hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
7c17e52c3fe60426ceb8799d558d1a3c553bee41
1,331
py
Python
setup.py
EfficientEra/login-and-pay-with-amazon-sdk-python
029175abc9835ba1927cdd04e88209212cee2443
[ "Apache-2.0" ]
1
2019-12-01T09:14:26.000Z
2019-12-01T09:14:26.000Z
setup.py
EfficientEra/login-and-pay-with-amazon-sdk-python
029175abc9835ba1927cdd04e88209212cee2443
[ "Apache-2.0" ]
null
null
null
setup.py
EfficientEra/login-and-pay-with-amazon-sdk-python
029175abc9835ba1927cdd04e88209212cee2443
[ "Apache-2.0" ]
null
null
null
from setuptools import setup import pay_with_amazon.version as pwa_version setup( name='pay_with_amazon', packages=['pay_with_amazon'], version=pwa_version.versions['application_version'], description='Login and Pay with Amazon Python SDK', url='https://github.com/amzn/login-and-pay-with-amazon-sdk-python', download_url='https://github.com/amzn/login-and-pay-with-amazon-sdk-python/tarball/{0}'.format( pwa_version.versions['application_version']), author='EPS-DSE', author_email='pay-with-amazon-sdk@amazon.com', license='Apache License version 2.0, January 2004', install_requires=['pyOpenSSL >= 0.11', 'requests >= 2.6.0', 'mock'], keywords=['Amazon', 'Payments', 'Login', 'Python', 'API', 'SDK'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.4', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules'] )
42.935484
99
0.639369
3bcb2215a3aa7f4a791e6b80516b1afd33a67096
3,060
py
Python
timesketch/lib/analyzers/utils_test.py
macdaliot/timesketch
f6a4984208f4c39f01efd72e36ddf21f630b6699
[ "Apache-2.0" ]
4
2018-11-01T16:13:31.000Z
2022-03-18T12:09:25.000Z
timesketch/lib/analyzers/utils_test.py
macdaliot/timesketch
f6a4984208f4c39f01efd72e36ddf21f630b6699
[ "Apache-2.0" ]
null
null
null
timesketch/lib/analyzers/utils_test.py
macdaliot/timesketch
f6a4984208f4c39f01efd72e36ddf21f630b6699
[ "Apache-2.0" ]
1
2021-11-16T00:01:18.000Z
2021-11-16T00:01:18.000Z
# Copyright 2019 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for analysis utils.""" from __future__ import unicode_literals import six import pandas as pd from timesketch.lib.testlib import BaseTest from timesketch.lib.analyzers import utils class TestAnalyzerUtils(BaseTest): """Tests the functionality of the utilities.""" def test_get_domain_from_url(self): """Test get_domain_from_url function.""" url = 'http://www.example.com/?foo=bar' domain = utils.get_domain_from_url(url) self.assertEqual(domain, 'www.example.com') def test_get_tld_from_domain(self): """Test get_tld_from_domain function.""" domain = 'this.is.a.subdomain.example.com' tld = utils.get_tld_from_domain(domain) self.assertEqual(tld, 'example.com') domain = 'a' tld = utils.get_tld_from_domain(domain) self.assertEqual(tld, 'a') domain = 'example.com' tld = utils.get_tld_from_domain(domain) self.assertEqual(tld, 'example.com') def test_strip_www_from_domain(self): """Test strip_www_from_domain function.""" domain = 'www.mbl.is' stripped = utils.strip_www_from_domain(domain) self.assertEqual(stripped, 'mbl.is') domain = 'mbl.is' stripped = utils.strip_www_from_domain(domain) self.assertEqual(stripped, domain) def test_get_cdn_provider(self): """Test get_cdn_provider function.""" domain = 'foobar.gstatic.com' provider = utils.get_cdn_provider(domain) self.assertIsInstance(provider, six.text_type) self.assertEqual(provider, 'Google') domain = 'www.mbl.is' provider = utils.get_cdn_provider(domain) self.assertIsInstance(provider, six.text_type) self.assertEqual(provider, '') def test_get_events_from_data_frame(self): """Test getting all events from data frame.""" lines = [ {'_id': '123', '_type': 'manual', '_index': 'asdfasdf', 'tool': 'isskeid'}, {'_id': '124', '_type': 'manual', '_index': 'asdfasdf', 'tool': 'tong'}, {'_id': '125', '_type': 'manual', '_index': 'asdfasdf', 'tool': 'klemma'}, ] frame = pd.DataFrame(lines) events = list(utils.get_events_from_data_frame(frame, None)) self.assertEqual(len(events), 3) ids = [x.event_id for x in events] self.assertEqual(set(ids), set(['123', '124', '125']))
35.172414
74
0.652288
215ae35002af3c2426a7d33004ec4f9389563be3
1,669
py
Python
how-to-use-azureml/automated-machine-learning/forecasting-bike-share/forecasting_script.py
Jaboo9/MachineLearningNotebooks
6fe90ec1bfedcd51da4fa9f709583458cbddcf3c
[ "MIT" ]
null
null
null
how-to-use-azureml/automated-machine-learning/forecasting-bike-share/forecasting_script.py
Jaboo9/MachineLearningNotebooks
6fe90ec1bfedcd51da4fa9f709583458cbddcf3c
[ "MIT" ]
null
null
null
how-to-use-azureml/automated-machine-learning/forecasting-bike-share/forecasting_script.py
Jaboo9/MachineLearningNotebooks
6fe90ec1bfedcd51da4fa9f709583458cbddcf3c
[ "MIT" ]
1
2021-06-02T06:31:15.000Z
2021-06-02T06:31:15.000Z
import argparse import azureml.train.automl from azureml.automl.runtime._vendor.automl.client.core.runtime import forecasting_models from azureml.core import Run from sklearn.externals import joblib import forecasting_helper parser = argparse.ArgumentParser() parser.add_argument( '--max_horizon', type=int, dest='max_horizon', default=10, help='Max Horizon for forecasting') parser.add_argument( '--target_column_name', type=str, dest='target_column_name', help='Target Column Name') parser.add_argument( '--time_column_name', type=str, dest='time_column_name', help='Time Column Name') parser.add_argument( '--frequency', type=str, dest='freq', help='Frequency of prediction') args = parser.parse_args() max_horizon = args.max_horizon target_column_name = args.target_column_name time_column_name = args.time_column_name freq = args.freq run = Run.get_context() # get input dataset by name test_dataset = run.input_datasets['test_data'] grain_column_names = [] df = test_dataset.to_pandas_dataframe() X_test_df = test_dataset.drop_columns(columns=[target_column_name]) y_test_df = test_dataset.with_timestamp_columns( None).keep_columns(columns=[target_column_name]) fitted_model = joblib.load('model.pkl') df_all = forecasting_helper.do_rolling_forecast( fitted_model, X_test_df.to_pandas_dataframe(), y_test_df.to_pandas_dataframe().values.T[0], target_column_name, time_column_name, max_horizon, freq) file_name = 'outputs/predictions.csv' export_csv = df_all.to_csv(file_name, header=True) # Upload the predictions into artifacts run.upload_file(name=file_name, path_or_stream=file_name)
29.280702
88
0.777711
e2288dcd49d8a7a8cb34bbd4283e96f8939d59f5
5,682
py
Python
oss2/exceptions.py
rxwen/aliyun-oss-py
090fa82414490cded6c7af12802239f6fdd5d268
[ "Apache-2.0" ]
null
null
null
oss2/exceptions.py
rxwen/aliyun-oss-py
090fa82414490cded6c7af12802239f6fdd5d268
[ "Apache-2.0" ]
null
null
null
oss2/exceptions.py
rxwen/aliyun-oss-py
090fa82414490cded6c7af12802239f6fdd5d268
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ oss2.exceptions ~~~~~~~~~~~~~~ 异常类。 """ import re import xml.etree.ElementTree as ElementTree from xml.parsers import expat from .compat import to_string _OSS_ERROR_TO_EXCEPTION = {} # populated at end of module OSS_CLIENT_ERROR_STATUS = -1 OSS_REQUEST_ERROR_STATUS = -2 OSS_INCONSISTENT_ERROR_STATUS = -3 class OssError(Exception): def __init__(self, status, headers, body, details): #: HTTP 状态码 self.status = status #: 请求ID,用于跟踪一个OSS请求。提交工单时,最好能够提供请求ID self.request_id = headers.get('x-oss-request-id', '') #: HTTP响应体(部分) self.body = body #: 详细错误信息,是一个string到string的dict self.details = details #: OSS错误码 self.code = self.details.get('Code', '') #: OSS错误信息 self.message = self.details.get('Message', '') def __str__(self): error = {'status': self.status, 'details': self.details} return str(error) class ClientError(OssError): def __init__(self, message): OssError.__init__(self, OSS_CLIENT_ERROR_STATUS, {}, 'ClientError: ' + message, {}) def __str__(self): error = {'status': self.status, 'details': self.body} return str(error) class RequestError(OssError): def __init__(self, e): OssError.__init__(self, OSS_REQUEST_ERROR_STATUS, {}, 'RequestError: ' + str(e), {}) self.exception = e def __str__(self): error = {'status': self.status, 'details': self.body} return str(error) class InconsistentError(OssError): def __init__(self, message): OssError.__init__(self, OSS_INCONSISTENT_ERROR_STATUS, {}, 'InconsistentError: ' + message, {}) def __str__(self): error = {'status': self.status, 'details': self.body} return str(error) class ServerError(OssError): pass class NotFound(ServerError): status = 404 code = '' class MalformedXml(ServerError): status = 400 code = 'MalformedXML' class InvalidArgument(ServerError): status = 400 code = 'InvalidArgument' def __init__(self, status, headers, body, details): super(InvalidArgument, self).__init__(status, headers, body, details) self.name = details.get('ArgumentName') self.value = details.get('ArgumentValue') class InvalidObjectName(ServerError): status = 400 code = 'InvalidObjectName' class NoSuchBucket(NotFound): status = 404 code = 'NoSuchBucket' class NoSuchKey(NotFound): status = 404 code = 'NoSuchKey' class NoSuchUpload(NotFound): status = 404 code = 'NoSuchUpload' class NoSuchWebsite(NotFound): status = 404 code = 'NoSuchWebsiteConfiguration' class NoSuchLifecycle(NotFound): status = 404 code = 'NoSuchLifecycle' class NoSuchCors(NotFound): status = 404 code = 'NoSuchCORSConfiguration' class NoSuchLiveChannel(NotFound): status = 404 code = 'NoSuchLiveChannel' class Conflict(ServerError): status = 409 code = '' class BucketNotEmpty(Conflict): status = 409 code = 'BucketNotEmpty' class PositionNotEqualToLength(Conflict): status = 409 code = 'PositionNotEqualToLength' def __init__(self, status, headers, body, details): super(PositionNotEqualToLength, self).__init__(status, headers, body, details) self.next_position = int(headers['x-oss-next-append-position']) class ObjectNotAppendable(Conflict): status = 409 code = 'ObjectNotAppendable' class ChannelStillLive(Conflict): status = 409 code = 'ChannelStillLive' class LiveChannelDisabled(Conflict): status = 409 code = 'LiveChannelDisabled' class PreconditionFailed(ServerError): status = 412 code = 'PreconditionFailed' class NotModified(ServerError): status = 304 code = '' class AccessDenied(ServerError): status = 403 code = 'AccessDenied' def make_exception(resp): status = resp.status headers = resp.headers body = resp.read(4096) details = _parse_error_body(body) code = details.get('Code', '') try: klass = _OSS_ERROR_TO_EXCEPTION[(status, code)] return klass(status, headers, body, details) except KeyError: return ServerError(status, headers, body, details) def _walk_subclasses(klass): for sub in klass.__subclasses__(): yield sub for subsub in _walk_subclasses(sub): yield subsub for klass in _walk_subclasses(ServerError): status = getattr(klass, 'status', None) code = getattr(klass, 'code', None) if status is not None and code is not None: _OSS_ERROR_TO_EXCEPTION[(status, code)] = klass # XML parsing exceptions have changed in Python2.7 and ElementTree 1.3 if hasattr(ElementTree, 'ParseError'): ElementTreeParseError = (ElementTree.ParseError, expat.ExpatError) else: ElementTreeParseError = (expat.ExpatError) def _parse_error_body(body): try: root = ElementTree.fromstring(body) if root.tag != 'Error': return {} details = {} for child in root: details[child.tag] = child.text return details except ElementTreeParseError: return _guess_error_details(body) def _guess_error_details(body): details = {} body = to_string(body) if '<Error>' not in body or '</Error>' not in body: return details m = re.search('<Code>(.*)</Code>', body) if m: details['Code'] = m.group(1) m = re.search('<Message>(.*)</Message>', body) if m: details['Message'] = m.group(1) return details
21.687023
103
0.645723
989a3e62d2d140a347ede66c54d2a50ae51dac9f
516
py
Python
backend/api/authentication/__init__.py
jacorea/ismp
81cf55559005753f3055165689889b18aec958ac
[ "CC0-1.0" ]
3
2020-05-08T03:51:43.000Z
2020-06-13T23:12:26.000Z
backend/api/authentication/__init__.py
jacorea/ismp
81cf55559005753f3055165689889b18aec958ac
[ "CC0-1.0" ]
15
2020-05-04T05:49:17.000Z
2020-06-01T21:31:03.000Z
backend/api/authentication/__init__.py
jacorea/ismp
81cf55559005753f3055165689889b18aec958ac
[ "CC0-1.0" ]
11
2020-05-01T04:35:24.000Z
2020-05-28T17:17:21.000Z
from django.apps import AppConfig class AuthenticationAppConfig(AppConfig): name = 'api.authentication' label = 'authentication' verbose_name = 'Authentication' def ready(self): import api.authentication.signals # This is how we register our custom app config with Django. Django is smart # enough to look for the `default_app_config` property of each registered app # and use the correct app config based on that value. default_app_config = 'api.authentication.AuthenticationAppConfig'
30.352941
77
0.767442
17f5f3d022cebd9ec1879e82a515bf6d9ebdad4b
16,853
py
Python
sample_data/Set-PD-Ix-100/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point10/script_DoE10_meshing.py
hanklu2020/mabessa_F3DAS
57b1bd1cb85d96567ad1044c216535ab3df88db3
[ "BSD-3-Clause" ]
null
null
null
sample_data/Set-PD-Ix-100/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point10/script_DoE10_meshing.py
hanklu2020/mabessa_F3DAS
57b1bd1cb85d96567ad1044c216535ab3df88db3
[ "BSD-3-Clause" ]
null
null
null
sample_data/Set-PD-Ix-100/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point10/script_DoE10_meshing.py
hanklu2020/mabessa_F3DAS
57b1bd1cb85d96567ad1044c216535ab3df88db3
[ "BSD-3-Clause" ]
null
null
null
# Abaqus/CAE script # Created by M.A. Bessa (M.A.Bessa@tudelft.nl) on 12-Nov-2019 00:39:42 # from abaqus import * from abaqusConstants import * session.viewports['Viewport: 1'].makeCurrent() #session.viewports['Viewport: 1'].maximize() from caeModules import * from driverUtils import executeOnCaeStartup executeOnCaeStartup() Mdb() # import numpy #------------------------------------------------------------ os.chdir(r'/home/gkus/F3DAS-master/3_Analyses/DOE_Ix-PD-100/Input_point1/Imperfection_point1/DoE_point10') # #------------------------------------------------------------- # Parameters: VertexPolygon = 3 # Number of vertices (sides) of the polygon base power = 1.00000e+00 # Power law exponent establishing the evolution of the spacing between battens MastDiameter = 1.00000e+02 # Radius of the circumscribing circle of the polygon nStories = 1 # Number of stories in HALF of the strut (i.e. in a single AstroMast!) MastPitch = 2.83874e+01 # Pitch length of the strut (i.e. a single AstroMast!) pinned_joints = 1 # (1 = batten are pinned to longerons, 0 = battens and longerons are a solid piece) Longeron_CS = 1.00008e+01 # (Cross Section of the longeron) Ix = 5.40172e+01 # (Second moment of area around X axis ) Iy = 7.50000e+01 # (Second moment of area around Y axis ) J = 2.50000e+02 # (Second moment of area around X axis ) Emodulus = 1.82600e+03 # (Youngus Modulus) Gmodulus = 6.57369e+02 # (Shear Modulus) nu = 3.88869e-01 # (Poisson Ratio) ConeSlope = 5.00000e-01 # Slope of the longerons (0 = straight, <0 larger at the top, >0 larger at the bottom) Twist_angle = 0.00000e+00 # Do you want to twist the longerons? transition_length_ratio = 1.00000e+00 # Transition zone for the longerons #------------------------------------------------------------ MastRadius = MastDiameter/2.0 MastHeight = nStories*MastPitch Mesh_size = min(MastRadius,MastPitch)/300.0 session.viewports['Viewport: 1'].setValues(displayedObject=None) # Create all the joints of the a single Deployable Mast: joints = numpy.zeros((nStories+1,VertexPolygon,3)) joints_outter = numpy.zeros((nStories+1,VertexPolygon,3)) for iStorey in range(0,nStories+1,1): for iVertex in range(0,VertexPolygon,1): # Constant spacing between each storey (linear evolution): Zcoord = MastHeight/nStories*iStorey # Power-law spacing between each storey (more frequent at the fixed end): # Zcoord = MastHeight*(float(iStorey)/float(nStories))**power # Power-law spacing between each storey (more frequent at the rotating end): # Zcoord = -MastHeight/(float(nStories)**power)*(float(nStories-iStorey)**power)+MastHeight # Exponential spacing between each storey # Zcoord =(MastHeight+1.0)/exp(float(nStories))*exp(float(iStorey)) # Xcoord = MastRadius*cos(2.0*pi/VertexPolygon*iVertex + Twist_angle*min(Zcoord/MastHeight/transition_length_ratio,1.0)) Ycoord = MastRadius*sin(2.0*pi/VertexPolygon*iVertex + Twist_angle*min(Zcoord/MastHeight/transition_length_ratio,1.0)) # Save point defining this joint: joints[iStorey,iVertex,:] = (Xcoord*(1.0-min(Zcoord,transition_length_ratio*MastHeight)/MastHeight*ConeSlope),Ycoord*(1.0-min(Zcoord,transition_length_ratio*MastHeight)/MastHeight*ConeSlope),Zcoord) # center = (0.0,0.0) vec = joints[iStorey,iVertex,0:2]-center norm_vec = numpy.linalg.norm(vec) joints_outter[iStorey,iVertex,2] = joints[iStorey,iVertex,2] joints_outter[iStorey,iVertex,0:2] = joints[iStorey,iVertex,0:2] # end iSide loop #end iStorey loop # Create the longerons: p_longerons = mdb.models['Model-1'].Part(name='longerons', dimensionality=THREE_D, type=DEFORMABLE_BODY) p_longerons = mdb.models['Model-1'].parts['longerons'] session.viewports['Viewport: 1'].setValues(displayedObject=p_longerons) d_longerons, r_longerons = p_longerons.datums, p_longerons.referencePoints LocalDatum_list = [] # List with local coordinate system for each longeron long_midpoints = [] # List with midpoints of longerons (just to determine a set containing the longerons) e_long = p_longerons.edges for iVertex in range(0,VertexPolygon,1): # First create local coordinate system (useful for future constraints, etc.): iStorey=0 origin = joints[iStorey,iVertex,:] point2 = joints[iStorey,iVertex-1,:] name = 'Local_Datum_'+str(iVertex) LocalDatum_list.append(p_longerons.DatumCsysByThreePoints(origin=origin, point2=point2, name=name, coordSysType=CARTESIAN, point1=(0.0, 0.0, 0.0))) # # Then, create the longerons templist = [] # List that will contain the points used to make each longeron for iStorey in range(0,nStories+1,1): templist.append(joints[iStorey,iVertex,:]) if iStorey != 0: # Save midpoints of bars long_midpoints.append( [(joints[iStorey-1,iVertex,:]+joints[iStorey,iVertex,:])/2 , ]) # end if # end iStorey loop p_longerons.WirePolyLine(points=templist, mergeType=IMPRINT, meshable=ON) # Create set for each longeron (to assign local beam directions) for i in range(0,len(templist)): # loop over longerons edges if i == 0: select_edges = e_long.findAt([templist[0], ]) # Find the first edge else: # Now find remaining edges in longerons temp = e_long.findAt([templist[i], ]) select_edges = select_edges + temp #end if #end i loop longeron_name = 'longeron-'+str(iVertex)+'_set' p_longerons.Set(edges=select_edges, name=longeron_name) #end for iVertex loop # Longerons set: e_long = p_longerons.edges select_edges = [] for i in range(0,len(long_midpoints)): # loop over longerons edges if i == 0: select_edges = e_long.findAt(long_midpoints[0]) # Find the first edge else: # Now find remaining edges in longerons temp = e_long.findAt(long_midpoints[i]) select_edges = select_edges + temp #end if #end i loop p_longerons.Set(edges=select_edges, name='all_longerons_set') all_longerons_set_edges = select_edges p_longerons.Surface(circumEdges=all_longerons_set_edges, name='all_longerons_surface') # Create a set with all the joints: v_long = p_longerons.vertices select_vertices = [] select_top_vertices = [] select_bot_vertices = [] for iStorey in range(0,nStories+1,1): for iVertex in range(0,VertexPolygon,1): # Select all the joints in the longerons: current_joint = v_long.findAt( [joints[iStorey,iVertex,:] , ] ) # Find the first vertex current_joint_name = 'joint-'+str(iStorey)+'-'+str(iVertex) # Create a set for each joint: p_longerons.Set(vertices=current_joint, name=current_joint_name) # if iStorey == 0 and iVertex == 0: select_vertices = current_joint # Instantiate the first point in set else: select_vertices = select_vertices + current_joint # Instantiate the first point in set # endif iStorey == 0 and iVertex == 0 # if iStorey == 0: # Also save the bottom nodes separately if iVertex == 0: # Start selecting the bottom joints for implementing the boundary conditions select_bot_vertices = current_joint else: select_bot_vertices = select_bot_vertices + current_joint # endif iStorey == 0: elif iStorey == nStories: # Also save the top nodes separately if iVertex == 0: # Start selecting the top joints for implementing the boundary conditions select_top_vertices = current_joint else: # remaining vertices: select_top_vertices = select_top_vertices + current_joint #end if #end iVertex loop #end iStorey loop p_longerons.Set(vertices=select_vertices, name='all_joints_set') p_longerons.Set(vertices=select_bot_vertices, name='bot_joints_set') p_longerons.Set(vertices=select_top_vertices, name='top_joints_set') # # Create materials: mdb.models['Model-1'].Material(name='NiTi_alloy') mdb.models['Model-1'].materials['NiTi_alloy'].Elastic(table=((83.0E3, 0.31), )) mdb.models['Model-1'].materials['NiTi_alloy'].Density(table=((1.0E-3, ), )) mdb.models['Model-1'].Material(name='PC') mdb.models['Model-1'].materials['PC'].Elastic(table=((2134, 0.27), )) mdb.models['Model-1'].materials['PC'].Density(table=((1.19E-3, ), )) mdb.models['Model-1'].Material(name='PLA') mdb.models['Model-1'].materials['PLA'].Elastic(table=((Emodulus, nu), )) mdb.models['Model-1'].materials['PLA'].Density(table=((1.24E-3, ), )) mdb.models['Model-1'].Material(name='CNT') mdb.models['Model-1'].materials['CNT'].Elastic(table=((1000.0E3, 0.3), )) mdb.models['Model-1'].materials['CNT'].Density(table=((1.0E-3, ), )) # Create beam profiles and beam sections: mdb.models['Model-1'].GeneralizedProfile(name='LongeronsProfile', area=Longeron_CS, i11=Ix, i12=0.0, i22=Iy, j=J, gammaO=0.0, gammaW=0.0) mdb.models['Model-1'].BeamSection(name='LongeronsSection', integration= BEFORE_ANALYSIS, poissonRatio=0.31, beamShape=CONSTANT, profile='LongeronsProfile', density=0.00124, thermalExpansion=OFF, temperatureDependency=OFF, dependencies=0, table=((Emodulus, Gmodulus), ), alphaDamping=0.0, betaDamping=0.0, compositeDamping=0.0, centroid=(0.0, 0.0), shearCenter=(0.0, 0.0), consistentMassMatrix=False) # Assign respective sections: p_longerons.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, region= p_longerons.sets['all_longerons_set'], sectionName='LongeronsSection', thicknessAssignment=FROM_SECTION) # Assing beam orientation: for iVertex in range(0,VertexPolygon,1): iStorey=0 dir_vec_n1 = joints[iStorey,iVertex,:]-(0.,0.,0.) # Vector n1 perpendicular to the longeron tangent longeron_name = 'longeron-'+str(iVertex)+'_set' region=p_longerons.sets[longeron_name] p_longerons.assignBeamSectionOrientation(region=region, method=N1_COSINES, n1=dir_vec_n1) #end for iVertex # delta = Mesh_size/100.0 ######################################################################## #Mesh the structure #refPlane = p_longerons.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=L/2) #d = p.datums #All_faces = facesLeafs+facesDoubleThickBoom #p.PartitionFaceByDatumPlane(datumPlane=d[refPlane.id], faces=All_faces) ## #session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=OFF # engineeringFeatures=OFF, mesh=ON) #session.viewports['Viewport: 1'].partDisplay.meshOptions.setValues( # meshTechnique=ON) #p = mdb.models['Model-1'].parts['reducedCF_TRAC_boom'] p_longerons.seedPart(size=Mesh_size, deviationFactor=0.04, minSizeFactor=0.001, constraint=FINER) p_longerons.seedEdgeBySize(edges=all_longerons_set_edges, size=Mesh_size, deviationFactor=0.04, constraint=FINER) elemType_longerons = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD) # Element type p_longerons.setElementType(regions=(all_longerons_set_edges, ), elemTypes=(elemType_longerons, )) p_longerons.generateMesh() ####################################################################### # Make Analytical surfaces for contact purposes s1 = mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=MastRadius*3.0) g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints s1.setPrimaryObject(option=STANDALONE) s1.Line(point1=(0.0, -MastRadius*1.1), point2=(0.0, MastRadius*1.1)) s1.VerticalConstraint(entity=g[2], addUndoState=False) p_surf = mdb.models['Model-1'].Part(name='AnalyticSurf', dimensionality=THREE_D, type=ANALYTIC_RIGID_SURFACE) p_surf = mdb.models['Model-1'].parts['AnalyticSurf'] p_surf.AnalyticRigidSurfExtrude(sketch=s1, depth=MastRadius*2.2) s1.unsetPrimaryObject() rigid_face = p_surf.faces #surf_select = f.findAt((0.0,MastRadius*1.05,0.0)) #surf_select = f[0] p_surf.Surface(side1Faces=rigid_face, name='rigid_support') #p_surf.Set(faces=surf_select, name='support_surface_set') #p_surf.sets['all_diagonals_set'] # # Make assembly: a = mdb.models['Model-1'].rootAssembly a.DatumCsysByDefault(CARTESIAN) # Create reference points to assign boundary conditions RP_ZmYmXm = a.ReferencePoint(point=(0.0, 0.0, -1.1*MastRadius)) refpoint_ZmYmXm = (a.referencePoints[RP_ZmYmXm.id],) a.Set(referencePoints=refpoint_ZmYmXm, name='RP_ZmYmXm') # RP_ZpYmXm = a.ReferencePoint(point=(0.0, 0.0, MastHeight+1.1*MastRadius)) refpoint_ZpYmXm = (a.referencePoints[RP_ZpYmXm.id],) a.Set(referencePoints=refpoint_ZpYmXm, name='RP_ZpYmXm') # # Create longerons a_long = a.Instance(name='longerons-1-1', part=p_longerons, dependent=ON) # Create bottom surface a_surf_bot = a.Instance(name='AnalyticSurf-1-1', part=p_surf, dependent=ON) # Now rotate the plane to have the proper direction a.rotate(instanceList=('AnalyticSurf-1-1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), angle=90.0) # # Create set with surface select_bot_surf=a_surf_bot.surfaces['rigid_support'] # Perhaps we need to define a set instead of a face #AnalyticSurf_surface=a_surf_bot.Surface(side1Faces=select_bot_surf, name='support_surf_bot-1') mdb.models['Model-1'].RigidBody(name='Constraint-RigidBody_surf_bot-1', refPointRegion=refpoint_ZmYmXm, surfaceRegion=select_bot_surf) for iVertex in range(0,VertexPolygon,1): # # Select appropriate coordinate system: DatumID = LocalDatum_list[iVertex].id datum = a_long.datums[DatumID] for iStorey in range(0,nStories+1,1): # Current joint: current_joint_name = 'joint-'+str(iStorey)+'-'+str(iVertex) # Define COUPLING constraints for all the joints: if iStorey == 0: # Bottom base: # master_region=a.sets['RP_ZmYmXm'] # Note that the master is the Reference Point # slave_region=a_long.sets[current_joint_name] # Make constraint for this joint: Constraint_name = 'RP_ZmYmXm_PinConstraint-'+str(iStorey)+'-'+str(iVertex) mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=OFF, ur2=ON, ur3=ON) # #Constraint_name = 'RP_ZmYmXm_FixedConstraint-'+str(iStorey)+'-'+str(iVertex) #mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, # surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, # localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON) # Make constraint for this joint: elif iStorey == nStories: # Top base: # master_region=a.sets['RP_ZpYmXm'] # Note that the master is the Reference Point # slave_region=a_long.sets[current_joint_name] # Make constraint for this joint: Constraint_name = 'RP_ZpYmXm_PinConstraint-'+str(iStorey)+'-'+str(iVertex) mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=OFF, ur2=ON, ur3=ON) # #Constraint_name = 'RP_ZpYmXm_FixedConstraint-'+str(iStorey)+'-'+str(iVertex) #mdb.models['Model-1'].Coupling(name=Constraint_name, controlPoint=master_region, # surface=slave_region, influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC, # localCsys=datum, u1=ON, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON) # Make constraint for this joint: else: # Middle stories: master_region=a_long.sets[current_joint_name] # slave_region=a_bat.sets[current_joint_name] # Make constraint for this joint: #endif iStorey # #end for iStorey #end for iVertex # # Create hinges: #select_joints=a.instances['deployable_mast-1'].sets['all_joints_set'] #select_RefPoint=a.sets['RP_joints'] #mdb.models['Model-1'].RigidBody(name='JointsContraint', refPointRegion=select_RefPoint, # pinRegion=select_joints) # # Export mesh to .inp file # mdb.Job(name='include_mesh_DoE10', model='Model-1', type=ANALYSIS, explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, description='', parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT, numDomains=1, userSubroutine='', numCpus=1, memory=90, memoryUnits=PERCENTAGE, scratch='', echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF) import os mdb.jobs['include_mesh_DoE10'].writeInput(consistencyChecking=OFF) # End of python script
44.467018
206
0.692933
8ef0138c93d6fca21405c2b6172e89b5ed02dada
134
py
Python
pymediaroom/__init__.py
MartinHjelmare/pymediaroom
f4f2686c8d5622dd5ae1bcdd76900ba35e148529
[ "MIT" ]
null
null
null
pymediaroom/__init__.py
MartinHjelmare/pymediaroom
f4f2686c8d5622dd5ae1bcdd76900ba35e148529
[ "MIT" ]
null
null
null
pymediaroom/__init__.py
MartinHjelmare/pymediaroom
f4f2686c8d5622dd5ae1bcdd76900ba35e148529
[ "MIT" ]
null
null
null
from .remote import * from .commands import * from .error import * from .notify import install_mediaroom_protocol version = '0.6.3'
19.142857
47
0.753731
4a456bc210d5410287e518416584b5b260be8d2e
288
py
Python
pypesto/profile/__init__.py
m-philipps/pyPESTO
4c30abfca56ba714c302141cd44a9dd366bff4bb
[ "BSD-3-Clause" ]
null
null
null
pypesto/profile/__init__.py
m-philipps/pyPESTO
4c30abfca56ba714c302141cd44a9dd366bff4bb
[ "BSD-3-Clause" ]
null
null
null
pypesto/profile/__init__.py
m-philipps/pyPESTO
4c30abfca56ba714c302141cd44a9dd366bff4bb
[ "BSD-3-Clause" ]
null
null
null
""" Profile ======= """ from .approximate import approximate_parameter_profile from .options import ProfileOptions from .profile import parameter_profile from .util import calculate_approximate_ci, chi2_quantile_to_ratio from .validation_intervals import validation_profile_significance
26.181818
66
0.84375
8d2c5f4ae68bb563025936a8f042a2c95610c030
17,259
py
Python
attentive_gan_model/attentive_gan_net.py
sohaibrabbani/weather-removal-GAN
34e277737d4842f1aa3559919b27d3622ab25075
[ "MIT" ]
235
2018-07-31T15:53:33.000Z
2022-03-28T11:25:00.000Z
attentive_gan_model/attentive_gan_net.py
sohaibrabbani/weather-removal-GAN
34e277737d4842f1aa3559919b27d3622ab25075
[ "MIT" ]
83
2018-09-07T04:29:14.000Z
2022-03-31T17:06:32.000Z
attentive_gan_model/attentive_gan_net.py
sohaibrabbani/weather-removal-GAN
34e277737d4842f1aa3559919b27d3622ab25075
[ "MIT" ]
88
2018-08-16T10:55:16.000Z
2022-03-07T07:19:58.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 18-6-26 上午11:45 # @Author : MaybeShewill-CV # @Site : https://github.com/MaybeShewill-CV/attentive-gan-derainnet # @File : attentive_gan_net.py # @IDE: PyCharm """ 实现Attentive GAN Network中的Attentive-Recurrent Network """ import tensorflow as tf from attentive_gan_model import cnn_basenet from attentive_gan_model import vgg16 from config import global_config CFG = global_config.cfg class GenerativeNet(cnn_basenet.CNNBaseModel): """ 实现Attentive GAN Network中的生成网络 Fig(2)中的generator部分 """ def __init__(self, phase): """ :return: """ super(GenerativeNet, self).__init__() self._vgg_extractor = vgg16.VGG16Encoder(phase='test') self._train_phase = tf.constant('train', dtype=tf.string) self._test_phase = tf.constant('test', dtype=tf.string) self._phase = phase self._is_training = self._init_phase() def _init_phase(self): """ :return: """ return tf.equal(self._phase, self._train_phase) def build(self, input_tensor): """ :param input_tensor: :return: """ pass def _residual_block(self, input_tensor, name): """ attentive recurrent net中的residual block :param input_tensor: :param name: :return: """ output = None with tf.variable_scope(name): inputs = input_tensor shortcut = input_tensor for i in range(6): if i == 0: inputs = self.conv2d(inputdata=inputs, out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=True, name='block_{:d}_conv_1'.format(i)) # TODO reimplement residual block inputs = self.lrelu(inputdata=inputs, name='block_{:d}_relu_1'.format(i + 1)) output = inputs shortcut = output else: inputs = self.conv2d(inputdata=inputs, out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=True, name='block_{:d}_conv_1'.format(i)) inputs = self.lrelu(inputdata=inputs, name='block_{:d}_conv_1'.format(i + 1)) inputs = self.conv2d(inputdata=inputs, out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=True, name='block_{:d}_conv_2'.format(i)) inputs = self.lrelu(inputdata=inputs, name='block_{:d}_conv_2'.format(i + 1)) output = self.lrelu(inputdata=tf.add(inputs, shortcut), name='block_{:d}_add'.format(i)) shortcut = output return output def _conv_lstm(self, input_tensor, input_cell_state, name): """ attentive recurrent net中的convolution lstm 见公式(3) :param input_tensor: :param input_cell_state: :param name: :return: """ with tf.variable_scope(name): conv_i = self.conv2d(inputdata=input_tensor, out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_i') sigmoid_i = self.sigmoid(inputdata=conv_i, name='sigmoid_i') conv_f = self.conv2d(inputdata=input_tensor, out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_f') sigmoid_f = self.sigmoid(inputdata=conv_f, name='sigmoid_f') cell_state = \ sigmoid_f * input_cell_state + \ sigmoid_i * tf.nn.tanh(self.conv2d(inputdata=input_tensor, out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_c')) conv_o = self.conv2d(inputdata=input_tensor, out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_o') sigmoid_o = self.sigmoid(inputdata=conv_o, name='sigmoid_o') lstm_feats = sigmoid_o * tf.nn.tanh(cell_state) attention_map = self.conv2d(inputdata=lstm_feats, out_channel=1, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='attention_map') attention_map = self.sigmoid(inputdata=attention_map) ret = { 'attention_map': attention_map, 'cell_state': cell_state, 'lstm_feats': lstm_feats } return ret def build_attentive_rnn(self, input_tensor, name, reuse=False): """ Generator的attentive recurrent部分, 主要是为了找到attention部分 :param input_tensor: :param name: :param reuse: :return: """ [batch_size, tensor_h, tensor_w, _] = input_tensor.get_shape().as_list() with tf.variable_scope(name, reuse=reuse): init_attention_map = tf.constant(0.5, dtype=tf.float32, shape=[batch_size, tensor_h, tensor_w, 1]) init_cell_state = tf.constant(0.0, dtype=tf.float32, shape=[batch_size, tensor_h, tensor_w, 32]) init_lstm_feats = tf.constant(0.0, dtype=tf.float32, shape=[batch_size, tensor_h, tensor_w, 32]) attention_map_list = [] for i in range(4): attention_input = tf.concat((input_tensor, init_attention_map), axis=-1) conv_feats = self._residual_block(input_tensor=attention_input, name='residual_block_{:d}'.format(i + 1)) lstm_ret = self._conv_lstm(input_tensor=conv_feats, input_cell_state=init_cell_state, name='conv_lstm_block_{:d}'.format(i + 1)) init_attention_map = lstm_ret['attention_map'] init_cell_state = lstm_ret['cell_state'] init_lstm_feats = lstm_ret['lstm_feats'] attention_map_list.append(lstm_ret['attention_map']) ret = { 'final_attention_map': init_attention_map, 'final_lstm_feats': init_lstm_feats, 'attention_map_list': attention_map_list } return ret def compute_attentive_rnn_loss(self, input_tensor, label_tensor, name, reuse=False): """ 计算attentive rnn损失 :param input_tensor: :param label_tensor: :param name: :param reuse: :return: """ with tf.variable_scope(name, reuse=reuse): inference_ret = self.build_attentive_rnn(input_tensor=input_tensor, name='attentive_inference') loss = tf.constant(0.0, tf.float32) n = len(inference_ret['attention_map_list']) for index, attention_map in enumerate(inference_ret['attention_map_list']): mse_loss = tf.pow(0.8, n - index + 1) * \ tf.losses.mean_squared_error(labels=label_tensor, predictions=attention_map) loss = tf.add(loss, mse_loss) return loss, inference_ret['final_attention_map'] def build_autoencoder(self, input_tensor, name, reuse=False): """ Generator的autoencoder部分, 负责获取图像上下文信息 :param input_tensor: :param name: :param reuse: :return: """ with tf.variable_scope(name, reuse=reuse): conv_1 = self.conv2d(inputdata=input_tensor, out_channel=64, kernel_size=5, padding='SAME', stride=1, use_bias=False, name='conv_1') relu_1 = self.lrelu(inputdata=conv_1, name='relu_1') conv_2 = self.conv2d(inputdata=relu_1, out_channel=128, kernel_size=3, padding='SAME', stride=2, use_bias=False, name='conv_2') relu_2 = self.lrelu(inputdata=conv_2, name='relu_2') conv_3 = self.conv2d(inputdata=relu_2, out_channel=128, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_3') relu_3 = self.lrelu(inputdata=conv_3, name='relu_3') conv_4 = self.conv2d(inputdata=relu_3, out_channel=128, kernel_size=3, padding='SAME', stride=2, use_bias=False, name='conv_4') relu_4 = self.lrelu(inputdata=conv_4, name='relu_4') conv_5 = self.conv2d(inputdata=relu_4, out_channel=256, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_5') relu_5 = self.lrelu(inputdata=conv_5, name='relu_5') conv_6 = self.conv2d(inputdata=relu_5, out_channel=256, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_6') relu_6 = self.lrelu(inputdata=conv_6, name='relu_6') dia_conv1 = self.dilation_conv(input_tensor=relu_6, k_size=3, out_dims=256, rate=2, padding='SAME', use_bias=False, name='dia_conv_1') relu_7 = self.lrelu(dia_conv1, name='relu_7') dia_conv2 = self.dilation_conv(input_tensor=relu_7, k_size=3, out_dims=256, rate=4, padding='SAME', use_bias=False, name='dia_conv_2') relu_8 = self.lrelu(dia_conv2, name='relu_8') dia_conv3 = self.dilation_conv(input_tensor=relu_8, k_size=3, out_dims=256, rate=8, padding='SAME', use_bias=False, name='dia_conv_3') relu_9 = self.lrelu(dia_conv3, name='relu_9') dia_conv4 = self.dilation_conv(input_tensor=relu_9, k_size=3, out_dims=256, rate=16, padding='SAME', use_bias=False, name='dia_conv_4') relu_10 = self.lrelu(dia_conv4, name='relu_10') conv_7 = self.conv2d(inputdata=relu_10, out_channel=256, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_7') relu_11 = self.lrelu(inputdata=conv_7, name='relu_11') conv_8 = self.conv2d(inputdata=relu_11, out_channel=256, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_8') relu_12 = self.lrelu(inputdata=conv_8, name='relu_12') deconv_1 = self.deconv2d(inputdata=relu_12, out_channel=128, kernel_size=4, stride=2, padding='SAME', use_bias=False, name='deconv_1') avg_pool_1 = self.avgpooling(inputdata=deconv_1, kernel_size=2, stride=1, padding='SAME', name='avg_pool_1') relu_13 = self.lrelu(inputdata=avg_pool_1, name='relu_13') conv_9 = self.conv2d(inputdata=tf.add(relu_13, relu_3), out_channel=128, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_9') relu_14 = self.lrelu(inputdata=conv_9, name='relu_14') deconv_2 = self.deconv2d(inputdata=relu_14, out_channel=64, kernel_size=4, stride=2, padding='SAME', use_bias=False, name='deconv_2') avg_pool_2 = self.avgpooling(inputdata=deconv_2, kernel_size=2, stride=1, padding='SAME', name='avg_pool_2') relu_15 = self.lrelu(inputdata=avg_pool_2, name='relu_15') conv_10 = self.conv2d(inputdata=tf.add(relu_15, relu_1), out_channel=32, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='conv_10') relu_16 = self.lrelu(inputdata=conv_10, name='relu_16') skip_output_1 = self.conv2d(inputdata=relu_12, out_channel=3, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='skip_ouput_1') skip_output_2 = self.conv2d(inputdata=relu_14, out_channel=3, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='skip_output_2') skip_output_3 = self.conv2d(inputdata=relu_16, out_channel=3, kernel_size=3, padding='SAME', stride=1, use_bias=False, name='skip_output_3') # 传统GAN输出层都使用tanh函数激活 skip_output_3 = tf.nn.tanh(skip_output_3, name='skip_output_3_tanh') ret = { 'skip_1': skip_output_1, 'skip_2': skip_output_2, 'skip_3': skip_output_3 } return ret def compute_autoencoder_loss(self, input_tensor, label_tensor, name, reuse=False): """ 计算自编码器损失函数 :param input_tensor: :param label_tensor: :param name: :param reuse: :return: """ [_, ori_height, ori_width, _] = label_tensor.get_shape().as_list() label_tensor_ori = label_tensor label_tensor_resize_2 = tf.image.resize_bilinear(images=label_tensor, size=(int(ori_height / 2), int(ori_width / 2))) label_tensor_resize_4 = tf.image.resize_bilinear(images=label_tensor, size=(int(ori_height / 4), int(ori_width / 4))) label_list = [label_tensor_resize_4, label_tensor_resize_2, label_tensor_ori] lambda_i = [0.6, 0.8, 1.0] with tf.variable_scope(name, reuse=reuse): # 计算lm_loss(见公式(5)) lm_loss = tf.constant(0.0, tf.float32, name="lm_loss") inference_ret = self.build_autoencoder(input_tensor=input_tensor, name='autoencoder_inference') output_list = [inference_ret['skip_1'], inference_ret['skip_2'], inference_ret['skip_3']] for index, output in enumerate(output_list): mse_loss = tf.losses.mean_squared_error(output, label_list[index]) * lambda_i[index] mse_loss = tf.identity(mse_loss, name='mse_loss') lm_loss = tf.add(lm_loss, mse_loss) # 计算lp_loss(见公式(6)) src_vgg_feats = self._vgg_extractor.extract_feats(input_tensor=label_tensor, name='vgg_feats', reuse=False) pred_vgg_feats = self._vgg_extractor.extract_feats(input_tensor=output_list[-1], name='vgg_feats', reuse=True) lp_losses = [] for index, feats in enumerate(src_vgg_feats): lp_losses.append(tf.losses.mean_squared_error(src_vgg_feats[index], pred_vgg_feats[index])) lp_loss = tf.reduce_mean(lp_losses, name='lp_loss') loss = tf.add(lm_loss, lp_loss, name='autoencoder_loss') return loss, inference_ret['skip_3'] if __name__ == '__main__': input_image = tf.placeholder(dtype=tf.float32, shape=[1, 256, 256, 3]) auto_label_image = tf.placeholder(dtype=tf.float32, shape=[1, 256, 256, 3]) rnn_label_image = tf.placeholder(dtype=tf.float32, shape=[1, 256, 256, 1]) net = GenerativeNet(phase=tf.constant('train', tf.string)) rnn_loss = net.compute_attentive_rnn_loss(input_image, rnn_label_image, name='rnn_loss') autoencoder_loss = net.compute_autoencoder_loss(input_image, auto_label_image, name='autoencoder_loss') for vv in tf.trainable_variables(): print(vv.name)
46.395161
107
0.522974
11de698e14944b1b7d21742096c2130579c4d3b3
6,777
py
Python
src/parsing/grammar.py
iwasingh/Wikoogle
ef39b4f96347c9899721ea78403d8db84e0c2b82
[ "MIT" ]
8
2020-06-27T08:56:30.000Z
2021-09-29T21:31:24.000Z
src/parsing/grammar.py
iwasingh/Wikoogle
ef39b4f96347c9899721ea78403d8db84e0c2b82
[ "MIT" ]
2
2020-09-03T15:52:17.000Z
2021-03-31T19:53:56.000Z
src/parsing/grammar.py
iwasingh/Wikoogle
ef39b4f96347c9899721ea78403d8db84e0c2b82
[ "MIT" ]
1
2020-06-29T15:50:51.000Z
2020-06-29T15:50:51.000Z
import logging import re import parsing.parser as p from .combinators import pipe, expect, extract, seq, sor, rep, ParseError from .symbols import Template, Text, Link, Heading, Heading6, Heading5, Heading4, Heading3, Comment, Bold, \ ItalicAndBold, Italic from .utils import recursive # import src.parsing.lexer as l logger = logging.getLogger('Grammar') # TODO move symbols in a own file class Grammar: """Handles the grammar on which the parser will depend upon Each production rule is described in the EBNF or ABNF form and might be simplified from the original one You can find the grammar for Wikimedia in the ABNF form here(https://www.mediawiki.org/wiki/Preprocessor_ABNF). An internal grammar definition might be used because for index purpose some rules are useless """ rules = {} def __init__(self): pass # Add additional rules def rule(self, rule): pass def expression(self): """ Wikimedia primary expression ε : = text expression := template | heading_2 | link | ε :param parser: :return: """ # sor(*Grammar.rules.values()) return sor( self.template, self.link, self.headings, self.epsilon ) @staticmethod def __expression(): return sor( Grammar.template, Grammar.link, Grammar.headings, Grammar.epsilon ) @staticmethod def template(parser): """Template grammar Wikimedia ABNF template = "{{", title, { "|", part }, "}}" ; part = [ name, "=" ], value ; title = text ; ------ Internal text := ε template := '{{' text '}}' Templates are used to call functions and do some particular formatting Only the title might be necessary, this is why the template is simplified with a simple text inside brackets, therefore there is no recursion. :param parser: :return: """ result = pipe(parser, seq(expect(Template.start), Grammar.epsilon, expect(Template.end)), extract) if result: return p.Node(p.TemplateP(result.value)) return None # return TemplateT.parse(parser) @staticmethod def link(parser): """Link grammar Wikimedia EBNF start link = "[["; end link = "]]"; internal link = start link, full pagename, ["|", label], end link, --- Internal pagename := ε expression := template | link | ε link := '[[' pagename, { expression } ']]' The link contain the page name, and 0 or more repetitions of the expression ["|", label]. That is simplified with an expression that can by any one of the wikimedia non-terminals (text, template, link for now) Watch out left recursion (a link can contain a link) TODO add external link too, https://en.wikipedia.org/wiki/Help:Link#External_links :param parser: :return: """ # expression = sor(expect(Link.end), rep(sor(Grammar.epsilon, Grammar.template, Grammar.link), Link.end)) def extractor(arr): return (lambda _, c, children, __: (c, children))(*arr) result = pipe(parser, seq(expect(Link.start), Grammar.epsilon, rep(sor(Grammar.epsilon, Grammar.template, Grammar.link), Link.end), expect(Link.end)), extractor) if result: (content, nodes) = result node = p.LinkNode(p.LinkP(content.value)) for n in nodes: node.add(n) return node return None @staticmethod def headings(parser): """ Heading Wikimedia EBNF header end = [whitespace], line break; header6 = line break, "======", [whitespace], text, [whitespace], "======", header end; header5 = line break, "=====", [whitespace], text, [whitespace], "=====", header end; header4 = line break, "====", [whitespace], text, [whitespace], "====", header end; header3 = line break, "===", [whitespace], text, [whitespace], "===", header end; header2 = line break, "==", [whitespace], text, [whitespace], "==", header end; --- Internal EBNF header6 = "======", text, "======"; header5 = "=====", text, "====="; header4 = "====", text, "===="; header3 = "===", text, "==="; header2 = "==", text, "=="; NOTE: Linebreak is one of the ignored character in the lexer, i should consider them TODO """ precedence = [ Heading6, Heading5, Heading4, Heading3, Heading ] def extractor(r): _, arr, __ = r return arr[0] try: result = pipe(parser, sor( *[seq(expect(i.start), rep(sor(Grammar.epsilon, Grammar.template, Grammar.link), i.end), expect(i.end)) for i in precedence]), extractor) except ParseError as e: raise e if result: return p.Node(p.HeadingP(result.value)) return None @staticmethod def text(parser): return Grammar.epsilon(parser) @staticmethod def epsilon(parser): """Basic epsilon that consume the token and proceed aka Text for now. Maybe i'll further extend this to handle cases like left-recursion :param parser: :return: """ result = expect(Text.start)(parser) if result: return p.Node(p.TextP(result.text)) return None @staticmethod def linebreak(parser): pass @staticmethod def table(parser): """Table grammar Tables are threatened as text, hence will be indexed including formatting attributes not useful for indexing purpose """ pass @staticmethod def comment(parser): result = pipe(parser, seq(expect(Comment.start), Grammar.epsilon, expect(Comment.end)), extract) if result: return p.Node(p.CommentP(result.value)) return None # @staticmethod # def formatting(parser): # result = pipe(parser, sor())
29.986726
121
0.531504
69bc1b272f2322bb882336928245a5967af4a226
1,502
py
Python
day04/main.py
carterbourette/advent-of-code
b031ea923a4f27487ffb43acdd5bef228c3dfa42
[ "MIT" ]
1
2020-12-05T20:54:08.000Z
2020-12-05T20:54:08.000Z
day04/main.py
carterbourette/advent-of-code
b031ea923a4f27487ffb43acdd5bef228c3dfa42
[ "MIT" ]
null
null
null
day04/main.py
carterbourette/advent-of-code
b031ea923a4f27487ffb43acdd5bef228c3dfa42
[ "MIT" ]
null
null
null
import utility """Day 04: Passport Processing""" inputs = utility.inputs( parse=lambda line: [ field for field in line.split() ], pre_process='\n\n' ) def valid_height(x): is_cm = x.endswith('cm') and 150 <= int(x[:-2]) <= 193 is_in = x.endswith('in') and 59 <= int(x[:-2]) <= 76 return is_cm or is_in FIELDS = { 'byr': lambda x: 1920 <= int(x) <= 2002, 'iyr': lambda x: 2010 <= int(x) <= 2020, 'eyr': lambda x: 2020 <= int(x) <= 2030, 'hgt': valid_height, 'hcl': lambda x: x[0] == '#' and len(x) == 7 and all(c.isdigit() or c in 'abcdef' for c in x[1:]), 'ecl': lambda x: x in ('amb','blu','brn','gry','grn','hzl','oth'), 'pid': lambda x: len(x) == 9 and all(c.isdigit() for c in x) } REQUIRED = set(FIELDS) def parse(): records = [] for line in inputs: record = {} for field in line: key, val = field.split(':') record[key] = val records.append(record) return records def part1(): records = parse() valid = sum(1 for record in records if set(record.keys()) >= REQUIRED) return utility.solution({ 'valid': valid }, test=2) def part2(): records = parse() valid = 0 for record in records: is_super = set(record.keys()) >= REQUIRED if is_super and all(validator(record[field]) for field, validator in FIELDS.items()): valid += 1 return utility.solution({ 'valid': valid }) if __name__ == '__main__': utility.cli()
25.033333
102
0.563249
c76be2cf1a62170975c718e279b9342f8d6c0d86
5,889
py
Python
loaders/base_loader.py
agis85/spatial_factorisation
233d72511ffb52f52214a68f1c996555345991d0
[ "MIT" ]
15
2019-03-08T13:42:28.000Z
2021-05-06T12:08:24.000Z
loaders/base_loader.py
agis85/spatial_factorisation
233d72511ffb52f52214a68f1c996555345991d0
[ "MIT" ]
null
null
null
loaders/base_loader.py
agis85/spatial_factorisation
233d72511ffb52f52214a68f1c996555345991d0
[ "MIT" ]
3
2019-07-07T14:00:20.000Z
2020-10-07T17:11:00.000Z
import os import numpy as np from abc import abstractmethod class Loader(object): """ Abstract class defining the behaviour of loaders for different datasets. """ def __init__(self): self.num_masks = 0 self.num_volumes = 0 self.input_shape = (None, None, 1) self.data_folder = None self.volumes = sorted(self.splits()[0]['training'] + self.splits()[0]['validation'] + self.splits()[0]['test']) self.log = None @abstractmethod def splits(self): """ :return: an array of splits into validation, test and train indices """ pass @abstractmethod def load_labelled_data(self, split, split_type, modality, normalise=True, value_crop=True, downsample=1): """ Load labelled data from saved numpy arrays. Assumes a naming convention of numpy arrays as: <dataset_name>_images.npz, <dataset_name>_masks_lv.npz, <dataset_name>_masks_myo.npz etc. If numpy arrays are not found, then data is loaded from sources and saved in numpy arrays. :param split: the split number, e.g. 0, 1 :param split_type: the split type, e.g. training, validation, test, all (for all data) :param modality: modality to load if the dataset has multimodal data :param normalise: True/False: normalise images to [-1, 1] :param value_crop: True/False: crop values between 5-95 percentiles :param downsample: downsample image ratio - used for for testing :return: a Data object containing the loaded data """ pass @abstractmethod def load_unlabelled_data(self, split, split_type, modality='MR', normalise=True, value_crop=True): """ Load unlabelled data from saved numpy arrays. Assumes a naming convention of numpy arrays as ul_<dataset_name>_images.npz If numpy arrays are not found, then data is loaded from sources and saved in numpy arrays. :param split: the split number, e.g. 0, 1 :param split_type: the split type, e.g. training, validation, test, all (for all data) :param modality: modality to load if the dataset has multimodal data :param normalise: True/False: normalise images to [-1, 1] :param value_crop: True/False: crop values between 5-95 percentiles :return: a Data object containing the loaded data """ pass @abstractmethod def load_all_data(self, split, split_type, modality='MR', normalise=True, value_crop=True): """ Load all images (labelled and unlabelled) from saved numpy arrays. Assumes a naming convention of numpy arrays as all_<dataset_name>_images.npz If numpy arrays are not found, then data is loaded from sources and saved in numpy arrays. :param split: the split number, e.g. 0, 1 :param split_type: the split type, e.g. training, validation, test, all (for all data) :param modality: modality to load if the dataset has multimodal data :param normalise: True/False: normalise images to [-1, 1] :param value_crop: True/False: crop values between 5-95 percentiles :return: a Data object containing the loaded data """ pass @abstractmethod def load_raw_labelled_data(self, normalise=True, value_crop=True): """ Load raw data, do preprocessing e.g. normalisation, resampling, value cropping etc :param normalise: True or False to normalise data :param value_crop: True or False to crop in the 5-95 percentiles or not. :return: a pair of arrays (images, index) """ pass @abstractmethod def load_raw_unlabelled_data(self, include_labelled, normalise=True, value_crop=True): """ Load raw data, do preprocessing e.g. normalisation, resampling, value cropping etc :param include_labelled True or False to include labelled images or not :param normalise: True or False to normalise data :param value_crop: True or False to crop in the 5-95 percentiles or not. :return: a pair of arrays (images, index) """ pass def base_load_unlabelled_images(self, dataset, split, split_type, include_labelled, normalise, value_crop): npz_prefix_type = 'ul_' if not include_labelled else 'all_' npz_prefix = npz_prefix_type + 'norm_' if normalise else npz_prefix_type + 'unnorm_' # Load saved numpy array if os.path.exists(os.path.join(self.data_folder, npz_prefix + dataset + '_images.npz')): images = np.load(os.path.join(self.data_folder, npz_prefix + dataset + '_images.npz'))['arr_0'] index = np.load(os.path.join(self.data_folder, npz_prefix + dataset + '_index.npz'))['arr_0'] self.log.debug('Loaded compressed ' + dataset + ' unlabelled data of shape ' + str(images.shape)) # Load from source else: images, index = self.load_raw_unlabelled_data(include_labelled, normalise, value_crop) images = np.expand_dims(images, axis=3) np.savez_compressed(os.path.join(self.data_folder, npz_prefix + dataset + '_images'), images) np.savez_compressed(os.path.join(self.data_folder, npz_prefix + dataset + '_index'), index) assert split_type in ['training', 'validation', 'test', 'all'], 'Unknown split_type: ' + split_type if split_type == 'all': return images, index volumes = self.splits()[split][split_type] images = np.concatenate([images[index == v] for v in volumes]) index = np.concatenate([index[index==v] for v in volumes]) return images, index
48.669421
111
0.641875
c29f0d4062bbd42e4fecbed6e167798392a23769
5,001
py
Python
tensorflow_datasets/core/utils/version.py
ChAnYaNG97/datasets
0a45e2ea98716d325fc1c5e5494f2575f3bdb908
[ "Apache-2.0" ]
1
2020-05-24T21:30:50.000Z
2020-05-24T21:30:50.000Z
tensorflow_datasets/core/utils/version.py
ChAnYaNG97/datasets
0a45e2ea98716d325fc1c5e5494f2575f3bdb908
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/core/utils/version.py
ChAnYaNG97/datasets
0a45e2ea98716d325fc1c5e5494f2575f3bdb908
[ "Apache-2.0" ]
1
2020-04-15T19:20:58.000Z
2020-04-15T19:20:58.000Z
# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Version utils.""" import enum import re import six _VERSION_TMPL = ( r"^(?P<major>{v})" r"\.(?P<minor>{v})" r"\.(?P<patch>{v})$") _VERSION_WILDCARD_REG = re.compile(_VERSION_TMPL.format(v=r"\d+|\*")) _VERSION_RESOLVED_REG = re.compile(_VERSION_TMPL.format(v=r"\d+")) class Experiment(enum.Enum): """Experiments which can be enabled/disabled on a per version basis. Experiments are designed to gradually apply changes to datasets while maintaining backward compatibility with previous versions. All experiments should eventually be deleted, once used by all versions of all datasets. Eg: class Experiment(enum.Enum): EXP_A = enum.auto() # Short description of experiment. class MyBuilder(...): VERSION = tfds.core.Version('1.2.3', experiments={ tfds.core.Experiment.EXP_A: True, }) """ # A Dummy experiment, which should NOT be used, except for testing. DUMMY = 1 class Version(object): """Dataset version MAJOR.MINOR.PATCH.""" _DEFAULT_EXPERIMENTS = { Experiment.DUMMY: False, } def __init__(self, version_str, description=None, experiments=None, tfds_version_to_prepare=None): """Version init. Args: version_str: string. Eg: "1.2.3". description: string, a description of what is new in this version. experiments: dict of experiments. See Experiment. tfds_version_to_prepare: string, defaults to None. If set, indicates that current version of TFDS cannot be used to `download_and_prepare` the dataset, but that TFDS at version {tfds_version_to_prepare} should be used instead. """ if description is not None and not isinstance(description, str): raise TypeError( "Description should be a string. Got {}".format(description)) self.description = description self._experiments = self._DEFAULT_EXPERIMENTS.copy() self.tfds_version_to_prepare = tfds_version_to_prepare if experiments: self._experiments.update(experiments) self.major, self.minor, self.patch = _str_to_version(version_str) def implements(self, experiment): """Returns True if version implements given experiment.""" return self._experiments[experiment] def __str__(self): return "{}.{}.{}".format(*self.tuple) def __repr__(self) -> str: return f"{type(self).__name__}(\'{str(self)}\')" @property def tuple(self): return self.major, self.minor, self.patch def _validate_operand(self, other): if isinstance(other, six.string_types): return Version(other) elif isinstance(other, Version): return other raise AssertionError("{} (type {}) cannot be compared to version.".format( other, type(other))) def __eq__(self, other): other = self._validate_operand(other) return self.tuple == other.tuple def __ne__(self, other): other = self._validate_operand(other) return self.tuple != other.tuple def __lt__(self, other): other = self._validate_operand(other) return self.tuple < other.tuple def __le__(self, other): other = self._validate_operand(other) return self.tuple <= other.tuple def __gt__(self, other): other = self._validate_operand(other) return self.tuple > other.tuple def __ge__(self, other): other = self._validate_operand(other) return self.tuple >= other.tuple def match(self, other_version): """Returns True if other_version matches. Args: other_version: string, of the form "x[.y[.x]]" where {x,y,z} can be a number or a wildcard. """ major, minor, patch = _str_to_version(other_version, allow_wildcard=True) return (major in [self.major, "*"] and minor in [self.minor, "*"] and patch in [self.patch, "*"]) def _str_to_version(version_str, allow_wildcard=False): """Return the tuple (major, minor, patch) version extracted from the str.""" reg = _VERSION_WILDCARD_REG if allow_wildcard else _VERSION_RESOLVED_REG res = reg.match(version_str) if not res: msg = "Invalid version '{}'. Format should be x.y.z".format(version_str) if allow_wildcard: msg += " with {x,y,z} being digits or wildcard." else: msg += " with {x,y,z} being digits." raise ValueError(msg) return tuple( v if v == "*" else int(v) for v in [res.group("major"), res.group("minor"), res.group("patch")])
32.686275
79
0.689662
f59754d50569c0d113bd4036c76988450cc169ed
2,742
py
Python
drf_admin/apps/system/serializers/users.py
liu3734/drf_admin
f47edff36e761380a36834daa017a3c0808a0505
[ "MIT" ]
null
null
null
drf_admin/apps/system/serializers/users.py
liu3734/drf_admin
f47edff36e761380a36834daa017a3c0808a0505
[ "MIT" ]
null
null
null
drf_admin/apps/system/serializers/users.py
liu3734/drf_admin
f47edff36e761380a36834daa017a3c0808a0505
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @author : Wang Meng @github : https://github.com/tianpangji @software : PyCharm @file : users.py @create : 2020/7/1 22:33 """ import re from django.conf import settings from django.contrib.auth import get_user_model from rest_framework import serializers Users = get_user_model() class UsersSerializer(serializers.ModelSerializer): """ 用户增删改查序列化器 """ date_joined = serializers.DateTimeField(format='%Y-%m-%d %H:%M:%S', read_only=True) department_name = serializers.ReadOnlyField(source='department.name') roles_list = serializers.ReadOnlyField() is_superuser = serializers.BooleanField(read_only=True) class Meta: model = Users fields = ['id', 'username', 'name', 'mobile', 'email', 'is_active', 'department', 'department_name', 'date_joined', 'roles', 'roles_list', 'is_superuser'] def validate(self, attrs): # 数据验证 if attrs.get('username'): if attrs.get('username').isdigit(): raise serializers.ValidationError('用户名不能为纯数字') if attrs.get('mobile'): if not re.match(r'^1[3-9]\d{9}$', attrs.get('mobile')): raise serializers.ValidationError('手机格式不正确') if attrs.get('mobile') == '': attrs['mobile'] = None return attrs def create(self, validated_data): user = super().create(validated_data) # 添加默认密码 user.set_password(settings.DEFAULT_PWD) user.save() return user class UsersPartialSerializer(serializers.ModelSerializer): """ 用户局部更新(激活/锁定)序列化器 """ class Meta: model = Users fields = ['id', 'is_active'] class ResetPasswordSerializer(serializers.ModelSerializer): """ 重置密码序列化器 """ confirm_password = serializers.CharField(write_only=True) class Meta: model = Users fields = ['id', 'password', 'confirm_password'] extra_kwargs = { 'password': { 'write_only': True } } def validate(self, attrs): # partial_update, 局部更新required验证无效, 手动验证数据 password = attrs.get('password') confirm_password = attrs.get('confirm_password') if not password: raise serializers.ValidationError('字段password为必填项') if not confirm_password: raise serializers.ValidationError('字段confirm_password为必填项') if password != confirm_password: raise serializers.ValidationError('两次密码不一致') return attrs def save(self, **kwargs): # 重写save方法, 保存密码 self.instance.set_password(self.validated_data.get('password')) self.instance.save() return self.instance
29.170213
108
0.619621
687d9bdb1bc523d3359e145e4dab5b2deabafbf7
1,889
py
Python
tests/01_integration/conftest.py
wolcomm/eos-prefix-list-agent
a1ec37494048f0f0524ca5ff985838d844c84e4e
[ "MIT" ]
8
2019-06-02T23:47:38.000Z
2021-08-24T07:30:08.000Z
tests/01_integration/conftest.py
wolcomm/eos-prefix-list-agent
a1ec37494048f0f0524ca5ff985838d844c84e4e
[ "MIT" ]
39
2019-04-09T06:21:56.000Z
2022-01-29T10:00:37.000Z
tests/01_integration/conftest.py
wolcomm/eos-prefix-list-agent
a1ec37494048f0f0524ca5ff985838d844c84e4e
[ "MIT" ]
null
null
null
# Copyright (c) 2019 Workonline Communications (Pty) Ltd. All rights reserved. # # The contents of this file are licensed under the MIT License # (the "License"); you may not use this file except in compliance with the # License. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Fixtures for PrefixListAgent integration tests.""" from __future__ import print_function import time import pytest from rptk_stub import RptkStubProcess @pytest.fixture(scope="module") def node(): """Provide a pyeapi node connected to the local unix socket.""" for retry in range(60): try: import pyeapi conn = pyeapi.connect(transport="socket") node = pyeapi.client.Node(conn) assert node.version break except Exception as e: time.sleep(3) continue else: raise e return node @pytest.fixture(scope="module") def configure_daemon(node): """Configure the agent as an EOS ProcMgr daemon.""" agent_config = [ "trace PrefixListAgent-PrefixListAgent setting PrefixList*/*", "daemon PrefixListAgent", "exec /root/bin/PrefixListAgent", "option rptk_endpoint value http://127.0.0.1:8000/", "option refresh_interval value 10", "option update_delay value 1", "no shutdown" ] node.config(agent_config) time.sleep(3) yield @pytest.fixture(scope="module") def rptk_stub(): """Launch a stub version of an rptk web application.""" process = RptkStubProcess() process.start() yield process.terminate() process.join()
28.621212
79
0.67549
fd6e6421937d23733c2472458296fa9638ed68b2
1,036
py
Python
spotify/v1/me/player/device.py
geekonedge/spotify
1f4cf733a1fb11ab96259ed1e229b141e5c696f3
[ "MIT" ]
2
2018-10-10T08:00:47.000Z
2021-10-12T04:15:33.000Z
spotify/v1/me/player/device.py
geekonedge/spotify
1f4cf733a1fb11ab96259ed1e229b141e5c696f3
[ "MIT" ]
2
2018-08-31T21:59:47.000Z
2018-08-31T22:27:57.000Z
spotify/v1/me/player/device.py
geekonedge/spotify
1f4cf733a1fb11ab96259ed1e229b141e5c696f3
[ "MIT" ]
1
2018-08-31T21:18:58.000Z
2018-08-31T21:18:58.000Z
from spotify.object.device import Device from spotify.page import Page from spotify.resource import Resource class DeviceInstance(Resource): def __init__(self, version, properties): super(DeviceInstance, self).__init__(version) self._device = Device.from_json(properties) @property def id(self): return self._device.id @property def is_active(self): return self._device.is_active @property def is_restricted(self): return self._device.is_restricted @property def name(self): return self._device.name @property def type(self): return self._device.type @property def volume_percent(self): return self._device.volume_percent class DeviceList(Resource): def list(self): response = self.version.request('GET', '/me/player/devices') return DevicePage(self.version, response.json(), 'devices') class DevicePage(Page): @property def instance_class(self): return DeviceInstance
21.142857
68
0.677606
f1b72354618112bdbca91e745a25256fa84bc6a8
6,531
py
Python
tests/test_lastseen.py
pawelkopka/kopf
51a3a70e09a17cf3baec2946b64b125a90595cf4
[ "MIT" ]
null
null
null
tests/test_lastseen.py
pawelkopka/kopf
51a3a70e09a17cf3baec2946b64b125a90595cf4
[ "MIT" ]
null
null
null
tests/test_lastseen.py
pawelkopka/kopf
51a3a70e09a17cf3baec2946b64b125a90595cf4
[ "MIT" ]
null
null
null
import json import pytest from kopf.structs.lastseen import LAST_SEEN_ANNOTATION from kopf.structs.lastseen import has_essence_stored, get_essence from kopf.structs.lastseen import get_essential_diffs from kopf.structs.lastseen import retrieve_essence, refresh_essence def test_annotation_is_fqdn(): assert LAST_SEEN_ANNOTATION.startswith('kopf.zalando.org/') @pytest.mark.parametrize('expected, body', [ pytest.param(False, {}, id='no-metadata'), pytest.param(False, {'metadata': {}}, id='no-annotations'), pytest.param(False, {'metadata': {'annotations': {}}}, id='no-lastseen'), pytest.param(True, {'metadata': {'annotations': {LAST_SEEN_ANNOTATION: ''}}}, id='present'), ]) def test_has_essence(expected, body): result = has_essence_stored(body=body) assert result == expected def test_get_essence_removes_resource_references(): body = {'apiVersion': 'group/version', 'kind': 'Kind'} essence = get_essence(body=body) assert essence == {} @pytest.mark.parametrize('field', [ 'uid', 'name', 'namespace', 'selfLink', 'generation', 'finalizers', 'resourceVersion', 'creationTimestamp', 'deletionTimestamp', 'any-unexpected-field', ]) def test_get_essence_removes_system_fields_and_cleans_parents(field): body = {'metadata': {field: 'x'}} essence = get_essence(body=body) assert essence == {} @pytest.mark.parametrize('field', [ 'uid', 'name', 'namespace', 'selfLink', 'generation', 'finalizers', 'resourceVersion', 'creationTimestamp', 'deletionTimestamp', 'any-unexpected-field', ]) def test_get_essence_removes_system_fields_but_keeps_extra_fields(field): body = {'metadata': {field: 'x', 'other': 'y'}} essence = get_essence(body=body, extra_fields=['metadata.other']) assert essence == {'metadata': {'other': 'y'}} @pytest.mark.parametrize('annotation', [ pytest.param(LAST_SEEN_ANNOTATION, id='kopf'), pytest.param('kubectl.kubernetes.io/last-applied-configuration', id='kubectl'), ]) def test_get_essence_removes_garbage_annotations_and_cleans_parents(annotation): body = {'metadata': {'annotations': {annotation: 'x'}}} essence = get_essence(body=body) assert essence == {} @pytest.mark.parametrize('annotation', [ pytest.param(LAST_SEEN_ANNOTATION, id='kopf'), pytest.param('kubectl.kubernetes.io/last-applied-configuration', id='kubectl'), ]) def test_get_essence_removes_garbage_annotations_but_keeps_others(annotation): body = {'metadata': {'annotations': {annotation: 'x', 'other': 'y'}}} essence = get_essence(body=body) assert essence == {'metadata': {'annotations': {'other': 'y'}}} def test_get_essence_removes_status_and_cleans_parents(): body = {'status': {'kopf': {'progress': 'x', 'anything': 'y'}, 'other': 'z'}} essence = get_essence(body=body) assert essence == {} def test_get_essence_removes_status_but_keeps_extra_fields(): body = {'status': {'kopf': {'progress': 'x', 'anything': 'y'}, 'other': 'z'}} essence = get_essence(body=body, extra_fields=['status.other']) assert essence == {'status': {'other': 'z'}} def test_get_essence_clones_body(): body = {'spec': {'depth': {'field': 'x'}}} essence = get_essence(body=body) body['spec']['depth']['field'] = 'y' assert essence is not body assert essence['spec'] is not body['spec'] assert essence['spec']['depth'] is not body['spec']['depth'] assert essence['spec']['depth']['field'] == 'x' def test_refresh_essence(): body = {'spec': {'depth': {'field': 'x'}}} patch = {} encoded = json.dumps(body) # json formatting can vary across interpreters refresh_essence(body=body, patch=patch) assert patch['metadata']['annotations'][LAST_SEEN_ANNOTATION] == encoded def test_retreive_essence_when_present(): data = {'spec': {'depth': {'field': 'x'}}} encoded = json.dumps(data) # json formatting can vary across interpreters body = {'metadata': {'annotations': {LAST_SEEN_ANNOTATION: encoded}}} essence = retrieve_essence(body=body) assert essence == data def test_retreive_essence_when_absent(): body = {} essence = retrieve_essence(body=body) assert essence is None def test_essence_changed_detected(): data = {'spec': {'depth': {'field': 'x'}}} encoded = json.dumps(data) # json formatting can vary across interpreters body = {'metadata': {'annotations': {LAST_SEEN_ANNOTATION: encoded}}} old, new, diff = get_essential_diffs(body=body) assert diff def test_essence_change_ignored_with_garbage_annotations(): data = {'spec': {'depth': {'field': 'x'}}} encoded = json.dumps(data) # json formatting can vary across interpreters body = {'metadata': {'annotations': {LAST_SEEN_ANNOTATION: encoded}}, 'spec': {'depth': {'field': 'x'}}} old, new, diff = get_essential_diffs(body=body) assert not diff def test_essence_changed_ignored_with_system_fields(): data = {'spec': {'depth': {'field': 'x'}}} encoded = json.dumps(data) # json formatting can vary across interpreters body = {'metadata': {'annotations': {LAST_SEEN_ANNOTATION: encoded}, 'finalizers': ['x', 'y', 'z'], 'generation': 'x', 'resourceVersion': 'x', 'creationTimestamp': 'x', 'deletionTimestamp': 'x', 'any-unexpected-field': 'x', 'uid': 'uid', }, 'status': {'kopf': {'progress': 'x', 'anything': 'y'}, 'other': 'x' }, 'spec': {'depth': {'field': 'x'}}} old, new, diff = get_essential_diffs(body=body) assert not diff # This is to ensure it is callable with proper signature. # For actual tests of diffing, see `/tests/diffs/`. def test_essence_diff(): data = {'spec': {'depth': {'field': 'x'}}} encoded = json.dumps(data) # json formatting can vary across interpreters body = {'metadata': {'annotations': {LAST_SEEN_ANNOTATION: encoded}}, 'status': {'x': 'y'}, 'spec': {'depth': {'field': 'y'}}} old, new, diff = get_essential_diffs(body=body, extra_fields=['status.x']) assert old == {'spec': {'depth': {'field': 'x'}}} assert new == {'spec': {'depth': {'field': 'y'}}, 'status': {'x': 'y'}} assert len(diff) == 2 # spec.depth.field & status.x, but the order is not known.
36.082873
96
0.635125
ecc9ccb82fd4ae56ac6a14dadaffa13326ca3fac
8,594
py
Python
morf-python-api/morf/utils/config.py
jpgard/morf
f17afcacef68929a5ce9e7714208be1002a42418
[ "MIT" ]
14
2018-06-27T13:15:46.000Z
2021-08-30T08:24:38.000Z
morf-python-api/morf/utils/config.py
jpgard/morf
f17afcacef68929a5ce9e7714208be1002a42418
[ "MIT" ]
58
2018-02-03T15:31:15.000Z
2019-10-15T02:12:05.000Z
morf-python-api/morf/utils/config.py
jpgard/morf
f17afcacef68929a5ce9e7714208be1002a42418
[ "MIT" ]
7
2018-03-29T14:47:34.000Z
2021-06-22T01:34:52.000Z
# Copyright (c) 2018 The Regents of the University of Michigan # and the University of Pennsylvania # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Functions for working with (reading writing, modifying) MORF configuration files. """ import boto3 import configparser import fileinput import json import logging import multiprocessing import os import re from morf.utils import get_bucket_from_url, get_key_from_url from morf.utils.security import generate_md5 def get_config_properties(config_file="config.properties", sections_to_fetch = None): """ Returns the list of properties as a dict of key/value pairs in the file config.properties. :param config_file: filename (string). :param section: name of section to fetch properties from (if specified); all sections are returned by default (iterable). :return: A flat (no sections) Python dictionary of properties. """ cf = configparser.ConfigParser() try: cf.read(config_file) except Exception as e: print("[ERROR] exception {} reading configurations from file {}".format(e, config_file)) properties = {} for section in cf.sections(): # only include args section if requested if (not sections_to_fetch or (section in sections_to_fetch)): for item in cf.items(section): properties[item[0]] = item[1] return properties def combine_config_files(*args, outfile="config.properties"): """ Combine multiple config files into single config file located at outfile. :param args: names of config files to combine. :param outfile: pathname to write to. :return: None """ with open(outfile, "w") as fout, fileinput.input(args) as fin: for line in fin: fout.write(line) return def update_config_fields_in_section(section, config_file="config.properties", **kwargs): """ Overwrite (or create, if not exists) fields in section of config_file with values provided according to kwargs. :param section: section header within config file which contains the field to be modified. :param kwargs: named parameters, with values, to overwrite. :param config_file: path to config properties; should be valid ConfigParser file :return: """ cf = configparser.ConfigParser() try: cf.read(config_file) except Exception as e: print("[ERROR] exception {} reading configurations from file {}".format(e, config_file)) cf_new = configparser.ConfigParser() for section in cf.sections(): for item in cf.items(section): try: cf_new[section][item[0]] = item[1] except KeyError: # section doesn't exist yet cf_new[section] = {} cf_new[section][item[0]] = item[1] for key, value in kwargs.items(): try: cf_new[section][key] = value except KeyError: print( "[ERROR] error updating config file: {}; possibly attempted to update a section that does not exist".format( e)) try: os.remove(config_file) with open(config_file, "w") as cfwrite: cf_new.write(cfwrite) except Exception as e: print("[ERROR] error updating config file: {}".format(e)) return def fetch_data_buckets_from_config(config_file="config.properties", data_section="data", required_bucket_dir_name='morf-data/'): """ Fetch the buckets from data_section of config_file; warn if key does not exactle match directory_name. :param config_file: path to config file. :param data_section: section of config file with key-value pairs representing institution names and s3 paths. :param required_bucket_dir_name: directory or path that should match ALL values in data_section; if not, throws warning. :return: list of buckets to iterate over; no directories are returned because these should be uniform across all of the buckets. """ cf = configparser.ConfigParser() cf.read(config_file) buckets = [] for item in cf.items(data_section): item_url = item[1] bucket = get_bucket_from_url(item_url) dir = get_key_from_url(item_url) if dir != required_bucket_dir_name: msg = "[ERROR]: specified path {} does not match required directory name {}; change name of directories to be consistent or specify the correct directory to check for.".format( item_url, required_bucket_dir_name) print(msg) raise else: buckets.append(bucket) assert len(buckets) >= 1 return tuple(buckets) class MorfJobConfig: """ Job-level configurations; these should remain consistent across entire workflow of a job. """ def __init__(self, config_file): self.type = "morf" # todo: delete this self.mode = None self.status = "START" properties = get_config_properties(config_file) self.client_args = get_config_properties(config_file, sections_to_fetch="args") # add properties to class as attributes for prop in properties.items(): setattr(self, prop[0], prop[1]) # if client_args are specified, add these to job_id to ensure unique if self.client_args: self.generate_job_id() # fetch raw data buckets as list self.raw_data_buckets = fetch_data_buckets_from_config() self.generate_morf_id(config_file) # if maximum number of cores is not specified, set to one less than half of current machine's cores; otherwise cast to int self.setcores() def generate_job_id(self): """ Generate and set a unique job_id by appending client-supplied arg names and values. This makes submitting multiple jobs by simply altering the 'args' field much easier for users. :return: None """ new_job_id = self.job_id for arg_name, arg_value in sorted(self.client_args.items()): name = re.sub("[./]", "", arg_name) value = re.sub("[./]", "", arg_value) new_job_id += '_'.join([name, value]) setattr(self, "job_id", new_job_id) return def generate_morf_id(self, config_file): """ Generate a unique MORF identifier via hashing of the config file. :param config_file: :return: """ self.morf_id = generate_md5(config_file) def check_configurations(self): # todo: check that all arguments are valid/acceptable pass def update_status(self, status): # todo: check whether status is valid by comparing with allowed values self.status = status def update_email_to(self, email_to): # todo: check if email is valid self.email_to = email_to def update_mode(self, mode): # todo: check whether mode is valid by comparing with allowed values self.mode = mode def initialize_s3(self): # create s3 connection object for communicating with s3 s3obj = boto3.client("s3", aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key) return s3obj def setcores(self): if not hasattr(self, "max_num_cores"): n_cores = multiprocessing.cpu_count() self.max_num_cores = max(n_cores//2 - 1, 1) else: n_cores = int(self.max_num_cores) self.max_num_cores = n_cores return
40.158879
188
0.671166
34b2fc8089b5b117ff1693342a4e180ea477d736
452
py
Python
_modules/neutronv2/auto_alloc.py
NDPF/salt-formula-neutron
758f3350fa541a41174105c92c0b9cceb6951d81
[ "Apache-2.0" ]
3
2017-06-30T18:09:44.000Z
2017-11-04T18:24:39.000Z
_modules/neutronv2/auto_alloc.py
NDPF/salt-formula-neutron
758f3350fa541a41174105c92c0b9cceb6951d81
[ "Apache-2.0" ]
10
2017-02-25T21:39:01.000Z
2018-09-19T07:53:46.000Z
_modules/neutronv2/auto_alloc.py
NDPF/salt-formula-neutron
758f3350fa541a41174105c92c0b9cceb6951d81
[ "Apache-2.0" ]
21
2017-02-01T18:12:51.000Z
2019-04-29T09:29:01.000Z
from neutronv2.common import send try: from urllib.parse import urlencode except ImportError: from urllib import urlencode @send('get') def auto_alloc_get_details(project_id, **kwargs): url = '/auto-allocated-topology/{}?{}'.format( project_id, urlencode(kwargs) ) return url, {} @send('delete') def auto_alloc_delete(project_id, **kwargs): url = '/auto-allocated-topology/{}'.format(project_id) return url, {}
21.52381
58
0.688053
c5a3ffe5aa46824da8062e9a6b5454f33e456021
6,409
py
Python
src/execute_script.py
rrhuffy/hybristools
1c91ffd929f7a1752ec2c1737325c5fa50a159da
[ "MIT" ]
2
2021-03-17T00:16:04.000Z
2021-03-20T08:07:21.000Z
src/execute_script.py
rrhuffy/hybristools
1c91ffd929f7a1752ec2c1737325c5fa50a159da
[ "MIT" ]
null
null
null
src/execute_script.py
rrhuffy/hybristools
1c91ffd929f7a1752ec2c1737325c5fa50a159da
[ "MIT" ]
2
2021-03-22T13:53:00.000Z
2022-01-07T16:28:43.000Z
#!/usr/bin/env python3 import argparse import logging import re import sys from bs4 import BeautifulSoup from lib import argparse_helper from lib import hybris_argparse_helper from lib import hybris_requests_helper from lib import logging_helper from lib import requests_helper class ScriptExecutionResponse: def __init__(self, output_text, execution_result, error_message): self.output_text = output_text self.execution_result = execution_result self.error_message = error_message def __repr__(self): return f'ScriptExecutionResponse({repr(self.output_text)}, ' \ f'{repr(self.execution_result)}, {repr(self.error_message)})' def __str__(self): if self.error_message: if self.output_text: # both output and error message available return f'Output:\n{self.output_text}\nError:\n{self.error_message}' else: # only error message available return self.error_message if self.output_text and not self.execution_result: # only output text available return self.output_text elif self.execution_result and not self.output_text: # only execution_result available return self.execution_result elif self.output_text and self.execution_result: # both output and execution result available return f'Output:\n{self.output_text}\nResult:\n{self.execution_result}' else: logging.debug('Neither output nor execution result available') return '' def execute_script(script, script_type, rollback, address, user, password, session=None): # TODO: check if address is set here, because it will fail if session is None: session, address = requests_helper.get_session_with_basic_http_auth_and_cleaned_address(address) credentials = {'user': user, 'password': password} hybris_requests_helper.log_into_hac_and_return_csrf_or_exit(session, address, credentials) script_get_result = session.get(address + '/console/scripting/') script_csrf_token = re.search(r'name="_csrf"\s+value="(.+?)"\s*/>', script_get_result.text).group(1) form_data = {'script': script, '_csrf': script_csrf_token, 'scriptType': script_type, 'commit': not rollback} form_data_without_script = {k: v for k, v in form_data.items() if k != 'script'} logging.debug(f'form_data_without_script: {form_data_without_script}') logging.debug('...executing...') execute_address = address + '/console/scripting/execute' script_post_result = session.post(execute_address, data=form_data) logging.debug('done, printing results:') if script_post_result.status_code == 500: bs = BeautifulSoup(script_post_result.text, 'html.parser') html = bs.find('textarea').text number_of_lines_to_show = 20 first_n_lines = '\n'.join(html.strip().split('\n')[0:number_of_lines_to_show]) msg = f'Received HTTP500, printing first {number_of_lines_to_show} lines of result:\n{first_n_lines}' return ScriptExecutionResponse(None, None, msg) elif script_post_result.status_code == 504: msg = (f'Received HTTP504 Gateway Timeout Error after {int(script_post_result.elapsed.total_seconds())}s while ' f'executing POST with script to execute in {execute_address}. ' f'\nAdd loggers to your script and check result in Hybris logs') return ScriptExecutionResponse(None, None, msg) result_json = script_post_result.json() logging.debug(result_json) if not result_json: return ScriptExecutionResponse('No result', None, None) elif result_json.get('stacktraceText', None): return ScriptExecutionResponse(result_json['outputText'].strip(), None, result_json['stacktraceText']) else: return ScriptExecutionResponse(result_json['outputText'].strip(), result_json['executionResult'], None) def _handle_cli_arguments(): parser = argparse.ArgumentParser('Script that executes given beanshell/groovy script') hybris_argparse_helper.add_hybris_hac_arguments(parser) parser.add_argument('script', help='string with beanshell/groovy file ' 'or string with script (use literal \\n for newline) ' 'or "-" if piping script') parser.add_argument('type', help='type of script', choices=['groovy', 'beanshell']) # TODO: maybe instead of "--parameters 1 2 3 4" accept "1 2 3 4" as last parameters? (what about optional limit?) parser.add_argument('--parameters', '-p', nargs='*', help='arguments to put into script by replacing with $1, $2 etc') parser.add_argument('--rollback', action='store_true', help='Execute script in rollback mode') logging_helper.add_logging_arguments_to_parser(parser) args = parser.parse_args() script = argparse_helper.get_text_from_string_or_file_or_pipe(args.script) assert script is not None, 'Cannot load script' if args.parameters: for i, parameter in enumerate(args.parameters): parameter_to_replace = f'${i + 1}' if parameter_to_replace not in script: print(f'WARN: Unexpected parameter {parameter_to_replace} with value {repr(parameter)}') script = script.replace(parameter_to_replace, parameter) next_parameter = f'${len(args.parameters) + 1}' if next_parameter in script: print(f"WARN: Probably you should provide additional parameter for replacing with {next_parameter}") elif '$1' in script: print("No parameters given, but $1 found in query, probably you've forgotten to add parameter") logging.debug('Full script:') logging.debug(script) return args, script def main(): logging_helper.run_ipython_on_exception() args, script = _handle_cli_arguments() wrapped_execute_script = logging_helper.decorate_method_with_pysnooper_if_needed(execute_script, args.logging_level) response = wrapped_execute_script(script, args.type, args.rollback, args.address, args.user, args.password) assert isinstance(response, ScriptExecutionResponse) logging.debug(f'Response: {repr(response)}') print(response) sys.exit(1 if response.error_message else 0) if __name__ == '__main__': main()
47.125
120
0.697145
a012245c6a67836083b6a8eb4618caba4ce8e40d
6,516
py
Python
scripts/exp_rl_discriminator.py
TUIlmenauAMS/rl_singing_voice
60204c698d48f27b44588c9d6c8dd2c66a13fcd5
[ "MIT" ]
19
2020-03-02T19:52:46.000Z
2021-12-15T00:38:45.000Z
scripts/exp_rl_discriminator.py
TUIlmenauAMS/rl_singing_voice
60204c698d48f27b44588c9d6c8dd2c66a13fcd5
[ "MIT" ]
3
2020-06-28T13:02:16.000Z
2021-04-22T03:31:26.000Z
scripts/exp_rl_discriminator.py
TUIlmenauAMS/rl_singing_voice
60204c698d48f27b44588c9d6c8dd2c66a13fcd5
[ "MIT" ]
3
2021-01-19T07:44:40.000Z
2021-12-15T00:38:25.000Z
# -*- coding: utf-8 -*- __author__ = 'S.I. Mimilakis' __copyright__ = 'Fraunhofer IDMT' # imports import numpy as np import torch from nn_modules import losses from tools import helpers, visualize, nn_loaders from settings.rl_disc_experiment_settings import exp_settings from torch.distributions import Normal def perform_frontend_training(): print('ID: ' + exp_settings['exp_id']) # Instantiating data handler io_dealer = helpers.DataIO(exp_settings=exp_settings) # Number of file sets num_of_sets = exp_settings['num_of_multitracks']//exp_settings['set_size'] # Initialize modules # Initialize modules if exp_settings['visualize']: win_viz, win_viz_b = visualize.init_visdom() # Web loss plotting analysis, synthesis = nn_loaders.build_frontend_model(flag='training', exp_settings=exp_settings) disc = nn_loaders.build_discriminator(flag='training', exp_settings=exp_settings) sigmoid = torch.nn.Sigmoid() # Expected shapes data_shape = (exp_settings['batch_size'], exp_settings['d_p_length'] * exp_settings['fs']) noise_sampler = Normal(torch.zeros(data_shape), torch.ones(data_shape)*exp_settings['noise_scalar']) # Initialize optimizer and add the parameters that will be updated parameters_list = list(analysis.parameters()) + list(synthesis.parameters()) + list(disc.parameters()) optimizer = torch.optim.Adam(parameters_list, lr=exp_settings['learning_rate']) # Start of the training batch_indx = 0 for epoch in range(1, exp_settings['epochs'] + 1): for file_set in range(1, num_of_sets + 1): # Load a sub-set of the recordings _, vox, bkg = io_dealer.get_data(file_set, exp_settings['set_size'], monaural=exp_settings['monaural']) # Create batches vox = io_dealer.gimme_batches(vox) bkg = io_dealer.gimme_batches(bkg) # Compute the total number of batches contained in this sub-set num_batches = vox.shape[0] // exp_settings['batch_size'] # Compute permutations for random shuffling perm_in_vox = np.random.permutation(vox.shape[0]) perm_in_bkg = np.random.permutation(bkg.shape[0]) for batch in range(num_batches): shuf_ind_vox = perm_in_vox[batch * exp_settings['batch_size']: (batch + 1) * exp_settings['batch_size']] shuf_ind_bkg = perm_in_bkg[batch * exp_settings['batch_size']: (batch + 1) * exp_settings['batch_size']] vox_tr_batch = io_dealer.batches_from_numpy(vox[shuf_ind_vox, :]) bkg_tr_batch = io_dealer.batches_from_numpy(bkg[shuf_ind_bkg, :]) vox_var = torch.autograd.Variable(vox_tr_batch, requires_grad=False) bkg_var = torch.autograd.Variable(bkg_tr_batch, requires_grad=False) mix_var = torch.autograd.Variable(vox_tr_batch + bkg_tr_batch, requires_grad=False) # Sample noise noise = torch.autograd.Variable(noise_sampler.sample().cuda().float(), requires_grad=False) # 0 Mean vox_var -= vox_var.mean() bkg_var -= bkg_tr_batch.mean() mix_var -= mix_var.mean() # Target source forward pass vox_coeff = analysis.forward(vox_var + noise) waveform = synthesis.forward(vox_coeff, use_sorting=exp_settings['dict_sorting']) # Mixture and Background signals forward pass mix_coeff = analysis.forward(mix_var) bkg_coeff = analysis.forward(bkg_var) # Loss functions rec_loss = losses.neg_snr(vox_var, waveform) smt_loss = exp_settings['lambda_reg'] * losses.tot_variation_2d(mix_coeff) loss = rec_loss + smt_loss # Optimize for reconstruction & smoothness optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() # Optimize with discriminator # Remove silent frames c_loud_x = (10. * (vox_tr_batch.norm(2., dim=1, keepdim=True).log10())).data.cpu().numpy() # Which segments are below the threshold? loud_locs = np.where(c_loud_x > exp_settings['loudness_threshold'])[0] vox_coeff = vox_coeff[loud_locs] if vox_coeff.size(0) > 2: # Make sure we are getting unmatched pairs bkg_coeff = bkg_coeff[loud_locs] vox_coeff_shf = vox_coeff[np.random.permutation(vox_coeff.size(0))] # Sample from discriminator y_neg = sigmoid(disc.forward(vox_coeff, bkg_coeff)) y_pos = sigmoid(disc.forward(vox_coeff, vox_coeff_shf)) # Compute discriminator loss disc_loss = losses.bce(y_pos, y_neg) # Optimize the discriminator optimizer.zero_grad() disc_loss.backward() optimizer.step() else: pass if exp_settings['visualize']: # Visualization win_viz = visualize.viz.line(X=np.arange(batch_indx, batch_indx + 1), Y=np.reshape(rec_loss.item(), (1,)), win=win_viz, update='append') win_viz_b = visualize.viz.line(X=np.arange(batch_indx, batch_indx + 1), Y=np.reshape(disc_loss.item(), (1,)), win=win_viz_b, update='append') batch_indx += 1 if not torch.isnan(loss) and not torch.isnan(disc_loss): print('--- Saving Model ---') torch.save(analysis.state_dict(), 'results/analysis_' + exp_settings['exp_id'] + '.pytorch') torch.save(synthesis.state_dict(), 'results/synthesis_' + exp_settings['exp_id'] + '.pytorch') torch.save(disc.state_dict(), 'results/disc_' + exp_settings['exp_id'] + '.pytorch') else: break return None if __name__ == "__main__": np.random.seed(218) torch.manual_seed(218) torch.cuda.manual_seed(218) torch.set_default_tensor_type('torch.cuda.FloatTensor') # Training perform_frontend_training() # EOF
43.152318
120
0.601443
86ca517bb4ccb6ef7a5494f4ec2440ec231905b4
26,306
py
Python
notebooks/__code/bragg_edge/bragg_edge_sample_and_powder.py
mabrahamdevops/python_notebooks
6d5e7383b60cc7fd476f6e85ab93e239c9c32330
[ "BSD-3-Clause" ]
null
null
null
notebooks/__code/bragg_edge/bragg_edge_sample_and_powder.py
mabrahamdevops/python_notebooks
6d5e7383b60cc7fd476f6e85ab93e239c9c32330
[ "BSD-3-Clause" ]
null
null
null
notebooks/__code/bragg_edge/bragg_edge_sample_and_powder.py
mabrahamdevops/python_notebooks
6d5e7383b60cc7fd476f6e85ab93e239c9c32330
[ "BSD-3-Clause" ]
null
null
null
import random import os import glob from pathlib import Path from IPython.core.display import HTML from IPython.display import display import numpy as np from plotly.offline import iplot import plotly.graph_objs as go from ipywidgets import widgets import logging from neutronbraggedge.experiment_handler import * from NeuNorm.normalization import Normalization from NeuNorm.roi import ROI from __code import file_handler from __code.bragg_edge.bragg_edge import BraggEdge as BraggEdgeParent from __code.bragg_edge.bragg_edge import Interface from __code.file_folder_browser import FileFolderBrowser from __code import ipywe from __code._utilities.file import get_full_home_file_name LOG_FILE_NAME = ".bragg_edge_normalization.log" class BraggEdge(BraggEdgeParent): o_interface = None select_ob_widget = None def __init__(self, working_dir="./"): super(BraggEdge, self).__init__(working_dir=working_dir) self.log_file_name = get_full_home_file_name(LOG_FILE_NAME) logging.basicConfig(filename=self.log_file_name, filemode='w', format='[%(levelname)s] - %(asctime)s - %(message)s', level=logging.INFO) logging.info("*** Starting a new session ***") def load_data(self, folder_selected): logging.info(f"Loading data from {folder_selected}") self.o_norm = Normalization() self.load_files(data_type='sample', folder=folder_selected) # define time spectra file folder = os.path.dirname(self.o_norm.data['sample']['file_name'][0]) self.list_files = self.o_norm.data['sample']['file_name'] self.data = self.o_norm.data['sample']['data'] self.data_folder_name = os.path.basename(folder) spectra_file = glob.glob(os.path.join(folder, '*_Spectra.txt')) logging.info(f"> looking for spectra file: {spectra_file}") if spectra_file: logging.info(f"-> spectra file FOUND!") self.spectra_file = spectra_file[0] display(HTML('<span style="font-size: 15px; color:blue"> Spectra File automatically located: ' + \ self.spectra_file + '</span>')) else: # ask for spectra file logging.info(f"-> spectra file NOT FOUND! Asking user to select time spectra file") self.select_time_spectra_file() def select_time_spectra_file(self): self.working_dir = os.path.dirname(self.list_files[0]) self.time_spectra_ui = ipywe.fileselector.FileSelectorPanel(instruction='Select Time Spectra File ...', start_dir=self.working_dir, next=self.save_time_spectra, filters={'spectra_file': "_Spectra.txt"}, multiple=False) self.time_spectra_ui.show() self.cancel_button = widgets.Button(description="or Do Not Select any Time Spectra", button_style="info", layout=widgets.Layout(width='100%')) display(self.cancel_button) self.cancel_button.on_click(self.cancel_time_spectra_selection) def save_time_spectra(self, file): BraggEdgeParent.save_time_spectra(self, file) logging.info(f"Time spectra file loaded: {file}") self.cancel_button.close() def cancel_time_spectra_selection(self, value): logging.info(f"User cancel loading time spectra!") self.time_spectra_ui.remove() self.cancel_button.close() display(HTML('<span style="font-size: 20px; color:blue">NO Spectra File loaded! </span>')) def load_files(self, data_type='sample', folder=None): self.starting_dir = os.path.dirname(folder) if data_type == 'sample': self.data_folder_name = os.path.basename(folder) list_files = glob.glob(os.path.join(folder, '*.fits')) if list_files == []: list_files = glob.glob(os.path.join(folder, '*.tif*')) else: # fits # keep only files of interest list_files = [file for file in list_files if not "_SummedImg.fits" in file] list_files = [file for file in list_files if ".fits" in file] # sort list of files list_files.sort() logging.info(f"load files:") logging.info(f"-> data type: {data_type}") logging.info(f"-> nbr of files: {len(list_files)}") o_norm = Normalization() o_norm.load(file=list_files, notebook=True, data_type=data_type) if data_type == 'sample': self.o_norm = o_norm elif data_type == 'ob': self.o_norm.data['ob'] = o_norm.data['ob'] display(HTML('<span style="font-size: 15px; color:blue">' + str(len(list_files)) + \ ' files have been loaded as ' + data_type + '</span>')) def get_nbr_of_images_to_use_in_preview(self): nbr_images = len(self.o_norm.data['sample']['data']) init_value = np.int(nbr_images / 10) if init_value == 0: init_value = 1 return init_value def normalization_settings_widgets(self): # with ob ## button self.select_ob_widget = widgets.Button(description="Select OB ...", button_style="success", layout=widgets.Layout(width="100%")) self.select_ob_widget.on_click(self.select_ob_folder) ## space spacer = widgets.HTML(value="<hr>") ## nbr of images to use nbr_images_to_use_label = widgets.Label("Nbr of images to use in preview", layout=widgets.Layout(width="20%")) nbr_of_images_to_use_in_preview = self.get_nbr_of_images_to_use_in_preview() self.nbr_images_slider_with_ob = widgets.IntSlider(min=2, max=len(self.list_files), value=nbr_of_images_to_use_in_preview, layout=widgets.Layout(width="80%")) hbox_1 = widgets.HBox([nbr_images_to_use_label, self.nbr_images_slider_with_ob]) self.select_roi_widget_with_ob = widgets.Button(description="OPTIONAL: Select Region of interest away from " "sample " "to " "improve normalization", layout=widgets.Layout(width="100%")) self.select_roi_widget_with_ob.on_click(self.select_roi_with_ob) vbox_with_ob = widgets.VBox([self.select_ob_widget, spacer, hbox_1, spacer, self.select_roi_widget_with_ob, ]) # without ob ## nbr of images to use self.nbr_images_slider_without_ob = widgets.IntSlider(min=2, max=len(self.list_files), value=nbr_of_images_to_use_in_preview, layout=widgets.Layout(width="80%")) hbox_without_ob = widgets.HBox([nbr_images_to_use_label, self.nbr_images_slider_without_ob]) select_roi_widget_without_ob = widgets.Button(description="MANDATORY: Select region of interest " "away from " "sample", button_style="success", layout=widgets.Layout(width="100%")) select_roi_widget_without_ob.on_click(self.select_roi_without_ob) vbox_without_ob = widgets.VBox([hbox_without_ob, spacer, select_roi_widget_without_ob ]) self.accordion = widgets.Accordion(children=[vbox_with_ob, vbox_without_ob]) self.accordion.set_title(0, "With OB") self.accordion.set_title(1, "Without OB") display(self.accordion) def select_roi_with_ob(self, status): nbr_data_to_use = np.int(self.nbr_images_slider_with_ob.value) self.select_roi(nbr_data_to_use=nbr_data_to_use) def select_roi_without_ob(self, status): nbr_data_to_use = np.int(self.nbr_images_slider_without_ob.value) self.select_roi(nbr_data_to_use=nbr_data_to_use) def select_roi(self, nbr_data_to_use=2): self.o_interface = Interface(data=self.get_image_to_use_for_display(nbr_data_to_use=nbr_data_to_use), instruction="Select region outside sample!", next=self.after_selecting_roi) self.o_interface.show() def after_selecting_roi(self): if self.accordion.selected_index == 0: # with OB self.select_roi_widget_with_ob.button_style = "" elif self.accordion.selected_index == 1: # without OB self.select_roi_widget_without_ob.button_style = "" def select_ob_folder(self, status=None): select_data = ipywe.fileselector.FileSelectorPanel(instruction='Select OB Folder ...', start_dir=self.starting_dir, next=self.load_ob, type='directory', multiple=False) select_data.show() def load_ob(self, folder_selected): self.load_files(data_type='ob', folder=folder_selected) self.check_data_array_sizes() if self.select_ob_widget: self.select_ob_widget.button_style = "" self.select_roi_widget_with_ob.button_style = "success" def check_data_array_sizes(self): len_ob = len(self.o_norm.data['ob']['file_name']) len_sample = len(self.o_norm.data['sample']['file_name']) if len_ob == len_sample: display(HTML('<span style="font-size: 15px; color:green"> Sample and OB have the same size!</span>')) return if len_ob < len_sample: self.o_norm.data['sample']['data'] = self.o_norm.data['sample']['data'][0:len_ob] self.o_norm.data['sample']['file_name'] = self.o_norm.data['sample']['file_name'][0:len_ob] display(HTML('<span style="font-size: 15px; color:green"> Truncated Sample array to match OB!</span>')) else: self.o_norm.data['ob']['data'] = self.o_norm.data['ob']['data'][0:len_sample] self.o_norm.data['ob']['file_name'] = self.o_norm.data['ob']['file_name'][0:len_sample] display(HTML('<span style="font-size: 15px; color:green"> Truncated OB array to match Sample!</span>')) def load_time_spectra(self): _tof_handler = TOF(filename=self.spectra_file) _exp = Experiment(tof=_tof_handler.tof_array, distance_source_detector_m=np.float(self.dSD_ui.value), detector_offset_micros=np.float(self.detector_offset_ui.value)) nbr_sample = len(self.o_norm.data['sample']['file_name']) self.lambda_array = _exp.lambda_array[0: nbr_sample] * 1e10 # to be in Angstroms self.tof_array = _tof_handler.tof_array[0: nbr_sample] def how_many_data_to_use_to_select_sample_roi(self): nbr_images = len(self.o_norm.data['sample']['data']) init_value = np.int(nbr_images / 10) if init_value == 0: init_value = 1 box1 = widgets.HBox([widgets.Label("Nbr of images to use:", layout=widgets.Layout(width='15')), widgets.IntSlider(value=init_value, max=nbr_images, min=1)]) # layout=widgets.Layout(width='50%'))]) box2 = widgets.Label("(The more you select, the longer it will take to display the preview!)") vbox = widgets.VBox([box1, box2]) display(vbox) self.number_of_data_to_use_ui = box1.children[1] def get_image_to_use_for_display(self, nbr_data_to_use=2): _data = self.o_norm.data['sample']['data'] nbr_images = len(_data) list_of_indexes_to_keep = random.sample(list(range(nbr_images)), nbr_data_to_use) final_array = [] for _index in list_of_indexes_to_keep: final_array.append(_data[_index]) final_image = np.mean(final_array, axis=0) self.final_image = final_image return final_image def normalization(self): if self.o_interface: list_rois = self.o_interface.roi_selected else: list_rois = None if self.accordion.selected_index == 0: # with ob self.normalization_with_ob(list_rois=list_rois) elif self.accordion.selected_index == 1: # without ob self.normalization_without_ob(list_rois=list_rois) self.export_normalized_data() def normalization_without_ob(self, list_rois): logging.info("Running normalization without OB") if list_rois is None: logging.info("-> no ROIs found! At least one ROI must be provided. Normalization Aborted!") display(HTML('<span style="font-size: 15px; color:red"> You need to provide a ROI!</span>')) return else: list_o_roi = [] for key in list_rois.keys(): roi = list_rois[key] _x0 = roi['x0'] _y0 = roi['y0'] _x1 = roi['x1'] _y1 = roi['y1'] list_o_roi.append(ROI(x0=_x0, y0=_y0, x1=_x1, y1=_y1)) logging.info(f"-> Normalization with {len(list_o_roi)} ROIs") self.o_norm.normalization(roi=list_o_roi, use_only_sample=True, notebook=True, force=True) display(HTML('<span style="font-size: 15px; color:green"> Normalization DONE! </span>')) logging.info(f"-> Done!") def normalization_with_ob(self, list_rois): logging.info("Running normalization with OB") if list_rois is None: logging.info("-> no roi used!") self.o_norm.normalization(force=True) else: list_o_roi = [] for key in list_rois.keys(): roi = list_rois[key] _x0 = roi['x0'] _y0 = roi['y0'] _x1 = roi['x1'] _y1 = roi['y1'] list_o_roi.append(ROI(x0=_x0, y0=_y0, x1=_x1, y1=_y1)) logging.info(f"-> Normalization with {len(list_o_roi)} ROIs") self.o_norm.normalization(roi=list_o_roi, notebook=True, force=True) display(HTML('<span style="font-size: 15px; color:green"> Normalization DONE! </span>')) logging.info(f"-> Done!") def export_normalized_data(self): self.o_folder = FileFolderBrowser(working_dir=self.working_dir, next_function=self.export_normalized_data_step2, ipts_folder=self.ipts_folder) self.o_folder.select_output_folder_with_new(instruction="Select where to create the normalized data ...") def export_normalized_data_step2(self, output_folder): logging.info(f"export normalized data") logging.info(f"-> output_folder: {output_folder}") output_folder = os.path.abspath(output_folder) self.o_folder.list_output_folders_ui.shortcut_buttons.close() normalized_export_folder = str(Path(output_folder) / (self.data_folder_name + '_normalized')) file_handler.make_or_reset_folder(normalized_export_folder) self.o_norm.export(folder=normalized_export_folder) display(HTML('<span style="font-size: 15px; color:green"> Created the normalized data in the folder ' + normalized_export_folder + '</span>')) if self.spectra_file: logging.info(f"-> time spectra copied to output folder!") file_handler.copy_files_to_folder(list_files=[self.spectra_file], output_folder=normalized_export_folder) display(HTML('<span style="font-size: 15px; color:green"> Copied time spectra file to same folder </span>')) else: logging.info(f"->No time spectra copied!") def calculate_counts_vs_file_index_of_regions_selected(self, list_roi=None): self.list_roi = list_roi data = self.o_norm.get_sample_data() nbr_data = len(data) box_ui = widgets.HBox([widgets.Label("Calculate Counts vs lambda", layout=widgets.Layout(width='20%')), widgets.IntProgress(min=0, max=nbr_data, value=0, layout=widgets.Layout(width='50%'))]) progress_bar = box_ui.children[1] display(box_ui) counts_vs_file_index = [] for _index, _data in enumerate(data): if len(list_roi) == 0: _array_data = _data else: _array_data = [] for _roi in list_roi.keys(): x0 = np.int(list_roi[_roi]['x0']) y0 = np.int(list_roi[_roi]['y0']) x1 = np.int(list_roi[_roi]['x1']) y1 = np.int(list_roi[_roi]['y1']) _array_data.append(np.nanmean(_data[y0:y1, x0:x1])) counts_vs_file_index.append(np.nanmean(_array_data)) progress_bar.value = _index + 1 self.counts_vs_file_index = counts_vs_file_index box_ui.close() def plot(self): trace = go.Scatter( x=self.lambda_array, y=self.counts_vs_file_index, mode='markers') layout = go.Layout( height=500, title="Average transmission vs TOF (of entire images, or of selected region if any)", xaxis=dict( title="Lambda (Angstroms)" ), yaxis=dict( title="Average Transmission" ), ) data = [trace] figure = go.Figure(data=data, layout=layout) # powder bragg edges bragg_edges = self.bragg_edges hkl = self.hkl max_x = 6 # format hkl labels _hkl_formated = {} for _material in hkl: _hkl_string = [] for _hkl in hkl[_material]: _hkl_s = ",".join(str(x) for x in _hkl) _hkl_s = _material + "\n" + _hkl_s _hkl_string.append(_hkl_s) _hkl_formated[_material] = _hkl_string for y_index, _material in enumerate(bragg_edges): for _index, _value in enumerate(bragg_edges[_material]): if _value > max_x: continue bragg_line = {"type": "line", 'x0' : _value, 'x1' : _value, 'yref': "paper", 'y0' : 0, 'y1' : 1, 'line': { 'color': 'rgb(255, 0, 0)', 'width': 1 }} figure.add_shape(bragg_line) # layout.shapes.append(bragg_line) y_off = 1 - 0.25 * y_index # add labels to plots _annot = dict( x=_value, y=y_off, text=_hkl_formated[_material][_index], yref="paper", font=dict( family="Arial", size=16, color="rgb(150,50,50)" ), showarrow=True, arrowhead=3, ax=0, ay=-25) figure.add_annotation(_annot) iplot(figure) def select_output_data_folder(self): o_folder = FileFolderBrowser(working_dir=self.working_dir, next_function=self.export_data) o_folder.select_output_folder(instruction="Select where to create the ascii file...") def make_output_file_name(self, output_folder='', input_folder=''): file_name = os.path.basename(input_folder) + "_counts_vs_lambda_tof.txt" return os.path.join(os.path.abspath(output_folder), file_name) def export_data(self, output_folder): input_folder = os.path.dirname(self.o_norm.data['sample']['file_name'][0]) output_file_name = self.make_output_file_name(output_folder=output_folder, input_folder=input_folder) lambda_array = self.lambda_array counts_vs_file_index = self.counts_vs_file_index tof_array = self.tof_array metadata = ["# input folder: {}".format(input_folder)] list_roi = self.list_roi if len(list_roi) == 0: metadata.append("# Entire sample selected") else: for index, key in enumerate(list_roi.keys()): roi = list_roi[key] _x0 = roi['x0'] _y0 = roi['y0'] _x1 = roi['x1'] _y1 = roi['y1'] metadata.append("# ROI {}: x0={}, y0={}, x1={}, y1={}".format(index, _x0, _y0, _x1, _y1)) metadata.append("#") metadata.append("# tof (micros), lambda (Angstroms), Average transmission") data = [] for _t, _l, _c in zip(tof_array, lambda_array, counts_vs_file_index): data.append("{}, {}, {}".format(_t, _l, _c)) file_handler.make_ascii_file(metadata=metadata, data=data, output_file_name=output_file_name, dim='1d') if os.path.exists(output_file_name): display(HTML('<span style="font-size: 20px; color:blue">Ascii file ' + output_file_name + ' has been ' + 'created </span>')) else: display(HTML('<span style="font-size: 20px; color:red">Error exporting Ascii file ' + output_file_name + '</span>')) def select_output_table_folder(self): o_folder = FileFolderBrowser(working_dir=self.working_dir, next_function=self.export_table) o_folder.select_output_folder() def export_table(self, output_folder): material = self.handler.material[0] lattice = self.handler.lattice[material] crystal_structure = self.handler.crystal_structure[material] metadata = ["# material: {}".format(material), "# crystal structure: {}".format(crystal_structure), "# lattice: {} Angstroms".format(lattice), "#", "# hkl, d(angstroms), BraggEdge"] data = [] bragg_edges = self.bragg_edges[material] hkl = self.hkl[material] for _index in np.arange(len(bragg_edges)): _hkl_str = [str(i) for i in hkl[_index]] _hkl = "".join(_hkl_str) _bragg_edges = np.float(bragg_edges[_index]) _d = _bragg_edges / 2. _row = "{}, {}, {}".format(_hkl, _d, _bragg_edges) data.append(_row) output_file_name = os.path.join(output_folder, 'bragg_edges_of_{}.txt'.format(material)) file_handler.make_ascii_file(metadata=metadata, data=data, dim='1d', output_file_name=output_file_name) display(HTML('<span style="font-size: 20px; color:blue">File created : ' + \ output_file_name + '</span>')) def select_folder(self, message="", next_function=None): folder_widget = ipywe.fileselector.FileSelectorPanel(instruction='select {} folder'.format(message), start_dir=self.working_dir, next=next_function, type='directory', multiple=False) folder_widget.show()
44.586441
120
0.527522
a9c8fafc8b75bd9e1dc3131811a4cc8342104c23
7,072
py
Python
django_gui/test_django_server_api.py
timburbank/openrvdas
ba77d3958075abd21ff94a396e4a97879962ac0c
[ "BSD-2-Clause" ]
null
null
null
django_gui/test_django_server_api.py
timburbank/openrvdas
ba77d3958075abd21ff94a396e4a97879962ac0c
[ "BSD-2-Clause" ]
null
null
null
django_gui/test_django_server_api.py
timburbank/openrvdas
ba77d3958075abd21ff94a396e4a97879962ac0c
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 ### ### """Note: the Django tests don't run properly when run via normal unittesting, so we need to run them via "./manage.py test". Disabled until we figure out how to force it to use the test database.""" import logging import os import sys import unittest import warnings from django.test import TestCase from os.path import dirname, realpath; sys.path.append(dirname(dirname(realpath(__file__)))) from django_gui.django_server_api import DjangoServerAPI sample_test_0 = { "cruise": { "id": "test_0", "start": "2017-01-01", "end": "2017-02-01" }, "loggers": { "knud": { "configs": ["off", "knud->net", "knud->net/file"] }, "gyr1": { "configs": ["off", "gyr1->net", "gyr1->net/file"] }, "mwx1": { "configs": ["off", "mwx1->net", "mwx1->net/file"] }, "s330": { "configs": ["off", "s330->net", "s330->net/file"] } }, "modes": { "off": { "knud": "off", "gyr1": "off", "mwx1": "off", "s330": "off" }, "port": { "knud": "off", "gyr1": "gyr1->net", "mwx1": "mwx1->net", "s330": "off" }, "underway": { "knud": "knud->net/file", "gyr1": "gyr1->net/file", "mwx1": "mwx1->net/file", "s330": "s330->net/file" } }, "default_mode": "off", "configs": { "off": {}, "knud->net": {"knud":"config knud->net"}, "gyr1->net": {"gyr1":"config gyr1->net"}, "mwx1->net": {"mwx1":"config mwx1->net"}, "s330->net": {"s330":"config s330->net"}, "knud->net/file": {"knud":"config knud->net/file"}, "gyr1->net/file": {"gyr1":"config gyr1->net/file"}, "mwx1->net/file": {"mwx1":"config mwx1->net/file"}, "s330->net/file": {"s330":"config s330->net/file"} } } sample_test_1 = { "cruise": { "id": "test_1", "start": "2017-01-01", "end": "2017-02-01" }, "loggers": { "knud": { "configs": ["off", "knud->net", "knud->net/file"] }, "gyr1": { "configs": ["off", "gyr1->net", "gyr1->net/file"] }, "mwx1": { "configs": ["off", "mwx1->net", "mwx1->net/file"] }, "s330": { "configs": ["off", "s330->net", "s330->net/file"] } }, "modes": { "off": { "knud": "off", "gyr1": "off", "mwx1": "off", "s330": "off" }, "port": { "knud": "off", "gyr1": "gyr1->net", "mwx1": "mwx1->net", "s330": "off" }, "underway": { "knud": "knud->net/file", "gyr1": "gyr1->net/file", "mwx1": "mwx1->net/file", "s330": "s330->net/file" } }, "default_mode": "off", "configs": { "off": {}, "knud->net": {"knud":"config knud->net"}, "gyr1->net": {"gyr1":"config gyr1->net"}, "mwx1->net": {"mwx1":"config mwx1->net"}, "s330->net": {"s330":"config s330->net"}, "knud->net/file": {"knud":"config knud->net/file"}, "gyr1->net/file": {"gyr1":"config gyr1->net/file"}, "mwx1->net/file": {"mwx1":"config mwx1->net/file"}, "s330->net/file": {"s330":"config s330->net/file"} } } ################################################################################ class TestDjangoServerAPI(TestCase): ############################ @unittest.skipUnless('test' in sys.argv, 'test_django_server_api.py must be run by running "./manager.py test gui"') def test_basic(self): api = DjangoServerAPI() try: api.delete_configuration() except ValueError: pass try: api.delete_configuration() except ValueError: pass api.load_configuration(sample_test_0) self.assertEqual(api.get_modes(), ['off', 'port', 'underway']) self.assertEqual(api.get_active_mode(), 'off') self.assertDictEqual(api.get_logger_configs(), {'knud': {'name': 'off'}, 'gyr1': {'name': 'off'}, 'mwx1': {'name': 'off'}, 's330': {'name': 'off'} }) with self.assertRaises(ValueError): api.set_active_mode('invalid mode') api.set_active_mode('underway') self.assertEqual(api.get_active_mode(), 'underway') self.assertDictEqual(api.get_logger_configs(), {'knud': {'knud':'config knud->net/file', 'name': 'knud->net/file'}, 'gyr1': {'gyr1':'config gyr1->net/file', 'name': 'gyr1->net/file'}, 'mwx1': {'mwx1':'config mwx1->net/file', 'name': 'mwx1->net/file'}, 's330': {'s330':'config s330->net/file', 'name': 's330->net/file'}}) with self.assertRaises(ValueError): api.get_logger_configs('invalid_mode') api.load_configuration(sample_test_1) self.assertEqual(api.get_logger_configs('port'), {'gyr1': {'gyr1':'config gyr1->net', 'name': 'gyr1->net'}, 'knud': {'name': 'off'}, 'mwx1': {'mwx1':'config mwx1->net', 'name': 'mwx1->net'}, 's330': {'name': 'off'} }) self.assertDictEqual(api.get_loggers(), {'knud': { 'configs': ['off', 'knud->net', 'knud->net/file'], 'active': 'off' }, 'gyr1': { 'configs': ['off', 'gyr1->net', 'gyr1->net/file'], 'active': 'off' }, 'mwx1': { 'configs': ['off', 'mwx1->net', 'mwx1->net/file'], 'active': 'off' }, 's330': { 'configs': ['off', 's330->net', 's330->net/file'], 'active': 'off'} }) api.delete_configuration() with self.assertRaises(ValueError): api.get_configuration() self.assertDictEqual(api.get_logger_configs(), {}) ################################################################################ if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbosity', dest='verbosity', default=0, action='count', help='Increase output verbosity') args = parser.parse_args() LOGGING_FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(format=LOGGING_FORMAT) LOG_LEVELS ={0:logging.WARNING, 1:logging.INFO, 2:logging.DEBUG} args.verbosity = min(args.verbosity, max(LOG_LEVELS)) logging.getLogger().setLevel(LOG_LEVELS[args.verbosity]) logging.getLogger().setLevel(logging.DEBUG) unittest.main(warnings='ignore') from django.core.management import execute_from_command_line execute_from_command_line(['dummy', 'test', 'gui.test_django_server_api'])
31.571429
198
0.479214
c281f26ac1aa92589e736b11431716a3d6b3f1ad
36,775
py
Python
femagtools/ts.py
dapu/femagtools
95eaf750adc2013232cdf482e523b3900ac6eb08
[ "BSD-2-Clause" ]
null
null
null
femagtools/ts.py
dapu/femagtools
95eaf750adc2013232cdf482e523b3900ac6eb08
[ "BSD-2-Clause" ]
null
null
null
femagtools/ts.py
dapu/femagtools
95eaf750adc2013232cdf482e523b3900ac6eb08
[ "BSD-2-Clause" ]
null
null
null
""" Classes for post processing based on vtu-files of created by FEMAG-TS """ __author__ = 'werner b. vetter, ronald tanner' import femagtools.nc import femagtools.vtu as vtu import numpy as np import scipy.integrate as integrate import warnings def losscoeff_frequency_to_time(B0, f0, c, exp): '''Convert Bertotti-coefficient of frequency domain to time domains coefficient Parameters ---------- B0 : float Base flux density [T] f0 : float Base freuency [Hz] c : float Bertotti-coefficient exp : float Bertotti-exponent Return ------- k : float Loss coefficient in time domains The conversion is only possible for loss-coefficients with equal exponent for flux density and frequency, as eddy current losses (cw*(B/B0(*)*2*(f/f0)**2) or anomalous losses (ce*(B/B0(*)**1.5*(f/f0)**1.5) ''' y, abserr = integrate.quad(lambda x: np.abs(np.cos(2*np.pi*x))**exp, 0, 1) return c/(B0**exp*f0**exp)/((2*np.pi)**exp * y) class TimeRange(object): def __init__(self, vtu_data, nc_model): '''Read time vector in and generate an equidistant vector if necessary. Also the base frequency is determined. Parameters ---------- vtu_data : object vtu reader nc_model: object ''' try: # FEMAG-TS files data_list = ['time [s]'] vtu_data.read_data(data_list) self.vector = vtu_data.get_data_vector('time [s]') self.freq = 1/(self.vector[-1]-self.vector[0] + (self.vector[1]-self.vector[0])/2 + (self.vector[-1]-self.vector[-2])/2) dt = self.vector[1]-self.vector[0] dt_min = 1e32 self.equidistant = True for i in range(len(self.vector)-2): dti = self.vector[i+1]-self.vector[i] if dt < 0.999*dti or dt > 1.001*dti: self.equidistant = False if dti < dt_min: dt_min = dti if not self.equidistant: numpnt = int((self.vector[-1]-self.vector[0])/dt_min) self.vector_equi = np.linspace(self.vector[0], self.vector[-1], num=numpnt) except: # FEMAG-DC files speed = nc_model.speed self.freq = speed/60*nc_model.pole_pairs self.equidistant = True class Losses(object): def __init__(self, modelname, dirname): '''Loss calculation for FEMAG-TS simulations Parameters ---------- dirname : str Name of the model (nc-file) ncmodel : object ''' self.vtu_data = vtu.read(dirname) self.nc_model = femagtools.nc.read(modelname) # Read iron losses coefficients self.iron_loss_coefficients = self.nc_model.iron_loss_coefficients for c in self.iron_loss_coefficients: if c['cw_freq_exp'] == c['cw_ind_exp']: c['kw'] = losscoeff_frequency_to_time( c['base_induction'], c['base_frequency'], c['cw'], c['cw_freq_exp']) else: warnings.warn( 'Waterfall method not possible, specify parameter kw') kw = 0.0 def ohm_lossenergy_sr(self, sr): '''Ohmic loss energy of a subregion Parameters ---------- sr : object Subregion Returns ------- lossenergy : float Ohmic loss energy of the subregion The loss energy is determined by adding up the loss energy of the individual elements. ''' scale_factor = self.nc_model.scale_factor() length = self.nc_model.arm_length time = self.time_vector srlossenergy = 0.0 for supel in sr.superelements: selossenergy = 0.0 if supel.conduc > 0.0: ff = supel.fillfactor if ff == 0.0: ff = 1.0 #print(supel.key, supel.conduc, supel.length, ff) for el in supel.elements: #print(el.key, el.area) ellossenergy = 0.0 cd_vec = self.vtu_data.get_data_vector('curd', el.key) for j in range(len(time)-1): cd = (cd_vec[j]+cd_vec[j+1])/2 dt = time[j+1]-time[j] ellossenergy = ellossenergy + dt*cd**2*el.area/ff/supel.conduc*supel.length selossenergy = selossenergy + ellossenergy*length*scale_factor srlossenergy = srlossenergy + selossenergy return srlossenergy def ohm_lossenergy_subregion(self, srname, start=0.0, end=0.0): '''Ohmic loss energy of a subregion Parameters ---------- srname: str Name of subregion start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- lossenergy : float Ohmic loss energy of the subregion The loss energy is determined by adding up the loss energy of the individual elements over the time window. If start and end are not specified, the time window of the previous calculation is used. ''' data_list = ['time [s]', 'curd'] self.vtu_data.read_data(data_list) if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) self.time_vector = self.vtu_data.get_data_vector('time [s]') sr = self.nc_model.get_subregion(srname) srlossenergy = self.ohm_lossenergy_sr(sr) return srlossenergy def ohm_powerlosses_subregion(self, srname, start=0.0, end=0.0): '''Ohmic loss dissipation of a subregion within the time window Parameters ---------- srname : str Name of subregion start : float Start of the time window (optional) end : float End of the time window (optional) Returns ------- powerlosses : float Ohmic loss dissipation of the subregion The loss energy is determined by adding up the loss energy of the individual elements over the time window. The loss energy is divided by the time window length to obtain the averaged power loss If start and end are not specified, the time window of the previous calculation is used. ''' while len(srname) < 4: srname = srname+' ' srlossenergy = self.ohm_lossenergy_subregion(srname, start, end) srpowerlosses = srlossenergy/(self.time_vector[-1]-self.time_vector[0]) return srpowerlosses def ohm_lossenergy(self, start=0.0, end=0.0): '''Ohmic loss energy of all subregions Parameters ---------- start: float Start of the time window (optional) end: float End of the time window (optional) Returns ------- loss_data: dict Dictonary of subregions and ohmic loss energy of it The loss energy is determined by adding up the loss energy of the individual elements over the time window. If start and end are not specified, the time window of the previous calculation is used. ''' data_list = ['time [s]', 'curd'] self.vtu_data.read_data(data_list) if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) self.time_vector = self.vtu_data.get_data_vector('time [s]') loss_data = [] for sr in self.nc_model.subregions: srlossenergy = self.ohm_lossenergy_sr(sr) srname = sr.name if sr.wb_key >= 0: #print(sr.key,"is winding",sr.wb_key+1) if srname == ' ': srname = "wdg "+str(sr.wb_key+1) loss_data.append( {'key': sr.key, 'name': srname, 'losses': srlossenergy}) return loss_data def ohm_powerlosses(self, start=0.0, end=0.0): '''Ohmic loss dissipation of all subregions Parameters ---------- start : float Start of the time window (optional) end : float End of the time window (optional) Returns ------- loss_data : dict Dictonary of subregions and ohmic loss dissipation of it The loss energy is determined by adding up the loss energy of the individual elements over the time window. The loss energy is divided by the time window length to obtain the averaged power loss If start and end are not specified, the time window of the previous calculation is used. ''' data_list = ['time [s]', 'curd'] self.vtu_data.read_data(data_list) if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) self.time_vector = self.vtu_data.get_data_vector('time [s]') loss_data = [] for sr in self.nc_model.subregions: srlossenergy = self.ohm_lossenergy_sr(sr) srpowerlosses = srlossenergy / \ (self.time_vector[-1]-self.time_vector[0]) srname = sr.name if sr.wb_key >= 0: #print(sr.key,"is winding",sr.wb_key+1) if srname == ' ': srname = "wdg "+str(sr.wb_key+1) loss_data.append( {'key': sr.key, 'name': srname, 'losses': srpowerlosses}) return loss_data def ohm_powerlosses_fft_sr(self, sr): '''Power dissipation of a subregion Parameters ---------- sr : object Subregion Returns ------- powerlosses : float Ohmic power losses of the subregion A FFT from the current density is made. The power losses of each harmonic is determined and added. ''' scale_factor = self.nc_model.scale_factor() length = self.nc_model.arm_length srpowerlosses = 0.0 for supel in sr.superelements: sepowerlosses = 0.0 if supel.conduc > 0.0: ff = supel.fillfactor if ff == 0.0: ff = 1.0 #print(supel.key, supel.conduc, supel.length, ff) for el in supel.elements: #print(el.key, el.area) elpowerlosses = 0.0 cd_vec_0 = self.vtu_data.get_data_vector('curd', el.key) if not self.times.equidistant: cd_vec = np.interp(self.times.vector_equi, self.times.vector, cd_vec_0, period=1.0/self.times.freq) # f = interpolate.interp1d(self.times.vector, cd_vec_0, kind="cubic") # cd_vec = f(self.times.vector_equi) else: cd_vec = cd_vec_0 cd_spec = abs(np.fft.fft(cd_vec))/(len(cd_vec)/2) for j in range(int(len(cd_vec)/2)): elpowerlosses = elpowerlosses + \ cd_spec[j]**2/2*el.area/ff / \ supel.conduc*supel.length sepowerlosses = sepowerlosses + elpowerlosses*length*scale_factor srpowerlosses = srpowerlosses + sepowerlosses return srpowerlosses def ohm_powerlosses_fft_subregion(self, srname, start=0.0, end=0.0): '''Power dissipation of a subregion Parameters ---------- srname: str Name of subregion start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- lossenergy : float Power dissipation of the subregion A FFT from the current density is made. The power losses of each harmonic is determined and added. The time window has to be pariode or a multiple of it. If start and end are not specified, the time window of the previous calculation is used. ''' data_list = ['time [s]', 'curd'] self.vtu_data.read_data(data_list) if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) self.times = TimeRange(self.vtu_data, self.nc_model) sr = self.nc_model.get_subregion(srname) srpowerlosses = self.ohm_powerlosses_fft_sr(sr) return srpowerlosses def ohm_powerlosses_fft(self, start=0.0, end=0.0): '''Power dissipation of all subregions Parameters ---------- start : float Start of the time window (optional) end : float End of the time window (optional) Returns ------- loss_data : dict Dictonary of subregions and power dissipation of it A FFT from the current density is made. The power losses of each harmonic is determined and added. The time window has to be pariode or a multiple of it. If start and end are not specified, the time window of the previous calculation is used. ''' data_list = ['time [s]', 'curd'] self.vtu_data.read_data(data_list) if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) self.times = TimeRange(self.vtu_data, self.nc_model) loss_data = [] for sr in self.nc_model.subregions: srpowerlosses = self.ohm_powerlosses_fft_sr(sr) srname = sr.name if sr.wb_key >= 0: #print(sr.key,"is winding",sr.wb_key+1) if srname == ' ': srname = "wdg "+str(sr.wb_key+1) loss_data.append( {'key': sr.key, 'name': srname, 'losses': srpowerlosses}) return loss_data # iron losses def iron_losses_fft_se(self, se): '''Iron losses of a superelement Parameters ---------- se: object Superelement Returns ------- ironlosses : float Iron losses of the superlement A FFT is made from the flux density. The iron losses of each harmonic is determined by Bertotti formula Physt = ch * (f/f0)**hfe * (B/B0)**hBe * V * rho Peddy = ch * (f/f0)**wfe * (B/B0)**wBe * V * rho Pexce = ch * (f/f0)**efe * (B/B0)**eBe * V * rho and added to the total losses of the superelement Ptot = (Physt + Peddy + Pexce) * shape_factor ''' scale_factor = self.nc_model.scale_factor() length = self.nc_model.arm_length freq = self.times.freq sehystlosses = 0.0 seeddylosses = 0.0 seexcelosses = 0.0 if se.elements[0].reluc[0] < 1.0 or se.elements[0].reluc[1] < 1.0: center_pnt = se.elements[0].center if (np.sqrt(center_pnt[0]**2+center_pnt[1]**2) > self.nc_model.FC_RADIUS): ldi = len(self.iron_loss_coefficients)-2 # outside else: ldi = len(self.iron_loss_coefficients)-1 # inside sf = self.iron_loss_coefficients[ldi]['shapefactor'] if (se.mcvtype > 0): ldi = se.mcvtype-1 bf = self.iron_loss_coefficients[ldi]['base_frequency'] bb = self.iron_loss_coefficients[ldi]['base_induction'] ch = self.iron_loss_coefficients[ldi]['ch'] chfe = self.iron_loss_coefficients[ldi]['ch_freq_exp'] chbe = self.iron_loss_coefficients[ldi]['ch_ind_exp'] cw = self.iron_loss_coefficients[ldi]['cw'] cwfe = self.iron_loss_coefficients[ldi]['cw_freq_exp'] cwbe = self.iron_loss_coefficients[ldi]['cw_ind_exp'] ce = self.iron_loss_coefficients[ldi]['ce'] cefe = self.iron_loss_coefficients[ldi]['ce_freq_exp'] cebe = self.iron_loss_coefficients[ldi]['ce_ind_exp'] sw = self.iron_loss_coefficients[ldi]['spec_weight']*1000 ff = self.iron_loss_coefficients[ldi]['fillfactor'] for el in se.elements: #print(el.key, el.area) elhystlosses = 0.0 eleddylosses = 0.0 elexcelosses = 0.0 bx_vec_0 = self.vtu_data.get_data_vector('b', el.key)[0] if not self.times.equidistant: bx_vec = np.interp(self.times.vector_equi, self.times.vector, bx_vec_0, period=1.0/self.times.freq) # f = interpolate.interp1d(self.times.vector, bx_vec_0, kind="cubic") # bx_vec = f(self.times.vector_equi) else: bx_vec = bx_vec_0 bx_spec = abs(np.fft.fft(bx_vec))/(len(bx_vec)/2) by_vec_0 = self.vtu_data.get_data_vector('b', el.key)[1] if not self.times.equidistant: by_vec = np.interp(self.times.vector_equi, self.times.vector, by_vec_0, period=1.0/self.times.freq) # f = interpolate.interp1d(self.times.vector, by_vec_0, kind="cubic") # by_vec = f(self.times.vector_equi) else: by_vec = by_vec_0 by_spec = abs(np.fft.fft(by_vec))/(len(by_vec)/2) b_spec = np.sqrt((bx_spec**2+by_spec**2)) for j in range(int(len(b_spec)/2)): elhystlosses = elhystlosses + ch * \ (j*freq/bf)**chfe*(b_spec[j]/bb)**chbe eleddylosses = eleddylosses + cw * \ (j*freq/bf)**cwfe*(b_spec[j]/bb)**cwbe elexcelosses = elexcelosses + ce * \ (j*freq/bf)**cefe*(b_spec[j]/bb)**cebe sehystlosses = sehystlosses + elhystlosses*el.area*length*ff*sf*sw*scale_factor seeddylosses = seeddylosses + eleddylosses*el.area*length*ff*sf*sw*scale_factor seexcelosses = seexcelosses + elexcelosses*el.area*length*ff*sf*sw*scale_factor setotallosses = sehystlosses + seeddylosses + seexcelosses return {'total': setotallosses, 'hysteresis': sehystlosses, 'eddycurrent': seeddylosses, 'excess': seexcelosses} def iron_losses_fft_subregion(self, srname, start=0.0, end=0.0): '''Iron losses of a subregion Parameters ---------- srname: str Name of subregion start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- losses : dict Iron losses of the subregion The iron losses are calculated based on the Bertotti formula (see also ron_losses_fft_se) ''' if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) data_list = ['b'] self.vtu_data.read_data(data_list) self.times = TimeRange(self.vtu_data, self.nc_model) srtotallosses = 0.0 srhystlosses = 0.0 sreddylosses = 0.0 srexcelosses = 0.0 sr = self.nc_model.get_subregion(srname) for se in sr.superelements: selosses = self.iron_losses_fft_se(se) srtotallosses = srtotallosses + selosses['total'] srhystlosses = srhystlosses + selosses['hysteresis'] sreddylosses = sreddylosses + selosses['eddycurrent'] srexcelosses = srexcelosses + selosses['excess'] srlosses = {'subregion': srname, 'total': srtotallosses, 'hysteresis': srhystlosses, 'eddycurrent': sreddylosses, 'excess': srexcelosses } return srlosses def iron_losses_fft(self, start=0.0, end=0.0): '''Iron losses of all subregion and superelements Parameters ---------- start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- losses : dict Iron losses of the subregion The iron losses are calculated based on the Bertotti formula (see also iron_losses_fft_se) ''' if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) data_list = ['b'] self.vtu_data.read_data(data_list) self.times = TimeRange(self.vtu_data, self.nc_model) losseslist = [] for se in self.nc_model.superelements: selosses = self.iron_losses_fft_se(se) if se.subregion: for sr in self.nc_model.subregions: if se in sr.superelements: srname = sr.name #print(se.key, "in", sr.key, sr.name) else: if (se.mcvtype == 0): center_pnt = se.elements[0].center if (np.sqrt(center_pnt[0]**2+center_pnt[1]**2) > self.nc_model.FC_RADIUS): srname = "no, outside" else: srname = "no, inside" found = False for srlosses in losseslist: if srlosses['subregion'] == srname: srlosses['total'] = srlosses['total']+selosses['total'] srlosses['hysteresis'] = srlosses['hysteresis'] + \ selosses['hysteresis'] srlosses['eddycurrent'] = srlosses['eddycurrent'] + \ selosses['eddycurrent'] srlosses['excess'] = srlosses['excess']+selosses['excess'] found = True if not found: if selosses['total'] > 0.0: srlosses = {'subregion': srname, 'total': selosses['total'], 'hysteresis': selosses['hysteresis'], 'eddycurrent': selosses['eddycurrent'], 'excess': selosses['excess'] } losseslist.append(srlosses) return losseslist def iron_lossenergy_time_se(self, se): '''Iron losses of a superelement in time domain Parameters ---------- se: object Superelement Returns ------- lossenergies : float Iron losses of the superlement The iron losses are calculated based on the Bertotti formula in time domaine. The loss coefficients in frequency domain are converted into time domain coefficients. For the hysteresis losses is a water fall methode implemented. Eddy current losses and anomalous losses are calculated by add up the losses of each time step. ''' scale_factor = self.nc_model.scale_factor() length = self.nc_model.arm_length time = self.times.vector sehystenergy = 0.0 seeddyenergy = 0.0 seexceenergy = 0.0 if se.elements[0].reluc[0] < 1.0 or se.elements[0].reluc[1] < 1.0: if (se.mcvtype == 0): center_pnt = se.elements[0].center if (np.sqrt(center_pnt[0]**2+center_pnt[1]**2) > self.nc_model.FC_RADIUS): ldi = len(self.iron_loss_coefficients)-2 # outside else: ldi = len(self.iron_loss_coefficients)-1 # inside else: ldi = se.mcvtype-1 kh = self.iron_loss_coefficients[ldi]['kh'] chbe = self.iron_loss_coefficients[ldi]['ch_ind_exp'] khml = self.iron_loss_coefficients[ldi]['khml'] kw = self.iron_loss_coefficients[ldi]['kw'] cwbe = self.iron_loss_coefficients[ldi]['cw_ind_exp'] ke = self.iron_loss_coefficients[ldi]['ke'] cebe = self.iron_loss_coefficients[ldi]['ce_ind_exp'] sw = self.iron_loss_coefficients[ldi]['spec_weight']*1000 ff = self.iron_loss_coefficients[ldi]['fillfactor'] sf = self.iron_loss_coefficients[ldi]['shapefactor'] for el in se.elements: elhystenergy = 0.0 eleddyenergy = 0.0 elexceenergy = 0.0 bx_vec = self.vtu_data.get_data_vector('b', el.key)[0] by_vec = self.vtu_data.get_data_vector('b', el.key)[1] # Maximalwert und Richtung des Haupfeldes Bpeak = np.sqrt(bx_vec[0]**2+by_vec[0]**2) phi = np.arctan2(by_vec[0], bx_vec[0]) for i in range(1, len(time)): b1 = np.sqrt(bx_vec[i-1]**2+by_vec[i-1]**2) b2 = np.sqrt(bx_vec[i]**2+by_vec[i]**2) if abs(b2) > Bpeak: Bpeak = abs(b2) phi = np.arctan2(by_vec[i], bx_vec[i]) #Transformation in Hauptrichutng br_vec = [] bt_vec = [] for i in range(len(time)): br_vec.append(np.cos(phi)*bx_vec[i]+np.sin(phi)*by_vec[i]) bt_vec.append(np.sin(phi)*bx_vec[i]-np.cos(phi)*by_vec[i]) Bpeak_p = np.sqrt(bx_vec[0]**2+by_vec[0]**2) Bx = [] tp_beg = 0.0 tp_end = 0.0 Tp = 0.0 nzeros = 0 zero = (br_vec[0] >= 0) if br_vec[1] > br_vec[0]: up = True else: up = False for i in range(1, len(time)): b1 = np.sqrt(br_vec[i-1]**2+bt_vec[i-1]**2) b2 = np.sqrt(br_vec[i]**2+bt_vec[i]**2) # Maximalwert innerhalb letzter Periode if abs(b2) > Bpeak_p: Bpeak_p = abs(b2) # Nulldurchgaenge und Periodendauer if zero != (br_vec[i] >= 0): zero = (not zero) tp_beg = tp_end tp_end = time[i] if tp_beg > 0.0: nzeros = nzeros+1 if nzeros > 1: #Tp = (Tp*(nzeros-1)/nzeros+2*(tp_end-tp_beg)/nzeros)/2 Tp = 2*(tp_end-tp_beg) Bpeak = Bpeak_p elhystenergy = elhystenergy+kh*Bpeak**chbe/2 Bpeak_p = 0.0 else: Tp = 2.0*(tp_end-tp_beg) Bpeak = Bpeak_p elhystenergy = elhystenergy+kh * \ Bpeak**chbe * (tp_end-time[0])/Tp Bpeak_p = 0.0 Bx = [] # Wendepunkte if up and b2 < b1: Bx.append(b1) if not up and b2 > b1: Bx.append(b1) # Steigungsrichtung if b2 > b1: up = True else: up = False try: if b2 > 0 and up and b2 > Bx[-2]: Bm = abs(Bx[-2]+Bx[-1])/2 dB = abs(Bx[-2]-Bx[-1]) elhystenergy = elhystenergy + \ kh*Bm**(chbe-1)*khml*dB/2 Bx.remove(Bx[-2]) Bx.remove(Bx[-1]) if b2 < 0 and not up and b2 < Bx[-2]: elhystenergy = elhystenergy + \ kh*Bm**(chbe-1)*khml*dB/2 Bx.remove(Bx[-2]) Bx.remove(Bx[-1]) if b2 > 0 and not up and Bx[-1] > Bx[-2]: elhystenergy = elhystenergy + \ kh*Bm**(chbe-1)*khml*dB/2 Bx.remove(Bx[-2]) Bx.remove(Bx[-1]) if b2 < 0 and up and Bx[-1] < Bx[-2]: elhystenergy = elhystenergy + \ kh*Bm**(chbe-1)*khml*dB/2 Bx.remove(Bx[-2]) Bx.remove(Bx[-1]) except: pass dt = time[i]-time[i-1] dbr = br_vec[i]-br_vec[i-1] dbt = bt_vec[i]-bt_vec[i-1] db = np.sqrt(dbr**2+dbt**2) eleddyenergy = eleddyenergy + kw*(db/dt)**cwbe * dt elexceenergy = elexceenergy + ke*(db/dt)**cebe * dt #elhystenergy = elhystenergy+kh*Bpeak**chbe * T/(time[-1]-time[0]) if nzeros >= 1: elhystenergy = elhystenergy+kh * \ Bpeak**chbe * (time[-1]-tp_end)/Tp sehystenergy = sehystenergy + elhystenergy*el.area*length*ff*sf*sw*scale_factor seeddyenergy = seeddyenergy + eleddyenergy*el.area*length*ff*sf*sw*scale_factor seexceenergy = seexceenergy + elexceenergy*el.area*length*ff*sf*sw*scale_factor setotalenergy = sehystenergy + seeddyenergy + seexceenergy return {'total': setotalenergy, 'hysteresis': sehystenergy, 'eddycurrent': seeddyenergy, 'excess': seexceenergy} def iron_lossenergy_time_subregion(self, srname, start=0.0, end=0.0): '''Iron loss energy of a subregion Parameters ---------- srname: str Name of subregion start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- losses : dict Iron losses energy of the subregion The iron losses are calculated based on the Bertotti formula in time domain (see also iron_lossenergy_time_se) ''' if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) data_list = ['b'] self.vtu_data.read_data(data_list) self.times = TimeRange(self.vtu_data, self.nc_model) srtotalenergy = 0.0 srhystenergy = 0.0 sreddyenergy = 0.0 srexceenergy = 0.0 sr = self.nc_model.get_subregion(srname) for se in sr.superelements: seenergy = self.iron_lossenergy_time_se(se) srtotalenergy = srtotalenergy + seenergy['total'] srhystenergy = srhystenergy + seenergy['hysteresis'] sreddyenergy = sreddyenergy + seenergy['eddycurrent'] srexceenergy = srexceenergy + seenergy['excess'] srenergy = {'subregion': srname, 'total': srtotalenergy, 'hysteresis': srhystenergy, 'eddycurrent': sreddyenergy, 'excess': srexceenergy } return srenergy def iron_losses_time_subregion(self, srname, start=0.0, end=0.0): '''Iron power losses of a subregion Parameters ---------- srname: str Name of subregion start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- losses : dict Iron losses energy of the subregion The iron losses are calculated based on the Bertotti formula in time domain (see also iron_lossenergy_time_se) ''' while len(srname) < 4: srname = srname+' ' srenergy = self.iron_lossenergy_time_subregion(srname, start, end) time = self.times.vector[-1]-self.times.vector[0] srlosses = {'subregion': srname, 'total': srenergy['total']/time, 'hysteresis': srenergy['hysteresis']/time, 'eddycurrent': srenergy['eddycurrent']/time, 'excess': srenergy['excess']/time } return srlosses def iron_lossenergy_time(self, start=0.0, end=0.0): '''Iron losses of all subregion and superelements Parameters ---------- start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- energies : dict Iron losses enegies of the subregion The iron losses are calculated based on the Bertotti formula in time domain (see also iron_lossenergy_time_se) ''' if start != 0.0 or end != 0.0: self.vtu_data.set_time_window(start, end) data_list = ['b'] self.vtu_data.read_data(data_list) self.times = TimeRange(self.vtu_data, self.nc_model) energylist = [] for se in self.nc_model.superelements: selossenergy = self.iron_lossenergy_time_se(se) if se.subregion: for sr in self.nc_model.subregions: if se in sr.superelements: srname = sr.name #print(se.key, "in", sr.key, sr.name) else: if (se.mcvtype == 0): center_pnt = se.elements[0].center if (np.sqrt(center_pnt[0]**2+center_pnt[1]**2) > self.nc_model.FC_RADIUS): srname = "no, outside" else: srname = "no, inside" found = False for srlosses in energylist: if srlosses['subregion'] == srname: srlosses['total'] = srlosses['total']+selossenergy['total'] srlosses['hysteresis'] = srlosses['hysteresis'] + \ selossenergy['hysteresis'] srlosses['eddycurrent'] = srlosses['eddycurrent'] + \ selossenergy['eddycurrent'] srlosses['excess'] = srlosses['excess'] + \ selossenergy['excess'] found = True if not found: if selossenergy['total'] > 0.0: srlosses = {'subregion': srname, 'total': selossenergy['total'], 'hysteresis': selossenergy['hysteresis'], 'eddycurrent': selossenergy['eddycurrent'], 'excess': selossenergy['excess'] } energylist.append(srlosses) return energylist def iron_losses_time(self, start=0.0, end=0.0): '''Iron losses of all subregion and superelements Parameters ---------- start: float Start of the time window (optional) end : float End of the time window (optional) Returns ------- losses : dict Iron losses of the subregion The iron losses are calculated based on the Bertotti formula in time domain (see also iron_lossenergy_time_se) ''' energylist = self.iron_lossenergy_time(start, end) time = self.times.vector[-1]-self.times.vector[0] losseslist = [] for sr in energylist: sr['total'] = sr['total']/time sr['hysteresis'] = sr['hysteresis']/time sr['eddycurrent'] = sr['eddycurrent']/time sr['excess'] = sr['excess']/time losseslist.append(sr) return losseslist
37.29716
99
0.511108
de410ba23e79a4f845b2f9c843a8533e017edf1c
2,297
py
Python
tests/test_api_consumer.py
qxl0/chain
92152199257e3232f72ea4326022a39326462c7f
[ "MIT" ]
1
2022-02-10T18:59:52.000Z
2022-02-10T18:59:52.000Z
tests/test_api_consumer.py
qxl0/chain
92152199257e3232f72ea4326022a39326462c7f
[ "MIT" ]
null
null
null
tests/test_api_consumer.py
qxl0/chain
92152199257e3232f72ea4326022a39326462c7f
[ "MIT" ]
1
2022-03-18T15:35:56.000Z
2022-03-18T15:35:56.000Z
import time import pytest from brownie import APIConsumer, network, config from scripts.helpful_scripts import ( LOCAL_BLOCKCHAIN_ENVIRONMENTS, get_account, listen_for_event, get_contract, fund_with_link ) @pytest.fixture def deploy_api_contract(get_job_id, chainlink_fee): # Arrange / Act api_consumer = APIConsumer.deploy( get_contract("oracle").address, get_job_id, chainlink_fee, get_contract("link_token").address, {"from": get_account()}, ) block_confirmations=6 if network.show_active() in LOCAL_BLOCKCHAIN_ENVIRONMENTS: block_confirmations=1 api_consumer.tx.wait(block_confirmations) # Assert assert api_consumer is not None return api_consumer def test_send_api_request_local( deploy_api_contract, chainlink_fee, get_data, ): # Arrange if network.show_active() not in LOCAL_BLOCKCHAIN_ENVIRONMENTS: pytest.skip("Only for local testing") api_contract = deploy_api_contract get_contract("link_token").transfer( api_contract.address, chainlink_fee * 2, {"from": get_account()} ) # Act transaction_receipt = api_contract.requestVolumeData({"from": get_account()}) requestId = transaction_receipt.events["ChainlinkRequested"]["id"] # Assert get_contract("oracle").fulfillOracleRequest( requestId, get_data, {"from": get_account()} ) assert isinstance(api_contract.volume(), int) assert api_contract.volume() > 0 def test_send_api_request_testnet(deploy_api_contract, chainlink_fee): # Arrange if network.show_active() not in ["kovan", "rinkeby", "mainnet"]: pytest.skip("Only for local testing") api_contract = deploy_api_contract if (config["networks"][network.show_active()].get("verify", False)): APIConsumer.publish_source(api_contract) tx = fund_with_link( api_contract.address, amount=chainlink_fee ) tx.wait(1) # Act transaction = api_contract.requestVolumeData({"from": get_account()}) transaction.wait(1) # Assert event_response = listen_for_event(api_contract, "DataFullfilled") assert event_response.event is not None assert isinstance(api_contract.volume(), int) assert api_contract.volume() > 0
29.831169
81
0.707444
d521db00d47d430363804d61213d9f5f53ac5abe
1,031
py
Python
hstest/test_chip_compute2.py
Erotemic/hotspotter
3cfa4015798e21385455b937f9083405c4b3cf53
[ "Apache-2.0" ]
2
2015-07-19T02:55:06.000Z
2021-07-07T02:38:26.000Z
hstest/test_chip_compute2.py
Erotemic/hotspotter
3cfa4015798e21385455b937f9083405c4b3cf53
[ "Apache-2.0" ]
5
2017-03-11T16:30:26.000Z
2021-04-10T16:42:10.000Z
hstest/test_chip_compute2.py
Erotemic/hotspotter
3cfa4015798e21385455b937f9083405c4b3cf53
[ "Apache-2.0" ]
10
2015-07-19T03:05:42.000Z
2021-08-24T14:48:59.000Z
from hotspotter import HotSpotterAPI as api from hotspotter import chip_compute2 as cc2 from hscom import argparse2 from hscom import helpers from hscom import helpers as util from hsviz import viz import multiprocessing import numpy as np # NOQA if __name__ == '__main__': multiprocessing.freeze_support() # Debugging vars chip_cfg = None #l')=103.7900s cx_list = None kwargs = {} # --- LOAD TABLES --- # args = argparse2.parse_arguments(defaultdb='NAUTS') hs = api.HotSpotter(args) hs.load_tables() hs.update_samples() # --- LOAD CHIPS --- # force_compute = helpers.get_flag('--force', default=False) cc2.load_chips(hs, force_compute=force_compute) cx = helpers.get_arg('--cx', type_=int) if not cx is None: #tau = np.pi * 2 #hs.change_theta(cx, tau / 8) viz.show_chip(hs, cx, draw_kpts=False, fnum=1) viz.show_image(hs, hs.cx2_gx(cx), fnum=2) else: print('usage: feature_compute.py --cx [cx]') exec(viz.df2.present())
30.323529
62
0.664403
1b5fa800bcefc9bde23c11369e5b6f27d7c7f39c
15,475
py
Python
plugins/modules/oci_database_migration_connection_actions.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
108
2020-05-19T20:46:10.000Z
2022-03-25T14:10:01.000Z
plugins/modules/oci_database_migration_connection_actions.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
90
2020-06-14T22:07:11.000Z
2022-03-07T05:40:29.000Z
plugins/modules/oci_database_migration_connection_actions.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
42
2020-08-30T23:09:12.000Z
2022-03-25T16:58:01.000Z
#!/usr/bin/python # Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_database_migration_connection_actions short_description: Perform actions on a Connection resource in Oracle Cloud Infrastructure description: - Perform actions on a Connection resource in Oracle Cloud Infrastructure - For I(action=change_compartment), used to change the Database Connection compartment. version_added: "2.9.0" author: Oracle (@oracle) options: connection_id: description: - The OCID of the database connection type: str aliases: ["id"] required: true compartment_id: description: - The OCID of the compartment to move the resource to. type: str required: true action: description: - The action to perform on the Connection. type: str required: true choices: - "change_compartment" extends_documentation_fragment: [ oracle.oci.oracle ] """ EXAMPLES = """ - name: Perform action change_compartment on connection oci_database_migration_connection_actions: # required connection_id: "ocid1.connection.oc1..xxxxxxEXAMPLExxxxxx" compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" action: change_compartment """ RETURN = """ connection: description: - Details of the Connection resource acted upon by the current operation returned: on success type: complex contains: id: description: - The OCID of the resource returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" compartment_id: description: - OCID of the compartment returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" database_type: description: - Database connection type. returned: on success type: str sample: MANUAL display_name: description: - Database Connection display name identifier. returned: on success type: str sample: display_name_example database_id: description: - The OCID of the cloud database. returned: on success type: str sample: "ocid1.database.oc1..xxxxxxEXAMPLExxxxxx" connect_descriptor: description: - "" returned: on success type: complex contains: host: description: - Host of the connect descriptor. returned: on success type: str sample: host_example port: description: - Port of the connect descriptor. returned: on success type: int sample: 56 database_service_name: description: - Database service name. returned: on success type: str sample: database_service_name_example connect_string: description: - Connect string. returned: on success type: str sample: connect_string_example credentials_secret_id: description: - OCID of the Secret in the OCI vault containing the Database Connection credentials. returned: on success type: str sample: "ocid1.credentialssecret.oc1..xxxxxxEXAMPLExxxxxx" certificate_tdn: description: - This name is the distinguished name used while creating the certificate on target database. returned: on success type: str sample: certificate_tdn_example ssh_details: description: - "" returned: on success type: complex contains: host: description: - Name of the host the SSH key is valid for. returned: on success type: str sample: host_example user: description: - SSH user returned: on success type: str sample: user_example sudo_location: description: - Sudo location returned: on success type: str sample: sudo_location_example admin_credentials: description: - "" returned: on success type: complex contains: username: description: - Administrator username returned: on success type: str sample: username_example private_endpoint: description: - "" returned: on success type: complex contains: compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment to contain the private endpoint. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" vcn_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the VCN where the Private Endpoint will be bound to. returned: on success type: str sample: "ocid1.vcn.oc1..xxxxxxEXAMPLExxxxxx" subnet_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the customer's subnet where the private endpoint VNIC will reside. returned: on success type: str sample: "ocid1.subnet.oc1..xxxxxxEXAMPLExxxxxx" id: description: - L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of a previously created Private Endpoint. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" vault_details: description: - "" returned: on success type: complex contains: compartment_id: description: - OCID of the compartment where the secret containing the credentials will be created. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" vault_id: description: - OCID of the vault returned: on success type: str sample: "ocid1.vault.oc1..xxxxxxEXAMPLExxxxxx" key_id: description: - OCID of the vault encryption key returned: on success type: str sample: "ocid1.key.oc1..xxxxxxEXAMPLExxxxxx" lifecycle_state: description: - The current state of the Connection resource. returned: on success type: str sample: CREATING lifecycle_details: description: - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state. returned: on success type: str sample: lifecycle_details_example time_created: description: - The time the Connection resource was created. An RFC3339 formatted datetime string. returned: on success type: str sample: "2013-10-20T19:20:30+01:00" time_updated: description: - The time of the last Connection resource details update. An RFC3339 formatted datetime string. returned: on success type: str sample: "2013-10-20T19:20:30+01:00" freeform_tags: description: - "Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: `{\\"bar-key\\": \\"value\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - "Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: `{\\"foo-namespace\\": {\\"bar-key\\": \\"value\\"}}`" returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} system_tags: description: - "Usage of system tag keys. These predefined keys are scoped to namespaces. Example: `{\\"orcl-cloud\\": {\\"free-tier-retained\\": \\"true\\"}}`" returned: on success type: dict sample: {} sample: { "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "database_type": "MANUAL", "display_name": "display_name_example", "database_id": "ocid1.database.oc1..xxxxxxEXAMPLExxxxxx", "connect_descriptor": { "host": "host_example", "port": 56, "database_service_name": "database_service_name_example", "connect_string": "connect_string_example" }, "credentials_secret_id": "ocid1.credentialssecret.oc1..xxxxxxEXAMPLExxxxxx", "certificate_tdn": "certificate_tdn_example", "ssh_details": { "host": "host_example", "user": "user_example", "sudo_location": "sudo_location_example" }, "admin_credentials": { "username": "username_example" }, "private_endpoint": { "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "vcn_id": "ocid1.vcn.oc1..xxxxxxEXAMPLExxxxxx", "subnet_id": "ocid1.subnet.oc1..xxxxxxEXAMPLExxxxxx", "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" }, "vault_details": { "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "vault_id": "ocid1.vault.oc1..xxxxxxEXAMPLExxxxxx", "key_id": "ocid1.key.oc1..xxxxxxEXAMPLExxxxxx" }, "lifecycle_state": "CREATING", "lifecycle_details": "lifecycle_details_example", "time_created": "2013-10-20T19:20:30+01:00", "time_updated": "2013-10-20T19:20:30+01:00", "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}}, "system_tags": {} } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIActionsHelperBase, get_custom_class, ) try: from oci.database_migration import DatabaseMigrationClient from oci.database_migration.models import ChangeConnectionCompartmentDetails HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class ConnectionActionsHelperGen(OCIActionsHelperBase): """ Supported actions: change_compartment """ @staticmethod def get_module_resource_id_param(): return "connection_id" def get_module_resource_id(self): return self.module.params.get("connection_id") def get_get_fn(self): return self.client.get_connection def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_connection, connection_id=self.module.params.get("connection_id"), ) def change_compartment(self): action_details = oci_common_utils.convert_input_data_to_model_class( self.module.params, ChangeConnectionCompartmentDetails ) return oci_wait_utils.call_and_wait( call_fn=self.client.change_connection_compartment, call_fn_args=(), call_fn_kwargs=dict( connection_id=self.module.params.get("connection_id"), change_connection_compartment_details=action_details, ), waiter_type=oci_wait_utils.NONE_WAITER_KEY, operation="{0}_{1}".format( self.module.params.get("action").upper(), oci_common_utils.ACTION_OPERATION_KEY, ), waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=self.get_action_desired_states( self.module.params.get("action") ), ) ConnectionActionsHelperCustom = get_custom_class("ConnectionActionsHelperCustom") class ResourceHelper(ConnectionActionsHelperCustom, ConnectionActionsHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=False, supports_wait=False ) module_args.update( dict( connection_id=dict(aliases=["id"], type="str", required=True), compartment_id=dict(type="str", required=True), action=dict(type="str", required=True, choices=["change_compartment"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="connection", service_client_class=DatabaseMigrationClient, namespace="database_migration", ) result = resource_helper.perform_action(module.params.get("action")) module.exit_json(**result) if __name__ == "__main__": main()
36.411765
160
0.56504
4f241bb0eecb594e51f00d5fce47f958adaa9fae
1,704
py
Python
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2021_08_01/models/_application_insights_management_client_enums.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-01-24T08:54:57.000Z
2022-01-24T08:54:57.000Z
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2021_08_01/models/_application_insights_management_client_enums.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2021_08_01/models/_application_insights_management_client_enums.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from enum import Enum from six import with_metaclass from azure.core import CaseInsensitiveEnumMeta class CategoryType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): WORKBOOK = "workbook" TSG = "TSG" PERFORMANCE = "performance" RETENTION = "retention" class CreatedByType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): """The type of identity that created the resource. """ USER = "User" APPLICATION = "Application" MANAGED_IDENTITY = "ManagedIdentity" KEY = "Key" class Kind(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): """The kind of workbook. Only valid value is shared. """ USER = "user" SHARED = "shared" class ManagedServiceIdentityType(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): """Type of managed service identity (where both SystemAssigned and UserAssigned types are allowed). """ NONE = "None" SYSTEM_ASSIGNED = "SystemAssigned" USER_ASSIGNED = "UserAssigned" SYSTEM_ASSIGNED_USER_ASSIGNED = "SystemAssigned,UserAssigned" class SharedTypeKind(with_metaclass(CaseInsensitiveEnumMeta, str, Enum)): """The kind of workbook. Only valid value is shared. """ USER = "user" SHARED = "shared"
32.150943
94
0.663732
04b8014ea95e305e90c33f41f9a47e39addb271b
1,795
py
Python
setup.py
csmith/docker-rerun
de31a64b5eb43cc3644354bb5980e22e0ee9e7a4
[ "MIT" ]
4
2017-11-23T09:50:35.000Z
2020-08-25T12:42:22.000Z
setup.py
csmith/docker-rerun
de31a64b5eb43cc3644354bb5980e22e0ee9e7a4
[ "MIT" ]
1
2016-12-28T19:30:40.000Z
2016-12-31T02:24:04.000Z
setup.py
csmith/docker-rerun
de31a64b5eb43cc3644354bb5980e22e0ee9e7a4
[ "MIT" ]
3
2016-12-28T20:36:30.000Z
2021-02-08T11:24:16.000Z
"""Setuptools based setup module for docker-rerun.""" from setuptools import setup, find_packages from os import path here = path.abspath(path.dirname(__file__)) setup( name='docker-rerun', version='0.1.1', description='Command-line tool to re-run a docker container', long_description='docker-rerun is a small utility script that makes it ' \ 'easy to re-run docker containers using the same ' \ 'arguments you used previously.' \ '\n\n' \ 'Want to update to a newer image, or add a missing port ' \ 'publication? docker-rerun’s got you covered.' \ '\n\n' \ 'See the GitHub project_ for more info.' \ '\n\n' \ '.. _project: https://github.com/csmith/docker-rerun', url='https://github.com/csmith/docker-rerun', author='Chris Smith', author_email='chris87@gmail.com', license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3 :: Only', 'Topic :: System :: Systems Administration', 'Topic :: Utilities', ], keywords='docker container', py_modules=["docker_rerun"], install_requires=[], test_suite='nose.collector', extras_require={ 'dev': ['pylint'], 'test': ['coverage', 'nose', 'python-coveralls'], }, entry_points={ 'console_scripts': [ 'docker-rerun=docker_rerun:entrypoint', ], }, )
28.492063
80
0.567131
786ed40f07c446a6a75399460163792170141767
410
py
Python
tests/test_base.py
StevenKangWei/musicsa
485894f0c7494163cf2637542729be75c789262c
[ "MIT" ]
null
null
null
tests/test_base.py
StevenKangWei/musicsa
485894f0c7494163cf2637542729be75c789262c
[ "MIT" ]
null
null
null
tests/test_base.py
StevenKangWei/musicsa
485894f0c7494163cf2637542729be75c789262c
[ "MIT" ]
null
null
null
# coding=utf-8 import os import sys import unittest dirname = os.path.dirname(os.path.abspath(__file__)) project = os.path.abspath(os.path.join(dirname, '../musicsa')) if project not in sys.path: sys.path.insert(0, project) class BaseTestCase(unittest.TestCase): def setUp(self): pass def tearDown(self): pass @staticmethod def main(): return unittest.main()
17.083333
62
0.665854
09c4912fb7c3840aba8d478a284b923b23a2bc60
83
py
Python
bc1/__init__.py
jpercent/bc
ed8b91543f2854972bcbcc7f6f84cf78fabcf33f
[ "FSFAP" ]
null
null
null
bc1/__init__.py
jpercent/bc
ed8b91543f2854972bcbcc7f6f84cf78fabcf33f
[ "FSFAP" ]
null
null
null
bc1/__init__.py
jpercent/bc
ed8b91543f2854972bcbcc7f6f84cf78fabcf33f
[ "FSFAP" ]
null
null
null
from .pyflex import lex, yacc from .bc import * __author__ = 'jpercent' #del bc
10.375
29
0.698795
e226f811b5337de76fe5dcd1fee6ffcd9a7beb45
404
py
Python
ros/lib/host_inventory.py
RedHatInsights/resource-optimization-test
b94f29964e26e42a930f1ca589db80ed317afa0f
[ "Apache-2.0" ]
null
null
null
ros/lib/host_inventory.py
RedHatInsights/resource-optimization-test
b94f29964e26e42a930f1ca589db80ed317afa0f
[ "Apache-2.0" ]
null
null
null
ros/lib/host_inventory.py
RedHatInsights/resource-optimization-test
b94f29964e26e42a930f1ca589db80ed317afa0f
[ "Apache-2.0" ]
null
null
null
import requests import json from ros.config import INVENTORY_ADDRESS def fetch_host_from_inventory(insights_id, rh_identity): host_api_url = f"{INVENTORY_ADDRESS}/api/inventory/v1/hosts?insights_id={insights_id}" headers = {'x-rh-identity': rh_identity, 'Content-Type': 'application/json'} res = requests.get(host_api_url, headers=headers) hosts = json.loads(res.text) return hosts
33.666667
90
0.762376
af46d81a2705addc137f456543569bed6f6da6f7
4,256
py
Python
tests/instrumentation/pymssql_tests.py
dpaluch-rp/apm-agent-python
8b11d232f37c0affe0a7c92f590b05106c55b3b3
[ "BSD-3-Clause" ]
null
null
null
tests/instrumentation/pymssql_tests.py
dpaluch-rp/apm-agent-python
8b11d232f37c0affe0a7c92f590b05106c55b3b3
[ "BSD-3-Clause" ]
null
null
null
tests/instrumentation/pymssql_tests.py
dpaluch-rp/apm-agent-python
8b11d232f37c0affe0a7c92f590b05106c55b3b3
[ "BSD-3-Clause" ]
null
null
null
# BSD 3-Clause License # # Copyright (c) 2019, Elasticsearch BV # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import pytest from elasticapm.conf.constants import TRANSACTION from elasticapm.instrumentation.packages.pymssql import get_host_port from elasticapm.utils import default_ports pymssql = pytest.importorskip("pymssql") pytestmark = [pytest.mark.pymssql] if "MSSQL_HOST" not in os.environ: pytestmark.append(pytest.mark.skip("Skipping MS-SQL tests, no MSSQL_HOST environment variable set")) @pytest.yield_fixture(scope="function") def pymssql_connection(request): conn = pymssql.connect( os.environ.get("MSSQL_HOST", "localhost"), os.environ.get("MSSQL_USER", "SA"), os.environ.get("MSSQL_PASSWORD", ""), os.environ.get("MSSQL_DATABASE", "tempdb"), ) cursor = conn.cursor() cursor.execute( "CREATE TABLE test(id INT, name NVARCHAR(5) NOT NULL);" "INSERT INTO test VALUES (1, 'one'), (2, 'two'), (3, 'three');" ) yield conn # cleanup conn.rollback() @pytest.mark.integrationtest def test_pymssql_select(instrument, pymssql_connection, elasticapm_client): cursor = pymssql_connection.cursor() query = "SELECT * FROM test WHERE name LIKE 't%' ORDER BY id" try: elasticapm_client.begin_transaction("web.django") cursor.execute(query) assert cursor.fetchall() == [(2, "two"), (3, "three")] elasticapm_client.end_transaction(None, "test-transaction") finally: transactions = elasticapm_client.events[TRANSACTION] spans = elasticapm_client.spans_for_transaction(transactions[0]) span = spans[0] assert span["name"] == "SELECT FROM test" assert span["type"] == "db" assert span["subtype"] == "pymssql" assert span["action"] == "query" assert "db" in span["context"] assert span["context"]["db"]["type"] == "sql" assert span["context"]["db"]["statement"] == query assert span["context"]["destination"] == { "address": "mssql", "port": default_ports["mssql"], "service": {"name": "mssql", "resource": "mssql", "type": "db"}, } @pytest.mark.parametrize( "args,kwargs,expected", [ (("localhost",), {"port": 1234}, {"host": "localhost", "port": 1234}), (("localhost",), {}, {"host": "localhost", "port": default_ports["mssql"]}), ((), {"host": "localhost,1234"}, {"host": "localhost", "port": 1234}), ((), {"host": "localhost:1234"}, {"host": "localhost", "port": 1234}), ], ) def test_host_port_parsing(args, kwargs, expected): host, port = get_host_port(args, kwargs) assert host == expected["host"] assert port == expected["port"]
39.045872
104
0.679746
024fc593ba277a7e4baa5b8a88caa218aaffd3aa
1,179
py
Python
networks/network_utils.py
ademiadeniji/lords
75ce115ec7f950d857d0817eb0adf2cc2673ffdd
[ "Apache-2.0" ]
null
null
null
networks/network_utils.py
ademiadeniji/lords
75ce115ec7f950d857d0817eb0adf2cc2673ffdd
[ "Apache-2.0" ]
null
null
null
networks/network_utils.py
ademiadeniji/lords
75ce115ec7f950d857d0817eb0adf2cc2673ffdd
[ "Apache-2.0" ]
null
null
null
"""Network utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def task_multiplex(inputs, z, num_tasks): """The multiplex module for multitask data. Args: inputs: Tensor of shape [batch_size, ..., num_tasks * dim_outputs]. z: The integer task index of shape [batch_size]. num_tasks: The number of tasks. Returns: A tensor of shape [batch_size, ..., dim_outputs]. """ # dim_inputs = num_tasks * dim_outputs dim_inputs = int(inputs.shape[-1]) assert dim_inputs % num_tasks == 0 dim_outputs = int(dim_inputs / num_tasks) new_shape = tf.concat( [tf.shape(inputs)[:-1], [num_tasks, dim_outputs]], axis=-1) state = tf.reshape(inputs, new_shape) # [batch_size, ..., num_tasks, dim_outputs] state = tf.stack(tf.unstack(state, axis=-2), axis=1) # [batch_size, num_tasks, ..., dim_outputs] indices = tf.expand_dims(z, axis=-1) # [batch_size, 1] state = tf.gather_nd( state, indices, batch_dims=1) # [batch_size, ..., dim_outputs] return state
28.756098
75
0.644614
dfb10b58d22903dfe3db3d9ca6dcf6bdae336c01
4,037
py
Python
src/upload_images_s3.py
NVIDIA-AI-IOT/deepstream-fpfilter
e00d889e18e618e32ff0020afa1a70496e739516
[ "MIT" ]
6
2021-11-03T15:14:21.000Z
2022-03-22T12:32:41.000Z
src/upload_images_s3.py
NVIDIA-AI-IOT/deepstream-fpfilter
e00d889e18e618e32ff0020afa1a70496e739516
[ "MIT" ]
null
null
null
src/upload_images_s3.py
NVIDIA-AI-IOT/deepstream-fpfilter
e00d889e18e618e32ff0020afa1a70496e739516
[ "MIT" ]
2
2021-09-23T19:11:41.000Z
2021-12-22T00:06:41.000Z
''' Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import boto3 from botocore.exceptions import ClientError import logging import os from os import environ import sys from os import listdir from os.path import isfile, join ''' Apis to upload images to S3 bucket. To use the api's, AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environmental variables needs to be set or ~/.aws/config file should be created and include key and secret access key info. A sample config looks like this: [default] aws_access_key_id = <your username here> aws_secret_access_key = <your S3 API key here> Also, set region, bucket name and endpoint url below to upload to the s3 bucket. ''' DEFAULT_LOCATION = <region name> BUCKET_NAME = <name of the bucket to upload images> ENDPOINT_URL = <endpoint url> s3 = boto3.client('s3', region_name=DEFAULT_LOCATION, endpoint_url=ENDPOINT_URL) def get_bucket_list(): ''' returns list of buckets. ''' response = s3.list_buckets() return [dict['Name'] for dict in response['Buckets']] def create_bucket(bucket_name): ''' Creates bucket. Versioning is disable by default. ''' response = s3.list_buckets() buckets_dict_list = response['Buckets'] for dict_item in buckets_dict_list: if dict_item["Name"] == bucket_name: print('bucket with name {} already exists'.format(bucket_name)) return True try: location = {'LocationConstraint': DEFAULT_LOCATION} s3.create_bucket(Bucket=bucket_name, CreateBucketConfiguration=location) except ClientError as e: logging.error(e) return False return True def get_file_list_in_bucket(bucket_name): ''' Returns list of files in s3 bucket. ''' obj_info = s3.list_objects(Bucket=bucket_name) if 'Contents' not in obj_info: return [] return [dict['Key'] for dict in obj_info['Contents']] def upload_file_to_bucket(bucket_name, file_name, object_name=None): ''' Uploads file to bucket. ''' if object_name is None: object_name = os.path.basename(file_name) print("uploading ", file_name) try: response = s3.upload_file(file_name, bucket_name, object_name) except ClientError as e: logging.error(e) return False return True def delete_file_in_bucket(bucket_name, object_name): ''' Deletes file from the bucket. ''' s3.delete_object(Bucket=bucket_name, Key=object_name) def clear_bucket(bucket_name): ''' Deletes all files from the bucket. ''' s3_res = boto3.resource('s3') bucket = s3_res.Bucket(bucket_name) bucket.objects.all().delete() def delete_bucket(bucket_name): clear_bucket(bucket_name) s3.delete_bucket(Bucket=bucket_name) if __name__ == '__main__': print(sys.argv) create_bucket(BUCKET_NAME) if upload_file_to_bucket(BUCKET_NAME, sys.argv[1]%int(sys.argv[3])): print("Uploading success") else: print("Uploading failed")
31.294574
113
0.72653
ec105dfaeb0f292faca13f02fbb9755da8605aba
251,311
py
Python
tensorflow/python/ops/image_ops_test.py
TheRakeshPurohit/tensorflow
bee6d5a268122df99e1e55a7b92517e84ad25bab
[ "Apache-2.0" ]
1
2022-03-18T17:36:11.000Z
2022-03-18T17:36:11.000Z
tensorflow/python/ops/image_ops_test.py
TheRakeshPurohit/tensorflow
bee6d5a268122df99e1e55a7b92517e84ad25bab
[ "Apache-2.0" ]
null
null
null
tensorflow/python/ops/image_ops_test.py
TheRakeshPurohit/tensorflow
bee6d5a268122df99e1e55a7b92517e84ad25bab
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.image_ops.""" import colorsys import contextlib import functools import itertools import math import os import time from absl.testing import parameterized import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.compat import compat from tensorflow.python.data.experimental.ops import get_single_element from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import config as tf_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_image_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import image_ops_impl from tensorflow.python.ops import io_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import stateless_random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import test class RGBToHSVTest(test_util.TensorFlowTestCase): def testBatch(self): # Build an arbitrary RGB image np.random.seed(7) batch_size = 5 shape = (batch_size, 2, 7, 3) for nptype in [np.float32, np.float64]: inp = np.random.rand(*shape).astype(nptype) # Convert to HSV and back, as a batch and individually with self.cached_session(): batch0 = constant_op.constant(inp) batch1 = image_ops.rgb_to_hsv(batch0) batch2 = image_ops.hsv_to_rgb(batch1) split0 = array_ops.unstack(batch0) split1 = list(map(image_ops.rgb_to_hsv, split0)) split2 = list(map(image_ops.hsv_to_rgb, split1)) join1 = array_ops.stack(split1) join2 = array_ops.stack(split2) batch1, batch2, join1, join2 = self.evaluate( [batch1, batch2, join1, join2]) # Verify that processing batch elements together is the same as separate self.assertAllClose(batch1, join1) self.assertAllClose(batch2, join2) self.assertAllClose(batch2, inp) def testRGBToHSVRoundTrip(self): data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] for nptype in [np.float32, np.float64]: rgb_np = np.array(data, dtype=nptype).reshape([2, 2, 3]) / 255. with self.cached_session(): hsv = image_ops.rgb_to_hsv(rgb_np) rgb = image_ops.hsv_to_rgb(hsv) rgb_tf = self.evaluate(rgb) self.assertAllClose(rgb_tf, rgb_np) def testRGBToHSVDataTypes(self): # Test case for GitHub issue 54855. data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] for dtype in [ dtypes.float32, dtypes.float64, dtypes.float16, dtypes.bfloat16 ]: with self.cached_session(use_gpu=False): rgb = math_ops.cast( np.array(data, np.float32).reshape([2, 2, 3]) / 255., dtype=dtype) hsv = image_ops.rgb_to_hsv(rgb) val = image_ops.hsv_to_rgb(hsv) out = self.evaluate(val) self.assertAllClose(rgb, out, atol=1e-2) class RGBToYIQTest(test_util.TensorFlowTestCase): @test_util.run_without_tensor_float_32( "Calls rgb_to_yiq and yiq_to_rgb, which use matmul") def testBatch(self): # Build an arbitrary RGB image np.random.seed(7) batch_size = 5 shape = (batch_size, 2, 7, 3) for nptype in [np.float32, np.float64]: inp = np.random.rand(*shape).astype(nptype) # Convert to YIQ and back, as a batch and individually with self.cached_session(): batch0 = constant_op.constant(inp) batch1 = image_ops.rgb_to_yiq(batch0) batch2 = image_ops.yiq_to_rgb(batch1) split0 = array_ops.unstack(batch0) split1 = list(map(image_ops.rgb_to_yiq, split0)) split2 = list(map(image_ops.yiq_to_rgb, split1)) join1 = array_ops.stack(split1) join2 = array_ops.stack(split2) batch1, batch2, join1, join2 = self.evaluate( [batch1, batch2, join1, join2]) # Verify that processing batch elements together is the same as separate self.assertAllClose(batch1, join1, rtol=1e-4, atol=1e-4) self.assertAllClose(batch2, join2, rtol=1e-4, atol=1e-4) self.assertAllClose(batch2, inp, rtol=1e-4, atol=1e-4) class RGBToYUVTest(test_util.TensorFlowTestCase): @test_util.run_without_tensor_float_32( "Calls rgb_to_yuv and yuv_to_rgb, which use matmul") def testBatch(self): # Build an arbitrary RGB image np.random.seed(7) batch_size = 5 shape = (batch_size, 2, 7, 3) for nptype in [np.float32, np.float64]: inp = np.random.rand(*shape).astype(nptype) # Convert to YUV and back, as a batch and individually with self.cached_session(): batch0 = constant_op.constant(inp) batch1 = image_ops.rgb_to_yuv(batch0) batch2 = image_ops.yuv_to_rgb(batch1) split0 = array_ops.unstack(batch0) split1 = list(map(image_ops.rgb_to_yuv, split0)) split2 = list(map(image_ops.yuv_to_rgb, split1)) join1 = array_ops.stack(split1) join2 = array_ops.stack(split2) batch1, batch2, join1, join2 = self.evaluate( [batch1, batch2, join1, join2]) # Verify that processing batch elements together is the same as separate self.assertAllClose(batch1, join1, rtol=1e-4, atol=1e-4) self.assertAllClose(batch2, join2, rtol=1e-4, atol=1e-4) self.assertAllClose(batch2, inp, rtol=1e-4, atol=1e-4) class GrayscaleToRGBTest(test_util.TensorFlowTestCase): def _RGBToGrayscale(self, images): is_batch = True if len(images.shape) == 3: is_batch = False images = np.expand_dims(images, axis=0) out_shape = images.shape[0:3] + (1,) out = np.zeros(shape=out_shape, dtype=np.uint8) for batch in range(images.shape[0]): for y in range(images.shape[1]): for x in range(images.shape[2]): red = images[batch, y, x, 0] green = images[batch, y, x, 1] blue = images[batch, y, x, 2] gray = 0.2989 * red + 0.5870 * green + 0.1140 * blue out[batch, y, x, 0] = int(gray) if not is_batch: out = np.squeeze(out, axis=0) return out def _TestRGBToGrayscale(self, x_np): y_np = self._RGBToGrayscale(x_np) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.rgb_to_grayscale(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testBasicRGBToGrayscale(self): # 4-D input with batch dimension. x_np = np.array( [[1, 2, 3], [4, 10, 1]], dtype=np.uint8).reshape([1, 1, 2, 3]) self._TestRGBToGrayscale(x_np) # 3-D input with no batch dimension. x_np = np.array([[1, 2, 3], [4, 10, 1]], dtype=np.uint8).reshape([1, 2, 3]) self._TestRGBToGrayscale(x_np) def testBasicGrayscaleToRGB(self): # 4-D input with batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([1, 1, 2, 1]) y_np = np.array( [[1, 1, 1], [2, 2, 2]], dtype=np.uint8).reshape([1, 1, 2, 3]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.grayscale_to_rgb(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) # 3-D input with no batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([1, 2, 1]) y_np = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.uint8).reshape([1, 2, 3]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.grayscale_to_rgb(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testGrayscaleToRGBInputValidation(self): # tests whether the grayscale_to_rgb function raises # an exception if the input images' last dimension is # not of size 1, i.e. the images have shape # [batch size, height, width] or [height, width] # tests if an exception is raised if a three dimensional # input is used, i.e. the images have shape [batch size, height, width] with self.cached_session(): # 3-D input with batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([1, 1, 2]) x_tf = constant_op.constant(x_np, shape=x_np.shape) # this is the error message we expect the function to raise err_msg = "Last dimension of a grayscale image should be size 1" with self.assertRaisesRegex(ValueError, err_msg): image_ops.grayscale_to_rgb(x_tf) # tests if an exception is raised if a two dimensional # input is used, i.e. the images have shape [height, width] with self.cached_session(): # 1-D input without batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([2]) x_tf = constant_op.constant(x_np, shape=x_np.shape) # this is the error message we expect the function to raise err_msg = "must be at least two-dimensional" with self.assertRaisesRegex(ValueError, err_msg): image_ops.grayscale_to_rgb(x_tf) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): # Shape inference works and produces expected output where possible rgb_shape = [7, None, 19, 3] gray_shape = rgb_shape[:-1] + [1] with self.cached_session(): rgb_tf = array_ops.placeholder(dtypes.uint8, shape=rgb_shape) gray = image_ops.rgb_to_grayscale(rgb_tf) self.assertEqual(gray_shape, gray.get_shape().as_list()) with self.cached_session(): gray_tf = array_ops.placeholder(dtypes.uint8, shape=gray_shape) rgb = image_ops.grayscale_to_rgb(gray_tf) self.assertEqual(rgb_shape, rgb.get_shape().as_list()) # Shape inference does not break for unknown shapes with self.cached_session(): rgb_tf_unknown = array_ops.placeholder(dtypes.uint8) gray_unknown = image_ops.rgb_to_grayscale(rgb_tf_unknown) self.assertFalse(gray_unknown.get_shape()) with self.cached_session(): gray_tf_unknown = array_ops.placeholder(dtypes.uint8) rgb_unknown = image_ops.grayscale_to_rgb(gray_tf_unknown) self.assertFalse(rgb_unknown.get_shape()) class AdjustGamma(test_util.TensorFlowTestCase): def test_adjust_gamma_less_zero_float32(self): """White image should be returned for gamma equal to zero""" with self.cached_session(): x_data = np.random.uniform(0, 1.0, (8, 8)) x_np = np.array(x_data, dtype=np.float32) x = constant_op.constant(x_np, shape=x_np.shape) err_msg = "Gamma should be a non-negative real number" with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): image_ops.adjust_gamma(x, gamma=-1) def test_adjust_gamma_less_zero_uint8(self): """White image should be returned for gamma equal to zero""" with self.cached_session(): x_data = np.random.uniform(0, 255, (8, 8)) x_np = np.array(x_data, dtype=np.uint8) x = constant_op.constant(x_np, shape=x_np.shape) err_msg = "Gamma should be a non-negative real number" with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): image_ops.adjust_gamma(x, gamma=-1) def test_adjust_gamma_less_zero_tensor(self): """White image should be returned for gamma equal to zero""" with self.cached_session(): x_data = np.random.uniform(0, 1.0, (8, 8)) x_np = np.array(x_data, dtype=np.float32) x = constant_op.constant(x_np, shape=x_np.shape) y = constant_op.constant(-1.0, dtype=dtypes.float32) err_msg = "Gamma should be a non-negative real number" with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): image = image_ops.adjust_gamma(x, gamma=y) self.evaluate(image) def _test_adjust_gamma_uint8(self, gamma): """Verifying the output with expected results for gamma correction for uint8 images """ with self.cached_session(): x_np = np.random.uniform(0, 255, (8, 8)).astype(np.uint8) x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_gamma(x, gamma=gamma) y_tf = np.trunc(self.evaluate(y)) # calculate gamma correction using numpy # firstly, transform uint8 to float representation # then perform correction y_np = np.power(x_np / 255.0, gamma) # convert correct numpy image back to uint8 type y_np = np.trunc(np.clip(y_np * 255.5, 0, 255.0)) self.assertAllClose(y_tf, y_np, 1e-6) def _test_adjust_gamma_float32(self, gamma): """Verifying the output with expected results for gamma correction for float32 images """ with self.cached_session(): x_np = np.random.uniform(0, 1.0, (8, 8)) x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_gamma(x, gamma=gamma) y_tf = self.evaluate(y) y_np = np.clip(np.power(x_np, gamma), 0, 1.0) self.assertAllClose(y_tf, y_np, 1e-6) def test_adjust_gamma_one_float32(self): """Same image should be returned for gamma equal to one""" self._test_adjust_gamma_float32(1.0) def test_adjust_gamma_one_uint8(self): self._test_adjust_gamma_uint8(1.0) def test_adjust_gamma_zero_uint8(self): """White image should be returned for gamma equal to zero for uint8 images """ self._test_adjust_gamma_uint8(gamma=0.0) def test_adjust_gamma_less_one_uint8(self): """Verifying the output with expected results for gamma correction with gamma equal to half for uint8 images """ self._test_adjust_gamma_uint8(gamma=0.5) def test_adjust_gamma_greater_one_uint8(self): """Verifying the output with expected results for gamma correction for uint8 images """ self._test_adjust_gamma_uint8(gamma=1.0) def test_adjust_gamma_less_one_float32(self): """Verifying the output with expected results for gamma correction with gamma equal to half for float32 images """ self._test_adjust_gamma_float32(0.5) def test_adjust_gamma_greater_one_float32(self): """Verifying the output with expected results for gamma correction with gamma equal to two for float32 images """ self._test_adjust_gamma_float32(1.0) def test_adjust_gamma_zero_float32(self): """White image should be returned for gamma equal to zero for float32 images """ self._test_adjust_gamma_float32(0.0) class AdjustHueTest(test_util.TensorFlowTestCase): def testAdjustNegativeHue(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) delta = -0.25 y_data = [0, 13, 1, 54, 226, 59, 8, 234, 150, 255, 39, 1] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.cached_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_hue(x, delta) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testAdjustPositiveHue(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) delta = 0.25 y_data = [13, 0, 11, 226, 54, 221, 234, 8, 92, 1, 217, 255] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.cached_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_hue(x, delta) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testBatchAdjustHue(self): x_shape = [2, 1, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) delta = 0.25 y_data = [13, 0, 11, 226, 54, 221, 234, 8, 92, 1, 217, 255] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.cached_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_hue(x, delta) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def _adjustHueNp(self, x_np, delta_h): self.assertEqual(x_np.shape[-1], 3) x_v = x_np.reshape([-1, 3]) y_v = np.ndarray(x_v.shape, dtype=x_v.dtype) channel_count = x_v.shape[0] for i in range(channel_count): r = x_v[i][0] g = x_v[i][1] b = x_v[i][2] h, s, v = colorsys.rgb_to_hsv(r, g, b) h += delta_h h = math.fmod(h + 10.0, 1.0) r, g, b = colorsys.hsv_to_rgb(h, s, v) y_v[i][0] = r y_v[i][1] = g y_v[i][2] = b return y_v.reshape(x_np.shape) def _adjustHueTf(self, x_np, delta_h): with self.cached_session(): x = constant_op.constant(x_np) y = image_ops.adjust_hue(x, delta_h) y_tf = self.evaluate(y) return y_tf def testAdjustRandomHue(self): x_shapes = [ [2, 2, 3], [4, 2, 3], [2, 4, 3], [2, 5, 3], [1000, 1, 3], ] test_styles = [ "all_random", "rg_same", "rb_same", "gb_same", "rgb_same", ] for x_shape in x_shapes: for test_style in test_styles: x_np = np.random.rand(*x_shape) * 255. delta_h = np.random.rand() * 2.0 - 1.0 if test_style == "all_random": pass elif test_style == "rg_same": x_np[..., 1] = x_np[..., 0] elif test_style == "rb_same": x_np[..., 2] = x_np[..., 0] elif test_style == "gb_same": x_np[..., 2] = x_np[..., 1] elif test_style == "rgb_same": x_np[..., 1] = x_np[..., 0] x_np[..., 2] = x_np[..., 0] else: raise AssertionError("Invalid test style: %s" % (test_style)) y_np = self._adjustHueNp(x_np, delta_h) y_tf = self._adjustHueTf(x_np, delta_h) self.assertAllClose(y_tf, y_np, rtol=2e-5, atol=1e-5) def testInvalidShapes(self): fused = False if not fused: # The tests are known to pass with the fused adjust_hue. We will enable # them when the fused implementation is the default. return x_np = np.random.rand(2, 3) * 255. delta_h = np.random.rand() * 2.0 - 1.0 fused = False with self.assertRaisesRegex(ValueError, "Shape must be at least rank 3"): self._adjustHueTf(x_np, delta_h) x_np = np.random.rand(4, 2, 4) * 255. delta_h = np.random.rand() * 2.0 - 1.0 with self.assertRaisesOpError("input must have 3 channels"): self._adjustHueTf(x_np, delta_h) def testInvalidDeltaValue(self): """Delta value must be in the inetrval of [-1,1].""" if not context.executing_eagerly(): self.skipTest("Eager mode only") else: with self.cached_session(): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) x = constant_op.constant(x_np, shape=x_np.shape) err_msg = r"delta must be in the interval \[-1, 1\]" with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): image_ops.adjust_hue(x, delta=1.5) class FlipImageBenchmark(test.Benchmark): def _benchmarkFlipLeftRight(self, device, cpu_count): image_shape = [299, 299, 3] warmup_rounds = 100 benchmark_rounds = 1000 config = config_pb2.ConfigProto() if cpu_count is not None: config.inter_op_parallelism_threads = 1 config.intra_op_parallelism_threads = cpu_count with session.Session("", graph=ops.Graph(), config=config) as sess: with ops.device(device): inputs = variables.Variable( random_ops.random_uniform(image_shape, dtype=dtypes.float32) * 255, trainable=False, dtype=dtypes.float32) run_op = image_ops.flip_left_right(inputs) self.evaluate(variables.global_variables_initializer()) for i in range(warmup_rounds + benchmark_rounds): if i == warmup_rounds: start = time.time() self.evaluate(run_op) end = time.time() step_time = (end - start) / benchmark_rounds tag = device + "_%s" % (cpu_count if cpu_count is not None else "_all") print("benchmarkFlipLeftRight_299_299_3_%s step_time: %.2f us" % (tag, step_time * 1e6)) self.report_benchmark( name="benchmarkFlipLeftRight_299_299_3_%s" % (tag), iters=benchmark_rounds, wall_time=step_time) def _benchmarkRandomFlipLeftRight(self, device, cpu_count): image_shape = [299, 299, 3] warmup_rounds = 100 benchmark_rounds = 1000 config = config_pb2.ConfigProto() if cpu_count is not None: config.inter_op_parallelism_threads = 1 config.intra_op_parallelism_threads = cpu_count with session.Session("", graph=ops.Graph(), config=config) as sess: with ops.device(device): inputs = variables.Variable( random_ops.random_uniform(image_shape, dtype=dtypes.float32) * 255, trainable=False, dtype=dtypes.float32) run_op = image_ops.random_flip_left_right(inputs) self.evaluate(variables.global_variables_initializer()) for i in range(warmup_rounds + benchmark_rounds): if i == warmup_rounds: start = time.time() self.evaluate(run_op) end = time.time() step_time = (end - start) / benchmark_rounds tag = device + "_%s" % (cpu_count if cpu_count is not None else "_all") print("benchmarkRandomFlipLeftRight_299_299_3_%s step_time: %.2f us" % (tag, step_time * 1e6)) self.report_benchmark( name="benchmarkRandomFlipLeftRight_299_299_3_%s" % (tag), iters=benchmark_rounds, wall_time=step_time) def _benchmarkBatchedRandomFlipLeftRight(self, device, cpu_count): image_shape = [16, 299, 299, 3] warmup_rounds = 100 benchmark_rounds = 1000 config = config_pb2.ConfigProto() if cpu_count is not None: config.inter_op_parallelism_threads = 1 config.intra_op_parallelism_threads = cpu_count with session.Session("", graph=ops.Graph(), config=config) as sess: with ops.device(device): inputs = variables.Variable( random_ops.random_uniform(image_shape, dtype=dtypes.float32) * 255, trainable=False, dtype=dtypes.float32) run_op = image_ops.random_flip_left_right(inputs) self.evaluate(variables.global_variables_initializer()) for i in range(warmup_rounds + benchmark_rounds): if i == warmup_rounds: start = time.time() self.evaluate(run_op) end = time.time() step_time = (end - start) / benchmark_rounds tag = device + "_%s" % (cpu_count if cpu_count is not None else "_all") print("benchmarkBatchedRandomFlipLeftRight_16_299_299_3_%s step_time: " "%.2f us" % (tag, step_time * 1e6)) self.report_benchmark( name="benchmarkBatchedRandomFlipLeftRight_16_299_299_3_%s" % (tag), iters=benchmark_rounds, wall_time=step_time) def benchmarkFlipLeftRightCpu1(self): self._benchmarkFlipLeftRight("/cpu:0", 1) def benchmarkFlipLeftRightCpuAll(self): self._benchmarkFlipLeftRight("/cpu:0", None) def benchmarkFlipLeftRightGpu(self): self._benchmarkFlipLeftRight(test.gpu_device_name(), None) def benchmarkRandomFlipLeftRightCpu1(self): self._benchmarkRandomFlipLeftRight("/cpu:0", 1) def benchmarkRandomFlipLeftRightCpuAll(self): self._benchmarkRandomFlipLeftRight("/cpu:0", None) def benchmarkRandomFlipLeftRightGpu(self): self._benchmarkRandomFlipLeftRight(test.gpu_device_name(), None) def benchmarkBatchedRandomFlipLeftRightCpu1(self): self._benchmarkBatchedRandomFlipLeftRight("/cpu:0", 1) def benchmarkBatchedRandomFlipLeftRightCpuAll(self): self._benchmarkBatchedRandomFlipLeftRight("/cpu:0", None) def benchmarkBatchedRandomFlipLeftRightGpu(self): self._benchmarkBatchedRandomFlipLeftRight(test.gpu_device_name(), None) class AdjustHueBenchmark(test.Benchmark): def _benchmarkAdjustHue(self, device, cpu_count): image_shape = [299, 299, 3] warmup_rounds = 100 benchmark_rounds = 1000 config = config_pb2.ConfigProto() if cpu_count is not None: config.inter_op_parallelism_threads = 1 config.intra_op_parallelism_threads = cpu_count with self.benchmark_session(config=config, device=device) as sess: inputs = variables.Variable( random_ops.random_uniform(image_shape, dtype=dtypes.float32) * 255, trainable=False, dtype=dtypes.float32) delta = constant_op.constant(0.1, dtype=dtypes.float32) outputs = image_ops.adjust_hue(inputs, delta) run_op = control_flow_ops.group(outputs) self.evaluate(variables.global_variables_initializer()) for i in range(warmup_rounds + benchmark_rounds): if i == warmup_rounds: start = time.time() self.evaluate(run_op) end = time.time() step_time = (end - start) / benchmark_rounds tag = device + "_%s" % (cpu_count if cpu_count is not None else "_all") print("benchmarkAdjustHue_299_299_3_%s step_time: %.2f us" % (tag, step_time * 1e6)) self.report_benchmark( name="benchmarkAdjustHue_299_299_3_%s" % (tag), iters=benchmark_rounds, wall_time=step_time) def benchmarkAdjustHueCpu1(self): self._benchmarkAdjustHue("/cpu:0", 1) def benchmarkAdjustHueCpuAll(self): self._benchmarkAdjustHue("/cpu:0", None) def benchmarkAdjustHueGpu(self): self._benchmarkAdjustHue(test.gpu_device_name(), None) class AdjustSaturationBenchmark(test.Benchmark): def _benchmarkAdjustSaturation(self, device, cpu_count): image_shape = [299, 299, 3] warmup_rounds = 100 benchmark_rounds = 1000 config = config_pb2.ConfigProto() if cpu_count is not None: config.inter_op_parallelism_threads = 1 config.intra_op_parallelism_threads = cpu_count with self.benchmark_session(config=config, device=device) as sess: inputs = variables.Variable( random_ops.random_uniform(image_shape, dtype=dtypes.float32) * 255, trainable=False, dtype=dtypes.float32) delta = constant_op.constant(0.1, dtype=dtypes.float32) outputs = image_ops.adjust_saturation(inputs, delta) run_op = control_flow_ops.group(outputs) self.evaluate(variables.global_variables_initializer()) for _ in range(warmup_rounds): self.evaluate(run_op) start = time.time() for _ in range(benchmark_rounds): self.evaluate(run_op) end = time.time() step_time = (end - start) / benchmark_rounds tag = device + "_%s" % (cpu_count if cpu_count is not None else "_all") print("benchmarkAdjustSaturation_299_299_3_%s step_time: %.2f us" % (tag, step_time * 1e6)) self.report_benchmark( name="benchmarkAdjustSaturation_299_299_3_%s" % (tag), iters=benchmark_rounds, wall_time=step_time) def benchmarkAdjustSaturationCpu1(self): self._benchmarkAdjustSaturation("/cpu:0", 1) def benchmarkAdjustSaturationCpuAll(self): self._benchmarkAdjustSaturation("/cpu:0", None) def benchmarkAdjustSaturationGpu(self): self._benchmarkAdjustSaturation(test.gpu_device_name(), None) class ResizeBilinearBenchmark(test.Benchmark): def _benchmarkResize(self, image_size, num_channels): batch_size = 1 num_ops = 1000 img = variables.Variable( random_ops.random_normal( [batch_size, image_size[0], image_size[1], num_channels]), name="img") deps = [] for _ in range(num_ops): with ops.control_dependencies(deps): resize_op = image_ops.resize_bilinear( img, [299, 299], align_corners=False) deps = [resize_op] benchmark_op = control_flow_ops.group(*deps) with self.benchmark_session() as sess: self.evaluate(variables.global_variables_initializer()) results = self.run_op_benchmark( sess, benchmark_op, name=("resize_bilinear_%s_%s_%s" % (image_size[0], image_size[1], num_channels))) print("%s : %.2f ms/img" % (results["name"], 1000 * results["wall_time"] / (batch_size * num_ops))) def benchmarkSimilar3Channel(self): self._benchmarkResize((183, 229), 3) def benchmarkScaleUp3Channel(self): self._benchmarkResize((141, 186), 3) def benchmarkScaleDown3Channel(self): self._benchmarkResize((749, 603), 3) def benchmarkSimilar1Channel(self): self._benchmarkResize((183, 229), 1) def benchmarkScaleUp1Channel(self): self._benchmarkResize((141, 186), 1) def benchmarkScaleDown1Channel(self): self._benchmarkResize((749, 603), 1) class ResizeBicubicBenchmark(test.Benchmark): def _benchmarkResize(self, image_size, num_channels): batch_size = 1 num_ops = 1000 img = variables.Variable( random_ops.random_normal( [batch_size, image_size[0], image_size[1], num_channels]), name="img") deps = [] for _ in range(num_ops): with ops.control_dependencies(deps): resize_op = image_ops.resize_bicubic( img, [299, 299], align_corners=False) deps = [resize_op] benchmark_op = control_flow_ops.group(*deps) with self.benchmark_session() as sess: self.evaluate(variables.global_variables_initializer()) results = self.run_op_benchmark( sess, benchmark_op, min_iters=20, name=("resize_bicubic_%s_%s_%s" % (image_size[0], image_size[1], num_channels))) print("%s : %.2f ms/img" % (results["name"], 1000 * results["wall_time"] / (batch_size * num_ops))) def benchmarkSimilar3Channel(self): self._benchmarkResize((183, 229), 3) def benchmarkScaleUp3Channel(self): self._benchmarkResize((141, 186), 3) def benchmarkScaleDown3Channel(self): self._benchmarkResize((749, 603), 3) def benchmarkSimilar1Channel(self): self._benchmarkResize((183, 229), 1) def benchmarkScaleUp1Channel(self): self._benchmarkResize((141, 186), 1) def benchmarkScaleDown1Channel(self): self._benchmarkResize((749, 603), 1) def benchmarkSimilar4Channel(self): self._benchmarkResize((183, 229), 4) def benchmarkScaleUp4Channel(self): self._benchmarkResize((141, 186), 4) def benchmarkScaleDown4Channel(self): self._benchmarkResize((749, 603), 4) class ResizeAreaBenchmark(test.Benchmark): def _benchmarkResize(self, image_size, num_channels): batch_size = 1 num_ops = 1000 img = variables.Variable( random_ops.random_normal( [batch_size, image_size[0], image_size[1], num_channels]), name="img") deps = [] for _ in range(num_ops): with ops.control_dependencies(deps): resize_op = image_ops.resize_area(img, [299, 299], align_corners=False) deps = [resize_op] benchmark_op = control_flow_ops.group(*deps) with self.benchmark_session() as sess: self.evaluate(variables.global_variables_initializer()) results = self.run_op_benchmark( sess, benchmark_op, name=("resize_area_%s_%s_%s" % (image_size[0], image_size[1], num_channels))) print("%s : %.2f ms/img" % (results["name"], 1000 * results["wall_time"] / (batch_size * num_ops))) def benchmarkSimilar3Channel(self): self._benchmarkResize((183, 229), 3) def benchmarkScaleUp3Channel(self): self._benchmarkResize((141, 186), 3) def benchmarkScaleDown3Channel(self): self._benchmarkResize((749, 603), 3) def benchmarkSimilar1Channel(self): self._benchmarkResize((183, 229), 1) def benchmarkScaleUp1Channel(self): self._benchmarkResize((141, 186), 1) def benchmarkScaleDown1Channel(self): self._benchmarkResize((749, 603), 1) class AdjustSaturationTest(test_util.TensorFlowTestCase): def testHalfSaturation(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 0.5 y_data = [6, 9, 13, 140, 180, 226, 135, 121, 234, 172, 255, 128] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.cached_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_saturation(x, saturation_factor) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testTwiceSaturation(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 2.0 y_data = [0, 5, 13, 0, 106, 226, 30, 0, 234, 89, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.cached_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_saturation(x, saturation_factor) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testBatchSaturation(self): x_shape = [2, 1, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 0.5 y_data = [6, 9, 13, 140, 180, 226, 135, 121, 234, 172, 255, 128] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.cached_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_saturation(x, saturation_factor) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def _adjustSaturationNp(self, x_np, scale): self.assertEqual(x_np.shape[-1], 3) x_v = x_np.reshape([-1, 3]) y_v = np.ndarray(x_v.shape, dtype=x_v.dtype) channel_count = x_v.shape[0] for i in range(channel_count): r = x_v[i][0] g = x_v[i][1] b = x_v[i][2] h, s, v = colorsys.rgb_to_hsv(r, g, b) s *= scale s = min(1.0, max(0.0, s)) r, g, b = colorsys.hsv_to_rgb(h, s, v) y_v[i][0] = r y_v[i][1] = g y_v[i][2] = b return y_v.reshape(x_np.shape) def testAdjustRandomSaturation(self): x_shapes = [ [2, 2, 3], [4, 2, 3], [2, 4, 3], [2, 5, 3], [1000, 1, 3], ] test_styles = [ "all_random", "rg_same", "rb_same", "gb_same", "rgb_same", ] with self.cached_session(): for x_shape in x_shapes: for test_style in test_styles: x_np = np.random.rand(*x_shape) * 255. scale = np.random.rand() if test_style == "all_random": pass elif test_style == "rg_same": x_np[..., 1] = x_np[..., 0] elif test_style == "rb_same": x_np[..., 2] = x_np[..., 0] elif test_style == "gb_same": x_np[..., 2] = x_np[..., 1] elif test_style == "rgb_same": x_np[..., 1] = x_np[..., 0] x_np[..., 2] = x_np[..., 0] else: raise AssertionError("Invalid test style: %s" % (test_style)) y_baseline = self._adjustSaturationNp(x_np, scale) y_fused = self.evaluate(image_ops.adjust_saturation(x_np, scale)) self.assertAllClose(y_fused, y_baseline, rtol=2e-5, atol=1e-5) class FlipTransposeRotateTest(test_util.TensorFlowTestCase, parameterized.TestCase): def testInvolutionLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(image_ops.flip_left_right(x_tf)) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, x_np) def testInvolutionLeftRightWithBatch(self): x_np = np.array( [[[1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3]]], dtype=np.uint8).reshape([2, 2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(image_ops.flip_left_right(x_tf)) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, x_np) def testLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[3, 2, 1], [3, 2, 1]], dtype=np.uint8).reshape([2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testLeftRightWithBatch(self): x_np = np.array( [[[1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3]]], dtype=np.uint8).reshape([2, 2, 3, 1]) y_np = np.array( [[[3, 2, 1], [3, 2, 1]], [[3, 2, 1], [3, 2, 1]]], dtype=np.uint8).reshape([2, 2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testRandomFlipLeftRightStateful(self): # Test random flip with single seed (stateful). with ops.Graph().as_default(): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[3, 2, 1], [3, 2, 1]], dtype=np.uint8).reshape([2, 3, 1]) seed = 42 with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_left_right(x_tf, seed=seed) self.assertTrue(y.op.name.startswith("random_flip_left_right")) count_flipped = 0 count_unflipped = 0 for _ in range(100): y_tf = self.evaluate(y) if y_tf[0][0] == 1: self.assertAllEqual(y_tf, x_np) count_unflipped += 1 else: self.assertAllEqual(y_tf, y_np) count_flipped += 1 # 100 trials # Mean: 50 # Std Dev: ~5 # Six Sigma: 50 - (5 * 6) = 20 self.assertGreaterEqual(count_flipped, 20) self.assertGreaterEqual(count_unflipped, 20) def testRandomFlipLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[3, 2, 1], [3, 2, 1]], dtype=np.uint8).reshape([2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) count_flipped = 0 count_unflipped = 0 for seed in range(100): y_tf = self.evaluate(image_ops.random_flip_left_right(x_tf, seed=seed)) if y_tf[0][0] == 1: self.assertAllEqual(y_tf, x_np) count_unflipped += 1 else: self.assertAllEqual(y_tf, y_np) count_flipped += 1 self.assertEqual(count_flipped, 45) self.assertEqual(count_unflipped, 55) # TODO(b/162345082): stateless random op generates different random number # with xla_gpu. Update tests such that there is a single ground truth result # to test against. @parameterized.named_parameters( ("_RandomFlipLeftRight", image_ops.stateless_random_flip_left_right), ("_RandomFlipUpDown", image_ops.stateless_random_flip_up_down), ) def testRandomFlipStateless(self, func): with test_util.use_gpu(): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[3, 2, 1], [6, 5, 4]], dtype=np.uint8).reshape([2, 3, 1]) if "RandomFlipUpDown" in self.id(): y_np = np.array( [[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) x_tf = constant_op.constant(x_np, shape=x_np.shape) iterations = 2 flip_counts = [None for _ in range(iterations)] flip_sequences = ["" for _ in range(iterations)] test_seed = (1, 2) split_seeds = stateless_random_ops.split(test_seed, 10) seeds_list = self.evaluate(split_seeds) for i in range(iterations): count_flipped = 0 count_unflipped = 0 flip_seq = "" for seed in seeds_list: y_tf = func(x_tf, seed=seed) y_tf_eval = self.evaluate(y_tf) if y_tf_eval[0][0] == 1: self.assertAllEqual(y_tf_eval, x_np) count_unflipped += 1 flip_seq += "U" else: self.assertAllEqual(y_tf_eval, y_np) count_flipped += 1 flip_seq += "F" flip_counts[i] = (count_flipped, count_unflipped) flip_sequences[i] = flip_seq # Verify that results are deterministic. for i in range(1, iterations): self.assertAllEqual(flip_counts[0], flip_counts[i]) self.assertAllEqual(flip_sequences[0], flip_sequences[i]) # TODO(b/162345082): stateless random op generates different random number # with xla_gpu. Update tests such that there is a single ground truth result # to test against. @parameterized.named_parameters( ("_RandomFlipLeftRight", image_ops.stateless_random_flip_left_right), ("_RandomFlipUpDown", image_ops.stateless_random_flip_up_down) ) def testRandomFlipStatelessWithBatch(self, func): with test_util.use_gpu(): batch_size = 16 # create single item of test data x_np_raw = np.array( [[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([1, 2, 3, 1]) y_np_raw = np.array( [[3, 2, 1], [6, 5, 4]], dtype=np.uint8).reshape([1, 2, 3, 1]) if "RandomFlipUpDown" in self.id(): y_np_raw = np.array( [[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([1, 2, 3, 1]) # create batched test data x_np = np.vstack([x_np_raw for _ in range(batch_size)]) y_np = np.vstack([y_np_raw for _ in range(batch_size)]) x_tf = constant_op.constant(x_np, shape=x_np.shape) iterations = 2 flip_counts = [None for _ in range(iterations)] flip_sequences = ["" for _ in range(iterations)] test_seed = (1, 2) split_seeds = stateless_random_ops.split(test_seed, 10) seeds_list = self.evaluate(split_seeds) for i in range(iterations): count_flipped = 0 count_unflipped = 0 flip_seq = "" for seed in seeds_list: y_tf = func(x_tf, seed=seed) y_tf_eval = self.evaluate(y_tf) for j in range(batch_size): if y_tf_eval[j][0][0] == 1: self.assertAllEqual(y_tf_eval[j], x_np[j]) count_unflipped += 1 flip_seq += "U" else: self.assertAllEqual(y_tf_eval[j], y_np[j]) count_flipped += 1 flip_seq += "F" flip_counts[i] = (count_flipped, count_unflipped) flip_sequences[i] = flip_seq for i in range(1, iterations): self.assertAllEqual(flip_counts[0], flip_counts[i]) self.assertAllEqual(flip_sequences[0], flip_sequences[i]) def testRandomFlipLeftRightWithBatch(self): batch_size = 16 seed = 42 # create single item of test data x_np_raw = np.array( [[1, 2, 3], [1, 2, 3]], dtype=np.uint8 ).reshape([1, 2, 3, 1]) y_np_raw = np.array( [[3, 2, 1], [3, 2, 1]], dtype=np.uint8 ).reshape([1, 2, 3, 1]) # create batched test data x_np = np.vstack([x_np_raw for _ in range(batch_size)]) y_np = np.vstack([y_np_raw for _ in range(batch_size)]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) count_flipped = 0 count_unflipped = 0 for seed in range(100): y_tf = self.evaluate(image_ops.random_flip_left_right(x_tf, seed=seed)) # check every element of the batch for i in range(batch_size): if y_tf[i][0][0] == 1: self.assertAllEqual(y_tf[i], x_np[i]) count_unflipped += 1 else: self.assertAllEqual(y_tf[i], y_np[i]) count_flipped += 1 self.assertEqual(count_flipped, 772) self.assertEqual(count_unflipped, 828) def testInvolutionUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(image_ops.flip_up_down(x_tf)) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, x_np) def testInvolutionUpDownWithBatch(self): x_np = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype=np.uint8).reshape([2, 2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(image_ops.flip_up_down(x_tf)) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, x_np) def testUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testUpDownWithBatch(self): x_np = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype=np.uint8).reshape([2, 2, 3, 1]) y_np = np.array( [[[4, 5, 6], [1, 2, 3]], [[10, 11, 12], [7, 8, 9]]], dtype=np.uint8).reshape([2, 2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testRandomFlipUpDownStateful(self): # Test random flip with single seed (stateful). with ops.Graph().as_default(): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) seed = 42 with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_up_down(x_tf, seed=seed) self.assertTrue(y.op.name.startswith("random_flip_up_down")) count_flipped = 0 count_unflipped = 0 for _ in range(100): y_tf = self.evaluate(y) if y_tf[0][0] == 1: self.assertAllEqual(y_tf, x_np) count_unflipped += 1 else: self.assertAllEqual(y_tf, y_np) count_flipped += 1 # 100 trials # Mean: 50 # Std Dev: ~5 # Six Sigma: 50 - (5 * 6) = 20 self.assertGreaterEqual(count_flipped, 20) self.assertGreaterEqual(count_unflipped, 20) def testRandomFlipUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) count_flipped = 0 count_unflipped = 0 for seed in range(100): y_tf = self.evaluate(image_ops.random_flip_up_down(x_tf, seed=seed)) if y_tf[0][0] == 1: self.assertAllEqual(y_tf, x_np) count_unflipped += 1 else: self.assertAllEqual(y_tf, y_np) count_flipped += 1 self.assertEqual(count_flipped, 45) self.assertEqual(count_unflipped, 55) def testRandomFlipUpDownWithBatch(self): batch_size = 16 seed = 42 # create single item of test data x_np_raw = np.array( [[1, 2, 3], [4, 5, 6]], dtype=np.uint8 ).reshape([1, 2, 3, 1]) y_np_raw = np.array( [[4, 5, 6], [1, 2, 3]], dtype=np.uint8 ).reshape([1, 2, 3, 1]) # create batched test data x_np = np.vstack([x_np_raw for _ in range(batch_size)]) y_np = np.vstack([y_np_raw for _ in range(batch_size)]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) count_flipped = 0 count_unflipped = 0 for seed in range(100): y_tf = self.evaluate(image_ops.random_flip_up_down(x_tf, seed=seed)) # check every element of the batch for i in range(batch_size): if y_tf[i][0][0] == 1: self.assertAllEqual(y_tf[i], x_np[i]) count_unflipped += 1 else: self.assertAllEqual(y_tf[i], y_np[i]) count_flipped += 1 self.assertEqual(count_flipped, 772) self.assertEqual(count_unflipped, 828) def testInvolutionTranspose(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose(image_ops.transpose(x_tf)) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, x_np) def testInvolutionTransposeWithBatch(self): x_np = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype=np.uint8).reshape([2, 2, 3, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose(image_ops.transpose(x_tf)) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, x_np) def testTranspose(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[1, 4], [2, 5], [3, 6]], dtype=np.uint8).reshape([3, 2, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testTransposeWithBatch(self): x_np = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype=np.uint8).reshape([2, 2, 3, 1]) y_np = np.array( [[[1, 4], [2, 5], [3, 6]], [[7, 10], [8, 11], [9, 12]]], dtype=np.uint8).reshape([2, 3, 2, 1]) with self.cached_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose(x_tf) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) def testPartialShapes(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): p_unknown_rank = array_ops.placeholder(dtypes.uint8) p_unknown_dims_3 = array_ops.placeholder( dtypes.uint8, shape=[None, None, None]) p_unknown_dims_4 = array_ops.placeholder( dtypes.uint8, shape=[None, None, None, None]) p_unknown_width = array_ops.placeholder(dtypes.uint8, shape=[64, None, 3]) p_unknown_batch = array_ops.placeholder( dtypes.uint8, shape=[None, 64, 64, 3]) p_wrong_rank = array_ops.placeholder(dtypes.uint8, shape=[None, None]) p_zero_dim = array_ops.placeholder(dtypes.uint8, shape=[64, 0, 3]) #Ops that support 3D input for op in [ image_ops.flip_left_right, image_ops.flip_up_down, image_ops.random_flip_left_right, image_ops.random_flip_up_down, image_ops.transpose, image_ops.rot90 ]: transformed_unknown_rank = op(p_unknown_rank) self.assertIsNone(transformed_unknown_rank.get_shape().ndims) transformed_unknown_dims_3 = op(p_unknown_dims_3) self.assertEqual(3, transformed_unknown_dims_3.get_shape().ndims) transformed_unknown_width = op(p_unknown_width) self.assertEqual(3, transformed_unknown_width.get_shape().ndims) with self.assertRaisesRegex(ValueError, "must be > 0"): op(p_zero_dim) #Ops that support 4D input for op in [ image_ops.flip_left_right, image_ops.flip_up_down, image_ops.random_flip_left_right, image_ops.random_flip_up_down, image_ops.transpose, image_ops.rot90 ]: transformed_unknown_dims_4 = op(p_unknown_dims_4) self.assertEqual(4, transformed_unknown_dims_4.get_shape().ndims) transformed_unknown_batch = op(p_unknown_batch) self.assertEqual(4, transformed_unknown_batch.get_shape().ndims) with self.assertRaisesRegex(ValueError, "must be at least three-dimensional"): op(p_wrong_rank) def testRot90GroupOrder(self): image = np.arange(24, dtype=np.uint8).reshape([2, 4, 3]) with self.cached_session(): rotated = image for _ in range(4): rotated = image_ops.rot90(rotated) self.assertAllEqual(image, self.evaluate(rotated)) def testRot90GroupOrderWithBatch(self): image = np.arange(48, dtype=np.uint8).reshape([2, 2, 4, 3]) with self.cached_session(): rotated = image for _ in range(4): rotated = image_ops.rot90(rotated) self.assertAllEqual(image, self.evaluate(rotated)) def testRot90NumpyEquivalence(self): image = np.arange(24, dtype=np.uint8).reshape([2, 4, 3]) with self.cached_session(): for k in range(4): y_np = np.rot90(image, k=k) self.assertAllEqual( y_np, self.evaluate(image_ops.rot90(image, k))) def testRot90NumpyEquivalenceWithBatch(self): image = np.arange(48, dtype=np.uint8).reshape([2, 2, 4, 3]) with self.cached_session(): for k in range(4): y_np = np.rot90(image, k=k, axes=(1, 2)) self.assertAllEqual( y_np, self.evaluate(image_ops.rot90(image, k))) def testFlipImageUnknownShape(self): expected_output = constant_op.constant([[[[3, 4, 5], [0, 1, 2]], [[9, 10, 11], [6, 7, 8]]]]) def generator(): image_input = np.array( [[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]], np.int32) yield image_input dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtypes.int32, output_shapes=tensor_shape.TensorShape([1, 2, 2, 3])) dataset = dataset.map(image_ops.flip_left_right) image_flipped_via_dataset_map = get_single_element.get_single_element( dataset.take(1)) self.assertAllEqual(image_flipped_via_dataset_map, expected_output) class AdjustContrastTest(test_util.TensorFlowTestCase): def _testContrast(self, x_np, y_np, contrast_factor): with self.cached_session(): x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_contrast(x, contrast_factor) y_tf = self.evaluate(y) self.assertAllClose(y_tf, y_np, 1e-6) def testDoubleContrastUint8(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 0, 62, 169, 255, 28, 0, 255, 135, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=2.0) def testDoubleContrastFloat(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.float64).reshape(x_shape) / 255. y_data = [ -45.25, -90.75, -92.5, 62.75, 169.25, 333.5, 28.75, -84.75, 349.5, 134.75, 409.25, -116.5 ] y_np = np.array(y_data, dtype=np.float64).reshape(x_shape) / 255. self._testContrast(x_np, y_np, contrast_factor=2.0) def testHalfContrastUint8(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [22, 52, 65, 49, 118, 172, 41, 54, 176, 67, 178, 59] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=0.5) def testBatchDoubleContrast(self): x_shape = [2, 1, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 0, 81, 200, 255, 10, 0, 255, 116, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=2.0) def _adjustContrastNp(self, x_np, contrast_factor): mean = np.mean(x_np, (1, 2), keepdims=True) y_np = mean + contrast_factor * (x_np - mean) return y_np def _adjustContrastTf(self, x_np, contrast_factor): with self.cached_session(): x = constant_op.constant(x_np) y = image_ops.adjust_contrast(x, contrast_factor) y_tf = self.evaluate(y) return y_tf def testRandomContrast(self): x_shapes = [ [1, 2, 2, 3], [2, 1, 2, 3], [1, 2, 2, 3], [2, 5, 5, 3], [2, 1, 1, 3], ] for x_shape in x_shapes: x_np = np.random.rand(*x_shape) * 255. contrast_factor = np.random.rand() * 2.0 + 0.1 y_np = self._adjustContrastNp(x_np, contrast_factor) y_tf = self._adjustContrastTf(x_np, contrast_factor) self.assertAllClose(y_tf, y_np, rtol=1e-5, atol=1e-5) def testContrastFactorShape(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError), "contrast_factor must be scalar|" "Shape must be rank 0 but is rank 1"): image_ops.adjust_contrast(x_np, [2.0]) @test_util.run_in_graph_and_eager_modes def testDeterminismUnimplementedExceptionThrowing(self): """Test d9m-unimplemented exception-throwing when op-determinism is enabled. This test depends upon other tests, tests which do not enable op-determinism, to ensure that determinism-unimplemented exceptions are not erroneously thrown when op-determinism is not enabled. """ if test_util.is_xla_enabled(): self.skipTest('XLA implementation does not raise exception') with self.session(), test_util.deterministic_ops(): input_shape = (1, 2, 2, 1) on_gpu = len(tf_config.list_physical_devices("GPU")) # AdjustContrast seems to now be inaccessible via the Python API. # AdjustContrastv2 only supports float16 and float32 on GPU, and other # types are converted to and from float32 at the Python level before # AdjustContrastv2 is called. dtypes_to_test = [ dtypes.uint8, dtypes.int8, dtypes.int16, dtypes.int32, dtypes.float32, dtypes.float64 ] if on_gpu: dtypes_to_test.append(dtypes.float16) ctx_mgr = self.assertRaisesRegex( errors.UnimplementedError, "A deterministic GPU implementation of AdjustContrastv2 is not" + " currently available.") else: ctx_mgr = contextlib.suppress() for dtype in dtypes_to_test: input_images = array_ops.zeros(input_shape, dtype=dtype) contrast_factor = 1. with ctx_mgr: output_images = image_ops.adjust_contrast(input_images, contrast_factor) self.evaluate(output_images) class AdjustBrightnessTest(test_util.TensorFlowTestCase): def _testBrightness(self, x_np, y_np, delta, tol=1e-6): with self.cached_session(): x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_brightness(x, delta) y_tf = self.evaluate(y) self.assertAllClose(y_tf, y_np, tol) def testPositiveDeltaUint8(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [10, 15, 23, 64, 145, 236, 47, 18, 244, 100, 255, 11] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testBrightness(x_np, y_np, delta=10. / 255.) def testPositiveDeltaFloat32(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.float32).reshape(x_shape) / 255. y_data = [10, 15, 23, 64, 145, 236, 47, 18, 244, 100, 265, 11] y_np = np.array(y_data, dtype=np.float32).reshape(x_shape) / 255. self._testBrightness(x_np, y_np, delta=10. / 255.) def testPositiveDeltaFloat16(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.float16).reshape(x_shape) / 255. y_data = [10, 15, 23, 64, 145, 236, 47, 18, 244, 100, 265, 11] y_np = np.array(y_data, dtype=np.float16).reshape(x_shape) / 255. self._testBrightness(x_np, y_np, delta=10. / 255., tol=1e-3) def testNegativeDelta(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 3, 44, 125, 216, 27, 0, 224, 80, 245, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testBrightness(x_np, y_np, delta=-10. / 255.) class PerImageWhiteningTest(test_util.TensorFlowTestCase, parameterized.TestCase): def _NumpyPerImageWhitening(self, x): num_pixels = np.prod(x.shape) mn = np.mean(x) std = np.std(x) stddev = max(std, 1.0 / math.sqrt(num_pixels)) y = x.astype(np.float32) y -= mn y /= stddev return y @parameterized.named_parameters([("_int8", np.int8), ("_int16", np.int16), ("_int32", np.int32), ("_int64", np.int64), ("_uint8", np.uint8), ("_uint16", np.uint16), ("_uint32", np.uint32), ("_uint64", np.uint64), ("_float32", np.float32)]) def testBasic(self, data_type): x_shape = [13, 9, 3] x_np = np.arange(0, np.prod(x_shape), dtype=data_type).reshape(x_shape) y_np = self._NumpyPerImageWhitening(x_np) with self.cached_session(): x = constant_op.constant(x_np, dtype=data_type, shape=x_shape) y = image_ops.per_image_standardization(x) y_tf = self.evaluate(y) self.assertAllClose(y_tf, y_np, atol=1e-4) def testUniformImage(self): im_np = np.ones([19, 19, 3]).astype(np.float32) * 249 im = constant_op.constant(im_np) whiten = image_ops.per_image_standardization(im) with self.cached_session(): whiten_np = self.evaluate(whiten) self.assertFalse(np.any(np.isnan(whiten_np))) def testBatchWhitening(self): imgs_np = np.random.uniform(0., 255., [4, 24, 24, 3]) whiten_np = [self._NumpyPerImageWhitening(img) for img in imgs_np] with self.cached_session(): imgs = constant_op.constant(imgs_np) whiten = image_ops.per_image_standardization(imgs) whiten_tf = self.evaluate(whiten) for w_tf, w_np in zip(whiten_tf, whiten_np): self.assertAllClose(w_tf, w_np, atol=1e-4) class CropToBoundingBoxTest(test_util.TensorFlowTestCase): def _CropToBoundingBox(self, x, offset_height, offset_width, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: offset_height = ops.convert_to_tensor(offset_height) offset_width = ops.convert_to_tensor(offset_width) target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = ops.convert_to_tensor(x) else: x_tensor = x y = image_ops.crop_to_bounding_box(x_tensor, offset_height, offset_width, target_height, target_width) with self.cached_session(): return self.evaluate(y) def _assertReturns(self, x, x_shape, offset_height, offset_width, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._CropToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, offset_height, offset_width, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): self._CropToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.crop_to_bounding_box(image, 0, 0, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertReturns(x, x_shape, 0, 0, x, x_shape) def testCrop(self): x = [1, 2, 3, 4, 5, 6, 7, 8, 9] x_shape = [3, 3, 1] offset_height, offset_width = [1, 0] y_shape = [2, 3, 1] y = [4, 5, 6, 7, 8, 9] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 1] y_shape = [3, 2, 1] y = [2, 3, 5, 6, 8, 9] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y_shape = [2, 3, 1] y = [1, 2, 3, 4, 5, 6] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y_shape = [3, 2, 1] y = [1, 2, 4, 5, 7, 8] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([59, 69, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) def testNon3DInput(self): # Input image is not 3D x = [0] * 15 offset_height, offset_width = [0, 0] target_height, target_width = [2, 2] for x_shape in ([3, 5], [1, 3, 5, 1, 1]): self._assertRaises(x, x_shape, offset_height, offset_width, target_height, target_width, "must have either 3 or 4 dimensions.") def testZeroLengthInput(self): # Input image has 0-length dimension(s). # Each line is a test configuration: # x_shape, target_height, target_width test_config = (([0, 2, 2], 1, 1), ([2, 0, 2], 1, 1), ([2, 2, 0], 1, 1), ([0, 2, 2], 0, 1), ([2, 0, 2], 1, 0)) offset_height, offset_width = [0, 0] x = [] for x_shape, target_height, target_width in test_config: self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, "inner 3 dims of 'image.shape' must be > 0", use_tensor_inputs_options=[False]) # Multiple assertion could fail, but the evaluation order is arbitrary. # Match gainst generic pattern. self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, "inner 3 dims of 'image.shape' must be > 0", use_tensor_inputs_options=[True]) def testBadParams(self): x_shape = [4, 4, 1] x = np.zeros(x_shape) # Each line is a test configuration: # (offset_height, offset_width, target_height, target_width), err_msg test_config = ( ([-1, 0, 3, 3], "offset_height must be >= 0"), ([0, -1, 3, 3], "offset_width must be >= 0"), ([0, 0, 0, 3], "target_height must be > 0"), ([0, 0, 3, 0], "target_width must be > 0"), ([2, 0, 3, 3], r"height must be >= target \+ offset"), ([0, 2, 3, 3], r"width must be >= target \+ offset")) for params, err_msg in test_config: self._assertRaises(x, x_shape, *params, err_msg=err_msg) def testNameScope(self): # Testing name scope requires a graph. with ops.Graph().as_default(): image = array_ops.placeholder(dtypes.float32, shape=[55, 66, 3]) y = image_ops.crop_to_bounding_box(image, 0, 0, 55, 66) self.assertTrue(y.name.startswith("crop_to_bounding_box")) class CentralCropTest(test_util.TensorFlowTestCase): def _assertShapeInference(self, pre_shape, fraction, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.central_crop(image, fraction) if post_shape is None: self.assertEqual(y.get_shape().dims, None) else: self.assertEqual(y.get_shape().as_list(), post_shape) def testNoOp(self): x_shapes = [[13, 9, 3], [5, 13, 9, 3]] for x_shape in x_shapes: x_np = np.ones(x_shape, dtype=np.float32) for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.central_crop(x, 1.0) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, x_np) def testCropping(self): x_shape = [4, 8, 1] x_np = np.array( [[1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8]], dtype=np.int32).reshape(x_shape) y_np = np.array([[3, 4, 5, 6], [3, 4, 5, 6]]).reshape([2, 4, 1]) for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.central_crop(x, 0.5) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) self.assertAllEqual(y_tf.shape, y_np.shape) x_shape = [2, 4, 8, 1] x_np = np.array( [[1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8], [8, 7, 6, 5, 4, 3, 2, 1], [8, 7, 6, 5, 4, 3, 2, 1], [8, 7, 6, 5, 4, 3, 2, 1], [8, 7, 6, 5, 4, 3, 2, 1]], dtype=np.int32).reshape(x_shape) y_np = np.array([[[3, 4, 5, 6], [3, 4, 5, 6]], [[6, 5, 4, 3], [6, 5, 4, 3]]]).reshape([2, 2, 4, 1]) with self.cached_session(): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.central_crop(x, 0.5) y_tf = self.evaluate(y) self.assertAllEqual(y_tf, y_np) self.assertAllEqual(y_tf.shape, y_np.shape) def testCropping2(self): # Test case for 10315 x_shapes = [[240, 320, 3], [5, 240, 320, 3]] expected_y_shapes = [[80, 106, 3], [5, 80, 106, 3]] for x_shape, y_shape in zip(x_shapes, expected_y_shapes): x_np = np.zeros(x_shape, dtype=np.int32) y_np = np.zeros(y_shape, dtype=np.int32) for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): y_tf = self.evaluate(image_ops.central_crop(x_np, 0.33)) self.assertAllEqual(y_tf, y_np) self.assertAllEqual(y_tf.shape, y_np.shape) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): # Test no-op fraction=1.0, with 3-D tensors. self._assertShapeInference([50, 60, 3], 1.0, [50, 60, 3]) self._assertShapeInference([None, 60, 3], 1.0, [None, 60, 3]) self._assertShapeInference([50, None, 3], 1.0, [50, None, 3]) self._assertShapeInference([None, None, 3], 1.0, [None, None, 3]) self._assertShapeInference([50, 60, None], 1.0, [50, 60, None]) self._assertShapeInference([None, None, None], 1.0, [None, None, None]) # Test no-op fraction=0.5, with 3-D tensors. self._assertShapeInference([50, 60, 3], 0.5, [26, 30, 3]) self._assertShapeInference([None, 60, 3], 0.5, [None, 30, 3]) self._assertShapeInference([50, None, 3], 0.5, [26, None, 3]) self._assertShapeInference([None, None, 3], 0.5, [None, None, 3]) self._assertShapeInference([50, 60, None], 0.5, [26, 30, None]) self._assertShapeInference([None, None, None], 0.5, [None, None, None]) # Test no-op fraction=1.0, with 4-D tensors. self._assertShapeInference([5, 50, 60, 3], 1.0, [5, 50, 60, 3]) self._assertShapeInference([5, None, 60, 3], 1.0, [5, None, 60, 3]) self._assertShapeInference([5, 50, None, 3], 1.0, [5, 50, None, 3]) self._assertShapeInference([5, None, None, 3], 1.0, [5, None, None, 3]) self._assertShapeInference([5, 50, 60, None], 1.0, [5, 50, 60, None]) self._assertShapeInference([5, None, None, None], 1.0, [5, None, None, None]) self._assertShapeInference([None, None, None, None], 1.0, [None, None, None, None]) # Test no-op fraction=0.5, with 4-D tensors. self._assertShapeInference([5, 50, 60, 3], 0.5, [5, 26, 30, 3]) self._assertShapeInference([5, None, 60, 3], 0.5, [5, None, 30, 3]) self._assertShapeInference([5, 50, None, 3], 0.5, [5, 26, None, 3]) self._assertShapeInference([5, None, None, 3], 0.5, [5, None, None, 3]) self._assertShapeInference([5, 50, 60, None], 0.5, [5, 26, 30, None]) self._assertShapeInference([5, None, None, None], 0.5, [5, None, None, None]) self._assertShapeInference([None, None, None, None], 0.5, [None, None, None, None]) def testErrorOnInvalidCentralCropFractionValues(self): x_shape = [13, 9, 3] x_np = np.ones(x_shape, dtype=np.float32) for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): x = constant_op.constant(x_np, shape=x_shape) with self.assertRaises(ValueError): _ = image_ops.central_crop(x, 0.0) with self.assertRaises(ValueError): _ = image_ops.central_crop(x, 1.01) def testErrorOnInvalidShapes(self): x_shapes = [None, [], [3], [3, 9], [3, 9, 3, 9, 3]] for x_shape in x_shapes: x_np = np.ones(x_shape, dtype=np.float32) for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): x = constant_op.constant(x_np, shape=x_shape) with self.assertRaises(ValueError): _ = image_ops.central_crop(x, 0.5) def testNameScope(self): # Testing name scope requires a graph. with ops.Graph().as_default(): x_shape = [13, 9, 3] x_np = np.ones(x_shape, dtype=np.float32) for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): y = image_ops.central_crop(x_np, 1.0) self.assertTrue(y.op.name.startswith("central_crop")) def testCentralFractionTensor(self): # Test case for GitHub issue 45324. x_shape = [240, 320, 3] y_shape = [80, 106, 3] @def_function.function(autograph=False) def f(x, central_fraction): return image_ops.central_crop(x, central_fraction) x_np = np.zeros(x_shape, dtype=np.int32) y_np = np.zeros(y_shape, dtype=np.int32) y_tf = self.evaluate(f(x_np, constant_op.constant(0.33))) self.assertAllEqual(y_tf, y_np) self.assertAllEqual(y_tf.shape, y_np.shape) class PadToBoundingBoxTest(test_util.TensorFlowTestCase, parameterized.TestCase): def _PadToBoundingBox(self, x, offset_height, offset_width, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: offset_height = ops.convert_to_tensor(offset_height) offset_width = ops.convert_to_tensor(offset_width) target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = ops.convert_to_tensor(x) else: x_tensor = x @def_function.function def pad_bbox(*args): return image_ops.pad_to_bounding_box(*args) with self.cached_session(): return self.evaluate(pad_bbox(x_tensor, offset_height, offset_width, target_height, target_width)) def _assertReturns(self, x, x_shape, offset_height, offset_width, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._PadToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, offset_height, offset_width, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): self._PadToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.pad_to_bounding_box(image, 0, 0, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testInt64(self): x = [1, 2, 3, 4, 5, 6, 7, 8, 9] x_shape = [3, 3, 1] y = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9] y_shape = [4, 3, 1] x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) i = constant_op.constant([1, 0, 4, 3], dtype=dtypes.int64) y_tf = image_ops.pad_to_bounding_box(x, i[0], i[1], i[2], i[3]) with self.cached_session(): self.assertAllClose(y, self.evaluate(y_tf)) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) offset_height, offset_width = [0, 0] self._assertReturns(x, x_shape, offset_height, offset_width, x, x_shape) def testPadding(self): x = [1, 2, 3, 4, 5, 6, 7, 8, 9] x_shape = [3, 3, 1] offset_height, offset_width = [1, 0] y = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9] y_shape = [4, 3, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 1] y = [0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9] y_shape = [3, 4, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0] y_shape = [4, 3, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y = [1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0] y_shape = [3, 4, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([50, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) def testNon3DInput(self): # Input image is not 3D x = [0] * 15 offset_height, offset_width = [0, 0] target_height, target_width = [2, 2] for x_shape in ([3, 5], [1, 3, 5, 1, 1]): self._assertRaises(x, x_shape, offset_height, offset_width, target_height, target_width, "must have either 3 or 4 dimensions.") def testZeroLengthInput(self): # Input image has 0-length dimension(s). # Each line is a test configuration: # x_shape, target_height, target_width test_config = (([0, 2, 2], 2, 2), ([2, 0, 2], 2, 2), ([2, 2, 0], 2, 2)) offset_height, offset_width = [0, 0] x = [] for x_shape, target_height, target_width in test_config: self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, "inner 3 dims of 'image.shape' must be > 0", use_tensor_inputs_options=[False]) # The original error message does not contain back slashes. However, they # are added by either the assert op or the runtime. If this behavior # changes in the future, the match string will also needs to be changed. self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, "inner 3 dims of \\'image.shape\\' must be > 0", use_tensor_inputs_options=[True]) def testBadParamsScalarInputs(self): # In this test, inputs do not get converted to tensors before calling the # tf.function. The error message here is raised in python # since the python function has direct access to the scalars. x_shape = [3, 3, 1] x = np.zeros(x_shape) # Each line is a test configuration: # offset_height, offset_width, target_height, target_width, err_msg test_config = ( (-1, 0, 4, 4, "offset_height must be >= 0"), (0, -1, 4, 4, "offset_width must be >= 0"), (2, 0, 4, 4, "height must be <= target - offset"), (0, 2, 4, 4, "width must be <= target - offset")) for config_item in test_config: self._assertRaises( x, x_shape, *config_item, use_tensor_inputs_options=[False]) def testBadParamsTensorInputsEager(self): # In this test inputs get converted to EagerTensors before calling the # tf.function. The error message here is raised in python # since the python function has direct access to the tensor's values. with context.eager_mode(): x_shape = [3, 3, 1] x = np.zeros(x_shape) # Each line is a test configuration: # offset_height, offset_width, target_height, target_width, err_msg test_config = ( (-1, 0, 4, 4, "offset_height must be >= 0"), (0, -1, 4, 4, "offset_width must be >= 0"), (2, 0, 4, 4, "height must be <= target - offset"), (0, 2, 4, 4, "width must be <= target - offset")) for config_item in test_config: self._assertRaises( x, x_shape, *config_item, use_tensor_inputs_options=[True]) @parameterized.named_parameters([("OffsetHeight", (-1, 0, 4, 4)), ("OffsetWidth", (0, -1, 4, 4)), ("Height", (2, 0, 4, 4)), ("Width", (0, 2, 4, 4))]) def testBadParamsTensorInputsGraph(self, config): # In this test inputs get converted to tensors before calling the # tf.function. The error message here is raised during shape inference. with context.graph_mode(): x_shape = [3, 3, 1] x = np.zeros(x_shape) self._assertRaises( x, x_shape, *config, "Paddings must be non-negative", use_tensor_inputs_options=[True]) def testNameScope(self): # Testing name scope requires a graph. with ops.Graph().as_default(): image = array_ops.placeholder(dtypes.float32, shape=[55, 66, 3]) y = image_ops.pad_to_bounding_box(image, 0, 0, 55, 66) self.assertTrue(y.op.name.startswith("pad_to_bounding_box")) def testInvalidInput(self): # Test case for GitHub issue 46890. if test_util.is_xla_enabled(): # TODO(b/200850176): test fails with XLA. return with self.session(): with self.assertRaises(errors_impl.InvalidArgumentError): v = image_ops.pad_to_bounding_box( image=np.ones((1, 1, 1)), target_height=5191549470, target_width=5191549470, offset_height=1, offset_width=1) self.evaluate(v) class InternalPadToBoundingBoxTest(test_util.TensorFlowTestCase, parameterized.TestCase): def _InternalPadToBoundingBox(self, x, offset_height, offset_width, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: offset_height = ops.convert_to_tensor(offset_height) offset_width = ops.convert_to_tensor(offset_width) target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = ops.convert_to_tensor(x) else: x_tensor = x @def_function.function def pad_bbox(*args): return image_ops.pad_to_bounding_box_internal(*args, check_dims=False) with self.cached_session(): return self.evaluate( pad_bbox(x_tensor, offset_height, offset_width, target_height, target_width)) def _assertReturns(self, x, x_shape, offset_height, offset_width, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._InternalPadToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.pad_to_bounding_box_internal( image, 0, 0, height, width, check_dims=False) self.assertEqual(y.get_shape().as_list(), post_shape) def testInt64(self): x = [1, 2, 3, 4, 5, 6, 7, 8, 9] x_shape = [3, 3, 1] y = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9] y_shape = [4, 3, 1] x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) i = constant_op.constant([1, 0, 4, 3], dtype=dtypes.int64) y_tf = image_ops.pad_to_bounding_box_internal( x, i[0], i[1], i[2], i[3], check_dims=False) with self.cached_session(): self.assertAllClose(y, self.evaluate(y_tf)) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) offset_height, offset_width = [0, 0] self._assertReturns(x, x_shape, offset_height, offset_width, x, x_shape) def testPadding(self): x = [1, 2, 3, 4, 5, 6, 7, 8, 9] x_shape = [3, 3, 1] offset_height, offset_width = [1, 0] y = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9] y_shape = [4, 3, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 1] y = [0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9] y_shape = [3, 4, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0] y_shape = [4, 3, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y = [1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0] y_shape = [3, 4, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([50, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) def testNameScope(self): # Testing name scope requires a graph. with ops.Graph().as_default(): image = array_ops.placeholder(dtypes.float32, shape=[55, 66, 3]) y = image_ops.pad_to_bounding_box_internal( image, 0, 0, 55, 66, check_dims=False) self.assertTrue(y.op.name.startswith("pad_to_bounding_box")) class SelectDistortedCropBoxTest(test_util.TensorFlowTestCase): def _testSampleDistortedBoundingBox(self, image, bounding_box, min_object_covered, aspect_ratio_range, area_range): original_area = float(np.prod(image.shape)) bounding_box_area = float((bounding_box[3] - bounding_box[1]) * (bounding_box[2] - bounding_box[0])) image_size_np = np.array(image.shape, dtype=np.int32) bounding_box_np = ( np.array(bounding_box, dtype=np.float32).reshape([1, 1, 4])) aspect_ratios = [] area_ratios = [] fraction_object_covered = [] num_iter = 1000 with self.cached_session(): image_tf = constant_op.constant(image, shape=image.shape) image_size_tf = constant_op.constant( image_size_np, shape=image_size_np.shape) bounding_box_tf = constant_op.constant( bounding_box_np, dtype=dtypes.float32, shape=bounding_box_np.shape) begin, size, _ = image_ops.sample_distorted_bounding_box( image_size=image_size_tf, bounding_boxes=bounding_box_tf, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range) y = array_ops.strided_slice(image_tf, begin, begin + size) for _ in range(num_iter): y_tf = self.evaluate(y) crop_height = y_tf.shape[0] crop_width = y_tf.shape[1] aspect_ratio = float(crop_width) / float(crop_height) area = float(crop_width * crop_height) aspect_ratios.append(aspect_ratio) area_ratios.append(area / original_area) fraction_object_covered.append(float(np.sum(y_tf)) / bounding_box_area) # min_object_covered as tensor min_object_covered_t = ops.convert_to_tensor(min_object_covered) begin, size, _ = image_ops.sample_distorted_bounding_box( image_size=image_size_tf, bounding_boxes=bounding_box_tf, min_object_covered=min_object_covered_t, aspect_ratio_range=aspect_ratio_range, area_range=area_range) y = array_ops.strided_slice(image_tf, begin, begin + size) for _ in range(num_iter): y_tf = self.evaluate(y) crop_height = y_tf.shape[0] crop_width = y_tf.shape[1] aspect_ratio = float(crop_width) / float(crop_height) area = float(crop_width * crop_height) aspect_ratios.append(aspect_ratio) area_ratios.append(area / original_area) fraction_object_covered.append(float(np.sum(y_tf)) / bounding_box_area) # Ensure that each entry is observed within 3 standard deviations. # num_bins = 10 # aspect_ratio_hist, _ = np.histogram(aspect_ratios, # bins=num_bins, # range=aspect_ratio_range) # mean = np.mean(aspect_ratio_hist) # stddev = np.sqrt(mean) # TODO(wicke, shlens, dga): Restore this test so that it is no longer flaky. # TODO(irving): Since the rejection probability is not independent of the # aspect ratio, the aspect_ratio random value is not exactly uniformly # distributed in [min_aspect_ratio, max_aspect_ratio). This test should be # fixed to reflect the true statistical property, then tightened to enforce # a stricter bound. Or, ideally, the sample_distorted_bounding_box Op # be fixed to not use rejection sampling and generate correctly uniform # aspect ratios. # self.assertAllClose(aspect_ratio_hist, # [mean] * num_bins, atol=3.6 * stddev) # The resulting crop will not be uniformly distributed in area. In practice, # we find that the area skews towards the small sizes. Instead, we perform # a weaker test to ensure that the area ratios are merely within the # specified bounds. self.assertLessEqual(max(area_ratios), area_range[1]) self.assertGreaterEqual(min(area_ratios), area_range[0]) # For reference, here is what the distribution of area ratios look like. area_ratio_hist, _ = np.histogram(area_ratios, bins=10, range=area_range) print("area_ratio_hist ", area_ratio_hist) # Ensure that fraction_object_covered is satisfied. # TODO(wicke, shlens, dga): Restore this test so that it is no longer flaky. # self.assertGreaterEqual(min(fraction_object_covered), min_object_covered) def testWholeImageBoundingBox(self): height = 40 width = 50 image_size = [height, width, 1] bounding_box = [0.0, 0.0, 1.0, 1.0] image = np.arange( 0, np.prod(image_size), dtype=np.int32).reshape(image_size) self._testSampleDistortedBoundingBox( image, bounding_box, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) def testWithBoundingBox(self): height = 40 width = 50 x_shape = [height, width, 1] image = np.zeros(x_shape, dtype=np.int32) # Create an object with 1's in a region with area A and require that # the total pixel values >= 0.1 * A. min_object_covered = 0.1 xmin = 2 ymin = 3 xmax = 12 ymax = 13 for x in np.arange(xmin, xmax + 1, 1): for y in np.arange(ymin, ymax + 1, 1): image[x, y] = 1 # Bounding box is specified as (ymin, xmin, ymax, xmax) in # relative coordinates. bounding_box = (float(ymin) / height, float(xmin) / width, float(ymax) / height, float(xmax) / width) self._testSampleDistortedBoundingBox( image, bounding_box=bounding_box, min_object_covered=min_object_covered, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) def testSampleDistortedBoundingBoxShape(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): with self.cached_session(): image_size = constant_op.constant( [40, 50, 1], shape=[3], dtype=dtypes.int32) bounding_box = constant_op.constant( [[[0.0, 0.0, 1.0, 1.0]]], shape=[1, 1, 4], dtype=dtypes.float32, ) begin, end, bbox_for_drawing = image_ops.sample_distorted_bounding_box( image_size=image_size, bounding_boxes=bounding_box, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) # Test that the shapes are correct. self.assertAllEqual([3], begin.get_shape().as_list()) self.assertAllEqual([3], end.get_shape().as_list()) self.assertAllEqual([1, 1, 4], bbox_for_drawing.get_shape().as_list()) # Actual run to make sure shape is correct inside Compute(). begin = self.evaluate(begin) end = self.evaluate(end) bbox_for_drawing = self.evaluate(bbox_for_drawing) begin, end, bbox_for_drawing = image_ops.sample_distorted_bounding_box( image_size=image_size, bounding_boxes=bounding_box, min_object_covered=array_ops.placeholder(dtypes.float32), aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) # Test that the shapes are correct. self.assertAllEqual([3], begin.get_shape().as_list()) self.assertAllEqual([3], end.get_shape().as_list()) self.assertAllEqual([1, 1, 4], bbox_for_drawing.get_shape().as_list()) def testDefaultMinObjectCovered(self): # By default min_object_covered=0.1 if not provided with self.cached_session(): image_size = constant_op.constant( [40, 50, 1], shape=[3], dtype=dtypes.int32) bounding_box = constant_op.constant( [[[0.0, 0.0, 1.0, 1.0]]], shape=[1, 1, 4], dtype=dtypes.float32, ) begin, end, bbox_for_drawing = image_ops.sample_distorted_bounding_box( image_size=image_size, bounding_boxes=bounding_box, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) self.assertAllEqual([3], begin.get_shape().as_list()) self.assertAllEqual([3], end.get_shape().as_list()) self.assertAllEqual([1, 1, 4], bbox_for_drawing.get_shape().as_list()) # Actual run to make sure shape is correct inside Compute(). begin = self.evaluate(begin) end = self.evaluate(end) bbox_for_drawing = self.evaluate(bbox_for_drawing) def _testStatelessSampleDistortedBoundingBox(self, image, bounding_box, min_object_covered, aspect_ratio_range, area_range): with test_util.use_gpu(): original_area = float(np.prod(image.shape)) bounding_box_area = float((bounding_box[3] - bounding_box[1]) * (bounding_box[2] - bounding_box[0])) image_size_np = np.array(image.shape, dtype=np.int32) bounding_box_np = ( np.array(bounding_box, dtype=np.float32).reshape([1, 1, 4])) iterations = 2 test_seeds = [(1, 2), (3, 4), (5, 6)] for seed in test_seeds: aspect_ratios = [] area_ratios = [] fraction_object_covered = [] for _ in range(iterations): image_tf = constant_op.constant(image, shape=image.shape) image_size_tf = constant_op.constant( image_size_np, shape=image_size_np.shape) bounding_box_tf = constant_op.constant(bounding_box_np, dtype=dtypes.float32, shape=bounding_box_np.shape) begin, size, _ = image_ops.stateless_sample_distorted_bounding_box( image_size=image_size_tf, bounding_boxes=bounding_box_tf, seed=seed, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range) y = array_ops.strided_slice(image_tf, begin, begin + size) y_tf = self.evaluate(y) crop_height = y_tf.shape[0] crop_width = y_tf.shape[1] aspect_ratio = float(crop_width) / float(crop_height) area = float(crop_width * crop_height) aspect_ratios.append(aspect_ratio) area_ratio = area / original_area area_ratios.append(area_ratio) fraction_object_covered.append( float(np.sum(y_tf)) / bounding_box_area) # Check that `area_ratio` is within valid range. self.assertLessEqual(area_ratio, area_range[1]) self.assertGreaterEqual(area_ratio, area_range[0]) # Each array should consist of one value just repeated `iteration` times # because the same seed is used. self.assertEqual(len(set(aspect_ratios)), 1) self.assertEqual(len(set(area_ratios)), 1) self.assertEqual(len(set(fraction_object_covered)), 1) # TODO(b/162345082): stateless random op generates different random number # with xla_gpu. Update tests such that there is a single ground truth result # to test against. def testWholeImageBoundingBoxStateless(self): height = 40 width = 50 image_size = [height, width, 1] bounding_box = [0.0, 0.0, 1.0, 1.0] image = np.arange( 0, np.prod(image_size), dtype=np.int32).reshape(image_size) for min_obj_covered in [0.1, constant_op.constant(0.1)]: self._testStatelessSampleDistortedBoundingBox( image, bounding_box, min_object_covered=min_obj_covered, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) # TODO(b/162345082): stateless random op generates different random number # with xla_gpu. Update tests such that there is a single ground truth result # to test against. def testWithBoundingBoxStateless(self): height = 40 width = 50 x_shape = [height, width, 1] image = np.zeros(x_shape, dtype=np.int32) xmin = 2 ymin = 3 xmax = 12 ymax = 13 for x in np.arange(xmin, xmax + 1, 1): for y in np.arange(ymin, ymax + 1, 1): image[x, y] = 1 # Bounding box is specified as (ymin, xmin, ymax, xmax) in # relative coordinates. bounding_box = (float(ymin) / height, float(xmin) / width, float(ymax) / height, float(xmax) / width) # Test both scalar and tensor input for `min_object_covered`. for min_obj_covered in [0.1, constant_op.constant(0.1)]: self._testStatelessSampleDistortedBoundingBox( image, bounding_box=bounding_box, min_object_covered=min_obj_covered, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) def testSampleDistortedBoundingBoxShapeStateless(self): with test_util.use_gpu(): image_size = constant_op.constant( [40, 50, 1], shape=[3], dtype=dtypes.int32) bounding_box = constant_op.constant( [[[0.0, 0.0, 1.0, 1.0]]], shape=[1, 1, 4], dtype=dtypes.float32, ) bbox_func = functools.partial( image_ops.stateless_sample_distorted_bounding_box, image_size=image_size, bounding_boxes=bounding_box, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) # Check error is raised with wrong seed shapes. for seed in [1, (1, 2, 3)]: with self.assertRaises((ValueError, errors.InvalidArgumentError)): begin, end, bbox_for_drawing = bbox_func(seed=seed) test_seed = (1, 2) begin, end, bbox_for_drawing = bbox_func(seed=test_seed) # Test that the shapes are correct. self.assertAllEqual([3], begin.get_shape().as_list()) self.assertAllEqual([3], end.get_shape().as_list()) self.assertAllEqual([1, 1, 4], bbox_for_drawing.get_shape().as_list()) # Actual run to make sure shape is correct inside Compute(). begin = self.evaluate(begin) end = self.evaluate(end) bbox_for_drawing = self.evaluate(bbox_for_drawing) self.assertAllEqual([3], begin.shape) self.assertAllEqual([3], end.shape) self.assertAllEqual([1, 1, 4], bbox_for_drawing.shape) def testDeterminismExceptionThrowing(self): with test_util.deterministic_ops(): with self.assertRaisesRegex( ValueError, "requires a non-zero seed to be passed in when " "determinism is enabled"): image_ops_impl.sample_distorted_bounding_box_v2( image_size=[50, 50, 1], bounding_boxes=[[[0., 0., 1., 1.]]], ) image_ops_impl.sample_distorted_bounding_box_v2( image_size=[50, 50, 1], bounding_boxes=[[[0., 0., 1., 1.]]], seed=1) with self.assertRaisesRegex( ValueError, 'requires "seed" or "seed2" to be non-zero when ' "determinism is enabled"): image_ops_impl.sample_distorted_bounding_box( image_size=[50, 50, 1], bounding_boxes=[[[0., 0., 1., 1.]]]) image_ops_impl.sample_distorted_bounding_box( image_size=[50, 50, 1], bounding_boxes=[[[0., 0., 1., 1.]]], seed=1) class ResizeImagesV2Test(test_util.TensorFlowTestCase, parameterized.TestCase): METHODS = [ image_ops.ResizeMethod.BILINEAR, image_ops.ResizeMethod.NEAREST_NEIGHBOR, image_ops.ResizeMethod.BICUBIC, image_ops.ResizeMethod.AREA, image_ops.ResizeMethod.LANCZOS3, image_ops.ResizeMethod.LANCZOS5, image_ops.ResizeMethod.GAUSSIAN, image_ops.ResizeMethod.MITCHELLCUBIC ] # Some resize methods, such as Gaussian, are non-interpolating in that they # change the image even if there is no scale change, for some test, we only # check the value on the value preserving methods. INTERPOLATING_METHODS = [ image_ops.ResizeMethod.BILINEAR, image_ops.ResizeMethod.NEAREST_NEIGHBOR, image_ops.ResizeMethod.BICUBIC, image_ops.ResizeMethod.AREA, image_ops.ResizeMethod.LANCZOS3, image_ops.ResizeMethod.LANCZOS5 ] TYPES = [ np.uint8, np.int8, np.uint16, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64 ] def _assertShapeInference(self, pre_shape, size, post_shape): # Try single image resize single_image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.resize_images_v2(single_image, size) self.assertEqual(y.get_shape().as_list(), post_shape) # Try batch images resize with known batch size images = array_ops.placeholder(dtypes.float32, shape=[99] + pre_shape) y = image_ops.resize_images_v2(images, size) self.assertEqual(y.get_shape().as_list(), [99] + post_shape) # Try batch images resize with unknown batch size images = array_ops.placeholder(dtypes.float32, shape=[None] + pre_shape) y = image_ops.resize_images_v2(images, size) self.assertEqual(y.get_shape().as_list(), [None] + post_shape) def shouldRunOnGPU(self, method, nptype): if (method == image_ops.ResizeMethod.NEAREST_NEIGHBOR and nptype in [np.float32, np.float64]): return True else: return False @test_util.disable_xla("align_corners=False not supported by XLA") def testNoOp(self): img_shape = [1, 6, 4, 1] single_shape = [6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] target_height = 6 target_width = 4 for nptype in self.TYPES: img_np = np.array(data, dtype=nptype).reshape(img_shape) for method in self.METHODS: with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images_v2(image, [target_height, target_width], method) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(img_shape, newshape) if method in self.INTERPOLATING_METHODS: self.assertAllClose(resized, img_np, atol=1e-5) # Resizing with a single image must leave the shape unchanged also. with self.cached_session(): img_single = img_np.reshape(single_shape) image = constant_op.constant(img_single, shape=single_shape) y = image_ops.resize_images_v2(image, [target_height, target_width], self.METHODS[0]) yshape = array_ops.shape(y) newshape = self.evaluate(yshape) self.assertAllEqual(single_shape, newshape) # half_pixel_centers unsupported in ResizeBilinear @test_util.disable_xla("b/127616992") def testTensorArguments(self): img_shape = [1, 6, 4, 1] single_shape = [6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] def resize_func(t, new_size, method): return image_ops.resize_images_v2(t, new_size, method) img_np = np.array(data, dtype=np.uint8).reshape(img_shape) for method in self.METHODS: with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = resize_func(image, [6, 4], method) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(img_shape, newshape) if method in self.INTERPOLATING_METHODS: self.assertAllClose(resized, img_np, atol=1e-5) # Resizing with a single image must leave the shape unchanged also. with self.cached_session(): img_single = img_np.reshape(single_shape) image = constant_op.constant(img_single, shape=single_shape) y = resize_func(image, [6, 4], self.METHODS[0]) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(single_shape, newshape) if method in self.INTERPOLATING_METHODS: self.assertAllClose(resized, img_single, atol=1e-5) # Incorrect shape. with self.assertRaises(ValueError): new_size = constant_op.constant(4) _ = resize_func(image, new_size, image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): new_size = constant_op.constant([4]) _ = resize_func(image, new_size, image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): new_size = constant_op.constant([1, 2, 3]) _ = resize_func(image, new_size, image_ops.ResizeMethod.BILINEAR) # Incorrect dtypes. with self.assertRaises(ValueError): new_size = constant_op.constant([6.0, 4]) _ = resize_func(image, new_size, image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): _ = resize_func(image, [6, 4.0], image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): _ = resize_func(image, [None, 4], image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): _ = resize_func(image, [6, None], image_ops.ResizeMethod.BILINEAR) def testReturnDtypeV1(self): # Shape inference in V1. with ops.Graph().as_default(): target_shapes = [[6, 4], [3, 2], [ array_ops.placeholder(dtypes.int32), array_ops.placeholder(dtypes.int32) ]] for nptype in self.TYPES: image = array_ops.placeholder(nptype, shape=[1, 6, 4, 1]) for method in self.METHODS: for target_shape in target_shapes: y = image_ops.resize_images_v2(image, target_shape, method) if method == image_ops.ResizeMethod.NEAREST_NEIGHBOR: expected_dtype = image.dtype else: expected_dtype = dtypes.float32 self.assertEqual(y.dtype, expected_dtype) @parameterized.named_parameters([("_RunEagerly", True), ("_RunGraph", False)]) def testReturnDtypeV2(self, run_func_eagerly): if not context.executing_eagerly() and run_func_eagerly: # Skip running tf.function eagerly in V1 mode. self.skipTest("Skip test that runs tf.function eagerly in V1 mode.") else: @def_function.function def test_dtype(image, target_shape, target_method): y = image_ops.resize_images_v2(image, target_shape, target_method) if method == image_ops.ResizeMethod.NEAREST_NEIGHBOR: expected_dtype = image.dtype else: expected_dtype = dtypes.float32 self.assertEqual(y.dtype, expected_dtype) target_shapes = [[6, 4], [3, 2], [tensor_spec.TensorSpec(shape=None, dtype=dtypes.int32), tensor_spec.TensorSpec(shape=None, dtype=dtypes.int32)]] for nptype in self.TYPES: image = tensor_spec.TensorSpec(shape=[1, 6, 4, 1], dtype=nptype) for method in self.METHODS: for target_shape in target_shapes: with test_util.run_functions_eagerly(run_func_eagerly): test_dtype.get_concrete_function(image, target_shape, method) # half_pixel_centers not supported by XLA @test_util.disable_xla("b/127616992") def testSumTensor(self): img_shape = [1, 6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] # Test size where width is specified as a tensor which is a sum # of two tensors. width_1 = constant_op.constant(1) width_2 = constant_op.constant(3) width = math_ops.add(width_1, width_2) height = constant_op.constant(6) img_np = np.array(data, dtype=np.uint8).reshape(img_shape) for method in self.METHODS: with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images_v2(image, [height, width], method) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(img_shape, newshape) if method in self.INTERPOLATING_METHODS: self.assertAllClose(resized, img_np, atol=1e-5) @test_util.disable_xla("align_corners=False not supported by XLA") def testResizeDown(self): # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] expected_data = [127, 64, 64, 127, 50, 100] target_height = 3 target_width = 2 # Test out 3-D and 4-D image shapes. img_shapes = [[1, 6, 4, 1], [6, 4, 1]] target_shapes = [[1, target_height, target_width, 1], [target_height, target_width, 1]] for target_shape, img_shape in zip(target_shapes, img_shapes): for nptype in self.TYPES: img_np = np.array(data, dtype=nptype).reshape(img_shape) for method in self.METHODS: if test.is_gpu_available() and self.shouldRunOnGPU(method, nptype): with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images_v2( image, [target_height, target_width], method) expected = np.array(expected_data).reshape(target_shape) resized = self.evaluate(y) self.assertAllClose(resized, expected, atol=1e-5) @test_util.disable_xla("align_corners=False not supported by XLA") def testResizeUp(self): img_shape = [1, 3, 2, 1] data = [64, 32, 32, 64, 50, 100] target_height = 6 target_width = 4 expected_data = {} expected_data[image_ops.ResizeMethod.BILINEAR] = [ 64.0, 56.0, 40.0, 32.0, 56.0, 52.0, 44.0, 40.0, 40.0, 44.0, 52.0, 56.0, 36.5, 45.625, 63.875, 73.0, 45.5, 56.875, 79.625, 91.0, 50.0, 62.5, 87.5, 100.0 ] expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [ 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0 ] expected_data[image_ops.ResizeMethod.AREA] = [ 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0 ] expected_data[image_ops.ResizeMethod.LANCZOS3] = [ 75.8294, 59.6281, 38.4313, 22.23, 60.6851, 52.0037, 40.6454, 31.964, 35.8344, 41.0779, 47.9383, 53.1818, 24.6968, 43.0769, 67.1244, 85.5045, 35.7939, 56.4713, 83.5243, 104.2017, 44.8138, 65.1949, 91.8603, 112.2413 ] expected_data[image_ops.ResizeMethod.LANCZOS5] = [ 77.5699, 60.0223, 40.6694, 23.1219, 61.8253, 51.2369, 39.5593, 28.9709, 35.7438, 40.8875, 46.5604, 51.7041, 21.5942, 43.5299, 67.7223, 89.658, 32.1213, 56.784, 83.984, 108.6467, 44.5802, 66.183, 90.0082, 111.6109 ] expected_data[image_ops.ResizeMethod.GAUSSIAN] = [ 61.1087, 54.6926, 41.3074, 34.8913, 54.6926, 51.4168, 44.5832, 41.3074, 41.696, 45.2456, 52.6508, 56.2004, 39.4273, 47.0526, 62.9602, 70.5855, 47.3008, 57.3042, 78.173, 88.1764, 51.4771, 62.3638, 85.0752, 95.9619 ] expected_data[image_ops.ResizeMethod.BICUBIC] = [ 70.1453, 59.0252, 36.9748, 25.8547, 59.3195, 53.3386, 41.4789, 35.4981, 36.383, 41.285, 51.0051, 55.9071, 30.2232, 42.151, 65.8032, 77.731, 41.6492, 55.823, 83.9288, 98.1026, 47.0363, 62.2744, 92.4903, 107.7284 ] expected_data[image_ops.ResizeMethod.MITCHELLCUBIC] = [ 66.0382, 56.6079, 39.3921, 29.9618, 56.7255, 51.9603, 43.2611, 38.4959, 39.1828, 43.4664, 51.2864, 55.57, 34.6287, 45.1812, 64.4458, 74.9983, 43.8523, 56.8078, 80.4594, 93.4149, 48.9943, 63.026, 88.6422, 102.6739 ] for nptype in self.TYPES: for method in expected_data: with self.cached_session(): img_np = np.array(data, dtype=nptype).reshape(img_shape) image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images_v2(image, [target_height, target_width], method) resized = self.evaluate(y) expected = np.array(expected_data[method]).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1e-04) # XLA doesn't implement half_pixel_centers @test_util.disable_xla("b/127616992") def testLegacyBicubicMethodsMatchNewMethods(self): img_shape = [1, 3, 2, 1] data = [64, 32, 32, 64, 50, 100] target_height = 6 target_width = 4 methods_to_test = ((gen_image_ops.resize_bilinear, "triangle"), (gen_image_ops.resize_bicubic, "keyscubic")) for legacy_method, new_method in methods_to_test: with self.cached_session(): img_np = np.array(data, dtype=np.float32).reshape(img_shape) image = constant_op.constant(img_np, shape=img_shape) legacy_result = legacy_method( image, constant_op.constant([target_height, target_width], dtype=dtypes.int32), half_pixel_centers=True) scale = ( constant_op.constant([target_height, target_width], dtype=dtypes.float32) / math_ops.cast(array_ops.shape(image)[1:3], dtype=dtypes.float32)) new_result = gen_image_ops.scale_and_translate( image, constant_op.constant([target_height, target_width], dtype=dtypes.int32), scale, array_ops.zeros([2]), kernel_type=new_method, antialias=False) self.assertAllClose( self.evaluate(legacy_result), self.evaluate(new_result), atol=1e-04) def testResizeDownArea(self): img_shape = [1, 6, 6, 1] data = [ 128, 64, 32, 16, 8, 4, 4, 8, 16, 32, 64, 128, 128, 64, 32, 16, 8, 4, 5, 10, 15, 20, 25, 30, 30, 25, 20, 15, 10, 5, 5, 10, 15, 20, 25, 30 ] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 4 target_width = 4 expected_data = [ 73, 33, 23, 39, 73, 33, 23, 39, 14, 16, 19, 21, 14, 16, 19, 21 ] with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images_v2(image, [target_height, target_width], image_ops.ResizeMethod.AREA) expected = np.array(expected_data).reshape( [1, target_height, target_width, 1]) resized = self.evaluate(y) self.assertAllClose(resized, expected, atol=1) def testCompareNearestNeighbor(self): if test.is_gpu_available(): input_shape = [1, 5, 6, 3] target_height = 8 target_width = 12 for nptype in [np.float32, np.float64]: img_np = np.arange( 0, np.prod(input_shape), dtype=nptype).reshape(input_shape) with self.cached_session(): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images_v2( image, new_size, image_ops.ResizeMethod.NEAREST_NEIGHBOR) gpu_val = self.evaluate(out_op) with self.cached_session(use_gpu=False): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images_v2( image, new_size, image_ops.ResizeMethod.NEAREST_NEIGHBOR) cpu_val = self.evaluate(out_op) self.assertAllClose(cpu_val, gpu_val, rtol=1e-5, atol=1e-5) @test_util.disable_xla("align_corners=False not supported by XLA") def testBfloat16MultipleOps(self): target_height = 8 target_width = 12 img = np.random.uniform(0, 100, size=(30, 10, 2)).astype(np.float32) img_bf16 = ops.convert_to_tensor(img, dtype="bfloat16") new_size = constant_op.constant([target_height, target_width]) img_methods = [ image_ops.ResizeMethod.BILINEAR, image_ops.ResizeMethod.NEAREST_NEIGHBOR, image_ops.ResizeMethod.BICUBIC, image_ops.ResizeMethod.AREA ] for method in img_methods: out_op_bf16 = image_ops.resize_images_v2(img_bf16, new_size, method) out_op_f32 = image_ops.resize_images_v2(img, new_size, method) bf16_val = self.evaluate(out_op_bf16) f32_val = self.evaluate(out_op_f32) self.assertAllClose(bf16_val, f32_val, rtol=1e-2, atol=1e-2) def testCompareBilinear(self): if test.is_gpu_available(): input_shape = [1, 5, 6, 3] target_height = 8 target_width = 12 for nptype in [np.float32, np.float64]: img_np = np.arange( 0, np.prod(input_shape), dtype=nptype).reshape(input_shape) value = {} for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images(image, new_size, image_ops.ResizeMethod.BILINEAR) value[use_gpu] = self.evaluate(out_op) self.assertAllClose(value[True], value[False], rtol=1e-5, atol=1e-5) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): self._assertShapeInference([50, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([55, 66, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 66, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([55, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, 60, None], [55, 66], [55, 66, None]) self._assertShapeInference([55, 66, None], [55, 66], [55, 66, None]) self._assertShapeInference([59, 69, None], [55, 66], [55, 66, None]) self._assertShapeInference([50, 69, None], [55, 66], [55, 66, None]) self._assertShapeInference([59, 60, None], [55, 66], [55, 66, None]) self._assertShapeInference([None, None, None], [55, 66], [55, 66, None]) def testNameScope(self): # Testing name scope requires placeholders and a graph. with ops.Graph().as_default(): with self.cached_session(): single_image = array_ops.placeholder(dtypes.float32, shape=[50, 60, 3]) y = image_ops.resize_images(single_image, [55, 66]) self.assertTrue(y.op.name.startswith("resize")) def _ResizeImageCall(self, x, max_h, max_w, preserve_aspect_ratio, use_tensor_inputs): if use_tensor_inputs: target_max = ops.convert_to_tensor([max_h, max_w]) x_tensor = ops.convert_to_tensor(x) else: target_max = (max_h, max_w) x_tensor = x def resize_func(t, target_max=target_max, preserve_aspect_ratio=preserve_aspect_ratio): return image_ops.resize_images( t, ops.convert_to_tensor(target_max), preserve_aspect_ratio=preserve_aspect_ratio) with self.cached_session(): return self.evaluate(resize_func(x_tensor)) def _assertResizeEqual(self, x, x_shape, y, y_shape, preserve_aspect_ratio=True, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageCall(x, target_height, target_width, preserve_aspect_ratio, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertResizeCheckShape(self, x, x_shape, target_shape, y_shape, preserve_aspect_ratio=True, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width = target_shape x = np.array(x).reshape(x_shape) y = np.zeros(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageCall(x, target_height, target_width, preserve_aspect_ratio, use_tensor_inputs) self.assertShapeEqual(y, ops.convert_to_tensor(y_tf)) def testPreserveAspectRatioMultipleImages(self): x_shape = [10, 100, 80, 10] x = np.random.uniform(size=x_shape) for preserve_aspect_ratio in [True, False]: with self.subTest(preserve_aspect_ratio=preserve_aspect_ratio): expect_shape = [10, 250, 200, 10] if preserve_aspect_ratio \ else [10, 250, 250, 10] self._assertResizeCheckShape( x, x_shape, [250, 250], expect_shape, preserve_aspect_ratio=preserve_aspect_ratio) def testPreserveAspectRatioNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertResizeEqual(x, x_shape, x, x_shape) def testPreserveAspectRatioSmaller(self): x_shape = [100, 100, 10] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [75, 50], [50, 50, 10]) def testPreserveAspectRatioSmallerMultipleImages(self): x_shape = [10, 100, 100, 10] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [75, 50], [10, 50, 50, 10]) def testPreserveAspectRatioLarger(self): x_shape = [100, 100, 10] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [150, 200], [150, 150, 10]) def testPreserveAspectRatioSameRatio(self): x_shape = [1920, 1080, 3] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [3840, 2160], [3840, 2160, 3]) def testPreserveAspectRatioSquare(self): x_shape = [299, 299, 3] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [320, 320], [320, 320, 3]) def testLargeDim(self): with self.session(): with self.assertRaises(errors.InvalidArgumentError): x = np.ones((5, 1, 1, 2)) v = image_ops.resize_images_v2(x, [1610637938, 1610637938], image_ops.ResizeMethod.BILINEAR) _ = self.evaluate(v) class ResizeImagesTest(test_util.TensorFlowTestCase, parameterized.TestCase): METHODS = [ image_ops.ResizeMethodV1.BILINEAR, image_ops.ResizeMethodV1.NEAREST_NEIGHBOR, image_ops.ResizeMethodV1.BICUBIC, image_ops.ResizeMethodV1.AREA ] TYPES = [ np.uint8, np.int8, np.uint16, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64 ] def _assertShapeInference(self, pre_shape, size, post_shape): # Try single image resize single_image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.resize_images(single_image, size) self.assertEqual(y.get_shape().as_list(), post_shape) # Try batch images resize with known batch size images = array_ops.placeholder(dtypes.float32, shape=[99] + pre_shape) y = image_ops.resize_images(images, size) self.assertEqual(y.get_shape().as_list(), [99] + post_shape) # Try batch images resize with unknown batch size images = array_ops.placeholder(dtypes.float32, shape=[None] + pre_shape) y = image_ops.resize_images(images, size) self.assertEqual(y.get_shape().as_list(), [None] + post_shape) def shouldRunOnGPU(self, method, nptype): if (method == image_ops.ResizeMethodV1.NEAREST_NEIGHBOR and nptype in [np.float32, np.float64]): return True else: return False @test_util.disable_xla("align_corners=False not supported by XLA") def testNoOp(self): img_shape = [1, 6, 4, 1] single_shape = [6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] target_height = 6 target_width = 4 for nptype in self.TYPES: img_np = np.array(data, dtype=nptype).reshape(img_shape) for method in self.METHODS: with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], method) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(img_shape, newshape) self.assertAllClose(resized, img_np, atol=1e-5) # Resizing with a single image must leave the shape unchanged also. with self.cached_session(): img_single = img_np.reshape(single_shape) image = constant_op.constant(img_single, shape=single_shape) y = image_ops.resize_images(image, [target_height, target_width], self.METHODS[0]) yshape = array_ops.shape(y) newshape = self.evaluate(yshape) self.assertAllEqual(single_shape, newshape) def testTensorArguments(self): img_shape = [1, 6, 4, 1] single_shape = [6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] def resize_func(t, new_size, method): return image_ops.resize_images(t, new_size, method) img_np = np.array(data, dtype=np.uint8).reshape(img_shape) for method in self.METHODS: with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = resize_func(image, [6, 4], method) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(img_shape, newshape) self.assertAllClose(resized, img_np, atol=1e-5) # Resizing with a single image must leave the shape unchanged also. with self.cached_session(): img_single = img_np.reshape(single_shape) image = constant_op.constant(img_single, shape=single_shape) y = resize_func(image, [6, 4], self.METHODS[0]) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(single_shape, newshape) self.assertAllClose(resized, img_single, atol=1e-5) # Incorrect shape. with self.assertRaises(ValueError): new_size = constant_op.constant(4) _ = resize_func(image, new_size, image_ops.ResizeMethodV1.BILINEAR) with self.assertRaises(ValueError): new_size = constant_op.constant([4]) _ = resize_func(image, new_size, image_ops.ResizeMethodV1.BILINEAR) with self.assertRaises(ValueError): new_size = constant_op.constant([1, 2, 3]) _ = resize_func(image, new_size, image_ops.ResizeMethodV1.BILINEAR) # Incorrect dtypes. with self.assertRaises(ValueError): new_size = constant_op.constant([6.0, 4]) _ = resize_func(image, new_size, image_ops.ResizeMethodV1.BILINEAR) with self.assertRaises(ValueError): _ = resize_func(image, [6, 4.0], image_ops.ResizeMethodV1.BILINEAR) with self.assertRaises(ValueError): _ = resize_func(image, [None, 4], image_ops.ResizeMethodV1.BILINEAR) with self.assertRaises(ValueError): _ = resize_func(image, [6, None], image_ops.ResizeMethodV1.BILINEAR) def testReturnDtypeV1(self): # Shape inference in V1. with ops.Graph().as_default(): target_shapes = [[6, 4], [3, 2], [ array_ops.placeholder(dtypes.int32), array_ops.placeholder(dtypes.int32) ]] for nptype in self.TYPES: image = array_ops.placeholder(nptype, shape=[1, 6, 4, 1]) for method in self.METHODS: for target_shape in target_shapes: y = image_ops.resize_images(image, target_shape, method) if (method == image_ops.ResizeMethodV1.NEAREST_NEIGHBOR or target_shape == image.shape[1:3]): expected_dtype = image.dtype else: expected_dtype = dtypes.float32 self.assertEqual(y.dtype, expected_dtype) @parameterized.named_parameters([("_RunEagerly", True), ("_RunGraph", False)]) def testReturnDtypeV2(self, run_func_eagerly): if not context.executing_eagerly() and run_func_eagerly: # Skip running tf.function eagerly in V1 mode. self.skipTest("Skip test that runs tf.function eagerly in V1 mode.") else: @def_function.function def test_dtype(image, target_shape, target_method): y = image_ops.resize_images(image, target_shape, target_method) if (method == image_ops.ResizeMethodV1.NEAREST_NEIGHBOR or target_shape == image.shape[1:3]): expected_dtype = image.dtype else: expected_dtype = dtypes.float32 self.assertEqual(y.dtype, expected_dtype) target_shapes = [[6, 4], [3, 2], [tensor_spec.TensorSpec(shape=None, dtype=dtypes.int32), tensor_spec.TensorSpec(shape=None, dtype=dtypes.int32)]] for nptype in self.TYPES: image = tensor_spec.TensorSpec(shape=[1, 6, 4, 1], dtype=nptype) for method in self.METHODS: for target_shape in target_shapes: with test_util.run_functions_eagerly(run_func_eagerly): test_dtype.get_concrete_function(image, target_shape, method) @test_util.disable_xla("align_corners=False not supported by XLA") def testSumTensor(self): img_shape = [1, 6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] # Test size where width is specified as a tensor which is a sum # of two tensors. width_1 = constant_op.constant(1) width_2 = constant_op.constant(3) width = math_ops.add(width_1, width_2) height = constant_op.constant(6) img_np = np.array(data, dtype=np.uint8).reshape(img_shape) for method in self.METHODS: with self.cached_session() as sess: image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [height, width], method) yshape = array_ops.shape(y) resized, newshape = self.evaluate([y, yshape]) self.assertAllEqual(img_shape, newshape) self.assertAllClose(resized, img_np, atol=1e-5) @test_util.disable_xla("align_corners=False not supported by XLA") def testResizeDown(self): # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [ 127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100 ] expected_data = [127, 64, 64, 127, 50, 100] target_height = 3 target_width = 2 # Test out 3-D and 4-D image shapes. img_shapes = [[1, 6, 4, 1], [6, 4, 1]] target_shapes = [[1, target_height, target_width, 1], [target_height, target_width, 1]] for target_shape, img_shape in zip(target_shapes, img_shapes): for nptype in self.TYPES: img_np = np.array(data, dtype=nptype).reshape(img_shape) for method in self.METHODS: if test.is_gpu_available() and self.shouldRunOnGPU(method, nptype): with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], method) expected = np.array(expected_data).reshape(target_shape) resized = self.evaluate(y) self.assertAllClose(resized, expected, atol=1e-5) @test_util.disable_xla("align_corners=False not supported by XLA") def testResizeUpAlignCornersFalse(self): img_shape = [1, 3, 2, 1] data = [64, 32, 32, 64, 50, 100] target_height = 6 target_width = 4 expected_data = {} expected_data[image_ops.ResizeMethodV1.BILINEAR] = [ 64.0, 48.0, 32.0, 32.0, 48.0, 48.0, 48.0, 48.0, 32.0, 48.0, 64.0, 64.0, 41.0, 61.5, 82.0, 82.0, 50.0, 75.0, 100.0, 100.0, 50.0, 75.0, 100.0, 100.0 ] expected_data[image_ops.ResizeMethodV1.NEAREST_NEIGHBOR] = [ 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0 ] expected_data[image_ops.ResizeMethodV1.AREA] = [ 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0 ] for nptype in self.TYPES: for method in [ image_ops.ResizeMethodV1.BILINEAR, image_ops.ResizeMethodV1.NEAREST_NEIGHBOR, image_ops.ResizeMethodV1.AREA ]: with self.cached_session(): img_np = np.array(data, dtype=nptype).reshape(img_shape) image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images( image, [target_height, target_width], method, align_corners=False) resized = self.evaluate(y) expected = np.array(expected_data[method]).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1e-05) def testResizeUpAlignCornersTrue(self): img_shape = [1, 3, 2, 1] data = [6, 3, 3, 6, 6, 9] target_height = 5 target_width = 4 expected_data = {} expected_data[image_ops.ResizeMethodV1.BILINEAR] = [ 6.0, 5.0, 4.0, 3.0, 4.5, 4.5, 4.5, 4.5, 3.0, 4.0, 5.0, 6.0, 4.5, 5.5, 6.5, 7.5, 6.0, 7.0, 8.0, 9.0 ] expected_data[image_ops.ResizeMethodV1.NEAREST_NEIGHBOR] = [ 6.0, 6.0, 3.0, 3.0, 3.0, 3.0, 6.0, 6.0, 3.0, 3.0, 6.0, 6.0, 6.0, 6.0, 9.0, 9.0, 6.0, 6.0, 9.0, 9.0 ] # TODO(b/37749740): Improve alignment of ResizeMethodV1.AREA when # align_corners=True. expected_data[image_ops.ResizeMethodV1.AREA] = [ 6.0, 6.0, 6.0, 3.0, 6.0, 6.0, 6.0, 3.0, 3.0, 3.0, 3.0, 6.0, 3.0, 3.0, 3.0, 6.0, 6.0, 6.0, 6.0, 9.0 ] for nptype in self.TYPES: for method in [ image_ops.ResizeMethodV1.BILINEAR, image_ops.ResizeMethodV1.NEAREST_NEIGHBOR, image_ops.ResizeMethodV1.AREA ]: with self.cached_session(): img_np = np.array(data, dtype=nptype).reshape(img_shape) image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images( image, [target_height, target_width], method, align_corners=True) resized = self.evaluate(y) expected = np.array(expected_data[method]).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1e-05) def testResizeUpBicubic(self): img_shape = [1, 6, 6, 1] data = [ 128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128, 128, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100 ] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 8 target_width = 8 expected_data = [ 128, 135, 96, 55, 64, 114, 134, 128, 78, 81, 68, 52, 57, 118, 144, 136, 55, 49, 79, 109, 103, 89, 83, 84, 74, 70, 95, 122, 115, 69, 49, 55, 100, 105, 75, 43, 50, 89, 105, 100, 57, 54, 74, 96, 91, 65, 55, 58, 70, 69, 75, 81, 80, 72, 69, 70, 105, 112, 75, 36, 45, 92, 111, 105 ] with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], image_ops.ResizeMethodV1.BICUBIC) resized = self.evaluate(y) expected = np.array(expected_data).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1) def testResizeDownArea(self): img_shape = [1, 6, 6, 1] data = [ 128, 64, 32, 16, 8, 4, 4, 8, 16, 32, 64, 128, 128, 64, 32, 16, 8, 4, 5, 10, 15, 20, 25, 30, 30, 25, 20, 15, 10, 5, 5, 10, 15, 20, 25, 30 ] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 4 target_width = 4 expected_data = [ 73, 33, 23, 39, 73, 33, 23, 39, 14, 16, 19, 21, 14, 16, 19, 21 ] with self.cached_session(): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], image_ops.ResizeMethodV1.AREA) expected = np.array(expected_data).reshape( [1, target_height, target_width, 1]) resized = self.evaluate(y) self.assertAllClose(resized, expected, atol=1) def testCompareNearestNeighbor(self): if test.is_gpu_available(): input_shape = [1, 5, 6, 3] target_height = 8 target_width = 12 for nptype in [np.float32, np.float64]: for align_corners in [True, False]: img_np = np.arange( 0, np.prod(input_shape), dtype=nptype).reshape(input_shape) with self.cached_session(): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images( image, new_size, image_ops.ResizeMethodV1.NEAREST_NEIGHBOR, align_corners=align_corners) gpu_val = self.evaluate(out_op) with self.cached_session(use_gpu=False): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images( image, new_size, image_ops.ResizeMethodV1.NEAREST_NEIGHBOR, align_corners=align_corners) cpu_val = self.evaluate(out_op) self.assertAllClose(cpu_val, gpu_val, rtol=1e-5, atol=1e-5) def testCompareBilinear(self): if test.is_gpu_available(): input_shape = [1, 5, 6, 3] target_height = 8 target_width = 12 for nptype in [np.float32, np.float64]: for align_corners in [True, False]: img_np = np.arange( 0, np.prod(input_shape), dtype=nptype).reshape(input_shape) value = {} for use_gpu in [True, False]: with self.cached_session(use_gpu=use_gpu): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images( image, new_size, image_ops.ResizeMethodV1.BILINEAR, align_corners=align_corners) value[use_gpu] = self.evaluate(out_op) self.assertAllClose(value[True], value[False], rtol=1e-5, atol=1e-5) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): self._assertShapeInference([50, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([55, 66, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 66, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([55, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, 60, None], [55, 66], [55, 66, None]) self._assertShapeInference([55, 66, None], [55, 66], [55, 66, None]) self._assertShapeInference([59, 69, None], [55, 66], [55, 66, None]) self._assertShapeInference([50, 69, None], [55, 66], [55, 66, None]) self._assertShapeInference([59, 60, None], [55, 66], [55, 66, None]) self._assertShapeInference([None, None, None], [55, 66], [55, 66, None]) def testNameScope(self): # Testing name scope requires placeholders and a graph. with ops.Graph().as_default(): img_shape = [1, 3, 2, 1] with self.cached_session(): single_image = array_ops.placeholder(dtypes.float32, shape=[50, 60, 3]) y = image_ops.resize_images(single_image, [55, 66]) self.assertTrue(y.op.name.startswith("resize")) def _ResizeImageCall(self, x, max_h, max_w, preserve_aspect_ratio, use_tensor_inputs): if use_tensor_inputs: target_max = ops.convert_to_tensor([max_h, max_w]) x_tensor = ops.convert_to_tensor(x) else: target_max = [max_h, max_w] x_tensor = x y = image_ops.resize_images( x_tensor, target_max, preserve_aspect_ratio=preserve_aspect_ratio) with self.cached_session(): return self.evaluate(y) def _assertResizeEqual(self, x, x_shape, y, y_shape, preserve_aspect_ratio=True, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageCall(x, target_height, target_width, preserve_aspect_ratio, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertResizeCheckShape(self, x, x_shape, target_shape, y_shape, preserve_aspect_ratio=True, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width = target_shape x = np.array(x).reshape(x_shape) y = np.zeros(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageCall(x, target_height, target_width, preserve_aspect_ratio, use_tensor_inputs) self.assertShapeEqual(y, ops.convert_to_tensor(y_tf)) def testPreserveAspectRatioMultipleImages(self): x_shape = [10, 100, 100, 10] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [250, 250], [10, 250, 250, 10], preserve_aspect_ratio=False) def testPreserveAspectRatioNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertResizeEqual(x, x_shape, x, x_shape) def testPreserveAspectRatioSmaller(self): x_shape = [100, 100, 10] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [75, 50], [50, 50, 10]) def testPreserveAspectRatioSmallerMultipleImages(self): x_shape = [10, 100, 100, 10] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [75, 50], [10, 50, 50, 10]) def testPreserveAspectRatioLarger(self): x_shape = [100, 100, 10] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [150, 200], [150, 150, 10]) def testPreserveAspectRatioSameRatio(self): x_shape = [1920, 1080, 3] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [3840, 2160], [3840, 2160, 3]) def testPreserveAspectRatioSquare(self): x_shape = [299, 299, 3] x = np.random.uniform(size=x_shape) self._assertResizeCheckShape(x, x_shape, [320, 320], [320, 320, 3]) class ResizeImageWithPadV1Test(test_util.TensorFlowTestCase): def _ResizeImageWithPad(self, x, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = ops.convert_to_tensor(x) else: x_tensor = x with self.cached_session(): return self.evaluate( image_ops.resize_image_with_pad_v1(x_tensor, target_height, target_width)) def _assertReturns(self, x, x_shape, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageWithPad(x, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): self._ResizeImageWithPad(x, target_height, target_width, use_tensor_inputs) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.resize_image_with_pad_v1(image, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): # Test with 3-D tensors. self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([50, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) # Test with 4-D tensors. self._assertShapeInference([5, 55, 66, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 50, 60, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, None, 66, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, None, 60, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 55, None, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 50, None, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, None, None, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 55, 66, None], 55, 66, [5, 55, 66, None]) self._assertShapeInference([5, 50, 60, None], 55, 66, [5, 55, 66, None]) self._assertShapeInference([5, None, None, None], 55, 66, [5, 55, 66, None]) self._assertShapeInference([None, None, None, None], 55, 66, [None, 55, 66, None]) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertReturns(x, x_shape, x, x_shape) def testPad(self): # Reduce vertical dimension x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 1, 3, 0] y_shape = [1, 4, 1] self._assertReturns(x, x_shape, y, y_shape) # Reduce horizontal dimension x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [1, 3, 0, 0] y_shape = [2, 2, 1] self._assertReturns(x, x_shape, y, y_shape) x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [1, 3] y_shape = [1, 2, 1] self._assertReturns(x, x_shape, y, y_shape) # half_pixel_centers not supported by XLA @test_util.for_all_test_methods(test_util.disable_xla, "b/127616992") class ResizeImageWithPadV2Test(test_util.TensorFlowTestCase): def _ResizeImageWithPad(self, x, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = ops.convert_to_tensor(x) else: x_tensor = x with self.cached_session(): return self.evaluate( image_ops.resize_image_with_pad_v2(x_tensor, target_height, target_width)) def _assertReturns(self, x, x_shape, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageWithPad(x, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): self._ResizeImageWithPad(x, target_height, target_width, use_tensor_inputs) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.resize_image_with_pad_v1(image, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): # Test with 3-D tensors. self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([50, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) # Test with 4-D tensors. self._assertShapeInference([5, 55, 66, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 50, 60, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, None, 66, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, None, 60, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 55, None, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 50, None, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, None, None, 3], 55, 66, [5, 55, 66, 3]) self._assertShapeInference([5, 55, 66, None], 55, 66, [5, 55, 66, None]) self._assertShapeInference([5, 50, 60, None], 55, 66, [5, 55, 66, None]) self._assertShapeInference([5, None, None, None], 55, 66, [5, 55, 66, None]) self._assertShapeInference([None, None, None, None], 55, 66, [None, 55, 66, None]) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertReturns(x, x_shape, x, x_shape) def testPad(self): # Reduce vertical dimension x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 3.5, 5.5, 0] y_shape = [1, 4, 1] self._assertReturns(x, x_shape, y, y_shape) # Reduce horizontal dimension x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [3.5, 5.5, 0, 0] y_shape = [2, 2, 1] self._assertReturns(x, x_shape, y, y_shape) x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [3.5, 5.5] y_shape = [1, 2, 1] self._assertReturns(x, x_shape, y, y_shape) class ResizeImageWithCropOrPadTest(test_util.TensorFlowTestCase): def _ResizeImageWithCropOrPad(self, x, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = ops.convert_to_tensor(x) else: x_tensor = x @def_function.function def resize_crop_or_pad(*args): return image_ops.resize_image_with_crop_or_pad(*args) with self.cached_session(): return self.evaluate( resize_crop_or_pad(x_tensor, target_height, target_width)) def _assertReturns(self, x, x_shape, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageWithCropOrPad(x, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): self._ResizeImageWithCropOrPad(x, target_height, target_width, use_tensor_inputs) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.resize_image_with_crop_or_pad(image, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertReturns(x, x_shape, x, x_shape) def testPad(self): # Pad even along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 1, 2, 3, 4, 0, 0, 5, 6, 7, 8, 0] y_shape = [2, 6, 1] self._assertReturns(x, x_shape, y, y_shape) # Pad odd along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 1, 2, 3, 4, 0, 0, 0, 5, 6, 7, 8, 0, 0] y_shape = [2, 7, 1] self._assertReturns(x, x_shape, y, y_shape) # Pad even along row. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0] y_shape = [4, 4, 1] self._assertReturns(x, x_shape, y, y_shape) # Pad odd along row. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0] y_shape = [5, 4, 1] self._assertReturns(x, x_shape, y, y_shape) def testCrop(self): # Crop even along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [2, 3, 6, 7] y_shape = [2, 2, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop odd along col. x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] x_shape = [2, 6, 1] y = [2, 3, 4, 8, 9, 10] y_shape = [2, 3, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop even along row. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [4, 2, 1] y = [3, 4, 5, 6] y_shape = [2, 2, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop odd along row. x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] x_shape = [8, 2, 1] y = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] y_shape = [5, 2, 1] self._assertReturns(x, x_shape, y, y_shape) def testCropAndPad(self): # Pad along row but crop along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 0, 2, 3, 6, 7, 0, 0] y_shape = [4, 2, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop along row but pad along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [4, 2, 1] y = [0, 3, 4, 0, 0, 5, 6, 0] y_shape = [2, 4, 1] self._assertReturns(x, x_shape, y, y_shape) def testShapeInference(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): self._assertShapeInference([50, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([59, 69, None], 55, 66, [55, 66, None]) self._assertShapeInference([50, 69, None], 55, 66, [55, 66, None]) self._assertShapeInference([59, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) def testNon3DInput(self): # Input image is not 3D x = [0] * 15 target_height, target_width = [4, 4] for x_shape in ([3, 5],): self._assertRaises(x, x_shape, target_height, target_width, "must have either 3 or 4 dimensions.") for x_shape in ([1, 3, 5, 1, 1],): self._assertRaises(x, x_shape, target_height, target_width, "must have either 3 or 4 dimensions.") def testZeroLengthInput(self): # Input image has 0-length dimension(s). target_height, target_width = [1, 1] x = [] for x_shape in ([0, 2, 2], [2, 0, 2], [2, 2, 0]): self._assertRaises( x, x_shape, target_height, target_width, "inner 3 dims of 'image.shape' must be > 0", use_tensor_inputs_options=[False]) # The original error message does not contain back slashes. However, they # are added by either the assert op or the runtime. If this behavior # changes in the future, the match string will also needs to be changed. self._assertRaises( x, x_shape, target_height, target_width, "inner 3 dims of \\'image.shape\\' must be > 0", use_tensor_inputs_options=[True]) def testBadParams(self): x_shape = [4, 4, 1] x = np.zeros(x_shape) # target_height <= 0 target_height, target_width = [0, 5] self._assertRaises(x, x_shape, target_height, target_width, "target_height must be > 0") # target_width <= 0 target_height, target_width = [5, 0] self._assertRaises(x, x_shape, target_height, target_width, "target_width must be > 0") def testNameScope(self): # Testing name scope requires placeholders and a graph. with ops.Graph().as_default(): image = array_ops.placeholder(dtypes.float32, shape=[50, 60, 3]) y = image_ops.resize_image_with_crop_or_pad(image, 55, 66) self.assertTrue(y.op.name.startswith("resize_image_with_crop_or_pad")) def simple_color_ramp(): """Build a simple color ramp RGB image.""" w, h = 256, 200 i = np.arange(h)[:, None] j = np.arange(w) image = np.empty((h, w, 3), dtype=np.uint8) image[:, :, 0] = i image[:, :, 1] = j image[:, :, 2] = (i + j) >> 1 return image class JpegTest(test_util.TensorFlowTestCase): # TODO(irving): Add self.assertAverageLess or similar to test_util def averageError(self, image0, image1): self.assertEqual(image0.shape, image1.shape) image0 = image0.astype(int) # Avoid overflow return np.abs(image0 - image1).sum() / np.prod(image0.shape) def testExisting(self): # Read a real jpeg and verify shape path = ("tensorflow/core/lib/jpeg/testdata/" "jpeg_merge_test1.jpg") with self.cached_session(): jpeg0 = io_ops.read_file(path) image0 = image_ops.decode_jpeg(jpeg0) image1 = image_ops.decode_jpeg(image_ops.encode_jpeg(image0)) jpeg0, image0, image1 = self.evaluate([jpeg0, image0, image1]) self.assertEqual(len(jpeg0), 3771) self.assertEqual(image0.shape, (256, 128, 3)) self.assertLess(self.averageError(image0, image1), 1.4) def testCmyk(self): # Confirm that CMYK reads in as RGB base = "tensorflow/core/lib/jpeg/testdata" rgb_path = os.path.join(base, "jpeg_merge_test1.jpg") cmyk_path = os.path.join(base, "jpeg_merge_test1_cmyk.jpg") shape = 256, 128, 3 for channels in 3, 0: with self.cached_session(): rgb = image_ops.decode_jpeg( io_ops.read_file(rgb_path), channels=channels) cmyk = image_ops.decode_jpeg( io_ops.read_file(cmyk_path), channels=channels) rgb, cmyk = self.evaluate([rgb, cmyk]) self.assertEqual(rgb.shape, shape) self.assertEqual(cmyk.shape, shape) error = self.averageError(rgb, cmyk) self.assertLess(error, 4) def testCropAndDecodeJpeg(self): with self.cached_session() as sess: # Encode it, then decode it, then encode it base = "tensorflow/core/lib/jpeg/testdata" jpeg0 = io_ops.read_file(os.path.join(base, "jpeg_merge_test1.jpg")) h, w, _ = 256, 128, 3 crop_windows = [[0, 0, 5, 5], [0, 0, 5, w], [0, 0, h, 5], [h - 6, w - 5, 6, 5], [6, 5, 15, 10], [0, 0, h, w]] for crop_window in crop_windows: # Explicit two stages: decode + crop. image1 = image_ops.decode_jpeg(jpeg0) y, x, h, w = crop_window image1_crop = image_ops.crop_to_bounding_box(image1, y, x, h, w) # Combined decode+crop. image2 = image_ops.decode_and_crop_jpeg(jpeg0, crop_window, channels=3) # Combined decode+crop should have the same shape inference on image # sizes. image1_shape = image1_crop.get_shape().as_list() image2_shape = image2.get_shape().as_list() self.assertAllEqual(image1_shape, image2_shape) # CropAndDecode should be equal to DecodeJpeg+Crop. image1_crop, image2 = self.evaluate([image1_crop, image2]) self.assertAllEqual(image1_crop, image2) def testCropAndDecodeJpegWithInvalidCropWindow(self): with self.cached_session() as sess: # Encode it, then decode it, then encode it base = "tensorflow/core/lib/jpeg/testdata" jpeg0 = io_ops.read_file(os.path.join(base, "jpeg_merge_test1.jpg")) h, w, _ = 256, 128, 3 # Invalid crop windows. crop_windows = [[-1, 11, 11, 11], [11, -1, 11, 11], [11, 11, -1, 11], [11, 11, 11, -1], [11, 11, 0, 11], [11, 11, 11, 0], [0, 0, h + 1, w], [0, 0, h, w + 1]] for crop_window in crop_windows: with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), "Invalid JPEG data or crop window"): result = image_ops.decode_and_crop_jpeg(jpeg0, crop_window) self.evaluate(result) def testSynthetic(self): with self.cached_session(): # Encode it, then decode it, then encode it image0 = constant_op.constant(simple_color_ramp()) jpeg0 = image_ops.encode_jpeg(image0) image1 = image_ops.decode_jpeg(jpeg0, dct_method="INTEGER_ACCURATE") image2 = image_ops.decode_jpeg( image_ops.encode_jpeg(image1), dct_method="INTEGER_ACCURATE") jpeg0, image0, image1, image2 = self.evaluate( [jpeg0, image0, image1, image2]) # The decoded-encoded image should be similar to the input self.assertLess(self.averageError(image0, image1), 0.6) # We should be very close to a fixpoint self.assertLess(self.averageError(image1, image2), 0.02) # Smooth ramps compress well (input size is 153600) self.assertGreaterEqual(len(jpeg0), 5000) self.assertLessEqual(len(jpeg0), 6000) def testSyntheticFasterAlgorithm(self): with self.cached_session(): # Encode it, then decode it, then encode it image0 = constant_op.constant(simple_color_ramp()) jpeg0 = image_ops.encode_jpeg(image0) image1 = image_ops.decode_jpeg(jpeg0, dct_method="INTEGER_FAST") image2 = image_ops.decode_jpeg( image_ops.encode_jpeg(image1), dct_method="INTEGER_FAST") jpeg0, image0, image1, image2 = self.evaluate( [jpeg0, image0, image1, image2]) # The decoded-encoded image should be similar to the input, but # note this is worse than the slower algorithm because it is # less accurate. self.assertLess(self.averageError(image0, image1), 0.95) # Repeated compression / decompression will have a higher error # with a lossier algorithm. self.assertLess(self.averageError(image1, image2), 1.05) # Smooth ramps compress well (input size is 153600) self.assertGreaterEqual(len(jpeg0), 5000) self.assertLessEqual(len(jpeg0), 6000) def testDefaultDCTMethodIsIntegerFast(self): with self.cached_session(): # Compare decoding with both dct_option=INTEGER_FAST and # default. They should be the same. image0 = constant_op.constant(simple_color_ramp()) jpeg0 = image_ops.encode_jpeg(image0) image1 = image_ops.decode_jpeg(jpeg0, dct_method="INTEGER_FAST") image2 = image_ops.decode_jpeg(jpeg0) image1, image2 = self.evaluate([image1, image2]) # The images should be the same. self.assertAllClose(image1, image2) def testShape(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): with self.cached_session(): jpeg = constant_op.constant("nonsense") for channels in 0, 1, 3: image = image_ops.decode_jpeg(jpeg, channels=channels) self.assertEqual(image.get_shape().as_list(), [None, None, channels or None]) def testExtractJpegShape(self): # Read a real jpeg and verify shape. path = ("tensorflow/core/lib/jpeg/testdata/" "jpeg_merge_test1.jpg") with self.cached_session(): jpeg = io_ops.read_file(path) # Extract shape without decoding. image_shape = self.evaluate(image_ops.extract_jpeg_shape(jpeg)) self.assertAllEqual(image_shape, [256, 128, 3]) def testExtractJpegShapeforCmyk(self): # Read a cmyk jpeg image, and verify its shape. path = ("tensorflow/core/lib/jpeg/testdata/" "jpeg_merge_test1_cmyk.jpg") with self.cached_session(): jpeg = io_ops.read_file(path) image_shape = self.evaluate(image_ops.extract_jpeg_shape(jpeg)) # Cmyk jpeg image has 4 channels. self.assertAllEqual(image_shape, [256, 128, 4]) def testRandomJpegQuality(self): # Previous implementation of random_jpeg_quality had a bug. # This unit test tests the fixed version, but due to forward compatibility # this test can only be done when fixed version is used. # Test jpeg quality dynamic randomization. with ops.Graph().as_default(), self.test_session(): np.random.seed(7) path = ("tensorflow/core/lib/jpeg/testdata/medium.jpg") jpeg = io_ops.read_file(path) image = image_ops.decode_jpeg(jpeg) random_jpeg_image = image_ops.random_jpeg_quality(image, 40, 100) with self.cached_session() as sess: # Test randomization. random_jpeg_images = [sess.run(random_jpeg_image) for _ in range(5)] are_images_equal = [] for i in range(1, len(random_jpeg_images)): # Most of them should be different if randomization is occurring # correctly. are_images_equal.append( np.array_equal(random_jpeg_images[0], random_jpeg_images[i])) self.assertFalse(all(are_images_equal)) # TODO(b/162345082): stateless random op generates different random number # with xla_gpu. Update tests such that there is a single ground truth result # to test against. def testStatelessRandomJpegQuality(self): # Test deterministic randomness in jpeg quality by checking that the same # sequence of jpeg quality adjustments are returned each round given the # same seed. with test_util.use_gpu(): path = ("tensorflow/core/lib/jpeg/testdata/medium.jpg") jpeg = io_ops.read_file(path) image = image_ops.decode_jpeg(jpeg) jpeg_quality = (40, 100) seeds_list = [(1, 2), (3, 4)] iterations = 2 random_jpeg_images_all = [[] for _ in range(iterations)] for random_jpeg_images in random_jpeg_images_all: for seed in seeds_list: distorted_jpeg = image_ops.stateless_random_jpeg_quality( image, jpeg_quality[0], jpeg_quality[1], seed=seed) # Verify that the random jpeg image is different from the original # jpeg image. self.assertNotAllEqual(image, distorted_jpeg) random_jpeg_images.append(self.evaluate(distorted_jpeg)) # Verify that the results are identical given the same seed. for i in range(1, iterations): self.assertAllEqual(random_jpeg_images_all[0], random_jpeg_images_all[i]) def testAdjustJpegQuality(self): # Test if image_ops.adjust_jpeg_quality works when jpeq quality # is an int (not tensor) for backward compatibility. with ops.Graph().as_default(), self.test_session(): np.random.seed(7) jpeg_quality = np.random.randint(40, 100) path = ("tensorflow/core/lib/jpeg/testdata/medium.jpg") jpeg = io_ops.read_file(path) image = image_ops.decode_jpeg(jpeg) adjust_jpeg_quality_image = image_ops.adjust_jpeg_quality( image, jpeg_quality) with self.cached_session() as sess: sess.run(adjust_jpeg_quality_image) def testAdjustJpegQualityShape(self): with self.cached_session(): image = constant_op.constant( np.arange(24, dtype=np.uint8).reshape([2, 4, 3])) adjusted_image = image_ops.adjust_jpeg_quality(image, 80) adjusted_image.shape.assert_is_compatible_with([None, None, 3]) class PngTest(test_util.TensorFlowTestCase): def testExisting(self): # Read some real PNGs, converting to different channel numbers prefix = "tensorflow/core/lib/png/testdata/" inputs = ((1, "lena_gray.png"), (4, "lena_rgba.png"), (3, "lena_palette.png"), (4, "lena_palette_trns.png")) for channels_in, filename in inputs: for channels in 0, 1, 3, 4: with self.cached_session(): png0 = io_ops.read_file(prefix + filename) image0 = image_ops.decode_png(png0, channels=channels) png0, image0 = self.evaluate([png0, image0]) self.assertEqual(image0.shape, (26, 51, channels or channels_in)) if channels == channels_in: image1 = image_ops.decode_png(image_ops.encode_png(image0)) self.assertAllEqual(image0, self.evaluate(image1)) def testSynthetic(self): with self.cached_session(): # Encode it, then decode it image0 = constant_op.constant(simple_color_ramp()) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0) png0, image0, image1 = self.evaluate([png0, image0, image1]) # PNG is lossless self.assertAllEqual(image0, image1) # Smooth ramps compress well, but not too well self.assertGreaterEqual(len(png0), 400) self.assertLessEqual(len(png0), 750) def testSyntheticUint16(self): with self.cached_session(): # Encode it, then decode it image0 = constant_op.constant(simple_color_ramp(), dtype=dtypes.uint16) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0, dtype=dtypes.uint16) png0, image0, image1 = self.evaluate([png0, image0, image1]) # PNG is lossless self.assertAllEqual(image0, image1) # Smooth ramps compress well, but not too well self.assertGreaterEqual(len(png0), 800) self.assertLessEqual(len(png0), 1500) def testSyntheticTwoChannel(self): with self.cached_session(): # Strip the b channel from an rgb image to get a two-channel image. gray_alpha = simple_color_ramp()[:, :, 0:2] image0 = constant_op.constant(gray_alpha) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0) png0, image0, image1 = self.evaluate([png0, image0, image1]) self.assertEqual(2, image0.shape[-1]) self.assertAllEqual(image0, image1) def testSyntheticTwoChannelUint16(self): with self.cached_session(): # Strip the b channel from an rgb image to get a two-channel image. gray_alpha = simple_color_ramp()[:, :, 0:2] image0 = constant_op.constant(gray_alpha, dtype=dtypes.uint16) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0, dtype=dtypes.uint16) png0, image0, image1 = self.evaluate([png0, image0, image1]) self.assertEqual(2, image0.shape[-1]) self.assertAllEqual(image0, image1) def testShape(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): with self.cached_session(): png = constant_op.constant("nonsense") for channels in 0, 1, 3: image = image_ops.decode_png(png, channels=channels) self.assertEqual(image.get_shape().as_list(), [None, None, channels or None]) class GifTest(test_util.TensorFlowTestCase): def _testValid(self, filename): # Read some real GIFs prefix = "tensorflow/core/lib/gif/testdata/" WIDTH = 20 HEIGHT = 40 STRIDE = 5 shape = (12, HEIGHT, WIDTH, 3) with self.cached_session(): gif0 = io_ops.read_file(prefix + filename) image0 = image_ops.decode_gif(gif0) gif0, image0 = self.evaluate([gif0, image0]) self.assertEqual(image0.shape, shape) for frame_idx, frame in enumerate(image0): gt = np.zeros(shape[1:], dtype=np.uint8) start = frame_idx * STRIDE end = (frame_idx + 1) * STRIDE print(frame_idx) if end <= WIDTH: gt[:, start:end, :] = 255 else: start -= WIDTH end -= WIDTH gt[start:end, :, :] = 255 self.assertAllClose(frame, gt) def testValid(self): self._testValid("scan.gif") self._testValid("optimized.gif") def testShape(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): with self.cached_session(): gif = constant_op.constant("nonsense") image = image_ops.decode_gif(gif) self.assertEqual(image.get_shape().as_list(), [None, None, None, 3]) def testAnimatedGif(self): # Test if all frames in the animated GIF file is properly decoded. with self.cached_session(): base = "tensorflow/core/lib/gif/testdata" gif = io_ops.read_file(os.path.join(base, "pendulum_sm.gif")) gt_frame0 = io_ops.read_file(os.path.join(base, "pendulum_sm_frame0.png")) gt_frame1 = io_ops.read_file(os.path.join(base, "pendulum_sm_frame1.png")) gt_frame2 = io_ops.read_file(os.path.join(base, "pendulum_sm_frame2.png")) image = image_ops.decode_gif(gif) frame0 = image_ops.decode_png(gt_frame0) frame1 = image_ops.decode_png(gt_frame1) frame2 = image_ops.decode_png(gt_frame2) image, frame0, frame1, frame2 = self.evaluate([image, frame0, frame1, frame2]) # Compare decoded gif frames with ground-truth data. self.assertAllEqual(image[0], frame0) self.assertAllEqual(image[1], frame1) self.assertAllEqual(image[2], frame2) class ConvertImageTest(test_util.TensorFlowTestCase): def _convert(self, original, original_dtype, output_dtype, expected): x_np = np.array(original, dtype=original_dtype.as_numpy_dtype()) y_np = np.array(expected, dtype=output_dtype.as_numpy_dtype()) with self.cached_session(): image = constant_op.constant(x_np) y = image_ops.convert_image_dtype(image, output_dtype) self.assertTrue(y.dtype == output_dtype) self.assertAllClose(y, y_np, atol=1e-5) if output_dtype in [ dtypes.float32, dtypes.float64, dtypes.int32, dtypes.int64 ]: y_saturate = image_ops.convert_image_dtype( image, output_dtype, saturate=True) self.assertTrue(y_saturate.dtype == output_dtype) self.assertAllClose(y_saturate, y_np, atol=1e-5) def testNoConvert(self): # Tests with Tensor.op requires a graph. with ops.Graph().as_default(): # Make sure converting to the same data type creates only an identity op with self.cached_session(): image = constant_op.constant([1], dtype=dtypes.uint8) image_ops.convert_image_dtype(image, dtypes.uint8) y = image_ops.convert_image_dtype(image, dtypes.uint8) self.assertEqual(y.op.type, "Identity") self.assertEqual(y.op.inputs[0], image) def testConvertBetweenInteger(self): # Make sure converting to between integer types scales appropriately with self.cached_session(): self._convert([0, 255], dtypes.uint8, dtypes.int16, [0, 255 * 128]) self._convert([0, 32767], dtypes.int16, dtypes.uint8, [0, 255]) self._convert([0, 2**32], dtypes.int64, dtypes.int32, [0, 1]) self._convert([0, 1], dtypes.int32, dtypes.int64, [0, 2**32]) def testConvertBetweenFloat(self): # Make sure converting to between float types does nothing interesting with self.cached_session(): self._convert([-1.0, 0, 1.0, 200000], dtypes.float32, dtypes.float64, [-1.0, 0, 1.0, 200000]) self._convert([-1.0, 0, 1.0, 200000], dtypes.float64, dtypes.float32, [-1.0, 0, 1.0, 200000]) def testConvertBetweenIntegerAndFloat(self): # Make sure converting from and to a float type scales appropriately with self.cached_session(): self._convert([0, 1, 255], dtypes.uint8, dtypes.float32, [0, 1.0 / 255.0, 1]) self._convert([0, 1.1 / 255.0, 1], dtypes.float32, dtypes.uint8, [0, 1, 255]) def testConvertBetweenInt16AndInt8(self): with self.cached_session(): # uint8, uint16 self._convert([0, 255 * 256], dtypes.uint16, dtypes.uint8, [0, 255]) self._convert([0, 255], dtypes.uint8, dtypes.uint16, [0, 255 * 256]) # int8, uint16 self._convert([0, 127 * 2 * 256], dtypes.uint16, dtypes.int8, [0, 127]) self._convert([0, 127], dtypes.int8, dtypes.uint16, [0, 127 * 2 * 256]) # int16, uint16 self._convert([0, 255 * 256], dtypes.uint16, dtypes.int16, [0, 255 * 128]) self._convert([0, 255 * 128], dtypes.int16, dtypes.uint16, [0, 255 * 256]) class TotalVariationTest(test_util.TensorFlowTestCase): """Tests the function total_variation() in image_ops. We test a few small handmade examples, as well as some larger examples using an equivalent numpy implementation of the total_variation() function. We do NOT test for overflows and invalid / edge-case arguments. """ def _test(self, x_np, y_np): """Test that the TensorFlow implementation of total_variation(x_np) calculates the values in y_np. Note that these may be float-numbers so we only test for approximate equality within some narrow error-bound. """ # Create a TensorFlow session. with self.cached_session(): # Add a constant to the TensorFlow graph that holds the input. x_tf = constant_op.constant(x_np, shape=x_np.shape) # Add ops for calculating the total variation using TensorFlow. y = image_ops.total_variation(images=x_tf) # Run the TensorFlow session to calculate the result. y_tf = self.evaluate(y) # Assert that the results are as expected within # some small error-bound in case they are float-values. self.assertAllClose(y_tf, y_np) def _total_variation_np(self, x_np): """Calculate the total variation of x_np using numpy. This implements the same function as TensorFlow but using numpy instead. Args: x_np: Numpy array with 3 or 4 dimensions. """ dim = len(x_np.shape) if dim == 3: # Calculate differences for neighboring pixel-values using slices. dif1 = x_np[1:, :, :] - x_np[:-1, :, :] dif2 = x_np[:, 1:, :] - x_np[:, :-1, :] # Sum for all axis. sum_axis = None elif dim == 4: # Calculate differences for neighboring pixel-values using slices. dif1 = x_np[:, 1:, :, :] - x_np[:, :-1, :, :] dif2 = x_np[:, :, 1:, :] - x_np[:, :, :-1, :] # Only sum for the last 3 axis. sum_axis = (1, 2, 3) else: # This should not occur in this test-code. pass tot_var = np.sum(np.abs(dif1), axis=sum_axis) + \ np.sum(np.abs(dif2), axis=sum_axis) return tot_var def _test_tensorflow_vs_numpy(self, x_np): """Test the TensorFlow implementation against a numpy implementation. Args: x_np: Numpy array with 3 or 4 dimensions. """ # Calculate the y-values using the numpy implementation. y_np = self._total_variation_np(x_np) self._test(x_np, y_np) def _generateArray(self, shape): """Generate an array of the given shape for use in testing. The numbers are calculated as the cumulative sum, which causes the difference between neighboring numbers to vary.""" # Flattened length of the array. flat_len = np.prod(shape) a = np.array(range(flat_len), dtype=int) a = np.cumsum(a) a = a.reshape(shape) return a # TODO(b/133851381): re-enable this test. def disabledtestTotalVariationNumpy(self): """Test the TensorFlow implementation against a numpy implementation. The two implementations are very similar so it is possible that both have the same bug, which would not be detected by this test. It is therefore necessary to test with manually crafted data as well.""" # Generate a test-array. # This is an 'image' with 100x80 pixels and 3 color channels. a = self._generateArray(shape=(100, 80, 3)) # Test the TensorFlow implementation vs. numpy implementation. # We use a numpy implementation to check the results that are # calculated using TensorFlow are correct. self._test_tensorflow_vs_numpy(a) self._test_tensorflow_vs_numpy(a + 1) self._test_tensorflow_vs_numpy(-a) self._test_tensorflow_vs_numpy(1.1 * a) # Expand to a 4-dim array. b = a[np.newaxis, :] # Combine several variations of the image into a single 4-dim array. multi = np.vstack((b, b + 1, -b, 1.1 * b)) # Test that the TensorFlow function can also handle 4-dim arrays. self._test_tensorflow_vs_numpy(multi) def testTotalVariationHandmade(self): """Test the total variation for a few handmade examples.""" # We create an image that is 2x2 pixels with 3 color channels. # The image is very small so we can check the result by hand. # Red color channel. # The following are the sum of absolute differences between the pixels. # sum row dif = (4-1) + (7-2) = 3 + 5 = 8 # sum col dif = (2-1) + (7-4) = 1 + 3 = 4 r = [[1, 2], [4, 7]] # Blue color channel. # sum row dif = 18 + 29 = 47 # sum col dif = 7 + 18 = 25 g = [[11, 18], [29, 47]] # Green color channel. # sum row dif = 120 + 193 = 313 # sum col dif = 47 + 120 = 167 b = [[73, 120], [193, 313]] # Combine the 3 color channels into a single 3-dim array. # The shape is (2, 2, 3) corresponding to (height, width and color). a = np.dstack((r, g, b)) # Total variation for this image. # Sum of all pixel differences = 8 + 4 + 47 + 25 + 313 + 167 = 564 tot_var = 564 # Calculate the total variation using TensorFlow and assert it is correct. self._test(a, tot_var) # If we add 1 to all pixel-values then the total variation is unchanged. self._test(a + 1, tot_var) # If we negate all pixel-values then the total variation is unchanged. self._test(-a, tot_var) # pylint: disable=invalid-unary-operand-type # Scale the pixel-values by a float. This scales the total variation as # well. b = 1.1 * a self._test(b, 1.1 * tot_var) # Scale by another float. c = 1.2 * a self._test(c, 1.2 * tot_var) # Combine these 3 images into a single array of shape (3, 2, 2, 3) # where the first dimension is for the image-number. multi = np.vstack((a[np.newaxis, :], b[np.newaxis, :], c[np.newaxis, :])) # Check that TensorFlow correctly calculates the total variation # for each image individually and returns the correct array. self._test(multi, tot_var * np.array([1.0, 1.1, 1.2])) class FormatTest(test_util.TensorFlowTestCase): def testFormats(self): prefix = "tensorflow/core/lib" paths = ("png/testdata/lena_gray.png", "jpeg/testdata/jpeg_merge_test1.jpg", "gif/testdata/lena.gif") decoders = { "jpeg": functools.partial(image_ops.decode_jpeg, channels=3), "png": functools.partial(image_ops.decode_png, channels=3), "gif": lambda s: array_ops.squeeze(image_ops.decode_gif(s), axis=0), } with self.cached_session(): for path in paths: contents = self.evaluate(io_ops.read_file(os.path.join(prefix, path))) images = {} for name, decode in decoders.items(): image = self.evaluate(decode(contents)) self.assertEqual(image.ndim, 3) for prev_name, prev in images.items(): print("path %s, names %s %s, shapes %s %s" % (path, name, prev_name, image.shape, prev.shape)) self.assertAllEqual(image, prev) images[name] = image def testError(self): path = "tensorflow/core/lib/gif/testdata/scan.gif" with self.cached_session(): for decode in image_ops.decode_jpeg, image_ops.decode_png: with self.assertRaisesOpError(r"Got 12 frames"): decode(io_ops.read_file(path)).eval() class CombinedNonMaxSuppressionTest(test_util.TensorFlowTestCase): # NOTE(b/142795960): parameterized tests do not work well with tf.tensor # inputs. Due to failures, creating another test `testInvalidTensorInput` # which is identical to this one except that the input here is a scalar as # opposed to a tensor. def testInvalidPyInput(self): boxes_np = [[[[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]]]] scores_np = [[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]] max_output_size_per_class = 5 max_total_size = 2**31 with self.assertRaisesRegex( (TypeError, ValueError), "type int64 that does not match expected type of int32|" "Tensor conversion requested dtype int32 for Tensor with dtype int64"): image_ops.combined_non_max_suppression( boxes=boxes_np, scores=scores_np, max_output_size_per_class=max_output_size_per_class, max_total_size=max_total_size) # NOTE(b/142795960): parameterized tests do not work well with tf.tensor # inputs. Due to failures, creating another this test which is identical to # `testInvalidPyInput` except that the input is a tensor here as opposed # to a scalar. def testInvalidTensorInput(self): boxes_np = [[[[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]]]] scores_np = [[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]] max_output_size_per_class = 5 max_total_size = ops.convert_to_tensor(2**31) with self.assertRaisesRegex( (TypeError, ValueError), "type int64 that does not match expected type of int32|" "Tensor conversion requested dtype int32 for Tensor with dtype int64"): image_ops.combined_non_max_suppression( boxes=boxes_np, scores=scores_np, max_output_size_per_class=max_output_size_per_class, max_total_size=max_total_size) class NonMaxSuppressionTest(test_util.TensorFlowTestCase): def testNonMaxSuppression(self): boxes_np = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]] scores_np = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3] max_output_size_np = 3 iou_threshold_np = 0.5 with self.cached_session(): boxes = constant_op.constant(boxes_np) scores = constant_op.constant(scores_np) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant(iou_threshold_np) selected_indices = image_ops.non_max_suppression( boxes, scores, max_output_size, iou_threshold) self.assertAllClose(selected_indices, [3, 0, 5]) def testInvalidShape(self): def nms_func(box, score, max_output_size, iou_thres): return image_ops.non_max_suppression(box, score, max_output_size, iou_thres) max_output_size = 3 iou_thres = 0.5 # The boxes should be 2D of shape [num_boxes, 4]. with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): boxes = constant_op.constant([0.0, 0.0, 1.0, 1.0]) scores = constant_op.constant([0.9]) nms_func(boxes, scores, max_output_size, iou_thres) # Dimensions must be 4 (but is 3) with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): boxes = constant_op.constant([[0.0, 0, 1.0]]) scores = constant_op.constant([0.9]) nms_func(boxes, scores, max_output_size, iou_thres) # The boxes is of shape [num_boxes, 4], and the scores is # of shape [num_boxes]. So an error will be thrown bc 1 != 2. with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): boxes = constant_op.constant([[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]) scores = constant_op.constant([0.9]) nms_func(boxes, scores, max_output_size, iou_thres) # The scores should be 1D of shape [num_boxes]. with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): boxes = constant_op.constant([[0.0, 0.0, 1.0, 1.0]]) scores = constant_op.constant([[0.9]]) nms_func(boxes, scores, max_output_size, iou_thres) # The max output size should be a scalar (0-D). with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): boxes = constant_op.constant([[0.0, 0.0, 1.0, 1.0]]) scores = constant_op.constant([0.9]) nms_func(boxes, scores, [[max_output_size]], iou_thres) # The iou_threshold should be a scalar (0-D). with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): boxes = constant_op.constant([[0.0, 0.0, 1.0, 1.0]]) scores = constant_op.constant([0.9]) nms_func(boxes, scores, max_output_size, [[iou_thres]]) @test_util.xla_allow_fallback( "non_max_suppression with dynamic output shape unsupported.") def testTensors(self): with context.eager_mode(): boxes_tensor = constant_op.constant([[6.625, 6.688, 272., 158.5], [6.625, 6.75, 270.5, 158.4], [5.375, 5., 272., 157.5]]) scores_tensor = constant_op.constant([0.84, 0.7944, 0.7715]) max_output_size = 100 iou_threshold = 0.5 score_threshold = 0.3 soft_nms_sigma = 0.25 pad_to_max_output_size = False # gen_image_ops.non_max_suppression_v5. for dtype in [np.float16, np.float32]: boxes = math_ops.cast(boxes_tensor, dtype=dtype) scores = math_ops.cast(scores_tensor, dtype=dtype) _, _, num_selected = gen_image_ops.non_max_suppression_v5( boxes, scores, max_output_size, iou_threshold, score_threshold, soft_nms_sigma, pad_to_max_output_size) self.assertEqual(num_selected.numpy(), 1) @test_util.xla_allow_fallback( "non_max_suppression with dynamic output shape unsupported.") def testDataTypes(self): # Test case for GitHub issue 20199. boxes_np = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]] scores_np = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3] max_output_size_np = 3 iou_threshold_np = 0.5 score_threshold_np = float("-inf") # Note: There are multiple versions of non_max_suppression v2, v3, v4. # gen_image_ops.non_max_suppression_v2: for input_dtype in [np.float16, np.float32]: for threshold_dtype in [np.float16, np.float32]: with self.cached_session(): boxes = constant_op.constant(boxes_np, dtype=input_dtype) scores = constant_op.constant(scores_np, dtype=input_dtype) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant( iou_threshold_np, dtype=threshold_dtype) selected_indices = gen_image_ops.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold) selected_indices = self.evaluate(selected_indices) self.assertAllClose(selected_indices, [3, 0, 5]) # gen_image_ops.non_max_suppression_v3 for input_dtype in [np.float16, np.float32]: for threshold_dtype in [np.float16, np.float32]: # XLA currently requires dtypes to be equal. if input_dtype == threshold_dtype or not test_util.is_xla_enabled(): with self.cached_session(): boxes = constant_op.constant(boxes_np, dtype=input_dtype) scores = constant_op.constant(scores_np, dtype=input_dtype) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant( iou_threshold_np, dtype=threshold_dtype) score_threshold = constant_op.constant( score_threshold_np, dtype=threshold_dtype) selected_indices = gen_image_ops.non_max_suppression_v3( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_indices = self.evaluate(selected_indices) self.assertAllClose(selected_indices, [3, 0, 5]) # gen_image_ops.non_max_suppression_v4. for input_dtype in [np.float16, np.float32]: for threshold_dtype in [np.float16, np.float32]: with self.cached_session(): boxes = constant_op.constant(boxes_np, dtype=input_dtype) scores = constant_op.constant(scores_np, dtype=input_dtype) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant( iou_threshold_np, dtype=threshold_dtype) score_threshold = constant_op.constant( score_threshold_np, dtype=threshold_dtype) selected_indices, _ = gen_image_ops.non_max_suppression_v4( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_indices = self.evaluate(selected_indices) self.assertAllClose(selected_indices, [3, 0, 5]) # gen_image_ops.non_max_suppression_v5. soft_nms_sigma_np = float(0.0) for dtype in [np.float16, np.float32]: with self.cached_session(): boxes = constant_op.constant(boxes_np, dtype=dtype) scores = constant_op.constant(scores_np, dtype=dtype) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant(iou_threshold_np, dtype=dtype) score_threshold = constant_op.constant(score_threshold_np, dtype=dtype) soft_nms_sigma = constant_op.constant(soft_nms_sigma_np, dtype=dtype) selected_indices, _, _ = gen_image_ops.non_max_suppression_v5( boxes, scores, max_output_size, iou_threshold, score_threshold, soft_nms_sigma) selected_indices = self.evaluate(selected_indices) self.assertAllClose(selected_indices, [3, 0, 5]) def testZeroIOUThreshold(self): boxes_np = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]] scores_np = [1., 1., 1., 1., 1., 1.] max_output_size_np = 3 iou_threshold_np = 0.0 with self.cached_session(): boxes = constant_op.constant(boxes_np) scores = constant_op.constant(scores_np) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant(iou_threshold_np) selected_indices = image_ops.non_max_suppression( boxes, scores, max_output_size, iou_threshold) self.assertAllClose(selected_indices, [0, 3, 5]) class NonMaxSuppressionWithScoresTest(test_util.TensorFlowTestCase): @test_util.xla_allow_fallback( "non_max_suppression with dynamic output shape unsupported.") def testSelectFromThreeClustersWithSoftNMS(self): boxes_np = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]] scores_np = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3] max_output_size_np = 6 iou_threshold_np = 0.5 score_threshold_np = 0.0 soft_nms_sigma_np = 0.5 boxes = constant_op.constant(boxes_np) scores = constant_op.constant(scores_np) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant(iou_threshold_np) score_threshold = constant_op.constant(score_threshold_np) soft_nms_sigma = constant_op.constant(soft_nms_sigma_np) selected_indices, selected_scores = \ image_ops.non_max_suppression_with_scores( boxes, scores, max_output_size, iou_threshold, score_threshold, soft_nms_sigma) selected_indices, selected_scores = self.evaluate( [selected_indices, selected_scores]) self.assertAllClose(selected_indices, [3, 0, 1, 5, 4, 2]) self.assertAllClose(selected_scores, [0.95, 0.9, 0.384, 0.3, 0.256, 0.197], rtol=1e-2, atol=1e-2) class NonMaxSuppressionPaddedTest(test_util.TensorFlowTestCase, parameterized.TestCase): @test_util.disable_xla( "b/141236442: " "non_max_suppression with dynamic output shape unsupported.") def testSelectFromThreeClustersV1(self): with ops.Graph().as_default(): boxes_np = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]] scores_np = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3] max_output_size_np = 5 iou_threshold_np = 0.5 boxes = constant_op.constant(boxes_np) scores = constant_op.constant(scores_np) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant(iou_threshold_np) selected_indices_padded, num_valid_padded = \ image_ops.non_max_suppression_padded( boxes, scores, max_output_size, iou_threshold, pad_to_max_output_size=True) selected_indices, num_valid = image_ops.non_max_suppression_padded( boxes, scores, max_output_size, iou_threshold, pad_to_max_output_size=False) # The output shape of the padded operation must be fully defined. self.assertEqual(selected_indices_padded.shape.is_fully_defined(), True) self.assertEqual(selected_indices.shape.is_fully_defined(), False) with self.cached_session(): self.assertAllClose(selected_indices_padded, [3, 0, 5, 0, 0]) self.assertEqual(num_valid_padded.eval(), 3) self.assertAllClose(selected_indices, [3, 0, 5]) self.assertEqual(num_valid.eval(), 3) @parameterized.named_parameters([("_RunEagerly", True), ("_RunGraph", False)]) @test_util.disable_xla( "b/141236442: " "non_max_suppression with dynamic output shape unsupported.") def testSelectFromThreeClustersV2(self, run_func_eagerly): if not context.executing_eagerly() and run_func_eagerly: # Skip running tf.function eagerly in V1 mode. self.skipTest("Skip test that runs tf.function eagerly in V1 mode.") else: @def_function.function def func(boxes, scores, max_output_size, iou_threshold): boxes = constant_op.constant(boxes_np) scores = constant_op.constant(scores_np) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant(iou_threshold_np) yp, nvp = image_ops.non_max_suppression_padded( boxes, scores, max_output_size, iou_threshold, pad_to_max_output_size=True) y, n = image_ops.non_max_suppression_padded( boxes, scores, max_output_size, iou_threshold, pad_to_max_output_size=False) # The output shape of the padded operation must be fully defined. self.assertEqual(yp.shape.is_fully_defined(), True) self.assertEqual(y.shape.is_fully_defined(), False) return yp, nvp, y, n boxes_np = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]] scores_np = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3] max_output_size_np = 5 iou_threshold_np = 0.5 selected_indices_padded, num_valid_padded, selected_indices, num_valid = \ func(boxes_np, scores_np, max_output_size_np, iou_threshold_np) with self.cached_session(): with test_util.run_functions_eagerly(run_func_eagerly): self.assertAllClose(selected_indices_padded, [3, 0, 5, 0, 0]) self.assertEqual(self.evaluate(num_valid_padded), 3) self.assertAllClose(selected_indices, [3, 0, 5]) self.assertEqual(self.evaluate(num_valid), 3) @test_util.xla_allow_fallback( "non_max_suppression with dynamic output shape unsupported.") def testSelectFromContinuousOverLapV1(self): with ops.Graph().as_default(): boxes_np = [[0, 0, 1, 1], [0, 0.2, 1, 1.2], [0, 0.4, 1, 1.4], [0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]] scores_np = [0.9, 0.75, 0.6, 0.5, 0.4, 0.3] max_output_size_np = 3 iou_threshold_np = 0.5 score_threshold_np = 0.1 boxes = constant_op.constant(boxes_np) scores = constant_op.constant(scores_np) max_output_size = constant_op.constant(max_output_size_np) iou_threshold = constant_op.constant(iou_threshold_np) score_threshold = constant_op.constant(score_threshold_np) selected_indices, num_valid = image_ops.non_max_suppression_padded( boxes, scores, max_output_size, iou_threshold, score_threshold) # The output shape of the padded operation must be fully defined. self.assertEqual(selected_indices.shape.is_fully_defined(), False) with self.cached_session(): self.assertAllClose(selected_indices, [0, 2, 4]) self.assertEqual(num_valid.eval(), 3) @parameterized.named_parameters([("_RunEagerly", True), ("_RunGraph", False)]) @test_util.xla_allow_fallback( "non_max_suppression with dynamic output shape unsupported.") def testSelectFromContinuousOverLapV2(self, run_func_eagerly): if not context.executing_eagerly() and run_func_eagerly: # Skip running tf.function eagerly in V1 mode. self.skipTest("Skip test that runs tf.function eagerly in V1 mode.") else: @def_function.function def func(boxes, scores, max_output_size, iou_threshold, score_threshold): boxes = constant_op.constant(boxes) scores = constant_op.constant(scores) max_output_size = constant_op.constant(max_output_size) iou_threshold = constant_op.constant(iou_threshold) score_threshold = constant_op.constant(score_threshold) y, nv = image_ops.non_max_suppression_padded( boxes, scores, max_output_size, iou_threshold, score_threshold) # The output shape of the padded operation must be fully defined. self.assertEqual(y.shape.is_fully_defined(), False) return y, nv boxes_np = [[0, 0, 1, 1], [0, 0.2, 1, 1.2], [0, 0.4, 1, 1.4], [0, 0.6, 1, 1.6], [0, 0.8, 1, 1.8], [0, 2, 1, 2]] scores_np = [0.9, 0.75, 0.6, 0.5, 0.4, 0.3] max_output_size_np = 3 iou_threshold_np = 0.5 score_threshold_np = 0.1 selected_indices, num_valid = func(boxes_np, scores_np, max_output_size_np, iou_threshold_np, score_threshold_np) with self.cached_session(): with test_util.run_functions_eagerly(run_func_eagerly): self.assertAllClose(selected_indices, [0, 2, 4]) self.assertEqual(self.evaluate(num_valid), 3) def testInvalidDtype(self): boxes_np = [[4.0, 6.0, 3.0, 6.0], [2.0, 1.0, 5.0, 4.0], [9.0, 0.0, 9.0, 9.0]] scores = [5.0, 6.0, 5.0] max_output_size = 2**31 with self.assertRaisesRegex( (TypeError, ValueError), "type int64 that does not match type int32"): boxes = constant_op.constant(boxes_np) image_ops.non_max_suppression_padded(boxes, scores, max_output_size) class NonMaxSuppressionWithOverlapsTest(test_util.TensorFlowTestCase): def testSelectOneFromThree(self): overlaps_np = [ [1.0, 0.7, 0.2], [0.7, 1.0, 0.0], [0.2, 0.0, 1.0], ] scores_np = [0.7, 0.9, 0.1] max_output_size_np = 3 overlaps = constant_op.constant(overlaps_np) scores = constant_op.constant(scores_np) max_output_size = constant_op.constant(max_output_size_np) overlap_threshold = 0.6 score_threshold = 0.4 selected_indices = image_ops.non_max_suppression_with_overlaps( overlaps, scores, max_output_size, overlap_threshold, score_threshold) with self.cached_session(): self.assertAllClose(selected_indices, [1]) class VerifyCompatibleImageShapesTest(test_util.TensorFlowTestCase): """Tests utility function used by ssim() and psnr().""" def testWrongDims(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): img = array_ops.placeholder(dtype=dtypes.float32) img_np = np.array((2, 2)) with self.cached_session() as sess: _, _, checks = image_ops_impl._verify_compatible_image_shapes(img, img) with self.assertRaises(errors.InvalidArgumentError): sess.run(checks, {img: img_np}) def testShapeMismatch(self): # Shape function requires placeholders and a graph. with ops.Graph().as_default(): img1 = array_ops.placeholder(dtype=dtypes.float32) img2 = array_ops.placeholder(dtype=dtypes.float32) img1_np = np.array([1, 2, 2, 1]) img2_np = np.array([1, 3, 3, 1]) with self.cached_session() as sess: _, _, checks = image_ops_impl._verify_compatible_image_shapes( img1, img2) with self.assertRaises(errors.InvalidArgumentError): sess.run(checks, {img1: img1_np, img2: img2_np}) class PSNRTest(test_util.TensorFlowTestCase): """Tests for PSNR.""" def _LoadTestImage(self, sess, filename): content = io_ops.read_file(os.path.join( "tensorflow/core/lib/psnr/testdata", filename)) im = image_ops.decode_jpeg(content, dct_method="INTEGER_ACCURATE") im = image_ops.convert_image_dtype(im, dtypes.float32) im, = self.evaluate([im]) return np.expand_dims(im, axis=0) def _LoadTestImages(self): with self.cached_session() as sess: q20 = self._LoadTestImage(sess, "cat_q20.jpg") q72 = self._LoadTestImage(sess, "cat_q72.jpg") q95 = self._LoadTestImage(sess, "cat_q95.jpg") return q20, q72, q95 def _PSNR_NumPy(self, orig, target, max_value): """Numpy implementation of PSNR.""" mse = ((orig - target) ** 2).mean(axis=(-3, -2, -1)) return 20 * np.log10(max_value) - 10 * np.log10(mse) def _RandomImage(self, shape, max_val): """Returns an image or image batch with given shape.""" return np.random.rand(*shape).astype(np.float32) * max_val def testPSNRSingleImage(self): image1 = self._RandomImage((8, 8, 1), 1) image2 = self._RandomImage((8, 8, 1), 1) psnr = self._PSNR_NumPy(image1, image2, 1) with self.cached_session(): tf_image1 = constant_op.constant(image1, shape=image1.shape, dtype=dtypes.float32) tf_image2 = constant_op.constant(image2, shape=image2.shape, dtype=dtypes.float32) tf_psnr = self.evaluate(image_ops.psnr(tf_image1, tf_image2, 1.0, "psnr")) self.assertAllClose(psnr, tf_psnr, atol=0.001) def testPSNRMultiImage(self): image1 = self._RandomImage((10, 8, 8, 1), 1) image2 = self._RandomImage((10, 8, 8, 1), 1) psnr = self._PSNR_NumPy(image1, image2, 1) with self.cached_session(): tf_image1 = constant_op.constant(image1, shape=image1.shape, dtype=dtypes.float32) tf_image2 = constant_op.constant(image2, shape=image2.shape, dtype=dtypes.float32) tf_psnr = self.evaluate(image_ops.psnr(tf_image1, tf_image2, 1, "psnr")) self.assertAllClose(psnr, tf_psnr, atol=0.001) def testGoldenPSNR(self): q20, q72, q95 = self._LoadTestImages() # Verify NumPy implementation first. # Golden values are generated using GNU Octave's psnr() function. psnr1 = self._PSNR_NumPy(q20, q72, 1) self.assertNear(30.321, psnr1, 0.001, msg="q20.dtype=" + str(q20.dtype)) psnr2 = self._PSNR_NumPy(q20, q95, 1) self.assertNear(29.994, psnr2, 0.001) psnr3 = self._PSNR_NumPy(q72, q95, 1) self.assertNear(35.302, psnr3, 0.001) # Test TensorFlow implementation. with self.cached_session(): tf_q20 = constant_op.constant(q20, shape=q20.shape, dtype=dtypes.float32) tf_q72 = constant_op.constant(q72, shape=q72.shape, dtype=dtypes.float32) tf_q95 = constant_op.constant(q95, shape=q95.shape, dtype=dtypes.float32) tf_psnr1 = self.evaluate(image_ops.psnr(tf_q20, tf_q72, 1, "psnr1")) tf_psnr2 = self.evaluate(image_ops.psnr(tf_q20, tf_q95, 1, "psnr2")) tf_psnr3 = self.evaluate(image_ops.psnr(tf_q72, tf_q95, 1, "psnr3")) self.assertAllClose(psnr1, tf_psnr1, atol=0.001) self.assertAllClose(psnr2, tf_psnr2, atol=0.001) self.assertAllClose(psnr3, tf_psnr3, atol=0.001) def testInfinity(self): q20, _, _ = self._LoadTestImages() psnr = self._PSNR_NumPy(q20, q20, 1) with self.cached_session(): tf_q20 = constant_op.constant(q20, shape=q20.shape, dtype=dtypes.float32) tf_psnr = self.evaluate(image_ops.psnr(tf_q20, tf_q20, 1, "psnr")) self.assertAllClose(psnr, tf_psnr, atol=0.001) def testInt(self): img1 = self._RandomImage((10, 8, 8, 1), 255) img2 = self._RandomImage((10, 8, 8, 1), 255) img1 = constant_op.constant(img1, dtypes.uint8) img2 = constant_op.constant(img2, dtypes.uint8) psnr_uint8 = image_ops.psnr(img1, img2, 255) img1 = image_ops.convert_image_dtype(img1, dtypes.float32) img2 = image_ops.convert_image_dtype(img2, dtypes.float32) psnr_float32 = image_ops.psnr(img1, img2, 1.0) with self.cached_session(): self.assertAllClose( self.evaluate(psnr_uint8), self.evaluate(psnr_float32), atol=0.001) class SSIMTest(test_util.TensorFlowTestCase): """Tests for SSIM.""" _filenames = ["checkerboard1.png", "checkerboard2.png", "checkerboard3.png",] _ssim = np.asarray([[1.000000, 0.230880, 0.231153], [0.230880, 1.000000, 0.996828], [0.231153, 0.996828, 1.000000]]) def _LoadTestImage(self, sess, filename): content = io_ops.read_file(os.path.join( "tensorflow/core/lib/ssim/testdata", filename)) im = image_ops.decode_png(content) im = image_ops.convert_image_dtype(im, dtypes.float32) im, = self.evaluate([im]) return np.expand_dims(im, axis=0) def _LoadTestImages(self): with self.cached_session() as sess: return [self._LoadTestImage(sess, f) for f in self._filenames] def _RandomImage(self, shape, max_val): """Returns an image or image batch with given shape.""" return np.random.rand(*shape).astype(np.float32) * max_val def testAgainstMatlab(self): """Tests against values produced by Matlab.""" img = self._LoadTestImages() expected = self._ssim[np.triu_indices(3)] def ssim_func(x): return image_ops.ssim( *x, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): scores = [ self.evaluate(ssim_func(t)) for t in itertools.combinations_with_replacement(img, 2) ] self.assertAllClose(expected, np.squeeze(scores), atol=1e-4) def testBatch(self): img = self._LoadTestImages() expected = self._ssim[np.triu_indices(3, k=1)] img1, img2 = zip(*itertools.combinations(img, 2)) img1 = np.concatenate(img1) img2 = np.concatenate(img2) ssim = image_ops.ssim( constant_op.constant(img1), constant_op.constant(img2), 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertAllClose(expected, self.evaluate(ssim), atol=1e-4) def testBatchNumpyInputs(self): img = self._LoadTestImages() expected = self._ssim[np.triu_indices(3, k=1)] img1, img2 = zip(*itertools.combinations(img, 2)) img1 = np.concatenate(img1) img2 = np.concatenate(img2) with self.cached_session(): img1 = self.evaluate(constant_op.constant(img1)) img2 = self.evaluate(constant_op.constant(img2)) ssim = image_ops.ssim( img1, img2, 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertAllClose(expected, self.evaluate(ssim), atol=1e-4) def testBroadcast(self): img = self._LoadTestImages()[:2] expected = self._ssim[:2, :2] img = constant_op.constant(np.concatenate(img)) img1 = array_ops.expand_dims(img, axis=0) # batch dims: 1, 2. img2 = array_ops.expand_dims(img, axis=1) # batch dims: 2, 1. ssim = image_ops.ssim( img1, img2, 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertAllClose(expected, self.evaluate(ssim), atol=1e-4) def testNegative(self): """Tests against negative SSIM index.""" step = np.expand_dims(np.arange(0, 256, 16, dtype=np.uint8), axis=0) img1 = np.tile(step, (16, 1)) img2 = np.fliplr(img1) img1 = img1.reshape((1, 16, 16, 1)) img2 = img2.reshape((1, 16, 16, 1)) ssim = image_ops.ssim( constant_op.constant(img1), constant_op.constant(img2), 255, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertLess(self.evaluate(ssim), 0) def testInt(self): img1 = self._RandomImage((1, 16, 16, 3), 255) img2 = self._RandomImage((1, 16, 16, 3), 255) img1 = constant_op.constant(img1, dtypes.uint8) img2 = constant_op.constant(img2, dtypes.uint8) ssim_uint8 = image_ops.ssim( img1, img2, 255, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) img1 = image_ops.convert_image_dtype(img1, dtypes.float32) img2 = image_ops.convert_image_dtype(img2, dtypes.float32) ssim_float32 = image_ops.ssim( img1, img2, 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertAllClose( self.evaluate(ssim_uint8), self.evaluate(ssim_float32), atol=0.001) class MultiscaleSSIMTest(test_util.TensorFlowTestCase): """Tests for MS-SSIM.""" _filenames = ["checkerboard1.png", "checkerboard2.png", "checkerboard3.png",] _msssim = np.asarray([[1.000000, 0.091016, 0.091025], [0.091016, 1.000000, 0.999567], [0.091025, 0.999567, 1.000000]]) def _LoadTestImage(self, sess, filename): content = io_ops.read_file(os.path.join( "tensorflow/core/lib/ssim/testdata", filename)) im = image_ops.decode_png(content) im = image_ops.convert_image_dtype(im, dtypes.float32) im, = self.evaluate([im]) return np.expand_dims(im, axis=0) def _LoadTestImages(self): with self.cached_session() as sess: return [self._LoadTestImage(sess, f) for f in self._filenames] def _RandomImage(self, shape, max_val): """Returns an image or image batch with given shape.""" return np.random.rand(*shape).astype(np.float32) * max_val def testAgainstMatlab(self): """Tests against MS-SSIM computed with Matlab implementation. For color images, MS-SSIM scores are averaged over color channels. """ img = self._LoadTestImages() expected = self._msssim[np.triu_indices(3)] def ssim_func(x): return image_ops.ssim_multiscale( *x, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): scores = [ self.evaluate(ssim_func(t)) for t in itertools.combinations_with_replacement(img, 2) ] self.assertAllClose(expected, np.squeeze(scores), atol=1e-4) def testUnweightedIsDifferentiable(self): img = self._LoadTestImages() @def_function.function def msssim_func(x1, x2, scalar): return image_ops.ssim_multiscale( x1 * scalar, x2 * scalar, max_val=1.0, power_factors=(1, 1, 1, 1, 1), filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) scalar = constant_op.constant(1.0, dtype=dtypes.float32) with backprop.GradientTape() as tape: tape.watch(scalar) y = msssim_func(img[0], img[1], scalar) grad = tape.gradient(y, scalar) np_grads = self.evaluate(grad) self.assertTrue(np.isfinite(np_grads).all()) def testUnweightedIsDifferentiableEager(self): if not context.executing_eagerly(): self.skipTest("Eager mode only") img = self._LoadTestImages() def msssim_func(x1, x2, scalar): return image_ops.ssim_multiscale( x1 * scalar, x2 * scalar, max_val=1.0, power_factors=(1, 1, 1, 1, 1), filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) scalar = constant_op.constant(1.0, dtype=dtypes.float32) with backprop.GradientTape() as tape: tape.watch(scalar) y = msssim_func(img[0], img[1], scalar) grad = tape.gradient(y, scalar) np_grads = self.evaluate(grad) self.assertTrue(np.isfinite(np_grads).all()) def testBatch(self): """Tests MS-SSIM computed in batch.""" img = self._LoadTestImages() expected = self._msssim[np.triu_indices(3, k=1)] img1, img2 = zip(*itertools.combinations(img, 2)) img1 = np.concatenate(img1) img2 = np.concatenate(img2) msssim = image_ops.ssim_multiscale( constant_op.constant(img1), constant_op.constant(img2), 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertAllClose(expected, self.evaluate(msssim), 1e-4) def testBroadcast(self): """Tests MS-SSIM broadcasting.""" img = self._LoadTestImages()[:2] expected = self._msssim[:2, :2] img = constant_op.constant(np.concatenate(img)) img1 = array_ops.expand_dims(img, axis=0) # batch dims: 1, 2. img2 = array_ops.expand_dims(img, axis=1) # batch dims: 2, 1. score_tensor = image_ops.ssim_multiscale( img1, img2, 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertAllClose(expected, self.evaluate(score_tensor), 1e-4) def testRange(self): """Tests against low MS-SSIM score. MS-SSIM is a geometric mean of SSIM and CS scores of various scales. If any of the value is negative so that the geometric mean is not well-defined, then treat the MS-SSIM score as zero. """ with self.cached_session() as sess: img1 = self._LoadTestImage(sess, "checkerboard1.png") img2 = self._LoadTestImage(sess, "checkerboard3.png") images = [img1, img2, np.zeros_like(img1), np.full_like(img1, fill_value=255)] images = [ops.convert_to_tensor(x, dtype=dtypes.float32) for x in images] msssim_ops = [ image_ops.ssim_multiscale( x, y, 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) for x, y in itertools.combinations(images, 2) ] msssim = self.evaluate(msssim_ops) msssim = np.squeeze(msssim) self.assertTrue(np.all(msssim >= 0.0)) self.assertTrue(np.all(msssim <= 1.0)) def testInt(self): img1 = self._RandomImage((1, 180, 240, 3), 255) img2 = self._RandomImage((1, 180, 240, 3), 255) img1 = constant_op.constant(img1, dtypes.uint8) img2 = constant_op.constant(img2, dtypes.uint8) ssim_uint8 = image_ops.ssim_multiscale( img1, img2, 255, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) img1 = image_ops.convert_image_dtype(img1, dtypes.float32) img2 = image_ops.convert_image_dtype(img2, dtypes.float32) ssim_float32 = image_ops.ssim_multiscale( img1, img2, 1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03) with self.cached_session(): self.assertAllClose( self.evaluate(ssim_uint8), self.evaluate(ssim_float32), atol=0.001) def testNumpyInput(self): """Test case for GitHub issue 28241.""" image = np.random.random([512, 512, 1]) score_tensor = image_ops.ssim_multiscale(image, image, max_val=1.0) with self.cached_session(): _ = self.evaluate(score_tensor) class ImageGradientsTest(test_util.TensorFlowTestCase): def testImageGradients(self): shape = [1, 2, 4, 1] img = constant_op.constant([[1, 3, 4, 2], [8, 7, 5, 6]]) img = array_ops.reshape(img, shape) expected_dy = np.reshape([[7, 4, 1, 4], [0, 0, 0, 0]], shape) expected_dx = np.reshape([[2, 1, -2, 0], [-1, -2, 1, 0]], shape) dy, dx = image_ops.image_gradients(img) with self.cached_session(): actual_dy = self.evaluate(dy) actual_dx = self.evaluate(dx) self.assertAllClose(expected_dy, actual_dy) self.assertAllClose(expected_dx, actual_dx) def testImageGradientsMultiChannelBatch(self): batch = [[[[1, 2], [2, 5], [3, 3]], [[8, 4], [5, 1], [9, 8]]], [[[5, 3], [7, 9], [1, 6]], [[1, 2], [6, 3], [6, 3]]]] expected_dy = [[[[7, 2], [3, -4], [6, 5]], [[0, 0], [0, 0], [0, 0]]], [[[-4, -1], [-1, -6], [5, -3]], [[0, 0], [0, 0], [0, 0]]]] expected_dx = [[[[1, 3], [1, -2], [0, 0]], [[-3, -3], [4, 7], [0, 0]]], [[[2, 6], [-6, -3], [0, 0]], [[5, 1], [0, 0], [0, 0]]]] batch = constant_op.constant(batch) assert batch.get_shape().as_list() == [2, 2, 3, 2] dy, dx = image_ops.image_gradients(batch) with self.cached_session(): actual_dy = self.evaluate(dy) actual_dx = self.evaluate(dx) self.assertAllClose(expected_dy, actual_dy) self.assertAllClose(expected_dx, actual_dx) def testImageGradientsBadShape(self): # [2 x 4] image but missing batch and depth dimensions. img = constant_op.constant([[1, 3, 4, 2], [8, 7, 5, 6]]) with self.assertRaises(ValueError): image_ops.image_gradients(img) class SobelEdgesTest(test_util.TensorFlowTestCase): def disabled_testSobelEdges1x2x3x1(self): img = constant_op.constant([[1, 3, 6], [4, 1, 5]], dtype=dtypes.float32, shape=[1, 2, 3, 1]) expected = np.reshape([[[0, 0], [0, 12], [0, 0]], [[0, 0], [0, 12], [0, 0]]], [1, 2, 3, 1, 2]) sobel = image_ops.sobel_edges(img) with self.cached_session(): actual_sobel = self.evaluate(sobel) self.assertAllClose(expected, actual_sobel) def testSobelEdges5x3x4x2(self): batch_size = 5 plane = np.reshape([[1, 3, 6, 2], [4, 1, 5, 7], [2, 5, 1, 4]], [1, 3, 4, 1]) two_channel = np.concatenate([plane, plane], axis=3) batch = np.concatenate([two_channel] * batch_size, axis=0) img = constant_op.constant(batch, dtype=dtypes.float32, shape=[batch_size, 3, 4, 2]) expected_plane = np.reshape([[[0, 0], [0, 12], [0, 10], [0, 0]], [[6, 0], [0, 6], [-6, 10], [-6, 0]], [[0, 0], [0, 0], [0, 10], [0, 0]]], [1, 3, 4, 1, 2]) expected_two_channel = np.concatenate( [expected_plane, expected_plane], axis=3) expected_batch = np.concatenate([expected_two_channel] * batch_size, axis=0) sobel = image_ops.sobel_edges(img) with self.cached_session(): actual_sobel = self.evaluate(sobel) self.assertAllClose(expected_batch, actual_sobel) @test_util.run_all_in_graph_and_eager_modes class DecodeImageTest(test_util.TensorFlowTestCase, parameterized.TestCase): _FORWARD_COMPATIBILITY_HORIZONS = [ (2020, 1, 1), (2020, 7, 14), (2525, 1, 1), # future behavior ] def testBmpChannels(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with test_util.use_gpu(): base = "tensorflow/core/lib/bmp/testdata" # `rgba_transparent.bmp` has 4 channels with transparent pixels. # Test consistency between `decode_image` and `decode_bmp` functions. bmp0 = io_ops.read_file(os.path.join(base, "rgba_small.bmp")) image0 = image_ops.decode_image(bmp0, channels=4) image1 = image_ops.decode_bmp(bmp0, channels=4) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) # Test that 3 channels is returned with user request of `channels=3` # even though image has 4 channels. # Note that this operation simply drops 4th channel information. This # is the same behavior as `decode_png`. # e.g. pixel values [25, 25, 25, 100] becomes [25, 25, 25]. bmp1 = io_ops.read_file(os.path.join(base, "rgb_small.bmp")) image2 = image_ops.decode_bmp(bmp0, channels=3) image3 = image_ops.decode_bmp(bmp1) image2, image3 = self.evaluate([image2, image3]) self.assertAllEqual(image2, image3) # Test that 4 channels is returned with user request of `channels=4` # even though image has 3 channels. Alpha channel should be set to # UINT8_MAX. bmp3 = io_ops.read_file(os.path.join(base, "rgb_small_255.bmp")) bmp4 = io_ops.read_file(os.path.join(base, "rgba_small_255.bmp")) image4 = image_ops.decode_bmp(bmp3, channels=4) image5 = image_ops.decode_bmp(bmp4) image4, image5 = self.evaluate([image4, image5]) self.assertAllEqual(image4, image5) # Test that 3 channels is returned with user request of `channels=3` # even though image has 1 channel (grayscale). bmp6 = io_ops.read_file(os.path.join(base, "grayscale_small.bmp")) bmp7 = io_ops.read_file( os.path.join(base, "grayscale_small_3channels.bmp")) image6 = image_ops.decode_bmp(bmp6, channels=3) image7 = image_ops.decode_bmp(bmp7) image6, image7 = self.evaluate([image6, image7]) self.assertAllEqual(image6, image7) # Test that 4 channels is returned with user request of `channels=4` # even though image has 1 channel (grayscale). Alpha channel should be # set to UINT8_MAX. bmp9 = io_ops.read_file( os.path.join(base, "grayscale_small_4channels.bmp")) image8 = image_ops.decode_bmp(bmp6, channels=4) image9 = image_ops.decode_bmp(bmp9) image8, image9 = self.evaluate([image8, image9]) self.assertAllEqual(image8, image9) def testJpegUint16(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/jpeg/testdata" jpeg0 = io_ops.read_file(os.path.join(base, "jpeg_merge_test1.jpg")) image0 = image_ops.decode_image(jpeg0, dtype=dtypes.uint16) image1 = image_ops.convert_image_dtype(image_ops.decode_jpeg(jpeg0), dtypes.uint16) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) def testPngUint16(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/png/testdata" png0 = io_ops.read_file(os.path.join(base, "lena_rgba.png")) image0 = image_ops.decode_image(png0, dtype=dtypes.uint16) image1 = image_ops.convert_image_dtype( image_ops.decode_png(png0, dtype=dtypes.uint16), dtypes.uint16) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) # NumPy conversions should happen before x = np.random.randint(256, size=(4, 4, 3), dtype=np.uint16) x_str = image_ops_impl.encode_png(x) x_dec = image_ops_impl.decode_image( x_str, channels=3, dtype=dtypes.uint16) self.assertAllEqual(x, x_dec) def testGifUint16(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/gif/testdata" gif0 = io_ops.read_file(os.path.join(base, "scan.gif")) image0 = image_ops.decode_image(gif0, dtype=dtypes.uint16) image1 = image_ops.convert_image_dtype(image_ops.decode_gif(gif0), dtypes.uint16) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) def testBmpUint16(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/bmp/testdata" bmp0 = io_ops.read_file(os.path.join(base, "lena.bmp")) image0 = image_ops.decode_image(bmp0, dtype=dtypes.uint16) image1 = image_ops.convert_image_dtype(image_ops.decode_bmp(bmp0), dtypes.uint16) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) def testJpegFloat32(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/jpeg/testdata" jpeg0 = io_ops.read_file(os.path.join(base, "jpeg_merge_test1.jpg")) image0 = image_ops.decode_image(jpeg0, dtype=dtypes.float32) image1 = image_ops.convert_image_dtype(image_ops.decode_jpeg(jpeg0), dtypes.float32) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) def testPngFloat32(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/png/testdata" png0 = io_ops.read_file(os.path.join(base, "lena_rgba.png")) image0 = image_ops.decode_image(png0, dtype=dtypes.float32) image1 = image_ops.convert_image_dtype( image_ops.decode_png(png0, dtype=dtypes.uint16), dtypes.float32) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) def testGifFloat32(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/gif/testdata" gif0 = io_ops.read_file(os.path.join(base, "scan.gif")) image0 = image_ops.decode_image(gif0, dtype=dtypes.float32) image1 = image_ops.convert_image_dtype(image_ops.decode_gif(gif0), dtypes.float32) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) def testBmpFloat32(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/bmp/testdata" bmp0 = io_ops.read_file(os.path.join(base, "lena.bmp")) image0 = image_ops.decode_image(bmp0, dtype=dtypes.float32) image1 = image_ops.convert_image_dtype(image_ops.decode_bmp(bmp0), dtypes.float32) image0, image1 = self.evaluate([image0, image1]) self.assertAllEqual(image0, image1) def testExpandAnimations(self): for horizon in self._FORWARD_COMPATIBILITY_HORIZONS: with compat.forward_compatibility_horizon(*horizon): with self.cached_session(): base = "tensorflow/core/lib/gif/testdata" gif0 = io_ops.read_file(os.path.join(base, "scan.gif")) # Test `expand_animations=False` case. image0 = image_ops.decode_image( gif0, dtype=dtypes.float32, expand_animations=False) # image_ops.decode_png() handles GIFs and returns 3D tensors animation = image_ops.decode_gif(gif0) first_frame = array_ops.gather(animation, 0) image1 = image_ops.convert_image_dtype(first_frame, dtypes.float32) image0, image1 = self.evaluate([image0, image1]) self.assertLen(image0.shape, 3) self.assertAllEqual(list(image0.shape), [40, 20, 3]) self.assertAllEqual(image0, image1) # Test `expand_animations=True` case. image2 = image_ops.decode_image(gif0, dtype=dtypes.float32) image3 = image_ops.convert_image_dtype(animation, dtypes.float32) image2, image3 = self.evaluate([image2, image3]) self.assertLen(image2.shape, 4) self.assertAllEqual(list(image2.shape), [12, 40, 20, 3]) self.assertAllEqual(image2, image3) def testImageCropAndResize(self): if test_util.is_gpu_available(): op = image_ops_impl.crop_and_resize_v2( image=array_ops.zeros((2, 1, 1, 1)), boxes=[[1.0e+40, 0, 0, 0]], box_indices=[1], crop_size=[1, 1]) self.evaluate(op) else: message = "Boxes contains at least one element that is not finite" with self.assertRaisesRegex((errors.InvalidArgumentError, ValueError), message): op = image_ops_impl.crop_and_resize_v2( image=array_ops.zeros((2, 1, 1, 1)), boxes=[[1.0e+40, 0, 0, 0]], box_indices=[1], crop_size=[1, 1]) self.evaluate(op) def testImageCropAndResizeWithInvalidInput(self): with self.session(): with self.assertRaises((errors.InvalidArgumentError, ValueError)): op = image_ops_impl.crop_and_resize_v2( image=np.ones((1, 1, 1, 1)), boxes=np.ones((11, 4)), box_indices=np.ones((11)), crop_size=[2065374891, 1145309325]) self.evaluate(op) @parameterized.named_parameters( ("_jpeg", "JPEG", "jpeg_merge_test1.jpg"), ("_png", "PNG", "lena_rgba.png"), ("_gif", "GIF", "scan.gif"), ) def testWrongOpBmp(self, img_format, filename): base_folder = "tensorflow/core/lib" base_path = os.path.join(base_folder, img_format.lower(), "testdata") err_msg = "Trying to decode " + img_format + " format using DecodeBmp op" with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): img_bytes = io_ops.read_file(os.path.join(base_path, filename)) img = image_ops.decode_bmp(img_bytes) self.evaluate(img) @parameterized.named_parameters( ("_jpeg", image_ops.decode_jpeg, "DecodeJpeg"), ("_png", image_ops.decode_png, "DecodePng"), ("_gif", image_ops.decode_gif, "DecodeGif"), ) def testWrongOp(self, decode_op, op_used): base = "tensorflow/core/lib/bmp/testdata" bmp0 = io_ops.read_file(os.path.join(base, "rgba_small.bmp")) err_msg = ("Trying to decode BMP format using a wrong op. Use `decode_bmp` " "or `decode_image` instead. Op used: ") + op_used with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): img = decode_op(bmp0) self.evaluate(img) @parameterized.named_parameters( ("_png", "PNG", "lena_rgba.png"), ("_gif", "GIF", "scan.gif"), ("_bmp", "BMP", "rgba_small.bmp"), ) def testWrongOpJpeg(self, img_format, filename): base_folder = "tensorflow/core/lib" base_path = os.path.join(base_folder, img_format.lower(), "testdata") err_msg = ("DecodeAndCropJpeg operation can run on JPEG only, but " "detected ") + img_format with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), err_msg): img_bytes = io_ops.read_file(os.path.join(base_path, filename)) img = image_ops.decode_and_crop_jpeg(img_bytes, [1, 1, 2, 2]) self.evaluate(img) def testGifFramesWithDiffSize(self): """Test decoding an animated GIF. This test verifies that `decode_image` op can decode animated GIFs whose first frame does not fill the canvas. The unoccupied areas should be filled with zeros (black). `squares.gif` is animated with two images of different sizes. It alternates between a smaller image of size 10 x 10 and a larger image of size 16 x 16. Because it starts animating with the smaller image, the first frame does not fill the canvas. (Canvas size is equal to max frame width x max frame height.) `red_black.gif` has just a single image in a GIF format. It is the same image as the smaller image (size 10 x 10) of the two images in `squares.gif`. The only difference is that its background (canvas - smaller image) is pre-filled with zeros (black); it is the groundtruth. """ base = "tensorflow/core/lib/gif/testdata" gif_bytes0 = io_ops.read_file(os.path.join(base, "squares.gif")) image0 = image_ops.decode_image(gif_bytes0, dtype=dtypes.float32, expand_animations=False) gif_bytes1 = io_ops.read_file(os.path.join(base, "red_black.gif")) image1 = image_ops.decode_image(gif_bytes1, dtype=dtypes.float32) image1_0 = array_ops.gather(image1, 0) image0, image1_0 = self.evaluate([image0, image1_0]) self.assertAllEqual(image0, image1_0) if __name__ == "__main__": googletest.main()
39.595242
80
0.633928
d66133add19e25fccf06a37c842504eabe306ff1
1,137
py
Python
sdk/python/pulumi_azure_native/securityandcompliance/v20210111/_enums.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_native/securityandcompliance/v20210111/_enums.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_native/securityandcompliance/v20210111/_enums.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'Kind', 'ManagedServiceIdentityType', 'PrivateEndpointServiceConnectionStatus', 'PublicNetworkAccess', ] class Kind(str, Enum): """ The kind of the service. """ FHIR = "fhir" FHIR_STU3 = "fhir-Stu3" FHIR_R4 = "fhir-R4" class ManagedServiceIdentityType(str, Enum): """ Type of identity being specified, currently SystemAssigned and None are allowed. """ SYSTEM_ASSIGNED = "SystemAssigned" NONE = "None" class PrivateEndpointServiceConnectionStatus(str, Enum): """ Indicates whether the connection has been Approved/Rejected/Removed by the owner of the service. """ PENDING = "Pending" APPROVED = "Approved" REJECTED = "Rejected" class PublicNetworkAccess(str, Enum): """ Control permission for data plane traffic coming from public networks while private endpoint is enabled. """ ENABLED = "Enabled" DISABLED = "Disabled"
24.191489
108
0.677221
91ea91af6f5b97d82d76bd72f14e8e047a93e113
9,429
py
Python
YorForger/modules/ImageEditor/edit_1.py
Voidxtoxic/kita
b2a3007349727280e149dcca017413d7dc2e7648
[ "MIT" ]
null
null
null
YorForger/modules/ImageEditor/edit_1.py
Voidxtoxic/kita
b2a3007349727280e149dcca017413d7dc2e7648
[ "MIT" ]
null
null
null
YorForger/modules/ImageEditor/edit_1.py
Voidxtoxic/kita
b2a3007349727280e149dcca017413d7dc2e7648
[ "MIT" ]
null
null
null
# By @TroJanzHEX import os import shutil import cv2 from PIL import Image, ImageEnhance, ImageFilter async def bright(client, message): try: userid = str(message.chat.id) if not os.path.isdir(f"./DOWNLOADS/{userid}"): os.makedirs(f"./DOWNLOADS/{userid}") download_location = "./DOWNLOADS" + "/" + userid + "/" + userid + ".jpg" edit_img_loc = "./DOWNLOADS" + "/" + userid + "/" + "brightness.jpg" if not message.reply_to_message.empty: msg = await message.reply_to_message.reply_text( "Downloading image", quote=True ) a = await client.download_media( message=message.reply_to_message, file_name=download_location ) await msg.edit("Processing Image...") image = Image.open(a) brightness = ImageEnhance.Brightness(image) brightness.enhance(1.5).save(edit_img_loc) await message.reply_chat_action("upload_photo") await message.reply_to_message.reply_photo(edit_img_loc, quote=True) await msg.delete() else: await message.reply_text("Why did you delete that??") try: shutil.rmtree(f"./DOWNLOADS/{userid}") except Exception: pass except Exception as e: print("bright-error - " + str(e)) if "USER_IS_BLOCKED" in str(e): return else: try: await message.reply_to_message.reply_text( "Something went wrong!", quote=True ) except Exception: return async def mix(client, message): try: userid = str(message.chat.id) if not os.path.isdir(f"./DOWNLOADS/{userid}"): os.makedirs(f"./DOWNLOADS/{userid}") download_location = "./DOWNLOADS" + "/" + userid + "/" + userid + ".jpg" edit_img_loc = "./DOWNLOADS" + "/" + userid + "/" + "mix.jpg" if not message.reply_to_message.empty: msg = await message.reply_to_message.reply_text( "Downloading image", quote=True ) a = await client.download_media( message=message.reply_to_message, file_name=download_location ) await msg.edit("Processing Image...") image = Image.open(a) red, green, blue = image.split() new_image = Image.merge("RGB", (green, red, blue)) new_image.save(edit_img_loc) await message.reply_chat_action("upload_photo") await message.reply_to_message.reply_photo(edit_img_loc, quote=True) await msg.delete() else: await message.reply_text("Why did you delete that??") try: shutil.rmtree(f"./DOWNLOADS/{userid}") except Exception: pass except Exception as e: print("mix-error - " + str(e)) if "USER_IS_BLOCKED" in str(e): return else: try: await message.reply_to_message.reply_text( "Something went wrong!", quote=True ) except Exception: return async def black_white(client, message): try: userid = str(message.chat.id) if not os.path.isdir(f"./DOWNLOADS/{userid}"): os.makedirs(f"./DOWNLOADS/{userid}") download_location = "./DOWNLOADS" + "/" + userid + "/" + userid + ".jpg" edit_img_loc = "./DOWNLOADS" + "/" + userid + "/" + "black_white.jpg" if not message.reply_to_message.empty: msg = await message.reply_to_message.reply_text( "Downloading image", quote=True ) a = await client.download_media( message=message.reply_to_message, file_name=download_location ) await msg.edit("Processing Image...") image_file = cv2.imread(a) grayImage = cv2.cvtColor(image_file, cv2.COLOR_BGR2GRAY) cv2.imwrite(edit_img_loc, grayImage) await message.reply_chat_action("upload_photo") await message.reply_to_message.reply_photo(edit_img_loc, quote=True) await msg.delete() else: await message.reply_text("Why did you delete that??") try: shutil.rmtree(f"./DOWNLOADS/{userid}") except Exception: pass except Exception as e: print("black_white-error - " + str(e)) if "USER_IS_BLOCKED" in str(e): return else: try: await message.reply_to_message.reply_text( "Something went wrong!", quote=True ) except Exception: return async def normal_blur(client, message): try: userid = str(message.chat.id) if not os.path.isdir(f"./DOWNLOADS/{userid}"): os.makedirs(f"./DOWNLOADS/{userid}") download_location = "./DOWNLOADS" + "/" + userid + "/" + userid + ".jpg" edit_img_loc = "./DOWNLOADS" + "/" + userid + "/" + "BlurImage.jpg" if not message.reply_to_message.empty: msg = await message.reply_to_message.reply_text( "Downloading image", quote=True ) a = await client.download_media( message=message.reply_to_message, file_name=download_location ) await msg.edit("Processing Image...") OriImage = Image.open(a) blurImage = OriImage.filter(ImageFilter.BLUR) blurImage.save(edit_img_loc) await message.reply_chat_action("upload_photo") await message.reply_to_message.reply_photo(edit_img_loc, quote=True) await msg.delete() else: await message.reply_text("Why did you delete that??") try: shutil.rmtree(f"./DOWNLOADS/{userid}") except Exception: pass except Exception as e: print("normal_blur-error - " + str(e)) if "USER_IS_BLOCKED" in str(e): return else: try: await message.reply_to_message.reply_text( "Something went wrong!", quote=True ) except Exception: return async def g_blur(client, message): try: userid = str(message.chat.id) if not os.path.isdir(f"./DOWNLOADS/{userid}"): os.makedirs(f"./DOWNLOADS/{userid}") download_location = "./DOWNLOADS" + "/" + userid + "/" + userid + ".jpg" edit_img_loc = "./DOWNLOADS" + "/" + userid + "/" + "gaussian_blur.jpg" if not message.reply_to_message.empty: msg = await message.reply_to_message.reply_text( "Downloading image", quote=True ) a = await client.download_media( message=message.reply_to_message, file_name=download_location ) await msg.edit("Processing Image...") im1 = Image.open(a) im2 = im1.filter(ImageFilter.GaussianBlur(radius=5)) im2.save(edit_img_loc) await message.reply_chat_action("upload_photo") await message.reply_to_message.reply_photo(edit_img_loc, quote=True) await msg.delete() else: await message.reply_text("Why did you delete that??") try: shutil.rmtree(f"./DOWNLOADS/{userid}") except Exception: pass except Exception as e: print("g_blur-error - " + str(e)) if "USER_IS_BLOCKED" in str(e): return else: try: await message.reply_to_message.reply_text( "Something went wrong!", quote=True ) except Exception: return async def box_blur(client, message): try: userid = str(message.chat.id) if not os.path.isdir(f"./DOWNLOADS/{userid}"): os.makedirs(f"./DOWNLOADS/{userid}") download_location = "./DOWNLOADS" + "/" + userid + "/" + userid + ".jpg" edit_img_loc = "./DOWNLOADS" + "/" + userid + "/" + "box_blur.jpg" if not message.reply_to_message.empty: msg = await message.reply_to_message.reply_text( "Downloading image", quote=True ) a = await client.download_media( message=message.reply_to_message, file_name=download_location ) await msg.edit("Processing Image...") im1 = Image.open(a) im2 = im1.filter(ImageFilter.BoxBlur(0)) im2.save(edit_img_loc) await message.reply_chat_action("upload_photo") await message.reply_to_message.reply_photo(edit_img_loc, quote=True) await msg.delete() else: await message.reply_text("Why did you delete that??") try: shutil.rmtree(f"./DOWNLOADS/{userid}") except Exception: pass except Exception as e: print("box_blur-error - " + str(e)) if "USER_IS_BLOCKED" in str(e): return else: try: await message.reply_to_message.reply_text( "Something went wrong!", quote=True ) except Exception: return
38.020161
80
0.552232
4b9b9a944dd1cd337f0f278193c970003ac2818b
5,594
py
Python
juneberry/plotting.py
sei-nmvanhoudnos/Juneberry
a4824bc74180134a9ef5326addbc83110177102c
[ "MIT" ]
null
null
null
juneberry/plotting.py
sei-nmvanhoudnos/Juneberry
a4824bc74180134a9ef5326addbc83110177102c
[ "MIT" ]
null
null
null
juneberry/plotting.py
sei-nmvanhoudnos/Juneberry
a4824bc74180134a9ef5326addbc83110177102c
[ "MIT" ]
null
null
null
#! /usr/bin/env python """ A set of plotting utilities. """ # ========================================================================================================================================================== # Copyright 2021 Carnegie Mellon University. # # NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" # BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER # INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED # FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM # FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. Released under a BSD (SEI)-style license, please see license.txt # or contact permission@sei.cmu.edu for full terms. # # [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see # Copyright notice for non-US Government use and distribution. # # This Software includes and/or makes use of the following Third-Party Software subject to its own license: # 1. Pytorch (https://github.com/pytorch/pytorch/blob/master/LICENSE) Copyright 2016 facebook, inc.. # 2. NumPY (https://github.com/numpy/numpy/blob/master/LICENSE.txt) Copyright 2020 Numpy developers. # 3. Matplotlib (https://matplotlib.org/3.1.1/users/license.html) Copyright 2013 Matplotlib Development Team. # 4. pillow (https://github.com/python-pillow/Pillow/blob/master/LICENSE) Copyright 2020 Alex Clark and contributors. # 5. SKlearn (https://github.com/scikit-learn/sklearn-docbuilder/blob/master/LICENSE) Copyright 2013 scikit-learn # developers. # 6. torchsummary (https://github.com/TylerYep/torch-summary/blob/master/LICENSE) Copyright 2020 Tyler Yep. # 7. adversarial robust toolbox (https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/LICENSE) # Copyright 2018 the adversarial robustness toolbox authors. # 8. pytest (https://docs.pytest.org/en/stable/license.html) Copyright 2020 Holger Krekel and others. # 9. pylint (https://github.com/PyCQA/pylint/blob/master/COPYING) Copyright 1991 Free Software Foundation, Inc.. # 10. python (https://docs.python.org/3/license.html#psf-license) Copyright 2001 python software foundation. # # DM20-1149 # # ========================================================================================================================================================== import json import matplotlib.pyplot as plt def plot_means_stds_layers(title, means, stds, output_filename) -> None: """ Generates a png plot to the specified file name that contains the means as a line and the standard deviations as error bars. :param title: The title for the plot. :param means: The means to plot. :param stds: The standard deviations. :param output_filename: The file in which to place the output. """ plot_values_errors(title, means, stds, "Layers", "Means", output_filename) def plot_values_errors(title, values, errors, x_label, y_label, output_name) -> None: """ Generates a plot to the specified file name that contains the values as a line and the error values as error bars. :param title: The title for the plot. :param values: The means to plot. :param errors: The standard deviations. :param x_label: Label for the x-axis :param y_label: Label for the y-axis :param output_name: The file in which to place the output. """ layers = list(range(len(values))) plt.plot(layers, values, linestyle='-', marker='o') plt.errorbar(layers, values, errors, fmt='ok', lw=3) plt.title(f"{y_label} across {x_label} of {title}") plt.xlabel(x_label) plt.ylabel(y_label) plt.savefig(output_name) plt.close() def plot_training_summary_chart(model_manager) -> None: """ Plots the accuracies and losses from the training output into an image. :param model_manager: Model manager object that determines which model to process. """ with open(model_manager.get_training_out_file()) as json_file: data = json.load(json_file) results = data['trainingResults'] epochs = range(1, len(results['accuracy']) + 1) fig, ax1 = plt.subplots() plt.ylim(0.0, 1.0) ax1.set_xlabel('Epoch') # ================= Accuracy color = 'tab:red' ax1.set_ylabel('Accuracy', color=color) ax1.plot(epochs, results['accuracy'], linestyle='-', marker='', color=color, label="Accuracy") ax1.plot(epochs, results['valAccuracy'], linestyle='--', marker='', color=color, label="Validation Accuracy") ax1.tick_params(axis='y', labelcolor=color) ax1.legend(loc="upper center", bbox_to_anchor=(0.5, -0.15), ncol=2) # ================= Loss ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis color = 'tab:blue' ax2.set_ylabel('Loss', color=color) ax2.plot(epochs, results['loss'], linestyle='-', marker='', color=color, label="Loss", ) ax2.plot(epochs, results['valLoss'], linestyle='--', marker='', color=color, label="Validation Loss") ax2.tick_params(axis='y', labelcolor=color) ax2.legend(loc="upper center", bbox_to_anchor=(0.5, -0.25), ncol=2) # ================= General plt.title(f'Training results: {model_manager.model_name}') # otherwise the right y-label is slightly clipped fig.tight_layout() # Save to disk plt.savefig(model_manager.get_training_summary_plot())
47.008403
156
0.674115
67a54b7df56925dc131a5c214924fa2f5900846f
947
py
Python
openauth/migrations/0001_initial.py
daimon99/django-openauth
8b28fd70eb4a15190606894e8c2f2167ffdddb69
[ "Apache-2.0" ]
null
null
null
openauth/migrations/0001_initial.py
daimon99/django-openauth
8b28fd70eb4a15190606894e8c2f2167ffdddb69
[ "Apache-2.0" ]
null
null
null
openauth/migrations/0001_initial.py
daimon99/django-openauth
8b28fd70eb4a15190606894e8c2f2167ffdddb69
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.6 on 2019-11-29 04:41 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Account', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('provider', models.CharField(max_length=128)), ('uid', models.CharField(max_length=256)), ('extra', models.TextField(blank=True, null=True)), ('created', models.DateTimeField()), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), ]
32.655172
142
0.620908
dd9f35cd22ee07b7b54d1b7c11f629c1c8402d61
430
py
Python
opening pic.py
OSAMAMOHAMED1234/python_projects
fb4bc7356847c3f46df690a9386cf970377a6f7c
[ "MIT" ]
null
null
null
opening pic.py
OSAMAMOHAMED1234/python_projects
fb4bc7356847c3f46df690a9386cf970377a6f7c
[ "MIT" ]
null
null
null
opening pic.py
OSAMAMOHAMED1234/python_projects
fb4bc7356847c3f46df690a9386cf970377a6f7c
[ "MIT" ]
null
null
null
import os from PIL import Image img = Image.open(os.path.join(os.path.dirname(__file__), '1.png')).show() os.startfile(os.path.join(os.path.dirname(__file__), '1.png')) img = Image.open(os.path.join(os.path.dirname(__file__), '1.png')).convert('L') img.show() img.save('2.jpg') img = Image.open(os.path.join(os.path.dirname(__file__), '1.png'))#.convert('L') new_img = img.resize((256,256)) new_img.save('2-256x256.png', 'png')
33.076923
80
0.693023
3e9929e3129addcfbcaefd34517b8aee3bd0c1dd
4,531
py
Python
input/test_beam_g10_l200.py
jsdomine/cosyr
a612b2a642c9e288975efbfdab5f1a26f2aaeeeb
[ "BSD-3-Clause" ]
null
null
null
input/test_beam_g10_l200.py
jsdomine/cosyr
a612b2a642c9e288975efbfdab5f1a26f2aaeeeb
[ "BSD-3-Clause" ]
null
null
null
input/test_beam_g10_l200.py
jsdomine/cosyr
a612b2a642c9e288975efbfdab5f1a26f2aaeeeb
[ "BSD-3-Clause" ]
null
null
null
# ----------------------------------------- # - Input deck for realistic beam size - # ----------------------------------------- import numpy as np from input.utils import * from input.misc import * ####################### Preprocessing ########################## run_name = "test_beam_g10_l200" ## electron and trajectory gamma=10 lbeam = 200 #3000 # beam length, in um dbeam = 200 #50 # beam radius, in um psi_max = 0.1 #0.42 # max retarded ## common mesh box_beam_ratio = 2.0 # mesh size / beam size scaled_alpha = lbeam*1e-6*gamma**3.0 * box_beam_ratio # scaled alpha range of mesh scaled_chi = dbeam*1e-6*gamma**2.0 * box_beam_ratio # scaled chi range of mesh if (mpi_rank==0) : print("scaled_alpha={}, scaled_chi={}".format(scaled_alpha, scaled_chi)) npt_alpha = 401 #1001 # number of mesh points along alpha npt_chi = 401 #101 # number of mesh points along chi if (mpi_rank==0) : print("npt_alpha={}, npt_chi={}".format(npt_alpha, npt_chi)) ####################### Main setup ########################## ## wavelet emission num_wavefronts = 400 # number of wavefronts num_dirs = 400 # number of field lines num_step = num_wavefronts # number of steps (currently always equal to num_wavefronts) dt = psi_max/num_wavefronts # time step in electron rest frame emission_interval = num_step-1 # only emit wavefronts at simulation end (test purpose) ## remap remap_interval = num_step-1 # interval of doing remapping (in time steps) remap_scatter = False # use scatter weights form for remap remap_adaptive = False # use adaptive smoothing length for remap remap_scaling[0] = 1.0 # support/smoothing length scaling factor remap_scaling[1] = 1.0 # support/smoothing length scaling factor remap_verbose = False # print remap statistics # electron beam beam_charge = 0.01 # nC num_particles = 1*5 # number of particles trajectory_type = 2 # 1: straight line, 2: circular, 3: sinusoidal parameters[0] = gamma # central energy for all types parameters[1] = 100.0 # propagation angle for type 1, radius (cm) for type 2, frequency for type 3 beam = init_beam(num_particles, gamma, lbeam, dbeam, mpi_rank) #beam = generate_microbunches(overall_beam_env='gaussian', _npart=num_particles, # _nbunches=1, _sgmx_sub_div=6.0, _lbeam=lbeam, _dbeam=dbeam, _mpi_rank=mpi_rank) # del beam # init a single particle instead ## comoving mesh num_gridpt_hor = npt_alpha # number of points in x-axis num_gridpt_ver = npt_chi # number of points in y-axis mesh_span_angle = scaled_alpha/gamma**3 # in radians mesh_width = scaled_chi/gamma**2 # in unit of radius # load wavelets cosyr_root = '..' path2subcycling = cosyr_root + "/input/wavelets/g10-200x200um-sub" wavelet_x, wavelet_y, wavelet_field = load_wavelets(path2subcycling, fld_file="EsRad_sub.csv", unscale_coord=True, _gamma = gamma) if (mpi_rank==0) : print("wavelet shape =", wavelet_x.shape, wavelet_y.shape, wavelet_field.shape) print("wavelet field 0 min/max =", wavelet_field.min(), wavelet_field.max()) num_wavelet_fields = 1 min_emit_angle = 0.0 # 0: use global (x,y) coordinate; # 1: use local (x',y') coordinate; # 2: (TODO) use local cylindrical coordinate wavelet_type = 1 if (wavelet_type == 0): rotation_angle = 0.1 wavelet_x, wavelet_y = convert2global(wavelet_x, wavelet_y, rotation_angle) # True: loaded wavelets will be repeatedly emitted at each step and copied into internal wavelets array, # otherwise only used when interpolation is done and not copied into internal wavelets array use_wavelet_for_subcycle = True num_wavelet_fields = 1 ####################### Diagnostics ########################## print_interval = 100 # interval for printing simulation steps beam_output_interval = num_step - 1 mesh_output_interval = num_step - 1 wavelet_output_interval = num_step - 1 beam_output = True if (mpi_rank==0): make_output_dirs(run_name+"/beam", num_step, beam_output_start, beam_output_interval) mesh_output = True make_output_dirs(run_name+"/mesh", num_step, mesh_output_start, mesh_output_interval) wavelet_output = True make_output_dirs(run_name+"/wavelet", num_step, wavelet_output_start, wavelet_output_interval) make_output_dirs(run_name+"/traj", num_step, wavelet_output_start, wavelet_output_interval)
43.990291
130
0.672258
e993a485c52dcd593de79eea8bf4e1f61babf585
17,613
py
Python
train.py
NiklasMWeber/CreditCycleForecasting
d50c799a33425a38853d36d61b3f6c3cd0a967d3
[ "Apache-2.0" ]
null
null
null
train.py
NiklasMWeber/CreditCycleForecasting
d50c799a33425a38853d36d61b3f6c3cd0a967d3
[ "Apache-2.0" ]
null
null
null
train.py
NiklasMWeber/CreditCycleForecasting
d50c799a33425a38853d36d61b3f6c3cd0a967d3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jan 4 00:03:12 2022 @author: nikth """ import numpy as np import math import iisignature as ii from sklearn.linear_model import Ridge, RidgeCV from sklearn.preprocessing import StandardScaler, MaxAbsScaler from sklearn.model_selection import KFold import matplotlib.pyplot as plt def get_sigX(X,m): if m == 0: return np.full((np.shape(X)[0], 1), 1) else: d = X.shape[2] sigX = np.zeros((np.shape(X)[0], ii.siglength(d, m) + 1)) sigX[:, 0] = 1 for i in range(np.shape(X)[0]): sigX[i, 1:] = ii.sig(X[i, :, :], m) return sigX def getKpen(X,Y,max_Kpen,rho = 0.25,alpha=None,normalizeFeatures = True, plotTrue = False ): ''' - Finds K_pen following Birge a d Massart, - alpha by Cross-validation during regression on order 1 Signature (--> For this reason it will be a good idea to normalize signature entries) - and returns the scaler to make it availbale for potential predicting. Parameters ---------- X : TYPE DESCRIPTION. Y : TYPE DESCRIPTION. max_Kpen : TYPE DESCRIPTION. rho : TYPE, optional DESCRIPTION. The default is 0.4. alpha : TYPE, optional DESCRIPTION. The default is None. normalizeFeatures : TYPE, optional DESCRIPTION. The default is True. plotTrue : TYPE, optional DESCRIPTION. The default is False. Returns ------- KpenVal : TYPE DESCRIPTION. alpha : TYPE DESCRIPTION. Scaler : StandardScaler Used to normalize data ''' dimPath = len(X[0][0]) nPaths = len(X) m_max = 1 while ii.siglength(dimPath, m_max+1) < nPaths: m_max += 1 if plotTrue == True: print('m_Max is '+ str(m_max)) Kpen = np.concatenate(( np.array([1e-6, 1e-5,1e-4,1e-3,1e-2,1e-1]) ,np.linspace(1,max_Kpen,max_Kpen))) penList = [] losses = [] scalers = [] scaler = None for m in range(1,m_max+1): sigX = get_sigX(X,m) if normalizeFeatures == True: scaler = StandardScaler() scaler.fit(sigX) scalers.append(scaler) sigX = scaler.transform(sigX) if alpha is None: #set alpha by cross-validation in the first iteration of loop alphas=np.linspace(10 ** (-6), 100, num=1000) reg_cv = RidgeCV(alphas=alphas, store_cv_values=True, fit_intercept=False, gcv_mode='svd') reg_cv.fit(sigX, Y) alpha = reg_cv.alpha_ reg = Ridge(alpha = alpha, fit_intercept=False) reg.fit(sigX,Y) predict_train = reg.predict(sigX) pen = Kpen.reshape((1,len(Kpen)))/(nPaths**rho)*math.sqrt(ii.siglength(dimPath,m)) penList.append(pen) #squareLoss = sum((Y_test-predict_test)**2) squareLoss = sum((Y-predict_train)**2)/len(Y) losses.append(squareLoss) # The following part tries to find the first bigger jump (Birge, Massart) LossKpenMatrix = np.array(losses).reshape((len(losses),1))+np.array(penList).reshape((len(losses),len(Kpen))) mHat = np.argmin(LossKpenMatrix, axis=0)+1 if plotTrue == True: plt.figure() plt.plot(np.linspace(1,len(Kpen), num = len(Kpen)),mHat) jumps = -mHat[1:] + mHat[:-1] quantile = np.quantile(jumps, 0.25) tmp = np.where(jumps>=max(1,quantile)) try: #tmp2 = tmp[0] KpenVal = 2*(Kpen[min(tmp[0])+1]) except: KpenVal = 2*Kpen[0] print("Warning: No jumps for Kpen extraction found") return KpenVal def getmHat(X,Y, Kpen,rho = 0.25,m_max = None,alpha=None,normalizeFeatures = True, plotTrue = False, mHatInput= None ): mHat = 1 dimPath = len(X[0][0]) nPaths = len(X) if m_max == None: m_max = 1 while ii.siglength(dimPath, m_max+1) < nPaths*10: m_max += 1 if plotTrue == True: print('m_max is '+ str(m_max)) losses = [] penalizedLosses = [] scalers = [] regs = [] scaler = None for m in range(1,m_max+1): sigX = get_sigX(X,m) if normalizeFeatures == True: scaler = StandardScaler() scaler.fit(sigX) scalers.append(scaler) sigX = scaler.transform(sigX) if alpha is None: #select alpha by cross-validation in the first iteration of loop alphas=np.linspace(10 ** (-6), 100, num=1000) reg_cv = RidgeCV(alphas=alphas, store_cv_values=True, fit_intercept=False, gcv_mode='svd') reg_cv.fit(sigX, Y) alpha = reg_cv.alpha_ reg = Ridge(alpha = alpha, fit_intercept=False) reg.fit(sigX,Y) predict_train = reg.predict(sigX) regs.append(reg) pen = Kpen/(nPaths**rho)*math.sqrt(ii.siglength(dimPath,m)) #squareLoss = sum((Y_test-predict_test)**2) squareLoss = sum((Y-predict_train)**2)/len(Y) losses.append(squareLoss) penalizedLosses.append(squareLoss + pen) mHat = np.argmin(penalizedLosses) +1 if plotTrue: base = np.linspace(1,m_max,num = m_max) plt.figure() plt.plot(base,penalizedLosses) if mHatInput == None: return mHat, regs[mHat-1], scalers[mHat-1] else: mHatInput = min(mHatInput,m_max) return mHatInput, regs[mHatInput-1], scalers[mHatInput-1] def select_hatm_cv(X, Y, max_k=None, scaling=False, plot=False): """Select the optimal value of hatm for the signature linear model implemented in the class SignatureRegression by cross validation. Parameters ---------- X: array, shape (n,n_points,d) Array of training paths. It is a 3-dimensional array, containing the coordinates in R^d of n piecewise linear paths, each composed of n_points. Y: array, shape (n) Array of target values. max_k: int, Maximal value of signature truncation to keep the number of features below max_features. scaling: boolean, default=False Whether to scale the predictor matrix to have zero mean and unit variance plot: boolean, default=False If true, plot the cross validation loss as a function of the truncation order. Returns ------- hatm: int Optimal value of hatm. """ d = X.shape[2] max_features = 10 ** 4 if max_k is None: max_k = math.floor((math.log(max_features * (d - 1) + 1) / math.log(d)) - 1) score = [] sigXmax = get_sigX(X,max_k) for k in range(max_k+1): if k == 0: siglength = 0 #this is length without level 0 one! else: siglength = ii.siglength(d,k) sigX = sigXmax[:,0:siglength+1] kf = KFold(n_splits=5) score_i = [] for train, test in kf.split(X): reg = SignatureRegressionNik(k, normalizeFeatures=scaling) reg.fit_fromSig(sigX[train], Y[train]) score_i += [reg.get_loss_fromSig(sigX[test], Y[test])] score += [np.mean(score_i)] if plot: plt.plot(np.arange(max_k+1), score) plt.show() return np.argmin(score) # class SignatureRegression(): # """ Signature regression class # Parameters # ---------- # m: int # Truncation order of the signature # scaling: boolean, default=True # Whether to scale the predictor matrix to have zero mean and unit variance # alpha: float, default=None # Regularization parameter in the Ridge regression # Attributes # ---------- # reg: object # Instance of sklearn.linear_model.Ridge # scaler: object # Instance of sklearn.preprocessing.StandardScaler # """ # def __init__(self, m, scaling=False, alpha=None): # self.scaling = scaling # self.reg = Ridge(normalize=False, fit_intercept=False, solver='svd') # self.m = m # self.alpha = alpha # if self.scaling: # self.scaler = StandardScaler() # def fit(self, X, Y, alphas=np.linspace(10 ** (-6), 100, num=1000)): # """Fit a signature ridge regression. # Parameters # ---------- # X: array, shape (n,n_points,d) # Array of training paths. It is a 3-dimensional array, containing the coordinates in R^d of n piecewise # linear paths, each composed of n_points. # Y: array, shape (n) # Array of target values. # alphas: array, default=np.linspace(10 ** (-6), 100, num=1000) # Grid for the cross validation search of the regularization parameter in the Ridge regression. # Returns # ------- # reg: object # Instance of sklearn.linear_model.Ridge # """ # sigX = get_sigX(X, self.m) # if self.scaling: # self.scaler.fit(sigX) # sigX = self.scaler.transform(sigX) # if self.alpha is not None: # self.reg.alpha_ = self.alpha # else: # reg_cv = RidgeCV(alphas=alphas, store_cv_values=True, fit_intercept=False, gcv_mode='svd') # reg_cv.fit(sigX, Y) # self.alpha = reg_cv.alpha_ # self.reg.alpha_ = self.alpha # self.reg.fit(sigX, Y) # return self.reg # def predict(self, X): # """Outputs prediction of self.reg, already trained with signatures truncated at order m. # Parameters # ---------- # X: array, shape (n,n_points,d) # Array of training paths. It is a 3-dimensional array, containing the coordinates in R^d of n piecewise # linear paths, each composed of n_points. # Returns # ------- # Ypred: array, shape (n) # Array of predicted values. # """ # sigX = get_sigX(X, self.m) # if self.scaling: # sigX = self.scaler.transform(sigX) # Ypred = self.reg.predict(sigX) # return Ypred # def get_loss(self, X, Y, plot=False): # """Computes the empirical squared loss obtained with a Ridge regression on signatures truncated at m. # Parameters # ---------- # X: array, shape (n,n_points,d) # Array of training paths. It is a 3-dimensional array, containing the coordinates in R^d of n piecewise # linear paths, each composed of n_points. # Y: array, shape (n) # Array of target values. # plot: boolean, default=False # If True, plots the regression coefficients and a scatter plot of the target values Y against its predicted # values Ypred to assess the quality of the fit. # Returns # ------- # hatL: float # The squared loss, that is the sum of the squares of Y-Ypred, where Ypred are the fitted values of the Ridge # regression of Y against signatures of X truncated at m. # """ # Ypred = self.predict(X) # if plot: # plt.scatter(Y, Ypred) # plt.plot([0.9 * np.min(Y), 1.1 * np.max(Y)], [0.9 * np.min(Y), 1.1 * np.max(Y)], '--', color='black') # plt.title("Ypred against Y") # plt.show() # return np.mean((Y - Ypred) ** 2) # def score(self, X,Y): ##added by Nik # return 1-self.get_loss(X,Y)/ np.mean((Y-np.mean(Y))**2) class SignatureRegressionNik(): """ Signature regression class Parameters ---------- m: int Truncation order of the signature scaling: boolean, default=True Whether to scale the predictor matrix to have zero mean and unit variance alpha: float, default=None Regularization parameter in the Ridge regression Attributes ---------- reg: object Instance of sklearn.linear_model.Ridge scaler: object Instance of sklearn.preprocessing.StandardScaler """ def __init__(self, m, normalizeFeatures=False, alpha=None): self.normalizeFeatures = normalizeFeatures self.reg = Ridge(normalize=False, fit_intercept=False, solver='svd') self.m = m self.alpha = alpha if self.normalizeFeatures: self.scaler = StandardScaler() def fit(self, X, Y, alphas=np.linspace(10 ** (-6), 100, num=1000)): """Fit a signature ridge regression. Parameters ---------- X: array, shape (n,n_points,d) Array of training paths. It is a 3-dimensional array, containing the coordinates in R^d of n piecewise linear paths, each composed of n_points. Y: array, shape (n) Array of target values. alphas: array, default=np.linspace(10 ** (-6), 100, num=1000) Grid for the cross validation search of the regularization parameter in the Ridge regression. Returns ------- reg: object Instance of sklearn.linear_model.Ridge """ sigX = get_sigX(X,self.m) self.sigX = sigX if self.normalizeFeatures: self.scaler.fit(sigX) sigX = self.scaler.transform(sigX) if self.alpha is None: #select alpha by cross-validation alphas=np.linspace(10 ** (-6), 100, num=1000) self.reg_cv = RidgeCV(alphas=alphas, store_cv_values=True, fit_intercept=False, gcv_mode='svd') self.reg_cv.fit(sigX, Y) self.alpha = self.reg_cv.alpha_ self.reg = Ridge(alpha = self.alpha, fit_intercept=False) self.reg.fit(sigX,Y) return self.reg def predict(self, X): """Outputs prediction of self.reg, already trained with signatures truncated at order m. Parameters ---------- X: array, shape (n,n_points,d) Array of training paths. It is a 3-dimensional array, containing the coordinates in R^d of n piecewise linear paths, each composed of n_points. Returns ------- Ypred: array, shape (n) Array of predicted values. """ sigX = get_sigX(X, self.m) if self.normalizeFeatures: sigX = self.scaler.transform(sigX) Ypred = self.reg.predict(sigX) return Ypred def get_loss(self, X, Y, plot=False): """Computes the empirical squared loss obtained with a Ridge regression on signatures truncated at m. Parameters ---------- X: array, shape (n,n_points,d) Array of training paths. It is a 3-dimensional array, containing the coordinates in R^d of n piecewise linear paths, each composed of n_points. Y: array, shape (n) Array of target values. plot: boolean, default=False If True, plots the regression coefficients and a scatter plot of the target values Y against its predicted values Ypred to assess the quality of the fit. Returns ------- hatL: float The squared loss, that is the sum of the squares of Y-Ypred, where Ypred are the fitted values of the Ridge regression of Y against signatures of X truncated at m. """ Ypred = self.predict(X) if plot: plt.scatter(Y, Ypred) plt.plot([0.9 * np.min(Y), 1.1 * np.max(Y)], [0.9 * np.min(Y), 1.1 * np.max(Y)], '--', color='black') plt.title("Ypred against Y") plt.show() return np.mean((Y - Ypred) ** 2) def score(self, X,Y): return 1-self.get_loss(X,Y)/ np.mean((Y-np.mean(Y))**2) def fit_fromSig(self, sigX, Y, alphas=np.linspace(10 ** (-6), 100, num=1000)): if self.normalizeFeatures: self.scaler.fit(sigX) sigX = self.scaler.transform(sigX) if self.alpha is None: #select alpha by cross-validation self.reg_cv = RidgeCV(alphas=alphas, store_cv_values=True, fit_intercept=False, gcv_mode='svd') self.reg_cv.fit(sigX, Y) self.alpha = self.reg_cv.alpha_ self.reg = Ridge(alpha = self.alpha, fit_intercept=False) self.reg.fit(sigX,Y) return self.reg def predict_fromSig(self, sigX): if self.normalizeFeatures: sigX = self.scaler.transform(sigX) Ypred = self.reg.predict(sigX) return Ypred def get_loss_fromSig(self, sigX, Y, plot = False): Ypred = self.predict_fromSig(sigX) return np.mean((Y - Ypred) ** 2) def score_fromSig(self, sigX, Y): return 1-self.get_loss_fromSig(sigX,Y)/ np.mean((Y-np.mean(Y))**2) # if __name__ == '__main__': # import dataGeneration as dg # dimPath = 2 # nPaths = 10000 # mStar = 5 # G = dg.GeneratorFermanian1(dimPath,nPaths,mStar, num = 101) # G.generatePath() # G.generateResponse() # #X = np.array(G.X) # # add time: # X = np.array([np.concatenate((G.partition01.reshape(-1,1), x),axis = 1) for x in G.X]) # Y = G.Y # Kpen = getKpen(X,Y,max_Kpen = 2000,rho = 0.25,alpha = None,normalizeFeatures = True, plotTrue = True) # mHat, reg,_ = getmHat(X, Y, Kpen, rho = 0.25, alpha = None, m_max = None, normalizeFeatures=True, plotTrue = True) # print('Kpen: ', Kpen) # print('m_hat: ', mHat) # print('alpha: ', reg.alpha)
32.556377
121
0.577414
7ef210aa963e2352eb50840eb5084b34b9faf651
1,557
py
Python
aiida/work/__init__.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
aiida/work/__init__.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
aiida/work/__init__.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### from __future__ import division from __future__ import print_function from __future__ import absolute_import from plumpy import Bundle from plumpy import ProcessState from .exceptions import * from .exit_code import * from .futures import * from .launch import * from .job_processes import * from .persistence import * from .processes import * from .rmq import * from .runners import * from .utils import * from .workfunctions import * from .workchain import * from .manager import * _local = ('ProcessState',) __all__ = ( exceptions.__all__ + exit_code.__all__ + processes.__all__ + runners.__all__ + utils.__all__ + workchain.__all__ + launch.__all__ + workfunctions.__all__ + job_processes.__all__ + rmq.__all__ + futures.__all__ + persistence.__all__ + manager.__all__ + # TODO: To be moved later _local)
33.12766
75
0.558767
a9a9ad917539df994ea7eb20de5bbacf775446f2
2,317
py
Python
portia_server/portia_api/jsonapi/exceptions.py
hackrush01/portia
c7414034361fecada76e1693666674c274b0421a
[ "BSD-3-Clause" ]
6,390
2015-01-01T17:05:13.000Z
2022-03-31T08:20:12.000Z
portia_server/portia_api/jsonapi/exceptions.py
hackrush01/portia
c7414034361fecada76e1693666674c274b0421a
[ "BSD-3-Clause" ]
442
2015-01-04T17:32:20.000Z
2022-03-15T21:21:23.000Z
portia_server/portia_api/jsonapi/exceptions.py
hackrush01/portia
c7414034361fecada76e1693666674c274b0421a
[ "BSD-3-Clause" ]
1,288
2015-01-09T05:54:20.000Z
2022-03-31T03:21:51.000Z
from collections import OrderedDict from uuid import uuid4 from rest_framework.exceptions import APIException, ValidationError from rest_framework.status import (HTTP_400_BAD_REQUEST, HTTP_409_CONFLICT, HTTP_404_NOT_FOUND) from rest_framework.views import exception_handler from .utils import get_status_title class JsonApiValidationError(ValidationError): def __init__(self, detail): super(JsonApiValidationError, self).__init__({ 'errors': [OrderedDict([ ('status', self.status_code), ('title', get_status_title(self.status_code)), ('detail', error['detail']), ('source', error['source']), ]) for error in detail.get('errors', [])] }) def render_exception(status_code, detail): return { 'errors': [OrderedDict([ ('id', str(uuid4())), ('status', status_code), ('title', get_status_title(status_code)), ('detail', detail) ])] } class JsonApiBadRequestError(APIException): status_code = HTTP_400_BAD_REQUEST default_detail = (u"The server cannot process the request due to invalid " u"data.") class JsonApiNotFoundError(APIException): status_code = HTTP_404_NOT_FOUND default_detail = u"Could not find the resource specified" class JsonApiConflictError(APIException): status_code = HTTP_409_CONFLICT default_detail = u"The server cannot process the request due to a conflict." class JsonApiFeatureNotAvailableError(JsonApiBadRequestError): default_detail = u"This feature is not available for your project." class JsonApiGeneralException(APIException): def __init__(self, detail=None, status_code=None): assert status_code is not None self.status_code = status_code super(JsonApiGeneralException, self).__init__(detail) def jsonapi_exception_handler(exc, context): accepts = context['request'].accepted_media_type or '' if accepts.startswith('application/vnd.api+json'): try: exc.detail = render_exception(exc.status_code, exc.detail) except AttributeError: pass # Ignore django exceptions response = exception_handler(exc, context) return response
32.180556
80
0.676737
0078e1ebeb87acd6dd9d2161a2be8538ef77ad4d
14,659
py
Python
st2client/tests/unit/test_commands.py
meghasfdc/st2
7079635e94942e7b44ae74daa6a7378a00e518d9
[ "Apache-2.0" ]
1
2020-10-26T03:26:17.000Z
2020-10-26T03:26:17.000Z
st2client/tests/unit/test_commands.py
meghasfdc/st2
7079635e94942e7b44ae74daa6a7378a00e518d9
[ "Apache-2.0" ]
1
2022-03-31T03:53:22.000Z
2022-03-31T03:53:22.000Z
st2client/tests/unit/test_commands.py
meghasfdc/st2
7079635e94942e7b44ae74daa6a7378a00e518d9
[ "Apache-2.0" ]
1
2019-10-11T14:42:28.000Z
2019-10-11T14:42:28.000Z
# Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os import mock import json import logging import argparse import tempfile import unittest2 from collections import namedtuple from tests import base from tests.base import BaseCLITestCase from st2client.shell import Shell from st2client import models from st2client.utils import httpclient from st2client.commands import resource from st2client.commands.resource import ResourceViewCommand __all__ = [ 'TestResourceCommand', 'ResourceViewCommandTestCase' ] LOG = logging.getLogger(__name__) class TestResourceCommand(unittest2.TestCase): def __init__(self, *args, **kwargs): super(TestResourceCommand, self).__init__(*args, **kwargs) self.parser = argparse.ArgumentParser() self.subparsers = self.parser.add_subparsers() self.branch = resource.ResourceBranch( base.FakeResource, 'Test Command', base.FakeApp(), self.subparsers) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse(json.dumps(base.RESOURCES), 200, 'OK'))) def test_command_list(self): args = self.parser.parse_args(['fakeresource', 'list']) self.assertEqual(args.func, self.branch.commands['list'].run_and_print) instances = self.branch.commands['list'].run(args) actual = [instance.serialize() for instance in instances] expected = json.loads(json.dumps(base.RESOURCES)) self.assertListEqual(actual, expected) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse('', 500, 'INTERNAL SERVER ERROR'))) def test_command_list_failed(self): args = self.parser.parse_args(['fakeresource', 'list']) self.assertRaises(Exception, self.branch.commands['list'].run, args) @mock.patch.object( models.ResourceManager, 'get_by_name', mock.MagicMock(return_value=None)) @mock.patch.object( models.ResourceManager, 'get_by_id', mock.MagicMock(return_value=base.FakeResource(**base.RESOURCES[0]))) def test_command_get_by_id(self): args = self.parser.parse_args(['fakeresource', 'get', '123']) self.assertEqual(args.func, self.branch.commands['get'].run_and_print) instance = self.branch.commands['get'].run(args) actual = instance.serialize() expected = json.loads(json.dumps(base.RESOURCES[0])) self.assertEqual(actual, expected) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse(json.dumps(base.RESOURCES[0]), 200, 'OK'))) def test_command_get(self): args = self.parser.parse_args(['fakeresource', 'get', 'abc']) self.assertEqual(args.func, self.branch.commands['get'].run_and_print) instance = self.branch.commands['get'].run(args) actual = instance.serialize() expected = json.loads(json.dumps(base.RESOURCES[0])) self.assertEqual(actual, expected) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse('', 404, 'NOT FOUND'))) def test_command_get_404(self): args = self.parser.parse_args(['fakeresource', 'get', 'cba']) self.assertEqual(args.func, self.branch.commands['get'].run_and_print) self.assertRaises(resource.ResourceNotFoundError, self.branch.commands['get'].run, args) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse('', 500, 'INTERNAL SERVER ERROR'))) def test_command_get_failed(self): args = self.parser.parse_args(['fakeresource', 'get', 'cba']) self.assertRaises(Exception, self.branch.commands['get'].run, args) @mock.patch.object( httpclient.HTTPClient, 'post', mock.MagicMock(return_value=base.FakeResponse(json.dumps(base.RESOURCES[0]), 200, 'OK'))) def test_command_create(self): instance = base.FakeResource(name='abc') fd, path = tempfile.mkstemp(suffix='.json') try: with open(path, 'a') as f: f.write(json.dumps(instance.serialize(), indent=4)) args = self.parser.parse_args(['fakeresource', 'create', path]) self.assertEqual(args.func, self.branch.commands['create'].run_and_print) instance = self.branch.commands['create'].run(args) actual = instance.serialize() expected = json.loads(json.dumps(base.RESOURCES[0])) self.assertEqual(actual, expected) finally: os.close(fd) os.unlink(path) @mock.patch.object( httpclient.HTTPClient, 'post', mock.MagicMock(return_value=base.FakeResponse('', 500, 'INTERNAL SERVER ERROR'))) def test_command_create_failed(self): instance = base.FakeResource(name='abc') fd, path = tempfile.mkstemp(suffix='.json') try: with open(path, 'a') as f: f.write(json.dumps(instance.serialize(), indent=4)) args = self.parser.parse_args(['fakeresource', 'create', path]) self.assertRaises(Exception, self.branch.commands['create'].run, args) finally: os.close(fd) os.unlink(path) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse(json.dumps([base.RESOURCES[0]]), 200, 'OK', {}))) @mock.patch.object( httpclient.HTTPClient, 'put', mock.MagicMock(return_value=base.FakeResponse(json.dumps(base.RESOURCES[0]), 200, 'OK'))) def test_command_update(self): instance = base.FakeResource(id='123', name='abc') fd, path = tempfile.mkstemp(suffix='.json') try: with open(path, 'a') as f: f.write(json.dumps(instance.serialize(), indent=4)) args = self.parser.parse_args( ['fakeresource', 'update', '123', path]) self.assertEqual(args.func, self.branch.commands['update'].run_and_print) instance = self.branch.commands['update'].run(args) actual = instance.serialize() expected = json.loads(json.dumps(base.RESOURCES[0])) self.assertEqual(actual, expected) finally: os.close(fd) os.unlink(path) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse(json.dumps([base.RESOURCES[0]]), 200, 'OK'))) @mock.patch.object( httpclient.HTTPClient, 'put', mock.MagicMock(return_value=base.FakeResponse('', 500, 'INTERNAL SERVER ERROR'))) def test_command_update_failed(self): instance = base.FakeResource(id='123', name='abc') fd, path = tempfile.mkstemp(suffix='.json') try: with open(path, 'a') as f: f.write(json.dumps(instance.serialize(), indent=4)) args = self.parser.parse_args( ['fakeresource', 'update', '123', path]) self.assertRaises(Exception, self.branch.commands['update'].run, args) finally: os.close(fd) os.unlink(path) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse(json.dumps([base.RESOURCES[0]]), 200, 'OK'))) def test_command_update_id_mismatch(self): instance = base.FakeResource(id='789', name='abc') fd, path = tempfile.mkstemp(suffix='.json') try: with open(path, 'a') as f: f.write(json.dumps(instance.serialize(), indent=4)) args = self.parser.parse_args( ['fakeresource', 'update', '123', path]) self.assertRaises(Exception, self.branch.commands['update'].run, args) finally: os.close(fd) os.unlink(path) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse(json.dumps([base.RESOURCES[0]]), 200, 'OK', {}))) @mock.patch.object( httpclient.HTTPClient, 'delete', mock.MagicMock(return_value=base.FakeResponse('', 204, 'NO CONTENT'))) def test_command_delete(self): args = self.parser.parse_args(['fakeresource', 'delete', 'abc']) self.assertEqual(args.func, self.branch.commands['delete'].run_and_print) self.branch.commands['delete'].run(args) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse('', 404, 'NOT FOUND'))) def test_command_delete_404(self): args = self.parser.parse_args(['fakeresource', 'delete', 'cba']) self.assertEqual(args.func, self.branch.commands['delete'].run_and_print) self.assertRaises(resource.ResourceNotFoundError, self.branch.commands['delete'].run, args) @mock.patch.object( httpclient.HTTPClient, 'get', mock.MagicMock(return_value=base.FakeResponse(json.dumps([base.RESOURCES[0]]), 200, 'OK'))) @mock.patch.object( httpclient.HTTPClient, 'delete', mock.MagicMock(return_value=base.FakeResponse('', 500, 'INTERNAL SERVER ERROR'))) def test_command_delete_failed(self): args = self.parser.parse_args(['fakeresource', 'delete', 'cba']) self.assertRaises(Exception, self.branch.commands['delete'].run, args) class ResourceViewCommandTestCase(unittest2.TestCase): def setUp(self): ResourceViewCommand.display_attributes = [] def test_get_include_attributes(self): cls = namedtuple('Args', 'attr') args = cls(attr=[]) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(result, []) args = cls(attr=['result']) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(result, ['result']) args = cls(attr=['result', 'trigger_instance']) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(result, ['result', 'trigger_instance']) args = cls(attr=['result.stdout']) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(result, ['result.stdout']) args = cls(attr=['result.stdout', 'result.stderr']) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(result, ['result.stdout', 'result.stderr']) args = cls(attr=['result.stdout', 'trigger_instance.id']) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(result, ['result.stdout', 'trigger_instance.id']) ResourceViewCommand.display_attributes = ['id', 'status'] args = cls(attr=[]) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(set(result), set(['id', 'status'])) args = cls(attr=['trigger_instance']) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(set(result), set(['trigger_instance'])) args = cls(attr=['all']) result = ResourceViewCommand._get_include_attributes(args=args) self.assertEqual(result, None) class CommandsHelpStringTestCase(BaseCLITestCase): """ Test case which verifies that all the commands support -h / --help flag. """ capture_output = True # TODO: Automatically iterate all the available commands COMMANDS = [ # action ['action', 'list'], ['action', 'get'], ['action', 'create'], ['action', 'update'], ['action', 'delete'], ['action', 'enable'], ['action', 'disable'], ['action', 'execute'], # execution ['execution', 'cancel'], ['execution', 'pause'], ['execution', 'resume'], ['execution', 'tail'] ] def test_help_command_line_arg_works_for_supported_commands(self): shell = Shell() for command in self.COMMANDS: # First test longhang notation argv = command + ['--help'] try: result = shell.run(argv) except SystemExit as e: self.assertEqual(e.code, 0) else: self.assertEqual(result, 0) stdout = self.stdout.getvalue() self.assertTrue('usage:' in stdout) self.assertTrue(' '.join(command) in stdout) # self.assertTrue('positional arguments:' in stdout) self.assertTrue('optional arguments:' in stdout) # Reset stdout and stderr after each iteration self._reset_output_streams() # Then shorthand notation argv = command + ['-h'] try: result = shell.run(argv) except SystemExit as e: self.assertEqual(e.code, 0) else: self.assertEqual(result, 0) stdout = self.stdout.getvalue() self.assertTrue('usage:' in stdout) self.assertTrue(' '.join(command) in stdout) # self.assertTrue('positional arguments:' in stdout) self.assertTrue('optional arguments:' in stdout) # Verify that the actual help usage string was triggered and not the invalid # "too few arguments" which would indicate command doesn't actually correctly handle # --help flag self.assertTrue('too few arguments' not in stdout) self._reset_output_streams()
39.834239
99
0.617232
45e040cc9ef66ee7c20ad2ce3775a8974be55d4e
4,929
py
Python
unit_tests/view_modify_land_charge/test_update_location_confirmation.py
LandRegistry/maintain-frontend
d92446a9972ebbcd9a43a7a7444a528aa2f30bf7
[ "MIT" ]
1
2019-10-03T13:58:29.000Z
2019-10-03T13:58:29.000Z
unit_tests/view_modify_land_charge/test_update_location_confirmation.py
LandRegistry/maintain-frontend
d92446a9972ebbcd9a43a7a7444a528aa2f30bf7
[ "MIT" ]
null
null
null
unit_tests/view_modify_land_charge/test_update_location_confirmation.py
LandRegistry/maintain-frontend
d92446a9972ebbcd9a43a7a7444a528aa2f30bf7
[ "MIT" ]
1
2021-04-11T05:24:57.000Z
2021-04-11T05:24:57.000Z
from maintain_frontend import main from flask_testing import TestCase from flask import url_for from unit_tests.utilities import Utilities from unittest.mock import patch from maintain_frontend.dependencies.session_api.session import Session from maintain_frontend.models import LocalLandChargeItem from maintain_frontend.constants.permissions import Permissions class TestUpdateLocationConfirmation(TestCase): def create_app(self): Utilities.mock_session_cookie_flask_test(self) return main.app def test_get_without_geom(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.permissions = [Permissions.vary_llc] state = LocalLandChargeItem() state.local_land_charge = 9372254 state.geometry = None self.mock_session.return_value.add_charge_state = state response = self.client.get(url_for('modify_land_charge.get_update_location_confirmation')) self.assert_status(response, 302) self.assertRedirects(response, '/error') def test_get_without_state(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.permissions = [Permissions.vary_llc] self.mock_session.return_value.add_charge_state = None response = self.client.get(url_for('modify_land_charge.get_update_location_confirmation')) self.assert_status(response, 302) self.assertRedirects(response, '/error') def test_get_with_state(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.permissions = [Permissions.vary_llc] state = LocalLandChargeItem() state.local_land_charge = 9372254 state.geometry = 'abc' self.mock_session.return_value.add_charge_state = state response = self.client.get(url_for('modify_land_charge.get_update_location_confirmation')) self.assert_status(response, 200) self.assert_template_used('update_location_confirmation.html') def test_post_without_geom(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.permissions = [Permissions.vary_llc] state = LocalLandChargeItem() state.local_land_charge = 9372254 state.geometry = None self.mock_session.return_value.add_charge_state = state response = self.client.post(url_for('modify_land_charge.post_update_location_confirmation')) self.assert_status(response, 302) self.assertRedirects(response, '/error') def test_post_without_state(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.permissions = [Permissions.vary_llc] self.mock_session.return_value.add_charge_state = None response = self.client.post(url_for('modify_land_charge.post_update_location_confirmation')) self.assert_status(response, 302) self.assertRedirects(response, '/error') @patch('maintain_frontend.view_modify_land_charge.update_location_confirmation.LocationConfirmationValidator') def test_location_post_validation_errors(self, mock_location_validator): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.permissions = [Permissions.vary_llc] state = LocalLandChargeItem() state.geometry = "abc" state.local_land_charge = 9372254 self.mock_session.return_value.add_charge_state = state validation_errors = {'map': 'test error message'} mock_location_validator.validate.return_value.errors = validation_errors response = self.client.post(url_for('modify_land_charge.post_update_location_confirmation')) self.assert_status(response, 400) self.assert_template_used('update_location_confirmation.html') def test_post_success(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.permissions = [Permissions.vary_llc] self.mock_session.return_value.user.roles = ['LLC LR Admins'] state = LocalLandChargeItem() state.geometry = "abc" state.local_land_charge = 399664232600384 self.mock_session.return_value.add_charge_state = state form_data = {'location-confirmation': True} response = self.client.post(url_for('modify_land_charge.post_update_location_confirmation'), data=form_data) self.assert_status(response, 302) self.assertRedirects(response, url_for('modify_land_charge.modify_land_charge', local_land_charge='LLC-H3LL0W0RLD'))
46.942857
116
0.742138
77ed7dff8ca7b2f7228852e78ce17954a9a33285
5,394
py
Python
vkbottle/bot/events/processor.py
croogg/vkbottle
7355c2ef89d302410c8e05be162ba71e5f040990
[ "MIT" ]
null
null
null
vkbottle/bot/events/processor.py
croogg/vkbottle
7355c2ef89d302410c8e05be162ba71e5f040990
[ "MIT" ]
null
null
null
vkbottle/bot/events/processor.py
croogg/vkbottle
7355c2ef89d302410c8e05be162ba71e5f040990
[ "MIT" ]
2
2020-05-10T11:48:25.000Z
2021-12-02T09:22:54.000Z
""" MIT License Copyright (c) 2019 Arseniy Timonik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ...vktypes.longpoll import EventTypes from ...methods import Api from ..events import Events from ...utils import Logger, sorted_dict_keys import time from ...vktypes import types from ...project_collections import colored class UpdatesProcessor(object): """ Processor of VK API LongPoll events """ on: Events logger: Logger api: Api a: float async def new_update(self, event: dict): """ Process VK Event Object :param event: VK Server Event object """ for update in event['updates']: obj = update['object'] if update['type'] == EventTypes.MESSAGE_NEW: if obj['peer_id'] < 2e9: await self.new_message(obj) else: await self.new_chat_message(obj) else: # If this is an event of the group print('receive event') pass await self.logger('Timing:', round(time.time() - self.a, 5)) async def new_message(self, obj: dict): """ Private message processor. Using regex to process regular expressions in messages :param obj: VK API Event Object """ await self.logger( colored( '-> MESSAGE FROM {} TEXT "{}" TIME #'.format( obj['peer_id'], obj['text'].replace('\n', ' / ') ), 'red' ) ) answer = types.Message(**obj, api=[self.api]) found: bool = False for priority in await sorted_dict_keys(self.on.processor_message_regex): for key in self.on.processor_message_regex[priority]: if key.match(answer.text) is not None: found = True # [Feature] Async Use # Added v0.19#master await self.on.processor_message_regex[priority][key]( answer, **key.match(answer.text).groupdict() ) await self.logger( 'New message compiled with decorator <' + colored(self.on.processor_message_regex[priority][key].__name__, 'magenta') + '> (from: {})'.format( obj['peer_id'] ) ) break if found: break if not found: await self.on.undefined_message_func(answer) async def new_chat_message(self, obj: dict): """ Chat messages processor. Using regex to process regular expressions in messages :param obj: VK API Event Object """ await self.logger( colored( '-> MESSAGE FROM CHAT {} TEXT "{}" TIME #'.format( obj['peer_id'], obj['text'].replace('\n', ' ') ), 'red' )) answer = types.Message(**obj, api=[self.api]) found: bool = False for priority in await sorted_dict_keys(self.on.processor_message_chat_regex): for key in self.on.processor_message_chat_regex[priority]: print(key) if key.match(answer.text) is not None: found = True # [Feature] Async Use # Added v0.19#master await self.on.processor_message_chat_regex[priority][key]( answer, **key.match(answer.text).groupdict() ) await self.logger( 'New message compiled with decorator <\x1b[35m{}\x1b[0m> (from: {})'.format( self.on.processor_message_chat_regex[priority][key].__name__, obj['peer_id'] ) ) break if found: break async def new_event(self, event_type: str, obj: dict): """ LongPoll Events Processor :param event_type: VK Server Event Type :param obj: VK Server Event Object """ pass
31
101
0.54505
62f991041b56f47897169955eb975c24bc7e5520
10,203
py
Python
tests/functional/dashboard/test_offer.py
QueoLda/django-oscar
8dd992d82e31d26c929b3caa0e08b57e9701d097
[ "BSD-3-Clause" ]
4,639
2015-01-01T00:42:33.000Z
2022-03-29T18:32:12.000Z
tests/functional/dashboard/test_offer.py
QueoLda/django-oscar
8dd992d82e31d26c929b3caa0e08b57e9701d097
[ "BSD-3-Clause" ]
2,215
2015-01-02T22:32:51.000Z
2022-03-29T12:16:23.000Z
tests/functional/dashboard/test_offer.py
QueoLda/django-oscar
8dd992d82e31d26c929b3caa0e08b57e9701d097
[ "BSD-3-Clause" ]
2,187
2015-01-02T06:33:31.000Z
2022-03-31T15:32:36.000Z
from django.urls import reverse from django.utils import timezone from oscar.apps.offer import models from oscar.test import factories, testcases class TestAnAdmin(testcases.WebTestCase): # New version of offer tests buy using WebTest is_staff = True def setUp(self): super().setUp() self.range = models.Range.objects.create( name="All products", includes_all_products=True) def test_can_create_an_offer(self): list_page = self.get(reverse('dashboard:offer-list')) metadata_page = list_page.click('Create new offer') metadata_form = metadata_page.form metadata_form['name'] = "Test offer" metadata_form['offer_type'] = models.ConditionalOffer.SITE benefit_page = metadata_form.submit().follow() benefit_form = benefit_page.form benefit_form['range'] = self.range.id benefit_form['type'] = "Percentage" benefit_form['value'] = "25" condition_page = benefit_form.submit().follow() condition_form = condition_page.form condition_form['range'] = self.range.id condition_form['type'] = "Count" condition_form['value'] = "3" restrictions_page = condition_form.submit().follow() restrictions_page.form.submit() offers = models.ConditionalOffer.objects.all() self.assertEqual(1, len(offers)) offer = offers[0] self.assertEqual("Test offer", offer.name) self.assertEqual(3, offer.condition.value) self.assertEqual(25, offer.benefit.value) def test_offer_list_page(self): offer = factories.create_offer(name="Offer A") list_page = self.get(reverse('dashboard:offer-list')) form = list_page.forms[0] form['name'] = "I do not exist" res = form.submit() self.assertTrue("No offers found" in res.text) form['name'] = "Offer A" res = form.submit() self.assertFalse("No offers found" in res.text) form['is_active'] = "true" res = form.submit() self.assertFalse("No offers found" in res.text) yesterday = timezone.now() - timezone.timedelta(days=1) offer.end_datetime = yesterday offer.save() form['is_active'] = "true" res = form.submit() self.assertTrue("No offers found" in res.text) tomorrow = timezone.now() + timezone.timedelta(days=1) offer.end_datetime = tomorrow offer.save() form['offer_type'] = "Site" res = form.submit() self.assertFalse("No offers found" in res.text) form['offer_type'] = "Voucher" res = form.submit() self.assertTrue("No offers found" in res.text) def test_can_update_an_existing_offer(self): factories.create_offer(name="Offer A") list_page = self.get(reverse('dashboard:offer-list')) detail_page = list_page.click('Offer A') metadata_page = detail_page.click(linkid="edit_metadata") metadata_form = metadata_page.form metadata_form['name'] = "Offer A+" metadata_form['offer_type'] = models.ConditionalOffer.SITE benefit_page = metadata_form.submit().follow() benefit_form = benefit_page.form condition_page = benefit_form.submit().follow() condition_form = condition_page.form restrictions_page = condition_form.submit().follow() restrictions_page.form.submit() models.ConditionalOffer.objects.get(name="Offer A+") def test_can_update_an_existing_offer_save_directly(self): # see if we can save the offer directly without completing all # steps offer = factories.create_offer(name="Offer A") name_and_description_page = self.get( reverse('dashboard:offer-metadata', kwargs={'pk': offer.pk})) res = name_and_description_page.form.submit('save').follow() self.assertEqual(200, res.status_code) def test_can_jump_to_intermediate_step_for_existing_offer(self): offer = factories.create_offer() url = reverse('dashboard:offer-condition', kwargs={'pk': offer.id}) self.assertEqual(200, self.get(url).status_code) def test_cannot_jump_to_intermediate_step(self): for url_name in ('dashboard:offer-condition', 'dashboard:offer-benefit', 'dashboard:offer-restrictions'): response = self.get(reverse(url_name)) self.assertEqual(302, response.status_code) def test_can_suspend_an_offer(self): # Create an offer offer = factories.create_offer() self.assertFalse(offer.is_suspended) detail_page = self.get(reverse('dashboard:offer-detail', kwargs={'pk': offer.pk})) form = detail_page.forms['status_form'] form.submit('suspend') offer.refresh_from_db() self.assertTrue(offer.is_suspended) def test_can_reinstate_a_suspended_offer(self): # Create a suspended offer offer = factories.create_offer() offer.suspend() self.assertTrue(offer.is_suspended) detail_page = self.get(reverse('dashboard:offer-detail', kwargs={'pk': offer.pk})) form = detail_page.forms['status_form'] form.submit('unsuspend') offer.refresh_from_db() self.assertFalse(offer.is_suspended) def test_can_change_offer_priority(self): offer = factories.create_offer() restrictions_page = self.get(reverse('dashboard:offer-restrictions', kwargs={'pk': offer.pk})) restrictions_page.form['priority'] = '12' restrictions_page.form.submit() offer.refresh_from_db() self.assertEqual(offer.priority, 12) def test_jump_back_to_incentive_step_for_new_offer(self): list_page = self.get(reverse('dashboard:offer-list')) metadata_page = list_page.click('Create new offer') metadata_form = metadata_page.form metadata_form['name'] = "Test offer" metadata_form['offer_type'] = models.ConditionalOffer.SITE benefit_page = metadata_form.submit().follow() benefit_form = benefit_page.form benefit_form['range'] = self.range.id benefit_form['type'] = "Percentage" benefit_form['value'] = "25" benefit_form.submit() benefit_page = self.get(reverse('dashboard:offer-benefit')) # Accessing through context because WebTest form does not include an 'errors' field benefit_form = benefit_page.context['form'] self.assertFalse('range' in benefit_form.errors) self.assertEqual(len(benefit_form.errors), 0) def test_jump_back_to_condition_step_for_new_offer(self): list_page = self.get(reverse('dashboard:offer-list')) metadata_page = list_page.click('Create new offer') metadata_form = metadata_page.form metadata_form['name'] = "Test offer" metadata_form['offer_type'] = models.ConditionalOffer.SITE benefit_page = metadata_form.submit().follow() benefit_form = benefit_page.form benefit_form['range'] = self.range.id benefit_form['type'] = "Percentage" benefit_form['value'] = "25" condition_page = benefit_form.submit().follow() condition_form = condition_page.form condition_form['range'] = self.range.id condition_form['type'] = "Count" condition_form['value'] = "3" condition_form.submit() condition_page = self.get(reverse('dashboard:offer-condition')) self.assertFalse('range' in condition_page.errors) self.assertEqual(len(condition_page.errors), 0) def test_jump_to_incentive_step_for_existing_offer(self): offer = factories.create_offer() url = reverse('dashboard:offer-benefit', kwargs={'pk': offer.id}) condition_page = self.get(url) self.assertFalse('range' in condition_page.errors) self.assertEqual(len(condition_page.errors), 0) def test_jump_to_condition_step_for_existing_offer(self): offer = factories.create_offer() url = reverse('dashboard:offer-condition', kwargs={'pk': offer.id}) condition_page = self.get(url) self.assertFalse('range' in condition_page.errors) self.assertEqual(len(condition_page.errors), 0) class TestOfferListSearch(testcases.WebTestCase): is_staff = True TEST_CASES = [ ({}, []), ( {'name': 'Bob Smith'}, ['Name matches "Bob Smith"'] ), ( {'is_active': True}, ['Is active'] ), ( {'is_active': False}, ['Is inactive'] ), ( {'offer_type': 'Site'}, ['Is of type "Site offer - available to all users"'] ), ( {'has_vouchers': True}, ['Has vouchers'] ), ( {'has_vouchers': False}, ['Has no vouchers'] ), ( {'voucher_code': 'abcd1234'}, ['Voucher code matches "abcd1234"'] ), ( { 'name': 'Bob Smith', 'is_active': True, 'offer_type': 'Site', 'has_vouchers': True, 'voucher_code': 'abcd1234', }, [ 'Name matches "Bob Smith"', 'Is active', 'Is of type "Site offer - available to all users"', 'Has vouchers', 'Voucher code matches "abcd1234"', ] ), ] def test_search_filter_descriptions(self): url = reverse('dashboard:offer-list') for params, expected_filters in self.TEST_CASES: response = self.get(url, params=params) self.assertEqual(response.status_code, 200) applied_filters = [ el.text.strip() for el in response.html.select('.search-filter-list .badge') ] self.assertEqual(applied_filters, expected_filters)
34.941781
102
0.613055
f02054ac75d196f9d24dcbe1fee5d3c87e604dbd
72,823
py
Python
pmagpy_tests/test_imports3.py
schwehr/PmagPy
5e9edc5dc9a7a243b8e7f237fa156e0cd782076b
[ "BSD-3-Clause" ]
2
2020-07-05T01:11:33.000Z
2020-07-05T01:11:39.000Z
pmagpy_tests/test_imports3.py
schwehr/PmagPy
5e9edc5dc9a7a243b8e7f237fa156e0cd782076b
[ "BSD-3-Clause" ]
null
null
null
pmagpy_tests/test_imports3.py
schwehr/PmagPy
5e9edc5dc9a7a243b8e7f237fa156e0cd782076b
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import unittest import os #import sys from pmagpy import pmag from pmagpy import contribution_builder as cb from pmagpy import convert_2_magic as convert WD = pmag.get_test_WD() class Test2g_bin_magic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): #input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', #'IODP_jr6_magic') #files = ['test.magic', 'other_er_samples.txt'] files = ['mn001-1a.magic', 'samples.txt', 'sites.txt', 'measurements.txt', 'locations.txt', 'specimens.txt'] pmag.remove_files(files, WD) pmag.remove_files(['custom_specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'], 'data_files') pmag.remove_files(files, os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1')) os.chdir(WD) def test_2g_with_no_files(self): options = {} program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'mag file is required input') def test_2g_with_files(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'measurements.txt') self.assertTrue(os.path.isfile(outfile)) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_2g_fail_option4(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '4' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'option [4] must be in form 4-Z where Z is an integer') def test_2g_succeed_option4(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '4-3' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'measurements.txt') def test_2g_fail_option7(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '7' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'option [7] must be in form 7-Z where Z is an integer') def test_2g_succeed_option7(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '7-3' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'measurements.txt') def test_2g_fail_option6(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '6' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'Naming convention option [6] not currently supported') def test_2g_with_bad_file(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1ax.dat' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, "bad mag file") def test_2g_with_options(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['meas_file'] = 'mn001-1a.magic' options['samp_con'] = '4-3' options['inst'] = 'instrument' options['noave'] = 0 options['specnum'] = 2 options['location'] = 'location' options['or_con'] = '4' options['gmeths'] = 'FS-LOC-MAP:SO-POM' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'mn001-1a.magic') def test_2g_with_path(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') #options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', # '2g_bin_magic', 'mn1') options['mag_file'] = os.path.join(input_dir, 'mn001-1a.dat') options['meas_file'] = os.path.join(input_dir, 'mn001-1a.magic') options['spec_file'] = os.path.join('data_files', 'custom_specimens.txt') options['dir_path'] = 'data_files' program_ran, outfile = convert._2g_bin(**options) self.assertEqual(outfile, options['meas_file']) self.assertTrue(os.path.exists(options['meas_file'])) self.assertTrue(os.path.exists(os.path.join('data_files', 'sites.txt'))) class TestAgmMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'agm_magic_example.magic', 'agm_magic_example_locations.txt', 'agm_magic_example_specimens.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'agm_magic') program_ran, filename = convert.agm('agm_magic_example.agm', meas_outfile='agm_magic_example.magic', input_dir_path=input_dir, fmt="old") self.assertTrue(program_ran) def test_backfield_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'agm_magic') program_ran, filename = convert.agm('agm_magic_example.irm', meas_outfile='agm_magic_example.magic', input_dir_path=input_dir, fmt="old", bak=True, instrument="SIO-FLO") class TestBgcMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'bgc_magic') def tearDown(self): filelist = ['96MT.05.01.magic', 'BC0-3A.magic', 'measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt'] pmag.remove_files(filelist, self.input_dir) filelist = ['specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_bgc_with_no_files(self): with self.assertRaises(TypeError): convert.bgc() def test_bgc_success(self): options = {'input_dir_path': self.input_dir, 'mag_file': '96MT.05.01'} program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_bgc_with_path(self): options = {} options['mag_file'] = os.path.join(self.input_dir, '96MT.05.01') options['spec_file'] = os.path.join(WD, 'custom_specimens.txt') options['dir_path'] = 'data_files' program_ran, outfile = convert.bgc(**options) self.assertEqual(outfile, os.path.join(WD, 'data_files', 'measurements.txt')) self.assertTrue(os.path.isfile(options['spec_file'])) self.assertTrue(os.path.isfile(os.path.join(WD, 'data_files', 'samples.txt'))) def test_bgc_alternate_infile(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'BC0-3A'} program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'measurements.txt')) def test_bgc_with_append(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'BC0-3A'} program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) options['append'] = True program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) lines, file_type = pmag.magic_read(os.path.join(WD, 'specimens.txt')) self.assertEqual(len(lines), 2) class TestCitMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) #loc_file = 'custom_locations.txt' filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'custom_locations.txt'] dir_path = os.path.join(WD, 'data_files') pmag.remove_files(filelist, dir_path) samp_file = 'custom_samples.txt' dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') pmag.remove_files([samp_file], dir_path) os.chdir(WD) def test_cit_with_no_files(self): program_ran, error_message = convert.cit() self.assertFalse(program_ran) self.assertEqual(error_message, 'bad sam file name') def test_cit_magic_with_file(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_cit_magic_with_path(self): options = {} #options['input_dir_path'] = os.path.join(WD, 'data_files', # 'convert_2_magic', # 'cit_magic', 'PI47')pppp options['magfile'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47', 'PI47-.sam') options['loc_file'] = 'custom_locations.txt' options['samp_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47', 'custom_samples.txt') options['dir_path'] = os.path.join(WD, 'data_files') program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) for fname in [os.path.join(WD, 'data_files', options['loc_file']), options['samp_file'], os.path.join(WD, 'data_files', 'specimens.txt')]: self.assertTrue(os.path.isfile(fname)) def test_cit_magic_fail_option4(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '4' program_ran, error_message = convert.cit(**options) self.assertFalse(program_ran) self.assertEqual(error_message, "naming convention option [4] must be in form 4-Z where Z is an integer") def test_cit_magic_succeed_option4(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '4-3' program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) def test_cit_magic_with_options(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '2' options['methods'] = ['SO-SM:SO-MAG'] options['locname'] = 'location' options['noave'] = 1 options['specnum'] = 2 program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) def test_cit_magic_with_other_data(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '1' options['methods'] = ['SO-SM:SO-MAG'] options['locname'] = 'location' options['noave'] = 1 options['specnum'] = 2 program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) class TestGenericMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['generic_magic_example.magic'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'generic_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_generic_magic_no_exp(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'generic_magic') options = {} options['magfile'] = os.path.join(dir_path, 'generic_magic_example.txt') options['meas_file'] = os.path.join(dir_path, 'generic_magic_example.magic') program_ran, error_message = convert.generic(**options) self.assertFalse(program_ran) no_exp_error = "Must provide experiment. Please provide experiment type of: Demag, PI, ATRM n (n of positions), CR (see help for format), NLT" self.assertEqual(no_exp_error, error_message) def test_generic_magic_success(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'generic_magic') options = {} options['magfile'] = os.path.join(dir_path, 'generic_magic_example.txt') options['meas_file'] = os.path.join(dir_path, 'generic_magic_example.magic') options['experiment'] = 'Demag' program_ran, outfile_name = convert.generic(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile_name), os.path.realpath(options['meas_file'])) class TestHujiMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['Massada_AF_HUJI_new_format.magic'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'Massada_AF_HUJI_new_format.magic'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_with_bad_file(self): program_ran, error_msg = convert.huji() self.assertFalse(program_ran) self.assertEqual(error_msg, "mag_file field is a required option") program_ran, error_msg = convert.huji("fake") self.assertFalse(program_ran) self.assertEqual(error_msg, "bad mag file name") def test_huji_magic_success(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'huji_magic') full_file = os.path.join(dir_path, "Massada_AF_HUJI_new_format.txt") options = {} options['input_dir_path'] = dir_path options['magfile'] = "Massada_AF_HUJI_new_format.txt" options['meas_file'] = "Massada_AF_HUJI_new_format.magic" options['codelist'] = 'AF' program_ran, outfile = convert.huji(**options) self.assertTrue(program_ran) self.assertEqual(outfile, options['meas_file']) def test_with_options(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'huji_magic') options = {} options['dir_path'] = dir_path options['magfile'] = "Massada_AF_HUJI_new_format.txt" options['meas_file'] = "Massada_AF_HUJI_new_format.magic" options['codelist'] = "AF" options['location'] = "Massada" options['noave'] = True options['user'] = "me" options['labfield'] = 40 options['phi'] = 0 options['theta'] = 90 program_ran, outfile = convert.huji(**options) self.assertTrue(program_ran) self.assertEqual(outfile, options['meas_file']) def test_with_no_exp_type(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'huji_magic') mag_file = "Massada_AF_HUJI_new_format.txt" res, error = convert.huji(mag_file, dir_path) self.assertFalse(res) self.assertEqual(error, "Must select experiment type (codelist/-LP, options are: [AF, T, ANI, TRM, CR])") class TestHujiSampleMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['samples.txt', 'sites.txt'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'Massada_AF_HUJI_new_format.magic'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_success(self): res, outfile = convert.huji_sample("magdelkrum_datafile.txt", dir_path=os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic')) self.assertTrue(res) self.assertEqual(outfile, os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic', 'samples.txt')) class TestIodpSrmMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'IODP_LIMS_SRMsection_366_U1494.csv.magic', 'IODP_LIMS_SRMsection_366_U1494_locations.txt', 'IODP_LIMS_SRMsection_366_U1494_samples.txt', 'IODP_LIMS_SRMsection_366_U1494_sites.txt', 'IODP_LIMS_SRMsection_366_U1494_specimens.txt'] dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') #directory = os.path.join(WD) pmag.remove_files(filelist, dir_path) dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_srm_magic') pmag.remove_files(filelist, dir_path) dir_path = WD pmag.remove_files(filelist, dir_path) os.chdir(WD) def test_iodp_with_no_files(self): program_ran, error_message = convert.iodp_srm() self.assertFalse(program_ran) self.assertEqual(error_message, 'No .csv files were found') #@unittest.skip("iodp_srm_magic is missing an example datafile") def test_iodp_with_files(self): options = {} dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_srm_magic') options['dir_path'] = dir_path files = os.listdir(dir_path) files = ['IODP_Janus_312_U1256.csv', 'SRM_318_U1359_B_A.csv' ] # this one takes way too long: IODP_LIMS_SRMsection_344_1414A.csv info = [] for f in files: if f.endswith('csv') and 'summary' not in f and 'discrete' not in f and 'sample' not in f: options['csv_file'] = f program_ran, outfile = convert.iodp_srm(**options) meas_df = cb.MagicDataFrame(pmag.resolve_file_name(outfile, dir_path)) self.assertTrue(len(meas_df.df) > 0) #@unittest.skip("iodp_srm_magic is missing an example datafile") def test_iodp_with_one_file(self): options = {} #dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', # 'iodp_srm_magic') dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') options['dir_path'] = dir_path options['input_dir_path'] = dir_path options['csv_file'] = 'srmsection-XXX-UTEST-A.csv' program_ran, outfile = convert.iodp_srm(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, os.path.join('measurements.txt')) meas_df = cb.MagicDataFrame(os.path.join(dir_path, outfile)) self.assertIn('sequence', meas_df.df.columns) def test_iodp_with_one_file_with_path(self): options = {} dir_path = os.path.join('data_files', 'UTESTA', 'SRM_data') #options['dir_path'] = dir_path options['dir_path'] = WD #dir_path options['input_dir_path'] = "fake/path" options['csv_file'] = os.path.join(dir_path, 'srmsection-XXX-UTEST-A.csv') program_ran, outfile = convert.iodp_srm(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, os.path.join('measurements.txt')) @unittest.skip('broken') class TestIodpDscrMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_samples.txt'] #directory = os.path.join(WD) pmag.remove_files(filelist, WD) pmag.remove_files(['custom_measurements.txt'], os.path.join(WD, 'data_files')) os.chdir(WD) def test_iodp_with_no_files(self): program_ran, error_message = convert.iodp_dscr() self.assertFalse(program_ran) self.assertEqual(error_message, 'No .csv files were found') #@unittest.skip("iodp_srm_magic is missing an example datafile") def test_iodp_with_one_file(self): options = {} #dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', #'iodp_srm_magic') dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') options['input_dir_path'] = dir_path options['csv_file'] = 'srmdiscrete-XXX-UTEST-A.csv' program_ran, outfile = convert.iodp_dscr(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, 'measurements.txt') def test_iodp_with_path(self): options = {} #dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', #'iodp_srm_magic') dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') #options['input_dir_path'] = dir_path options['csv_file'] = os.path.join('data_files', 'UTESTA', 'SRM_data', 'srmdiscrete-XXX-UTEST-A.csv') options['meas_file'] = os.path.join(WD, 'data_files', 'custom_measurements.txt') options['samp_file'] = 'custom_samples.txt' program_ran, outfile = convert.iodp_dscr(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, os.path.join(WD, 'data_files', 'custom_measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) class TestIodpJr6Magic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): files = ['test.magic', 'other_er_samples.txt', 'custom_locations.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'measurements.txt', 'specimens.txt'] pmag.remove_files(files, WD) # then, make sure that hidden_er_samples.txt has been successfully renamed to er_samples.txt input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') hidden_sampfile = os.path.join(input_dir, 'hidden_er_samples.txt') sampfile = os.path.join(input_dir, 'er_samples.txt') if os.path.exists(hidden_sampfile): os.rename(hidden_sampfile, sampfile) pmag.remove_files(['custom_specimens.txt'], 'data_files') os.chdir(WD) def test_iodp_jr6_with_no_files(self): with self.assertRaises(TypeError): convert.iodp_jr6() def test_iodp_jr6_with_invalid_mag_file(self): options = {'mag_file': 'fake'} program_ran, error_message = convert.iodp_jr6(**options) expected_msg = 'The input file you provided: {} does not exist.\nMake sure you have specified the correct filename AND correct input directory name.'.format(os.path.realpath(os.path.join('.', 'fake'))) self.assertFalse(program_ran) self.assertEqual(error_message, expected_msg) #@unittest.skipIf('win32' in sys.platform or 'win62' in sys.platform, "Requires up to date version of pandas") def test_iodp_jr6_with_magfile(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') options['input_dir_path'] = input_dir mag_file = 'test.jr6' options['mag_file'] = 'test.jr6' meas_file = 'test.magic' options['meas_file'] = meas_file program_ran, outfile = convert.iodp_jr6(**options) self.assertTrue(program_ran) self.assertEqual(outfile, meas_file) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_iodp_jr6_with_path(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') #options['input_dir_path'] = input_dir mag_file = os.path.join('data_files', 'convert_2_magic', 'iodp_jr6_magic', 'test.jr6') options['mag_file'] = mag_file #'test.jr6' options['spec_file'] = os.path.join('data_files', 'custom_specimens.txt') options['loc_file'] = 'custom_locations.txt' meas_file = 'test.magic' options['meas_file'] = meas_file program_ran, outfile = convert.iodp_jr6(**options) self.assertTrue(program_ran) self.assertEqual(outfile, meas_file) for fname in [options['loc_file'], options['spec_file']]: self.assertTrue(os.path.isfile(fname)) #@unittest.skipIf('win32' in sys.platform or 'win62' in sys.platform, "Requires up to date version of pandas") def test_iodp_jr6_with_options(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') options['input_dir_path'] = input_dir mag_file = 'test.jr6' options['mag_file'] = 'test.jr6' meas_file = 'test.magic' options['meas_file'] = meas_file options['noave'] = 1 options['lat'] = 3 options['lon'] = 5 options['volume'] = 3 program_ran, outfile = convert.iodp_jr6(**options) self.assertTrue(program_ran) self.assertEqual(outfile, meas_file) class TestIodpSamplesMagic(unittest.TestCase): def setUp(self): self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_srm_magic') def tearDown(self): os.chdir(WD) filelist = ['er_samples.txt'] pmag.remove_files(filelist, WD) def test_with_wrong_format(self): infile = os.path.join(self.input_dir, 'GCR_U1359_B_coresummary.csv') program_ran, error_message = convert.iodp_samples(infile) self.assertFalse(program_ran) expected_error = 'Could not extract the necessary data from your input file.\nPlease make sure you are providing a correctly formated IODP samples csv file.' self.assertEqual(error_message, expected_error) def test_with_right_format(self): reference_file = os.path.join(WD, 'testing', 'odp_magic', 'odp_magic_er_samples.txt') infile = os.path.join(self.input_dir, 'samples_318_U1359_B.csv') program_ran, outfile = convert.iodp_samples(infile, data_model_num=2) self.assertTrue(program_ran) expected_file = os.path.realpath(os.path.join('.', 'er_samples.txt')) self.assertEqual(os.path.realpath(outfile), expected_file) self.assertTrue(os.path.isfile(outfile)) def test_content_with_right_format(self): reference_file = os.path.join(WD, 'data_files', 'testing', 'odp_magic', 'odp_magic_er_samples.txt') infile = os.path.join(self.input_dir, 'samples_318_U1359_B.csv') program_ran, outfile = convert.iodp_samples(infile, data_model_num=2) with open(reference_file) as ref_file: ref_lines = ref_file.readlines() with open(outfile) as out_file: out_lines = out_file.readlines() self.assertTrue(program_ran) self.assertEqual(ref_lines, out_lines) def test_with_data_model3(self): infile = os.path.join(self.input_dir, 'samples_318_U1359_B.csv') program_ran, outfile = convert.iodp_samples(infile, data_model_num=3) self.assertTrue(program_ran) self.assertEqual(os.path.realpath('samples.txt'), os.path.realpath(outfile)) class TestIodpSamplesCsv(unittest.TestCase): def setUp(self): os.chdir(WD) self.hole_lat = -56.557775 self.hole_lon = -42.64212833333333 self.dir_path = "data_files/iodp_magic/U999A" def tearDown(self): files = ['lims_specimens.txt', 'lims_samples.txt', 'lims_sites.txt', 'locations.txt'] pmag.remove_files(files, WD) def test_success(self): comp_depth_key='Top depth CSF-B (m)' samp_file = "samples_17_5_2019.csv" # do the heavy lifting: res, outfile = convert.iodp_samples_csv(samp_file, input_dir_path=self.dir_path, spec_file='lims_specimens.txt', samp_file='lims_samples.txt', site_file='lims_sites.txt', dir_path=".", comp_depth_key=comp_depth_key, lat=self.hole_lat, lon=self.hole_lon) self.assertTrue(res) for fname in ['lims_specimens.txt', 'lims_samples.txt', 'lims_sites.txt', 'locations.txt']: self.assertTrue(os.path.exists(fname)) class TestIodpSrmLore(unittest.TestCase): def setUp(self): os.chdir(WD) self.hole_lat = -56.557775 self.hole_lon = -42.64212833333333 self.dir_path = "data_files/iodp_magic/U999A" def tearDown(self): files = ['srm_arch_specimens.txt', 'srm_arch_samples.txt', 'srm_arch_sites.txt', 'srm_arch_measurements.txt'] pmag.remove_files(files, WD) def test_success(self): comp_depth_key = 'Depth CSF-B (m)' srm_archive_file = "srmsection_17_5_2019.csv" srm_archive_dir = os.path.join(self.dir_path, 'SRM_archive_data') res, outfile = convert.iodp_srm_lore(srm_archive_file, meas_file='srm_arch_measurements.txt', comp_depth_key=comp_depth_key, dir_path=".", input_dir_path=srm_archive_dir, lat=self.hole_lat, lon=self.hole_lon) files = ['srm_arch_specimens.txt', 'srm_arch_samples.txt', 'srm_arch_sites.txt', 'srm_arch_measurements.txt'] for fname in files: self.assertTrue(os.path.exists(fname)) self.assertTrue(res) class TestIodpDscrLore(unittest.TestCase): def setUp(self): os.chdir(WD) self.hole_lat = -56.557775 self.hole_lon = -42.64212833333333 self.dir_path = "data_files/iodp_magic/U999A" # make specimen file needed for conversion comp_depth_key='Top depth CSF-B (m)' samp_file = "samples_17_5_2019.csv" # do the heavy lifting: res, outfile = convert.iodp_samples_csv(samp_file, input_dir_path=self.dir_path, spec_file='lims_specimens.txt', samp_file='lims_samples.txt', site_file='lims_sites.txt', dir_path=".", comp_depth_key=comp_depth_key, lat=self.hole_lat, lon=self.hole_lon) self.hole_lat = -56.557775 self.hole_lon = -42.64212833333333 self.dir_path = "data_files/iodp_magic/U999A" def tearDown(self): files = ['srm_arch_specimens.txt', 'srm_arch_samples.txt', 'srm_arch_sites.txt', 'srm_arch_measurements.txt', 'srm_dscr_measurements.txt'] pmag.remove_files(files, WD) def test_success(self): srm_discrete_file = "srmdiscrete_17_5_2019.csv" srm_discrete_dir = os.path.join(self.dir_path, 'SRM_discrete_data') res, outfile = convert.iodp_dscr_lore(srm_discrete_file, meas_file='srm_dscr_measurements.txt', dir_path=".",input_dir_path=srm_discrete_dir, spec_file='lims_specimens.txt') self.assertTrue(res) self.assertTrue(os.path.exists(outfile)) class TestIodpJr6Lore(unittest.TestCase): def setUp(self): os.chdir(WD) self.hole_lat = -56.557775 self.hole_lon = -42.64212833333333 self.dir_path = "data_files/iodp_magic/U999A" # generate specimens/samples files needed for conversion comp_depth_key='Top depth CSF-B (m)' samp_file = "samples_17_5_2019.csv" res, outfile = convert.iodp_samples_csv(samp_file, input_dir_path=self.dir_path, spec_file='lims_specimens.txt', samp_file='lims_samples.txt', site_file='lims_sites.txt', dir_path=".", comp_depth_key=comp_depth_key, lat=self.hole_lat, lon=self.hole_lon) def tearDown(self): files = ['lims_specimens.txt', 'lims_samples.txt', 'lims_sites.txt', 'locations.txt', 'jr6_measurements.txt'] pmag.remove_files(files, WD) def test_success(self): jr6_dir = os.path.join(self.dir_path, 'JR6_data') jr6_file = "spinner_17_5_2019.csv" res, outfile = convert.iodp_jr6_lore(jr6_file,meas_file='jr6_measurements.txt',dir_path=".", input_dir_path=jr6_dir, spec_file='lims_specimens.txt', noave=False) self.assertTrue(res) self.assertTrue(os.path.exists(outfile)) class TestIodpKly4sLore(unittest.TestCase): def setUp(self): os.chdir(WD) self.hole_lat = -56.557775 self.hole_lon = -42.64212833333333 self.dir_path = "data_files/iodp_magic/U999A" # generate specimens/samples files needed for conversion comp_depth_key='Top depth CSF-B (m)' samp_file = "samples_17_5_2019.csv" res, outfile = convert.iodp_samples_csv(samp_file, input_dir_path=self.dir_path, spec_file='lims_specimens.txt', samp_file='lims_samples.txt', site_file='lims_sites.txt', dir_path=".", comp_depth_key=comp_depth_key, lat=self.hole_lat, lon=self.hole_lon) def tearDown(self): files = ['lims_specimens.txt', 'lims_samples.txt', 'lims_sites.txt', 'locations.txt', 'kly4s_specimens.txt', 'kly4s_measurements.txt'] pmag.remove_files(files, WD) def test_success(self): kly4s_dir = os.path.join(self.dir_path, 'KLY4S_data') kly4s_file = "ex-kappa_17_5_2019.csv" res, outfile = convert.iodp_kly4s_lore(kly4s_file, meas_out='kly4s_measurements.txt', spec_infile='lims_specimens.txt', spec_out='kly4s_specimens.txt', dir_path=".", input_dir_path=kly4s_dir, actual_volume=7) self.assertTrue(res) self.assertTrue(os.path.exists(outfile)) self.assertTrue(os.path.exists('kly4s_specimens.txt')) class TestJr6TxtMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): files = ['test.magic', 'other_er_samples.txt', 'custom_locations.txt', 'samples.txt', 'sites.txt', 'measurements.txt', 'locations.txt', 'specimens.txt'] pmag.remove_files(files, WD) def test_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') output = convert.jr6_txt(**{'mag_file': 'AP12.txt', 'input_dir_path': input_dir}) self.assertTrue(output[0]) self.assertEqual(output[1], 'measurements.txt') def test_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') options = {'mag_file': 'AP12.txt', 'input_dir_path': input_dir} options['meas_file'] = "test.magic" options['lat'] = 1 options['lon'] = 2 options['noave'] = True output = convert.jr6_txt(**options) self.assertTrue(output[0]) self.assertEqual(output[1], 'test.magic') site_df = cb.MagicDataFrame(os.path.join(WD, 'sites.txt')) self.assertEqual(1, site_df.df.lat.values[0]) class TestJr6Jr6Magic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): files = ['test.magic', 'other_er_samples.txt', 'custom_locations.txt', 'samples.txt', 'sites.txt', 'measurements.txt', 'locations.txt', 'specimens.txt'] pmag.remove_files(files, WD) def test_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') output = convert.jr6_jr6(**{'mag_file': 'AF.jr6', 'input_dir_path': input_dir}) self.assertTrue(output[0]) self.assertEqual(os.path.realpath(output[1]), os.path.realpath('measurements.txt')) def test_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') options = {'mag_file': 'SML07.JR6', 'input_dir_path': input_dir} options['meas_file'] = "test.magic" options['lat'] = 1 options['lon'] = 2 options['noave'] = True output = convert.jr6_jr6(**options) self.assertTrue(output[0]) self.assertEqual(os.path.realpath(output[1]), os.path.realpath('test.magic')) site_df = cb.MagicDataFrame(os.path.join(WD, 'sites.txt')) self.assertEqual(1, site_df.df.lat.values[0]) class TestKly4sMagic(unittest.TestCase): def setUp(self): pass def tearDown(self): filelist= ['magic_measurements.txt', 'my_magic_measurements.txt', 'er_specimens.txt', 'er_samples.txt', 'er_sites.txt', 'rmag_anisotropy.txt', 'my_rmag_anisotropy.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_kly4s_without_infile(self): with self.assertRaises(TypeError): convert.kly4s() def test_kly4s_with_invalid_infile(self): program_ran, error_message = convert.kly4s('hello.txt') expected_file = os.path.realpath(os.path.join('.', 'hello.txt')) self.assertFalse(program_ran) self.assertEqual(error_message, 'Error opening file: {}'.format(expected_file)) def test_kly4s_with_valid_infile(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'magic_measurements.txt')) def test_kly4s_fail_option4(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, error_message = convert.kly4s('KLY4S_magic_example.dat', samp_con="4", dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, "option [4] must be in form 4-Z where Z is an integer") def test_kly4s_succeed_option4(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', samp_con="4-2", dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'magic_measurements.txt')) self.assertTrue(os.path.isfile(os.path.join(WD, 'magic_measurements.txt'))) def test_kly4s_with_options(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', specnum=1, locname="location", inst="instrument", samp_con=3, or_con=2, measfile='my_magic_measurements.txt', aniso_outfile="my_rmag_anisotropy.txt", dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'my_magic_measurements.txt')) self.assertTrue(os.path.isfile(os.path.join(WD, 'my_rmag_anisotropy.txt'))) def test_kly4s_with_valid_infile_data_model3(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', dir_path=WD, input_dir_path=in_dir, data_model_num=3) con = cb.Contribution(WD) self.assertEqual(['measurements', 'samples', 'sites', 'specimens'], sorted(con.tables)) class TestK15Magic(unittest.TestCase): def setUp(self): pass def tearDown(self): filelist = ['magic_measurements.txt', 'my_magic_measurements.txt', 'er_specimens.txt', 'er_samples.txt', 'my_er_samples.txt', 'er_sites.txt', 'rmag_anisotropy.txt', 'my_rmag_anisotropy.txt', 'rmag_results.txt', 'my_rmag_results.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_k15_with_files(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath('magic_measurements.txt')) def test_k15_fail_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, error_message = convert.k15('k15_example.dat', sample_naming_con="4", input_dir_path=input_dir, data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, "option [4] must be in form 4-Z where Z is an integer") def test_k15_succeed_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', sample_naming_con="4-2", input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath("magic_measurements.txt")) def test_k15_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', specnum=2, sample_naming_con="3", location="Here", meas_file="my_magic_measurements.txt", samp_file="my_er_samples.txt", aniso_outfile="my_rmag_anisotropy.txt", result_file="my_rmag_results.txt", input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath("my_magic_measurements.txt")) def test_data_model3(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', specnum=2, input_dir_path=input_dir) self.assertTrue(program_ran) self.assertEqual(os.path.realpath('./measurements.txt'), os.path.realpath(outfile)) class TestLdeoMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'ldeo_magic') def tearDown(self): #filelist = ['measurements.txt', 'specimens.txt', # 'samples.txt', 'sites.txt'] #pmag.remove_files(filelist, self.input_dir) filelist = ['specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_specimens.txt', 'measurements.txt', 'custom_measurements.txt'] pmag.remove_files(filelist, WD) #pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_ldeo_with_no_files(self): with self.assertRaises(TypeError): convert.ldeo() def test_ldeo_success(self): options = {'input_dir_path': self.input_dir, 'magfile': 'ldeo_magic_example.dat'} program_ran, outfile = convert.ldeo(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_ldeo_options(self): options = {'input_dir_path': self.input_dir, 'magfile': 'ldeo_magic_example.dat'} options['noave'] = 1 options['specnum'] = 2 options['samp_con'] = 2 options['meas_file'] = "custom_measurements.txt" options['location'] = "new place" options['labfield'], options['phi'], options['theta'] = 40, 0, 90 program_ran, outfile = convert.ldeo(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(options['meas_file']), os.path.realpath(outfile)) class TestLivdbMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'livdb_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) #filelist = ['specimens.txt', 'samples.txt', 'sites.txt', # 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] #pmag.remove_files(filelist, '.') #pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_livdb_success(self): res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+")) self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("measurements.txt")) def test_livdb_all_experiment_types(self): for folder in ["TH_IZZI+", "MW_C+", "MW_IZZI+andC++", "MW_OT+", "MW_P"]: res, meas_file = convert.livdb(os.path.join(self.input_dir, folder)) self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("measurements.txt")) def test_with_options(self): # naming con 1 res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=1, meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual("ATPIPV04-1A", df.df.loc["ATPIPV04-1A"]['sample']) # naming con 2 without chars res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=2, site_name_con=2, meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual("ATPIPV04-1A", df.df.loc['ATPIPV04-1A']['sample']) df = cb.MagicDataFrame(os.path.join(WD, "samples.txt")) self.assertEqual("ATPIPV04-1A", df.df.loc['ATPIPV04-1A']['site']) def test_naming_con_2(self): res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=2, samp_num_chars=1, meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual("ATPIPV04-1", df.df.loc["ATPIPV04-1A"]['sample']) def test_naming_con_3(self): res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=3, samp_num_chars="-", meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual(df.df.loc['ATPIPV04-1A']['sample'], 'ATPIPV04') df = cb.MagicDataFrame(os.path.join(WD, "samples.txt")) self.assertEqual(df.df.loc['ATPIPV04']['site'], "ATPIPV04") class TestMstMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'mst_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) #filelist = ['specimens.txt', 'samples.txt', 'sites.txt', # 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] pmag.remove_files(filelist, '.') pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_mst_with_no_files(self): with self.assertRaises(TypeError): convert.mst() def test_mst_success(self): options = {'input_dir_path': self.input_dir, 'infile': 'curie_example.dat'} options['spec_name'] = 'abcde' options['location'] = 'place' program_ran, outfile = convert.mst(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) self.assertEqual(meas_df.df.location.values[0], 'place') con = cb.Contribution(WD) for table in ['measurements', 'specimens', 'samples', 'sites', 'locations']: self.assertIn(table, con.tables) def test_mst_synthetic(self): options = {'input_dir_path': self.input_dir, 'infile': 'curie_example.dat'} options['spec_name'] = 'abcde' options['syn'] = True program_ran, outfile = convert.mst(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) class TestMiniMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'mini_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) def test_bad_file(self): program_ran, error = convert.mini('fake_file') self.assertFalse(program_ran) self.assertEqual(error, "bad mag file name") def test_success(self): magfile = os.path.join(self.input_dir, "Peru_rev1.txt") program_ran, outfile = convert.mini(magfile) self.assertTrue(program_ran) self.assertEqual(outfile, "measurements.txt") def test_options(self): magfile = os.path.join(self.input_dir, "Peru_rev1.txt") program_ran, outfile = convert.mini(magfile, meas_file="custom.out", user="me", noave=1, volume=15, methcode="LP:FAKE") self.assertTrue(program_ran) self.assertEqual(outfile, "custom.out") def test_dm_2(self): magfile = os.path.join(self.input_dir, "Peru_rev1.txt") program_ran, outfile = convert.mini(magfile, meas_file="custom.out", user="me", noave=1, volume=15, methcode="LP:FAKE", data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, "custom.out") class TestPmdMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'pmd_magic', 'PMD', ) def tearDown(self): filelist = ['specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_specimens.txt', 'measurements.txt', 'custom_meas.txt'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, ".") os.chdir(WD) def test_pmd_with_no_files(self): with self.assertRaises(TypeError): convert.pmd() def test_pmd_success(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'ss0207a.pmd'} program_ran, outfile = convert.pmd(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_pmd_options(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'ss0207a.pmd'} options['lat'], options['lon'] = 5, 10 options['specnum'] = 2 options['location'] = 'place' options['meas_file'] = 'custom_meas.txt' program_ran, outfile = convert.pmd(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'custom_meas.txt')) loc_df = cb.MagicDataFrame(os.path.join(WD, 'locations.txt')) self.assertEqual(loc_df.df.index.values[0], 'place') class TestSioMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['sio_af_example.magic'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_sio_magic_no_files(self): with self.assertRaises(TypeError): convert.sio() def test_sio_magic_success(self): options = {} dir_path = os.path.join('data_files', 'convert_2_magic', 'sio_magic') options['mag_file'] = os.path.join(dir_path, 'sio_af_example.dat') options['meas_file'] = os.path.join(dir_path, 'sio_af_example.magic') program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(file_name), os.path.realpath(options['meas_file'])) meas_df = cb.MagicDataFrame(os.path.realpath(options['meas_file'])) self.assertIn('sequence', meas_df.df.columns) self.assertEqual(0, meas_df.df.iloc[0]['sequence']) def test_sio_magic_success_with_wd(self): options = {} dir_path = os.path.join('data_files', 'convert_2_magic', 'sio_magic') options['mag_file'] = os.path.join('sio_af_example.dat') options['meas_file'] = os.path.join('sio_af_example.magic') options['dir_path'] = dir_path program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(file_name), os.path.realpath(os.path.join(dir_path, options['meas_file']))) def test_sio_magic_fail_option4(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['samp_con'] = '4' program_ran, error_message = convert.sio(**options) self.assertFalse(program_ran) self.assertEqual(error_message, "naming convention option [4] must be in form 4-Z where Z is an integer") def test_sio_magic_succeed_option4(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['samp_con'] = '4-2' program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(file_name, meas_file) def test_sio_magic_fail_with_coil(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['coil'] = 4 program_ran, error_message = convert.sio(**options) self.assertFalse(program_ran) self.assertEqual(error_message, '4 is not a valid coil specification') def test_sio_magic_succeed_with_coil(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['coil'] = '1' program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(file_name, meas_file) class TestSMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 's_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, self.input_dir) def test_with_invalid_file(self): res, error_msg = convert.s_magic('fake.txt') self.assertFalse(res) expected_file = os.path.join(WD, "fake.txt") self.assertEqual(error_msg, "No such file: {}".format(expected_file)) def test_success(self): res, outfile = convert.s_magic("s_magic_example.dat", dir_path=self.input_dir) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "specimens.txt")) def test_with_options(self): res, outfile = convert.s_magic("s_magic_example.dat", dir_path=self.input_dir, specnum=1, location="place", spec="abcd-efg", user="me", samp_con=2) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "specimens.txt")) self.assertTrue(os.path.exists(os.path.join(self.input_dir, "sites.txt"))) con = cb.Contribution(self.input_dir) self.assertIn('sites', con.tables) self.assertEqual('place', con.tables['sites'].df.loc[:, 'location'].values[0]) class TestSufarAscMagic(unittest.TestCase): def setUp(self): pass def tearDown(self): filelist = ['magic_measurements.txt', 'my_magic_measurements.txt', 'er_specimens.txt', 'er_samples.txt', 'my_er_samples.txt', 'er_sites.txt', 'rmag_anisotropy.txt', 'my_rmag_anisotropy.txt', 'rmag_results.txt', 'my_rmag_results.txt', 'measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_sufar4_with_no_files(self): with self.assertRaises(TypeError): convert.sufar4() def test_sufar4_with_invalid_file(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'fake_sufar4-asc_magic_example.txt' program_ran, error_message = convert.sufar4(infile, input_dir_path=input_dir, data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, 'Error opening file: {}'.format(os.path.join(input_dir, infile))) def test_sufar4_with_infile(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, outfile = convert.sufar4(infile, input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath(os.path.join('.', 'magic_measurements.txt'))) with open(outfile, 'r') as ofile: lines = ofile.readlines() self.assertEqual(292, len(lines)) def test_sufar4_succeed_data_model3(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, outfile = convert.sufar4(infile, input_dir_path=input_dir) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.realpath(os.path.join('.', 'measurements.txt'))) with open(outfile, 'r') as ofile: lines = ofile.readlines() self.assertEqual(292, len(lines)) self.assertEqual('measurements', lines[0].split('\t')[1].strip()) con = cb.Contribution(WD) self.assertEqual(sorted(con.tables), sorted(['measurements', 'specimens', 'samples', 'sites'])) def test_sufar4_fail_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, error_message = convert.sufar4(infile, input_dir_path=input_dir, sample_naming_con='4', data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, "option [4] must be in form 4-Z where Z is an integer") def test_sufar4_succeed_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' ofile = 'my_magic_measurements.txt' program_ran, outfile = convert.sufar4(infile, meas_output=ofile, input_dir_path=input_dir, sample_naming_con='4-2', data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath(os.path.join('.', ofile))) def test_sufar4_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, outfile = convert.sufar4(infile, meas_output='my_magic_measurements.txt', aniso_output="my_rmag_anisotropy.txt", specnum=2, locname="Here", instrument="INST", static_15_position_mode=True, input_dir_path=input_dir, sample_naming_con='5', data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath(os.path.join('.', 'my_magic_measurements.txt'))) class TestTdtMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'tdt_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, '.') pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_success(self): res, outfile = convert.tdt(self.input_dir) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "measurements.txt")) def test_with_options(self): res, outfile = convert.tdt(self.input_dir, meas_file_name="custom.out", location="here", user="me", samp_name_con=2, samp_name_chars=1, site_name_con=2, site_name_chars=1, volume=15., lab_inc=-90) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "custom.out")) df = cb.MagicDataFrame(os.path.join(self.input_dir, "samples.txt")) self.assertEqual("MG", df.df["site"].values[0]) self.assertEqual("MGH", df.df["sample"].values[0]) class TestUtrechtMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'utrecht_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) #filelist = ['specimens.txt', 'samples.txt', 'sites.txt', # 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] pmag.remove_files(filelist, '.') pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_utrecht_with_no_files(self): with self.assertRaises(TypeError): convert.utrecht() def test_utrecht_success(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'Utrecht_Example.af'} program_ran, outfile = convert.utrecht(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns)
44.704113
209
0.585392
00108bf215fd6861d561f98ece61b214640d13ac
6,889
py
Python
source/todo2.py
eclipse999/ToDoList
708eb31e112e6592a406e3f3f15d654c9f6fe7c2
[ "MIT" ]
null
null
null
source/todo2.py
eclipse999/ToDoList
708eb31e112e6592a406e3f3f15d654c9f6fe7c2
[ "MIT" ]
null
null
null
source/todo2.py
eclipse999/ToDoList
708eb31e112e6592a406e3f3f15d654c9f6fe7c2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'todo2.ui' # # Created by: PyQt5 UI code generator 5.12.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(551, 475) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/icon/iconfinder_document-03_1622833.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) MainWindow.setStyleSheet("background-color: rgb(0, 0, 0);") MainWindow.setIconSize(QtCore.QSize(25, 25)) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.addbtn = QtWidgets.QPushButton(self.centralwidget) self.addbtn.setGeometry(QtCore.QRect(0, 50, 181, 91)) font = QtGui.QFont() font.setFamily("微軟正黑體") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.addbtn.setFont(font) self.addbtn.setStyleSheet("QPushButton {\n" " border: 1px solid gray;\n" " color: rgb(255, 255, 255);\n" "\n" "}\n" "QPushButton:pressed {\n" " background-color: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,\n" " stop: 0 #000000, stop: 1 #323232);\n" "}") icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/icon/iconfinder_icon-33-clipboard-add_315154.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.addbtn.setIcon(icon1) self.addbtn.setIconSize(QtCore.QSize(25, 25)) self.addbtn.setObjectName("addbtn") self.deletebtn = QtWidgets.QPushButton(self.centralwidget) self.deletebtn.setGeometry(QtCore.QRect(0, 130, 181, 91)) font = QtGui.QFont() font.setFamily("微軟正黑體") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.deletebtn.setFont(font) self.deletebtn.setStyleSheet("QPushButton {\n" " border: 1px solid gray;\n" " color: rgb(255, 255, 255);\n" "\n" "}\n" "QPushButton:pressed {\n" " background-color: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,\n" " stop: 0 #000000, stop: 1 #323232);\n" "}") icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(":/icon/iconfinder_draw-08_725558.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.deletebtn.setIcon(icon2) self.deletebtn.setIconSize(QtCore.QSize(25, 25)) self.deletebtn.setObjectName("deletebtn") self.clearallbtn = QtWidgets.QPushButton(self.centralwidget) self.clearallbtn.setGeometry(QtCore.QRect(0, 210, 181, 91)) font = QtGui.QFont() font.setFamily("微軟正黑體") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.clearallbtn.setFont(font) self.clearallbtn.setStyleSheet("QPushButton {\n" " border: 1px solid gray;\n" " color: rgb(255, 255, 255);\n" "\n" "}\n" "QPushButton:pressed {\n" " background-color: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,\n" " stop: 0 #000000, stop: 1 #323232);\n" "}") icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(":/icon/iconfinder_trash_4696642.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.clearallbtn.setIcon(icon3) self.clearallbtn.setIconSize(QtCore.QSize(25, 25)) self.clearallbtn.setObjectName("clearallbtn") self.savebtn = QtWidgets.QPushButton(self.centralwidget) self.savebtn.setGeometry(QtCore.QRect(0, 300, 181, 91)) font = QtGui.QFont() font.setFamily("微軟正黑體") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.savebtn.setFont(font) self.savebtn.setStyleSheet("QPushButton {\n" " border: 1px solid gray;\n" " color: rgb(255, 255, 255);\n" "\n" "}\n" "QPushButton:pressed {\n" " background-color: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,\n" " stop: 0 #000000, stop: 1 #323232);\n" "}") icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(":/icon/iconfinder_simpline_53_2305609.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.savebtn.setIcon(icon4) self.savebtn.setIconSize(QtCore.QSize(25, 25)) self.savebtn.setObjectName("savebtn") self.loadbtn = QtWidgets.QPushButton(self.centralwidget) self.loadbtn.setGeometry(QtCore.QRect(0, 390, 181, 91)) font = QtGui.QFont() font.setFamily("微軟正黑體") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.loadbtn.setFont(font) self.loadbtn.setStyleSheet("QPushButton {\n" " border: 1px solid gray;\n" " color: rgb(255, 255, 255);\n" "\n" "}\n" "QPushButton:pressed {\n" " background-color: qlineargradient(x1: 0, y1: 0, x2: 0, y2: 1,\n" " stop: 0 #000000, stop: 1 #323232);\n" "}") icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap(":/icon/iconfinder_Open_1493293.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.loadbtn.setIcon(icon5) self.loadbtn.setIconSize(QtCore.QSize(25, 25)) self.loadbtn.setObjectName("loadbtn") self.todolist = QtWidgets.QListWidget(self.centralwidget) self.todolist.setGeometry(QtCore.QRect(180, 0, 371, 481)) font = QtGui.QFont() font.setFamily("微軟正黑體") font.setPointSize(12) self.todolist.setFont(font) self.todolist.setStyleSheet("\n" "\n" "QListWidget::item {\n" " color:white;\n" "\n" "}\n" "\n" "QListWidget::item:selected{\n" " color:white;\n" " \n" " background-color: rgb(34, 104, 51);\n" "\n" "}") self.todolist.setObjectName("todolist") self.addlist = QtWidgets.QLineEdit(self.centralwidget) self.addlist.setGeometry(QtCore.QRect(0, 0, 181, 51)) self.addlist.setStyleSheet("border: 1px solid gray;\n" "color: rgb(255, 255, 255);\n" "background-color: rgb(30,30,30);") self.addlist.setObjectName("addlist") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "ToDo List")) self.addbtn.setText(_translate("MainWindow", "加入項目")) self.deletebtn.setText(_translate("MainWindow", "清除所選項目")) self.clearallbtn.setText(_translate("MainWindow", "清除全部項目")) self.savebtn.setText(_translate("MainWindow", "存取清單\n" "(Ctrl+S)")) self.loadbtn.setText(_translate("MainWindow", "讀取清單\n" "(Ctrl+F)")) import image_rc
38.920904
129
0.631441
6c3ceb8cf1cc0d98c5827893f858e3cfa7c4ce2a
3,833
py
Python
roles/lib_openshift/src/class/oc_scale.py
shgriffi/openshift-ansible
6313f519307cf50055589c3876d8bec398bbc4d4
[ "Apache-2.0" ]
164
2015-07-29T17:35:04.000Z
2021-12-16T16:38:04.000Z
roles/lib_openshift/src/class/oc_scale.py
shgriffi/openshift-ansible
6313f519307cf50055589c3876d8bec398bbc4d4
[ "Apache-2.0" ]
3,634
2015-06-09T13:49:15.000Z
2022-03-23T20:55:44.000Z
roles/lib_openshift/src/class/oc_scale.py
shgriffi/openshift-ansible
6313f519307cf50055589c3876d8bec398bbc4d4
[ "Apache-2.0" ]
250
2015-06-08T19:53:11.000Z
2022-03-01T04:51:23.000Z
# pylint: skip-file # flake8: noqa # pylint: disable=too-many-instance-attributes class OCScale(OpenShiftCLI): ''' Class to wrap the oc command line tools ''' # pylint allows 5 # pylint: disable=too-many-arguments def __init__(self, resource_name, namespace, replicas, kind, kubeconfig='/etc/origin/master/admin.kubeconfig', verbose=False): ''' Constructor for OCScale ''' super(OCScale, self).__init__(namespace, kubeconfig=kubeconfig, verbose=verbose) self.kind = kind self.replicas = replicas self.name = resource_name self._resource = None @property def resource(self): ''' property function for resource var ''' if not self._resource: self.get() return self._resource @resource.setter def resource(self, data): ''' setter function for resource var ''' self._resource = data def get(self): '''return replicas information ''' vol = self._get(self.kind, self.name) if vol['returncode'] == 0: if self.kind == 'dc': # The resource returned from a query could be an rc or dc. # pylint: disable=redefined-variable-type self.resource = DeploymentConfig(content=vol['results'][0]) vol['results'] = [self.resource.get_replicas()] if self.kind == 'rc': # The resource returned from a query could be an rc or dc. # pylint: disable=redefined-variable-type self.resource = ReplicationController(content=vol['results'][0]) vol['results'] = [self.resource.get_replicas()] return vol def put(self): '''update replicas into dc ''' self.resource.update_replicas(self.replicas) return self._replace_content(self.kind, self.name, self.resource.yaml_dict) def needs_update(self): ''' verify whether an update is needed ''' return self.resource.needs_update_replicas(self.replicas) # pylint: disable=too-many-return-statements @staticmethod def run_ansible(params, check_mode): '''perform the idempotent ansible logic''' oc_scale = OCScale(params['name'], params['namespace'], params['replicas'], params['kind'], params['kubeconfig'], verbose=params['debug']) state = params['state'] api_rval = oc_scale.get() if api_rval['returncode'] != 0: return {'failed': True, 'msg': api_rval} ##### # Get ##### if state == 'list': return {'changed': False, 'result': api_rval['results'], 'state': 'list'} # noqa: E501 elif state == 'present': ######## # Update ######## if oc_scale.needs_update(): if check_mode: return {'changed': True, 'result': 'CHECK_MODE: Would have updated.'} # noqa: E501 api_rval = oc_scale.put() if api_rval['returncode'] != 0: return {'failed': True, 'msg': api_rval} # return the created object api_rval = oc_scale.get() if api_rval['returncode'] != 0: return {'failed': True, 'msg': api_rval} return {'changed': True, 'result': api_rval['results'], 'state': 'present'} # noqa: E501 return {'changed': False, 'result': api_rval['results'], 'state': 'present'} # noqa: E501 return {'failed': True, 'msg': 'Unknown state passed. [{}]'.format(state)}
35.165138
105
0.535351
f69b1523343f2156fd65e3d66d3463d85a8cbdf4
1,705
py
Python
gmaltapi/server.py
gmalt/api
c3d35c87564d21f8b7cd061923c155073b467d3d
[ "MIT" ]
null
null
null
gmaltapi/server.py
gmalt/api
c3d35c87564d21f8b7cd061923c155073b467d3d
[ "MIT" ]
null
null
null
gmaltapi/server.py
gmalt/api
c3d35c87564d21f8b7cd061923c155073b467d3d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # (c) 2017 Jonathan Bouzekri # # This file is part of the gmalt application # # MIT License : # https://raw.githubusercontent.com/gmalt/api/master/LICENSE.txt """ Provide a gevent server to serve gmalt API """ from gevent.pywsgi import WSGIServer class GmaltServer(WSGIServer): """ A gevent webserver API to request elevation data :param handler: the handler instance to load elevation data from latitude and longitude :type handler: :class:`gmaltapi.handlers.files.Handler` or any class implementing the `get_altitude` method :param str host: host or ip binded to :param int port: port binded to :param str cors: optional CORS domains to enable CORS headers """ spec = { 'handler': 'string(default="file")', 'host': 'string(default="localhost")', 'port': 'integer(default=8088)', 'cors': 'string(default=None)', 'pool_size': 'integer(default=None)' } def __init__(self, handler, host, port, cors=None, **kwargs): pool_size = kwargs.pop('pool_size') or 'default' super(GmaltServer, self).__init__((host, port), self._build_wsgi(handler, cors), spawn=pool_size, **kwargs) def _build_wsgi(self, handler, cors): if cors: from wsgicors import CORS handler = CORS(handler, methods="GET, OPTIONS, POST", origin=cors) return handler def serve_forever(self, stop_timeout=None): """ Start the server """ print('Serving on %s:%d' % self.address) super(GmaltServer, self).serve_forever(stop_timeout=stop_timeout)
33.431373
78
0.62346
f0c6a443bc4623e19ce3a7ff0f1ed990870734da
3,053
py
Python
imagepy/menus/Plugins/StackReg/stackreg_plgs.py
BioinfoTongLI/imagepy
b86f33f20e872ee8b86471a9ddfbd5ad064fd64d
[ "BSD-4-Clause" ]
2
2019-08-15T06:19:18.000Z
2021-10-09T15:51:57.000Z
imagepy/menus/Plugins/StackReg/stackreg_plgs.py
BioinfoTongLI/imagepy
b86f33f20e872ee8b86471a9ddfbd5ad064fd64d
[ "BSD-4-Clause" ]
null
null
null
imagepy/menus/Plugins/StackReg/stackreg_plgs.py
BioinfoTongLI/imagepy
b86f33f20e872ee8b86471a9ddfbd5ad064fd64d
[ "BSD-4-Clause" ]
null
null
null
from imagepy.core.engine import Filter, Simple from imagepy import IPy from pystackreg import StackReg import numpy as np import pandas as pd from skimage import transform as tf import scipy.ndimage as ndimg from imagepy.core.manager import TableManager class Register(Simple): title = 'Stack Register' note = ['8-bit', '16-bit', 'int', 'float', 'stack'] para = {'trans':'RIGID_BODY', 'ref':'previous', 'tab':False, 'new':'Inplace', 'diag':0, 'sigma':0} view = [(list, 'trans', ['TRANSLATION', 'RIGID_BODY', 'SCALED_ROTATION', 'AFFINE', 'BILINEAR'], str, 'transform', ''), (list, 'ref', ['previous', 'first', 'mean'], str, 'reference', ''), (list, 'new', ['Inplace', 'New', 'None'], str, 'image', ''), (int, 'diag', (0, 2048), 0, 'diagonal', 'scale'), (float, 'sigma', (0,30), 1, 'sigma', 'blur'), (bool, 'tab', 'show table')] def run(self, ips, imgs, para = None): k = para['diag']/np.sqrt((np.array(ips.img.shape)**2).sum()) size = tuple((np.array(ips.img.shape)*k).astype(np.int16)) IPy.set_info('down sample...') news = [] for img in imgs: if k!=0: img = tf.resize(img, size) if para['sigma']!=0: img = ndimg.gaussian_filter(img, para['sigma']) news.append(img) IPy.set_info('register...') sr = StackReg(eval('StackReg.%s'%para['trans'])) sr.register_stack(np.array(news), reference=para['ref']) mats = sr._tmats.reshape((sr._tmats.shape[0],-1)) if k!=0: mats[:,[0,1,3,4,6,7]] *= k if k!=0: mats[:,[0,1,2,3,4,5]] /= k if para['tab']: IPy.show_table(pd.DataFrame( mats, columns=['A%d'%(i+1) for i in range(mats.shape[1])]), title='%s-Tmats'%ips.title) if para['new'] == 'None': return IPy.set_info('transform...') for i in range(sr._tmats.shape[0]): tform = tf.ProjectiveTransform(matrix=sr._tmats[i]) img = tf.warp(imgs[i], tform) img -= imgs[i].min(); img *= imgs[i].max() - imgs[i].min() if para['new'] == 'Inplace': imgs[i][:] = img if para['new'] == 'New': news[i] = img.astype(ips.img.dtype) self.progress(i, len(imgs)) if para['new'] == 'New': IPy.show_img(news, '%s-reg'%ips.title) class Transform(Simple): title = 'Register By Mats' note = ['all'] para = {'mat':None, 'new':True} view = [('tab', 'mat', 'transfrom', 'matrix'), (bool, 'new', 'new image')] def run(self, ips, imgs, para = None): mats = TableManager.get(para['mat']).data.values if len(imgs) != len(mats): IPy.alert('image stack must has the same length as transfrom mats!') return newimgs = [] img = np.zeros_like(ips.img, dtype=np.float64) for i in range(len(mats)): tform = tf.ProjectiveTransform(matrix=mats[i].reshape((3,3))) if imgs[i].ndim==2: img[:] = tf.warp(imgs[i], tform) else: for c in range(img.shape[2]): img[:,:,c] = tf.warp(imgs[i][:,:,c], tform) img -= imgs[i].min(); img *= imgs[i].max() - imgs[i].min() if para['new']: newimgs.append(img.astype(ips.img.dtype)) else: imgs[i] = img self.progress(i, len(mats)) if para['new']: IPy.show_img(newimgs, '%s-trans'%ips.title) plgs = [Register, Transform]
36.783133
120
0.612512
c176790393a1db4945c3d6a00cb554486ac76838
13,102
py
Python
cf_api/deploy_space.py
hsdp/python-cf-api
13fc605e2ea3b5c09cc8a556c58e8c36ae290c8c
[ "Apache-2.0" ]
20
2018-01-19T20:19:02.000Z
2020-06-09T08:45:40.000Z
cf_api/deploy_space.py
hsdp/python-cf-api
13fc605e2ea3b5c09cc8a556c58e8c36ae290c8c
[ "Apache-2.0" ]
4
2018-01-20T00:24:27.000Z
2020-03-16T01:26:27.000Z
cf_api/deploy_space.py
hsdp/python-cf-api
13fc605e2ea3b5c09cc8a556c58e8c36ae290c8c
[ "Apache-2.0" ]
3
2020-02-19T22:56:50.000Z
2021-05-12T19:38:33.000Z
from __future__ import print_function import json from . import deploy_manifest from . import deploy_service from . import exceptions as exc class Space(object): """This class provides support for working with a particular space. It mainly provides convenience functions for deploying, fetching, and destroying the space, apps, and services. """ _org = None _space = None _space_name = None _debug = False def __init__(self, cc, org_name=None, org_guid=None, space_name=None, space_guid=None, is_debug=None): self.cc = cc if space_guid: self.set_space_guid(space_guid) elif org_guid: self.set_org_guid(org_guid) elif org_name and space_name: self.set_org(org_name).set_space(space_name) elif org_name: self.set_org(org_name) if is_debug is not None: self.set_debug(is_debug) @property def space(self): """Returns the currently set space """ if not self._space: if not self._space_name: raise exc.InvalidStateException('Space is not set.', 500) else: self.set_space(self._space_name) return self._space @property def org(self): """Returns the currently set org """ if not self._org: raise exc.InvalidStateException('Org is not set.', 500) return self._org def set_org(self, org_name): """Sets the organization name for this space Args: org_name (str): name of the organization Returns: space (Space): self """ res = self.cc.organizations().get_by_name(org_name) self._org = res.resource if self._org is None: raise exc.InvalidStateException('Org not found.', 404) return self def set_space(self, space_name): """Sets the space name Args: space_name (str): name of the space Returns: space (Space): self """ if not self._org: raise exc.InvalidStateException( 'Org is required to set the space name.', 500) res = self.cc.request(self._org.spaces_url).get_by_name(space_name) self._space = res.resource self._space_name = space_name return self def set_org_guid(self, org_guid): """Sets and loads the organization by the given GUID """ res = self.cc.organizations(org_guid).get() self._org = res.resource return self def set_space_guid(self, space_guid): """Sets the GUID of the space to be used in this deployment Args: space_guid (str): guid of the space Returns: self (Space) """ res = self.cc.spaces(space_guid).get() self._space = res.resource res = self.cc.request(self._space.organization_url).get() self._org = res.resource return self def set_debug(self, debug): """Sets a debug flag on whether this client should print debug messages Args: debug (bool) Returns: self (Space) """ self._debug = debug return self def request(self, *urls): """Creates a request object with a base url (i.e. /v2/spaces/<id>) """ return self.cc.request(self._space['metadata']['url'], *urls) def create(self, **params): """Creates the space Keyword Args: params: HTTP body args for the space create endpoint """ if not self._space: res = self.cc.spaces().set_params( name=self._space_name, organization_guid=self._org.guid, **params ).post() self._space = res.resource return self._space def destroy(self, destroy_routes=False): """Destroys the space, and, optionally, any residual routes existing in the space. Keyword Args: destroy_routes (bool): indicates if to destroy routes """ if not self._space: raise exc.InvalidStateException( 'No space specified. Can\'t destroy.', 500) route_results = [] if destroy_routes: for r in self.get_routes(): res = self.cc.routes(r.guid).delete() route_results.append(res.data) res = self.cc.spaces(self._space.guid).delete() self._space = None return res.resource, route_results def get_deploy_manifest(self, manifest_filename): """Parses the manifest deployment list and sets the org and space to be used in deployment. """ self._assert_space() app_deploys = deploy_manifest.Deploy\ .parse_manifest(manifest_filename, self.cc) return [d.set_org_and_space_dicts(self._org, self._space) .set_debug(self._debug) for d in app_deploys] def get_deploy_service(self): """Returns a service deployment client with the org and space to be used in deployment. """ self._assert_space() return deploy_service.DeployService(self.cc)\ .set_debug(self._debug)\ .set_org_and_space_dicts(self._org, self._space) def deploy_manifest(self, manifest_filename, **kwargs): """Deploys all apps in the given app manifest into this space. Args: manifest_filename (str): app manifest filename to be deployed """ return [m.push(**kwargs) for m in self.get_deploy_manifest(manifest_filename)] def wait_manifest(self, manifest_filename, interval=20, timeout=300, tailing=False): """Waits for an app to start given a manifest filename. Args: manifest_filename (str): app manifest filename to be waited on Keyword Args: interval (int): how often to check if the app has started timeout (int): how long to wait for the app to start """ app_deploys = self.get_deploy_manifest(manifest_filename) deploy_manifest.Deploy.wait_for_apps_start( app_deploys, interval, timeout, tailing=tailing) def destroy_manifest(self, manifest_filename, destroy_routes=False): """Destroys all apps in the given app manifest in this space. Args: manifest_filename (str): app manifest filename to be destroyed Keyword Args: destroy_routes (bool): indicates whether to destroy routes """ return [m.destroy(destroy_routes) for m in self.get_deploy_manifest(manifest_filename)] def get_blue_green(self, manifest_filename, interval=20, timeout=300, tailing=None, **kwargs): """Parses the manifest and searches for ``app_name``, returning an instance of the BlueGreen deployer object. Args: manifest_filename (str) interval (int) timeout (int) tailing (bool) **kwargs (dict): are passed along to the BlueGreen constructor Returns: list[cf_api.deploy_blue_green.BlueGreen] """ from .deploy_blue_green import BlueGreen if tailing is not None: kwargs['verbose'] = tailing elif 'verbose' not in kwargs: kwargs['verbose'] = self._debug kwargs['wait_kwargs'] = {'interval': interval, 'timeout': timeout} return BlueGreen.parse_manifest(self, manifest_filename, **kwargs) def deploy_blue_green(self, manifest_filename, **kwargs): """Deploys the application from the given manifest using the BlueGreen deployment strategy Args: manifest_filename (str) **kwargs (dict): are passed along to self.get_blue_green Returns: list """ return [m.deploy_app() for m in self.get_blue_green(manifest_filename, **kwargs)] def wait_blue_green(self, manifest_filename, **kwargs): """Waits for the application to start, from the given manifest using the BlueGreen deployment strategy Args: manifest_filename (str) **kwargs (dict): are passed along to self.get_blue_green Returns: list """ return [m.wait_and_cleanup() for m in self.get_blue_green(manifest_filename, **kwargs)] def get_service_instance_by_name(self, name): """Searches the space for a service instance with the name """ res = self.cc.request(self._space.service_instances_url)\ .get_by_name(name) return res.resource def get_app_by_name(self, name): """Searches the space for an app with the name """ res = self.cc.request(self._space.apps_url)\ .get_by_name(name) return res.resource def get_routes(self, host=None): """Searches the space for routes """ req = self.cc.spaces(self._space.guid, 'routes') res = req.get_by_name(host, 'host') if host else req.get() return res.resources def _assert_space(self): if not self._space: raise exc.InvalidStateException('No space is set.', 500) if '__main__' == __name__: import argparse import __init__ as cf_api from getpass import getpass def main(): args = argparse.ArgumentParser( description='This tool performs Cloud Controller API requests ' 'on behalf of a user in a given org/space. It may ' 'be used to look up space specific resources such ' 'as apps and services. It returns only the raw ' 'JSON response from the Cloud Controller.') args.add_argument( '--cloud-controller', dest='cloud_controller', required=True, help='The Cloud Controller API endpoint ' '(excluding leading slashes)') args.add_argument( '-u', '--user', dest='user', required=True, help='The user used to authenticate. This may be omitted ' 'if --client-id and --client-secret have sufficient ' 'authorization to perform the desired request without a ' 'user\'s permission') args.add_argument( '-o', '--org', dest='org', required=True, help='The organization to be accessed') args.add_argument( '-s', '--space', dest='space', required=True, help='The space to be accessed') args.add_argument( '--client-id', dest='client_id', default='cf', help='Used to set a custom client ID') args.add_argument( '--client-secret', dest='client_secret', default='', help='Secret corresponding to --client-id') args.add_argument( '--skip-ssl', dest='skip_ssl', action='store_true', help='Indicates to skip SSL cert verification.') args.add_argument( '--show-org', dest='show_org', action='store_true', help='Indicates to show the organization set in --org/-o') args.add_argument( '--list-all', dest='list_all', action='store_true', help='Indicates to get all pages of resources matching the given ' 'URL') args.add_argument( '--pretty', dest='pretty_print', action='store_true', help='Indicates to pretty-print the resulting JSON') args.add_argument( 'url', nargs='?', help='The URL to be accessed relative to the space URL. This value' ' will be appended to the space URL indicated by -o and -s ' '(i.e. /spaces/<space_guid>/<url>)') args = args.parse_args() cc = cf_api.new_cloud_controller( args.cloud_controller, username=args.user, password=getpass().strip() if args.user is not None else None, client_id=args.client_id, client_secret=args.client_secret, verify_ssl=not args.skip_ssl, init_doppler=True, ) space = Space( cc, org_name=args.org, space_name=args.space, is_debug=True ) dumps_kwargs = {} if args.pretty_print: dumps_kwargs['indent'] = 4 if args.url: req = space.request(args.url) if not args.list_all: return print(req.get().text) else: res = cc.get_all_resources(req) elif args.show_org: res = space.org else: res = space.space return print(json.dumps(res, **dumps_kwargs)) main()
33.594872
79
0.580675
aabd465b870b08d29074ad787f13c2f55c6db4bc
960
py
Python
run.py
thanhbok26b/mujoco-rewards-landscape-visualization
c1a95b38a0ea03468bbbb7ce013eff37ccd67101
[ "MIT" ]
null
null
null
run.py
thanhbok26b/mujoco-rewards-landscape-visualization
c1a95b38a0ea03468bbbb7ce013eff37ccd67101
[ "MIT" ]
null
null
null
run.py
thanhbok26b/mujoco-rewards-landscape-visualization
c1a95b38a0ea03468bbbb7ce013eff37ccd67101
[ "MIT" ]
null
null
null
import os import yaml import pickle from ars import ars from mujoco_parallel import WorkerManager from mujoco_parallel import MujocoParallel, benchmarks results = [] def callback(res): global results results.append(res) def main(): global results config = yaml.load(open('config.yaml').read()) instance = config['instance'] benchmark = benchmarks[instance] if not os.path.exists('data'): os.mkdir('data') if not os.path.exists('data/%s' % instance): os.mkdir('data/%s' % instance) # # Start workers # wm = WorkerManager() # wm.start_redis() # wm.create_workers() # Start master mp = MujocoParallel(benchmark) for i in range(config['repeat']): results = [] ars(mp, config, callback) obj = pickle.dumps(results, protocol=4) with open('data/%s/%d.pkl' % (instance, i), 'wb') as fp: fp.write(obj) if __name__ == '__main__': main()
22.325581
64
0.626042
3c7f90d2f04aa6d69159127b401effc466731f38
1,573
py
Python
back-end/Mechanisms/Blob/MinioBlobMechanism.py
cmillani/SPaaS
5c37f6f6583411c856e2cefa9e94971c472f30b5
[ "MIT" ]
null
null
null
back-end/Mechanisms/Blob/MinioBlobMechanism.py
cmillani/SPaaS
5c37f6f6583411c856e2cefa9e94971c472f30b5
[ "MIT" ]
null
null
null
back-end/Mechanisms/Blob/MinioBlobMechanism.py
cmillani/SPaaS
5c37f6f6583411c856e2cefa9e94971c472f30b5
[ "MIT" ]
null
null
null
from minio import Minio from minio.error import ResponseError from .BlobConfiguration import * import os class BlobFile: def __init__(self, name): self.name = name class MinioBlobMechanism: def __init__(self): self.minioClient = Minio(os.environ['MINIO_ENDPOINT'], access_key=os.environ['MINIO_ACCESS_KEY'], secret_key=os.environ['MINIO_SECRET_KEY'], secure=False) if not self.minioClient.bucket_exists(DataBlob): self.minioClient.make_bucket(DataBlob) if not self.minioClient.bucket_exists(ToolsBlob): self.minioClient.make_bucket(ToolsBlob) if not self.minioClient.bucket_exists(ResultsBlob): self.minioClient.make_bucket(ResultsBlob) def download_blob(self, container_name, blob_name): return self.minioClient.get_object(container_name, blob_name) def get_blob_to_path(self, container_name, blob_name, file_path): self.minioClient.fget_object(container_name, blob_name, file_path) def create_blob_from_path(self, container_name, blob_name, file_path): self.minioClient.fput_object(container_name, blob_name, file_path) def list_blobs(self, container_name): blobObjects = self.minioClient.list_objects(container_name) objects = [BlobFile(blobObject.object_name) for blobObject in blobObjects] return objects def delete_blob(self, container_name, blob_name): self.minioClient.remove_object(container_name, blob_name)
39.325
82
0.702479
29fc30be65d4dab10be644481b5d420770dbcdf8
10,127
py
Python
example/ssd/symbol/legacy_vgg16_ssd_300.py
Vikas-kum/incubator-mxnet
ba02bf2fe2da423caa59ddb3fd5e433b90b730bf
[ "Apache-2.0" ]
399
2017-05-30T05:12:48.000Z
2022-01-29T05:53:08.000Z
example/ssd/symbol/legacy_vgg16_ssd_300.py
Vikas-kum/incubator-mxnet
ba02bf2fe2da423caa59ddb3fd5e433b90b730bf
[ "Apache-2.0" ]
187
2018-03-16T23:44:43.000Z
2021-12-14T21:19:54.000Z
example/ssd/symbol/legacy_vgg16_ssd_300.py
Vikas-kum/incubator-mxnet
ba02bf2fe2da423caa59ddb3fd5e433b90b730bf
[ "Apache-2.0" ]
107
2017-05-30T05:53:22.000Z
2021-06-24T02:43:31.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx from common import legacy_conv_act_layer from common import multibox_layer def get_symbol_train(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400, **kwargs): """ Single-shot multi-box detection with VGG 16 layers ConvNet This is a modified version, with fc6/fc7 layers replaced by conv layers And the network is slightly smaller than original VGG 16 network This is a training network with losses Parameters: ---------- num_classes: int number of object classes not including background nms_thresh : float non-maximum suppression threshold force_suppress : boolean whether suppress different class objects nms_topk : int apply NMS to top K detections Returns: ---------- mx.Symbol """ data = mx.symbol.Variable(name="data") label = mx.symbol.Variable(name="label") # group 1 conv1_1 = mx.symbol.Convolution( data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1") relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1") conv1_2 = mx.symbol.Convolution( data=relu1_1, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_2") relu1_2 = mx.symbol.Activation(data=conv1_2, act_type="relu", name="relu1_2") pool1 = mx.symbol.Pooling( data=relu1_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool1") # group 2 conv2_1 = mx.symbol.Convolution( data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1") relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1") conv2_2 = mx.symbol.Convolution( data=relu2_1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_2") relu2_2 = mx.symbol.Activation(data=conv2_2, act_type="relu", name="relu2_2") pool2 = mx.symbol.Pooling( data=relu2_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool2") # group 3 conv3_1 = mx.symbol.Convolution( data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1") relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1") conv3_2 = mx.symbol.Convolution( data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2") relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2") conv3_3 = mx.symbol.Convolution( data=relu3_2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_3") relu3_3 = mx.symbol.Activation(data=conv3_3, act_type="relu", name="relu3_3") pool3 = mx.symbol.Pooling( data=relu3_3, pool_type="max", kernel=(2, 2), stride=(2, 2), \ pooling_convention="full", name="pool3") # group 4 conv4_1 = mx.symbol.Convolution( data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1") relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1") conv4_2 = mx.symbol.Convolution( data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2") relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2") conv4_3 = mx.symbol.Convolution( data=relu4_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_3") relu4_3 = mx.symbol.Activation(data=conv4_3, act_type="relu", name="relu4_3") pool4 = mx.symbol.Pooling( data=relu4_3, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool4") # group 5 conv5_1 = mx.symbol.Convolution( data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1") relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1") conv5_2 = mx.symbol.Convolution( data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2") relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="relu5_2") conv5_3 = mx.symbol.Convolution( data=relu5_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_3") relu5_3 = mx.symbol.Activation(data=conv5_3, act_type="relu", name="relu5_3") pool5 = mx.symbol.Pooling( data=relu5_3, pool_type="max", kernel=(3, 3), stride=(1, 1), pad=(1,1), name="pool5") # group 6 conv6 = mx.symbol.Convolution( data=pool5, kernel=(3, 3), pad=(6, 6), dilate=(6, 6), num_filter=1024, name="conv6") relu6 = mx.symbol.Activation(data=conv6, act_type="relu", name="relu6") # drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6") # group 7 conv7 = mx.symbol.Convolution( data=relu6, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="conv7") relu7 = mx.symbol.Activation(data=conv7, act_type="relu", name="relu7") # drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7") ### ssd extra layers ### conv8_1, relu8_1 = legacy_conv_act_layer(relu7, "8_1", 256, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv8_2, relu8_2 = legacy_conv_act_layer(relu8_1, "8_2", 512, kernel=(3,3), pad=(1,1), \ stride=(2,2), act_type="relu", use_batchnorm=False) conv9_1, relu9_1 = legacy_conv_act_layer(relu8_2, "9_1", 128, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv9_2, relu9_2 = legacy_conv_act_layer(relu9_1, "9_2", 256, kernel=(3,3), pad=(1,1), \ stride=(2,2), act_type="relu", use_batchnorm=False) conv10_1, relu10_1 = legacy_conv_act_layer(relu9_2, "10_1", 128, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv10_2, relu10_2 = legacy_conv_act_layer(relu10_1, "10_2", 256, kernel=(3,3), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv11_1, relu11_1 = legacy_conv_act_layer(relu10_2, "11_1", 128, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv11_2, relu11_2 = legacy_conv_act_layer(relu11_1, "11_2", 256, kernel=(3,3), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) # specific parameters for VGG16 network from_layers = [relu4_3, relu7, relu8_2, relu9_2, relu10_2, relu11_2] sizes = [[.1, .141], [.2,.272], [.37, .447], [.54, .619], [.71, .79], [.88, .961]] ratios = [[1,2,.5], [1,2,.5,3,1./3], [1,2,.5,3,1./3], [1,2,.5,3,1./3], \ [1,2,.5], [1,2,.5]] normalizations = [20, -1, -1, -1, -1, -1] steps = [ x / 300.0 for x in [8, 16, 32, 64, 100, 300]] num_channels = [512] loc_preds, cls_preds, anchor_boxes = multibox_layer(from_layers, \ num_classes, sizes=sizes, ratios=ratios, normalization=normalizations, \ num_channels=num_channels, clip=False, interm_layer=0, steps=steps) tmp = mx.symbol.contrib.MultiBoxTarget( *[anchor_boxes, label, cls_preds], overlap_threshold=.5, \ ignore_label=-1, negative_mining_ratio=3, minimum_negative_samples=0, \ negative_mining_thresh=.5, variances=(0.1, 0.1, 0.2, 0.2), name="multibox_target") loc_target = tmp[0] loc_target_mask = tmp[1] cls_target = tmp[2] cls_prob = mx.symbol.SoftmaxOutput(data=cls_preds, label=cls_target, \ ignore_label=-1, use_ignore=True, grad_scale=1., multi_output=True, \ normalization='valid', name="cls_prob") loc_loss_ = mx.symbol.smooth_l1(name="loc_loss_", \ data=loc_target_mask * (loc_preds - loc_target), scalar=1.0) loc_loss = mx.symbol.MakeLoss(loc_loss_, grad_scale=1., \ normalization='valid', name="loc_loss") # monitoring training status cls_label = mx.symbol.MakeLoss(data=cls_target, grad_scale=0, name="cls_label") det = mx.symbol.contrib.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \ name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress, variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk) det = mx.symbol.MakeLoss(data=det, grad_scale=0, name="det_out") # group output out = mx.symbol.Group([cls_prob, loc_loss, cls_label, det]) return out def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400, **kwargs): """ Single-shot multi-box detection with VGG 16 layers ConvNet This is a modified version, with fc6/fc7 layers replaced by conv layers And the network is slightly smaller than original VGG 16 network This is the detection network Parameters: ---------- num_classes: int number of object classes not including background nms_thresh : float threshold of overlap for non-maximum suppression force_suppress : boolean whether suppress different class objects nms_topk : int apply NMS to top K detections Returns: ---------- mx.Symbol """ net = get_symbol_train(num_classes) cls_preds = net.get_internals()["multibox_cls_pred_output"] loc_preds = net.get_internals()["multibox_loc_pred_output"] anchor_boxes = net.get_internals()["multibox_anchors_output"] cls_prob = mx.symbol.SoftmaxActivation(data=cls_preds, mode='channel', \ name='cls_prob') out = mx.symbol.contrib.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \ name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress, variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk) return out
48.454545
96
0.663079
9990339ad0266bf222265cf46651bfb024921aed
265
py
Python
frappe_training/frappe_training/doctype/salary_detail/salary_detail.py
sivaranjanipalanivel/training
b177c56a319c07dc3467ce3113e332ecee9b81fa
[ "MIT" ]
null
null
null
frappe_training/frappe_training/doctype/salary_detail/salary_detail.py
sivaranjanipalanivel/training
b177c56a319c07dc3467ce3113e332ecee9b81fa
[ "MIT" ]
null
null
null
frappe_training/frappe_training/doctype/salary_detail/salary_detail.py
sivaranjanipalanivel/training
b177c56a319c07dc3467ce3113e332ecee9b81fa
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, valiantsystems and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class SalaryDetail(Document): pass
24.090909
53
0.781132
7abf12cb436fed17e9bd170452989d83f41f56eb
395
py
Python
QACTPBeeBroker/sub.py
kmmao/QACTPBeeBroker
2a39a06a1912aec041c45dc6577d017e5e637e34
[ "MIT" ]
16
2019-07-03T05:56:27.000Z
2022-03-30T10:15:43.000Z
QACTPBeeBroker/sub.py
kmmao/QACTPBeeBroker
2a39a06a1912aec041c45dc6577d017e5e637e34
[ "MIT" ]
3
2019-09-14T05:33:05.000Z
2020-07-16T01:10:52.000Z
QACTPBeeBroker/sub.py
kmmao/QACTPBeeBroker
2a39a06a1912aec041c45dc6577d017e5e637e34
[ "MIT" ]
13
2019-07-07T18:16:07.000Z
2022-03-26T15:59:33.000Z
from QAPUBSUB.consumer import subscriber_routing from QACTPBeeBroker.setting import eventmq_ip import click @click.command() @click.option('--code', default='rb1910') def sub(code): x = subscriber_routing(host=eventmq_ip, exchange='CTPX', routing_key=code) import json def callback(a, b, c, data): print(json.loads(data)) x.callback = callback x.start() sub()
18.809524
78
0.703797
3e1d757dca44efb2b66f71eef989b3f87132b34b
5,938
py
Python
toontown/ai/NewsManagerAI.py
LittleNed/toontown-stride
1252a8f9a8816c1810106006d09c8bdfe6ad1e57
[ "Apache-2.0" ]
3
2020-01-02T08:43:36.000Z
2020-07-05T08:59:02.000Z
toontown/ai/NewsManagerAI.py
NoraTT/Historical-Commits-Project-Altis-Source
fe88e6d07edf418f7de6ad5b3d9ecb3d0d285179
[ "Apache-2.0" ]
null
null
null
toontown/ai/NewsManagerAI.py
NoraTT/Historical-Commits-Project-Altis-Source
fe88e6d07edf418f7de6ad5b3d9ecb3d0d285179
[ "Apache-2.0" ]
4
2019-06-20T23:45:23.000Z
2020-10-14T20:30:15.000Z
from direct.directnotify.DirectNotifyGlobal import directNotify from direct.distributed.DistributedObjectAI import DistributedObjectAI from toontown.toonbase import ToontownGlobals from otp.ai.MagicWordGlobal import * from HolidayGlobals import * class NewsManagerAI(DistributedObjectAI): notify = directNotify.newCategory('NewsManagerAI') def __init__(self, air): DistributedObjectAI.__init__(self, air) self.air = air self.holidayList = [] self.weeklyHolidays = WEEKLY_HOLIDAYS self.yearlyHolidays = YEARLY_HOLIDAYS self.oncelyHolidays = ONCELY_HOLIDAYS def announceGenerate(self): DistributedObjectAI.announceGenerate(self) self.accept('avatarEntered', self.__handleAvatarEntered) def __handleAvatarEntered(self, avatar): if self.air.suitInvasionManager.getInvading(): self.air.suitInvasionManager.notifyInvasionBulletin(avatar.getDoId()) if self.air.holidayManager.isHolidayRunning(MORE_XP_HOLIDAY): self.sendUpdateToAvatarId(avatar.getDoId(), 'setMoreXpHolidayOngoing', []) if self.air.holidayManager.isHolidayRunning(TROLLEY_HOLIDAY): self.sendUpdateToAvatarId(avatar.getDoId(), 'holidayNotify', []) if self.air.holidayManager.isHolidayRunning(CIRCUIT_RACING_EVENT): self.sendUpdateToAvatarId(avatar.getDoId(), 'startHoliday', [CIRCUIT_RACING_EVENT]) if self.air.holidayManager.isHolidayRunning(HYDRANT_ZERO_HOLIDAY): self.sendUpdateToAvatarId(avatar.getDoId(), 'startHoliday', [HYDRANT_ZERO_HOLIDAY]) def setPopulation(self, todo0): pass def setBingoWin(self, avatar, zoneId): self.sendUpdateToAvatarId(avatar.getDoId(), 'setBingoWin', [zoneId]) def setBingoStart(self): self.sendUpdate('setBingoStart', []) def setBingoOngoing(self): self.sendUpdate('setBingoOngoing', []) def setBingoEnd(self): self.sendUpdate('setBingoEnd', []) def setCircuitRaceStart(self): self.sendUpdate('setCircuitRaceStart', []) def setCircuitRaceOngoing(self): self.sendUpdate('setCircuitRaceOngoing', []) def setCircuitRaceEnd(self): self.sendUpdate('setCircuitRaceEnd', []) def setTrolleyHolidayStart(self): self.sendUpdate('setTrolleyHolidayStart', []) def setTrolleyHolidayOngoing(self): self.sendUpdate('setTrolleyHolidayOngoing', []) def setTrolleyHolidayEnd(self): self.sendUpdate('setTrolleyHolidayEnd', []) def setTrolleyWeekendStart(self): self.sendUpdate('setTrolleyWeekendStart', []) def setTrolleyWeekendOngoing(self): self.sendUpdate('setTrolleyWeekendOngoing', []) def setTrolleyWeekendEnd(self): self.sendUpdate('setTrolleyWeekendEnd', []) def setRoamingTrialerWeekendStart(self): self.sendUpdate('setRoamingTrialerWeekendStart', []) def setRoamingTrialerWeekendOngoing(self): self.sendUpdate('setRoamingTrialerWeekendOngoing', []) def setRoamingTrialerWeekendEnd(self): self.sendUpdate('setRoamingTrialerWeekendEnd', []) def setSellbotNerfHolidayStart(self): self.sendUpdate('setSellbotNerfHolidayStart', []) def setSellbotNerfHolidayEnd(self): self.sendUpdate('setSellbotNerfHolidayEnd', []) def setMoreXpHolidayStart(self): self.sendUpdate('setMoreXpHolidayStart', []) def setMoreXpHolidayOngoing(self): self.sendUpdate('setMoreXpHolidayOngoing', []) def setMoreXpHolidayEnd(self): self.sendUpdate('setMoreXpHolidayEnd', []) def setInvasionStatus(self, msgType, cogType, numRemaining, skeleton): self.sendUpdate('setInvasionStatus', args=[msgType, cogType, numRemaining, skeleton]) def d_setHolidayIdList(self, holidays): self.sendUpdate('setHolidayIdList', holidays) def holidayNotify(self): self.sendUpdate('holidayNotify', []) def d_setWeeklyCalendarHolidays(self, weeklyHolidays): self.sendUpdate('setWeeklyCalendarHolidays', [weeklyHolidays]) def getWeeklyCalendarHolidays(self): return self.weeklyHolidays def d_setYearlyCalendarHolidays(self, yearlyHolidays): self.sendUpdate('setYearlyCalendarHolidays', [yearlyHolidays]) def getYearlyCalendarHolidays(self): return self.yearlyHolidays def setOncelyCalendarHolidays(self, oncelyHolidays): self.sendUpdate('setOncelyCalendarHolidays', [oncelyHolidays]) def getOncelyCalendarHolidays(self): return self.oncelyHolidays def setRelativelyCalendarHolidays(self, relatHolidays): self.sendUpdate('setRelativelyCalendarHolidays', [relatHolidays]) def getRelativelyCalendarHolidays(self): return [] def setMultipleStartHolidays(self, multiHolidays): self.sendUpdate('setMultipleStartHolidays', [multiHolidays]) def getMultipleStartHolidays(self): return [] def sendSystemMessage(self, message, style): self.sendUpdate('sendSystemMessage', [message, style]) def sendSystemMessageToAvatar(self, avatar, message, style): self.sendUpdateToAvatarId(avatar.getDoId(), 'sendSystemMessage', [message, style]) @magicWord(category=CATEGORY_PROGRAMMER, types=[int]) def startHoliday(holidayId): simbase.air.newsManager.setHolidayIdList([holidayId]) return 'Successfully set holiday to %d.' % (holidayId) @magicWord(category=CATEGORY_PROGRAMMER, types=[int]) def addHoliday(holidayId): simbase.air.newsManager.addHolidayId(holidayId) return 'Successfully added holiday %d to ongoing holidays!' % (holidayId) @magicWord(category=CATEGORY_PROGRAMMER, types=[int]) def removeHoliday(holidayId): simbase.air.newsManager.removeHolidayId(holidayId) return 'Successfully removed holiday %d from ongoing holidays!' % (holidayId)
37.1125
95
0.71775
da4faa5eb503d098c6e27c088cc6b050f4156887
24,594
py
Python
tests/checks/mock/test_spark.py
takus/dd-agent
3029873135f0f55c1bcdf3f825691aafca5abf97
[ "BSD-3-Clause" ]
2
2018-01-31T03:50:55.000Z
2018-01-31T03:51:04.000Z
tests/checks/mock/test_spark.py
takus/dd-agent
3029873135f0f55c1bcdf3f825691aafca5abf97
[ "BSD-3-Clause" ]
null
null
null
tests/checks/mock/test_spark.py
takus/dd-agent
3029873135f0f55c1bcdf3f825691aafca5abf97
[ "BSD-3-Clause" ]
null
null
null
# stdlib from urlparse import urljoin # 3rd party import mock import json from tests.checks.common import AgentCheckTest, Fixtures # IDs YARN_APP_ID = 'application_1459362484344_0011' SPARK_APP_ID = 'app_001' CLUSTER_NAME = 'SparkCluster' APP_NAME = 'PySparkShell' # URLs for cluster managers SPARK_APP_URL = 'http://localhost:4040' SPARK_YARN_URL = 'http://localhost:8088' SPARK_MESOS_URL = 'http://localhost:5050' STANDALONE_URL = 'http://localhost:8080' # URL Paths SPARK_REST_PATH = 'api/v1/applications' YARN_APPS_PATH = 'ws/v1/cluster/apps' MESOS_APPS_PATH = 'frameworks' STANDALONE_APPS_PATH = 'json/' STANDALONE_APP_PATH_HTML = 'app/' # Service Check Names SPARK_SERVICE_CHECK = 'spark.application_master.can_connect' YARN_SERVICE_CHECK = 'spark.resource_manager.can_connect' MESOS_SERVICE_CHECK = 'spark.mesos_master.can_connect' STANDALONE_SERVICE_CHECK = 'spark.standalone_master.can_connect' def join_url_dir(url, *args): ''' Join a URL with multiple directories ''' for path in args: url = url.rstrip('/') + '/' url = urljoin(url, path.lstrip('/')) return url # YARN Service URLs YARN_APP_URL = urljoin(SPARK_YARN_URL, YARN_APPS_PATH) + '?states=RUNNING&applicationTypes=SPARK' YARN_SPARK_APP_URL = join_url_dir(SPARK_YARN_URL, 'proxy', YARN_APP_ID, SPARK_REST_PATH) YARN_SPARK_JOB_URL = join_url_dir(SPARK_YARN_URL, 'proxy', YARN_APP_ID, SPARK_REST_PATH, SPARK_APP_ID, 'jobs') YARN_SPARK_STAGE_URL = join_url_dir(SPARK_YARN_URL, 'proxy', YARN_APP_ID, SPARK_REST_PATH, SPARK_APP_ID, 'stages') YARN_SPARK_EXECUTOR_URL = join_url_dir(SPARK_YARN_URL, 'proxy', YARN_APP_ID, SPARK_REST_PATH, SPARK_APP_ID, 'executors') YARN_SPARK_RDD_URL = join_url_dir(SPARK_YARN_URL, 'proxy', YARN_APP_ID, SPARK_REST_PATH, SPARK_APP_ID, 'storage/rdd') # Mesos Service URLs MESOS_APP_URL = urljoin(SPARK_MESOS_URL, MESOS_APPS_PATH) MESOS_SPARK_APP_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH) MESOS_SPARK_JOB_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'jobs') MESOS_SPARK_STAGE_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'stages') MESOS_SPARK_EXECUTOR_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'executors') MESOS_SPARK_RDD_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'storage/rdd') # Spark Standalone Service URLs STANDALONE_APP_URL = urljoin(STANDALONE_URL, STANDALONE_APPS_PATH) STANDALONE_APP_HTML_URL = urljoin(STANDALONE_URL, STANDALONE_APP_PATH_HTML) + '?appId=' + SPARK_APP_ID STANDALONE_SPARK_APP_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH) STANDALONE_SPARK_JOB_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'jobs') STANDALONE_SPARK_STAGE_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'stages') STANDALONE_SPARK_EXECUTOR_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'executors') STANDALONE_SPARK_RDD_URL = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, SPARK_APP_ID, 'storage/rdd') STANDALONE_SPARK_JOB_URL_PRE20 = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, APP_NAME, 'jobs') STANDALONE_SPARK_STAGE_URL_PRE20 = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, APP_NAME, 'stages') STANDALONE_SPARK_EXECUTOR_URL_PRE20 = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, APP_NAME, 'executors') STANDALONE_SPARK_RDD_URL_PRE20 = join_url_dir(SPARK_APP_URL, SPARK_REST_PATH, APP_NAME, 'storage/rdd') def yarn_requests_get_mock(*args, **kwargs): class MockResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code def json(self): return json.loads(self.json_data) def raise_for_status(self): return True if args[0] == YARN_APP_URL: with open(Fixtures.file('yarn_apps'), 'r') as f: body = f.read() return MockResponse(body, 200) elif args[0] == YARN_SPARK_APP_URL: with open(Fixtures.file('spark_apps'), 'r') as f: body = f.read() return MockResponse(body, 200) elif args[0] == YARN_SPARK_JOB_URL: with open(Fixtures.file('job_metrics'), 'r') as f: body = f.read() return MockResponse(body, 200) elif args[0] == YARN_SPARK_STAGE_URL: with open(Fixtures.file('stage_metrics'), 'r') as f: body = f.read() return MockResponse(body, 200) elif args[0] == YARN_SPARK_EXECUTOR_URL: with open(Fixtures.file('executor_metrics'), 'r') as f: body = f.read() return MockResponse(body, 200) elif args[0] == YARN_SPARK_RDD_URL: with open(Fixtures.file('rdd_metrics'), 'r') as f: body = f.read() return MockResponse(body, 200) def mesos_requests_get_mock(*args, **kwargs): class MockMesosResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code def json(self): return json.loads(self.json_data) def raise_for_status(self): return True if args[0] == MESOS_APP_URL: with open(Fixtures.file('mesos_apps'), 'r') as f: body = f.read() return MockMesosResponse(body, 200) elif args[0] == MESOS_SPARK_APP_URL: with open(Fixtures.file('spark_apps'), 'r') as f: body = f.read() return MockMesosResponse(body, 200) elif args[0] == MESOS_SPARK_JOB_URL: with open(Fixtures.file('job_metrics'), 'r') as f: body = f.read() return MockMesosResponse(body, 200) elif args[0] == MESOS_SPARK_STAGE_URL: with open(Fixtures.file('stage_metrics'), 'r') as f: body = f.read() return MockMesosResponse(body, 200) elif args[0] == MESOS_SPARK_EXECUTOR_URL: with open(Fixtures.file('executor_metrics'), 'r') as f: body = f.read() return MockMesosResponse(body, 200) elif args[0] == MESOS_SPARK_RDD_URL: with open(Fixtures.file('rdd_metrics'), 'r') as f: body = f.read() return MockMesosResponse(body, 200) def standalone_requests_get_mock(*args, **kwargs): class MockStandaloneResponse: text = '' def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code self.text = json_data def json(self): return json.loads(self.json_data) def raise_for_status(self): return True if args[0] == STANDALONE_APP_URL: with open(Fixtures.file('spark_standalone_apps'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_APP_HTML_URL: with open(Fixtures.file('spark_standalone_app'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_APP_URL: with open(Fixtures.file('spark_apps'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_JOB_URL: with open(Fixtures.file('job_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_STAGE_URL: with open(Fixtures.file('stage_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_EXECUTOR_URL: with open(Fixtures.file('executor_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_RDD_URL: with open(Fixtures.file('rdd_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) def standalone_requests_pre20_get_mock(*args, **kwargs): class MockStandaloneResponse: text = '' def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code self.text = json_data def json(self): return json.loads(self.json_data) def raise_for_status(self): return True if args[0] == STANDALONE_APP_URL: with open(Fixtures.file('spark_standalone_apps'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_APP_HTML_URL: with open(Fixtures.file('spark_standalone_app'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_APP_URL: with open(Fixtures.file('spark_apps_pre20'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_JOB_URL: return MockStandaloneResponse("{}", 404) elif args[0] == STANDALONE_SPARK_STAGE_URL: return MockStandaloneResponse("{}", 404) elif args[0] == STANDALONE_SPARK_EXECUTOR_URL: return MockStandaloneResponse("{}", 404) elif args[0] == STANDALONE_SPARK_RDD_URL: return MockStandaloneResponse("{}", 404) elif args[0] == STANDALONE_SPARK_JOB_URL_PRE20: with open(Fixtures.file('job_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_STAGE_URL_PRE20: with open(Fixtures.file('stage_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_EXECUTOR_URL_PRE20: with open(Fixtures.file('executor_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) elif args[0] == STANDALONE_SPARK_RDD_URL_PRE20: with open(Fixtures.file('rdd_metrics'), 'r') as f: body = f.read() return MockStandaloneResponse(body, 200) class SparkCheck(AgentCheckTest): CHECK_NAME = 'spark' YARN_CONFIG = { 'spark_url': 'http://localhost:8088', 'cluster_name': CLUSTER_NAME, 'spark_cluster_mode': 'spark_yarn_mode' } MESOS_CONFIG = { 'spark_url': 'http://localhost:5050', 'cluster_name': CLUSTER_NAME, 'spark_cluster_mode': 'spark_mesos_mode' } STANDALONE_CONFIG = { 'spark_url': 'http://localhost:8080', 'cluster_name': CLUSTER_NAME, 'spark_cluster_mode': 'spark_standalone_mode' } STANDALONE_CONFIG_PRE_20 = { 'spark_url': 'http://localhost:8080', 'cluster_name': CLUSTER_NAME, 'spark_cluster_mode': 'spark_standalone_mode', 'spark_pre_20_mode': 'true' } SPARK_JOB_RUNNING_METRIC_VALUES = { 'spark.job.count': 2, 'spark.job.num_tasks': 20, 'spark.job.num_active_tasks': 30, 'spark.job.num_completed_tasks': 40, 'spark.job.num_skipped_tasks': 50, 'spark.job.num_failed_tasks': 60, 'spark.job.num_active_stages': 70, 'spark.job.num_completed_stages': 80, 'spark.job.num_skipped_stages': 90, 'spark.job.num_failed_stages': 100 } SPARK_JOB_RUNNING_METRIC_TAGS = [ 'cluster_name:' + CLUSTER_NAME, 'app_name:' + APP_NAME, 'status:running', ] SPARK_JOB_SUCCEEDED_METRIC_VALUES = { 'spark.job.count': 3, 'spark.job.num_tasks': 1000, 'spark.job.num_active_tasks': 2000, 'spark.job.num_completed_tasks': 3000, 'spark.job.num_skipped_tasks': 4000, 'spark.job.num_failed_tasks': 5000, 'spark.job.num_active_stages': 6000, 'spark.job.num_completed_stages': 7000, 'spark.job.num_skipped_stages': 8000, 'spark.job.num_failed_stages': 9000 } SPARK_JOB_SUCCEEDED_METRIC_TAGS = [ 'cluster_name:' + CLUSTER_NAME, 'app_name:' + APP_NAME, 'status:succeeded', ] SPARK_STAGE_RUNNING_METRIC_VALUES = { 'spark.stage.count': 3, 'spark.stage.num_active_tasks': 3*3, 'spark.stage.num_complete_tasks': 4*3, 'spark.stage.num_failed_tasks': 5*3, 'spark.stage.executor_run_time': 6*3, 'spark.stage.input_bytes': 7*3, 'spark.stage.input_records': 8*3, 'spark.stage.output_bytes': 9*3, 'spark.stage.output_records': 10*3, 'spark.stage.shuffle_read_bytes': 11*3, 'spark.stage.shuffle_read_records': 12*3, 'spark.stage.shuffle_write_bytes': 13*3, 'spark.stage.shuffle_write_records': 14*3, 'spark.stage.memory_bytes_spilled': 15*3, 'spark.stage.disk_bytes_spilled': 16*3, } SPARK_STAGE_RUNNING_METRIC_TAGS = [ 'cluster_name:' + CLUSTER_NAME, 'app_name:' + APP_NAME, 'status:running', ] SPARK_STAGE_COMPLETE_METRIC_VALUES = { 'spark.stage.count': 2, 'spark.stage.num_active_tasks': 100*2, 'spark.stage.num_complete_tasks': 101*2, 'spark.stage.num_failed_tasks': 102*2, 'spark.stage.executor_run_time': 103*2, 'spark.stage.input_bytes': 104*2, 'spark.stage.input_records': 105*2, 'spark.stage.output_bytes': 106*2, 'spark.stage.output_records': 107*2, 'spark.stage.shuffle_read_bytes': 108*2, 'spark.stage.shuffle_read_records': 109*2, 'spark.stage.shuffle_write_bytes': 110*2, 'spark.stage.shuffle_write_records': 111*2, 'spark.stage.memory_bytes_spilled': 112*2, 'spark.stage.disk_bytes_spilled': 113*2, } SPARK_STAGE_COMPLETE_METRIC_TAGS = [ 'cluster_name:' + CLUSTER_NAME, 'app_name:' + APP_NAME, 'status:complete', ] SPARK_DRIVER_METRIC_VALUES = { 'spark.driver.rdd_blocks': 99, 'spark.driver.memory_used': 98, 'spark.driver.disk_used': 97, 'spark.driver.active_tasks': 96, 'spark.driver.failed_tasks': 95, 'spark.driver.completed_tasks': 94, 'spark.driver.total_tasks': 93, 'spark.driver.total_duration': 92, 'spark.driver.total_input_bytes': 91, 'spark.driver.total_shuffle_read': 90, 'spark.driver.total_shuffle_write': 89, 'spark.driver.max_memory': 278019440, } SPARK_EXECUTOR_METRIC_VALUES = { 'spark.executor.count': 2, 'spark.executor.rdd_blocks': 1, 'spark.executor.memory_used': 2, 'spark.executor.disk_used': 3, 'spark.executor.active_tasks': 4, 'spark.executor.failed_tasks': 5, 'spark.executor.completed_tasks': 6, 'spark.executor.total_tasks': 7, 'spark.executor.total_duration': 8, 'spark.executor.total_input_bytes': 9, 'spark.executor.total_shuffle_read': 10, 'spark.executor.total_shuffle_write': 11, 'spark.executor.max_memory': 555755765, } SPARK_RDD_METRIC_VALUES = { 'spark.rdd.count': 1, 'spark.rdd.num_partitions': 2, 'spark.rdd.num_cached_partitions': 2, 'spark.rdd.memory_used': 284, 'spark.rdd.disk_used': 0, } SPARK_METRIC_TAGS = [ 'cluster_name:' + CLUSTER_NAME, 'app_name:' + APP_NAME ] @mock.patch('requests.get', side_effect=yarn_requests_get_mock) def test_yarn(self, mock_requests): config = { 'instances': [self.YARN_CONFIG] } self.run_check(config) # Check the running job metrics for metric, value in self.SPARK_JOB_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_RUNNING_METRIC_TAGS) # Check the succeeded job metrics for metric, value in self.SPARK_JOB_SUCCEEDED_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_SUCCEEDED_METRIC_TAGS) # Check the running stage metrics for metric, value in self.SPARK_STAGE_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_RUNNING_METRIC_TAGS) # Check the complete stage metrics for metric, value in self.SPARK_STAGE_COMPLETE_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_COMPLETE_METRIC_TAGS) # Check the driver metrics for metric, value in self.SPARK_DRIVER_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the executor metrics for metric, value in self.SPARK_EXECUTOR_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the RDD metrics for metric, value in self.SPARK_RDD_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the service tests self.assertServiceCheckOK(YARN_SERVICE_CHECK, tags=['url:http://localhost:8088']) self.assertServiceCheckOK(SPARK_SERVICE_CHECK, tags=['url:http://localhost:8088']) @mock.patch('requests.get', side_effect=mesos_requests_get_mock) def test_mesos(self, mock_requests): config = { 'instances': [self.MESOS_CONFIG] } self.run_check(config) # Check the running job metrics for metric, value in self.SPARK_JOB_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_RUNNING_METRIC_TAGS) # Check the running job metrics for metric, value in self.SPARK_JOB_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_RUNNING_METRIC_TAGS) # Check the succeeded job metrics for metric, value in self.SPARK_JOB_SUCCEEDED_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_SUCCEEDED_METRIC_TAGS) # Check the running stage metrics for metric, value in self.SPARK_STAGE_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_RUNNING_METRIC_TAGS) # Check the complete stage metrics for metric, value in self.SPARK_STAGE_COMPLETE_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_COMPLETE_METRIC_TAGS) # Check the driver metrics for metric, value in self.SPARK_DRIVER_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the executor metrics for metric, value in self.SPARK_EXECUTOR_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the RDD metrics for metric, value in self.SPARK_RDD_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the service tests self.assertServiceCheckOK(MESOS_SERVICE_CHECK, tags=['url:http://localhost:5050']) self.assertServiceCheckOK(SPARK_SERVICE_CHECK, tags=['url:http://localhost:4040']) @mock.patch('requests.get', side_effect=standalone_requests_get_mock) def test_standalone(self, mock_requests): config = { 'instances': [self.STANDALONE_CONFIG] } self.run_check(config) # Check the running job metrics for metric, value in self.SPARK_JOB_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_RUNNING_METRIC_TAGS) # Check the running job metrics for metric, value in self.SPARK_JOB_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_RUNNING_METRIC_TAGS) # Check the succeeded job metrics for metric, value in self.SPARK_JOB_SUCCEEDED_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_SUCCEEDED_METRIC_TAGS) # Check the running stage metrics for metric, value in self.SPARK_STAGE_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_RUNNING_METRIC_TAGS) # Check the complete stage metrics for metric, value in self.SPARK_STAGE_COMPLETE_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_COMPLETE_METRIC_TAGS) # Check the driver metrics for metric, value in self.SPARK_DRIVER_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the executor metrics for metric, value in self.SPARK_EXECUTOR_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the RDD metrics for metric, value in self.SPARK_RDD_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the service tests self.assertServiceCheckOK(STANDALONE_SERVICE_CHECK, tags=['url:http://localhost:8080']) self.assertServiceCheckOK(SPARK_SERVICE_CHECK, tags=['url:http://localhost:4040']) @mock.patch('requests.get', side_effect=standalone_requests_pre20_get_mock) def test_standalone_pre20(self, mock_requests): config = { 'instances': [self.STANDALONE_CONFIG_PRE_20], } self.run_check(config) # Check the running job metrics for metric, value in self.SPARK_JOB_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_RUNNING_METRIC_TAGS) # Check the running job metrics for metric, value in self.SPARK_JOB_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_RUNNING_METRIC_TAGS) # Check the succeeded job metrics for metric, value in self.SPARK_JOB_SUCCEEDED_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_JOB_SUCCEEDED_METRIC_TAGS) # Check the running stage metrics for metric, value in self.SPARK_STAGE_RUNNING_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_RUNNING_METRIC_TAGS) # Check the complete stage metrics for metric, value in self.SPARK_STAGE_COMPLETE_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_STAGE_COMPLETE_METRIC_TAGS) # Check the driver metrics for metric, value in self.SPARK_DRIVER_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the executor metrics for metric, value in self.SPARK_EXECUTOR_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the RDD metrics for metric, value in self.SPARK_RDD_METRIC_VALUES.iteritems(): self.assertMetric(metric, value=value, tags=self.SPARK_METRIC_TAGS) # Check the service tests self.assertServiceCheckOK(STANDALONE_SERVICE_CHECK, tags=['url:http://localhost:8080']) self.assertServiceCheckOK(SPARK_SERVICE_CHECK, tags=['url:http://localhost:4040'])
36.220913
120
0.643938
22417c7c69b368322a756198a093dd15dd5f091f
17,325
py
Python
src/mainWithTensorboard.py
jacobbettencourt/comp766_project
d044d042adfe8c54e88d7f759fe16854cf1bb1a2
[ "MIT" ]
null
null
null
src/mainWithTensorboard.py
jacobbettencourt/comp766_project
d044d042adfe8c54e88d7f759fe16854cf1bb1a2
[ "MIT" ]
null
null
null
src/mainWithTensorboard.py
jacobbettencourt/comp766_project
d044d042adfe8c54e88d7f759fe16854cf1bb1a2
[ "MIT" ]
null
null
null
import argparse import os import random import shutil import time import warnings import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from torch.utils.tensorboard import SummaryWriter model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('-a', '--arch', metavar='ARCH', default='vgg16', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') parser.add_argument('--runsavedir', default='', type=str, metavar='RUNDIR', help='Path to save run information') best_acc1 = 0 def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1 args.gpu = gpu if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() model.fc = nn.Linear(2048,67,bias=True) if not torch.cuda.is_available(): print('using CPU, this will be slow') elif args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) optimizer = torch.optim.Adam(model.parameters())#, args.lr, #momentum=args.momentum, #weight_decay=args.weight_decay) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = 'cuda:{}'.format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ #transforms.RandomResizedCrop(224), transforms.Resize((224,224)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ #transforms.Resize(256), #transforms.CenterCrop(224), transforms.Resize((224,224)), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: validate(val_loader, model, criterion, args) return writer = SummaryWriter('runs/' + args.runsavedir) for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch top1, top5, tLoss = train(train_loader, model, criterion, optimizer, epoch, args) # evaluate on validation set acc1, acc5 = validate(val_loader, model, criterion, args) writer.add_scalar('Top 1 Train', top1, epoch) writer.add_scalar('Top 5 Train', top5, epoch) writer.add_scalar('Training Loss (Average)', tLoss, epoch) writer.add_scalar('Top 1 Val', acc1, epoch) writer.add_scalar('Top 5 Val', acc5, epoch) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'optimizer' : optimizer.state_dict(), }, is_best) writer.close() def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) if torch.cuda.is_available(): target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) return top1.avg, top5.avg, losses.avg def validate(val_loader, model, criterion, args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ') # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) if torch.cuda.is_available(): target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) # TODO: this should also be done with the ProgressMeter print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg, top5.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
38.845291
91
0.60785
6a7f1568f68bedca990378fb64cf5f81bd14e1db
1,430
py
Python
ambulance/signals.py
shubhamkulkarni01/EMSTrack-Django
32ff9ed94a38730c0e9f6385c75060e2d30a930e
[ "MIT", "BSD-3-Clause" ]
2
2020-07-16T01:44:54.000Z
2020-10-25T02:08:47.000Z
ambulance/signals.py
shubhamkulkarni01/EMSTrack-Django
32ff9ed94a38730c0e9f6385c75060e2d30a930e
[ "MIT", "BSD-3-Clause" ]
8
2020-04-20T22:13:56.000Z
2022-02-04T17:50:44.000Z
ambulance/signals.py
shubhamkulkarni01/EMSTrack-Django
32ff9ed94a38730c0e9f6385c75060e2d30a930e
[ "MIT", "BSD-3-Clause" ]
2
2020-07-20T23:39:44.000Z
2022-02-24T00:29:10.000Z
import logging from django.db.models.signals import post_save, m2m_changed from django.dispatch import receiver from django.conf import settings from django.contrib.auth.models import User from django.utils.translation import ugettext_lazy as _ from emstrack.sms import client from .models import Call logger = logging.getLogger(__name__) # Add signal to automatically clear cache when group permissions change @receiver(m2m_changed, sender=Call.sms_notifications.through) def user_groups_changed_handler(sender, instance, action, reverse, model, pk_set, **kwargs): if action == 'post_add' or action == 'post_remove': # get call and users if reverse: # call was added to user call = Call.objects.get(id=pk_set[0]) users = {instance.id} else: # user was added to call call = instance users = [] for id in pk_set: users.append(User.objects.get(id=id)) # create message if action == 'post_add': message = _("You will be notified of updates to") else: # if action == 'post_remove': message = _("You will no longer be notified of updates to") message = "{}:\n* {} {}".format(message, _("Call"), call.to_string()) # notify users for user in users: client.notify_user(user, message)
31.777778
77
0.627273
d9fc0dab844f1705d7ebd633fc775d27b1823175
4,996
py
Python
python/example_code/pinpoint-email/pinpoint_send_email_message_email_api.py
onehitcombo/aws-doc-sdk-examples
03e2e0c5dee75c5decbbb99e849c51417521fd82
[ "Apache-2.0" ]
3
2021-01-19T20:23:17.000Z
2021-01-19T21:38:59.000Z
python/example_code/pinpoint-email/pinpoint_send_email_message_email_api.py
onehitcombo/aws-doc-sdk-examples
03e2e0c5dee75c5decbbb99e849c51417521fd82
[ "Apache-2.0" ]
null
null
null
python/example_code/pinpoint-email/pinpoint_send_email_message_email_api.py
onehitcombo/aws-doc-sdk-examples
03e2e0c5dee75c5decbbb99e849c51417521fd82
[ "Apache-2.0" ]
2
2019-12-27T13:58:00.000Z
2020-05-21T18:35:40.000Z
# Copyright 2010-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # This file is licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # snippet-sourcedescription:[pinpoint_send_email_message_email_api demonstrates how to send a transactional email message by using the SendEmail operation in the Amazon Pinpoint Email API.] # snippet-service:[mobiletargeting] # snippet-keyword:[Python] # snippet-keyword:[Amazon Pinpoint Email API] # snippet-keyword:[Code Sample] # snippet-keyword:[SendEmail] # snippet-sourcetype:[full-example] # snippet-sourcedate:[2019-01-20] # snippet-sourceauthor:[AWS] # snippet-start:[pinpoint.python.pinpoint_send_email_message_email_api.complete] import boto3 from botocore.exceptions import ClientError # The AWS Region that you want to use to send the email. For a list of # AWS Regions where the Amazon Pinpoint Email API is available, see # https://docs.aws.amazon.com/pinpoint-email/latest/APIReference AWS_REGION = "us-west-2" # The "From" address. This address has to be verified in # Amazon Pinpoint in the region you're using to send email. SENDER = "Mary Major <sender@example.com>" # The addresses on the "To" line. If your Amazon Pinpoint account is in # the sandbox, these addresses also have to be verified. TOADDRESSES = ["recipient@example.com"] # CC and BCC addresses. If your account is in the sandbox, these # addresses have to be verified. CCADDRESSES = ["cc_recipient1@example.com", "cc_recipient2@example.com"] BCCADDRESSES = ["bcc_recipient@example.com"] # The configuration set that you want to use to send the email. CONFIGURATION_SET = "ConfigSet" # The subject line of the email. SUBJECT = "Amazon Pinpoint Test (SDK for Python)" # The body of the email for recipients whose email clients don't support HTML # content. BODY_TEXT = """Amazon Pinpoint Test (SDK for Python) ------------------------------------- This email was sent with Amazon Pinpoint using the AWS SDK for Python. For more information, see https:#aws.amazon.com/sdk-for-python/ """ # The body of the email for recipients whose email clients can display HTML # content. BODY_HTML = """<html> <head></head> <body> <h1>Amazon Pinpoint Test (SDK for Python)</h1> <p>This email was sent with <a href='https:#aws.amazon.com/pinpoint/'>Amazon Pinpoint</a> using the <a href='https:#aws.amazon.com/sdk-for-python/'> AWS SDK for Python</a>.</p> </body> </html> """ # The message tags that you want to apply to the email. TAG0 = {'Name': 'key0', 'Value': 'value0'} TAG1 = {'Name': 'key1', 'Value': 'value1'} # The character encoding that you want to use for the subject line and message # body of the email. CHARSET = "UTF-8" # Create a new Pinpoint resource and specify a region. client = boto3.client('pinpoint-email', region_name=AWS_REGION) # Send the email. try: # Create a request to send the email. The request contains all of the # message attributes and content that were defined earlier. response = client.send_email( FromEmailAddress=SENDER, # An object that contains all of the email addresses that you want to # send the message to. You can send a message to up to 50 recipients in # a single call to the API. Destination={ 'ToAddresses': TOADDRESSES, 'CcAddresses': CCADDRESSES, 'BccAddresses': BCCADDRESSES }, # The body of the email message. Content={ # Create a new Simple message. If you need to include attachments, # you should send a RawMessage instead. 'Simple': { 'Subject': { 'Charset': CHARSET, 'Data': SUBJECT, }, 'Body': { 'Html': { 'Charset': CHARSET, 'Data': BODY_HTML }, 'Text': { 'Charset': CHARSET, 'Data': BODY_TEXT, } } } }, # The configuration set that you want to use when you send this message. ConfigurationSetName=CONFIGURATION_SET, EmailTags=[ TAG0, TAG1 ] ) # Display an error if something goes wrong. except ClientError as e: print("The message wasn't sent. Error message: \"" + e.response['Error']['Message'] + "\"") else: print("Email sent!") print("Message ID: " + response['MessageId']) # snippet-end:[pinpoint.python.pinpoint_send_email_message_email_api.complete]
37.007407
189
0.658527
7a60d990f253eacb755ab5f85b43467cb4bd1282
5,339
py
Python
pygmt/src/grdfilter.py
ankitdobhal/pygmt
88fafa5af57d2b182e0dbac7017912f2d8cabfa0
[ "BSD-3-Clause" ]
null
null
null
pygmt/src/grdfilter.py
ankitdobhal/pygmt
88fafa5af57d2b182e0dbac7017912f2d8cabfa0
[ "BSD-3-Clause" ]
null
null
null
pygmt/src/grdfilter.py
ankitdobhal/pygmt
88fafa5af57d2b182e0dbac7017912f2d8cabfa0
[ "BSD-3-Clause" ]
null
null
null
""" grdfilter - Filter a grid in the space (or time) domain. """ import xarray as xr from pygmt.clib import Session from pygmt.helpers import ( GMTTempFile, build_arg_string, fmt_docstring, kwargs_to_strings, use_alias, ) @fmt_docstring @use_alias( D="distance", F="filter", G="outgrid", I="spacing", N="nans", R="region", T="toggle", V="verbose", f="coltypes", ) @kwargs_to_strings(R="sequence") def grdfilter(grid, **kwargs): r""" Filter a grid in the space (or time) domain. Filter a grid file in the time domain using one of the selected convolution or non-convolution isotropic or rectangular filters and compute distances using Cartesian or Spherical geometries. The output grid file can optionally be generated as a sub-region of the input (via ``region``) and/or with new increment (via ``spacing``) or registration (via ``toggle``). In this way, one may have "extra space" in the input data so that the edges will not be used and the output can be within one half-width of the input edges. If the filter is low-pass, then the output may be less frequently sampled than the input. Full option list at :gmt-docs:`grdfilter.html` {aliases} Parameters ---------- grid : str or xarray.DataArray The file name of the input grid or the grid loaded as a DataArray. outgrid : str or None The name of the output netCDF file with extension .nc to store the grid in. filter : str **b**\|\ **c**\|\ **g**\|\ **o**\|\ **m**\|\ **p**\|\ **h**\ *xwidth*\ [/*width2*\][*modifiers*]. Name of filter type you which to apply, followed by the width: b: Box Car c: Cosine Arch g: Gaussian o: Operator m: Median p: Maximum Likelihood probability h: histogram distance : str Distance *flag* tells how grid (x,y) relates to filter width as follows: p: grid (px,py) with *width* an odd number of pixels; Cartesian distances. 0: grid (x,y) same units as *width*, Cartesian distances. 1: grid (x,y) in degrees, *width* in kilometers, Cartesian distances. 2: grid (x,y) in degrees, *width* in km, dx scaled by cos(middle y), Cartesian distances. The above options are fastest because they allow weight matrix to be computed only once. The next three options are slower because they recompute weights for each latitude. 3: grid (x,y) in degrees, *width* in km, dx scaled by cosine(y), Cartesian distance calculation. 4: grid (x,y) in degrees, *width* in km, Spherical distance calculation. 5: grid (x,y) in Mercator ``projection='m1'`` img units, *width* in km, Spherical distance calculation. spacing : str *xinc*\[\ *unit*\][**+e**\|\ **n**] [/*yinc*\ [*unit*][**+e**\|\ **n**]]. *xinc* [and optionally *yinc*] is the grid spacing. nans : str or float **i**\|\ **p**\|\ **r**. Determine how NaN-values in the input grid affects the filtered output. {R} toggle : bool Toggle the node registration for the output grid so as to become the opposite of the input grid. [Default gives the same registration as the input grid]. {V} {f} Returns ------- ret: xarray.DataArray or None Return type depends on whether the ``outgrid`` parameter is set: - :class:`xarray.DataArray` if ``outgrid`` is not set - None if ``outgrid`` is set (grid output will be stored in file set by ``outgrid``) Examples -------- >>> import os >>> import pygmt >>> # Apply a filter of 600km (full width) to the @earth_relief_30m file >>> # and return a filtered field (saved as netcdf) >>> pygmt.grdfilter( ... grid="@earth_relief_30m", ... filter="m600", ... distance="4", ... region=[150, 250, 10, 40], ... spacing=0.5, ... outgrid="filtered_pacific.nc", ... ) >>> os.remove("filtered_pacific.nc") # cleanup file >>> # Apply a gaussian smoothing filter of 600 km in the input data array, >>> # and returns a filtered data array with the smoothed field. >>> grid = pygmt.datasets.load_earth_relief() >>> smooth_field = pygmt.grdfilter(grid=grid, filter="g600", distance="4") """ with GMTTempFile(suffix=".nc") as tmpfile: with Session() as lib: file_context = lib.virtualfile_from_data(check_kind="raster", data=grid) with file_context as infile: if "G" not in kwargs.keys(): # if outgrid is unset, output to tempfile kwargs.update({"G": tmpfile.name}) outgrid = kwargs["G"] arg_str = " ".join([infile, build_arg_string(kwargs)]) lib.call_module("grdfilter", arg_str) if outgrid == tmpfile.name: # if user did not set outgrid, return DataArray with xr.open_dataarray(outgrid) as dataarray: result = dataarray.load() _ = result.gmt # load GMTDataArray accessor information else: result = None # if user sets an outgrid, return None return result
32.754601
87
0.601985
702b40da6a798544a1a847793ad4e5d6d99ace52
4,861
py
Python
userbot/utils/pastebin.py
tofikdn/Man-Userbot
1ba63b30a42332b64fb3e2d1ac41c5db744846d2
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2021-08-16T13:10:59.000Z
2021-08-16T13:10:59.000Z
userbot/utils/pastebin.py
tofikdn/Man-Userbot
1ba63b30a42332b64fb3e2d1ac41c5db744846d2
[ "Naumen", "Condor-1.1", "MS-PL" ]
23
2021-08-20T16:50:46.000Z
2022-01-14T19:05:00.000Z
userbot/utils/pastebin.py
tofikdn/Man-Userbot
1ba63b30a42332b64fb3e2d1ac41c5db744846d2
[ "Naumen", "Condor-1.1", "MS-PL" ]
8
2021-08-16T13:11:14.000Z
2022-03-15T13:27:39.000Z
import re import aiohttp from aiohttp.client_exceptions import ClientConnectorError class PasteBin: DOGBIN_URL = "https://del.dog/" HASTEBIN_URL = "https://www.toptal.com/developers/hastebin/" NEKOBIN_URL = "https://nekobin.com/" KATBIN_URL = "https://katb.in/" _dkey = _hkey = _nkey = _kkey = retry = None service_match = {"-d": "dogbin", "-n": "nekobin", "-h": "hastebin", "-k": "katbin"} def __init__(self, data: str = None): self.http = aiohttp.ClientSession() self.data = data self.retries = 4 def __bool__(self): return bool(self._dkey or self._nkey or self._hkey or self._kkey) async def __aenter__(self): return self async def __aexit__(self, exc_type, exc, tb): await self.close() async def close(self): await self.http.close() async def __call__(self, service="dogbin"): if service == "dogbin": await self._post_dogbin() elif service == "nekobin": await self._post_nekobin() elif service == "hastebin": await self._post_hastebin() elif service == "katbin": await self._post_katbin() else: raise KeyError(f"Unknown service input: {service}") async def _get_katbin_token(self): token = None async with self.http.get(self.KATBIN_URL) as req: if req.status != 200: return token content = await req.text() for i in re.finditer(r'name="_csrf_token".+value="(.+)"', content): token = i.group(1) break return token async def _post_dogbin(self): if self._dkey: return try: async with self.http.post( self.DOGBIN_URL + "documents", data=self.data.encode("utf-8") ) as req: if req.status == 200: res = await req.json() self._dkey = res["key"] else: self.retry = "nekobin" except ClientConnectorError: self.retry = "nekobin" async def _post_nekobin(self): if self._nkey: return try: async with self.http.post( self.NEKOBIN_URL + "api/documents", json={"content": self.data} ) as req: if req.status == 201: res = await req.json() self._nkey = res["result"]["key"] else: self.retry = "hastebin" except ClientConnectorError: self.retry = "hastebin" async def _post_hastebin(self): if self._hkey: return try: async with self.http.post( self.HASTEBIN_URL + "documents", data=self.data.encode("utf-8") ) as req: if req.status == 200: res = await req.json() self._hkey = res["key"] else: self.retry = "katbin" except ClientConnectorError: self.retry = "katbin" async def _post_katbin(self): if self._kkey: return token = await self._get_katbin_token() if not token: return try: async with self.http.post( self.KATBIN_URL, data={"_csrf_token": token, "paste[content]": self.data}, ) as req: if req.status != 200: self.retry = "dogbin" else: self._kkey = str(req.url).split(self.KATBIN_URL)[-1] except ClientConnectorError: self.retry = "dogbin" async def post(self, serv: str = "dogbin"): """Post the initialized data to the pastebin service.""" if self.retries == 0: return await self.__call__(serv) if self.retry: self.retries -= 1 await self.post(self.retry) self.retry = None @property def link(self) -> str: """Return the view link""" if self._dkey: return self.DOGBIN_URL + self._dkey if self._nkey: return self.NEKOBIN_URL + self._nkey if self._hkey: return self.HASTEBIN_URL + self._hkey if self._kkey: return self.KATBIN_URL + self._kkey return False @property def raw_link(self) -> str: """Return the view raw link""" if self._dkey: return self.DOGBIN_URL + "raw/" + self._dkey if self._nkey: return self.NEKOBIN_URL + "raw/" + self._nkey if self._hkey: return self.HASTEBIN_URL + "raw/" + self._hkey if self._kkey: return self.KATBIN_URL + "raw/" + self._kkey return False
31.36129
87
0.521498
4652cc577ba59730a8a97205a6758093b3afe702
4,006
py
Python
jwtcat.py
brightio/jwtcat
86bf874104a8dd2c3df6be4e3776b1bb071dd23c
[ "Apache-2.0" ]
null
null
null
jwtcat.py
brightio/jwtcat
86bf874104a8dd2c3df6be4e3776b1bb071dd23c
[ "Apache-2.0" ]
null
null
null
jwtcat.py
brightio/jwtcat
86bf874104a8dd2c3df6be4e3776b1bb071dd23c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright (C) 2017 Alexandre Teyar # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from datetime import datetime, timedelta import colorlog import jwt import logging import os import signal import sys import time formatter = colorlog.ColoredFormatter( "%(log_color)s[%(levelname)s] %(message)s%(reset)s", reset = True, log_colors = { 'DEBUG': 'cyan', 'INFO': 'green', 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'red, bg_white', } ) handler = colorlog.StreamHandler() handler.setFormatter(formatter) logger = colorlog.getLogger("jwtcatLog") logger.addHandler(handler) def parse_args(): """ Parse and validate user's command line """ parser = argparse.ArgumentParser( description = "JSON Web Token brute-forcer" ) parser.add_argument( "-t", "--token", dest = "token", help = "JSON Web Token", required = True, type = str ) parser.add_argument( "-v", "--verbose", dest = "loglevel", help = "enable verbose", required = False, action = "store_const", const = logging.DEBUG, default = logging.INFO ) # Set the UTF-8 encoding and ignore error mode to avoid issues with the wordlist parser.add_argument( "-w", "--wordlist", dest = "wordlist", help = "wordlist containing the passwords", required = True, type = argparse.FileType( 'r', encoding = 'UTF-8', errors = 'ignore' ) ) return parser.parse_args() def run(token, word): """ Check if [word] can decrypt [token] """ try: payload = jwt.decode(token, word, algorithm = 'HS256') return True except jwt.exceptions.InvalidTokenError: logger.debug("InvalidTokenError: {}".format(word)) return False except jwt.exceptions.DecodeError: logger.debug("DecodingError: {}".format(word)) return False except Exception as ex: logger.exception("Exception: {}".format(ex)) sys.exit(1) def main(): try: args = parse_args() logger.setLevel(args.loglevel) token = args.token wordlist = args.wordlist logger.info("JWT: {}".format(token)) logger.info("Wordlist: {}".format(wordlist.name)) logger.info("Starting brute-force attacks") logger.warning("Pour yourself some coffee, this might take a while..." ) start_time = time.time() for entry in wordlist: word = entry.rstrip() result = run(token, word) if result: logger.info("Secret key: {}".format(word)) # Save the holy secret into a file in case sys.stdout is not responding with open("jwtpot.potfile", "a+") as file: file.write("{0}:{1}\n".format(token, word)) logger.info("Secret key saved to location: {}".format(file.name)) break end_time = time.time() elapsed_time = end_time - start_time logger.info("Finished in {} sec".format(elapsed_time)) except KeyboardInterrupt: logger.error("CTRL+C pressed, exiting...") wordlist.close() elapsed_time = time.time() - start_time logger.info("Interrupted after {} sec".format(elapsed_time)) if __name__ == "__main__": main()
28.211268
87
0.603345
8cf918efc3ceb4a7da1247547d83503797be3cb0
1,205
gyp
Python
library/boost-pool/1.57.0.gyp
KjellSchubert/bru
dd70b721d07fbd27c57c845cc3a29cd8f2dfc587
[ "MIT" ]
3
2015-01-06T15:22:16.000Z
2015-11-27T18:13:04.000Z
library/boost-pool/1.57.0.gyp
KjellSchubert/bru
dd70b721d07fbd27c57c845cc3a29cd8f2dfc587
[ "MIT" ]
7
2015-02-10T15:13:38.000Z
2021-05-30T07:51:13.000Z
library/boost-pool/1.57.0.gyp
KjellSchubert/bru
dd70b721d07fbd27c57c845cc3a29cd8f2dfc587
[ "MIT" ]
3
2015-01-29T17:19:53.000Z
2016-01-06T12:50:06.000Z
{ "targets": [ { "target_name": "boost-pool", "type": "none", "include_dirs": [ "1.57.0/pool-boost-1.57.0/include" ], "all_dependent_settings": { "include_dirs": [ "1.57.0/pool-boost-1.57.0/include" ] }, "dependencies": [ "../boost-config/boost-config.gyp:*", "../boost-assert/boost-assert.gyp:*", "../boost-throw_exception/boost-throw_exception.gyp:*", "../boost-math/boost-math.gyp:*", "../boost-mpl/boost-mpl.gyp:*", "../boost-thread/boost-thread.gyp:*" ] }, { "target_name": "boost-pool_time_pool_alloc", "type": "executable", "test": {}, "sources": ["1.57.0/pool-boost-1.57.0/example/time_pool_alloc.cpp"], "dependencies": [ "boost-pool" ], # this disables building the example on iOS "conditions": [ ["OS=='iOS'",{"type": "none"}], ["OS=='mac'",{"type": "none"}] ] } ] }
32.567568
80
0.409959
3557673aeb7a14de6e5e293a2382ef3197b22806
13,627
py
Python
GhostScan/Calibrations/RadiometricCalibration.py
yyf20001230/GhostScan
5694df4532132be5e916bd72a46dc907eb108bf9
[ "MIT" ]
4
2021-09-27T14:16:08.000Z
2022-03-17T07:03:18.000Z
GhostScan/Calibrations/RadiometricCalibration.py
clkimsdu/GhostScan
5694df4532132be5e916bd72a46dc907eb108bf9
[ "MIT" ]
null
null
null
GhostScan/Calibrations/RadiometricCalibration.py
clkimsdu/GhostScan
5694df4532132be5e916bd72a46dc907eb108bf9
[ "MIT" ]
2
2022-02-04T17:32:04.000Z
2022-03-31T09:53:20.000Z
import numpy as np import os import cv2 import glob import matplotlib.pyplot as plt import skimage from skimage.util import img_as_ubyte from skimage.color import rgb2gray import PIL class RadiometricCalibration: def __init__(self, resolution, gamma=0.57, sampling_points=1000, path='CalibrationImages/Radiometric'): # # Set camera, destination path self.path = path # Get image resolution: self.width, self.height = resolution # print((self.width, self.height)) # (1920, 1200) # Amount of sample points per image - to speed up calculation self.sampling_points = sampling_points # Initialize g function with None for later same for log exposure values # Gamma correction: self.gamma = gamma self.g = None self.w = None self.le = None # Raw captured data self.raw_data = None # Down-sampled data self.raw_samples = None # Exposure times self.exposures = None def load_calibration_data(self): # Check if calibration file already exists if os.path.exists('CalibrationNumpyData/radiometric.npz'): # Load g function, log exposure, weighting function, exposures, raw samples data = np.load('CalibrationNumpyData/radiometric.npz') self.g = data['g_function'] self.le = data['log_exposures'] self.w = data['w_function'] self.exposures = data['exposures'] self.raw_samples = data['samples'] else: print("Capture and calibrate camera first") return self.g def compute_gamma_colorchart(self, intensities): # Intensities is an 1D-array of the capture intensity values of the gray tiles on the checker board # Returns a gamma values that fits the captured intensities to a linear plot no_intensities = intensities.shape[0] intensities = (intensities-np.min(intensities))/(np.max(intensities)-np.min(intensities)) ground_truth = np.linspace(0, 1, no_intensities) # Disregard zero values because their logarithm is not defined self.gamma = np.sum(np.log(intensities[1:])*np.log(ground_truth[1:]))/np.sum(np.log(intensities[1:])**2) return self.gamma def load_raw_data(self): # Loading raw data files k = 0 # Empty lists for images and exposure times Exposure = [] self.raw_data = [] files = [] for file in os.listdir(self.path): # Only use .png files if file.endswith(".PNG") or file.endswith(".png") or file.endswith(".Png"): files.append(file) # Sort files depending on their exposure time from lowest to highest files.sort(key=lambda x: int(x[:-4])) # We used exposure time as filenames print("loading data..") for filename in files: image = PIL.Image.open(self.path + '/' + filename) image = np.asarray(image,dtype=np.uint16) image = rgb2gray(image) image = image * 65535 print("Image" + str(k) + " intensity max:" + str(image.max())) # for .raw file, we need to know the picture shape in advance self.width = image.shape[0] self.height = image.shape[1] filename = os.path.splitext(filename)[0] + '\n' Exposure.append(int(filename)) self.raw_data.append(image) # k is used to count the number of pictures k = k + 1 ExposureNumber = k # Shrink the number of samples # Z = np.zeros([self.sampling_points, ExposureNumber], int) # Choose random sample points within image row = np.random.randint(self.width, size=self.sampling_points) col = np.random.randint(self.height, size=self.sampling_points) for i in range(ExposureNumber): Z[:, i] = self.raw_data[i][row, col] # Initialize to raw_samples self.raw_samples = Z exps = np.sort(np.array(Exposure)) # Check if loaded exposure values match the predefined values self.exposures = exps print("Radiometric raw data loaded...") def plotCurve(self, title): """ This function will plot the curve of the solved G function and the measured pixels. You don't need to return anything in this function. Input solveG: A (256,1) array. Solved G function generated in the previous section. LE: Log Erradiance of the image. logexpTime: (k,) array, k is the number of input images. Log exposure time. zValues: m*n array. m is the number of sampling points, and n is the number of input images. Z value generated in the previous section. Please note that in this function, we only take z value in ONLY ONE CHANNEL. title: A string. Title of the plot. """ logexpTime = np.log(self.exposures*(10**-6)) fig = plt.figure() plt.title(title) plt.xlabel('Log exposure') plt.ylabel('Pixel intensity value') LEx = np.expand_dims(self.le, axis=1) LEx = np.repeat(LEx, logexpTime.shape[0], axis=1) logx = np.expand_dims(logexpTime, axis=1) logx = np.swapaxes(logx, 0, 1) logx = np.repeat(logx, self.le.shape[0], axis=0) x = logx + LEx plt.plot(x, self.raw_samples, 'ro', alpha=0.5) plt.plot(self.g, np.linspace(0, 255, 256)) if not os.path.exists('CapturedImages/'): os.mkdir('CapturedImages/') if not os.path.exists('CapturedImages/sequenceImages/'): os.mkdir('CapturedImages/sequenceImages/') if not os.path.exists('CapturedImages/sequenceImages/undistortRadioCalib/'): os.mkdir('CapturedImages/sequenceImages/undistortRadioCalib/') if not os.path.exists('CapturedImages/sequenceImages/undistortRadioCalib/radioCalibResults/'): os.mkdir('CapturedImages/sequenceImages/undistortRadioCalib/radioCalibResults/') fig.savefig('CapturedImages/sequenceImages/undistortRadioCalib/radioCalibResults/Camera response.png') print('Camera Response plot successful! Plot viewable at CapturedImages/sequenceImages/undistortRadioCalib/radioCalibResults') # plt.show() def get_camera_response(self, smoothness): """ Some explanation for solving g: Given a set of pixel values observed for several pixels in several images with different exposure times, this function returns the imaging system's response function g as well as the log film irradiance values for the observed pixels. Assumes: Zmin = 0 Zmax = 255 Arguments: self.raw_sample - Z(i, j) is the pixel values of pixel location number i in image j self.exposure B(j) is the log delta t, or log shutter speed, for image j l is the lamda, the constant that determines the amount of smoothness w(z) is the weighting function value for pixel value z Returns: g(z) is the log exposure corresponding to pixel value z lE(i) is the log film irradiance at pixel location i """ # Load raw data self.load_raw_data() Z = self.raw_samples.astype(np.int) # Convert exposure to log exposure B = np.log(self.exposures*(10**-6)) # Next is to calculate g function # n = 256 # Create weighting function - hat like """ self.w = np.ones([256, 1]) for i in range(128): self.w[i] = i + 1 for i in range(128, 255): self.w[i] = 256 - i """ self.w = np.ones((n, 1)) / n m = Z.shape[0] p = Z.shape[1] A = np.zeros((m * p + n + 1, n + m)) b = np.zeros((A.shape[0], 1)) k = 0 # Data fitting equations for i in range(m): for j in range(p): wij = self.w[Z[i, j]] A[k, Z[i, j]] = wij A[k, n + i] = -wij b[k, 0] = wij * B[j] k += 1 # Fix the curve by setting its middle value to 0 A[k, 128] = 1 k = k + 1 # Include smoothness equations for i in range(n - 2): A[k, i] = smoothness * self.w[i + 1] A[k, i + 1] = -2 * smoothness * self.w[i + 1] A[k, i + 2] = smoothness * self.w[i + 1] k = k + 1 # Solve the system using SVD x = np.linalg.lstsq(A, b, rcond=None) x = x[0] self.g = x[0:n] lE = x[n:x.shape[0]] self.le = lE.squeeze() # Save g function, exposures, etc for loading np.savez('CalibrationNumpyData/radiometric.npz', g_function=self.g, log_exposures=self.le[::10], w_function=self.w, exposures=self.exposures, samples=self.raw_samples[::10, :]) return self.g, self.le def get_HDR_image(self, images=None, exposures=None): # If images is None, take radiometric calibration images if images is None: if self.raw_data is None: self.load_raw_data() images = self.raw_data else: images = self.raw_data # If g function is None, load calibration if self.g is None: self.load_calibration_data() # Override exposure values if exposures is not None: self.exposures = exposures # Compute log exposure image # Initialize flatten size = (int(self.height * 1), int(self.width * 1)) EE = np.zeros([size[0] * size[1], 1]) sumw = np.zeros([size[0] * size[1], 1], int) # Convert exposure from microseconds to seconds exp_sec = self.exposures * (10 ** -6) num_exp = self.exposures.shape[0] for i in range(num_exp): t = images[i].flatten() EE = EE + self.w[t] * (self.g[t] - np.log(exp_sec[i])) #EE = EE + (self.g[t] - np.log(exp_sec[i])) sumw = sumw + self.w[t] # Reshape lE = np.reshape(EE / sumw, size) #lE = np.reshape(EE / num_exp, size) # Take exponent to get exposure for each pixel exposure_image = np.exp(lE) return exposure_image def calibrate_image(self, exposure, path): # UNUSED # Create list of calibrated images images = [] # Exposure in microseconds -> convert to seconds exp = exposure * (10 ** -6) g = np.exp(self.g) # Load images imgFileList = self.readFileList(path) # Idx k = 0 # Iterate over images to be calibrated for i in imgFileList: # Read image and convert to grayscale if necessary img = cv2.imread(i) if img.shape[2] == 3: gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: gray = img # Applying the Debevec Algorithm # Eq. 5 Debevec et. al. calibrated_image = g[gray] #calibrated_image = np.exp(calibrated_image - np.log(exp)) calibrated_image = calibrated_image - np.log(exp) #calibrated_image *= 255.0 / calibrated_image.max() images.append(calibrated_image) k += 1 # Normalize by last captured image, which represents the object lit by a constant (255) illumination pattern illuminated_radiance = images.pop() for r in range(len(images)): n_img = images[r]/illuminated_radiance #n_img = images[r] # Gamma correction #n_img = (n_img - np.min(n_img)) / (np.max(n_img) - np.min(n_img)) n_img = self.apply_gamma_curve(n_img, gamma=0.4) cv2.imwrite(path + '/RadianceMaps/capture' + str(r) + '.PNG', n_img*255) np.save(path + '/RadianceMaps/capture_' + str(r) + '.npy', n_img) images[r] = n_img return images, g @staticmethod def scaleBrightness(E): # Unused """ Brightness scaling function, which will scale the values on the radiance map to between 0 and 1 Args: E: An m*n*3 array. m*n is the size of your radiance map, and 3 represents R, G and B channel. It is your plotted Radiance map (don't forget to use np.exp function to get it back from logorithm of radiance!) Returns: ENomrMap: An m*n*3 array. Normalized radiance map, whose value should between 0 and 1 """ res = np.zeros(E.shape) for c in range(E.shape[2]): res[:, :, c] = (E[:, :, c] - np.min(E[:, :, c])) / (np.max(E[:, :, c]) - np.min(E[:, :, c])) return res @staticmethod def apply_gamma_curve(E, gamma=0.4): # Unused """ apply gamma to the curve through raising E to the gamma. Args: E: An m*n*3 array. m*n is the size of your radiance map, and 3 represents R, G and B channel. It is your plotted Radiance map (don't forget to use np.exp function to get it back from logorithm of radiance!) gamma: a float value that is representative of the power to raise all E to. Returns: E_gamma: E modified by raising it to gamma. """ return E ** gamma @staticmethod def readFileList(imgFolder, ImgPattern="*.PNG"): imgFileList = glob.glob(os.path.join(imgFolder, ImgPattern)) imgFileList.sort() print(imgFileList) return imgFileList
42.188854
218
0.589565
2463735ede96b66f77679e993ba5bd55450577ed
2,626
py
Python
src/common.py
Antoinehoff/Project_II
120209e695f4f25ecdc6797f683e2b23894689f4
[ "MIT" ]
null
null
null
src/common.py
Antoinehoff/Project_II
120209e695f4f25ecdc6797f683e2b23894689f4
[ "MIT" ]
null
null
null
src/common.py
Antoinehoff/Project_II
120209e695f4f25ecdc6797f683e2b23894689f4
[ "MIT" ]
null
null
null
from enum import Enum class FilterType(Enum): """ Filter type (filter densities, or gradients only) """ NoFilter = 0 Density = 1 Sensitivity = 2 class InterpolationType(Enum): """ Material interpolation scheme: classic SIMP, or Pedersen (for self-weight problems) """ SIMP = 1 Pedersen = 2 class ProblemType(Enum): """ Problem type. Minimize appearance only, minimize compliance only, or minimize appearance with a compliance constraint. """ Appearance = 1 Compliance = 2 AppearanceWithMaxCompliance = 3 ###Added by Antoine Hoffmann EPFL 2018 ComplianceWithSymmetry = 4 AppearanceWithMaxComplianceAndSymmetry = 5 def involves_symmetry(self): """ Returns true iff the given problem type has symmetry """ return self in (ProblemType.ComplianceWithSymmetry ,ProblemType.AppearanceWithMaxComplianceAndSymmetry) ###### def involves_appearance(self): """ Returns true iff the given problem type requires the appearance evaluation. """ return self in (ProblemType.Appearance, ProblemType.AppearanceWithMaxCompliance ,ProblemType.AppearanceWithMaxComplianceAndSymmetry) def involves_compliance(self): """ Returns true iff the given problem type requires the appearance evaluation. """ return self in (ProblemType.Compliance, ProblemType.AppearanceWithMaxCompliance ,ProblemType.ComplianceWithSymmetry ,ProblemType.AppearanceWithMaxComplianceAndSymmetry) def involves_volume(self): """ Returns true iff the given problem type has a volume constraint. """ return self in (ProblemType.Compliance, ProblemType.AppearanceWithMaxCompliance ,ProblemType.ComplianceWithSymmetry ,ProblemType.AppearanceWithMaxComplianceAndSymmetry) def has_compliance_constraint(self): """ Returns true iff the given problem has a constraint on the compliance. """ return self in (ProblemType.AppearanceWithMaxCompliance ,ProblemType.AppearanceWithMaxComplianceAndSymmetry) def has_volume_constraint(self): """ Returns true iff the given problem has a constraint on the volume. """ return self in (ProblemType.Compliance, ProblemType.AppearanceWithMaxCompliance ,ProblemType.ComplianceWithSymmetry ,ProblemType.AppearanceWithMaxComplianceAndSymmetry)
32.825
87
0.664128
50ab83e8dd2f03fdb4b6e963f21dcdec0ad1c14d
2,329
py
Python
sistemadjango/settings.py
pauloupgrad/sistema-django
f1a7fc9f5602ec6eb1e3a777897ff94ee4b2e1ff
[ "MIT" ]
null
null
null
sistemadjango/settings.py
pauloupgrad/sistema-django
f1a7fc9f5602ec6eb1e3a777897ff94ee4b2e1ff
[ "MIT" ]
null
null
null
sistemadjango/settings.py
pauloupgrad/sistema-django
f1a7fc9f5602ec6eb1e3a777897ff94ee4b2e1ff
[ "MIT" ]
null
null
null
import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = 'k6g)@@r-kwa+yz_8x4)d7c@$t!-j7n=m1yim#fi_%dn#ssp*=@' DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'sistemadjango.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'sistemadjango.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Sao_Paulo' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES = (os.path.join(BASE_DIR,'static'),)
23.525253
91
0.668527
39a59208fd1d5090c76bd25fd41f379c787cf8ce
192
py
Python
v3/listing1.py
MrWater98/pymag-trees
9b4fba4fca09f7489f6cb1844d2db256377a4af9
[ "WTFPL" ]
149
2015-01-18T14:26:41.000Z
2022-03-27T12:39:38.000Z
doc/v3/listing1.py
EvanED/treelayout
a1250381ccbab005890f58ac4bfc28e2a1933433
[ "WTFPL" ]
5
2015-05-23T04:14:46.000Z
2021-11-04T14:19:06.000Z
doc/v3/listing1.py
EvanED/treelayout
a1250381ccbab005890f58ac4bfc28e2a1933433
[ "WTFPL" ]
33
2015-06-06T04:38:55.000Z
2022-01-11T19:56:14.000Z
class DrawTree(object): def __init__(self, tree, depth=0): self.x = -1 self.y = depth self.tree = tree self.children = [DrawTree(t, depth+1) for t in tree]
27.428571
60
0.567708
a4ae733985a170d2fe19dbbb3e88c6e0708d692b
1,607
py
Python
listing/urls.py
natyz/Studdy-Buddy-Finder
84c50494f2696df2555d6d985534cdd4edbce791
[ "BSD-3-Clause" ]
null
null
null
listing/urls.py
natyz/Studdy-Buddy-Finder
84c50494f2696df2555d6d985534cdd4edbce791
[ "BSD-3-Clause" ]
null
null
null
listing/urls.py
natyz/Studdy-Buddy-Finder
84c50494f2696df2555d6d985534cdd4edbce791
[ "BSD-3-Clause" ]
null
null
null
from django.conf import settings from django.conf.urls.static import static from django.urls import path from . import views app_name = 'listing' urlpatterns = [ # path('listings', views.ListingsView.as_view(), name='listings'), # path('listings', views.index, name='listings'), path('listings', views.listings_view, name='listings'), path('listings/table', views.listings_table_view, name='table'), path('mylistings', views.users_listings_view, name='mylistings'), path('listings/my', views.ListingsView.as_view(), name='my'), # path('select', views.user_name, name='select'), path('listings/create', views.new_listing_form, name='create'), path('listings/<id>/delete', views.delete_listing, name='delete'), path('listings/<id>/', views.detail_view, name='detail'), path('listings/<id>/join', views.join_group, name='join'), path('listings/<id>/leave', views.leave_group, name='leave'), path('listings/<id>/join/zoom', views.join_zoom, name='zoom'), path('listings/<id>/edit/', views.edit, name='edit'), # path('listings/<id>/edit/', views.listing_update, name='edit'), # path('listings/<id>/edit', views.edit_listing, name='edit'), # path('listings/<int:id>/edit/', views.EditListingView.as_view(), name='edit'), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
55.413793
98
0.581829
66dc7c7e7848c8b80685b428334555a2edbca43f
2,136
py
Python
functional-tests/test_full_checkout.py
cornelius/unit-e-clonemachine
e0bf1f3b49502a506c1edf9ea35101424008fa5d
[ "MIT" ]
3
2019-04-18T06:44:30.000Z
2019-05-03T15:15:18.000Z
functional-tests/test_full_checkout.py
cornelius/unit-e-clonemachine
e0bf1f3b49502a506c1edf9ea35101424008fa5d
[ "MIT" ]
2
2019-05-03T15:15:22.000Z
2019-05-17T09:28:18.000Z
functional-tests/test_full_checkout.py
cornelius/unit-e-clonemachine
e0bf1f3b49502a506c1edf9ea35101424008fa5d
[ "MIT" ]
4
2019-04-17T18:05:22.000Z
2019-11-01T19:57:51.000Z
# Copyright (c) 2018-2019 The Unit-e developers # Distributed under the MIT software license, see the accompanying # file COPYING or https://opensource.org/licenses/MIT. # Functional test for clonemachine using a full checkout of the unit-e repo # and a full fetched remote of the bitcoin repo # # Run it with `pytest -v test_full_checkout.py` import pytest import tempfile import os import subprocess from pathlib import Path import yaml from runner import Runner @pytest.fixture def runner(): """Set up git checkout for test and return a runner to run operations on it. """ runner = Runner("unit-e") runner.checkout_unit_e_clone() runner.fetch_bitcoin() return runner def test_appropriation(runner): runner.run_clonemachine() # Check that one of the appropriated files is identical to the unit-e version diff = runner.run_git(["diff", "master", "--", "CONTRIBUTING.md"]) assert diff == "" # Check file list, assuming the latest commit is the appropriating commit appropriated_files = runner.run_git(["diff-tree", "--name-only", "--no-commit-id", "-r", "HEAD"]) expected_files = """CONTRIBUTING.md README.md contrib/devtools/copyright_header.py contrib/gitian-build.py contrib/gitian-keys/keys.txt doc/developer-notes.md doc/gitian-building.md""" assert appropriated_files == expected_files # Check that commit message contains the revision of the appropriated files unite_master_git_revision = runner.get_git_revision("master") commit_msg = runner.run_git(["log", "-1", "--pretty=%B"]) assert "revision: " + unite_master_git_revision in commit_msg def test_remove_files(runner): files_to_be_removed = [".github/ISSUE_TEMPLATE.md", "contrib/gitian-descriptors/gitian-osx-signer.yml"] for file in files_to_be_removed: assert os.path.isfile(runner.git_dir / file) result = runner.run_clonemachine() with Path(os.path.dirname(__file__), "tmp", "clonemachine.log").open("w") as file: file.write(result.stdout.decode('utf-8')) for file in files_to_be_removed: assert not os.path.isfile(runner.git_dir / file)
33.904762
107
0.727528
49121b29b8558d33d519a277f173bc2004b7a034
5,295
py
Python
operator-pipeline-images/operatorcert/entrypoints/index.py
Lawrence-Luo0008/operator-pipelines
61b0e970d377f142ca4249e1021bf01894f36f1f
[ "Apache-2.0" ]
null
null
null
operator-pipeline-images/operatorcert/entrypoints/index.py
Lawrence-Luo0008/operator-pipelines
61b0e970d377f142ca4249e1021bf01894f36f1f
[ "Apache-2.0" ]
null
null
null
operator-pipeline-images/operatorcert/entrypoints/index.py
Lawrence-Luo0008/operator-pipelines
61b0e970d377f142ca4249e1021bf01894f36f1f
[ "Apache-2.0" ]
null
null
null
import argparse import logging import os import time from datetime import datetime, timedelta from typing import Any, List from operatorcert import iib, utils from operatorcert.logger import setup_logger LOGGER = logging.getLogger("operator-cert") def setup_argparser() -> argparse.ArgumentParser: # pragma: no cover """ Setup argument parser Returns: Any: Initialized argument parser """ parser = argparse.ArgumentParser(description="Publish bundle to index image") parser.add_argument( "--bundle-pullspec", required=True, help="Operator bundle pullspec" ) parser.add_argument( "--from-index", required=True, help="Base index pullspec (without tag)" ) parser.add_argument( "--indices", required=True, nargs="+", help="List of indices the bundle supports, e.g --indices registry/index:v4.9 registry/index:v4.8", ) parser.add_argument( "--iib-url", default="https://iib.engineering.redhat.com", help="Base URL for IIB API", ) parser.add_argument("--verbose", action="store_true", help="Verbose output") return parser def wait_for_results(iib_url: str, batch_id: int, timeout=60 * 60, delay=20) -> Any: """ Wait for IIB build till it finishes Args: iib_url (Any): CLI arguments batch_id (int): IIB batch identifier timeout ([type], optional): Maximum wait time. Defaults to 60*60 (3600 seconds/1 hour) delay (int, optional): Delay between build pollin. Defaults to 20. Returns: Any: Build response """ start_time = datetime.now() loop = True while loop: response = iib.get_builds(iib_url, batch_id) builds = response["items"] # all builds have completed if all([build.get("state") == "complete" for build in builds]): LOGGER.info(f"IIB batch build completed successfully: {batch_id}") return response # any have failed elif any([build.get("state") == "failed" for build in builds]): for build in builds: LOGGER.error(f"IIB build failed: {build['id']}") state_history = build.get("state_history", []) if state_history: reason = state_history[0].get("state_reason") LOGGER.info(f"Reason: {reason}") return response LOGGER.debug(f"Waiting for IIB batch build: {batch_id}") LOGGER.debug("Current states [build id - state]:") for build in builds: LOGGER.debug(f"{build['id']} - {build['state']}") if datetime.now() - start_time > timedelta(seconds=timeout): LOGGER.error(f"Timeout: Waiting for IIB batch build failed: {batch_id}.") break LOGGER.info(f"Waiting for IIB batch build to finish: {batch_id}") time.sleep(delay) return None def publish_bundle( from_index: str, bundle_pullspec: str, iib_url: str, index_versions: List[str] ) -> None: """ Publish a bundle to index image using IIB Args: iib_url: url of IIB instance bundle_pullspec: bundle pullspec from_index: target index pullspec index_versions: list of index versions (tags) Raises: Exception: Exception is raised when IIB build fails """ user = os.getenv("QUAY_USER") token = os.getenv("QUAY_TOKEN") payload = {"build_requests": []} for version in index_versions: payload["build_requests"].append( { "from_index": f"{from_index}:{version}", "bundles": [bundle_pullspec], "overwrite_from_index": True, "add_arches": ["amd64", "s390x", "ppc64le"], "overwrite_from_index_token": f"{user}:{token}", } ) resp = iib.add_builds(iib_url, payload) batch_id = resp[0]["batch"] response = wait_for_results(iib_url, batch_id) if response is None or not all( [build.get("state") == "complete" for build in response["items"]] ): raise Exception("IIB build failed") def parse_indices(indices: List[str]) -> List[str]: """ Parses a list of indices and returns only the versions, e.g [registry/index:v4.9, registry/index:v4.8] -> [v4.9, v4.8] Args: indices: List of indices Returns: Parsed list of versions """ versions = [] for index in indices: # split by : from right and get the rightmost result split = index.rsplit(":", 1) if len(split) == 1: # unable to split by : raise Exception(f"Unable to extract version from index {index}") else: versions.append(split[1]) return versions def main() -> None: # pragma: no cover """ Main function """ parser = setup_argparser() args = parser.parse_args() log_level = "INFO" if args.verbose: log_level = "DEBUG" setup_logger(level=log_level) utils.set_client_keytab(os.environ.get("KRB_KEYTAB_FILE", "/etc/krb5.krb")) publish_bundle( args.from_index, args.bundle_pullspec, args.iib_url, parse_indices(args.indices) ) if __name__ == "__main__": # pragma: no cover main()
29.915254
106
0.611331
11a009a6b8dc954dcf0a2d323e6e9528897d984a
626
py
Python
main.py
caffe-mocha/pytorch-wgan-gp
570496f092c37629c872c528737ecdec12b0537b
[ "MIT" ]
1
2021-01-11T14:42:20.000Z
2021-01-11T14:42:20.000Z
main.py
caffe-mocha/pytorch-wgan-gp
570496f092c37629c872c528737ecdec12b0537b
[ "MIT" ]
null
null
null
main.py
caffe-mocha/pytorch-wgan-gp
570496f092c37629c872c528737ecdec12b0537b
[ "MIT" ]
null
null
null
from utils.config import parse_args from utils.data_loader import get_data_loader from model.dcgan import DCGAN def main(args): model = None if args.model == 'dcgan': model = DCGAN(args) else: print("Model type non-existing. Try again.") exit(-1) print('----------------- configuration -----------------') for k, v in vars(args).items(): print(' {}: {}'.format(k, v)) print('-------------------------------------------------') data_loader = get_data_loader(args) model.train(data_loader) if __name__ == '__main__': args = parse_args() main(args)
23.185185
62
0.536741
81be118feda1bab7b5117a5de29e19e31669d826
690
py
Python
tests/test_deprecation.py
ppanero/flask-limiter
129bd922948f843518429190e915c5ebe4fec51f
[ "MIT" ]
1
2019-08-30T15:28:58.000Z
2019-08-30T15:28:58.000Z
tests/test_deprecation.py
ppanero/flask-limiter
129bd922948f843518429190e915c5ebe4fec51f
[ "MIT" ]
null
null
null
tests/test_deprecation.py
ppanero/flask-limiter
129bd922948f843518429190e915c5ebe4fec51f
[ "MIT" ]
null
null
null
""" """ import unittest import warnings class DeprecationTests(unittest.TestCase): def test_insecure_setup(self): with warnings.catch_warnings(record=True) as w: from flask import Flask from flask_limiter import Limiter app = Flask(__name__) Limiter(app) self.assertEqual(len(w), 1) def test_with_global_limits(self): with warnings.catch_warnings(record=True) as w: from flask import Flask from flask_limiter import Limiter app = Flask(__name__) Limiter(app, key_func=lambda x: 'test', global_limits=['1/second']) self.assertEqual(len(w), 1)
28.75
79
0.623188
deaa9581e0bedb01283824a8d2699f480d7078e3
3,775
py
Python
awx/main/tests/functional/api/test_pagination.py
DamoR25/awxnew
03ed6e97558ae090ea52703caf6ed1b196557981
[ "Apache-2.0" ]
11,396
2017-09-07T04:56:02.000Z
2022-03-31T13:56:17.000Z
awx/main/tests/functional/api/test_pagination.py
DamoR25/awxnew
03ed6e97558ae090ea52703caf6ed1b196557981
[ "Apache-2.0" ]
11,046
2017-09-07T09:30:46.000Z
2022-03-31T20:28:01.000Z
awx/main/tests/functional/api/test_pagination.py
TinLe/awx
73d8c12e3bf5b193305ed1202549331ea00088c1
[ "Apache-2.0" ]
3,592
2017-09-07T04:14:31.000Z
2022-03-31T23:53:09.000Z
import pytest import json from unittest.mock import patch from urllib.parse import urlencode from awx.main.models.inventory import Group, Host from awx.main.models.ad_hoc_commands import AdHocCommand from awx.api.pagination import Pagination from awx.api.versioning import reverse @pytest.fixture def host(inventory): def handler(name, groups): h = Host(name=name, inventory=inventory) h.save() h = Host.objects.get(name=name, inventory=inventory) for g in groups: h.groups.add(g) h.save() h = Host.objects.get(name=name, inventory=inventory) return h return handler @pytest.fixture def group(inventory): def handler(name): g = Group(name=name, inventory=inventory) g.save() g = Group.objects.get(name=name, inventory=inventory) return g return handler @pytest.mark.django_db def test_pagination_backend_output_correct_total_count(group, host): # NOTE: this test might not be db-backend-agnostic. Manual tests might be needed also g1 = group('pg_group1') g2 = group('pg_group2') host('pg_host1', [g1, g2]) queryset = Host.objects.filter(groups__name__in=('pg_group1', 'pg_group2')).distinct() p = Pagination().django_paginator_class(queryset, 10) p.page(1) assert p.count == 1 @pytest.mark.django_db def test_pagination_cap_page_size(get, admin, inventory): for i in range(20): Host(name='host-{}'.format(i), inventory=inventory).save() def host_list_url(params): request_qs = '?' + urlencode(params) return reverse('api:host_list') + request_qs with patch('awx.api.pagination.Pagination.max_page_size', 5): resp = get(host_list_url({'page': '2', 'page_size': '10'}), user=admin) jdata = json.loads(resp.content) assert jdata['previous'] == host_list_url({'page': '1', 'page_size': '5'}) assert jdata['next'] == host_list_url({'page': '3', 'page_size': '5'}) class TestUnifiedJobEventPagination: @pytest.fixture def ad_hoc_command(self, ad_hoc_command_factory): return ad_hoc_command_factory() def _test_unified_job(self, get, admin, template, job_attribute, list_endpoint): if isinstance(template, AdHocCommand): job = template else: job = template.create_unified_job() kwargs = {job_attribute: job.pk} for i in range(20): job.event_class.create_from_data(**kwargs).save() url = reverse(f'api:{list_endpoint}', kwargs={'pk': job.pk}) + '?limit=7' resp = get(url, user=admin, expect=200) assert 'count' not in resp.data assert 'next' not in resp.data assert 'previous' not in resp.data assert len(resp.data['results']) == 7 @pytest.mark.django_db def test_job(self, get, admin, job_template): self._test_unified_job(get, admin, job_template, 'job_id', 'job_job_events_list') @pytest.mark.django_db def test_project_update(self, get, admin, project): self._test_unified_job(get, admin, project, 'project_update_id', 'project_update_events_list') @pytest.mark.django_db def test_inventory_update(self, get, admin, inventory_source): self._test_unified_job(get, admin, inventory_source, 'inventory_update_id', 'inventory_update_events_list') @pytest.mark.django_db def test_system_job(self, get, admin, system_job_template): self._test_unified_job(get, admin, system_job_template, 'system_job_id', 'system_job_events_list') @pytest.mark.django_db def test_adhoc_command(self, get, admin, ad_hoc_command): self._test_unified_job(get, admin, ad_hoc_command, 'ad_hoc_command_id', 'ad_hoc_command_ad_hoc_command_events_list')
34.953704
124
0.684768
6945047baa0c8cec9b789a182d3e0a4924fd25ff
3,051
py
Python
lib/surface/compute/rolling_updates/pause.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/rolling_updates/pause.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/rolling_updates/pause.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
2
2020-11-04T03:08:21.000Z
2020-11-05T08:14:41.000Z
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """rolling-updates pause command.""" from googlecloudsdk.api_lib.compute import rolling_updates_util as updater_util from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.core import log from googlecloudsdk.third_party.apitools.base.py import exceptions as apitools_exceptions class Pause(base.Command): """Pauses an existing update.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ parser.add_argument('update', help='Update id.') # TODO(user): Support --async which does not wait for state transition. def Run(self, args): """Run 'rolling-updates pause'. Args: args: argparse.Namespace, The arguments that this command was invoked with. Raises: HttpException: An http error response was received while executing api request. ToolException: An error other than http error occured while executing the command. """ client = self.context['updater_api'] messages = self.context['updater_messages'] resources = self.context['updater_resources'] ref = resources.Parse( args.update, collection='replicapoolupdater.rollingUpdates') request = messages.ReplicapoolupdaterRollingUpdatesPauseRequest( project=ref.project, zone=ref.zone, rollingUpdate=ref.rollingUpdate) try: operation = client.rollingUpdates.Pause(request) operation_ref = resources.Parse( operation.name, collection='replicapoolupdater.zoneOperations') result = updater_util.WaitForOperation( client, operation_ref, 'Pausing the update') if result: log.status.write('Paused [{0}].\n'.format(ref)) else: raise exceptions.ToolException('could not pause [{0}]'.format(ref)) except apitools_exceptions.HttpError as error: raise exceptions.HttpException(updater_util.GetError(error)) Pause.detailed_help = { 'brief': 'Pauses an existing update.', 'DESCRIPTION': """\ Pauses the update in state ROLLING_FORWARD, ROLLING_BACK or PAUSED \ (fails if the update is in any other state). No-op if invoked in state PAUSED. """, }
35.068966
89
0.706981
8dfd4fec68cf0faa623a7573934e27b6d82c8764
767
py
Python
app/controller/__init__.py
MacosPrintes001/webservice-paem
fa992e4bda40eaae3b585cee2ad2b65685104cc3
[ "Apache-2.0" ]
null
null
null
app/controller/__init__.py
MacosPrintes001/webservice-paem
fa992e4bda40eaae3b585cee2ad2b65685104cc3
[ "Apache-2.0" ]
null
null
null
app/controller/__init__.py
MacosPrintes001/webservice-paem
fa992e4bda40eaae3b585cee2ad2b65685104cc3
[ "Apache-2.0" ]
null
null
null
from ..model import app from .usuario_controller import UsuarioController from .discente_controller import DiscenteController from .docente_controller import DocenteController from .tecnico_controller import TecnicoController from .portaria_controller import PortariaController from .direcao_controller import DirecaoController from .coordenacao_controller import CoordenacaoController from .curso_controller import CursoController from .campus_controller import CampusController from .reserva_recurso_servidores_controller import ReservaRecursoServidoresController from .solicitacao_acesso_controller import SolicitacaoAcessoController from .acesso_permitido_controller import AcessoPermitidoController from .recurso_campus_controller import RecursoCampusController
51.133333
85
0.907432
d7eb616aa921299dc4048d584f259139ae7e17c6
19,508
py
Python
hummingbot/strategy/perpetual_market_making/perpetual_market_making_config_map.py
rince83/hummingbot
9023822744202624fad276b326cc999b72048d67
[ "Apache-2.0" ]
4
2021-12-03T10:40:57.000Z
2022-03-28T10:32:48.000Z
hummingbot/strategy/perpetual_market_making/perpetual_market_making_config_map.py
rince83/hummingbot
9023822744202624fad276b326cc999b72048d67
[ "Apache-2.0" ]
null
null
null
hummingbot/strategy/perpetual_market_making/perpetual_market_making_config_map.py
rince83/hummingbot
9023822744202624fad276b326cc999b72048d67
[ "Apache-2.0" ]
3
2021-11-29T10:05:37.000Z
2021-12-12T15:35:00.000Z
from decimal import Decimal from hummingbot.client.config.config_var import ConfigVar from hummingbot.client.config.config_validators import ( validate_exchange, validate_derivative, validate_market_trading_pair, validate_bool, validate_decimal, validate_int ) from hummingbot.client.settings import ( required_exchanges, EXAMPLE_PAIRS, ) from hummingbot.client.config.config_helpers import ( parse_cvar_value ) from typing import Optional def maker_trading_pair_prompt(): derivative = perpetual_market_making_config_map.get("derivative").value example = EXAMPLE_PAIRS.get(derivative) return "Enter the token trading pair you would like to trade on %s%s >>> " \ % (derivative, f" (e.g. {example})" if example else "") # strategy specific validators def validate_derivative_trading_pair(value: str) -> Optional[str]: derivative = perpetual_market_making_config_map.get("derivative").value return validate_market_trading_pair(derivative, value) def validate_derivative_position_mode(value: str) -> Optional[str]: if value not in ["One-way", "Hedge"]: return "Position mode can either be One-way or Hedge mode" def order_amount_prompt() -> str: trading_pair = perpetual_market_making_config_map["market"].value base_asset, quote_asset = trading_pair.split("-") return f"What is the amount of {base_asset} per order? >>> " def validate_price_source(value: str) -> Optional[str]: if value not in {"current_market", "external_market", "custom_api"}: return "Invalid price source type." def on_validate_price_source(value: str): if value != "external_market": perpetual_market_making_config_map["price_source_derivative"].value = None perpetual_market_making_config_map["price_source_market"].value = None perpetual_market_making_config_map["take_if_crossed"].value = None if value != "custom_api": perpetual_market_making_config_map["price_source_custom_api"].value = None else: perpetual_market_making_config_map["price_type"].value = "custom" def validate_price_type(value: str) -> Optional[str]: error = None price_source = perpetual_market_making_config_map.get("price_source").value if price_source != "custom_api": valid_values = {"mid_price", "last_price", "last_own_trade_price", "best_bid", "best_ask"} if value not in valid_values: error = "Invalid price type." elif value != "custom": error = "Invalid price type." return error def price_source_market_prompt() -> str: external_market = perpetual_market_making_config_map.get("price_source_derivative").value return f'Enter the token trading pair on {external_market} >>> ' def validate_price_source_derivative(value: str) -> Optional[str]: if value == perpetual_market_making_config_map.get("derivative").value: return "Price source derivative cannot be the same as maker derivative." if validate_derivative(value) is not None and validate_exchange(value) is not None: return "Price must must be a valid exchange or derivative connector." def on_validated_price_source_derivative(value: str): if value is None: perpetual_market_making_config_map["price_source_market"].value = None def validate_price_source_market(value: str) -> Optional[str]: market = perpetual_market_making_config_map.get("price_source_derivative").value return validate_market_trading_pair(market, value) def validate_price_floor_ceiling(value: str) -> Optional[str]: try: decimal_value = Decimal(value) except Exception: return f"{value} is not in decimal format." if not (decimal_value == Decimal("-1") or decimal_value > Decimal("0")): return "Value must be more than 0 or -1 to disable this feature." def validate_take_if_crossed(value: str) -> Optional[str]: err_msg = validate_bool(value) if err_msg is not None: return err_msg price_source_enabled = perpetual_market_making_config_map["price_source_enabled"].value take_if_crossed = parse_cvar_value(perpetual_market_making_config_map["take_if_crossed"], value) if take_if_crossed and not price_source_enabled: return "You can enable this feature only when external pricing source for mid-market price is used." def derivative_on_validated(value: str): required_exchanges.append(value) perpetual_market_making_config_map = { "strategy": ConfigVar(key="strategy", prompt=None, default="perpetual_market_making"), "derivative": ConfigVar(key="derivative", prompt="Enter your maker derivative connector >>> ", validator=validate_derivative, on_validated=derivative_on_validated, prompt_on_new=True), "market": ConfigVar(key="market", prompt=maker_trading_pair_prompt, validator=validate_derivative_trading_pair, prompt_on_new=True), "leverage": ConfigVar(key="leverage", prompt="How much leverage do you want to use? " "(Binance Perpetual supports up to 75X for most pairs) >>> ", type_str="int", validator=lambda v: validate_int(v, min_value=0, inclusive=False), prompt_on_new=True), "position_mode": ConfigVar(key="position_mode", prompt="Which position mode do you want to use? (One-way/Hedge) >>> ", validator=validate_derivative_position_mode, type_str="str", default="One-way", prompt_on_new=True), "bid_spread": ConfigVar(key="bid_spread", prompt="How far away from the mid price do you want to place the " "first bid order? (Enter 1 to indicate 1%) >>> ", type_str="decimal", validator=lambda v: validate_decimal(v, 0, 100, inclusive=False), prompt_on_new=True), "ask_spread": ConfigVar(key="ask_spread", prompt="How far away from the mid price do you want to place the " "first ask order? (Enter 1 to indicate 1%) >>> ", type_str="decimal", validator=lambda v: validate_decimal(v, 0, 100, inclusive=False), prompt_on_new=True), "minimum_spread": ConfigVar(key="minimum_spread", prompt="At what minimum spread should the bot automatically cancel orders? (Enter 1 for 1%) >>> ", required_if=lambda: False, type_str="decimal", default=Decimal(-100), validator=lambda v: validate_decimal(v, -100, 100, True)), "order_refresh_time": ConfigVar(key="order_refresh_time", prompt="How often do you want to cancel and replace bids and asks " "(in seconds)? >>> ", type_str="float", validator=lambda v: validate_decimal(v, 0, inclusive=False), prompt_on_new=True), "order_refresh_tolerance_pct": ConfigVar(key="order_refresh_tolerance_pct", prompt="Enter the percent change in price needed to refresh orders at each cycle " "(Enter 1 to indicate 1%) >>> ", type_str="decimal", default=Decimal("0"), validator=lambda v: validate_decimal(v, -10, 10, inclusive=True)), "order_amount": ConfigVar(key="order_amount", prompt=order_amount_prompt, type_str="decimal", validator=lambda v: validate_decimal(v, min_value=Decimal("0"), inclusive=False), prompt_on_new=True), "position_management": ConfigVar(key="position_management", prompt="How would you like to manage your positions? (Profit_taking/Trailing_stop) >>> ", type_str="str", default="Profit_taking", validator=lambda s: None if s in {"Profit_taking", "Trailing_stop"} else "Invalid position management.", prompt_on_new=True), "long_profit_taking_spread": ConfigVar(key="long_profit_taking_spread", prompt="At what spread from the entry price do you want to place a short order to reduce position? (Enter 1 for 1%) >>> ", required_if=lambda: perpetual_market_making_config_map.get("position_management").value == "Profit_taking", type_str="decimal", default=Decimal("0"), validator=lambda v: validate_decimal(v, 0, 100, True), prompt_on_new=True), "short_profit_taking_spread": ConfigVar(key="short_profit_taking_spread", prompt="At what spread from the position entry price do you want to place a long order to reduce position? (Enter 1 for 1%) >>> ", required_if=lambda: perpetual_market_making_config_map.get("position_management").value == "Profit_taking", type_str="decimal", default=Decimal("0"), validator=lambda v: validate_decimal(v, 0, 100, True), prompt_on_new=True), "ts_activation_spread": ConfigVar(key="ts_activation_spread", prompt="At what spread from the position entry price do you want the bot to start trailing? (Enter 1 for 1%) >>> ", required_if=lambda: perpetual_market_making_config_map.get("position_management").value == "Trailing_stop", type_str="decimal", default=Decimal("0"), validator=lambda v: validate_decimal(v, 0, 100, True), prompt_on_new=True), "ts_callback_rate": ConfigVar(key="ts_callback_rate", prompt="At what spread away from the trailing peak price do you want positions to remain open before they're closed? (Enter 1 for 1%) >>> ", required_if=lambda: perpetual_market_making_config_map.get("position_management").value == "Trailing_stop", type_str="decimal", default=Decimal("0"), validator=lambda v: validate_decimal(v, 0, 100, True), prompt_on_new=True), "stop_loss_spread": ConfigVar(key="stop_loss_spread", prompt="At what spread from position entry price do you want to place stop_loss order? (Enter 1 for 1%) >>> ", type_str="decimal", default=Decimal("0"), validator=lambda v: validate_decimal(v, 0, 101, False), prompt_on_new=True), "close_position_order_type": ConfigVar(key="close_position_order_type", prompt="What order type do you want trailing stop and/or stop loss features to use for closing positions? (LIMIT/MARKET) >>> ", type_str="str", default="LIMIT", validator=lambda s: None if s in {"LIMIT", "MARKET"} else "Invalid order type.", prompt_on_new=True), "price_ceiling": ConfigVar(key="price_ceiling", prompt="Enter the price point above which only sell orders will be placed " "(Enter -1 to deactivate this feature) >>> ", type_str="decimal", default=Decimal("-1"), validator=validate_price_floor_ceiling), "price_floor": ConfigVar(key="price_floor", prompt="Enter the price below which only buy orders will be placed " "(Enter -1 to deactivate this feature) >>> ", type_str="decimal", default=Decimal("-1"), validator=validate_price_floor_ceiling), "ping_pong_enabled": ConfigVar(key="ping_pong_enabled", prompt="Would you like to use the ping pong feature and alternate between buy and sell orders after fills? (Yes/No) >>> ", type_str="bool", default=False, validator=validate_bool), "order_levels": ConfigVar(key="order_levels", prompt="How many orders do you want to place on both sides? >>> ", type_str="int", validator=lambda v: validate_int(v, min_value=0, inclusive=False), default=1), "order_level_amount": ConfigVar(key="order_level_amount", prompt="How much do you want to increase or decrease the order size for each " "additional order? (decrease < 0 > increase) >>> ", required_if=lambda: perpetual_market_making_config_map.get("order_levels").value > 1, type_str="decimal", validator=lambda v: validate_decimal(v), default=0), "order_level_spread": ConfigVar(key="order_level_spread", prompt="Enter the price increments (as percentage) for subsequent " "orders? (Enter 1 to indicate 1%) >>> ", required_if=lambda: perpetual_market_making_config_map.get("order_levels").value > 1, type_str="decimal", validator=lambda v: validate_decimal(v, 0, 100, inclusive=False), default=Decimal("1")), "filled_order_delay": ConfigVar(key="filled_order_delay", prompt="How long do you want to wait before placing the next order " "if your order gets filled (in seconds)? >>> ", type_str="float", validator=lambda v: validate_decimal(v, min_value=0, inclusive=False), default=60), "hanging_orders_enabled": ConfigVar(key="hanging_orders_enabled", prompt="Do you want to enable hanging orders? (Yes/No) >>> ", type_str="bool", default=False, validator=validate_bool), "hanging_orders_cancel_pct": ConfigVar(key="hanging_orders_cancel_pct", prompt="At what spread percentage (from mid price) will hanging orders be canceled? " "(Enter 1 to indicate 1%) >>> ", required_if=lambda: perpetual_market_making_config_map.get("hanging_orders_enabled").value, type_str="decimal", default=Decimal("10"), validator=lambda v: validate_decimal(v, 0, 100, inclusive=False)), "order_optimization_enabled": ConfigVar(key="order_optimization_enabled", prompt="Do you want to enable best bid ask jumping? (Yes/No) >>> ", type_str="bool", default=False, validator=validate_bool), "ask_order_optimization_depth": ConfigVar(key="ask_order_optimization_depth", prompt="How deep do you want to go into the order book for calculating " "the top ask, ignoring dust orders on the top " "(expressed in base asset amount)? >>> ", required_if=lambda: perpetual_market_making_config_map.get("order_optimization_enabled").value, type_str="decimal", validator=lambda v: validate_decimal(v, min_value=0), default=0), "bid_order_optimization_depth": ConfigVar(key="bid_order_optimization_depth", prompt="How deep do you want to go into the order book for calculating " "the top bid, ignoring dust orders on the top " "(expressed in base asset amount)? >>> ", required_if=lambda: perpetual_market_making_config_map.get("order_optimization_enabled").value, type_str="decimal", validator=lambda v: validate_decimal(v, min_value=0), default=0), "add_transaction_costs": ConfigVar(key="add_transaction_costs", prompt="Do you want to add transaction costs automatically to order prices? (Yes/No) >>> ", type_str="bool", default=False, validator=validate_bool), "price_source": ConfigVar(key="price_source", prompt="Which price source to use? (current_market/external_market/custom_api) >>> ", type_str="str", default="current_market", validator=validate_price_source, on_validated=on_validate_price_source), "price_type": ConfigVar(key="price_type", prompt="Which price type to use? (mid_price/last_price/last_own_trade_price/best_bid/best_ask) >>> ", type_str="str", required_if=lambda: perpetual_market_making_config_map.get("price_source").value != "custom_api", default="mid_price", validator=validate_price_type), "price_source_derivative": ConfigVar(key="price_source_derivative", prompt="Enter external price source connector name or derivative name >>> ", required_if=lambda: perpetual_market_making_config_map.get("price_source").value == "external_market", type_str="str", validator=validate_price_source_derivative, on_validated=on_validated_price_source_derivative), "price_source_market": ConfigVar(key="price_source_market", prompt=price_source_market_prompt, required_if=lambda: perpetual_market_making_config_map.get("price_source").value == "external_market", type_str="str", validator=validate_price_source_market), "take_if_crossed": ConfigVar(key="take_if_crossed", prompt="Do you want to take the best order if orders cross the orderbook? (Yes/No) >>> ", required_if=lambda: perpetual_market_making_config_map.get( "price_source").value == "external_market", type_str="bool", validator=validate_bool), "price_source_custom_api": ConfigVar(key="price_source_custom_api", prompt="Enter pricing API URL >>> ", required_if=lambda: perpetual_market_making_config_map.get("price_source").value == "custom_api", type_str="str"), "custom_api_update_interval": ConfigVar(key="custom_api_update_interval", prompt="Enter custom API update interval in second (default: 5.0, min: 0.5) >>> ", required_if=lambda: False, default=float(5), type_str="float", validator=lambda v: validate_decimal(v, Decimal("0.5"))), "order_override": ConfigVar(key="order_override", prompt=None, required_if=lambda: False, default=None, type_str="json"), }
49.262626
158
0.604726
f01a444d8c9edd7eeb5b483e2e12ba5a74028e11
1,223
py
Python
collision_metric/planning/BFS.py
Jan-Blaha/pedestrian-collision-metric
06863161e3a12e52a78c1bf4df0439b3f90daef6
[ "MIT" ]
null
null
null
collision_metric/planning/BFS.py
Jan-Blaha/pedestrian-collision-metric
06863161e3a12e52a78c1bf4df0439b3f90daef6
[ "MIT" ]
null
null
null
collision_metric/planning/BFS.py
Jan-Blaha/pedestrian-collision-metric
06863161e3a12e52a78c1bf4df0439b3f90daef6
[ "MIT" ]
null
null
null
import heapq from collision_metric.state_spaces.StateSpace import StateSpace class BFS: space = None # type: StateSpace def __init__(self, state_space=None): if state_space is None or issubclass(type(state_space), StateSpace): raise Exception("No or invalid state space specified.") self.space = state_space def set_data(self, data): self.space.set_data(data) # MAIN SEARCH ALGORITHM def search(self, source, destination): queue = [] heapq.heapify(queue) start = self.space.get_starting_state(source) dest = self.space.set_destination_state(destination) heapq.heappush(queue, (0, 0, start)) self.space.mark_visited(start) curr = start while len(queue) > 0: curr = heapq.heappop(queue) if curr[2] == dest: break children = self.space.expand(curr[2]) for i in range(len(children)): heapq.heappush(queue, (children[i].get_cost() + curr[0], curr[1] + 1, children[i])) self.space.mark_visited(children[i]) return self.space.remake_path(curr[2])
27.795455
100
0.589534
666b521b42ecbb15675721aac1773d8c4ff1909b
13,906
py
Python
alipay/aop/api/request/AlipayOpenAgentMobilepaySignRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/AlipayOpenAgentMobilepaySignRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/AlipayOpenAgentMobilepaySignRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * class AlipayOpenAgentMobilepaySignRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._app_market = None self._app_name = None self._app_status = None self._app_test_account = None self._app_test_account_password = None self._app_type = None self._batch_no = None self._business_license_mobile = None self._business_license_no = None self._date_limitation = None self._download_link = None self._long_term = None self._mcc_code = None self._app_auth_pic = None self._app_demo = None self._business_license_auth_pic = None self._business_license_pic = None self._home_screenshot = None self._in_app_screenshot = None self._pay_screenshot = None self._special_license_pic = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def app_market(self): return self._app_market @app_market.setter def app_market(self, value): if isinstance(value, list): self._app_market = list() for i in value: self._app_market.append(i) @property def app_name(self): return self._app_name @app_name.setter def app_name(self, value): self._app_name = value @property def app_status(self): return self._app_status @app_status.setter def app_status(self, value): self._app_status = value @property def app_test_account(self): return self._app_test_account @app_test_account.setter def app_test_account(self, value): self._app_test_account = value @property def app_test_account_password(self): return self._app_test_account_password @app_test_account_password.setter def app_test_account_password(self, value): self._app_test_account_password = value @property def app_type(self): return self._app_type @app_type.setter def app_type(self, value): if isinstance(value, list): self._app_type = list() for i in value: self._app_type.append(i) @property def batch_no(self): return self._batch_no @batch_no.setter def batch_no(self, value): self._batch_no = value @property def business_license_mobile(self): return self._business_license_mobile @business_license_mobile.setter def business_license_mobile(self, value): self._business_license_mobile = value @property def business_license_no(self): return self._business_license_no @business_license_no.setter def business_license_no(self, value): self._business_license_no = value @property def date_limitation(self): return self._date_limitation @date_limitation.setter def date_limitation(self, value): self._date_limitation = value @property def download_link(self): return self._download_link @download_link.setter def download_link(self, value): self._download_link = value @property def long_term(self): return self._long_term @long_term.setter def long_term(self, value): self._long_term = value @property def mcc_code(self): return self._mcc_code @mcc_code.setter def mcc_code(self, value): self._mcc_code = value @property def app_auth_pic(self): return self._app_auth_pic @app_auth_pic.setter def app_auth_pic(self, value): if not isinstance(value, FileItem): return self._app_auth_pic = value @property def app_demo(self): return self._app_demo @app_demo.setter def app_demo(self, value): if not isinstance(value, FileItem): return self._app_demo = value @property def business_license_auth_pic(self): return self._business_license_auth_pic @business_license_auth_pic.setter def business_license_auth_pic(self, value): if not isinstance(value, FileItem): return self._business_license_auth_pic = value @property def business_license_pic(self): return self._business_license_pic @business_license_pic.setter def business_license_pic(self, value): if not isinstance(value, FileItem): return self._business_license_pic = value @property def home_screenshot(self): return self._home_screenshot @home_screenshot.setter def home_screenshot(self, value): if not isinstance(value, FileItem): return self._home_screenshot = value @property def in_app_screenshot(self): return self._in_app_screenshot @in_app_screenshot.setter def in_app_screenshot(self, value): if not isinstance(value, FileItem): return self._in_app_screenshot = value @property def pay_screenshot(self): return self._pay_screenshot @pay_screenshot.setter def pay_screenshot(self, value): if not isinstance(value, FileItem): return self._pay_screenshot = value @property def special_license_pic(self): return self._special_license_pic @special_license_pic.setter def special_license_pic(self, value): if not isinstance(value, FileItem): return self._special_license_pic = value @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.open.agent.mobilepay.sign' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.app_market: if isinstance(self.app_market, list): for i in range(0, len(self.app_market)): element = self.app_market[i] if hasattr(element, 'to_alipay_dict'): self.app_market[i] = element.to_alipay_dict() params['app_market'] = json.dumps(obj=self.app_market, ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.app_name: if hasattr(self.app_name, 'to_alipay_dict'): params['app_name'] = json.dumps(obj=self.app_name.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['app_name'] = self.app_name if self.app_status: if hasattr(self.app_status, 'to_alipay_dict'): params['app_status'] = json.dumps(obj=self.app_status.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['app_status'] = self.app_status if self.app_test_account: if hasattr(self.app_test_account, 'to_alipay_dict'): params['app_test_account'] = json.dumps(obj=self.app_test_account.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['app_test_account'] = self.app_test_account if self.app_test_account_password: if hasattr(self.app_test_account_password, 'to_alipay_dict'): params['app_test_account_password'] = json.dumps(obj=self.app_test_account_password.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['app_test_account_password'] = self.app_test_account_password if self.app_type: if isinstance(self.app_type, list): for i in range(0, len(self.app_type)): element = self.app_type[i] if hasattr(element, 'to_alipay_dict'): self.app_type[i] = element.to_alipay_dict() params['app_type'] = json.dumps(obj=self.app_type, ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.batch_no: if hasattr(self.batch_no, 'to_alipay_dict'): params['batch_no'] = json.dumps(obj=self.batch_no.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['batch_no'] = self.batch_no if self.business_license_mobile: if hasattr(self.business_license_mobile, 'to_alipay_dict'): params['business_license_mobile'] = json.dumps(obj=self.business_license_mobile.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['business_license_mobile'] = self.business_license_mobile if self.business_license_no: if hasattr(self.business_license_no, 'to_alipay_dict'): params['business_license_no'] = json.dumps(obj=self.business_license_no.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['business_license_no'] = self.business_license_no if self.date_limitation: if hasattr(self.date_limitation, 'to_alipay_dict'): params['date_limitation'] = json.dumps(obj=self.date_limitation.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['date_limitation'] = self.date_limitation if self.download_link: if hasattr(self.download_link, 'to_alipay_dict'): params['download_link'] = json.dumps(obj=self.download_link.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['download_link'] = self.download_link if self.long_term: if hasattr(self.long_term, 'to_alipay_dict'): params['long_term'] = json.dumps(obj=self.long_term.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['long_term'] = self.long_term if self.mcc_code: if hasattr(self.mcc_code, 'to_alipay_dict'): params['mcc_code'] = json.dumps(obj=self.mcc_code.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['mcc_code'] = self.mcc_code if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() if self.app_auth_pic: multipart_params['app_auth_pic'] = self.app_auth_pic if self.app_demo: multipart_params['app_demo'] = self.app_demo if self.business_license_auth_pic: multipart_params['business_license_auth_pic'] = self.business_license_auth_pic if self.business_license_pic: multipart_params['business_license_pic'] = self.business_license_pic if self.home_screenshot: multipart_params['home_screenshot'] = self.home_screenshot if self.in_app_screenshot: multipart_params['in_app_screenshot'] = self.in_app_screenshot if self.pay_screenshot: multipart_params['pay_screenshot'] = self.pay_screenshot if self.special_license_pic: multipart_params['special_license_pic'] = self.special_license_pic return multipart_params
34.506203
176
0.638717
19e719fc7eced7f4ea52d6e1caa493a0fd459527
5,302
py
Python
collection/plugins/modules/thola_read_interfaces_facts.py
inexio/thola-ansible
f07618d69873fe6fb81941baec522646397d2d54
[ "BSD-2-Clause" ]
3
2021-05-28T09:05:53.000Z
2021-06-25T20:04:44.000Z
collection/plugins/modules/thola_read_interfaces_facts.py
inexio/thola-ansible
f07618d69873fe6fb81941baec522646397d2d54
[ "BSD-2-Clause" ]
null
null
null
collection/plugins/modules/thola_read_interfaces_facts.py
inexio/thola-ansible
f07618d69873fe6fb81941baec522646397d2d54
[ "BSD-2-Clause" ]
null
null
null
import json import sys import urllib3 from ansible.module_utils.basic import AnsibleModule DOCUMENTATION = """ --- module: thola_read_interfaces_facts author: "Thola team" version_added: "1.0.5" short_description: "Reads interfaces of a given device" description: - "Reads the interfaces of a given device with SNMP" requirements: - thola-client-module-python options: api_host: description: - Hostname of the running Thola API instance required: True host: description: - IP of the device you want to identify required: True community: description: - SNMP community of the device version: description: - SNMP version that should be used to connect to the device port: description: - The port you want Thola to connect to the device discover_parallel_request: description: - Sets the number of possible parallel requests discover_retries: description: - Sets the number of discovery retries discover_timeout: description: - Sets the discover timeout """ EXAMPLES = """ - name: thola read interfaces thola_read_interfaces_facts: api_host: '{{ api_host }}' host: '{{ host }}' community: '{{ community }}' version: '{{ version }}' port: '{{ port }}' discover_parallel_request: '{{ discover_parallel_request }}' discover_retries: '{{ discover_retries }}' discover_timeout: '{{ discover_timeout }}' register: result """ RETURN = """ changed: description: "whether the command has been executed on the device" returned: always type: bool sample: True thola_read_interfaces_facts: description: "Interfaces facts" returned: always type: dict """ def change_quotation_marks(obj): if isinstance(obj, dict): for key, value in obj.items(): if isinstance(value, dict): change_quotation_marks(value) elif isinstance(value, str): obj[key] = obj[key].replace("\"", "'") else: pass return obj thola_client_found = False try: import thola_client.api.read_api as read import thola_client.rest as rest import thola_client thola_client_found = True except ImportError: pass def main(): sys.stderr = None module = AnsibleModule( argument_spec=dict( api_host=dict(type="str", required=True), host=dict(type="str", required=True), community=dict(type="str", required=False), version=dict(type="str", required=False), port=dict(type="int", required=False), discover_parallel_request=dict(type="int", required=False), discover_retries=dict(type="int", required=False), discover_timeout=dict(type="int", required=False) ), supports_check_mode=True, ) if not thola_client_found: module.fail_json("The thola-client-module is not installed") host = module.params["host"] api_host = module.params["api_host"] argument_check = {"host": host, "api_host": api_host} for key, val in argument_check.items(): if val is None: module.fail_json(msg=str(key) + " is required") return if module.params["version"] is None: version = "2c" else: version = module.params["version"] if module.params["community"] is None: community = "public" else: community = module.params["community"] if module.params["port"] is None: port = 161 else: port = module.params["port"] if module.params["discover_parallel_request"] is None: discover_parallel_request = 5 else: discover_parallel_request = module.params["discover_parallel_request"] if module.params["discover_retries"] is None: discover_retries = 0 else: discover_retries = module.params["discover_retries"] if module.params["discover_timeout"] is None: discover_timeout = 2 else: discover_timeout = module.params["discover_timeout"] body = thola_client.ReadInterfacesRequest( device_data=thola_client.DeviceData( ip_address=host, connection_data=thola_client.ConnectionData( snmp=thola_client.SNMPConnectionData( communities=[community], versions=[version], ports=[port], discover_retries=discover_retries, discover_timeout=discover_timeout, discover_parallel_requests=discover_parallel_request ) ) ) ) read_api = read.ReadApi() read_api.api_client.configuration.host = api_host try: result_dict = read_api.read_interfaces(body=body).to_dict() except rest.ApiException as e: module.fail_json(**json.loads(e.body)) return except urllib3.exceptions.MaxRetryError: module.fail_json("Can't connect to Thola API!") return result_dict = change_quotation_marks(result_dict) results = {"changed": False, "ansible_facts": result_dict} module.exit_json(**results) if __name__ == "__main__": main()
28.972678
78
0.63146
4d3247d661fe96d8f522096ce584768901ef550e
3,340
py
Python
boto3/__init__.py
adamatan/boto3
4f2a12de5285d036cef6f61a9a8bbda05f7a761e
[ "Apache-2.0" ]
null
null
null
boto3/__init__.py
adamatan/boto3
4f2a12de5285d036cef6f61a9a8bbda05f7a761e
[ "Apache-2.0" ]
null
null
null
boto3/__init__.py
adamatan/boto3
4f2a12de5285d036cef6f61a9a8bbda05f7a761e
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import logging from boto3.session import Session __author__ = 'Amazon Web Services' __version__ = '1.9.195' # The default Boto3 session; autoloaded when needed. DEFAULT_SESSION = None def setup_default_session(**kwargs): """ Set up a default session, passing through any parameters to the session constructor. There is no need to call this unless you wish to pass custom parameters, because a default session will be created for you. """ global DEFAULT_SESSION DEFAULT_SESSION = Session(**kwargs) def set_stream_logger(name='boto3', level=logging.DEBUG, format_string=None): """ Add a stream handler for the given name and level to the logging module. By default, this logs all boto3 messages to ``stdout``. >>> import boto3 >>> boto3.set_stream_logger('boto3.resources', logging.INFO) For debugging purposes a good choice is to set the stream logger to ``''`` which is equivalent to saying "log everything". .. WARNING:: Be aware that when logging anything from ``'botocore'`` the full wire trace will appear in your logs. If your payloads contain sensitive data this should not be used in production. :type name: string :param name: Log name :type level: int :param level: Logging level, e.g. ``logging.INFO`` :type format_string: str :param format_string: Log message format """ if format_string is None: format_string = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logger = logging.getLogger(name) logger.setLevel(level) handler = logging.StreamHandler() handler.setLevel(level) formatter = logging.Formatter(format_string) handler.setFormatter(formatter) logger.addHandler(handler) def _get_default_session(): """ Get the default session, creating one if needed. :rtype: :py:class:`~boto3.session.Session` :return: The default session """ if DEFAULT_SESSION is None: setup_default_session() return DEFAULT_SESSION def client(*args, **kwargs): """ Create a low-level service client by name using the default session. See :py:meth:`boto3.session.Session.client`. """ return _get_default_session().client(*args, **kwargs) def resource(*args, **kwargs): """ Create a resource service client by name using the default session. See :py:meth:`boto3.session.Session.resource`. """ return _get_default_session().resource(*args, **kwargs) # Set up logging to ``/dev/null`` like a library is supposed to. # http://docs.python.org/3.3/howto/logging.html#configuring-logging-for-a-library class NullHandler(logging.Handler): def emit(self, record): pass logging.getLogger('boto3').addHandler(NullHandler())
30.09009
81
0.703593
3df668f29edabb50190a7b44daa2a191125be6d5
4,012
py
Python
SuperSafety/Utils/HistoryStructs.py
BDEvan5/SuperSafety
73edd8d8b191e291a6f369043698b8763887a1f7
[ "Apache-2.0" ]
null
null
null
SuperSafety/Utils/HistoryStructs.py
BDEvan5/SuperSafety
73edd8d8b191e291a6f369043698b8763887a1f7
[ "Apache-2.0" ]
null
null
null
SuperSafety/Utils/HistoryStructs.py
BDEvan5/SuperSafety
73edd8d8b191e291a6f369043698b8763887a1f7
[ "Apache-2.0" ]
null
null
null
import os, shutil import csv import numpy as np from matplotlib import pyplot as plt SIZE = 20000 def plot_data(values, moving_avg_period=10, title="Results", figure_n=2): plt.figure(figure_n) plt.clf() plt.title(title) plt.xlabel('Episode') plt.ylabel('Duration') plt.plot(values) moving_avg = moving_average(values, moving_avg_period) plt.plot(moving_avg) moving_avg = moving_average(values, moving_avg_period * 5) plt.plot(moving_avg) plt.pause(0.001) def moving_average(data, period): return np.convolve(data, np.ones(period), 'same') / period class TrainHistory(): def __init__(self, agent_name, conf, load=False) -> None: self.agent_name = agent_name self.path = conf.vehicle_path + self.agent_name # training data self.ptr = 0 self.lengths = np.zeros(SIZE) self.rewards = np.zeros(SIZE) self.t_counter = 0 # total steps self.step_rewards = [] # espisode data self.ep_counter = 0 # ep steps self.ep_reward = 0 self.ep_rewards = [] if not load: self.init_file_struct() def init_file_struct(self): path = os.getcwd() +'/' + self.path if os.path.exists(path): try: os.rmdir(path) except: shutil.rmtree(path) os.mkdir(path) def add_step_data(self, new_r): self.ep_reward += new_r self.ep_rewards.append(new_r) self.ep_counter += 1 self.t_counter += 1 self.step_rewards.append(new_r) def lap_done(self, show_reward=False): self.lengths[self.ptr] = self.ep_counter self.rewards[self.ptr] = self.ep_reward # print(f"EP reward: {self.ep_reward:.2f}") self.ptr += 1 if show_reward: plt.figure(8) plt.clf() plt.plot(self.ep_rewards) plt.plot(self.ep_rewards, 'x', markersize=10) plt.title(f"Ep rewards: total: {self.ep_reward:.4f}") plt.ylim([-1.1, 1.5]) plt.pause(0.0001) self.ep_counter = 0 self.ep_reward = 0 self.ep_rewards = [] def print_update(self, plot_reward=True): if self.ptr < 10: return mean10 = np.mean(self.rewards[self.ptr-10:self.ptr]) mean100 = np.mean(self.rewards[max(0, self.ptr-100):self.ptr]) # score = moving_average(self.rewards[self.ptr-100:self.ptr], 10) print(f"Run: {self.t_counter} --> Moving10: {mean10:.2f} --> Moving100: {mean100:.2f} ") if plot_reward: # raise NotImplementedError plot_data(self.rewards[0:self.ptr], figure_n=2) def save_csv_data(self): data = [] for i in range(len(self.rewards)): data.append([i, self.rewards[i], self.lengths[i]]) full_name = self.path + '/training_data.csv' with open(full_name, 'w') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerows(data) data = [] for i in range(len(self.step_rewards)): data.append([i, self.step_rewards[i]]) full_name = self.path + '/step_data.csv' with open(full_name, 'w') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerows(data) plot_data(self.rewards[0:self.ptr], figure_n=2) plt.figure(2) plt.savefig(self.path + "/training_rewards.png") def moving_average(data, period): return np.convolve(data, np.ones(period), 'same') / period class RewardAnalyser: def __init__(self) -> None: self.rewards = [] self.t = 0 def add_reward(self, new_r): self.rewards.append(new_r) self.t += 1 def show_rewards(self, show=False): plt.figure(6) plt.plot(self.rewards, '-*') plt.ylim([-1, 1]) plt.title('Reward History') if show: plt.show()
29.718519
97
0.579013
26d668fa2dd39a9128d13c49817fb75e09ce98ec
2,002
py
Python
autotest/gdrivers/eir.py
dtusk/gdal1
30dcdc1eccbca2331674f6421f1c5013807da609
[ "MIT" ]
3
2017-01-12T10:18:56.000Z
2020-03-21T16:42:55.000Z
autotest/gdrivers/eir.py
ShinNoNoir/gdal-1.11.5-vs2015
5d544e176a4c11f9bcd12a0fe66f97fd157824e6
[ "MIT" ]
null
null
null
autotest/gdrivers/eir.py
ShinNoNoir/gdal-1.11.5-vs2015
5d544e176a4c11f9bcd12a0fe66f97fd157824e6
[ "MIT" ]
null
null
null
#!/usr/bin/env python ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test EIR driver # Author: Even Rouault, <even dot rouault at mines dash paris dot org> # ############################################################################### # Copyright (c) 2009, Even Rouault <even dot rouault at mines-paris dot org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import os import sys from osgeo import gdal sys.path.append( '../pymod' ) import gdaltest ############################################################################### # Test a fake EIR dataset def eir_1(): tst = gdaltest.GDALTest( 'EIR', 'fakeeir.hdr', 1, 1 ) return tst.testOpen() gdaltest_list = [ eir_1 ] if __name__ == '__main__': gdaltest.setup_run( 'eir' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
34.517241
79
0.621878
af9bd09bef8c7698aaef8edcc412d994ff8ceafc
2,319
py
Python
python3/koans/about_asserts.py
mitulp236/python-koans
8b39cdc346576bbbd4a56c3ff1b90ed8ea070db4
[ "MIT" ]
null
null
null
python3/koans/about_asserts.py
mitulp236/python-koans
8b39cdc346576bbbd4a56c3ff1b90ed8ea070db4
[ "MIT" ]
null
null
null
python3/koans/about_asserts.py
mitulp236/python-koans
8b39cdc346576bbbd4a56c3ff1b90ed8ea070db4
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from runner.koan import * class AboutAsserts(Koan): def test_assert_truth(self): """ We shall contemplate truth by testing reality, via asserts. """ # Confused? This video should help: # # http://bit.ly/about_asserts self.assertTrue(True) # This should be True def test_assert_with_message(self): """ Enlightenment may be more easily achieved with appropriate messages. """ self.assertTrue(False, "This should be True -- Please fix this") def test_fill_in_values(self): """ Sometimes we will ask you to fill in the values """ self.assertEqual(__, 1 + 1) def test_assert_equality(self): """ To understand reality, we must compare our expectations against reality. """ expected_value = __ actual_value = 1 + 1 self.assertTrue(expected_value == actual_value) def test_a_better_way_of_asserting_equality(self): """ Some ways of asserting equality are better than others. """ expected_value = __ actual_value = 1 + 1 self.assertEqual(expected_value, actual_value) def test_that_unittest_asserts_work_the_same_way_as_python_asserts(self): """ Understand what lies within. """ # This throws an AssertionError exception assert False def test_that_sometimes_we_need_to_know_the_class_type(self): """ What is in a class name? """ # Sometimes we will ask you what the class type of an object is. # # For example, contemplate the text string "navel". What is its class type? # The koans runner will include this feedback for this koan: # # AssertionError: '-=> FILL ME IN! <=-' != <type 'str'> # # So "navel".__class__ is equal to <type 'str'>? No not quite. This # is just what it displays. The answer is simply str. # # See for yourself: self.assertEqual(__, "navel".__class__) # It's str, not <type 'str'> # Need an illustration? More reading can be found here: # # https://github.com/gregmalcolm/python_koans/wiki/Class-Attribute
29.35443
83
0.606296
9ba9486bd024752c03c2077eeffde9273a6497e8
28,972
py
Python
graalpython/lib-python/3/trace.py
muellren/graalpython
9104425805f1d38ad7a521c75e53798a3b79b4f0
[ "UPL-1.0", "Apache-2.0", "OpenSSL" ]
4
2018-07-06T12:18:06.000Z
2021-02-26T03:46:53.000Z
graalpython/lib-python/3/trace.py
muellren/graalpython
9104425805f1d38ad7a521c75e53798a3b79b4f0
[ "UPL-1.0", "Apache-2.0", "OpenSSL" ]
null
null
null
graalpython/lib-python/3/trace.py
muellren/graalpython
9104425805f1d38ad7a521c75e53798a3b79b4f0
[ "UPL-1.0", "Apache-2.0", "OpenSSL" ]
1
2018-07-09T09:42:18.000Z
2018-07-09T09:42:18.000Z
#!/usr/bin/env python3 # portions copyright 2001, Autonomous Zones Industries, Inc., all rights... # err... reserved and offered to the public under the terms of the # Python 2.2 license. # Author: Zooko O'Whielacronx # http://zooko.com/ # mailto:zooko@zooko.com # # Copyright 2000, Mojam Media, Inc., all rights reserved. # Author: Skip Montanaro # # Copyright 1999, Bioreason, Inc., all rights reserved. # Author: Andrew Dalke # # Copyright 1995-1997, Automatrix, Inc., all rights reserved. # Author: Skip Montanaro # # Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved. # # # Permission to use, copy, modify, and distribute this Python software and # its associated documentation for any purpose without fee is hereby # granted, provided that the above copyright notice appears in all copies, # and that both that copyright notice and this permission notice appear in # supporting documentation, and that the name of neither Automatrix, # Bioreason or Mojam Media be used in advertising or publicity pertaining to # distribution of the software without specific, written prior permission. # """program/module to trace Python program or function execution Sample use, command line: trace.py -c -f counts --ignore-dir '$prefix' spam.py eggs trace.py -t --ignore-dir '$prefix' spam.py eggs trace.py --trackcalls spam.py eggs Sample use, programmatically import sys # create a Trace object, telling it what to ignore, and whether to # do tracing or line-counting or both. tracer = trace.Trace(ignoredirs=[sys.base_prefix, sys.base_exec_prefix,], trace=0, count=1) # run the new command using the given tracer tracer.run('main()') # make a report, placing output in /tmp r = tracer.results() r.write_results(show_missing=True, coverdir="/tmp") """ __all__ = ['Trace', 'CoverageResults'] import argparse import linecache import os import re import sys import token import tokenize import inspect import gc import dis import pickle from time import monotonic as _time try: import threading except ImportError: _settrace = sys.settrace def _unsettrace(): sys.settrace(None) else: def _settrace(func): threading.settrace(func) sys.settrace(func) def _unsettrace(): sys.settrace(None) threading.settrace(None) PRAGMA_NOCOVER = "#pragma NO COVER" # Simple rx to find lines with no code. rx_blank = re.compile(r'^\s*(#.*)?$') class _Ignore: def __init__(self, modules=None, dirs=None): self._mods = set() if not modules else set(modules) self._dirs = [] if not dirs else [os.path.normpath(d) for d in dirs] self._ignore = { '<string>': 1 } def names(self, filename, modulename): if modulename in self._ignore: return self._ignore[modulename] # haven't seen this one before, so see if the module name is # on the ignore list. if modulename in self._mods: # Identical names, so ignore self._ignore[modulename] = 1 return 1 # check if the module is a proper submodule of something on # the ignore list for mod in self._mods: # Need to take some care since ignoring # "cmp" mustn't mean ignoring "cmpcache" but ignoring # "Spam" must also mean ignoring "Spam.Eggs". if modulename.startswith(mod + '.'): self._ignore[modulename] = 1 return 1 # Now check that filename isn't in one of the directories if filename is None: # must be a built-in, so we must ignore self._ignore[modulename] = 1 return 1 # Ignore a file when it contains one of the ignorable paths for d in self._dirs: # The '+ os.sep' is to ensure that d is a parent directory, # as compared to cases like: # d = "/usr/local" # filename = "/usr/local.py" # or # d = "/usr/local.py" # filename = "/usr/local.py" if filename.startswith(d + os.sep): self._ignore[modulename] = 1 return 1 # Tried the different ways, so we don't ignore this module self._ignore[modulename] = 0 return 0 def _modname(path): """Return a plausible module name for the patch.""" base = os.path.basename(path) filename, ext = os.path.splitext(base) return filename def _fullmodname(path): """Return a plausible module name for the path.""" # If the file 'path' is part of a package, then the filename isn't # enough to uniquely identify it. Try to do the right thing by # looking in sys.path for the longest matching prefix. We'll # assume that the rest is the package name. comparepath = os.path.normcase(path) longest = "" for dir in sys.path: dir = os.path.normcase(dir) if comparepath.startswith(dir) and comparepath[len(dir)] == os.sep: if len(dir) > len(longest): longest = dir if longest: base = path[len(longest) + 1:] else: base = path # the drive letter is never part of the module name drive, base = os.path.splitdrive(base) base = base.replace(os.sep, ".") if os.altsep: base = base.replace(os.altsep, ".") filename, ext = os.path.splitext(base) return filename.lstrip(".") class CoverageResults: def __init__(self, counts=None, calledfuncs=None, infile=None, callers=None, outfile=None): self.counts = counts if self.counts is None: self.counts = {} self.counter = self.counts.copy() # map (filename, lineno) to count self.calledfuncs = calledfuncs if self.calledfuncs is None: self.calledfuncs = {} self.calledfuncs = self.calledfuncs.copy() self.callers = callers if self.callers is None: self.callers = {} self.callers = self.callers.copy() self.infile = infile self.outfile = outfile if self.infile: # Try to merge existing counts file. try: with open(self.infile, 'rb') as f: counts, calledfuncs, callers = pickle.load(f) self.update(self.__class__(counts, calledfuncs, callers)) except (OSError, EOFError, ValueError) as err: print(("Skipping counts file %r: %s" % (self.infile, err)), file=sys.stderr) def is_ignored_filename(self, filename): """Return True if the filename does not refer to a file we want to have reported. """ return filename.startswith('<') and filename.endswith('>') def update(self, other): """Merge in the data from another CoverageResults""" counts = self.counts calledfuncs = self.calledfuncs callers = self.callers other_counts = other.counts other_calledfuncs = other.calledfuncs other_callers = other.callers for key in other_counts: counts[key] = counts.get(key, 0) + other_counts[key] for key in other_calledfuncs: calledfuncs[key] = 1 for key in other_callers: callers[key] = 1 def write_results(self, show_missing=True, summary=False, coverdir=None): """ Write the coverage results. :param show_missing: Show lines that had no hits. :param summary: Include coverage summary per module. :param coverdir: If None, the results of each module are placed in its directory, otherwise it is included in the directory specified. """ if self.calledfuncs: print() print("functions called:") calls = self.calledfuncs for filename, modulename, funcname in sorted(calls): print(("filename: %s, modulename: %s, funcname: %s" % (filename, modulename, funcname))) if self.callers: print() print("calling relationships:") lastfile = lastcfile = "" for ((pfile, pmod, pfunc), (cfile, cmod, cfunc)) \ in sorted(self.callers): if pfile != lastfile: print() print("***", pfile, "***") lastfile = pfile lastcfile = "" if cfile != pfile and lastcfile != cfile: print(" -->", cfile) lastcfile = cfile print(" %s.%s -> %s.%s" % (pmod, pfunc, cmod, cfunc)) # turn the counts data ("(filename, lineno) = count") into something # accessible on a per-file basis per_file = {} for filename, lineno in self.counts: lines_hit = per_file[filename] = per_file.get(filename, {}) lines_hit[lineno] = self.counts[(filename, lineno)] # accumulate summary info, if needed sums = {} for filename, count in per_file.items(): if self.is_ignored_filename(filename): continue if filename.endswith(".pyc"): filename = filename[:-1] if coverdir is None: dir = os.path.dirname(os.path.abspath(filename)) modulename = _modname(filename) else: dir = coverdir if not os.path.exists(dir): os.makedirs(dir) modulename = _fullmodname(filename) # If desired, get a list of the line numbers which represent # executable content (returned as a dict for better lookup speed) if show_missing: lnotab = _find_executable_linenos(filename) else: lnotab = {} if lnotab: source = linecache.getlines(filename) coverpath = os.path.join(dir, modulename + ".cover") with open(filename, 'rb') as fp: encoding, _ = tokenize.detect_encoding(fp.readline) n_hits, n_lines = self.write_results_file(coverpath, source, lnotab, count, encoding) if summary and n_lines: percent = int(100 * n_hits / n_lines) sums[modulename] = n_lines, percent, modulename, filename if summary and sums: print("lines cov% module (path)") for m in sorted(sums): n_lines, percent, modulename, filename = sums[m] print("%5d %3d%% %s (%s)" % sums[m]) if self.outfile: # try and store counts and module info into self.outfile try: pickle.dump((self.counts, self.calledfuncs, self.callers), open(self.outfile, 'wb'), 1) except OSError as err: print("Can't save counts files because %s" % err, file=sys.stderr) def write_results_file(self, path, lines, lnotab, lines_hit, encoding=None): """Return a coverage results file in path.""" try: outfile = open(path, "w", encoding=encoding) except OSError as err: print(("trace: Could not open %r for writing: %s" "- skipping" % (path, err)), file=sys.stderr) return 0, 0 n_lines = 0 n_hits = 0 with outfile: for lineno, line in enumerate(lines, 1): # do the blank/comment match to try to mark more lines # (help the reader find stuff that hasn't been covered) if lineno in lines_hit: outfile.write("%5d: " % lines_hit[lineno]) n_hits += 1 n_lines += 1 elif rx_blank.match(line): outfile.write(" ") else: # lines preceded by no marks weren't hit # Highlight them if so indicated, unless the line contains # #pragma: NO COVER if lineno in lnotab and not PRAGMA_NOCOVER in line: outfile.write(">>>>>> ") n_lines += 1 else: outfile.write(" ") outfile.write(line.expandtabs(8)) return n_hits, n_lines def _find_lines_from_code(code, strs): """Return dict where keys are lines in the line number table.""" linenos = {} for _, lineno in dis.findlinestarts(code): if lineno not in strs: linenos[lineno] = 1 return linenos def _find_lines(code, strs): """Return lineno dict for all code objects reachable from code.""" # get all of the lineno information from the code of this scope level linenos = _find_lines_from_code(code, strs) # and check the constants for references to other code objects for c in code.co_consts: if inspect.iscode(c): # find another code object, so recurse into it linenos.update(_find_lines(c, strs)) return linenos def _find_strings(filename, encoding=None): """Return a dict of possible docstring positions. The dict maps line numbers to strings. There is an entry for line that contains only a string or a part of a triple-quoted string. """ d = {} # If the first token is a string, then it's the module docstring. # Add this special case so that the test in the loop passes. prev_ttype = token.INDENT with open(filename, encoding=encoding) as f: tok = tokenize.generate_tokens(f.readline) for ttype, tstr, start, end, line in tok: if ttype == token.STRING: if prev_ttype == token.INDENT: sline, scol = start eline, ecol = end for i in range(sline, eline + 1): d[i] = 1 prev_ttype = ttype return d def _find_executable_linenos(filename): """Return dict where keys are line numbers in the line number table.""" try: with tokenize.open(filename) as f: prog = f.read() encoding = f.encoding except OSError as err: print(("Not printing coverage data for %r: %s" % (filename, err)), file=sys.stderr) return {} code = compile(prog, filename, "exec") strs = _find_strings(filename, encoding) return _find_lines(code, strs) class Trace: def __init__(self, count=1, trace=1, countfuncs=0, countcallers=0, ignoremods=(), ignoredirs=(), infile=None, outfile=None, timing=False): """ @param count true iff it should count number of times each line is executed @param trace true iff it should print out each line that is being counted @param countfuncs true iff it should just output a list of (filename, modulename, funcname,) for functions that were called at least once; This overrides `count' and `trace' @param ignoremods a list of the names of modules to ignore @param ignoredirs a list of the names of directories to ignore all of the (recursive) contents of @param infile file from which to read stored counts to be added into the results @param outfile file in which to write the results @param timing true iff timing information be displayed """ self.infile = infile self.outfile = outfile self.ignore = _Ignore(ignoremods, ignoredirs) self.counts = {} # keys are (filename, linenumber) self.pathtobasename = {} # for memoizing os.path.basename self.donothing = 0 self.trace = trace self._calledfuncs = {} self._callers = {} self._caller_cache = {} self.start_time = None if timing: self.start_time = _time() if countcallers: self.globaltrace = self.globaltrace_trackcallers elif countfuncs: self.globaltrace = self.globaltrace_countfuncs elif trace and count: self.globaltrace = self.globaltrace_lt self.localtrace = self.localtrace_trace_and_count elif trace: self.globaltrace = self.globaltrace_lt self.localtrace = self.localtrace_trace elif count: self.globaltrace = self.globaltrace_lt self.localtrace = self.localtrace_count else: # Ahem -- do nothing? Okay. self.donothing = 1 def run(self, cmd): import __main__ dict = __main__.__dict__ self.runctx(cmd, dict, dict) def runctx(self, cmd, globals=None, locals=None): if globals is None: globals = {} if locals is None: locals = {} if not self.donothing: _settrace(self.globaltrace) try: exec(cmd, globals, locals) finally: if not self.donothing: _unsettrace() def runfunc(self, func, *args, **kw): result = None if not self.donothing: sys.settrace(self.globaltrace) try: result = func(*args, **kw) finally: if not self.donothing: sys.settrace(None) return result def file_module_function_of(self, frame): code = frame.f_code filename = code.co_filename if filename: modulename = _modname(filename) else: modulename = None funcname = code.co_name clsname = None if code in self._caller_cache: if self._caller_cache[code] is not None: clsname = self._caller_cache[code] else: self._caller_cache[code] = None ## use of gc.get_referrers() was suggested by Michael Hudson # all functions which refer to this code object funcs = [f for f in gc.get_referrers(code) if inspect.isfunction(f)] # require len(func) == 1 to avoid ambiguity caused by calls to # new.function(): "In the face of ambiguity, refuse the # temptation to guess." if len(funcs) == 1: dicts = [d for d in gc.get_referrers(funcs[0]) if isinstance(d, dict)] if len(dicts) == 1: classes = [c for c in gc.get_referrers(dicts[0]) if hasattr(c, "__bases__")] if len(classes) == 1: # ditto for new.classobj() clsname = classes[0].__name__ # cache the result - assumption is that new.* is # not called later to disturb this relationship # _caller_cache could be flushed if functions in # the new module get called. self._caller_cache[code] = clsname if clsname is not None: funcname = "%s.%s" % (clsname, funcname) return filename, modulename, funcname def globaltrace_trackcallers(self, frame, why, arg): """Handler for call events. Adds information about who called who to the self._callers dict. """ if why == 'call': # XXX Should do a better job of identifying methods this_func = self.file_module_function_of(frame) parent_func = self.file_module_function_of(frame.f_back) self._callers[(parent_func, this_func)] = 1 def globaltrace_countfuncs(self, frame, why, arg): """Handler for call events. Adds (filename, modulename, funcname) to the self._calledfuncs dict. """ if why == 'call': this_func = self.file_module_function_of(frame) self._calledfuncs[this_func] = 1 def globaltrace_lt(self, frame, why, arg): """Handler for call events. If the code block being entered is to be ignored, returns `None', else returns self.localtrace. """ if why == 'call': code = frame.f_code filename = frame.f_globals.get('__file__', None) if filename: # XXX _modname() doesn't work right for packages, so # the ignore support won't work right for packages modulename = _modname(filename) if modulename is not None: ignore_it = self.ignore.names(filename, modulename) if not ignore_it: if self.trace: print((" --- modulename: %s, funcname: %s" % (modulename, code.co_name))) return self.localtrace else: return None def localtrace_trace_and_count(self, frame, why, arg): if why == "line": # record the file name and line number of every trace filename = frame.f_code.co_filename lineno = frame.f_lineno key = filename, lineno self.counts[key] = self.counts.get(key, 0) + 1 if self.start_time: print('%.2f' % (_time() - self.start_time), end=' ') bname = os.path.basename(filename) print("%s(%d): %s" % (bname, lineno, linecache.getline(filename, lineno)), end='') return self.localtrace def localtrace_trace(self, frame, why, arg): if why == "line": # record the file name and line number of every trace filename = frame.f_code.co_filename lineno = frame.f_lineno if self.start_time: print('%.2f' % (_time() - self.start_time), end=' ') bname = os.path.basename(filename) print("%s(%d): %s" % (bname, lineno, linecache.getline(filename, lineno)), end='') return self.localtrace def localtrace_count(self, frame, why, arg): if why == "line": filename = frame.f_code.co_filename lineno = frame.f_lineno key = filename, lineno self.counts[key] = self.counts.get(key, 0) + 1 return self.localtrace def results(self): return CoverageResults(self.counts, infile=self.infile, outfile=self.outfile, calledfuncs=self._calledfuncs, callers=self._callers) def main(): parser = argparse.ArgumentParser() parser.add_argument('--version', action='version', version='trace 2.0') grp = parser.add_argument_group('Main options', 'One of these (or --report) must be given') grp.add_argument('-c', '--count', action='store_true', help='Count the number of times each line is executed and write ' 'the counts to <module>.cover for each module executed, in ' 'the module\'s directory. See also --coverdir, --file, ' '--no-report below.') grp.add_argument('-t', '--trace', action='store_true', help='Print each line to sys.stdout before it is executed') grp.add_argument('-l', '--listfuncs', action='store_true', help='Keep track of which functions are executed at least once ' 'and write the results to sys.stdout after the program exits. ' 'Cannot be specified alongside --trace or --count.') grp.add_argument('-T', '--trackcalls', action='store_true', help='Keep track of caller/called pairs and write the results to ' 'sys.stdout after the program exits.') grp = parser.add_argument_group('Modifiers') _grp = grp.add_mutually_exclusive_group() _grp.add_argument('-r', '--report', action='store_true', help='Generate a report from a counts file; does not execute any ' 'code. --file must specify the results file to read, which ' 'must have been created in a previous run with --count ' '--file=FILE') _grp.add_argument('-R', '--no-report', action='store_true', help='Do not generate the coverage report files. ' 'Useful if you want to accumulate over several runs.') grp.add_argument('-f', '--file', help='File to accumulate counts over several runs') grp.add_argument('-C', '--coverdir', help='Directory where the report files go. The coverage report ' 'for <package>.<module> will be written to file ' '<dir>/<package>/<module>.cover') grp.add_argument('-m', '--missing', action='store_true', help='Annotate executable lines that were not executed with ' '">>>>>> "') grp.add_argument('-s', '--summary', action='store_true', help='Write a brief summary for each file to sys.stdout. ' 'Can only be used with --count or --report') grp.add_argument('-g', '--timing', action='store_true', help='Prefix each line with the time since the program started. ' 'Only used while tracing') grp = parser.add_argument_group('Filters', 'Can be specified multiple times') grp.add_argument('--ignore-module', action='append', default=[], help='Ignore the given module(s) and its submodules' '(if it is a package). Accepts comma separated list of ' 'module names.') grp.add_argument('--ignore-dir', action='append', default=[], help='Ignore files in the given directory ' '(multiple directories can be joined by os.pathsep).') parser.add_argument('filename', nargs='?', help='file to run as main program') parser.add_argument('arguments', nargs=argparse.REMAINDER, help='arguments to the program') opts = parser.parse_args() if opts.ignore_dir: rel_path = 'lib', 'python{0.major}.{0.minor}'.format(sys.version_info) _prefix = os.path.join(sys.base_prefix, *rel_path) _exec_prefix = os.path.join(sys.base_exec_prefix, *rel_path) def parse_ignore_dir(s): s = os.path.expanduser(os.path.expandvars(s)) s = s.replace('$prefix', _prefix).replace('$exec_prefix', _exec_prefix) return os.path.normpath(s) opts.ignore_module = [mod.strip() for i in opts.ignore_module for mod in i.split(',')] opts.ignore_dir = [parse_ignore_dir(s) for i in opts.ignore_dir for s in i.split(os.pathsep)] if opts.report: if not opts.file: parser.error('-r/--report requires -f/--file') results = CoverageResults(infile=opts.file, outfile=opts.file) return results.write_results(opts.missing, opts.summary, opts.coverdir) if not any([opts.trace, opts.count, opts.listfuncs, opts.trackcalls]): parser.error('must specify one of --trace, --count, --report, ' '--listfuncs, or --trackcalls') if opts.listfuncs and (opts.count or opts.trace): parser.error('cannot specify both --listfuncs and (--trace or --count)') if opts.summary and not opts.count: parser.error('--summary can only be used with --count or --report') if opts.filename is None: parser.error('filename is missing: required with the main options') sys.argv = [opts.filename, *opts.arguments] sys.path[0] = os.path.dirname(opts.filename) t = Trace(opts.count, opts.trace, countfuncs=opts.listfuncs, countcallers=opts.trackcalls, ignoremods=opts.ignore_module, ignoredirs=opts.ignore_dir, infile=opts.file, outfile=opts.file, timing=opts.timing) try: with open(opts.filename) as fp: code = compile(fp.read(), opts.filename, 'exec') # try to emulate __main__ namespace as much as possible globs = { '__file__': opts.filename, '__name__': '__main__', '__package__': None, '__cached__': None, } t.runctx(code, globs, globs) except OSError as err: sys.exit("Cannot run file %r because: %s" % (sys.argv[0], err)) except SystemExit: pass results = t.results() if not opts.no_report: results.write_results(opts.missing, opts.summary, opts.coverdir) if __name__=='__main__': main()
38.993271
82
0.574451
7e4e8b41efd9e7ca58ca095311cca57b253b987c
31,278
py
Python
pdf_tool.py
carlovogel/pdf_tool
f8c02489b4baeb45406eeef2e005b917fa3a3f1f
[ "MIT" ]
null
null
null
pdf_tool.py
carlovogel/pdf_tool
f8c02489b4baeb45406eeef2e005b917fa3a3f1f
[ "MIT" ]
null
null
null
pdf_tool.py
carlovogel/pdf_tool
f8c02489b4baeb45406eeef2e005b917fa3a3f1f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -* import sys import subprocess import re from pathlib import Path from PyQt5 import QtWidgets from PyQt5.QtGui import QIcon from PyQt5.QtCore import QSize, Qt class PdfTool(QtWidgets.QDialog): """Main Window containing the three tabs 'Compress', 'Split' and 'Merge'. """ def __init__(self): super().__init__(parent=None) self.setWindowTitle('Pdf Tool') self.vertical_layout = QtWidgets.QVBoxLayout() self.tab_widget = QtWidgets.QTabWidget() self.tab_widget.addTab(TabCompress(), 'Compress') self.tab_widget.addTab(TabSplit(), 'Split') self.tab_widget.addTab(TabMerge(), 'Merge') self.vertical_layout.addWidget(self.tab_widget) self.setLayout(self.vertical_layout) @staticmethod def get_all_files(folder): """Returns a list of all pdf files existing in the given folder. """ file_list = [] for item in folder.iterdir(): if item.is_file() and item.suffix == '.pdf': file_list.append(item) return file_list @staticmethod def refresh_list_widget(file_list, widget): """Refresh the given list widget with the given list. """ file_list = list(dict.fromkeys(file_list)) widget.clear() widget.addItems([str(file) for file in file_list]) @staticmethod def remove_file(file_list, widget): """Removes selected item in given list and given list widget. """ try: selected_item = widget.selectedItems()[0] file_list.remove(Path(selected_item.text())) widget.takeItem(widget.row(selected_item)) except IndexError: pass @staticmethod def get_page_count(file): """Returns the number of pages of the given pdf file. """ output = subprocess.check_output(['pdfinfo', file]).decode() pages_line = [line for line in output.splitlines() if 'Pages:' in line][0] page_count = int(pages_line.split(':')[1]) return page_count class TabCompress(QtWidgets.QWidget): """Tab containing the elements for pdf compression. """ def __init__(self): super().__init__() self.horizontal_layout = QtWidgets.QHBoxLayout(self) self.horizontal_layout.setContentsMargins(10, 10, 10, 10) self.horizontal_layout.setSpacing(10) self.file_dialog_input = QtWidgets.QFileDialog() self.folder_dialog_output = QtWidgets.QFileDialog() self.folder_dialog = QtWidgets.QFileDialog() self.file_list = [] self.output_path = Path().home() self.file_list_widget = QtWidgets.QListWidget() self.file_list_widget.setMinimumWidth(450) self.label_output_files = QtWidgets.QLabel(str(self.output_path)) self.line_edit_suffix = QtWidgets.QLineEdit('_2') self.line_edit_suffix.setMaximumWidth(40) self.line_edit_suffix.textChanged.connect(self.refresh_output_label) self.make_layout_compress() def make_layout_compress(self): """Create and arrange the layout for the compression elements. """ vertical_layout_compress = QtWidgets.QVBoxLayout() self.horizontal_layout.addLayout(vertical_layout_compress) label_list_widget = QtWidgets.QLabel('Pdf files to compress:') push_button_load_files_input = QtWidgets.QPushButton() push_button_load_files_input.setToolTip('Add pdf files') push_button_load_files_input.setIcon(QIcon.fromTheme('list-add')) push_button_load_files_input.clicked.connect(self.open_file_dialog_input) push_button_load_folder_input = QtWidgets.QPushButton() push_button_load_folder_input.setToolTip('Add all pdf files from a folder') push_button_load_folder_input.setIcon(QIcon.fromTheme('folder-add')) push_button_load_folder_input.clicked.connect(self.open_folder_dialog_input) push_button_remove_file = QtWidgets.QPushButton() push_button_remove_file.setIcon(QIcon.fromTheme('remove')) push_button_remove_file.setToolTip('Remove selected item') push_button_remove_file.clicked.connect(self.remove_file) push_button_clear_list = QtWidgets.QPushButton() push_button_clear_list.setIcon(QIcon.fromTheme('edit-clear-all')) push_button_clear_list.setToolTip('Clear list') push_button_clear_list.clicked.connect(self.clear_list) label_suffix = QtWidgets.QLabel('Suffix for compressed output files: ') push_button_choose_path_output = QtWidgets.QPushButton() push_button_choose_path_output.setIcon(QIcon.fromTheme('folder-symbolic')) push_button_choose_path_output.setToolTip('Change output path') push_button_choose_path_output.clicked.connect(self.open_folder_dialog_output) push_button_choose_path_output.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) push_button_choose_path_output.setMinimumHeight(1) self.label_output_files.setAlignment(Qt.AlignTop) label_output = QtWidgets.QLabel('Output files:') label_output.setAlignment(Qt.AlignBottom) push_button_start_compress = QtWidgets.QPushButton() push_button_start_compress.setText('Start compression') push_button_start_compress.setMinimumSize(QSize(110, 20)) push_button_start_compress.clicked.connect(self.start_compression) vertical_layout_compress.addWidget(label_list_widget) vertical_layout_buttons = QtWidgets.QVBoxLayout() scroll_area = QtWidgets.QScrollArea() scroll_area.setWidget(self.label_output_files) scroll_area.setWidgetResizable(True); vertical_layout_buttons.addWidget(push_button_load_files_input) vertical_layout_buttons.addWidget(push_button_load_folder_input) vertical_layout_buttons.addWidget(push_button_remove_file) vertical_layout_buttons.addWidget(push_button_clear_list) vertical_layout_buttons.setSpacing(20) horizontal_layout_file_list = QtWidgets.QHBoxLayout() horizontal_layout_file_list.addWidget(self.file_list_widget) horizontal_layout_file_list.addLayout(vertical_layout_buttons) vertical_layout_compress.addLayout(horizontal_layout_file_list) vertical_layout_compress.addSpacing(10) vertical_layout_compress.addWidget(label_output) horizontal_layout_output_files = QtWidgets.QHBoxLayout() horizontal_layout_output_files.addWidget(scroll_area) horizontal_layout_output_files.addWidget(push_button_choose_path_output, alignment=Qt.AlignTop) horizontal_layout_output_files.setSpacing(10) vertical_layout_compress.addLayout(horizontal_layout_output_files) horizontal_layout_bottom = QtWidgets.QHBoxLayout() horizontal_layout_bottom.addWidget(label_suffix) horizontal_layout_bottom.addWidget(self.line_edit_suffix) horizontal_layout_bottom.addWidget(push_button_start_compress) vertical_layout_compress.addLayout(horizontal_layout_bottom) def start_compression(self): """Start the compression process by calling self.run_gs(). Opens messagebox when finished. """ if self.check_if_output_is_valid_and_different_to_input(self.file_list, self.output_path): for file in self.file_list: TabCompress.run_gs(str(file), str(self.output_path / f'{file.stem}{self.line_edit_suffix.text()}.pdf')) message_box = QtWidgets.QMessageBox(self) message_box.setText('Compression finished!') message_box.show() @staticmethod def run_gs(input_file, output_file): """Runs the tool ghostscript to compress the given pdf file. Takes strings for the input and the output file as arguments. """ command = ('gs', '-sDEVICE=pdfwrite', '-dNOPAUSE', '-dBATCH', f'-sOutputFile={output_file}', input_file) subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) def check_if_output_is_valid_and_different_to_input(self, input_file_list, output_path): """Returns True if the given output path is valid and different to all paths in the given list of input files. Returns False otherwise. """ if input_file_list: if output_path.root and output_path.is_dir(): for file in input_file_list: if file.parent == output_path and not self.line_edit_suffix.text(): message_box = QtWidgets.QMessageBox(self) message_box.setText( 'Suffix field is empty! Output path should be different to ' 'the path of your input files to avoid losing files!' ) message_box.show() return False return True else: message_box = QtWidgets.QMessageBox(self) message_box.setText('No valid output path selected!') message_box.show() return False else: message_box = QtWidgets.QMessageBox(self) message_box.setText('No input files selected!') message_box.show() return False def open_file_dialog_input(self): """Opens the file dialog to choose the input file(s). Writes its value(s) to self.file_list. """ self.file_dialog_input.setFileMode(QtWidgets.QFileDialog.ExistingFiles) self.file_dialog_input.setAcceptMode(QtWidgets.QFileDialog.AcceptSave) file_list_temp = self.file_dialog_input.getOpenFileNames( self, 'Select pdf files to compress!', '', 'Pdf files (*.pdf)' )[0] if file_list_temp: for file in file_list_temp: self.file_list.append(Path(file)) PdfTool.refresh_list_widget(self.file_list, self.file_list_widget) self.refresh_output_label() def open_folder_dialog_input(self): """Opens the folder dialog to choose the folder containing the input files. Writes its value to self.file_list via the method PdfTool.get_all_files. """ self.folder_dialog.setAcceptMode(QtWidgets.QFileDialog.AcceptSave) folder = Path(self.folder_dialog.getExistingDirectory(self, 'Select folder!')) if folder.root: self.file_list += PdfTool.get_all_files(folder) PdfTool.refresh_list_widget(self.file_list, self.file_list_widget) self.refresh_output_label() def open_folder_dialog_output(self): """Opens the folder dialog to choose the destination of the output files. Writes its value to self.output_path. """ path = self.folder_dialog_output.getExistingDirectory(self, 'Change output folder!') if path: self.output_path = Path(path) self.refresh_output_label() def refresh_output_label(self): """Refresh output label to selected output path. """ string_output_files = '' if self.file_list: for file in self.file_list: string_output_files += str(self.output_path / f'{file.stem}{self.line_edit_suffix.text()}.pdf\n') else: string_output_files = str(self.output_path) self.label_output_files.setText(string_output_files) def remove_file(self): """Call PdfTool.remove_file to remove selected file from list and widget. """ PdfTool.remove_file(self.file_list, self.file_list_widget) self.refresh_output_label() def clear_list(self): """Clear self.file_list and the related list widget. """ self.file_list_widget.clear() self.file_list = [] self.refresh_output_label() class TabSplit(QtWidgets.QWidget): """Tab containing the elements for pdf splitting. """ def __init__(self): super().__init__() self.horizontal_layout = QtWidgets.QHBoxLayout(self) self.horizontal_layout.setContentsMargins(10, 10, 10, 10) self.horizontal_layout.setSpacing(20) self.file_dialog_input = QtWidgets.QFileDialog() self.folder_dialog_output = QtWidgets.QFileDialog() self.file = "" self.label_split_pattern = QtWidgets.QLabel('Pages to extract:') self.label_file = QtWidgets.QLabel() self.label_file.setText('Select a pdf file!') self.label_file.setAlignment(Qt.AlignCenter) self.label_file.setMargin(0) self.output_filename_line_edit = QtWidgets.QLineEdit() self.output_filename_line_edit.textChanged.connect(self.refresh_output_label) self.label_output_path = QtWidgets.QLabel() self.output_path = Path().home() self.line_edit_split_pattern = QtWidgets.QLineEdit('1-2') self.line_edit_split_pattern.setToolTip('Example: 1-2, 5, 6-9') self.compress_radio_button = QtWidgets.QRadioButton() self.compress_radio_button.setText('Compress output file') self.compress_radio_button.setChecked(True) self.make_layout_split() def make_layout_split(self): """Create and arrange the layout for the pdf splitting elements. """ vertical_layout_split = QtWidgets.QVBoxLayout() self.horizontal_layout.addLayout(vertical_layout_split) push_button_load_files_input = QtWidgets.QPushButton() push_button_load_files_input.setIcon(QIcon.fromTheme('list-add')) push_button_load_files_input.setToolTip('Load pdf file') push_button_load_files_input.clicked.connect(self.open_file_dialog_input) push_button_start_splitting = QtWidgets.QPushButton('Start splitting') push_button_start_splitting.setIcon(QIcon.fromTheme('split')) push_button_start_splitting.clicked.connect(self.start_splitting) push_button_choose_path_output = QtWidgets.QPushButton() push_button_choose_path_output.setIcon(QIcon.fromTheme('folder-symbolic')) push_button_choose_path_output.clicked.connect(self.open_folder_dialog_output) label_filename = QtWidgets.QLabel('Name of the output file:') horizontal_layout_input_file = QtWidgets.QHBoxLayout() self.label_file.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) horizontal_layout_input_file.addWidget(self.label_file) horizontal_layout_input_file.addWidget(push_button_load_files_input) vertical_layout_split.addLayout(horizontal_layout_input_file) self.label_split_pattern.setAlignment(Qt.AlignBottom) vertical_layout_split.addWidget(self.label_split_pattern) vertical_layout_split.addWidget(self.line_edit_split_pattern) vertical_layout_split.addSpacing(30) vertical_layout_split.addWidget(push_button_choose_path_output) horizontal_layout_filename = QtWidgets.QHBoxLayout() horizontal_layout_filename.addWidget(label_filename) self.output_filename_line_edit.setText('output') horizontal_layout_filename.addWidget(self.output_filename_line_edit) vertical_layout_split.addLayout(horizontal_layout_filename) horizontal_layout_output_file = QtWidgets.QHBoxLayout() self.label_output_path.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) horizontal_layout_output_file.addWidget(self.label_output_path) horizontal_layout_output_file.addWidget(push_button_choose_path_output) vertical_layout_split.addLayout(horizontal_layout_output_file) horizontal_layout_bottom = QtWidgets.QHBoxLayout() horizontal_layout_bottom.addWidget(self.compress_radio_button) horizontal_layout_bottom.addWidget(push_button_start_splitting) vertical_layout_split.addLayout(horizontal_layout_bottom) def open_file_dialog_input(self): """Opens the file dialog to choose the input file. Writes its value to self.file. """ self.file_dialog_input.setFileMode(QtWidgets.QFileDialog.ExistingFile) self.file_dialog_input.setAcceptMode(QtWidgets.QFileDialog.AcceptSave) self.file = self.file_dialog_input.getOpenFileName( self, 'Select pdf file to split!', '', 'Pdf files (*.pdf)' )[0] if self.file: self.label_file.setText(f'Selected pdf file: {self.file}') self.label_split_pattern.setText( f'Pages to Extract: (Input file has {PdfTool.get_page_count(self.file)} pages)' ) def open_folder_dialog_output(self): """Opens the folder dialog to choose the destination of the output files. Writes its value to self.output_path. """ path = self.folder_dialog_output.getExistingDirectory(self, 'Select output folder!') if path: self.label_output_path.setText(f'Output File: {path}/{self.output_filename_line_edit.text()}.pdf') self.output_path = Path(path) def refresh_output_label(self): """Refresh output label to selected output path. """ file_name = self.output_filename_line_edit.text() if file_name[-4:] == '.pdf': file_name = file_name[:-4] self.label_output_path.setText(f'Output File: {self.output_path}/{file_name}.pdf') def start_splitting(self): """Starts splitting process. Informs when finished or the split pattern has a wrong format. """ list_start_stop = TabSplit.analyze_split_pattern(self.line_edit_split_pattern.text()) list_indices = [] output_file = f'{self.output_path}/{self.output_filename_line_edit.text()}.pdf' if self.file: if list_start_stop: for item in list_start_stop: split_succeeded = self.split_pdf(*item, self.file, output_file) if not split_succeeded: return list_indices += [n for n in range(int(item[0]), int(item[1]) + 1)] command = ['pdfunite'] for index in list_indices: command.append(output_file + str(index)) command.append(output_file) subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) for index in list_indices: Path(output_file + str(index)).unlink() if self.compress_radio_button.toggled: TabCompress.run_gs(output_file, output_file + '_') Path(output_file + '_').rename(Path(output_file)) message_box = QtWidgets.QMessageBox(self) message_box.setText('Splitting finished!') message_box.show() else: message_box = QtWidgets.QMessageBox(self) message_box.setText('Wrong split format! Example: 1, 2, 4-6, 8-9') message_box.show() else: message_box = QtWidgets.QMessageBox(self) message_box.setText('No Input file selected!') message_box.show() @staticmethod def analyze_split_pattern(string_split_pattern): """Takes the split pattern string input as argument. Returns a list with of the list [start-page, stop-page] for each element seperated by ',' of the input string. Returns False if the elements are not in the right format: int, or int-int. """ list_old = string_split_pattern.replace(' ', '').split(',') list_new = [] r = re.compile('[0-9][0-9]*-[0-9][0-9]*') for item in list_old: if r.match(item) is not None: list_new.append(item.split('-')) elif item.isnumeric(): list_new.append([item, item]) else: return False return list_new def split_pdf(self, start, stop, input_file, output_file): """Start single splitting process with tool pdfseperate. Takes start page, stop page, input file and output file in string format as arguments. Returns True if successful, False otherwise. """ command = ['pdfseparate', '-f', start, '-l', stop, input_file, f'{output_file}%d'] with subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as proc: list_log_split = proc.stdout.readlines() try: log_split = list_log_split[0] except IndexError: log_split = b'' if b'Illegal pageNo' in log_split: page_string = log_split.strip()[-4:].decode() message_box = QtWidgets.QMessageBox(self) message_box.setText( f'Page {page_string[0]} doesn\'t exist. The pdf file only contains {page_string[2]} pages.' ) message_box.show() return False return True class TabMerge(QtWidgets.QWidget): """Tab containing the elements for pdf merging. """ def __init__(self): super().__init__() self.horizontal_layout = QtWidgets.QHBoxLayout(self) self.horizontal_layout.setContentsMargins(10, 10, 10, 10) self.horizontal_layout.setSpacing(10) self.file_dialog_input = QtWidgets.QFileDialog() self.folder_dialog_output = QtWidgets.QFileDialog() self.folder_dialog = QtWidgets.QFileDialog() self.file_list = [] self.output_filename_line_edit = QtWidgets.QLineEdit() self.output_filename_line_edit.textChanged.connect(self.refresh_output_label) self.label_output_path = QtWidgets.QLabel() self.output_path = Path().home() self.file_list_widget = QtWidgets.QListWidget() self.compress_radio_button = QtWidgets.QRadioButton() self.compress_radio_button.setText('Compress output file') self.compress_radio_button.setChecked(True) self.make_layout_merge() def make_layout_merge(self): """Create and arrange the layout for the pdf merging elements. """ vertical_layout_merge = QtWidgets.QVBoxLayout() self.horizontal_layout.addLayout(vertical_layout_merge) label_list_widget = QtWidgets.QLabel('Pdf files to merge:') push_button_up = QtWidgets.QPushButton() push_button_up.setIcon(QIcon.fromTheme('go-up')) push_button_up.setToolTip('Move selected item up') push_button_up.clicked.connect(self.move_selected_item_up) push_button_load_files_input = QtWidgets.QPushButton() push_button_load_files_input.setToolTip('Add pdf files') push_button_load_files_input.setIcon(QIcon.fromTheme('list-add')) push_button_load_files_input.clicked.connect(self.open_file_dialog_input) push_button_load_folder_input = QtWidgets.QPushButton() push_button_load_folder_input.setToolTip('Add all pdf files from a folder') push_button_load_folder_input.setIcon(QIcon.fromTheme('folder-add')) push_button_load_folder_input.clicked.connect(self.open_folder_dialog_input) push_button_remove_file = QtWidgets.QPushButton() push_button_remove_file.setIcon(QIcon.fromTheme('list-remove')) push_button_remove_file.setToolTip('Remove selected item') push_button_remove_file.clicked.connect(self.remove_file) push_button_clear_list = QtWidgets.QPushButton() push_button_clear_list.setIcon(QIcon.fromTheme('edit-clear-all')) push_button_clear_list.setToolTip('Clear list') push_button_clear_list.clicked.connect(self.clear_list) push_button_down = QtWidgets.QPushButton() push_button_down.setIcon(QIcon.fromTheme('go-down')) push_button_down.setToolTip('Move selected item down') push_button_down.clicked.connect(self.move_selected_item_down) label_filename = QtWidgets.QLabel('Name of the output file:') push_button_choose_path_output = QtWidgets.QPushButton() push_button_choose_path_output.setIcon(QIcon.fromTheme('folder-symbolic')) push_button_choose_path_output.clicked.connect(self.open_folder_dialog_output) push_button_start_merge = QtWidgets.QPushButton() push_button_start_merge.setText('Start merging') push_button_start_merge.setIcon(QIcon.fromTheme('merge')) push_button_start_merge.clicked.connect(self.start_merge) vertical_layout_merge.addWidget(label_list_widget) vertical_layout_buttons = QtWidgets.QVBoxLayout() vertical_layout_buttons.addWidget(push_button_up) vertical_layout_buttons.addWidget(push_button_load_files_input) vertical_layout_buttons.addWidget(push_button_load_folder_input) vertical_layout_buttons.addWidget(push_button_remove_file) vertical_layout_buttons.addWidget(push_button_clear_list) vertical_layout_buttons.addWidget(push_button_down) horizontal_layout_file_list = QtWidgets.QHBoxLayout() horizontal_layout_file_list.addWidget(self.file_list_widget) horizontal_layout_file_list.addLayout(vertical_layout_buttons) vertical_layout_merge.addLayout(horizontal_layout_file_list) horizontal_layout_filename = QtWidgets.QHBoxLayout() horizontal_layout_filename.addWidget(label_filename) self.output_filename_line_edit.setText('output') horizontal_layout_filename.addWidget(self.output_filename_line_edit) vertical_layout_merge.addLayout(horizontal_layout_filename) horizontal_layout_output_file = QtWidgets.QHBoxLayout() self.label_output_path.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) horizontal_layout_output_file.addWidget(self.label_output_path) horizontal_layout_output_file.addWidget(push_button_choose_path_output) vertical_layout_merge.addLayout(horizontal_layout_output_file) horizontal_layout_bottom = QtWidgets.QHBoxLayout() horizontal_layout_bottom.addWidget(self.compress_radio_button) horizontal_layout_bottom.addWidget(push_button_start_merge) vertical_layout_merge.addLayout(horizontal_layout_bottom) def refresh_output_label(self): """Refresh output label to selected output path. """ file_name = self.output_filename_line_edit.text() if file_name[-4:] == '.pdf': file_name = file_name[:-4] self.label_output_path.setText(f'Output File: {self.output_path}/{file_name}.pdf') def move_selected_item_up(self): """Moves the position of the selected item in the list widget and related list up. """ if self.file_list: current_row = self.file_list_widget.currentRow() current_item = self.file_list_widget.takeItem(current_row) self.file_list.insert(current_row - 1, self.file_list.pop(current_row)) self.file_list_widget.insertItem(current_row - 1, current_item) self.file_list_widget.setCurrentRow(current_row - 1) def move_selected_item_down(self): """Moves the position of the selected item in the list widget and related list down. """ if self.file_list: current_row = self.file_list_widget.currentRow() current_item = self.file_list_widget.takeItem(current_row) self.file_list.insert(current_row + 1, self.file_list.pop(current_row)) self.file_list_widget.insertItem(current_row + 1, current_item) self.file_list_widget.setCurrentRow(current_row + 1) def open_file_dialog_input(self): """Opens the file dialog to choose the input file(s). Writes its value(s) to self.file_list. """ self.file_dialog_input.setFileMode(QtWidgets.QFileDialog.ExistingFiles) self.file_dialog_input.setAcceptMode(QtWidgets.QFileDialog.AcceptSave) file_list_temp = self.file_dialog_input.getOpenFileNames( self, 'Select pdf files to compress!', '', 'Pdf files (*.pdf)' )[0] if file_list_temp: for file in file_list_temp: self.file_list.append(Path(file)) PdfTool.refresh_list_widget(self.file_list, self.file_list_widget) def open_folder_dialog_output(self): """Opens the folder dialog to choose the destination of the output file. Writes its value to self.output_path. """ path = self.folder_dialog_output.getExistingDirectory(self, 'Select output folder!') if path: self.label_output_path.setText(f'Output File: {path}/{self.output_filename_line_edit.text()}.pdf') self.output_path = Path(path) def open_folder_dialog_input(self): """Opens the folder dialog to choose the folder containing the input files. Writes its value to self.file_list via the method PdfTool.get_all_files. """ self.folder_dialog.setAcceptMode(QtWidgets.QFileDialog.AcceptSave) folder = Path(self.folder_dialog.getExistingDirectory(self, 'Select folder!')) if folder.root: self.file_list += PdfTool.get_all_files(folder) PdfTool.refresh_list_widget(self.file_list, self.file_list_widget) def remove_file(self): """Call PdfTool.remove_file to remove selected file from list and widget. """ PdfTool.remove_file(self.file_list, self.file_list_widget) def clear_list(self): """Clear self.file_list and the related list widget. """ self.file_list_widget.clear() self.file_list = [] def start_merge(self): """Start merging process with the tool pdfunite. Informs when finished or no input or output file is given. """ message_box = QtWidgets.QMessageBox(self) if self.output_filename_line_edit.text(): if self.file_list: output_file = str(self.output_path / self.output_filename_line_edit.text()) if output_file[-4:] == '.pdf': output_file = output_file[:-4] command = ['pdfunite'] + self.file_list + [output_file + '.pdf'] subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) if self.compress_radio_button.toggled: TabCompress.run_gs(output_file + '.pdf', output_file + '_.pdf') Path(output_file + '_.pdf').rename(Path(output_file + '.pdf')) message_box.setText('Emerging finished!') message_box.show() else: message_box.setText('No pdf files selected!') message_box.show() else: message_box.setText('Choose a file name!') message_box.show() def main(): app = QtWidgets.QApplication(sys.argv) main.pdf_tool = PdfTool() main.pdf_tool.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
48.046083
119
0.681949
fb642fb6e19317066d397d79e3781b54cc7b7abd
15,092
py
Python
council_bot.py
DT-1236/council_bot_legacy
633ffb078a1d1092553315fd9eb24e25cb4f2724
[ "MIT" ]
1
2017-04-21T08:28:28.000Z
2017-04-21T08:28:28.000Z
council_bot.py
DT-1236/council_bot
633ffb078a1d1092553315fd9eb24e25cb4f2724
[ "MIT" ]
null
null
null
council_bot.py
DT-1236/council_bot
633ffb078a1d1092553315fd9eb24e25cb4f2724
[ "MIT" ]
1
2020-02-22T02:32:36.000Z
2020-02-22T02:32:36.000Z
import datetime import urllib import re import discord from discord.ext import commands from fuzzywuzzy import fuzz from fuzzywuzzy import process import logging import Levenshtein import member_info logger = logging.getLogger('discord') logger.setLevel(logging.CRITICAL) handler = logging.FileHandler(filename='discord.log', encoding='utf-8', mode='w') handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s:%(name)s: %(message)s')) logger.addHandler(handler) calendar = {'01':' Jan ', '02':' Feb ', '03':' Mar ', '04':' Apr ', '05':' May ', '06':' Jun ', '07':' Jul ', '08':' Aug ', '09':' Sep ', '10':' Oct ', '11':' Nov ', '12':' Dec '} class Poll: polls={}#Dictionary of polls. Keys are strings which contain poll.name. Values are the Poll objects themselves which contain a dictionary of voter information def __init__(self, ctx, name): self.name = name self.deletion = False Poll.polls[self.name]=self self.votes = {} present = [x for x in ctx.channel.members if not x.bot and x.status is not discord.Status.offline] for x in present: self.votes[x.name]='No vote recorded' #Keys are strings containing names of present members def all_polls(): return [x.name for x in Poll.polls] def results(self): tally = zip(Poll.polls[self.name].votes.keys(),Poll.polls[self.name].votes.values()) return ("Current Results for Poll:%s \n"%(Poll.polls[self.name].name)+"```\n"+"%s\n"*len((Poll.polls[self.name].votes))%tuple([x for x in tally])+"```") class Secret(Poll): def results(self): tally = (Poll.polls[self.name].votes.values()) return ("Current Results for secret poll, %s: \n"%(Poll.polls[self.name].name)+"```\n"+"%s\n"*len((Poll.polls[self.name].votes))%tuple([x for x in tally])+"```") def lined_string(text): return "```\n"+"%s\n"*len(text)%tuple(text)+"```\n" bot = commands.Bot(command_prefix='&') @bot.event async def on_ready(): print('Logged in as') print(bot.user.name) print(bot.user.id) print('------') @bot.command(aliases=['LastLogin', 'Lastlogin','Last','last','lastLogin', 'login', 'Login']) async def lastlogin(ctx,*,request : str=''): """Return last login date for a given user name. May have trouble if the search returns multiple results""" await ctx.send(member_info.last_login(request)) @bot.command(aliases=['Allegiance']) async def allegiance(ctx,*,request : str=''): """Return the alliance to which the requested player currently belongs. May have trouble if the search returns multiple results""" await ctx.send(member_info.allegiance(request)) @bot.command(aliases=['Cups', 'cups', 'Cup', 'cup', 'Trophy', 'trophy', 'Trophies']) async def trophies(ctx,*,request : str=''): """Return current trophies. May have trouble if the search returns multiple results""" await ctx.send(member_info.trophies(request)) @bot.command(aliases=['Refresh','renew','Renew']) async def refresh(ctx,*,request : str=''): """Refresh data for the member. May have trouble if the search returns multiple results""" await ctx.send(member_info.refresh(request)) @bot.command(aliases=['Polls','Poll','poll']) async def polls(ctx,*,request : str=''): """(): Returns a list of all active polls\n""" phrase = "Active polls:\n"+"```\n"+"%s\n"*len(Poll.polls)%(tuple([x for x in Poll.polls]))+"```" await ctx.send(phrase) return @bot.command(pass_context=True,aliases=['Newpoll']) async def newpoll(ctx,*,request : str=''): """(poll): Creates new (poll) with all online members in channel""" if request and request not in Poll.polls: request = Poll(ctx,str(request)) phrase = ("New poll created: %s \nRegistered voters:\n"%(request.name)+"```\n"+"%s\n"*len(set(request.votes))%(tuple(set(request.votes)))+"```") await ctx.send(phrase) return elif request: await ctx.send("%s is already an active poll. Remove it before making it again"%request) else: await ctx.send("I need a name for this poll") return @bot.command(aliases=['Newsecret']) async def newsecret(ctx,*,request : str=''): """(secret poll): Creates a new (secret poll) with all online members in channel""" if request and request not in Poll.polls: request = Secret(ctx,str(request)) phrase = ("New secret poll created: %s \nRegistered voters:\n"%(request.name)+"```\n"+"%s\n"*len(set(request.votes))%(tuple(set(request.votes)))+"```") await ctx.send(phrase) return elif request: await ctx.send("%s is already an active poll. Remove it before making it again"%request) else: await ctx.send("I need a name for this secret poll") return @bot.command(aliases=['Remove','delete','del','Delete','Del','erase','Erase']) async def remove(ctx,*,request : str=''): """(poll): Deletes (poll). Requires the command to be repeated""" writer = ctx.message.author.name poll = process.extractOne("%s"%(request),Poll.polls.keys())[0] if Poll.polls[poll].deletion==True: del Poll.polls[poll] await ctx.send("%s has been removed by %s"%(poll,writer)) print ("%s has removed poll: %s"%(writer,poll)) return else: Poll.polls[poll].deletion=True await ctx.send("%s has been marked for removal. Repeat the remove command to finalize deletion of the poll.\n Otherwise, use the cancel command to reverse this action.\n Use the silence command to remove individual voters from a poll"%poll) return @bot.command() async def cancel(ctx,*,request : str=''): """(poll): Cancels the delete action on (poll)""" poll = process.extractOne("%s"%(request),Poll.polls.keys())[0] Poll.polls[poll].deletion=False await ctx.send("Deletion order for %s has been cancelled"%poll) @bot.command() async def add(ctx,*,request : str=''): """(poll),(member): Adds another (member) to (poll)""" try: text = request.split(',',2) except: await ctx.send("Syntax ```\n(poll),(member)```\nMember likely has to be online to be successfully added") return if text[1][0]==' ': text[1]=text[1][1:] member_check = process.extractOne("%s"%(text[1]),bot.get_all_members()) if member_check[1] > 70: member = member_check[0] else: await ctx.send("I'm not sure %s is here right now. Try again when they're online"%member) return poll = process.extractOne("%s"%(request),Poll.polls.keys())[0] Poll.polls[poll].votes[member.name] = 'No vote recorded' await ctx.send("%s has been added to %s"%(member, poll)) phrase = Poll.polls[poll].results() await ctx.send(phrase) return @bot.command(pass_context=True) async def silence(ctx,*,request : str=''): writer = ctx.message.author.name try: text = request.split(',',2) except: await ctx.send("Syntax ```\n(poll),(member)```") return if text[1][0]==' ': text[1]=text[1][1:] poll = process.extractOne("%s"%(request),Poll.polls.keys())[0] if process.extractOne("%s"%(text[1]),Poll.polls[poll].votes.keys())[1] > 70: member = (process.extractOne("%s"%(text[1]),Poll.polls[poll].votes.keys())[0]) del Poll.polls[poll].votes[member] await ctx.send("%s has been removed from %s by %s"%(member, poll, writer)) print ("%s has removed %s from %s"%(writer, member, poll)) else: await ctx.send("I don't think %s is part of %s"%(text[1], poll)) return @bot.command(pass_context=True) async def vote(ctx,*,request : str=''): """(poll),(vote): Records your (vote) for (poll)""" voter = ctx.message.author.name text = request.split(',',2) if text[1][0]==' ': text[1]=text[1][1:] poll = process.extractOne("%s"%(text[0]),Poll.polls.keys())[0] #Gives a string of the poll which is the key to access the Poll object. process returns a tuple with the result in [0] and the match accuracy in [1] decision = text[1] Poll.polls[poll].votes[voter]=decision #Class Poll, dictionary of all polls, specific poll, dictionary of voters/votes in poll, specific voter value changed to decision phrase = Poll.polls[poll].results() await ctx.send(phrase) return @bot.command(aliases=['voter','Voters','Voter']) async def voters(ctx,request : str=''): """(poll): Returns a list of recognized voters for (poll)""" poll = process.extractOne("%s"%(request),Poll.polls.keys())[0] phrase = "Registered voters for %s:\n"%(poll)+"```\n"+"%s\n"*len(set(Poll.polls[poll].votes))%(tuple(set(Poll.polls[poll].votes)))+"```" await ctx.send(phrase) return @bot.command(aliases=['result','Result','Results']) async def results(ctx,*,request : str=''): """(poll): Returns current results for (poll). Secret polls will not have names attached to votes""" poll = process.extractOne("%s"%(request),Poll.polls.keys())[0] phrase = Poll.polls[poll].results() await ctx.send(phrase) return @bot.command(aliases=['Command','Commands','Commandlist']) async def commandlist(ctx): """returns commands with acceptable syntax""" phrase = """```\nnewpoll - (poll): Creates new (poll) with all online members in channel\n newsecret - (secret poll): Creates a new (secret poll) with all online members in channel\n results - (poll): Returns current results for (poll). Secret polls will not have names attached to votes\n remove - (poll): Deletes (poll). Requires the command to be repeated\n cancel - (poll): Cancels the delete action on (poll)\n polls - (): Returns a list of all active polls\n voters - (poll): Returns a list of recognized voters for (poll)\n vote - (poll),(vote): Records your (vote) for (poll)\n add - (poll),(member ): Adds another (member) to (poll)\n silence - (poll),(member): Removes (member) from (poll)\n ``` """ await ctx.send(phrase) return @bot.command(aliases=['Complete']) async def complete(ctx,*,request : str=''): """Returns complete trophy data over time for a player""" results = member_info.complete(request) member_info.os.chdir('plots') result = [x for x in zip(results[0],results[1])] await ctx.send("Complete trophy data. Name and IDs:"+lined_string(result), file=discord.File(fp="plot.png")) member_info.os.chdir('..') return @bot.command(aliases=['Alliance', 'Alliances', 'alliances']) async def alliance(ctx,*,request : str=''): """Returns trophy data over time for an alliance""" results = member_info.alliance(request) member_info.os.chdir('plots') result = [x for x in zip(results[0],results[1])] await ctx.send("Alliance trophy data over time. Alliance names and IDs:"+lined_string(result), file=discord.File(fp="plot.png")) member_info.os.chdir('..') return @bot.command(aliases=['Average', 'Averages', 'averages', 'AVG', 'avg']) async def average(ctx,*,request : str=''): """Returns average member trophy data over time for an alliance""" results = member_info.average(request) member_info.os.chdir('plots') result = [x for x in zip(results[0],results[1])] await ctx.send("Average member trophy data over time. Alliance names and IDs:"+lined_string(result), file=discord.File(fp="plot.png")) member_info.os.chdir('..') return @bot.command(aliases=['History', 'hist', 'Hist']) async def history(ctx,*,request : str=''): """Returns the alliance history for a player""" results = member_info.history(request) await ctx.send("Alliance history for Player: %s, MemberID: %s is as follows:\n"%(member_info.memberIDs[int(results[1])], results[1])+lined_string(results[0])) return @bot.command(aliases=['Look', 'look', 'Lookup']) async def lookup(ctx,*,request : str=''): """Returns ID numbers for an alliance or a member. Separate alliance or member with a comma before giving the name of an alliance or a member""" request = request.split(',', 2) if request[0] == 'alliance': await ctx.send(lined_string(member_info.alliance_lookup(request[1]))) return if request[0] == 'member' or request[0] == 'user': await ctx.send(lined_string(member_info.member_lookup(request[1]))) return @bot.command(aliases=['Token']) async def token(ctx,*,request : str=''): """Refreshes the token. The full url is valid""" results = member_info.token_refresh() member_info.token,member_info.server = results[0],results[1] await ctx.send("Token set to %s"%results[0]) return @bot.command(aliases=['Data', 'data', 'Database']) async def database(ctx,*,request : str=''): """Collects Trophy data for all members in all top 100 alliances""" try: await ctx.send("Attemping database function. Council bot functions will be unavailable for approximately 2-5 minutes.") member_info.database() await ctx.send("Database operation complete. Contact DT-1236 to ensure import into SQL server.") except: await ctx.send("Database operation unsuccessful. Token is likely invalid. Update with &token") @bot.command(aliases=['Inactives', 'inactives', 'Inactive']) async def inactive(ctx,*,request : int=''): """Posts a .txt file containing a list of all members and their last login per ShipService""" try: await ctx.send("Operation attempted. Bot function will be unavailable for approximately 2-5 minutes") member_info.inactives(request) member_info.os.chdir('lists') await ctx.send("Last Login data for %s is in this .txt"%member_info.allianceIDs[request], file=discord.File(fp='%s - %s Inactives.txt'%(str(datetime.date.today()),member_info.allianceIDs[request]))) member_info.os.chdir('..') return except: await ctx.send("Something wrong happened. This function only works with Alliance IDs. Find some with ```&lookup alliance, [alliance name]``` Alternatively, the token could be wrong. Reset it with ```&token [string]```") @bot.command(aliases=['Recipient', 'Receive', 'receive']) async def recipient(ctx,*,request : str=''): """Returns the recipients for donated crew""" owner = member_info.member_lookup(request)[0] request = owner[1] try: await ctx.send("Operation attempted. Searching for crew donated by: %s. Functions will be unavailable for approximately 1-5 minutes"%owner[0]) results = member_info.recipient(request) await ctx.send("Crew given by %s: %s were received by"%(owner[0],request)+lined_string(results)) return except: await ctx.send("Operation failed. Try a token refresh with &token or confirming ID with &lookup member") return bot.run('Mjc3MTkxNjczOTk2NTA5MTg0.C3aKYA.UF2sH6PrBdOxT6znHJAd66_k07Q') #Council bot's token
47.015576
249
0.647893
fe8510a81c5105c4f794f82600e27a5478c8e2a3
4,672
py
Python
dmlab/env.py
do-not-be-hasty/seed_rl
1e94de42dd7f40c6981a5099fb1acdc395d6b147
[ "Apache-2.0" ]
2
2021-11-23T17:50:59.000Z
2022-01-13T12:10:00.000Z
dmlab/env.py
awarelab/seed_rl
b738be03e4d3c49ca259fae88d26cb747b771a65
[ "Apache-2.0" ]
3
2020-11-12T03:32:54.000Z
2020-11-14T14:31:31.000Z
dmlab/env.py
awarelab/seed_rl
b738be03e4d3c49ca259fae88d26cb747b771a65
[ "Apache-2.0" ]
2
2020-10-25T03:21:48.000Z
2020-12-28T06:00:04.000Z
# coding=utf-8 # Copyright 2019 The SEED Authors # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DeepMind Lab Gym wrapper.""" import hashlib import os from absl import flags from absl import logging import gym import numpy as np from seed_rl.common import common_flags from seed_rl.dmlab import games import tensorflow as tf import deepmind_lab FLAGS = flags.FLAGS flags.DEFINE_string('homepath', '', 'Labyrinth homepath.') flags.DEFINE_string( 'dataset_path', '', 'Path to dataset needed for psychlab_*, see ' 'https://github.com/deepmind/lab/tree/master/data/brady_konkle_oliva2008') flags.DEFINE_string('game', 'explore_goal_locations_small', 'Game/level name.') flags.DEFINE_integer('width', 96, 'Width of observation.') flags.DEFINE_integer('height', 72, 'Height of observation.') flags.DEFINE_string('level_cache_dir', None, 'Global level cache directory.') DEFAULT_ACTION_SET = ( (0, 0, 0, 1, 0, 0, 0), # Forward (0, 0, 0, -1, 0, 0, 0), # Backward (0, 0, -1, 0, 0, 0, 0), # Strafe Left (0, 0, 1, 0, 0, 0, 0), # Strafe Right (-20, 0, 0, 0, 0, 0, 0), # Look Left (20, 0, 0, 0, 0, 0, 0), # Look Right (-20, 0, 0, 1, 0, 0, 0), # Look Left + Forward (20, 0, 0, 1, 0, 0, 0), # Look Right + Forward (0, 0, 0, 0, 1, 0, 0), # Fire. ) class LevelCache(object): """Level cache.""" def __init__(self, cache_dir): self._cache_dir = cache_dir def get_path(self, key): key = hashlib.md5(key.encode('utf-8')).hexdigest() dir_, filename = key[:3], key[3:] return os.path.join(self._cache_dir, dir_, filename) def fetch(self, key, pk3_path): path = self.get_path(key) try: tf.io.gfile.copy(path, pk3_path, overwrite=True) return True except tf.errors.OpError: return False def write(self, key, pk3_path): path = self.get_path(key) if not tf.io.gfile.exists(path): tf.io.gfile.makedirs(os.path.dirname(path)) tf.io.gfile.copy(pk3_path, path) class DmLab(gym.Env): """DeepMind Lab wrapper.""" def __init__(self, game, num_action_repeats, seed, is_test, config, action_set=DEFAULT_ACTION_SET, level_cache_dir=None): if is_test: config['allowHoldOutLevels'] = 'true' # Mixer seed for evalution, see # https://github.com/deepmind/lab/blob/master/docs/users/python_api.md config['mixerSeed'] = 0x600D5EED if game in games.ALL_GAMES: game = 'contributed/dmlab30/' + game config['datasetPath'] = FLAGS.dataset_path self._num_action_repeats = num_action_repeats self._random_state = np.random.RandomState(seed=seed) if FLAGS.homepath: deepmind_lab.set_runfiles_path(FLAGS.homepath) self._env = deepmind_lab.Lab( level=game, observations=['RGB_INTERLEAVED'], level_cache=LevelCache(level_cache_dir) if level_cache_dir else None, config={k: str(v) for k, v in config.items()}, ) self._action_set = action_set self.action_space = gym.spaces.Discrete(len(self._action_set)) self.observation_space = gym.spaces.Box( low=0, high=255, shape=(config['height'], config['width'], 3), dtype=np.uint8) def _observation(self): return self._env.observations()['RGB_INTERLEAVED'] def reset(self): self._env.reset(seed=self._random_state.randint(0, 2 ** 31 - 1)) return self._observation() def step(self, action): raw_action = np.array(self._action_set[action], np.intc) reward = self._env.step(raw_action, num_steps=self._num_action_repeats) done = not self._env.is_running() observation = None if done else self._observation() return observation, reward, done, {} def close(self): self._env.close() def create_environment(task): logging.info('Creating environment: %s', FLAGS.game) return DmLab(FLAGS.game, FLAGS.num_action_repeats, seed=task + 1, is_test=False, level_cache_dir=FLAGS.level_cache_dir, config={ 'width': FLAGS.width, 'height': FLAGS.height, 'logLevel': 'WARN', })
31.782313
79
0.658604
c34b5f2387e700c991c23890b520f897b1b2c0c3
59,916
py
Python
KMC_allinone.py
laurisikk/KMC_GUI
77bdd186c06537447e5eb41c21d5f95a11cf8c2e
[ "MIT" ]
null
null
null
KMC_allinone.py
laurisikk/KMC_GUI
77bdd186c06537447e5eb41c21d5f95a11cf8c2e
[ "MIT" ]
null
null
null
KMC_allinone.py
laurisikk/KMC_GUI
77bdd186c06537447e5eb41c21d5f95a11cf8c2e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import math import sys import os import numpy as np import KMC_test8 as KMC_engine import matplotlib.pyplot as plt from PyQt5.QtWidgets import QMainWindow, QApplication, QWidget, QPushButton, QAction, QVBoxLayout, QGraphicsView, QToolBar, QGraphicsScene, QButtonGroup, QHBoxLayout, QGraphicsRectItem, QGraphicsItem, QGraphicsItemGroup, QMenu, QAction, QLabel, QDialog, QLineEdit, QMessageBox, QFileDialog, QListView from PyQt5.QtGui import QIcon, QPixmap, QPolygon, QColor, QPainter, QPen, QBrush, QTransform, QFont, QFontMetrics, QPolygonF, QPainterPath, QStandardItemModel, QStandardItem from PyQt5.QtCore import Qt, QPointF, QRectF, QLine, QVariant from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure ### Global variables and options TOOLS= ['species', 'reactAtoB', 'reactABtoC', 'reactAtoBC', 'reactABtoCD', 'reactAtoBCD','reactABtoCDE'] Na=6.02*10**23 nodeFont=QFont("times",16) speciesFillColor=QColor(79,126,151) reactionsFillColor=QColor(46,144,66) plugSideLength=30 plugWidth=plugSideLength*(math.sqrt(3)/2) lineInteractionRange=20 speciesCounter=1 speciesList=[] reactionsCounter=1 reactionsList=[] connectionsCounter=1 connectionsList=[] isMoving=False movingItem=None isConnecting=False connectionStart=None connectionEnd=None KMCParams=[100000,1,0.01,1,1]#total N of starting particles,repeats,store timestep,max time,volume fileName=None lasttVector=[] lastPVector=[] lastCVector=[] ###################### ### global Methods ### ###################### def calcPopulationVector(totalNParticles): global speciesList global KMCParams Na=6.02*10**23 concList=[] sumConc=0 if len(speciesList)!=0: for species in speciesList: concList.append(species.nodeBox.number) sumConc+=species.nodeBox.number if sumConc !=None: V=totalNParticles/(sumConc*Na) populationList=np.array([]) for concentration in concList: populationList=np.append(populationList,int(V*concentration*Na)) if sumConc !=None: KMCParams[4]=V return populationList #edit KMC parameters def editKMC(): global speciesList global KMCParams getKMCParams=editKMCParams() #generate output file stream def generateOutputStream(): global speciesList global reactionsList global connectionsList global KMCParams outputStream=[] #species list for species in speciesList: outputLine='//species '+str(species.pos().x())+" "+str(species.pos().y())+" "+str(species.nodeBox.name)+" "+str(species.nodeBox.number) outputStream.append(outputLine) #reactions list for reactions in reactionsList: outputLine='//reactions '+str(reactions.pos().x())+" "+str(reactions.pos().y())+" "+str(reactions.nodeBox.name)+" "+str(reactions.nodeBox.number) #append reaction type to the end of the line if isinstance(reactions,reactionAtoBNode)==True: outputLine=outputLine+" AtoB" if isinstance(reactions,reactionABtoCNode)==True: outputLine=outputLine+" ABtoC" if isinstance(reactions,reactionAtoBCNode)==True: outputLine=outputLine+" AtoBC" outputStream.append(outputLine) #connections list for connection in connectionsList: outputLine='//connections '+str(connection.startNode.parentItem().nodeBox.name)+" "+str(connection.startNode.name)+" "+str(connection.endNode.parentItem().nodeBox.name)+" "+str(connection.endNode.name) outputStream.append(outputLine) #KMC parameters outputLine='//KMCparams '+str(KMCParams[0])+" "+str(KMCParams[1])+" "+str(KMCParams[2])+" "+str(KMCParams[3])+" "+str(KMCParams[4]) outputStream.append(outputLine) #population vector populationVector=calcPopulationVector(KMCParams[0]) outputLine='//popVector' for item in populationVector: outputLine=outputLine+" "+str(item) outputStream.append(outputLine) #name vector outputLine='//nameVector' for species in speciesList: outputLine=outputLine+" "+str(species.nodeBox.name) outputStream.append(outputLine) #rate vector outputLine='//rateVector' for reaction in reactionsList: outputLine=outputLine+" "+str(reaction.nodeBox.number) outputStream.append(outputLine) #connectivity matrix connectivityMatrix=np.zeros(shape=(len(reactionsList),len(speciesList))) #iterate over all reactions (rows in connectivity matrix) i=0 while i < len(reactionsList): #iterate over plugs of reaction for reactionChildItem in reactionsList[i].childItems(): if isinstance(reactionChildItem,plug): #iterate over all species (columns in connectivity matrix) j=0 while j< len(speciesList): #check all plugs in given species for speciesChildItem in speciesList[j].childItems(): if isinstance(speciesChildItem,plug): #iterate over all connections to check if connection exists for connection in connectionsList: #check if connection's start and end plugs are identical to current reaction and species plugs if connection.startNode==reactionChildItem and connection.endNode==speciesChildItem: if reactionChildItem.mode=="in": connectivityMatrix[i][j]-=1 if reactionChildItem.mode=="out": connectivityMatrix[i][j]+=1 if connection.endNode==reactionChildItem and connection.startNode==speciesChildItem: if reactionChildItem.mode=="in": connectivityMatrix[i][j]-=1 if reactionChildItem.mode=="out": connectivityMatrix[i][j]+=1 j+=1 i+=1 for line in connectivityMatrix: outputLine='//connMatrix' for item in line: outputLine=outputLine+" "+str(item) outputStream.append(outputLine) return outputStream def readInputStream(inputStream): global speciesList global reactionsList global connectionsList global speciesCounter global reactionsCounter global connectionsCounter global KMCParams speciesCounter=0 reactionsCounter=0 connectionsCounter=0 for line in inputStream: lineList=line.split(" ") if lineList[0] == '//species': #generate new species based on this line information objectName=lineList[3] objectName=speciesNode(QPointF(float(lineList[1]),float(lineList[2])),lineList[3],float(lineList[4])) speciesList.append(objectName) speciesCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if lineList[0] =='//reactions': #generate new reactions based on this line information objectName=lineList[3] if lineList[5]=='AtoB': objectName=reactionAtoBNode(QPointF(float(lineList[1]),float(lineList[2])),lineList[3],float(lineList[4])) if lineList[5]=='AtoBC': objectName=reactionAtoBCNode(QPointF(float(lineList[1]),float(lineList[2])),lineList[3],float(lineList[4])) if lineList[5]=='ABtoC': objectName=reactionABtoCNode(QPointF(float(lineList[1]),float(lineList[2])),lineList[3],float(lineList[4])) reactionsList.append(objectName) reactionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if lineList[0] =='//connections': #generate new connections based on this line information #get plugs of startNode: for species in speciesList+reactionsList: for plugItem in species.childItems(): if isinstance(plugItem,plug): if lineList[1] == species.nodeBox.name and lineList[2]==plugItem.name: startPlug=plugItem if lineList[3] == species.nodeBox.name and lineList[4]==plugItem.name: endPlug=plugItem objectName='connection'+str(connectionsCounter) objectName=connection(startPlug,endPlug) connectionsList.append(objectName) connectionsCounter+=1 AppWindow.canvas.addItem(objectName) if lineList[0]=='//KMCparams': #generate KMC parameters based on this line information #KMCParams=[100000,1,0.01,1,1]#total N of starting particles,repeats,store timestep,max time,volume KMCParams[0]=int(lineList[1]) KMCParams[1]=int(lineList[2]) KMCParams[2]=float(lineList[3]) KMCParams[3]=float(lineList[4]) KMCParams[4]=float(lineList[5]) #calculate the height and width of node box def getNodeWH(textH,titleTextW,numberTextW): h=2.5*textH #2.5 because font "times" has leading -1 (text has one preceeding empty line) if numberTextW>titleTextW: w=numberTextW+15 else: w=titleTextW+15 if w<h: w=h #if text and number are short, make it a rectangle for aesthetic reasons return w,h # get width of text def getTextWidth(text): global nodeFont fontMetrics=QFontMetrics(nodeFont) w=fontMetrics.boundingRect(text).width() return w # get height of text def getTextHeight(text): global nodeFont fontMetrics=QFontMetrics(nodeFont) h=fontMetrics.boundingRect(text).height() return h #create node def createNode(tool,position): global reactionsCounter global speciesCounter global reactionsList global speciesList if tool=="unselected": AppWindow.statusBar().showMessage("No tool selected",5000) if tool=="species": objectName='species'+str(speciesCounter) objectTitle='S'+str(speciesCounter) objectName=speciesNode(position,objectTitle,1.0)#create node; no of molecules=10000 speciesList.append(objectName) speciesCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if tool=="reactAtoB": objectName='reaction'+str(reactionsCounter) objectTitle='R'+str(reactionsCounter) objectName=reactionAtoBNode(position,objectTitle,10)#create node; no of molecules=10000 reactionsList.append(objectName) reactionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if tool=="reactABtoC": objectName='reaction'+str(reactionsCounter) objectTitle='R'+str(reactionsCounter) objectName=reactionABtoCNode(position,objectTitle,10)#create node; no of molecules=10000 reactionsList.append(objectName) reactionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if tool=="reactAtoBC": objectName='reaction'+str(reactionsCounter) objectTitle='R'+str(reactionsCounter) objectName=reactionAtoBCNode(position,objectTitle,10)#create node; no of molecules=10000 reactionsList.append(objectName) reactionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if tool=="reactABtoCD": objectName='reaction'+str(reactionsCounter) objectTitle='R'+str(reactionsCounter) objectName=reactionABtoCDNode(position,objectTitle,10)#create node; no of molecules=10000 reactionsList.append(objectName) reactionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if tool=="reactAtoBCD": objectName='reaction'+str(reactionsCounter) objectTitle='R'+str(reactionsCounter) objectName=reactionAtoBCDNode(position,objectTitle,10)#create node; no of molecules=10000 reactionsList.append(objectName) reactionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() if tool=="reactABtoCDE": objectName='reaction'+str(reactionsCounter) objectTitle='R'+str(reactionsCounter) objectName=reactionABtoCDENode(position,objectTitle,10)#create node; no of molecules=10000 reactionsList.append(objectName) reactionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() #create connection def createConnection(): global isConnecting global connectionStart global connectionEnd global connectionsList global connectionsCounter if isinstance(connectionStart,plug) and isinstance(connectionEnd,plug): legalConnection=True #test if valid connection if isConnecting==True: #put in checks so that only legal connections are allowed #1. You cannot connect node to itself if connectionStart.parentItem()==connectionEnd.parentItem(): AppWindow.statusBar().showMessage("You cannot connect node to itself!",5000) legalConnection=False #2. You cannot create multiple connections between same plug pairs for existingConnection in connectionsList: if existingConnection.startNode==connectionStart and existingConnection.endNode ==connectionEnd: AppWindow.statusBar().showMessage("You cannot create multiple connections between same plug pairs!",5000) legalConnection=False if existingConnection.endNode==connectionStart and existingConnection.startNode ==connectionEnd: AppWindow.statusBar().showMessage("You cannot create multiple connections between same plug pairs!",5000) legalConnection=False #3. You can only connect different type of plugs if connectionStart.mode==connectionEnd.mode: AppWindow.statusBar().showMessage("You can only connect different type of plugs!",5000) legalConnection=False #4. You can only connect reactions to species and vice versa if connectionStart.parentItem().nodeType==connectionEnd.parentItem().nodeType: AppWindow.statusBar().showMessage("You can only connect reactions to species and vice versa!",5000) legalConnection=False #5. Only one connection is allowed per reaction plug if connectionStart.parentItem().nodeType=='reaction': for existingConnection in connectionsList: if existingConnection.startNode==connectionStart or existingConnection.endNode ==connectionStart: AppWindow.statusBar().showMessage("Only one connection is allowed per reaction plug!",5000) legalConnection=False if connectionEnd.parentItem().nodeType=='reaction': for existingConnection in connectionsList: if existingConnection.startNode==connectionEnd or existingConnection.endNode ==connectionEnd: AppWindow.statusBar().showMessage("Only one connection is allowed per reaction plug!",5000) legalConnection=False if legalConnection==True: #actually create the connection objectName='connection'+str(connectionsCounter) objectName=connection(connectionStart,connectionEnd) connectionsList.append(objectName) connectionsCounter+=1 AppWindow.canvas.addItem(objectName) AppWindow.canvas.update() isConnecting=False connectionStart=None connectionEnd=None def runKMC(): global lasttVector global lastPVector global lastCVector global KMCParams global speciesList global reactionsList global connectionsList global fileName if fileName==None: AppWindow.saveFile() # generate population vector populationVector=calcPopulationVector(KMCParams[0]) # generate rate constants vector rateConstantsVector=np.array([]) for reaction in reactionsList: rateConstantsVector=np.append(rateConstantsVector,reaction.nodeBox.number) #generate connectivity matrix connectivityMatrix=np.zeros(shape=(len(reactionsList),len(speciesList))) #iterate over all reactions (rows in connectivity matrix) i=0 while i < len(reactionsList): #iterate over plugs of reaction for reactionChildItem in reactionsList[i].childItems(): if isinstance(reactionChildItem,plug): #iterate over all species (columns in connectivity matrix) j=0 while j< len(speciesList): #check all plugs in given species for speciesChildItem in speciesList[j].childItems(): if isinstance(speciesChildItem,plug): #iterate over all connections to check if connection exists for connection in connectionsList: #check if connection's start and end plugs are identical to current reaction and species plugs if connection.startNode==reactionChildItem and connection.endNode==speciesChildItem: if reactionChildItem.mode=="in": connectivityMatrix[i][j]-=1 if reactionChildItem.mode=="out": connectivityMatrix[i][j]+=1 if connection.endNode==reactionChildItem and connection.startNode==speciesChildItem: if reactionChildItem.mode=="in": connectivityMatrix[i][j]-=1 if reactionChildItem.mode=="out": connectivityMatrix[i][j]+=1 j+=1 i+=1 lasttVector,lastPVector=KMC_engine.runKMC(populationVector,rateConstantsVector,connectivityMatrix,KMCParams[4],KMCParams[1],KMCParams[2],KMCParams[3]) #calculate concentration vector from population vector and volume if len(lasttVector)>0 and len(lastPVector)>0: lastCVector=np.empty(shape=lastPVector.shape) x=0 while x< len(lastCVector[:,0]): y=0 while y< len(lastCVector[x,:]): lastCVector[x,y]=lastPVector[x,y]/(Na*KMCParams[4]) y+=1 x+=1 #write population vector output file outPopFileName=fileName+'_population.csv' POPOUT=open(outPopFileName, 'w') POPOUT.write("t ") for species in speciesList: POPOUT.write(str(species.nodeBox.name)+" ") POPOUT.write("\n") for i in range(len(lasttVector)): POPOUT.write(str(lasttVector[i])+" ") for j in range(len(lastPVector[i])): POPOUT.write(str(lastPVector[i,j])+" ") POPOUT.write("\n") POPOUT.close() #write concentration vector output file outConcFileName=fileName+'_concentration.csv' CONCOUT=open(outConcFileName, 'w') CONCOUT.write("t ") for species in speciesList: CONCOUT.write(str(species.nodeBox.name)+" ") CONCOUT.write("\n") for i in range(len(lasttVector)): CONCOUT.write(str(lasttVector[i])+" ") for j in range(len(lastCVector[i])): CONCOUT.write(str(lastCVector[i,j])+" ") CONCOUT.write("\n") CONCOUT.close() ############### ### Classes ### ############### class PlotWindow(QMainWindow): def __init__(self): super(PlotWindow,self).__init__() global lasttVector global lastPVector global speciesList global lastCVector #set central widget self.centralWidget=QWidget() self.setCentralWidget(self.centralWidget) #set layout self.HLayout=QHBoxLayout() self.centralWidget.setLayout(self.HLayout) self.setWindowTitle("Plotting results") #generate figure canvas self.fig=Figure((10.0,12.0),dpi=100) self.canvas=FigureCanvas(self.fig) self.canvas.setParent(self) self.axes=self.fig.add_subplot(111) #add matplotlib standard toolbar self.matPlotLibToolbar=NavigationToolbar(self.canvas,self) self.plotLayout=QVBoxLayout() self.HLayout.addLayout(self.plotLayout) self.plotLayout.addWidget(self.canvas) self.plotLayout.addWidget(self.matPlotLibToolbar) #set layout for buttons and list self.VLayout=QVBoxLayout() self.HLayout.addLayout(self.VLayout) #add listview for selecting data series self.listView=QListView() self.listModel=QStandardItemModel() self.createDataSeries() self.listView.setModel(self.listModel) self.VLayout.addWidget(self.listView) #add button to display graph self.testButton=QPushButton("show") self.VLayout.addWidget(self.testButton) self.testButton.clicked.connect(self.onShow) def createDataSeries(self): self.listModel.clear() for species in speciesList: item=QStandardItem(species.nodeBox.name) item.setCheckState(Qt.Checked) item.setCheckable(True) self.listModel.appendRow(item) def onShow(self): self.axes.clear() i=0 if len(lastCVector)!=0: numberOfSpecies=len(lastCVector[0,:]) for row in range(self.listModel.rowCount()): index=self.listModel.index(row,0) if self.listModel.data(index,Qt.CheckStateRole)==QVariant(Qt.Checked): self.axes.scatter(lasttVector,lastCVector[:,i],label=speciesList[i].nodeBox.name) i+=1 self.axes.legend(loc='best') self.canvas.draw() class confirmWindow(QDialog): def __init__(self,text): super(confirmWindow,self).__init__() self.setGeometry(100,100,50,50) #set vertical layout self.VLayout=QVBoxLayout() self.setLayout(self.VLayout) #display text self.textDisplay=QLabel() self.textDisplay.setText(text) self.VLayout.addWidget(self.textDisplay) #create horizontal layout self.HLayout=QHBoxLayout() self.VLayout.addLayout(self.HLayout) #create OK button self.OKButton=QPushButton("OK",self) self.OKButton.clicked.connect(self.OKPressed) self.HLayout.addWidget(self.OKButton) #create OK button self.CancelButton=QPushButton("Cancel",self) self.CancelButton.clicked.connect(self.CancelPressed) self.HLayout.addWidget(self.CancelButton) #display window self.exec() def OKPressed(self,pressed): self.close() def CancelPressed(self,pressed): self.close() # class for editing KMC parameters class editKMCParams(QDialog): def __init__(self): super(editKMCParams,self).__init__() self.setGeometry(100,100,400,200) global KMCParams #KMCParams=[1,1,0.01,1]#volume,repeats,timestep,max time #set vertical layout self.VLayout=QVBoxLayout() self.setLayout(self.VLayout) #layout for time interval self.tIntervalLine=QHBoxLayout() self.VLayout.addLayout(self.tIntervalLine) self.tIntervalLabel=QLabel() self.tIntervalLabel.setText("Timestep for data storage (s):") self.tIntervalLine.addWidget(self.tIntervalLabel) self.tIntervalEdit=QLineEdit() self.tIntervalEdit.setText(str(KMCParams[2])) self.tIntervalLine.addWidget(self.tIntervalEdit) #layout for maximum allowed time self.maxTLine=QHBoxLayout() self.VLayout.addLayout(self.maxTLine) self.maxTLabel=QLabel() self.maxTLabel.setText("Max simulation time (s):") self.maxTLine.addWidget(self.maxTLabel) self.maxTEdit=QLineEdit() self.maxTEdit.setText(str(KMCParams[3])) self.maxTLine.addWidget(self.maxTEdit) #layout for total number of starting particles self.totalParticlesLine=QHBoxLayout() self.VLayout.addLayout(self.totalParticlesLine) self.totalParticlesLabel=QLabel() self.totalParticlesLabel.setText("Total number of starting molecules:") self.totalParticlesLine.addWidget(self.totalParticlesLabel) self.totalParticlesEdit=QLineEdit() self.totalParticlesEdit.setText(str(KMCParams[0])) self.totalParticlesLine.addWidget(self.totalParticlesEdit) #layout for repeats self.repeatsLine=QHBoxLayout() self.VLayout.addLayout(self.repeatsLine) self.repeatsLabel=QLabel() self.repeatsLabel.setText("Number of repeats:") self.repeatsLine.addWidget(self.repeatsLabel) self.repeatsEdit=QLineEdit() self.repeatsEdit.setText(str(KMCParams[1])) self.repeatsLine.addWidget(self.repeatsEdit) #layout for displaying volume self.VolumeLine=QHBoxLayout() self.VLayout.addLayout(self.VolumeLine) self.VolumeLabel=QLabel() self.VolumeLabel.setText("Simulation volume (L):") self.VolumeLine.addWidget(self.VolumeLabel) self.VolumeValue=QLabel() popList=calcPopulationVector(KMCParams[0]) self.VolumeValue.setText(str(KMCParams[4])) self.VolumeLine.addWidget(self.VolumeValue) #layout for buttons line self.ButtonsLine=QHBoxLayout() self.VLayout.addLayout(self.ButtonsLine) #create OK button self.OKButton=QPushButton("OK",self) self.OKButton.clicked.connect(self.OKPressed) self.ButtonsLine.addWidget(self.OKButton) #create Cancel button self.CancelButton=QPushButton("Cancel",self) self.CancelButton.clicked.connect(self.CancelPressed) self.ButtonsLine.addWidget(self.CancelButton) #launch window self.exec() def OKPressed(self,pressed): source=self.sender() validOutput=True global KMCParams try: float(self.tIntervalEdit.text()) except: invalidWindow=QMessageBox.information(self,"Error","time interval must be a number") validOutput=False try: float(self.maxTEdit.text()) except: invalidWindow=QMessageBox.information(self,"Error","maximum time must be a number") validOutput=False try: int(self.totalParticlesEdit.text()) except: invalidWindow=QMessageBox.information(self,"Error","total number of starting molecules must be an integer") validOutput=False try: int(self.repeatsEdit.text()) except: invalidWindow=QMessageBox.information(self,"Error","number of repats must be an integer") validOutput=False if validOutput==True: #KMCParams=[100000,1,0.01,1,1]#total N of starting particles,repeats,store timestep,max time,volume KMCParams[0]=int(self.totalParticlesEdit.text()) KMCParams[1]=int(self.repeatsEdit.text()) KMCParams[2]=float(self.tIntervalEdit.text()) KMCParams[3]=float(self.maxTEdit.text()) self.close() def CancelPressed(self,pressed): #do nothing when cancel is pressed - delete widget and do not save changes self.close() # class for editing node objects class editNodes(QDialog): def __init__(self,node,nodeType,name,number): super(editNodes,self).__init__() self.setGeometry(100,100,200,150) self.originNode=node self.originType=nodeType #set vertical layout self.VLayout=QVBoxLayout() self.setLayout(self.VLayout) #layout for node Text and edit self.textLine=QHBoxLayout() self.VLayout.addLayout(self.textLine) self.nameLabel=QLabel() self.nameLabel.setText("Name:") self.textLine.addWidget(self.nameLabel) self.nameEdit=QLineEdit() self.nameEdit.setText(name) self.textLine.addWidget(self.nameEdit) #layout for node number and edit self.numberLine=QHBoxLayout() self.VLayout.addLayout(self.numberLine) self.numberLabel=QLabel() if nodeType=="species": self.numberLabel.setText("Concentration (mol/L):") if nodeType=="reaction": self.numberLabel.setText("Rate constant:") self.numberLine.addWidget(self.numberLabel) self.numberEdit=QLineEdit() self.numberEdit.setText(str(number)) self.numberLine.addWidget(self.numberEdit) #layout for buttons line self.ButtonsLine=QHBoxLayout() self.VLayout.addLayout(self.ButtonsLine) #create OK button self.OKButton=QPushButton("OK",self) self.OKButton.clicked.connect(self.OKPressed) self.ButtonsLine.addWidget(self.OKButton) #create Cancel button self.CancelButton=QPushButton("Cancel",self) self.CancelButton.clicked.connect(self.CancelPressed) self.ButtonsLine.addWidget(self.CancelButton) #launch window self.exec() def OKPressed(self,pressed): source=self.sender() self.validName=True self.validNumber=True global reactionsList global speciesList #check if name field is unique for species in speciesList: if species.nodeBox==self.originNode: pass elif species.nodeBox.name==self.nameEdit.text(): invalidWindow=QMessageBox.information(self,"Error","name in use") self.validName=False for reactions in reactionsList: if reactions.nodeBox==self.originNode: pass elif reactions.nodeBox.name==self.nameEdit.text(): invalidWindow=QMessageBox.information(self,"Error","name in use") self.validName=False #check if number is int or float (for species and reaction, respectively) if self.originType=="species": try: float(self.numberEdit.text()) #check if concentration is positive or 0 if float(self.numberEdit.text()) <0: self.validNumber=False invalidWindow=QMessageBox.information(self,"Error","concentration must be positive or 0") except ValueError: invalidWindow=QMessageBox.information(self,"Error","concentration must be floating point number") self.validNumber=False if self.originType=="reaction": try: float(self.numberEdit.text()) #check if rate constant is positive or 0 if float(self.numberEdit.text()) <0: self.validNumber=False invalidWindow=QMessageBox.information(self,"Error","rate constant must be positive or 0") except ValueError: invalidWindow=QMessageBox.information(self,"Error","rate constant must be integer or floating point number") self.validNumber=False #if all values are acceptable, save changes and close widget if self.validName==True and self.validNumber==True: self.originNode.name=self.nameEdit.text() if self.originType=="species": self.originNode.number=float(self.numberEdit.text()) if self.originType=="reaction": self.originNode.number=float(self.numberEdit.text()) self.originNode.updateNode() self.close() def CancelPressed(self,pressed): #do nothing when cancel is pressed - delete widget and no not save changes self.close() # general class for all node objects class nodeBox(QGraphicsItem): def __init__(self,parent,position,objectTitle,number): global nodeFont global plugSideLength global plugWidth global reactionsList global speciesList self.parent=parent super(nodeBox,self).__init__() self.createNode(self,position,objectTitle,number) def createNode(self,parent,position,objectTitle,number): #add central box self.name=objectTitle self.number=number self.textH=getTextHeight(self.name) self.titleTextW=getTextWidth(self.name) self.numberTextW=getTextWidth(str(self.number)) self.nodeBoxW,self.nodeBoxH=getNodeWH(self.textH,self.titleTextW,self.numberTextW) #calculate node width and height self.width=self.nodeBoxW+2*plugWidth self.height=self.nodeBoxH #move node center to cursor location self.setPos(0,0) def boundingRect(self): return QRectF(0,0,self.width,self.height) def paint(self,painter,option,widget): global nodeFont global plugWidth painter.setRenderHint(QPainter.Antialiasing) rect=QPainterPath() brush=QBrush(self.boxColor) rect.addRoundedRect(QRectF(0+plugWidth,0,self.nodeBoxW,self.nodeBoxH),10,10) painter.setPen(QPen(Qt.SolidLine)) painter.setFont(nodeFont) painter.fillPath(rect,self.boxColor) painter.drawPath(rect) #painter.fillRect(0+plugWidth,0,self.nodeBoxW,self.nodeBoxH,QBrush(self.boxColor)) painter.drawText(int(0+plugWidth+self.nodeBoxW*0.5-self.titleTextW*0.5),0+self.textH,self.name) painter.drawText(int(0+plugWidth+self.nodeBoxW*0.5-self.numberTextW*0.5),0+2*self.textH,str(self.number)) if self.parent.selected==True: painter.setPen(QPen(Qt.DashLine)) painter.drawRect(self.boundingRect()) self.update() def contextMenuEvent(self,event): menu=QMenu() editAction=QAction('Edit',None) editAction.triggered.connect(self.editNode) menu.addAction(editAction) deleteAction=QAction('Delete',None) deleteAction.triggered.connect(self.deleteNode) menu.addAction(deleteAction) if self.parentItem().selected==True: selectionText='Unselect' else: selectionText='Select' selectAction=QAction(selectionText,None) selectAction.triggered.connect(self.selectNode) menu.addAction(selectAction) menu.exec_(event.screenPos()) def editNode(self): editWidget=editNodes(self,self.parent.nodeType,self.name, self.number) def selectNode(self): if self.parentItem().selected==True: self.parentItem().selected=False else: self.parentItem().selected=True def deleteNode(self): self.deleteList=[] #clean up all connections related to this node for connection in connectionsList: if connection.startNode.parentItem() == self.parentItem() or connection.endNode.parentItem() == self.parentItem(): connection.selected=True self.deleteList.append(connection) for connection in self.deleteList: connectionsList.remove(connection) AppWindow.canvas.removeItem(connection) #if parent object is species, clean up speciesList if isinstance(self.parentItem(),speciesNode): for node in speciesList: if node==self.parentItem(): speciesList.remove(node) #if parent object is reaction, clean up reactionsList if isinstance(self.parentItem(),reactionAtoBNode) or isinstance(self.parentItem(),reactionAtoBCNode) or isinstance(self.parentItem(),reactionABtoCNode): for node in reactionsList: if node==self.parentItem(): reactionsList.remove(node) AppWindow.canvas.removeItem(self.parentItem()) def updateNode(self): self.textH=getTextHeight(self.name) self.titleTextW=getTextWidth(self.name) self.numberTextW=getTextWidth(str(self.number)) self.nodeBoxW,self.nodeBoxH=getNodeWH(self.textH,self.titleTextW,self.numberTextW) self.width=self.nodeBoxW+2*plugWidth self.height=self.nodeBoxH #update position of outgoing plugs for item in self.parentItem().childItems(): if isinstance(item,plug) and item.mode=="out": item.x=self.width-plugWidth item.updateCoords() #species node class class speciesNode(QGraphicsItem): def __init__(self,position,objectTitle,number): super(speciesNode,self).__init__() global nodeFont global plugSideLength global plugWidth global speciesFillColor self.selected=False self.nodeType="species" self.createNode(position,objectTitle,number) self.setZValue(1) def createNode(self,position,objectTitle,number): self.nodeBox=nodeBox(self,position,objectTitle,number) self.nodeBox.setParentItem(self) self.nodeBox.boxColor=speciesFillColor self.setPos(int(position.x()-self.nodeBox.width/2),int(position.y()-self.nodeBox.height/2)) self.nodePlugIn=plug(0,self.nodeBox.height/2-plugSideLength/2,"in","in1") self.nodePlugIn.setParentItem(self) self.nodePlugOut=plug(self.nodeBox.width-plugWidth,self.nodeBox.height/2-plugSideLength/2,"out","out1") self.nodePlugOut.setParentItem(self) def boundingRect(self): return self.nodeBox.boundingRect() def updateCoords(self,position): self.setPos(position.x()-self.nodeBox.width/2,position.y()-self.nodeBox.height/2) def paint(self,painter,option,widget): pass #reaction A to B node class class reactionAtoBNode(QGraphicsItem): def __init__(self,position,objectTitle,number): super(reactionAtoBNode,self).__init__() global nodeFont global plugSideLength global plugWidth global reactionsFillColor self.selected=False self.nodeType="reaction" self.createNode(position,objectTitle,number) self.setZValue(1) def createNode(self,position,objectTitle,number): self.nodeBox=nodeBox(self,position,objectTitle,number) self.nodeBox.setParentItem(self) self.nodeBox.boxColor=reactionsFillColor self.setPos(int(position.x()-self.nodeBox.width/2),int(position.y()-self.nodeBox.height/2)) self.nodePlugIn=plug(0,self.nodeBox.height/2-plugSideLength/2,"in","in1") self.nodePlugIn.setParentItem(self) self.nodePlugOut=plug(self.nodeBox.width-plugWidth,self.nodeBox.height/2-plugSideLength/2,"out","out1") self.nodePlugOut.setParentItem(self) def boundingRect(self): return self.nodeBox.boundingRect() def updateCoords(self,position): self.setPos(position.x()-self.nodeBox.width/2,position.y()-self.nodeBox.height/2) def paint(self,painter,option,widget): pass #reaction AB to C node class class reactionABtoCNode(QGraphicsItem): def __init__(self,position,objectTitle,number): super(reactionABtoCNode,self).__init__() global nodeFont global plugSideLength global plugWidth global reactionsFillColor self.selected=False self.nodeType="reaction" self.createNode(position,objectTitle,number) self.setZValue(1) def createNode(self,position,objectTitle,number): self.nodeBox=nodeBox(self,position,objectTitle,number) self.nodeBox.setParentItem(self) self.nodeBox.boxColor=reactionsFillColor self.setPos(int(position.x()-self.nodeBox.width/2),int(position.y()-self.nodeBox.height/2)) self.nodePlugIn1=plug(0,(self.nodeBox.height-2*plugSideLength)/3,"in","in1") self.nodePlugIn1.setParentItem(self) self.nodePlugIn2=plug(0,plugSideLength+2*(self.nodeBox.height-2*plugSideLength)/3,"in","in2") self.nodePlugIn2.setParentItem(self) self.nodePlugOut=plug(self.nodeBox.width-plugWidth,self.nodeBox.height/2-plugSideLength/2,"out","out1") self.nodePlugOut.setParentItem(self) def boundingRect(self): return self.nodeBox.boundingRect() def updateCoords(self,position): self.setPos(position.x()-self.nodeBox.width/2,position.y()-self.nodeBox.height/2) def paint(self,painter,option,widget): pass #reaction A to BC node class class reactionAtoBCNode(QGraphicsItem): def __init__(self,position,objectTitle,number): super(reactionAtoBCNode,self).__init__() global nodeFont global plugSideLength global plugWidth global reactionsFillColor self.selected=False self.nodeType="reaction" self.createNode(position,objectTitle,number) self.setZValue(1) def createNode(self,position,objectTitle,number): self.nodeBox=nodeBox(self,position,objectTitle,number) self.nodeBox.setParentItem(self) self.nodeBox.boxColor=reactionsFillColor self.setPos(int(position.x()-self.nodeBox.width/2),int(position.y()-self.nodeBox.height/2)) self.nodePlugIn=plug(0,self.nodeBox.height/2-plugSideLength/2,"in","in1") self.nodePlugIn.setParentItem(self) self.nodePlugOut1=plug(self.nodeBox.width-plugWidth,(self.nodeBox.height-2*plugSideLength)/3,"out","out1") self.nodePlugOut1.setParentItem(self) self.nodePlugOut2=plug(self.nodeBox.width-plugWidth,plugSideLength+2*(self.nodeBox.height-2*plugSideLength)/3,"out","out2") self.nodePlugOut2.setParentItem(self) def boundingRect(self): return self.nodeBox.boundingRect() def updateCoords(self,position): self.setPos(position.x()-self.nodeBox.width/2,0+position.y()-self.nodeBox.height/2) def paint(self,painter,option,widget): pass #reaction AB to CD node class class reactionABtoCDNode(QGraphicsItem): def __init__(self,position,objectTitle,number): super(reactionABtoCDNode,self).__init__() global nodeFont global plugSideLength global plugWidth global reactionsFillColor self.selected=False self.nodeType="reaction" self.createNode(position,objectTitle,number) self.setZValue(1) def createNode(self,position,objectTitle,number): self.nodeBox=nodeBox(self,position,objectTitle,number) self.nodeBox.setParentItem(self) self.nodeBox.boxColor=reactionsFillColor self.setPos(int(position.x()-self.nodeBox.width/2),int(position.y()-self.nodeBox.height/2)) self.nodePlugIn1=plug(0,(self.nodeBox.height-2*plugSideLength)/3,"in","in1") self.nodePlugIn1.setParentItem(self) self.nodePlugIn2=plug(0,plugSideLength+2*(self.nodeBox.height-2*plugSideLength)/3,"in","in2") self.nodePlugIn2.setParentItem(self) self.nodePlugOut1=plug(self.nodeBox.width-plugWidth,(self.nodeBox.height-2*plugSideLength)/3,"out","out1") self.nodePlugOut1.setParentItem(self) self.nodePlugOut2=plug(self.nodeBox.width-plugWidth,plugSideLength+2*(self.nodeBox.height-2*plugSideLength)/3,"out","out2") self.nodePlugOut2.setParentItem(self) def boundingRect(self): return self.nodeBox.boundingRect() def updateCoords(self,position): self.setPos(position.x()-self.nodeBox.width/2,0+position.y()-self.nodeBox.height/2) def paint(self,painter,option,widget): pass #reaction A to BCD node class class reactionAtoBCDNode(QGraphicsItem): def __init__(self,position,objectTitle,number): super(reactionAtoBCDNode,self).__init__() global nodeFont global plugSideLength global plugWidth global reactionsFillColor self.selected=False self.nodeType="reaction" self.createNode(position,objectTitle,number) self.setZValue(1) def createNode(self,position,objectTitle,number): self.nodeBox=nodeBox(self,position,objectTitle,number) self.nodeBox.setParentItem(self) self.nodeBox.boxColor=reactionsFillColor self.setPos(int(position.x()-self.nodeBox.width/2),int(position.y()-self.nodeBox.height/2)) self.nodePlugIn1=plug(0,(self.nodeBox.height-2*plugSideLength)/3,"in","in1") self.nodePlugIn=plug(0,self.nodeBox.height/2-plugSideLength/2,"in","in1") self.nodePlugIn.setParentItem(self) self.nodePlugOut1=plug(self.nodeBox.width-plugWidth,(self.nodeBox.height-3*plugSideLength)/4,"out","out1") self.nodePlugOut1.setParentItem(self) self.nodePlugOut2=plug(self.nodeBox.width-plugWidth,plugSideLength+2*(self.nodeBox.height-3*plugSideLength)/4,"out","out2") self.nodePlugOut2.setParentItem(self) self.nodePlugOut3=plug(self.nodeBox.width-plugWidth,2*plugSideLength+3*(self.nodeBox.height-3*plugSideLength)/4,"out","out3") self.nodePlugOut3.setParentItem(self) def boundingRect(self): return self.nodeBox.boundingRect() def updateCoords(self,position): self.setPos(position.x()-self.nodeBox.width/2,0+position.y()-self.nodeBox.height/2) def paint(self,painter,option,widget): pass #reaction AB to CDE node class class reactionABtoCDENode(QGraphicsItem): def __init__(self,position,objectTitle,number): super(reactionABtoCDENode,self).__init__() global nodeFont global plugSideLength global plugWidth global reactionsFillColor self.selected=False self.nodeType="reaction" self.createNode(position,objectTitle,number) self.setZValue(1) def createNode(self,position,objectTitle,number): self.nodeBox=nodeBox(self,position,objectTitle,number) self.nodeBox.setParentItem(self) self.nodeBox.boxColor=reactionsFillColor self.setPos(int(position.x()-self.nodeBox.width/2),int(position.y()-self.nodeBox.height/2)) self.nodePlugIn1=plug(0,(self.nodeBox.height-2*plugSideLength)/3,"in","in1") self.nodePlugIn1.setParentItem(self) self.nodePlugIn2=plug(0,plugSideLength+2*(self.nodeBox.height-2*plugSideLength)/3,"in","in2") self.nodePlugIn2.setParentItem(self) self.nodePlugOut1=plug(self.nodeBox.width-plugWidth,(self.nodeBox.height-3*plugSideLength)/4,"out","out1") self.nodePlugOut1.setParentItem(self) self.nodePlugOut2=plug(self.nodeBox.width-plugWidth,plugSideLength+2*(self.nodeBox.height-3*plugSideLength)/4,"out","out2") self.nodePlugOut2.setParentItem(self) self.nodePlugOut3=plug(self.nodeBox.width-plugWidth,2*plugSideLength+3*(self.nodeBox.height-3*plugSideLength)/4,"out","out3") self.nodePlugOut3.setParentItem(self) def boundingRect(self): return self.nodeBox.boundingRect() def updateCoords(self,position): self.setPos(position.x()-self.nodeBox.width/2,0+position.y()-self.nodeBox.height/2) def paint(self,painter,option,widget): pass # class for plug items class plug(QGraphicsItem): def __init__(self,x,y,mode,name): super(plug,self).__init__() self.x=x self.y=y self.mode=mode self.name=name global plugSideLength self.centre=QPointF(self.x+0.5*plugWidth,self.y+plugSideLength/2) self.triangle=QPolygonF() self.triangle.append(QPointF(self.x,self.y)) self.triangle.append(QPointF(self.x,self.y+plugSideLength)) self.triangle.append(QPointF(self.x+plugSideLength*(math.sqrt(3)/2),self.y+plugSideLength/2)) def boundingRect(self): return QRectF(self.x,self.y,plugSideLength*(math.sqrt(3)/2),plugSideLength) def paint(self,painter,option,widget): painter.setBrush(QBrush(QColor(150,150,150))) painter.setPen(QPen(Qt.SolidLine)) painter.drawPolygon(self.triangle) #painter.drawEllipse(self.centre,2,2) self.update() def updateCoords(self): self.triangle=QPolygonF() self.triangle.append(QPointF(self.x,self.y)) self.triangle.append(QPointF(self.x,self.y+plugSideLength)) self.triangle.append(QPointF(self.x+plugSideLength*(math.sqrt(3)/2),self.y+plugSideLength/2)) self.centre=QPointF(self.x+0.5*plugWidth,self.y+plugSideLength/2) # class for connection items class connection(QGraphicsItem): def __init__(self,startNode,endNode): super(connection,self).__init__() self.startNode=startNode self.endNode=endNode self.selected=False self.itemIsMovable=True global lineInteractionRange global connectionsList self.setZValue=0 def boundingRect(self): #get the top left corner coordinates and height/width of connection if self.startNode.scenePos().x()+self.startNode.centre.x()<=self.endNode.scenePos().x()+self.endNode.centre.x(): self.topCornerX=self.startNode.scenePos().x()+self.startNode.centre.x()-lineInteractionRange self.bottomCornerX=self.endNode.scenePos().x()+self.endNode.centre.x()+lineInteractionRange else: self.topCornerX=self.endNode.scenePos().x()+self.endNode.centre.x()-lineInteractionRange self.bottomCornerX=self.startNode.scenePos().x()+self.startNode.centre.x()+lineInteractionRange self.boundingRectHeight=self.bottomCornerX-self.topCornerX if self.startNode.scenePos().y()+self.startNode.centre.y()<=self.endNode.scenePos().y()+self.endNode.centre.y(): self.topCornerY=self.startNode.scenePos().y()+self.startNode.centre.y()-lineInteractionRange self.bottomCornerY=self.endNode.scenePos().y()+self.endNode.centre.y()+lineInteractionRange else: self.topCornerY=self.endNode.scenePos().y()+self.endNode.centre.y()-lineInteractionRange self.bottomCornerY=self.startNode.scenePos().y()+self.startNode.centre.y()+lineInteractionRange self.boundingRectWidth=self.bottomCornerY-self.topCornerY return QRectF(self.topCornerX,self.topCornerY,self.boundingRectHeight,self.boundingRectWidth) self.update() def paint(self,painter,option,widget): #painter.setBrush(QBrush(QColor(200,150,150))) painter.setPen(QPen(Qt.SolidLine)) painter.drawLine(self.startNode.scenePos().x()+self.startNode.centre.x(),self.startNode.scenePos().y()+self.startNode.centre.y(),self.endNode.scenePos().x()+self.endNode.centre.x(),self.endNode.scenePos().y()+self.endNode.centre.y()) self.selectionArea=self.createSelectionArea() if self.selected==True: painter.setPen(QPen(Qt.DashLine)) painter.drawPolygon(self.selectionArea) self.update() def createSelectionArea(self): if self.endNode.scenePos().y()+self.endNode.centre.y()-self.startNode.scenePos().y()-self.startNode.centre.y() ==0: slope =1 else: slope=(self.endNode.scenePos().x()+self.endNode.centre.x()-self.startNode.scenePos().x()-self.startNode.centre.x())/(self.endNode.scenePos().y()+self.endNode.centre.y()-self.startNode.scenePos().y()-self.startNode.centre.y()) slopeRadians=math.atan(slope) mouseInteractionBox=QPolygonF() point1x=self.startNode.scenePos().x()+self.startNode.centre.x()+math.sqrt(lineInteractionRange**2/(1+slope**2)) point1y=self.startNode.scenePos().y()+self.startNode.centre.y()+(-1)*slope*math.sqrt(lineInteractionRange**2/(1+slope**2)) mouseInteractionBox.append(QPointF(point1x,point1y)) point2x=self.startNode.scenePos().x()+self.startNode.centre.x()-math.sqrt(lineInteractionRange**2/(1+slope**2)) point2y=self.startNode.scenePos().y()+self.startNode.centre.y()-(-1)*slope*math.sqrt(lineInteractionRange**2/(1+slope**2)) mouseInteractionBox.append(QPointF(point2x,point2y)) point3x=self.endNode.scenePos().x()+self.endNode.centre.x()-math.sqrt(lineInteractionRange**2/(1+slope**2)) point3y=self.endNode.scenePos().y()+self.endNode.centre.y()-(-1)*slope*math.sqrt(lineInteractionRange**2/(1+slope**2)) mouseInteractionBox.append(QPointF(point3x,point3y)) point4x=self.endNode.scenePos().x()+self.endNode.centre.x()+math.sqrt(lineInteractionRange**2/(1+slope**2)) point4y=self.endNode.scenePos().y()+self.endNode.centre.y()+(-1)*slope*math.sqrt(lineInteractionRange**2/(1+slope**2)) mouseInteractionBox.append(QPointF(point4x,point4y)) return mouseInteractionBox def contextMenuEvent(self,event): menu=QMenu() deleteAction=QAction('Delete',None) deleteAction.triggered.connect(self.deleteConnection) menu.addAction(deleteAction) if self.selected==True: selectionText='Unselect' else: selectionText='Select' selectAction=QAction(selectionText,None) selectAction.triggered.connect(self.selectConnection) menu.addAction(selectAction) if self.selectionArea.containsPoint(event.scenePos(),Qt.OddEvenFill): menu.exec_(event.screenPos()) def selectConnection(self): if self.selected==True: self.selected=False else: self.selected=True def deleteConnection(self): #clean up connectionsList for connection in connectionsList: if connection==self: connectionsList.remove(connection) AppWindow.canvas.removeItem(self) selectableObjects=(speciesNode,reactionAtoBNode,reactionAtoBCNode,reactionABtoCNode,connection) # Graphics scene class DrawingArea(QGraphicsScene): def __init__(self,parent): super(DrawingArea,self).__init__(parent) self.setSceneRect(0,0,1000,1000) def mousePressEvent(self,event): global movingItem global isMoving global isConnecting global connectionStart global connectionEnd self.clickedItem=self.itemAt(event.scenePos(),QTransform()) #if event.button()==Qt.RightButton: if event.button()==Qt.LeftButton: self.connectionPresent=False self.nodePresent=False self.plugPresent=False #check what items are at mouse press position for items in self.items(event.scenePos()): if isinstance(items,plug)==True and self.plugPresent==False: self.plugPresent=True if isinstance(items,connection)==True and items.selectionArea.containsPoint(event.scenePos(),Qt.OddEvenFill)and self.connectionPresent==False: self.connectionPresent=True if isinstance(items,nodeBox)==True and self.nodePresent==False: self.nodePresent=True #if clicked on empty space with node creation tool, create that node if self.itemAt(event.scenePos(),QTransform()) == None and AppWindow.canvas.currentTool !="unselected": createNode(AppWindow.canvas.currentTool,event.scenePos()) #if clicked on plug and not on connection, create connection if self.plugPresent == True and self.connectionPresent == False: if isinstance(self.itemAt(event.scenePos(),QTransform()),plug): isConnecting=True connectionStart=self.itemAt(event.scenePos(),QTransform()) else: print("should create connection but itemAt scenePos is not plug --> zlevel issue") #if clicked on node and not on plug or connection, move node if self.nodePresent ==True and self.connectionPresent==False and self.plugPresent==False: if isinstance(self.itemAt(event.scenePos(),QTransform()),nodeBox)==True: isMoving=True movingItem=self.itemAt(event.scenePos(),QTransform()).parentItem() else: print("should be moving item but itemAt scenePos is not nodeBox -->zlevel issue") def mouseMoveEvent(self,event): global movingItem global connectionsList if movingItem != None: movingItem.updateCoords(event.scenePos()) for connection in connectionsList: connection.prepareGeometryChange() def mouseReleaseEvent(self,event): global movingItem global isMoving global isConnecting global connectionEnd if isMoving==True: isMoving=False movingItem=None self.clickedItem=self.itemAt(event.scenePos(),QTransform()) if isinstance(self.clickedItem,plug) and isConnecting==True: connectionEnd=self.clickedItem createConnection() def mouseDoubleClickEvent(self,event): global selectableObjects if event.button()==Qt.LeftButton: self.clickedItem=self.itemAt(event.scenePos(),QTransform()) #if clicked on plug, get parent item if isinstance(self.clickedItem,nodeBox): self.clickedItem=self.clickedItem.parentItem() if isinstance(self.clickedItem,connection) and self.clickedItem.selectionArea.containsPoint(event.scenePos(),Qt.OddEvenFill): pass #if double click on selectable objects, toggle selection if isinstance(self.clickedItem, selectableObjects): if self.clickedItem.selected==False: self.clickedItem.selected=True else: self.clickedItem.selected=False #class for the main application window class MainWindow(QMainWindow): def __init__(self): super(MainWindow,self).__init__() global TOOLS self.initUI() #add functionalities not defined in initUI module self.canvas.currentTool="unselected" #set canvas.currentTool based on the buttons pressed for tool in TOOLS: btn=getattr(self, '%sButton' % tool) btn.pressed.connect(lambda tool=tool: self.setTool(tool)) def setTool(self,tool): #function for storing current tool self.canvas.currentTool=tool def clearCanvas(self): #function for clearing all objects - new document confirmWindow=QMessageBox.question(self, '', "Clear all objects, are you sure?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if confirmWindow == QMessageBox.Yes: global speciesCounter global speciesList global reactionsCounter global reactionsList global connectionsCounter global connectionsList global isMoving global movingItem global isConnecting global connectionStart global connectionEnd speciesCounter=1 speciesList=[] reactionsCounter=1 reactionsList=[] connectionsCounter=1 connectionsList=[] isMoving=False movingItem=None isConnecting=False connectionStart=None connectionEnd=None self.canvas.clear() def saveFile(self): #function for saving all objects to file global fileName saveDialog=QFileDialog() saveDialog.setDefaultSuffix('kmc') saveDialog.setAcceptMode(QFileDialog.AcceptSave) saveDialog.setNameFilters(['kinetic Monte Carlo (*.kmc)']) saveDialog.setOptions(QFileDialog.DontUseNativeDialog) if saveDialog.exec_() == QDialog.Accepted: filename=saveDialog.selectedFiles()[0].split(".")[0] extension=saveDialog.selectedFiles()[0].split(".")[1] if extension != saveDialog.defaultSuffix(): print('wrong extension, "',extension,'", correcting') saveFileName=filename+'.'+saveDialog.defaultSuffix() else: saveFileName=saveDialog.selectedFiles()[0] fileName=filename #save all reactions outputStream=generateOutputStream() file=open(saveFileName,"w+") for line in outputStream: file.write(str(line)+"\n") file.close() def loadFile(self): #function for loading objects from file global fileName global speciesCounter global lastCVector global lastPVector global lasttVector loadDialog=QFileDialog() loadDialog.setDefaultSuffix('kmc') loadDialog.setAcceptMode(QFileDialog.AcceptOpen) loadDialog.setNameFilters(['kinetic Monte Carlo (*.kmc)']) loadDialog.setOptions(QFileDialog.DontUseNativeDialog) if loadDialog.exec_() == QDialog.Accepted: filename=loadDialog.selectedFiles()[0] fileName=loadDialog.selectedFiles()[0].split(".")[0] with open(filename,"r") as inputFile: inputStream=[] line=inputFile.readline() while line: line=line.rstrip() inputStream.append(line) line=inputFile.readline() self.clearCanvas() readInputStream(inputStream) #read previous simulation data from file if present populationFilename=fileName+"_population.csv" try: with open(populationFilename,"r") as popInput: popInStream=[] line=popInput.readline() while line: line=line.rstrip() popInStream.append(line) line=popInput.readline() timeVector=np.array([]) popVector=np.array([]) lineCounter=0 for line in popInStream: lineList=line.split(" ") if lineCounter>0: timeVector=np.append(timeVector,float(lineList[0])) lineList.pop(0) if lineCounter==1: popVector=np.asarray(lineList) if lineCounter>1: popVector=np.vstack([popVector,np.asarray(lineList)]) lineCounter+=1 if lineCounter==0: nameVector=lineList lineCounter+=1 if len(nameVector)!=speciesCounter+1: print("incompatible population vector file") lastPVector=popVector.astype(np.float) lasttVector=timeVector #calculate concentration vector from population vector and volume if len(lasttVector)>0 and len(lastPVector)>0: lastCVector=np.empty(shape=lastPVector.shape) x=0 while x< len(lastCVector[:,0]): y=0 while y< len(lastCVector[x,:]): lastCVector[x,y]=lastPVector[x,y]/(Na*KMCParams[4]) y+=1 x+=1 except: print("previous simulation data not available") def showPlot(self): self.plotWindow=PlotWindow() self.plotWindow.show() def initUI(self): global speciesList global reactionsList global connectionsList global lasttVector global lastPVector #super(MainWindow,self).__init__() self.resize(800, 800) self.centralwidget = QGraphicsView(self) self.centralwidget.setObjectName("centralwidget") self.setCentralWidget(self.centralwidget) #add QGraphicsScene widget to draw on self.canvas=DrawingArea(self) self.centralwidget.setScene(self.canvas) self.setMouseTracking(True) # build menubar self.mainMenu=QMainWindow.menuBar(self) self.mainMenu.setNativeMenuBar(False) # build file menu self.menuFile = self.mainMenu.addMenu('File') self.actionNew = QAction('New',self) self.actionSave=QAction('Save',self) self.actionOpen = QAction('Open',self) self.actionExit = QAction('Exit',self) self.menuFile.addAction(self.actionNew) self.menuFile.addAction(self.actionSave) self.menuFile.addAction(self.actionOpen) self.menuFile.addAction(self.actionExit) self.actionNew.triggered.connect(self.clearCanvas) self.actionSave.triggered.connect(self.saveFile) self.actionOpen.triggered.connect(self.loadFile) # build edit menu self.menuEdit = self.mainMenu.addMenu('Edit') self.actionEditReactTable = QAction('Reaction table',self) self.actionKMCParams = QAction('KMC parameters',self) self.actionRun = QAction('Run',self) #self.menuEdit.addAction(self.actionEditReactTable) self.menuEdit.addAction(self.actionKMCParams) self.menuEdit.addAction(self.actionRun) self.actionRun.triggered.connect(runKMC) self.actionKMCParams.triggered.connect(editKMC) self.plotResults=QAction('Plot results',self) self.menuEdit.addAction(self.plotResults) self.plotResults.triggered.connect(self.showPlot) #build toolbar self.toolBar = QToolBar() self.addToolBar(Qt.TopToolBarArea, self.toolBar) # add button for A-->B reaction self.reactAtoBButton = QPushButton(self) self.reactAtoBButton.setObjectName("reactAtoBButton") self.reactAtoBButton.setCheckable(True) self.AtoBIcon = QIcon() self.AtoBIcon.addPixmap(QPixmap("icons/AtoB.png"), QIcon.Normal, QIcon.Off) self.reactAtoBButton.setIcon(self.AtoBIcon) # add button for A+B-->C reaction self.reactABtoCButton = QPushButton(self) self.reactABtoCButton.setObjectName("reactABtoCButton") self.reactABtoCButton.setCheckable(True) self.ABtoCIcon = QIcon() self.ABtoCIcon.addPixmap(QPixmap("icons/ABtoC.png"), QIcon.Normal, QIcon.Off) self.reactABtoCButton.setIcon(self.ABtoCIcon) # add button for A-->B+C reaction self.reactAtoBCButton = QPushButton(self) self.reactAtoBCButton.setObjectName("reactAtoBCButton") self.reactAtoBCButton.setCheckable(True) self.AtoBCIcon = QIcon() self.AtoBCIcon.addPixmap(QPixmap("icons/AtoBC.png"), QIcon.Normal, QIcon.Off) self.reactAtoBCButton.setIcon(self.AtoBCIcon) # add button for A+B-->C+D reaction self.reactABtoCDButton = QPushButton(self) self.reactABtoCDButton.setObjectName("reactABtoCDButton") self.reactABtoCDButton.setCheckable(True) self.ABtoCDIcon = QIcon() self.ABtoCDIcon.addPixmap(QPixmap("icons/ABtoCD.png"), QIcon.Normal, QIcon.Off) self.reactABtoCDButton.setIcon(self.ABtoCDIcon) # add button for A-->B+C+D reaction self.reactAtoBCDButton = QPushButton(self) self.reactAtoBCDButton.setObjectName("reactAtoBCDButton") self.reactAtoBCDButton.setCheckable(True) self.AtoBCDIcon = QIcon() self.AtoBCDIcon.addPixmap(QPixmap("icons/AtoBCD.png"), QIcon.Normal, QIcon.Off) self.reactAtoBCDButton.setIcon(self.AtoBCDIcon) # add button for A+B-->C+D+E reaction self.reactABtoCDEButton = QPushButton(self) self.reactABtoCDEButton.setObjectName("reactABtoCDEButton") self.reactABtoCDEButton.setCheckable(True) self.ABtoCDEIcon = QIcon() self.ABtoCDEIcon.addPixmap(QPixmap("icons/ABtoCDE.png"), QIcon.Normal, QIcon.Off) self.reactABtoCDEButton.setIcon(self.ABtoCDEIcon) # add button for species self.speciesButton = QPushButton(self) self.speciesButton.setObjectName("speciesButton") self.speciesButton.setCheckable(True) self.speciesIcon = QIcon() self.speciesIcon.addPixmap(QPixmap("icons/species.png"), QIcon.Normal, QIcon.Off) self.speciesButton.setIcon(self.speciesIcon) #add buttons to toolbar self.toolBar.addWidget(self.reactAtoBButton) self.toolBar.addWidget(self.reactABtoCButton) self.toolBar.addWidget(self.reactAtoBCButton) self.toolBar.addWidget(self.reactABtoCDButton) self.toolBar.addWidget(self.reactAtoBCDButton) self.toolBar.addWidget(self.reactABtoCDEButton) self.toolBar.addWidget(self.speciesButton) #set tool buttons as exclusive self.toolGroup=QButtonGroup(self) self.toolGroup.setExclusive(True) self.toolGroup.addButton(self.reactAtoBButton) self.toolGroup.addButton(self.reactABtoCButton) self.toolGroup.addButton(self.reactAtoBCButton) self.toolGroup.addButton(self.reactABtoCDButton) self.toolGroup.addButton(self.reactAtoBCDButton) self.toolGroup.addButton(self.reactABtoCDEButton) self.toolGroup.addButton(self.speciesButton) #initialize main app window if program is called if __name__ == "__main__": import sys app = QApplication(sys.argv) AppWindow=MainWindow() AppWindow.show() sys.exit(app.exec_())
37.494368
300
0.762367
092852d84578c73be83e6b2d059814fe9e9fa719
742
py
Python
fitness-backend/src/app/models/gym.py
cuappdev/archives
061d0f9cccf278363ffaeb27fc655743b1052ae5
[ "MIT" ]
null
null
null
fitness-backend/src/app/models/gym.py
cuappdev/archives
061d0f9cccf278363ffaeb27fc655743b1052ae5
[ "MIT" ]
null
null
null
fitness-backend/src/app/models/gym.py
cuappdev/archives
061d0f9cccf278363ffaeb27fc655743b1052ae5
[ "MIT" ]
null
null
null
from . import * class Gym(Base): __tablename__ = 'gyms' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(255), nullable=False, unique=True) equipment = db.Column(db.String(1500)) image_url = db.Column(db.String(1500), default="") is_gym = db.Column(db.Boolean, nullable=False, default=False) location_gym_id = db.Column( db.Integer, db.ForeignKey('gyms.id', ondelete='CASCADE') ) location_gym = db.relationship('Gym', remote_side=[id]) def __init__(self, **kwargs): self.equipment = kwargs.get('equipment') self.image_url = kwargs.get('image_url') self.is_gym = kwargs.get('is_gym') self.location_id = kwargs.get('location_gym_id') self.name = kwargs.get('name')
30.916667
63
0.683288
12921869cfc5f2001e8c5a6e6c4a2604c12ed722
1,008
py
Python
plugins/salesforce/komand_salesforce/actions/simple_search/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
46
2019-06-05T20:47:58.000Z
2022-03-29T10:18:01.000Z
plugins/salesforce/komand_salesforce/actions/simple_search/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
386
2019-06-07T20:20:39.000Z
2022-03-30T17:35:01.000Z
plugins/salesforce/komand_salesforce/actions/simple_search/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
43
2019-07-09T14:13:58.000Z
2022-03-28T12:04:46.000Z
import komand from .schema import SimpleSearchInput, SimpleSearchOutput # Custom imports below from komand.helper import clean class SimpleSearch(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="simple_search", description="Execute a simple search for a string", input=SimpleSearchInput(), output=SimpleSearchOutput(), ) def run(self, params={}): text = params.get("text") results = self.connection.api.simple_search(text) flat_results = [] for result in results: flat_result = { "type": result.get("attributes", {}).get("type", ""), "url": result.get("attributes", {}).get("url", ""), "name": result.get("Name"), "id": result.get("Id"), } flat_result = clean(flat_result) flat_results.append(flat_result) return {"search_results": flat_results}
29.647059
69
0.572421
468aa788e3f51cb2b1bcea1de5c1537f5d8b7b2b
4,116
py
Python
arcade/examples/platform_tutorial/04_add_gravity.py
markjoshua12/arcade
74a8012a001229cee677acbf2a285ef677c8b691
[ "MIT" ]
1
2020-01-18T04:48:38.000Z
2020-01-18T04:48:38.000Z
arcade/examples/platform_tutorial/04_add_gravity.py
markjoshua12/arcade
74a8012a001229cee677acbf2a285ef677c8b691
[ "MIT" ]
null
null
null
arcade/examples/platform_tutorial/04_add_gravity.py
markjoshua12/arcade
74a8012a001229cee677acbf2a285ef677c8b691
[ "MIT" ]
null
null
null
""" Platformer Game """ import arcade # Constants SCREEN_WIDTH = 1000 SCREEN_HEIGHT = 650 SCREEN_TITLE = "Platformer" # Constants used to scale our sprites from their original size CHARACTER_SCALING = 1 TILE_SCALING = 0.5 COIN_SCALING = 0.5 # Movement speed of player, in pixels per frame PLAYER_MOVEMENT_SPEED = 5 GRAVITY = 1 PLAYER_JUMP_SPEED = 20 class MyGame(arcade.Window): """ Main application class. """ def __init__(self): # Call the parent class and set up the window super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) # These are 'lists' that keep track of our sprites. Each sprite should # go into a list. self.coin_list = None self.wall_list = None self.player_list = None # Separate variable that holds the player sprite self.player_sprite = None # Our physics engine self.physics_engine = None arcade.set_background_color(arcade.csscolor.CORNFLOWER_BLUE) def setup(self): """ Set up the game here. Call this function to restart the game. """ # Create the Sprite lists self.player_list = arcade.SpriteList() self.wall_list = arcade.SpriteList() self.coin_list = arcade.SpriteList() # Set up the player, specifically placing it at these coordinates. image_source = ":resources:images/animated_characters/female_adventurer/femaleAdventurer_idle.png" self.player_sprite = arcade.Sprite(image_source, CHARACTER_SCALING) self.player_sprite.center_x = 64 self.player_sprite.center_y = 128 self.player_list.append(self.player_sprite) # Create the ground # This shows using a loop to place multiple sprites horizontally for x in range(0, 1250, 64): wall = arcade.Sprite(":resources:images/tiles/grassMid.png", TILE_SCALING) wall.center_x = x wall.center_y = 32 self.wall_list.append(wall) # Put some crates on the ground # This shows using a coordinate list to place sprites coordinate_list = [[512, 96], [256, 96], [768, 96]] for coordinate in coordinate_list: # Add a crate on the ground wall = arcade.Sprite(":resources:images/tiles/boxCrate_double.png", TILE_SCALING) wall.position = coordinate self.wall_list.append(wall) # Create the 'physics engine' self.physics_engine = arcade.PhysicsEnginePlatformer(self.player_sprite, self.wall_list, GRAVITY) def on_draw(self): """ Render the screen. """ # Clear the screen to the background color arcade.start_render() # Draw our sprites self.wall_list.draw() self.coin_list.draw() self.player_list.draw() def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.UP or key == arcade.key.W: if self.physics_engine.can_jump(): self.player_sprite.change_y = PLAYER_JUMP_SPEED elif key == arcade.key.LEFT or key == arcade.key.A: self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED elif key == arcade.key.RIGHT or key == arcade.key.D: self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.LEFT or key == arcade.key.A: self.player_sprite.change_x = 0 elif key == arcade.key.RIGHT or key == arcade.key.D: self.player_sprite.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ # Move the player with the physics engine self.physics_engine.update() def main(): """ Main method """ window = MyGame() window.setup() arcade.run() if __name__ == "__main__": main()
31.419847
106
0.615403
882dac9e23f0eae9625a8a91da0b41ddb3064ce2
2,471
py
Python
pyci/tests/utils.py
iliapolo/pyrelease
85784c556a0760d560378ef6edcfb32ab87048a5
[ "Apache-2.0" ]
5
2018-05-03T15:20:12.000Z
2019-12-13T20:19:47.000Z
pyci/tests/utils.py
iliapolo/pyci
85784c556a0760d560378ef6edcfb32ab87048a5
[ "Apache-2.0" ]
54
2018-04-09T06:34:50.000Z
2020-03-30T06:13:39.000Z
pyci/tests/utils.py
iliapolo/pyrelease
85784c556a0760d560378ef6edcfb32ab87048a5
[ "Apache-2.0" ]
null
null
null
############################################################################# # Copyright (c) 2018 Eli Polonsky. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. # ############################################################################# import shutil import os import time # This whole bit is just so test will import magic mock # in a unified way from this file, without needing to duplicate this logic. try: # python2 # pylint: disable=unused-import from mock import MagicMock except ImportError: # python3 # noinspection PyUnresolvedReferences,PyCompatibility # pylint: disable=unused-import from unittest.mock import MagicMock from pyci.api.utils import generate_setup_py def create_release(gh, request, sha, name=None, draft=False): release_name = name or request.node.name return gh.repo.create_git_release( tag=release_name, target_commitish=sha, name=release_name, message='', draft=draft ) def patch_setup_py(local_repo_path): with open(os.path.join(local_repo_path, 'setup.py'), 'r') as stream: setup_py = stream.read() version = int(round(time.time() * 1000)) setup_py = generate_setup_py(setup_py, '{}'.format(version)) with open(os.path.join(local_repo_path, 'setup.py'), 'w') as stream: stream.write(setup_py) return version def copy_repo(dst): import pyci source_path = os.path.abspath(os.path.join(pyci.__file__, os.pardir, os.pardir)) def _copyfile(path): shutil.copyfile(path, os.path.join(dst, os.path.basename(path))) code = os.path.join(source_path, 'pyci') setup_py = os.path.join(source_path, 'setup.py') spec = os.path.join(source_path, 'pyci.spec') license_path = os.path.join(source_path, 'LICENSE') shutil.copytree(code, os.path.join(dst, os.path.basename(code))) _copyfile(setup_py) _copyfile(spec) _copyfile(license_path)
30.134146
84
0.66208
380e150f7cc43502bb88f0379d24545a960fb87a
14,264
py
Python
.venv/lib/python2.7/site-packages/celery/contrib/migrate.py
MansoorHanif/FYP-web-app
918008d3b5eedaa904f3e720296afde9d73ac3f4
[ "BSD-3-Clause" ]
4
2018-10-19T04:36:20.000Z
2020-02-13T16:14:09.000Z
.venv/lib/python2.7/site-packages/celery/contrib/migrate.py
MansoorHanif/FYP-web-app
918008d3b5eedaa904f3e720296afde9d73ac3f4
[ "BSD-3-Clause" ]
3
2020-02-11T23:03:45.000Z
2021-06-10T18:05:11.000Z
oo/lib/python3.5/site-packages/celery/contrib/migrate.py
chunky2808/SPOJ-history-Django-App
490c58b1593cd3626f0ddc27fdd09c6e8d1c56e1
[ "MIT" ]
1
2019-10-26T04:20:52.000Z
2019-10-26T04:20:52.000Z
# -*- coding: utf-8 -*- """Message migration tools (Broker <-> Broker).""" from __future__ import absolute_import, print_function, unicode_literals import socket from functools import partial from itertools import cycle, islice from kombu import eventloop, Queue from kombu.common import maybe_declare from kombu.utils.encoding import ensure_bytes from celery.app import app_or_default from celery.five import python_2_unicode_compatible, string, string_t from celery.utils.nodenames import worker_direct from celery.utils.text import str_to_list __all__ = [ 'StopFiltering', 'State', 'republish', 'migrate_task', 'migrate_tasks', 'move', 'task_id_eq', 'task_id_in', 'start_filter', 'move_task_by_id', 'move_by_idmap', 'move_by_taskmap', 'move_direct', 'move_direct_by_id', ] MOVING_PROGRESS_FMT = """\ Moving task {state.filtered}/{state.strtotal}: \ {body[task]}[{body[id]}]\ """ class StopFiltering(Exception): """Semi-predicate used to signal filter stop.""" @python_2_unicode_compatible class State(object): """Migration progress state.""" count = 0 filtered = 0 total_apx = 0 @property def strtotal(self): if not self.total_apx: return '?' return string(self.total_apx) def __repr__(self): if self.filtered: return '^{0.filtered}'.format(self) return '{0.count}/{0.strtotal}'.format(self) def republish(producer, message, exchange=None, routing_key=None, remove_props=['application_headers', 'content_type', 'content_encoding', 'headers']): """Republish message.""" body = ensure_bytes(message.body) # use raw message body. info, headers, props = (message.delivery_info, message.headers, message.properties) exchange = info['exchange'] if exchange is None else exchange routing_key = info['routing_key'] if routing_key is None else routing_key ctype, enc = message.content_type, message.content_encoding # remove compression header, as this will be inserted again # when the message is recompressed. compression = headers.pop('compression', None) for key in remove_props: props.pop(key, None) producer.publish(ensure_bytes(body), exchange=exchange, routing_key=routing_key, compression=compression, headers=headers, content_type=ctype, content_encoding=enc, **props) def migrate_task(producer, body_, message, queues=None): """Migrate single task message.""" info = message.delivery_info queues = {} if queues is None else queues republish(producer, message, exchange=queues.get(info['exchange']), routing_key=queues.get(info['routing_key'])) def filter_callback(callback, tasks): def filtered(body, message): if tasks and body['task'] not in tasks: return return callback(body, message) return filtered def migrate_tasks(source, dest, migrate=migrate_task, app=None, queues=None, **kwargs): """Migrate tasks from one broker to another.""" app = app_or_default(app) queues = prepare_queues(queues) producer = app.amqp.Producer(dest, auto_declare=False) migrate = partial(migrate, producer, queues=queues) def on_declare_queue(queue): new_queue = queue(producer.channel) new_queue.name = queues.get(queue.name, queue.name) if new_queue.routing_key == queue.name: new_queue.routing_key = queues.get(queue.name, new_queue.routing_key) if new_queue.exchange.name == queue.name: new_queue.exchange.name = queues.get(queue.name, queue.name) new_queue.declare() return start_filter(app, source, migrate, queues=queues, on_declare_queue=on_declare_queue, **kwargs) def _maybe_queue(app, q): if isinstance(q, string_t): return app.amqp.queues[q] return q def move(predicate, connection=None, exchange=None, routing_key=None, source=None, app=None, callback=None, limit=None, transform=None, **kwargs): """Find tasks by filtering them and move the tasks to a new queue. Arguments: predicate (Callable): Filter function used to decide the messages to move. Must accept the standard signature of ``(body, message)`` used by Kombu consumer callbacks. If the predicate wants the message to be moved it must return either: 1) a tuple of ``(exchange, routing_key)``, or 2) a :class:`~kombu.entity.Queue` instance, or 3) any other true value means the specified ``exchange`` and ``routing_key`` arguments will be used. connection (kombu.Connection): Custom connection to use. source: List[Union[str, kombu.Queue]]: Optional list of source queues to use instead of the default (queues in :setting:`task_queues`). This list can also contain :class:`~kombu.entity.Queue` instances. exchange (str, kombu.Exchange): Default destination exchange. routing_key (str): Default destination routing key. limit (int): Limit number of messages to filter. callback (Callable): Callback called after message moved, with signature ``(state, body, message)``. transform (Callable): Optional function to transform the return value (destination) of the filter function. Also supports the same keyword arguments as :func:`start_filter`. To demonstrate, the :func:`move_task_by_id` operation can be implemented like this: .. code-block:: python def is_wanted_task(body, message): if body['id'] == wanted_id: return Queue('foo', exchange=Exchange('foo'), routing_key='foo') move(is_wanted_task) or with a transform: .. code-block:: python def transform(value): if isinstance(value, string_t): return Queue(value, Exchange(value), value) return value move(is_wanted_task, transform=transform) Note: The predicate may also return a tuple of ``(exchange, routing_key)`` to specify the destination to where the task should be moved, or a :class:`~kombu.entitiy.Queue` instance. Any other true value means that the task will be moved to the default exchange/routing_key. """ app = app_or_default(app) queues = [_maybe_queue(app, queue) for queue in source or []] or None with app.connection_or_acquire(connection, pool=False) as conn: producer = app.amqp.Producer(conn) state = State() def on_task(body, message): ret = predicate(body, message) if ret: if transform: ret = transform(ret) if isinstance(ret, Queue): maybe_declare(ret, conn.default_channel) ex, rk = ret.exchange.name, ret.routing_key else: ex, rk = expand_dest(ret, exchange, routing_key) republish(producer, message, exchange=ex, routing_key=rk) message.ack() state.filtered += 1 if callback: callback(state, body, message) if limit and state.filtered >= limit: raise StopFiltering() return start_filter(app, conn, on_task, consume_from=queues, **kwargs) def expand_dest(ret, exchange, routing_key): try: ex, rk = ret except (TypeError, ValueError): ex, rk = exchange, routing_key return ex, rk def task_id_eq(task_id, body, message): """Return true if task id equals task_id'.""" return body['id'] == task_id def task_id_in(ids, body, message): """Return true if task id is member of set ids'.""" return body['id'] in ids def prepare_queues(queues): if isinstance(queues, string_t): queues = queues.split(',') if isinstance(queues, list): queues = dict(tuple(islice(cycle(q.split(':')), None, 2)) for q in queues) if queues is None: queues = {} return queues class Filterer(object): def __init__(self, app, conn, filter, limit=None, timeout=1.0, ack_messages=False, tasks=None, queues=None, callback=None, forever=False, on_declare_queue=None, consume_from=None, state=None, accept=None, **kwargs): self.app = app self.conn = conn self.filter = filter self.limit = limit self.timeout = timeout self.ack_messages = ack_messages self.tasks = set(str_to_list(tasks) or []) self.queues = prepare_queues(queues) self.callback = callback self.forever = forever self.on_declare_queue = on_declare_queue self.consume_from = [ _maybe_queue(self.app, q) for q in consume_from or list(self.queues) ] self.state = state or State() self.accept = accept def start(self): # start migrating messages. with self.prepare_consumer(self.create_consumer()): try: for _ in eventloop(self.conn, # pragma: no cover timeout=self.timeout, ignore_timeouts=self.forever): pass except socket.timeout: pass except StopFiltering: pass return self.state def update_state(self, body, message): self.state.count += 1 if self.limit and self.state.count >= self.limit: raise StopFiltering() def ack_message(self, body, message): message.ack() def create_consumer(self): return self.app.amqp.TaskConsumer( self.conn, queues=self.consume_from, accept=self.accept, ) def prepare_consumer(self, consumer): filter = self.filter update_state = self.update_state ack_message = self.ack_message if self.tasks: filter = filter_callback(filter, self.tasks) update_state = filter_callback(update_state, self.tasks) ack_message = filter_callback(ack_message, self.tasks) consumer.register_callback(filter) consumer.register_callback(update_state) if self.ack_messages: consumer.register_callback(self.ack_message) if self.callback is not None: callback = partial(self.callback, self.state) if self.tasks: callback = filter_callback(callback, self.tasks) consumer.register_callback(callback) self.declare_queues(consumer) return consumer def declare_queues(self, consumer): # declare all queues on the new broker. for queue in consumer.queues: if self.queues and queue.name not in self.queues: continue if self.on_declare_queue is not None: self.on_declare_queue(queue) try: _, mcount, _ = queue( consumer.channel).queue_declare(passive=True) if mcount: self.state.total_apx += mcount except self.conn.channel_errors: pass def start_filter(app, conn, filter, limit=None, timeout=1.0, ack_messages=False, tasks=None, queues=None, callback=None, forever=False, on_declare_queue=None, consume_from=None, state=None, accept=None, **kwargs): """Filter tasks.""" return Filterer( app, conn, filter, limit=limit, timeout=timeout, ack_messages=ack_messages, tasks=tasks, queues=queues, callback=callback, forever=forever, on_declare_queue=on_declare_queue, consume_from=consume_from, state=state, accept=accept, **kwargs).start() def move_task_by_id(task_id, dest, **kwargs): """Find a task by id and move it to another queue. Arguments: task_id (str): Id of task to find and move. dest: (str, kombu.Queue): Destination queue. **kwargs (Any): Also supports the same keyword arguments as :func:`move`. """ return move_by_idmap({task_id: dest}, **kwargs) def move_by_idmap(map, **kwargs): """Move tasks by matching from a ``task_id: queue`` mapping. Where ``queue`` is a queue to move the task to. Example: >>> move_by_idmap({ ... '5bee6e82-f4ac-468e-bd3d-13e8600250bc': Queue('name'), ... 'ada8652d-aef3-466b-abd2-becdaf1b82b3': Queue('name'), ... '3a2b140d-7db1-41ba-ac90-c36a0ef4ab1f': Queue('name')}, ... queues=['hipri']) """ def task_id_in_map(body, message): return map.get(body['id']) # adding the limit means that we don't have to consume any more # when we've found everything. return move(task_id_in_map, limit=len(map), **kwargs) def move_by_taskmap(map, **kwargs): """Move tasks by matching from a ``task_name: queue`` mapping. ``queue`` is the queue to move the task to. Example: >>> move_by_taskmap({ ... 'tasks.add': Queue('name'), ... 'tasks.mul': Queue('name'), ... }) """ def task_name_in_map(body, message): return map.get(body['task']) # <- name of task return move(task_name_in_map, **kwargs) def filter_status(state, body, message, **kwargs): print(MOVING_PROGRESS_FMT.format(state=state, body=body, **kwargs)) move_direct = partial(move, transform=worker_direct) move_direct_by_id = partial(move_task_by_id, transform=worker_direct) move_direct_by_idmap = partial(move_by_idmap, transform=worker_direct) move_direct_by_taskmap = partial(move_by_taskmap, transform=worker_direct)
34.288462
79
0.614344
819eaaa4421808baa54812a71fdb7aadd449765b
10,951
py
Python
stickytape/__init__.py
wenoptics/stickytape
12f5e64d97be70e9f58c068ce6ca429d0cfba97e
[ "BSD-2-Clause" ]
null
null
null
stickytape/__init__.py
wenoptics/stickytape
12f5e64d97be70e9f58c068ce6ca429d0cfba97e
[ "BSD-2-Clause" ]
null
null
null
stickytape/__init__.py
wenoptics/stickytape
12f5e64d97be70e9f58c068ce6ca429d0cfba97e
[ "BSD-2-Clause" ]
null
null
null
import os.path import codecs import subprocess import ast import sys def script(path, add_python_modules=None, add_python_paths=None, python_binary=None): if add_python_modules is None: add_python_modules = [] if add_python_paths is None: add_python_paths = [] python_paths = [os.path.dirname(path)] + add_python_paths + _read_sys_path_from_python_bin(python_binary) output = [] output.append(_prelude()) output.append(_generate_module_writers( path, sys_path=python_paths, add_python_modules=add_python_modules, )) output.append(_indent(open(path).read())) return "".join(output) def _read_sys_path_from_python_bin(binary_path): if binary_path is None: return [] else: output = subprocess.check_output( [binary_path, "-E", "-c", "import sys;\nfor path in sys.path: print(path)"], ) return [ # TODO: handle non-UTF-8 encodings line.strip().decode("utf-8") for line in output.split(b"\n") if line.strip() ] def _indent(string): return " " + string.replace("\n", "\n ") def _prelude(): prelude_path = os.path.join(os.path.dirname(__file__), "prelude.py") with open(prelude_path) as prelude_file: return prelude_file.read() def _generate_module_writers(path, sys_path, add_python_modules): generator = ModuleWriterGenerator(sys_path) generator.generate_for_file(path, add_python_modules=add_python_modules) return generator.build() class ModuleWriterGenerator(object): def __init__(self, sys_path): self._sys_path = sys_path self._modules = {} def build(self): output = [] for module_path, module_source in _iteritems(self._modules): output.append(" __stickytape_write_module({0}, {1})\n".format( _string_escape(module_path), _string_escape(module_source) )) return "".join(output) def generate_for_file(self, python_file_path, add_python_modules): self._generate_for_module(ImportTarget(python_file_path, ".")) for add_python_module in add_python_modules: import_line = ImportLine(import_path=add_python_module, items=[]) self._generate_for_import(python_module=None, import_line=import_line) def _generate_for_module(self, python_module): import_lines = _find_imports_in_file(python_module.absolute_path) for import_line in import_lines: if not _is_stdlib_import(import_line): self._generate_for_import(python_module, import_line) def _generate_for_import(self, python_module, import_line): import_targets = self._read_possible_import_targets(python_module, import_line) for import_target in import_targets: if import_target.module_path not in self._modules: self._modules[import_target.module_path] = import_target.read() self._generate_for_module(import_target) def _read_possible_import_targets(self, python_module, import_line): import_path_parts = import_line.import_path.split("/") possible_init_module_paths = [ os.path.join(os.path.join(*import_path_parts[0:index + 1]), "__init__.py") for index in range(len(import_path_parts)) ] possible_module_paths = [import_line.import_path + ".py"] + possible_init_module_paths for item in import_line.items: possible_module_paths += [ os.path.join(import_line.import_path, item + ".py"), os.path.join(import_line.import_path, item, "__init__.py") ] import_targets = [ self._find_module(python_module, module_path) for module_path in possible_module_paths ] valid_import_targets = [target for target in import_targets if target is not None] return valid_import_targets # TODO: allow the user some choice in what happens in this case? # Detection of try/except blocks is possibly over-complicating things #~ if len(valid_import_targets) > 0: #~ return valid_import_targets #~ else: #~ raise RuntimeError("Could not find module: " + import_line.import_path) def _find_module(self, importing_python_module, module_path): if importing_python_module is not None: relative_module_path = os.path.join(os.path.dirname(importing_python_module.absolute_path), module_path) if os.path.exists(relative_module_path): return ImportTarget(relative_module_path, os.path.join(os.path.dirname(importing_python_module.module_path), module_path)) for sys_path in self._sys_path: full_module_path = os.path.join(sys_path, module_path) if os.path.exists(full_module_path): return ImportTarget(full_module_path, module_path) return None def _find_imports_in_file(file_path): source = _read_file(file_path) parse_tree = ast.parse(source, file_path) for node in ast.walk(parse_tree): if isinstance(node, ast.Import): for name in node.names: yield ImportLine(name.name, []) if isinstance(node, ast.ImportFrom): if node.module is None: module = "." else: module = node.module yield ImportLine(module, [name.name for name in node.names]) def _resolve_package_to_import_path(package): import_path = package.replace(".", "/") if import_path.startswith("/"): return "." + import_path else: return import_path def _read_file(path): with open(path) as file: return file.read() def _is_stdlib_import(import_line): return import_line.import_path in _stdlib_modules class ImportTarget(object): def __init__(self, absolute_path, module_path): self.absolute_path = absolute_path self.module_path = os.path.normpath(module_path) def read(self): return _read_file(self.absolute_path) class ImportLine(object): def __init__(self, import_path, items): self.import_path = _resolve_package_to_import_path(import_path) self.items = items _stdlib_modules = set([ "string", "re", "struct", "difflib", "StringIO", "cStringIO", "textwrap", "codecs", "unicodedata", "stringprep", "fpformat", "datetime", "calendar", "collections", "heapq", "bisect", "array", "sets", "sched", "mutex", "Queue", "weakref", "UserDict", "UserList", "UserString", "types", "new", "copy", "pprint", "repr", "numbers", "math", "cmath", "decimal", "fractions", "random", "itertools", "functools", "operator", "os/path", "fileinput", "stat", "statvfs", "filecmp", "tempfile", "glob", "fnmatch", "linecache", "shutil", "dircache", "macpath", "pickle", "cPickle", "copy_reg", "shelve", "marshal", "anydbm", "whichdb", "dbm", "gdbm", "dbhash", "bsddb", "dumbdbm", "sqlite3", "zlib", "gzip", "bz2", "zipfile", "tarfile", "csv", "ConfigParser", "robotparser", "netrc", "xdrlib", "plistlib", "hashlib", "hmac", "md5", "sha", "os", "io", "time", "argparse", "optparse", "getopt", "logging", "logging/config", "logging/handlers", "getpass", "curses", "curses/textpad", "curses/ascii", "curses/panel", "platform", "errno", "ctypes", "select", "threading", "thread", "dummy_threading", "dummy_thread", "multiprocessing", "mmap", "readline", "rlcompleter", "subprocess", "socket", "ssl", "signal", "popen2", "asyncore", "asynchat", "email", "json", "mailcap", "mailbox", "mhlib", "mimetools", "mimetypes", "MimeWriter", "mimify", "multifile", "rfc822", "base64", "binhex", "binascii", "quopri", "uu", "HTMLParser", "sgmllib", "htmllib", "htmlentitydefs", "xml/etree/ElementTree", "xml/dom", "xml/dom/minidom", "xml/dom/pulldom", "xml/sax", "xml/sax/handler", "xml/sax/saxutils", "xml/sax/xmlreader", "xml/parsers/expat", "webbrowser", "cgi", "cgitb", "wsgiref", "urllib", "urllib2", "httplib", "ftplib", "poplib", "imaplib", "nntplib", "smtplib", "smtpd", "telnetlib", "uuid", "urlparse", "SocketServer", "BaseHTTPServer", "SimpleHTTPServer", "CGIHTTPServer", "cookielib", "Cookie", "xmlrpclib", "SimpleXMLRPCServer", "DocXMLRPCServer", "audioop", "imageop", "aifc", "sunau", "wave", "chunk", "colorsys", "imghdr", "sndhdr", "ossaudiodev", "gettext", "locale", "cmd", "shlex", "Tkinter", "ttk", "Tix", "ScrolledText", "turtle", "pydoc", "doctest", "unittest", "test", "test/test_support", "bdb", "pdb", "hotshot", "timeit", "trace", "sys", "sysconfig", "__builtin__", "future_builtins", "__main__", "warnings", "contextlib", "abc", "atexit", "traceback", "__future__", "gc", "inspect", "site", "user", "fpectl", "distutils", "code", "codeop", "rexec", "Bastion", "imp", "importlib", "imputil", "zipimport", "pkgutil", "modulefinder", "runpy", "parser", "ast", "symtable", "symbol", "token", "keyword", "tokenize", "tabnanny", "pyclbr", "py_compile", "compileall", "dis", "pickletools", "formatter", "msilib", "msvcrt", "_winreg", "winsound", "posix", "pwd", "spwd", "grp", "crypt", "dl", "termios", "tty", "pty", "fcntl", "pipes", "posixfile", "resource", "nis", "syslog", "commands", "ic", "MacOS", "macostools", "findertools", "EasyDialogs", "FrameWork", "autoGIL", "ColorPicker", "gensuitemodule", "aetools", "aepack", "aetypes", "MiniAEFrame", "al", "AL", "cd", "fl", "FL", "flp", "fm", "gl", "DEVICE", "GL", "imgfile", "jpeg", "sunaudiodev", "SUNAUDIODEV", ]) if sys.version_info[0] == 2: _iteritems = lambda x: x.iteritems() def _string_escape(string): return "'''{0}'''".format(codecs.getencoder("string_escape")(string)[0].decode("ascii")) else: _iteritems = lambda x: x.items() _string_escape = repr
21.685149
138
0.586065