series_grouper(): obj = Series(np.random.randn(10)) dummy = obj[:0] labels = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int64) grouper = reduction.SeriesGrouper(obj, np.mean, labels, 2, dummy) result, counts = grouper.get_result() expected = np.array([obj[3:6].mean(), obj[6:].mean()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) def test_series_bin_grouper(): obj = Series(np.random.randn(10)) dummy = obj[:0] bins = np.array([3, 6]) grouper = reduction.SeriesBinGrouper(obj, np.mean, bins, dummy) result, counts = grouper.get_result() expected = np.array([obj[:3].mean(), obj[3:6].mean(), obj[6:].mean()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) class TestBinGroupers: def setup_method(self, method): self.obj = np.random.randn(10, 1) self.labels = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2], dtype=np.int64) self.bins = np.array([3, 6], dtype=np.int64) def test_generate_bins(self): values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6, 9], dtype=np.int64) for func in [lib.generate_bins_dt64, generate_bins_generic]: bins = func(values, binner, closed="left") assert (bins == np.array([2, 5, 6])).all() bins = func(values, binner, closed="right") assert (bins == np.array([3, 6, 6])).all() for func in [lib.generate_bins_dt64, generate_bins_generic]: values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6], dtype=np.int64) bins = func(values, binner, closed="right") assert (bins == np.array([3, 6])).all() msg = "Invalid length for values or for binner" with pytest.raises(ValueError, match=msg): generate_bins_generic(values, [], "right") with pytest.raises(ValueError, match=msg): generate_bins_generic(values[:0], binner, "right") msg = "Values falls before first bin" with pytest.raises(ValueError, match=msg): generate_bins_generic(values, [4], "right") msg = "Values falls after last bin" with pytest.raises(ValueError, match=msg): generate_bins_generic(values, [-3, -1], "right") def test_group_ohlc(): def _check(dtype): obj = np.array(np.random.randn(20), dtype=dtype) bins = np.array([6, 12, 20]) out = np.zeros((3, 4), dtype) counts = np.zeros(len(out), dtype=np.int64) labels = ensure_int64(np.repeat(np.arange(3), np.diff(np.r_[0, bins]))) func = getattr(groupby, "group_ohlc_{dtype}".format(dtype=dtype)) func(out, counts, obj[:, None], labels) def _ohlc(group): if isna(group).all(): return np.repeat(nan, 4) return [group[0], group.max(), group.min(), group[-1]] expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]), _ohlc(obj[12:])]) assert_almost_equal(out, expected) tm.assert_numpy_array_equal(counts, np.array([6, 6, 8], dtype=np.int64)) obj[:6] = nan func(out, counts, obj[:, None], labels) expected[0] = nan assert_almost_equal(out, expected) _check("float32") _check("float64") class TestMoments: pass class TestReducer: def test_int_index(self): arr = np.random.randn(100, 4) result = reduction.compute_reduction(arr, np.sum, labels=Index(np.arange(4))) expected = arr.sum(0) assert_almost_equal(result, expected) result = reduction.compute_reduction( arr, np.sum, axis=1, labels=Index(np.arange(100)) ) expected = arr.sum(1) assert_almost_equal(result, expected) dummy = Series(0.0, index=np.arange(100)) result = reduction.compute_reduction( arr, np.sum, dummy=dummy, labels=Index(np.arange(4)) ) expected = arr.sum(0) assert_almost_equal(result, expected) dummy = Series(0.0, index=np.arange(4)) result = reduction.compute_reduction( arr, np.sum, axis=1, dummy=dummy, labels=Index(np.arange(100)) ) expected = arr.sum(1) assert_almost_equal(result, expected) result = reduction.compute_reduction( arr, np.sum, axis=1, dummy=dummy, labels=Index(np.arange(100)) ) assert_almost_equal(result, expected)
32.993377
85
0.613408
21cac8447a322467c292896d4a9a422c8ac6de7b
72
py
Python
setup.py
MathOnco/valis
1ec9a88f21930d82fa5e823276ff78ff8b4f3a5a
[ "MIT" ]
4
2022-03-14T12:55:42.000Z
2022-03-17T10:06:29.000Z
setup.py
MathOnco/valis
1ec9a88f21930d82fa5e823276ff78ff8b4f3a5a
[ "MIT" ]
null
null
null
setup.py
MathOnco/valis
1ec9a88f21930d82fa5e823276ff78ff8b4f3a5a
[ "MIT" ]
null
null
null
if __name__ == "__main__": from setuptools import setup setup()
18
32
0.666667
8a75a115eba7099b7a82ed4713f501a6da6ee15d
1,734
py
Python
doc/source/EXAMPLES/mu_labelsspatial.py
kapteyn-astro/kapteyn
f12332cfd567c7c0da40628dcfc7b297971ee636
[ "BSD-3-Clause" ]
3
2016-04-28T08:55:33.000Z
2018-07-23T18:35:58.000Z
doc/source/EXAMPLES/mu_labelsspatial.py
kapteyn-astro/kapteyn
f12332cfd567c7c0da40628dcfc7b297971ee636
[ "BSD-3-Clause" ]
2
2020-07-23T12:28:37.000Z
2021-07-13T18:26:06.000Z
doc/source/EXAMPLES/mu_labelsspatial.py
kapteyn-astro/kapteyn
f12332cfd567c7c0da40628dcfc7b297971ee636
[ "BSD-3-Clause" ]
3
2017-05-03T14:01:08.000Z
2020-07-23T12:23:28.000Z
from kapteyn import maputils from matplotlib import pylab as plt header = { 'NAXIS' : 3, 'BUNIT' : 'w.u.', 'CDELT1' : -1.200000000000E-03, 'CDELT2' : 1.497160000000E-03, 'CDELT3' : 97647.745732, 'CRPIX1' : 5, 'CRPIX2' : 6, 'CRPIX3' : 32, 'CRVAL1' : 1.787792000000E+02, 'CRVAL2' : 5.365500000000E+01, 'CRVAL3' : 1378471216.4292786, 'CTYPE1' : 'RA---NCP', 'CTYPE2' : 'DEC--NCP', 'CTYPE3' : 'FREQ-OHEL', 'CUNIT1' : 'DEGREE', 'CUNIT2' : 'DEGREE', 'CUNIT3' : 'HZ', 'DRVAL3' : 1.050000000000E+03, 'DUNIT3' : 'KM/S', 'FREQ0' : 1.420405752e+9, 'INSTRUME' : 'WSRT', 'NAXIS1' : 100, 'NAXIS2' : 100, 'NAXIS3' : 64 } fig = plt.figure(figsize=(7,7)) fig.suptitle("Axis labels for spatial maps", fontsize=14, color='r') fig.subplots_adjust(left=0.18, bottom=0.10, right=0.90, top=0.90, wspace=0.95, hspace=0.20) frame = fig.add_subplot(2,2,1) f = maputils.FITSimage(externalheader=header) f.set_imageaxes(1,2) annim = f.Annotatedimage(frame) # Default labeling grat = annim.Graticule() frame = fig.add_subplot(2,2,2) annim = f.Annotatedimage(frame) # Plot labels with start position and increment grat = annim.Graticule(startx='11h55m', deltax="15 hmssec", deltay="3 arcmin") frame = fig.add_subplot(2,2,3) annim = f.Annotatedimage(frame) # Plot labels in string only grat = annim.Graticule(startx='11h55m 11h54m30s') grat.setp_tick(plotaxis="bottom", texsexa=False) frame = fig.add_subplot(2,2,4) annim = f.Annotatedimage(frame) grat = annim.Graticule(startx="178.75 deg", deltax="6 arcmin", unitsx="degree") grat.setp_ticklabel(plotaxis="left", fmt="s") maputils.showall()
36.125
80
0.630911
4a29261557a3c4928a0e1cc07159b183139e6a53
12,542
py
Python
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/extended_link/tlvs/tlv/unknown_tlv/__init__.py
ckishimo/napalm-yang
8f2bd907bd3afcde3c2f8e985192de74748baf6c
[ "Apache-2.0" ]
64
2016-10-20T15:47:18.000Z
2021-11-11T11:57:32.000Z
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/extended_link/tlvs/tlv/unknown_tlv/__init__.py
ckishimo/napalm-yang
8f2bd907bd3afcde3c2f8e985192de74748baf6c
[ "Apache-2.0" ]
126
2016-10-05T10:36:14.000Z
2019-05-15T08:43:23.000Z
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/extended_link/tlvs/tlv/unknown_tlv/__init__.py
ckishimo/napalm-yang
8f2bd907bd3afcde3c2f8e985192de74748baf6c
[ "Apache-2.0" ]
63
2016-11-07T15:23:08.000Z
2021-09-22T14:41:16.000Z
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ from . import state class unknown_tlv(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/opaque-lsa/extended-link/tlvs/tlv/unknown-tlv. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: An unknown TLV within the context. Unknown TLVs are defined to be the set of TLVs that are not modelled within the OpenConfig model, or are unknown to the local system such that it cannot decode their value. """ __slots__ = ("_path_helper", "_extmethods", "__state") _yang_name = "unknown-tlv" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "ospfv2", "areas", "area", "lsdb", "lsa-types", "lsa-type", "lsas", "lsa", "opaque-lsa", "extended-link", "tlvs", "tlv", "unknown-tlv", ] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/extended_link/tlvs/tlv/unknown_tlv/state (container) YANG Description: Contents of an unknown TLV within the LSA """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/extended_link/tlvs/tlv/unknown_tlv/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: Contents of an unknown TLV within the LSA """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) state = __builtin__.property(_get_state) _pyangbind_elements = OrderedDict([("state", state)]) from . import state class unknown_tlv(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/opaque-lsa/extended-link/tlvs/tlv/unknown-tlv. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: An unknown TLV within the context. Unknown TLVs are defined to be the set of TLVs that are not modelled within the OpenConfig model, or are unknown to the local system such that it cannot decode their value. """ __slots__ = ("_path_helper", "_extmethods", "__state") _yang_name = "unknown-tlv" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "ospfv2", "areas", "area", "lsdb", "lsa-types", "lsa-type", "lsas", "lsa", "opaque-lsa", "extended-link", "tlvs", "tlv", "unknown-tlv", ] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/extended_link/tlvs/tlv/unknown_tlv/state (container) YANG Description: Contents of an unknown TLV within the LSA """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/extended_link/tlvs/tlv/unknown_tlv/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: Contents of an unknown TLV within the LSA """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) state = __builtin__.property(_get_state) _pyangbind_elements = OrderedDict([("state", state)])
37.550898
375
0.593047
28db7498ebb18daf5a716b9191f39edfcf1144fa
67
py
Python
tests/components_tests/__init__.py
seblee97/student_teacher_catastrophic
9baaaf2850025ba9cf33d61c42386bc4c3b2dad2
[ "MIT" ]
2
2021-09-13T01:44:09.000Z
2021-12-11T11:56:49.000Z
tests/components_tests/__init__.py
seblee97/student_teacher_catastrophic
9baaaf2850025ba9cf33d61c42386bc4c3b2dad2
[ "MIT" ]
8
2020-11-13T18:37:30.000Z
2022-02-15T15:11:51.000Z
tests/components_tests/__init__.py
seblee97/student_teacher_catastrophic
9baaaf2850025ba9cf33d61c42386bc4c3b2dad2
[ "MIT" ]
null
null
null
from . import data_modules_tests __all__ = ["data_modules_tests"]
16.75
32
0.791045
a2171b216369ecb933adefa23b5760cfffdc415c
3,312
py
Python
server/url.py
microsoft/OneLabeler
316175e98a1cba72d651567d9fac08fc6c7bdf4f
[ "MIT" ]
8
2022-03-26T17:45:01.000Z
2022-03-30T14:12:20.000Z
server/url.py
microsoft/OneLabeler
316175e98a1cba72d651567d9fac08fc6c7bdf4f
[ "MIT" ]
null
null
null
server/url.py
microsoft/OneLabeler
316175e98a1cba72d651567d9fac08fc6c7bdf4f
[ "MIT" ]
1
2022-03-27T06:11:24.000Z
2022-03-27T06:11:24.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from tornado.web import RequestHandler from handlers import (CompileHandler, ModelTrainingHandler, ImageProcessingHandler) # Data object selection handlers: from handlers.data_object_selection.cluster_centroids import Handler as DOSClusterCentroids from handlers.data_object_selection.cluster import Handler as DOSCluster from handlers.data_object_selection.dense_areas import Handler as DOSDenseAreas from handlers.data_object_selection.entropy import Handler as DOSEntropy from handlers.data_object_selection.least_confident import Handler as DOSLeastConfident from handlers.data_object_selection.random import Handler as DOSRandom from handlers.data_object_selection.smallest_margin import Handler as DOSSmallestMargin # Default labeling handlers: from handlers.default_labeling.model_prediction import Handler as DLModelPrediction from handlers.default_labeling.null import Handler as DLNull from handlers.default_labeling.pos_tagging import Handler as DLPosTagging from handlers.default_labeling.random import Handler as DLRandom # Feature extraction handlers: from handlers.feature_extraction.image_bow import Handler as FEImageBow from handlers.feature_extraction.image_lda import Handler as FEImageLda from handlers.feature_extraction.image_svd import Handler as FEImageSvd from handlers.feature_extraction.text_nmf import Handler as FETextNmf # Projection handlers: from handlers.projection.mds import Handler as ProjectionMDS from handlers.projection.pca import Handler as ProjectionPCA from handlers.projection.tsne import Handler as ProjectionTSNE class RoundtripHandler(RequestHandler): def post(self): self.set_header('Access-Control-Allow-Origin', '*') url = [ # request for compiled exe package (r'/compile/(.*)', CompileHandler), # request for image processing algorithms (r'/imgproc/(.*)', ImageProcessingHandler), # request for features computed with features extraction algorithms (r'/features/image/BoW', FEImageBow), (r'/features/image/LDA', FEImageLda), (r'/features/image/SVD', FEImageSvd), (r'/features/text/NMF', FETextNmf), # request for selection computed with data object selection algorithms (r'/selection/ClusterCentroids', DOSClusterCentroids), (r'/selection/Cluster', DOSCluster), (r'/selection/DenseAreas', DOSDenseAreas), (r'/selection/Entropy', DOSEntropy), (r'/selection/LeastConfident', DOSLeastConfident), (r'/selection/Random', DOSRandom), (r'/selection/SmallestMargin', DOSSmallestMargin), # request for default labels computed with default labeling algorithms (r'/defaultLabels/ModelPrediction', DLModelPrediction), (r'/defaultLabels/Null', DLNull), (r'/defaultLabels/PosTagging', DLPosTagging), (r'/defaultLabels/Random', DLRandom), # request for projection computed with dimension reduction algorithms (r'/projection/MDS', ProjectionMDS), (r'/projection/PCA', ProjectionPCA), (r'/projection/TSNE', ProjectionTSNE), # request for updated model computed with interim model training algorithms (r'/modelUpdated/(.*)', ModelTrainingHandler), # request for roundtrip testing (r'/roundtrip', RoundtripHandler), ]
43.578947
91
0.780193
9287e6e71705c10f85d0c94440f66390e77140e7
28,857
py
Python
kopf/reactor/registries.py
tinyzimmer/kopf
74c42a2acdf2a72446d290fa1f27b53ec5d43218
[ "MIT" ]
null
null
null
kopf/reactor/registries.py
tinyzimmer/kopf
74c42a2acdf2a72446d290fa1f27b53ec5d43218
[ "MIT" ]
null
null
null
kopf/reactor/registries.py
tinyzimmer/kopf
74c42a2acdf2a72446d290fa1f27b53ec5d43218
[ "MIT" ]
null
null
null
""" A registry of the handlers, attached to the resources or events. The global registry is populated by the `kopf.on` decorators, and is used to register the resources being watched and handled, and to attach the handlers to the specific causes (create/update/delete/field-change). The simple registry is part of the global registry (for each individual resource), and also used for the sub-handlers within a top-level handler. Both are used in the `kopf.reactor.handling` to retrieve the list of the handlers to be executed on each reaction cycle. """ import abc import collections import functools import warnings from types import FunctionType, MethodType from typing import (Any, MutableMapping, Optional, Sequence, Iterable, Iterator, List, Set, FrozenSet, Mapping, Callable, cast, Generic, TypeVar, Union, Container) from kopf.reactor import causation from kopf.reactor import invocation from kopf.structs import callbacks from kopf.structs import dicts from kopf.structs import diffs from kopf.structs import filters from kopf.structs import handlers from kopf.structs import resources as resources_ from kopf.utilities import piggybacking # We only type-check for known classes of handlers/callbacks, and ignore any custom subclasses. CauseT = TypeVar('CauseT', bound=causation.BaseCause) HandlerT = TypeVar('HandlerT', bound=handlers.BaseHandler) ResourceHandlerT = TypeVar('ResourceHandlerT', bound=handlers.ResourceHandler) HandlerFnT = TypeVar('HandlerFnT', callbacks.ActivityFn, callbacks.ResourceWatchingFn, callbacks.ResourceSpawningFn, callbacks.ResourceChangingFn, Union[callbacks.ResourceWatchingFn, callbacks.ResourceChangingFn]) # DEPRECATED: for legacy_registries class GenericRegistry(Generic[HandlerFnT, HandlerT]): """ A generic base class of a simple registry (with no handler getters). """ _handlers: List[HandlerT] def __init__(self) -> None: super().__init__() self._handlers = [] def __bool__(self) -> bool: return bool(self._handlers) def append(self, handler: HandlerT) -> None: self._handlers.append(handler) class ActivityRegistry(GenericRegistry[ callbacks.ActivityFn, handlers.ActivityHandler]): def register( self, fn: callbacks.ActivityFn, *, id: Optional[str] = None, errors: Optional[handlers.ErrorsMode] = None, timeout: Optional[float] = None, retries: Optional[int] = None, backoff: Optional[float] = None, cooldown: Optional[float] = None, # deprecated, use `backoff` activity: Optional[handlers.Activity] = None, _fallback: bool = False, ) -> callbacks.ActivityFn: warnings.warn("registry.register() is deprecated; " "use @kopf.on... decorators with registry= kwarg.", DeprecationWarning) real_id = generate_id(fn=fn, id=id) handler = handlers.ActivityHandler( id=real_id, fn=fn, activity=activity, errors=errors, timeout=timeout, retries=retries, backoff=backoff, cooldown=cooldown, _fallback=_fallback, ) self.append(handler) return fn def get_handlers( self, activity: handlers.Activity, ) -> Sequence[handlers.ActivityHandler]: return list(_deduplicated(self.iter_handlers(activity=activity))) def iter_handlers( self, activity: handlers.Activity, ) -> Iterator[handlers.ActivityHandler]: found: bool = False # Regular handlers go first. for handler in self._handlers: if handler.activity is None or handler.activity == activity and not handler._fallback: yield handler found = True # Fallback handlers -- only if there were no matching regular handlers. if not found: for handler in self._handlers: if handler.activity is None or handler.activity == activity and handler._fallback: yield handler class ResourceRegistry( Generic[CauseT, HandlerFnT, ResourceHandlerT], GenericRegistry[HandlerFnT, ResourceHandlerT]): def get_handlers( self, cause: CauseT, excluded: Container[handlers.HandlerId] = frozenset(), ) -> Sequence[ResourceHandlerT]: return list(_deduplicated(self.iter_handlers(cause=cause, excluded=excluded))) @abc.abstractmethod def iter_handlers( self, cause: CauseT, excluded: Container[handlers.HandlerId] = frozenset(), ) -> Iterator[ResourceHandlerT]: raise NotImplementedError def get_extra_fields( self, ) -> Set[dicts.FieldPath]: return set(self.iter_extra_fields()) def iter_extra_fields( self, ) -> Iterator[dicts.FieldPath]: for handler in self._handlers: if handler.field: yield handler.field def requires_finalizer( self, cause: causation.ResourceCause, excluded: Container[handlers.HandlerId] = frozenset(), ) -> bool: """ Check whether a finalizer should be added to the given resource or not. """ # check whether the body matches a deletion handler for handler in self._handlers: if handler.id not in excluded: if handler.requires_finalizer and match(handler=handler, cause=cause): return True return False class ResourceWatchingRegistry(ResourceRegistry[ causation.ResourceWatchingCause, callbacks.ResourceWatchingFn, handlers.ResourceWatchingHandler]): def register( self, fn: callbacks.ResourceWatchingFn, *, id: Optional[str] = None, errors: Optional[handlers.ErrorsMode] = None, timeout: Optional[float] = None, retries: Optional[int] = None, backoff: Optional[float] = None, cooldown: Optional[float] = None, # deprecated, use `backoff` labels: Optional[filters.MetaFilter] = None, annotations: Optional[filters.MetaFilter] = None, when: Optional[callbacks.WhenFilterFn] = None, ) -> callbacks.ResourceWatchingFn: warnings.warn("registry.register() is deprecated; " "use @kopf.on... decorators with registry= kwarg.", DeprecationWarning) real_id = generate_id(fn=fn, id=id) handler = handlers.ResourceWatchingHandler( id=real_id, fn=fn, errors=errors, timeout=timeout, retries=retries, backoff=backoff, cooldown=cooldown, labels=labels, annotations=annotations, when=when, ) self.append(handler) return fn def iter_handlers( self, cause: causation.ResourceWatchingCause, excluded: Container[handlers.HandlerId] = frozenset(), ) -> Iterator[handlers.ResourceWatchingHandler]: for handler in self._handlers: if handler.id not in excluded: if match(handler=handler, cause=cause, ignore_fields=True): yield handler class ResourceSpawningRegistry(ResourceRegistry[ causation.ResourceSpawningCause, callbacks.ResourceSpawningFn, handlers.ResourceSpawningHandler]): @abc.abstractmethod def iter_handlers( self, cause: causation.ResourceSpawningCause, excluded: Container[handlers.HandlerId] = frozenset(), ) -> Iterator[handlers.ResourceSpawningHandler]: for handler in self._handlers: if handler.id not in excluded: if match(handler=handler, cause=cause): yield handler class ResourceChangingRegistry(ResourceRegistry[ causation.ResourceChangingCause, callbacks.ResourceChangingFn, handlers.ResourceChangingHandler]): def register( self, fn: callbacks.ResourceChangingFn, *, id: Optional[str] = None, reason: Optional[handlers.Reason] = None, event: Optional[str] = None, # deprecated, use `reason` field: Optional[dicts.FieldSpec] = None, errors: Optional[handlers.ErrorsMode] = None, timeout: Optional[float] = None, retries: Optional[int] = None, backoff: Optional[float] = None, cooldown: Optional[float] = None, # deprecated, use `backoff` initial: Optional[bool] = None, deleted: Optional[bool] = None, requires_finalizer: bool = False, labels: Optional[filters.MetaFilter] = None, annotations: Optional[filters.MetaFilter] = None, when: Optional[callbacks.WhenFilterFn] = None, ) -> callbacks.ResourceChangingFn: warnings.warn("registry.register() is deprecated; " "use @kopf.on... decorators with registry= kwarg.", DeprecationWarning) if reason is None and event is not None: reason = handlers.Reason(event) real_field = dicts.parse_field(field) or None # to not store tuple() as a no-field case. real_id = generate_id(fn=fn, id=id, suffix=".".join(real_field or [])) handler = handlers.ResourceChangingHandler( id=real_id, fn=fn, reason=reason, field=real_field, errors=errors, timeout=timeout, retries=retries, backoff=backoff, cooldown=cooldown, initial=initial, deleted=deleted, requires_finalizer=requires_finalizer, labels=labels, annotations=annotations, when=when, ) self.append(handler) return fn def iter_handlers( self, cause: causation.ResourceChangingCause, excluded: Container[handlers.HandlerId] = frozenset(), ) -> Iterator[handlers.ResourceChangingHandler]: for handler in self._handlers: if handler.id not in excluded: if handler.reason is None or handler.reason == cause.reason: if handler.initial and not cause.initial: pass # skip initial handlers in non-initial causes. elif handler.initial and cause.deleted and not handler.deleted: pass # skip initial handlers on deletion, unless explicitly marked as used. elif match(handler=handler, cause=cause): yield handler class OperatorRegistry: """ A global registry is used for handling of multiple resources & activities. It is usually populated by the ``@kopf.on...`` decorators, but can also be explicitly created and used in the embedded operators. """ activity_handlers: ActivityRegistry resource_watching_handlers: MutableMapping[resources_.Resource, ResourceWatchingRegistry] resource_spawning_handlers: MutableMapping[resources_.Resource, ResourceSpawningRegistry] resource_changing_handlers: MutableMapping[resources_.Resource, ResourceChangingRegistry] def __init__(self) -> None: super().__init__() self.activity_handlers = ActivityRegistry() self.resource_watching_handlers = collections.defaultdict(ResourceWatchingRegistry) self.resource_spawning_handlers = collections.defaultdict(ResourceSpawningRegistry) self.resource_changing_handlers = collections.defaultdict(ResourceChangingRegistry) @property def resources(self) -> FrozenSet[resources_.Resource]: """ All known resources in the registry. """ return (frozenset(self.resource_watching_handlers) | frozenset(self.resource_spawning_handlers) | frozenset(self.resource_changing_handlers)) # # Everything below is deprecated and will be removed in the next major release. # def register_activity_handler( self, fn: callbacks.ActivityFn, *, id: Optional[str] = None, errors: Optional[handlers.ErrorsMode] = None, timeout: Optional[float] = None, retries: Optional[int] = None, backoff: Optional[float] = None, cooldown: Optional[float] = None, # deprecated, use `backoff` activity: Optional[handlers.Activity] = None, _fallback: bool = False, ) -> callbacks.ActivityFn: warnings.warn("registry.register_activity_handler() is deprecated; " "use @kopf.on... decorators with registry= kwarg.", DeprecationWarning) return self.activity_handlers.register( fn=fn, id=id, activity=activity, errors=errors, timeout=timeout, retries=retries, backoff=backoff, cooldown=cooldown, _fallback=_fallback, ) def register_resource_watching_handler( self, group: str, version: str, plural: str, fn: callbacks.ResourceWatchingFn, id: Optional[str] = None, labels: Optional[filters.MetaFilter] = None, annotations: Optional[filters.MetaFilter] = None, when: Optional[callbacks.WhenFilterFn] = None, ) -> callbacks.ResourceWatchingFn: """ Register an additional handler function for low-level events. """ warnings.warn("registry.register_resource_watching_handler() is deprecated; " "use @kopf.on... decorators with registry= kwarg.", DeprecationWarning) resource = resources_.Resource(group, version, plural) return self.resource_watching_handlers[resource].register( fn=fn, id=id, labels=labels, annotations=annotations, when=when, ) def register_resource_changing_handler( self, group: str, version: str, plural: str, fn: callbacks.ResourceChangingFn, id: Optional[str] = None, reason: Optional[handlers.Reason] = None, event: Optional[str] = None, # deprecated, use `reason` field: Optional[dicts.FieldSpec] = None, errors: Optional[handlers.ErrorsMode] = None, timeout: Optional[float] = None, retries: Optional[int] = None, backoff: Optional[float] = None, cooldown: Optional[float] = None, # deprecated, use `backoff` initial: Optional[bool] = None, deleted: Optional[bool] = None, requires_finalizer: bool = False, labels: Optional[filters.MetaFilter] = None, annotations: Optional[filters.MetaFilter] = None, when: Optional[callbacks.WhenFilterFn] = None, ) -> callbacks.ResourceChangingFn: """ Register an additional handler function for the specific resource and specific reason. """ warnings.warn("registry.register_resource_changing_handler() is deprecated; " "use @kopf.on... decorators with registry= kwarg.", DeprecationWarning) resource = resources_.Resource(group, version, plural) return self.resource_changing_handlers[resource].register( reason=reason, event=event, field=field, fn=fn, id=id, errors=errors, timeout=timeout, retries=retries, backoff=backoff, cooldown=cooldown, initial=initial, deleted=deleted, requires_finalizer=requires_finalizer, labels=labels, annotations=annotations, when=when, ) def has_activity_handlers( self, ) -> bool: warnings.warn("registry.has_activity_handlers() is deprecated; " "use registry.activity_handlers directly.", DeprecationWarning) return bool(self.activity_handlers) def has_resource_watching_handlers( self, resource: resources_.Resource, ) -> bool: warnings.warn("registry.has_resource_watching_handlers() is deprecated; " "use registry.resource_watching_handlers[resource] directly.", DeprecationWarning) return bool(self.resource_watching_handlers[resource]) def has_resource_changing_handlers( self, resource: resources_.Resource, ) -> bool: warnings.warn("registry.has_resource_changing_handlers() is deprecated; " "use registry.resource_changing_handlers[resource] directly.", DeprecationWarning) return bool(self.resource_changing_handlers[resource]) def get_activity_handlers( self, *, activity: handlers.Activity, ) -> Sequence[handlers.ActivityHandler]: warnings.warn("registry.get_activity_handlers() is deprecated; " "use registry.activity_handlers.get_handlers().", DeprecationWarning) return self.activity_handlers.get_handlers(activity=activity) def get_resource_watching_handlers( self, cause: causation.ResourceWatchingCause, ) -> Sequence[handlers.ResourceWatchingHandler]: warnings.warn("registry.get_resource_watching_handlers() is deprecated; " "use registry.resource_watching_handlers[resource].get_handlers().", DeprecationWarning) return self.resource_watching_handlers[cause.resource].get_handlers(cause=cause) def get_resource_changing_handlers( self, cause: causation.ResourceChangingCause, ) -> Sequence[handlers.ResourceChangingHandler]: warnings.warn("registry.get_resource_changing_handlers() is deprecated; " "use registry.resource_changing_handlers[resource].get_handlers().", DeprecationWarning) return self.resource_changing_handlers[cause.resource].get_handlers(cause=cause) def iter_activity_handlers( self, *, activity: handlers.Activity, ) -> Iterator[handlers.ActivityHandler]: warnings.warn("registry.iter_activity_handlers() is deprecated; " "use registry.activity_handlers.iter_handlers().", DeprecationWarning) yield from self.activity_handlers.iter_handlers(activity=activity) def iter_resource_watching_handlers( self, cause: causation.ResourceWatchingCause, ) -> Iterator[handlers.ResourceWatchingHandler]: """ Iterate all handlers for the low-level events. """ warnings.warn("registry.iter_resource_watching_handlers() is deprecated; " "use registry.resource_watching_handlers[resource].iter_handlers().", DeprecationWarning) yield from self.resource_watching_handlers[cause.resource].iter_handlers(cause=cause) def iter_resource_changing_handlers( self, cause: causation.ResourceChangingCause, ) -> Iterator[handlers.ResourceChangingHandler]: """ Iterate all handlers that match this cause/event, in the order they were registered (even if mixed). """ warnings.warn("registry.iter_resource_changing_handlers() is deprecated; " "use registry.resource_changing_handlers[resource].iter_handlers().", DeprecationWarning) yield from self.resource_changing_handlers[cause.resource].iter_handlers(cause=cause) def get_extra_fields( self, resource: resources_.Resource, ) -> Set[dicts.FieldPath]: warnings.warn("registry.get_extra_fields() is deprecated; " "use registry.resource_changing_handlers[resource].get_extra_fields().", DeprecationWarning) return self.resource_changing_handlers[resource].get_extra_fields() def iter_extra_fields( self, resource: resources_.Resource, ) -> Iterator[dicts.FieldPath]: warnings.warn("registry.iter_extra_fields() is deprecated; " "use registry.resource_changing_handlers[resource].iter_extra_fields().", DeprecationWarning) yield from self.resource_changing_handlers[resource].iter_extra_fields() def requires_finalizer( self, resource: resources_.Resource, cause: causation.ResourceCause, ) -> bool: """ Check whether a finalizer should be added to the given resource or not. """ warnings.warn("registry.requires_finalizer() is deprecated; " "use registry.resource_changing_handlers[resource].requires_finalizer().", DeprecationWarning) return self.resource_changing_handlers[resource].requires_finalizer(cause=cause) class SmartOperatorRegistry(OperatorRegistry): def __init__(self) -> None: super().__init__() try: import pykube except ImportError: pass else: self.activity_handlers.append(handlers.ActivityHandler( id=handlers.HandlerId('login_via_pykube'), fn=cast(callbacks.ActivityFn, piggybacking.login_via_pykube), activity=handlers.Activity.AUTHENTICATION, errors=handlers.ErrorsMode.IGNORED, timeout=None, retries=None, backoff=None, cooldown=None, _fallback=True, )) try: import kubernetes except ImportError: pass else: self.activity_handlers.append(handlers.ActivityHandler( id=handlers.HandlerId('login_via_client'), fn=cast(callbacks.ActivityFn, piggybacking.login_via_client), activity=handlers.Activity.AUTHENTICATION, errors=handlers.ErrorsMode.IGNORED, timeout=None, retries=None, backoff=None, cooldown=None, _fallback=True, )) def generate_id( fn: Callable[..., Any], id: Optional[str], prefix: Optional[str] = None, suffix: Optional[str] = None, ) -> handlers.HandlerId: real_id: str real_id = id if id is not None else get_callable_id(fn) real_id = real_id if not suffix else f'{real_id}/{suffix}' real_id = real_id if not prefix else f'{prefix}/{real_id}' return cast(handlers.HandlerId, real_id) def get_callable_id(c: Callable[..., Any]) -> str: """ Get an reasonably good id of any commonly used callable. """ if c is None: raise ValueError("Cannot build a persistent id of None.") elif isinstance(c, functools.partial): return get_callable_id(c.func) elif hasattr(c, '__wrapped__'): # @functools.wraps() return get_callable_id(getattr(c, '__wrapped__')) elif isinstance(c, FunctionType) and c.__name__ == '<lambda>': # The best we can do to keep the id stable across the process restarts, # assuming at least no code changes. The code changes are not detectable. line = c.__code__.co_firstlineno path = c.__code__.co_filename return f'lambda:{path}:{line}' elif isinstance(c, (FunctionType, MethodType)): return str(getattr(c, '__qualname__', getattr(c, '__name__', repr(c)))) else: raise ValueError(f"Cannot get id of {c!r}.") def _deduplicated( handlers: Iterable[HandlerT], ) -> Iterator[HandlerT]: """ Yield the handlers deduplicated. The same handler function should not be invoked more than once for one single event/cause, even if it is registered with multiple decorators (e.g. different filtering criteria or different but same-effect causes). One of the ways how this could happen:: @kopf.on.create(...) @kopf.on.resume(...) def fn(**kwargs): pass In normal cases, the function will be called either on resource creation or on operator restart for the pre-existing (already handled) resources. When a resource is created during the operator downtime, it is both creation and resuming at the same time: the object is new (not yet handled) **AND** it is detected as per-existing before operator start. But `fn()` should be called only once for this cause. """ seen_ids: Set[int] = set() for handler in handlers: if id(handler.fn) in seen_ids: pass else: seen_ids.add(id(handler.fn)) yield handler def match( handler: handlers.ResourceHandler, cause: causation.ResourceCause, ignore_fields: bool = False, ) -> bool: # Kwargs are lazily evaluated on the first _actual_ use, and shared for all filters since then. kwargs: MutableMapping[str, Any] = {} return all([ _matches_field(handler, cause, ignore_fields), _matches_labels(handler, cause, kwargs), _matches_annotations(handler, cause, kwargs), _matches_filter_callback(handler, cause, kwargs), ]) def _matches_field( handler: handlers.ResourceHandler, cause: causation.ResourceCause, ignore_fields: bool = False, ) -> bool: return (ignore_fields or not isinstance(handler, handlers.ResourceChangingHandler) or not handler.field or ( isinstance(cause, causation.ResourceChangingCause) and bool(diffs.reduce(cause.diff, handler.field)) )) def _matches_labels( handler: handlers.ResourceHandler, cause: causation.ResourceCause, kwargs: MutableMapping[str, Any], ) -> bool: return (not handler.labels or _matches_metadata(pattern=handler.labels, content=cause.body.get('metadata', {}).get('labels', {}), kwargs=kwargs, cause=cause)) def _matches_annotations( handler: handlers.ResourceHandler, cause: causation.ResourceCause, kwargs: MutableMapping[str, Any], ) -> bool: return (not handler.annotations or _matches_metadata(pattern=handler.annotations, content=cause.body.get('metadata', {}).get('annotations', {}), kwargs=kwargs, cause=cause)) def _matches_metadata( *, pattern: filters.MetaFilter, # from the handler content: Mapping[str, str], # from the body kwargs: MutableMapping[str, Any], cause: causation.ResourceCause, ) -> bool: for key, value in pattern.items(): if value is filters.MetaFilterToken.ABSENT and key not in content: continue elif value is filters.MetaFilterToken.PRESENT and key in content: continue elif value is None and key in content: # deprecated; warned in @kopf.on continue elif callable(value): if not kwargs: kwargs.update(invocation.build_kwargs(cause=cause)) if value(content.get(key, None), **kwargs): continue else: return False elif key not in content: return False elif value != content[key]: return False else: continue return True def _matches_filter_callback( handler: handlers.ResourceHandler, cause: causation.ResourceCause, kwargs: MutableMapping[str, Any], ) -> bool: if handler.when is None: return True if not kwargs: kwargs.update(invocation.build_kwargs(cause=cause)) return handler.when(**kwargs) _default_registry: Optional[OperatorRegistry] = None def get_default_registry() -> OperatorRegistry: """ Get the default registry to be used by the decorators and the reactor unless the explicit registry is provided to them. """ global _default_registry if _default_registry is None: # TODO: Deprecated registry to ensure backward-compatibility until removal: from kopf.toolkits.legacy_registries import SmartGlobalRegistry _default_registry = SmartGlobalRegistry() return _default_registry def set_default_registry(registry: OperatorRegistry) -> None: """ Set the default registry to be used by the decorators and the reactor unless the explicit registry is provided to them. """ global _default_registry _default_registry = registry
39.802759
124
0.634231
d7d853d375f9d48e5632cdd4ea5ba622990a0ff0
16,379
py
Python
torch_utils/ops/upfirdn2d.py
maua-maua-maua/nvGAN
edea24c58646780c9fb8ea942e49708ce9d62421
[ "MIT" ]
null
null
null
torch_utils/ops/upfirdn2d.py
maua-maua-maua/nvGAN
edea24c58646780c9fb8ea942e49708ce9d62421
[ "MIT" ]
null
null
null
torch_utils/ops/upfirdn2d.py
maua-maua-maua/nvGAN
edea24c58646780c9fb8ea942e49708ce9d62421
[ "MIT" ]
null
null
null
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Custom PyTorch ops for efficient resampling of 2D images.""" import os import numpy as np import torch from .. import custom_ops, misc from . import conv2d_gradfix #---------------------------------------------------------------------------- _plugin = None def _init(): global _plugin if _plugin is None: _plugin = custom_ops.get_plugin( module_name='upfirdn2d_plugin', sources=['upfirdn2d.cpp', 'upfirdn2d.cu'], headers=['upfirdn2d.h'], source_dir=os.path.dirname(__file__), extra_cuda_cflags=['--use_fast_math'], ) return True def _parse_scaling(scaling): if isinstance(scaling, int): scaling = [scaling, scaling] assert isinstance(scaling, (list, tuple)) assert all(isinstance(x, int) for x in scaling) sx, sy = scaling assert sx >= 1 and sy >= 1 return sx, sy def _parse_padding(padding): if isinstance(padding, int): padding = [padding, padding] assert isinstance(padding, (list, tuple)) assert all(isinstance(x, int) for x in padding) if len(padding) == 2: padx, pady = padding padding = [padx, padx, pady, pady] padx0, padx1, pady0, pady1 = padding return padx0, padx1, pady0, pady1 def _get_filter_size(f): if f is None: return 1, 1 assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] fw = f.shape[-1] fh = f.shape[0] with misc.suppress_tracer_warnings(): fw = int(fw) fh = int(fh) misc.assert_shape(f, [fh, fw][:f.ndim]) assert fw >= 1 and fh >= 1 return fw, fh #---------------------------------------------------------------------------- def setup_filter(f, device=torch.device('cpu'), normalize=True, flip_filter=False, gain=1, separable=None): r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`. Args: f: Torch tensor, numpy array, or python list of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), `[]` (impulse), or `None` (identity). device: Result device (default: cpu). normalize: Normalize the filter so that it retains the magnitude for constant input signal (DC)? (default: True). flip_filter: Flip the filter? (default: False). gain: Overall scaling factor for signal magnitude (default: 1). separable: Return a separable filter? (default: select automatically). Returns: Float32 tensor of the shape `[filter_height, filter_width]` (non-separable) or `[filter_taps]` (separable). """ # Validate. if f is None: f = 1 f = torch.as_tensor(f, dtype=torch.float32) assert f.ndim in [0, 1, 2] assert f.numel() > 0 if f.ndim == 0: f = f[np.newaxis] # Separable? if separable is None: separable = (f.ndim == 1 and f.numel() >= 8) if f.ndim == 1 and not separable: f = f.ger(f) assert f.ndim == (1 if separable else 2) # Apply normalize, flip, gain, and device. if normalize: f /= f.sum() if flip_filter: f = f.flip(list(range(f.ndim))) f = f * (gain ** (f.ndim / 2)) f = f.to(device=device) return f #---------------------------------------------------------------------------- def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'): r"""Pad, upsample, filter, and downsample a batch of 2D images. Performs the following sequence of operations for each channel: 1. Upsample the image by inserting N-1 zeros after each pixel (`up`). 2. Pad the image with the specified number of zeros on each side (`padding`). Negative padding corresponds to cropping the image. 3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it so that the footprint of all output pixels lies within the input image. 4. Downsample the image by keeping every Nth pixel (`down`). This sequence of operations bears close resemblance to scipy.signal.upfirdn(). The fused op is considerably more efficient than performing the same calculation using standard PyTorch ops. It supports gradients of arbitrary order. Args: x: Float32/float64/float16 input tensor of the shape `[batch_size, num_channels, in_height, in_width]`. f: Float32 FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). up: Integer upsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). down: Integer downsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). padding: Padding with respect to the upsampled image. Can be a single number or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` (default: 0). flip_filter: False = convolution, True = correlation (default: False). gain: Overall scaling factor for signal magnitude (default: 1). impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). Returns: Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. """ assert isinstance(x, torch.Tensor) assert impl in ['ref', 'cuda'] if impl == 'cuda' and x.device.type == 'cuda' and _init(): return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f) return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain) #---------------------------------------------------------------------------- @misc.profiled_function def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1): """Slow reference implementation of `upfirdn2d()` using standard PyTorch ops. """ # Validate arguments. assert isinstance(x, torch.Tensor) and x.ndim == 4 if f is None: f = torch.ones([1, 1], dtype=torch.float32, device=x.device) assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] assert f.dtype == torch.float32 and not f.requires_grad batch_size, num_channels, in_height, in_width = x.shape upx, upy = _parse_scaling(up) downx, downy = _parse_scaling(down) padx0, padx1, pady0, pady1 = _parse_padding(padding) # Check that upsampled buffer is not smaller than the filter. upW = in_width * upx + padx0 + padx1 upH = in_height * upy + pady0 + pady1 assert upW >= f.shape[-1] and upH >= f.shape[0] # Upsample by inserting zeros. x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1]) x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1]) x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx]) # Pad or crop. x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]) x = x[:, :, max(-pady0, 0) : x.shape[2] - max(-pady1, 0), max(-padx0, 0) : x.shape[3] - max(-padx1, 0)] # Setup filter. f = f * (gain ** (f.ndim / 2)) f = f.to(x.dtype) if not flip_filter: f = f.flip(list(range(f.ndim))) # Convolve with the filter. f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim) if f.ndim == 4: x = conv2d_gradfix.conv2d(input=x, weight=f, groups=num_channels) else: x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels) x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels) # Downsample by throwing away pixels. x = x[:, :, ::downy, ::downx] return x #---------------------------------------------------------------------------- _upfirdn2d_cuda_cache = dict() def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1): """Fast CUDA implementation of `upfirdn2d()` using custom ops. """ # Parse arguments. upx, upy = _parse_scaling(up) downx, downy = _parse_scaling(down) padx0, padx1, pady0, pady1 = _parse_padding(padding) # Lookup from cache. key = (upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain) if key in _upfirdn2d_cuda_cache: return _upfirdn2d_cuda_cache[key] # Forward op. class Upfirdn2dCuda(torch.autograd.Function): @staticmethod def forward(ctx, x, f): # pylint: disable=arguments-differ assert isinstance(x, torch.Tensor) and x.ndim == 4 if f is None: f = torch.ones([1, 1], dtype=torch.float32, device=x.device) if f.ndim == 1 and f.shape[0] == 1: f = f.square().unsqueeze(0) # Convert separable-1 into full-1x1. assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] y = x if f.ndim == 2: y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain) else: y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, padx0, padx1, 0, 0, flip_filter, 1.0) y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, 0, pady0, pady1, flip_filter, gain) ctx.save_for_backward(f) ctx.x_shape = x.shape return y @staticmethod def backward(ctx, dy): # pylint: disable=arguments-differ f, = ctx.saved_tensors _, _, ih, iw = ctx.x_shape _, _, oh, ow = dy.shape fw, fh = _get_filter_size(f) p = [ fw - padx0 - 1, iw * upx - ow * downx + padx0 - upx + 1, fh - pady0 - 1, ih * upy - oh * downy + pady0 - upy + 1, ] dx = None df = None if ctx.needs_input_grad[0]: dx = _upfirdn2d_cuda(up=down, down=up, padding=p, flip_filter=(not flip_filter), gain=gain).apply(dy, f) assert not ctx.needs_input_grad[1] return dx, df # Add to cache. _upfirdn2d_cuda_cache[key] = Upfirdn2dCuda return Upfirdn2dCuda #---------------------------------------------------------------------------- def filter2d(x, f, padding=0, flip_filter=False, gain=1, impl='cuda'): r"""Filter a batch of 2D images using the given 2D FIR filter. By default, the result is padded so that its shape matches the input. User-specified padding is applied on top of that, with negative values indicating cropping. Pixels outside the image are assumed to be zero. Args: x: Float32/float64/float16 input tensor of the shape `[batch_size, num_channels, in_height, in_width]`. f: Float32 FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). padding: Padding with respect to the output. Can be a single number or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` (default: 0). flip_filter: False = convolution, True = correlation (default: False). gain: Overall scaling factor for signal magnitude (default: 1). impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). Returns: Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. """ padx0, padx1, pady0, pady1 = _parse_padding(padding) fw, fh = _get_filter_size(f) p = [ padx0 + fw // 2, padx1 + (fw - 1) // 2, pady0 + fh // 2, pady1 + (fh - 1) // 2, ] return upfirdn2d(x, f, padding=p, flip_filter=flip_filter, gain=gain, impl=impl) #---------------------------------------------------------------------------- def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'): r"""Upsample a batch of 2D images using the given 2D FIR filter. By default, the result is padded so that its shape is a multiple of the input. User-specified padding is applied on top of that, with negative values indicating cropping. Pixels outside the image are assumed to be zero. Args: x: Float32/float64/float16 input tensor of the shape `[batch_size, num_channels, in_height, in_width]`. f: Float32 FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). up: Integer upsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). padding: Padding with respect to the output. Can be a single number or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` (default: 0). flip_filter: False = convolution, True = correlation (default: False). gain: Overall scaling factor for signal magnitude (default: 1). impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). Returns: Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. """ upx, upy = _parse_scaling(up) padx0, padx1, pady0, pady1 = _parse_padding(padding) fw, fh = _get_filter_size(f) p = [ padx0 + (fw + upx - 1) // 2, padx1 + (fw - upx) // 2, pady0 + (fh + upy - 1) // 2, pady1 + (fh - upy) // 2, ] return upfirdn2d(x, f, up=up, padding=p, flip_filter=flip_filter, gain=gain*upx*upy, impl=impl) #---------------------------------------------------------------------------- def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl='cuda'): r"""Downsample a batch of 2D images using the given 2D FIR filter. By default, the result is padded so that its shape is a fraction of the input. User-specified padding is applied on top of that, with negative values indicating cropping. Pixels outside the image are assumed to be zero. Args: x: Float32/float64/float16 input tensor of the shape `[batch_size, num_channels, in_height, in_width]`. f: Float32 FIR filter of the shape `[filter_height, filter_width]` (non-separable), `[filter_taps]` (separable), or `None` (identity). down: Integer downsampling factor. Can be a single int or a list/tuple `[x, y]` (default: 1). padding: Padding with respect to the input. Can be a single number or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` (default: 0). flip_filter: False = convolution, True = correlation (default: False). gain: Overall scaling factor for signal magnitude (default: 1). impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). Returns: Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. """ downx, downy = _parse_scaling(down) padx0, padx1, pady0, pady1 = _parse_padding(padding) fw, fh = _get_filter_size(f) p = [ padx0 + (fw - downx + 1) // 2, padx1 + (fw - downx) // 2, pady0 + (fh - downy + 1) // 2, pady1 + (fh - downy) // 2, ] return upfirdn2d(x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl) #----------------------------------------------------------------------------
41.997436
120
0.574516
7965bd0b87d6fd669ab45392353033b7589d5c6b
7,470
py
Python
src/virtualenv/create/creator.py
jezdez/virtualenv
5c9b6246a4107e5e613a23c42b805d0373672400
[ "MIT" ]
1
2022-02-21T02:01:37.000Z
2022-02-21T02:01:37.000Z
src/virtualenv/create/creator.py
jezdez/virtualenv
5c9b6246a4107e5e613a23c42b805d0373672400
[ "MIT" ]
null
null
null
src/virtualenv/create/creator.py
jezdez/virtualenv
5c9b6246a4107e5e613a23c42b805d0373672400
[ "MIT" ]
null
null
null
from __future__ import absolute_import, print_function, unicode_literals import json import logging import os import shutil import sys from abc import ABCMeta, abstractmethod from argparse import ArgumentTypeError from ast import literal_eval from collections import OrderedDict from stat import S_IWUSR import six from six import add_metaclass from virtualenv.discovery.cached_py_info import LogCmd from virtualenv.info import WIN_CPYTHON_2 from virtualenv.pyenv_cfg import PyEnvCfg from virtualenv.util.path import Path from virtualenv.util.subprocess import run_cmd from virtualenv.util.zipapp import ensure_file_on_disk from virtualenv.version import __version__ HERE = Path(__file__).absolute().parent DEBUG_SCRIPT = HERE / "debug.py" @add_metaclass(ABCMeta) class Creator(object): """A class that given a python Interpreter creates a virtual environment""" def __init__(self, options, interpreter): """Construct a new virtual environment creator. :param options: the CLI option as parsed from :meth:`add_parser_arguments` :param interpreter: the interpreter to create virtual environment from """ self.interpreter = interpreter self._debug = None self.dest = Path(options.dest) self.clear = options.clear self.pyenv_cfg = PyEnvCfg.from_folder(self.dest) def __repr__(self): return six.ensure_str(self.__unicode__()) def __unicode__(self): return "{}({})".format(self.__class__.__name__, ", ".join("{}={}".format(k, v) for k, v in self._args())) def _args(self): return [ ("dest", six.ensure_text(str(self.dest))), ("clear", self.clear), ] @classmethod def can_create(cls, interpreter): """Determine if we can create a virtual environment. :param interpreter: the interpreter in question :return: ``None`` if we can't create, any other object otherwise that will be forwarded to \ :meth:`add_parser_arguments` """ return True @classmethod def add_parser_arguments(cls, parser, interpreter, meta): """Add CLI arguments for the creator. :param parser: the CLI parser :param interpreter: the interpreter we're asked to create virtual environment for :param meta: value as returned by :meth:`can_create` """ parser.add_argument( "dest", help="directory to create virtualenv at", type=cls.validate_dest, default="venv", nargs="?", ) parser.add_argument( "--clear", dest="clear", action="store_true", help="remove the destination directory if exist before starting (will overwrite files otherwise)", default=False, ) @abstractmethod def create(self): """Perform the virtual environment creation.""" raise NotImplementedError @classmethod def validate_dest(cls, raw_value): """No path separator in the path, valid chars and must be write-able""" def non_write_able(dest, value): common = Path(*os.path.commonprefix([value.parts, dest.parts])) raise ArgumentTypeError( "the destination {} is not write-able at {}".format(dest.relative_to(common), common) ) # the file system must be able to encode # note in newer CPython this is always utf-8 https://www.python.org/dev/peps/pep-0529/ encoding = sys.getfilesystemencoding() refused = OrderedDict() kwargs = {"errors": "ignore"} if encoding != "mbcs" else {} for char in six.ensure_text(raw_value): try: trip = char.encode(encoding, **kwargs).decode(encoding) if trip == char: continue raise ValueError(trip) except ValueError: refused[char] = None if refused: raise ArgumentTypeError( "the file system codec ({}) cannot handle characters {!r} within {!r}".format( encoding, "".join(refused.keys()), raw_value ) ) for char in (i for i in (os.pathsep, os.altsep) if i is not None): if char in raw_value: raise ArgumentTypeError( "destination {!r} must not contain the path separator ({}) as this would break " "the activation scripts".format(raw_value, char) ) value = Path(raw_value) if value.exists() and value.is_file(): raise ArgumentTypeError("the destination {} already exists and is a file".format(value)) if (3, 3) <= sys.version_info <= (3, 6): # pre 3.6 resolve is always strict, aka must exists, sidestep by using os.path operation dest = Path(os.path.realpath(raw_value)) else: dest = value.resolve() value = dest while dest: if dest.exists(): if os.access(six.ensure_text(str(dest)), os.W_OK): break else: non_write_able(dest, value) base, _ = dest.parent, dest.name if base == dest: non_write_able(dest, value) # pragma: no cover dest = base return str(value) def run(self): if self.dest.exists() and self.clear: logging.debug("delete %s", self.dest) def onerror(func, path, exc_info): if not os.access(path, os.W_OK): os.chmod(path, S_IWUSR) func(path) else: raise shutil.rmtree(str(self.dest), ignore_errors=True, onerror=onerror) self.create() self.set_pyenv_cfg() def set_pyenv_cfg(self): self.pyenv_cfg.content = OrderedDict() self.pyenv_cfg["home"] = self.interpreter.system_exec_prefix self.pyenv_cfg["implementation"] = self.interpreter.implementation self.pyenv_cfg["version_info"] = ".".join(str(i) for i in self.interpreter.version_info) self.pyenv_cfg["virtualenv"] = __version__ @property def debug(self): """ :return: debug information about the virtual environment (only valid after :meth:`create` has run) """ if self._debug is None and self.exe is not None: self._debug = get_env_debug_info(self.exe, self.debug_script()) return self._debug # noinspection PyMethodMayBeStatic def debug_script(self): return DEBUG_SCRIPT def get_env_debug_info(env_exe, debug_script): env = os.environ.copy() env.pop(str("PYTHONPATH"), None) with ensure_file_on_disk(debug_script) as debug_script: cmd = [str(env_exe), str(debug_script)] if WIN_CPYTHON_2: cmd = [six.ensure_text(i) for i in cmd] logging.debug(str("debug via %r"), LogCmd(cmd)) code, out, err = run_cmd(cmd) # noinspection PyBroadException try: if code != 0: result = literal_eval(out) else: result = json.loads(out) if err: result["err"] = err except Exception as exception: return {"out": out, "err": err, "returncode": code, "exception": repr(exception)} if "sys" in result and "path" in result["sys"]: del result["sys"]["path"][0] return result
35.913462
113
0.610442
46eb3c5d97324a790dc225612496bb48e9d64b4f
1,136
py
Python
main1.py
17jrb17/E01b-Smiles
2f4a65c9907cc28e40cf17253fb19a22c7bc4e0a
[ "MIT" ]
null
null
null
main1.py
17jrb17/E01b-Smiles
2f4a65c9907cc28e40cf17253fb19a22c7bc4e0a
[ "MIT" ]
null
null
null
main1.py
17jrb17/E01b-Smiles
2f4a65c9907cc28e40cf17253fb19a22c7bc4e0a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import utils, open_color, arcade utils.check_version((3,7)) # Open the window. Set the window title and dimensions (width and height) arcade.open_window(800, 600, "Smiley Face Example") arcade.set_background_color(open_color.white) # Start the render process. This must be done before any drawing commands. arcade.start_render() # Draw the smiley face: # (x,y,radius,color) arcade.draw_circle_filled(400, 300, 100, open_color.yellow_3) # (x,y,radius,color,border_thickness) arcade.draw_circle_outline(400, 300, 100, open_color.black,4) #(x,y,width,height,color) arcade.draw_ellipse_filled(360,340,15,25,open_color.black) arcade.draw_ellipse_filled(440,340,15,25,open_color.black) arcade.draw_circle_filled(365,345,3,open_color.gray_2) arcade.draw_circle_filled(445,345,3,open_color.gray_2) #(x,y,width,height,color,start_degrees,end_degrees,border_thickness) arcade.draw_arc_outline(400,280,60,50,open_color.black,190,350,4) # Finish the render # Nothing will be drawn without this. # Must happen after all draw commands arcade.finish_render() # Keep the window up until someone closes it. arcade.run()
30.702703
74
0.791373
658d77211e8a9102588343a4361271b22eb85e9c
903
py
Python
doc/conf.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
null
null
null
doc/conf.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
null
null
null
doc/conf.py
inducer/courseflow
0f9786e3616dbedf08365d81a731f672b97ba9f5
[ "Unlicense" ]
null
null
null
import sys import os from urllib.request import urlopen _conf_url = \ "https://raw.githubusercontent.com/inducer/sphinxconfig/main/sphinxconfig.py" with urlopen(_conf_url) as _inf: exec(compile(_inf.read(), _conf_url, "exec"), globals()) sys.path.insert(0, os.path.abspath("..")) os.environ["DJANGO_SETTINGS_MODULE"] = "relate.settings" import django django.setup() intersphinx_mapping = { "https://docs.python.org/3/": None, "https://numpy.org/doc/stable/": None, "django": ( "https://docs.djangoproject.com/en/dev/", "https://docs.djangoproject.com/en/dev/_objects/", ), "https://docs.sympy.org/latest": None, # https://github.com/dulwich/dulwich/issues/913 # "https://www.dulwich.io/docs/": None, "https://tiker.net/pub/dulwich-docs-stopgap/": None, } copyright = u"2014-21, Andreas Kloeckner" version = "2021.1" release = version
25.083333
85
0.673311
4f52ddcab581f20f2a261df602a888032bc94723
771
py
Python
pyPseudo/lexer/Token.py
johnyob/Pseudo
02e637e93872e786201538f719cd19676a03c170
[ "MIT" ]
1
2019-03-10T21:25:47.000Z
2019-03-10T21:25:47.000Z
pyPseudo/lexer/Token.py
johnyob/Pseudo
02e637e93872e786201538f719cd19676a03c170
[ "MIT" ]
null
null
null
pyPseudo/lexer/Token.py
johnyob/Pseudo
02e637e93872e786201538f719cd19676a03c170
[ "MIT" ]
null
null
null
class Token: def __init__(self, type, lexeme, literal, path, line): self._type = type self._lexeme = lexeme self._literal = literal self._path = path self._line = line def getType(self): return self._type def getLexeme(self): return self._lexeme def getLiteral(self): return self._literal def getPath(self): return self._path def getLine(self): return self._line def __str__(self): return "Type: {0}, Lexeme: {1}, Literal: {2}.".format( self._type, self._lexeme, self._literal ) def __repr__(self): return "Type: {0}, Lexeme: {1}, Literal: {2}.".format( self._type, self._lexeme, self._literal )
23.363636
62
0.566796
dafb65ce6808a2837be117e62bb2f7c4e7da3e49
8,501
py
Python
lib/datasets/cityscapes.py
Zealoe/HRNet-Semantic-Segmentation
e5082879d6a46f1eb1127429e9948c80c0e15418
[ "MIT" ]
2
2020-11-02T11:38:59.000Z
2021-03-23T09:54:14.000Z
lib/datasets/cityscapes.py
Zealoe/HRNet-Semantic-Segmentation
e5082879d6a46f1eb1127429e9948c80c0e15418
[ "MIT" ]
null
null
null
lib/datasets/cityscapes.py
Zealoe/HRNet-Semantic-Segmentation
e5082879d6a46f1eb1127429e9948c80c0e15418
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Ke Sun (sunk@mail.ustc.edu.cn) # ------------------------------------------------------------------------------ import os import cv2 import numpy as np from PIL import Image import torch from torch.nn import functional as F from .base_dataset import BaseDataset class Cityscapes(BaseDataset): def __init__(self, root, list_path, num_samples=None, num_classes=19, multi_scale=True, flip=True, ignore_label=-1, base_size=2048, crop_size=(512, 1024), center_crop_test=False, downsample_rate=1, scale_factor=16, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): super(Cityscapes, self).__init__(ignore_label, base_size, crop_size, downsample_rate, scale_factor, mean, std,) self.root = root self.list_path = list_path self.num_classes = num_classes self.class_weights = torch.FloatTensor([0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529, 1.0507]).cuda() self.multi_scale = multi_scale self.flip = flip self.center_crop_test = center_crop_test self.img_list = [line.strip().split() for line in open(root+list_path)] self.files = self.read_files() if num_samples: self.files = self.files[:num_samples] self.label_mapping = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} def read_files(self): files = [] if 'test' in self.list_path: for item in self.img_list: image_path = item name = os.path.splitext(os.path.basename(image_path[0]))[0] files.append({ "img": image_path[0], "name": name, }) else: for item in self.img_list: image_path, label_path = item name = os.path.splitext(os.path.basename(label_path))[0] files.append({ "img": image_path, "label": label_path, "name": name, "weight": 1 }) return files def convert_label(self, label, inverse=False): temp = label.copy() if inverse: for v, k in self.label_mapping.items(): label[temp == k] = v else: for k, v in self.label_mapping.items(): label[temp == k] = v return label def __getitem__(self, index): item = self.files[index] name = item["name"] image = cv2.imread(os.path.join(self.root,'cityscapes',item["img"]), cv2.IMREAD_COLOR) size = image.shape if 'test' in self.list_path: image = self.input_transform(image) image = image.transpose((2, 0, 1)) return image.copy(), np.array(size), name label = cv2.imread(os.path.join(self.root,'cityscapes',item["label"]), cv2.IMREAD_GRAYSCALE) label = self.convert_label(label) image, label = self.gen_sample(image, label, self.multi_scale, self.flip, self.center_crop_test) return image.copy(), label.copy(), np.array(size), name def multi_scale_inference(self, model, image, scales=[1], flip=False): batch, _, ori_height, ori_width = image.size() assert batch == 1, "only supporting batchsize 1." image = image.numpy()[0].transpose((1,2,0)).copy() stride_h = np.int(self.crop_size[0] * 1.0) stride_w = np.int(self.crop_size[1] * 1.0) final_pred = torch.zeros([1, self.num_classes, ori_height,ori_width]).cuda() for scale in scales: new_img = self.multi_scale_aug(image=image, rand_scale=scale, rand_crop=False) height, width = new_img.shape[:-1] if scale <= 1.0: new_img = new_img.transpose((2, 0, 1)) new_img = np.expand_dims(new_img, axis=0) new_img = torch.from_numpy(new_img) preds = self.inference(model, new_img, flip) preds = preds[:, :, 0:height, 0:width] else: new_h, new_w = new_img.shape[:-1] rows = np.int(np.ceil(1.0 * (new_h - self.crop_size[0]) / stride_h)) + 1 cols = np.int(np.ceil(1.0 * (new_w - self.crop_size[1]) / stride_w)) + 1 preds = torch.zeros([1, self.num_classes, new_h,new_w]).cuda() count = torch.zeros([1,1, new_h, new_w]).cuda() for r in range(rows): for c in range(cols): h0 = r * stride_h w0 = c * stride_w h1 = min(h0 + self.crop_size[0], new_h) w1 = min(w0 + self.crop_size[1], new_w) h0 = max(int(h1 - self.crop_size[0]), 0) w0 = max(int(w1 - self.crop_size[1]), 0) crop_img = new_img[h0:h1, w0:w1, :] crop_img = crop_img.transpose((2, 0, 1)) crop_img = np.expand_dims(crop_img, axis=0) crop_img = torch.from_numpy(crop_img) pred = self.inference(model, crop_img, flip) preds[:,:,h0:h1,w0:w1] += pred[:,:, 0:h1-h0, 0:w1-w0] count[:,:,h0:h1,w0:w1] += 1 preds = preds / count preds = preds[:,:,:height,:width] preds = F.upsample(preds, (ori_height, ori_width), mode='bilinear') final_pred += preds return final_pred def get_palette(self, n): palette = [0] * (n * 3) for j in range(0, n): lab = j palette[j * 3 + 0] = 0 palette[j * 3 + 1] = 0 palette[j * 3 + 2] = 0 i = 0 while lab: palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) i += 1 lab >>= 3 return palette def save_pred(self, preds, sv_path, name): palette = self.get_palette(256) preds = preds.cpu().numpy().copy() preds = np.asarray(np.argmax(preds, axis=1), dtype=np.uint8) for i in range(preds.shape[0]): pred = self.convert_label(preds[i], inverse=True) save_img = Image.fromarray(pred) save_img.putpalette(palette) save_img.save(os.path.join(sv_path, name[i]+'.png'))
41.468293
81
0.438184
7824ba1ab873fbb3d210465967ec3442310287be
21,360
py
Python
kaolin/ops/spc/spc.py
mcx/kaolin
abe006921b5d522ecd0f7c5e30abe760a4459dc7
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kaolin/ops/spc/spc.py
mcx/kaolin
abe006921b5d522ecd0f7c5e30abe760a4459dc7
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
kaolin/ops/spc/spc.py
mcx/kaolin
abe006921b5d522ecd0f7c5e30abe760a4459dc7
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (c) 2021,22 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'feature_grids_to_spc', 'scan_octrees', 'generate_points', 'to_dense', 'unbatched_query', 'unbatched_make_dual', 'unbatched_make_trinkets', 'unbatched_get_level_points' ] import math from torch.autograd import Function import torch from kaolin import _C from .uint8 import bits_to_uint8 from kaolin.rep import Spc from .points import points_to_morton, points_to_corners def scan_octrees(octrees, lengths): r"""Scan batch of octrees tensor. Scanning refers to processing the octrees to extract auxiliary information. There are two steps. First, a list is formed containing the number of set bits in each octree node/byte. Second, the exclusive sum of this list is taken. Args: octrees (torch.ByteTensor): Batched :ref:`packed<packed>` collection of octrees of shape :math:`(\text{num_node})`. lengths (torch.IntTensor): The number of byte per octree. of shape :math:`(\text{batch_size})`. Returns: (int, torch.IntTensor, torch.IntTensor): - max_level, an int containing the depth of the octrees. - :ref:`pyramids<spc_pyramids>`, a tensor containing structural information about the batch of structured point cloud hierarchies, of shape :math:`(\text{batch_size}, 2, \text{max_level + 1})`. See :ref:`the documentation <spc_pyramids>` for more details. - :ref:`exsum<spc_exsum>`, a 1D tensor containing the exclusive sum of the bit counts of each byte of the individual octrees within the batched input ``octrees`` tensor, of size :math:(\text{octree_num_bytes} + \text{batch_size})`. See :ref:`the documentation <spc_exsum>` for more details. .. note:: The returned tensor of exclusive sums is padded with an extra element for each item in the batch. """ return _C.ops.spc.scan_octrees_cuda(octrees.contiguous(), lengths.contiguous()) def generate_points(octrees, pyramids, exsum): r"""Generate the point data for a structured point cloud. Decode batched octree into batch of structured point hierarchies, and batch of book keeping pyramids. Args: octrees (torch.ByteTensor): Batched (packed) collection of octrees of shape :math:`(\text{num_bytes})`. pyramids (torch.IntTensor): Batched tensor containing point hierarchy structural information of shape :math:`(\text{batch_size}, 2, \text{max_level}+2)` exsum (torch.IntTensor): Batched tensor containing the exclusive sum of the bit counts of individual octrees of shape :math:`(k + \text{batch_size})` Returns: (torch.ShortTensor): A tensor containing batched point hierachies derived from a batch of octrees, of shape :math:`(\text{num_points_at_all_levels}, 3)`. See :ref:`the documentation<spc_points>` for more details """ return _C.ops.spc.generate_points_cuda(octrees.contiguous(), pyramids.contiguous(), exsum.contiguous()) class ToDenseFunction(Function): @staticmethod def forward(ctx, point_hierarchies, level, pyramids, inputs): inputs = inputs.contiguous() pyramids = pyramids.contiguous() point_hierarchies = point_hierarchies.contiguous() ctx.save_for_backward(point_hierarchies, pyramids, inputs) ctx.level = level return _C.ops.spc.to_dense_forward(point_hierarchies, level, pyramids, inputs) @staticmethod def backward(ctx, grad_outputs): grad_outputs = grad_outputs.contiguous() point_hierarchies, pyramids, inputs = ctx.saved_tensors d_inputs = _C.ops.spc.to_dense_backward(point_hierarchies, ctx.level, pyramids, inputs, grad_outputs) return None, None, None, d_inputs def to_dense(point_hierarchies, pyramids, input, level=-1, **kwargs): r"""Convert batched structured point cloud to a batched dense feature grids. The size of the input should correspond to level :math:`l` within the structured point cloud hierarchy. A dense voxel grid of size :math:`(\text{batch_size}, 2^l, 2^l, 2^l, \text{input_channels})` is returned where (for a particular batch): .. math:: Y_{P_i} = X_i \quad\text{for}\; i \in 0,\ldots,|X|-1, where :math:`P_i` is used as a 3D index for dense array :math:`Y`, and :math:`X_i` is the input feature corresponding to to point :math:`P_i`. Locations in :math:`Y` without a correspondense in :math:`X` are set to zero. Args: point_hierarchies (torch.ShortTensor): :ref:`Packed <packed>` collection of point hierarchies, of shape :math:`(\text{num_points})`. See :ref:`point_hierarchies <spc_points>` for a detailed description. pyramids (torch.IntTensor): Batched tensor containing point hierarchy structural information of shape :math:`(\text{batch_size}, 2, \text{max_level}+2)`. See :ref:`pyramids <spc_pyramids>` for a detailed description. input (torch.FloatTensor): Batched tensor of input feature data, of shape :math:`(\text{num_inputs}, \text{feature_dim})`. With :math:`\text{num_inputs}` corresponding to a number of points in the batched point hierarchy at ``level``. level (int): The level at which the octree points are converted to feature grids. Returns: (torch.FloatTensor): The feature grids, of shape :math:`(\text{batch_size}, \text{feature_dim}, 8^\text{level}, 8^\text{level}, 8^\text{level})`. """ remaining_kwargs = kwargs.keys() - Spc.KEYS if len(remaining_kwargs) > 0: raise TypeError("to_dense got an unexpected keyword argument " f"{list(remaining_kwargs)[0]}") if level < 0: max_level = pyramids.shape[2] - 2 level = max_level + 1 + level return ToDenseFunction.apply(point_hierarchies, level, pyramids, input) def feature_grids_to_spc(feature_grids, masks=None): r"""Convert sparse feature grids to Structured Point Cloud. Args: feature_grids (torch.Tensor): The sparse 3D feature grids, of shape :math:`(\text{batch_size}, \text{feature_dim}, X, Y, Z)` masks (optional, torch.BoolTensor): The masks showing where are the features, of shape :math:`(\text{batch_size}, X, Y, Z)`. Default: A feature is determined when not full of zeros. Returns: (torch.ByteTensor, torch.IntTensor, torch.Tensor): a tuple containing: - The octree, of size :math:`(\text{num_nodes})` - The lengths of each octree, of size :math:`(\text{batch_size})` - The coalescent features, of same dtype than ``feature_grids``, of shape :math:`(\text{num_features}, \text{feature_dim})`. """ batch_size = feature_grids.shape[0] feature_dim = feature_grids.shape[1] x_dim = feature_grids.shape[2] y_dim = feature_grids.shape[3] z_dim = feature_grids.shape[4] dtype = feature_grids.dtype device = feature_grids.device feature_grids = feature_grids.permute(0, 2, 3, 4, 1) level = math.ceil(math.log2(max(x_dim, y_dim, z_dim))) # We enforce a power of 2 size to make the subdivision easier max_dim = 2 ** level padded_feature_grids = torch.zeros( (batch_size, max_dim, max_dim, max_dim, feature_dim), device=device, dtype=dtype) padded_feature_grids[:, :x_dim, :y_dim, :z_dim] = feature_grids if masks is None: masks = torch.any(padded_feature_grids != 0, dim=-1) else: assert masks.shape == feature_grids.shape[:-1] padded_masks = torch.zeros( (batch_size, max_dim, max_dim, max_dim), device=device, dtype=torch.bool) padded_masks[:, :x_dim, :y_dim, :z_dim] = masks masks = padded_masks bool2uint8_w = 2 ** torch.arange(8, device=device).reshape(1, 8) octrees = [] coalescent_features = [] lengths = [] # TODO(cfujitsang): vectorize for speedup for bs in range(batch_size): octree = [] cur_mask = masks[bs:bs + 1] cur_feature_grid = padded_feature_grids[bs:bs + 1] cur_dim = max_dim while cur_dim > 1: cur_dim = cur_dim // 2 cur_mask = cur_mask.reshape(-1, 2, cur_dim, 2, cur_dim, 2, cur_dim) cur_feature_grid = cur_feature_grid.reshape( -1, 2, cur_dim, 2, cur_dim, 2, cur_dim, feature_dim) cur_level_mask = torch.sum(cur_mask, dim=(2, 4, 6)) > 0 # indexing by masking follow naturally the morton order cur_feature_grid = cur_feature_grid.permute(0, 1, 3, 5, 2, 4, 6, 7).reshape( -1, 8, cur_dim, cur_dim, cur_dim, feature_dim)[cur_level_mask.reshape(-1, 8)] cur_mask = cur_mask.permute(0, 1, 3, 5, 2, 4, 6).reshape( -1, 8, cur_dim, cur_dim, cur_dim)[cur_level_mask.reshape(-1, 8)] uint8_mask = bits_to_uint8(cur_level_mask.reshape(-1, 8)) octree.append(uint8_mask) octree = torch.cat(octree, dim=0) octrees.append(octree) lengths.append(octree.shape[0]) coalescent_features.append(cur_feature_grid.reshape(-1, feature_dim)) octrees = torch.cat(octrees, dim=0) lengths = torch.tensor(lengths, dtype=torch.int) coalescent_features = torch.cat(coalescent_features, dim=0) return octrees, lengths, coalescent_features def unbatched_query(octree, exsum, query_coords, level, with_parents=False): r"""Query point indices from the octree. Given a :ref:`point hierarchy<spc_points>` (implicitly encoded in ``octree``) and some coordinates, this function will efficiently find the indices of the points in :ref:`point hierarchy<spc_points>` corresponding to the coordinates. Returns -1 if the point does not exist. Args: octree (torch.ByteTensor): The octree, of shape :math:`(\text{num_bytes})`. exsum (torch.IntTensor): The exclusive sum of the octree bytes, of shape :math:`(\text{num_bytes} + 1)`. See :ref:`spc_pyramids` for more details. query_coords (torch.FloatTensor or torch.IntTensor): A tensor of locations to sample of shape :math:`(\text{num_query}, 3)`. If the tensor is a FloatTensor, assumes the coordinates are normalized in [-1, 1]. Otherwise if the tensor is an IntTensor, assumes the coordinates are in the [0, 2^level] space. level (int): The level of the octree to query from. with_parents (bool): If True, will return an array of indices up to the specified level as opposed to only a single level (default: False). Returns: pidx (torch.LongTensor): The indices into the point hierarchy of shape :math:`(\text{num_query})`. If with_parents is True, then the shape will be :math:`(\text{num_query, level+1})`. Examples: >>> import kaolin >>> points = torch.tensor([[3,2,0],[3,1,1],[3,3,3]], device='cuda', dtype=torch.short) >>> octree = kaolin.ops.spc.unbatched_points_to_octree(points, 2) >>> length = torch.tensor([len(octree)], dtype=torch.int32) >>> _, _, prefix = kaolin.ops.spc.scan_octrees(octree, length) >>> query_coords = torch.tensor([[3,2,0]], device='cuda', dtype=torch.short) >>> kaolin.ops.spc.unbatched_query(octree, prefix, query_coords, 2, with_parents=False) tensor([5], device='cuda:0') >>> kaolin.ops.spc.unbatched_query(octree, prefix, query_coords, 2, with_parents=True) tensor([[0, 2, 5]], device='cuda:0') """ if not query_coords.is_floating_point(): input_coords = (query_coords.float() / (2**level)) * 2.0 - 1.0 else: input_coords = query_coords if with_parents: return _C.ops.spc.query_multiscale_cuda(octree.contiguous(), exsum.contiguous(), input_coords.contiguous(), level).long() else: return _C.ops.spc.query_cuda(octree.contiguous(), exsum.contiguous(), input_coords.contiguous(), level).long() def unbatched_get_level_points(point_hierarchy, pyramid, level): r"""Returns the point set for the given level from the point hierarchy. Args: point_hierarchy (torch.ShortTensor): The point hierarchy of shape :math:`(\text{num_points}, 3)`. See :ref:`point_hierarchies <spc_points>` for a detailed description. pyramid (torch.LongTensor): The pyramid of shape :math:`(2, \text{max_level}+2)` See :ref:`pyramids <spc_pyramids>` for a detailed description. level (int): The level of the point hierarchy to retrieve. Returns: (torch.ShortTensor): The pointset of shape :math:`(\text{num_points_on_level}, 3)`. """ return point_hierarchy[pyramid[1, level]:pyramid[1, level + 1]] def unbatched_make_dual(point_hierarchy, pyramid): r"""Creates the dual of the octree given the point hierarchy and pyramid. Each node of the primary octree (represented as the :ref:`point_hierarchies <spc_points>`) can be thought of as voxels with 8 corners. The dual of the octree represents the corners of the primary octree nodes as another tree of nodes with a hierarchy of points and a pyramid. The mapping from the primary octree nodes to the nodes in the dual tree can be obtained through trinkets which can be created from ``make_trinkets``. Args: point_hierarchy (torch.ShortTensor): The point hierarchy of shape :math:`(\text{num_points}, 3)`. See :ref:`point_hierarchies <spc_points>` for a detailed description. pyramid (torch.LongTensor): The pyramid of shape :math:`(2, \text{max_level}+2)` See :ref:`pyramids <spc_pyramids>` for a detailed description. Returns: (torch.ShortTensor, torch.LongTensor): - The point hierarchy of the dual octree of shape :math:`(\text{num_dual_points}, 3)`. - The dual pyramid of shape :math:`(2, \text{max_level}+2)` Examples: >>> import kaolin >>> points = torch.tensor([[0, 0, 0], [0, 0, 1], [0, 1, 0]], device='cuda', dtype=torch.int16) >>> level = 1 >>> octree = kaolin.ops.spc.unbatched_points_to_octree(points, level) >>> length = torch.tensor([len(octree)], dtype=torch.int32) >>> _, pyramid, prefix = kaolin.ops.spc.scan_octrees(octree, length) >>> point_hierarchy = kaolin.ops.spc.generate_points(octree, pyramid, prefix) >>> point_hierarchy_dual, pyramid_dual = kaolin.ops.spc.unbatched_make_dual(point_hierarchy, pyramid[0]) >>> kaolin.ops.spc.unbatched_get_level_points(point_hierarchy_dual, pyramid_dual, 0) # the corners of the root tensor([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]], device='cuda:0', dtype=torch.int16) >>> kaolin.ops.spc.unbatched_get_level_points(point_hierarchy_dual, pyramid_dual, 1) # the corners of the 1st level tensor([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], [0, 0, 2], [0, 1, 2], [1, 0, 2], [1, 1, 2], [0, 2, 0], [0, 2, 1], [1, 2, 0], [1, 2, 1]], device='cuda:0', dtype=torch.int16) """ pyramid_dual = torch.zeros_like(pyramid) point_hierarchy_dual = [] for i in range(pyramid.shape[1] - 1): corners = points_to_corners(unbatched_get_level_points(point_hierarchy, pyramid, i)).reshape(-1, 3) points_dual = torch.unique(corners, dim=0) sort_idxes = points_to_morton(points_dual).argsort() points_dual = points_dual[sort_idxes] point_hierarchy_dual.append(points_dual) pyramid_dual[0, i] = len(point_hierarchy_dual[i]) if i > 0: pyramid_dual[1, i] += pyramid_dual[:, i - 1].sum() pyramid_dual[1, pyramid.shape[1] - 1] += pyramid_dual[:, pyramid.shape[1] - 2].sum() point_hierarchy_dual = torch.cat(point_hierarchy_dual, dim=0) return point_hierarchy_dual, pyramid_dual def unbatched_make_trinkets(point_hierarchy, pyramid, point_hierarchy_dual, pyramid_dual): r"""Creates the trinkets for the dual octree. The trinkets are indirection pointers (in practice, indices) from the nodes of the primary octree to the nodes of the dual octree. The nodes of the dual octree represent the corners of the voxels defined by the primary octree. The trinkets are useful for accessing values stored on the corners (like for example a signed distance function) and interpolating them from the nodes of the primary octree. Args: point_hierarchy (torch.ShortTensor): The point hierarchy of shape :math:`(\text{num_points}, 3)`. pyramid (torch.LongTensor): The pyramid of shape :math:`(2, \text{max_level}+2)` point_hierarchy_dual (torch.ShortTensor): The point hierarchy of the dual octree of shape :math:`(\text{num_dual_points}, 3)`. pyramid_dual (torch.LongTensor): The dual pyramid of shape :math:`(2, \text{max_level}+2)` Returns: (torch.IntTensor, torch.IntTensor): - The trinkets of shape :math:`(\text{num_points}, 8)`. - Indirection pointers to the parents of shape :math:`(\text{num_points})`. """ device = point_hierarchy.device trinkets = [] parents = [] # At a high level... the goal of this algorithm is to create a table which maps from the primary # octree of voxels to the dual octree of corners, while also keeping track of parents. # It does so by constructing a lookup table which maps morton codes of the source octree corners # to the index of the destination (dual), then using pandas to do table lookups. It's a silly # solution that would be much faster with a GPU but works well enough. for lvl in range(pyramid_dual.shape[1] - 1): # The source (primary octree) is sorted in morton order by construction points = unbatched_get_level_points(point_hierarchy, pyramid, lvl) corners = points_to_corners(points) mt_src = points_to_morton(corners.reshape(-1, 3)) # The destination (dual octree) needs to be sorted too points_dual = unbatched_get_level_points(point_hierarchy_dual, pyramid_dual, lvl) mt_dest = points_to_morton(points_dual) # Uses arange to associate from the morton codes to the point index. The point index is indexed from 0. lut = {k: i for i, k in enumerate(mt_dest.cpu().numpy())} if lvl == 0: parents.append(torch.tensor([-1], device='cuda', dtype=torch.int).to(device)) else: # Dividing by 2 will yield the morton code of the parent pc = torch.floor(points / 2.0).short() # Morton of the parents (point_hierarchy_index -> parent_morton) mt_pc_parent = points_to_morton(pc) # Morton of the children (point_hierarchy_index -> self_morton) mt_pc_child = points_to_morton(points) points_parents = unbatched_get_level_points(point_hierarchy, pyramid, lvl - 1) # point_hierarchy_index (i-1) -> parent_morton mt_parents = points_to_morton(points_parents) # parent_morton -> point_hierarchy_index plut = {k: i for i, k in enumerate(mt_parents.cpu().numpy())} pc_idx = [plut[i] for i in mt_pc_parent.cpu().numpy()] parents.append(torch.tensor(pc_idx, device=device, dtype=torch.int) + pyramid[1, lvl - 1]) idx = [lut[i] for i in mt_src.cpu().numpy()] trinkets.extend(idx) # Trinkets are relative to the beginning of each pyramid base trinkets = torch.tensor(trinkets, device=device, dtype=torch.int).reshape(-1, 8) parents = torch.cat(parents, dim=0) return trinkets, parents
45.83691
123
0.63633
e64d4d809b549dc749581acd1377b80c3137299a
480
py
Python
CTFd/utils/security/signing.py
amanbansal2709/ctfd
941335a5e205ca818ce1758076858b628e4fa05b
[ "Apache-2.0" ]
null
null
null
CTFd/utils/security/signing.py
amanbansal2709/ctfd
941335a5e205ca818ce1758076858b628e4fa05b
[ "Apache-2.0" ]
null
null
null
CTFd/utils/security/signing.py
amanbansal2709/ctfd
941335a5e205ca818ce1758076858b628e4fa05b
[ "Apache-2.0" ]
1
2021-12-23T14:11:15.000Z
2021-12-23T14:11:15.000Z
from flask import current_app from itsdangerous.url_safe import URLSafeTimedSerializer from itsdangerous.exc import BadTimeSignature, SignatureExpired, BadSignature # noqa: F401 def serialize(data): secret = current_app.config['SECRET_KEY'] s = URLSafeTimedSerializer(secret) return s.dumps(data) def unserialize(data, max_age=432000): secret = current_app.config['SECRET_KEY'] s = URLSafeTimedSerializer(secret) return s.loads(data, max_age=max_age)
30
91
0.775
2ffd66ed59875c79c3bb3e39e1ffe23d6eaaf3e1
4,670
py
Python
parlai/tasks/vqa_v2/agents.py
lifelongeek/KBKAIST_Chatbot
4766e6ee61a10e3719b7608c5777430ddfd277f9
[ "BSD-3-Clause" ]
2
2017-10-06T09:56:49.000Z
2017-10-06T09:57:03.000Z
parlai/tasks/vqa_v2/agents.py
gmkim90/KBKAIST_Chatbot
4766e6ee61a10e3719b7608c5777430ddfd277f9
[ "BSD-3-Clause" ]
null
null
null
parlai/tasks/vqa_v2/agents.py
gmkim90/KBKAIST_Chatbot
4766e6ee61a10e3719b7608c5777430ddfd277f9
[ "BSD-3-Clause" ]
2
2017-10-06T09:57:04.000Z
2018-11-08T13:45:47.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from parlai.core.agents import Teacher from parlai.core.image_featurizers import ImageLoader from .build import build, buildImage import json import random import os def _path(opt): build(opt) buildImage(opt) dt = opt['datatype'].split(':')[0] if dt == 'train': ques_suffix = 'v2_OpenEnded_mscoco_train2014' annotation_suffix = 'v2_mscoco_train2014' img_suffix = os.path.join('train2014', 'COCO_train2014_') elif dt == 'valid': ques_suffix = 'v2_OpenEnded_mscoco_val2014' annotation_suffix = 'v2_mscoco_val2014' img_suffix = os.path.join('val2014', 'COCO_val2014_') elif dt == 'test': ques_suffix = 'v2_OpenEnded_mscoco_test2015' annotation_suffix = 'None' img_suffix = os.path.join('test2015', 'COCO_test2015_') else: raise RuntimeError('Not valid datatype.') data_path = os.path.join(opt['datapath'], 'VQA-v2', ques_suffix + '_questions.json') annotation_path = os.path.join(opt['datapath'], 'VQA-v2', annotation_suffix + '_annotations.json') image_path = os.path.join(opt['datapath'], 'COCO-IMG', img_suffix) return data_path, annotation_path, image_path class OeTeacher(Teacher): """VQA v2.0 Open-Ended teacher, which loads the json VQA data and implements its own `act` method for interacting with student agent. agent. """ def __init__(self, opt, shared=None): super().__init__(opt) self.datatype = opt['datatype'] data_path, annotation_path, self.image_path = _path(opt) if shared and 'ques' in shared: self.ques = shared['ques'] if 'annotation' in shared: self.annotation = shared['annotation'] else: self._setup_data(data_path, annotation_path) self.len = len(self.ques['questions']) # for ordered data in batch mode (especially, for validation and # testing), each teacher in the batch gets a start index and a step # size so they all process disparate sets of the data self.step_size = opt.get('batchsize', 1) self.data_offset = opt.get('batchindex', 0) self.image_loader = ImageLoader(opt) self.reset() def __len__(self): return self.len def reset(self): # Reset the dialog so that it is at the start of the epoch, # and all metrics are reset. super().reset() self.lastY = None self.episode_idx = self.data_offset - self.step_size def observe(self, observation): """Process observation for metrics.""" if self.lastY is not None: self.metrics.update(observation, self.lastY) self.lastY = None return observation def act(self): if self.datatype == 'train': self.episode_idx = random.randrange(self.len) else: self.episode_idx = (self.episode_idx + self.step_size) % len(self) if self.episode_idx == len(self) - self.step_size: self.epochDone = True qa = self.ques['questions'][self.episode_idx] question = qa['question'] image_id = qa['image_id'] img_path = self.image_path + '%012d.jpg' % (image_id) action = { 'image': self.image_loader.load(img_path), 'text': question, 'episode_done': True } if not self.datatype.startswith('test'): anno = self.annotation['annotations'][self.episode_idx] self.lastY = [ans['answer'] for ans in anno['answers']] if self.datatype.startswith('train'): action['labels'] = self.lastY return action def share(self): shared = super().share() shared['ques'] = self.ques if hasattr(self, 'annotation'): shared['annotation'] = self.annotation return shared def _setup_data(self, data_path, annotation_path): print('loading: ' + data_path) with open(data_path) as data_file: self.ques = json.load(data_file) if self.datatype != 'test': print('loading: ' + annotation_path) with open(annotation_path) as data_file: self.annotation = json.load(data_file) class DefaultTeacher(OeTeacher): pass
33.357143
78
0.618844
5c309e1d54a770dc1b8e90c70ab330f354215006
35,348
py
Python
src/sage/modules/vector_space_morphism.py
saraedum/sage-renamed
d2da67b14da2ad766a5906425d60d43a3b3e1270
[ "BSL-1.0" ]
1
2016-11-04T16:31:48.000Z
2016-11-04T16:31:48.000Z
src/sage/modules/vector_space_morphism.py
rwst/sage
a9d274b9338e6ee24bf35ea8d25875507e51e455
[ "BSL-1.0" ]
null
null
null
src/sage/modules/vector_space_morphism.py
rwst/sage
a9d274b9338e6ee24bf35ea8d25875507e51e455
[ "BSL-1.0" ]
null
null
null
r""" Vector Space Morphisms (aka Linear Transformations) AUTHOR: - Rob Beezer: (2011-06-29) A vector space morphism is a homomorphism between vector spaces, better known as a linear transformation. These are a specialization of Sage's free module homomorphisms. (A free module is like a vector space, but with scalars from a ring that may not be a field.) So references to free modules in the documentation or error messages should be understood as simply reflecting a more general situation. Creation -------- The constructor :func:`linear_transformation` is designed to accept a variety of inputs that can define a linear transformation. See the documentation of the function for all the possibilities. Here we give two. First a matrix representation. By default input matrices are understood to act on vectors placed to left of the matrix. Optionally, an input matrix can be described as acting on vectors placed to the right. :: sage: A = matrix(QQ, [[-1, 2, 3], [4, 2, 0]]) sage: phi = linear_transformation(A) sage: phi Vector space morphism represented by the matrix: [-1 2 3] [ 4 2 0] Domain: Vector space of dimension 2 over Rational Field Codomain: Vector space of dimension 3 over Rational Field sage: phi([2, -3]) (-14, -2, 6) A symbolic function can be used to specify the "rule" for a linear transformation, along with explicit descriptions of the domain and codomain. :: sage: F = Integers(13) sage: D = F^3 sage: C = F^2 sage: x, y, z = var('x y z') sage: f(x, y, z) = [2*x + 3*y + 5*z, x + z] sage: rho = linear_transformation(D, C, f) sage: f(1, 2, 3) (23, 4) sage: rho([1, 2, 3]) (10, 4) A "vector space homspace" is the set of all linear transformations between two vector spaces. Various input can be coerced into a homspace to create a linear transformation. See :mod:`sage.modules.vector_space_homspace` for more. :: sage: D = QQ^4 sage: C = QQ^2 sage: hom_space = Hom(D, C) sage: images = [[1, 3], [2, -1], [4, 0], [3, 7]] sage: zeta = hom_space(images) sage: zeta Vector space morphism represented by the matrix: [ 1 3] [ 2 -1] [ 4 0] [ 3 7] Domain: Vector space of dimension 4 over Rational Field Codomain: Vector space of dimension 2 over Rational Field A homomorphism may also be created via a method on the domain. :: sage: F = QQ[sqrt(3)] sage: a = F.gen(0) sage: D = F^2 sage: C = F^2 sage: A = matrix(F, [[a, 1], [2*a, 2]]) sage: psi = D.hom(A, C) sage: psi Vector space morphism represented by the matrix: [ sqrt3 1] [2*sqrt3 2] Domain: Vector space of dimension 2 over Number Field in sqrt3 with defining polynomial x^2 - 3 Codomain: Vector space of dimension 2 over Number Field in sqrt3 with defining polynomial x^2 - 3 sage: psi([1, 4]) (9*sqrt3, 9) Properties ---------- Many natural properties of a linear transformation can be computed. Some of these are more general methods of objects in the classes :class:`sage.modules.free_module_morphism.FreeModuleMorphism` and :class:`sage.modules.matrix_morphism.MatrixMorphism`. Values are computed in a natural way, an inverse image of an element can be computed with the ``lift()`` method, when the inverse image actually exists. :: sage: A = matrix(QQ, [[1,2], [2,4], [3,6]]) sage: phi = linear_transformation(A) sage: phi([1,2,0]) (5, 10) sage: phi.lift([10, 20]) (10, 0, 0) sage: phi.lift([100, 100]) Traceback (most recent call last): ... ValueError: element is not in the image Images and pre-images can be computed as vector spaces. :: sage: A = matrix(QQ, [[1,2], [2,4], [3,6]]) sage: phi = linear_transformation(A) sage: phi.image() Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 2] sage: phi.inverse_image( (QQ^2).span([[1,2]]) ) Vector space of degree 3 and dimension 3 over Rational Field Basis matrix: [1 0 0] [0 1 0] [0 0 1] sage: phi.inverse_image( (QQ^2).span([[1,1]]) ) Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1/3] [ 0 1 -2/3] Injectivity and surjectivity can be checked. :: sage: A = matrix(QQ, [[1,2], [2,4], [3,6]]) sage: phi = linear_transformation(A) sage: phi.is_injective() False sage: phi.is_surjective() False Restrictions and Representations -------------------------------- It is possible to restrict the domain and codomain of a linear transformation to make a new linear transformation. We will use those commands to replace the domain and codomain by equal vector spaces, but with alternate bases. The point here is that the matrix representation used to represent linear transformations are relative to the bases of both the domain and codomain. :: sage: A = graphs.PetersenGraph().adjacency_matrix() sage: V = QQ^10 sage: phi = linear_transformation(V, V, A) sage: phi Vector space morphism represented by the matrix: [0 1 0 0 1 1 0 0 0 0] [1 0 1 0 0 0 1 0 0 0] [0 1 0 1 0 0 0 1 0 0] [0 0 1 0 1 0 0 0 1 0] [1 0 0 1 0 0 0 0 0 1] [1 0 0 0 0 0 0 1 1 0] [0 1 0 0 0 0 0 0 1 1] [0 0 1 0 0 1 0 0 0 1] [0 0 0 1 0 1 1 0 0 0] [0 0 0 0 1 0 1 1 0 0] Domain: Vector space of dimension 10 over Rational Field Codomain: Vector space of dimension 10 over Rational Field sage: B1 = [V.gen(i) + V.gen(i+1) for i in range(9)] + [V.gen(9)] sage: B2 = [V.gen(0)] + [-V.gen(i-1) + V.gen(i) for i in range(1,10)] sage: D = V.subspace_with_basis(B1) sage: C = V.subspace_with_basis(B2) sage: rho = phi.restrict_codomain(C) sage: zeta = rho.restrict_domain(D) sage: zeta Vector space morphism represented by the matrix: [6 5 4 3 3 2 1 0 0 0] [6 5 4 3 2 2 2 1 0 0] [6 6 5 4 3 2 2 2 1 0] [6 5 5 4 3 2 2 2 2 1] [6 4 4 4 3 3 3 3 2 1] [6 5 4 4 4 4 4 4 3 1] [6 6 5 4 4 4 3 3 3 2] [6 6 6 5 4 4 2 1 1 1] [6 6 6 6 5 4 3 1 0 0] [3 3 3 3 3 2 2 1 0 0] Domain: Vector space of degree 10 and dimension 10 over Rational Field User basis matrix: [1 1 0 0 0 0 0 0 0 0] [0 1 1 0 0 0 0 0 0 0] [0 0 1 1 0 0 0 0 0 0] [0 0 0 1 1 0 0 0 0 0] [0 0 0 0 1 1 0 0 0 0] [0 0 0 0 0 1 1 0 0 0] [0 0 0 0 0 0 1 1 0 0] [0 0 0 0 0 0 0 1 1 0] [0 0 0 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 0 1] Codomain: Vector space of degree 10 and dimension 10 over Rational Field User basis matrix: [ 1 0 0 0 0 0 0 0 0 0] [-1 1 0 0 0 0 0 0 0 0] [ 0 -1 1 0 0 0 0 0 0 0] [ 0 0 -1 1 0 0 0 0 0 0] [ 0 0 0 -1 1 0 0 0 0 0] [ 0 0 0 0 -1 1 0 0 0 0] [ 0 0 0 0 0 -1 1 0 0 0] [ 0 0 0 0 0 0 -1 1 0 0] [ 0 0 0 0 0 0 0 -1 1 0] [ 0 0 0 0 0 0 0 0 -1 1] An endomorphism is a linear transformation with an equal domain and codomain, and here each needs to have the same basis. We are using a matrix that has well-behaved eigenvalues, as part of showing that these do not change as the representation changes. :: sage: A = graphs.PetersenGraph().adjacency_matrix() sage: V = QQ^10 sage: phi = linear_transformation(V, V, A) sage: phi.eigenvalues() [3, -2, -2, -2, -2, 1, 1, 1, 1, 1] sage: B1 = [V.gen(i) + V.gen(i+1) for i in range(9)] + [V.gen(9)] sage: C = V.subspace_with_basis(B1) sage: zeta = phi.restrict(C) sage: zeta Vector space morphism represented by the matrix: [ 1 0 1 -1 2 -1 2 -2 2 -2] [ 1 0 1 0 0 0 1 0 0 0] [ 0 1 0 1 0 0 0 1 0 0] [ 1 -1 2 -1 2 -2 2 -2 3 -2] [ 2 -2 2 -1 1 -1 1 0 1 0] [ 1 0 0 0 0 0 0 1 1 0] [ 0 1 0 0 0 1 -1 1 0 2] [ 0 0 1 0 0 2 -1 1 -1 2] [ 0 0 0 1 0 1 1 0 0 0] [ 0 0 0 0 1 -1 2 -1 1 -1] Domain: Vector space of degree 10 and dimension 10 over Rational Field User basis matrix: [1 1 0 0 0 0 0 0 0 0] [0 1 1 0 0 0 0 0 0 0] [0 0 1 1 0 0 0 0 0 0] [0 0 0 1 1 0 0 0 0 0] [0 0 0 0 1 1 0 0 0 0] [0 0 0 0 0 1 1 0 0 0] [0 0 0 0 0 0 1 1 0 0] [0 0 0 0 0 0 0 1 1 0] [0 0 0 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 0 1] Codomain: Vector space of degree 10 and dimension 10 over Rational Field User basis matrix: [1 1 0 0 0 0 0 0 0 0] [0 1 1 0 0 0 0 0 0 0] [0 0 1 1 0 0 0 0 0 0] [0 0 0 1 1 0 0 0 0 0] [0 0 0 0 1 1 0 0 0 0] [0 0 0 0 0 1 1 0 0 0] [0 0 0 0 0 0 1 1 0 0] [0 0 0 0 0 0 0 1 1 0] [0 0 0 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 0 1] sage: zeta.eigenvalues() [3, -2, -2, -2, -2, 1, 1, 1, 1, 1] Equality -------- Equality of linear transformations is a bit nuanced. The equality operator ``==`` tests if two linear transformations have equal matrix representations, while we determine if two linear transformations are the same function with the ``.is_equal_function()`` method. Notice in this example that the function never changes, just the representations. :: sage: f = lambda x: vector(QQ, [x[1], x[0]+x[1], x[0]]) sage: H = Hom(QQ^2, QQ^3) sage: phi = H(f) sage: rho = linear_transformation(QQ^2, QQ^3, matrix(QQ,2, 3, [[0,1,1], [1,1,0]])) sage: phi == rho True sage: U = (QQ^2).subspace_with_basis([[1, 2], [-3, 1]]) sage: V = (QQ^3).subspace_with_basis([[0, 1, 0], [2, 3, 1], [-1, 1, 6]]) sage: K = Hom(U, V) sage: zeta = K(f) sage: zeta == phi False sage: zeta.is_equal_function(phi) True sage: zeta.is_equal_function(rho) True TESTS:: sage: V = QQ^2 sage: H = Hom(V, V) sage: f = H([V.1,-2*V.0]) sage: loads(dumps(f)) Vector space morphism represented by the matrix: [ 0 1] [-2 0] Domain: Vector space of dimension 2 over Rational Field Codomain: Vector space of dimension 2 over Rational Field sage: loads(dumps(f)) == f True """ from __future__ import absolute_import #################################################################################### # Copyright (C) 2011 Rob Beezer <beezer@ups.edu> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #################################################################################### import sage.modules.matrix_morphism as matrix_morphism import sage.modules.free_module_morphism as free_module_morphism from . import vector_space_homspace from sage.structure.element import is_Matrix def linear_transformation(arg0, arg1=None, arg2=None, side='left'): r""" Create a linear transformation from a variety of possible inputs. FORMATS: In the following, ``D`` and ``C`` are vector spaces over the same field that are the domain and codomain (respectively) of the linear transformation. ``side`` is a keyword that is either 'left' or 'right'. When a matrix is used to specify a linear transformation, as in the first two call formats below, you may specify if the function is given by matrix multiplication with the vector on the left, or the vector on the right. The default is 'left'. Internally representations are always carried as the 'left' version, and the default text representation is this version. However, the matrix representation may be obtained as either version, no matter how it is created. - ``linear_transformation(A, side='left')`` Where ``A`` is a matrix. The domain and codomain are inferred from the dimension of the matrix and the base ring of the matrix. The base ring must be a field, or have its fraction field implemented in Sage. - ``linear_transformation(D, C, A, side='left')`` ``A`` is a matrix that behaves as above. However, now the domain and codomain are given explicitly. The matrix is checked for compatibility with the domain and codomain. Additionally, the domain and codomain may be supplied with alternate ("user") bases and the matrix is interpreted as being a representation relative to those bases. - ``linear_transformation(D, C, f)`` ``f`` is any function that can be applied to the basis elements of the domain and that produces elements of the codomain. The linear transformation returned is the unique linear transformation that extends this mapping on the basis elements. ``f`` may come from a function defined by a Python ``def`` statement, or may be defined as a ``lambda`` function. Alternatively, ``f`` may be specified by a callable symbolic function, see the examples below for a demonstration. - ``linear_transformation(D, C, images)`` ``images`` is a list, or tuple, of codomain elements, equal in number to the size of the basis of the domain. Each basis element of the domain is mapped to the corresponding element of the ``images`` list, and the linear transformation returned is the unique linear transformation that extends this mapping. OUTPUT: A linear transformation described by the input. This is a "vector space morphism", an object of the class :class:`sage.modules.vector_space_morphism`. EXAMPLES: We can define a linear transformation with just a matrix, understood to act on a vector placed on one side or the other. The field for the vector spaces used as domain and codomain is obtained from the base ring of the matrix, possibly promoting to a fraction field. :: sage: A = matrix(ZZ, [[1, -1, 4], [2, 0, 5]]) sage: phi = linear_transformation(A) sage: phi Vector space morphism represented by the matrix: [ 1 -1 4] [ 2 0 5] Domain: Vector space of dimension 2 over Rational Field Codomain: Vector space of dimension 3 over Rational Field sage: phi([1/2, 5]) (21/2, -1/2, 27) sage: B = matrix(Integers(7), [[1, 2, 1], [3, 5, 6]]) sage: rho = linear_transformation(B, side='right') sage: rho Vector space morphism represented by the matrix: [1 3] [2 5] [1 6] Domain: Vector space of dimension 3 over Ring of integers modulo 7 Codomain: Vector space of dimension 2 over Ring of integers modulo 7 sage: rho([2, 4, 6]) (2, 6) We can define a linear transformation with a matrix, while explicitly giving the domain and codomain. Matrix entries will be coerced into the common field of scalars for the vector spaces. :: sage: D = QQ^3 sage: C = QQ^2 sage: A = matrix([[1, 7], [2, -1], [0, 5]]) sage: A.parent() Full MatrixSpace of 3 by 2 dense matrices over Integer Ring sage: zeta = linear_transformation(D, C, A) sage: zeta.matrix().parent() Full MatrixSpace of 3 by 2 dense matrices over Rational Field sage: zeta Vector space morphism represented by the matrix: [ 1 7] [ 2 -1] [ 0 5] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field Matrix representations are relative to the bases for the domain and codomain. :: sage: u = vector(QQ, [1, -1]) sage: v = vector(QQ, [2, 3]) sage: D = (QQ^2).subspace_with_basis([u, v]) sage: x = vector(QQ, [2, 1]) sage: y = vector(QQ, [-1, 4]) sage: C = (QQ^2).subspace_with_basis([x, y]) sage: A = matrix(QQ, [[2, 5], [3, 7]]) sage: psi = linear_transformation(D, C, A) sage: psi Vector space morphism represented by the matrix: [2 5] [3 7] Domain: Vector space of degree 2 and dimension 2 over Rational Field User basis matrix: [ 1 -1] [ 2 3] Codomain: Vector space of degree 2 and dimension 2 over Rational Field User basis matrix: [ 2 1] [-1 4] sage: psi(u) == 2*x + 5*y True sage: psi(v) == 3*x + 7*y True Functions that act on the domain may be used to compute images of the domain's basis elements, and this mapping can be extended to a unique linear transformation. The function may be a Python function (via ``def`` or ``lambda``) or a Sage symbolic function. :: sage: def g(x): ....: return vector(QQ, [2*x[0]+x[2], 5*x[1]]) sage: phi = linear_transformation(QQ^3, QQ^2, g) sage: phi Vector space morphism represented by the matrix: [2 0] [0 5] [1 0] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field sage: f = lambda x: vector(QQ, [2*x[0]+x[2], 5*x[1]]) sage: rho = linear_transformation(QQ^3, QQ^2, f) sage: rho Vector space morphism represented by the matrix: [2 0] [0 5] [1 0] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field sage: x, y, z = var('x y z') sage: h(x, y, z) = [2*x + z, 5*y] sage: zeta = linear_transformation(QQ^3, QQ^2, h) sage: zeta Vector space morphism represented by the matrix: [2 0] [0 5] [1 0] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field sage: phi == rho True sage: rho == zeta True We create a linear transformation relative to non-standard bases, and capture its representation relative to standard bases. With this, we can build functions that create the same linear transformation relative to the nonstandard bases. :: sage: u = vector(QQ, [1, -1]) sage: v = vector(QQ, [2, 3]) sage: D = (QQ^2).subspace_with_basis([u, v]) sage: x = vector(QQ, [2, 1]) sage: y = vector(QQ, [-1, 4]) sage: C = (QQ^2).subspace_with_basis([x, y]) sage: A = matrix(QQ, [[2, 5], [3, 7]]) sage: psi = linear_transformation(D, C, A) sage: rho = psi.restrict_codomain(QQ^2).restrict_domain(QQ^2) sage: rho.matrix() [ -4/5 97/5] [ 1/5 -13/5] sage: f = lambda x: vector(QQ, [(-4/5)*x[0] + (1/5)*x[1], (97/5)*x[0] + (-13/5)*x[1]]) sage: psi = linear_transformation(D, C, f) sage: psi.matrix() [2 5] [3 7] sage: s, t = var('s t') sage: h(s, t) = [(-4/5)*s + (1/5)*t, (97/5)*s + (-13/5)*t] sage: zeta = linear_transformation(D, C, h) sage: zeta.matrix() [2 5] [3 7] Finally, we can give an explicit list of images for the basis elements of the domain. :: sage: x = polygen(QQ) sage: F.<a> = NumberField(x^3+x+1) sage: u = vector(F, [1, a, a^2]) sage: v = vector(F, [a, a^2, 2]) sage: w = u + v sage: D = F^3 sage: C = F^3 sage: rho = linear_transformation(D, C, [u, v, w]) sage: rho.matrix() [ 1 a a^2] [ a a^2 2] [ a + 1 a^2 + a a^2 + 2] sage: C = (F^3).subspace_with_basis([u, v]) sage: D = (F^3).subspace_with_basis([u, v]) sage: psi = linear_transformation(C, D, [u+v, u-v]) sage: psi.matrix() [ 1 1] [ 1 -1] TESTS: We test some bad inputs. First, the wrong things in the wrong places. :: sage: linear_transformation('junk') Traceback (most recent call last): ... TypeError: first argument must be a matrix or a vector space, not junk sage: linear_transformation(QQ^2, QQ^3, 'stuff') Traceback (most recent call last): ... TypeError: third argument must be a matrix, function, or list of images, not stuff sage: linear_transformation(QQ^2, 'garbage') Traceback (most recent call last): ... TypeError: if first argument is a vector space, then second argument must be a vector space, not garbage sage: linear_transformation(QQ^2, Integers(7)^2) Traceback (most recent call last): ... TypeError: vector spaces must have the same field of scalars, not Rational Field and Ring of integers modulo 7 Matrices must be over a field (or a ring that can be promoted to a field), and of the right size. :: sage: linear_transformation(matrix(Integers(6), [[2, 3],[4, 5]])) Traceback (most recent call last): ... TypeError: matrix must have entries from a field, or a ring with a fraction field, not Ring of integers modulo 6 sage: A = matrix(QQ, 3, 4, range(12)) sage: linear_transformation(QQ^4, QQ^4, A) Traceback (most recent call last): ... TypeError: domain dimension is incompatible with matrix size sage: linear_transformation(QQ^3, QQ^3, A, side='right') Traceback (most recent call last): ... TypeError: domain dimension is incompatible with matrix size sage: linear_transformation(QQ^3, QQ^3, A) Traceback (most recent call last): ... TypeError: codomain dimension is incompatible with matrix size sage: linear_transformation(QQ^4, QQ^4, A, side='right') Traceback (most recent call last): ... TypeError: codomain dimension is incompatible with matrix size Lists of images can be of the wrong number, or not really elements of the codomain. :: sage: linear_transformation(QQ^3, QQ^2, [vector(QQ, [1,2])]) Traceback (most recent call last): ... ValueError: number of images should equal the size of the domain's basis (=3), not 1 sage: C = (QQ^2).subspace_with_basis([vector(QQ, [1,1])]) sage: linear_transformation(QQ^1, C, [vector(QQ, [1,2])]) Traceback (most recent call last): ... ArithmeticError: some proposed image is not in the codomain, because element [1, 2] is not in free module Functions may not apply properly to domain elements, or return values outside the codomain. :: sage: f = lambda x: vector(QQ, [x[0], x[4]]) sage: linear_transformation(QQ^3, QQ^2, f) Traceback (most recent call last): ... ValueError: function cannot be applied properly to some basis element because vector index out of range sage: f = lambda x: vector(QQ, [x[0], x[1]]) sage: C = (QQ^2).span([vector(QQ, [1, 1])]) sage: linear_transformation(QQ^2, C, f) Traceback (most recent call last): ... ArithmeticError: some image of the function is not in the codomain, because element [1, 0] is not in free module A Sage symbolic function can come in a variety of forms that are not representative of a linear transformation. :: sage: x, y = var('x, y') sage: f(x, y) = [y, x, y] sage: linear_transformation(QQ^3, QQ^3, f) Traceback (most recent call last): ... ValueError: symbolic function has the wrong number of inputs for domain sage: linear_transformation(QQ^2, QQ^2, f) Traceback (most recent call last): ... ValueError: symbolic function has the wrong number of outputs for codomain sage: x, y = var('x y') sage: f(x, y) = [y, x*y] sage: linear_transformation(QQ^2, QQ^2, f) Traceback (most recent call last): ... ValueError: symbolic function must be linear in all the inputs: unable to convert y to a rational sage: x, y = var('x y') sage: f(x, y) = [x, 2*y] sage: C = (QQ^2).span([vector(QQ, [1, 1])]) sage: linear_transformation(QQ^2, C, f) Traceback (most recent call last): ... ArithmeticError: some image of the function is not in the codomain, because element [1, 0] is not in free module """ from sage.matrix.constructor import matrix from sage.modules.module import is_VectorSpace from sage.modules.free_module import VectorSpace from sage.categories.homset import Hom from sage.symbolic.ring import SR from sage.modules.vector_callable_symbolic_dense import Vector_callable_symbolic_dense from inspect import isfunction if not side in ['left', 'right']: raise ValueError("side must be 'left' or 'right', not {0}".format(side)) if not (is_Matrix(arg0) or is_VectorSpace(arg0)): raise TypeError('first argument must be a matrix or a vector space, not {0}'.format(arg0)) if is_Matrix(arg0): R = arg0.base_ring() if not R.is_field(): try: R = R.fraction_field() except (NotImplementedError, TypeError): msg = 'matrix must have entries from a field, or a ring with a fraction field, not {0}' raise TypeError(msg.format(R)) if side == 'right': arg0 = arg0.transpose() side = 'left' arg2 = arg0 arg0 = VectorSpace(R, arg2.nrows()) arg1 = VectorSpace(R, arg2.ncols()) elif is_VectorSpace(arg0): if not is_VectorSpace(arg1): msg = 'if first argument is a vector space, then second argument must be a vector space, not {0}' raise TypeError(msg.format(arg1)) if arg0.base_ring() != arg1.base_ring(): msg = 'vector spaces must have the same field of scalars, not {0} and {1}' raise TypeError(msg.format(arg0.base_ring(), arg1.base_ring())) # Now arg0 = domain D, arg1 = codomain C, and # both are vector spaces with common field of scalars # use these to make a VectorSpaceHomSpace # arg2 might be a matrix that began in arg0 D = arg0 C = arg1 H = Hom(D, C, category=None) # Examine arg2 as the "rule" for the linear transformation # Pass on matrices, Python functions and lists to homspace call # Convert symbolic function here, to a matrix if is_Matrix(arg2): if side == 'right': arg2 = arg2.transpose() elif isinstance(arg2, (list, tuple)): pass elif isfunction(arg2): pass elif isinstance(arg2, Vector_callable_symbolic_dense): args = arg2.parent().base_ring()._arguments exprs = arg2.change_ring(SR) m = len(args) n = len(exprs) if m != D.degree(): raise ValueError('symbolic function has the wrong number of inputs for domain') if n != C.degree(): raise ValueError('symbolic function has the wrong number of outputs for codomain') arg2 = [[e.coefficient(a) for e in exprs] for a in args] try: arg2 = matrix(D.base_ring(), m, n, arg2) except TypeError as e: msg = 'symbolic function must be linear in all the inputs:\n' + e.args[0] raise ValueError(msg) # have matrix with respect to standard bases, now consider user bases images = [v*arg2 for v in D.basis()] try: arg2 = matrix([C.coordinates(C(a)) for a in images]) except (ArithmeticError, TypeError) as e: msg = 'some image of the function is not in the codomain, because\n' + e.args[0] raise ArithmeticError(msg) else: msg = 'third argument must be a matrix, function, or list of images, not {0}' raise TypeError(msg.format(arg2)) # arg2 now compatible with homspace H call method # __init__ will check matrix sizes versus domain/codomain dimensions return H(arg2) def is_VectorSpaceMorphism(x): r""" Returns ``True`` if ``x`` is a vector space morphism (a linear transformation). INPUT: ``x`` - anything OUTPUT: ``True`` only if ``x`` is an instance of a vector space morphism, which are also known as linear transformations. EXAMPLES:: sage: V = QQ^2; f = V.hom([V.1,-2*V.0]) sage: sage.modules.vector_space_morphism.is_VectorSpaceMorphism(f) True sage: sage.modules.vector_space_morphism.is_VectorSpaceMorphism('junk') False """ return isinstance(x, VectorSpaceMorphism) class VectorSpaceMorphism(free_module_morphism.FreeModuleMorphism): def __init__(self, homspace, A): r""" Create a linear transformation, a morphism between vector spaces. INPUT: - ``homspace`` - a homspace (of vector spaces) to serve as a parent for the linear transformation and a home for the domain and codomain of the morphism - ``A`` - a matrix representing the linear transformation, which will act on vectors placed to the left of the matrix EXAMPLES: Nominally, we require a homspace to hold the domain and codomain and a matrix representation of the morphism (linear transformation). :: sage: from sage.modules.vector_space_homspace import VectorSpaceHomspace sage: from sage.modules.vector_space_morphism import VectorSpaceMorphism sage: H = VectorSpaceHomspace(QQ^3, QQ^2) sage: A = matrix(QQ, 3, 2, range(6)) sage: zeta = VectorSpaceMorphism(H, A) sage: zeta Vector space morphism represented by the matrix: [0 1] [2 3] [4 5] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field See the constructor, :func:`sage.modules.vector_space_morphism.linear_transformation` for another way to create linear transformations. The ``.hom()`` method of a vector space will create a vector space morphism. :: sage: V = QQ^3; W = V.subspace_with_basis([[1,2,3], [-1,2,5/3], [0,1,-1]]) sage: phi = V.hom(matrix(QQ, 3, range(9)), codomain=W) # indirect doctest sage: type(phi) <class 'sage.modules.vector_space_morphism.VectorSpaceMorphism'> A matrix may be coerced into a vector space homspace to create a vector space morphism. :: sage: from sage.modules.vector_space_homspace import VectorSpaceHomspace sage: H = VectorSpaceHomspace(QQ^3, QQ^2) sage: A = matrix(QQ, 3, 2, range(6)) sage: rho = H(A) # indirect doctest sage: type(rho) <class 'sage.modules.vector_space_morphism.VectorSpaceMorphism'> """ if not vector_space_homspace.is_VectorSpaceHomspace(homspace): raise TypeError('homspace must be a vector space hom space, not {0}'.format(homspace)) if isinstance(A, matrix_morphism.MatrixMorphism): A = A.matrix() if not is_Matrix(A): msg = 'input must be a matrix representation or another matrix morphism, not {0}' raise TypeError(msg.format(A)) # now have a vector space homspace, and a matrix, check compatibility if homspace.domain().dimension() != A.nrows(): raise TypeError('domain dimension is incompatible with matrix size') if homspace.codomain().dimension() != A.ncols(): raise TypeError('codomain dimension is incompatible with matrix size') A = homspace._matrix_space()(A) free_module_morphism.FreeModuleMorphism.__init__(self, homspace, A) def is_invertible(self): r""" Determines if the vector space morphism has an inverse. OUTPUT: ``True`` if the vector space morphism is invertible, otherwise ``False``. EXAMPLES: If the dimension of the domain does not match the dimension of the codomain, then the morphism cannot be invertible. :: sage: V = QQ^3 sage: U = V.subspace_with_basis([V.0 + V.1, 2*V.1 + 3*V.2]) sage: phi = V.hom([U.0, U.0 + U.1, U.0 - U.1], U) sage: phi.is_invertible() False An invertible linear transformation. :: sage: A = matrix(QQ, 3, [[-3, 5, -5], [4, -7, 7], [6, -8, 10]]) sage: A.determinant() 2 sage: H = Hom(QQ^3, QQ^3) sage: rho = H(A) sage: rho.is_invertible() True A non-invertible linear transformation, an endomorphism of a vector space over a finite field. :: sage: F.<a> = GF(11^2) sage: A = matrix(F, [[6*a + 3, 8*a + 2, 10*a + 3], ....: [2*a + 7, 4*a + 3, 2*a + 3], ....: [9*a + 2, 10*a + 10, 3*a + 3]]) sage: A.nullity() 1 sage: E = End(F^3) sage: zeta = E(A) sage: zeta.is_invertible() False """ # endomorphism or not, this is equivalent to invertibility of # the matrix representation, so any test of this will suffice m = self.matrix() if not m.is_square(): return False return m.rank() == m.ncols() def _latex_(self): r""" A LaTeX representation of this vector space morphism. EXAMPLES:: sage: H = Hom(QQ^3, QQ^2) sage: f = H(matrix(3, 2, range(6))) sage: f._latex_().split(' ') ['\\text{vector', 'space', 'morphism', 'from', '}\n\\Bold{Q}^{3}\\text{', 'to', '}\n\\Bold{Q}^{2}\\text{', 'represented', 'by', 'the', 'matrix', '}\n\\left(\\begin{array}{rr}\n0', '&', '1', '\\\\\n2', '&', '3', '\\\\\n4', '&', '5\n\\end{array}\\right)'] """ from sage.misc.latex import latex s = ('\\text{vector space morphism from }\n', self.domain()._latex_(), '\\text{ to }\n', self.codomain()._latex_(), '\\text{ represented by the matrix }\n', self.matrix()._latex_()) return ''.join(s) def _repr_(self): r""" A text representation of this vector space morphism. EXAMPLES:: sage: H = Hom(QQ^3, QQ^2) sage: f = H(matrix(3, 2, range(6))) sage: f._repr_().split(' ') ['Vector', 'space', 'morphism', 'represented', 'by', 'the', 'matrix:\n[0', '1]\n[2', '3]\n[4', '5]\nDomain:', 'Vector', 'space', 'of', 'dimension', '3', 'over', 'Rational', 'Field\nCodomain:', 'Vector', 'space', 'of', 'dimension', '2', 'over', 'Rational', 'Field'] """ m = self.matrix() msg = ("Vector space morphism represented by the matrix:\n", "{!r}\n", "Domain: {}\n", "Codomain: {}") return ''.join(msg).format(m, self.domain(), self.codomain())
36.782518
120
0.592509
24a454e24ab3529630e7740c14743aa06f0b813f
6,918
py
Python
python/friesian/example/ncf/ncf_train.py
DirkFi/BigDL
7493209165c046116470b9a1e1c8f527915d6f1e
[ "Apache-2.0" ]
null
null
null
python/friesian/example/ncf/ncf_train.py
DirkFi/BigDL
7493209165c046116470b9a1e1c8f527915d6f1e
[ "Apache-2.0" ]
null
null
null
python/friesian/example/ncf/ncf_train.py
DirkFi/BigDL
7493209165c046116470b9a1e1c8f527915d6f1e
[ "Apache-2.0" ]
null
null
null
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math import argparse import pandas as pd import tensorflow as tf from tensorflow.keras.layers import Input, Embedding, Dense, Flatten, concatenate, multiply from bigdl.dllib.feature.dataset import movielens from bigdl.orca import init_orca_context, stop_orca_context from bigdl.orca.learn.tf2.estimator import Estimator from bigdl.friesian.feature import FeatureTable def build_model(num_users, num_items, class_num, layers=[20, 10], include_mf=True, mf_embed=20): num_layer = len(layers) user_input = Input(shape=(1,), dtype='int32', name='user_input') item_input = Input(shape=(1,), dtype='int32', name='item_input') mlp_embed_user = Embedding(input_dim=num_users, output_dim=int(layers[0] / 2), input_length=1)(user_input) mlp_embed_item = Embedding(input_dim=num_items, output_dim=int(layers[0] / 2), input_length=1)(item_input) user_latent = Flatten()(mlp_embed_user) item_latent = Flatten()(mlp_embed_item) mlp_latent = concatenate([user_latent, item_latent], axis=1) for idx in range(1, num_layer): layer = Dense(layers[idx], activation='relu', name='layer%d' % idx) mlp_latent = layer(mlp_latent) if include_mf: mf_embed_user = Embedding(input_dim=num_users, output_dim=mf_embed, input_length=1)(user_input) mf_embed_item = Embedding(input_dim=num_users, output_dim=mf_embed, input_length=1)(item_input) mf_user_flatten = Flatten()(mf_embed_user) mf_item_flatten = Flatten()(mf_embed_item) mf_latent = multiply([mf_user_flatten, mf_item_flatten]) concated_model = concatenate([mlp_latent, mf_latent], axis=1) prediction = Dense(class_num, activation='softmax', name='prediction')(concated_model) else: prediction = Dense(class_num, activation='softmax', name='prediction')(mlp_latent) model = tf.keras.Model([user_input, item_input], prediction) return model if __name__ == '__main__': parser = argparse.ArgumentParser(description='NCF Training') parser.add_argument('--cluster_mode', type=str, default="local", help='The cluster mode, such as local, yarn, standalone or spark-submit.') parser.add_argument('--master', type=str, default=None, help='The master url, only used when cluster mode is standalone.') parser.add_argument('--executor_cores', type=int, default=8, help='The executor core number.') parser.add_argument('--executor_memory', type=str, default="160g", help='The executor memory.') parser.add_argument('--num_executor', type=int, default=8, help='The number of executor.') parser.add_argument('--driver_cores', type=int, default=4, help='The driver core number.') parser.add_argument('--driver_memory', type=str, default="36g", help='The driver memory.') parser.add_argument('--lr', default=0.001, type=float, help='learning rate') parser.add_argument('--epochs', default=5, type=int, help='train epoch') parser.add_argument('--batch_size', default=8000, type=int, help='batch size') parser.add_argument('--model_dir', default='snapshot', type=str, help='snapshot directory name (default: snapshot)') args = parser.parse_args() if args.cluster_mode == "local": sc = init_orca_context("local", init_ray_on_spark=True) elif args.cluster_mode == "standalone": sc = init_orca_context("standalone", master=args.master, cores=args.executor_cores, num_nodes=args.num_executor, memory=args.executor_memory, driver_cores=args.driver_cores, driver_memory=args.driver_memory, init_ray_on_spark=True) elif args.cluster_mode == "yarn": sc = init_orca_context("yarn-client", cores=args.executor_cores, num_nodes=args.num_executor, memory=args.executor_memory, driver_cores=args.driver_cores, driver_memory=args.driver_memory, object_store_memory="10g", init_ray_on_spark=True) elif args.cluster_mode == "spark-submit": sc = init_orca_context("spark-submit") else: raise ValueError( "cluster_mode should be one of 'local', 'yarn', 'standalone' and 'spark-submit'" ", but got " + args.cluster_mode) movielens_data = movielens.get_id_ratings("/tmp/movielens/") pddf = pd.DataFrame(movielens_data, columns=["user", "item", "label"]) num_users, num_items = pddf["user"].max() + 1, pddf["item"].max() + 1 full = FeatureTable.from_pandas(pddf)\ .apply("label", "label", lambda x: x - 1, 'int') train, test = full.random_split([0.8, 0.2], seed=1) config = {"lr": 1e-3, "inter_op_parallelism": 4, "intra_op_parallelism": args.executor_cores} def model_creator(config): model = build_model(num_users, num_items, 5) print(model.summary()) optimizer = tf.keras.optimizers.Adam(config["lr"]) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_crossentropy', 'accuracy']) return model steps_per_epoch = math.ceil(train.size() / args.batch_size) val_steps = math.ceil(test.size() / args.batch_size) estimator = Estimator.from_keras(model_creator=model_creator, verbose=False, config=config) estimator.fit(train.df, batch_size=args.batch_size, epochs=args.epochs, feature_cols=['user', 'item'], label_cols=['label'], steps_per_epoch=steps_per_epoch, validation_data=test.df, validation_steps=val_steps) tf.saved_model.save(estimator.get_model(), args.model_dir) stop_orca_context()
46.42953
98
0.630818
4cbf15b5e82e0334a02e7a2b33ef321f8a872fb0
3,572
py
Python
application/api/nurse.py
MickeyPa/soen344
a9632dc36d23a4eba5bb9c943c9ae75ecc4811bd
[ "MIT" ]
null
null
null
application/api/nurse.py
MickeyPa/soen344
a9632dc36d23a4eba5bb9c943c9ae75ecc4811bd
[ "MIT" ]
null
null
null
application/api/nurse.py
MickeyPa/soen344
a9632dc36d23a4eba5bb9c943c9ae75ecc4811bd
[ "MIT" ]
2
2019-06-04T20:09:14.000Z
2019-06-04T20:15:32.000Z
''' This file documents the api routes for nurse related events ''' from flask import Flask, Blueprint, redirect, render_template, url_for, session, request, logging from index import app from application.services import NurseService, DoctorService, DoctorScheduleService from application.util import * from passlib.hash import sha256_crypt from application.util import convertRequestDataToDict as toDict import json # This is a Blueprint object. We use this as the object to route certain urls # In /index.py we import this object and attach it to the Flask object app # This way all the routes attached to this object will be mapped to app as well. nurse = Blueprint('nurse', __name__) # list of possible requests httpMethods = ['PUT', 'GET', 'POST', 'DELETE'] # Index @nurse.route('/api/', methods=['GET','OPTIONS']) def index(): return json.dumps({'success': True, 'status': 'OK', 'message': 'Success'}) @nurse.route('/api/nurse/', methods=['PUT']) def newNurse(): data = request.data data = data.decode('utf8').replace("'",'"') data = json.loads(data) print(data) success = False # Create a nurse and find our whether it is successful or not success = NurseService.createNurse(access_ID=data['access_ID'], fname=data['fname'], lname=data['lname'], password=data['password']) if success: message = "Nurse has been created" else: message = "Nurse already exists" response = json.dumps({"success":success, "message":message}) return response @nurse.route('/api/nurse/authenticate/', methods=['POST']) def userAuthenticate(): # convert request data to dictionary data = toDict(request.data) success = False message = "" status = "" # OK, DENIED, WARNING response = {} user = {} # check if access ID exists success = NurseService.nurseExists(data['access_ID']) # Verify User success = NurseService.authenticate(data['access_ID'], data['password']) # if access ID exists & authenticated, then get the patient if success: user = NurseService.getNurse(data['access_ID']) # convert datetimes to strings message = "Nurse authenticated." status = "OK" response = json.dumps({'success': success, 'status': status, 'message': message,'user':user}) # else the user is not authenticated, request is denied else: message = "User not authenticated." status = "DENIED" response = json.dumps({'success': success, 'status': status, 'message': message,'user':user}) return response @nurse.route('/api/nurse/doctorAvailability/', methods=['GET']) def getDoctorAvailability(): # convert request data to dictionary data = request.args success = False message = "" status = "" # OK, DENIED, WARNING response = {} user = {} returned_values = {'timeslot': '', 'clinics': ''} # check if permit number exists success = DoctorService.doctorExists(data['permit_number']) and \ NurseService.verifyHash(data['access_ID'], data['password_hash']) # if permit number exists, get the doctor's timeslots if success: returned_values = DoctorScheduleService.getAvailability(data['permit_number'], data['date']) # convert datetimes to strings message = "schedule found." status = "OK" response = json.dumps({'success': success, 'status': status, 'message': message, 'user': user}) # else the user is not authenticated, request is denied else: message = "User not authenticated or does not exist." status = "DENIED" response = json.dumps({'success': success, 'status': status, 'message': message,\ 'schedule': returned_values['timeslot'], 'clinics': returned_values['clinics']}) return response
33.074074
133
0.716405
c5693c183b6e1a0044c109f7e1cf1f98743e2a1f
1,618
py
Python
event_pubsub/handlers/event_producer_handlers.py
DhivakharVenkatachalam/snet-marketplace-service
6aee606bc9b00d418caeae26c64deae03792e0ce
[ "MIT" ]
null
null
null
event_pubsub/handlers/event_producer_handlers.py
DhivakharVenkatachalam/snet-marketplace-service
6aee606bc9b00d418caeae26c64deae03792e0ce
[ "MIT" ]
null
null
null
event_pubsub/handlers/event_producer_handlers.py
DhivakharVenkatachalam/snet-marketplace-service
6aee606bc9b00d418caeae26c64deae03792e0ce
[ "MIT" ]
1
2021-01-15T11:10:36.000Z
2021-01-15T11:10:36.000Z
from common.logger import get_logger from common.utils import handle_exception_with_slack_notification from common.exception_handler import exception_handler from event_pubsub.config import NETWORKS, NETWORK_ID, SLACK_HOOK, WS_PROVIDER from event_pubsub.producers.blockchain_event_producer import MPEEventProducer, RFAIEventProducer, RegistryEventProducer, \ TokenStakeEventProducer from event_pubsub.repository import Repository registry_event_producer = RegistryEventProducer(WS_PROVIDER, Repository(NETWORKS)) mpe_event_producer = MPEEventProducer(WS_PROVIDER, Repository(NETWORKS)) rfai_event_producer = RFAIEventProducer(WS_PROVIDER, Repository(NETWORKS)) token_stake_event_producer = TokenStakeEventProducer(WS_PROVIDER, Repository(NETWORKS)) logger = get_logger(__name__) @handle_exception_with_slack_notification(SLACK_HOOK=SLACK_HOOK, NETWORK_ID=NETWORK_ID, logger=logger) def registry_event_producer_handler(event, context): try: registry_event_producer.produce_event(NETWORK_ID) except Exception as e: raise e def mpe_event_producer_handler(event, context): try: mpe_event_producer.produce_event(NETWORK_ID) except Exception as e: raise e def rfai_event_producer_handler(event, context): try: rfai_event_producer.produce_event(NETWORK_ID) except Exception as e: raise e @exception_handler(SLACK_HOOK=SLACK_HOOK, NETWORK_ID=NETWORK_ID, logger=logger) def token_stake_event_producer_handler(event, context): try: token_stake_event_producer.produce_event(NETWORK_ID) except Exception as e: raise e
34.425532
122
0.811496
0e4092e54c63059897455494b68b05cebcd5e62d
482
py
Python
data/scripts/templates/object/draft_schematic/furniture/bestine/shared_painting_bestine_rainbow_berry_bush.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/draft_schematic/furniture/bestine/shared_painting_bestine_rainbow_berry_bush.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/draft_schematic/furniture/bestine/shared_painting_bestine_rainbow_berry_bush.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Intangible() result.template = "object/draft_schematic/furniture/bestine/shared_painting_bestine_rainbow_berry_bush.iff" result.attribute_template_id = -1 result.stfName("string_id_table","") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
28.352941
108
0.744813
d63dd0d2f3cebbcf45849b4454e606c5428ff210
53,761
py
Python
thelper/train/utils.py
sfoucher/thelper
235406f3166f03ba6eb77f4a7289188aebc9b2c4
[ "Apache-2.0" ]
null
null
null
thelper/train/utils.py
sfoucher/thelper
235406f3166f03ba6eb77f4a7289188aebc9b2c4
[ "Apache-2.0" ]
null
null
null
thelper/train/utils.py
sfoucher/thelper
235406f3166f03ba6eb77f4a7289188aebc9b2c4
[ "Apache-2.0" ]
null
null
null
"""Training/evaluation utilities module. This module contains utilities and tools used to instantiate training sessions. It also contains the prediction consumer interface used by metrics and loggers to receive iteration data during training. See :mod:`thelper.optim.metrics` for more information on metrics. """ import json import logging import os from typing import Any, AnyStr, Dict, List, Optional, Union # noqa: F401 import cv2 as cv import numpy as np import sklearn.metrics import torch import thelper.concepts import thelper.ifaces import thelper.typedefs # noqa: F401 import thelper.utils from thelper.ifaces import ClassNamesHandler, FormatHandler, PredictionConsumer from thelper.optim.eval import compute_bbox_iou from thelper.tasks.detect import BoundingBox logger = logging.getLogger(__name__) class PredictionCallback(PredictionConsumer): """Callback function wrapper compatible with the consumer interface. This interface is used to hide user-defined callbacks into the list of prediction consumers given to trainer implementations. The callbacks must always be compatible with the list of arguments defined by ``thelper.typedefs.IterCallbackParams``, but may also receive extra arguments defined in advance and passed to the constructor of this class. Attributes: callback_func: user-defined function to call on every update from the trainer. callback_kwargs: user-defined extra arguments to provide to the callback function. """ def __init__(self, callback_func, callback_kwargs=None): # type: (thelper.typedefs.IterCallbackType, thelper.typedefs.IterCallbackParams) -> None assert callback_kwargs is None or \ (isinstance(callback_kwargs, dict) and not any([p in callback_kwargs for p in thelper.typedefs.IterCallbackParams])), \ "invalid callback kwargs (must be dict, and not contain overlap with default args)" callback_func = thelper.utils.import_function(callback_func, params=callback_kwargs) thelper.utils.check_func_signature(callback_func, thelper.typedefs.IterCallbackParams) self.callback_func = callback_func self.callback_kwargs = callback_kwargs def __repr__(self): """Returns a generic print-friendly string containing info about this consumer.""" return self.__class__.__module__ + "." + self.__class__.__qualname__ + \ f"(callback_func={repr(self.callback_func)}, callback_kwargs={repr(self.callback_kwargs)})" def update(self, *args, **kwargs): """Forwards the latest prediction data from the training session to the user callback.""" return self.callback_func(*args, **kwargs) @thelper.concepts.classification class ClassifLogger(PredictionConsumer, ClassNamesHandler, FormatHandler): """Classification output logger. This class provides a simple logging interface for accumulating and saving the predictions of a classifier. By default, all predictions will be logged. However, a confidence threshold can be set to focus on "hard" samples if necessary. It also optionally offers tensorboardX-compatible output images that can be saved locally or posted to tensorboard for browser-based visualization. Usage examples inside a session configuration file:: # ... # lists all metrics to instantiate as a dictionary "metrics": { # ... # this is the name of the example consumer; it is used for lookup/printing only "logger": { # this type is used to instantiate the confusion matrix report object "type": "thelper.train.utils.ClassifLogger", "params": { # log the three 'best' predictions for each sample "top_k": 3, # keep updating a set of 10 samples for visualization via tensorboardX "viz_count": 10 } }, # ... } # ... Attributes: top_k: number of 'best' predictions to keep for each sample (along with the gt label). conf_threshold: threshold used to eliminate uncertain predictions. class_names: holds the list of class label names provided by the dataset parser. If it is not provided when the constructor is called, it will be set by the trainer at runtime. target_name: name of the targeted label (may be 'None' if all classes are used). target_idx: index of the targeted label (may be 'None' if all classes are used). viz_count: number of tensorboardX images to generate and update at each epoch. report_count: number of samples to print in reports (use 'None' if all samples must be printed). log_keys: list of metadata field keys to copy from samples into the log for each prediction. force_softmax: specifies whether a softmax operation should be applied to the prediction scores obtained from the trainer. score: array used to store prediction scores for logging. true: array used to store groundtruth labels for logging. meta: array used to store metadata pulled from samples for logging. format: output format of the produced log (supports: text, CSV) """ def __init__(self, top_k=1, # type: int conf_threshold=None, # type: Optional[thelper.typedefs.Number] class_names=None, # type: Optional[List[AnyStr]] target_name=None, # type: Optional[AnyStr] viz_count=0, # type: int report_count=None, # type: Optional[int] log_keys=None, # type: Optional[List[AnyStr]] force_softmax=True, # type: bool format=None, # type: Optional[AnyStr] ): # type: (...) -> None """Receives the logging parameters & the optional class label names used to decorate the log.""" assert isinstance(top_k, int) and top_k > 0, "invalid top-k value" assert conf_threshold is None or (isinstance(conf_threshold, (float, int)) and 0 < conf_threshold <= 1), \ "classification confidence threshold should be 'None' or float in ]0, 1]" assert isinstance(viz_count, int) and viz_count >= 0, "invalid image count to visualize" assert report_count is None or (isinstance(report_count, int) and report_count >= 0), \ "invalid report sample count" assert log_keys is None or isinstance(log_keys, list), "invalid list of sample keys to log" self.top_k = top_k self.target_name = target_name self.target_idx = None self.conf_threshold = conf_threshold self.viz_count = viz_count self.report_count = report_count self.log_keys = log_keys if log_keys is not None else [] self.force_softmax = force_softmax self.score = None self.true = None self.meta = None ClassNamesHandler.__init__(self, class_names) FormatHandler.__init__(self, format) def __repr__(self): """Returns a generic print-friendly string containing info about this consumer.""" return self.__class__.__module__ + "." + self.__class__.__qualname__ + \ f"(top_k={repr(self.top_k)}, conf_threshold={repr(self.conf_threshold)}, " + \ f"class_names={repr(self.class_names)}, target_name={repr(self.target_name)}, " + \ f"viz_count={repr(self.viz_count)}, report_count={repr(self.report_count)}, " + \ f"log_keys={repr(self.log_keys)}, force_softmax={repr(self.force_softmax)})" @ClassNamesHandler.class_names.setter def class_names(self, class_names): """Sets the class label names that must be predicted by the model.""" ClassNamesHandler.class_names.fset(self, class_names) if self.target_name is not None and self.class_names is not None: assert self.target_name in self.class_indices, \ f"could not find target name {repr(self.target_name)} in class names list" self.target_idx = self.class_indices[self.target_name] else: self.target_idx = None def update(self, # see `thelper.typedefs.IterCallbackParams` for more info task, # type: thelper.tasks.utils.Task input, # type: thelper.typedefs.InputType pred, # type: thelper.typedefs.ClassificationPredictionType target, # type: thelper.typedefs.ClassificationTargetType sample, # type: thelper.typedefs.SampleType loss, # type: Optional[float] iter_idx, # type: int max_iters, # type: int epoch_idx, # type: int max_epochs, # type: int output_path, # type: AnyStr **kwargs, # type: Any ): # type: (...) -> None """Receives the latest predictions and target values from the training session. The exact signature of this function should match the one of the callbacks defined in :class:`thelper.train.base.Trainer` and specified by ``thelper.typedefs.IterCallbackParams``. """ assert len(kwargs) == 0, "unexpected extra arguments present in update call" assert isinstance(task, thelper.tasks.Classification), "classif logger only impl for classif tasks" assert not task.multi_label, "classif logger only impl for non-multi-label classif tasks" assert iter_idx is not None and max_iters is not None and iter_idx < max_iters, \ "bad iteration indices given to update function" if self.score is None or self.score.size != max_iters: self.score = np.asarray([None] * max_iters) self.true = np.asarray([None] * max_iters) self.meta = {key: np.asarray([None] * max_iters) for key in self.log_keys} if task.class_names != self.class_names: self.class_names = task.class_names assert pred.dim() == 2, "current classif logger impl only supports 2D outputs (BxC)" assert pred.shape[1] == len(self.class_names), "unexpected prediction class dimension size" if target is None or target.numel() == 0: self.true[iter_idx] = None else: assert target.dim() == 1, "gt should be batched (1D) tensor" assert pred.shape[0] == target.shape[0], "prediction/gt tensors batch size mismatch" self.true[iter_idx] = target.numpy() if self.force_softmax: with torch.no_grad(): pred = torch.nn.functional.softmax(pred, dim=1) self.score[iter_idx] = pred.numpy() for meta_key in self.log_keys: assert meta_key in sample, f"could not extract sample field with key {repr(meta_key)}" val = sample[meta_key] assert isinstance(val, (list, np.ndarray, torch.Tensor)), f"field {repr(meta_key)} should be batched" self.meta[meta_key][iter_idx] = val if isinstance(val, list) else val.tolist() def render(self): """Returns an image of predicted outputs as a numpy-compatible RGBA image drawn by pyplot.""" if self.viz_count == 0: return None if self.score is None or self.true is None: return None raise NotImplementedError # TODO def report_text(self): # type: () -> Optional[AnyStr] return self.report_csv() def report_json(self): # type: () -> Optional[AnyStr] csv = self.report_csv() if csv is None: return None csv = csv.splitlines() header, data = csv[0], csv[1:] headers = header.split(",") json_entries = [{k: float(v) if "score" in k else str(v) for k, v in zip(headers, line.split(","))} for line in data] return json.dumps(json_entries, sort_keys=False, indent=4) def report_csv(self): # type: () -> Optional[AnyStr] """Returns the logged metadata of predicted samples. The returned object is a print-friendly CSV string that can be consumed directly by tensorboardX. Note that this string might be very long if the dataset is large (i.e. it will contain one line per sample). """ if isinstance(self.report_count, int) and self.report_count <= 0: return None if self.score is None or self.true is None: return None pack = list(zip(*[(*pack, ) for packs in zip(self.score, self.true, *self.meta.values()) for pack in zip(*packs)])) logdata = {key: np.stack(val, axis=0) for key, val in zip(["pred", "target", *self.meta.keys()], pack)} assert all([len(val) == len(logdata["target"]) for val in logdata.values()]), "messed up unpacking" header = "target_name,target_score" for k in range(self.top_k): header += f",pred_{k + 1}_name,pred_{k + 1}_score" for meta_key in self.log_keys: header += f",{str(meta_key)}" lines = [] for sample_idx in range(len(logdata["target"])): gt_label_idx = int(logdata["target"][sample_idx]) pred_scores = logdata["pred"][sample_idx] sorted_score_idxs = np.argsort(pred_scores)[::-1] sorted_scores = pred_scores[sorted_score_idxs] if self.conf_threshold is None or gt_label_idx is None or \ pred_scores[gt_label_idx] >= self.conf_threshold: if gt_label_idx is not None: entry = f"{self.class_names[gt_label_idx]},{pred_scores[gt_label_idx]:2.4f}" else: entry = f"<unknown>,{0.0:2.4f}" for k in range(self.top_k): entry += f",{self.class_names[sorted_score_idxs[k]]},{sorted_scores[k]:2.4f}" for meta_key in self.log_keys: entry += f",{str(logdata[meta_key][sample_idx])}" lines.append(entry) if isinstance(self.report_count, int) and len(lines) >= self.report_count: break return "\n".join([header, *lines]) def reset(self): """Toggles a reset of the internal state, emptying storage arrays.""" self.score = None self.true = None self.meta = None @thelper.concepts.classification class ClassifReport(PredictionConsumer, ClassNamesHandler, FormatHandler): """Classification report interface. This class provides a simple interface to ``sklearn.metrics.classification_report`` so that all count-based metrics can be reported at once under a string-based representation. Usage example inside a session configuration file:: # ... # lists all metrics to instantiate as a dictionary "metrics": { # ... # this is the name of the example consumer; it is used for lookup/printing only "report": { # this type is used to instantiate the classification report object "type": "thelper.train.utils.ClassifReport", # we do not need to provide any parameters to the constructor, defaults are fine "params": { # optional parameter that will indicate output as JSON is desired, plain 'text' otherwise "format": "json" } }, # ... } # ... Attributes: class_names: holds the list of class label names provided by the dataset parser. If it is not provided when the constructor is called, it will be set by the trainer at runtime. pred: queue used to store the top-1 (best) predicted class indices at each iteration. format: output format of the produced log (supports: text, JSON) """ def __init__(self, class_names=None, sample_weight=None, digits=4, format=None): """Receives the optional class names and arguments passed to the report generator function. Args: class_names: holds the list of class label names provided by the dataset parser. If it is not provided when the constructor is called, it will be set by the trainer at runtime. sample_weight: sample weights, forwarded to ``sklearn.metrics.classification_report``. digits: metrics output digit count, forwarded to ``sklearn.metrics.classification_report``. format: output format of the produced log. """ self.class_names = None self.sample_weight = sample_weight self.digits = digits self.pred = None self.target = None ClassNamesHandler.__init__(self, class_names) FormatHandler.__init__(self, format) def __repr__(self): """Returns a generic print-friendly string containing info about this consumer.""" return f"{self.__class__.__module__}.{self.__class__.__qualname__}" + \ f"(class_names={repr(self.class_names)}, sample_weight={repr(self.sample_weight)}, " + \ f"digits={repr(self.digits)})" def update(self, # see `thelper.typedefs.IterCallbackParams` for more info task, # type: thelper.tasks.utils.Task input, # type: thelper.typedefs.InputType pred, # type: thelper.typedefs.ClassificationPredictionType target, # type: thelper.typedefs.ClassificationTargetType sample, # type: thelper.typedefs.SampleType loss, # type: Optional[float] iter_idx, # type: int max_iters, # type: int epoch_idx, # type: int max_epochs, # type: int output_path, # type: AnyStr **kwargs, # type: Any ): # type: (...) -> None """Receives the latest predictions and target values from the training session. The exact signature of this function should match the one of the callbacks defined in :class:`thelper.train.base.Trainer` and specified by ``thelper.typedefs.IterCallbackParams``. """ assert len(kwargs) == 0, "unexpected extra arguments present in update call" assert isinstance(task, thelper.tasks.Classification), "classif report only impl for classif tasks" assert not task.multi_label, "classif report only impl for non-multi-label classif tasks" assert iter_idx is not None and max_iters is not None and iter_idx < max_iters, \ "bad iteration indices given to update function" if self.pred is None or self.pred.size != max_iters: self.pred = np.asarray([None] * max_iters) self.target = np.asarray([None] * max_iters) if task.class_names != self.class_names: self.class_names = task.class_names if target is None or target.numel() == 0: # only accumulate results when groundtruth is available self.pred[iter_idx] = None self.target[iter_idx] = None return assert pred.dim() == 2 or target.dim() == 1, "current classif report impl only supports batched 1D outputs" assert pred.shape[0] == target.shape[0], "prediction/gt tensors batch size mismatch" assert pred.shape[1] == len(self.class_names), "unexpected prediction class dimension size" self.pred[iter_idx] = pred.topk(1, dim=1)[1].view(pred.shape[0]).tolist() self.target[iter_idx] = target.view(target.shape[0]).tolist() def gen_report(self, as_dict=False): # type: (bool) -> Union[AnyStr, thelper.typedefs.JSON] if self.pred is None or self.target is None: return None pred, target = zip(*[(pred, target) for preds, targets in zip(self.pred, self.target) if targets is not None for pred, target in zip(preds, targets)]) y_true = np.asarray(target) y_pred = np.asarray(pred) _y_true = [self.class_names[classid] for classid in y_true] _y_pred = [self.class_names[classid] if (0 <= classid < len(self.class_names)) else "<unset>" for classid in y_pred] return sklearn.metrics.classification_report(_y_true, _y_pred, sample_weight=self.sample_weight, digits=self.digits, output_dict=as_dict) def report_text(self): # type: () -> Optional[AnyStr] """Returns the classification report as a multi-line print-friendly string.""" return f"\n{self.gen_report(as_dict=False)}" def report_json(self): # type: () -> Optional[AnyStr] """Returns the classification report as a JSON formatted string.""" return json.dumps(self.gen_report(as_dict=True), indent=4) def reset(self): """Toggles a reset of the metric's internal state, emptying queues.""" self.pred = None self.target = None @thelper.concepts.detection class DetectLogger(PredictionConsumer, ClassNamesHandler, FormatHandler): """Detection output logger. This class provides a simple logging interface for accumulating and saving the bounding boxes of an object detector. By default, all detections will be logged. However, a confidence threshold can be set to focus on strong predictions if necessary. .. todo:: It also optionally offers tensorboardX-compatible output images that can be saved locally or posted to tensorboard for browser-based visualization. Usage examples inside a session configuration file:: # ... # lists all metrics to instantiate as a dictionary "metrics": { # ... # this is the name of the example consumer; it is used for lookup/printing only "logger": { # this type is used to instantiate the confusion matrix report object "type": "thelper.train.utils.DetectLogger", "params": { # (optional) log the three 'best' detections for each target "top_k": 3 } }, # ... } # ... Attributes: top_k: number of 'best' detections to keep for each target bbox (along with the target label). If omitted, lists all bounding box predictions by the model after applying IoU and confidence thresholds. conf_threshold: threshold used to eliminate uncertain predictions (if they support confidence). If confidence is not supported by the model bbox predictions, this parameter is ignored. iou_threshold: threshold used to eliminate predictions too far from target (regardless of confidence). If omitted, will ignore only completely non-overlapping predicted bounding boxes (:math:`IoU=0`). If no target bounding boxes are provided (prediction-only), this parameter is ignored. class_names: holds the list of class label names provided by the dataset parser. If it is not provided when the constructor is called, it will be set by the trainer at runtime. target_name: name of the targeted label (may be 'None' if all classes are used). target_idx: index of the targeted label (may be 'None' if all classes are used). viz_count: number of tensorboardX images to generate and update at each epoch. report_count: number of samples to print in reports (use 'None' if all samples must be printed). log_keys: list of metadata field keys to copy from samples into the log for each prediction. bbox: array used to store prediction bounding boxes for logging. true: array used to store groundtruth labels for logging. meta: array used to store metadata pulled from samples for logging. format: output format of the produced log (supports: text, CSV, JSON) """ def __init__(self, top_k=None, # type: Optional[int] conf_threshold=None, # type: Optional[thelper.typedefs.Number] iou_threshold=None, # type: Optional[thelper.typedefs.Number] class_names=None, # type: Optional[List[AnyStr]] target_name=None, # type: Optional[AnyStr] viz_count=0, # type: int report_count=None, # type: Optional[int] log_keys=None, # type: Optional[List[AnyStr]] format=None, # type: Optional[AnyStr] ): # type: (...) -> None """Receives the logging parameters & the optional class label names used to decorate the log.""" assert top_k is None or isinstance(top_k, int) and top_k > 0, "invalid top-k value" assert conf_threshold is None or (isinstance(conf_threshold, (float, int)) and 0 <= conf_threshold <= 1), \ "detection confidence threshold should be 'None' or number in [0, 1]" assert iou_threshold is None or (isinstance(iou_threshold, (int, float)) and 0 <= iou_threshold <= 1), \ "detection IoU threshold should be 'None' or number in [0, 1]" assert isinstance(viz_count, int) and viz_count >= 0, "invalid image count to visualize" assert report_count is None or ( isinstance(report_count, int) and report_count >= 0), "invalid report sample count" assert log_keys is None or isinstance(log_keys, list), "invalid list of sample keys to log" self.top_k = top_k self.target_name = target_name self.target_idx = None self.conf_threshold = conf_threshold self.iou_threshold = iou_threshold self.viz_count = viz_count self.report_count = report_count self.log_keys = log_keys if log_keys is not None else [] self.bbox = None # type: Optional[thelper.typedefs.DetectionPredictionType] self.true = None # type: Optional[thelper.typedefs.DetectionTargetType] self.meta = None # type: Optional[Dict[AnyStr, List[Any]]] ClassNamesHandler.__init__(self, class_names) FormatHandler.__init__(self, format) def __repr__(self): """Returns a generic print-friendly string containing info about this consumer.""" return f"{self.__class__.__module__}.{self.__class__.__qualname__}" + \ f"(top_k={repr(self.top_k)}, conf_threshold={repr(self.conf_threshold)}, " + \ f"class_names={repr(self.class_names)}, target_name={repr(self.target_name)}, " + \ f"viz_count={repr(self.viz_count)}, report_count={repr(self.report_count)}, " + \ f"log_keys={repr(self.log_keys)})" @ClassNamesHandler.class_names.setter def class_names(self, class_names): """Sets the class label names that must be predicted by the model.""" ClassNamesHandler.class_names.fset(self, class_names) if self.target_name is not None and self.class_names is not None: assert self.target_name in self.class_indices, \ f"could not find target name {repr(self.target_name)} in class names list" self.target_idx = self.class_indices[self.target_name] else: self.target_idx = None def update(self, # see `thelper.typedefs.IterCallbackParams` for more info task, # type: thelper.tasks.utils.Task input, # type: thelper.typedefs.InputType pred, # type: thelper.typedefs.DetectionPredictionType target, # type: thelper.typedefs.DetectionTargetType sample, # type: thelper.typedefs.SampleType loss, # type: Optional[float] iter_idx, # type: int max_iters, # type: int epoch_idx, # type: int max_epochs, # type: int output_path, # type: AnyStr **kwargs, # type: Any ): # type: (...) -> None """Receives the latest predictions and target values from the training session. The exact signature of this function should match the one of the callbacks defined in :class:`thelper.train.base.Trainer` and specified by ``thelper.typedefs.IterCallbackParams``. """ assert len(kwargs) == 0, "unexpected extra arguments present in update call" assert isinstance(task, thelper.tasks.Detection), "detect report only impl for detection tasks" assert iter_idx is not None and max_iters is not None and iter_idx < max_iters, \ "bad iteration indices given to update function" if self.bbox is None or self.bbox.size != max_iters: self.bbox = np.asarray([None] * max_iters) self.true = np.asarray([None] * max_iters) self.meta = {key: np.asarray([None] * max_iters) for key in self.log_keys} if task.class_names != self.class_names: self.class_names = task.class_names if target is None or len(target) == 0 or all(len(t) == 0 for t in target): target = [None] * len(pred) # simplify unpacking during report generation else: assert len(pred) == len(target), "prediction/target bounding boxes list batch size mismatch" for gt in target: assert all(isinstance(bbox, BoundingBox) for bbox in gt), \ "detect logger only supports 2D lists of bounding box targets" for det in pred: assert all(isinstance(bbox, BoundingBox) for bbox in det), \ "detect logger only supports 2D lists of bounding box predictions" self.bbox[iter_idx] = pred self.true[iter_idx] = target for meta_key in self.log_keys: assert meta_key in sample, f"could not extract sample field with key {repr(meta_key)}" val = sample[meta_key] assert isinstance(val, (list, np.ndarray, torch.Tensor)), f"field {repr(meta_key)} should be batched" self.meta[meta_key][iter_idx] = val if isinstance(val, list) else val.tolist() def render(self): """Returns an image of predicted outputs as a numpy-compatible RGBA image drawn by pyplot.""" if self.viz_count == 0: return None if self.bbox is None or self.true is None: return None raise NotImplementedError # TODO def group_bbox(self, target_bboxes, # type: List[Optional[BoundingBox]] detect_bboxes, # type: List[BoundingBox] ): # type: (...) -> List[Dict[AnyStr, Union[BoundingBox, float, None]]] """Groups a sample's detected bounding boxes with target bounding boxes according to configuration parameters. Returns a list of detections grouped by target(s) with following format:: [ { "target": <associated-target-bbox>, "detect": [ { "bbox": <detection-bbox>, "iou": <IoU(detect-bbox, target-bbox)> }, ... ] }, ... ] The associated target bounding box and :math:`IoU` can be ``None`` if no target was provided (ie: during inference). In this case, the returned list will have only a single element with all detections associated to it. A single element list can also be returned if only one target was specified for this sample. When multiple ground truth targets were provided, the returned list will have the same length and ordering as these targets. The associated detected bounding boxes will depend on IoU between target/detection combinations. All filtering thresholds specified as configuration parameter will be applied for the returned list. Detected bounding boxes will also be sorted by highest confidence (if available) or by highest IoU as fallback. """ # remove low confidence and sort by highest group_bboxes = sorted( [bbox for bbox in (detect_bboxes if detect_bboxes else []) if isinstance(bbox, BoundingBox)], key=lambda b: b.confidence if b.confidence is not None else 0, reverse=True) if self.conf_threshold: group_bboxes = [b for b in group_bboxes if b.confidence is not None and b.confidence >= self.conf_threshold] sort_by_iou = all(bbox.confidence is None for bbox in group_bboxes) # group according to target count target_count = len(target_bboxes) if target_count == 0: group_bboxes = [{"target": None, "detect": [{"bbox": bbox, "iou": None} for bbox in group_bboxes]}] elif target_count == 1: sorted_detect = [{"bbox": bbox, "iou": compute_bbox_iou(bbox, target_bboxes[0])} for bbox in group_bboxes] if sort_by_iou: sorted_detect = list(sorted(sorted_detect, key=lambda d: d["iou"], reverse=True)) group_bboxes = [{"target": target_bboxes[0], "detect": sorted_detect}] else: # regroup by highest IoU target_detects = [[] for _ in range(target_count)] for det in group_bboxes: # FIXME: # should we do something different if all IoU = 0 (ie: false positive detection) # for now, they will all be stored in the first target, but can be tracked with IoU = 0 det_target_iou = [compute_bbox_iou(det, t) for t in target_bboxes] best_iou_idx = int(np.argmax(det_target_iou)) target_detects[best_iou_idx].append({"bbox": det, "iou": det_target_iou[best_iou_idx]}) group_bboxes = [{ "target": target_bboxes[i], "detect": list( sorted(target_detects[i], key=lambda d: d["iou"], reverse=True) ) if sort_by_iou else target_detects[i] } for i in range(target_count)] # apply filters on grouped results if self.iou_threshold: for grp in group_bboxes: grp["detect"] = [d for d in grp["detect"] if d["iou"] is None or d["iou"] >= self.iou_threshold] if self.top_k: for grp in group_bboxes: grp["detect"] = grp["detect"][:self.top_k] return list(group_bboxes) def gen_report(self): # type: () -> Optional[List[Dict[AnyStr, Any]]] """Returns the logged metadata of predicted bounding boxes per sample target in a JSON-like structure. For every target bounding box, the corresponding *best*-sorted detections are returned. Sample metadata is appended to every corresponding sub-target if any where requested. If ``report_count`` was specified, the returned report will be limited to that requested amount of targets. .. seealso:: | :meth:`DetectLogger.group_bbox` for formatting, sorting and filtering details. """ if isinstance(self.report_count, int) and self.report_count <= 0: return None if self.bbox is None or self.true is None: return None # flatten batches/samples pack = list(zip(*[(*pack,) for packs in zip(self.bbox, self.true, *self.meta.values()) for pack in zip(*packs)])) data = {key: val for key, val in zip(["detect", "target", *self.meta.keys()], pack)} assert all([len(val) == len(data["target"]) for val in data.values()]), "messed up unpacking" # flatten targets per batches/samples all_targets = [] sample_count = len(data["target"]) for sample_idx in range(sample_count): if isinstance(self.report_count, int) and self.report_count >= len(all_targets): logger.warning(f"report max count {self.report_count} reached at {len(all_targets)} targets " f"(sample {sample_idx}/{sample_count} processed)") break sample_targets = data["target"][sample_idx] sample_detects = data["detect"][sample_idx] sample_report = self.group_bbox(sample_targets, sample_detects) for target in sample_report: for k in self.meta: target[k] = self.meta[k][sample_idx] target["target"] = { "bbox": target["target"], "class_name": self.class_names[target["target"].class_id] } all_targets.extend(sample_report) # format everything nicely as json for item in all_targets: if isinstance(item["target"]["bbox"], BoundingBox): item["target"].update(item["target"].pop("bbox").json()) item["target"]["class_name"] = self.class_names[item["target"]["class_id"]] for det in item["detect"]: if isinstance(det["bbox"], BoundingBox): det.update(det.pop("bbox").json()) det["class_name"] = self.class_names[det["class_id"]] return all_targets def report_json(self): # type: () -> Optional[AnyStr] """Returns the logged metadata of predicted bounding boxes as a JSON formatted string.""" report = self.gen_report() if not report: return None return json.dumps(report, indent=4) def report_text(self): # type: () -> Optional[AnyStr] return self.report_csv() def report_csv(self): # type: () -> Optional[AnyStr] r"""Returns the logged metadata of predicted bounding boxes. The returned object is a print-friendly CSV string. Note that this string might be very long if the dataset is large or if the model tends to generate a lot of detections. The string will contain at least :math:`N_sample \cdot N_target` lines and each line will have up to :math:`N_bbox` detections, unless limited by configuration parameters. """ report = self.gen_report() if not report: return None none_str = "unknown" def patch_none(to_patch, number_format='2.4f'): # type: (Any, str) -> str if to_patch is None: return none_str if isinstance(to_patch, float): s = f"{{:{number_format}}}" return s.format(to_patch) return str(to_patch) header = "sample,target_name,target_bbox" for meta_key in self.log_keys: header += f",{str(meta_key)}" if self.top_k: for k in range(self.top_k): header += f",detect_{k + 1}_name,detect_{k + 1}_bbox,detect_{k + 1}_conf,detect_{k + 1}_iou" else: # unknown count total detections (can be variable) header += ",detect_name[N],detect_bbox[N],detect_conf[N],detect_iou[N],(...)[N]" lines = [""] * len(report) for i, result in enumerate(report): target = result["target"] detect = result["detect"] if not target: entry = f"{none_str},{none_str},{none_str}" else: entry = f"{target['image_id']},{patch_none(target['class_name'])},{patch_none(target['bbox'])}" for meta_key in self.log_keys: entry += f",{str(target[meta_key])}" for det in detect: entry += f",{det['class_name']},{det['bbox']},{patch_none(det['confidence'])},{patch_none(det['iou'])}" lines[i] = entry return "\n".join([header, *lines]) def reset(self): """Toggles a reset of the internal state, emptying storage arrays.""" self.bbox = None self.true = None self.meta = None @thelper.concepts.classification @thelper.concepts.segmentation class ConfusionMatrix(PredictionConsumer, ClassNamesHandler): """Confusion matrix report interface. This class provides a simple interface to ``sklearn.metrics.confusion_matrix`` so that a full confusion matrix can be easily reported under a string-based representation. It also offers a tensorboardX-compatible output image that can be saved locally or posted to tensorboard for browser-based visualization. Usage example inside a session configuration file:: # ... # lists all metrics to instantiate as a dictionary "metrics": { # ... # this is the name of the example consumer; it is used for lookup/printing only "confmat": { # this type is used to instantiate the confusion matrix report object "type": "thelper.train.utils.ConfusionMatrix", # we do not need to provide any parameters to the constructor, defaults are fine "params": { # optional parameter that will indicate output as JSON is desired, plain 'text' otherwise "format": "json" } }, # ... } # ... Attributes: matrix: report generator function, called at evaluation time to generate the output string. class_names: holds the list of class label names provided by the dataset parser. If it is not provided when the constructor is called, it will be set by the trainer at runtime. draw_normalized: defines whether rendered confusion matrices should be normalized or not. pred: queue used to store the top-1 (best) predicted class indices at each iteration. """ def __init__(self, class_names=None, draw_normalized=True): """Receives the optional class label names used to decorate the output string. Args: class_names: holds the list of class label names provided by the dataset parser. If it is not provided when the constructor is called, it will be set by the trainer at runtime. draw_normalized: defines whether rendered confusion matrices should be normalized or not. """ def gen_matrix(y_true, y_pred, _class_names): _y_true = [_class_names[classid] for classid in y_true] _y_pred = [_class_names[classid] if (0 <= classid < len(_class_names)) else "<unset>" for classid in y_pred] return sklearn.metrics.confusion_matrix(_y_true, _y_pred, labels=_class_names) self.matrix = gen_matrix self.draw_normalized = draw_normalized self.pred = None self.target = None ClassNamesHandler.__init__(self, class_names) def __repr__(self): """Returns a generic print-friendly string containing info about this consumer.""" return self.__class__.__module__ + "." + self.__class__.__qualname__ + \ f"(class_names={repr(self.class_names)}, draw_normalized={repr(self.draw_normalized)})" def update(self, # see `thelper.typedefs.IterCallbackParams` for more info task, # type: thelper.tasks.utils.Task input, # type: thelper.typedefs.InputType pred, # type: thelper.typedefs.ClassificationPredictionType target, # type: thelper.typedefs.ClassificationTargetType sample, # type: thelper.typedefs.SampleType loss, # type: Optional[float] iter_idx, # type: int max_iters, # type: int epoch_idx, # type: int max_epochs, # type: int output_path, # type: AnyStr **kwargs, # type: Any ): # type: (...) -> None """Receives the latest predictions and target values from the training session. The exact signature of this function should match the one of the callbacks defined in :class:`thelper.train.base.Trainer` and specified by ``thelper.typedefs.IterCallbackParams``. """ assert len(kwargs) == 0, "unexpected extra arguments present in update call" assert isinstance(task, thelper.tasks.Classification), "confmat only impl for classif tasks" assert not task.multi_label, "confmat only impl for non-multi-label classif tasks" assert iter_idx is not None and max_iters is not None and iter_idx < max_iters, \ "bad iteration indices given to update function" if self.pred is None or self.pred.size != max_iters: self.pred = np.asarray([None] * max_iters) self.target = np.asarray([None] * max_iters) if task.class_names != self.class_names: self.class_names = task.class_names if target is None or target.numel() == 0: # only accumulate results when groundtruth is available self.pred[iter_idx] = None self.target[iter_idx] = None return assert pred.dim() == 2 or target.dim() == 1, "current confmat impl only supports batched 1D outputs" assert pred.shape[0] == target.shape[0], "prediction/gt tensors batch size mismatch" assert pred.shape[1] == len(self.class_names), "unexpected prediction class dimension size" self.pred[iter_idx] = pred.topk(1, dim=1)[1].view(pred.shape[0]).tolist() self.target[iter_idx] = target.view(target.shape[0]).tolist() def report(self): """Returns the confusion matrix as a multi-line print-friendly string.""" if self.pred is None or self.target is None: return None pred, target = zip(*[(pred, target) for preds, targets in zip(self.pred, self.target) if targets is not None for pred, target in zip(preds, targets)]) confmat = self.matrix(np.asarray(target), np.asarray(pred), self.class_names) return "\n" + thelper.utils.stringify_confmat(confmat, self.class_names) def render(self): """Returns the confusion matrix as a numpy-compatible RGBA image drawn by pyplot.""" if self.pred is None or self.target is None: return None pred, target = zip(*[(pred, target) for preds, targets in zip(self.pred, self.target) if targets is not None for pred, target in zip(preds, targets)]) confmat = self.matrix(np.asarray(target), np.asarray(pred), self.class_names) try: fig, ax = thelper.draw.draw_confmat(confmat, self.class_names, normalize=self.draw_normalized) array = thelper.draw.fig2array(fig) return array except AttributeError as e: logger.warning(f"failed to render confusion matrix; caught exception:\n{str(e)}") # return None if rendering fails (probably due to matplotlib on display-less server) return None def reset(self): """Toggles a reset of the metric's internal state, emptying queues.""" self.pred = None self.target = None def create_consumers(config): """Instantiates and returns the prediction consumers defined in the configuration dictionary. All arguments are expected to be handed in through the configuration via a dictionary named 'params'. """ assert isinstance(config, dict), "config should be provided as a dictionary" consumers = {} for name, consumer_config in config.items(): assert name != "loss", "metric name 'loss' is reserved" assert isinstance(consumer_config, dict), "consumer config should be provided as a dictionary" assert "type" in consumer_config and consumer_config["type"], "consumer config missing 'type' field" consumer_type = thelper.utils.import_class(consumer_config["type"]) consumer_params = thelper.utils.get_key_def(["params", "parameters"], consumer_config, {}) try: consumer = consumer_type(**consumer_params) except Exception: logger.error(f"failed to create consumer {consumer_config['type']} with params:\n\t{str(consumer_params)}") raise assert isinstance(consumer, PredictionConsumer), \ "invalid consumer type, must derive from PredictionConsumer interface" consumers[name] = consumer return consumers def create_trainer(session_name, # type: AnyStr save_dir, # type: AnyStr config, # type: thelper.typedefs.ConfigDict model, # type: thelper.typedefs.ModelType task, # type: thelper.tasks.Task loaders, # type: thelper.typedefs.MultiLoaderType ckptdata=None # type: Optional[thelper.typedefs.CheckpointContentType] ): # type: (...) -> thelper.train.Trainer """Instantiates the trainer object based on the type contained in the config dictionary. The trainer type is expected to be in the configuration dictionary's `trainer` field, under the `type` key. For more information on the configuration, refer to :class:`thelper.train.base.Trainer`. The instantiated type must be compatible with the constructor signature of :class:`thelper.train.base.Trainer`. The object's constructor will be given the full config dictionary and the checkpoint data for resuming the session (if available). If the trainer type is missing, it will be automatically deduced based on the task object. Args: session_name: name of the training session used for printing and to create internal tensorboardX directories. save_dir: path to the session directory where logs and checkpoints will be saved. config: full configuration dictionary that will be parsed for trainer parameters and saved in checkpoints. model: model to train/evaluate; should be compatible with :class:`thelper.nn.utils.Module`. task: global task interface defining the type of model and training goal for the session. loaders: a tuple containing the training/validation/test data loaders (a loader can be ``None`` if empty). ckptdata: raw checkpoint to parse data from when resuming a session (if ``None``, will start from scratch). Returns: The fully-constructed trainer object, ready to begin model training/evaluation. .. seealso:: | :class:`thelper.train.base.Trainer` """ assert "trainer" in config and config["trainer"], "session configuration dictionary missing 'trainer' section" trainer_config = config["trainer"] if "type" not in trainer_config: if isinstance(task, thelper.tasks.Classification): trainer_type = thelper.train.ImageClassifTrainer elif isinstance(task, thelper.tasks.Detection): trainer_type = thelper.train.ObjDetectTrainer elif isinstance(task, thelper.tasks.Regression): trainer_type = thelper.train.RegressionTrainer elif isinstance(task, thelper.tasks.Segmentation): trainer_type = thelper.train.ImageSegmTrainer else: raise AssertionError(f"unknown trainer type required for task '{str(task)}'") else: trainer_type = thelper.utils.import_class(trainer_config["type"]) return trainer_type(session_name, save_dir, model, task, loaders, config, ckptdata=ckptdata) # noinspection PyUnusedLocal def _draw_wrapper(task, # type: thelper.tasks.utils.Task input, # type: thelper.typedefs.InputType pred, # type: thelper.typedefs.AnyPredictionType target, # type: thelper.typedefs.AnyTargetType sample, # type: thelper.typedefs.SampleType loss, # type: Optional[float] iter_idx, # type: int max_iters, # type: int epoch_idx, # type: int max_epochs, # type: int output_path, # type: AnyStr # extra params added by display callback interface below save, # type: bool # all extra params will be forwarded to the display call **kwargs, # type: Any # see `thelper.typedefs.IterCallbackParams` for more info ): # type: (...) -> None """Wrapper to :func:`thelper.draw.draw` used as a callback entrypoint for trainers.""" res = thelper.draw.draw(task=task, input=input, pred=pred, target=target, **kwargs) if save: assert isinstance(res, tuple) and len(res) == 2, "unexpected redraw output (should be 2-elem tuple)" if isinstance(res[1], np.ndarray): assert "path" in sample and isinstance(sample["path"], list) and len(sample["path"]) == 1, \ "unexpected draw format (current implementation needs batch size = 1, and path metadata)" os.makedirs(output_path, exist_ok=True) filepath = os.path.join(output_path, os.path.basename(sample["path"][0])) cv.imwrite(filepath, res[1]) else: # we're displaying with matplotlib, and have no clue on how to save the output raise NotImplementedError
53.440358
120
0.62523
555a3d5eb5e2004469fdc862e835d15907fcd406
4,047
py
Python
tests/python/source_file.py
rtajan/eirballoon
0eded8f86174a9e5ed38297fa26c7f5a53b5ea53
[ "MIT" ]
null
null
null
tests/python/source_file.py
rtajan/eirballoon
0eded8f86174a9e5ed38297fa26c7f5a53b5ea53
[ "MIT" ]
null
null
null
tests/python/source_file.py
rtajan/eirballoon
0eded8f86174a9e5ed38297fa26c7f5a53b5ea53
[ "MIT" ]
null
null
null
import sys sys.path.insert(0, '../../build/lib') sys.path.insert(0, '../../py_aff3ct/build/lib') sys.path.insert(0, '../../src/python') from py_aff3ct.module.py_module import Py_Module import py_aff3ct import numpy as np import os from bitstring import BitArray class source_file(Py_Module): def int2binseq(self,N,size): #int to numpy binary array of output size tmp=list(bin(N)) tmp2 = tmp[2:] tmp2 = [int(tmp[x]) for x in range(2,len(tmp))] out = np.concatenate([np.zeros(size-len(tmp2)),tmp2]) return out def update_attr(self): #update class attributes self.PACKET_TYPE=0 self.PACKET_ID+=1 if self.PACKET_ID==self.F_SIZE: #last packet self.PACKET_TYPE=2 self.INFO=list(self.int2binseq(self.PACKET_TYPE,2))+list(self.int2binseq(self.PACKET_ID,16))+list(self.int2binseq(self.F_ID,16))+list(self.int2binseq(self.F_TYPE,2))+list(self.int2binseq(self.F_SIZE,24)) return 0 def build_info_header(self): #updates info header #set file type if (".ts" in self.path): self.F_TYPE=0 else: self.F_TYPE=1 self.PACKET_ID = 0 #set packet type self.PACKET_TYPE=1 #building the header [P_TYPE P_ID F_ID F_TYPE F_SIZE] self.INFO=[] self.INFO=list(self.int2binseq(self.PACKET_TYPE,2))+list(self.int2binseq(self.PACKET_ID,16))+list(self.int2binseq(self.F_ID,16))+list(self.int2binseq(self.F_TYPE,2))+list(self.int2binseq(self.F_SIZE,24)) return 0 def generate(self,_out,nb,id,type): if self.tmp > 0: self.tmp+=1 if self.tmp == 500: exit(0) else: pass if self.frame_nb < 100: _out[0,::2]=np.ones((1,(self.N+self.INFO_SIZE)//2),dtype=np.int32) _out[0,1::2]=np.zeros((1,(self.N+self.INFO_SIZE)//2),dtype=np.int32) elif self.frame_nb==100: _out[0,::]=np.ones((1,self.N+self.INFO_SIZE),dtype=np.int32) else: _out[0,0:self.INFO_SIZE] = self.INFO _out[0,self.INFO_SIZE:] = self.src['generate::U_K'][:] self.src('generate').exec() nb[:]=self.number_packet id[:]=self.PACKET_ID type[:]=self.F_TYPE self.update_attr() if self.PACKET_TYPE == 2: self.tmp = 1 self.frame_nb+=1 return 1 def compute_packet_number(self): binary_size = os.path.getsize(self.path) * 8 return np.ceil(binary_size//self.N) def __init__(self, path, N,auto_reset=False): Py_Module.__init__(self) if path: self.src = py_aff3ct.module.source.Source_user_binary(N, path, auto_reset=False) self.path = path self.N = N self.frame_nb = 1 self.name = "source_file" self.tmp=0 self.number_packet = self.compute_packet_number() #infos self.F_ID=0 #16 bits, file id (65536 file) self.F_TYPE=0 #1 bit , file type (0 .Ts file, 1 img any type self.F_SIZE=int(self.number_packet)+1 #24 bits to encode file size in bytes (< 16Mbytes) self.PACKET_ID=0#16 bits, packet order received for a ts file used to reorder in another self.PACKET_TYPE=0 #2 bits to encode 3 types of frames ;1 start// 0 mid// 2 end// #total 59 bits ########## [P_TYPE P_ID F_ID F_TYPE F_SIZE] self.INFO_SIZE=60 self.build_info_header() t_generate = self.create_task('generate') _out = self.create_socket_out(t_generate, 'U_K', N+self.INFO_SIZE, np.int32) nb = self.create_socket_out(t_generate, 'NB', 1, np.int32) id = self.create_socket_out(t_generate, 'ID', 1, np.int32) type = self.create_socket_out(t_generate,"type",1,np.int32) self.create_codelet(t_generate, lambda slf, lsk, fid: slf.generate(lsk[_out],lsk[nb],lsk[id],lsk[type]))
37.472222
211
0.595503
121ae563308c695a0a76fcf383eb6e6bb7f43011
3,386
py
Python
paddlex/cv/datasets/easydata_cls.py
Channingss/PaddleX
06fe9552472f0379ff1a16c339c9784c973b5a04
[ "Apache-2.0" ]
3
2020-05-12T03:09:13.000Z
2020-06-18T02:50:34.000Z
paddlex/cv/datasets/easydata_cls.py
wyc880622/PaddleX
f001960b7359f3a88b7dd96e1f34500b90566ceb
[ "Apache-2.0" ]
null
null
null
paddlex/cv/datasets/easydata_cls.py
wyc880622/PaddleX
f001960b7359f3a88b7dd96e1f34500b90566ceb
[ "Apache-2.0" ]
1
2020-05-18T07:06:28.000Z
2020-05-18T07:06:28.000Z
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os.path as osp import random import copy import json import paddlex.utils.logging as logging from .imagenet import ImageNet from .dataset import is_pic from .dataset import get_encoding class EasyDataCls(ImageNet): """读取EasyDataCls格式的分类数据集,并对样本进行相应的处理。 Args: data_dir (str): 数据集所在的目录路径。 file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。 label_list (str): 描述数据集包含的类别信息文件路径。 transforms (paddlex.cls.transforms): 数据集中每个样本的预处理/增强算子。 num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核 数的一半。 buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。 parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread' 线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。 shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 """ def __init__(self, data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=100, parallel_method='process', shuffle=False): super(ImageNet, self).__init__( transforms=transforms, num_workers=num_workers, buffer_size=buffer_size, parallel_method=parallel_method, shuffle=shuffle) self.file_list = list() self.labels = list() self._epoch = 0 with open(label_list, encoding=get_encoding(label_list)) as f: for line in f: item = line.strip() self.labels.append(item) logging.info("Starting to read file list from dataset...") with open(file_list, encoding=get_encoding(file_list)) as f: for line in f: img_file, json_file = [osp.join(data_dir, x) \ for x in line.strip().split()[:2]] if not is_pic(img_file): continue if not osp.isfile(json_file): continue if not osp.exists(img_file): raise IOError( 'The image file {} is not exist!'.format(img_file)) with open(json_file, mode='r', \ encoding=get_encoding(json_file)) as j: json_info = json.load(j) label = json_info['labels'][0]['name'] self.file_list.append([img_file, self.labels.index(label)]) self.num_samples = len(self.file_list) logging.info("{} samples in file {}".format( len(self.file_list), file_list))
39.372093
77
0.611636
b824f49d75035c8f806988afdbb7ef0d78682c9b
1,285
tac
Python
docker/buildbot_worker.tac
ScalABLE40/buildbot-ros
f1badded81fa8bdfcef5bcbe596fc96dcbcba557
[ "Apache-2.0" ]
1
2020-01-23T13:42:51.000Z
2020-01-23T13:42:51.000Z
docker/buildbot_worker.tac
ScalABLE40/buildbot-ros
f1badded81fa8bdfcef5bcbe596fc96dcbcba557
[ "Apache-2.0" ]
7
2020-01-09T10:10:15.000Z
2020-03-04T13:56:59.000Z
docker/buildbot_worker.tac
ScalABLE40/buildbot-ros
f1badded81fa8bdfcef5bcbe596fc96dcbcba557
[ "Apache-2.0" ]
null
null
null
import fnmatch import os import sys from twisted.application import service from twisted.python.log import FileLogObserver from twisted.python.log import ILogObserver from buildbot_worker.bot import Worker # setup worker basedir = os.environ.get("BUILDBOT_BASEDIR", os.path.abspath(os.path.dirname(__file__))) application = service.Application('buildbot-worker') application.setComponent(ILogObserver, FileLogObserver(sys.stdout).emit) # and worker on the same process! buildmaster_host = os.environ.get("BUILDMASTER", 'localhost') port = int(os.environ.get("BUILDMASTER_PORT", 9989)) workername = os.environ.get("WORKERNAME", 'docker') passwd = os.environ.get("WORKERPASS") # delete the password from the environ so that it is not leaked in the log blacklist = os.environ.get("WORKER_ENVIRONMENT_BLACKLIST", "WORKERPASS").split() for name in list(os.environ.keys()): for toremove in blacklist: if fnmatch.fnmatch(name, toremove): del os.environ[name] keepalive = 600 umask = 0o22 maxdelay = 180 allow_shutdown = None maxretries = 10 s = Worker(buildmaster_host, port, workername, passwd, basedir, keepalive, umask=umask, maxdelay=maxdelay, allow_shutdown=allow_shutdown, maxRetries=maxretries) s.setServiceParent(application)
31.341463
80
0.761868
7a0759036732f18d179a2c94c1d0765e26d12ca6
1,896
py
Python
tensorflow/python/autograph/converters/list_comprehensions_test.py
yage99/tensorflow
c7fa71b32a3635eb25596ae80d007b41007769c4
[ "Apache-2.0" ]
74
2020-07-06T17:11:39.000Z
2022-01-28T06:31:28.000Z
tensorflow/python/autograph/converters/list_comprehensions_test.py
sseung0703/tensorflow
be084bd7a4dd241eb781fc704f57bcacc5c9b6dd
[ "Apache-2.0" ]
1,056
2019-12-15T01:20:31.000Z
2022-02-10T02:06:28.000Z
tensorflow/python/autograph/converters/list_comprehensions_test.py
sseung0703/tensorflow
be084bd7a4dd241eb781fc704f57bcacc5c9b6dd
[ "Apache-2.0" ]
12
2020-07-08T07:27:17.000Z
2021-12-27T08:54:27.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for list_comprehensions module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.autograph.converters import list_comprehensions from tensorflow.python.autograph.core import converter_testing from tensorflow.python.platform import test class ListCompTest(converter_testing.TestCase): def assertTransformedEquivalent(self, f, *inputs): tr = self.transform(f, list_comprehensions) self.assertEqual(f(*inputs), tr(*inputs)) def test_basic(self): def f(l): s = [e * e for e in l] return s self.assertTransformedEquivalent(f, []) self.assertTransformedEquivalent(f, [1, 2, 3]) def test_multiple_generators(self): def f(l): s = [e * e for sublist in l for e in sublist] # pylint:disable=g-complex-comprehension return s self.assertTransformedEquivalent(f, []) self.assertTransformedEquivalent(f, [[1], [2], [3]]) def test_cond(self): def f(l): s = [e * e for e in l if e > 1] return s self.assertTransformedEquivalent(f, []) self.assertTransformedEquivalent(f, [1, 2, 3]) if __name__ == '__main__': test.main()
30.580645
93
0.694093
196921d8902ae707653dadfa383687e15f16e224
4,928
py
Python
aiocoap/util/__init__.py
miri64/aiocoap
93e699280b644465213fc8ba29bae556475fb6fc
[ "MIT" ]
229
2015-02-11T19:35:48.000Z
2022-03-22T08:20:14.000Z
aiocoap/util/__init__.py
miri64/aiocoap
93e699280b644465213fc8ba29bae556475fb6fc
[ "MIT" ]
258
2015-01-30T13:29:36.000Z
2022-03-20T16:05:07.000Z
aiocoap/util/__init__.py
miri64/aiocoap
93e699280b644465213fc8ba29bae556475fb6fc
[ "MIT" ]
124
2015-02-14T12:02:44.000Z
2022-03-16T12:15:51.000Z
# This file is part of the Python aiocoap library project. # # Copyright (c) 2012-2014 Maciej Wasilak <http://sixpinetrees.blogspot.com/>, # 2013-2014 Christian Amsüss <c.amsuess@energyharvesting.at> # # aiocoap is free software, this file is published under the MIT license as # described in the accompanying LICENSE file. """Tools not directly related with CoAP that are needed to provide the API These are only part of the stable API to the extent they are used by other APIs -- for example, you can use the type constructor of :class:`ExtensibleEnumMeta` when creating an :class:`aiocoap.numbers.optionnumbers.OptionNumber`, but don't expect it to be usable in a stable way for own extensions. Most functions are available in submodules; some of them may only have components that are exclusively used internally and never part of the public API even in the limited fashion stated above. .. toctree:: :glob: aiocoap.util.* """ import urllib.parse class ExtensibleEnumMeta(type): """Metaclass for ExtensibleIntEnum, see there for detailed explanations""" def __init__(self, name, bases, dict): self._value2member_map_ = {} for k, v in dict.items(): if k.startswith('_'): continue if callable(v): continue if isinstance(v, property): continue instance = self(v) instance.name = k setattr(self, k, instance) type.__init__(self, name, bases, dict) def __call__(self, value): if isinstance(value, self): return value if value not in self._value2member_map_: self._value2member_map_[value] = super(ExtensibleEnumMeta, self).__call__(value) return self._value2member_map_[value] class ExtensibleIntEnum(int, metaclass=ExtensibleEnumMeta): """Similar to Python's enum.IntEnum, this type can be used for named numbers which are not comprehensively known, like CoAP option numbers.""" def __add__(self, delta): return type(self)(int(self) + delta) def __repr__(self): return '<%s %d%s>'%(type(self).__name__, self, ' "%s"'%self.name if hasattr(self, "name") else "") def __str__(self): return self.name if hasattr(self, "name") else int.__str__(self) def hostportjoin(host, port=None): """Join a host and optionally port into a hostinfo-style host:port string >>> hostportjoin('example.com') 'example.com' >>> hostportjoin('example.com', 1234) 'example.com:1234' >>> hostportjoin('127.0.0.1', 1234) '127.0.0.1:1234' This is lax with respect to whether host is an IPv6 literal in brackets or not, and accepts either form; IP-future literals that do not contain a colon must be already presented in their bracketed form: >>> hostportjoin('2001:db8::1') '[2001:db8::1]' >>> hostportjoin('2001:db8::1', 1234) '[2001:db8::1]:1234' >>> hostportjoin('[2001:db8::1]', 1234) '[2001:db8::1]:1234' """ if ':' in host and not (host.startswith('[') and host.endswith(']')): host = '[%s]'%host if port is None: hostinfo = host else: hostinfo = "%s:%d"%(host, port) return hostinfo def hostportsplit(hostport): """Like urllib.parse.splitport, but return port as int, and as None if not given. Also, it allows giving IPv6 addresses like a netloc: >>> hostportsplit('foo') ('foo', None) >>> hostportsplit('foo:5683') ('foo', 5683) >>> hostportsplit('[::1%eth0]:56830') ('::1%eth0', 56830) """ pseudoparsed = urllib.parse.SplitResult(None, hostport, None, None, None) try: return pseudoparsed.hostname, pseudoparsed.port except ValueError: if '[' not in hostport and hostport.count(':') > 1: raise ValueError("Could not parse network location. " "Beware that when IPv6 literals are expressed in URIs, they " "need to be put in square brackets to distinguish them from " "port numbers.") raise def quote_nonascii(s): """Like urllib.parse.quote, but explicitly only escaping non-ascii characters. This function is deprecated due to it use of the irrelevant "being an ASCII character" property (when instead RFC3986 productions like "unreserved" should be used), and due for removal when aiocoap's URI processing is overhauled the next time. """ return "".join(chr(c) if c <= 127 else "%%%02X" % c for c in s.encode('utf8')) class Sentinel: """Class for sentinel that can only be compared for identity. No efforts are taken to make these singletons; it is up to the users to always refer to the same instance, which is typically defined on module level.""" def __init__(self, label): self._label = label def __repr__(self): return '<%s>' % self._label
35.710145
106
0.654221
b84612b4ced42d92787d6a3e1fc3cf38bf608f4c
4,337
py
Python
linear-algebra-python/src/tests.py
niroshajayasundara/Python
ed113841165717d135a001307d06f4282ad16870
[ "MIT" ]
5
2018-04-02T08:06:54.000Z
2018-08-02T03:01:27.000Z
linear_algebra_python/src/tests.py
tlhcelik/Python
3bab59ae06f79698ab579ba52d2bc4ea6402154c
[ "MIT" ]
1
2019-02-03T07:45:29.000Z
2019-02-03T07:45:29.000Z
linear_algebra_python/src/tests.py
tlhcelik/Python
3bab59ae06f79698ab579ba52d2bc4ea6402154c
[ "MIT" ]
8
2019-10-03T13:37:51.000Z
2019-10-25T20:33:10.000Z
# -*- coding: utf-8 -*- """ Created on Mon Feb 26 15:40:07 2018 @author: Christian Bender @license: MIT-license This file contains the test-suite for the linear algebra library. """ import unittest from lib import * class Test(unittest.TestCase): def test_component(self): """ test for method component """ x = Vector([1,2,3]) self.assertEqual(x.component(0),1) self.assertEqual(x.component(2),3) try: y = Vector() self.assertTrue(False) except: self.assertTrue(True) def test_str(self): """ test for toString() method """ x = Vector([0,0,0,0,0,1]) self.assertEqual(x.__str__(),"(0,0,0,0,0,1)") def test_size(self): """ test for size()-method """ x = Vector([1,2,3,4]) self.assertEqual(x.size(),4) def test_euclidLength(self): """ test for the eulidean length """ x = Vector([1,2]) self.assertAlmostEqual(x.eulidLength(),2.236,3) def test_add(self): """ test for + operator """ x = Vector([1,2,3]) y = Vector([1,1,1]) self.assertEqual((x+y).component(0),2) self.assertEqual((x+y).component(1),3) self.assertEqual((x+y).component(2),4) def test_sub(self): """ test for - operator """ x = Vector([1,2,3]) y = Vector([1,1,1]) self.assertEqual((x-y).component(0),0) self.assertEqual((x-y).component(1),1) self.assertEqual((x-y).component(2),2) def test_mul(self): """ test for * operator """ x = Vector([1,2,3]) a = Vector([2,-1,4]) # for test of dot-product b = Vector([1,-2,-1]) self.assertEqual((x*3.0).__str__(),"(3.0,6.0,9.0)") self.assertEqual((a*b),0) def test_zeroVector(self): """ test for the global function zeroVector(...) """ self.assertTrue(zeroVector(10).__str__().count("0") == 10) def test_unitBasisVector(self): """ test for the global function unitBasisVector(...) """ self.assertEqual(unitBasisVector(3,1).__str__(),"(0,1,0)") def test_axpy(self): """ test for the global function axpy(...) (operation) """ x = Vector([1,2,3]) y = Vector([1,0,1]) self.assertEqual(axpy(2,x,y).__str__(),"(3,4,7)") def test_copy(self): """ test for the copy()-method """ x = Vector([1,0,0,0,0,0]) y = x.copy() self.assertEqual(x.__str__(),y.__str__()) def test_changeComponent(self): """ test for the changeComponent(...)-method """ x = Vector([1,0,0]) x.changeComponent(0,0) x.changeComponent(1,1) self.assertEqual(x.__str__(),"(0,1,0)") def test_str_matrix(self): A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n",A.__str__()) def test__mul__matrix(self): A = Matrix([[1,2,3],[4,5,6],[7,8,9]],3,3) x = Vector([1,2,3]) self.assertEqual("(14,32,50)",(A*x).__str__()) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n",(A*2).__str__()) def test_changeComponent_matrix(self): A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) A.changeComponent(0,2,5) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n",A.__str__()) def test_component_matrix(self): A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) self.assertEqual(7,A.component(2,1),0.01) def test__add__matrix(self): A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n",(A+B).__str__()) def test__sub__matrix(self): A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3) B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n",(A-B).__str__()) def test_squareZeroMatrix(self): self.assertEqual('|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|' +'\n|0,0,0,0,0|\n',squareZeroMatrix(5).__str__()) if __name__ == "__main__": unittest.main()
32.609023
78
0.509108
3c93989b8fef29b737de0d8334b0c9526e064848
493
py
Python
azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/version.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-07-23T08:59:24.000Z
2018-07-23T08:59:24.000Z
azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/version.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-11-29T14:46:42.000Z
2018-11-29T14:46:42.000Z
azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/version.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- VERSION = "0.5.2"
35.214286
76
0.51927
124792b6da390139e7284c552b075a180b039dfd
760
py
Python
test/test_baidu.py
xudongchou/WebAutoTest
f65e57e65fb00033d05e7ddaa0247c408abf4f8a
[ "MIT" ]
null
null
null
test/test_baidu.py
xudongchou/WebAutoTest
f65e57e65fb00033d05e7ddaa0247c408abf4f8a
[ "MIT" ]
null
null
null
test/test_baidu.py
xudongchou/WebAutoTest
f65e57e65fb00033d05e7ddaa0247c408abf4f8a
[ "MIT" ]
null
null
null
""" @project:code @author:lenovo @file:test_baidu.py @ide:PyCharm @time:2020/8/26 16:12 @month:八月 """ from uimethod.driverselect import SelectDriver from uimethod.uiauto import WebUiMethod from uimethod.helpers import Logger import unittest class Test_baidu(unittest.TestCase): def test_1(self): """ 打开百度,搜索豆瓣 """ driver = SelectDriver.mybrowser("firefox") print(driver.name) We = WebUiMethod We.navigate(driver, "http://wwww.baidu.com") We.wait(8) We.webEdit(driver, "//*[@id='kw']", "豆瓣") We.wait(3) We.webButton(driver, "//*[@id='su']").click() We.wait(10) We.screen_shot(driver) We.wait(8) We.exit(driver) print("关闭浏览器")
22.352941
53
0.6
993cbd00287348a84e55d7d8eaf05054c4d9f984
505
py
Python
Searching/LinearSearch.py
imkp1/Data-Structures-Algorithms
71375599d4a4a02fb53f64c498fb238595f504f9
[ "MIT" ]
199
2017-10-10T18:12:45.000Z
2022-02-16T23:21:22.000Z
Searching/LinearSearch.py
imkp1/Data-Structures-Algorithms
71375599d4a4a02fb53f64c498fb238595f504f9
[ "MIT" ]
120
2017-10-10T18:01:59.000Z
2021-10-01T09:53:07.000Z
Searching/LinearSearch.py
imkp1/Data-Structures-Algorithms
71375599d4a4a02fb53f64c498fb238595f504f9
[ "MIT" ]
262
2017-10-10T18:12:46.000Z
2021-12-30T08:52:10.000Z
def linearSearch(list, targetValue): for i in range(len(list)): if (targetValue == list[i]): return i return "Not Found" def main(): # Example exampleList = [1, 2, 3, 4, 5, 6, 7, 8, 9] exampleTarget = 5 result = linearSearch(exampleList, exampleTarget) if (result == "Not Found"): print("Your value", exampleTarget, "was", result) else: print("Your value", exampleTarget, "was found at list index", result) main()
25.25
78
0.572277
7c74e603000f2e0d2c987732dc544e5b98d4657e
3,016
py
Python
baselines/her/rollout.py
knowledgetechnologyuhh/goal_conditioned_RL_baselines
915fc875fd8cc75accd0804d99373916756f726e
[ "MIT" ]
15
2020-07-01T16:16:09.000Z
2021-12-20T21:56:33.000Z
baselines/her/rollout.py
knowledgetechnologyuhh/goal_conditioned_RL_baselines
915fc875fd8cc75accd0804d99373916756f726e
[ "MIT" ]
14
2020-09-25T22:41:20.000Z
2022-03-12T00:38:44.000Z
baselines/her/rollout.py
knowledgetechnologyuhh/goal_conditioned_RL_baselines
915fc875fd8cc75accd0804d99373916756f726e
[ "MIT" ]
2
2020-07-01T16:19:08.000Z
2020-11-28T10:45:59.000Z
import numpy as np import time from baselines.template.util import store_args, logger from baselines.template.rollout import Rollout from tqdm import tqdm import sys class RolloutWorker(Rollout): @store_args def __init__(self, make_env, policy, dims, logger, T, rollout_batch_size=1, exploit=False, history_len=100, render=False, **kwargs): """Rollout worker generates experience by interacting with one or many environments. Args: make_env (function): a factory function that creates a new instance of the environment when called policy (object): the policy that is used to act dims (dict of ints): the dimensions for observations (o), goals (g), and actions (u) logger (object): the logger that is used by the rollout worker rollout_batch_size (int): the number of parallel rollouts that should be used exploit (boolean): whether or not to exploit, i.e. to act optimally according to the current policy without any exploration use_target_net (boolean): whether or not to use the target net for rollouts compute_Q (boolean): whether or not to compute the Q values alongside the actions noise_eps (float): scale of the additive Gaussian noise random_eps (float): probability of selecting a completely random action history_len (int): length of history for statistics smoothing render (boolean): whether or not to render the rollouts """ Rollout.__init__(self, make_env, policy, dims, logger, T, rollout_batch_size=rollout_batch_size, history_len=history_len, render=render, **kwargs) def generate_rollouts_update(self, n_episodes, n_train_batches): dur_ro = 0 dur_train = 0 dur_start = time.time() for cyc in tqdm(range(n_episodes), file=sys.__stdout__): # logger.info("Performing ") ro_start = time.time() episode = self.generate_rollouts() self.policy.store_episode(episode) dur_ro += time.time() - ro_start train_start = time.time() for _ in range(n_train_batches): self.policy.train() self.policy.update_target_net() dur_train += time.time() - train_start dur_total = time.time() - dur_start updated_policy = self.policy time_durations = (dur_total, dur_ro, dur_train) return updated_policy, time_durations def current_mean_Q(self): return np.mean(self.custom_histories[0]) def logs(self, prefix='worker'): """Generates a dictionary that contains all collected statistics. """ logs = [] logs += [('success_rate', np.mean(self.success_history))] if self.custom_histories: logs += [('mean_Q', np.mean(self.custom_histories[0]))] logs += [('episode', self.n_episodes)] return logger(logs, prefix)
44.352941
154
0.648541
80b6a47e5b90481ee33114fac96d16eb883f63e4
21,946
py
Python
utils/shared/summary_core.py
Imperas/force-riscv
c15bc18e4d70e6c2f50bad1e9176e13575de6081
[ "Apache-2.0" ]
null
null
null
utils/shared/summary_core.py
Imperas/force-riscv
c15bc18e4d70e6c2f50bad1e9176e13575de6081
[ "Apache-2.0" ]
null
null
null
utils/shared/summary_core.py
Imperas/force-riscv
c15bc18e4d70e6c2f50bad1e9176e13575de6081
[ "Apache-2.0" ]
null
null
null
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR # FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # # Threading Base import re from collections import defaultdict from shared.path_utils import PathUtils from shared.sys_utils import SysUtils from shared.msg_utils import Msg from shared.datetime_utils import DateTime from shared.collections import HiThreadedProducerConsumerQueue from shared.threads import HiThread, workers_done_event, summary_done_event class SummaryLevel: Silent = 0 # only show summary info, log all results to summary log Fail = 1 # show only the fails, Any = 2 class SummaryDetail: Nothing = 0x00 ForceCmd = 0x01 ForceResult = 0x02 IssCmd = 0x04 IssResult = 0x08 AnyDetail = 0xFF # class SummaryThread( HiThread ): pass class SummaryQueueItem( object ): def __init__( self, arg_process_info ): # arg_frun_path, arg_parent_fctrl, arg_fctrl_item, arg_group ): self.process_info = arg_process_info class SummaryErrorQueueItem( object ): def __init__( self, arg_error_info ): self.error_info = arg_error_info class SummaryErrorItem( object ): def load( self, arg_error_qitem ): self.extract_error( arg_error_qitem ) self.report() def extract_error( self, arg_error_qitem ): self.error_item = arg_error_qitem.error_info def get_err_line( self ): my_err_type = str( self.error_item["type"] ).replace( "<class '","" ).replace( "'>","" ) return "[ERROR] Type: %s, Error: %s, Path: \"%s\", Message: %s" % ( my_err_type , str( self.error_item["error"] ) , str( self.error_item["path"] ) , str( self.error_item["message"] ) ) def report( self ): pass # self.prepare class SummaryQueue( HiThreadedProducerConsumerQueue ): def __init__( self ): super().__init__(True) class SummaryItem( object ): def load( self, arg_queue_item ): try: # my_usr_lbl = Msg.set_label( "user", "SUMMARY_ITEM" ) self.load_process_info( arg_queue_item.process_info ) # Msg.lout( self, "user", "Summary Item(load_process_info)" ) self.load_task_info( ) # Msg.lout( self, "user", "Summary Item(load_task_info)" ) self.load_process_log() # Msg.lout( self, "user", "Summary Item(load_process_log)" ) self.load_force_log() # Msg.lout( self, "user", "Summary Item(load_force_log)" ) self.load_force_elog() # Msg.lout( self, "user", "Summary Item(load_force_elog)" ) self.prepare() self.report() # Msg.set_label( "user", my_usr_lbl ) except Exception as arg_ex: Msg.error_trace() Msg.err( str( arg_ex )) except: Msg.error_trace() def prepare( self ): pass def report( self ): if self.default is None: self.default = 0 if self.secondary is None: self.secondary = 0 if self.total is None: self.total = 0 Msg.info( "Task Id: %s, Task Index: %d" % ( self.task_id, self.task_index )) my_msg = "Process Log Contains " if self.detail_flags & SummaryDetail.AnyDetail == SummaryDetail.Nothing : my_msg = "Process No Found or is Empty" else: if self.detail_flags & SummaryDetail.ForceCmd == SummaryDetail.ForceCmd : my_msg += "ForceCommand, " if self.detail_flags & SummaryDetail.ForceResult == SummaryDetail.ForceResult: my_msg += "ForceResult, " if self.detail_flags & SummaryDetail.IssCmd == SummaryDetail.IssCmd : my_msg += "IssCommand, " if self.detail_flags & SummaryDetail.IssResult == SummaryDetail.IssResult : my_msg += "IssResult, " my_msg = my_msg[:-2] # Msg.user( my_msg ) # Msg.info( "Originating Control File: %s" % ( self.parent_fctrl )) # Msg.info( "Control File Item: %s" % ( str( self.fctrl_item ))) # Msg.info( "F-Run Control File: %s" % ( self.frun_path )) Msg.dbg( "Force Ret Code: %s" % ( str( self.force_retcode ))) Msg.info( "[%s], Generate Command: %s" % ( SysUtils.ifthen( SysUtils.success( self.force_retcode ), "SUCCESS", "FAILED" ), str( self.force_cmd ))) Msg.info( "Instructions Generated - Default: %d, Secondary: %d, Total: %d" % ( self.default, self.secondary, self.total )) if self.iss_cmd is not None: if self.iss_success(): Msg.info( "[SUCCESS], ISS Command: %s" % ( str( self.iss_cmd ))) else: Msg.info( "[FAILED], ISS Command: %s" % ( str( self.iss_cmd ))) #Msg.fout( self.iss_log, "user" ) Msg.blank() def iss_success( self ): return True def has_generate( self ): return self.force_cmd is not None def has_simulate( self ): return self.iss_cmd is not None def load_process_info( self, arg_process_info ): # update the user label and send iteration message to the screen if user is active # my_usr_lbl = Msg.set_label( "user", "PROCESS-RESULT" ) # Msg.user( "Executing Iteration #%d of Test File: %s" % ( my_ndx + 1, arg_task_file )) Msg.dbg( "self.process_result: (%s)" % ( str( arg_process_info.get("process-result", None )))) # Msg.set_label( "user", my_usr_lbl ) self.process_cmd = arg_process_info.get("process-cmd" , None ) self.process_log = arg_process_info.get("process-log" , None ) self.process_result = arg_process_info.get("process-result", None ) self.frun_path = arg_process_info.get("frun-path" , None ) self.parent_fctrl = arg_process_info.get("parent-fctrl" , None ) self.fctrl_item = arg_process_info.get("fctrl-item" , None ) self.item_group = arg_process_info.get("item-group" , None ) self.fctrl_content = arg_process_info.get("content" , None ) self.detail_flags = SummaryDetail.Nothing def load_task_info( self ): self.task_id = None self.task_index = None self.work_dir = None self.work_dir, my_tmp = PathUtils.split_path( self.frun_path ) my_tmp, my_index = PathUtils.split_dir( self.work_dir ) my_tmp, self.task_id = PathUtils.split_dir( my_tmp ) self.task_index = int( my_index ) def load_process_log( self ): self.force_cmd = None self.force_elog = None self.force_log = None self.force_retcode = None self.force_stderr = None self.force_stdout = None self.force_level = SummaryLevel.Any self.force_start = 0.00 self.force_end = 0.00 self.iss_cmd = None self.iss_log = None self.iss_retcode = None self.max_instr = None self.min_instr = None # Msg.fout( self.process_log, "dbg" ) with open( self.process_log , "r" ) as my_flog: try: for my_line in my_flog: Msg.dbg("Load: %s" % my_line) self.load_process_line( my_line ) except Exception as arg_ex: Msg.error_trace( arg_ex ) Msg.err( str( arg_ex )) finally: my_flog.close() # here is the lowdown, if a generate line exists in the process log then a Result line must also exists, if ( self.detail_flags & SummaryDetail.ForceCmd ) and not ( self.detail_flags & SummaryDetail.ForceResult ): self.load_gen_result( { "force-retcode": self.process_result[0] , "force-stdout" : self.process_result[2] , "force-stderr" : self.process_result[2] , "force_start" : self.process_result[3] , "force_end" : self.process_result[4] } ) elif ( self.detail_flags & SummaryDetail.IssCmd ) and not ( self.detail_flags & SummaryDetail.IssResult ): self.load_iss_result( { "iss-retcode" : self.process_result[0] , "iss-log" : None } ) def load_force_log( self, arg_seed_only = False ): self.default = None self.secondary = None self.total = None self.seed = None self.task_path = PathUtils.include_trailing_path_delimiter( self.work_dir ) my_glog = "%s%s" % ( self.task_path, self.force_log ) Msg.dbg( "Path: %s" % my_glog) # Msg.user( "Opening Generator Log File: %s" % ( my_glog )) with open( my_glog, "r" ) as my_flog: try: for my_line in my_flog: if SysUtils.found( my_line.find( "Secondary Instructions Generated" )): # my_secondary = my_line.replace( "[notice]Secondary Instructions Generated:", "" ).strip() # self.secondary = int( my_secondary ) my_lpos = my_line.find( ':' ) my_count = int( my_line[my_lpos+2:].strip()) # Msg.user( "Secondary Instructions: %d" % ( my_count )) self.secondary = my_count elif SysUtils.found( my_line.find( "Default Instructions Generated" )): # my_pos = my_line.find( ":" ) + 2 # my_default = my_line[ my_pos: ].strip() # get the count for this instruction type my_lpos = my_line.find( ':' ) my_count = int( my_line[my_lpos+2:].strip()) # Msg.user( "Default Instructions: %d" % ( my_count )) self.default = my_count # my_default = my_line.replace( "[notice]Default Instructions Generated:", "" ).strip() # self.default = int( my_default ) if SysUtils.found( my_line.find( "Total Instructions Generated" )): self.total = int( my_line.replace( "[notice]Total Instructions Generated: ", "" ).strip()) my_lpos = my_line.find( ':' ) my_count = int( my_line[my_lpos+2:].strip()) # Msg.user( "Total Instructions: %d" % ( my_count )) self.total = my_count if SysUtils.found( my_line.find( "Initial seed" )): self.seed = my_line.replace( "[notice]", "" ).replace( "Initial seed = ", "" ).strip() # Msg.dbg( "Seed: %s" % ( self.seed )) # for simulation only the seed is needed if arg_seed_only: break if not( self.seed is None or self.total is None or self.secondary is None or self.default is None ): break except Exception as arg_ex: # NOTE: Determine the possible errors and handle accordingly, for now just keep processing Msg.error_trace() Msg.err( str( arg_ex )) finally: my_flog.close() def load_force_elog( self ): self.force_msg = None my_elog = "%s%s" % ( PathUtils.include_trailing_path_delimiter( self.work_dir ), self.force_elog ) # Msg.dbg( my_elog ) if SysUtils.failed( self.force_retcode ): Msg.fout( my_elog, "dbg" ) with open( my_elog , "r" ) as my_flog: try: for my_line in my_flog: if SysUtils.found( my_line.find( "[fail]" )): self.force_msg = my_line.replace( "[fail]", "" ).strip() # Msg.dbg( "Message: %s" % ( str( self.force_msg ))) break finally: my_flog.close() def load_process_line( self, arg_line ): if SysUtils.found( arg_line.find( "ForceCommand" )): my_glb, my_loc = SysUtils.exec_content( arg_line ) self.load_gen_info( my_loc["ForceCommand"] ) self.detail_flags |= SummaryDetail.ForceCmd elif SysUtils.found( arg_line.find( "ForceResult" )): my_glb, my_loc = SysUtils.exec_content( arg_line ) self.load_gen_result( my_loc["ForceResult" ] ) self.detail_flags |= SummaryDetail.ForceResult elif SysUtils.found( arg_line.find( "ISSCommand" )): my_glb, my_loc = SysUtils.exec_content( arg_line ) self.load_iss_info( my_loc["ISSCommand"] ) self.detail_flags |= SummaryDetail.IssCmd elif SysUtils.found( arg_line.find( "ISSResult" )): my_glb, my_loc = SysUtils.exec_content( arg_line ) self.load_iss_result( my_loc["ISSResult" ] ) self.detail_flags |= SummaryDetail.IssResult # load the force generate information def load_gen_info( self, arg_dict ): # Msg.lout( arg_dict, "user", "Generate Info Dictionary ... " ) self.force_cmd = arg_dict["force-command"] self.force_log = arg_dict["force-log"] self.force_elog= arg_dict["force-elog"] self.max_instr = arg_dict["max-instr"] self.min_instr = arg_dict["min-instr"] # load the force generate results def load_gen_result( self, arg_dict ): # Msg.lout( arg_dict, "dbg", "Generate Results Dictionary ... " ) try: self.force_retcode = int( str( arg_dict["force-retcode"] ).strip() ) except : self.force_retcode = -1 Msg.err( "Generate Return Code in unrecognizable format" ) self.force_stdout = arg_dict["force-stdout" ] self.force_stderr = arg_dict["force-stderr" ] if SysUtils.failed( self.force_retcode ): self.force_level = SummaryLevel.Fail self.force_start = float( arg_dict.get("force-start", 0.00 )) self.force_end = float( arg_dict.get("force-end" , 0.00 )) # Msg.lout( self, "dbg", "General Summary Item ... " ) # load the iss execution information def load_iss_info( self, arg_dict ): # Msg.lout( arg_dict, "user", "ISS Info Dictionary ... " ) self.iss_cmd = arg_dict["iss-command"] # load the iss execution results def load_iss_result( self,arg_dict ): # Msg.lout( arg_dict, "user", "ISS Results Dictionary ... " ) self.iss_log = arg_dict["iss-log"] try: self.iss_retcode = int( arg_dict["iss-retcode"] ) except : self.iss_retcode = -1 Msg.err( "ISS Return Code in unrecognizable format" ) def commit( self ): my_gen_cnt = 0 my_gen_ret = 0 my_sim_cnt = 0 my_sim_ret = 0 my_tgt_name = "" if self.has_generate(): #Msg.user( "if self.has_generate(): True" ) my_gen_cnt = 1 my_gen_ret = self.commit_generate() if self.has_simulate(): #Msg.user( "if self.has_simulate(): True" ) my_sim_cnt = 1 my_sim_ret = self.commit_simulate() my_tgt_name = "%s%s" % ( self.task_path, SysUtils.ifthen( bool( my_sim_ret ), "PASS", "FAIL" )) else: my_tgt_name = "%s%s" % ( self.task_path, SysUtils.ifthen( bool( my_gen_ret ), "PASS", "FAIL" )) my_src_name = "%s%s" % ( self.task_path, "STARTED" ) PathUtils.move( my_src_name, my_tgt_name ) return ( my_gen_cnt, my_gen_ret, my_sim_cnt, my_sim_ret ) class SummaryGroups( object ): def __init__( self ): self.groups = {} self.queue = SummaryQueue() # self.group_lookup = [] def update_groups( self, arg_group ): if not arg_group in self.groups: self.groups[ arg_group ] = [] # adds an item to a group list if the group does not exist the list is created def add_item( self, arg_item ): # Msg.dbg( "Item Group: %s"% ( arg_item.item_group )) if not arg_item.item_group in self.groups: self.groups[ arg_item.item_group ] = [] self.groups[ arg_item.item_group ].append( arg_item ) # Msg.dbg( "Group Count: %d, Group %s Membership Count: %d" % ( len( self.groups ), arg_item.item_group, len( self.groups[ arg_item.item_group ]) )) # returns the item list associated with the group passed as argument def group_items( self, arg_group ): return self.groups[ arg_group ] # return the list of groups def task_groups( self ): return self.groups class SummaryThread( HiThread ): def __init__( self, sq, summary): self.summary_queue = sq self.summary = summary # We do not want the thread to launch until we've loaded all the properties super().__init__(True) def commit_item( self, arg_item ): if not arg_item.task_id in self.summary.tasks: self.summary.tasks[ arg_item.task_id ] = [] self.summary.task_lookup.append( arg_item.task_id ) self.summary.groups.update_groups( arg_item.item_group ) return 0 def run( self ): # Block on process queue while we have threads running and stuff to do # == Replaced ==>> while True: # == Replaced ==>> # Pop off the top of the process queue (should block if the queue is empty) # == Replaced ==>> try: # == Replaced ==>> next_item = self.summary_queue.dequeue(0) # == Replaced ==>> except TimeoutError: # == Replaced ==>> if (workers_done_event.isSet()): # == Replaced ==>> summary_done_event.Signal() # == Replaced ==>> return # == Replaced ==>> else: # == Replaced ==>> self.HeartBeat() # == Replaced ==>> continue # == Replaced ==>> my_item = self.summary.create_summary_item() # == Replaced ==>> my_item.load( next_item ) # == Replaced ==>> self.summary.commit_item( my_item ) # == Replaced ==>> next_item = None try: while True: #not workers_done_event.isSet(): # Pop off the top of the process queue (should block if the queue is empty) try: # my_item = self.summary.create_summary_item() # my_qitem = self.summary_queue.dequeue(0) # my_item.load( my_qitem ) # self.summary.commit_item( my_item ) # my_qitem = None # my_qitem = self.summary_queue.dequeue(0) my_qitem = self.summary_queue.dequeue(0) if isinstance( my_qitem, SummaryErrorQueueItem): Msg.user( str( my_qitem.error_info ), "SUMMARY_ERROR" ) my_eitem = SummaryErrorItem() my_eitem.load( my_qitem ) self.summary.commit_error_item( my_eitem ) else: my_item = self.summary.create_summary_item() my_item.load( my_qitem ) self.summary.commit_item( my_item ) my_qitem = None except TimeoutError as arg_ex: # {{{TODO}}} Implement proper heartbeat # Msg.dbg( str( arg_ex ) ) if (workers_done_event.isSet()): break else: self.HeartBeat() continue except Exception as arg_ex: Msg.error_trace() Msg.err( str( arg_ex )) raise except: Msg.error_trace() raise finally: summary_done_event.Signal() class Summary( object ): def __init__( self, arg_summary_dir ): self.summary_dir = arg_summary_dir self.tasks = defaultdict(list) self.errors = [] self.groups = SummaryGroups() self.queue = SummaryQueue() # Launch a Summary Thread self.summary_thread = SummaryThread(self.queue, self) def lock( self ): return True; def unlock( self ): True == True def commit_error_item( self, arg_error ): self.errors.append( arg_error ) def process_errors( self, arg_ofile ): if len( self.errors ) > 0: arg_ofile.write( "\n" ) Msg.blank() for my_eitem in self.errors: my_err_line = str( my_eitem.get_err_line()) Msg.info( my_err_line ) arg_ofile.write( "%s\n" % ( my_err_line )) # abstracts def create_summary_item( self ): pass def commit_item( self, arg_item ): pass def process_summary( self, sum_level = SummaryLevel.Fail ): pass
39.542342
157
0.558735
731666da3a7c850e4d35fa43ce3832fc3e183d5c
2,578
py
Python
setup.py
langdoc/pyannote-db-ikdp
d0f61cc0b03efc27a3a68917a2a7e62a096bea55
[ "MIT" ]
1
2017-07-15T09:51:02.000Z
2017-07-15T09:51:02.000Z
setup.py
langdoc/pyannote-db-ikdp
d0f61cc0b03efc27a3a68917a2a7e62a096bea55
[ "MIT" ]
null
null
null
setup.py
langdoc/pyannote-db-ikdp
d0f61cc0b03efc27a3a68917a2a7e62a096bea55
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # # Copyright (c) 2017 CNRS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # AUTHORS # Hervé BREDIN - http://herve.niderb.fr/ import versioneer from setuptools import setup, find_packages setup( # replace "mydatabase" by the name of your database name='pyannote.db.ikdp', # replace "MyDatabase" by the name of your database description="IKDP plugin for pyannote-database", # replace with your information author='Niko Partanen', author_email='nikotapiopartanen@github.com', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), packages=find_packages(), # replace "MyDatabase" by the new name of MyDatabase directory package_data={ 'ikdp': [ 'data/*', ], }, include_package_data=True, install_requires=[ 'pyannote.database >= 0.11.2', 'pyannote.parser >= 0.6.5', ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Topic :: Scientific/Engineering" ], # replace MyDatabase by the name of your database (using CamelCase) entry_points=""" [pyannote.database.databases] ikdp=ikdp:ikdp """ )
33.480519
79
0.688906
d0eba3db245b425a53e7f8b4e866da716890c02a
828
py
Python
setup.py
vasusen-code/mediafire-dl
23102dc6bf90394bb5f5cd1d2509f5985ec4042c
[ "MIT" ]
2
2022-01-17T13:08:27.000Z
2022-01-20T05:33:34.000Z
setup.py
vasusen-code/mediafire-dl
23102dc6bf90394bb5f5cd1d2509f5985ec4042c
[ "MIT" ]
null
null
null
setup.py
vasusen-code/mediafire-dl
23102dc6bf90394bb5f5cd1d2509f5985ec4042c
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name="mediafire-dl", version="1", description="Simple command-line script to download files from mediafire based on gdown", url="https://github.com/vasusen-code/mediafire-dl", author="Juvenal Yescas", author_email="juvenal@mail.com", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7" "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], keywords="audo ai", py_modules=['mediafire_dl'], install_requires=[ "requests", "tqdm", ], entry_points={ "console_scripts": ["mediafire-dl=mediafire_dl:main"], }, )
29.571429
93
0.614734
69466ab4cfe4606c533dc648cb050596a7e2a195
542
py
Python
tools/genhooks/recipe_idbhooks.py
sfinktah/src
7eea22820ff9915660aba20b726495cf6c618728
[ "BSD-3-Clause" ]
null
null
null
tools/genhooks/recipe_idbhooks.py
sfinktah/src
7eea22820ff9915660aba20b726495cf6c618728
[ "BSD-3-Clause" ]
null
null
null
tools/genhooks/recipe_idbhooks.py
sfinktah/src
7eea22820ff9915660aba20b726495cf6c618728
[ "BSD-3-Clause" ]
null
null
null
recipe = { "enum_const_created" : { "method_name" : "enum_member_created", "add_params" : [ { "name" : "id", "type" : "enum_t" }, { "name" : "cid", "type" : "const_t" }, ], }, "enum_const_deleted" : { "method_name" : "enum_member_deleted", "add_params" : [ { "name" : "id", "type" : "enum_t" }, { "name" : "cid", "type" : "const_t" }, ], }, "dirtree_segm_moved" : {"ignore" : True}, } default_rtype = "void"
25.809524
51
0.433579
97695a3538e1e86ae9bb42092d6267836a880567
1,151
py
Python
google/ads/googleads/v10/services/services/conversion_goal_campaign_config_service/transports/__init__.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v10/services/services/conversion_goal_campaign_config_service/transports/__init__.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v10/services/services/conversion_goal_campaign_config_service/transports/__init__.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from typing import Dict, Type from .base import ConversionGoalCampaignConfigServiceTransport from .grpc import ConversionGoalCampaignConfigServiceGrpcTransport # Compile a registry of transports. _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[ConversionGoalCampaignConfigServiceTransport]] _transport_registry["grpc"] = ConversionGoalCampaignConfigServiceGrpcTransport __all__ = ( "ConversionGoalCampaignConfigServiceTransport", "ConversionGoalCampaignConfigServiceGrpcTransport", )
35.96875
78
0.791486
33e7efaea652a3e523e6994d7ff9941f20fcd059
118,652
py
Python
src/transformers/pipelines.py
hhaoyan/transformers
0911b6bd86b39d55ddeae42fbecef75a1244ea85
[ "Apache-2.0" ]
null
null
null
src/transformers/pipelines.py
hhaoyan/transformers
0911b6bd86b39d55ddeae42fbecef75a1244ea85
[ "Apache-2.0" ]
null
null
null
src/transformers/pipelines.py
hhaoyan/transformers
0911b6bd86b39d55ddeae42fbecef75a1244ea85
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import os import pickle import sys import uuid from abc import ABC, abstractmethod from contextlib import contextmanager from itertools import chain from os.path import abspath, exists from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union from uuid import UUID import numpy as np from .configuration_auto import AutoConfig from .configuration_utils import PretrainedConfig from .data import SquadExample, squad_convert_examples_to_features from .file_utils import add_end_docstrings, is_tf_available, is_torch_available from .modelcard import ModelCard from .tokenization_auto import AutoTokenizer from .tokenization_bert import BasicTokenizer from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils_base import BatchEncoding, PaddingStrategy from .utils import logging if is_tf_available(): import tensorflow as tf from .modeling_tf_auto import ( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, ) if is_torch_available(): import torch from .modeling_auto import ( MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, ) if TYPE_CHECKING: from .modeling_tf_utils import TFPreTrainedModel from .modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) def get_framework(model): """ Select framework (TensorFlow or PyTorch) to use. Args: model (:obj:`str`, :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`): If both frameworks are installed, picks the one corresponding to the model passed (either a model class or the model name). If no specific model is provided, defaults to using PyTorch. """ if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): if is_torch_available() and not is_tf_available(): model = AutoModel.from_pretrained(model) elif is_tf_available() and not is_torch_available(): model = TFAutoModel.from_pretrained(model) else: try: model = AutoModel.from_pretrained(model) except OSError: model = TFAutoModel.from_pretrained(model) framework = "tf" if model.__class__.__name__.startswith("TF") else "pt" return framework def get_default_model(targeted_task: Dict, framework: Optional[str]) -> str: """ Select a default model to use for a given task. Defaults to pytorch if ambiguous. Args: targeted_task (:obj:`Dict` ): Dictionnary representing the given task, that should contain default models framework (:obj:`str`, None) "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet. Returns :obj:`str` The model string representing the default model for this pipeline """ if is_torch_available() and not is_tf_available(): framework = "pt" elif is_tf_available() and not is_torch_available(): framework = "tf" default_models = targeted_task["default"]["model"] if framework is None: framework = "pt" return default_models[framework] class PipelineException(Exception): """ Raised by a :class:`~transformers.Pipeline` when handling __call__. Args: task (:obj:`str`): The task of the pipeline. model (:obj:`str`): The model used by the pipeline. reason (:obj:`str`): The error message to display. """ def __init__(self, task: str, model: str, reason: str): super().__init__(reason) self.task = task self.model = model class ArgumentHandler(ABC): """ Base interface for handling arguments for each :class:`~transformers.pipelines.Pipeline`. """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError() class DefaultArgumentHandler(ArgumentHandler): """ Default argument parser handling parameters for each :class:`~transformers.pipelines.Pipeline`. """ @staticmethod def handle_kwargs(kwargs: Dict) -> List: if len(kwargs) == 1: output = list(kwargs.values()) else: output = list(chain(kwargs.values())) return DefaultArgumentHandler.handle_args(output) @staticmethod def handle_args(args: Sequence[Any]) -> List[str]: # Only one argument, let's do case by case if len(args) == 1: if isinstance(args[0], str): return [args[0]] elif not isinstance(args[0], list): return list(args) else: return args[0] # Multiple arguments (x1, x2, ...) elif len(args) > 1: if all([isinstance(arg, str) for arg in args]): return list(args) # If not instance of list, then it should instance of iterable elif isinstance(args, Iterable): return list(chain.from_iterable(chain(args))) else: raise ValueError( "Invalid input type {}. Pipeline supports Union[str, Iterable[str]]".format(type(args)) ) else: return [] def __call__(self, *args, **kwargs): if len(kwargs) > 0 and len(args) > 0: raise ValueError("Pipeline cannot handle mixed args and kwargs") if len(kwargs) > 0: return DefaultArgumentHandler.handle_kwargs(kwargs) else: return DefaultArgumentHandler.handle_args(args) class PipelineDataFormat: """ Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) :obj:`PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the :obj:`dataset_kwarg_1=dataset_column_1` format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ SUPPORTED_FORMATS = ["json", "csv", "pipe"] def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool = False, ): self.output_path = output_path self.input_path = input_path self.column = column.split(",") if column is not None else [""] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column] if output_path is not None and not overwrite: if exists(abspath(self.output_path)): raise OSError("{} already exists on disk".format(self.output_path)) if input_path is not None: if not exists(abspath(self.input_path)): raise OSError("{} doesnt exist on disk".format(self.input_path)) @abstractmethod def __iter__(self): raise NotImplementedError() @abstractmethod def save(self, data: Union[dict, List[dict]]): """ Save the provided data object with the representation for the current :class:`~transformers.pipelines.PipelineDataFormat`. Args: data (:obj:`dict` or list of :obj:`dict`): The data to store. """ raise NotImplementedError() def save_binary(self, data: Union[dict, List[dict]]) -> str: """ Save the provided data object as a pickle-formatted binary data on the disk. Args: data (:obj:`dict` or list of :obj:`dict`): The data to store. Returns: :obj:`str`: Path where the data has been saved. """ path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, "pickle")) with open(binary_path, "wb+") as f_output: pickle.dump(data, f_output) return binary_path @staticmethod def from_str( format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ) -> "PipelineDataFormat": """ Creates an instance of the right subclass of :class:`~transformers.pipelines.PipelineDataFormat` depending on :obj:`format`. Args: format: (:obj:`str`): The format of the desired pipeline. Acceptable values are :obj:`"json"`, :obj:`"csv"` or :obj:`"pipe"`. output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. Returns: :class:`~transformers.pipelines.PipelineDataFormat`: The proper data format. """ if format == "json": return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "csv": return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "pipe": return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError("Unknown reader {} (Available reader are json/csv/pipe)".format(format)) class CsvPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using CSV data format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) def __iter__(self): with open(self.input_path, "r") as f: reader = csv.DictReader(f) for row in reader: if self.is_multi_columns: yield {k: row[c] for k, c in self.column} else: yield row[self.column[0]] def save(self, data: List[dict]): """ Save the provided data object with the representation for the current :class:`~transformers.pipelines.PipelineDataFormat`. Args: data (:obj:`List[dict]`): The data to store. """ with open(self.output_path, "w") as f: if len(data) > 0: writer = csv.DictWriter(f, list(data[0].keys())) writer.writeheader() writer.writerows(data) class JsonPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using JSON file format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) with open(input_path, "r") as f: self._entries = json.load(f) def __iter__(self): for entry in self._entries: if self.is_multi_columns: yield {k: entry[c] for k, c in self.column} else: yield entry[self.column[0]] def save(self, data: dict): """ Save the provided data object in a json file. Args: data (:obj:`dict`): The data to store. """ with open(self.output_path, "w") as f: json.dump(data, f) class PipedPipelineDataFormat(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line def save(self, data: dict): """ Print the data. Args: data (:obj:`dict`): The data to store. """ print(data) def save_binary(self, data: Union[dict, List[dict]]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data) class _ScikitCompat(ABC): """ Interface layer for the Scikit and Keras compatibility. """ @abstractmethod def transform(self, X): raise NotImplementedError() @abstractmethod def predict(self, X): raise NotImplementedError() PIPELINE_INIT_ARGS = r""" Arguments: model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for TensorFlow. tokenizer (:obj:`~transformers.PreTrainedTokenizer`): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from :class:`~transformers.PreTrainedTokenizer`. modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`): Model card attributed to the model for this pipeline. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. task (:obj:`str`, defaults to :obj:`""`): A task-identifier for the pipeline. args_parser (:class:`~transformers.pipelines.ArgumentHandler`, `optional`): Reference to the object in charge of parsing supplied pipeline parameters. device (:obj:`int`, `optional`, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. binary_output (:obj:`bool`, `optional`, defaults to :obj:`False`): Flag indicating if the output the pipeline should happen in a binary format (i.e., pickle) or as raw text. """ @add_end_docstrings(PIPELINE_INIT_ARGS) class Pipeline(_ScikitCompat): """ The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines. Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following operations: Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output Pipeline supports running on CPU or GPU through the device argument (see below). Some pipeline, like for instance :class:`~transformers.FeatureExtractionPipeline` (:obj:`'feature-extraction'` ) output large tensor object as nested-lists. In order to avoid dumping such large structure as textual data we provide the :obj:`binary_output` constructor argument. If set to :obj:`True`, the output will be stored in the pickle format. """ default_input_names = None def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", args_parser: ArgumentHandler = None, device: int = -1, binary_output: bool = False, ): if framework is None: framework = get_framework(model) self.task = task self.model = model self.tokenizer = tokenizer self.modelcard = modelcard self.framework = framework self.device = device if framework == "tf" else torch.device("cpu" if device < 0 else "cuda:{}".format(device)) self.binary_output = binary_output self._args_parser = args_parser or DefaultArgumentHandler() # Special handling if self.framework == "pt" and self.device.type == "cuda": self.model = self.model.to(self.device) # Update config with task specific parameters task_specific_params = self.model.config.task_specific_params if task_specific_params is not None and task in task_specific_params: self.model.config.update(task_specific_params.get(task)) def save_pretrained(self, save_directory: str): """ Save the pipeline's model and tokenizer. Args: save_directory (:obj:`str`): A path to the directory where to saved. It will be created if it doesn't exist. """ if os.path.isfile(save_directory): logger.error("Provided path ({}) should be a directory, not a file".format(save_directory)) return os.makedirs(save_directory, exist_ok=True) self.model.save_pretrained(save_directory) self.tokenizer.save_pretrained(save_directory) if self.modelcard is not None: self.modelcard.save_pretrained(save_directory) def transform(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X=X) def predict(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X=X) @contextmanager def device_placement(self): """ Context Manager allowing tensor allocation on the user-specified device in framework agnostic way. Returns: Context manager Examples:: # Explicitly ask for tensor allocation on CUDA device :0 pipe = pipeline(..., device=0) with pipe.device_placement(): # Every framework specific tensor allocation will be done on the request device output = pipe(...) """ if self.framework == "tf": with tf.device("/CPU:0" if self.device == -1 else "/device:GPU:{}".format(self.device)): yield else: if self.device.type == "cuda": torch.cuda.set_device(self.device) yield def ensure_tensor_on_device(self, **inputs): """ Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be :obj:`torch.Tensor`): The tensors to place on :obj:`self.device`. Return: :obj:`Dict[str, torch.Tensor]`: The same as :obj:`inputs` but on the proper device. """ return {name: tensor.to(self.device) for name, tensor in inputs.items()} def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (:obj:`List[str]` or :obj:`dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models = [item[1].__name__ for item in supported_models.items()] if self.model.__class__.__name__ not in supported_models: raise PipelineException( self.task, self.model.base_model_prefix, f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are {supported_models}", ) def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize """ # Parse arguments inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, ) return inputs def __call__(self, *args, **kwargs): inputs = self._parse_and_tokenize(*args, **kwargs) return self._forward(inputs) def _forward(self, inputs, return_tensors=False): """ Internal framework specific forward dispatching. Args: inputs: dict holding all the keyworded arguments for required by the model forward method. return_tensors: Whether to return native framework (pt/tf) tensors rather than numpy array. Returns: Numpy array """ # Encode for forward with self.device_placement(): if self.framework == "tf": # TODO trace model predictions = self.model(inputs.data, training=False)[0] else: with torch.no_grad(): inputs = self.ensure_tensor_on_device(**inputs) predictions = self.model(**inputs)[0].cpu() if return_tensors: return predictions else: return predictions.numpy() # Can't use @add_end_docstrings(PIPELINE_INIT_ARGS) here because this one does not accept `binary_output` class FeatureExtractionPipeline(Pipeline): """ Feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. This feature extraction pipeline can currently be loaded from :func:`~transformers.pipeline` using the task identifier: :obj:`"feature-extraction"`. All models may be used for this pipeline. See a list of all models, including community-contributed models on `huggingface.co/models <https://huggingface.co/models>`__. Arguments: model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for TensorFlow. tokenizer (:obj:`~transformers.PreTrainedTokenizer`): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from :class:`~transformers.PreTrainedTokenizer`. modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`): Model card attributed to the model for this pipeline. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. task (:obj:`str`, defaults to :obj:`""`): A task-identifier for the pipeline. args_parser (:class:`~transformers.pipelines.ArgumentHandler`, `optional`): Reference to the object in charge of parsing supplied pipeline parameters. device (:obj:`int`, `optional`, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. """ def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, task: str = "", ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=True, task=task, ) def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of :obj:`float`: The features computed by the model. """ return super().__call__(*args, **kwargs).tolist() @add_end_docstrings(PIPELINE_INIT_ARGS) class TextGenerationPipeline(Pipeline): """ Language generation pipeline using any :obj:`ModelWithLMHead`. This pipeline predicts the words that will follow a specified text prompt. This language generation pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"text-generation"`. The models that this pipeline can use are models that have been trained with an autoregressive language modeling objective, which includes the uni-directional models in the library (e.g. gpt2). See the list of available community models on `huggingface.co/models <https://huggingface.co/models?search=&filter=lm-head>`__. """ # Prefix text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia # in https://github.com/rusiaaman/XLNet-gen#methodology # and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e XL_PREFIX = """In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos>""" ALLOWED_MODELS = [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "ReformerModelWithLMHead", "GPT2LMHeadModel", "OpenAIGPTLMHeadModel", "CTRLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", "TFGPT2LMHeadModel", "TFOpenAIGPTLMHeadModel", "TFCTRLLMHeadModel", ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type(self.ALLOWED_MODELS) # overriding _parse_and_tokenize to allow for unusual language-modeling tokenizer arguments def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize """ # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: tokenizer_kwargs = {"add_space_before_punct_symbol": True} else: tokenizer_kwargs = {} inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, **tokenizer_kwargs, ) return inputs def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, prefix=None, **generate_kwargs ): """ Complete the prompt(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several prompts (or one list of prompts) to complete. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. prefix (:obj:`str`, `optional`): Prefix added to prompt. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **generated_text** (:obj:`str`, present when ``return_text=True``) -- The generated text. - **generated_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the generated text. """ text_inputs = self._args_parser(*args) results = [] for prompt_text in text_inputs: # Manage correct placement of the tensors with self.device_placement(): prefix = prefix if prefix is not None else self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. prefix = self.XL_PREFIX if prefix: prefix_inputs = self._parse_and_tokenize(prefix, padding=False, add_special_tokens=False) # This impacts max_length and min_length argument that need adjusting. prefix_length = prefix_inputs["input_ids"].shape[-1] if generate_kwargs.get("max_length", None) is not None: generate_kwargs["max_length"] += prefix_length if generate_kwargs.get("min_length", None) is not None: generate_kwargs["min_length"] += prefix_length prefix = prefix or "" inputs = self._parse_and_tokenize(prefix + prompt_text, padding=False, add_special_tokens=False) # set input_ids to None to allow empty prompt if inputs["input_ids"].shape[-1] == 0: inputs["input_ids"] = None inputs["attention_mask"] = None if self.framework == "pt" and inputs["input_ids"] is not None: inputs = self.ensure_tensor_on_device(**inputs) input_ids = inputs["input_ids"] # Ensure that batch size = 1 (batch generation not allowed for now) assert ( input_ids is None or input_ids.shape[0] == 1 ), "Batch generation is currently not supported. See https://github.com/huggingface/transformers/issues/3021 for more information." output_sequences = self.model.generate(input_ids=input_ids, **generate_kwargs) # BS x SL result = [] for generated_sequence in output_sequences: if self.framework == "pt" and generated_sequence is not None: generated_sequence = generated_sequence.cpu() generated_sequence = generated_sequence.numpy().tolist() record = {} if return_tensors: record["generated_token_ids"] = generated_sequence if return_text: # Decode text text = self.tokenizer.decode( generated_sequence, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: prompt_length = 0 else: prompt_length = len( self.tokenizer.decode( input_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) ) record["generated_text"] = prompt_text + text[prompt_length:] result.append(record) results += [result] if len(results) == 1: return results[0] return results @add_end_docstrings( PIPELINE_INIT_ARGS, r""" return_all_scores (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to return all prediction scores or just the one of the predicted class. """, ) class TextClassificationPipeline(Pipeline): """ Text classification pipeline using any :obj:`ModelForSequenceClassification`. See the `sequence classification examples <../task_summary.html#sequence-classification>`__ for more information. This text classification pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"sentiment-analysis"` (for classifying sequences according to positive or negative sentiments). If multiple classification labels are available (:obj:`model.config.num_labels >= 2`), the pipeline will run a softmax over the results. If there is a single label, the pipeline will run a sigmoid over the result. The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=text-classification>`__. """ def __init__(self, return_all_scores: bool = False, **kwargs): super().__init__(**kwargs) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) self.return_all_scores = return_all_scores def __call__(self, *args, **kwargs): """ Classify the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of prompts) to classify. Return: A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys: - **label** (:obj:`str`) -- The label predicted. - **score** (:obj:`float`) -- The corresponding probability. If ``self.return_all_scores=True``, one such dictionary is returned per label. """ outputs = super().__call__(*args, **kwargs) if self.model.config.num_labels == 1: scores = 1.0 / (1.0 + np.exp(-outputs)) else: scores = np.exp(outputs) / np.exp(outputs).sum(-1, keepdims=True) if self.return_all_scores: return [ [{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(item)] for item in scores ] else: return [ {"label": self.model.config.id2label[item.argmax()], "score": item.max().item()} for item in scores ] class ZeroShotClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for zero-shot for text classification by turning each possible label into an NLI premise/hypothesis pair. """ def _parse_labels(self, labels): if isinstance(labels, str): labels = [label.strip() for label in labels.split(",")] return labels def __call__(self, sequences, labels, hypothesis_template): if len(labels) == 0 or len(sequences) == 0: raise ValueError("You must include at least one label and at least one sequence.") if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(hypothesis_template) ) if isinstance(sequences, str): sequences = [sequences] labels = self._parse_labels(labels) sequence_pairs = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(label)] for label in labels]) return sequence_pairs @add_end_docstrings(PIPELINE_INIT_ARGS) class ZeroShotClassificationPipeline(Pipeline): """ NLI-based zero-shot classification pipeline using a :obj:`ModelForSequenceClassification` trained on NLI (natural language inference) tasks. Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis pair and passed to the pretrained model. Then, the logit for `entailment` is taken as the logit for the candidate label being valid. Any NLI model can be used as long as the first output logit corresponds to `contradiction` and the last to `entailment`. This NLI pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"zero-shot-classification"`. The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?search=nli>`__. """ def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs): super().__init__(*args, args_parser=args_parser, **kwargs) def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize only_first so that hypothesis (label) is not truncated """ inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, truncation="only_first", ) return inputs def __call__(self, sequences, candidate_labels, hypothesis_template="This example is {}.", multi_class=False): """ Classify the sequence(s) given as inputs. Args: sequences (:obj:`str` or :obj:`List[str]`): The sequence(s) to classify, will be truncated if the model input is too large. candidate_labels (:obj:`str` or :obj:`List[str]`): The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels. hypothesis_template (:obj:`str`, `optional`, defaults to :obj:`"This example is {}."`): The template used to turn each label into an NLI-style hypothesis. This template must include a {} or similar syntax for the candidate label to be inserted into the template. For example, the default template is :obj:`"This example is {}."` With the candidate label :obj:`"sports"`, this would be fed into the model like :obj:`"<cls> sequence to classify <sep> This example is sports . <sep>"`. The default template works well in many cases, but it may be worthwhile to experiment with different templates depending on the task setting. multi_class (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not multiple candidate labels can be true. If :obj:`False`, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If :obj:`True`, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. Return: A :obj:`dict` or a list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **sequence** (:obj:`str`) -- The sequence for which this is the output. - **labels** (:obj:`List[str]`) -- The labels sorted by order of likelihood. - **scores** (:obj:`List[float]`) -- The probabilities for each of the labels. """ outputs = super().__call__(sequences, candidate_labels, hypothesis_template) num_sequences = 1 if isinstance(sequences, str) else len(sequences) candidate_labels = self._args_parser._parse_labels(candidate_labels) reshaped_outputs = outputs.reshape((num_sequences, len(candidate_labels), -1)) if len(candidate_labels) == 1: multi_class = True if not multi_class: # softmax the "entailment" logits over all candidate labels entail_logits = reshaped_outputs[..., -1] scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) else: # softmax over the entailment vs. contradiction dim for each label independently entail_contr_logits = reshaped_outputs[..., [0, -1]] scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = scores[..., 1] result = [] for iseq in range(num_sequences): top_inds = list(reversed(scores[iseq].argsort())) result.append( { "sequence": sequences if isinstance(sequences, str) else sequences[iseq], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[iseq][top_inds].tolist(), } ) if len(result) == 1: return result[0] return result @add_end_docstrings( PIPELINE_INIT_ARGS, r""" topk (:obj:`int`, defaults to 5): The number of predictions to return. """, ) class FillMaskPipeline(Pipeline): """ Masked language modeling prediction pipeline using any :obj:`ModelWithLMHead`. See the `masked language modeling examples <../task_summary.html#masked-language-modeling>`__ for more information. This mask filling pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"fill-mask"`. The models that this pipeline can use are models that have been trained with a masked language modeling objective, which includes the bi-directional models in the library. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=lm-head>`__. .. note:: This pipeline only works for inputs with exactly one token masked. """ def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, topk=5, task: str = "", ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=True, task=task, ) self.check_model_type(TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_MASKED_LM_MAPPING) self.topk = topk def ensure_exactly_one_mask_token(self, masked_index: np.ndarray): numel = np.prod(masked_index.shape) if numel > 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"More than one mask_token ({self.tokenizer.mask_token}) is not supported", ) elif numel < 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"No mask_token ({self.tokenizer.mask_token}) found on the input", ) def __call__(self, *args, targets=None, **kwargs): """ Fill the masked token in the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of prompts) with masked tokens. targets (:obj:`str` or :obj:`List[str]`, `optional`): When passed, the model will return the scores for the passed token or tokens rather than the top k predictions in the entire vocabulary. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning). Return: A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys: - **sequence** (:obj:`str`) -- The corresponding input with the mask token prediction. - **score** (:obj:`float`) -- The corresponding probability. - **token** (:obj:`int`) -- The predicted token id (to replace the masked one). - **token** (:obj:`str`) -- The predicted token (to replace the masked one). """ inputs = self._parse_and_tokenize(*args, **kwargs) outputs = self._forward(inputs, return_tensors=True) results = [] batch_size = outputs.shape[0] if self.framework == "tf" else outputs.size(0) if targets is not None: if len(targets) == 0 or len(targets[0]) == 0: raise ValueError("At least one target must be provided when passed.") if isinstance(targets, str): targets = [targets] targets_proc = [] for target in targets: target_enc = self.tokenizer.tokenize(target) if len(target_enc) > 1 or target_enc[0] == self.tokenizer.unk_token: logger.warning( "The specified target token `{}` does not exist in the model vocabulary. Replacing with `{}`.".format( target, target_enc[0] ) ) targets_proc.append(target_enc[0]) target_inds = np.array(self.tokenizer.convert_tokens_to_ids(targets_proc)) for i in range(batch_size): input_ids = inputs["input_ids"][i] result = [] if self.framework == "tf": masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() # Fill mask pipeline supports only one ${mask_token} per sample self.ensure_exactly_one_mask_token(masked_index) logits = outputs[i, masked_index.item(), :] probs = tf.nn.softmax(logits) if targets is None: topk = tf.math.top_k(probs, k=self.topk) values, predictions = topk.values.numpy(), topk.indices.numpy() else: values = tf.gather_nd(probs, tf.reshape(target_inds, (-1, 1))) sort_inds = tf.reverse(tf.argsort(values), [0]) values = tf.gather_nd(values, tf.reshape(sort_inds, (-1, 1))).numpy() predictions = target_inds[sort_inds.numpy()] else: masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False) # Fill mask pipeline supports only one ${mask_token} per sample self.ensure_exactly_one_mask_token(masked_index.numpy()) logits = outputs[i, masked_index.item(), :] probs = logits.softmax(dim=0) if targets is None: values, predictions = probs.topk(self.topk) else: values = probs[..., target_inds] sort_inds = list(reversed(values.argsort(dim=-1))) values = values[..., sort_inds] predictions = target_inds[sort_inds] for v, p in zip(values.tolist(), predictions.tolist()): tokens = input_ids.numpy() tokens[masked_index] = p # Filter padding out: tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)] result.append( { "sequence": self.tokenizer.decode(tokens), "score": v, "token": p, "token_str": self.tokenizer.convert_ids_to_tokens(p), } ) # Append results += [result] if len(results) == 1: return results[0] return results @add_end_docstrings( PIPELINE_INIT_ARGS, r""" ignore_labels (:obj:`List[str]`, defaults to :obj:`["O"]`): A list of labels to ignore. grouped_entities (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to group the tokens corresponding to the same entity together in the predictions or not. """, ) class TokenClassificationPipeline(Pipeline): """ Named Entity Recognition pipeline using any :obj:`ModelForTokenClassification`. See the `named entity recognition examples <../task_summary.html#named-entity-recognition>`__ for more information. This token recognition pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous). The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=token-classification>`__. """ default_input_names = "sequences" def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, binary_output: bool = False, ignore_labels=["O"], task: str = "", grouped_entities: bool = False, ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=binary_output, task=task, ) self.check_model_type( TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING ) self._basic_tokenizer = BasicTokenizer(do_lower_case=False) self.ignore_labels = ignore_labels self.grouped_entities = grouped_entities def __call__(self, *args, **kwargs): """ Classify each token of the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of texts) for token classification. Return: A list or a list of list of :obj:`dict`: Each result comes as a list of dictionaries (one for each token in the corresponding input, or each entity if this pipeline was instantiated with :obj:`grouped_entities=True`) with the following keys: - **word** (:obj:`str`) -- The token/word classified. - **score** (:obj:`float`) -- The corresponding probability for :obj:`entity`. - **entity** (:obj:`str`) -- The entity predicted for that token/word. - **index** (:obj:`int`, only present when ``self.grouped_entities=False``) -- The index of the corresponding token in the sentence. """ inputs = self._args_parser(*args, **kwargs) answers = [] for sentence in inputs: # Manage correct placement of the tensors with self.device_placement(): tokens = self.tokenizer( sentence, return_attention_mask=False, return_tensors=self.framework, truncation=True, ) # Forward if self.framework == "tf": entities = self.model(tokens.data)[0][0].numpy() input_ids = tokens["input_ids"].numpy()[0] else: with torch.no_grad(): tokens = self.ensure_tensor_on_device(**tokens) entities = self.model(**tokens)[0][0].cpu().numpy() input_ids = tokens["input_ids"].cpu().numpy()[0] score = np.exp(entities) / np.exp(entities).sum(-1, keepdims=True) labels_idx = score.argmax(axis=-1) entities = [] # Filter to labels not in `self.ignore_labels` filtered_labels_idx = [ (idx, label_idx) for idx, label_idx in enumerate(labels_idx) if self.model.config.id2label[label_idx] not in self.ignore_labels ] for idx, label_idx in filtered_labels_idx: entity = { "word": self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])), "score": score[idx][label_idx].item(), "entity": self.model.config.id2label[label_idx], "index": idx, } entities += [entity] # Append grouped entities if self.grouped_entities: answers += [self.group_entities(entities)] # Append ungrouped entities else: answers += [entities] if len(answers) == 1: return answers[0] return answers def group_sub_entities(self, entities: List[dict]) -> dict: """ Group together the adjacent tokens with the same entity predicted. Args: entities (:obj:`dict`): The entities predicted by the pipeline. """ # Get the first entity in the entity group entity = entities[0]["entity"] scores = np.mean([entity["score"] for entity in entities]) tokens = [entity["word"] for entity in entities] entity_group = { "entity_group": entity, "score": np.mean(scores), "word": self.tokenizer.convert_tokens_to_string(tokens), } return entity_group def group_entities(self, entities: List[dict]) -> List[dict]: """ Find and group together the adjacent tokens with the same entity predicted. Args: entities (:obj:`dict`): The entities predicted by the pipeline. """ entity_groups = [] entity_group_disagg = [] if entities: last_idx = entities[-1]["index"] for entity in entities: is_last_idx = entity["index"] == last_idx if not entity_group_disagg: entity_group_disagg += [entity] if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] continue # If the current entity is similar and adjacent to the previous entity, append it to the disaggregated entity group # The split is meant to account for the "B" and "I" suffixes if ( entity["entity"].split("-")[-1] == entity_group_disagg[-1]["entity"].split("-")[-1] and entity["index"] == entity_group_disagg[-1]["index"] + 1 ): entity_group_disagg += [entity] # Group the entities at the last entity if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] # If the current entity is different from the previous entity, aggregate the disaggregated entity group else: entity_groups += [self.group_sub_entities(entity_group_disagg)] entity_group_disagg = [entity] # If it's the last entity, add it to the entity groups if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] return entity_groups NerPipeline = TokenClassificationPipeline class QuestionAnsweringArgumentHandler(ArgumentHandler): """ QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped to internal :class:`~transformers.SquadExample`. QuestionAnsweringArgumentHandler manages all the possible to create a :class:`~transformers.SquadExample` from the command-line supplied arguments. """ def __call__(self, *args, **kwargs): # Position args, handling is sensibly the same as X and data, so forwarding to avoid duplicating if args is not None and len(args) > 0: if len(args) == 1: kwargs["X"] = args[0] else: kwargs["X"] = list(args) # Generic compatibility with sklearn and Keras # Batched data if "X" in kwargs or "data" in kwargs: inputs = kwargs["X"] if "X" in kwargs else kwargs["data"] if isinstance(inputs, dict): inputs = [inputs] else: # Copy to avoid overriding arguments inputs = [i for i in inputs] for i, item in enumerate(inputs): if isinstance(item, dict): if any(k not in item for k in ["question", "context"]): raise KeyError("You need to provide a dictionary with keys {question:..., context:...}") inputs[i] = QuestionAnsweringPipeline.create_sample(**item) elif not isinstance(item, SquadExample): raise ValueError( "{} argument needs to be of type (list[SquadExample | dict], SquadExample, dict)".format( "X" if "X" in kwargs else "data" ) ) # Tabular input elif "question" in kwargs and "context" in kwargs: if isinstance(kwargs["question"], str): kwargs["question"] = [kwargs["question"]] if isinstance(kwargs["context"], str): kwargs["context"] = [kwargs["context"]] inputs = [ QuestionAnsweringPipeline.create_sample(q, c) for q, c in zip(kwargs["question"], kwargs["context"]) ] else: raise ValueError("Unknown arguments {}".format(kwargs)) if not isinstance(inputs, list): inputs = [inputs] return inputs @add_end_docstrings(PIPELINE_INIT_ARGS) class QuestionAnsweringPipeline(Pipeline): """ Question Answering pipeline using any :obj:`ModelForQuestionAnswering`. See the `question answering examples <../task_summary.html#question-answering>`__ for more information. This question answering pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a question answering task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=question-answering>`__. """ default_input_names = "question,context" def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, device: int = -1, task: str = "", **kwargs ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=QuestionAnsweringArgumentHandler(), device=device, task=task, **kwargs, ) self.check_model_type( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING if self.framework == "tf" else MODEL_FOR_QUESTION_ANSWERING_MAPPING ) @staticmethod def create_sample( question: Union[str, List[str]], context: Union[str, List[str]] ) -> Union[SquadExample, List[SquadExample]]: """ QuestionAnsweringPipeline leverages the :class:`~transformers.SquadExample` internally. This helper method encapsulate all the logic for converting question(s) and context(s) to :class:`~transformers.SquadExample`. We currently support extractive question answering. Arguments: question (:obj:`str` or :obj:`List[str]`): The question(s) asked. context (:obj:`str` or :obj:`List[str]`): The context(s) in which we will look for the answer. Returns: One or a list of :class:`~transformers.SquadExample`: The corresponding :class:`~transformers.SquadExample` grouping question and context. """ if isinstance(question, list): return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)] else: return SquadExample(None, question, context, None, None, None) def __call__(self, *args, **kwargs): """ Answer the question(s) given as inputs by using the context(s). Args: args (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`): One or several :class:`~transformers.SquadExample` containing the question and context. X (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`, `optional`): One or several :class:`~transformers.SquadExample` containing the question and context (will be treated the same way as if passed as the first positional argument). data (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`, `optional`): One or several :class:`~transformers.SquadExample` containing the question and context (will be treated the same way as if passed as the first positional argument). question (:obj:`str` or :obj:`List[str]`): One or several question(s) (must be used in conjunction with the :obj:`context` argument). context (:obj:`str` or :obj:`List[str]`): One or several context(s) associated with the qustion(s) (must be used in conjunction with the :obj:`question` argument). topk (:obj:`int`, `optional`, defaults to 1): The number of answers to return (will be chosen by order of likelihood). doc_stride (:obj:`int`, `optional`, defaults to 128): If the context is too long to fit with the question for the model, it will be split in several chunks with some overlap. This argument controls the size of that overlap. max_answer_len (:obj:`int`, `optional`, defaults to 15): The maximum length of predicted answers (e.g., only answers with a shorter length are considered). max_seq_len (:obj:`int`, `optional`, defaults to 384): The maximum length of the total sentence (context + question) after tokenization. The context will be split in several chunks (using :obj:`doc_stride`) if needed. max_question_len (:obj:`int`, `optional`, defaults to 64): The maximum length of the question after tokenization. It will be truncated if needed. handle_impossible_answer (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not we accept impossible as an answer. Return: A :obj:`dict` or a list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **score** (:obj:`float`) -- The probability associated to the answer. - **start** (:obj:`int`) -- The start index of the answer (in the tokenized version of the input). - **end** (:obj:`int`) -- The end index of the answer (in the tokenized version of the input). - **answer** (:obj:`str`) -- The answer to the question. """ # Set defaults values kwargs.setdefault("topk", 1) kwargs.setdefault("doc_stride", 128) kwargs.setdefault("max_answer_len", 15) kwargs.setdefault("max_seq_len", 384) kwargs.setdefault("max_question_len", 64) kwargs.setdefault("handle_impossible_answer", False) if kwargs["topk"] < 1: raise ValueError("topk parameter should be >= 1 (got {})".format(kwargs["topk"])) if kwargs["max_answer_len"] < 1: raise ValueError("max_answer_len parameter should be >= 1 (got {})".format(kwargs["max_answer_len"])) # Convert inputs to features examples = self._args_parser(*args, **kwargs) features_list = [ squad_convert_examples_to_features( examples=[example], tokenizer=self.tokenizer, max_seq_length=kwargs["max_seq_len"], doc_stride=kwargs["doc_stride"], max_query_length=kwargs["max_question_len"], padding_strategy=PaddingStrategy.MAX_LENGTH.value, is_training=False, tqdm_enabled=False, ) for example in examples ] all_answers = [] for features, example in zip(features_list, examples): model_input_names = self.tokenizer.model_input_names + ["input_ids"] fw_args = {k: [feature.__dict__[k] for feature in features] for k in model_input_names} # Manage tensor allocation on correct device with self.device_placement(): if self.framework == "tf": fw_args = {k: tf.constant(v) for (k, v) in fw_args.items()} start, end = self.model(fw_args)[:2] start, end = start.numpy(), end.numpy() else: with torch.no_grad(): # Retrieve the score for the context tokens only (removing question tokens) fw_args = {k: torch.tensor(v, device=self.device) for (k, v) in fw_args.items()} start, end = self.model(**fw_args)[:2] start, end = start.cpu().numpy(), end.cpu().numpy() min_null_score = 1000000 # large and positive answers = [] for (feature, start_, end_) in zip(features, start, end): # Ensure padded tokens & question tokens cannot belong to the set of candidate answers. undesired_tokens = np.abs(np.array(feature.p_mask) - 1) & feature.attention_mask # Generate mask undesired_tokens_mask = undesired_tokens == 0.0 # Make sure non-context indexes in the tensor cannot contribute to the softmax start_ = np.where(undesired_tokens_mask, -10000.0, start_) end_ = np.where(undesired_tokens_mask, -10000.0, end_) # Normalize logits and spans to retrieve the answer start_ = np.exp(start_ - np.log(np.sum(np.exp(start_), axis=-1, keepdims=True))) end_ = np.exp(end_ - np.log(np.sum(np.exp(end_), axis=-1, keepdims=True))) if kwargs["handle_impossible_answer"]: min_null_score = min(min_null_score, (start_[0] * end_[0]).item()) # Mask CLS start_[0] = end_[0] = 0.0 starts, ends, scores = self.decode(start_, end_, kwargs["topk"], kwargs["max_answer_len"]) char_to_word = np.array(example.char_to_word_offset) # Convert the answer (tokens) back to the original text answers += [ { "score": score.item(), "start": np.where(char_to_word == feature.token_to_orig_map[s])[0][0].item(), "end": np.where(char_to_word == feature.token_to_orig_map[e])[0][-1].item(), "answer": " ".join( example.doc_tokens[feature.token_to_orig_map[s] : feature.token_to_orig_map[e] + 1] ), } for s, e, score in zip(starts, ends, scores) ] if kwargs["handle_impossible_answer"]: answers.append({"score": min_null_score, "start": 0, "end": 0, "answer": ""}) answers = sorted(answers, key=lambda x: x["score"], reverse=True)[: kwargs["topk"]] all_answers += answers if len(all_answers) == 1: return all_answers[0] return all_answers def decode(self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int) -> Tuple: """ Take the output of any :obj:`ModelForQuestionAnswering` and will generate probabilities for each span to be the actual answer. In addition, it filters out some unwanted/impossible cases like answer len being greater than max_answer_len or answer end position being before the starting position. The method supports output the k-best answer through the topk argument. Args: start (:obj:`np.ndarray`): Individual start probabilities for each token. end (:obj:`np.ndarray`): Individual end probabilities for each token. topk (:obj:`int`): Indicates how many possible answer span(s) to extract from the model output. max_answer_len (:obj:`int`): Maximum size of the answer to extract from the model's output. """ # Ensure we have batch axis if start.ndim == 1: start = start[None] if end.ndim == 1: end = end[None] # Compute the score of each tuple(start, end) to be the real answer outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1)) # Remove candidate with end < start and end - start > max_answer_len candidates = np.tril(np.triu(outer), max_answer_len - 1) # Inspired by Chen & al. (https://github.com/facebookresearch/DrQA) scores_flat = candidates.flatten() if topk == 1: idx_sort = [np.argmax(scores_flat)] elif len(scores_flat) < topk: idx_sort = np.argsort(-scores_flat) else: idx = np.argpartition(-scores_flat, topk)[0:topk] idx_sort = idx[np.argsort(-scores_flat[idx])] start, end = np.unravel_index(idx_sort, candidates.shape)[1:] return start, end, candidates[0, start, end] def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]: """ When decoding from token probabilities, this method maps token indexes to actual word in the initial context. Args: text (:obj:`str`): The actual context to extract the answer from. start (:obj:`int`): The answer starting token index. end (:obj:`int`): The answer end token index. Returns: Dictionary like :obj:`{'answer': str, 'start': int, 'end': int}` """ words = [] token_idx = char_start_idx = char_end_idx = chars_idx = 0 for i, word in enumerate(text.split(" ")): token = self.tokenizer.tokenize(word) # Append words if they are in the span if start <= token_idx <= end: if token_idx == start: char_start_idx = chars_idx if token_idx == end: char_end_idx = chars_idx + len(word) words += [word] # Stop if we went over the end of the answer if token_idx > end: break # Append the subtokenization length to the running index token_idx += len(token) chars_idx += len(word) + 1 # Join text with spaces return { "answer": " ".join(words), "start": max(0, char_start_idx), "end": min(len(text), char_end_idx), } @add_end_docstrings(PIPELINE_INIT_ARGS) class SummarizationPipeline(Pipeline): """ Summarize news articles and other documents. This summarizing pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"summarization"`. The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is currently, '`bart-large-cnn`', '`t5-small`', '`t5-base`', '`t5-large`', '`t5-3b`', '`t5-11b`'. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=summarization>`__. Usage:: # use bart in pytorch summarizer = pipeline("summarization") summarizer("Sam Shleifer writes the best docstring examples in the whole world.", min_length=5, max_length=20) # use t5 in tf summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf") summarizer("Sam Shleifer writes the best docstring examples in the whole world.", min_length=5, max_length=20) """ def __init__(self, *args, **kwargs): kwargs.update(task="summarization") super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __call__( self, *documents, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Summarize the text(s) given as inputs. Args: documents (`str` or :obj:`List[str]`): One or several articles (or one list of articles) to summarize. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **summary_text** (:obj:`str`, present when ``return_text=True``) -- The summary of the corresponding input. - **summary_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the summary. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" assert len(documents) > 0, "Please provide a document to summarize" if self.framework == "tf" and "BartForConditionalGeneration" in self.model.__class__.__name__: raise NotImplementedError( "Tensorflow is not yet supported for Bart. Please consider using T5, e.g. `t5-base`" ) prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(documents[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" documents = ([prefix + document for document in documents[0]],) padding = True elif isinstance(documents[0], str): documents = (prefix + documents[0],) padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( documents[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*documents, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() min_length = generate_kwargs.get("min_length", self.model.config.min_length) if input_length < min_length // 2: logger.warning( "Your min_length is set to {}, but you input_length is only {}. You might consider decreasing min_length manually, e.g. summarizer('...', min_length=10)".format( min_length, input_length ) ) max_length = generate_kwargs.get("max_length", self.model.config.max_length) if input_length < max_length: logger.warning( "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format( max_length, input_length ) ) summaries = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for summary in summaries: record = {} if return_tensors: record["summary_token_ids"] = summary if return_text: record["summary_text"] = self.tokenizer.decode( summary, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results @add_end_docstrings(PIPELINE_INIT_ARGS) class TranslationPipeline(Pipeline): """ Translates from one language to another. This translation pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"translation_xx_to_yy"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=translation>`__. Usage:: en_fr_translator = pipeline("translation_en_to_fr") en_fr_translator("How old are you?") """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Translate the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Texts to be translated. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **translation_text** (:obj:`str`, present when ``return_text=True``) -- The translation. - **translation_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the translation. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" args = ([prefix + text for text in args[0]],) padding = True elif isinstance(args[0], str): args = (prefix + args[0],) padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( args[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*args, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() max_length = generate_kwargs.get("max_length", self.model.config.max_length) if input_length > 0.9 * max_length: logger.warning( "Your input_length: {} is bigger than 0.9 * max_length: {}. You might consider increasing your max_length manually, e.g. translator('...', max_length=400)".format( input_length, max_length ) ) translations = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for translation in translations: record = {} if return_tensors: record["translation_token_ids"] = translation if return_text: record["translation_text"] = self.tokenizer.decode( translation, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results @add_end_docstrings(PIPELINE_INIT_ARGS) class Text2TextGenerationPipeline(Pipeline): """ Pipeline for text to text generation using seq2seq models. This Text2TextGenerationPipeline pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"text2text-generation"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=seq2seq>`__. Usage:: text2text_generator = pipeline("text2text-generation") text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Generate the output text(s) using text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Input text for the encoder. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indinces) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **generated_text** (:obj:`str`, present when ``return_text=True``) -- The generated text. - **generated_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the generated text. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" if isinstance(args[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" padding = True elif isinstance(args[0], str): padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( args[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*args, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) generations = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for generation in generations: record = {} if return_tensors: record["generated_token_ids"] = generation if return_text: record["generated_text"] = self.tokenizer.decode( generation, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results class Conversation: """ Utility class containing a conversation and its history. This class is meant to be used as an input to the :class:`~transformers.ConversationalPipeline`. The conversation contains a number of utility function to manage the addition of new user input and generated model responses. A conversation needs to contain an unprocessed user input before being passed to the :class:`~transformers.ConversationalPipeline`. This user input is either created when the class is instantiated, or by calling :obj:`conversional_pipeline.append_response("input")` after a conversation turn. Arguments: text (:obj:`str`, `optional`): The initial user input to start the conversation. If not provided, a user input needs to be provided manually using the :meth:`~transformers.Conversation.add_user_input` method before the conversation can begin. conversation_id (:obj:`uuid.UUID`, `optional`): Unique identifier for the conversation. If not provided, a random UUID4 id will be assigned to the conversation. Usage:: conversation = Conversation("Going to the movies tonight - any suggestions?") # Steps usually performed by the model when generating a response: # 1. Mark the user input as processed (moved to the history) conversation.mark_processed() # 2. Append a mode response conversation.append_response("The Big lebowski.") conversation.add_user_input("Is it good?") """ def __init__(self, text: str = None, conversation_id: UUID = None): if not conversation_id: conversation_id = uuid.uuid4() self.uuid: UUID = conversation_id self.past_user_inputs: List[str] = [] self.generated_responses: List[str] = [] self.history: List[int] = [] self.new_user_input: Optional[str] = text def add_user_input(self, text: str, overwrite: bool = False): """ Add a user input to the conversation for the next round. This populates the internal :obj:`new_user_input` field. Args: text (:obj:`str`): The user input for the next conversation round. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not existing and unprocessed user input should be overwritten when this function is called. """ if self.new_user_input: if overwrite: logger.warning( 'User input added while unprocessed input was existing: "{}" was overwritten with: "{}".'.format( self.new_user_input, text ) ) self.new_user_input = text else: logger.warning( 'User input added while unprocessed input was existing: "{}" new input ignored: "{}". ' "Set `overwrite` to True to overwrite unprocessed user input".format(self.new_user_input, text) ) else: self.new_user_input = text def mark_processed(self): """ Mark the conversation as processed (moves the content of :obj:`new_user_input` to :obj:`past_user_inputs`) and empties the :obj:`new_user_input` field. """ if self.new_user_input: self.past_user_inputs.append(self.new_user_input) self.new_user_input = None def append_response(self, response: str): """ Append a response to the list of generated responses. Args: response (:obj:`str`): The model generated response. """ self.generated_responses.append(response) def set_history(self, history: List[int]): """ Updates the value of the history of the conversation. The history is represented by a list of :obj:`token_ids`. The history is used by the model to generate responses based on the previous conversation turns. Args: history (:obj:`List[int]`): History of tokens provided and generated for this conversation. """ self.history = history def __repr__(self): """ Generates a string representation of the conversation. Return: :obj:`str`: Example: Conversation id: 7d15686b-dc94-49f2-9c4b-c9eac6a1f114 user >> Going to the movies tonight - any suggestions? bot >> The Big Lebowski """ output = "Conversation id: {} \n".format(self.uuid) for user_input, generated_response in zip(self.past_user_inputs, self.generated_responses): output += "user >> {} \n".format(user_input) output += "bot >> {} \n".format(generated_response) if self.new_user_input is not None: output += "user >> {} \n".format(self.new_user_input) return output @add_end_docstrings( PIPELINE_INIT_ARGS, r""" min_length_for_response (:obj:`int`, `optional`, defaults to 32): The minimum length (in number of tokens) for a response. """, ) class ConversationalPipeline(Pipeline): """ Multi-turn conversational pipeline. This conversational pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"conversational"`. The models that this pipeline can use are models that have been fine-tuned on a multi-turn conversational task, currently: `'microsoft/DialoGPT-small'`, `'microsoft/DialoGPT-medium'`, `'microsoft/DialoGPT-large'`. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=conversational>`__. Usage:: conversational_pipeline = pipeline("conversational") conversation_1 = Conversation("Going to the movies tonight - any suggestions?") conversation_2 = Conversation("What's the last book you have read?") conversational_pipeline([conversation_1, conversation_2]) conversation_1.add_user_input("Is it an action movie?") conversation_2.add_user_input("What is the genre of this book?") conversational_pipeline([conversation_1, conversation_2]) """ def __init__(self, min_length_for_response=32, *args, **kwargs): super().__init__(*args, **kwargs) assert self.tokenizer.eos_token_id is not None, "DialoguePipeline tokenizer should have an EOS token set" if self.tokenizer.pad_token_id is not None: self.pad_token_id = self.tokenizer.pad_token_id else: self.pad_token_id = self.tokenizer.eos_token_id self.min_length_for_response = min_length_for_response def __call__( self, conversations: Union[Conversation, List[Conversation]], clean_up_tokenization_spaces=True, **generate_kwargs ): r""" Generate responses for the conversation(s) given as inputs. Args: conversations (a :class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`): Conversations to generate responses for. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Returns: :class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`: Conversation(s) with updated generated responses for those containing a new user input. """ # Input validation if isinstance(conversations, list): for conversation in conversations: assert isinstance( conversation, Conversation ), "DialoguePipeline expects a Conversation or list of Conversations as an input" if conversation.new_user_input is None: raise ValueError( "Conversation with UUID {} does not contain new user input to process. " "Add user inputs with the conversation's `add_user_input` method".format( type(conversation.uuid) ) ) assert ( self.tokenizer.pad_token_id is not None or self.tokenizer.eos_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id or eos_token_id when using a batch input" elif isinstance(conversations, Conversation): conversations = [conversations] else: raise ValueError("DialoguePipeline expects a Conversation or list of Conversations as an input") with self.device_placement(): inputs = self._parse_and_tokenize([conversation.new_user_input for conversation in conversations]) histories = [conversation.history for conversation in conversations] max_length = generate_kwargs.get("max_length", self.model.config.max_length) inputs = self._concat_inputs_history(inputs, histories, max_length) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() if input_length > 0.9 * max_length: logger.warning( "Longest conversation length: {} is bigger than 0.9 * max_length: {}. " "You might consider trimming the early phase of the conversation".format(input_length, max_length) ) generated_responses = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) cleaned_history = self._clean_padding_history(generated_responses) output = [] for conversation_index, conversation in enumerate(conversations): conversation.mark_processed() conversation.generated_responses.append( self.tokenizer.decode( cleaned_history[conversation_index][input_length:], skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) ) conversation.set_history(cleaned_history[conversation_index]) output.append(conversation) if len(output) == 1: return output[0] else: return output def _parse_and_tokenize(self, *args, **kwargs): """ Parse arguments and tokenize, adding an EOS token at the end of the user input """ # Parse arguments inputs = self._args_parser(*args, **kwargs) inputs = self.tokenizer.batch_encode_plus(inputs, add_special_tokens=False, padding=False).get("input_ids", []) for input in inputs: input.append(self.tokenizer.eos_token_id) return inputs def _clean_padding_history(self, generated_tensor) -> List[List[int]]: """ Cleans the padding history. Padding may be generated in two places when multiple conversations are provided as an input: - at the end of the concatenated history and new user input, so that all input to the model have the same length - at the end of the generated response, as some responses will be longer than others This method cleans up these padding token so that the history for each conversation is not impacted by the batching process. """ outputs = [] for sequence in generated_tensor: sequence_tokens = [] is_previous_pad = False for token in sequence: if token == self.pad_token_id: if is_previous_pad: continue else: is_previous_pad = True else: is_previous_pad = False if self.framework == "pt": sequence_tokens.append(token.item()) else: sequence_tokens.append(int(token.numpy())) outputs.append(sequence_tokens) return outputs def _concat_inputs_history(self, inputs: List[List[int]], histories: List[Optional[List[int]]], max_length: int): """ Builds an input prepended by the history for this conversation, allowing multi-turn conversation with context """ outputs = [] for new_input, history in zip(inputs, histories): if history is not None: new_input = history + new_input if len(new_input) > max_length - self.min_length_for_response: cutoff_eos_index = 0 while len(new_input) - cutoff_eos_index > max_length - self.min_length_for_response: if cutoff_eos_index >= len(new_input): break cutoff_eos_index = new_input[cutoff_eos_index:].index(self.tokenizer.eos_token_id) if cutoff_eos_index == 0 or cutoff_eos_index == len(new_input) - 1: break else: new_input = new_input[cutoff_eos_index + 1 :] outputs.append(new_input) max_len = max([len(item) for item in outputs]) outputs = [output + [self.pad_token_id] * (max_len - len(output)) for output in outputs] outputs = BatchEncoding( {"input_ids": outputs, "attention_mask": [[1] * len(outputs)]}, tensor_type=self.framework, ) return outputs # Register all the supported tasks here SUPPORTED_TASKS = { "feature-extraction": { "impl": FeatureExtractionPipeline, "tf": TFAutoModel if is_tf_available() else None, "pt": AutoModel if is_torch_available() else None, "default": {"model": {"pt": "distilbert-base-cased", "tf": "distilbert-base-cased"}}, }, "sentiment-analysis": { "impl": TextClassificationPipeline, "tf": TFAutoModelForSequenceClassification if is_tf_available() else None, "pt": AutoModelForSequenceClassification if is_torch_available() else None, "default": { "model": { "pt": "distilbert-base-uncased-finetuned-sst-2-english", "tf": "distilbert-base-uncased-finetuned-sst-2-english", }, }, }, "ner": { "impl": TokenClassificationPipeline, "tf": TFAutoModelForTokenClassification if is_tf_available() else None, "pt": AutoModelForTokenClassification if is_torch_available() else None, "default": { "model": { "pt": "dbmdz/bert-large-cased-finetuned-conll03-english", "tf": "dbmdz/bert-large-cased-finetuned-conll03-english", }, }, }, "question-answering": { "impl": QuestionAnsweringPipeline, "tf": TFAutoModelForQuestionAnswering if is_tf_available() else None, "pt": AutoModelForQuestionAnswering if is_torch_available() else None, "default": { "model": {"pt": "distilbert-base-cased-distilled-squad", "tf": "distilbert-base-cased-distilled-squad"}, }, }, "fill-mask": { "impl": FillMaskPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForMaskedLM if is_torch_available() else None, "default": {"model": {"pt": "distilroberta-base", "tf": "distilroberta-base"}}, }, "summarization": { "impl": SummarizationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "sshleifer/distilbart-cnn-12-6", "tf": "t5-small"}}, }, "translation_en_to_fr": { "impl": TranslationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "translation_en_to_de": { "impl": TranslationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "translation_en_to_ro": { "impl": TranslationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "text2text-generation": { "impl": Text2TextGenerationPipeline, "tf": TFAutoModelForSeq2SeqLM if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "text-generation": { "impl": TextGenerationPipeline, "tf": TFAutoModelWithLMHead if is_tf_available() else None, "pt": AutoModelForCausalLM if is_torch_available() else None, "default": {"model": {"pt": "gpt2", "tf": "gpt2"}}, }, "zero-shot-classification": { "impl": ZeroShotClassificationPipeline, "tf": TFAutoModelForSequenceClassification if is_tf_available() else None, "pt": AutoModelForSequenceClassification if is_torch_available() else None, "default": { "model": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, "config": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, "tokenizer": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, }, }, "conversational": { "impl": ConversationalPipeline, "tf": TFAutoModelForCausalLM if is_tf_available() else None, "pt": AutoModelForCausalLM if is_torch_available() else None, "default": {"model": {"pt": "microsoft/DialoGPT-medium", "tf": "microsoft/DialoGPT-medium"}}, }, } def pipeline( task: str, model: Optional = None, config: Optional[Union[str, PretrainedConfig]] = None, tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, framework: Optional[str] = None, **kwargs ) -> Pipeline: """ Utility factory method to build a :class:`~transformers.Pipeline`. Pipelines are made of: - A :doc:`tokenizer <tokenizer>` in charge of mapping raw textual input to token. - A :doc:`model <model>` to make predictions from the inputs. - Some (optional) post processing for enhancing model's output. Args: task (:obj:`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - :obj:`"feature-extraction"`: will return a :class:`~transformers.FeatureExtractionPipeline`. - :obj:`"sentiment-analysis"`: will return a :class:`~transformers.TextClassificationPipeline`. - :obj:`"ner"`: will return a :class:`~transformers.TokenClassificationPipeline`. - :obj:`"question-answering"`: will return a :class:`~transformers.QuestionAnsweringPipeline`. - :obj:`"fill-mask"`: will return a :class:`~transformers.FillMaskPipeline`. - :obj:`"summarization"`: will return a :class:`~transformers.SummarizationPipeline`. - :obj:`"translation_xx_to_yy"`: will return a :class:`~transformers.TranslationPipeline`. - :obj:`"text-generation"`: will return a :class:`~transformers.TextGenerationPipeline`. - :obj:`"conversation"`: will return a :class:`~transformers.ConversationalPipeline`. model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`): The model that will be used by the pipeline to make predictions. This can be a model identifier or an actual instance of a pretrained model inheriting from :class:`~transformers.PreTrainedModel` (for PyTorch) or :class:`~transformers.TFPreTrainedModel` (for TensorFlow). If not provided, the default for the :obj:`task` will be loaded. config (:obj:`str` or :obj:`~transformers.PretrainedConfig`, `optional`): The configuration that will be used by the pipeline to instantiate the model. This can be a model identifier or an actual pretrained model configuration inheriting from :class:`~transformers.PretrainedConfig`. If not provided, the default for the :obj:`task` will be loaded. tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`): The tokenizer that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained tokenizer inheriting from :class:`~transformers.PreTrainedTokenizer`. If not provided, the default for the :obj:`task` will be loaded. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. kwargs: Additional keyword arguments passed along to the specific pipeline init (see the documentation for the corresponding pipeline class for possible values). Returns: :class:`~transformers.Pipeline`: A suitable pipeline for the task. Examples:: >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> # Sentiment analysis pipeline >>> pipeline('sentiment-analysis') >>> # Question answering pipeline, specifying the checkpoint identifier >>> pipeline('question-answering', model='distilbert-base-cased-distilled-squad', tokenizer='bert-base-cased') >>> # Named entity recognition pipeline, passing in a specific model and tokenizer >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") >>> pipeline('ner', model=model, tokenizer=tokenizer) """ # Retrieve the task if task not in SUPPORTED_TASKS: raise KeyError("Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys()))) targeted_task = SUPPORTED_TASKS[task] # Use default model/config/tokenizer for the task if no model is provided if model is None: # At that point framework might still be undetermined model = get_default_model(targeted_task, framework) framework = framework or get_framework(model) task_class, model_class = targeted_task["impl"], targeted_task[framework] # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model, str): tokenizer = model elif isinstance(config, str): tokenizer = config else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) modelcard = None # Try to infer modelcard from model or config name (if provided as str) if isinstance(model, str): modelcard = model elif isinstance(config, str): modelcard = config # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1]) else: tokenizer = AutoTokenizer.from_pretrained(tokenizer) # Instantiate config if needed if isinstance(config, str): config = AutoConfig.from_pretrained(config) # Instantiate modelcard if needed if isinstance(modelcard, str): modelcard = ModelCard.from_pretrained(modelcard) # Instantiate model if needed if isinstance(model, str): # Handle transparent TF/PT model conversion model_kwargs = {} if framework == "pt" and model.endswith(".h5"): model_kwargs["from_tf"] = True logger.warning( "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. " "Trying to load the model with PyTorch." ) elif framework == "tf" and model.endswith(".bin"): model_kwargs["from_pt"] = True logger.warning( "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. " "Trying to load the model with Tensorflow." ) model = model_class.from_pretrained(model, config=config, **model_kwargs) return task_class(model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, task=task, **kwargs)
42.588658
183
0.610845
43a6003f411f1e57656ad93237ecc98e411f3d0d
5,103
py
Python
tools/swig/test/testFarray.py
deepyaman/numpy
b7e75442b03153c7d94fc99e8026d1f09ec17f7f
[ "BSD-3-Clause" ]
5
2018-04-24T13:32:59.000Z
2019-07-09T07:31:58.000Z
tools/swig/test/testFarray.py
Kshitish555/numpy
12c6000601c7665e52502ab4a67a54d290498266
[ "BSD-3-Clause" ]
169
2020-12-25T07:10:57.000Z
2022-03-29T22:12:31.000Z
tools/swig/test/testFarray.py
Kshitish555/numpy
12c6000601c7665e52502ab4a67a54d290498266
[ "BSD-3-Clause" ]
4
2021-06-25T08:40:39.000Z
2021-08-08T09:52:42.000Z
#!/usr/bin/env python3 # System imports from distutils.util import get_platform import os import sys import unittest # Import NumPy import numpy as np major, minor = [ int(d) for d in np.__version__.split(".")[:2] ] if major == 0: BadListError = TypeError else: BadListError = ValueError # Add the distutils-generated build directory to the python search path and then # import the extension module libDir = "lib.{}-{}.{}".format(get_platform(), *sys.version_info[:2]) sys.path.insert(0, os.path.join("build", libDir)) import Farray ###################################################################### class FarrayTestCase(unittest.TestCase): def setUp(self): self.nrows = 5 self.ncols = 4 self.array = Farray.Farray(self.nrows, self.ncols) def testConstructor1(self): "Test Farray size constructor" self.failUnless(isinstance(self.array, Farray.Farray)) def testConstructor2(self): "Test Farray copy constructor" for i in range(self.nrows): for j in range(self.ncols): self.array[i, j] = i + j arrayCopy = Farray.Farray(self.array) self.failUnless(arrayCopy == self.array) def testConstructorBad1(self): "Test Farray size constructor, negative nrows" self.assertRaises(ValueError, Farray.Farray, -4, 4) def testConstructorBad2(self): "Test Farray size constructor, negative ncols" self.assertRaises(ValueError, Farray.Farray, 4, -4) def testNrows(self): "Test Farray nrows method" self.failUnless(self.array.nrows() == self.nrows) def testNcols(self): "Test Farray ncols method" self.failUnless(self.array.ncols() == self.ncols) def testLen(self): "Test Farray __len__ method" self.failUnless(len(self.array) == self.nrows*self.ncols) def testSetGet(self): "Test Farray __setitem__, __getitem__ methods" m = self.nrows n = self.ncols for i in range(m): for j in range(n): self.array[i, j] = i*j for i in range(m): for j in range(n): self.failUnless(self.array[i, j] == i*j) def testSetBad1(self): "Test Farray __setitem__ method, negative row" self.assertRaises(IndexError, self.array.__setitem__, (-1, 3), 0) def testSetBad2(self): "Test Farray __setitem__ method, negative col" self.assertRaises(IndexError, self.array.__setitem__, (1, -3), 0) def testSetBad3(self): "Test Farray __setitem__ method, out-of-range row" self.assertRaises(IndexError, self.array.__setitem__, (self.nrows+1, 0), 0) def testSetBad4(self): "Test Farray __setitem__ method, out-of-range col" self.assertRaises(IndexError, self.array.__setitem__, (0, self.ncols+1), 0) def testGetBad1(self): "Test Farray __getitem__ method, negative row" self.assertRaises(IndexError, self.array.__getitem__, (-1, 3)) def testGetBad2(self): "Test Farray __getitem__ method, negative col" self.assertRaises(IndexError, self.array.__getitem__, (1, -3)) def testGetBad3(self): "Test Farray __getitem__ method, out-of-range row" self.assertRaises(IndexError, self.array.__getitem__, (self.nrows+1, 0)) def testGetBad4(self): "Test Farray __getitem__ method, out-of-range col" self.assertRaises(IndexError, self.array.__getitem__, (0, self.ncols+1)) def testAsString(self): "Test Farray asString method" result = """\ [ [ 0, 1, 2, 3 ], [ 1, 2, 3, 4 ], [ 2, 3, 4, 5 ], [ 3, 4, 5, 6 ], [ 4, 5, 6, 7 ] ] """ for i in range(self.nrows): for j in range(self.ncols): self.array[i, j] = i+j self.failUnless(self.array.asString() == result) def testStr(self): "Test Farray __str__ method" result = """\ [ [ 0, -1, -2, -3 ], [ 1, 0, -1, -2 ], [ 2, 1, 0, -1 ], [ 3, 2, 1, 0 ], [ 4, 3, 2, 1 ] ] """ for i in range(self.nrows): for j in range(self.ncols): self.array[i, j] = i-j self.failUnless(str(self.array) == result) def testView(self): "Test Farray view method" for i in range(self.nrows): for j in range(self.ncols): self.array[i, j] = i+j a = self.array.view() self.failUnless(isinstance(a, np.ndarray)) self.failUnless(a.flags.f_contiguous) for i in range(self.nrows): for j in range(self.ncols): self.failUnless(a[i, j] == i+j) ###################################################################### if __name__ == "__main__": # Build the test suite suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(FarrayTestCase)) # Execute the test suite print("Testing Classes of Module Farray") print("NumPy version", np.__version__) print() result = unittest.TextTestRunner(verbosity=2).run(suite) sys.exit(bool(result.errors + result.failures))
32.297468
83
0.59612
4e6fa6dc622d6b4bf0d2d48dd76c6b9995c59374
2,929
py
Python
pc/level_06.py
au9ustine/org.au9ustine.puzzles.pythonchallenge
12cb9092645283c17e0f7e6f922b3c798bb085cc
[ "MIT" ]
null
null
null
pc/level_06.py
au9ustine/org.au9ustine.puzzles.pythonchallenge
12cb9092645283c17e0f7e6f922b3c798bb085cc
[ "MIT" ]
6
2021-03-18T20:14:01.000Z
2022-03-11T23:12:47.000Z
pc/level_06.py
au9ustine/org.au9ustine.puzzles.pythonchallenge
12cb9092645283c17e0f7e6f922b3c798bb085cc
[ "MIT" ]
null
null
null
import unittest import requests import logging import re import zipfile import urllib import os import os.path # Default is warning, it's to suppress requests INFO log logging.basicConfig(format='%(message)s') def solution(): url = "http://www.pythonchallenge.com/pc/def/channel.zip" urllib.urlretrieve(url, "channel.zip") zip_file = zipfile.ZipFile("channel.zip") zip_file_comments = [] member_name = "90052.txt" while True: zip_info = zip_file.getinfo(member_name) with zip_file.open(member_name) as member_stream: number = re.findall(r'\d+$', member_stream.read()) zip_file_comments.append(zip_info.comment) if number: member_name = '%s.txt' % number[0] else: break return ''.join(zip_file_comments) class SolutionTest(unittest.TestCase): def setUp(self): self.prefix = "http://www.pythonchallenge.com/pc/def/" self.suffix = ".html" def tearDown(self): zip_path = "channel.zip" if os.path.exists(zip_path): os.remove(zip_path) def test_solution(self): actual = solution() # It would be identified by pep8, but this is ascii art, who cares! expected = '''**************************************************************** **************************************************************** ** ** ** OO OO XX YYYY GG GG EEEEEE NN NN ** ** OO OO XXXXXX YYYYYY GG GG EEEEEE NN NN ** ** OO OO XXX XXX YYY YY GG GG EE NN NN ** ** OOOOOOOO XX XX YY GGG EEEEE NNNN ** ** OOOOOOOO XX XX YY GGG EEEEE NN ** ** OO OO XXX XXX YYY YY GG GG EE NN ** ** OO OO XXXXXX YYYYYY GG GG EEEEEE NN ** ** OO OO XX YYYY GG GG EEEEEE NN ** ** ** **************************************************************** ************************************************************** ''' self.assertEquals(actual, expected) # Trick: hockey is consist of letters of oxygen origin_url = ''.join([self.prefix, 'oxygen', self.suffix]) try: r = requests.get(origin_url) except: raise self.assertTrue(r.ok) next_entry = [re.sub(r'(.*)URL=(.*)\.html\"\>', r'\2', line) for line in r.iter_lines() if re.match(r'.*URL.*', line)] r.close() if len(next_entry) != 0: r = requests.get( ''.join([self.prefix, next_entry[0], self.suffix])) logging.warn('Level 07 is %s' % r.url) else: logging.warn('Level 07 is %s' % origin_url) if __name__ == "__main__": unittest.main(failfast=True)
35.289157
86
0.480027
5f68713d33fc7082057063e783f0167672a450bb
4,014
py
Python
python/deepFashion/get_category10_informations.py
luolongqiang/caffe-luolongqiang
5ee132e4451a538d97b62039a62a59a69dc43bb9
[ "BSD-2-Clause" ]
2
2017-03-23T04:19:31.000Z
2019-07-05T02:31:04.000Z
python/deepFashion/get_category10_informations.py
luolongqiang/caffe-luolongqiang
5ee132e4451a538d97b62039a62a59a69dc43bb9
[ "BSD-2-Clause" ]
null
null
null
python/deepFashion/get_category10_informations.py
luolongqiang/caffe-luolongqiang
5ee132e4451a538d97b62039a62a59a69dc43bb9
[ "BSD-2-Clause" ]
1
2018-10-11T06:07:19.000Z
2018-10-11T06:07:19.000Z
import random import numpy as np from numpy import array import matplotlib.pyplot as plt from collections import Counter from pandas import DataFrame import os, sys, time, argparse def get_category_label_num_dict(input_txt): label_list = [] with open(input_txt, 'r') as fi: for line in list(fi)[2:]: label_list.append(line.strip().split()[-1]) fi.close() label_num_dict = dict(Counter(label_list)) return label_num_dict def get_label_partition_num(label_num_dict): indx = array(label_num_dict.values())>10000 cond_label = array(label_num_dict.keys())[indx] cond_sample_num = array(label_num_dict.values())[indx] #cond_label_to_new = dict(zip(cond_label, range(len(cond_label)))) train_num = array(cond_sample_num*0.8, dtype = np.int) val_num = array(cond_sample_num*0.1, dtype = np.int) test_num = cond_sample_num - train_num - val_num num_partition = zip(train_num, val_num, test_num) label_partition_num = dict(zip(cond_label, num_partition)) return label_partition_num def get_partition_datasets(label_num_dict, input_txt, output_dir): label_partition_num = get_label_partition_num(label_num_dict) labels = label_partition_num.keys() label_partition_dict = {label:[] for label in labels} with open(input_txt, 'r') as fi: for line in list(fi)[2:]: label = line.strip().split()[-1] if label in labels: label_partition_dict[label].append('data/deepFashion/'+line) fi.close() fo_train = open(output_dir+'/category_train_label.txt', 'w') fo_val = open(output_dir+'/category_val_label.txt', 'w') fo_test = open(output_dir+'/category_test_label.txt', 'w') for label in labels: random.shuffle(label_partition_dict[label]) train_num, val_num, test_num = label_partition_num[label] train_lines = array(label_partition_dict[label])[:train_num] val_lines = array(label_partition_dict[label])[train_num:train_num+val_num] test_lines = array(label_partition_dict[label])[train_num+val_num:] fo_train.writelines(train_lines) fo_val.writelines(val_lines) fo_test.writelines(test_lines) fo_train.close() fo_val.close() fo_test.close() def output_results(label_num_dict, output_csv): label_set = array(label_num_dict.keys(), dtype = np.int) sample_num = label_num_dict.values() df = DataFrame({'label':label_set, 'sample_num':sample_num}) df = df[['label', 'sample_num']] df.to_csv(output_csv, index = False) plt.bar(label_set, sample_num, color = "blue") plt.xlabel("label") plt.ylabel("sample amount") plt.title("sample amount of label") plt.xlim(0, max(label_set)+2) plt.ylim(0, max(sample_num) + 5) plt.savefig(output_csv.replace('csv','jpg'), dpi=300) plt.close() def get_args(): parser = argparse.ArgumentParser(description='get style sample informations') parser.add_argument('-i', dest='input_txt', help='list_category_img.txt', default=None, type=str) parser.add_argument('-o', dest='output_csv', help='category_results.csv', default=None, type=str) parser.add_argument('-d', dest='output_dir', help='output_partition_dir', default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == '__main__': args = get_args() input_txt = args.input_txt output_csv = args.output_csv output_dir = args.output_dir tic = time.clock() print 'get label_num_dict, begin...' label_num_dict = get_category_label_num_dict(input_txt) print 'get label_num_dict, done' print 'get partition_datasets, begin...' get_partition_datasets(label_num_dict, input_txt, output_dir) print 'get partition_datasets, done' toc = time.clock() print 'running time:{} seconds'.format(toc-tic) output_results(label_num_dict, output_csv)
38.228571
85
0.692078
aba8bddeec88a79b30bc619aad06f44222347ee4
718
py
Python
fake_testing.py
amangit007/Fake-News-Detector
e8cae21d66007bc07560471d63b875803efc2466
[ "MIT" ]
4
2018-11-24T21:10:25.000Z
2018-12-07T17:37:51.000Z
fake_testing.py
amangit007/Fake-News-Detector
e8cae21d66007bc07560471d63b875803efc2466
[ "MIT" ]
23
2018-11-27T18:01:30.000Z
2019-01-06T17:30:28.000Z
fake_testing.py
amangit007/Fake-News-Detector
e8cae21d66007bc07560471d63b875803efc2466
[ "MIT" ]
11
2018-11-22T18:50:41.000Z
2018-12-12T13:51:28.000Z
import pandas as pd import numpy as np import sys try: news_clean_encoded = np.loadtxt('test_news_encoding.gz') except: print ("Please first encode the data!!") sys.exit(0) try: model_file = open('clf_architecture.json', 'r') except: print ("Save the trained model before testing!!") sys.exit(0) from keras.models import model_from_json loaded_model = model_file.read() clf = model_from_json(loaded_model) clf.load_weights('clf_weights.h5') clf.compile(optimizer = 'adam', loss = 'binary_crossentropy') x_test = news_clean_encoded from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range = (0, 1)) x_test = sc.fit_transform(x_test) predictions = clf.predict(x_test)
23.933333
61
0.747911
a1df876fc1e1738b6e597dd8051db892757f9fe0
150
py
Python
tests/skl_datasets/BinaryClass_10/skl_dataset_BinaryClass_10_GaussianNB_6_code_gen.py
antoinecarme/sklearn_model_explanation
feeeb75576931f4a05a786d936babc0a664eef46
[ "BSD-3-Clause" ]
13
2017-12-22T09:12:51.000Z
2021-07-26T06:31:54.000Z
tests/skl_datasets/BinaryClass_10/skl_dataset_BinaryClass_10_GaussianNB_6_code_gen.py
antoinecarme/sklearn_model_explanation
feeeb75576931f4a05a786d936babc0a664eef46
[ "BSD-3-Clause" ]
11
2017-09-19T20:00:35.000Z
2018-02-05T07:59:06.000Z
tests/skl_datasets/BinaryClass_10/skl_dataset_BinaryClass_10_GaussianNB_6_code_gen.py
antoinecarme/sklearn_model_explanation
feeeb75576931f4a05a786d936babc0a664eef46
[ "BSD-3-Clause" ]
4
2017-12-11T12:33:32.000Z
2020-02-09T15:08:56.000Z
from sklearn_explain.tests.skl_datasets import skl_datasets_test as skltest skltest.test_class_dataset_and_model("BinaryClass_10" , "GaussianNB_6")
30
75
0.86
a2dd56622219d801d3c86d24d58b0915afa51ef1
635
py
Python
users/urls.py
B-Paluch/rentalP2021
5ec0075162150aefc1331f3468b511377eb38f28
[ "MIT" ]
null
null
null
users/urls.py
B-Paluch/rentalP2021
5ec0075162150aefc1331f3468b511377eb38f28
[ "MIT" ]
null
null
null
users/urls.py
B-Paluch/rentalP2021
5ec0075162150aefc1331f3468b511377eb38f28
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('', views.login, name='login'), path('logout', views.logout, name='logout'), path('login', views.login, name='login'), path('index', views.index, name='index'), path('lenditems', views.lenditems, name='lenditems'), path('additems', views.additems, name='additems'), path('addmultiitems', views.multiadditems, name='addmultiitems'), path('lentlist', views.AllItemListView.as_view(), name='lentlist'), path('returnitems', views.returnitems, name='returnitems'), path('<int:_id>/lenditem', views.lenditem, name='lenditem'), ]
37.352941
71
0.675591
a5d8ddb0ee7838a4a3dcfa0774bc9fa57c4c3dde
23,293
py
Python
notebook/slim_people_classification/deployment/model_deploy.py
rucka/NeuralNetworkPlayground
b1c9398ee3b0831de4982fdfef34892faa04440d
[ "Apache-2.0" ]
null
null
null
notebook/slim_people_classification/deployment/model_deploy.py
rucka/NeuralNetworkPlayground
b1c9398ee3b0831de4982fdfef34892faa04440d
[ "Apache-2.0" ]
null
null
null
notebook/slim_people_classification/deployment/model_deploy.py
rucka/NeuralNetworkPlayground
b1c9398ee3b0831de4982fdfef34892faa04440d
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Deploy Slim models across multiple clones and replicas. To easily train a model on multiple GPUs or across multiple machines this module provides a set of helper functions: `create_clones`, `optimize_clones` and `deploy`. Usage: g = tf.Graph() # Set up DeploymentConfig config = model_deploy.DeploymentConfig(num_clones=2, clone_on_cpu=True) # Create the global step on the device storing the variables. with tf.device(config.variables_device()): global_step = slim.create_global_step() # Define the inputs with tf.device(config.inputs_device()): images, labels = LoadData(...) inputs_queue = slim.data.prefetch_queue((images, labels)) # Define the optimizer. with tf.device(config.optimizer_device()): optimizer = tf.train.MomentumOptimizer(FLAGS.learning_rate, FLAGS.momentum) # Define the model including the loss. def model_fn(inputs_queue): images, labels = inputs_queue.dequeue() predictions = CreateNetwork(images) slim.losses.log_loss(predictions, labels) model_dp = model_deploy.deploy(config, model_fn, [inputs_queue], optimizer=optimizer) # Run training. slim.learning.train(model_dp.train_op, my_log_dir, summary_op=model_dp.summary_op) The Clone namedtuple holds together the values associated with each call to model_fn: * outputs: The return values of the calls to `model_fn()`. * scope: The scope used to create the clone. * device: The device used to create the clone. DeployedModel namedtuple, holds together the values needed to train multiple clones: * train_op: An operation that run the optimizer training op and include all the update ops created by `model_fn`. Present only if an optimizer was specified. * summary_op: An operation that run the summaries created by `model_fn` and process_gradients. * total_loss: A `Tensor` that contains the sum of all losses created by `model_fn` plus the regularization losses. * clones: List of `Clone` tuples returned by `create_clones()`. DeploymentConfig parameters: * num_clones: Number of model clones to deploy in each replica. * clone_on_cpu: True if clones should be placed on CPU. * replica_id: Integer. Index of the replica for which the model is deployed. Usually 0 for the chief replica. * num_replicas: Number of replicas to use. * num_ps_tasks: Number of tasks for the `ps` job. 0 to not use replicas. * worker_job_name: A name for the worker job. * ps_job_name: A name for the parameter server job. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow as tf from tensorflow.python.ops import control_flow_ops slim = tf.contrib.slim __all__ = ['create_clones', 'deploy', 'optimize_clones', 'DeployedModel', 'DeploymentConfig', 'Clone', ] # Namedtuple used to represent a clone during deployment. Clone = collections.namedtuple('Clone', ['outputs', # Whatever model_fn() returned. 'scope', # The scope used to create it. 'device', # The device used to create. ]) # Namedtuple used to represent a DeployedModel, returned by deploy(). DeployedModel = collections.namedtuple('DeployedModel', ['train_op', # The `train_op` 'summary_op', # The `summary_op` 'total_loss', # The loss `Tensor` 'clones', # A list of `Clones` tuples. ]) # Default parameters for DeploymentConfig _deployment_params = {'num_clones': 1, 'clone_on_cpu': False, 'replica_id': 0, 'num_replicas': 1, 'num_ps_tasks': 0, 'worker_job_name': 'worker', 'ps_job_name': 'ps'} def create_clones(config, model_fn, args=None, kwargs=None): """Creates multiple clones according to config using a `model_fn`. The returned values of `model_fn(*args, **kwargs)` are collected along with the scope and device used to created it in a namedtuple `Clone(outputs, scope, device)` Note: it is assumed that any loss created by `model_fn` is collected at the tf.GraphKeys.LOSSES collection. To recover the losses, summaries or update_ops created by the clone use: ```python losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope) summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, clone.scope) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, clone.scope) ``` The deployment options are specified by the config object and support deploying one or several clones on different GPUs and one or several replicas of such clones. The argument `model_fn` is called `config.num_clones` times to create the model clones as `model_fn(*args, **kwargs)`. If `config` specifies deployment on multiple replicas then the default tensorflow device is set appropriatly for each call to `model_fn` and for the slim variable creation functions: model and global variables will be created on the `ps` device, the clone operations will be on the `worker` device. Args: config: A DeploymentConfig object. model_fn: A callable. Called as `model_fn(*args, **kwargs)` args: Optional list of arguments to pass to `model_fn`. kwargs: Optional list of keyword arguments to pass to `model_fn`. Returns: A list of namedtuples `Clone`. """ clones = [] args = args or [] kwargs = kwargs or {} with slim.arg_scope([slim.model_variable, slim.variable], device=config.variables_device()): # Create clones. for i in range(0, config.num_clones): with tf.name_scope(config.clone_scope(i)) as clone_scope: clone_device = config.clone_device(i) with tf.device(clone_device): with tf.variable_scope(tf.get_variable_scope(), reuse=True if i > 0 else None): outputs = model_fn(*args, **kwargs) clones.append(Clone(outputs, clone_scope, clone_device)) return clones def _gather_clone_loss(clone, num_clones, regularization_losses): """Gather the loss for a single clone. Args: clone: A Clone namedtuple. num_clones: The number of clones being deployed. regularization_losses: Possibly empty list of regularization_losses to add to the clone losses. Returns: A tensor for the total loss for the clone. Can be None. """ # The return value. sum_loss = None # Individual components of the loss that will need summaries. clone_loss = None regularization_loss = None # Compute and aggregate losses on the clone device. with tf.device(clone.device): all_losses = [] clone_losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope) if clone_losses: clone_loss = tf.add_n(clone_losses, name='clone_loss') if num_clones > 1: clone_loss = tf.div(clone_loss, 1.0 * num_clones, name='scaled_clone_loss') all_losses.append(clone_loss) if regularization_losses: regularization_loss = tf.add_n(regularization_losses, name='regularization_loss') all_losses.append(regularization_loss) if all_losses: sum_loss = tf.add_n(all_losses) # Add the summaries out of the clone device block. if clone_loss is not None: tf.summary.scalar(clone.scope + '/clone_loss', clone_loss) if regularization_loss is not None: tf.summary.scalar('regularization_loss', regularization_loss) return sum_loss def _optimize_clone(optimizer, clone, num_clones, regularization_losses, **kwargs): """Compute losses and gradients for a single clone. Args: optimizer: A tf.Optimizer object. clone: A Clone namedtuple. num_clones: The number of clones being deployed. regularization_losses: Possibly empty list of regularization_losses to add to the clone losses. **kwargs: Dict of kwarg to pass to compute_gradients(). Returns: A tuple (clone_loss, clone_grads_and_vars). - clone_loss: A tensor for the total loss for the clone. Can be None. - clone_grads_and_vars: List of (gradient, variable) for the clone. Can be empty. """ sum_loss = _gather_clone_loss(clone, num_clones, regularization_losses) clone_grad = None if sum_loss is not None: with tf.device(clone.device): clone_grad = optimizer.compute_gradients(sum_loss, **kwargs) return sum_loss, clone_grad def optimize_clones(clones, optimizer, regularization_losses=None, **kwargs): """Compute clone losses and gradients for the given list of `Clones`. Note: The regularization_losses are added to the first clone losses. Args: clones: List of `Clones` created by `create_clones()`. optimizer: An `Optimizer` object. regularization_losses: Optional list of regularization losses. If None it will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to exclude them. **kwargs: Optional list of keyword arguments to pass to `compute_gradients`. Returns: A tuple (total_loss, grads_and_vars). - total_loss: A Tensor containing the average of the clone losses including the regularization loss. - grads_and_vars: A List of tuples (gradient, variable) containing the sum of the gradients for each variable. """ grads_and_vars = [] clones_losses = [] num_clones = len(clones) if regularization_losses is None: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss, clone_grad = _optimize_clone( optimizer, clone, num_clones, regularization_losses, **kwargs) if clone_loss is not None: clones_losses.append(clone_loss) grads_and_vars.append(clone_grad) # Only use regularization_losses for the first clone regularization_losses = None # Compute the total_loss summing all the clones_losses. total_loss = tf.add_n(clones_losses, name='total_loss') # Sum the gradients across clones. grads_and_vars = _sum_clones_gradients(grads_and_vars) return total_loss, grads_and_vars def deploy(config, model_fn, args=None, kwargs=None, optimizer=None, summarize_gradients=False): """Deploys a Slim-constructed model across multiple clones. The deployment options are specified by the config object and support deploying one or several clones on different GPUs and one or several replicas of such clones. The argument `model_fn` is called `config.num_clones` times to create the model clones as `model_fn(*args, **kwargs)`. The optional argument `optimizer` is an `Optimizer` object. If not `None`, the deployed model is configured for training with that optimizer. If `config` specifies deployment on multiple replicas then the default tensorflow device is set appropriatly for each call to `model_fn` and for the slim variable creation functions: model and global variables will be created on the `ps` device, the clone operations will be on the `worker` device. Args: config: A `DeploymentConfig` object. model_fn: A callable. Called as `model_fn(*args, **kwargs)` args: Optional list of arguments to pass to `model_fn`. kwargs: Optional list of keyword arguments to pass to `model_fn`. optimizer: Optional `Optimizer` object. If passed the model is deployed for training with that optimizer. summarize_gradients: Whether or not add summaries to the gradients. Returns: A `DeployedModel` namedtuple. """ # Gather initial summaries. summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) # Create Clones. clones = create_clones(config, model_fn, args, kwargs) first_clone = clones[0] # Gather update_ops from the first clone. These contain, for example, # the updates for the batch_norm variables created by model_fn. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone.scope) train_op = None total_loss = None with tf.device(config.optimizer_device()): if optimizer: # Place the global step on the device storing the variables. with tf.device(config.variables_device()): global_step = slim.get_or_create_global_step() # Compute the gradients for the clones. total_loss, clones_gradients = optimize_clones(clones, optimizer) if clones_gradients: if summarize_gradients: # Add summaries to the gradients. summaries |= set(_add_gradients_summaries(clones_gradients)) # Create gradient updates. grad_updates = optimizer.apply_gradients(clones_gradients, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops) train_op = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op') else: clones_losses = [] regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss = _gather_clone_loss(clone, len(clones), regularization_losses) if clone_loss is not None: clones_losses.append(clone_loss) # Only use regularization_losses for the first clone regularization_losses = None if clones_losses: total_loss = tf.add_n(clones_losses, name='total_loss') # Add the summaries from the first clone. These contain the summaries # created by model_fn and either optimize_clones() or _gather_clone_loss(). summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone.scope)) if total_loss is not None: # Add total_loss to summary. summaries.add(tf.summary.scalar('total_loss', total_loss)) if summaries: # Merge all summaries together. summary_op = tf.summary.merge(list(summaries), name='summary_op') else: summary_op = None return DeployedModel(train_op, summary_op, total_loss, clones) def _sum_clones_gradients(clone_grads): """Calculate the sum gradient for each shared variable across all clones. This function assumes that the clone_grads has been scaled appropriately by 1 / num_clones. Args: clone_grads: A List of List of tuples (gradient, variable), one list per `Clone`. Returns: List of tuples of (gradient, variable) where the gradient has been summed across all clones. """ sum_grads = [] for grad_and_vars in zip(*clone_grads): # Note that each grad_and_vars looks like the following: # ((grad_var0_clone0, var0), ... (grad_varN_cloneN, varN)) grads = [] var = grad_and_vars[0][1] for g, v in grad_and_vars: assert v == var if g is not None: grads.append(g) if grads: if len(grads) > 1: sum_grad = tf.add_n(grads, name=var.op.name + '/sum_grads') else: sum_grad = grads[0] sum_grads.append((sum_grad, var)) return sum_grads def _add_gradients_summaries(grads_and_vars): """Add histogram summaries to gradients. Note: The summaries are also added to the SUMMARIES collection. Args: grads_and_vars: A list of gradient to variable pairs (tuples). Returns: The _list_ of the added summaries for grads_and_vars. """ summaries = [] for grad, var in grads_and_vars: if grad is not None: if isinstance(grad, tf.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append(tf.summary.histogram(var.op.name + ':gradient', grad_values)) summaries.append(tf.summary.histogram(var.op.name + ':gradient_norm', tf.global_norm([grad_values]))) else: tf.logging.info('Var %s has no gradient', var.op.name) return summaries class DeploymentConfig(object): """Configuration for deploying a model with `deploy()`. You can pass an instance of this class to `deploy()` to specify exactly how to deploy the model to build. If you do not pass one, an instance built from the default deployment_hparams will be used. """ def __init__(self, num_clones=1, clone_on_cpu=False, replica_id=0, num_replicas=1, num_ps_tasks=0, worker_job_name='worker', ps_job_name='ps'): """Create a DeploymentConfig. The config describes how to deploy a model across multiple clones and replicas. The model will be replicated `num_clones` times in each replica. If `clone_on_cpu` is True, each clone will placed on CPU. If `num_replicas` is 1, the model is deployed via a single process. In that case `worker_device`, `num_ps_tasks`, and `ps_device` are ignored. If `num_replicas` is greater than 1, then `worker_device` and `ps_device` must specify TensorFlow devices for the `worker` and `ps` jobs and `num_ps_tasks` must be positive. Args: num_clones: Number of model clones to deploy in each replica. clone_on_cpu: If True clones would be placed on CPU. replica_id: Integer. Index of the replica for which the model is deployed. Usually 0 for the chief replica. num_replicas: Number of replicas to use. num_ps_tasks: Number of tasks for the `ps` job. 0 to not use replicas. worker_job_name: A name for the worker job. ps_job_name: A name for the parameter server job. Raises: ValueError: If the arguments are invalid. """ if num_replicas > 1: if num_ps_tasks < 1: raise ValueError('When using replicas num_ps_tasks must be positive') if num_replicas > 1 or num_ps_tasks > 0: if not worker_job_name: raise ValueError('Must specify worker_job_name when using replicas') if not ps_job_name: raise ValueError('Must specify ps_job_name when using parameter server') if replica_id >= num_replicas: raise ValueError('replica_id must be less than num_replicas') self._num_clones = num_clones self._clone_on_cpu = clone_on_cpu self._replica_id = replica_id self._num_replicas = num_replicas self._num_ps_tasks = num_ps_tasks self._ps_device = '/job:' + ps_job_name if num_ps_tasks > 0 else '' self._worker_device = '/job:' + worker_job_name if num_ps_tasks > 0 else '' @property def num_clones(self): return self._num_clones @property def clone_on_cpu(self): return self._clone_on_cpu @property def replica_id(self): return self._replica_id @property def num_replicas(self): return self._num_replicas @property def num_ps_tasks(self): return self._num_ps_tasks @property def ps_device(self): return self._ps_device @property def worker_device(self): return self._worker_device def caching_device(self): """Returns the device to use for caching variables. Variables are cached on the worker CPU when using replicas. Returns: A device string or None if the variables do not need to be cached. """ if self._num_ps_tasks > 0: return lambda op: op.device else: return None def clone_device(self, clone_index): """Device used to create the clone and all the ops inside the clone. Args: clone_index: Int, representing the clone_index. Returns: A value suitable for `tf.device()`. Raises: ValueError: if `clone_index` is greater or equal to the number of clones". """ if clone_index >= self._num_clones: raise ValueError('clone_index must be less than num_clones') device = '' if self._num_ps_tasks > 0: device += self._worker_device if self._clone_on_cpu: device += '/device:CPU:0' else: if self._num_clones > 1: device += '/device:GPU:%d' % clone_index return device def clone_scope(self, clone_index): """Name scope to create the clone. Args: clone_index: Int, representing the clone_index. Returns: A name_scope suitable for `tf.name_scope()`. Raises: ValueError: if `clone_index` is greater or equal to the number of clones". """ if clone_index >= self._num_clones: raise ValueError('clone_index must be less than num_clones') scope = '' if self._num_clones > 1: scope = 'clone_%d' % clone_index return scope def optimizer_device(self): """Device to use with the optimizer. Returns: A value suitable for `tf.device()`. """ if self._num_ps_tasks > 0 or self._num_clones > 0: return self._worker_device + '/device:CPU:0' else: return '' def inputs_device(self): """Device to use to build the inputs. Returns: A value suitable for `tf.device()`. """ device = '' if self._num_ps_tasks > 0: device += self._worker_device device += '/device:CPU:0' return device def variables_device(self): """Returns the device to use for variables created inside the clone. Returns: A value suitable for `tf.device()`. """ device = '' if self._num_ps_tasks > 0: device += self._ps_device device += '/device:CPU:0' class _PSDeviceChooser(object): """Slim device chooser for variables when using PS.""" def __init__(self, device, tasks): self._device = device self._tasks = tasks self._task = 0 def choose(self, op): if op.device: return op.device node_def = op if isinstance(op, tf.NodeDef) else op.node_def if node_def.op == 'Variable': t = self._task self._task = (self._task + 1) % self._tasks d = '%s/task:%d' % (self._device, t) return d else: return op.device if not self._num_ps_tasks: return device else: chooser = _PSDeviceChooser(device, self._num_ps_tasks) return chooser.choose
35.13273
80
0.672777
eeb3d27a7a11411b477a6fdacf5b46793c5a4d34
14,283
py
Python
ffeatools/modules/FFEA_trajectory.py
zzalscv2/FFEA
da8a09dadb1b3978a3d230dc79d9b163d7889242
[ "Apache-2.0" ]
null
null
null
ffeatools/modules/FFEA_trajectory.py
zzalscv2/FFEA
da8a09dadb1b3978a3d230dc79d9b163d7889242
[ "Apache-2.0" ]
null
null
null
ffeatools/modules/FFEA_trajectory.py
zzalscv2/FFEA
da8a09dadb1b3978a3d230dc79d9b163d7889242
[ "Apache-2.0" ]
1
2021-04-03T16:08:21.000Z
2021-04-03T16:08:21.000Z
# # This file is part of the FFEA simulation package # # Copyright (c) by the Theory and Development FFEA teams, # as they appear in the README.md file. # # FFEA is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # FFEA is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with FFEA. If not, see <http://www.gnu.org/licenses/>. # # To help us fund FFEA development, we humbly ask that you cite # the research papers on the package. # from os import path import numpy as np import FFEA_frame, FFEA_pdb import sys class FFEA_trajectory: def __init__(self, fname="", surf=None, load_all=1, frame_rate = 1, num_frames_to_read = 1000000, start = 0, onlyNodes = False): self.reset() # Return empty object if fname not initialised if fname == "" or fname == None: self.valid = True sys.stdout.write("Empty trajectory object initialised.\n") return self.load(fname, load_all=load_all, surf=surf, frame_rate = frame_rate, num_frames_to_read = num_frames_to_read, start = start, onlyNodes = onlyNodes) return def load(self, fname, surf=None, load_all=1, frame_rate = 1, num_frames_to_read = 1000000, start = 0, onlyNodes = False): print("Loading FFEA trajectory file...") # Test file exists if not path.exists(fname): print("No trajectory found at that location") # Clear everything for beginning self.reset() # Header first, for sure self.load_header(fname) # Then rest of trajectory. if(load_all == 1): all_frames = 0 while(True): # Have we read enough frames? #print all_frames, num_frames_to_read if((all_frames - start) == num_frames_to_read): print("\ndone! Successfully read " + str(self.num_frames) + " frame/s from '" + fname + "'.") break # Skip or load if (all_frames - start) % frame_rate != 0 or all_frames < start: if self.skip_frame() == 1: print("\ndone! Successfully read " + str(self.num_frames) + " frame/s from '" + fname + "'.") break elif(self.load_frame(surf=surf, onlyNodes=onlyNodes) != 0): print("\ndone! Successfully read " + str(self.num_frames) + " frame/s from '" + fname + "'.") break all_frames += 1 #if self.num_frames % 100 == 0: # print "Frames parsed = ", str(all_frames) sys.stdout.write("\r\tFrames read = %d, Frames skipped = %d" % (self.num_frames, all_frames - self.num_frames)) sys.stdout.flush() self.valid = True self.empty = False def load_header(self, fname): # Get a file object and store it try: self.traj = open(fname, "r") except(IOError): raise IOError("\tFailed to open '" + fname + "' for reading.") # Now, read only the information from the top of the file # Title line = self.traj.readline().strip() if line != "FFEA_trajectory_file": raise IOError("\tExpected to read 'FFEA_trajectory_file' but read '" + line + "'. This may not be an FFEA trajectory file.") self.traj.readline() self.traj.readline() # num_blobs try: line = self.traj.readline() self.num_blobs = int(line.split()[3]) except(IndexError, ValueError): raise IOError("\tExpected to read 'Number of Blobs %d' but read '" + line + "'.") # num_conformations try: line = self.traj.readline() sline = line.split()[3:] self.num_conformations = [int(s) for s in sline] except(IndexError, ValueError): raise IOError("\tExpected to read 'Number of Conformations %d %d ....%d' but read '" + line + "'.") # num_nodes self.num_nodes = [[0 for i in range(self.num_conformations[j])] for j in range(self.num_blobs)] for i in range(self.num_blobs): try: line = self.traj.readline() sline = line.split()[2:] for j in range(self.num_conformations[i]): self.num_nodes[i][j] = int(sline[4 * j + 3]) except(IndexError, ValueError): raise IOError("\tExpected to read 'Blob " + str(i) + ": Conformation 0 Nodes %d Conformation 1 Nodes %d....Conformation " + str(num_conformations[i] - 1) + " Nodes %d' but read '" + line + "'.") # final whitespace until '*' and save the file pos while(self.traj.readline().strip() != "*"): pass self.fpos = self.traj.tell() # Finally, build the objects self.blob = [[FFEA_traj_blob(self.num_nodes[i][j]) for j in range(self.num_conformations[i])] for i in range(self.num_blobs)] # Manually set header data def set_header(self, num_blobs, num_conformations, num_nodes): self.num_blobs = num_blobs self.num_conformations = num_conformations self.num_nodes = num_nodes # Still build the objects self.blob = [[FFEA_traj_blob(self.num_nodes[i][j]) for j in range(self.num_conformations[i])] for i in range(self.num_blobs)] # This function must be run as fast as possible! Error checking will be at a minimum. This function is standalone so it can be threaded def load_frame(self, surf=None, onlyNodes=False): # For each blob eof = False bindex = -1 for b in self.blob: try: # Get indices bindex += 1 sline = self.traj.readline().split() cindex = int(sline[3][0]) step = int(sline[5]) except(IndexError): self.traj.seek(self.fpos) return 1 # ye who enter here: do not 'fix' this! The script is not handling an # exception poorly, it is asking for forgiveness, not permission. # Because it's faster. # Signed, someone who tried to 'fix' this. except(ValueError): # Don't need to reset though! self.traj.seek(self.fpos) print("Unable to read conformation index for blob " + str(bindex) + " at frame " + str(self.num_frames)) return 1 # Get a motion_state b[cindex].motion_state = self.traj.readline().strip() #if self.traj.readline().strip() == "DYNAMIC": # b[cindex].motion_state = "DYNAMIC" # frame = FFEA_frame.FFEA_frame() # else: # b[cindex].motion_state = "STATIC" # frame = b[cindex].frame[0] # continue # Do different things depending on motion state recieved if b[cindex].motion_state == "STATIC": # Nothing to read; frame cannot be read from trajectory frame = None else: # Get a frame frame = FFEA_frame.FFEA_frame() frame.num_nodes = b[cindex].num_nodes # Try to read stuff if onlyNodes == True: success = frame.load_from_traj_onlynodes_faster(self.traj) else: success = frame.load_from_traj_faster(self.traj) # We are at eof, or halfway through a frame being written if success == 1: eof = True break frame.set_step(step) # Load normals if necessary #if surf != None: # frame.calc_normals(surf[bindex][cindex]) # Append frame b[cindex].frame.append(frame) # Append None to all frames that aren't active for c in range(self.num_conformations[bindex]): if c != cindex: b[c].frame.append(None) if not eof: # Gloss over kinetics stuff self.traj.readline() while(self.traj.readline().strip() != "*"): pass self.num_frames += 1 self.fpos = self.traj.tell() return 0 else: self.traj.seek(self.fpos) def rescale(self, factor, frame_index): for b in range(self.num_blobs): for c in range(self.num_conformations[b]): try: self.blob[b][c].frame[frame_index].rescale(factor) except: continue def translate(self, trans): for b in range(self.num_blobs): for c in range(self.num_conformations[b]): for f in range(self.num_frames): self.blob[b][c].frame[f].translate(trans) def skip_frame(self): num_asterisks = 0 while(True): line = self.traj.readline() try: if line[0] == "*": num_asterisks += 1 if num_asterisks == 2: break except: return 1 return 0 def delete_frame(self, index=-1): try: for i in range(self.num_blobs): for j in range(self.num_conformations[i]): del self.blob[i][j].frame[index] self.num_frames -= 1 except: raise def build_from_pdb(self, pdb, scale = 1e-10): self.reset() # Single blob single conf self.set_header(1, [1], [[pdb.chain[0].num_atoms]]) # Get all frames in one go (they're the same core objects) self.blob[0][0].num_nodes = pdb.chain[0].num_atoms self.blob[0][0].frame = pdb.chain[0].frame index = 0 for f in self.blob[0][0].frame: f.pos *= scale f.set_step(index) index += 1 self.num_frames = pdb.chain[0].num_frames self.valid = True self.empty = False # Manually set a single frame def set_single_frame(self, node, surf = None, step = 0): for i in range(self.num_blobs): for j in range(self.num_conformations[i]): # Reset all first self.blob[i][j].reset() # Add frame only for conf 0 if j == 0: frame = FFEA_frame.FFEA_frame() frame.set_step(step) frame.pos = node[i].pos if surf != None: frame.calc_normals(surf[i]) self.blob[i][j].num_nodes = len(frame.pos) self.blob[i][j].frame.append(frame) else: self.blob[i][j].frame.append(None) self.num_frames = 1 def set_single_blob(self, bindex): if bindex >= self.num_blobs: print("\nBlob index '" + str(bindex) + "' greater than number of blobs, '" + str(traj.num_blobs)) raise IndexError # Get rid of stuff we don't need and move everything to blob[0] self.num_blobs = 1 self.num_conformations = [self.num_conformations[bindex]] self.num_nodes = [self.num_nodes[bindex]] self.blob = [self.blob[bindex]] def reset(self): self.traj = None self.num_frames = 0 self.num_blobs = 0 self.num_conformations = [] self.num_nodes = [] self.blob = [] self.valid = False self.empty = True def write_to_file(self, fname, frames=None, frame_rate = 1): print("Writing trajectory to file\n\tData will be written to %s\n" % (fname)) # Get a file object fout = open(fname, "w") # Write header info self.write_header_to_file(fout) # Write frames if frames == None: frames = [0,self.num_frames] for i in range(frames[0], frames[1], frame_rate): self.write_frame_to_file(fout, i) fout.close() def write_header_to_file(self, fout): fout.write("FFEA_trajectory_file\n\nInitialisation:\nNumber of Blobs %d\nNumber of Conformations" % (self.num_blobs)) for i in self.num_conformations: fout.write(" %d" % (i)) fout.write("\n") for i in range(self.num_blobs): fout.write("Blob %d:" % (i)) for j in range(self.num_conformations[i]): fout.write(" Conformation %d Nodes %d" % (j, self.num_nodes[i][j])) fout.write("\n") fout.write("\n*\n") def write_frame_to_file(self, fout, index): if index >= self.num_frames: return # Traj data cur_conf = [] bindex = -1 for b in self.blob: bindex += 1 cindex = -1 for c in b: cindex += 1 if c.motion_state == "STATIC": fout.write("Blob %d, Conformation %d, step %d\nSTATIC\n" % (bindex, cindex, 0)) cur_conf.append(0) break else: if c.frame[index] == None: continue cur_conf.append(cindex) fout.write("Blob %d, Conformation %d, step %d\n" % (bindex, cindex, c.frame[index].step)) fout.write(c.motion_state + "\n") c.frame[index].write_to_traj(fout) # Kinetic Data fout.write("*\nConformation Changes:\n") bindex = 0 for b in self.blob: next_conf = cur_conf[bindex] cindex = -1 try: for c in b: cindex += 1 if c.frame[index + 1] != None: next_conf = cindex break except: next_conf = cur_conf[bindex] fout.write("Blob %d: Conformation %d -> Conformation %d\n" % (bindex, cur_conf[bindex], next_conf)) bindex += 1 fout.write("*\n") def reset(self): self.traj = None self.num_frames = 0 self.num_blobs = 0 self.num_conformations = [] self.num_nodes = [] self.blob = [] self.valid = False self.empty = True class FFEA_traj_blob: def __init__(self, num_nodes=0): self.reset() self.num_nodes = num_nodes # Manually set a frame def set_frame(self, frame): self.frame.append(frame) def set_subblob(self, pin): """ Create a subblob from a pin object. In: self, the pin object Out: the ID of the generated subblob. """ if max(pin.index) >= self.num_nodes: raise IndexError("Error. Pinned node index %d is larger than num_nodes, %d." % (max(pin.index), self.num_nodes)) self.subblob.append(pin.index) self.num_subblobs += 1 return self.num_subblobs # let the user assign a nice friendly name to their subblob def calc_centroid_trajectory(self, subblob_index = -1): """ Calculate the centroid (average position of all the nodes) of a given blob. You can also specify the index of a sub-blob, and get the centroid of that sub-blob. In: self, subblob index Out: a 2-d array, which is [x,y,z] wide and as tall as the number of nodes in your blob\sub-blob. """ if subblob_index == -1: indices = [i for i in range(self.num_nodes)] else: try: indices = self.subblob[subblob_index] except(IndexError): raise IndexError("Error. Subblob index %d out of range (num_subblobs = %d)." % (subblob_index, self.num_subblobs)) # Build the trajectory subblob_size = len(indices) ctraj = [] step = [] for f in self.frame: centroid = np.array([0.0,0.0,0.0]) for i in indices: centroid += f.pos[i] centroid /= subblob_size ctraj.append(centroid) step.append(f.step) return np.array(step), np.array(ctraj) def reset(self): self.motion_state = "DYNAMIC" self.num_nodes = 0 self.num_subblobs = 0 self.frame = [] self.subblob = [] # External functions def get_num_frames(fname): fin = open(fname, "r") if fin.readline().strip() != "FFEA_trajectory_file": print("\tExpected to read 'FFEA_trajectory_file' but read '" + line + "'. This may not be an FFEA trajectory file.") self.reset() return 1 num_asterisks = 0 for line in fin: if "*" in line: num_asterisks += 1 return (num_asterisks - 1) / 2
26.747191
198
0.659315
b09826588ec2712467f42f2a16f33ee30c732cef
13,067
py
Python
kubernetes_asyncio/client/models/v1_node_status.py
dineshsonachalam/kubernetes_asyncio
d57e9e9be11f6789e1ce8d5b161acb64d29acf35
[ "Apache-2.0" ]
1
2021-02-25T04:36:18.000Z
2021-02-25T04:36:18.000Z
kubernetes_asyncio/client/models/v1_node_status.py
hubo1016/kubernetes_asyncio
d57e9e9be11f6789e1ce8d5b161acb64d29acf35
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1_node_status.py
hubo1016/kubernetes_asyncio
d57e9e9be11f6789e1ce8d5b161acb64d29acf35
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1.12.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class V1NodeStatus(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'addresses': 'list[V1NodeAddress]', 'allocatable': 'dict(str, str)', 'capacity': 'dict(str, str)', 'conditions': 'list[V1NodeCondition]', 'config': 'V1NodeConfigStatus', 'daemon_endpoints': 'V1NodeDaemonEndpoints', 'images': 'list[V1ContainerImage]', 'node_info': 'V1NodeSystemInfo', 'phase': 'str', 'volumes_attached': 'list[V1AttachedVolume]', 'volumes_in_use': 'list[str]' } attribute_map = { 'addresses': 'addresses', 'allocatable': 'allocatable', 'capacity': 'capacity', 'conditions': 'conditions', 'config': 'config', 'daemon_endpoints': 'daemonEndpoints', 'images': 'images', 'node_info': 'nodeInfo', 'phase': 'phase', 'volumes_attached': 'volumesAttached', 'volumes_in_use': 'volumesInUse' } def __init__(self, addresses=None, allocatable=None, capacity=None, conditions=None, config=None, daemon_endpoints=None, images=None, node_info=None, phase=None, volumes_attached=None, volumes_in_use=None): # noqa: E501 """V1NodeStatus - a model defined in Swagger""" # noqa: E501 self._addresses = None self._allocatable = None self._capacity = None self._conditions = None self._config = None self._daemon_endpoints = None self._images = None self._node_info = None self._phase = None self._volumes_attached = None self._volumes_in_use = None self.discriminator = None if addresses is not None: self.addresses = addresses if allocatable is not None: self.allocatable = allocatable if capacity is not None: self.capacity = capacity if conditions is not None: self.conditions = conditions if config is not None: self.config = config if daemon_endpoints is not None: self.daemon_endpoints = daemon_endpoints if images is not None: self.images = images if node_info is not None: self.node_info = node_info if phase is not None: self.phase = phase if volumes_attached is not None: self.volumes_attached = volumes_attached if volumes_in_use is not None: self.volumes_in_use = volumes_in_use @property def addresses(self): """Gets the addresses of this V1NodeStatus. # noqa: E501 List of addresses reachable to the node. Queried from cloud provider, if available. More info: https://kubernetes.io/docs/concepts/nodes/node/#addresses # noqa: E501 :return: The addresses of this V1NodeStatus. # noqa: E501 :rtype: list[V1NodeAddress] """ return self._addresses @addresses.setter def addresses(self, addresses): """Sets the addresses of this V1NodeStatus. List of addresses reachable to the node. Queried from cloud provider, if available. More info: https://kubernetes.io/docs/concepts/nodes/node/#addresses # noqa: E501 :param addresses: The addresses of this V1NodeStatus. # noqa: E501 :type: list[V1NodeAddress] """ self._addresses = addresses @property def allocatable(self): """Gets the allocatable of this V1NodeStatus. # noqa: E501 Allocatable represents the resources of a node that are available for scheduling. Defaults to Capacity. # noqa: E501 :return: The allocatable of this V1NodeStatus. # noqa: E501 :rtype: dict(str, str) """ return self._allocatable @allocatable.setter def allocatable(self, allocatable): """Sets the allocatable of this V1NodeStatus. Allocatable represents the resources of a node that are available for scheduling. Defaults to Capacity. # noqa: E501 :param allocatable: The allocatable of this V1NodeStatus. # noqa: E501 :type: dict(str, str) """ self._allocatable = allocatable @property def capacity(self): """Gets the capacity of this V1NodeStatus. # noqa: E501 Capacity represents the total resources of a node. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#capacity # noqa: E501 :return: The capacity of this V1NodeStatus. # noqa: E501 :rtype: dict(str, str) """ return self._capacity @capacity.setter def capacity(self, capacity): """Sets the capacity of this V1NodeStatus. Capacity represents the total resources of a node. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#capacity # noqa: E501 :param capacity: The capacity of this V1NodeStatus. # noqa: E501 :type: dict(str, str) """ self._capacity = capacity @property def conditions(self): """Gets the conditions of this V1NodeStatus. # noqa: E501 Conditions is an array of current observed node conditions. More info: https://kubernetes.io/docs/concepts/nodes/node/#condition # noqa: E501 :return: The conditions of this V1NodeStatus. # noqa: E501 :rtype: list[V1NodeCondition] """ return self._conditions @conditions.setter def conditions(self, conditions): """Sets the conditions of this V1NodeStatus. Conditions is an array of current observed node conditions. More info: https://kubernetes.io/docs/concepts/nodes/node/#condition # noqa: E501 :param conditions: The conditions of this V1NodeStatus. # noqa: E501 :type: list[V1NodeCondition] """ self._conditions = conditions @property def config(self): """Gets the config of this V1NodeStatus. # noqa: E501 Status of the config assigned to the node via the dynamic Kubelet config feature. # noqa: E501 :return: The config of this V1NodeStatus. # noqa: E501 :rtype: V1NodeConfigStatus """ return self._config @config.setter def config(self, config): """Sets the config of this V1NodeStatus. Status of the config assigned to the node via the dynamic Kubelet config feature. # noqa: E501 :param config: The config of this V1NodeStatus. # noqa: E501 :type: V1NodeConfigStatus """ self._config = config @property def daemon_endpoints(self): """Gets the daemon_endpoints of this V1NodeStatus. # noqa: E501 Endpoints of daemons running on the Node. # noqa: E501 :return: The daemon_endpoints of this V1NodeStatus. # noqa: E501 :rtype: V1NodeDaemonEndpoints """ return self._daemon_endpoints @daemon_endpoints.setter def daemon_endpoints(self, daemon_endpoints): """Sets the daemon_endpoints of this V1NodeStatus. Endpoints of daemons running on the Node. # noqa: E501 :param daemon_endpoints: The daemon_endpoints of this V1NodeStatus. # noqa: E501 :type: V1NodeDaemonEndpoints """ self._daemon_endpoints = daemon_endpoints @property def images(self): """Gets the images of this V1NodeStatus. # noqa: E501 List of container images on this node # noqa: E501 :return: The images of this V1NodeStatus. # noqa: E501 :rtype: list[V1ContainerImage] """ return self._images @images.setter def images(self, images): """Sets the images of this V1NodeStatus. List of container images on this node # noqa: E501 :param images: The images of this V1NodeStatus. # noqa: E501 :type: list[V1ContainerImage] """ self._images = images @property def node_info(self): """Gets the node_info of this V1NodeStatus. # noqa: E501 Set of ids/uuids to uniquely identify the node. More info: https://kubernetes.io/docs/concepts/nodes/node/#info # noqa: E501 :return: The node_info of this V1NodeStatus. # noqa: E501 :rtype: V1NodeSystemInfo """ return self._node_info @node_info.setter def node_info(self, node_info): """Sets the node_info of this V1NodeStatus. Set of ids/uuids to uniquely identify the node. More info: https://kubernetes.io/docs/concepts/nodes/node/#info # noqa: E501 :param node_info: The node_info of this V1NodeStatus. # noqa: E501 :type: V1NodeSystemInfo """ self._node_info = node_info @property def phase(self): """Gets the phase of this V1NodeStatus. # noqa: E501 NodePhase is the recently observed lifecycle phase of the node. More info: https://kubernetes.io/docs/concepts/nodes/node/#phase The field is never populated, and now is deprecated. # noqa: E501 :return: The phase of this V1NodeStatus. # noqa: E501 :rtype: str """ return self._phase @phase.setter def phase(self, phase): """Sets the phase of this V1NodeStatus. NodePhase is the recently observed lifecycle phase of the node. More info: https://kubernetes.io/docs/concepts/nodes/node/#phase The field is never populated, and now is deprecated. # noqa: E501 :param phase: The phase of this V1NodeStatus. # noqa: E501 :type: str """ self._phase = phase @property def volumes_attached(self): """Gets the volumes_attached of this V1NodeStatus. # noqa: E501 List of volumes that are attached to the node. # noqa: E501 :return: The volumes_attached of this V1NodeStatus. # noqa: E501 :rtype: list[V1AttachedVolume] """ return self._volumes_attached @volumes_attached.setter def volumes_attached(self, volumes_attached): """Sets the volumes_attached of this V1NodeStatus. List of volumes that are attached to the node. # noqa: E501 :param volumes_attached: The volumes_attached of this V1NodeStatus. # noqa: E501 :type: list[V1AttachedVolume] """ self._volumes_attached = volumes_attached @property def volumes_in_use(self): """Gets the volumes_in_use of this V1NodeStatus. # noqa: E501 List of attachable volumes in use (mounted) by the node. # noqa: E501 :return: The volumes_in_use of this V1NodeStatus. # noqa: E501 :rtype: list[str] """ return self._volumes_in_use @volumes_in_use.setter def volumes_in_use(self, volumes_in_use): """Sets the volumes_in_use of this V1NodeStatus. List of attachable volumes in use (mounted) by the node. # noqa: E501 :param volumes_in_use: The volumes_in_use of this V1NodeStatus. # noqa: E501 :type: list[str] """ self._volumes_in_use = volumes_in_use def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1NodeStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
32.997475
224
0.625622
97b96e6614964c688a78de62a6317f843343a32d
3,416
py
Python
PyRAI2MD/Dynamics/Propagators/tsh_helper.py
lopez-lab/PyRAI2MD
43e27fbc9bc5b6ab6a8f170791951f316fcd0964
[ "MIT" ]
12
2021-10-20T23:41:34.000Z
2022-03-29T23:29:21.000Z
PyRAI2MD/Dynamics/Propagators/tsh_helper.py
lijingbai2009/PyRAI2MD
f672960aff4d9e25f4dff11683e9231b120a1b68
[ "MIT" ]
null
null
null
PyRAI2MD/Dynamics/Propagators/tsh_helper.py
lijingbai2009/PyRAI2MD
f672960aff4d9e25f4dff11683e9231b120a1b68
[ "MIT" ]
4
2021-02-06T04:27:01.000Z
2022-03-29T23:29:28.000Z
###################################################### # # PyRAI2MD 2 module for trajectory surface hopping helper # # Author Jingbai Li # Sep 7 2021 # ###################################################### import numpy as np def AvoidSingularity(energy_i, energy_j, state_i, state_j): """ Fixing singularity of state energy gap Parameters: Type: energy_i float energy of state i energy_j float energy of state j state_i int state i state_j int state j Return: Type: diff float energy different between i and j """ cutoff = 1e-16 gap = np.abs(energy_i - energy_j) if state_i < state_j: sign = -1.0 else: sign = 1.0 if energy_i == energy_j: diff = sign * cutoff elif energy_i != energy_j and gap < cutoff: diff = sign * cutoff elif energy_i != energy_j and gap >= cutoff: diff = sign * gap return diff def ReflectVelo(velo, nac, reflect): """ Reflecting velocity at frustrated hopping Parameters: Type: velo ndarray nuclear velocity nac ndarray nonadibatic coupling reflect int velocity reflection option Return: Type: velo ndarray nuclear velocity """ if reflect == 1: velo = -velo elif reflect == 2: velo -= 2 * np.sum(velo * nac) / np.sum(nac * nac) * nac return velo def AdjustVelo(energy_old, energy_new, velo, mass, nac, adjust, reflect): """ Adjusting velocity at surface hopping Parameters: Type: energy_old float energy of old state energy_new float energy of new state velo ndarray nuclear velocity nac ndarray nonadibatic coupling adjust int velocity adjustment option reflect int velocity reflection option Return: Type: velo ndarray nuclear velocity frustrated int surface hopping decision """ kinetic = np.sum(0.5 * mass * velo**2) frustrated = 0 if adjust == 0: del_kinetic = energy_old - energy_new + kinetic if del_kinetic >= 0: f = 1.0 else: velo = ReflectVelo(velo, nac, reflect) frustrated = 1 elif adjust == 1: del_kinetic = energy_old - energy_new + kinetic if del_kinetic >= 0: f = (del_kinetic / kinetic)**0.5 velo *= f else: velo = ReflectVelo(velo, nac, reflect) frustrated = 1 elif adjust == 2: a = np.sum(nac * nac / (2 * mass)) b = np.sum(velo * nac) del_kinetic = energy_old - energy_new del_kinetic = 4 * a * del_kinetic + b**2 if del_kinetic >= 0: if b < 0: f = (b + del_kinetic**0.5) / (2 * a) else: f = (b - del_kinetic**0.5) / (2 * a) velo -= f * nac / mass else: velo = ReflectVelo(velo, nac, reflect) frustrated = 1 return velo, frustrated
29.196581
75
0.483021
feaf727a5a9fbe5116aa5027da6669d166d99a99
1,036
py
Python
NETISCE_local/bin/kmeans.py
laurenpmarazzi/Netisce
2f4550a326b16e579f0fc5948b674cfbc994b100
[ "MIT" ]
null
null
null
NETISCE_local/bin/kmeans.py
laurenpmarazzi/Netisce
2f4550a326b16e579f0fc5948b674cfbc994b100
[ "MIT" ]
null
null
null
NETISCE_local/bin/kmeans.py
laurenpmarazzi/Netisce
2f4550a326b16e579f0fc5948b674cfbc994b100
[ "MIT" ]
1
2021-11-30T14:24:23.000Z
2021-11-30T14:24:23.000Z
#!/usr/bin/env python3 import pandas as pd from scipy import stats import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from sklearn.decomposition import PCA import numpy as np from sklearn.datasets import make_blobs from sklearn.metrics import pairwise_distances from sklearn.cluster import KMeans from sklearn.cluster import MiniBatchKMeans import sys import os def main(): #####Input files and user specifications########### k = int(sys.argv[1]) # k means k datasets = sys.argv[2].split(',') #the input data file (logss, DAC, both, or discrete versions) df=pd.DataFrame() for i in datasets: dfi=pd.read_csv(i, delim_whitespace=True,index_col = ["name"]) df=pd.concat([df,dfi],axis=0) # perform kmeans kmeans = MiniBatchKMeans(n_clusters=k,random_state=0,n_init=10000).fit(df) labels = kmeans.labels_ df['clusters'] = labels df2 = pd.DataFrame(index=df.index) df2['clusters'] = labels df2.index.name = 'name' df2.to_csv('kmeans.txt', sep=' ') main()
28
99
0.705598
2f2e901d7b95708385eca28f31826f2014e0bc61
4,355
py
Python
api/base.py
itdxer/pythonUSPS
74d75dc95ed010d3ffffc36e99b96609d4c16ef2
[ "MIT" ]
1
2015-02-07T10:14:47.000Z
2015-02-07T10:14:47.000Z
api/base.py
itdxer/pythonUSPS
74d75dc95ed010d3ffffc36e99b96609d4c16ef2
[ "MIT" ]
null
null
null
api/base.py
itdxer/pythonUSPS
74d75dc95ed010d3ffffc36e99b96609d4c16ef2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import urllib import urllib2 from xml.etree import ElementTree from xml.dom.minidom import * from default.errors import USPSXMLError, XMLTagNameError class USPSServiceSender(object): service_types = ("ExpressMail", "PriorityMail", "Returns", "International", "OtherPackages", ) def __init__(self, url): self.url = url @property def root_tag(self): return "%sRequest" % self.api_key def send_request(self, list_of_xml_tags, user_id=None, password=None): """ " (dict, str, str) -> (class xml.etree.ElementTree.Element) Send request on USPS server and eturn object with XML tags """ xml = self.build_xml(list_of_xml_tags, user_id, password) data = {'API': self.api_key, 'XML': xml} print "XML=" + xml response = urllib2.urlopen(self.url, urllib.urlencode(data)) response_type = ElementTree.parse(response).getroot() if response_type.tag == 'Error': raise USPSXMLError(response_type) return response_type def build_xml_level(self, list_of_xml_tags, document, root): for iterator, xml_tag in enumerate(list_of_xml_tags): if not xml_tag["name"] in self.xml_tag_names: raise XMLTagNameError(xml_tag["name"]) xml_tag_name = xml_tag["name"] this_xml_tag = document.createElement(xml_tag_name) xml_from_tag_dict = list_of_xml_tags[iterator] this_xml_tag_text = xml_from_tag_dict.get("text", None) # add attribute to tag if xml_from_tag_dict.get("attribute", None): xml_tag_attribute = xml_from_tag_dict["attribute"] tag_attr = document.createAttribute(xml_tag_attribute["name"]) tag_attr.value = xml_tag_attribute["value"] this_xml_tag.setAttributeNode(tag_attr) if xml_from_tag_dict.get("inner_tags", None): this_xml_tag = self.build_xml_level( xml_from_tag_dict["inner_tags"], document, this_xml_tag ) elif this_xml_tag_text != None: this_xml_tag_text = document.createTextNode(this_xml_tag_text) this_xml_tag.appendChild(this_xml_tag_text) root.appendChild(this_xml_tag) return root def build_xml(self, list_of_xml_tags, user_id=None, password=None): """ (dict, str, str) -> (str) Get dictionary with XML tags and there parametrs Return XML in string format """ document = Document() root = document.createElement(self.root_tag) if user_id is not None: user_id_attr = document.createAttribute('USERID') user_id_attr.value = user_id root.setAttributeNode(user_id_attr) if password is not None: user_id_attr = document.createAttribute('PASSWORD') user_id_attr.value = password root.setAttributeNode(user_id_attr) root = self.build_xml_level(list_of_xml_tags, document, root) document.appendChild(root) return document.toxml() def get_response_information(self, xml_response): """ (class xml.etree.ElementTree.Element) -> dict Return dictionary with all XML response information """ response_info = {} for xml_tag in xml_response.getchildren(): if xml_tag.tag == 'Error': raise USPSXMLError(xml_tag) if xml_tag.getchildren(): response_info[xml_tag.tag] = self.get_response_information(xml_tag) elif xml_tag is not None: response_info[xml_tag.tag] = xml_tag.text return response_info def is_service_type_correct(self, service_type): """ (str) -> bool Return True if correct name of service type """ return service_type in self.service_types def get_package_size_type(self, size): """ (int) -> str Return string type from size """ return "REGULAR" if size <= 12 else "LARGE" if __name__ == '__main__': pass
32.022059
83
0.601378