hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
fb477a967e80cf718f3ed771f6882921dbc6a434
278
py
Python
model/login.py
ElenaUS/automation
9f1b948590dae5fcc1a2ad247961e92b99d7a88d
[ "Apache-2.0" ]
null
null
null
model/login.py
ElenaUS/automation
9f1b948590dae5fcc1a2ad247961e92b99d7a88d
[ "Apache-2.0" ]
null
null
null
model/login.py
ElenaUS/automation
9f1b948590dae5fcc1a2ad247961e92b99d7a88d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- class Login: def __init__(self, username): self.username = username """у этого класса делаем констурктор, именно конструктор будут принимать все эти многочисленные параметры, а дальше в методы будет передаваться один объект этого класса"""
27.8
68
0.733813
2ce18f2d25729f561d2ab82db95bb4a411a7e8bd
755
py
Python
ensysmod/model/energy_model.py
NOWUM/EnSysMod
18c8a2198db3510e667c1f0298d00a3dfcb0aab7
[ "MIT" ]
1
2021-12-10T19:41:01.000Z
2021-12-10T19:41:01.000Z
ensysmod/model/energy_model.py
NOWUM/EnSysMod
18c8a2198db3510e667c1f0298d00a3dfcb0aab7
[ "MIT" ]
83
2021-10-20T22:54:28.000Z
2022-03-24T19:07:06.000Z
ensysmod/model/energy_model.py
NOWUM/EnSysMod
18c8a2198db3510e667c1f0298d00a3dfcb0aab7
[ "MIT" ]
null
null
null
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint from sqlalchemy.orm import relationship from ensysmod.database.base_class import Base from ensysmod.model import Dataset class EnergyModel(Base): id = Column(Integer, primary_key=True, index=True) ref_dataset = Column(Integer, ForeignKey("dataset.id"), index=True, nullable=False) name = Column(String, index=True, nullable=False) description = Column(String, nullable=True) # relationships dataset: Dataset = relationship("Dataset") parameters = relationship("EnergyModelParameter", back_populates="model") # table constraints __table_args__ = ( UniqueConstraint("ref_dataset", "name", name="_commodity_name_dataset_uc"), )
34.318182
87
0.748344
54335d9dba3543df065233c086a77744ff652459
4,892
py
Python
characters/req.py
JoyMbugua/marvel-land
b482051240ca3b949bc5ed69f14533a25d265c04
[ "MIT" ]
null
null
null
characters/req.py
JoyMbugua/marvel-land
b482051240ca3b949bc5ed69f14533a25d265c04
[ "MIT" ]
null
null
null
characters/req.py
JoyMbugua/marvel-land
b482051240ca3b949bc5ed69f14533a25d265c04
[ "MIT" ]
null
null
null
import requests import datetime import hashlib from decouple import config import aiohttp import asyncio from .models import Hero, Comic base_url = 'https://gateway.marvel.com:443/v1/public/characters' def getUrl(): ''' method to return the base marvel url ''' global base_url ts = datetime.datetime.now() ts = str(int(ts.timestamp())) public_key = config('PUBLIC_KEY') private_key = config('PRIVATE_KEY') hash = hashlib.md5((ts+private_key+public_key).encode()).hexdigest() return f'ts={ts}&apikey={public_key}&hash={hash}' async def get_characters(): '''' function to get the json response of the url request returns processed results ''' url = f'{base_url}?orderBy=-name&limit=100&{getUrl()}' hero_results = None async with aiohttp.ClientSession() as session: async with session.get(url) as data: resp = await data.json() res = resp.get('data') if res: res = res.get('results') hero_results = resp.get('data')['results'] return await process_characters(hero_results) async def process_characters(results): ''' function that processes the api results and converts them to a list ''' hero_objects = [] for hero in results: id = hero.get('id') name = hero.get('name') description = hero.get('description') thumbnail = hero.get('thumbnail') urls = hero.get('urls') image_check = thumbnail['path'].endswith('image_not_available') # check if the character has a description and image if description and not image_check: image_path = f"{thumbnail['path']}/portrait_uncanny.{thumbnail['extension']}" hero_link = '' for url in urls: if url['type'] == 'wiki': hero_link = url['url'] hero_object = Hero(id=id, name=name, description=description, image_path=image_path, link=hero_link) hero_objects.append(hero_object) return hero_objects[3:] async def get_character_details(character_id): ''' function to retrieve a single character and their details from the list of already retrieved heroes ''' character_details = {} characters = await get_characters() for character in characters: if character.id == character_id: character_details['id'] = character_id character_details['name'] = character.name character_details['description'] = character.description character_details['image_path'] = character.image_path character_details['link'] = character.link return character_details async def get_character_comics(character_id): ''' function to retrieve comics per character ''' global base_url url = f'{base_url}/{character_id}/comics?{getUrl()}' comic_results = None async with aiohttp.ClientSession() as session: async with session.get(url) as data: response = await data.json() # if the character has comics go ahead and process else return None if len(response['data'].get('results')) > 0: comic_results = response['data'].get('results') return await process_comics(comic_results) else: return comic_results async def process_comics(results): ''' function to process comics response and return a list ''' comic_list = [] for item in results: id = item.get('id') title = item.get('title') description = item.get('description') image_path = item.get('thumbnail') if description: image_path = f"{image_path['path']}/portrait_uncanny.{image_path['extension']}" comic = Comic(id=id, title=title, description=description, image_path=image_path) comic_list.append(comic) return comic_list def search_hero(name): global base_url url = f"{base_url}?name={name}&{getUrl()}" data = requests.get(url) response = data.json() # print(response) hero = {} # process the json reponse if response['status'] == "Ok": results = response['data'].get('results')[0] id = results.get('id') name = results.get('name') description = results.get('description') thumbnail = results.get('thumbnail') urls = results.get('urls') image_path = f"{thumbnail['path']}/portrait_uncanny.{thumbnail['extension']}" hero_link = '' for url in urls: if url['type'] == 'wiki': hero_link = url['url'] hero = Hero(id=id, name=name, description=description, image_path=image_path, link=hero_link) return hero
31.56129
116
0.61018
628b62037ab6be40279380ab9bdcf38fb28c98fb
336
py
Python
utils.py
1170500804/glow
eebe0cfdf1a4f70ac0dc9dc0141bf09de2818ac3
[ "MIT" ]
2,898
2018-07-09T16:24:07.000Z
2022-03-29T23:34:40.000Z
utils.py
1170500804/glow
eebe0cfdf1a4f70ac0dc9dc0141bf09de2818ac3
[ "MIT" ]
98
2018-07-09T17:37:14.000Z
2021-11-02T14:59:35.000Z
utils.py
1170500804/glow
eebe0cfdf1a4f70ac0dc9dc0141bf09de2818ac3
[ "MIT" ]
542
2018-07-09T16:30:06.000Z
2022-03-02T00:26:37.000Z
import json class ResultLogger(object): def __init__(self, path, *args, **kwargs): self.f_log = open(path, 'w') self.f_log.write(json.dumps(kwargs) + '\n') def log(self, **kwargs): self.f_log.write(json.dumps(kwargs) + '\n') self.f_log.flush() def close(self): self.f_log.close()
22.4
51
0.583333
dae2000b2b10b91e2a154054b7e61703b8eae81a
9,326
py
Python
core/import_primary.py
moshthepitt/shulezote
e903a208948ab5294183e2a8c2dac9360a184654
[ "MIT" ]
2
2015-12-02T08:14:34.000Z
2020-12-16T19:56:46.000Z
core/import_primary.py
moshthepitt/shulezote
e903a208948ab5294183e2a8c2dac9360a184654
[ "MIT" ]
4
2016-10-04T12:15:42.000Z
2021-06-10T19:47:39.000Z
core/import_primary.py
moshthepitt/shulezote
e903a208948ab5294183e2a8c2dac9360a184654
[ "MIT" ]
1
2018-08-20T14:19:32.000Z
2018-08-20T14:19:32.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import csv import datetime from django.conf import settings from django.contrib.gis.geos import Point from schools.models import School from facts.models import Fact from staff.models import Staff from facilities.models import Facility, FacilityRecord from places.models import County, Constituency, Province, District from places.models import Division, Location def get_ownership(data): if data == "PRIVATE": return School.PRIVATE return School.PUBLIC def get_sponsor(data): if data == "CENTRAL GOVERNMENT/DEB": return School.GOVERNMENT elif data == "RELIGIOUS ORGANIZATION": return School.RELIGIOUS elif data == "COMMUNITY": return School.COMMUNITY elif data == "NGO/CBO": return School.NGO elif data == "PRIVATE INDIVIDUAL": return School.PRIVATE_INDIVIDUAL return School.NOT_KNOWN def get_student_gender(data): if data == "BOYS ONLY": return School.BOYS elif data == "GIRLS ONLY": return School.GIRLS elif data == "MIXED": return School.MIXED else: return School.NOT_KNOWN def get_school_type(data): if data == "DAY ONLY": return School.DAY elif data == "BOARDING ONLY": return School.BOARDING elif data == "DAY & BOARDING": return School.DAY_AND_BOARDING return School.NOT_KNOWN def get_student_needs(data): if data == "ORDINARY": return School.ORDINARY elif data == "INTEGRATED": return School.INTEGRATED elif data == "SPECIAL SCHOOL": return School.SPECIAL return School.ORDINARY def import_primary_schools(): period = datetime.datetime(day=31, month=12, year=2007) filename = "%s/documentation/data/2007/primary.csv" % settings.BASE_DIR n = 1 with open(filename, "rb") as ifile: reader = csv.reader(ifile) for row in reader: if n > 1: school = School() school.name = row[0].strip() school.level = School.PRIMARY school.ownership = get_ownership(row[2].strip()) school.sponsor = get_sponsor(row[3].strip()) school.student_gender = get_student_gender(row[4].strip()) school.school_type = get_school_type(row[5].strip()) school.student_needs = get_student_needs(row[6].strip()) # location if row[29]: county, created = County.objects.get_or_create(name=row[29].strip().upper()) school.county = county province, created = Province.objects.get_or_create(name=row[28].strip().upper()) school.province = province if row[33]: constituency = Constituency.objects.filter(name=row[33].strip().upper()).first() if not constituency: constituency, created = Constituency.objects.get_or_create( name=row[33].strip().upper(), county=county) school.constituency = constituency if row[30]: district = District.objects.filter(name=row[30].strip().upper()).first() if not district: district, created = District.objects.get_or_create( name=row[30].strip().upper(), province=province) school.district = district if row[31]: division, created = Division.objects.get_or_create( name=row[31].strip().upper(), district=district) school.division = division if row[32]: location, created = Location.objects.get_or_create( name=row[32].strip().upper(), division=division) school.location = location if row[34]: coord = row[34].split(",") x = float(coord[0][1:]) y = float(coord[1][1:-2]) school.coordinates = Point(y, x) school.save() # facilities facility1, created = Facility.objects.get_or_create(name="Toilets") facility2, created = Facility.objects.get_or_create(name="Classrooms") facility3, created = Facility.objects.get_or_create(name="Enrollment") facility_record1, created = FacilityRecord.objects.get_or_create(facility=facility1, school=school, period=period, boys=row[11].strip(), girls=row[12].strip(), total=row[13].strip()) facility_record3, created = FacilityRecord.objects.get_or_create(facility=facility3, school=school, period=period, boys=row[15].strip(), girls=row[16].strip(), total=row[17].strip()) # staff if row[18]: staff1, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.TSC_MALE, number=row[18].strip(), is_teacher=True) if row[19]: staff2, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.TSC_FEMALE, number=row[19].strip(), is_teacher=True) if row[20]: staff3, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.LOCAL_MALE, number=row[20].strip(), is_teacher=True) if row[21]: staff4, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.LOCAL_FEMALE, number=row[21].strip(), is_teacher=True) if row[22]: staff5, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.PTA_MALE, number=row[22].strip(), is_teacher=True) if row[23]: staff6, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.PTA_FEMALE, number=row[23].strip(), is_teacher=True) if row[24]: staff7, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.OTHER_MALE, number=row[24].strip(), is_teacher=True) if row[25]: staff8, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.OTHER_FEMALE, number=row[25].strip(), is_teacher=True) if row[26]: staff9, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.NON_TEACHING_MALE, number=row[26].strip(), is_teacher=False) if row[27]: staff10, created = Staff.objects.get_or_create(period=period, school=school, staff_type=Staff.NON_TEACHING_FEMALE, number=row[27].strip(), is_teacher=False) # facts if row[7]: fact2, created = Fact.objects.get_or_create(name="Pupil Teacher Ratio", period=period, school=school, value=row[7].strip()) if row[8]: fact1, created = Fact.objects.get_or_create(name="Pupil Classroom Ratio", period=period, school=school, facility=facility2, value=row[8].strip()) if row[9]: fact4, created = Fact.objects.get_or_create(name="Pupil Toilet Ratio", period=period, school=school, facility=facility1, value=row[9].strip()) if row[10]: fact5, created = Fact.objects.get_or_create(name="Total Number of Classrooms", period=period, school=school, facility=facility2, value=row[10].strip()) if row[14]: fact5, created = Fact.objects.get_or_create(name="Teachers Toilets", period=period, school=school, facility=facility1, value=row[14].strip()) n += 1
51.524862
156
0.50697
e6eda45b84ced3a76970db3d284222df38160185
476
py
Python
posts/migrations/0003_auto_20200325_0932.py
dragonrathony/zed_market
c73f17501608c8fe86692c3c4f6e03fc8ba03286
[ "bzip2-1.0.6" ]
1
2020-06-17T13:45:54.000Z
2020-06-17T13:45:54.000Z
posts/migrations/0003_auto_20200325_0932.py
Honey4251996/zed_market
c73f17501608c8fe86692c3c4f6e03fc8ba03286
[ "bzip2-1.0.6" ]
11
2021-03-19T07:55:39.000Z
2022-03-12T00:34:55.000Z
posts/migrations/0003_auto_20200325_0932.py
Honey4251996/zed_market
c73f17501608c8fe86692c3c4f6e03fc8ba03286
[ "bzip2-1.0.6" ]
null
null
null
# Generated by Django 3.0.3 on 2020-03-25 09:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('posts', '0002_auto_20200325_0911'), ] operations = [ migrations.AlterField( model_name='post', name='category', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='posts.Post'), ), ]
23.8
109
0.636555
6f4ef02b0cc7faa6c15867117e6a900caae9c749
5,570
py
Python
LMS_Student/views.py
Noisyfox/LMS
8acb5f4e8b98a6dfbe5f6692d00dd34812fd5101
[ "MIT" ]
null
null
null
LMS_Student/views.py
Noisyfox/LMS
8acb5f4e8b98a6dfbe5f6692d00dd34812fd5101
[ "MIT" ]
null
null
null
LMS_Student/views.py
Noisyfox/LMS
8acb5f4e8b98a6dfbe5f6692d00dd34812fd5101
[ "MIT" ]
null
null
null
import re from django.db.models import Q from django.http import Http404 from django.http import HttpResponseRedirect from django.shortcuts import render, get_object_or_404 from django.urls import reverse_lazy from django.views import View from django.views.generic import CreateView from django.views.generic import DetailView from django.views.generic import ListView from django.views.generic import TemplateView from sendfile import sendfile from LMS.mixins import QueryMixin from LMS.models import Unit, Material, Assignment, AssignmentFile, GradeRecord from LMS.views import BaseTimetableView from LMS_Student.mixins import StudentMixin class UnitQueryMixin(QueryMixin): def do_query(self, request, *args, **kwargs): unit = get_object_or_404(Unit, Q(student=self.request.user.student) & Q(pk=kwargs['unit_id'])) self._unit = unit @property def unit(self): if not self._unit: raise Http404('Unknown unit.') return self._unit def get_context_data(self, **kwargs): ctx = super(UnitQueryMixin, self).get_context_data(**kwargs) ctx['unit'] = self._unit return ctx class MaterialQueryMixin(UnitQueryMixin): def do_query(self, request, *args, **kwargs): super(MaterialQueryMixin, self).do_query(request, *args, **kwargs) material = get_object_or_404(Material, Q(unit=self.unit) & Q(pk=kwargs['material_id'])) self._material = material @property def material(self): if not self._material: raise Http404('Unknown material.') return self._material def get_context_data(self, **kwargs): ctx = super(MaterialQueryMixin, self).get_context_data(**kwargs) ctx['material'] = self._material return ctx class AssignmentQueryMixin(UnitQueryMixin): def do_query(self, request, *args, **kwargs): super(AssignmentQueryMixin, self).do_query(request, *args, **kwargs) assignment = get_object_or_404(Assignment, Q(unit=self.unit) & Q(pk=kwargs['assignment_id'])) self._assignment = assignment @property def assignment(self): if not self._assignment: raise Http404('Unknown assignment.') return self._assignment def get_context_data(self, **kwargs): ctx = super(AssignmentQueryMixin, self).get_context_data(**kwargs) ctx['assignment'] = self._assignment return ctx class UnitListView(StudentMixin, ListView): template_name = 'LMS_Student/unit.html' context_object_name = 'units' allow_empty = True def get_queryset(self): return self.request.user.student.enrolled_unit.all() class EnrollListView(StudentMixin, ListView): template_name = 'LMS_Student/enroll.html' context_object_name = 'units' allow_empty = True model = Unit def post(self, request, *args, **kwargs): unit_id = request.POST.getlist('unit') units = Unit.objects.filter(pk__in=unit_id).all() self.request.user.student.enrolled_unit = units self.request.user.student.save() for u in units: grade, _ = GradeRecord.objects.get_or_create(student=self.request.user.student, unit=u) return HttpResponseRedirect(reverse_lazy('lms_stu:unit')) class UnitInfoView(StudentMixin, UnitQueryMixin, DetailView): template_name = 'LMS_Student/unit_info.html' context_object_name = 'grade' def get_object(self, queryset=None): return GradeRecord.objects.get(unit=self.unit, student=self.request.user.student) class MaterialListView(StudentMixin, UnitQueryMixin, ListView): template_name = 'LMS_Student/unit_material.html' context_object_name = 'materials' allow_empty = True def get_queryset(self): return Material.objects.filter(unit=self.unit) class MaterialDownloadView(StudentMixin, MaterialQueryMixin, View): def get(self, request, *args, **kwargs): return sendfile(request, self.material.file.path, attachment=True) class AssignmentListView(StudentMixin, UnitQueryMixin, ListView): template_name = 'LMS_Student/unit_assignment.html' context_object_name = 'assignments' allow_empty = True def get_queryset(self): return Assignment.objects.filter(unit=self.unit) class AssignmentFileListView(StudentMixin, AssignmentQueryMixin, ListView): template_name = 'LMS_Student/unit_assignment_detail.html' context_object_name = 'files' allow_empty = True def get_queryset(self): return AssignmentFile.objects.filter(Q(assignment=self.assignment) & Q(uploader=self.request.user.student)) class AssignmentSubmitView(StudentMixin, AssignmentQueryMixin, CreateView): template_name = 'LMS_Student/unit_assignment_submit.html' model = AssignmentFile fields = ['name', 'file'] def form_valid(self, form): # TODO: check due time submission = form.save(commit=False) submission.assignment = self.assignment submission.uploader = self.request.user.student return super().form_valid(form) def get_success_url(self): return reverse_lazy('lms_stu:assignment_detail', kwargs={'unit_id': self.unit.pk, 'assignment_id': self.assignment.pk}) class TimetableView(StudentMixin, BaseTimetableView): template_name = 'LMS_Student/timetable.html' def get_units(self): return self.request.user.student.enrolled_unit.all() class PersonalInfoView(StudentMixin, TemplateView): template_name = 'LMS_Student/personal_info.html'
30.944444
115
0.714363
7c72b64ce7ded30b034f399818d92258e246f233
761
py
Python
factory/matting_converter.py
vuthede/MMNet
b7f10770a16480c3875719a41b4d85ed74e828ee
[ "Apache-2.0" ]
179
2018-11-23T05:46:38.000Z
2022-03-03T14:31:17.000Z
factory/matting_converter.py
vuthede/MMNet
b7f10770a16480c3875719a41b4d85ed74e828ee
[ "Apache-2.0" ]
15
2019-05-01T11:46:48.000Z
2020-10-21T01:55:41.000Z
factory/matting_converter.py
vuthede/MMNet
b7f10770a16480c3875719a41b4d85ed74e828ee
[ "Apache-2.0" ]
38
2018-12-24T09:50:50.000Z
2021-12-29T07:20:09.000Z
from abc import ABC from abc import abstractmethod import tensorflow as tf class ConverterBase(ABC): @classmethod @abstractmethod def convert( cls, logits: tf.Tensor, output_name: str, num_classes: int, ): raise NotImplementedError(f"convert() not defined in {cls.__class__.__name__}") class ProbConverter(ConverterBase): @classmethod def convert( cls, logits: tf.Tensor, output_name: str, num_classes: int, ): assert num_classes == 2 softmax_scores = tf.contrib.layers.softmax(logits, scope="output/softmax") # tf.identity to assign output_name output = tf.identity(softmax_scores, name=output_name) return output
23.060606
87
0.642576
b1fcbb382d71aff9b72a7f02a79ef8e2234d101a
4,199
py
Python
reley/impl/expr_based_ast.py
thautwarm/reley
17e5730c1afbefaeb22103719c85f08333c65937
[ "MIT" ]
12
2018-09-13T02:32:21.000Z
2021-08-06T04:59:26.000Z
reley/impl/expr_based_ast.py
thautwarm/reley
17e5730c1afbefaeb22103719c85f08333c65937
[ "MIT" ]
null
null
null
reley/impl/expr_based_ast.py
thautwarm/reley
17e5730c1afbefaeb22103719c85f08333c65937
[ "MIT" ]
null
null
null
from typing import NamedTuple, List, Tuple from Redy.Magic.Classic import record from numpy import number from rbnf.easy import Tokenizer globals()['NamedTuple'] = object class Loc: __slots__ = ['lineno', 'colno', 'filename'] lineno: int colno: int filename: str def __init__(self, lineno, colno, filename): self.lineno = lineno self.colno = colno self.filename = filename def __matmul__(self, other): if isinstance(other, Tokenizer): return Loc(other.lineno, other.colno, getattr(other, 'filename') or '<unknown>') return Loc(*other.loc) def __iter__(self): yield self.lineno yield self.colno yield self.filename def __repr__(self): return str(self) def __str__(self): return 'Loc(lineno={!r}, colno={!r}, filename={!r})'.format( self.lineno, self.colno, self.filename) def update(self, lineno=None, colno=None, filename=None): if lineno: self.lineno = lineno if colno: self.colno = colno if filename: self.filename = filename class TAST: loc: Loc @property def iter_fields(self): for it in self.__annotations__: if not it.startswith('_') and it not in ('iter_fields', 'lineno'): yield it, getattr(self, it) @property def lineno(self): return self.loc.lineno loc = Loc(1, 1, "") @record class DefTy(TAST, NamedTuple): loc: Loc name: str structure: TAST @record class DefFun(TAST, NamedTuple): loc: Loc name: str args: 'List[Arg]' body: TAST doc: 'Doc' @record class Lam(TAST, NamedTuple): loc: Loc name: str args: 'List[Arg]' body: TAST @record class Arg(TAST, NamedTuple): loc: Loc name: str ty: TAST @record class Suite(TAST, NamedTuple): loc: Loc statements: List[TAST] @record class Definition(TAST, NamedTuple): loc: Loc statements: List[TAST] @record class Where(TAST, NamedTuple): loc: Loc out: Suite pre_def: Definition @record class DefVar(TAST, NamedTuple): loc: Loc name: str value: TAST @record class If(TAST, NamedTuple): loc: Loc cond: TAST iftrue: TAST iffalse: TAST @record class Call(TAST, NamedTuple): loc: Loc callee: TAST arg: TAST @record class Symbol(TAST, NamedTuple): loc: Loc name: str @record class Number(TAST, NamedTuple): loc: Loc value: number @record class Str(TAST, NamedTuple): loc: Loc value: str @record class HList(TAST, NamedTuple): loc: Loc seq: List[TAST] @record class HDict(TAST, NamedTuple): loc: Loc seq: List[Tuple[TAST, TAST]] def make_set(seq: List[TAST]): return tuple((each, Void(each.loc)) for each in seq) @record class Tuple(TAST, NamedTuple): loc: Loc seq: Tuple[TAST, ...] @record class Return(TAST, NamedTuple): loc: Loc expr: TAST @record class Yield(TAST, NamedTuple): loc: Loc expr: TAST @record class BinSeq(TAST, NamedTuple): loc: Loc seq: List[TAST] @record class Infix(TAST, NamedTuple): loc: Loc precedence: int op: str @record class Operator(TAST, NamedTuple): loc: Loc name: str @record class Void(TAST, NamedTuple): loc: Loc @record class Alias(TAST, NamedTuple): loc: Loc imp_name: str name: str @record class Doc(TAST, NamedTuple): loc: Loc text: str @record class Import(TAST, NamedTuple): loc: Loc imp_name: str name: str stuffs: List[Alias] @record class Module(NamedTuple): stmts: Definition doc: Doc exports: List[Operator] def transform(f): def ff(it): return generic_visit(f(it)) def generic_visit(ast: TAST): def stream(): for key, value in ast.iter_fields: if type(value) is tuple or isinstance(value, list): yield key, list(ff(e) for e in value) else: yield key, ff(value) if hasattr(ast, 'iter_fields'): return type(ast)(**dict(stream())) return ast return ff
16.275194
92
0.607287
ca8441cb1bf7e728bfc9a159f47bf8d817afe35b
80
py
Python
VAE/test.py
PL187/idlm_Ben
5ba93da0d9b5d9313a9ce968e3593fefd0a05fc9
[ "MIT" ]
1
2020-07-25T10:26:53.000Z
2020-07-25T10:26:53.000Z
VAE/test.py
PL187/idlm_Ben
5ba93da0d9b5d9313a9ce968e3593fefd0a05fc9
[ "MIT" ]
null
null
null
VAE/test.py
PL187/idlm_Ben
5ba93da0d9b5d9313a9ce968e3593fefd0a05fc9
[ "MIT" ]
null
null
null
import evaluate evaluate.unpack_Xpred("data/test_Xpred_20190826_210307.csv",32)
26.666667
63
0.8625
2e5377fad129785cb5a304add9414be12a22f29f
10,334
py
Python
examples/advanced_operations/add_responsive_search_ad_with_ad_customizer.py
claudiapaveljlp/google-ads-python
c143e81804e237a9549dd5936503d921033c4e5a
[ "Apache-2.0" ]
null
null
null
examples/advanced_operations/add_responsive_search_ad_with_ad_customizer.py
claudiapaveljlp/google-ads-python
c143e81804e237a9549dd5936503d921033c4e5a
[ "Apache-2.0" ]
null
null
null
examples/advanced_operations/add_responsive_search_ad_with_ad_customizer.py
claudiapaveljlp/google-ads-python
c143e81804e237a9549dd5936503d921033c4e5a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Adds a customizer attribute. Also links the customizer attribute to a customer, and then adds a responsive search ad with a description using the ad customizer to the specified ad group. Customizer attributes and ad group customizers are created for business data customizers. For more information about responsive search ad customization see: https://developers.google.com/google-ads/api/docs/ads/customize-responsive-search-ads?hl=en """ import argparse from datetime import date, timedelta import sys from uuid import uuid4 from google.ads.googleads.client import GoogleAdsClient from google.ads.googleads.errors import GoogleAdsException # The name of the customizer attribute to be used in the ad customizer, which # must be unique for a given customer account. To run this example multiple # times, specify a unique value as a command line argument. Note that there is # a limit for the number of enabled customizer attributes in one account, so # you shouldn't run this example more than necessary. For more details visit: # https://developers.google.com/google-ads/api/docs/ads/customize-responsive-search-ads#rules_and_limitations _CUSTOMIZER_ATTRIBUTE_NAME = "Price" def main(client, customer_id, ad_group_id, customizer_attribute_name): """The main method that creates all necessary entities for the example. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID. ad_group_id: an ad group ID. customizer_attribute_name: the name for the customizer attribute. """ customizer_attribute_resource_name = _create_customizer_attribute( client, customer_id, customizer_attribute_name ) _link_customizer_attribute_to_customer( client, customer_id, customizer_attribute_resource_name ) _create_responsive_search_ad_with_customization( client, customer_id, ad_group_id, customizer_attribute_name ) # [START add_responsive_search_ad_with_ad_customizer_1] def _create_customizer_attribute( client, customer_id, customizer_attribute_name ): """Creates a customizer attribute with the given customizer attribute name. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID. customizer_attribute_name: the name for the customizer attribute. Returns: A resource name for a customizer attribute. """ # Creates a customizer attribute operation for creating a customizer # attribute. operation = client.get_type("CustomizerAttributeOperation") # Creates a customizer attribute with the specified name. customizer_attribute = operation.create customizer_attribute.name = customizer_attribute_name # Specifies the type to be 'PRICE' so that we can dynamically customize the # part of the ad's description that is a price of a product/service we # advertise. customizer_attribute.type_ = client.enums.CustomizerAttributeTypeEnum.PRICE # Issues a mutate request to add the customizer attribute and prints its # information. customizer_attribute_service = client.get_service( "CustomizerAttributeService" ) response = customizer_attribute_service.mutate_customizer_attributes( customer_id=customer_id, operations=[operation] ) resource_name = response.results[0].resource_name print(f"Added a customizer attribute with resource name: '{resource_name}'") return resource_name # [END add_responsive_search_ad_with_ad_customizer_1] # [START add_responsive_search_ad_with_ad_customizer_2] def _link_customizer_attribute_to_customer( client, customer_id, customizer_attribute_resource_name ): """Links the customizer attribute to the customer. This is done by providing a value to be used in a responsive search ad that will be created in a later step. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID. customizer_attribute_resource_name: a resource name for customizer attribute. """ # Creates a customer customizer operation. operation = client.get_type("CustomerCustomizerOperation") # Creates a customer customizer with the value to be used in the responsive # search ad. customer_customizer = operation.create customer_customizer.customizer_attribute = ( customizer_attribute_resource_name ) customer_customizer.value.type_ = ( client.enums.CustomizerAttributeTypeEnum.PRICE ) # Specify '100USD' as a text value. The ad customizer will dynamically # replace the placeholder with this value when the ad serves. customer_customizer.value.string_value = "100USD" customer_customizer_service = client.get_service( "CustomerCustomizerService" ) # Issues a mutate request to add the customer customizer and prints its # information. response = customer_customizer_service.mutate_customer_customizers( customer_id=customer_id, operations=[operation] ) resource_name = response.results[0].resource_name print(f"Added a customer customizer with resource name: '{resource_name}'") # [END add_responsive_search_ad_with_ad_customizer_2] # [START add_responsive_search_ad_with_ad_customizer_3] def _create_responsive_search_ad_with_customization( client, customer_id, ad_group_id, customizer_attribute_resource_name ): """Creates a responsive search ad using the specified customizer attribute. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID. ad_group_id: an ad group ID. customizer_attribute_resource_name: a resource name for customizer attribute. """ # Creates an ad group ad operation. operation = client.get_type("AdGroupAdOperation") # Creates an ad group ad. ad_group_ad = operation.create ad_group_service = client.get_service("AdGroupService") ad_group_ad.ad_group = ad_group_service.ad_group_path( customer_id, ad_group_id ) ad_group_ad.status = client.enums.AdGroupAdStatusEnum.PAUSED # Creates an ad and sets responsive search ad info. ad = ad_group_ad.ad ad.final_urls.append("http://www.example.com") headline_1 = client.get_type("AdTextAsset") headline_1.text = "Cruise to Mars" headline_2 = client.get_type("AdTextAsset") headline_2.text = "Best Space Cruise Line" headline_3 = client.get_type("AdTextAsset") headline_3.text = "Experience the Stars" ad.responsive_search_ad.headlines.extend( [headline_1, headline_2, headline_3] ) description_1 = client.get_type("AdTextAsset") description_1.text = "Buy your tickets now" # Creates this particular description using the ad customizer. Visit # https://developers.google.com/google-ads/api/docs/ads/customize-responsive-search-ads#ad_customizers_in_responsive_search_ads # for details about the placeholder format. The ad customizer replaces the # placeholder with the value we previously created and linked to the # customer using CustomerCustomizer. description_2 = client.get_type("AdTextAsset") description_2.text = "Just {CUSTOMIZER.$customizerAttributeName:10USD}" ad.responsive_search_ad.descriptions.extend([description_1, description_2]) ad.responsive_search_ad.path1 = "all-inclusive" ad.responsive_search_ad.path2 = "deals" # Issues a mutate request to add the ad group ad and prints its information. ad_group_ad_service = client.get_service("AdGroupAdService") response = ad_group_ad_service.mutate_ad_group_ads( customer_id=customer_id, operations=[operation] ) resource_name = response.results[0].resource_name print(f"Created responsive search ad with resource name: '{resource_name}'") # [END add_responsive_search_ad_with_ad_customizer_3] if __name__ == "__main__": # GoogleAdsClient will read the google-ads.yaml configuration file in the # home directory if none is specified. googleads_client = GoogleAdsClient.load_from_storage(version="v9") parser = argparse.ArgumentParser( description=( "Creates ad customizers and applies them to a responsive search ad." ) ) # The following argument(s) should be provided to run the example. parser.add_argument( "-c", "--customer_id", type=str, required=True, help="The Google Ads customer ID.", ) parser.add_argument( "-a", "--ad_group_id", type=str, required=True, help="An ad group ID.", ) parser.add_argument( "-n", "--customizer_attribute_name", type=str, default=_CUSTOMIZER_ATTRIBUTE_NAME, help=( "The name of the customizer attribute to be created. The name must " "be unique across a single client account, so be sure not to use " "the same value more than once." ), ) args = parser.parse_args() try: main( googleads_client, args.customer_id, args.ad_group_id, args.customizer_attribute_name, ) except GoogleAdsException as ex: print( f'Request with ID "{ex.request_id}" failed with status ' f'"{ex.error.code().name}" and includes the following errors:' ) for error in ex.failure.errors: print(f'Error with message "{error.message}".') if error.location: for field_path_element in error.location.field_path_elements: print(f"\t\tOn field: {field_path_element.field_name}") sys.exit(1)
39.292776
131
0.72905
d215f5660d06095bfa19474e13bb492e71765463
2,014
py
Python
apps/genres/tests/__init__.py
GiannisClipper/payments
94e08144597b3f4cd0de8485edf3f5535aeb9da6
[ "MIT" ]
null
null
null
apps/genres/tests/__init__.py
GiannisClipper/payments
94e08144597b3f4cd0de8485edf3f5535aeb9da6
[ "MIT" ]
null
null
null
apps/genres/tests/__init__.py
GiannisClipper/payments
94e08144597b3f4cd0de8485edf3f5535aeb9da6
[ "MIT" ]
null
null
null
from django.test import TestCase import copy from django.contrib.auth import get_user_model from funds.models import Fund from genres.models import Genre from users.tests import UserCreateMethods from funds.tests import FundCreateMethods from users.tests import USER_SAMPLES, ADMIN_SAMPLES from funds.tests import FUND_SAMPLES GENRE_SAMPLES = { # First key digit is equal to user id 11: {'user': {'id': 1}, 'fund': {'key': 11}, 'code': '1', 'name': 'INCOME', 'is_income': True}, # noqa: E127 12: {'user': {'id': 1}, 'fund': {'key': 11}, 'code': '2', 'name': 'EXPENSES', 'is_income': False}, # noqa: E127 21: {'user': {'id': 2}, 'fund': {'key': 21}, 'code': 'ES', 'name': 'ESODA', 'is_income': True}, # noqa: E127 22: {'user': {'id': 2}, 'fund': {'key': 21}, 'code': 'EX', 'name': 'EXODA', 'is_income': False}, # noqa: E127 } class GenreCreateMethods: def create_genre(self, **genre): genre['user'] = get_user_model().objects.get(pk=genre['user']['id']) genre['fund'] = Fund.objects.get(pk=genre['fund']['id']) return Genre.objects.create(**genre) def create_genres(self, samples): for sample in samples.values(): genre = self.create_genre(**sample) sample['id'] = genre.pk class GenresTests(TestCase, GenreCreateMethods, UserCreateMethods, FundCreateMethods): def setUp(self): self.samples = { 'users': copy.deepcopy(USER_SAMPLES), 'admins': copy.deepcopy(ADMIN_SAMPLES), 'funds': copy.deepcopy(FUND_SAMPLES), 'genres': copy.deepcopy(GENRE_SAMPLES), } self.create_users(self.samples['users']) self.create_admins(self.samples['admins']) self.create_funds(self.samples['funds']) for sample in self.samples['genres'].values(): key = sample['fund']['key'] sample['fund']['id'] = self.samples['funds'][key]['id'] sample['fund'].pop('key', None)
31.968254
86
0.602781
695a76be52944eba725cee11ac06597684824c5e
3,376
py
Python
dl_nn_mini.py
stevenwasik/dl
92bd6cff5619f8153f3675dd92d7d2969f2fe31b
[ "MIT" ]
null
null
null
dl_nn_mini.py
stevenwasik/dl
92bd6cff5619f8153f3675dd92d7d2969f2fe31b
[ "MIT" ]
null
null
null
dl_nn_mini.py
stevenwasik/dl
92bd6cff5619f8153f3675dd92d7d2969f2fe31b
[ "MIT" ]
null
null
null
import numpy as np import random import dl_helper_functions as hf def nn_mini(target, predictors, classes, hidden_layer_nodes, hidden_layers, predictor_count, eps=0.001, epochs=100, minibatch_size=50): network_struc = [predictor_count] + [hidden_layer_nodes] * hidden_layers + [classes] num_obs = len(target) cost = 0 # Initialize layer_dat = [[0, 0, 0, predictors]] for i in range(1, len(network_struc)): node_count_prior_layer = network_struc[i - 1] node_count_current_layer = network_struc[i] b = np.reshape(np.random.randn(node_count_current_layer), (1, node_count_current_layer)) w = np.reshape(np.random.randn(node_count_prior_layer * node_count_current_layer), (node_count_prior_layer, node_count_current_layer)) z = np.zeros((num_obs, node_count_current_layer)) a = np.zeros((num_obs, node_count_current_layer)) layer_dat.append([b, w, z, a]) for i in range(epochs): # Forward Step for m in range(0, num_obs, minibatch_size): if m + minibatch_size > num_obs: minibatch_size = num_obs - m for k in range(1, len(layer_dat)): layer_dat[k][2][m:m + minibatch_size, :] = np.matmul(layer_dat[k - 1][3][m:m + minibatch_size, :], layer_dat[k][1]) + layer_dat[k][0] if k < len(layer_dat): layer_dat[k][3][m:m + minibatch_size, :] = hf.relu(layer_dat[k][2][m:m + minibatch_size, :]) else: layer_dat[k][3][m:m + minibatch_size, :] = hf.softmax(layer_dat[k][2][m:m + minibatch_size, :]) # Back Step mini_target = target[m:m + minibatch_size, :] mini_layer = [layer_dat[-1][0], layer_dat[-1][1], layer_dat[-1][2][m:m + minibatch_size, :], layer_dat[-1][3][m:m + minibatch_size, :]] mini_layer_p_a = layer_dat[-2][3][m:m + minibatch_size, :] cost = np.mean((mini_target - mini_layer[3]) ** 2) del_l = -(mini_target - mini_layer[3]) * hf.softmax_del(mini_layer[2], mini_target) del_l_b = np.sum(del_l, keepdims=True, axis=0) / minibatch_size del_l_w = np.matmul(np.transpose(mini_layer_p_a), del_l) / minibatch_size layer_dat[-1][0] = mini_layer[0] - eps * del_l_b layer_dat[-1][1] = mini_layer[1] - eps * del_l_w for j in range(2, len(layer_dat)): mini_layer = [layer_dat[-j][0], layer_dat[-j][1], layer_dat[-j][2][m:m + minibatch_size, :], layer_dat[-j][3][m:m + minibatch_size, :]] mini_layer_p_a = layer_dat[-j - 1][3][m:m + minibatch_size, :] mini_layer_n_w = layer_dat[-j + 1][1] del_l = np.matmul(del_l, np.transpose(mini_layer_n_w)) * hf.relu_del(mini_layer[2]) del_l_b = np.sum(del_l, keepdims=True, axis=0) / minibatch_size del_l_w = np.matmul(np.transpose(mini_layer_p_a), del_l) / minibatch_size layer_dat[-j][0] = mini_layer[0] - eps * del_l_b layer_dat[-j][1] = mini_layer[1] - eps * del_l_w if i % int(epochs / 10) == 0: print('iteration ', i, ' cost: ', cost) return cost, layer_dat
49.647059
115
0.573164
f7bda1308e8a50757694c2893fe6e4cf0a2073a2
3,918
py
Python
podcatcher.py
quandram/podcatcher
b1d14b10b3e1afd1947e09ddf2006dac37c6fae7
[ "MIT" ]
null
null
null
podcatcher.py
quandram/podcatcher
b1d14b10b3e1afd1947e09ddf2006dac37c6fae7
[ "MIT" ]
null
null
null
podcatcher.py
quandram/podcatcher
b1d14b10b3e1afd1947e09ddf2006dac37c6fae7
[ "MIT" ]
null
null
null
import feedparser import os import requests from datetime import datetime from dateutil.parser import parse from dateutil import tz from pytz import timezone from sanitize_filename import sanitize import configKeys class podcatcher: def __init__(self, podConfig, configSection, configData): self.podCatcherConfig = podConfig self.configSection = configSection self.config = configData try: self.maxEpisodesToDownload = int(self.podCatcherConfig[configKeys.MAX_EPISODES_TO_DOWNLOAD]) except: self.maxEpisodesToDownload = 0 if not os.path.exists(os.path.join(self.podCatcherConfig[configKeys.OUTPUT])): try: os.mkdir(os.path.join(self.podCatcherConfig[configKeys.OUTPUT])) except OSError as e: print ("Creation of the directory %s failed" % self.podCatcherConfig[configKeys.OUTPUT], e.data) return else: print ("Successfully created the directory %s " % self.podCatcherConfig[configKeys.OUTPUT]) if not os.path.exists(os.path.join(self.podCatcherConfig[configKeys.OUTPUT], self.configSection)): try: os.mkdir(os.path.join(self.podCatcherConfig[configKeys.OUTPUT], self.configSection)) except OSError as e: print ("Creation of the directory %s failed" % self.configSection, e.data) else: print ("Successfully created the directory %s " % self.configSection) PACIFIC = tz.gettz("America/Los_Angeles") self.timezone_info = {"PST": PACIFIC, "PDT": PACIFIC} def get_new_pods(self): feed = feedparser.parse(self.config[configKeys.FEED]) lastProcessed = self.get_config_last_processed_date() podLastDownloaded = lastProcessed print ("Downloading %s: " % self.configSection, end = '') podsDownloaded = 0 for pod in reversed(feed.entries): podPublishedOn = self.get_utc_date(pod.published) if podPublishedOn > lastProcessed and (self.maxEpisodesToDownload == 0 or podsDownloaded < self.maxEpisodesToDownload): print (".", end = '') try: req = requests.get(pod.links[1]["href"], allow_redirects=True, timeout=(3.05, 27)) open(os.path.join(self.podCatcherConfig[configKeys.OUTPUT], self.configSection, self.get_pod_file_name(pod)), "wb").write(req.content) podLastDownloaded = podPublishedOn podsDownloaded += 1 if self.maxEpisodesToDownload > 0 and podsDownloaded == self.maxEpisodesToDownload: break except requests.exceptions.ConnectionError: print ("\nError: Request timedout: %s" % pod.title) break except Exception as e: print ("\nError: catching pod: %s" % pod.title) print(type(e)) print(e) break print (" | %d episodes downloaded\n" % podsDownloaded ) return podLastDownloaded def get_pod_file_name(self, pod): podPublishedOn = self.get_utc_date(pod.published) podExtension = self.get_pod_file_extension(pod) if "?" in podExtension: podExtension = podExtension.rpartition("?")[0] return sanitize(podPublishedOn.strftime("%Y-%m-%dT%H-%M-%SZ") + "_" + self.configSection + "_" + pod.title + "." + podExtension) def get_pod_file_extension(self, pod): return pod.links[1]["href"].rpartition(".")[-1] def get_utc_date(self, date): return parse(date, tzinfos=self.timezone_info).astimezone(timezone('UTC')) def get_config_last_processed_date(self): return self.get_utc_date(self.config[configKeys.LAST_DOWNLOADED_DATE])
43.054945
136
0.624043
8441c6433211e70e75343c45786e0382d75a2eea
3,769
py
Python
elimika_backend/users/models.py
bawabu/elimika_backend
d7a3d59454b7bebd09e6950a37532ff86848fb0b
[ "MIT" ]
null
null
null
elimika_backend/users/models.py
bawabu/elimika_backend
d7a3d59454b7bebd09e6950a37532ff86848fb0b
[ "MIT" ]
null
null
null
elimika_backend/users/models.py
bawabu/elimika_backend
d7a3d59454b7bebd09e6950a37532ff86848fb0b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import import uuid import math from django.contrib.auth.models import AbstractUser from django.core.urlresolvers import reverse from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ GENDER_CHOICES = ( ('boy', 'Boy'), ('girl', 'Girl'), ) @python_2_unicode_compatible class User(AbstractUser): is_tutor = models.BooleanField(default=False) def __str__(self): return self.username def get_absolute_url(self): return reverse('users:detail', kwargs={'username': self.username}) class Learner(models.Model): """Hold fields for a learner.""" id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=255) username = models.CharField(max_length=255, unique=True) age = models.PositiveSmallIntegerField(blank=True, null=True) gender = models.CharField(choices=GENDER_CHOICES, max_length=50) joined = models.DateTimeField(auto_now_add=True) def __str__(self): """String representation.""" return self.name @property def performance(self): """Performance in percentage per category.""" t_right = self.learner_answers.filter( question__category__category_name='teeth', choice__is_right=True).count() t_total = self.learner_answers.filter( question__category__category_name='teeth').count() try: t_percent = math.ceil(t_right / t_total * 100) except ZeroDivisionError: t_percent = 0 tt_right = self.learner_answers.filter( question__category__category_name='teeth_types', choice__is_right=True).count() tt_total = self.learner_answers.filter( question__category__category_name='teeth_types').count() try: tt_percent = math.ceil(tt_right / tt_total * 100) except ZeroDivisionError: tt_percent = 0 ts_right = self.learner_answers.filter( question__category__category_name='teeth_sets', choice__is_right=True).count() ts_total = self.learner_answers.filter( question__category__category_name='teeth_sets').count() try: ts_percent = math.ceil(ts_right / ts_total * 100) except ZeroDivisionError: ts_percent = 0 return [t_percent, tt_percent, ts_percent] @property def total_questions(self): """Return total questions answered per category""" from elimika_backend.questions.models import Question t_answeredQ = self.learner_answers.filter( question__category__category_name='teeth').order_by( 'question__id').distinct('question__id').count() t_total = Question.objects.filter(category__category_name='teeth').count() tt_answeredQ = self.learner_answers.filter( question__category__category_name='teeth_types').order_by( 'question__id').distinct('question__id').count() tt_total = Question.objects.filter( category__category_name='teeth_types').count() ts_answeredQ = self.learner_answers.filter( question__category__category_name='teeth_sets').order_by( 'question__id').distinct('question__id').count() ts_total = Question.objects.filter( category__category_name='teeth_sets').count() return [ { 'answered': t_answeredQ, 'total': t_total }, { 'answered': tt_answeredQ, 'total': tt_total }, { 'answered': ts_answeredQ, 'total': ts_total } ]
34.577982
82
0.669674
4de5e1ee206f18f9ce856d6327800a12221ce0b8
2,175
py
Python
crazyflie_t/crazyflie_state_estimate_t.py
joaoolavo/crazyflie-kinect-control
c77134eb3ec654d9c61830c0a1bd20732c1e596a
[ "MIT" ]
73
2015-03-11T05:32:13.000Z
2022-03-25T23:30:17.000Z
crazyflie_t/crazyflie_state_estimate_t.py
joaoolavo/crazyflie-kinect-control
c77134eb3ec654d9c61830c0a1bd20732c1e596a
[ "MIT" ]
18
2015-01-19T20:23:36.000Z
2017-02-14T21:03:07.000Z
crazyflie_t/crazyflie_state_estimate_t.py
joaoolavo/crazyflie-kinect-control
c77134eb3ec654d9c61830c0a1bd20732c1e596a
[ "MIT" ]
49
2015-06-19T03:16:10.000Z
2021-01-13T08:56:02.000Z
"""LCM type definitions This file automatically generated by lcm. DO NOT MODIFY BY HAND!!!! """ try: import cStringIO.StringIO as BytesIO except ImportError: from io import BytesIO import struct class crazyflie_state_estimate_t(object): __slots__ = ["timestamp", "xhat", "t"] def __init__(self): self.timestamp = 0 self.xhat = [ 0.0 for dim0 in range(12) ] self.t = 0.0 def encode(self): buf = BytesIO() buf.write(crazyflie_state_estimate_t._get_packed_fingerprint()) self._encode_one(buf) return buf.getvalue() def _encode_one(self, buf): buf.write(struct.pack(">q", self.timestamp)) buf.write(struct.pack('>12d', *self.xhat[:12])) buf.write(struct.pack(">d", self.t)) def decode(data): if hasattr(data, 'read'): buf = data else: buf = BytesIO(data) if buf.read(8) != crazyflie_state_estimate_t._get_packed_fingerprint(): raise ValueError("Decode error") return crazyflie_state_estimate_t._decode_one(buf) decode = staticmethod(decode) def _decode_one(buf): self = crazyflie_state_estimate_t() self.timestamp = struct.unpack(">q", buf.read(8))[0] self.xhat = struct.unpack('>12d', buf.read(96)) self.t = struct.unpack(">d", buf.read(8))[0] return self _decode_one = staticmethod(_decode_one) _hash = None def _get_hash_recursive(parents): if crazyflie_state_estimate_t in parents: return 0 tmphash = (0xf28782fb9b176eb0) & 0xffffffffffffffff tmphash = (((tmphash<<1)&0xffffffffffffffff) + (tmphash>>63)) & 0xffffffffffffffff return tmphash _get_hash_recursive = staticmethod(_get_hash_recursive) _packed_fingerprint = None def _get_packed_fingerprint(): if crazyflie_state_estimate_t._packed_fingerprint is None: crazyflie_state_estimate_t._packed_fingerprint = struct.pack(">Q", crazyflie_state_estimate_t._get_hash_recursive([])) return crazyflie_state_estimate_t._packed_fingerprint _get_packed_fingerprint = staticmethod(_get_packed_fingerprint)
33.984375
130
0.668046
b860a7db3c615f9c2313314f395388db18df959f
17,528
py
Python
pylangacq/tests/test_chat.py
mitjanikolaus/pylangacq
88c327ee5b41af4a7c1a59f1813d52bf49bf3bed
[ "MIT" ]
null
null
null
pylangacq/tests/test_chat.py
mitjanikolaus/pylangacq
88c327ee5b41af4a7c1a59f1813d52bf49bf3bed
[ "MIT" ]
null
null
null
pylangacq/tests/test_chat.py
mitjanikolaus/pylangacq
88c327ee5b41af4a7c1a59f1813d52bf49bf3bed
[ "MIT" ]
null
null
null
import copy import datetime import filecmp import functools import os import tempfile import unittest from unittest import mock import pytest from pylangacq.chat import _clean_word, Reader, cached_data_info, remove_cached_data from pylangacq.objects import Gra, Utterance, Token from pylangacq.tests.test_data import ( LOCAL_EVE_PATH, REMOTE_BROWN_URL, REMOTE_EVE_DIR, REMOTE_EVE_FILE_PATH, download_and_extract_brown, ) download_and_extract_brown() _EXPECTED_EVE_UTTERANCES = [ Utterance( participant="CHI", tokens=[ Token( word="more", pos="qn", mor="more", gra=Gra(dep=1, head=2, rel="QUANT"), ), Token( word="cookie", pos="n", mor="cookie", gra=Gra(dep=2, head=0, rel="INCROOT"), ), Token(word=".", pos=".", mor="", gra=Gra(dep=3, head=2, rel="PUNCT")), ], time_marks=None, tiers={ "CHI": "more cookie . [+ IMP]", "%mor": "qn|more n|cookie .", "%gra": "1|2|QUANT 2|0|INCROOT 3|2|PUNCT", "%int": "distinctive , loud", }, ), Utterance( participant="MOT", tokens=[ Token( word="you", pos="pro:per", mor="you", gra=Gra(dep=1, head=2, rel="SUBJ"), ), Token( word="0v", pos="0v", mor="v", gra=Gra(dep=2, head=0, rel="ROOT"), ), Token( word="more", pos="qn", mor="more", gra=Gra(dep=3, head=4, rel="QUANT"), ), Token( word="cookies", pos="n", mor="cookie-PL", gra=Gra(dep=4, head=2, rel="OBJ"), ), Token(word="?", pos="?", mor="", gra=Gra(dep=5, head=2, rel="PUNCT")), ], time_marks=None, tiers={ "MOT": "you 0v more cookies ?", "%mor": "pro:per|you 0v|v qn|more n|cookie-PL ?", "%gra": "1|2|SUBJ 2|0|ROOT 3|4|QUANT 4|2|OBJ 5|2|PUNCT", }, ), ] class BaseTestCHATReader: """A base test class that collects all tests for a CHAT reader class. The intention is to allow running the same set of tests using either ``pylangacq.Reader`` or its subclass. The reader class being used is set by overriding the ``reader_class`` attribute. """ # Must be set by a subclass. reader_class = None @property @functools.lru_cache(maxsize=1) def eve_local(self): return self.reader_class.from_files([LOCAL_EVE_PATH]) @property @functools.lru_cache(maxsize=1) def eve_remote(self): return self.reader_class.from_files([REMOTE_EVE_FILE_PATH]) def test_use_cached(self): remove_cached_data() assert len(cached_data_info()) == 0 self.reader_class.from_zip(REMOTE_BROWN_URL, match="Eve") assert len(cached_data_info()) == 1 assert REMOTE_BROWN_URL in cached_data_info() # Use a mock session to block internet access. # The `from_zip` shouldn't crash and shouldn't use the session object anyway, # because it should use the cached data. mock_session = mock.Mock() self.reader_class.from_zip(REMOTE_BROWN_URL, match="Eve", session=mock_session) assert len(cached_data_info()) == 1 assert REMOTE_BROWN_URL in cached_data_info() mock_session.get.assert_not_called() remove_cached_data() assert len(cached_data_info()) == 0 def test_from_strs_same_as_from_files(self): with open(LOCAL_EVE_PATH, encoding="utf-8") as f: from_strs = self.reader_class.from_strs([f.read()]) file_from_strs = from_strs._files[0] file_from_files = self.eve_local._files[0] assert file_from_strs.utterances == file_from_files.utterances assert file_from_strs.header == file_from_files.header def test_from_dir(self): r = self.reader_class.from_dir(REMOTE_EVE_DIR) assert r.n_files() == 20 def test_to_strs(self): expected = ( "@Languages:\teng , yue\n" "@Participants:\tFOO Foo P1 , BAR Bar P2\n" "@ID:\teng|Foobar|FOO||female|||P1|||\n" "@ID:\teng|Foobar|BAR||male|||P2|||\n" "@Date:\t03-NOV-2016\n" "@Comment:\tThis is a comment.\n" "*FOO:\thow are you ?\n" "*BAR:\tfine , thank you ." ) reader = self.reader_class.from_strs([expected]) actual = list(reader.to_strs())[0] assert actual.strip() == expected.strip() def test_to_chat_is_dir_true(self): expected = ( "@Languages:\teng , yue\n" "@Participants:\tFOO Foo P1 , BAR Bar P2\n" "@ID:\teng|Foobar|FOO||female|||P1|||\n" "@ID:\teng|Foobar|BAR||male|||P2|||\n" "@Date:\t03-NOV-2016\n" "@Comment:\tThis is a comment.\n" "*FOO:\thow are you ?\n" "*BAR:\tfine , thank you .\n" ) reader = self.reader_class.from_strs([expected]) with tempfile.TemporaryDirectory() as temp_dir: reader.to_chat(temp_dir, is_dir=True) assert os.listdir(temp_dir) == ["0001.cha"] with open(os.path.join(temp_dir, "0001.cha"), encoding="utf-8") as f: assert f.read() == expected def test_to_chat_is_dir_false(self): expected = ( "@Languages:\teng , yue\n" "@Participants:\tFOO Foo P1 , BAR Bar P2\n" "@ID:\teng|Foobar|FOO||female|||P1|||\n" "@ID:\teng|Foobar|BAR||male|||P2|||\n" "@Date:\t03-NOV-2016\n" "@Comment:\tThis is a comment.\n" "*FOO:\thow are you ?\n" "*BAR:\tfine , thank you .\n" ) reader = self.reader_class.from_strs([expected]) with tempfile.TemporaryDirectory() as temp_dir: basename = "data.cha" file_path = os.path.join(temp_dir, basename) reader.to_chat(file_path) assert os.listdir(temp_dir) == [basename] with open(file_path, encoding="utf-8") as f: assert f.read() == expected def test_round_trip_to_strs_and_from_strs_for_tabular_true(self): original = self.eve_local new = self.reader_class.from_strs([list(original.to_strs(tabular=True))[0]]) assert original.n_files() == new.n_files() == 1 assert ( # Utterance count sum(len(f.utterances) for f in original._files) == sum(len(f.utterances) for f in new._files) == 1588 ) assert ( # Word count sum(len(u.tokens) for f in original._files for u in f.utterances) == sum(len(u.tokens) for f in new._files for u in f.utterances) == 6101 ) def test_clear(self): eve_copy = copy.deepcopy(self.eve_local) eve_copy.clear() assert eve_copy.n_files() == 0 def test_add(self): reader1 = self.reader_class.from_strs(["*X: foo"]) reader2 = self.reader_class.from_strs(["*X: bar"]) reader3 = self.reader_class.from_strs(["*X: baz"]) assert list((reader1 + reader2).to_strs()) == ["*X:\tfoo\n", "*X:\tbar\n"] reader2 += reader3 assert list(reader2.to_strs()) == ["*X:\tbar\n", "*X:\tbaz\n"] def test_append_and_append_left(self): eve_copy = copy.deepcopy(self.eve_local) eve_copy.append(self.eve_remote) assert eve_copy.file_paths() == [LOCAL_EVE_PATH, REMOTE_EVE_FILE_PATH] eve_copy.append_left(self.eve_remote) assert eve_copy.file_paths() == [ REMOTE_EVE_FILE_PATH, LOCAL_EVE_PATH, REMOTE_EVE_FILE_PATH, ] def test_extend_and_extend_left(self): eve_copy = copy.deepcopy(self.eve_local) eve_copy.extend([self.eve_remote]) assert eve_copy.file_paths() == [LOCAL_EVE_PATH, REMOTE_EVE_FILE_PATH] eve_copy.extend_left([self.eve_remote]) assert eve_copy.file_paths() == [ REMOTE_EVE_FILE_PATH, LOCAL_EVE_PATH, REMOTE_EVE_FILE_PATH, ] def test_pop_and_pop_left(self): eve = self.reader_class.from_dir(REMOTE_EVE_DIR) eve_path_last = eve.file_paths()[-1] eve_path_first = eve.file_paths()[0] eve_last = eve.pop() assert eve_last.file_paths() == [eve_path_last] assert eve.file_paths()[-1] != eve_path_last eve_first = eve.pop_left() assert eve_first.file_paths() == [eve_path_first] assert eve.file_paths()[0] != eve_path_first @pytest.mark.skipif(os.name == "nt", reason="Windows OS sep is backslash instead") def test_filter(self): # Just two paths for each child in the American English Brown corpus. eve_paths = {"Brown/Eve/010600a.cha", "Brown/Eve/010600b.cha"} sarah_paths = {"Brown/Sarah/020305.cha", "Brown/Sarah/020307.cha"} adam_paths = {"Brown/Adam/020304.cha", "Brown/Adam/020318.cha"} adam_and_eve = self.reader_class.from_zip(REMOTE_BROWN_URL, exclude="Sarah") assert eve_paths.issubset(set(adam_and_eve.file_paths())) assert not sarah_paths.issubset(set(adam_and_eve.file_paths())) assert adam_paths.issubset(set(adam_and_eve.file_paths())) adam = adam_and_eve.filter(exclude="Eve") assert not eve_paths.issubset(set(adam.file_paths())) assert adam_paths.issubset(set(adam.file_paths())) eve = adam_and_eve.filter(match="Eve") assert eve_paths.issubset(set(eve.file_paths())) assert not adam_paths.issubset(set(eve.file_paths())) def test_utterances(self): assert self.eve_local.utterances()[:2] == _EXPECTED_EVE_UTTERANCES def test_headers(self): assert self.eve_local.headers() == [ { "Date": {datetime.date(1962, 10, 15), datetime.date(1962, 10, 17)}, "Participants": { "CHI": { "name": "Eve", "language": "eng", "corpus": "Brown", "age": "1;06.00", "sex": "female", "group": "", "ses": "", "role": "Target_Child", "education": "", "custom": "", }, "MOT": { "name": "Sue", "language": "eng", "corpus": "Brown", "age": "", "sex": "female", "group": "", "ses": "", "role": "Mother", "education": "", "custom": "", }, "COL": { "name": "Colin", "language": "eng", "corpus": "Brown", "age": "", "sex": "", "group": "", "ses": "", "role": "Investigator", "education": "", "custom": "", }, "RIC": { "name": "Richard", "language": "eng", "corpus": "Brown", "age": "", "sex": "", "group": "", "ses": "", "role": "Investigator", "education": "", "custom": "", }, }, "UTF8": "", "PID": "11312/c-00034743-1", "Languages": ["eng"], "Time Duration": "11:30-12:00", "Types": "long, toyplay, TD", "Tape Location": "850", } ] def test_headers_more_lenient_parsing(self): header1 = "@UTF8\n@Foo:\tone two\n@Foo Bar:\thello how are you" header2 = "@UTF8\n@Foo: one two\n@Foo Bar: hello how are you" reader1 = self.reader_class.from_strs([header1]) reader2 = self.reader_class.from_strs([header2]) expected = {"UTF8": "", "Foo": "one two", "Foo Bar": "hello how are you"} assert reader1.headers()[0] == reader2.headers()[0] == expected def test_n_files(self): assert self.eve_local.n_files() == 1 def test_participants(self): assert self.eve_local.participants() == {"CHI", "MOT", "COL", "RIC"} def test_languages(self): assert self.eve_local.languages() == {"eng"} def test_dates_of_recording(self): assert self.eve_local.dates_of_recording() == { datetime.date(1962, 10, 15), datetime.date(1962, 10, 17), } def test_ages(self): assert self.eve_local.ages() == [(1, 6, 0)] assert self.eve_local.ages(months=True) == [18.0] def test_tokens_by_utterances(self): assert self.eve_local.tokens(by_utterances=True)[0] == [ Token( word="more", pos="qn", mor="more", gra=Gra(dep=1, head=2, rel="QUANT") ), Token( word="cookie", pos="n", mor="cookie", gra=Gra(dep=2, head=0, rel="INCROOT"), ), Token(word=".", pos=".", mor="", gra=Gra(dep=3, head=2, rel="PUNCT")), ] def test_tokens(self): assert self.eve_local.tokens()[:5] == [ Token( word="more", pos="qn", mor="more", gra=Gra(dep=1, head=2, rel="QUANT") ), Token( word="cookie", pos="n", mor="cookie", gra=Gra(dep=2, head=0, rel="INCROOT"), ), Token(word=".", pos=".", mor="", gra=Gra(dep=3, head=2, rel="PUNCT")), Token( word="you", pos="pro:per", mor="you", gra=Gra(dep=1, head=2, rel="SUBJ"), ), Token(word="0v", pos="0v", mor="v", gra=Gra(dep=2, head=0, rel="ROOT")), ] def test_words_by_utterances(self): assert self.eve_local.words(by_utterances=True)[:2] == [ ["more", "cookie", "."], ["you", "0v", "more", "cookies", "?"], ] def test_words(self): assert self.eve_local.words()[:5] == ["more", "cookie", ".", "you", "0v"] def test_mlum(self): assert pytest.approx(self.eve_local.mlum(), abs=0.1) == [2.267022696929239] def test_mlu(self): assert pytest.approx(self.eve_local.mlu(), abs=0.1) == [2.267022696929239] def test_mluw(self): assert pytest.approx(self.eve_local.mluw(), abs=0.1) == [1.4459279038718291] def test_ttr(self): assert pytest.approx(self.eve_local.ttr(), abs=0.01) == [0.17543859649122806] def test_ipsyn(self): assert self.eve_local.ipsyn() == [29] def test_word_ngrams(self): assert self.eve_local.word_ngrams(1).most_common(5) == [ ((".",), 1121), (("?",), 455), (("you",), 197), (("that",), 151), (("the",), 132), ] assert self.eve_local.word_ngrams(2).most_common(5) == [ (("that", "?"), 101), (("it", "."), 63), (("what", "?"), 54), (("yes", "‡"), 45), (("it", "?"), 39), ] def test_word_frequency(self): assert self.eve_local.word_frequencies().most_common(5) == [ (".", 1121), ("?", 455), ("you", 197), ("that", 151), ("the", 132), ] def test_file_from_empty_string(self): # pytest.mark.parameterize didn't work for a class method? for empty_input in ("", None): reader = self.reader_class.from_strs([empty_input]) file_ = reader._files[0] assert file_.header == {} assert file_.utterances == [] assert reader.headers() == [{}] assert reader.ages() == [None] assert reader.dates_of_recording() == set() assert reader.languages() == set() assert reader.participants() == set() class TestPylangacqReader(BaseTestCHATReader, unittest.TestCase): """Run the reader tests using ``pylangacq.Reader``.""" reader_class = Reader @pytest.mark.skipif( os.name == "nt", reason="Not sure? We're good so long as this test passes on Linux and MacOS", ) def test_if_childes_has_updated_data(): assert filecmp.cmp(LOCAL_EVE_PATH, REMOTE_EVE_FILE_PATH) @pytest.mark.parametrize( "original, expected", [ ("foo", "foo"), ("&foo", "foo"), ("foo@bar", "foo"), ("foo(", "foo"), ("foo)", "foo"), ("foo:", "foo"), ("foo;", "foo"), ("foo+", "foo"), ], ) def test__clean_word(original, expected): assert _clean_word(original) == expected
34.777778
87
0.510954
1378df557f0266eb7b0fb0907adb69e72d2b064a
7,796
py
Python
tests/test_data.py
xhochy/rejected
610a3e1401122ecb98d891b6795cca0255e5b044
[ "BSD-3-Clause" ]
null
null
null
tests/test_data.py
xhochy/rejected
610a3e1401122ecb98d891b6795cca0255e5b044
[ "BSD-3-Clause" ]
null
null
null
tests/test_data.py
xhochy/rejected
610a3e1401122ecb98d891b6795cca0255e5b044
[ "BSD-3-Clause" ]
null
null
null
"""Tests for rejected.data""" import random import time import unittest import uuid from rejected import data from . import mocks class TestProperties(unittest.TestCase): def setUp(self): self.properties = data.Properties(mocks.PROPERTIES) def test_app_id(self): self.assertEqual(self.properties.app_id, mocks.PROPERTIES.app_id) def test_content_encoding(self): self.assertEqual(self.properties.content_encoding, mocks.PROPERTIES.content_encoding) def test_content_type(self): self.assertEqual(self.properties.content_type, mocks.PROPERTIES.content_type) def test_correlation_id(self): self.assertEqual(self.properties.correlation_id, mocks.PROPERTIES.correlation_id) def test_delivery_mode(self): self.assertEqual(self.properties.delivery_mode, mocks.PROPERTIES.delivery_mode) def test_expiration(self): self.assertEqual(self.properties.expiration, mocks.PROPERTIES.expiration) def test_message_id(self): self.assertEqual(self.properties.message_id, mocks.PROPERTIES.message_id) def test_priority(self): self.assertEqual(self.properties.priority, mocks.PROPERTIES.priority) def test_reply_to(self): self.assertEqual(self.properties.reply_to, mocks.PROPERTIES.reply_to) def test_timestamp(self): self.assertEqual(self.properties.timestamp, mocks.PROPERTIES.timestamp) def test_type(self): self.assertEqual(self.properties.type, mocks.PROPERTIES.type) def test_user_id(self): self.assertEqual(self.properties.user_id, mocks.PROPERTIES.user_id) class TestPartialProperties(unittest.TestCase): def setUp(self): self.properties = data.Properties( content_type='application/json', priority=2) def test_app_id(self): self.assertIsNone(self.properties.app_id) def test_content_encoding(self): self.assertIsNone(self.properties.content_encoding) def test_content_type(self): self.assertEqual(self.properties.content_type, 'application/json') def test_correlation_id(self): self.assertIsNone(self.properties.correlation_id) def test_delivery_mode(self): self.assertIsNone(self.properties.delivery_mode) def test_expiration(self): self.assertIsNone(self.properties.expiration) def test_message_id(self): self.assertIsNone(self.properties.message_id) def test_priority(self): self.assertEqual(self.properties.priority, 2) def test_reply_to(self): self.assertIsNone(self.properties.app_id) def test_timestamp(self): self.assertIsNone(self.properties.timestamp) def test_type(self): self.assertIsNone(self.properties.type) def test_user_id(self): self.assertIsNone(self.properties.user_id) class TestMessage(unittest.TestCase): def setUp(self): self.message = data.Message('mock', mocks.CHANNEL, mocks.METHOD, mocks.PROPERTIES, mocks.BODY) def test_body(self): self.assertEqual(self.message.body, mocks.BODY) def test_channel(self): self.assertEqual(self.message.channel, mocks.CHANNEL) def test_consumer_tag(self): self.assertEqual(self.message.consumer_tag, mocks.METHOD.consumer_tag) def test_delivery_tag(self): self.assertEqual(self.message.delivery_tag, mocks.METHOD.delivery_tag) def test_exchange(self): self.assertEqual(self.message.exchange, mocks.METHOD.exchange) def test_method(self): self.assertEqual(self.message.method, mocks.METHOD) def test_redelivered(self): self.assertEqual(self.message.redelivered, mocks.METHOD.redelivered) def test_routing_key(self): self.assertEqual(self.message.routing_key, mocks.METHOD.routing_key) def test_app_id(self): self.assertEqual(self.message.properties.app_id, mocks.PROPERTIES.app_id) def test_content_encoding(self): self.assertEqual(self.message.properties.content_encoding, mocks.PROPERTIES.content_encoding) def test_content_type(self): self.assertEqual(self.message.properties.content_type, mocks.PROPERTIES.content_type) def test_correlation_id(self): self.assertEqual(self.message.properties.correlation_id, mocks.PROPERTIES.correlation_id) def test_delivery_mode(self): self.assertEqual(self.message.properties.delivery_mode, mocks.PROPERTIES.delivery_mode) def test_expiration(self): self.assertEqual(self.message.properties.expiration, mocks.PROPERTIES.expiration) def test_message_id(self): self.assertEqual(self.message.properties.message_id, mocks.PROPERTIES.message_id) def test_priority(self): self.assertEqual(self.message.properties.priority, mocks.PROPERTIES.priority) def test_reply_to(self): self.assertEqual(self.message.properties.reply_to, mocks.PROPERTIES.reply_to) def test_timestamp(self): self.assertEqual(self.message.properties.timestamp, mocks.PROPERTIES.timestamp) def test_type(self): self.assertEqual(self.message.properties.type, mocks.PROPERTIES.type) def test_user_id(self): self.assertEqual(self.message.properties.user_id, mocks.PROPERTIES.user_id) class TestMeasurement(unittest.TestCase): def setUp(self): self.measurement = data.Measurement() def test_iter_and_default_values(self): for _key, value in self.measurement: self.assertDictEqual(dict(value), {}) def test_repr(self): self.assertEqual( repr(self.measurement), '<Measurement id={}>'.format( id(self.measurement))) def test_incr_decr(self): keys = [str(uuid.uuid4()) for _i in range(0, 10)] expectation = {} for key in keys: self.measurement.incr(key) self.measurement.incr(key, 5) self.measurement.decr(key) self.measurement.decr(key, 2) expectation[key] = 3 self.assertDictEqual(dict(self.measurement.counters), expectation) def test_tags(self): self.measurement.set_tag('foo', 'bar') self.measurement.set_tag('baz', True) self.measurement.set_tag('qux', 1) self.assertDictEqual(self.measurement.tags, { 'foo': 'bar', 'baz': True, 'qux': 1 }) def test_add_duration(self): expectation = random.random() self.measurement.add_duration('duration1', expectation) self.measurement.add_duration('duration1', expectation) self.assertEqual(self.measurement.durations['duration1'], [expectation, expectation]) def test_set_value(self): key = str(uuid.uuid4()) expectation = random.random() self.measurement.set_value(key, 10) self.measurement.set_value(key, expectation) self.assertEqual(self.measurement.values[key], expectation) def test_track_duration(self): key = str(uuid.uuid4()) with self.measurement.track_duration(key): time.sleep(0.01) with self.measurement.track_duration(key): time.sleep(0.02) self.assertGreaterEqual(self.measurement.durations[key][0], 0.01) self.assertGreaterEqual(self.measurement.durations[key][1], 0.02)
33.316239
79
0.663417
fde9d6460785cc956169cca65da7f15351ec0fa2
833
py
Python
test/test_acps.py
edose/photrix
ed9b36a86564f4b0389db6b350b8603a0eb82d05
[ "Apache-2.0" ]
3
2018-12-06T11:20:28.000Z
2020-12-16T23:17:40.000Z
test/test_acps.py
edose/photrix
ed9b36a86564f4b0389db6b350b8603a0eb82d05
[ "Apache-2.0" ]
4
2018-10-22T15:30:04.000Z
2018-10-23T01:13:31.000Z
test/test_acps.py
edose/photrix
ed9b36a86564f4b0389db6b350b8603a0eb82d05
[ "Apache-2.0" ]
1
2020-06-13T18:38:36.000Z
2020-06-13T18:38:36.000Z
from photrix import acps # don't include "acps." in calls to functions and classes. __author__ = "Eric Dose :: Bois d'Arc Observatory, Kansas" def test_ACPS_observation(): obs = acps.ACPS_observation("ST Tri", 34.555, 21.334) obs.add_imageset("ST Tri", 3, 120, 'V') obs.add_imageset("ST Tri I filter", 3, 30, 'I') txt = obs.rtml() print("\n" + txt + "\n") def test_run(): project = acps.ACPS_project("AN20160630-BOREA") # for the whole night on one instrument. plan = project.make_plan("first plan") plan.horizon = 30 # override class defaults plan.priority = 4 # " obs = acps.ACPS_observation('obs_id', 37, -1) obs.add_imageset("", 5, 60, 'V') obs.add_imageset("name2", 2, 120, 'I') plan.add_observation(obs) project.add_plan(plan) print('\n'*2 + project.rtml())
33.32
93
0.643457
df573495fa62a46d67b008763fa4bd5b5ac56090
10,522
py
Python
jsonfield/tests.py
Petro-Viron/django-jsonfield
df3eceda630b3d741e2a5d38a9f5e056921eac26
[ "MIT" ]
null
null
null
jsonfield/tests.py
Petro-Viron/django-jsonfield
df3eceda630b3d741e2a5d38a9f5e056921eac26
[ "MIT" ]
null
null
null
jsonfield/tests.py
Petro-Viron/django-jsonfield
df3eceda630b3d741e2a5d38a9f5e056921eac26
[ "MIT" ]
1
2016-06-06T10:44:01.000Z
2016-06-06T10:44:01.000Z
from decimal import Decimal from django.core.serializers import deserialize, serialize from django.core.serializers.base import DeserializationError from django.db import models from django.test import TestCase try: import json except ImportError: from django.utils import simplejson as json from .fields import JSONField, JSONCharField try: from django.forms.utils import ValidationError except ImportError: from django.forms.util import ValidationError from collections import OrderedDict class JsonModel(models.Model): json = JSONField() default_json = JSONField(default={"check": 12}) complex_default_json = JSONField(default=[{"checkcheck": 1212}]) empty_default = JSONField(default={}) class JsonCharModel(models.Model): json = JSONCharField(max_length=100) default_json = JSONCharField(max_length=100, default={"check": 34}) class ComplexEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, complex): return { '__complex__': True, 'real': obj.real, 'imag': obj.imag, } return json.JSONEncoder.default(self, obj) def as_complex(dct): if '__complex__' in dct: return complex(dct['real'], dct['imag']) return dct class JSONModelCustomEncoders(models.Model): # A JSON field that can store complex numbers json = JSONField( dump_kwargs={'cls': ComplexEncoder, "indent": 4}, load_kwargs={'object_hook': as_complex}, ) class JSONFieldTest(TestCase): """JSONField Wrapper Tests""" json_model = JsonModel def test_json_field_create(self): """Test saving a JSON object in our JSONField""" json_obj = { "item_1": "this is a json blah", "blergh": "hey, hey, hey"} obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj) def test_string_in_json_field(self): """Test saving an ordinary Python string in our JSONField""" json_obj = 'blah blah' obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj) def test_float_in_json_field(self): """Test saving a Python float in our JSONField""" json_obj = 1.23 obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj) def test_int_in_json_field(self): """Test saving a Python integer in our JSONField""" json_obj = 1234567 obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj) def test_decimal_in_json_field(self): """Test saving a Python Decimal in our JSONField""" json_obj = Decimal(12.34) obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) # here we must know to convert the returned string back to Decimal, # since json does not support that format self.assertEqual(Decimal(new_obj.json), json_obj) def test_json_field_modify(self): """Test modifying a JSON object in our JSONField""" json_obj_1 = {'a': 1, 'b': 2} json_obj_2 = {'a': 3, 'b': 4} obj = self.json_model.objects.create(json=json_obj_1) self.assertEqual(obj.json, json_obj_1) obj.json = json_obj_2 self.assertEqual(obj.json, json_obj_2) obj.save() self.assertEqual(obj.json, json_obj_2) self.assertTrue(obj) def test_json_field_load(self): """Test loading a JSON object from the DB""" json_obj_1 = {'a': 1, 'b': 2} obj = self.json_model.objects.create(json=json_obj_1) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj_1) def test_json_list(self): """Test storing a JSON list""" json_obj = ["my", "list", "of", 1, "objs", {"hello": "there"}] obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj) def test_empty_objects(self): """Test storing empty objects""" for json_obj in [{}, [], 0, '', False]: obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(json_obj, obj.json) self.assertEqual(json_obj, new_obj.json) def test_custom_encoder(self): """Test encoder_cls and object_hook""" value = 1 + 3j # A complex number obj = JSONModelCustomEncoders.objects.create(json=value) new_obj = JSONModelCustomEncoders.objects.get(pk=obj.pk) self.assertEqual(value, new_obj.json) def test_django_serializers(self): """Test serializing/deserializing jsonfield data""" for json_obj in [{}, [], 0, '', False, {'key': 'value', 'num': 42, 'ary': list(range(5)), 'dict': {'k': 'v'}}]: obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assert_(new_obj) queryset = self.json_model.objects.all() ser = serialize('json', queryset) for dobj in deserialize('json', ser): obj = dobj.object pulled = self.json_model.objects.get(id=obj.pk) self.assertEqual(obj.json, pulled.json) def test_default_parameters(self): """Test providing a default value to the model""" model = JsonModel() model.json = {"check": 12} self.assertEqual(model.json, {"check": 12}) self.assertEqual(type(model.json), dict) self.assertEqual(model.default_json, {"check": 12}) self.assertEqual(type(model.default_json), dict) def test_invalid_json(self): # invalid json data {] in the json and default_json fields ser = '[{"pk": 1, "model": "jsonfield.jsoncharmodel", ' \ '"fields": {"json": "{]", "default_json": "{]"}}]' with self.assertRaises(DeserializationError) as cm: next(deserialize('json', ser)) inner = cm.exception.args[0] self.assertTrue(isinstance(inner, ValidationError)) self.assertEqual('Enter valid JSON', inner.messages[0]) def test_integer_in_string_in_json_field(self): """Test saving the Python string '123' in our JSONField""" json_obj = '123' obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj) def test_boolean_in_string_in_json_field(self): """Test saving the Python string 'true' in our JSONField""" json_obj = 'true' obj = self.json_model.objects.create(json=json_obj) new_obj = self.json_model.objects.get(id=obj.id) self.assertEqual(new_obj.json, json_obj) def test_pass_by_reference_pollution(self): """Make sure the default parameter is copied rather than passed by reference""" model = JsonModel() model.default_json["check"] = 144 model.complex_default_json[0]["checkcheck"] = 144 self.assertEqual(model.default_json["check"], 144) self.assertEqual(model.complex_default_json[0]["checkcheck"], 144) # Make sure when we create a new model, it resets to the default value # and not to what we just set it to (it would be if it were passed by reference) model = JsonModel() self.assertEqual(model.default_json["check"], 12) self.assertEqual(model.complex_default_json[0]["checkcheck"], 1212) def test_normal_regex_filter(self): """Make sure JSON model can filter regex""" JsonModel.objects.create(json={"boom": "town"}) JsonModel.objects.create(json={"move": "town"}) JsonModel.objects.create(json={"save": "town"}) self.assertEqual(JsonModel.objects.count(), 3) self.assertEqual(JsonModel.objects.filter(json__regex=r"boom").count(), 1) self.assertEqual(JsonModel.objects.filter(json__regex=r"town").count(), 3) def test_save_blank_object(self): """Test that JSON model can save a blank object as none""" model = JsonModel() self.assertEqual(model.empty_default, {}) model.save() self.assertEqual(model.empty_default, {}) model1 = JsonModel(empty_default={"hey": "now"}) self.assertEqual(model1.empty_default, {"hey": "now"}) model1.save() self.assertEqual(model1.empty_default, {"hey": "now"}) class JSONCharFieldTest(JSONFieldTest): json_model = JsonCharModel class OrderedJsonModel(models.Model): json = JSONField(load_kwargs={'object_pairs_hook': OrderedDict}) class OrderedDictSerializationTest(TestCase): def setUp(self): self.ordered_dict = OrderedDict([ ('number', [1, 2, 3, 4]), ('notes', True), ('alpha', True), ('romeo', True), ('juliet', True), ('bravo', True), ]) self.expected_key_order = ['number', 'notes', 'alpha', 'romeo', 'juliet', 'bravo'] def test_ordered_dict_differs_from_normal_dict(self): self.assertEqual(list(self.ordered_dict.keys()), self.expected_key_order) self.assertNotEqual(dict(self.ordered_dict).keys(), self.expected_key_order) def test_default_behaviour_loses_sort_order(self): mod = JsonModel.objects.create(json=self.ordered_dict) self.assertEqual(list(mod.json.keys()), self.expected_key_order) mod_from_db = JsonModel.objects.get(id=mod.id) # mod_from_db lost ordering information during json.loads() self.assertNotEqual(mod_from_db.json.keys(), self.expected_key_order) def test_load_kwargs_hook_does_not_lose_sort_order(self): mod = OrderedJsonModel.objects.create(json=self.ordered_dict) self.assertEqual(list(mod.json.keys()), self.expected_key_order) mod_from_db = OrderedJsonModel.objects.get(id=mod.id) self.assertEqual(list(mod_from_db.json.keys()), self.expected_key_order)
36.79021
90
0.64636
0fa65f5409132752a19d26b4e4db9be2368c76fc
5,745
py
Python
test_cifar_iterative.py
GhostofAdam/Adaptive-Diversity-Promoting
0b23f0f507f5c4310cddd35391c5b94673cb1237
[ "Apache-2.0" ]
null
null
null
test_cifar_iterative.py
GhostofAdam/Adaptive-Diversity-Promoting
0b23f0f507f5c4310cddd35391c5b94673cb1237
[ "Apache-2.0" ]
null
null
null
test_cifar_iterative.py
GhostofAdam/Adaptive-Diversity-Promoting
0b23f0f507f5c4310cddd35391c5b94673cb1237
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import keras from keras.layers import AveragePooling2D, Input, Flatten from keras.models import Model, load_model from keras.datasets import cifar10, cifar100 import tensorflow as tf import cleverhans.attacks as attacks from cleverhans.utils_tf import model_eval import os from utils import * from model import resnet_v1 from keras_wraper_ensemble import KerasModelWrapper # Subtracting pixel mean improves accuracy subtract_pixel_mean = True # Computed depth from supplied model parameter n n = 3 depth = n * 6 + 2 version = 1 # Model name, depth and version model_type = 'ResNet%dv%d' % (depth, version) print(model_type) print('Attack method is %s'%FLAGS.attack_method) # Load the data. if FLAGS.dataset == 'cifar10': (x_train, y_train), (x_test, y_test) = cifar10.load_data() elif FLAGS.dataset == 'cifar100': (x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine') # Input image dimensions. input_shape = x_train.shape[1:] # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled clip_min = 0.0 clip_max = 1.0 if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean clip_min -= x_train_mean clip_max -= x_train_mean # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, 32, 32, 3)) y = tf.placeholder(tf.float32, shape=(None, num_classes)) sess = tf.Session() keras.backend.set_session(sess) # Prepare model pre-trained checkpoints directory. save_dir = os.path.join(os.getcwd(), FLAGS.dataset+'_EE_LED_saved_models'+str(FLAGS.num_models)+'_lamda'+str(FLAGS.lamda)+'_logdetlamda'+str(FLAGS.log_det_lamda)+'_'+str(FLAGS.augmentation)) model_name = 'model.%s.h5' % str(FLAGS.epoch).zfill(3) filepath = os.path.join(save_dir, model_name) print('Restore model checkpoints from %s'% filepath) # Prepare baseline model pre-trained checkpoints directory. save_dir_baseline = os.path.join(os.getcwd(), FLAGS.dataset+'_EE_LED_saved_models'+str(FLAGS.num_models)+'_lamda0.0_logdetlamda0.0_'+str(FLAGS.augmentation)) model_name_baseline = 'model.%s.h5' % str(FLAGS.baseline_epoch).zfill(3) filepath_baseline = os.path.join(save_dir_baseline, model_name_baseline) print('Restore baseline model checkpoints from %s'% filepath_baseline) #Creat model model_input = Input(shape=input_shape) model_dic = {} model_out = [] feature_maps = [] for i in range(FLAGS.num_models): model_dic[str(i)] = resnet_v1(input=model_input, depth=depth, num_classes=num_classes, dataset=FLAGS.dataset) model_out.append(model_dic[str(i)][2]) model_output = keras.layers.concatenate(model_out) model = Model(inputs=model_input, outputs=model_output) model_ensemble = keras.layers.Average()(model_out) model_ensemble = Model(input=model_input, output=model_ensemble) #Creat baseline model model_input_baseline = Input(shape=input_shape) model_dic_baseline = {} model_out_baseline = [] for i in range(FLAGS.num_models): model_dic_baseline[str(i)] = resnet_v1(input=model_input_baseline, depth=depth, num_classes=num_classes, dataset=FLAGS.dataset) model_out_baseline.append(model_dic_baseline[str(i)][2]) model_output_baseline = keras.layers.concatenate(model_out_baseline) model_baseline = Model(inputs=model_input_baseline, outputs=model_output_baseline) model_ensemble_baseline = keras.layers.Average()(model_out_baseline) model_ensemble_baseline = Model(input=model_input_baseline, output=model_ensemble_baseline) #Get individual models wrap_ensemble = KerasModelWrapper(model_ensemble) wrap_ensemble_baseline = KerasModelWrapper(model_ensemble_baseline) #Load model model.load_weights(filepath) model_baseline.load_weights(filepath_baseline) # Initialize the attack method if FLAGS.attack_method == 'MadryEtAl': att = attacks.MadryEtAl(wrap_ensemble) att_baseline = attacks.MadryEtAl(wrap_ensemble_baseline) elif FLAGS.attack_method == 'FastGradientMethod': att = attacks.FastGradientMethod(wrap_ensemble) att_baseline = attacks.FastGradientMethod(wrap_ensemble_baseline) elif FLAGS.attack_method == 'MomentumIterativeMethod': att = attacks.MomentumIterativeMethod(wrap_ensemble) att_baseline = attacks.MomentumIterativeMethod(wrap_ensemble_baseline) elif FLAGS.attack_method == 'BasicIterativeMethod': att = attacks.BasicIterativeMethod(wrap_ensemble) att_baseline = attacks.BasicIterativeMethod(wrap_ensemble_baseline) # Consider the attack to be constant eval_par = {'batch_size': 100} eps_ = FLAGS.eps print('eps is %.3f'%eps_) if FLAGS.attack_method == 'FastGradientMethod': att_params = {'eps': eps_, 'clip_min': clip_min, 'clip_max': clip_max} else: att_params = {'eps': eps_, 'eps_iter': eps_*1.0/10, 'clip_min': clip_min, 'clip_max': clip_max, 'nb_iter': 10} adv_x = tf.stop_gradient(att.generate(x, **att_params)) adv_x_baseline = tf.stop_gradient(att_baseline.generate(x, **att_params)) preds = model_ensemble(adv_x) preds_baseline = model_ensemble_baseline(adv_x_baseline) acc = model_eval(sess, x, y, preds, x_test, y_test, args=eval_par) acc_baseline = model_eval(sess, x, y, preds_baseline, x_test, y_test, args=eval_par) print('adv_ensemble_acc: %.3f adv_ensemble_baseline_acc: %.3f'%(acc,acc_baseline))
35.90625
191
0.747084
839ddf997348196edda8e3980aa727541fadd835
956
py
Python
script/start.py
pranayaryal/electron
a7052efaf4fc6bb2aeedd6579e662e98aa2237dd
[ "MIT" ]
1,027
2016-12-24T13:05:29.000Z
2022-02-21T11:07:32.000Z
script/start.py
pranayaryal/electron
a7052efaf4fc6bb2aeedd6579e662e98aa2237dd
[ "MIT" ]
366
2016-12-24T05:58:54.000Z
2018-12-31T23:02:03.000Z
script/start.py
pranayaryal/electron
a7052efaf4fc6bb2aeedd6579e662e98aa2237dd
[ "MIT" ]
122
2017-01-14T23:48:49.000Z
2022-03-09T01:51:53.000Z
#!/usr/bin/env python import os import subprocess import sys from lib.util import electron_gyp SOURCE_ROOT = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) PROJECT_NAME = electron_gyp()['project_name%'] PRODUCT_NAME = electron_gyp()['product_name%'] def main(): os.chdir(SOURCE_ROOT) config = 'D' if '-R' in sys.argv: config = 'R' if sys.platform == 'darwin': electron = os.path.join(SOURCE_ROOT, 'out', config, '{0}.app'.format(PRODUCT_NAME), 'Contents', 'MacOS', PRODUCT_NAME) elif sys.platform == 'win32': electron = os.path.join(SOURCE_ROOT, 'out', config, '{0}.exe'.format(PROJECT_NAME)) else: electron = os.path.join(SOURCE_ROOT, 'out', config, PROJECT_NAME) try: subprocess.check_call([electron] + sys.argv[1:]) except KeyboardInterrupt: return -1 if __name__ == '__main__': sys.exit(main())
23.317073
73
0.621339
bbd9939de21307e5bfb2340653ed0f30fe6db6c5
810
py
Python
src/patched_flannel/classification/header.py
mannbiher/DeepLearningForHealthCareProject
4692031591bd88c489c9b905e7c340ac76a5366b
[ "MIT" ]
null
null
null
src/patched_flannel/classification/header.py
mannbiher/DeepLearningForHealthCareProject
4692031591bd88c489c9b905e7c340ac76a5366b
[ "MIT" ]
14
2021-05-10T18:00:58.000Z
2021-05-12T00:29:41.000Z
src/patched_flannel/classification/header.py
mannbiher/DeepLearningForHealthCareProject
4692031591bd88c489c9b905e7c340ac76a5366b
[ "MIT" ]
null
null
null
# Test name test_name = 'classifier_newset' # sampling_option = 'oversampling' sampling_option = None # Batch size train_batch_size = 16 val_batch_size = 16 test_batch_size = 1 # Num_classes num_classes = 4 # Model #model = 'resnet' model = 'resnet' # Feature extract or train all parameters feature_extract = False # Num epoch epoch_max = 100 # Folder image dir data_dir = './patched_flannel/classification_data/' # Save dir save_dir = './patched_flannel/checkpoint/' + test_name # Test epoch: what epoch to load inference_epoch = 100 # Resume training continue_epoch = 36 # Early stopping patience = 50 # Regularization lambda_l1 = 1e-5 # Resize image resize = 1024 # Repeat for inference repeat = 100 # Learning rate lr = 1e-5 # Patch size img_size = 224 # ResNet layers resnet = 'resnet34'
14.464286
54
0.740741
4cb9c81e0ca788f0034f0aa44fb47f09f8bd1d12
20,128
py
Python
research/street/python/vgslspecs.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
1
2019-09-11T09:41:11.000Z
2019-09-11T09:41:11.000Z
research/street/python/vgslspecs.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
research/street/python/vgslspecs.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """String network description language mapping to TF-Slim calls where possible. See vglspecs.md for detailed description. """ import re from string import maketrans import nn_ops import shapes from six.moves import xrange import tensorflow as tf import tensorflow.contrib.slim as slim # Class that builds a set of ops to manipulate variable-sized images. class VGSLSpecs(object): """Layers that can be built from a string definition.""" def __init__(self, widths, heights, is_training): """Constructs a VGSLSpecs. Args: widths: Tensor of size batch_size of the widths of the inputs. heights: Tensor of size batch_size of the heights of the inputs. is_training: True if the graph should be build for training. """ # The string that was used to build this model. self.model_str = None # True if we are training self.is_training = is_training # Tensor for the size of the images, of size batch_size. self.widths = widths self.heights = heights # Overall reduction factors of this model so far for each dimension. # TODO(rays) consider building a graph from widths and heights instead of # computing a scale factor. self.reduction_factors = [1.0, 1.0, 1.0, 1.0] # List of Op parsers. # TODO(rays) add more Op types as needed. self.valid_ops = [self.AddSeries, self.AddParallel, self.AddConvLayer, self.AddMaxPool, self.AddDropout, self.AddReShape, self.AddFCLayer, self.AddLSTMLayer] # Translation table to convert unacceptable characters that may occur # in op strings that cannot be used as names. self.transtab = maketrans('(,)', '___') def Build(self, prev_layer, model_str): """Builds a network with input prev_layer from a VGSLSpecs description. Args: prev_layer: The input tensor. model_str: Model definition similar to Tesseract as follows: ============ FUNCTIONAL OPS ============ C(s|t|r|l|m)[{name}]<y>,<x>,<d> Convolves using a y,x window, with no shrinkage, SAME infill, d outputs, with s|t|r|l|m non-linear layer. (s|t|r|l|m) specifies the type of non-linearity: s = sigmoid t = tanh r = relu l = linear (i.e., None) m = softmax F(s|t|r|l|m)[{name}]<d> Fully-connected with s|t|r|l|m non-linearity and d outputs. Reduces height, width to 1. Input height and width must be constant. L(f|r|b)(x|y)[s][{name}]<n> LSTM cell with n outputs. f runs the LSTM forward only. r runs the LSTM reversed only. b runs the LSTM bidirectionally. x runs the LSTM in the x-dimension (on data with or without the y-dimension). y runs the LSTM in the y-dimension (data must have a y dimension). s (optional) summarizes the output in the requested dimension, outputting only the final step, collapsing the dimension to a single element. Examples: Lfx128 runs a forward-only LSTM in the x-dimension with 128 outputs, treating any y dimension independently. Lfys64 runs a forward-only LSTM in the y-dimension with 64 outputs and collapses the y-dimension to 1 element. NOTE that Lbxsn is implemented as (LfxsnLrxsn) since the summaries need to be taken from opposite ends of the output Do[{name}] Insert a dropout layer. ============ PLUMBING OPS ============ [...] Execute ... networks in series (layers). (...) Execute ... networks in parallel, with their output concatenated in depth. S[{name}]<d>(<a>x<b>)<e>,<f> Splits one dimension, moves one part to another dimension. Splits input dimension d into a x b, sending the high part (a) to the high side of dimension e, and the low part (b) to the high side of dimension f. Exception: if d=e=f, then then dimension d is internally transposed to bxa. Either a or b can be zero, meaning whatever is left after taking out the other, allowing dimensions to be of variable size. Eg. S3(3x50)2,3 will split the 150-element depth into 3x50, with the 3 going to the most significant part of the width, and the 50 part staying in depth. This will rearrange a 3x50 output parallel operation to spread the 3 output sets over width. Mp[{name}]<y>,<x> Maxpool the input, reducing the (y,x) rectangle to a single vector value. Returns: Output tensor """ self.model_str = model_str final_layer, _ = self.BuildFromString(prev_layer, 0) return final_layer def GetLengths(self, dim=2, factor=1): """Returns the lengths of the batch of elements in the given dimension. WARNING: The returned sizes may not exactly match TF's calculation. Args: dim: dimension to get the sizes of, in [1,2]. batch, depth not allowed. factor: A scalar value to multiply by. Returns: The original heights/widths scaled by the current scaling of the model and the given factor. Raises: ValueError: If the args are invalid. """ if dim == 1: lengths = self.heights elif dim == 2: lengths = self.widths else: raise ValueError('Invalid dimension given to GetLengths') lengths = tf.cast(lengths, tf.float32) if self.reduction_factors[dim] is not None: lengths = tf.div(lengths, self.reduction_factors[dim]) else: lengths = tf.ones_like(lengths) if factor != 1: lengths = tf.multiply(lengths, tf.cast(factor, tf.float32)) return tf.cast(lengths, tf.int32) def BuildFromString(self, prev_layer, index): """Adds the layers defined by model_str[index:] to the model. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor, next model_str index. Raises: ValueError: If the model string is unrecognized. """ index = self._SkipWhitespace(index) for op in self.valid_ops: output_layer, next_index = op(prev_layer, index) if output_layer is not None: return output_layer, next_index if output_layer is not None: return output_layer, next_index raise ValueError('Unrecognized model string:' + self.model_str[index:]) def AddSeries(self, prev_layer, index): """Builds a sequence of layers for a VGSLSpecs model. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor of the series, end index in model_str. Raises: ValueError: If [] are unbalanced. """ if self.model_str[index] != '[': return None, None index += 1 while index < len(self.model_str) and self.model_str[index] != ']': prev_layer, index = self.BuildFromString(prev_layer, index) if index == len(self.model_str): raise ValueError('Missing ] at end of series!' + self.model_str) return prev_layer, index + 1 def AddParallel(self, prev_layer, index): """tf.concats outputs of layers that run on the same inputs. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor of the parallel, end index in model_str. Raises: ValueError: If () are unbalanced or the elements don't match. """ if self.model_str[index] != '(': return None, None index += 1 layers = [] num_dims = 0 # Each parallel must output the same, including any reduction factor, in # all dimensions except depth. # We have to save the starting factors, so they don't get reduced by all # the elements of the parallel, only once. original_factors = self.reduction_factors final_factors = None while index < len(self.model_str) and self.model_str[index] != ')': self.reduction_factors = original_factors layer, index = self.BuildFromString(prev_layer, index) if num_dims == 0: num_dims = len(layer.get_shape()) elif num_dims != len(layer.get_shape()): raise ValueError('All elements of parallel must return same num dims') layers.append(layer) if final_factors: if final_factors != self.reduction_factors: raise ValueError('All elements of parallel must scale the same') else: final_factors = self.reduction_factors if index == len(self.model_str): raise ValueError('Missing ) at end of parallel!' + self.model_str) return tf.concat(axis=num_dims - 1, values=layers), index + 1 def AddConvLayer(self, prev_layer, index): """Add a single standard convolutional layer. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor, end index in model_str. """ pattern = re.compile(R'(C)(s|t|r|l|m)({\w+})?(\d+),(\d+),(\d+)') m = pattern.match(self.model_str, index) if m is None: return None, None name = self._GetLayerName(m.group(0), index, m.group(3)) width = int(m.group(4)) height = int(m.group(5)) depth = int(m.group(6)) fn = self._NonLinearity(m.group(2)) return slim.conv2d( prev_layer, depth, [height, width], activation_fn=fn, scope=name), m.end() def AddMaxPool(self, prev_layer, index): """Add a maxpool layer. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor, end index in model_str. """ pattern = re.compile(R'(Mp)({\w+})?(\d+),(\d+)(?:,(\d+),(\d+))?') m = pattern.match(self.model_str, index) if m is None: return None, None name = self._GetLayerName(m.group(0), index, m.group(2)) height = int(m.group(3)) width = int(m.group(4)) y_stride = height if m.group(5) is None else m.group(5) x_stride = width if m.group(6) is None else m.group(6) self.reduction_factors[1] *= y_stride self.reduction_factors[2] *= x_stride return slim.max_pool2d( prev_layer, [height, width], [y_stride, x_stride], padding='SAME', scope=name), m.end() def AddDropout(self, prev_layer, index): """Adds a dropout layer. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor, end index in model_str. """ pattern = re.compile(R'(Do)({\w+})?') m = pattern.match(self.model_str, index) if m is None: return None, None name = self._GetLayerName(m.group(0), index, m.group(2)) layer = slim.dropout( prev_layer, 0.5, is_training=self.is_training, scope=name) return layer, m.end() def AddReShape(self, prev_layer, index): """Reshapes the input tensor by moving each (x_scale,y_scale) rectangle to. the depth dimension. NOTE that the TF convention is that inputs are [batch, y, x, depth]. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor, end index in model_str. """ pattern = re.compile(R'(S)(?:{(\w)})?(\d+)\((\d+)x(\d+)\)(\d+),(\d+)') m = pattern.match(self.model_str, index) if m is None: return None, None name = self._GetLayerName(m.group(0), index, m.group(2)) src_dim = int(m.group(3)) part_a = int(m.group(4)) part_b = int(m.group(5)) dest_dim_a = int(m.group(6)) dest_dim_b = int(m.group(7)) if part_a == 0: part_a = -1 if part_b == 0: part_b = -1 prev_shape = tf.shape(prev_layer) layer = shapes.transposing_reshape( prev_layer, src_dim, part_a, part_b, dest_dim_a, dest_dim_b, name=name) # Compute scale factors. result_shape = tf.shape(layer) for i in xrange(len(self.reduction_factors)): if self.reduction_factors[i] is not None: factor1 = tf.cast(self.reduction_factors[i], tf.float32) factor2 = tf.cast(prev_shape[i], tf.float32) divisor = tf.cast(result_shape[i], tf.float32) self.reduction_factors[i] = tf.div(tf.multiply(factor1, factor2), divisor) return layer, m.end() def AddFCLayer(self, prev_layer, index): """Parse expression and add Fully Connected Layer. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor, end index in model_str. """ pattern = re.compile(R'(F)(s|t|r|l|m)({\w+})?(\d+)') m = pattern.match(self.model_str, index) if m is None: return None, None fn = self._NonLinearity(m.group(2)) name = self._GetLayerName(m.group(0), index, m.group(3)) depth = int(m.group(4)) input_depth = shapes.tensor_dim(prev_layer, 1) * shapes.tensor_dim( prev_layer, 2) * shapes.tensor_dim(prev_layer, 3) # The slim fully connected is actually a 1x1 conv, so we have to crush the # dimensions on input. # Everything except batch goes to depth, and therefore has to be known. shaped = tf.reshape( prev_layer, [-1, input_depth], name=name + '_reshape_in') output = slim.fully_connected(shaped, depth, activation_fn=fn, scope=name) # Width and height are collapsed to 1. self.reduction_factors[1] = None self.reduction_factors[2] = None return tf.reshape( output, [shapes.tensor_dim(prev_layer, 0), 1, 1, depth], name=name + '_reshape_out'), m.end() def AddLSTMLayer(self, prev_layer, index): """Parse expression and add LSTM Layer. Args: prev_layer: Input tensor. index: Position in model_str to start parsing Returns: Output tensor, end index in model_str. """ pattern = re.compile(R'(L)(f|r|b)(x|y)(s)?({\w+})?(\d+)') m = pattern.match(self.model_str, index) if m is None: return None, None direction = m.group(2) dim = m.group(3) summarize = m.group(4) == 's' name = self._GetLayerName(m.group(0), index, m.group(5)) depth = int(m.group(6)) if direction == 'b' and summarize: fwd = self._LSTMLayer(prev_layer, 'forward', dim, True, depth, name + '_forward') back = self._LSTMLayer(prev_layer, 'backward', dim, True, depth, name + '_reverse') return tf.concat(axis=3, values=[fwd, back], name=name + '_concat'), m.end() if direction == 'f': direction = 'forward' elif direction == 'r': direction = 'backward' else: direction = 'bidirectional' outputs = self._LSTMLayer(prev_layer, direction, dim, summarize, depth, name) if summarize: # The x or y dimension is getting collapsed. if dim == 'x': self.reduction_factors[2] = None else: self.reduction_factors[1] = None return outputs, m.end() def _LSTMLayer(self, prev_layer, direction, dim, summarize, depth, name): """Adds an LSTM layer with the given pre-parsed attributes. Always maps 4-D to 4-D regardless of summarize. Args: prev_layer: Input tensor. direction: 'forward' 'backward' or 'bidirectional' dim: 'x' or 'y', dimension to consider as time. summarize: True if we are to return only the last timestep. depth: Output depth. name: Some string naming the op. Returns: Output tensor. """ # If the target dimension is y, we need to transpose. if dim == 'x': lengths = self.GetLengths(2, 1) inputs = prev_layer else: lengths = self.GetLengths(1, 1) inputs = tf.transpose(prev_layer, [0, 2, 1, 3], name=name + '_ytrans_in') input_batch = shapes.tensor_dim(inputs, 0) num_slices = shapes.tensor_dim(inputs, 1) num_steps = shapes.tensor_dim(inputs, 2) input_depth = shapes.tensor_dim(inputs, 3) # Reshape away the other dimension. inputs = tf.reshape( inputs, [-1, num_steps, input_depth], name=name + '_reshape_in') # We need to replicate the lengths by the size of the other dimension, and # any changes that have been made to the batch dimension. tile_factor = tf.to_float(input_batch * num_slices) / tf.to_float(tf.shape(lengths)[0]) lengths = tf.tile(lengths, [tf.cast(tile_factor, tf.int32)]) lengths = tf.cast(lengths, tf.int64) outputs = nn_ops.rnn_helper( inputs, lengths, cell_type='lstm', num_nodes=depth, direction=direction, name=name, stddev=0.1) # Output depth is doubled if bi-directional. if direction == 'bidirectional': output_depth = depth * 2 else: output_depth = depth # Restore the other dimension. if summarize: outputs = tf.slice( outputs, [0, num_steps - 1, 0], [-1, 1, -1], name=name + '_sum_slice') outputs = tf.reshape( outputs, [input_batch, num_slices, 1, output_depth], name=name + '_reshape_out') else: outputs = tf.reshape( outputs, [input_batch, num_slices, num_steps, output_depth], name=name + '_reshape_out') if dim == 'y': outputs = tf.transpose(outputs, [0, 2, 1, 3], name=name + '_ytrans_out') return outputs def _NonLinearity(self, code): """Returns the non-linearity function pointer for the given string code. For forwards compatibility, allows the full names for stand-alone non-linearities, as well as the single-letter names used in ops like C,F. Args: code: String code representing a non-linearity function. Returns: non-linearity function represented by the code. """ if code in ['s', 'Sig']: return tf.sigmoid elif code in ['t', 'Tanh']: return tf.tanh elif code in ['r', 'Relu']: return tf.nn.relu elif code in ['m', 'Smax']: return tf.nn.softmax return None def _GetLayerName(self, op_str, index, name_str): """Generates a name for the op, using a user-supplied name if possible. Args: op_str: String representing the parsed op. index: Position in model_str of the start of the op. name_str: User-supplied {name} with {} that need removing or None. Returns: Selected name. """ if name_str: return name_str[1:-1] else: return op_str.translate(self.transtab) + '_' + str(index) def _SkipWhitespace(self, index): """Skips any leading whitespace in the model description. Args: index: Position in model_str to start parsing Returns: end index in model_str of whitespace. """ pattern = re.compile(R'([ \t\n]+)') m = pattern.match(self.model_str, index) if m is None: return index return m.end()
37.62243
83
0.618839
432ed35d75e3859864531470ff3c9c6ca38ba7a1
1,212
py
Python
examples/recaptcha/app.py
jace/flask-wtf
bd6cfe07daf0607947c506fbb656e53de04851a1
[ "BSD-3-Clause" ]
1
2015-09-16T16:20:13.000Z
2015-09-16T16:20:13.000Z
examples/recaptcha/app.py
jace/flask-wtf
bd6cfe07daf0607947c506fbb656e53de04851a1
[ "BSD-3-Clause" ]
null
null
null
examples/recaptcha/app.py
jace/flask-wtf
bd6cfe07daf0607947c506fbb656e53de04851a1
[ "BSD-3-Clause" ]
null
null
null
from flask import Flask, render_template, flash, session, redirect, url_for from flask.ext.wtf import Form, TextAreaField, RecaptchaField, Required DEBUG = True SECRET_KEY = 'secret' # keys for localhost. Change as appropriate. RECAPTCHA_PUBLIC_KEY = '6LeYIbsSAAAAACRPIllxA7wvXjIE411PfdB2gt2J' RECAPTCHA_PRIVATE_KEY = '6LeYIbsSAAAAAJezaIq3Ft_hSTo0YtyeFG-JgRtu' app = Flask(__name__) app.config.from_object(__name__) class CommentForm(Form): comment = TextAreaField("Comment", validators=[Required()]) recaptcha = RecaptchaField() @app.route("/") def index(form=None): if form is None: form = CommentForm() comments = session.get("comments", []) return render_template("index.html", comments=comments, form=form) @app.route("/add/", methods=("POST",)) def add_comment(): form = CommentForm() if form.validate_on_submit(): comments = session.pop('comments', []) comments.append(form.comment.data) session['comments'] = comments flash("You have added a new comment") return redirect(url_for("index")) return index(form) if __name__ == "__main__": app.run()
27.545455
75
0.669142
bcdd3c622218a70bc9fae99c38f47a45298a8747
3,248
py
Python
src/hyperloop/Python/tests/test_cycle_group.py
jcchin/Hyperloop_v2
73861d2207af8738425c1d484909ed0433b9653f
[ "Apache-2.0" ]
1
2021-04-29T00:23:03.000Z
2021-04-29T00:23:03.000Z
src/hyperloop/Python/tests/test_cycle_group.py
jcchin/Hyperloop_v2
73861d2207af8738425c1d484909ed0433b9653f
[ "Apache-2.0" ]
9
2016-11-23T09:10:34.000Z
2016-12-06T01:10:09.000Z
src/hyperloop/Python/tests/test_cycle_group.py
jcchin/Hyperloop_v2
73861d2207af8738425c1d484909ed0433b9653f
[ "Apache-2.0" ]
11
2016-01-19T20:26:35.000Z
2021-02-13T11:16:20.000Z
""" Test for cycle_group.py. Uses test values and outputs given by NPSS """ from __future__ import print_function import numpy as np from openmdao.api import Group, Problem, IndepVarComp from openmdao.core.group import Group, Component, IndepVarComp from openmdao.solvers.newton import Newton from openmdao.api import NLGaussSeidel from openmdao.solvers.scipy_gmres import ScipyGMRES from openmdao.units.units import convert_units as cu from openmdao.api import Problem, LinearGaussSeidel from openmdao.solvers.ln_direct import DirectSolver from openmdao.api import SqliteRecorder from pycycle.components import Compressor, Shaft, FlowStart, Inlet, Nozzle, Duct, Splitter, FlightConditions from pycycle.species_data import janaf from pycycle.connect_flow import connect_flow from pycycle.constants import AIR_FUEL_MIX, AIR_MIX from pycycle.constants import R_UNIVERSAL_ENG, R_UNIVERSAL_SI from hyperloop.Python.pod.cycle import cycle_group def create_problem(GroupName): root = Group() prob = Problem(root) prob.root.add('Cycle', GroupName) return prob class TestCycle(object): def test_case1_vs_inductrack(self): CycleGroup = cycle_group.Cycle() prob = create_problem(CycleGroup) params = (('comp_PR', 12.6, {'units': 'unitless'}), ('PsE', 0.05588, {'units': 'psi'}), ('pod_mach_number', .8, {'units': 'unitless'}), ('tube_pressure', 850., {'units': 'Pa'}), ('tube_temp', 320., {'units': 'K'}), ('comp_inlet_area', 2.3884, {'units': 'm**2'})) prob.root.add('des_vars', IndepVarComp(params)) prob.root.connect('des_vars.comp_PR', 'Cycle.comp.map.PRdes') prob.root.connect('des_vars.PsE', 'Cycle.nozzle.Ps_exhaust') prob.root.connect('des_vars.pod_mach_number', 'Cycle.pod_mach') prob.root.connect('des_vars.tube_pressure', 'Cycle.tube_pressure') prob.root.connect('des_vars.tube_temp', 'Cycle.tube_temp') prob.root.connect('des_vars.comp_inlet_area', 'Cycle.comp_inlet_area') prob.setup() #prob.root.list_connections() prob['Cycle.CompressorMass.comp_eff'] = 91.0 prob['Cycle.CompressorLen.h_stage'] = 58.2 prob['Cycle.FlowPathInputs.gamma'] = 1.4 prob['Cycle.FlowPathInputs.R'] = 287. prob['Cycle.FlowPathInputs.eta'] = 0.99 prob['Cycle.FlowPathInputs.comp_mach'] = 0.6 prob.run() # Test Values assert np.isclose(prob['Cycle.comp_len'], 3.579, rtol=.01) assert np.isclose(prob['Cycle.comp_mass'], 774.18, rtol=.01) assert np.isclose(cu(prob['Cycle.comp.trq'], 'ft*lbf', 'N*m'), -2622.13, rtol=.01) assert np.isclose(cu(prob['Cycle.comp.power'], 'hp', 'W'), -2745896.44, rtol=.01) assert np.isclose(cu(prob['Cycle.comp.Fl_O:stat:area'], 'inch**2', 'm**2'), 0.314, rtol=.01) assert np.isclose(cu(prob['Cycle.nozzle.Fg'], 'lbf', 'N'), 6562.36, rtol=.01) assert np.isclose(cu(prob['Cycle.inlet.F_ram'], 'lbf', 'N'), 1855.47, rtol=.01) assert np.isclose(cu(prob['Cycle.nozzle.Fl_O:tot:T'], 'degR', 'K'), 767.132, rtol=.01) assert np.isclose(cu(prob['Cycle.nozzle.Fl_O:stat:W'], 'lbm/s', 'kg/s'), 6.467, rtol=.01)
41.113924
108
0.669643
3e1f14cb7d9e020f593678d8e89a9653140cb311
7,473
py
Python
projects/file_handling/filehandling.py
iannico322/Python-GUI-Project
5e5db3ef0677b5ee9d5378823eaa9f4f34c0b097
[ "Unlicense" ]
null
null
null
projects/file_handling/filehandling.py
iannico322/Python-GUI-Project
5e5db3ef0677b5ee9d5378823eaa9f4f34c0b097
[ "Unlicense" ]
null
null
null
projects/file_handling/filehandling.py
iannico322/Python-GUI-Project
5e5db3ef0677b5ee9d5378823eaa9f4f34c0b097
[ "Unlicense" ]
null
null
null
from tkinter import* import tkinter.ttk as ttk import tkinter.messagebox as tkMessageBox import sqlite3 import os #DEVELOPED by:Author Ian Nico M. Caulin #COURSE : BSIT-1R5 root = Tk() root.title("Python - Save Data To Table (File Handling)") root.iconbitmap('images/logo.ico') screen_width = root.winfo_screenwidth() screen_height = root.winfo_screenheight() width = 988 height = 500 x = (screen_width/2) - (width/2) y = (screen_height/2) - (height/2) root.geometry('%dx%d+%d+%d' % (width, height, x, y)) root.resizable(0, 0) root.config(bg='#17161b') #==================================METHODS============================================ def Database(): global conn, cursor conn = sqlite3.connect('projects/file_handling/Filehandling.db') cursor = conn.cursor() cursor.execute("CREATE TABLE IF NOT EXISTS `member` (mem_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, firstname TEXT, lastname TEXT, gender TEXT, address TEXT, username TEXT, password TEXT)") def insertData(): if FIRSTNAME.get() == "" or LASTNAME.get() == "" or GENDER.get() == "" or ADDRESS.get() == "" or USERNAME.get() == "" or PASSWORD.get() == "": txt_result.config(text="Please complete the required field!", fg="red") else: Database() cursor.execute("INSERT INTO `member` (firstname,lastname, gender, address, username, password) VALUES(?, ?, ?, ?, ?,?)", (str(FIRSTNAME.get()), str(LASTNAME.get()), str(GENDER.get()), str(ADDRESS.get()), str(USERNAME.get()), str(PASSWORD.get()))) conn.commit() FIRSTNAME.set("") LASTNAME.set("") GENDER.set("") ADDRESS.set("") USERNAME.set("") PASSWORD.set("") txt_result.config(text="Saved a data!", fg="green") cursor.close() conn.close() displayData() def displayData(): tree.delete(*tree.get_children()) Database() cursor.execute("SELECT * FROM member ORDER BY firstname ASC") fetch = cursor.fetchall() for data in fetch: tree.insert('', 'end', values=( data[1], data[2], data[3], data[4],data[5],data[6], '******')) cursor.close() conn.close() def Exit(): result = tkMessageBox.askquestion('P A H I M A N G N O !', 'Are you sure you want to exit?', icon="warning") if result == 'yes': root.withdraw() os.system('main.py') #==================================VARIABLES========================================== titlepic = PhotoImage(file='images/filehandlingtitle.png') FIRSTNAME = StringVar() LASTNAME = StringVar() GENDER = StringVar() ADDRESS = StringVar() USERNAME = StringVar() PASSWORD = StringVar() #==================================FRAME============================================== Top = Frame(root) Top.pack(side=TOP,anchor=W) Left = Frame(root, width=700, height=500) Left.pack(side=LEFT) Right = Frame(root, width=600, height=500, bd=4,bg='#17161b') Right.pack(side=RIGHT,padx=(0,0)) Forms = Frame(Right, width=100, height=750,bg='#17161b') Forms.pack(side=TOP,pady=20) Buttons = Frame(Right, width=300, height=100,bg='#17161b') Buttons.pack(side=BOTTOM) RadioGroup = Frame(Forms) title = Frame(root) #==================================LABEL WIDGET======================================= txt_title = Label(Top,image=titlepic,bg='#050505',borderwidth=0) txt_title.pack() txt_firstname = Label(Forms, text="Firstname:",font='arial 14 ',fg='#c4c4c4',bg='#17161b',bd=15) txt_firstname.grid(row=0, stick="e") txt_lastname = Label(Forms, text="Lastname:",font='arial 14 ',fg='#c4c4c4',bg='#17161b',bd=15) txt_lastname.grid(row=1, stick="e") txt_gender = Label(Forms, text="Gender:",font='arial 14 ',fg='#c4c4c4',bg='#17161b',bd=15) txt_gender.grid(row=2, stick="e") txt_address = Label(Forms, text="Address:",font='arial 14 ',fg='#c4c4c4',bg='#17161b',bd=15) txt_address.grid(row=3, stick="e") txt_username = Label(Forms, text="Username:",font='arial 14 ',fg='#c4c4c4',bg='#17161b',bd=15) txt_username.grid(row=4, stick="e") txt_password = Label(Forms, text="Password:",font='arial 14 ',fg='#c4c4c4',bg='#17161b',bd=15) txt_password.grid(row=5, stick="e") txt_result = Label(Buttons,bg='#17161b') txt_result.pack(side=TOP) #==================================ENTRY WIDGET======================================= firstname = Entry(Forms, textvariable=FIRSTNAME, width=28,font='arial 10 ',fg='#1df700',bg='#0f1012',bd=1,relief=SUNKEN) firstname.grid(row=0, column=1) lastname = Entry(Forms, textvariable=LASTNAME, width=28,font='arial 10 ',fg='#1df700',bg='#0f1012',bd=1,relief=SUNKEN) lastname.grid(row=1, column=1) gender1 = Radiobutton(Forms, text='Male', variable=GENDER, value="Male",bg='#17161b',fg='#1df700',selectcolor='#17161b',activebackground='#17161b').grid(row=2,columnspan=2) gender2 =Radiobutton(Forms, text='Female', variable=GENDER, value="Female",bg='#17161b',fg='#1df700',selectcolor='#17161b',activebackground='#17161b').grid(row=2,column=1,columnspan=2) address = Entry(Forms, textvariable=ADDRESS, width=30,font='arial 10 ',fg='#1df700',bg='#0f1012',bd=1,relief=SUNKEN) address.grid(row=3, column=1) username = Entry(Forms, textvariable=USERNAME, width=28,font='arial 10 ',fg='#1df700',bg='#0f1012',bd=1,relief=SUNKEN,) username.grid(row=4, column=1) password = Entry(Forms, textvariable=PASSWORD, show="*", width=28,font='arial 10 ',fg='#1df700',bg='#0f1012',bd=1,relief=SUNKEN) password.grid(row=5, column=1) #==================================BUTTONS WIDGET===================================== btn_create = Button(Buttons,cursor='circle', width=10, text="Save",font='arial 10 bold',activebackground='#17161b',fg='#1df700',relief=SUNKEN,activeforeground='#1df700', command=insertData,bg='black',padx=10) btn_create.pack(side=LEFT,expand=7) btn_exit = Button(Buttons,cursor='circle', width=10, text="Exit", command=Exit,bg='black',activebackground='#17161b',fg='#1df700',relief=SUNKEN,activeforeground='#1df700',font='arial 10 bold',padx=10) btn_exit.pack(side=LEFT) #==================================LIST WIDGET======================================== scrollbary = Scrollbar(Left, orient=VERTICAL) scrollbarx = Scrollbar(Left, orient=HORIZONTAL,) tree = ttk.Treeview(Left, columns=("Firstname", "Lastname","Gender", "Address", "Username", "Password"), selectmode="extended", height=500, yscrollcommand=scrollbary.set, xscrollcommand=scrollbarx.set) scrollbary.config(command=tree.yview) scrollbary.pack(side=RIGHT, fill=Y) scrollbarx.config(command=tree.xview) scrollbarx.pack(side=BOTTOM, fill=X) tree.heading('Firstname', text="Firstname", anchor=W) tree.heading('Lastname', text="Lastname", anchor=W) tree.heading('Gender', text="Gender", anchor=W) tree.heading('Address', text="Address", anchor=W) tree.heading('Username', text="Username", anchor=W) tree.heading('Password', text="Password", anchor=W) tree.column('#0', stretch=NO, minwidth=0, width=0) tree.column('#1', stretch=NO, minwidth=0, width=80) tree.column('#2', stretch=NO, minwidth=0, width=120) tree.column('#3', stretch=NO, minwidth=0, width=80) tree.column('#4', stretch=NO, minwidth=0, width=150) tree.column('#5', stretch=NO, minwidth=0, width=120) tree.column('#6', stretch=NO, minwidth=0, width=80) tree.pack() #==================================INITIALIZATION=====================================displayData() root.mainloop()
47
255
0.623043
590d5e8e9fdee4e32777ed8089f491528417aa5c
13,250
py
Python
luna/gateware/soc/peripheral.py
pimdegroot/luna
16110a59c72279e7272310e81ca4656da11fb1da
[ "BSD-3-Clause" ]
1
2021-02-28T04:35:15.000Z
2021-02-28T04:35:15.000Z
luna/gateware/soc/peripheral.py
pimdegroot/luna
16110a59c72279e7272310e81ca4656da11fb1da
[ "BSD-3-Clause" ]
4
2020-11-11T17:32:33.000Z
2020-11-30T13:08:05.000Z
luna/gateware/soc/peripheral.py
pimdegroot/luna
16110a59c72279e7272310e81ca4656da11fb1da
[ "BSD-3-Clause" ]
null
null
null
# # This file is part of LUNA. # # Adapted from lambdasoc. # This file includes content Copyright (C) 2020 LambdaConcept. # # Per our BSD license, derivative files must include this license disclaimer. # # Copyright (c) 2020 Great Scott Gadgets <info@greatscottgadgets.com> # SPDX-License-Identifier: BSD-3-Clause """ Peripheral helpers for LUNA devices. """ from contextlib import contextmanager from nmigen import Module, Elaboratable from nmigen import tracer from nmigen.utils import log2_int from nmigen_soc import csr, wishbone from nmigen_soc.memory import MemoryMap from nmigen_soc.csr.wishbone import WishboneCSRBridge from .event import EventSource, IRQLine, InterruptSource __all__ = ["Peripheral", "CSRBank", "PeripheralBridge"] class Peripheral: """Wishbone peripheral. A helper class to reduce the boilerplate needed to control a peripheral with a Wishbone interface. It provides facilities for instantiating CSR registers, requesting windows to subordinate busses and sending interrupt requests to the CPU. The ``Peripheral`` class is not meant to be instantiated as-is, but rather as a base class for actual peripherals. Usage example ------------- ``` class ExamplePeripheral(Peripheral, Elaboratable): def __init__(self): super().__init__() bank = self.csr_bank() self._foo = bank.csr(8, "r") self._bar = bank.csr(8, "w") self._rdy = self.event(mode="rise") self._bridge = self.bridge(data_width=32, granularity=8, alignment=2) self.bus = self._bridge.bus self.irq = self._bridge.irq def elaborate(self, platform): m = Module() m.submodules.bridge = self._bridge # ... return m ``` Arguments --------- name : str Name of this peripheral. If ``None`` (default) the name is inferred from the variable name this peripheral is assigned to. Properties ---------- name : str Name of the peripheral. """ def __init__(self, name=None, src_loc_at=1): if name is not None and not isinstance(name, str): raise TypeError("Name must be a string, not {!r}".format(name)) self.name = name or tracer.get_var_name(depth=2 + src_loc_at).lstrip("_") self._csr_banks = [] self._windows = [] self._events = [] self._bus = None self._irq = None @property def bus(self): """Wishbone bus interface. Return value ------------ An instance of :class:`Interface`. Exceptions ---------- Raises :exn:`NotImplementedError` if the peripheral does not have a Wishbone bus. """ if self._bus is None: raise NotImplementedError("Peripheral {!r} does not have a bus interface" .format(self)) return self._bus @bus.setter def bus(self, bus): if not isinstance(bus, wishbone.Interface): raise TypeError("Bus interface must be an instance of wishbone.Interface, not {!r}" .format(bus)) self._bus = bus @property def irq(self): """Interrupt request line. Return value ------------ An instance of :class:`IRQLine`. Exceptions ---------- Raises :exn:`NotImplementedError` if the peripheral does not have an IRQ line. """ if self._irq is None: raise NotImplementedError("Peripheral {!r} does not have an IRQ line" .format(self)) return self._irq @irq.setter def irq(self, irq): if not isinstance(irq, IRQLine): raise TypeError("IRQ line must be an instance of IRQLine, not {!r}" .format(irq)) self._irq = irq def csr_bank(self, *, addr=None, alignment=None, desc=None): """Request a CSR bank. Arguments --------- addr : int or None Address of the bank. If ``None``, the implicit next address will be used. Otherwise, the exact specified address (which must be a multiple of ``2 ** max(alignment, bridge_alignment)``) will be used. alignment : int or None Alignment of the bank. If not specified, the bridge alignment is used. See :class:`nmigen_soc.csr.Multiplexer` for details. desc: (str, optional): Documentation of the given CSR bank. Return value ------------ An instance of :class:`CSRBank`. """ bank = CSRBank(name_prefix=self.name) self._csr_banks.append((bank, addr, alignment)) return bank def window(self, *, addr_width, data_width, granularity=None, features=frozenset(), alignment=0, addr=None, sparse=None): """Request a window to a subordinate bus. See :meth:`nmigen_soc.wishbone.Decoder.add` for details. Return value ------------ An instance of :class:`nmigen_soc.wishbone.Interface`. """ window = wishbone.Interface(addr_width=addr_width, data_width=data_width, granularity=granularity, features=features) granularity_bits = log2_int(data_width // window.granularity) window.memory_map = MemoryMap(addr_width=addr_width + granularity_bits, data_width=window.granularity, alignment=alignment) self._windows.append((window, addr, sparse)) return window def event(self, *, mode="level", name=None, src_loc_at=0): """Request an event source. See :class:`EventSource` for details. Return value ------------ An instance of :class:`EventSource`. """ event = EventSource(mode=mode, name=name, src_loc_at=1 + src_loc_at) self._events.append(event) return event def bridge(self, *, data_width=8, granularity=None, features=frozenset(), alignment=0): """Request a bridge to the resources of the peripheral. See :class:`PeripheralBridge` for details. Return value ------------ A :class:`PeripheralBridge` providing access to local resources. """ return PeripheralBridge(self, data_width=data_width, granularity=granularity, features=features, alignment=alignment) def iter_csr_banks(self): """Iterate requested CSR banks and their parameters. Yield values ------------ A tuple ``bank, addr, alignment`` describing the bank and its parameters. """ for bank, addr, alignment in self._csr_banks: yield bank, addr, alignment def iter_windows(self): """Iterate requested windows and their parameters. Yield values ------------ A tuple ``window, addr, sparse`` descr given to :meth:`Peripheral.window`. """ for window, addr, sparse in self._windows: yield window, addr, sparse def iter_events(self): """Iterate requested event sources. Yield values ------------ An instance of :class:`EventSource`. """ for event in self._events: yield event class CSRBank: """CSR register bank. Parameters ---------- name_prefix : str Name prefix of the bank registers. """ def __init__(self, *, name_prefix=""): self._name_prefix = name_prefix self._csr_regs = [] def csr(self, width, access, *, addr=None, alignment=None, name=None, desc=None, src_loc_at=0): """Request a CSR register. Parameters ---------- width : int Width of the register. See :class:`nmigen_soc.csr.Element`. access : :class:`Access` Register access mode. See :class:`nmigen_soc.csr.Element`. addr : int Address of the register. See :meth:`nmigen_soc.csr.Multiplexer.add`. alignment : int Register alignment. See :class:`nmigen_soc.csr.Multiplexer`. name : str Name of the register. If ``None`` (default) the name is inferred from the variable name this register is assigned to. desc: str Documentation for the provided register, if available. Used to capture register documentation automatically. Return value ------------ An instance of :class:`nmigen_soc.csr.Element`. """ if name is not None and not isinstance(name, str): raise TypeError("Name must be a string, not {!r}".format(name)) name = name or tracer.get_var_name(depth=2 + src_loc_at).lstrip("_") elem_name = "{}_{}".format(self._name_prefix, name) elem = csr.Element(width, access, name=elem_name) self._csr_regs.append((elem, addr, alignment)) return elem def iter_csr_regs(self): """Iterate requested CSR registers and their parameters. Yield values ------------ A tuple ``elem, addr, alignment`` describing the register and its parameters. """ for elem, addr, alignment in self._csr_regs: yield elem, addr, alignment class PeripheralBridge(Elaboratable): """Peripheral bridge. A bridge providing access to the registers and windows of a peripheral, and support for interrupt requests from its event sources. Event managment is performed by an :class:`InterruptSource` submodule. Parameters --------- periph : :class:`Peripheral` The peripheral whose resources are exposed by this bridge. data_width : int Data width. See :class:`nmigen_soc.wishbone.Interface`. granularity : int or None Granularity. See :class:`nmigen_soc.wishbone.Interface`. features : iter(str) Optional signal set. See :class:`nmigen_soc.wishbone.Interface`. alignment : int Resource alignment. See :class:`nmigen_soc.memory.MemoryMap`. Attributes ---------- bus : :class:`nmigen_soc.wishbone.Interface` Wishbone bus providing access to the resources of the peripheral. irq : :class:`IRQLine`, out Interrupt request. It is raised if any event source is enabled and has a pending notification. """ def __init__(self, periph, *, data_width, granularity, features, alignment): if not isinstance(periph, Peripheral): raise TypeError("Peripheral must be an instance of Peripheral, not {!r}" .format(periph)) self._wb_decoder = wishbone.Decoder(addr_width=1, data_width=data_width, granularity=granularity, features=features, alignment=alignment) self._csr_subs = [] for bank, bank_addr, bank_alignment in periph.iter_csr_banks(): if bank_alignment is None: bank_alignment = alignment csr_mux = csr.Multiplexer(addr_width=1, data_width=8, alignment=bank_alignment) for elem, elem_addr, elem_alignment in bank.iter_csr_regs(): if elem_alignment is None: elem_alignment = alignment csr_mux.add(elem, addr=elem_addr, alignment=elem_alignment, extend=True) csr_bridge = WishboneCSRBridge(csr_mux.bus, data_width=data_width) self._wb_decoder.add(csr_bridge.wb_bus, addr=bank_addr, extend=True) self._csr_subs.append((csr_mux, csr_bridge)) for window, window_addr, window_sparse in periph.iter_windows(): self._wb_decoder.add(window, addr=window_addr, sparse=window_sparse, extend=True) events = list(periph.iter_events()) if len(events) > 0: self._int_src = InterruptSource(events, name="{}_ev".format(periph.name)) self.irq = self._int_src.irq csr_mux = csr.Multiplexer(addr_width=1, data_width=8, alignment=alignment) csr_mux.add(self._int_src.status, extend=True) csr_mux.add(self._int_src.pending, extend=True) csr_mux.add(self._int_src.enable, extend=True) csr_bridge = WishboneCSRBridge(csr_mux.bus, data_width=data_width) self._wb_decoder.add(csr_bridge.wb_bus, extend=True) self._csr_subs.append((csr_mux, csr_bridge)) else: self._int_src = None self.irq = None self.bus = self._wb_decoder.bus def elaborate(self, platform): m = Module() for i, (csr_mux, csr_bridge) in enumerate(self._csr_subs): m.submodules[ "csr_mux_{}".format(i)] = csr_mux m.submodules["csr_bridge_{}".format(i)] = csr_bridge if self._int_src is not None: m.submodules._int_src = self._int_src m.submodules.wb_decoder = self._wb_decoder return m
34.960422
102
0.598189
985ab442db67c47af5f20c1838feedb6593fb004
678
py
Python
sdks/python/test/test_todays_stats.py
barryw/bjr
de56f22198b34a9d303ee43ac01134b5cf1ce863
[ "BSD-3-Clause" ]
2
2020-06-04T03:04:15.000Z
2020-06-13T12:53:58.000Z
sdks/python/test/test_todays_stats.py
barryw/bjr
de56f22198b34a9d303ee43ac01134b5cf1ce863
[ "BSD-3-Clause" ]
6
2020-05-24T12:56:25.000Z
2022-02-26T07:13:17.000Z
sdks/python/test/test_todays_stats.py
barryw/bjr
de56f22198b34a9d303ee43ac01134b5cf1ce863
[ "BSD-3-Clause" ]
null
null
null
""" BJR API V1 API specification for the BJR job server. # noqa: E501 The version of the OpenAPI document: v1 Generated by: https://openapi-generator.tech """ import sys import unittest import bjr4py from bjr4py.model.todays_stats import TodaysStats class TestTodaysStats(unittest.TestCase): """TodaysStats unit test stubs""" def setUp(self): pass def tearDown(self): pass def testTodaysStats(self): """Test TodaysStats""" # FIXME: construct object with mandatory attributes with example values # model = TodaysStats() # noqa: E501 pass if __name__ == '__main__': unittest.main()
18.833333
79
0.659292
68abe8dc33bbbd11fcda951b888d96631084376b
13,492
py
Python
bin/commonSubroutines/drawFigure/drawFigure.py
Hughes-Genome-Group/CCseqBasicM
d806d0cc9a9a3323b2c486124c1d6002408d57e4
[ "MIT" ]
1
2020-07-16T11:27:47.000Z
2020-07-16T11:27:47.000Z
bin/commonSubroutines/drawFigure/drawFigure.py
Hughes-Genome-Group/CCseqBasicM
d806d0cc9a9a3323b2c486124c1d6002408d57e4
[ "MIT" ]
2
2020-01-30T10:53:38.000Z
2021-05-23T12:59:40.000Z
bin/commonSubroutines/drawFigure/drawFigure.py
Hughes-Genome-Group/CCseqBasicM
d806d0cc9a9a3323b2c486124c1d6002408d57e4
[ "MIT" ]
1
2019-12-02T14:46:09.000Z
2019-12-02T14:46:09.000Z
########################################################################## # Copyright 2017, Jelena Telenius (jelena.telenius@imm.ox.ac.uk) # # # # This file is part of CCseqBasic5 . # # # # CCseqBasic5 is free software: you can redistribute it and/or modify # # it under the terms of the MIT license. # # # # # CCseqBasic5 is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # MIT license for more details. # # # You should have received a copy of the MIT license # along with CCseqBasic5. ########################################################################## # print "Preparing to run - check where we are and which version we have.." import sys # print "" print "We are running in machine :" print sys.platform print "We are running in Python version :" print sys.version print "" # print "We can load from these paths :" # print sys.path # print "We have these auto-loaded modules" # print sys.modules # print "We have these built-ins :" # print dir(__builtins__) # print "----------------------------------------" # print "Run directory :" import os # print os.getcwd() # print "----------------------------------------" # print "Enabling log file output.." import syslog # print "Enabling resource use and run time statistics monitoring.." import stat # print "----------------------------------------" # print "Importing script-specific libraries.." # print "----------------------------------------" # # print "Importing regular expressions" import re # # print "Importing matplotlib" import matplotlib as mpl print "We are running matplotlib version :" print mpl.__version__ # # print "Available back ends (instead of X windows) :" # print (mpl.rcsetup.non_interactive_bk) # print "Now loading the back end : " # print "mpl.use('pdf')" mpl.use('pdf') # print "Importing pyplot " import matplotlib.pyplot as plt # print "Importing patches " import matplotlib.patches as patch # print "----------------------------------------" print "Imported (and auto-loaded) modules :" print(globals()) # print "----------------------------------------" # print "Reading in the subroutines.." # print >> sys.stderr, "----------------------------------------" # print >> sys.stderr, "Reading in the subroutines.." # Making the comments above the lines.. def writeComment(row) : layer1.annotate(myComment[row], (2, 88-(10*row)) ) # Subroutines to make RED-GREEN drawing : # row = from the top, what is the row number for this data ? def drawTwoColorsFlashed(row) : print >> sys.stderr, 'Flashed' print >> sys.stderr, row # myPercentages[1]=[70,30] layer1.broken_barh( [(0, myFlashedPercentages[row][0]), (myFlashedPercentages[row][0], myFlashedPercentages[row][1])], # X (start, width) (83-(10*row), 4), # Y (start, height) facecolors=myColors[row] ) def drawTwoColorsNonFlashed(row) : print >> sys.stderr, 'NonFlashed' print >> sys.stderr, row # myPercentages[1]=[70,30] layer1.broken_barh( [(myPercentages[1][0], myNonFlashedPercentages[row][0]), (myPercentages[1][0]+myNonFlashedPercentages[row][0], myNonFlashedPercentages[row][1])], # X (start, width) (83-(10*row), 4), # Y (start, height) facecolors=myColors[row] ) # Subroutines to make RED-ORANGE-GREEN drawing : # row = from the top, what is the row number for this data ? def drawThreeColorsFlashed(row) : print >> sys.stderr, 'Flashed' print >> sys.stderr, row # myPercentages[1]=[70,30] layer1.broken_barh( [(0, myFlashedPercentages[row][0]), (myFlashedPercentages[row][0], myFlashedPercentages[row][1]), (myFlashedPercentages[row][0]+myFlashedPercentages[row][1], myFlashedPercentages[row][2])], # X (start, width) (83-(10*row), 4), # Y (start, height) facecolors=myColors[row] ) def drawThreeColorsNonFlashed(row) : print >> sys.stderr, 'NonFlashed' print >> sys.stderr, row # myPercentages[1]=[70,30] layer1.broken_barh( [(myPercentages[1][0], myNonFlashedPercentages[row][0]), (myPercentages[1][0]+myNonFlashedPercentages[row][0], myNonFlashedPercentages[row][1]), (myPercentages[1][0]+myNonFlashedPercentages[row][0]+myNonFlashedPercentages[row][1], myNonFlashedPercentages[row][2])], # X (start, width) (83-(10*row), 4), # Y (start, height) facecolors=myColors[row] ) # Subroutines to make GREEN-GREEN drawing : # row = from the top, what is the row number for this data ? def drawOneColorFlashed(row) : print >> sys.stderr, 'Flashed' print >> sys.stderr, row # myPercentages[1]=[70,30] layer1.broken_barh( [(0, myFlashedPercentages[row])], # X (start, width) (83-(10*row), 4), # Y (start, height) facecolors=myColors[row] ) def drawOneColorNonFlashed(row) : print >> sys.stderr, 'NonFlashed' print >> sys.stderr, row # myPercentages[1]=[70,30] layer1.broken_barh( [(myPercentages[1][0], myNonFlashedPercentages[row])], # X (start, width) (83-(10*row), 4), # Y (start, height) facecolors=myColors[row] ) # print "----------------------------------------" # print "Starting the run.." # print "----------------------------------------" # print "" print "Reading the input.." # print "" # print >> sys.stderr, "----------------------------------------" # print >> sys.stderr, "" print >> sys.stderr, "Reading the input.." # print >> sys.stderr, "" names=[] values = [] colors = [] valuesAsFloats = [] with open('percentages.txt') as f: for line in f: data = line.split() names.append(re.sub(r'_', ' ', data[0])) values.append(data[1:]) temp = [] for i, value in enumerate(data[1:]): temp.append(float(value)) valuesAsFloats.append(temp) # print "names :" # print names # print "values :" # print values # print "valuesAsFloats :" # print valuesAsFloats # print "valuesAsFloats[0] :" # print valuesAsFloats[0] # print "valuesAsFloats[1] :" # print valuesAsFloats[1] # print "valuesAsFloats[2] :" # print valuesAsFloats[2] # print "valuesAsFloats[3] :" # print valuesAsFloats[3] # print "valuesAsFloats[4] :" # print valuesAsFloats[4] # print "----------------------------------------" # print "" print "Setting values.." # print "" # print >> sys.stderr, "----------------------------------------" # print >> sys.stderr, "" print >> sys.stderr, "Setting values.." # print >> sys.stderr, "" # Generating the lists.. myLabel=['0','1','2','3','4','5','6','7','8'] myComment=['0','1','2','3','4','5','6','7','8'] myPercentages=[0,1] myFlashedPercentages=[0,1,2,3,4,5,6,7,8] myNonFlashedPercentages=[0,1,2,3,4,5,6,7,8] myColors=['0',['1','1'],['2','2'],['3','3'],['4','4'],['5','5','5'],['6','6'],['7','7'],['8','8']] # Default colors (for color blindness support) # # PINK GREEN (default) # RGB HEX # red 255,74,179 #FF4ABE # orange 255,140,0 #FF8C00 # green 62,176,145 #3EB091 # red='#FF4ABE' orange='#FF8C00' green='#3EB091' # Setting the values.. (most of them have four values - those are set here.) for x in range(2, 9): if (x != 3 and x !=5 ): myFlashedPercentages[x]=[valuesAsFloats[x][0],valuesAsFloats[x][1]] myNonFlashedPercentages[x]=[valuesAsFloats[x][2],valuesAsFloats[x][3]] myLabel[0]='Total reads (input fastq)' myComment[0]='Total reads (input fastq)' myPercentages[0]=valuesAsFloats[0][0] myColors[0]='blue' myLabel[1]='Flashed / nonflashed' myComment[1]='Flash-combined (light blue), non-combined (yellow)' myPercentages[1]=[valuesAsFloats[1][0],valuesAsFloats[1][1]] myColors[1]=['dodgerblue','gold'] myLabel[2]='Do/don\'t have RE site' myComment[2]='With RE site(green), no RE site(red)' myColors[2]=[green,red] myLabel[3]='Continue to mapping' myComment[3]='Continues to mapping :' myFlashedPercentages[3]=valuesAsFloats[3][0] myNonFlashedPercentages[3]=valuesAsFloats[3][1] myColors[3]=green myLabel[4]='Contains capture' myComment[4]='cap(green), nocap(red)' myColors[4]=[green,red] myLabel[5]='Capture and/or reporter' # myComment[5]='cap+rep(green), cap+excl(orange), only cap(red)' myComment[5]='cap+rep(green),only cap(red) - cap+excl also red' myFlashedPercentages[5]=[valuesAsFloats[5][0],valuesAsFloats[5][1],valuesAsFloats[5][2]] myNonFlashedPercentages[5]=[valuesAsFloats[5][3],valuesAsFloats[5][4],valuesAsFloats[5][5]] myColors[5]=[green,orange,red] myLabel[6]='Multiple (different) captures' myComment[6]='single cap (green), multicap (red)' myColors[6]=[green,red] myLabel[7]='Duplicate filtered' myComment[7]='non-duplicate (green), duplicate (red)' myColors[7]=[green,red] myLabel[8]='Blat/ploidy filtered' myComment[8]='no-blat-no-ploidy (green), blat and/or ploidy (red)' myColors[8]=[green,red] # print >> sys.stderr,"----------------------------------------" # print >> sys.stderr,"" # print >> sys.stderr,"Checking that the labels are not in wonky order :" # print >> sys.stderr,"" # for x in range(0, 9): # print >> sys.stderr,"Label here :", myLabel[x] # print >> sys.stderr,"Same line in input : ", names[x] # print >> sys.stderr,"" # for x in range(0, 2): # print >> sys.stderr,"Label here :", myLabel[x] # print >> sys.stderr,"myPercentages : ", myPercentages[x] # print >> sys.stderr,"" # for x in range(2, 9): # print >> sys.stderr,"Label here :", myLabel[x] # print >> sys.stderr,"myFlashedPercentages : ", myFlashedPercentages[x] # print >> sys.stderr,"myNonFlashedPercentages : ", myNonFlashedPercentages[x] # print "----------------------------------------" # print "" print "Drawing axes and tick marks (general overlay).." # print "" # print >> sys.stderr, "----------------------------------------" # print >> sys.stderr, "" print >> sys.stderr, "Drawing axes and tick marks (general overlay).." # print >> sys.stderr, "" # class matplotlib.figure.Figure(figsize=None, dpi=None, facecolor=None, edgecolor=None, linewidth=0.0, frameon=None, subplotpars=None, tight_layout=None) # matplotlib.pyplot.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw) fig1, layer1 = plt.subplots() # Set the overall settings here .. # Grid on (dotted lines) layer1.grid(True) # Where (in whole canvas) we want to put our y-range and x-range # 0,0 is as normally, left hand down. # Set x-axis to be from 0 to 100 layer1.set_xlim(0, 100) layer1.set_xticks([ 0,10,20,30,40,50,60,70,80,90,100]) layer1.set_xlabel('Percentage of input reads') # Set y-axis to be contain all the reads.. layer1.set_ylim(0, 100) # From bottom up (as the coordinates go that direction) : # Copy and reverse the list.. myReverseLabels=myLabel[:] myReverseLabels.reverse() layer1.set_yticks([5,15,25,35,45,55,65,75,85]) layer1.set_yticklabels(myReverseLabels) # print "----------------------------------------" # print "" print "Drawing boxes and their labels.." # print "" # print >> sys.stderr, "----------------------------------------" # print >> sys.stderr, "" print >> sys.stderr, "Drawing boxes and their labels.." # print >> sys.stderr, "" # matplotlib.pyplot.broken_barh(xranges, yrange, hold=None, data=None, **kwargs) # Plot horizontal bars. myFlashedPercentages[1]=myPercentages[1] layer1.broken_barh( [(0, myFlashedPercentages[1][0]), (myFlashedPercentages[1][0], myFlashedPercentages[1][1])], # X (start, width) (0, 75), # Y (start, height) facecolors=['lightcyan','lemonchiffon'], edgecolor = "none" ) # Total reads (input fastq) writeComment(0) myFlashedPercentages[0]=myPercentages[0] drawOneColorFlashed(0) # Flashed / nonflashed writeComment(1) myFlashedPercentages[1]=myPercentages[1] drawTwoColorsFlashed(1) # Do/don\'t have RE site writeComment(2) drawTwoColorsFlashed(2) drawTwoColorsNonFlashed(2) # Continue to mapping writeComment(3) drawOneColorFlashed(3) drawOneColorNonFlashed(3) # Contains capture writeComment(4) drawTwoColorsFlashed(4) drawTwoColorsNonFlashed(4) # Capture and/or reporter writeComment(5) drawThreeColorsFlashed(5) drawThreeColorsNonFlashed(5) # Multiple (different) captures writeComment(6) drawTwoColorsFlashed(6) drawTwoColorsNonFlashed(6) # Duplicate filtered writeComment(7) drawTwoColorsFlashed(7) drawTwoColorsNonFlashed(7) # Blat/ploidy filtered writeComment(8) drawTwoColorsFlashed(8) drawTwoColorsNonFlashed(8) # print "----------------------------------------" # print "" print "Saving figure.." # print "" # print >> sys.stderr, "----------------------------------------" # print >> sys.stderr, "" print >> sys.stderr, "Saving figure.." # print >> sys.stderr, "" fig1.savefig('summary.pdf', dpi=90, bbox_inches='tight') fig1.savefig('summary.png', dpi=90, bbox_inches='tight')
32.827251
303
0.599466
efb942ddde66af7f8ac63c968c06ff4b0485a45b
2,982
py
Python
common/blockchain_util.py
anandrgit/snet-marketplace-service
22dd66e9e34a65580eaffa70928bbdb1f67061e8
[ "MIT" ]
null
null
null
common/blockchain_util.py
anandrgit/snet-marketplace-service
22dd66e9e34a65580eaffa70928bbdb1f67061e8
[ "MIT" ]
null
null
null
common/blockchain_util.py
anandrgit/snet-marketplace-service
22dd66e9e34a65580eaffa70928bbdb1f67061e8
[ "MIT" ]
null
null
null
import json import uuid import web3 from eth_account.messages import defunct_hash_message from web3 import Web3 class BlockChainUtil(object): def __init__(self, provider_type, provider): if provider_type == "HTTP_PROVIDER": self.provider = Web3.HTTPProvider(provider) elif provider_type == "WS_PROVIDER": self.provider = web3.providers.WebsocketProvider(provider) else: raise Exception("Only HTTP_PROVIDER and WS_PROVIDER provider type are supported.") self.web3_object = Web3(self.provider) def load_contract(self, path): with open(path) as f: contract = json.load(f) return contract def read_contract_address(self, net_id, path, key): contract = self.load_contract(path) return Web3.toChecksumAddress(contract[str(net_id)][key]) return nonce def contract_instance(self, contract, address): return self.web3_object.eth.contract(abi=contract, address=address) def generate_signature(self, data_types, values, signer_key): signer_key = "0x" + signer_key if not signer_key.startswith("0x") else signer_key message = web3.Web3.soliditySha3(data_types, values) signature = self.web3_object.eth.account.signHash(defunct_hash_message(message), signer_key) return signature.signature.hex() def get_nonce(self, address): nonce = self.web3_object.eth.getTransactionCount(address) return nonce def sign_transaction_with_private_key(self, private_key, transaction_object): return self.web3_object.eth.account.signTransaction(transaction_object, private_key).rawTransaction def create_transaction_object(self, *positional_inputs, method_name, address, contract_path, contract_address_path, net_id): nonce = self.get_nonce(address=address) self.contract = self.load_contract(path=contract_path) self.contract_address = self.read_contract_address(net_id=net_id, path=contract_address_path, key='address') self.contract_instance = self.contract_instance(contract=self.contract, address=self.contract_address) print("gas_price == ", self.web3_object.eth.gasPrice) print("nonce == ", nonce) transaction_object = getattr(self.contract_instance.functions, method_name)( *positional_inputs).buildTransaction({ "from": address, "nonce": nonce, "gasPrice": self.web3_object.eth.gasPrice, "chainId": 3 }) return transaction_object def process_raw_transaction(self, raw_transaction): return self.web3_object.eth.sendRawTransaction(raw_transaction).hex() def create_account(self): account = self.web3_object.eth.account.create(uuid.uuid4().hex) return account.address, account.privateKey.hex() def get_current_block_no(self): return self.web3_object.eth.blockNumber
40.849315
119
0.699866
9a55ebabefeaa8b6259a9ccced48feb800dabf86
2,085
py
Python
src/__tests__/screenTestRunner.py
KapJI/PathPicker
3d285f8de9eb43970ae14e0623168b248fbaad6f
[ "MIT" ]
null
null
null
src/__tests__/screenTestRunner.py
KapJI/PathPicker
3d285f8de9eb43970ae14e0623168b248fbaad6f
[ "MIT" ]
null
null
null
src/__tests__/screenTestRunner.py
KapJI/PathPicker
3d285f8de9eb43970ae14e0623168b248fbaad6f
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import curses import sys import os sys.path.insert(0, '../') from keyBindingsForTest import KeyBindingsForTest from cursesForTest import CursesForTest from screenForTest import ScreenForTest from screenFlags import ScreenFlags import processInput import choose INPUT_DIR = './inputs/' def getLineObjsFromFile(inputFile, validateFileExists, allInput): inputFile = os.path.join(INPUT_DIR, inputFile) file = open(inputFile) lines = file.read().split('\n') file.close() return processInput.getLineObjsFromLines(lines, validateFileExists=validateFileExists, allInput=allInput) def getRowsFromScreenRun( inputFile, charInputs, screenConfig={}, printScreen=True, pastScreen=None, pastScreens=None, validateFileExists=False, allInput=False, args=[]): lineObjs = getLineObjsFromFile(inputFile, validateFileExists=validateFileExists, allInput=allInput) screen = ScreenForTest( charInputs, maxX=screenConfig.get('maxX', 80), maxY=screenConfig.get('maxY', 30), ) # mock our flags with the passed arg list flags = ScreenFlags.initFromArgs(args) # we run our program and throw a StopIteration exception # instead of sys.exit-ing try: choose.doProgram(screen, flags, KeyBindingsForTest(), CursesForTest(), lineObjs) except StopIteration: pass if printScreen: screen.printOldScreens() if pastScreen: return screen.getRowsWithAttributesForPastScreen(pastScreen) elif pastScreens: return screen.getRowsWithAttributesForPastScreens(pastScreens) return screen.getRowsWithAttributes()
28.958333
83
0.658513
778ddc2a3716926a289ec11b99a800e4888bc0be
4,627
py
Python
dnachisel/builtin_specifications/EnforceSequence.py
Edinburgh-Genome-Foundry/DnaChisel
fed4613cee67c22326a5f654ecf8ff0490298359
[ "MIT" ]
124
2017-11-14T14:42:25.000Z
2022-03-31T08:02:07.000Z
dnachisel/builtin_specifications/EnforceSequence.py
Edinburgh-Genome-Foundry/DnaChisel
fed4613cee67c22326a5f654ecf8ff0490298359
[ "MIT" ]
65
2017-11-15T07:25:38.000Z
2022-01-31T10:38:45.000Z
dnachisel/builtin_specifications/EnforceSequence.py
Edinburgh-Genome-Foundry/DnaChisel
fed4613cee67c22326a5f654ecf8ff0490298359
[ "MIT" ]
31
2018-10-18T12:59:47.000Z
2022-02-11T16:54:43.000Z
"""Implement EnforceSequence (DO NOT USE YET: Work in progress, stabilizing)""" # TODO: factorize with self.sequence ? import numpy as np from ..Specification import Specification, SpecEvaluation from ..Location import Location from ..biotools import group_nearby_indices, reverse_complement, IUPAC_NOTATION class EnforceSequence(Specification): """Enforces a (possibly degenerate) sequence at some location. Shorthand for annotations: "sequence". Parameters ---------- sequence An ATGC string representing the wanted sequence, possibly degenerated, for instance ATTCGCGTYTTKWNAA location Location of the DNA segment on which to enforce the pattern e.g. ``Location(10, 45, 1)`` or simply ``(10, 45, 1)`` """ localization_interval_length = 6 # used when optimizing best_possible_score = 0 enforced_by_nucleotide_restrictions = True shorthand_name = "sequence" def __init__(self, sequence=None, location=None, boost=1.0): """Initialize.""" self.sequence = sequence self.location = Location.from_data(location) self.boost = boost def initialized_on_problem(self, problem, role): """Find out what sequence it is that we are supposed to conserve.""" return self._copy_with_full_span_if_no_location(problem) # if self.location is None: # result = self.copy_with_changes() # result.location = Location(0, len(problem.sequence), 1) # return result # else: # return self def evaluate(self, problem): """Return a score equal to -number_of modifications. Locations are "binned" modifications regions. Each bin has a length in nucleotides equal to ``localization_interval_length`.` """ sequence = self.location.extract_sequence(problem.sequence) discrepancies = np.array( [ i for i, nuc in enumerate(sequence) if nuc not in IUPAC_NOTATION[self.sequence[i]] ] ) if self.location.strand == -1: discrepancies = self.location.end - discrepancies else: discrepancies = discrepancies + self.location.start intervals = [ (r[0], r[-1] + 1) for r in group_nearby_indices( discrepancies, max_group_spread=self.localization_interval_length ) ] locations = [Location(start, end, 1) for start, end in intervals] return SpecEvaluation( self, problem, score=-len(discrepancies), locations=locations ) def localized(self, location, problem=None): """Localize the spec to the overlap of its location and the new.""" start, end = location.start, location.end new_location = self.location.overlap_region(location) if new_location is None: return None else: if self.location.strand == -1: start = self.location.end - new_location.end end = self.location.end - new_location.start else: start = new_location.start - self.location.start end = new_location.end - self.location.start new_sequence = self.sequence[start:end] return self.copy_with_changes(location=new_location, sequence=new_sequence) def restrict_nucleotides(self, sequence, location=None): """When localizing, forbid any nucleotide but the one already there.""" if location is not None: new_location = self.location.overlap_region(location) if new_location is None: return [] else: new_location = self.location start, end = new_location.start, new_location.end if self.location.strand == -1: lend = self.location.end return [ ( i, set( reverse_complement(n) for n in IUPAC_NOTATION[self.sequence[lend - i - 1]] ), ) for i in range(start, end) ] else: lstart = self.location.start return [ (i, IUPAC_NOTATION[self.sequence[i - lstart]]) for i in range(start, end) ] def __repr__(self): """Represent.""" return "EnforceSequence(%s)" % str(self.location) def __str__(self): """Represent.""" return "EnforceSequence(%s)" % str(self.location)
34.529851
87
0.594554
76edad2f5784d5c31f732f9e070b729dbbae3780
12,177
py
Python
tfx/orchestration/portable/mlmd/execution_lib_test.py
Anon-Artist/tfx
2692c9ab437d76b5d9517996bfe2596862e0791d
[ "Apache-2.0" ]
2
2021-05-10T21:39:48.000Z
2021-11-17T11:24:29.000Z
tfx/orchestration/portable/mlmd/execution_lib_test.py
Anon-Artist/tfx
2692c9ab437d76b5d9517996bfe2596862e0791d
[ "Apache-2.0" ]
1
2021-01-28T13:44:51.000Z
2021-04-28T16:15:47.000Z
tfx/orchestration/portable/mlmd/execution_lib_test.py
Anon-Artist/tfx
2692c9ab437d76b5d9517996bfe2596862e0791d
[ "Apache-2.0" ]
1
2021-01-28T13:41:51.000Z
2021-01-28T13:41:51.000Z
# Lint as: python3 # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.orchestration.portable.mlmd.execution_lib.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import random import tensorflow as tf from tfx.orchestration import metadata from tfx.orchestration.portable.mlmd import common_utils from tfx.orchestration.portable.mlmd import context_lib from tfx.orchestration.portable.mlmd import execution_lib from tfx.proto.orchestration import pipeline_pb2 from tfx.types import standard_artifacts from tfx.utils import test_case_utils from google.protobuf import text_format from ml_metadata.proto import metadata_store_pb2 class ExecutionLibTest(test_case_utils.TfxTest): def setUp(self): super().setUp() self._connection_config = metadata_store_pb2.ConnectionConfig() self._connection_config.sqlite.SetInParent() def _generate_contexts(self, metadata_handler): context_spec = pipeline_pb2.NodeContexts() text_format.Parse( """ contexts { type {name: 'pipeline_context'} name { field_value {string_value: 'my_pipeline'} } } contexts { type {name: 'component_context'} name { field_value {string_value: 'my_component'} } }""", context_spec) return context_lib.prepare_contexts(metadata_handler, context_spec) def testPrepareExecution(self): with metadata.Metadata(connection_config=self._connection_config) as m: execution_type = metadata_store_pb2.ExecutionType() text_format.Parse( """ name: 'my_execution' properties { key: 'p2' value: STRING } """, execution_type) result = execution_lib.prepare_execution( m, execution_type, exec_properties={ 'p1': 1, 'p2': '2' }, state=metadata_store_pb2.Execution.COMPLETE) self.assertProtoEquals( """ type_id: 1 last_known_state: COMPLETE properties { key: 'p2' value { string_value: '2' } } custom_properties { key: 'p1' value { int_value: 1 } } """, result) def testArtifactAndEventPairs(self): example = standard_artifacts.Examples() example.uri = 'example' example.id = 1 expected_artifact = metadata_store_pb2.Artifact() text_format.Parse( """ id: 1 type_id: 1 uri: 'example'""", expected_artifact) expected_event = metadata_store_pb2.Event() text_format.Parse( """ path { steps { key: 'example' } steps { index: 0 } } type: INPUT""", expected_event) with metadata.Metadata(connection_config=self._connection_config) as m: result = execution_lib._create_artifact_and_event_pairs( m, { 'example': [example], }, metadata_store_pb2.Event.INPUT) self.assertCountEqual([(expected_artifact, expected_event)], result) def testPutExecutionGraph(self): with metadata.Metadata(connection_config=self._connection_config) as m: # Prepares an input artifact. The artifact should be registered in MLMD # before the put_execution call. input_example = standard_artifacts.Examples() input_example.uri = 'example' input_example.type_id = common_utils.register_type_if_not_exist( m, input_example.artifact_type).id [input_example.id] = m.store.put_artifacts([input_example.mlmd_artifact]) # Prepares an output artifact. output_model = standard_artifacts.Model() output_model.uri = 'model' execution = execution_lib.prepare_execution( m, metadata_store_pb2.ExecutionType(name='my_execution_type'), exec_properties={ 'p1': 1, 'p2': '2' }, state=metadata_store_pb2.Execution.COMPLETE) contexts = self._generate_contexts(m) execution = execution_lib.put_execution( m, execution, contexts, input_artifacts={'example': [input_example]}, output_artifacts={'model': [output_model]}) self.assertProtoPartiallyEquals( output_model.mlmd_artifact, m.store.get_artifacts_by_id([output_model.id])[0], ignored_fields=[ 'create_time_since_epoch', 'last_update_time_since_epoch' ]) # Verifies edges between artifacts and execution. [input_event] = m.store.get_events_by_artifact_ids([input_example.id]) self.assertEqual(input_event.execution_id, execution.id) self.assertEqual(input_event.type, metadata_store_pb2.Event.INPUT) [output_event] = m.store.get_events_by_artifact_ids([output_model.id]) self.assertEqual(output_event.execution_id, execution.id) self.assertEqual(output_event.type, metadata_store_pb2.Event.OUTPUT) # Verifies edges connecting contexts and {artifacts, execution}. context_ids = [context.id for context in contexts] self.assertCountEqual( [c.id for c in m.store.get_contexts_by_artifact(input_example.id)], context_ids) self.assertCountEqual( [c.id for c in m.store.get_contexts_by_artifact(output_model.id)], context_ids) self.assertCountEqual( [c.id for c in m.store.get_contexts_by_execution(execution.id)], context_ids) def testGetExecutionsAssociatedWithAllContexts(self): with metadata.Metadata(connection_config=self._connection_config) as m: contexts = self._generate_contexts(m) self.assertLen(contexts, 2) # Create 2 executions and associate with one context each. execution1 = execution_lib.prepare_execution( m, metadata_store_pb2.ExecutionType(name='my_execution_type'), metadata_store_pb2.Execution.RUNNING) execution1 = execution_lib.put_execution(m, execution1, [contexts[0]]) execution2 = execution_lib.prepare_execution( m, metadata_store_pb2.ExecutionType(name='my_execution_type'), metadata_store_pb2.Execution.COMPLETE) execution2 = execution_lib.put_execution(m, execution2, [contexts[1]]) # Create another execution and associate with both contexts. execution3 = execution_lib.prepare_execution( m, metadata_store_pb2.ExecutionType(name='my_execution_type'), metadata_store_pb2.Execution.NEW) execution3 = execution_lib.put_execution(m, execution3, contexts) # Verify that the right executions are returned. with self.subTest(for_contexts=(0,)): executions = execution_lib.get_executions_associated_with_all_contexts( m, [contexts[0]]) self.assertCountEqual([execution1.id, execution3.id], [e.id for e in executions]) with self.subTest(for_contexts=(1,)): executions = execution_lib.get_executions_associated_with_all_contexts( m, [contexts[1]]) self.assertCountEqual([execution2.id, execution3.id], [e.id for e in executions]) with self.subTest(for_contexts=(0, 1)): executions = execution_lib.get_executions_associated_with_all_contexts( m, contexts) self.assertCountEqual([execution3.id], [e.id for e in executions]) def testGetArtifactIdsForExecutionIdGroupedByEventType(self): with metadata.Metadata(connection_config=self._connection_config) as m: # Register an input and output artifacts in MLMD. input_example = standard_artifacts.Examples() input_example.uri = 'example' input_example.type_id = common_utils.register_type_if_not_exist( m, input_example.artifact_type).id output_model = standard_artifacts.Model() output_model.uri = 'model' output_model.type_id = common_utils.register_type_if_not_exist( m, output_model.artifact_type).id [input_example.id, output_model.id] = m.store.put_artifacts( [input_example.mlmd_artifact, output_model.mlmd_artifact]) execution = execution_lib.prepare_execution( m, metadata_store_pb2.ExecutionType(name='my_execution_type'), exec_properties={ 'p1': 1, 'p2': '2' }, state=metadata_store_pb2.Execution.COMPLETE) contexts = self._generate_contexts(m) execution = execution_lib.put_execution( m, execution, contexts, input_artifacts={'example': [input_example]}, output_artifacts={'model': [output_model]}) artifact_ids_by_event_type = ( execution_lib.get_artifact_ids_by_event_type_for_execution_id( m, execution.id)) self.assertDictEqual( { metadata_store_pb2.Event.INPUT: set([input_example.id]), metadata_store_pb2.Event.OUTPUT: set([output_model.id]), }, artifact_ids_by_event_type) def testGetArtifactsDict(self): with metadata.Metadata(connection_config=self._connection_config) as m: # Create and shuffle a few artifacts. The shuffled order should be # retained in the output of `execution_lib.get_artifacts_dict`. input_examples = [] for i in range(10): input_example = standard_artifacts.Examples() input_example.uri = 'example{}'.format(i) input_example.type_id = common_utils.register_type_if_not_exist( m, input_example.artifact_type).id input_examples.append(input_example) random.shuffle(input_examples) output_models = [] for i in range(8): output_model = standard_artifacts.Model() output_model.uri = 'model{}'.format(i) output_model.type_id = common_utils.register_type_if_not_exist( m, output_model.artifact_type).id output_models.append(output_model) random.shuffle(output_models) m.store.put_artifacts([ a.mlmd_artifact for a in itertools.chain(input_examples, output_models) ]) execution = execution_lib.prepare_execution( m, metadata_store_pb2.ExecutionType(name='my_execution_type'), state=metadata_store_pb2.Execution.RUNNING) contexts = self._generate_contexts(m) input_artifacts_dict = {'examples': input_examples} output_artifacts_dict = {'model': output_models} execution = execution_lib.put_execution( m, execution, contexts, input_artifacts=input_artifacts_dict, output_artifacts=output_artifacts_dict) # Verify that the same artifacts are returned in the correct order. artifacts_dict = execution_lib.get_artifacts_dict( m, execution.id, metadata_store_pb2.Event.INPUT) self.assertCountEqual(['examples'], list(artifacts_dict.keys())) self.assertEqual([ex.uri for ex in input_examples], [a.uri for a in artifacts_dict['examples']]) artifacts_dict = execution_lib.get_artifacts_dict( m, execution.id, metadata_store_pb2.Event.OUTPUT) self.assertCountEqual(['model'], list(artifacts_dict.keys())) self.assertEqual([model.uri for model in output_models], [a.uri for a in artifacts_dict['model']]) if __name__ == '__main__': tf.test.main()
38.904153
79
0.668063
e0d5ac2bb5c31874e96840e3207bc1df07ae272c
428
py
Python
testsuite/closure-array/run.py
LongerVision/OpenShadingLanguage
30d2a4a089c5c9d521b27519329c205763dfe483
[ "BSD-3-Clause" ]
1,105
2015-01-02T20:47:19.000Z
2021-01-25T13:20:56.000Z
testsuite/closure-array/run.py
LongerVision/OpenShadingLanguage
30d2a4a089c5c9d521b27519329c205763dfe483
[ "BSD-3-Clause" ]
696
2015-01-07T23:42:08.000Z
2021-01-25T03:55:08.000Z
testsuite/closure-array/run.py
LongerVision/OpenShadingLanguage
30d2a4a089c5c9d521b27519329c205763dfe483
[ "BSD-3-Clause" ]
248
2015-01-05T13:41:28.000Z
2021-01-24T23:29:55.000Z
#!/usr/bin/env python # Copyright Contributors to the Open Shading Language project. # SPDX-License-Identifier: BSD-3-Clause # https://github.com/AcademySoftwareFoundation/OpenShadingLanguage command += testshade ("-layer alayer a -layer dlayer d --layer clayer c --layer blayer b --connect alayer output_closure clayer in0 --connect dlayer output_closure clayer in1 --connect clayer output_closures blayer input_closures ")
53.5
233
0.794393
915a47c7531dd8dfdbdf5bfb6ae18e6870d9038d
1,186
py
Python
oo/pessoa.py
AdemilsonMelo/pythonbirds
f29ea58ad8acb2514b4e6196afd6b268f2c334f9
[ "MIT" ]
null
null
null
oo/pessoa.py
AdemilsonMelo/pythonbirds
f29ea58ad8acb2514b4e6196afd6b268f2c334f9
[ "MIT" ]
null
null
null
oo/pessoa.py
AdemilsonMelo/pythonbirds
f29ea58ad8acb2514b4e6196afd6b268f2c334f9
[ "MIT" ]
null
null
null
class Pessoa: olhos = 2 def __init__(self, *filhos, nome = None, idade = 35): self.idade = idade self.nome = nome self.filhos = list(filhos) def cumprimentar(self): return f'Olá {id(self)}' @staticmethod def metodo_estatico(): return 42 @classmethod def nome_e_atributos_de_classes(cls): return f'{cls} - olhos {cls.olhos}' if __name__ == '__main__': renzo = Pessoa(nome ='Renzo') luciano = Pessoa(renzo, nome='Luciano') print(Pessoa.cumprimentar(luciano)) print(id(luciano)) print(luciano.cumprimentar()) print(luciano.nome) print(luciano.idade) for filho in luciano.filhos: print(filho.nome) luciano.sobrenome = 'Ramalho' del luciano.filhos luciano.olhos = 1 del luciano.olhos print(renzo.__dict__) print(luciano.__dict__) Pessoa.olhos = 3 print(Pessoa.olhos) print(luciano.olhos) print(renzo.olhos) print(id(Pessoa.olhos), id(luciano.olhos), id(renzo.olhos)) print(Pessoa.metodo_estatico(), luciano.metodo_estatico()) print(Pessoa.nome_e_atributos_de_classes(), luciano.nome_e_atributos_de_classes())
26.954545
86
0.651771
ecaeac1c9b9266d71a7bfac0ec5b19382960a73d
472
py
Python
trac/versioncontrol/tests/__init__.py
wiraqutra/photrackjp
e120cba2a5d5d30f99ad084c6521e61f09694ee6
[ "BSD-3-Clause" ]
null
null
null
trac/versioncontrol/tests/__init__.py
wiraqutra/photrackjp
e120cba2a5d5d30f99ad084c6521e61f09694ee6
[ "BSD-3-Clause" ]
null
null
null
trac/versioncontrol/tests/__init__.py
wiraqutra/photrackjp
e120cba2a5d5d30f99ad084c6521e61f09694ee6
[ "BSD-3-Clause" ]
null
null
null
import unittest from trac.versioncontrol.tests import cache, diff, svn_authz, svn_fs, api from trac.versioncontrol.tests.functional import functionalSuite def suite(): suite = unittest.TestSuite() suite.addTest(cache.suite()) suite.addTest(diff.suite()) suite.addTest(svn_authz.suite()) suite.addTest(svn_fs.suite()) suite.addTest(api.suite()) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
26.222222
74
0.701271
ded89d087e25d9e2db8450406731cc12139287d8
10,428
py
Python
src/project_util.py
rrozema12/Data-Mining-Final-Project
4848f3daed4b75879b626c5dc460e8dbd70ae861
[ "MIT" ]
1
2018-02-04T01:10:20.000Z
2018-02-04T01:10:20.000Z
src/project_util.py
rrozema12/Data-Mining-Final-Project
4848f3daed4b75879b626c5dc460e8dbd70ae861
[ "MIT" ]
null
null
null
src/project_util.py
rrozema12/Data-Mining-Final-Project
4848f3daed4b75879b626c5dc460e8dbd70ae861
[ "MIT" ]
null
null
null
import util import constants import table_utils def print_confusion_matrix(labels, class_label_name): """ Prints the confusion matrix of the given labels :param labels: A list of tuples of class labels [(actual, predicted),...] :param class_label_name: The name of the class label """ class_labels = list(set(table_utils.getCol(labels, 0))) # all the actual class labels the_headers = [class_label_name] the_headers.extend(class_labels) the_headers.extend(['Total', 'Recognition (%)']) # makes an table filled with zeros of #columns = len(the_headers) and #rows = len(class_labels) confusion_matrix = [[0] * len(the_headers) for i in range(len(class_labels))] # fills out the confusion matrix with the predicted vs. actual for a_label_point in labels: actual, predicted = a_label_point confusion_matrix[class_labels.index(actual)][the_headers.index(predicted)] += 1 # add the rest of the values to the confusion matrix for i in range(len(confusion_matrix)): row = confusion_matrix[i] # current row # adding total to the confusion matrix total = sum(row) row[the_headers.index('Total')] = total # add the total in for the row row[0]= class_labels[i] # adds the class label for the row to the beginning of row # adding recognition to the confusion matrix (% of guesses in row that are correct recognition = row[the_headers.index(class_labels[i])] # TP recognition /= float(total) recognition *= 100 row[the_headers.index('Recognition (%)')] = recognition # prints the table print tabulate(confusion_matrix, headers = the_headers, tablefmt="rst") def stratified_cross_fold(table, k, class_index, classify, *opts): """ Uses stratified crossfolding to predict labels :param table: Table of data :param k: Number of folds :param class_index: the class's index :param classify: a function to classify on :param opts: anything else you'd like to pass into the classify :return: labels in format list of tuples [(actual, predicted),...] """ labels = [] folds = strat_folds(table, class_index, k) for index in range(len(folds)): test = folds[index] # creates the test from one fold training = [] # meshes the rest of the folds together to make the training set for training_index in range(len(folds)): if training_index != index: training.extend(folds[training_index]) labels.extend(classify(training, test, class_index, *opts)) return labels def strat_folds(table, by_label_index, k): """ Creates fold where each fold has the same distrubution of class labels as the origonal table :param table: table of data :param by_label_index: the class label index :param k: the number of partitions to create :return: a list of tables where each table is a folds, i.e.: [[P1],[P2],..., [Pnum]] where each P is a table """ labels_to_rows = {} # spreads the data out into a dictionary where the key is the class label and the data is a table consisting of # rows with that class label {class_label:rows_with_class_label for row in table: label = row[by_label_index] try: labels_to_rows[label].append(row) except KeyError: labels_to_rows[label] = [row] # creates folds by evenly distributing the rows of each class label to the number of partitions folds = {} index = 0 for key, table in labels_to_rows.iteritems(): for row in table: try: folds[index].append(row) except KeyError: folds[index] = [row] index += 1 if index > k: index = 0 return util.dictionaryToArray(folds) def getAgeRating(x): """ Returns the dept of energy number rating""" # Gets the range values for the DOE rankings keys = util.getValues(constants.AGE_RATINGS) # Gets the left-end of the range x belongs in lowRange = util.getLowRange(keys, x) # Flips the dictionary, so we can query by value byValue = util.flipKeyValues(constants.AGE_RATINGS) return byValue[lowRange] def getNHTSASize(x): """ Returns the NHTSA Vehicle size """ # Gets the range values for the DOE rankings keys = util.getValues(constants.NHTSA) # Gets the left-end of the range x belongs in lowRange = util.getLowRange(keys, x) # Flips the dictionary, so we can query by value byValue = util.flipKeyValues(constants.NHTSA) return byValue[lowRange] def convertRowIntoIndexValuePairs(row): """ Converts [x, y, z, ...] into [(0, x), (1, y), (2, z)] for use in the classifiers in their "where" statements """ return [ (index, value) for index, value in enumerate(row)] def getNamedTuples(row, names): """ Gets a bunch of tuples by their name Ex: getNamedColsFromRow(row, 'mpg', 'origin', 'weight') might return [(0, 18.0), (4, 3504), (7, 1)] WARNING: These don't necessarily return in any specific order. """ tuples = [] namesIndexes = [constants.INDICES[name] for name in names] for index, value in enumerate(row): if index in namesIndexes: tuples.append((index, value)) return tuples def get_survived_value(x): """ returns the int value for the nominal value survived :param x: a value that is either 'yes' or 'no' :return: returns 1 if x is yes, or 0 if x is no """ if x == 'yes': return 1 else: return 0 def get_sex_value(x): """ returns the int value for the nominal value sex :param x: a value that is either 'male' or 'female' :return: returns 1 if x is male, or 0 if x is female """ if x == 'male': return 1 else: return 0 def get_age_value(x): """ returns the int value for the nominal value age :param x: a value that is either 'adult' or 'child' :return: returns 1 if x is adult, or 0 if x is fchild """ if x == 'adult': return 1 else: return 0 def get_class_value(x): """ returns the int value for the ordinal value class :param x: a value that is either 'crew', 'first', 'second', or 'third' :return: returns 3 if 'crew', 2 if first, etc. """ if x == 'crew': return 3 elif x == 'first': return 2 elif x == 'second': return 1 else: return 0 """NEW FINAL PROJECT MAPPING STUFF""" def get_age(x): if age > 90: return 1 elif age <= 90 and age > 70: return 2 elif age <= 70 and age > 50: return 2 else: return 0 def get_job_type(x): """ returns the int value for the nominal value survived :param x: a value that is either 'yes' or 'no' :return: returns 1 if x is yes, or 0 if x is no """ if x == 'Government': return 1 elif x == 'Private': return 2 elif x == 'Self-employed': return 3 else: return 0 def get_degree(x): """ returns the int value for the nominal value sex :param x: a value that is either 'male' or 'female' :return: returns 1 if x is male, or 0 if x is female """ if x == 'HS': return 1 elif x == 'Bachelors': return 2 elif x == 'Masters': return 3 elif x == 'Doctorate': return 4 elif x == 'College-drop-out': return 5 elif x == 'Associate': return 6 elif x == 'Middleschool': return 7 elif x == 'Elementary': return 8 elif x == 'Prof-school': return 9 else: return 0 def get_marital_status(x): """ returns the int value for the nominal value age :param x: a value that is either 'adult' or 'child' :return: returns 1 if x is adult, or 0 if x is fchild """ if x == 'Never-married': return 1 elif x == 'Married-civ-spouse': return 2 elif x == 'Divorced': return 3 elif x == 'Married-spouse-absent': return 4 elif x == 'Widowed': return 5 elif x == 'Separated': return 6 elif x == 'Married-AF-spouse': return 7 else: return 0 def get_ethnicity(x): """ returns the int value for the ordinal value class :param x: a value that is either 'crew', 'first', 'second', or 'third' :return: returns 3 if 'crew', 2 if first, etc. """ if x == 'White': return 1 elif x == 'Black': return 2 elif x == 'Amer-Indian-Eskimo': return 3 elif x == 'Asian-Pac-Islander': return 4 else: return 0 def get_gender(x): """ returns the int value for the ordinal value class :param x: a value that is either 'crew', 'first', 'second', or 'third' :return: returns 3 if 'crew', 2 if first, etc. """ if x == 'Male': return 1 else: return 0 def get_country(x): """ returns the int value for the ordinal value class :param x: a value that is either 'crew', 'first', 'second', or 'third' :return: returns 3 if 'crew', 2 if first, etc. """ if x == 'United-States': return 1 elif x == 'Philippines': return 2 elif x == 'Puerto-Rico': return 3 elif x == 'Mexico': return 4 elif x == 'Dominican-Republic': return 5 elif x == 'Portugal': return 6 elif x == 'Canada': return 7 elif x == 'Taiwan': return 8 elif x == 'Cuba': return 9 elif x == 'Jamaica': return 10 else: return 0 def get_salary(x): """ returns the int value for the ordinal value class :param x: a value that is either 'crew', 'first', 'second', or 'third' :return: returns 3 if 'crew', 2 if first, etc. """ if x == '>50K': return '1' else: return '0' def get_salary_box(x): """ returns the int value for the ordinal value class :param x: a value that is either 'crew', 'first', 'second', or 'third' :return: returns 3 if 'crew', 2 if first, etc. """ if x == '>50K': return 1 else: return 0 if __name__ == '__main__': row = [18.0,8,307.0,130.0,3504,12.0,70,1,"chevrolet chevelle malibu",2881] print getNamedTuples(row, 'mpg', 'origin', 'weight')
28.569863
115
0.60654
aecdde1dfba894df3dabb3922b29c6b230180dca
19,924
py
Python
abstract_metal_wires/abstract_metal_wires.py
qbilius/autoart
e82f0b28848648600e3e61d188231edd26f215b0
[ "MIT" ]
2
2022-03-10T04:12:42.000Z
2022-03-12T02:44:32.000Z
abstract_metal_wires/abstract_metal_wires.py
qbilius/autoart
e82f0b28848648600e3e61d188231edd26f215b0
[ "MIT" ]
null
null
null
abstract_metal_wires/abstract_metal_wires.py
qbilius/autoart
e82f0b28848648600e3e61d188231edd26f215b0
[ "MIT" ]
null
null
null
import sys import psychopy from psychopy import visual, core import numpy as np import scipy.ndimage import matplotlib.pyplot as plt import matplotlib as mpl from PIL import Image # import hmax class Filters(object): def gabor(self, theta=0, gamma=1, sigma=2, lam=5.6, k=10 ): # g = np.exp(-np.pi*((alpha*x)**2+(beta*y)**2) ) * np.exp(-2*np.pi*np.i(u*x+v*y)) # g = mu**2/sigma**2 * np.exp( - mu**2 (x**2+y**2) / (2*sigma**2) ) * np.exp(np.i*mu*(x*np.cos(theta)+y*np.sin(theta))) # Mutch and Lowe, 2006 theta -= np.pi/2 x,y = np.meshgrid(np.arange(-k,k),np.arange(-k,k)) X = x*np.cos(theta) - y*np.sin(theta) Y = x*np.sin(theta) + y*np.cos(theta) g = np.exp( - (X**2 + (gamma*Y)**2) / (2*sigma**2) ) * np.cos( 2*np.pi*X/lam ) g -= np.mean(g) # mean 0 g /= np.sum(g**2) # energy 1 return g def gabor_pyramid(self): pass def second_gaussian(self): pass def gabor_circle(self, r = 40, k = 10, #n = 36, #theta=0, gamma=1, sigma=2, lam=5.6, ): oris = 2*np.pi/r*np.arange(r) k += r circle = np.zeros((2*k,2*k)) for ori in oris: theta = ori - np.pi/2 x,y = np.meshgrid(np.arange(-k,k),np.arange(-k,k)) x -= -r*np.cos(theta) y -= r*np.sin(theta) X = x*np.cos(theta) - y*np.sin(theta) Y = x*np.sin(theta) + y*np.cos(theta) g = np.exp( - (X**2 + (gamma*Y)**2) / (2*sigma**2) ) * np.cos( 2*np.pi*X/lam ) g -= np.mean(g) # mean 0 g /= np.sum(g**2) # energy 1 circle += g # #circle[circle.shape[0]/2-4:circle.shape[0]/2+4, #circle.shape[1]/2-4:circle.shape[1]/2+4] = 4*np.max(circle) #import pdb; pdb.set_trace() return circle def plot(self): circle = self.gabor_circle() plt.imshow(circle,cmap=mpl.cm.gray) plt.show() sys.exit() class association_field(object): def naive(self, o1, o2, a=.6 # from Sigman et al., 2001 ): r = np.linalg.norm(o1,o2) theta1 = np.arctan2(o1[1],o1[0]) theta2 = np.arctan2(o2[1],o2[0]) optimal_angle = 2*theta1-phi # penalty for suboptimal angle times penalty for distance w = np.cos(2*(optimal_angle - theta2)) * r**(-a) return w def watts(self, e1, # one gabor (x,y) position and orientation (in degrees) e2, # the rest of the field ds = .1, # size of the Gaussian envelope (overall size)) cs = np.pi/9, # curvature sensitivity ts = np.pi/18, # tolerance for non-circularity (larger values mean that cocircularity is more ignored) method = np.sum # how to calculate the final weight; could also be np.max ): # R = np.array([np.cos(-t0), -sin ]) x, y, theta = e2-e1 xx = x*np.cos(-t0) - y*np.sin(-t0) yy = y*np.cos(-t0) + x*np.sin(-t0) dd = (xx**2+yy**2)/ds**2 curvature = yy/(dd*ds) spatial_weight = np.exp(-dd) * np.exp(-(curvature/cs)**2 / 2 ) theta_optimal = 2*np.arctan2(yy,xx) - ei[2] # ei[2] this was not present in the original # presumably ei[2]=0 in those simulations theta_difference = theta_optimal-ej[2] # instead of subtrating theta if theta_difference > np.pi/2 or theta_difference < -np.pi/2: theta_difference = np.pi - np.abs(theta_difference) a=exp(-((theta_difference/ts)**2)/2); weight = method(spatial_weight*a) return weight def ernst_orig(self, ei, ej, r0 = 1.16/4, sigma_a = .27, # tolerance to co-circularity; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g006 sigma_b = .47, # curvature; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g007 assuming a typo in reporting .57 ): x, y, beta = ej-ei # angle between the two elements r = np.linalg.norm([x,y]) alpha = np.arctan2(y,x)-ei[2] # angle of a line connecting the two centers (minus ei orientation) # beta = ej[2] - ei[2] Ad = np.exp(-r/r0) At = np.cosh( np.cos(beta/2-alpha)/sigma_a**2 + 4*np.cos(beta/2)/sigma_b**2 ) A = Ad*At # plt.figure() # plt.imshow(Ad) # plt.figure() # plt.imshow(At) # plt.show() #import pdb; pdb.set_trace() # K = 2*np.sin(beta/2)/r return A def ernst(self, shape=(40,40), beta = 0, # orientation r0 = 11.6/4, sigma_a = .27, # tolerance to co-circularity; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g006 sigma_b = .47, # curvature; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g007 assuming a typo in reporting .57 ): x,y=np.meshgrid(np.arange(-shape[0]/2,shape[0]/2),np.arange(-shape[1]/2,shape[1]/2)) # x, y, beta = ej-ei # angle between the two elements r = np.sqrt(x**2+y**2) alpha = np.arctan2(y,x) # angle of a line connecting the two centers Ad = np.exp(-r/r0) At = np.cosh( -np.cos(beta/2-alpha)/sigma_a**2 + 4*np.cos(beta/2)/sigma_b**2 )+\ np.cosh( np.cos(beta/2-alpha)/sigma_a**2 + 4*np.cos(beta/2)/sigma_b**2 ) A = Ad*At A = A/np.sum(A) return A-np.mean(A) def ernst_half(self, shape=(40,40), beta = 0, # orientation r0 = 11.6/4, sigma_a = .27, # tolerance to co-circularity; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g006 sigma_b = .47, # curvature; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g007 assuming a typo in reporting .57 curvature = 'convex', # 'convex' or 'concave' ): x,y=np.meshgrid(np.arange(-shape[0]/2,shape[0]/2),np.arange(-shape[1]/2,shape[1]/2)) # x, y, beta = ej-ei # angle between the two elements r = np.sqrt(x**2+y**2) alpha = np.arctan2(y,x) # angle of a line connecting the two centers Ad = np.exp(-r/r0) At = np.cosh( -np.cos(beta/2-alpha)/sigma_a**2 + 4*np.cos(beta/2)/sigma_b**2 )+\ np.cosh( np.cos(beta/2-alpha)/sigma_a**2 + 4*np.cos(beta/2)/sigma_b**2 ) A = Ad*At if curvature == 'convex': A[:A.shape[0]/2] = 0 else: A[A.shape[0]/2:] = 0 return A/np.sum(A) def ernst_trans(self, shape=(100,100), #size = (120,120), beta = 0, # orientation r0 = 11.6/4, sigma_a = .27, # tolerance to co-circularity; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g006 sigma_b = .47, # curvature; chosen to be optimal from doi:10.1371/journal.pcbi.1002520.g007 assuming a typo in reporting .57 d = 10, ): x,y=np.meshgrid(np.arange(-shape[0]/2,shape[0]/2),np.arange(-shape[1]/2,shape[1]/2)) # x, y, beta = ej-ei # angle between the two elements shift_x = d*np.sin(beta/2) shift_y = -d*np.cos(beta/2) A = np.zeros(shape) for ind in range(-shape[0]/2/d,shape[0]/2/d): xn = x-ind*shift_x yn = y-ind*shift_y r = np.sqrt(xn**2+yn**2) alpha = np.arctan2(yn,xn) # angle of a line connecting the two centers Ad = np.exp(-r/r0) At = np.cosh( -np.cos(beta/2-alpha)/sigma_a**2 + 4*np.cos(beta/2)/sigma_b**2 )+\ np.cosh( np.cos(beta/2-alpha)/sigma_a**2 + 4*np.cos(beta/2)/sigma_b**2 ) A += Ad*At A = A/np.sum(A) A -= np.mean(A) return A def plot(self, filter_name=None): assoc = self.ernst_trans(beta=-2*np.pi/2) plt.imshow(assoc) plt.show() sys.exit() class Model(object): def __init__(self): pass def reSample(self,w): #RESAMPLE Residual Resampling (Liu et al) # IX = reSample(w), where w is weights and IX is index set of the # resulting particles n = len(w) w = n*w/np.sum(w) # normalize to sum up to n wN = np.floor(w) # integer parts wR = w-wN # residual weigths wR = wR/np.sum(wR) # normalize # filling indexes with integer parts k = 1 IX = np.zeros((n,1)) for i in range(n): for j in range(wN[i]): IX[k] = i k += 1 # use residuals to fill rest with roulette wheel selection cs = np.cumsum(wR) for j in range(k,n): ix = np.nonzero(cs > np.random.rand())[0] IX[j] = ix def weighted_sample(self,weights, n): a,b = weights.shape weights = weights.ravel() total = np.sum(weights) i = 0 w = weights[0] v = 0 out = [] while n: x = total * (1 - np.random.rand() ** (1.0 / n)) total -= x while x > w: x -= w i += 1 w = weights[i] v = i w -= x out.append((v/b,v%b)) n -= 1 return np.array(out) def get_filters(self, filter_sizes, num_orientation, sigDivisor = 4.): self.filter_sizes = filter_sizes self.num_orientation = num_orientation self.gaussFilters = [] for filter_size in filter_sizes: fxx = np.zeros((filter_size,filter_size,num_orientation)) sigmaq = (filter_size/sigDivisor)**2 i = np.arange(-filter_size/2+1,filter_size/2+1) ii,jj = np.meshgrid(i,i) for t in range(num_orientation): theta = t*np.pi/num_orientation x = ii*np.cos(theta) - jj*np.sin(theta) y = ii*np.sin(theta) + jj*np.cos(theta) fxx[:,:,t] = (y**2/sigmaq-1)/sigmaq * np.exp(-(x**2+y**2)/(2*sigmaq)) fxx[:,:,t] -= np.mean(fxx[:,:,t]) fxx[:,:,t] /= np.sqrt(np.sum(fxx[:,:,t]**2)) self.gaussFilters.append(fxx) def set_filters(self): pass def S1resp_zeropad(self, stim): # function S1 = S1resp_zeropad (stim) # This function returns S1 responses with zero-padding, # using the difference of the Gaussians as S1 filters. # Filters are based on the original HMAX model. # filter_sizes = filter_sizes_all[whichBand] num_filter = len(self.filter_sizes) # make S1 same size as stimulus S1 = np.zeros((stim.shape[0], stim.shape[1], num_filter, self.num_orientation)) for j in range(num_filter): S1_filter = self.gaussFilters[j] fs = self.filter_sizes[j] norm = scipy.ndimage.convolve(stim**2, np.ones((fs,fs)),mode='constant') + sys.float_info.epsilon for i in range(self.num_orientation): S1_buf = scipy.ndimage.convolve(stim, S1_filter[:,:,i],mode='constant') S1[:,:,j,i] = S1_buf/np.sqrt(norm) # Riesenhuber states that this 'contrast invariance' is done at C1 # and S1 should rather produce outputs in the range [-1,1] return S1 def get_saliency_map(self, stim,n_part=None): # xi = np.random.randint(0,stim.shape[0],n_elem) # yi = np.random.randint(0,stim.shape[1],n_elem) saliency = np.zeros((stim.size,)) inds = np.random.randint(0,stim.size,n_part) saliency[inds] = 1 return saliency.reshape(stim.shape) def detect_edges(self,stim, particle_pos, ori = 0, filter_stack = None): def selective_filter(array, cond): if cond: return np.dot(filter_flat,array) else: return 0 gabor = Filters().gabor(theta=ori) k = gabor.shape[0]/2 filter_flat = gabor.ravel() # edge_map = sp.ndimage.generic_filter(stim,selective_filter,size = gabor.shape) edge_map = np.zeros(stim.shape) for pos in particle_pos: # check that the filter fits within the stim box if pos[0]-k>0 and pos[0]+k<stim.shape[0] and \ pos[1]-k>0 and pos[1]+k<stim.shape[1]: neighbors = stim[pos[0]-k:pos[0]+k,pos[1]-k:pos[1]+k] edge_map[pos[0],pos[1]] = np.dot(neighbors.ravel(),filter_flat) else: edge_map[pos[0],pos[1]] = 0 return np.abs(edge_map) def probmap(self,edge_map,assoc_field): # here the idea is to take the response to an edge at each position # and multiply it by association field probabilities # then add the resulting posteriors (across positions) # and move particles to the highest probability regions # Convolution does this trick albeit maybe it's not trivial too see that prob_map = scipy.ndimage.convolve(edge_map,assoc_field, mode='constant')# /\ #scipy.ndimage.correlate(edge_map**2,np.ones(assoc_field.shape)) return prob_map def run_thres(self): im = Image.open('010a.png').convert('L') stim = np.asarray(im)*1. oris = np.pi/18*np.arange(18) rs = np.arange(20,50,2) thres = .002 grid_size = 10 sf = 1 mean = stim for t in range(1): # loop over time print str(t)+':', edge_map = np.zeros((len(oris),)+mean.shape) #surface_map = np.zeros((len(oris),)+mean.shape) #for curno, cur in enumerate(['convex','concave']): #for oi,ori in enumerate(oris): for ri,r in enumerate(rs): print ri, #gabor = Filters().gabor(theta=ori, sigma=2*sf,lam=5.6*sf,k=10*sf) gabor = Filters().gabor_circle(r=r) norm = scipy.ndimage.correlate(mean**2,np.ones(gabor.shape),mode='nearest') edges = scipy.ndimage.correlate(mean,gabor,mode='nearest')/np.sqrt(norm) edges[edges<thres] = 0 #assoc_field = Filters().association_field().ernst_trans(beta=-2*ori) #assoc_field90 = Filters().association_field().ernst(beta=-2*ori+np.pi/2) #assoc_field_s = Filters().association_field().ernst(shape=(40,40), #beta=-2*ori+np.pi/2, #r0=33, #) #edges = self.probmap(edges,assoc_field)#-assoc_field90) #edges -= np.max(edges)*.3 edges[edges<0] = 0 #surface_map[oi] = scipy.ndimage.convolve(mean,assoc_field_s) #import pdb; pdb.set_trace() edge_map[ri] = edges mean = np.max(edge_map, axis=0) #import pdb; pdb.set_trace() #mean_s = np.max(surface_map,0) #for sno in range(len(mean)): #plt.subplot(2,2,sno+1) #plt.imshow(mean[sno],cmap=mpl.cm.gray) #plt.subplot(121) #plt.imshow(stim,cmap=mpl.cm.gray) #plt.subplot(122) plt.imshow(mean,cmap=mpl.cm.gray) plt.axis('off') #plt.show() plt.savefig('plieno_voratinkliai.jpg', dpi=300, format='jpg', bbox_inches='tight', pad_inches=0) sys.exit() #import pdb; pdb.set_trace() #k = gabor.shape[0]/2 #grid = np.meshgrid( #np.arange(k,stim.shape[0],grid_size), #np.arange(k,stim.shape[1],grid_size) #) #filter_flat = gabor.ravel() #edge_map = np.zeros(stim.shape) #for x,y in grid: #neighbors = stim[x-k:x+k,y-k:y+k] #edge_map[x,y] = np.dot(neighbors.ravel(),filter_flat) #edge_map = self.detect_edges(stim,particle_pos,ori= ori) sys.exit() saliency = self.get_saliency_map(stim,n_part=n_part) for t in range(10): # loop over time print t, prob_map = np.zeros([len(oris),stim.shape[0],stim.shape[1]]) for oi,ori in enumerate(oris): # prob_map[oi]=scipy.ndimage.convolve(stim,Filters().gabor(theta=ori)) #plt.imshow(saliency);plt.show() particle_pos = self.weighted_sample(saliency,n_part) # ch=np.zeros(stim.shape) # for p in particle_pos: # ch[p[0],p[1]] = 1 # if t==1:plt.imshow(ch,cmap='gray');plt.show() edge_map = self.detect_edges(stim,particle_pos,ori= ori) # plt.imshow(edge_map,cmap='gray');plt.show() assoc_field = Filters().association_field().ernst(beta=-2*ori) # plt.imshow(assoc_field,cmap='gray');plt.show() prob_map[oi] = self.probmap(edge_map, assoc_field) # plt.imshow(prob_map[oi],cmap='gray');plt.show() saliency = np.sum(prob_map,axis=0) saliency /= np.sum(saliency) plt.imshow(saliency,cmap='gray');plt.colorbar();plt.show() def run_partfilt(self): im = Image.open('L-POST/images/010.png').convert('L') stim = np.asarray(im)*1. oris = np.pi/18*np.arange(18) n_part = 1000 saliency = self.get_saliency_map(stim,n_part=n_part) for t in range(10): # loop over time print t, prob_map = np.zeros([len(oris),stim.shape[0],stim.shape[1]]) for oi,ori in enumerate(oris): # prob_map[oi]=scipy.ndimage.convolve(stim,Filters().gabor(theta=ori)) #plt.imshow(saliency);plt.show() particle_pos = self.weighted_sample(saliency,n_part) # ch=np.zeros(stim.shape) # for p in particle_pos: # ch[p[0],p[1]] = 1 # if t==1:plt.imshow(ch,cmap='gray');plt.show() edge_map = self.detect_edges(stim,particle_pos,ori= ori) # plt.imshow(edge_map,cmap='gray');plt.show() assoc_field = Filters().association_field().ernst(beta=-2*ori) # plt.imshow(assoc_field,cmap='gray');plt.show() prob_map[oi] = self.probmap(edge_map, assoc_field) # plt.imshow(prob_map[oi],cmap='gray');plt.show() saliency = np.sum(prob_map,axis=0) saliency /= np.sum(saliency) plt.imshow(saliency,cmap='gray');plt.colorbar();plt.show() # plt.imshow(stim,cmap='gray');plt.show() def proximity_rows(): dot = visual.Circle(win, radius = .03) for i in range(5): for j in range(2): dot.setPos([.1*(i-2),.2*j]) dot.draw() def run(): g = Model() g.init_gaussian_filters([7,9,11,13,15], 12) win = visual.Window(size = (256,256)) proximity_rows() win.getMovieFrame(buffer='back') # win.flip() # core.wait(1) win.clearBuffer() stim = win.movieFrames[0] stim = np.asarray(stim.convert('L'))*1. win.movieFrames = [] win.close() S1resp = g.S1resp_zeropad(stim) plt.imshow(np.sum(np.sum(S1resp,axis=3),axis=2)) plt.show() if __name__ == "__main__": g = Model() g.run_thres() #Filters.association_field().plot() #Filters().plot()
36.15971
137
0.524995
03da08fca9215585c345e38af24d2e5b59e3ec9d
412
py
Python
647-palindromic-substrings/647-palindromic-substrings.py
tlylt/LeetCodeAnki
9f69504c3762f7895d95c2a592f18ad395199ff4
[ "MIT" ]
1
2022-02-14T08:03:32.000Z
2022-02-14T08:03:32.000Z
647-palindromic-substrings/647-palindromic-substrings.py
tlylt/LeetCodeAnki
9f69504c3762f7895d95c2a592f18ad395199ff4
[ "MIT" ]
null
null
null
647-palindromic-substrings/647-palindromic-substrings.py
tlylt/LeetCodeAnki
9f69504c3762f7895d95c2a592f18ad395199ff4
[ "MIT" ]
null
null
null
class Solution: def countSubstrings(self, s: str) -> int: ans = 0 for i in range(len(s)): ans += self.helper(s, i, i, len(s)) ans += self.helper(s, i, i+1, len(s)) return ans def helper(self, s, l, r, end): ans = 0 while l >= 0 and r < end and s[l] == s[r]: ans += 1 l -= 1 r += 1 return ans
27.466667
50
0.417476
1444139d9fc93abf885986970a756355c74285ca
3,348
py
Python
discordbot.py
nekosuke1/discordpy-startup
b6680c461c90a06ed8372545e944aad4f3be9203
[ "MIT" ]
null
null
null
discordbot.py
nekosuke1/discordpy-startup
b6680c461c90a06ed8372545e944aad4f3be9203
[ "MIT" ]
null
null
null
discordbot.py
nekosuke1/discordpy-startup
b6680c461c90a06ed8372545e944aad4f3be9203
[ "MIT" ]
null
null
null
import os import traceback import discord import random # おみくじで使用 from datetime import datetime token = os.environ['DISCORD_BOT_TOKEN'] @bot.event async def on_ready(): """起動時に通知してくれる処理""" print('ログインしました') print(client.user.name) # ボットの名前 print(client.user.id) # ボットのID print(discord.__version__) # discord.pyのバージョン print('---起動完了、雑談用ファイル1---') await client.change_presence(activity=discord.Game(name="起動時間-7:04~22:30/!nekosukehelp", type=1)) async def create_channel(message, channel_name): category_id = message.channel.category_id category = message.guild.get_channel(category_id) new_channel = await category.create_text_channel(name=channel_name) return new_channel @bot.event async def on_message(message): # メッセージ送信者がBotだった場合は無視する if message.author.bot: if message.content.startswith('チャンネル作成'): # チャンネルを作成する非同期関数を実行して Channel オブジェクトを取得 new_channel = await create_channel(message, channel_name='猫助が作成したチャンネル') # チャンネルのリンクと作成メッセージを送信 text = f'{new_channel.mention} を作成したよーん' await message.channel.send(text) elif message.content == "!Nhelp": # リアクションアイコンを付けたい q = await message.channel.send("音楽のヘルプかな?使い方:まず、ボイスチャンネルに入って、チャットに!N1~5の数値を入力してその後に、playを入れてエンター!(既に猫助がいる場合は、resetと打って送信して一度出入りしてください、この時、既に猫助がいるボイスチャンネルにいる必要があります)") [await q.add_reaction(i) for i in ('⭕', '❌')] # for文の内包表記 if message.content == 'えさだよー': await message.channel.send('にゃーん') if message.content == 'マタタビだよー': await message.channel.send('にゃーん') if message.content == '猫好き': await message.channel.send('にゃーん') if message.content == 'fuck': await message.channel.send('しゃー') if message.content == '!nekosukehelp': await message.channel.send('最近追加された機能です!neko-gというチャンネルを作成し、nekosuke-webhookというウェブフックを追加するとグローバルチャットができます!') if message.content == '犬嫌い': await message.channel.send('にゃーん') if message.content == 'ちゅーるだよー': await message.channel.send('にゃーん') elif message.content == "おみくじ": # Embedを使ったメッセージ送信 と ランダムで要素を選択 embed = discord.Embed(title="おみくじ", description=f"{message.author.mention}さんの今日のにゃん勢は!", color=0x2ECC69) embed.set_thumbnail(url=message.author.avatar_url) embed.add_field(name="[運勢] ", value=random.choice(('にゃい吉', '吉', '凶', 'にゃい凶','あんまり引くと怒るにゃ-大大凶','にゃい吉')), inline=False) await message.channel.send(embed=embed) GLOBAL_CH_NAME = "neko-g" # グローバルチャットのチャンネル名 GLOBAL_WEBHOOK_NAME = "neko-webhook" # グローバルチャットのWebhook名 if message.channel.name == GLOBAL_CH_NAME: # hoge-globalの名前をもつチャンネルに投稿されたので、メッセージを転送する await message.delete() channels = client.get_all_channels() global_channels = [ch for ch in channels if ch.name == GLOBAL_CH_NAME] for channel in global_channels: ch_webhooks = await channel.webhooks() webhook = discord.utils.get(ch_webhooks, name=GLOBAL_WEBHOOK_NAME) if webhook is None: # そのチャンネルに hoge-webhook というWebhookは無かったので無視 continue await webhook.send(content=message.content, username=message.author.name, avatar_url=message.author.avatar_url_as(format="png")) bot.run(token)
40.337349
174
0.680108
1286a36a767791fab597432bc8a4adb71dfc32eb
1,050
py
Python
core/tests/test_models.py
gbutrykowska/recipe-app-api
7195d8af81bf3feaf6cf4cc5060dec4e26236203
[ "MIT" ]
null
null
null
core/tests/test_models.py
gbutrykowska/recipe-app-api
7195d8af81bf3feaf6cf4cc5060dec4e26236203
[ "MIT" ]
null
null
null
core/tests/test_models.py
gbutrykowska/recipe-app-api
7195d8af81bf3feaf6cf4cc5060dec4e26236203
[ "MIT" ]
null
null
null
from django.test import TestCase from django.contrib.auth import get_user_model class ModelTests(TestCase): def test_create_user_with_email_successful(self): email = 'test@gmail.com' password = 'Testpass123' user = get_user_model().objects.create_user( email=email, password=password ) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalized(self): email = 'test@GMAIL.COM' user = get_user_model().objects.create_user(email, 'test123') self.assertEqual(user.email, email.lower()) def test_new_user_invalid_email(self): with self.assertRaises(ValueError): get_user_model().objects.create_user(None, 'test123') def test_create_new_superuser(self): user = get_user_model().objects.create_superuser( 'test@gmail.com', 'test123' ) self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff)
30
69
0.661905
a18b8a73e58ee5b7c4c68e8d5456f41b1863c6da
5,075
py
Python
hyper_parameter_tuning/_v6_build_model_general_u.py
sunway1999/deep_omics
5ceb61aa1555ceed49c85a1b49c99ca9ca48e6b5
[ "MIT" ]
16
2022-01-11T19:58:18.000Z
2022-02-27T14:48:15.000Z
hyper_parameter_tuning/_v6_build_model_general_u.py
sunway1999/deep_omics
5ceb61aa1555ceed49c85a1b49c99ca9ca48e6b5
[ "MIT" ]
null
null
null
hyper_parameter_tuning/_v6_build_model_general_u.py
sunway1999/deep_omics
5ceb61aa1555ceed49c85a1b49c99ca9ca48e6b5
[ "MIT" ]
4
2022-01-15T03:25:29.000Z
2022-03-27T00:21:02.000Z
# change CNN structure to the same as that from the # De novo prediction of cancer-associated T cell receptors # for noninvasive cancer detection # paper # https://github.com/s175573/DeepCAT # all parameters for CNN part are directly carried over from # the inplementation of this repo from tensorflow.keras.activations import relu from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Embedding, Flatten, Conv1D, MaxPooling1D from tensorflow.keras.layers import Reshape, Dropout, concatenate # structure currently limited to maximum two dense layers # and one dropout layer def get_model(HLA_shape, V_shape, CDR3_shape, len_shape, \ cdr1_shape, cdr2_shape, cdr25_shape, V_cdrs = 2, \ CNN_flag = False, \ n_dense = 1, n_units = [16], \ dropout_flag = False, p_dropout = 0.2): # check the inputs: if n_dense >2: print("Error from func get_model: number of dense layers not coded for yet.") return if n_dense > 1 and n_dense > len(n_units): print('Error from func get_model: n_units input is not long enough.') return # Define input layers HLA_input = Input(HLA_shape) HLA_reshape = Reshape((HLA_shape[0] * HLA_shape[1],), \ input_shape = HLA_shape)(HLA_input) V_input = Input(V_shape) #(28,) CDR3_input = Input(CDR3_shape) len_input = Input(len_shape) cdr1_input = Input(cdr1_shape) cdr2_input = Input(cdr2_shape) cdr25_input = Input(cdr25_shape) cdr1_reshape = Reshape((cdr1_shape[0] * cdr1_shape[1],), \ input_shape = cdr1_shape)(cdr1_input) cdr2_reshape = Reshape((cdr2_shape[0] * cdr2_shape[1],), \ input_shape = cdr2_shape)(cdr2_input) cdr25_reshape = Reshape((cdr25_shape[0] * cdr25_shape[1],), \ input_shape = cdr25_shape)(cdr25_input) # whether to use CNN or not if CNN_flag: # construct CDR3_branches CDR3_branch = Conv1D(filters=8, kernel_size=2, activation=relu, \ input_shape = CDR3_shape, name='Conv_CDR3_1')(CDR3_input) CDR3_branch = MaxPooling1D(pool_size=2, strides=1, padding='valid', \ name='MaxPooling_CDR3_1')(CDR3_branch) CDR3_branch = Conv1D(filters=16, kernel_size=2, activation=relu, \ input_shape = CDR3_shape, name='Conv_CDR3_2')(CDR3_branch) CDR3_branch = MaxPooling1D(pool_size=2, strides=1, padding='valid', \ name='MaxPooling_CDR3_2')(CDR3_branch) CDR3_flatten = Flatten(name='Flatten_CDR3')(CDR3_branch) CDR3_reshape = Reshape((CDR3_shape[0] * CDR3_shape[1],), \ input_shape = CDR3_shape)(CDR3_input) #CDR3_branches.append(CDR3_branch) CDR3_inter_layer = concatenate([CDR3_flatten, CDR3_reshape], axis=-1) else: CDR3_inter_layer = Reshape((CDR3_shape[0] * CDR3_shape[1],), \ input_shape = CDR3_shape)(CDR3_input) # concatenate parts together HLA_part = Dense(64, activation = relu)(HLA_reshape) if V_cdrs == 2: TCR_combined = concatenate([V_input, len_input, CDR3_inter_layer, \ cdr1_reshape, cdr2_reshape, cdr25_reshape]) TCR_part = Dense(64, activation = relu)(TCR_combined) inter_layer = concatenate([HLA_part, TCR_part]) elif V_cdrs == 0: TCR_combined = concatenate([V_input, len_input, CDR3_inter_layer]) TCR_part = Dense(64, activation = relu)(TCR_combined) inter_layer = concatenate([HLA_part, TCR_part]) else: TCR_combined = concatenate([len_input, CDR3_inter_layer, \ cdr1_reshape, cdr2_reshape, cdr25_reshape]) TCR_part = Dense(64, activation = relu)(TCR_combined) inter_layer = concatenate([HLA_part, TCR_part]) # move on to see how many dense layers we want # and whether we want a dropout layer if n_dense == 1: if not dropout_flag: last_layer = Dense(n_units[0], activation = relu)(inter_layer) else: dense_layer = Dense(n_units[0], activation = relu)(inter_layer) last_layer = Dropout(p_dropout)(dense_layer) else: if not dropout_flag: first_dense = Dense(n_units[0], activation = relu)(inter_layer) last_layer = Dense(n_units[1], activation = relu)(first_dense) else: first_dense = Dense(n_units[0], activation = relu)(inter_layer) dropout_layer = Dropout(p_dropout)(first_dense) last_layer = Dense(n_units[1], activation = relu)(dropout_layer) # final output layer output = Dense(1, activation = 'sigmoid', name = 'output')(last_layer) # build the model model = Model(inputs=[HLA_input, V_input, CDR3_input, len_input, \ cdr1_input, cdr2_input, cdr25_input], outputs = output) return model
48.333333
90
0.636256
c280ec56e29c9a2379eedae6b99e2908118f8a4c
8,047
py
Python
demo/HuggingFace/GPT2/frameworks.py
SsisyphusTao/TensorRT
69f5a5093a39184e137a55c908d5c4d1340b009a
[ "Apache-2.0" ]
2
2020-06-17T06:01:27.000Z
2021-07-31T15:47:09.000Z
demo/HuggingFace/GPT2/frameworks.py
SsisyphusTao/TensorRT
69f5a5093a39184e137a55c908d5c4d1340b009a
[ "Apache-2.0" ]
null
null
null
demo/HuggingFace/GPT2/frameworks.py
SsisyphusTao/TensorRT
69f5a5093a39184e137a55c908d5c4d1340b009a
[ "Apache-2.0" ]
null
null
null
# std import os import sys import argparse from typing import List # huggingface from transformers import ( GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, ) # Add syspath for custom library if __name__ == "__main__": filepath = os.path.dirname(os.path.abspath(__file__)) project_root = os.path.join(filepath, os.pardir) sys.path.append(project_root) # helpers from NNDF.interface import FrameworkCommand from NNDF.general_utils import confirm_folder_delete, NNFolderWorkspace from NNDF.networks import ( NetworkResult, NetworkMetadata, NetworkRuntime, Precision, NetworkModel, NetworkModels, TimingProfile, ) from GPT2.export import GPT2TorchFile from GPT2.GPT2ModelConfig import GPT2ModelTRTConfig from GPT2.measurements import gpt2_inference, full_inference_greedy class GPT2HuggingFace(FrameworkCommand): def __init__(self): super().__init__( GPT2ModelTRTConfig, description="Runs framework results for GPT2 model." ) # Default inference input used during inference stage self.onnx_gpt2 = None self.torch_gpt2_dir = None def generate_and_download_framework( self, metadata: NetworkMetadata, workspace: NNFolderWorkspace ) -> NetworkModels: cache_variant = False if metadata.other.kv_cache: cache_variant = True trt_gpt2_config = self.config metadata_serialized = trt_gpt2_config.get_metadata_string(metadata) workspace_dir = workspace.get_path() pytorch_model_dir = os.path.join(workspace_dir, metadata_serialized) # We keep track of the generated torch location for cleanup later self.torch_gpt2_dir = pytorch_model_dir model = None tfm_config = GPT2Config(use_cache=cache_variant) if not os.path.exists(pytorch_model_dir): # Generate the pre-trained weights model = GPT2LMHeadModel(tfm_config).from_pretrained(metadata.variant) model.save_pretrained(pytorch_model_dir) print("Pytorch Model saved to {}".format(pytorch_model_dir)) else: print( "Frameworks file already exists, skipping generation and loading from file instead." ) model = GPT2LMHeadModel(tfm_config).from_pretrained(pytorch_model_dir) root_onnx_model_name = "{}.onnx".format(metadata_serialized) root_onnx_model_fpath = os.path.join( os.getcwd(), workspace_dir, root_onnx_model_name ) onnx_model_fpath = root_onnx_model_fpath gpt2 = GPT2TorchFile(model, metadata) self.onnx_gpt2 = gpt2.as_onnx_model(onnx_model_fpath, force_overwrite=False) onnx_models = [ NetworkModel( name=GPT2ModelTRTConfig.NETWORK_DECODER_SEGMENT_NAME, fpath=self.onnx_gpt2.fpath, ) ] torch_models = [ NetworkModel( name=GPT2ModelTRTConfig.NETWORK_DECODER_SEGMENT_NAME, fpath=pytorch_model_dir, ) ] return NetworkModels(torch=torch_models, onnx=onnx_models, trt=None) def cleanup( self, workspace: NNFolderWorkspace, save_onnx_model: bool = True, keep_pytorch_model: bool = True, ) -> None: """ Cleans up the working directory and leaves models if available. Should not assume any functions from the framework class has been called. Returns: None """ # Clean-up generated files if not save_onnx_model and self.onnx_gpt2 is not None: self.onnx_gpt2.cleanup() # Remove any onnx external files by removing integer named values and weight files workspace_path = workspace.get_path() for d in os.listdir(workspace_path): fpath = os.path.join(workspace_path, d) if os.path.isfile(fpath) and os.path.splitext(d)[1] == ".weight": os.remove(fpath) elif d.isnumeric(): os.remove(fpath) if not keep_pytorch_model: # Using rmtree can be dangerous, have user confirm before deleting. confirm_folder_delete( self.torch_gpt2_dir, prompt="Confirm you want to delete downloaded pytorch model folder?", ) if not keep_pytorch_model and not save_onnx_model: workspace.cleanup(force_remove=False) def execute_inference( self, metadata: NetworkMetadata, network_fpaths: NetworkModels, inference_input: str, timing_profile: TimingProfile, ) -> NetworkResult: # Execute some tests tokenizer = GPT2Tokenizer.from_pretrained(metadata.variant) input_ids = tokenizer(inference_input, return_tensors="pt").input_ids # By default, HuggingFace model structure is one giant file. gpt2_torch_fpath = network_fpaths.torch[0].fpath config = GPT2Config(use_cache=metadata.other.kv_cache) gpt2_model = GPT2LMHeadModel(config).from_pretrained(gpt2_torch_fpath) gpt2_torch = GPT2TorchFile.TorchModule( gpt2_model.transformer, gpt2_model.lm_head, gpt2_model.config ) greedy_output = gpt2_torch.generate(input_ids) #greedy search # get single decoder iteration inference timing profile _, decoder_e2e_median_time = gpt2_inference( gpt2_torch, input_ids, timing_profile ) # get complete decoder inference result and its timing profile sample_output, full_e2e_median_runtime = full_inference_greedy( gpt2_torch, input_ids, timing_profile, max_length=GPT2ModelTRTConfig.MAX_SEQUENCE_LENGTH[metadata.variant], ) semantic_outputs = [] for i, sample_output in enumerate(sample_output): semantic_outputs.append( tokenizer.decode(sample_output, skip_special_tokens=True) ) return NetworkResult( input=inference_input, output_tensor=greedy_output, semantic_output=semantic_outputs, median_runtime=[ NetworkRuntime( name=GPT2ModelTRTConfig.NETWORK_DECODER_SEGMENT_NAME, runtime=decoder_e2e_median_time, ), NetworkRuntime( name=GPT2ModelTRTConfig.NETWORK_FULL_NAME, runtime=full_e2e_median_runtime, ), ], models=network_fpaths, ) def run_framework( self, metadata: NetworkMetadata, network_input: List[str], working_directory: str, keep_onnx_model: bool, keep_pytorch_model: bool, timing_profile: TimingProfile, ) -> List[NetworkResult]: """ Main entry point of our function which compiles and generates our model data. """ results = [] workspace = NNFolderWorkspace( self.config.network_name, metadata, working_directory ) try: network_fpaths = self.generate_and_download_framework(metadata, workspace) for ninput in network_input: results.append( self.execute_inference( metadata, network_fpaths, ninput, timing_profile ) ) finally: self.cleanup(workspace, keep_onnx_model, keep_pytorch_model) return results def args_to_network_metadata(self, args: argparse.Namespace) -> NetworkMetadata: return NetworkMetadata( variant=args.variant, precision=Precision(fp16=False), other=self.config.MetadataClass(kv_cache=args.enable_kv_cache), ) # Entry point RUN_CMD = GPT2HuggingFace() if __name__ == "__main__": result = RUN_CMD() print("Results: {}".format(result))
33.953586
100
0.639617
92b0eb0d7a930eb91ab90f6e7301b618ac6e32b7
4,020
py
Python
dreamcoder/dreaming.py
theosech/ec
7fc34fb9df8d1b34bd4eb11551ca6fa0f574ce0e
[ "Unlicense" ]
6
2020-11-19T14:53:55.000Z
2021-09-27T19:28:51.000Z
dreamcoder/dreaming.py
evelinehong/dreamcoder
9de0434359721c8a4ecc44ae76649e21f1479c3d
[ "MIT" ]
1
2020-10-17T00:51:43.000Z
2020-10-17T00:51:43.000Z
dreamcoder/dreaming.py
evelinehong/dreamcoder
9de0434359721c8a4ecc44ae76649e21f1479c3d
[ "MIT" ]
1
2020-11-18T19:36:56.000Z
2020-11-18T19:36:56.000Z
import json import os import subprocess from pathos.multiprocessing import Pool from dreamcoder.domains.arithmetic.arithmeticPrimitives import k1, k0, addition, subtraction, multiplication from dreamcoder.frontier import Frontier, FrontierEntry from dreamcoder.grammar import Grammar from dreamcoder.program import Program from dreamcoder.recognition import RecognitionModel, DummyFeatureExtractor from dreamcoder.task import Task from dreamcoder.type import arrow, tint from dreamcoder.utilities import tuplify, timing, eprint, get_root_dir, mean def helmholtzEnumeration(g, request, inputs, timeout, _=None, special=None, evaluationTimeout=None): """Returns json (as text)""" message = {"request": request.json(), "timeout": timeout, "DSL": g.json(), "extras": inputs} if evaluationTimeout: message["evaluationTimeout"] = evaluationTimeout if special: message["special"] = special message = json.dumps(message) with open('/tmp/hm', 'w') as handle: handle.write(message) try: binary = os.path.join(get_root_dir(), 'helmholtz') process = subprocess.Popen(binary, stdin=subprocess.PIPE, stdout=subprocess.PIPE) response, error = process.communicate(bytes(message, encoding="utf-8")) except OSError as exc: raise exc return response def backgroundHelmholtzEnumeration(tasks, g, timeout, _=None, special=None, evaluationTimeout=None): requests = list({t.request for t in tasks}) inputs = {r: list({tuplify(xs) for t in tasks if t.request == r for xs, y in t.examples}) for r in requests} workers = Pool(len(requests)) promises = [workers.apply_async(helmholtzEnumeration, args=(g, r, inputs[r], float(timeout)), kwds={'special': special, 'evaluationTimeout': evaluationTimeout}) for r in requests] def get(): results = [p.get() for p in promises] frontiers = [] with timing("(Helmholtz enumeration) Decoded json into frontiers"): for request, result in zip(requests, results): response = json.loads(result.decode("utf-8")) for b, entry in enumerate(response): frontiers.append(Frontier([FrontierEntry(program=Program.parse(p), logPrior=entry["ll"], logLikelihood=0.) for p in entry["programs"]], task=Task(str(b), request, []))) eprint("Total number of Helmholtz frontiers:", len(frontiers)) return frontiers return get if __name__ == "__main__": g = Grammar.uniform([k1, k0, addition, subtraction, multiplication]) frontiers = helmholtzEnumeration(g, arrow(tint, tint), [[0], [1], [2]], 10.) eprint("average frontier size", mean(len(f.entries) for f in frontiers)) f = DummyFeatureExtractor([]) r = RecognitionModel(f, g, hidden=[], contextual=True) r.trainBiasOptimal(frontiers, frontiers, steps=70) g = r.grammarOfTask(frontiers[0].task).untorch() frontiers = helmholtzEnumeration(g, arrow(tint, tint), [[0], [1], [2]], 10.) for f in frontiers: eprint(f.summarizeFull()) eprint("average frontier size", mean(len(f.entries) for f in frontiers))
43.695652
108
0.539303
a04cbe32f9a3ccafd75d29ece6f91f0cf273a9aa
35
py
Python
zvgportal/parser/__init__.py
luccalb/zvg-portal
f812132aab657454b9a243dc7a1d1a4b7c3c8e21
[ "MIT" ]
null
null
null
zvgportal/parser/__init__.py
luccalb/zvg-portal
f812132aab657454b9a243dc7a1d1a4b7c3c8e21
[ "MIT" ]
null
null
null
zvgportal/parser/__init__.py
luccalb/zvg-portal
f812132aab657454b9a243dc7a1d1a4b7c3c8e21
[ "MIT" ]
null
null
null
from zvgportal.parser import parser
35
35
0.885714
7cffb8c729fd20d9b30fa8a482b20f424acaa33a
193
py
Python
convertorrr.py
mrtehseen/signal-failure-detection
506f32b47e37227fd90100ab834290bc50ca83d6
[ "MIT" ]
null
null
null
convertorrr.py
mrtehseen/signal-failure-detection
506f32b47e37227fd90100ab834290bc50ca83d6
[ "MIT" ]
null
null
null
convertorrr.py
mrtehseen/signal-failure-detection
506f32b47e37227fd90100ab834290bc50ca83d6
[ "MIT" ]
null
null
null
import tensorflow as tf converter = tf.lite.TFLiteConverter.from_keras_model_file("keras_model.h5") tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model)
32.166667
75
0.80829
0f8b4a3ad9684b71a88ef150c4930a079fae69c1
8,273
py
Python
common/utilities/tests/test_timing.py
tomzo/integration-adaptors
d4f296d3e44475df6f69a78a27fac6ed5b67513b
[ "Apache-2.0" ]
null
null
null
common/utilities/tests/test_timing.py
tomzo/integration-adaptors
d4f296d3e44475df6f69a78a27fac6ed5b67513b
[ "Apache-2.0" ]
4
2021-03-31T19:46:30.000Z
2021-03-31T19:55:03.000Z
common/utilities/tests/test_timing.py
tomzo/integration-adaptors
d4f296d3e44475df6f69a78a27fac6ed5b67513b
[ "Apache-2.0" ]
2
2020-04-02T11:22:17.000Z
2021-04-11T07:24:48.000Z
import datetime from unittest import TestCase from unittest.mock import patch, Mock from tornado.testing import AsyncHTTPTestCase from tornado.web import Application, RequestHandler from utilities import timing from utilities.test_utilities import async_test DEFAULT_RETURN = "default" class TestTimeUtilities(TestCase): @patch('time.perf_counter') def test_stopwatch(self, time_mock): stopwatch = timing.Stopwatch() time_mock.return_value = 0.0 stopwatch.start_timer() time_mock.return_value = 5.0 result = stopwatch.stop_timer() self.assertEqual(result, 5) @patch.object(timing, 'logger') def test_invoke_with_time_rounding(self, log_mock): with self.subTest("Default"): timing._log_time(5.1236, "yes") log_mock.info.assert_called_with('0001', '{FuncName} took {Duration} seconds', {'FuncName': 'yes', 'Duration': 5.124}) with self.subTest("Tornado"): timing._log_tornado_time(5.1236, "yes", "methodName") log_mock.info.assert_called_with('0002', '{FuncName} from {Handler} took {Duration} seconds', {'FuncName': 'methodName', 'Handler': 'yes', 'Duration': 5.124}) @patch('utilities.timing._log_time') @patch('utilities.timing.Stopwatch.stop_timer') @async_test async def test_invoke_with_time(self, time_mock, log_mock): time_mock.return_value = 5 with self.subTest("Sync version"): res = self.default_method() log_mock.assert_called_with(5, 'default_method') self.assertEqual(DEFAULT_RETURN, res) with self.subTest("Async version"): res = await self.default_method_async() log_mock.assert_called_with(5, 'default_method_async') self.assertEqual(DEFAULT_RETURN, res) @patch('utilities.timing.Stopwatch.stop_timer') @patch('utilities.timing._log_time') @async_test async def test_exception_thrown_whilst_timing(self, log_mock, time_mock): time_mock.return_value = 10 with self.subTest("Sync"): with self.assertRaises(ValueError): self.throw_error_method() log_mock.assert_called_with(10, 'throw_error_method') with self.subTest("Async"): with self.assertRaises(ValueError): await self.throw_error_method_async() log_mock.assert_called_with(10, 'throw_error_method_async') @patch('utilities.timing.Stopwatch.stop_timer') @patch.object(timing, 'logger') @async_test async def test_invoke_with_time_parameters(self, log_mock, time_mock): with self.subTest("Sync"): time_mock.return_value = 5 res = self.take_parameters("whew", 1, [2], {3: 3}) log_mock.info.assert_called_with('0001', '{FuncName} took {Duration} seconds', {'FuncName': 'take_parameters', 'Duration': 5}) self.assertEqual("whew1", res) with self.subTest("Async"): time_mock.return_value = 5 res = await self.take_parameters_async("whew", 1, [2], {3: 3}) log_mock.info.assert_called_with('0001', '{FuncName} took {Duration} seconds', {'FuncName': 'take_parameters_async', 'Duration': 5}) self.assertEqual("whew1", res) @patch('utilities.timing.Stopwatch.stop_timer') @patch.object(timing, 'logger') @async_test async def test_async_times_execution_correctly(self, log_mock, time_mock): time_mock.return_value = 0 task = self.default_method_async() # check the method doesn't get timed until awaited time_mock.return_value = 2 await task log_mock.info.assert_called_with('0001', '{FuncName} took {Duration} seconds', {'FuncName': 'default_method_async', 'Duration': 2}) @patch('utilities.timing.Stopwatch.stop_timer') @patch.object(timing, 'logger') @async_test async def test_invoke_with_time_varargs(self, log_mock, time_mock): with self.subTest("Sync"): time_mock.return_value = 5 res = self.var_parameters("whew", 1, 2, 3, 4, 5) log_mock.info.assert_called_with('0001', '{FuncName} took {Duration} seconds', {'FuncName': 'var_parameters', 'Duration': 5}) self.assertEqual("whew12345", res) with self.subTest("Async"): time_mock.return_value = 5 res = await self.var_parameters_async("whew", 1, "three", 4) log_mock.info.assert_called_with('0001', '{FuncName} took {Duration} seconds', {'FuncName': 'var_parameters_async', 'Duration': 5}) self.assertEqual("whew1three4", res) @patch('utilities.timing.datetime') def test_get_time(self, mock_datetime): mock_datetime.datetime.utcnow.return_value = datetime.datetime(2019, 1, 5, 12, 13, 14, 567) self.assertEqual('2019-01-05T12:13:14.000567Z', timing.get_time()) @timing.time_function def default_method(self): return DEFAULT_RETURN @timing.time_function async def default_method_async(self): return DEFAULT_RETURN @timing.time_function def throw_error_method(self): raise ValueError("Whew") @timing.time_function async def throw_error_method_async(self): raise ValueError("Whew") @timing.time_function def take_parameters(self, check, one, two, three): assert check is not None assert one is not None assert two is not None assert three is not None return check + str(one) @timing.time_function async def take_parameters_async(self, check, one, two, three): return self.take_parameters(check, one, two, three) @timing.time_function def var_parameters(self, *arg): return ''.join([str(string) for string in arg]) @timing.time_function async def var_parameters_async(self, *arg): return self.var_parameters(*arg) class FakeRequestHandler(RequestHandler): @timing.time_request def post(self): self.write("hello") @timing.time_request async def get(self): self.write("hello") @timing.time_request def put(self): try: raise ValueError("Whew") finally: self.write("put") @patch.object(timing, 'logger') class TestHTTPWrapperTimeUtilities(AsyncHTTPTestCase): duration = 5 def get_app(self): self.sender = Mock() return Application([ (r"/.*", FakeRequestHandler, {}) ]) def _assert_handler_data(self, response, expected_code, expected_body, expected_func_name, log_mock): self.assertEqual(response.code, expected_code) if expected_body: self.assertEqual(response.body.decode('utf8'), expected_body) log_mock.info.assert_called_with('0002', '{FuncName} from {Handler} took {Duration} seconds', {'FuncName': expected_func_name, 'Handler': 'FakeRequestHandler', 'Duration': self.duration}) @patch('utilities.timing.Stopwatch.stop_timer') def test_post_synchronous_message(self, time_mock, log_mock): time_mock.return_value = self.duration response = self.fetch(f"/", method="POST", body="{'test': 'tested'}") self._assert_handler_data(response, 200, 'hello', 'post', log_mock) @patch('utilities.timing.Stopwatch.stop_timer') def test_get_asynchronous_message(self, time_mock, log_mock): time_mock.return_value = self.duration response = self.fetch(f"/", method="GET") self._assert_handler_data(response, 200, 'hello', 'get', log_mock) @patch('utilities.timing.Stopwatch.stop_timer') def test_raise_exception(self, time_mock, log_mock): time_mock.return_value = self.duration response = self.fetch(f"/", method="PUT", body="{'test': 'tested'}") self._assert_handler_data(response, 500, None, 'put', log_mock)
38.300926
109
0.634111
13d12864a15fa32990757b2abc2dec8cbb443188
13,681
py
Python
squad2/run_python3.py
arfu2016/DuReader
66934852c508bff5540596aa71d5ce40c828b37d
[ "Apache-2.0" ]
null
null
null
squad2/run_python3.py
arfu2016/DuReader
66934852c508bff5540596aa71d5ce40c828b37d
[ "Apache-2.0" ]
null
null
null
squad2/run_python3.py
arfu2016/DuReader
66934852c508bff5540596aa71d5ce40c828b37d
[ "Apache-2.0" ]
null
null
null
""" @Project : DuReader @Module : run_python3.py @Author : Deco [deco@cubee.com] @Created : 7/23/18 5:47 PM @Desc : """ import argparse import json import os import pickle import random import sys from importlib import import_module import tensorflow as tf base_dir = os.path.dirname( os.path.dirname( os.path.abspath(__file__))) try: from squad2.dataset import BRCDataset from squad2.vocab import Vocab from squad2.rc_model import RCModel from squad2.logger_setup import define_logger except ImportError: if base_dir not in sys.path: sys.path.insert(0, base_dir) # 以base_dir为基准开始导入 from squad2.logger_setup import define_logger module_dataset = import_module('.dataset', package='squad2') module_vocab = import_module('.vocab', package='squad2') module_rc_model = import_module('.rc_model', package='squad2') BRCDataset = getattr(module_dataset, 'BRCDataset') Vocab = getattr(module_vocab, 'Vocab') RCModel = getattr(module_rc_model, 'RCModel') logger = define_logger('squad2.run_python3') os.chdir(os.path.join(base_dir, 'squad2')) # 改变当前目录,因为后面要用到父目录,祖父目录 os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # 设置环境变量,控制tensorflow的log level def parse_args(): """ Parses command line arguments. """ parser = argparse.ArgumentParser( 'Reading Comprehension on BaiduRC dataset') parser.add_argument('--prepare', action='store_true', help='create the directories, ' 'prepare the vocabulary and embeddings') # args = parser.parse_args() # args.prepare is available # when action='store_true' and --prepare exists, args.prepare is True parser.add_argument('--train', action='store_true', help='train the model') parser.add_argument('--evaluate', action='store_true', help='evaluate the model on dev set') parser.add_argument('--predict', action='store_true', help='predict the answers for test set ' 'with trained model') parser.add_argument('--gpu', type=str, default='0', help='specify gpu device') train_settings = parser.add_argument_group('train settings') train_settings.add_argument('--optim', default='adam', help='optimizer type') train_settings.add_argument('--learning_rate', type=float, default=0.001, help='learning rate') train_settings.add_argument('--weight_decay', type=float, default=0, help='weight decay') # 算loss的时候,要不要加l2 regularization,默认不加 train_settings.add_argument('--dropout_keep_prob', type=float, default=1, help='dropout keep rate') train_settings.add_argument('--batch_size', type=int, default=32, help='train batch size') train_settings.add_argument('--epochs', type=int, default=10, help='train epochs') model_settings = parser.add_argument_group('model settings') model_settings.add_argument('--algo', choices=['BIDAF', 'MLSTM'], default='MLSTM', help='choose the algorithm to use') model_settings.add_argument('--embed_size', type=int, default=300, help='size of the embeddings') # 可以调参,默认300 model_settings.add_argument('--hidden_size', type=int, default=150, help='size of LSTM hidden units') # 可以调参,默认150 model_settings.add_argument('--max_p_num', type=int, default=5, help='max passage num in one sample') # 最多5个document备选 model_settings.add_argument('--max_p_len', type=int, default=500, help='max length of passage') # passage长度最多500?似乎看到过2500,500以后的tf计算时都不考虑 model_settings.add_argument('--max_q_len', type=int, default=60, help='max length of question') # 问题长度最长60 model_settings.add_argument('--max_a_len', type=int, default=200, help='max length of answer') # 回答长度最长200 path_settings = parser.add_argument_group('path settings') path_settings.add_argument( '--train_files', nargs='+', default=['/decaNLP/.data/squad/train-v1.1.json'], help='list of files that contain the preprocessed train data') # nargs='+'表示--train_files之后可以有一个或者多个参数 path_settings.add_argument( '--dev_files', nargs='+', default=['/decaNLP/.data/squad/dev-v1.1.json'], help='list of files that contain the preprocessed dev data') path_settings.add_argument( '--test_files', nargs='+', default=['/decaNLP/.data/squad/dev-v1.1.json'], help='list of files that contain the preprocessed test data') path_settings.add_argument( '--brc_dir', default='../data/baidu', help='the dir with preprocessed baidu reading comprehension data') path_settings.add_argument('--vocab_dir', default='../data/vocab/', help='the dir to save vocabulary') path_settings.add_argument('--model_dir', default='../data/models/simple_preprocess/', help='the dir to store models') path_settings.add_argument('--result_dir', default='../data/results/simple_preprocess/', help='the dir to output the results') path_settings.add_argument('--summary_dir', default='../data/summary/simple_preprocess/', help='the dir to write tensorboard summary') path_settings.add_argument('--log_path', help='path of the log file. If not set, ' 'logs are printed to console') return parser.parse_args() def prepare(args): """ checks data, creates the directories, prepare the vocabulary and embeddings """ logger.info('Checking the data files...') for data_path in args.train_files + args.dev_files + args.test_files: assert os.path.exists(data_path), \ '{} file does not exist.'.format(data_path) # 对输入的容错 logger.info('Preparing the directories...') for dir_path in [args.vocab_dir, args.model_dir, args.result_dir, args.summary_dir]: if not os.path.exists(dir_path): os.makedirs(dir_path) logger.info('Building vocabulary...') brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len, args.train_files, args.dev_files, args.test_files) # 数据列表的准备 vocab = Vocab(lower=True) # obtain token2id, id2token, token_cnt for word in brc_data.word_iter('train'): # we yield words from a generator vocab.add(word) # logger.debug(word) unfiltered_vocab_size = vocab.size() logger.debug(unfiltered_vocab_size) vocab.filter_tokens_by_cnt(min_cnt=2) # 出现频数少于2次的不做统计 filtered_num = unfiltered_vocab_size - vocab.size() # 被过滤掉的词的数目 logger.info('After filter {} tokens, the final vocab size is {}'. format(filtered_num, vocab.size())) logger.info('Assigning embeddings...') vocab.randomly_init_embeddings(args.embed_size) # 随机分配args.embed_size维度大小的word embedding logger.info('Saving vocab...') with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout: pickle.dump(vocab, fout) # serialize vocab and store it in a file logger.info('Done with preparing!') def train(args, restore=True): """ trains the reading comprehension model """ logger.info('Load data_set and vocab...') with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len, args.train_files, args.dev_files) # 准备training data logger.info('Converting text into ids...') brc_data.convert_to_ids(vocab) # convert tokens of questions and paragraphs in training data to ids # 结果保存在brc_data中 logger.info('Initialize the model...') rc_model = RCModel(vocab, args) if restore: try: rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo) # todo: 上面这句可能需要改,model_prefix=args.algo + '_' + str(2) # except Exception as e: except tf.errors.InvalidArgumentError: # logger.info('Exception in train() in run_python3.py', e) logger.info('InvalidArgumentError... ' 'Initialize the model from beginning') # str(e) or repr(e) except Exception: logger.info('Unknown exception. ' 'Initialize the model from beginning') logger.info('Training the model...') rc_model.train(brc_data, args.epochs, args.batch_size, save_dir=args.model_dir, save_prefix=args.algo, dropout_keep_prob=args.dropout_keep_prob) logger.info('Done with model training!') def evaluate(args): """ evaluate the trained model on dev files 在改变超参数时可以参考 """ logger.info('Load data_set and vocab...') with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) assert len(args.dev_files) > 0, 'No dev files are provided.' brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.dev_files) logger.info('Converting text into ids...') brc_data.convert_to_ids(vocab) logger.info('Restoring the model...') rc_model = RCModel(vocab, args) rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo) # todo: 上面这句可能需要改,model_prefix=args.algo + '_' + str(2) logger.info('Evaluating the model on dev set...') dev_batches = brc_data.gen_mini_batches('dev', args.batch_size, pad_id=vocab.get_id( vocab.pad_token), shuffle=False) dev_loss, dev_bleu_rouge = rc_model.evaluate( dev_batches, result_dir=args.result_dir, result_prefix='dev.predicted') logger.info('Loss on dev set: {}'.format(dev_loss)) logger.info('Result on dev set: {}'.format(dev_bleu_rouge)) logger.info( 'Predicted answers are saved to {}'.format( os.path.join(args.result_dir))) def predict(args): """ predicts answers for test files """ logger.info('Load data_set and vocab...') with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) assert len(args.test_files) > 0, 'No test files are provided.' brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len, test_files=args.test_files) logger.info('Converting text into ids...') brc_data.convert_to_ids(vocab) logger.info('Restoring the model...') rc_model = RCModel(vocab, args) rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo) # todo: 上面这句可能需要改,model_prefix=args.algo + '_' + str(2) logger.info('Predicting answers for test set...') test_batches = brc_data.gen_mini_batches('test', args.batch_size, pad_id=vocab.get_id( vocab.pad_token), shuffle=False) rc_model.evaluate(test_batches, result_dir=args.result_dir, result_prefix='test.predicted') # 同样使用evaluate函数 result_dir = args.result_dir question_answer = list() answer_string = 'Question and answer for testing:\n' if result_dir is not None: result_file = os.path.join(result_dir, 'test.predicted.json') with open(result_file, 'r', encoding='utf8') as fin: for line in fin: answer_dict = json.loads(line.strip()) question_answer.append((answer_dict['question'], answer_dict['predict_answer'], answer_dict['real_answer'], )) answer_samples = random.sample(question_answer, 20) # 10 for sample in answer_samples: answer_string += '{}: \nPredict: {}\nReal: {}\n\n'.format( sample[0], sample[1], sample[2][0]) logger.info(answer_string) def run(): """ Prepares and runs the whole system. """ args = parse_args() logger.info('Running with args : {}'.format(args)) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # https://stackoverflow.com/questions/13781738/how-does-cuda-assign-device-ids-to-gpus?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu # 指定使用哪个或者哪些gpu,当使用两个以上时,显存似乎主要还是用第一个gpu的显存,另一个gpu只提供计算上的帮助,不提供显存上的帮助 if args.prepare: prepare(args) if args.train: train(args) if args.evaluate: evaluate(args) if args.predict: predict(args) if __name__ == '__main__': run() # python squad2/run_python3.py --prepare # python squad2/run_python3.py --train --algo BIDAF --epochs 1 --batch_size 32
39.088571
163
0.608143
341cf60bedca0d6aee7f9593467203341851043e
1,602
py
Python
applications/easyflow/controllers/workflow.py
zhangjiannan/easyflow
2c9906d3cc2088ed367f887da842a46db5d903ed
[ "BSD-3-Clause" ]
null
null
null
applications/easyflow/controllers/workflow.py
zhangjiannan/easyflow
2c9906d3cc2088ed367f887da842a46db5d903ed
[ "BSD-3-Clause" ]
null
null
null
applications/easyflow/controllers/workflow.py
zhangjiannan/easyflow
2c9906d3cc2088ed367f887da842a46db5d903ed
[ "BSD-3-Clause" ]
1
2021-05-20T10:48:34.000Z
2021-05-20T10:48:34.000Z
# coding: utf8 from gluon.tools import Service service = Service() import json def index(): response.title = "Manage" response.subtitle = None records = db(db.workflow.user_id==auth.user_id).select() if len(records) > 0: records = records else: records = 'No records yet' return dict(title='Workflows',records=records,app='workflows') def view(): rows = db(db.workflow.user_id==auth.user_id).select() return dict(records=rows) def status(): rows = db(db.status.user_id==auth.user_id).select() return dict(records=rows) def start(): workflowID = request.vars.workflowID name = request.vars.name description = request.vars.description if workflowID: db.occurrence.insert(workflow_id=workflowID,name=name,description=description) return dict(record=workflowID,error=False,message='Workflow successfuly added!') else: return dict(record=workflowID,error=True,message='WorkflowID is empty!') def delete(): workflowID = request.vars.workflowID if workflowID: db(db.workflow.id == workflowID).delete() return dict(record=workflowID,error=False,message='Successfuly deleted!') else: return dict(record=workflowID,error=True,message='WorkflowID is empty!') def single(): record = db.workflow(request.args(0)) or redirect(URL('view')) return dict(records=record) def edit(): return 'Hello' def user(): return dict(form=auth()) @auth.requires_login() def details(): form = SQLFORM.smartgrid(db.workflow) return dict(form=form) def data(): return dict(form=crud())
30.807692
88
0.696629
579453e25bb00036e653b2c1f8d4907314498311
6,310
py
Python
pymeasure/adapters/visa.py
matthias6/pymeasure
f226ab4aaec8265ff442c5baadc27cfdee513ca4
[ "MIT" ]
4
2020-11-13T08:57:16.000Z
2021-09-16T12:45:33.000Z
pymeasure/adapters/visa.py
matthias6/pymeasure
f226ab4aaec8265ff442c5baadc27cfdee513ca4
[ "MIT" ]
2
2021-12-16T16:15:47.000Z
2022-03-27T10:47:13.000Z
pymeasure/adapters/visa.py
matthias6/pymeasure
f226ab4aaec8265ff442c5baadc27cfdee513ca4
[ "MIT" ]
null
null
null
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2021 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import logging import copy import pyvisa import numpy as np from pkg_resources import parse_version from .adapter import Adapter log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) # noinspection PyPep8Naming,PyUnresolvedReferences class VISAAdapter(Adapter): """ Adapter class for the VISA library using PyVISA to communicate with instruments. :param resource: VISA resource name that identifies the address :param visa_library: VisaLibrary Instance, path of the VISA library or VisaLibrary spec string (@py or @ni). if not given, the default for the platform will be used. :param preprocess_reply: optional callable used to preprocess strings received from the instrument. The callable returns the processed string. :param kwargs: Any valid key-word arguments for constructing a PyVISA instrument """ def __init__(self, resource_name, visa_library='', preprocess_reply=None, **kwargs): super().__init__(preprocess_reply=preprocess_reply) if not VISAAdapter.has_supported_version(): raise NotImplementedError("Please upgrade PyVISA to version 1.8 or later.") if isinstance(resource_name, int): resource_name = "GPIB0::%d::INSTR" % resource_name self.resource_name = resource_name self.manager = pyvisa.ResourceManager(visa_library) safeKeywords = [ 'resource_name', 'timeout', 'chunk_size', 'lock', 'query_delay', 'send_end', 'read_termination', 'write_termination' ] kwargsCopy = copy.deepcopy(kwargs) for key in kwargsCopy: if key not in safeKeywords: kwargs.pop(key) self.connection = self.manager.open_resource( resource_name, **kwargs ) @staticmethod def has_supported_version(): """ Returns True if the PyVISA version is greater than 1.8 """ if hasattr(pyvisa, '__version__'): return parse_version(pyvisa.__version__) >= parse_version('1.8') else: return False def write(self, command): """ Writes a command to the instrument :param command: SCPI command string to be sent to the instrument """ self.connection.write(command) def read(self): """ Reads until the buffer is empty and returns the resulting ASCII response :returns: String ASCII response of the instrument. """ return self.connection.read() def read_bytes(self, size): """ Reads specified number of bytes from the buffer and returns the resulting ASCII response :param size: Number of bytes to read from the buffer :returns: String ASCII response of the instrument. """ return self.connection.read_bytes(size) def ask(self, command): """ Writes the command to the instrument and returns the resulting ASCII response :param command: SCPI command string to be sent to the instrument :returns: String ASCII response of the instrument """ return self.connection.query(command) def ask_values(self, command, **kwargs): """ Writes a command to the instrument and returns a list of formatted values from the result. This leverages the `query_ascii_values` method in PyVISA. :param command: SCPI command to be sent to the instrument :param kwargs: Key-word arguments to pass onto `query_ascii_values` :returns: Formatted response of the instrument. """ return self.connection.query_ascii_values(command, **kwargs) def binary_values(self, command, header_bytes=0, dtype=np.float32): """ Returns a numpy array from a query for binary data :param command: SCPI command to be sent to the instrument :param header_bytes: Integer number of bytes to ignore in header :param dtype: The NumPy data type to format the values with :returns: NumPy array of values """ self.connection.write(command) binary = self.connection.read_raw() header, data = binary[:header_bytes], binary[header_bytes:] return np.fromstring(data, dtype=dtype) def write_binary_values(self, command, values, **kwargs): """ Write binary data to the instrument, e.g. waveform for signal generators :param command: SCPI command to be sent to the instrument :param values: iterable representing the binary values :param kwargs: Key-word arguments to pass onto `write_binary_values` :returns: number of bytes written """ return self.connection.write_binary_values(command, values, **kwargs) def wait_for_srq(self, timeout=25, delay=0.1): """ Blocks until a SRQ, and leaves the bit high :param timeout: Timeout duration in seconds :param delay: Time delay between checking SRQ in seconds """ self.connection.wait_for_srq(timeout * 1000) def __repr__(self): return "<VISAAdapter(resource='%s')>" % self.connection.resource_name
39.685535
112
0.68859
9529062fad263473db26922382e103a4b8815830
9,213
py
Python
examples/pybullet/gym/pybullet_envs/minitaur/envs/minitaur_alternating_legs_env.py
frk2/bullet3
225d823e4dc3f952c6c39920c3f87390383e0602
[ "Zlib" ]
7
2019-12-19T00:54:18.000Z
2021-03-03T23:34:58.000Z
examples/pybullet/gym/pybullet_envs/minitaur/envs/minitaur_alternating_legs_env.py
frk2/bullet3
225d823e4dc3f952c6c39920c3f87390383e0602
[ "Zlib" ]
null
null
null
examples/pybullet/gym/pybullet_envs/minitaur/envs/minitaur_alternating_legs_env.py
frk2/bullet3
225d823e4dc3f952c6c39920c3f87390383e0602
[ "Zlib" ]
8
2019-12-18T06:09:25.000Z
2021-09-25T21:51:48.000Z
"""This file implements the gym environment of minitaur alternating legs. """ import math import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0,parentdir) from gym import spaces import numpy as np from pybullet_envs.minitaur.envs import minitaur_gym_env INIT_EXTENSION_POS = 2.6 INIT_SWING_POS = 0.0 DESIRED_PITCH = 0 NUM_LEGS = 4 NUM_MOTORS = 2 * NUM_LEGS STEP_PERIOD = 1.0 / 3.0 # Three steps per second. STEP_AMPLITUDE = 0.75 class MinitaurAlternatingLegsEnv(minitaur_gym_env.MinitaurGymEnv): """The gym environment for the minitaur. It simulates the locomotion of a minitaur, a quadruped robot. The state space include the angles, velocities and torques for all the motors and the action space is the desired motor angle for each motor. The reward function is based on how far the minitaur walks in 1000 steps and penalizes the energy expenditure. """ metadata = { "render.modes": ["human", "rgb_array"], "video.frames_per_second": 66 } def __init__(self, urdf_version=None, control_time_step=0.006, action_repeat=6, control_latency=0, pd_latency=0, on_rack=False, motor_kp=1.0, motor_kd=0.02, remove_default_joint_damping=False, render=False, num_steps_to_log=1000, env_randomizer=None, log_path=None): """Initialize the minitaur alternating legs gym environment. Args: urdf_version: [DEFAULT_URDF_VERSION, DERPY_V0_URDF_VERSION] are allowable versions. If None, DEFAULT_URDF_VERSION is used. Refer to minitaur_gym_env for more details. control_time_step: The time step between two successive control signals. action_repeat: The number of simulation steps that an action is repeated. control_latency: The latency between get_observation() and the actual observation. See minituar.py for more details. pd_latency: The latency used to get motor angles/velocities used to compute PD controllers. See minitaur.py for more details. on_rack: Whether to place the minitaur on rack. This is only used to debug the walking gait. In this mode, the minitaur's base is hung midair so that its walking gait is clearer to visualize. motor_kp: The P gain of the motor. motor_kd: The D gain of the motor. remove_default_joint_damping: Whether to remove the default joint damping. render: Whether to render the simulation. num_steps_to_log: The max number of control steps in one episode. If the number of steps is over num_steps_to_log, the environment will still be running, but only first num_steps_to_log will be recorded in logging. env_randomizer: An instance (or a list) of EnvRanzomier(s) that can randomize the environment during when env.reset() is called and add perturbations when env.step() is called. log_path: The path to write out logs. For the details of logging, refer to minitaur_logging.proto. """ # _swing_offset and _extension_offset is to mimick the bent legs. self._swing_offset = np.zeros(NUM_LEGS) self._extension_offset = np.zeros(NUM_LEGS) super(MinitaurAlternatingLegsEnv, self).__init__( urdf_version=urdf_version, accurate_motor_model_enabled=True, motor_overheat_protection=True, hard_reset=False, motor_kp=motor_kp, motor_kd=motor_kd, remove_default_joint_damping=remove_default_joint_damping, control_latency=control_latency, pd_latency=pd_latency, on_rack=on_rack, render=render, num_steps_to_log=num_steps_to_log, env_randomizer=env_randomizer, log_path=log_path, control_time_step=control_time_step, action_repeat=action_repeat) action_dim = 8 action_high = np.array([0.1] * action_dim) self.action_space = spaces.Box(-action_high, action_high) self._cam_dist = 1.0 self._cam_yaw = 30 self._cam_pitch = -30 def reset(self): self.desired_pitch = DESIRED_PITCH # In this environment, the actions are # [swing leg 1, swing leg 2, swing leg 3, swing leg 4, # extension leg 1, extension leg 2, extension leg 3, extension leg 4] init_pose = [ INIT_SWING_POS + self._swing_offset[0], INIT_SWING_POS + self._swing_offset[1], INIT_SWING_POS + self._swing_offset[2], INIT_SWING_POS + self._swing_offset[3], INIT_EXTENSION_POS + self._extension_offset[0], INIT_EXTENSION_POS + self._extension_offset[1], INIT_EXTENSION_POS + self._extension_offset[2], INIT_EXTENSION_POS + self._extension_offset[3] ] initial_motor_angles = self._convert_from_leg_model(init_pose) super(MinitaurAlternatingLegsEnv, self).reset( initial_motor_angles=initial_motor_angles, reset_duration=0.5) return self._get_observation() def _convert_from_leg_model(self, leg_pose): motor_pose = np.zeros(NUM_MOTORS) for i in range(NUM_LEGS): motor_pose[2 * i] = leg_pose[NUM_LEGS + i] - (-1)**(i / 2) * leg_pose[i] motor_pose[2 * i + 1] = leg_pose[NUM_LEGS + i] + (-1)**(i / 2) * leg_pose[i] return motor_pose def _signal(self, t): initial_pose = np.array([ INIT_SWING_POS, INIT_SWING_POS, INIT_SWING_POS, INIT_SWING_POS, INIT_EXTENSION_POS, INIT_EXTENSION_POS, INIT_EXTENSION_POS, INIT_EXTENSION_POS ]) amplitude = STEP_AMPLITUDE period = STEP_PERIOD extension = amplitude * (-1.0 + math.cos(2 * math.pi / period * t)) ith_leg = int(t / period) % 2 first_leg = np.array([0, 0, 0, 0, 0, extension, extension, 0]) second_leg = np.array([0, 0, 0, 0, extension, 0, 0, extension]) if ith_leg: signal = initial_pose + second_leg else: signal = initial_pose + first_leg return signal def _transform_action_to_motor_command(self, action): # Add swing_offset and extension_offset to mimick the bent legs. action[0:4] += self._swing_offset action[4:8] += self._extension_offset action += self._signal(self.minitaur.GetTimeSinceReset()) action = self._convert_from_leg_model(action) return action def is_fallen(self): """Decide whether the minitaur has fallen. If the up directions between the base and the world is large (the dot product is smaller than 0.85), the minitaur is considered fallen. Returns: Boolean value that indicates whether the minitaur has fallen. """ orientation = self.minitaur.GetBaseOrientation() rot_mat = self._pybullet_client.getMatrixFromQuaternion(orientation) local_up = rot_mat[6:] return np.dot(np.asarray([0, 0, 1]), np.asarray(local_up)) < 0.85 def _reward(self): return 1.0 def _get_true_observation(self): """Get the true observations of this environment. It includes the roll, the error between current pitch and desired pitch, roll dot and pitch dot of the base. Returns: The observation list. """ observation = [] roll, pitch, _ = self.minitaur.GetTrueBaseRollPitchYaw() roll_rate, pitch_rate, _ = self.minitaur.GetTrueBaseRollPitchYawRate() observation.extend([roll, pitch, roll_rate, pitch_rate]) observation[1] -= self.desired_pitch # observation[1] is the pitch self._true_observation = np.array(observation) return self._true_observation def _get_observation(self): observation = [] roll, pitch, _ = self.minitaur.GetBaseRollPitchYaw() roll_rate, pitch_rate, _ = self.minitaur.GetBaseRollPitchYawRate() observation.extend([roll, pitch, roll_rate, pitch_rate]) observation[1] -= self.desired_pitch # observation[1] is the pitch self._observation = np.array(observation) return self._observation def _get_observation_upper_bound(self): """Get the upper bound of the observation. Returns: The upper bound of an observation. See GetObservation() for the details of each element of an observation. """ upper_bound = np.zeros(self._get_observation_dimension()) upper_bound[0:2] = 2 * math.pi # Roll, pitch, yaw of the base. upper_bound[2:4] = 2 * math.pi / self._time_step # Roll, pitch, yaw rate. return upper_bound def _get_observation_lower_bound(self): lower_bound = -self._get_observation_upper_bound() return lower_bound def set_swing_offset(self, value): """Set the swing offset of each leg. It is to mimic the bent leg. Args: value: A list of four values. """ self._swing_offset = value def set_extension_offset(self, value): """Set the extension offset of each leg. It is to mimic the bent leg. Args: value: A list of four values. """ self._extension_offset = value def set_desired_pitch(self, value): """Set the desired pitch of the base, which is a user input. Args: value: A scalar. """ self.desired_pitch = value
36.852
86
0.692934
fd4b1a480e4bb1d400fab0c8b01203c4b02dd856
4,489
py
Python
src/analyzers/MetadefenderCloud.py
lsoumille/file-analyzer
cabc7fb8b8727b35b6359cbcceb089f31228e1ef
[ "Apache-2.0" ]
null
null
null
src/analyzers/MetadefenderCloud.py
lsoumille/file-analyzer
cabc7fb8b8727b35b6359cbcceb089f31228e1ef
[ "Apache-2.0" ]
null
null
null
src/analyzers/MetadefenderCloud.py
lsoumille/file-analyzer
cabc7fb8b8727b35b6359cbcceb089f31228e1ef
[ "Apache-2.0" ]
null
null
null
import json import time import urllib3 from src.analyzers.IAnalyzer import IAnalyzer from src.utils.ConfigHelper import ConfigHelper from src.utils.Constants import Constants from src.utils.FileHelper import FileHelper class MetadefenderCloud(IAnalyzer): def __init__(self): self.name = "Metadefender Cloud analyzer" self.api_key = "" self.file_path = "" self.file_name = "" self.data_id = "" def get_conf(self, conf_file, file_path): return (ConfigHelper.getMetadefenderCloud(conf_file), file_path) def setup(self, tuple): if tuple[0]: self.api_key = tuple[0] if tuple[1]: self.file_path = tuple[1] def analyze(self): print("[*] Starting analyze of " + self.file_path) fh = FileHelper() self.file_name = fh.getFileName(self.file_path) with open(self.file_path, "rb") as fp: file_content = fp.read() headers = {'apikey': self.api_key, 'user_agent': 'mcl-metadefender-rest-sanitize-disabled-unarchive'} http = urllib3.PoolManager() response = http.request('POST', Constants.METADEFENDER_SENDING_URL, headers=headers, body=file_content) try: self.data_id = self.handleScanResponse(response) except Exception as error: print("Error when uploading file to Metadefender Cloud platform : " + repr(error)) return print("[*] File upload to Metadefender Cloud (scan id = " + self.data_id + ")") def report(self, level): if not self.data_id: return (self.name, '') # Retrieve scan result header = {'apikey': self.api_key} while True: print("[*] Request Rapport (data id = " + self.data_id + ")") http = urllib3.PoolManager() response = http.request('GET', Constants.METADEFENDER_REPORT_URL + self.data_id, headers=header) response_content = self.handleReportResponse(response, level) if response_content != -1: print("[!] Rapport received ") return response_content time.sleep(30) def handleScanResponse(self, response): if response.status != 200 or json.loads(response.data.decode())['status'] != 'inqueue': raise Exception('Bad Response from Metadefender Cloud API: Check your internet connection or your API Key') else: return json.loads(response.data.decode())['data_id'] # Return -1 if the report is not available # Else return the positive number def handleReportResponse(self, response, level): response_data = json.loads(response.data.decode()) if response.status != 200 or response_data['process_info']['result'] == 'Processing': return -1 elif level == Constants.SHORT_REPORTING: return self.createShortReport(response_data) elif level == Constants.MEDIUM_REPORTING: return self.createMediumReport(response_data) else: return self.createComprehensiveReport(response_data) def createShortReport(self, response_data): if response_data['scan_results']['total_detected_avs'] != 0: return (self.name, True) else: return (self.name, False) def createMediumReport(self, response_data): if response_data['scan_results']['total_detected_avs'] != 0: return (self.name, True) else: return (self.name, False) def createComprehensiveReport(self, response_data): content = self.metadefenderResultToStr(response_data) if response_data['scan_results']['total_detected_avs'] != 0: return (self.name, True, content) else: return (self.name, False, content) def metadefenderResultToStr(self, response_data): str_res = "[*] Metadefender Cloud report:\n" for scanner in response_data['scan_results']['scan_details']: str_res += "> " + scanner + " : [ Detected: " + str( response_data['scan_results']['scan_details'][scanner]['scan_result_i']) + " | Result: " + str( response_data['scan_results']['scan_details'][scanner]['threat_found']) + " ]\n" return str_res + "Metadefender platform detects " + str( response_data['scan_results']['total_detected_avs']) + " positive results for " + self.file_name + "\n[*] Metadefender Cloud report end"
41.183486
148
0.63288
bd4d83c5c6eaafdb57e559c4a611f8ea6811cd59
3,618
py
Python
exercises/ex8-1.py
missgreenwood/twisted-intro
5c178375fb33f038d4262324201da20af213027a
[ "MIT" ]
null
null
null
exercises/ex8-1.py
missgreenwood/twisted-intro
5c178375fb33f038d4262324201da20af213027a
[ "MIT" ]
null
null
null
exercises/ex8-1.py
missgreenwood/twisted-intro
5c178375fb33f038d4262324201da20af213027a
[ "MIT" ]
null
null
null
# Solution to exercise 8-1a: # Timeout if the poem isn't received after a given period of time # Fire the deferred's errback with a custom exeption in that case # Close the connection in that case import optparse, sys from twisted.internet import defer from twisted.internet.protocol import Protocol, ClientFactory class TimeoutError(Exception): # custom exception (that does nothing) pass def parse_args(): usage = """usage: %prog [options] [hostname]:port ... """ parser = optparse.OptionParser(usage) help = "Timeout in seconds." parser.add_option('-t', '--timeout', type='float', help=help, default=5.0) options, addresses = parser.parse_args() if not addresses: print parser.format_help() parser.exit() def parse_address(addr): if ':' not in addr: host = '127.0.0.1' port = addr else: host, port = addr.split(':', 1) if not port.isdigit(): parser.error('Ports must be integers.') return host, int(port) return map(parse_address, addresses), options class PoetryProtocol(Protocol): poem = '' def dataReceived(self, data): self.poem += data def connectionLost(self, reason): self.poemReceived(self.poem) def poemReceived(self, poem): self.factory.poem_finished(poem) class PoetryClientFactory(ClientFactory): protocol = PoetryProtocol def __init__(self, deferred, timeout): self.deferred = deferred self.timeout = timeout self.timeout_call = None def startedConnecting(self, connector): from twisted.internet import reactor self.timeout_call = reactor.callLater(self.timeout, self.on_timeout, connector) # cancel download if it does not finish within given timeout def poem_finished(self, poem): if self.deferred is not None: d, self.deferred = self.deferred, None d.callback(poem) self.cancel_timeout() def clientConnectionFailed(self, connector, reason): if self.deferred is not None: d, self.deferred = self.deferred, None d.errback(reason) self.cancel_timeout() def on_timeout(self, connector): self.timeout_call = None if self.deferred is not None: d, self.deferred = self.deferred, None d.errback(TimeoutError()) # fire custom exception if poem download failed connector.disconnect() # close connection if poem download failed def cancel_timeout(self): if self.timeout_call is not None: call, self.timeout_call = self.timeout_call, None call.cancel() def get_poetry(host, port, timeout): d = defer.Deferred() from twisted.internet import reactor factory = PoetryClientFactory(d, timeout) reactor.connectTCP(host, port, factory) return d def poetry_main(): addresses, options = parse_args() from twisted.internet import reactor poems = [] errors = [] def got_poem(poem): poems.append(poem) def poem_failed(err): print >> sys.stderr, 'Poem failed: ', err errors.append(err) def poem_done(_): if len(poems) + len(errors) == len(addresses): reactor.stop() for address in addresses: host, port = address d = get_poetry(host, port, options.timeout) d.addCallbacks(got_poem, poem_failed) d.addBoth(poem_done) reactor.run() for poem in poems: print(poem) if __name__ == '__main__': poetry_main()
27.830769
150
0.63654
f1d0538107fdcaf92c5ab4f500f502655d085824
173
py
Python
regtools/lag/__init__.py
nickderobertis/regtools
f0727195a38716a22e18d4f2c99f3b1cbf48cac8
[ "MIT" ]
null
null
null
regtools/lag/__init__.py
nickderobertis/regtools
f0727195a38716a22e18d4f2c99f3b1cbf48cac8
[ "MIT" ]
11
2020-01-25T23:33:30.000Z
2022-03-12T00:30:36.000Z
regtools/lag/__init__.py
nickderobertis/regtools
f0727195a38716a22e18d4f2c99f3b1cbf48cac8
[ "MIT" ]
null
null
null
from .create import create_lagged_variables, _convert_interaction_tuples, _convert_variable_names, _set_lag_variables from .remove import remove_lag_names_from_reg_results
43.25
117
0.901734
0baef01af0d7f94df25d57fd0a7755ae3bd4831f
3,323
py
Python
image-classification/imagenet/models/resnext.py
AaratiAkkapeddi/nnabla-examples
db9e5ad850303c158773aeb275e5c3821b4a3935
[ "Apache-2.0" ]
228
2017-11-20T06:05:56.000Z
2022-03-23T12:40:05.000Z
image-classification/imagenet/models/resnext.py
AaratiAkkapeddi/nnabla-examples
db9e5ad850303c158773aeb275e5c3821b4a3935
[ "Apache-2.0" ]
36
2018-01-11T23:26:20.000Z
2022-03-12T00:53:38.000Z
image-classification/imagenet/models/resnext.py
AaratiAkkapeddi/nnabla-examples
db9e5ad850303c158773aeb275e5c3821b4a3935
[ "Apache-2.0" ]
76
2017-11-22T22:00:00.000Z
2022-03-28T05:58:57.000Z
# Copyright 2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nnabla as nn import nnabla.functions as F from .base import ( ResNetBase, BottleneckBlock, pf_convolution, get_channel_axis, shortcut, ) from . import registry class ResNeXtBottleneckBlock(BottleneckBlock): ''' Bottleneck block for ResNeXt Args: cardinality (int): Specifies group size of the second convolution at bottleneck. The default is 32 which is used in the paper. See `BottleneckBlock` for other details. ''' def __init__(self, cardinality=32, shortcut_type='b', test=True, channel_last=False): super(ResNeXtBottleneckBlock, self).__init__( shortcut_type, test, channel_last) self.cardinality = cardinality def __call__(self, x, ochannels, stride): div = 2 assert ochannels % div == 0 hchannels = ochannels // div with nn.parameter_scope("bottleneck1"): h = self.bn(pf_convolution(x, hchannels, (1, 1), **self.conv_opts)) with nn.parameter_scope("bottleneck2"): h = self.bn(pf_convolution(h, hchannels, (3, 3), stride=stride, group=self.cardinality, **self.conv_opts)) with nn.parameter_scope("bottleneck3"): h = pf_convolution(h, ochannels, (1, 1), **self.conv_opts) with nn.parameter_scope("bottleneck_s"): s = shortcut(x, ochannels, stride, self.shortcut_type, self.test, channel_last=self.channel_last) with nn.parameter_scope("bottleneck3"): # backward compat. h = self.bn(h, s) return h class ResNeXt(ResNetBase): ''' A class which defines ResNeXt. With a ResNet-based architecture, `SEBottleneckBlock` is used for blocks in a cell instead of `BottleneckBlock`. Args: cardinality (int): See `ResNeXtBottleneckBlock`. See `ResNetBase` for other details. ''' def __init__(self, num_classes=1000, num_layers=50, cardinality=32, test=True, channel_last=False): block = ResNeXtBottleneckBlock(cardinality, 'b', test, channel_last) super(ResNeXt, self).__init__( num_classes, num_layers, max_pooling_ceil_border=True, block=block, test=test, channel_last=channel_last) def resnext50(x, num_classes=1000, test=True, channel_last=False): ''' Defines ResNeXt50. See `ResNeXt` for more details. ''' net = ResNeXt(num_classes, 50, test=test, channel_last=channel_last) return net(x) # Register arch functions registry.register_arch_fn('resnext50', resnext50)
32.262136
89
0.652723
8d9017e92eee5163fc24782c6069e755e0abd799
962
py
Python
stage1/thread_demo/demo2.py
kaixiang1992/python-review
7f4f82b453f81b47af7ab1e8f3b3d07d1d75cbe4
[ "MIT" ]
null
null
null
stage1/thread_demo/demo2.py
kaixiang1992/python-review
7f4f82b453f81b47af7ab1e8f3b3d07d1d75cbe4
[ "MIT" ]
null
null
null
stage1/thread_demo/demo2.py
kaixiang1992/python-review
7f4f82b453f81b47af7ab1e8f3b3d07d1d75cbe4
[ "MIT" ]
null
null
null
""" 2019/12/12 22:11 150.【多线程】使用Thread类创建多线程(线程) """ """ 查看线程数: 使用`threading.enumerate()`函数可以看到当前线程的数量. 查看当前线程的名字: 使用`threading.currentThread()`可以看到当前线程的信息. 继承自`threading.Thread`类: 为了让线程代码更好的封装。可以使用threading模块下的Thread类,继承自这个类, 然后实现run方法,线程就会自动运行run方法中的代码。 """ import threading import time class codingThread(threading.Thread): def run(self): for x in range(0, 3): print('正在写代码%s' % threading.currentThread()) time.sleep(1) class drawingThread(threading.Thread): def run(self): for x in range(0, 3): print('正在画画%s' % threading.currentThread()) time.sleep(1) if __name__ == '__main__': coding = codingThread() drawing = drawingThread() coding.start() drawing.start() # TODO: [<_MainThread(MainThread, started 13016)>, <codingThread(Thread-1, started 3300)>, <drawingThread( # Thread-2, started 8452)>] print('当前总线程数量: %s' % threading.enumerate())
19.24
110
0.656965
ac80e80daa00c261cbfeb4767cbb95588286da89
6,583
py
Python
jupytext/languages.py
lclem/jupytext
145ae0ab67e60c46bea26e168c671bebaf98c38c
[ "MIT" ]
null
null
null
jupytext/languages.py
lclem/jupytext
145ae0ab67e60c46bea26e168c671bebaf98c38c
[ "MIT" ]
null
null
null
jupytext/languages.py
lclem/jupytext
145ae0ab67e60c46bea26e168c671bebaf98c38c
[ "MIT" ]
null
null
null
"""Determine notebook or cell language""" # Jupyter magic commands that are also languages _JUPYTER_LANGUAGES = ['R', 'bash', 'sh', 'python', 'python2', 'python3', 'javascript', 'js', 'perl', 'html', 'latex', 'markdown', 'pypy', 'ruby', 'script', 'svg', 'matlab', 'octave', 'idl', 'robotframework', 'spark', 'sql'] # Supported file extensions (and languages) # Please add more languages here (and add a few tests) - see CONTRIBUTING.md _SCRIPT_EXTENSIONS = {'.py': {'language': 'python', 'comment': '#'}, '.R': {'language': 'R', 'comment': '#'}, '.r': {'language': 'R', 'comment': '#'}, '.jl': {'language': 'julia', 'comment': '#'}, '.cpp': {'language': 'c++', 'comment': '//'}, '.ss': {'language': 'scheme', 'comment': ';;'}, '.clj': {'language': 'clojure', 'comment': ';;'}, '.scm': {'language': 'scheme', 'comment': ';;'}, '.sh': {'language': 'bash', 'comment': '#'}, '.ps1': {'language': 'powershell', 'comment': '#'}, '.q': {'language': 'q', 'comment': '/'}, '.m': {'language': 'matlab', 'comment': '%'}, '.pro': {'language': 'idl', 'comment': ';'}, '.js': {'language': 'javascript', 'comment': '//'}, '.ts': {'language': 'typescript', 'comment': '//'}, '.scala': {'language': 'scala', 'comment': '//'}, '.rs': {'language': 'rust', 'comment': '//'}, '.robot': {'language': 'robotframework', 'comment': '#'}, '.cs': {'language': 'csharp', 'comment': '//'}, '.fsx': {'language': 'fsharp', 'comment': '//'}, '.fs': {'language': 'fsharp', 'comment': '//'}, '.sos': {'language': 'sos', 'comment': '#'}, '.agda': {'language': 'agda', 'comment': '--'}, } _COMMENT_CHARS = [_SCRIPT_EXTENSIONS[ext]['comment'] for ext in _SCRIPT_EXTENSIONS if _SCRIPT_EXTENSIONS[ext]['comment'] != '#'] _COMMENT = {_SCRIPT_EXTENSIONS[ext]['language']: _SCRIPT_EXTENSIONS[ext]['comment'] for ext in _SCRIPT_EXTENSIONS} _JUPYTER_LANGUAGES = set(_JUPYTER_LANGUAGES).union(_COMMENT.keys()).union(['c#', 'f#', 'cs', 'fs']) _JUPYTER_LANGUAGES_LOWER_AND_UPPER = _JUPYTER_LANGUAGES.union({str.upper(lang) for lang in _JUPYTER_LANGUAGES}) def default_language_from_metadata_and_ext(metadata, ext, pop_main_language=False): """Return the default language given the notebook metadata, and a file extension""" default_from_ext = _SCRIPT_EXTENSIONS.get(ext, {}).get('language') main_language = metadata.get('jupytext', {}).get('main_language') default_language = metadata.get('kernelspec', {}).get('language') or default_from_ext language = main_language or default_language if main_language is not None and main_language == default_language and pop_main_language: metadata['jupytext'].pop('main_language') if language is None or language == 'R': return language if language.startswith('C++'): return 'c++' return language.lower().replace('#', 'sharp') def usual_language_name(language): """Return the usual language name (one that may be found in _SCRIPT_EXTENSIONS above)""" language = language.lower() if language == 'r': return 'R' if language.startswith('c++'): return 'c++' if language == 'octave': return 'matlab' if language in ['cs', 'c#']: return 'csharp' if language in ['fs', 'f#']: return 'fsharp' return language def same_language(kernel_language, language): """Are those the same language?""" return usual_language_name(kernel_language) == usual_language_name(language) def set_main_and_cell_language(metadata, cells, ext): """Set main language for the given collection of cells, and use magics for cells that use other languages""" main_language = default_language_from_metadata_and_ext(metadata, ext) if main_language is None: languages = {'python': 0.5} for cell in cells: if 'language' in cell['metadata']: language = usual_language_name(cell['metadata']['language']) languages[language] = languages.get(language, 0.0) + 1 main_language = max(languages, key=languages.get) # save main language when no kernel is set if 'language' not in metadata.get('kernelspec', {}) and cells: metadata.setdefault('jupytext', {})['main_language'] = main_language # Remove 'language' meta data and add a magic if not main language for cell in cells: if 'language' in cell['metadata']: language = cell['metadata']['language'] if language == main_language: cell['metadata'].pop('language') continue if usual_language_name(language) == main_language: continue if language in _JUPYTER_LANGUAGES: cell['metadata'].pop('language') magic = '%%' if main_language != 'csharp' else '#!' if 'magic_args' in cell['metadata']: magic_args = cell['metadata'].pop('magic_args') cell['source'] = u'{}{} {}\n'.format(magic, language, magic_args) + cell['source'] else: cell['source'] = u'{}{}\n'.format(magic, language) + cell['source'] def cell_language(source, default_language): """Return cell language and language options, if any""" if source: line = source[0] if default_language == 'csharp': if line.startswith('#!'): lang = line[2:].strip() if lang in _JUPYTER_LANGUAGES: source.pop(0) return lang, '' elif line.startswith('%%'): magic = line[2:] if ' ' in magic: lang, magic_args = magic.split(' ', 1) else: lang = magic magic_args = '' if lang in _JUPYTER_LANGUAGES: source.pop(0) return lang, magic_args return None, None def comment_lines(lines, prefix): """Return commented lines""" if not prefix: return lines return [prefix + ' ' + line if line else prefix for line in lines]
43.026144
114
0.544736
e2120d456b47b78f1867f5c6c24d178132c81702
2,049
py
Python
pypowervm/tests/utils/test_uuid.py
stephenfin/pypowervm
68f2b586b4f17489f379534ab52fc56a524b6da5
[ "Apache-2.0" ]
24
2015-12-02T19:49:45.000Z
2021-11-17T11:43:51.000Z
pypowervm/tests/utils/test_uuid.py
stephenfin/pypowervm
68f2b586b4f17489f379534ab52fc56a524b6da5
[ "Apache-2.0" ]
18
2017-03-01T05:54:25.000Z
2022-03-14T17:32:47.000Z
pypowervm/tests/utils/test_uuid.py
stephenfin/pypowervm
68f2b586b4f17489f379534ab52fc56a524b6da5
[ "Apache-2.0" ]
17
2016-02-10T22:53:04.000Z
2021-11-10T09:47:10.000Z
# Copyright 2015, 2018 IBM Corp. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from pypowervm.utils import uuid as uuid_utils import unittest class TestUUID(unittest.TestCase): """Unit tests for the uuid.""" def test_uuid_conversion(self): uuid = '089ffb20-5d19-4a8c-bb80-13650627d985' pvm_uuid = uuid_utils.convert_uuid_to_pvm(uuid) self.assertEqual(uuid, pvm_uuid) uuid = '989ffb20-5d19-4a8c-bb80-13650627d985' pvm_uuid = uuid_utils.convert_uuid_to_pvm(uuid) self.assertEqual('1' + uuid[1:], pvm_uuid) uuid = 'c89ffb20-5d19-4a8c-bb80-13650627d985' pvm_uuid = uuid_utils.convert_uuid_to_pvm(uuid) self.assertEqual('4' + uuid[1:], pvm_uuid) def test_id_or_uuid(self): self.assertEqual((False, 123), uuid_utils.id_or_uuid(123)) # Test all stringish permutations converters = [lambda x: x, six.text_type] for conv in converters: self.assertEqual((False, 123), uuid_utils.id_or_uuid(conv('123'))) uuid = conv('12345678-abcd-ABCD-0000-0a1B2c3D4e5F') self.assertEqual((True, uuid), uuid_utils.id_or_uuid(uuid)) uuid = conv('12345678abcdABCD00000a1B2c3D4e5F') self.assertEqual((True, uuid), uuid_utils.id_or_uuid(uuid)) # This one has too many digits self.assertRaises(ValueError, uuid_utils.id_or_uuid, conv('12345678-abcd-ABCD-0000-0a1B2c3D4e5F0'))
37.944444
78
0.676428
0c9e383c44731873cb061f35e8dcf11780037955
1,405
py
Python
crispy_forms/tests/test_utils.py
furkanx007/django-crispy-forms
77f4ea7edd3d8a4cd21f20bbe7fbce1511248e10
[ "MIT" ]
null
null
null
crispy_forms/tests/test_utils.py
furkanx007/django-crispy-forms
77f4ea7edd3d8a4cd21f20bbe7fbce1511248e10
[ "MIT" ]
3
2019-11-22T22:15:28.000Z
2021-04-08T12:42:56.000Z
crispy_forms/tests/test_utils.py
furkanx007/django-crispy-forms
77f4ea7edd3d8a4cd21f20bbe7fbce1511248e10
[ "MIT" ]
null
null
null
import pytest import django from django import forms from django.template.base import Context, Template from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout from crispy_forms.utils import list_difference, list_intersection, render_field def test_list_intersection(): assert list_intersection([1, 3], [2, 3]) == [3] def test_list_difference(): assert list_difference([3, 1, 2, 3], [4, 1, ]) == [3, 2] def test_render_field_with_none_field(): rendered = render_field(field=None, form=None, form_style=None, context=None) assert rendered == '' def test_custom_bound_field(): from django.forms.boundfield import BoundField extra = 'xyxyxyxyxyx' class CustomBoundField(BoundField): @property def auto_id(self): return extra class MyCharField(forms.CharField): def get_bound_field(self, form, field_name): return CustomBoundField(form, self, field_name) class MyForm(forms.Form): f = MyCharField() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.layout = Layout('f') template = Template('{% load crispy_forms_tags %}\n{% crispy form "bootstrap3" %}') rendered = template.render(Context({'form': MyForm(data={'f': 'something'})})) assert extra in rendered
27.54902
87
0.680427
db05c50cac396b212a9a7c49d08daac79cf41a0d
22,526
py
Python
withings_api/common.py
ademasi/python_withings_api
374fa985b383dea721a74eb4086a397ff26b45a1
[ "MIT" ]
null
null
null
withings_api/common.py
ademasi/python_withings_api
374fa985b383dea721a74eb4086a397ff26b45a1
[ "MIT" ]
null
null
null
withings_api/common.py
ademasi/python_withings_api
374fa985b383dea721a74eb4086a397ff26b45a1
[ "MIT" ]
null
null
null
"""Common classes and functions.""" from dataclasses import dataclass from datetime import tzinfo from enum import Enum, IntEnum import logging from typing import Any, Dict, Optional, Tuple, Type, TypeVar, Union, cast import arrow from arrow import Arrow from dateutil import tz from dateutil.tz import tzlocal from pydantic import BaseModel, Field, validator from typing_extensions import Final from .const import ( LOG_NAMESPACE, STATUS_AUTH_FAILED, STATUS_BAD_STATE, STATUS_ERROR_OCCURRED, STATUS_INVALID_PARAMS, STATUS_SUCCESS, STATUS_TIMEOUT, STATUS_TOO_MANY_REQUESTS, STATUS_UNAUTHORIZED, ) _LOGGER = logging.getLogger(LOG_NAMESPACE) _GenericType = TypeVar("_GenericType") def to_enum( enum_class: Type[_GenericType], value: Any, default_value: _GenericType ) -> _GenericType: """Attempt to convert a value to an enum.""" try: return enum_class(value) # type: ignore except ValueError: _LOGGER.warning( "Unsupported %s value %s. Replacing with UNKNOWN value %s. Please report this warning to the developer to ensure proper support.", str(enum_class), value, str(default_value), ) return default_value class ConfiguredBaseModel(BaseModel): """An already configured pydantic model.""" class Config: """Config for pydantic model.""" ignore_extra: Final = True allow_extra: Final = False allow_mutation: Final = False class TimeZone(tzlocal): """Subclass of tzinfo for parsing timezones.""" @classmethod def __get_validators__(cls) -> Any: # one or more validators may be yielded which will be called in the # order to validate the input, each validator will receive as an input # the value returned from the previous validator yield cls.validate @classmethod def validate(cls, value: Any) -> tzinfo: """Convert input to the desired object.""" if isinstance(value, tzinfo): return value if isinstance(value, str): timezone: Final = tz.gettz(value) if timezone: return timezone raise ValueError(f"Invalid timezone provided {value}") raise TypeError("string or tzinfo required") class ArrowType(Arrow): """Subclass of Arrow for parsing dates.""" @classmethod def __get_validators__(cls) -> Any: # one or more validators may be yielded which will be called in the # order to validate the input, each validator will receive as an input # the value returned from the previous validator yield cls.validate @classmethod def validate(cls, value: Any) -> Arrow: """Convert input to the desired object.""" if isinstance(value, str): if value.isdigit(): return arrow.get(int(value)) return arrow.get(value) if isinstance(value, int): return arrow.get(value) if isinstance(value, (Arrow, ArrowType)): return value raise TypeError("string or int required") class SleepModel(IntEnum): """Sleep model.""" UNKNOWN = -999999 TRACKER = 16 SLEEP_MONITOR = 32 class SleepState(IntEnum): """Sleep states.""" UNKNOWN = -999999 AWAKE = 0 LIGHT = 1 DEEP = 2 REM = 3 class MeasureGetMeasGroupAttrib(IntEnum): """Measure group attributions.""" UNKNOWN = -1 DEVICE_ENTRY_FOR_USER = 0 DEVICE_ENTRY_FOR_USER_AMBIGUOUS = 1 MANUAL_USER_ENTRY = 2 MANUAL_USER_DURING_ACCOUNT_CREATION = 4 MEASURE_AUTO = 5 MEASURE_USER_CONFIRMED = 7 SAME_AS_DEVICE_ENTRY_FOR_USER = 8 class MeasureGetMeasGroupCategory(IntEnum): """Measure categories.""" UNKNOWN = -999999 REAL = 1 USER_OBJECTIVES = 2 class MeasureType(IntEnum): """Measure types.""" UNKNOWN = -999999 WEIGHT = 1 HEIGHT = 4 FAT_FREE_MASS = 5 FAT_RATIO = 6 FAT_MASS_WEIGHT = 8 DIASTOLIC_BLOOD_PRESSURE = 9 SYSTOLIC_BLOOD_PRESSURE = 10 HEART_RATE = 11 TEMPERATURE = 12 SP02 = 54 BODY_TEMPERATURE = 71 SKIN_TEMPERATURE = 73 MUSCLE_MASS = 76 HYDRATION = 77 BONE_MASS = 88 PULSE_WAVE_VELOCITY = 91 VO2 = 123 QRS_INTERVAL = 135 PR_INTERVAL = 136 QT_INTERVAL = 138 ATRIAL_FIBRILLATION = 139 class NotifyAppli(IntEnum): """Data to notify_subscribe to.""" UNKNOWN = -999999 WEIGHT = 1 CIRCULATORY = 4 ACTIVITY = 16 SLEEP = 44 USER = 46 BED_IN = 50 BED_OUT = 51 class GetActivityField(Enum): """Fields for the getactivity api call.""" STEPS = "steps" DISTANCE = "distance" ELEVATION = "elevation" SOFT = "soft" MODERATE = "moderate" INTENSE = "intense" ACTIVE = "active" CALORIES = "calories" TOTAL_CALORIES = "totalcalories" HR_AVERAGE = "hr_average" HR_MIN = "hr_min" HR_MAX = "hr_max" HR_ZONE_0 = "hr_zone_0" HR_ZONE_1 = "hr_zone_1" HR_ZONE_2 = "hr_zone_2" HR_ZONE_3 = "hr_zone_3" class GetSleepField(Enum): """Fields for getsleep api call.""" HR = "hr" RR = "rr" SNORING = "snoring" class GetSleepSummaryField(Enum): """Fields for get sleep summary api call.""" BREATHING_DISTURBANCES_INTENSITY = "breathing_disturbances_intensity" DEEP_SLEEP_DURATION = "deepsleepduration" DURATION_TO_SLEEP = "durationtosleep" DURATION_TO_WAKEUP = "durationtowakeup" HR_AVERAGE = "hr_average" HR_MAX = "hr_max" HR_MIN = "hr_min" LIGHT_SLEEP_DURATION = "lightsleepduration" REM_SLEEP_DURATION = "remsleepduration" RR_AVERAGE = "rr_average" RR_MAX = "rr_max" RR_MIN = "rr_min" SLEEP_SCORE = "sleep_score" SNORING = "snoring" SNORING_EPISODE_COUNT = "snoringepisodecount" WAKEUP_COUNT = "wakeupcount" WAKEUP_DURATION = "wakeupduration" class AuthScope(Enum): """Authorization scopes.""" USER_INFO = "user.info" USER_METRICS = "user.metrics" USER_ACTIVITY = "user.activity" USER_SLEEP_EVENTS = "user.sleepevents" class UserGetDeviceDevice(ConfiguredBaseModel): """UserGetDeviceDevice.""" type: str model: str battery: str deviceid: str timezone: TimeZone class UserGetDeviceResponse(ConfiguredBaseModel): """UserGetDeviceResponse.""" devices: Tuple[UserGetDeviceDevice, ...] class SleepGetTimestampValue(ConfiguredBaseModel): """SleepGetTimestampValue.""" timestamp: ArrowType value: int class SleepGetSerie(ConfiguredBaseModel): """SleepGetSerie.""" enddate: ArrowType startdate: ArrowType state: SleepState hr: Tuple[SleepGetTimestampValue, ...] = () # pylint: disable=invalid-name rr: Tuple[SleepGetTimestampValue, ...] = () # pylint: disable=invalid-name snoring: Tuple[SleepGetTimestampValue, ...] = () @validator("hr", pre=True) @classmethod def _hr_to_tuple(cls, value: Dict[str, int]) -> Tuple: return SleepGetSerie._timestamp_value_to_object(value) @validator("rr", pre=True) @classmethod def _rr_to_tuple(cls, value: Dict[str, int]) -> Tuple: return SleepGetSerie._timestamp_value_to_object(value) @validator("snoring", pre=True) @classmethod def _snoring_to_tuple(cls, value: Dict[str, int]) -> Tuple: return SleepGetSerie._timestamp_value_to_object(value) @classmethod def _timestamp_value_to_object( cls, value: Any ) -> Tuple[SleepGetTimestampValue, ...]: if not value: return () if isinstance(value, dict): return tuple( [ SleepGetTimestampValue(timestamp=item_key, value=item_value) for item_key, item_value in value.items() ] ) return cast(Tuple[SleepGetTimestampValue, ...], value) @validator("state", pre=True) @classmethod def _state_to_enum(cls, value: Any) -> SleepState: return to_enum(SleepState, value, SleepState.UNKNOWN) class SleepGetResponse(ConfiguredBaseModel): """SleepGetResponse.""" model: SleepModel series: Tuple[SleepGetSerie, ...] @validator("model", pre=True) @classmethod def _model_to_enum(cls, value: Any) -> SleepModel: return to_enum(SleepModel, value, SleepModel.UNKNOWN) class GetSleepSummaryData( ConfiguredBaseModel ): # pylint: disable=too-many-instance-attributes """GetSleepSummaryData.""" breathing_disturbances_intensity: Optional[int] deepsleepduration: Optional[int] durationtosleep: Optional[int] durationtowakeup: Optional[int] hr_average: Optional[int] hr_max: Optional[int] hr_min: Optional[int] lightsleepduration: Optional[int] remsleepduration: Optional[int] rr_average: Optional[int] rr_max: Optional[int] rr_min: Optional[int] sleep_score: Optional[int] snoring: Optional[int] snoringepisodecount: Optional[int] wakeupcount: Optional[int] wakeupduration: Optional[int] class GetSleepSummarySerie(ConfiguredBaseModel): """GetSleepSummarySerie.""" timezone: TimeZone model: SleepModel startdate: ArrowType enddate: ArrowType date: ArrowType modified: ArrowType data: GetSleepSummaryData id: Optional[int] = None @validator("startdate") @classmethod def _set_timezone_on_startdate( cls, value: ArrowType, values: Dict[str, Any] ) -> Arrow: return cast(Arrow, value.to(values["timezone"])) @validator("enddate") @classmethod def _set_timezone_on_enddate( cls, value: ArrowType, values: Dict[str, Any] ) -> Arrow: return cast(Arrow, value.to(values["timezone"])) @validator("date") @classmethod def _set_timezone_on_date(cls, value: ArrowType, values: Dict[str, Any]) -> Arrow: return cast(Arrow, value.to(values["timezone"])) @validator("modified") @classmethod def _set_timezone_on_modified( cls, value: ArrowType, values: Dict[str, Any] ) -> Arrow: return cast(Arrow, value.to(values["timezone"])) @validator("model", pre=True) @classmethod def _model_to_enum(cls, value: Any) -> SleepModel: return to_enum(SleepModel, value, SleepModel.UNKNOWN) class SleepGetSummaryResponse(ConfiguredBaseModel): """SleepGetSummaryResponse.""" more: bool offset: int series: Tuple[GetSleepSummarySerie, ...] class MeasureGetMeasMeasure(ConfiguredBaseModel): """MeasureGetMeasMeasure.""" type: MeasureType unit: int value: int @validator("type", pre=True) @classmethod def _type_to_enum(cls, value: Any) -> MeasureType: return to_enum(MeasureType, value, MeasureType.UNKNOWN) class MeasureGetMeasGroup(ConfiguredBaseModel): """MeasureGetMeasGroup.""" attrib: MeasureGetMeasGroupAttrib category: MeasureGetMeasGroupCategory created: ArrowType date: ArrowType deviceid: Optional[str] grpid: int measures: Tuple[MeasureGetMeasMeasure, ...] @validator("attrib", pre=True) @classmethod def _attrib_to_enum(cls, value: Any) -> MeasureGetMeasGroupAttrib: return to_enum( MeasureGetMeasGroupAttrib, value, MeasureGetMeasGroupAttrib.UNKNOWN ) @validator("category", pre=True) @classmethod def _category_to_enum(cls, value: Any) -> MeasureGetMeasGroupCategory: return to_enum( MeasureGetMeasGroupCategory, value, MeasureGetMeasGroupCategory.UNKNOWN ) class MeasureGetMeasResponse(ConfiguredBaseModel): """MeasureGetMeasResponse.""" measuregrps: Tuple[MeasureGetMeasGroup, ...] more: Optional[bool] offset: Optional[int] timezone: TimeZone updatetime: ArrowType @validator("updatetime") @classmethod def _set_timezone_on_updatetime( cls, value: ArrowType, values: Dict[str, Any] ) -> Arrow: return cast(Arrow, value.to(values["timezone"])) class MeasureGetActivityActivity( BaseModel ): # pylint: disable=too-many-instance-attributes """MeasureGetActivityActivity.""" date: ArrowType timezone: TimeZone deviceid: Optional[str] brand: int is_tracker: bool steps: Optional[int] distance: Optional[float] elevation: Optional[float] soft: Optional[int] moderate: Optional[int] intense: Optional[int] active: Optional[int] calories: Optional[float] totalcalories: float hr_average: Optional[int] hr_min: Optional[int] hr_max: Optional[int] hr_zone_0: Optional[int] hr_zone_1: Optional[int] hr_zone_2: Optional[int] hr_zone_3: Optional[int] class MeasureGetActivityResponse(ConfiguredBaseModel): """MeasureGetActivityResponse.""" activities: Tuple[MeasureGetActivityActivity, ...] more: bool offset: int class HeartModel(IntEnum): """Heart model.""" UNKNOWN = -999999 BPM_CORE = 44 MOVE_ECG = 91 class AfibClassification(IntEnum): """Atrial fibrillation classification""" UNKNOWN = -999999 NEGATIVE = 0 POSITIVE = 1 INCONCLUSIVE = 2 class HeartWearPosition(IntEnum): """Wear position of heart model.""" UNKNOWN = -999999 RIGHT_WRIST = 0 LEFT_WRIST = 1 RIGHT_ARM = 2 LEFT_ARM = 3 RIGHT_FOOT = 4 LEFT_FOOT = 5 class HeartGetResponse(ConfiguredBaseModel): """HeartGetResponse.""" signal: Tuple[int, ...] sampling_frequency: int wearposition: HeartWearPosition @validator("wearposition", pre=True) @classmethod def _wearposition_to_enum(cls, value: Any) -> HeartWearPosition: return to_enum(HeartWearPosition, value, HeartWearPosition.UNKNOWN) class HeartListECG(ConfiguredBaseModel): """HeartListECG.""" signalid: int afib: AfibClassification @validator("afib", pre=True) @classmethod def _afib_to_enum(cls, value: Any) -> AfibClassification: return to_enum(AfibClassification, value, AfibClassification.UNKNOWN) class HeartBloodPressure(ConfiguredBaseModel): """HeartBloodPressure.""" diastole: int systole: int class HeartListSerie(ConfiguredBaseModel): """HeartListSerie""" ecg: HeartListECG heart_rate: int timestamp: ArrowType model: HeartModel # blood pressure is optional as not all devices (e.g. Move ECG) collect it bloodpressure: Optional[HeartBloodPressure] = None deviceid: Optional[str] = None @validator("model", pre=True) @classmethod def _model_to_enum(cls, value: Any) -> HeartModel: return to_enum(HeartModel, value, HeartModel.UNKNOWN) class HeartListResponse(ConfiguredBaseModel): """HeartListResponse.""" more: bool offset: int series: Tuple[HeartListSerie, ...] @dataclass(frozen=True) class Credentials: """Credentials.""" access_token: str token_expiry: int token_type: str refresh_token: str userid: int client_id: str consumer_secret: str class Credentials2(ConfiguredBaseModel): """Credentials.""" access_token: str token_type: str refresh_token: str userid: int client_id: str consumer_secret: str expires_in: int created: ArrowType = Field(default_factory=arrow.utcnow) @property def token_expiry(self) -> int: """Get the token expiry.""" return cast(int, self.created.shift(seconds=self.expires_in).int_timestamp) CredentialsType = Union[Credentials, Credentials2] def maybe_upgrade_credentials(value: CredentialsType) -> Credentials2: """Upgrade older versions of credentials to the newer signature.""" if isinstance(value, Credentials2): return value creds = cast(Credentials, value) return Credentials2( access_token=creds.access_token, token_type=creds.token_type, refresh_token=creds.refresh_token, userid=creds.userid, client_id=creds.client_id, consumer_secret=creds.consumer_secret, expires_in=creds.token_expiry - arrow.utcnow().int_timestamp, ) class NotifyListProfile(ConfiguredBaseModel): """NotifyListProfile.""" appli: NotifyAppli callbackurl: str expires: Optional[ArrowType] comment: Optional[str] @validator("appli", pre=True) @classmethod def _appli_to_enum(cls, value: Any) -> NotifyAppli: return to_enum(NotifyAppli, value, NotifyAppli.UNKNOWN) class NotifyListResponse(ConfiguredBaseModel): """NotifyListResponse.""" profiles: Tuple[NotifyListProfile, ...] class NotifyGetResponse(ConfiguredBaseModel): """NotifyGetResponse.""" appli: NotifyAppli callbackurl: str comment: Optional[str] @validator("appli", pre=True) @classmethod def _appli_to_enum(cls, value: Any) -> NotifyAppli: return to_enum(NotifyAppli, value, NotifyAppli.UNKNOWN) class UnexpectedTypeException(Exception): """Thrown when encountering an unexpected type.""" def __init__(self, value: Any, expected: Type[_GenericType]): """Initialize.""" super().__init__( 'Expected of "%s" to be "%s" but was "%s."' % (value, expected, type(value)) ) AMBIGUOUS_GROUP_ATTRIBS: Final = ( MeasureGetMeasGroupAttrib.DEVICE_ENTRY_FOR_USER_AMBIGUOUS, MeasureGetMeasGroupAttrib.MANUAL_USER_DURING_ACCOUNT_CREATION, ) class MeasureGroupAttribs: """Groups of MeasureGetMeasGroupAttrib.""" ANY: Final = tuple(enum_val for enum_val in MeasureGetMeasGroupAttrib) AMBIGUOUS: Final = AMBIGUOUS_GROUP_ATTRIBS UNAMBIGUOUS: Final = tuple( enum_val for enum_val in MeasureGetMeasGroupAttrib if enum_val not in AMBIGUOUS_GROUP_ATTRIBS ) class MeasureTypes: """Groups of MeasureType.""" ANY: Final = tuple(enum_val for enum_val in MeasureType) def query_measure_groups( from_source: Union[ MeasureGetMeasGroup, MeasureGetMeasResponse, Tuple[MeasureGetMeasGroup, ...] ], with_measure_type: Union[MeasureType, Tuple[MeasureType, ...]] = MeasureTypes.ANY, with_group_attrib: Union[ MeasureGetMeasGroupAttrib, Tuple[MeasureGetMeasGroupAttrib, ...] ] = MeasureGroupAttribs.ANY, ) -> Tuple[MeasureGetMeasGroup, ...]: """Return a groups and measurements based on filters.""" if isinstance(from_source, MeasureGetMeasResponse): iter_groups = cast(MeasureGetMeasResponse, from_source).measuregrps elif isinstance(from_source, MeasureGetMeasGroup): iter_groups = (cast(MeasureGetMeasGroup, from_source),) else: iter_groups = cast(Tuple[MeasureGetMeasGroup], from_source) if isinstance(with_measure_type, MeasureType): iter_measure_type = (cast(MeasureType, with_measure_type),) else: iter_measure_type = cast(Tuple[MeasureType], with_measure_type) if isinstance(with_group_attrib, MeasureGetMeasGroupAttrib): iter_group_attrib = (cast(MeasureGetMeasGroupAttrib, with_group_attrib),) else: iter_group_attrib = cast(Tuple[MeasureGetMeasGroupAttrib], with_group_attrib) return tuple( MeasureGetMeasGroup( attrib=group.attrib, category=group.category, created=group.created, date=group.date, deviceid=group.deviceid, grpid=group.grpid, measures=tuple( measure for measure in group.measures if measure.type in iter_measure_type ), ) for group in iter_groups if group.attrib in iter_group_attrib ) def get_measure_value( from_source: Union[ MeasureGetMeasGroup, MeasureGetMeasResponse, Tuple[MeasureGetMeasGroup, ...] ], with_measure_type: Union[MeasureType, Tuple[MeasureType, ...]], with_group_attrib: Union[ MeasureGetMeasGroupAttrib, Tuple[MeasureGetMeasGroupAttrib, ...] ] = MeasureGroupAttribs.ANY, ) -> Optional[float]: """Get the first value of a measure that meet the query requirements.""" groups: Final = query_measure_groups( from_source, with_measure_type, with_group_attrib ) return next( iter( tuple( float(measure.value * pow(10, measure.unit)) for group in groups for measure in group.measures ) ), None, ) class StatusException(Exception): """Status exception.""" def __init__(self, status: Any): """Create instance.""" super().__init__("Error code %s" % str(status)) class AuthFailedException(StatusException): """Withings status error code exception.""" class InvalidParamsException(StatusException): """Withings status error code exception.""" class UnauthorizedException(StatusException): """Withings status error code exception.""" class ErrorOccurredException(StatusException): """Withings status error code exception.""" class TimeoutException(StatusException): """Withings status error code exception.""" class BadStateException(StatusException): """Withings status error code exception.""" class TooManyRequestsException(StatusException): """Withings status error code exception.""" class UnknownStatusException(StatusException): """Unknown status code but it's still not successful.""" def response_body_or_raise(data: Any) -> Dict[str, Any]: """Parse withings response or raise exception.""" if not isinstance(data, dict): raise UnexpectedTypeException(data, dict) parsed_response: Final = cast(dict, data) status: Final = parsed_response.get("status") if status is None: raise UnknownStatusException(status=status) if status in STATUS_SUCCESS: return cast(Dict[str, Any], parsed_response.get("body")) if status in STATUS_AUTH_FAILED: raise AuthFailedException(status=status) if status in STATUS_INVALID_PARAMS: raise InvalidParamsException(status=status) if status in STATUS_UNAUTHORIZED: raise UnauthorizedException(status=status) if status in STATUS_ERROR_OCCURRED: raise ErrorOccurredException(status=status) if status in STATUS_TIMEOUT: raise TimeoutException(status=status) if status in STATUS_BAD_STATE: raise BadStateException(status=status) if status in STATUS_TOO_MANY_REQUESTS: raise TooManyRequestsException(status=status) raise UnknownStatusException(status=status)
26.752969
142
0.679126
8f6cd83956cbb9f3549d104ee26e92ff91fb49b2
1,701
py
Python
src/tests/test_load_all_grids.py
vineetjnair9/GridCal
5b63cbae45cbe176b015e5e99164a593f450fe71
[ "BSD-3-Clause" ]
null
null
null
src/tests/test_load_all_grids.py
vineetjnair9/GridCal
5b63cbae45cbe176b015e5e99164a593f450fe71
[ "BSD-3-Clause" ]
null
null
null
src/tests/test_load_all_grids.py
vineetjnair9/GridCal
5b63cbae45cbe176b015e5e99164a593f450fe71
[ "BSD-3-Clause" ]
null
null
null
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import os from GridCal.Engine.IO.file_handler import FileOpen def test_all_grids(): # get the directory of this file current_path = os.path.dirname(__file__) # navigate to the grids folder grids_path = os.path.join(current_path, '..', '..', 'Grids_and_profiles', 'grids') files = os.listdir(grids_path) failed = list() for file_name in files: path = os.path.join(grids_path, file_name) print('-' * 160) print('Loading', file_name, '...', end='') try: file_handler = FileOpen(path) circuit = file_handler.open() circuit.compile_snapshot() print('ok') except: print('Failed') failed.append(file_name) print('Failed:') for f in failed: print('\t', f) for f in failed: print('Attempting', f) path = os.path.join(grids_path, f) file_handler = FileOpen(path) circuit = file_handler.open() circuit.compile_snapshot() assert len(failed) == 0
30.375
86
0.651969
3564ff65e33eb4b88fa47128ea197b2ec96d8dae
9,775
py
Python
Contents/Libraries/Shared/enzyme/parsers/ebml/core.py
luboslavgerliczy/SubZero
6aeca58736ee99803d2e7f52ab00d9f563645a93
[ "MIT" ]
null
null
null
Contents/Libraries/Shared/enzyme/parsers/ebml/core.py
luboslavgerliczy/SubZero
6aeca58736ee99803d2e7f52ab00d9f563645a93
[ "MIT" ]
null
null
null
Contents/Libraries/Shared/enzyme/parsers/ebml/core.py
luboslavgerliczy/SubZero
6aeca58736ee99803d2e7f52ab00d9f563645a93
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from ...exceptions import ReadError from .readers import * from pkg_resources import resource_stream # @UnresolvedImport from xml.dom import minidom import logging __all__ = ['INTEGER', 'UINTEGER', 'FLOAT', 'STRING', 'UNICODE', 'DATE', 'MASTER', 'BINARY', 'SPEC_TYPES', 'READERS', 'Element', 'MasterElement', 'parse', 'parse_element', 'get_matroska_specs'] logger = logging.getLogger(__name__) # EBML types INTEGER, UINTEGER, FLOAT, STRING, UNICODE, DATE, MASTER, BINARY = range(8) # Spec types to EBML types mapping SPEC_TYPES = { 'integer': INTEGER, 'uinteger': UINTEGER, 'float': FLOAT, 'string': STRING, 'utf-8': UNICODE, 'date': DATE, 'master': MASTER, 'binary': BINARY } # Readers to use per EBML type READERS = { INTEGER: read_element_integer, UINTEGER: read_element_uinteger, FLOAT: read_element_float, STRING: read_element_string, UNICODE: read_element_unicode, DATE: read_element_date, BINARY: read_element_binary } class BaseElement(object): def __init__(self, id=None, position=None, size=None, data=None): self.id = id self.position = position self.size = size self.data = data class Element(BaseElement): """Base object of EBML :param int id: id of the element, best represented as hexadecimal (0x18538067 for Matroska Segment element) :param type: type of the element :type type: :data:`INTEGER`, :data:`UINTEGER`, :data:`FLOAT`, :data:`STRING`, :data:`UNICODE`, :data:`DATE`, :data:`MASTER` or :data:`BINARY` :param string name: name of the element :param int level: level of the element :param int position: position of element's data :param int size: size of element's data :param data: data as read by the corresponding :data:`READERS` """ def __init__(self, id=None, type=None, name=None, level=None, position=None, size=None, data=None): super(Element, self).__init__(id, position, size, data) self.type = type self.name = name self.level = level def __repr__(self): return '<%s [%s, %r]>' % (self.__class__.__name__, self.name, self.data) class MasterElement(Element): """Element of type :data:`MASTER` that has a list of :class:`Element` as its data :param int id: id of the element, best represented as hexadecimal (0x18538067 for Matroska Segment element) :param string name: name of the element :param int level: level of the element :param int position: position of element's data :param int size: size of element's data :param data: child elements :type data: list of :class:`Element` :class:`MasterElement` implements some magic methods to ease manipulation. Thus, a MasterElement supports the `in` keyword to test for the presence of a child element by its name and gives access to it with a container getter:: >>> ebml_element = parse(open('test1.mkv', 'rb'), get_matroska_specs())[0] >>> 'EBMLVersion' in ebml_element False >>> 'DocType' in ebml_element True >>> ebml_element['DocType'] Element(DocType, u'matroska') """ def __init__(self, id=None, name=None, level=None, position=None, size=None, data=None): super(MasterElement, self).__init__(id, MASTER, name, level, position, size, data) def load(self, stream, specs, ignore_element_types=None, ignore_element_names=None, max_level=None): """Load children :class:`Elements <Element>` with level lower or equal to the `max_level` from the `stream` according to the `specs` :param stream: file-like object from which to read :param dict specs: see :ref:`specs` :param int max_level: maximum level for children elements :param list ignore_element_types: list of element types to ignore :param list ignore_element_names: list of element names to ignore :param int max_level: maximum level of elements """ self.data = parse(stream, specs, self.size, ignore_element_types, ignore_element_names, max_level) def get(self, name, default=None): """Convenience method for ``master_element[name].data if name in master_element else default`` :param string name: the name of the child to get :param default: default value if `name` is not in the :class:`MasterElement` :return: the data of the child :class:`Element` or `default` """ if name not in self: return default element = self[name] if element.type == MASTER: raise ValueError('%s is a MasterElement' % name) return element.data def __getitem__(self, key): if isinstance(key, int): return self.data[key] children = [e for e in self.data if e.name == key] if not children: raise KeyError(key) if len(children) > 1: raise KeyError('More than 1 child with key %s (%d)' % (key, len(children))) return children[0] def __contains__(self, item): return len([e for e in self.data if e.name == item]) > 0 def __iter__(self): return iter(self.data) def parse(stream, specs, size=None, ignore_element_types=None, ignore_element_names=None, max_level=None, include_element_names=None): """Parse a stream for `size` bytes according to the `specs` :param stream: file-like object from which to read :param size: maximum number of bytes to read, None to read all the stream :type size: int or None :param dict specs: see :ref:`specs` :param list ignore_element_types: list of element types to ignore :param list ignore_element_names: list of element names to ignore :param int max_level: maximum level of elements :param list include_element_names: list of element names to include exclusively, so ignoring all other element names :return: parsed data as a tree of :class:`~enzyme.parsers.ebml.core.Element` :rtype: list .. note:: If `size` is reached in a middle of an element, reading will continue until the element is fully parsed. """ ignore_element_types = ignore_element_types if ignore_element_types is not None else [] ignore_element_names = ignore_element_names if ignore_element_names is not None else [] include_element_names = include_element_names if include_element_names is not None else [] start = stream.tell() elements = [] while size is None or stream.tell() - start < size: try: element = parse_element(stream, specs) if element.type is None: logger.error('Element with id 0x%x is not in the specs' % element_id) stream.seek(element_size, 1) continue elif element.type in ignore_element_types or element.name in ignore_element_names: logger.info('%s %s %s ignored', element.__class__.__name__, element.name, element.type) stream.seek(element.size, 1) continue elif len(include_element_names) > 0 and element.name not in include_element_names: stream.seek(element.size, 1) continue elif element.type == MASTER: if max_level is not None and element.level >= max_level: logger.info('Maximum level %d reached for children of %s %s', max_level, element.__class__.__name__, element.name) stream.seek(element.size, 1) else: logger.debug('Loading child elements for %s %s with size %d', element.__class__.__name__, element.name, element.size) element.data = parse(stream, specs, element.size, ignore_element_types, ignore_element_names, max_level,include_element_names) else: element.data = READERS[element.type](stream, element.size) elements.append(element) except ReadError: if size is not None: raise break return elements def parse_element(stream, specs): """Extract a single :class:`Element` from the `stream` according to the `specs` :param stream: file-like object from which to read :param dict specs: see :ref:`specs` :return: the parsed element :rtype: :class:`Element` """ element_id = read_element_id(stream) if element_id is None: raise ReadError('Cannot read element id') element_size = read_element_size(stream) if element_size is None: raise ReadError('Cannot read element size') if element_id not in specs: return BaseElement(element_id,stream.tell(),element_size) element_type, element_name, element_level = specs[element_id] if element_type == MASTER: element = MasterElement(element_id, element_name, element_level, stream.tell(), element_size) else: element = Element(element_id, element_type, element_name, element_level, stream.tell(), element_size) return element def get_matroska_specs(webm_only=False): """Get the Matroska specs :param bool webm_only: load *only* WebM specs :return: the specs in the appropriate format. See :ref:`specs` :rtype: dict """ specs = {} with resource_stream(__name__, 'specs/matroska.xml') as resource: xmldoc = minidom.parse(resource) for element in xmldoc.getElementsByTagName('element'): if not webm_only or element.hasAttribute('webm') and element.getAttribute('webm') == '1': specs[int(element.getAttribute('id'), 16)] = (SPEC_TYPES[element.getAttribute('type')], element.getAttribute('name'), int(element.getAttribute('level'))) return specs
41.071429
169
0.662199
e9d3b1bcbf4585a1207d99319aa616988eaddc74
892
py
Python
fimed/config.py
dandobjim/FIMED2.0-BACKEND
1118a1afcf62a2d39de3464dce3929f008dba0ec
[ "MIT" ]
null
null
null
fimed/config.py
dandobjim/FIMED2.0-BACKEND
1118a1afcf62a2d39de3464dce3929f008dba0ec
[ "MIT" ]
2
2021-04-06T18:29:57.000Z
2021-06-02T03:57:43.000Z
fimed/config.py
dandobjim/FIMED2.0-BACKEND
1118a1afcf62a2d39de3464dce3929f008dba0ec
[ "MIT" ]
null
null
null
from pathlib import Path from pydantic import BaseSettings, AnyUrl from fimed.logger import logger class MongoDns(AnyUrl): allowed_schemes = {"mongodb"} user_required = False class _Settings(BaseSettings): # api settings API_HOST: str = "localhost" API_PORT: int = 8080 # for applications sub-mounted below a given URL path ROOT_PATH: str = "" # database connection MONGO_DNS: MongoDns = "mongodb://localhost:27017" # Mongo settings MINNIO_CONN = "localhost:9000" ACCESS_KEY = "FIMED" SECRET_KEY = "FIMEDFIMED" class Config: if not Path(".env").is_file(): logger.warning("⚠️ `.env` not found in current directory") logger.info("⚙️ Loading settings from environment") else: logger.info("⚙️ Loading settings from dotenv file") env_file = ".env" settings = _Settings()
24.108108
70
0.651345
f9a7302d51a15d2c6bae57f68546502e33afa46d
4,090
py
Python
train_vgg19.py
SakhriHoussem/image-classification
82cb281eb4b7f114501df5d13cfc4cf00107d055
[ "MIT" ]
20
2018-09-02T09:15:14.000Z
2022-03-24T04:40:42.000Z
train_vgg19.py
SakhriHoussem/image-classification
82cb281eb4b7f114501df5d13cfc4cf00107d055
[ "MIT" ]
3
2018-09-03T11:52:04.000Z
2020-12-28T02:10:08.000Z
train_vgg19.py
SakhriHoussem/image-classification
82cb281eb4b7f114501df5d13cfc4cf00107d055
[ "MIT" ]
13
2018-07-26T17:40:16.000Z
2022-01-25T04:30:26.000Z
""" Simple tester for the vgg19_trainable """ import numpy as np import tensorflow as tf from dataSetGenerator import append,picShow from vgg19 import vgg19_trainable as vgg19 import argparse parser = argparse.ArgumentParser(prog="Train vgg19",description="Simple tester for the vgg19_trainable") parser.add_argument('--dataset', metavar='dataset', type=str,required=True, help='DataSet Name') parser.add_argument('--batch', metavar='batch', type=int, default=10, help='batch size ') parser.add_argument('--epochs', metavar='epochs', type=int, default=30, help='number of epoch to train the network') args = parser.parse_args() classes_name = args.dataset batch_size = args.batch epochs = args.epochs # batch_size = 10 # epochs = 30 # classes_name = "SIRI-WHU" # classes_name = "UCMerced_LandUse" # classes_name = "RSSCN7" classes = np.load("DataSets/{0}/{0}_classes.npy".format(classes_name)) batch = np.load("DataSets/{0}/{0}_dataTrain.npy".format(classes_name)) labels = np.load("DataSets/{0}/{0}_labelsTrain.npy".format(classes_name)) classes_num = len(classes) rib = batch.shape[1] with tf.device('/device:GPU:0'): # with tf.device('/cpu:0'): # with tf.Session(config=tf.ConfigProto(intra_op_parallelism_threads=int(environ['NUMBER_OF_PROCESSORS']))) as sess: with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess: images = tf.placeholder(tf.float32, [None, rib, rib, 3]) true_out = tf.placeholder(tf.float32, [None, classes_num]) train_mode = tf.placeholder(tf.bool) try: vgg = vgg19.Vgg19('Weights/VGG19_{}.npy'.format(classes_name),classes_num) except: print('Weights/VGG19_{}.npy Not Exist'.format(classes_name)) vgg = vgg19.Vgg19(None,classes_num) vgg.build(images,train_mode) # print number of variables used: 143667240 variables, i.e. ideal size = 548MB # print('number of variables used:',vgg.get_var_count()) print('Data SHape used:',batch.shape) sess.run(tf.global_variables_initializer()) # test classification prob = sess.run(vgg.prob, feed_dict={images: batch[:8], train_mode: False}) # picShow(batch[:8], labels[:8], classes, None, prob, True) # simple 1-step training cost = tf.reduce_sum((vgg.prob - true_out) ** 2) train = tf.train.GradientDescentOptimizer(0.0001).minimize(cost) correct_prediction = tf.equal(tf.argmax(prob), tf.argmax(true_out)) acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) batche_num = len(batch) accs = [] costs = [] for _ in range(epochs): indice = np.random.permutation(batche_num) counter = 0 for i in range(int(batche_num/batch_size)): min_batch = indice[i*batch_size:(i+1)*batch_size] cur_cost, cur_train,cur_acc= sess.run([cost, train,acc], feed_dict={images: batch[min_batch], true_out: labels[min_batch], train_mode: True}) print("Iteration :{} Batch :{} loss :{}".format(_, i, cur_cost)) accs.append(cur_acc) costs.append(cur_cost) counter += 1 if counter % 100 == 0: # save Weights vgg.save_npy(sess, 'Weights/VGG19_{}.npy'.format(classes_name)) # save graph data append(costs,'Data/cost19_{}.txt'.format(classes_name)) append(accs,'Data/acc19_{}.txt'.format(classes_name)) # save Weights vgg.save_npy(sess, 'Weights/VGG19_{}.npy'.format(classes_name)) # test classification again, should have a higher probability about tiger prob = sess.run(vgg.prob, feed_dict={images: batch[:8], train_mode: False}) picShow(batch[:8], labels[:8], classes, None, prob) # import subprocess # subprocess.call(["shutdown", "/s"])
41.313131
161
0.630318
dc5809c3fdbd031aec4ddd6f4a3751f4dbc4cc73
2,977
gyp
Python
deps/sqlite3.gyp
ibmruntimes/node-sqlite3
221630b1611bfdf9d938e978698989977ec19a79
[ "BSD-3-Clause" ]
null
null
null
deps/sqlite3.gyp
ibmruntimes/node-sqlite3
221630b1611bfdf9d938e978698989977ec19a79
[ "BSD-3-Clause" ]
null
null
null
deps/sqlite3.gyp
ibmruntimes/node-sqlite3
221630b1611bfdf9d938e978698989977ec19a79
[ "BSD-3-Clause" ]
null
null
null
{ 'includes': [ 'common-sqlite.gypi' ], 'target_defaults': { 'default_configuration': 'Release', 'cflags': [ '-std=c99' ], 'configurations': { 'Debug': { 'defines': [ 'DEBUG', '_DEBUG' ], 'msvs_settings': { 'VCCLCompilerTool': { 'RuntimeLibrary': 1, # static debug }, }, }, 'Release': { 'defines': [ 'NDEBUG' ], 'msvs_settings': { 'VCCLCompilerTool': { 'RuntimeLibrary': 0, # static release }, }, } }, 'msvs_settings': { 'VCCLCompilerTool': { }, 'VCLibrarianTool': { }, 'VCLinkerTool': { 'GenerateDebugInformation': 'true', }, }, 'conditions': [ ['OS == "win"', { 'defines': [ 'WIN32' ], }], ['OS == "zos"', { 'cflags!': [ '-std=c99' ], 'cflags': [ '-qlanglvl=stdc99', '-qascii', '-qxclang=-fexec-charset=ISO8859-1' ], }] ], }, 'targets': [ { 'target_name': 'action_before_build', 'type': 'none', 'hard_dependency': 1, 'actions': [ { 'action_name': 'unpack_sqlite_dep', 'inputs': [ './sqlite-autoconf-<@(sqlite_version).tar.gz' ], 'outputs': [ '<(SHARED_INTERMEDIATE_DIR)/sqlite-autoconf-<@(sqlite_version)/sqlite3.c' ], 'action': ['<!(node -p "process.env.npm_config_python || \\"python\\"")','./extract.py','./sqlite-autoconf-<@(sqlite_version).tar.gz','<(SHARED_INTERMEDIATE_DIR)'] } ], 'direct_dependent_settings': { 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)/sqlite-autoconf-<@(sqlite_version)/', ] }, }, { 'target_name': 'sqlite3', 'type': 'static_library', 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)/sqlite-autoconf-<@(sqlite_version)/' ], 'dependencies': [ 'action_before_build' ], 'sources': [ '<(SHARED_INTERMEDIATE_DIR)/sqlite-autoconf-<@(sqlite_version)/sqlite3.c' ], 'direct_dependent_settings': { 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)/sqlite-autoconf-<@(sqlite_version)/' ], 'defines': [ 'SQLITE_THREADSAFE=1', 'HAVE_USLEEP=1', 'SQLITE_ENABLE_FTS3', 'SQLITE_ENABLE_FTS4', 'SQLITE_ENABLE_FTS5', 'SQLITE_ENABLE_JSON1', 'SQLITE_ENABLE_RTREE' ], }, 'cflags_cc': [ '-Wno-unused-value' ], 'defines': [ '_REENTRANT=1', 'SQLITE_THREADSAFE=1', 'HAVE_USLEEP=1', 'SQLITE_ENABLE_FTS3', 'SQLITE_ENABLE_FTS4', 'SQLITE_ENABLE_FTS5', 'SQLITE_ENABLE_JSON1', 'SQLITE_ENABLE_RTREE' ], 'export_dependent_settings': [ 'action_before_build', ] } ] }
25.228814
173
0.48606
4ba9f09c2369fc68ee8d64c75f2399f4733951b6
7,640
py
Python
helper/args.py
jyothisable/dcscn-super-resolution
3799e5335cd493040d2d00386e93043840713774
[ "MIT" ]
null
null
null
helper/args.py
jyothisable/dcscn-super-resolution
3799e5335cd493040d2d00386e93043840713774
[ "MIT" ]
null
null
null
helper/args.py
jyothisable/dcscn-super-resolution
3799e5335cd493040d2d00386e93043840713774
[ "MIT" ]
null
null
null
""" Paper: "Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network" Ver: 2 functions for sharing arguments and their default values """ import sys import numpy as np import tensorflow.compat.v1 as tf flags = tf.app.flags FLAGS = flags.FLAGS # Model (network) Parameters flags.DEFINE_integer( "scale", 2, "Scale factor for Super Resolution (should be 2 or more)") flags.DEFINE_integer( "layers", 12, "Number of layers of feature xxtraction CNNs") flags.DEFINE_integer( "filters", 196, "Number of filters of first feature-extraction CNNs") flags.DEFINE_integer( "min_filters", 48, "Number of filters of last feature-extraction CNNs") flags.DEFINE_float("filters_decay_gamma", 1.5, "Number of CNN filters are decayed from [filters] to [min_filters] by this gamma") flags.DEFINE_boolean("use_nin", True, "Use Network In Network") flags.DEFINE_integer( "nin_filters", 64, "Number of CNN filters in A1 at Reconstruction network") flags.DEFINE_integer( "nin_filters2", 32, "Number of CNN filters in B1 and B2 at Reconstruction net.") flags.DEFINE_integer("cnn_size", 3, "Size of CNN filters") flags.DEFINE_integer("reconstruct_layers", 1, "Number of Reconstruct CNN Layers. (can be 0.)") flags.DEFINE_integer("reconstruct_filters", 32, "Number of Reconstruct CNN Filters") flags.DEFINE_float("dropout_rate", 0.8, "Output nodes should be kept by this probability. If 1, don't use dropout.") flags.DEFINE_string("activator", "prelu", "Activator can be [relu, leaky_relu, prelu, sigmoid, tanh, selu]") flags.DEFINE_boolean("pixel_shuffler", True, "Use Pixel Shuffler instead of transposed CNN") flags.DEFINE_integer("pixel_shuffler_filters", 0, "Num of Pixel Shuffler output channels. 0 means use same channels as input.") flags.DEFINE_integer("self_ensemble", 8, "Number of using self ensemble method. [1 - 8]") flags.DEFINE_boolean("batch_norm", False, "use batch normalization after each CNNs") flags.DEFINE_boolean("depthwise_separable", False, "use depthwise seperable convolutions for each CNN layer instead") # Training Parameters flags.DEFINE_boolean("bicubic_init", True, "make bicubic interpolation values as initial input for x2") flags.DEFINE_float("clipping_norm", 5, "Norm for gradient clipping. If it's <= 0 we don't use gradient clipping.") flags.DEFINE_string("initializer", "he", "Initializer for weights can be [uniform, stddev, xavier, he, identity, zero]") flags.DEFINE_float("weight_dev", 0.01, "Initial weight stddev (won't be used when you use he or xavier initializer)") flags.DEFINE_float("l2_decay", 0.0001, "l2_decay") flags.DEFINE_string("optimizer", "adam", "Optimizer can be [gd, momentum, adadelta, adagrad, adam, rmsprop]") flags.DEFINE_float("beta1", 0.9, "Beta1 for adam optimizer") flags.DEFINE_float("beta2", 0.999, "Beta2 for adam optimizer") flags.DEFINE_float("epsilon", 1e-8, "epsilon for adam optimizer") flags.DEFINE_float( "momentum", 0.9, "Momentum for momentum optimizer and rmsprop optimizer") flags.DEFINE_integer( "batch_num", 20, "Number of mini-batch images for training") flags.DEFINE_integer("batch_image_size", 48, "Image size for mini-batch") flags.DEFINE_integer( "stride_size", 0, "Stride size for mini-batch. If it is 0, use half of batch_image_size") flags.DEFINE_integer("training_images", 24000, "Number of training on each epoch") flags.DEFINE_boolean("use_l1_loss", False, "Use L1 Error as loss function instead of MSE Error.") # Learning Rate Control for Training flags.DEFINE_float("initial_lr", 0.002, "Initial learning rate") flags.DEFINE_float("lr_decay", 0.5, "Learning rate decay rate") flags.DEFINE_integer("lr_decay_epoch", 9, "After this epochs are completed, learning rate will be decayed by lr_decay.") flags.DEFINE_float("end_lr", 2e-5, "Training end learning rate. If the current learning rate gets lower than this" "value, then training will be finished.") # Dataset or Others flags.DEFINE_string("dataset", "bsd200", "Training dataset dir. [yang91, general100, bsd200, other]") flags.DEFINE_string("test_dataset", "set5", "Directory for test dataset [set5, set14, bsd100, urban100, all]") flags.DEFINE_integer("tests", 1, "Number of training sets") flags.DEFINE_boolean("do_benchmark", False, "Evaluate the performance for set5, set14 and bsd100 after the training.") # Image Processing flags.DEFINE_float("max_value", 1366, "For normalize image pixel value") flags.DEFINE_integer( "channels", 1, "Number of image channels used. Now it should be 1. using only Y from YCbCr.") flags.DEFINE_integer("psnr_calc_border_size", -1, "Cropping border size for calculating PSNR. if < 0, use 2 + scale for default.") flags.DEFINE_boolean("build_batch", False, "Build pre-processed input batch. Makes training significantly faster but " "the patches are limited to be on the grid.") # flags.DEFINE_integer("input_image_width", -1, "The width of the input image. Put -1 if you do not want to have a fixed input size") # flags.DEFINE_integer("input_image_height", -1, "The height of the input image. Put -1 if you do not want to hae a fixed input size") # Environment (all directory name should not contain '/' after ) flags.DEFINE_string("checkpoint_dir", "models", "Directory for checkpoints") flags.DEFINE_string("graph_dir", "graphs", "Directory for graphs") flags.DEFINE_string("data_dir", "data", "Directory for original images") flags.DEFINE_string("batch_dir", "batch_data", "Directory for training batch images") flags.DEFINE_string("output_dir", "output", "Directory for output test images") flags.DEFINE_string("tf_log_dir", "tf_log", "Directory for tensorboard log") flags.DEFINE_string("log_filename", "log.txt", "log filename") flags.DEFINE_string( "model_name", "", "model name for save files and tensorboard log") flags.DEFINE_string("load_model_name", "", "Filename of model loading before start [filename or 'default']") # Debugging or Logging flags.DEFINE_boolean("initialize_tf_log", True, "Clear all tensorboard log before start") flags.DEFINE_boolean("enable_log", True, "Enables tensorboard-log. Save loss.") flags.DEFINE_boolean("save_weights", True, "Save weights and biases/gradients") flags.DEFINE_boolean("save_images", False, "Save CNN weights as images") flags.DEFINE_integer("save_images_num", 20, "Number of CNN images saved") flags.DEFINE_boolean("save_meta_data", False, "") flags.DEFINE_integer("gpu_device_id", 0, "Device ID of GPUs which will be used to compute.") # frozen model configurations flags.DEFINE_boolean("frozenInference", False, "Flag for whether the model to evaluate is frozen.") flags.DEFINE_string("frozen_graph_path", './model_to_freeze/frozen_model_optimized.pb', "the path to a frozen model if performing inference from it") def get(): print("Python Interpreter version:%s" % sys.version[:3]) print("tensorflow version:%s" % tf.__version__) print("numpy version:%s" % np.__version__) # check which library you are using # np.show_config() return FLAGS
51.972789
134
0.696466
9e86574206b6c847b4f1ec334f91d65070f7313e
7,755
py
Python
scripts/west_commands/runners/nrfjprog.py
czeslawmakarski/zephyr
005103739c775fbe929070bf58a07a9a8fb211b1
[ "Apache-2.0" ]
7
2021-07-27T00:12:02.000Z
2022-03-09T14:40:13.000Z
scripts/west_commands/runners/nrfjprog.py
czeslawmakarski/zephyr
005103739c775fbe929070bf58a07a9a8fb211b1
[ "Apache-2.0" ]
null
null
null
scripts/west_commands/runners/nrfjprog.py
czeslawmakarski/zephyr
005103739c775fbe929070bf58a07a9a8fb211b1
[ "Apache-2.0" ]
1
2021-08-06T15:51:17.000Z
2021-08-06T15:51:17.000Z
# Copyright (c) 2017 Linaro Limited. # Copyright (c) 2019 Nordic Semiconductor ASA. # # SPDX-License-Identifier: Apache-2.0 '''Runner for flashing with nrfjprog.''' import os import shlex import sys from re import fullmatch, escape from intelhex import IntelHex from runners.core import ZephyrBinaryRunner, RunnerCaps # Helper function for inspecting hex files. # has_region returns True if hex file has any contents in a specific region # region_filter is a callable that takes an address as argument and # returns True if that address is in the region in question def has_region(regions, hex_file): try: ih = IntelHex(hex_file) return any((len(ih[rs:re]) > 0) for (rs, re) in regions) except FileNotFoundError: return False class NrfJprogBinaryRunner(ZephyrBinaryRunner): '''Runner front-end for nrfjprog.''' def __init__(self, cfg, family, softreset, snr, erase=False, tool_opt=[], force=False): super().__init__(cfg) self.hex_ = cfg.hex_file self.family = family self.softreset = softreset self.snr = snr self.erase = erase self.force = force self.tool_opt = [] for opts in [shlex.split(opt) for opt in tool_opt]: self.tool_opt += opts @classmethod def name(cls): return 'nrfjprog' @classmethod def capabilities(cls): return RunnerCaps(commands={'flash'}, erase=True) @classmethod def do_add_parser(cls, parser): parser.add_argument('--nrf-family', required=True, choices=['NRF51', 'NRF52', 'NRF53', 'NRF91'], help='family of nRF MCU') parser.add_argument('--softreset', required=False, action='store_true', help='use reset instead of pinreset') parser.add_argument('--snr', required=False, help="""Serial number of board to use. '*' matches one or more characters/digits.""") parser.add_argument('--tool-opt', default=[], action='append', help='''Additional options for nrfjprog, e.g. "--recover"''') parser.add_argument('--force', required=False, action='store_true', help='Flash even if the result cannot be guaranteed.') @classmethod def do_create(cls, cfg, args): return NrfJprogBinaryRunner(cfg, args.nrf_family, args.softreset, args.snr, erase=args.erase, tool_opt=args.tool_opt, force=args.force) def ensure_snr(self): if not self.snr or "*" in self.snr: self.snr = self.get_board_snr(self.snr or "*") def get_boards(self): snrs = self.check_output(['nrfjprog', '--ids']) snrs = snrs.decode(sys.getdefaultencoding()).strip().splitlines() if not snrs: raise RuntimeError('"nrfjprog --ids" did not find a board; ' 'is the board connected?') return snrs @staticmethod def verify_snr(snr): if snr == '0': raise RuntimeError('"nrfjprog --ids" returned 0; ' 'is a debugger already connected?') def get_board_snr(self, glob): # Use nrfjprog --ids to discover connected boards. # # If there's exactly one board connected, it's safe to assume # the user wants that one. Otherwise, bail unless there are # multiple boards and we are connected to a terminal, in which # case use print() and input() to ask what the user wants. re_glob = escape(glob).replace(r"\*", ".+") snrs = [snr for snr in self.get_boards() if fullmatch(re_glob, snr)] if len(snrs) == 0: raise RuntimeError( 'There are no boards connected{}.'.format( f" matching '{glob}'" if glob != "*" else "")) elif len(snrs) == 1: board_snr = snrs[0] self.verify_snr(board_snr) print("Using board {}".format(board_snr)) return board_snr elif not sys.stdin.isatty(): raise RuntimeError( f'refusing to guess which of {len(snrs)} ' 'connected boards to use. (Interactive prompts ' 'disabled since standard input is not a terminal.) ' 'Please specify a serial number on the command line.') snrs = sorted(snrs) print('There are multiple boards connected{}.'.format( f" matching '{glob}'" if glob != "*" else "")) for i, snr in enumerate(snrs, 1): print('{}. {}'.format(i, snr)) p = 'Please select one with desired serial number (1-{}): '.format( len(snrs)) while True: try: value = input(p) except EOFError: sys.exit(0) try: value = int(value) except ValueError: continue if 1 <= value <= len(snrs): break return snrs[value - 1] def do_run(self, command, **kwargs): self.require('nrfjprog') self.ensure_snr() commands = [] board_snr = self.snr.lstrip("0") if not os.path.isfile(self.hex_): raise ValueError('Cannot flash; hex file ({}) does not exist. '. format(self.hex_) + 'Try enabling CONFIG_BUILD_OUTPUT_HEX.') program_cmd = ['nrfjprog', '--program', self.hex_, '-f', self.family, '--snr', board_snr] + self.tool_opt self.logger.info('Flashing file: {}'.format(self.hex_)) if self.erase: commands.extend([ ['nrfjprog', '--eraseall', '-f', self.family, '--snr', board_snr], program_cmd ]) else: if self.family == 'NRF51': commands.append(program_cmd + ['--sectorerase']) elif self.family == 'NRF52': commands.append(program_cmd + ['--sectoranduicrerase']) else: uicr = { 'NRF53': ((0x00FF8000, 0x00FF8800), (0x01FF8000, 0x01FF8800)), 'NRF91': ((0x00FF8000, 0x00FF8800),), }[self.family] if not self.force and has_region(uicr, self.hex_): # Hex file has UICR contents. raise RuntimeError( 'The hex file contains data placed in the UICR, which ' 'needs a full erase before reprogramming. Run west ' 'flash again with --force or --erase.') else: commands.append(program_cmd + ['--sectorerase']) if self.family == 'NRF52' and not self.softreset: commands.extend([ # Enable pin reset ['nrfjprog', '--pinresetenable', '-f', self.family, '--snr', board_snr], ]) if self.softreset: commands.append(['nrfjprog', '--reset', '-f', self.family, '--snr', board_snr]) else: commands.append(['nrfjprog', '--pinreset', '-f', self.family, '--snr', board_snr]) for cmd in commands: self.check_call(cmd) self.logger.info('Board with serial number {} flashed successfully.'. format(board_snr))
37.105263
82
0.526757
254a7935f3b33a088451180ea9c7cdbddbb8ed49
5,834
py
Python
cardscan/process.py
GroupTraining/BusinessCardReader
b89e9dfa4907937663cb766c6c4cbc4f26e5b540
[ "MIT" ]
52
2016-03-16T15:19:03.000Z
2021-09-07T08:45:43.000Z
cardscan/process.py
GroupTraining/BusinessCardReader
b89e9dfa4907937663cb766c6c4cbc4f26e5b540
[ "MIT" ]
1
2016-06-21T12:32:26.000Z
2019-08-06T08:58:48.000Z
cardscan/process.py
GroupTraining/BusinessCardReader
b89e9dfa4907937663cb766c6c4cbc4f26e5b540
[ "MIT" ]
28
2016-05-06T16:13:40.000Z
2022-01-19T02:53:03.000Z
import numpy as np import cv2 from matplotlib import pyplot as plt import subprocess import utils import findCard DEBUG = False PHONEALIASES = ['ph.', 'phone', 'tel.'] def parseText(text): text = text.strip() # Replace long lines with regular lines text = text.replace('\xe2\x80\x94', '-') # Remove left single quotation mark text = text.replace('\xe2\x80\x98','') text = text.replace('\xef','i') text = text.replace('\xc3\xa9', '6') text = text.decode('utf-8', 'ignore') return text def checkBlur(img): img = cv2.resize(img, (1000,600)) grayImg = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) grayImg = cv2.equalizeHist(np.copy(grayImg)) fft = np.fft.fft(grayImg) avgFFT = np.average(fft) threshFFT_x, threshFFT_y = np.where(fft> 1.25*avgFFT) return len(threshFFT_x) > 130000 def getText(img, regions, debug=False): textChunks = [] imgChunks = [] for region in regions: x1, y1, x2, y2 = region # Clip region and extract text chunk = img[y1:y2, x1:x2, ::] ret,chunk = cv2.threshold(chunk,140,255,0) cv2.imwrite('tmp.jpg', chunk) subprocess.call(['tesseract', 'tmp.jpg', 'tmp']) f = open('tmp.txt') lines = [] for line in f: print line.strip() if line.strip() != '': lines.append(parseText(line)) textChunks.append(lines) imgChunks.append(chunk) f.close() subprocess.call(['rm', 'tmp.jpg', 'tmp.txt']) if DEBUG: display = [(str(text), imgChunks[i]) for i, text in enumerate(textChunks)] utils.display(display[:10]) utils.display(display[10:20]) return textChunks def getRegions(img): grayImg = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # grayImg = cv2.equalizeHist(np.copy(grayImg)) edges = cv2.Canny(grayImg,100,200,apertureSize = 3) if DEBUG: utils.display([('Canny Edge Detection', edges)]) kernel = np.ones((3,3),np.uint8) edges = cv2.dilate(edges,kernel,iterations = 14) # edges = 255-edges # utils.display([('', edges)]) contours, hierarchy = cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) if DEBUG: utils.display([('Contours', edges)]) # Only take contours of a certain size regions = [] for contour in contours: imgH, imgW, _ = img.shape [x, y, w, h] = cv2.boundingRect(contour) if w < 50 or h < 50: pass elif w > .95*imgW or h > .95*imgH: pass else: regions.append((x, y, x+w, y+h)) return regions def drawRegions(img, regions): for x1, y1, x2, y2 in regions: cv2.rectangle(img, (x1,y1), (x2,y2), (0, 255, 0), 2) if DEBUG: utils.display([('Regions', img)]) return img def processCard(img): regions = getRegions(img) text = getText(img, regions) return regions, text def guessFields(regions, textFields): ''' Function to guess which fields are which based of of properties of the text ''' def checkForPhone(line): # Checks if any substrings of phone or related words are in the line for word in PHONEALIASES: if word in line: return True return False def checkEmail(line): if '@' in line and '.' in line: return True elif 'email' in line or 'e-mail' in line: return True else: return False def checkFax(line): if 'fax' in line: return True else: return False def checkWebsite(line): if 'www' in line: return True else: return False sizes = [(x2-x1)*(y2-y1) for x1,y1,x2,y2 in regions] sortedSizes = sorted(sizes) sortedSizes.reverse() suggestedFields = [] for i in range(len(regions)): suggestedLinesField = [] lines = textFields[i] size = sizes[i] lineCount = 0 for line in lines: line = line.lower() if size == sortedSizes[0] and lineCount == 0: # Largest size suggest for company name suggestedLinesField.append('Company') elif checkForPhone(line): suggestedLinesField.append('Phone') elif checkFax(line): suggestedLinesField.append('Fax') elif checkWebsite(line): suggestedLinesField.append('Website') else: suggestedLinesField.append('') lineCount += 1 lineCount = 0 suggestedFields.append(suggestedLinesField) return suggestedFields if __name__ == "__main__": imgs = utils.getImages('../../stanford_business_cards/photos/', 5) # imgs = utils.getImages('../our_cards/', 8) DEBUG = True # img = utils.readImage('../../stanford_business_cards/photos/004.jpg') # imgs = [('',img)] # utils.display(imgs) good, cardImg = findCard.findCard(imgs[4][1]) utils.display([('card',cardImg)]) regions, text = processCard(cardImg) processedCard = drawRegions(cardImg, regions) suggestedFields = guessFields(regions, text) utils.display([('card',processedCard)]) # scores = [] # for imgName, img in imgs: # # regions, text = processCard(img) # # guessFields(regions, text) # try: # good, cardImg = findCard.findCard(img) # except: # good = False # pass # if good: # scores.append((checkBlur(cardImg), imgName, cardImg)) # scores.sort() # for score in scores: # print score[0], score[1] # imgs = [(str(score), img) for score, imgName, img in scores] # for i in range(len(imgs)/10+1): # utils.display(imgs[i*10:i*10+10])
31.031915
87
0.580391
ff408a1458e993c1f93a642ad657ef50627e7df5
9,643
py
Python
aries_cloudagent/protocols/issue_credential/v1_0/messages/tests/test_credential_issue.py
kuraakhilesh8230/aries-cloudagent-python
ee384d1330f6a50ff45a507392ce54f92900f23a
[ "Apache-2.0" ]
247
2019-07-02T21:10:21.000Z
2022-03-30T13:55:33.000Z
aries_cloudagent/protocols/issue_credential/v1_0/messages/tests/test_credential_issue.py
kuraakhilesh8230/aries-cloudagent-python
ee384d1330f6a50ff45a507392ce54f92900f23a
[ "Apache-2.0" ]
1,462
2019-07-02T20:57:30.000Z
2022-03-31T23:13:35.000Z
aries_cloudagent/protocols/issue_credential/v1_0/messages/tests/test_credential_issue.py
kuraakhilesh8230/aries-cloudagent-python
ee384d1330f6a50ff45a507392ce54f92900f23a
[ "Apache-2.0" ]
377
2019-06-20T21:01:31.000Z
2022-03-30T08:27:53.000Z
from unittest import mock, TestCase from ......messaging.decorators.attach_decorator import AttachDecorator from .....didcomm_prefix import DIDCommPrefix from ...message_types import ATTACH_DECO_IDS, CREDENTIAL_ISSUE, PROTOCOL_PACKAGE from ..credential_issue import CredentialIssue class TestCredentialIssue(TestCase): """Credential issue tests""" indy_cred = { "schema_id": "LjgpST2rjsoxYegQDRm7EL:2:bc-reg:1.0", "cred_def_id": "LjgpST2rjsoxYegQDRm7EL:3:CL:18:tag", "rev_reg_id": "LjgpST2rjsoxYegQDRm7EL:4:LjgpST2rjsoxYegQDRm7EL:3:CL:18:tag:CL_ACCUM:1", "values": { "busId": {"raw": "11155555", "encoded": "11155555"}, "legalName": { "raw": "Babka Galaxy", "encoded": "107723975795096474174315415205901102419879622561395089750910511985549475735747", }, "id": {"raw": "5", "encoded": "5"}, "orgTypeId": {"raw": "1", "encoded": "1"}, "effectiveDate": { "raw": "2012-12-01", "encoded": "58785836675119218543950531421539993546216494060018521243314445986885543138388", }, "jurisdictionId": {"raw": "1", "encoded": "1"}, "endDate": { "raw": "", "encoded": "102987336249554097029535212322581322789799900648198034993379397001115665086549", }, }, "signature": { "p_credential": { "m_2": "60025883287089799626689274984362649922028954710702989273350424792094051625907", "a": "33574785085847496372223801384241174668280696192852342004649681358898319989377891201713237406189930904621943660579244780378356431325594072391319837474469436200535615918847408676250915598611100068705846552950672619639766733118699744590194148554187848404028169947572858712592004307286251531728499790515868404251079046925435202101170698552776314885035743276729493940581544827310348632105741785505818500141788882165796461479904049413245974826370118124656594309043126033311790481868941737635314924873471152593101941520014919522243774177999183508913726745154494726830096189641688720673911842149721875115446765101254783088102", "e": "259344723055062059907025491480697571938277889515152306249728583105665800713306759149981690559193987143012367913206299323899696942213235956742929940839890541204554505134958365542601", "v": "8609087712648327689510560843448768242969198387856549646434987127729892694214386082710530362693226591495343780017066542203667948482019255226968628218013767981247576292730389932608795727994162072985790185993138122475561426334951896920290599111436791225402577204027790420706987810169826735050717355066696030347321187354133263894735515127702270039945304850524250402144664403971571904353156572222923701680935669167750650688016372444804704998087365054978152701248950729399377780813365024757989269208934482967970445445223084620917624825052959697120057360426040239100930790635416973591134497181715131476498510569905885753432826750000829362210364061766697316138646771666357343198925355584209303847699218225254051213598531538421032318684976506329062116913654998320196203740062523483508588929287294193683755114531891923195772740958", }, "r_credential": { "sigma": "1 00F38C50E192DAF9133130888DA4A3291754B1A7D09A7DCCDD408D4E13F57267 1 0C6C9D8510580A8C9D8F0E21F51FF76E8F1419C2C909BBB9761AD9E75E46517F 2 095E45DDF417D05FB10933FFC63D474548B7FFFF7888802F07FFFFFF7D07A8A8", "c": "12F8B7BD08471C27F6AF8EE06374D200FCEA61718FACA61FD8B90EEED7A11AD6", "vr_prime_prime": "103015BFD51C02121DF61993973F312D5972EFF3B3B1B80BC614D5A747510366", "witness_signature": { "sigma_i": "1 165767F82FF8FD92237985441D2C758706A5EC1D21FBEF8611C6AC4E3CAD10DA 1 1FC786E5CD2D8B30F1C567579B4EC143C5951B7464F78B86A03419CB335EA81B 1 0B1A1356056BEDF9C61AE2D66FF0405E3B1D934DAC97099BDF6AC3ECCBFAF745 1 106B15BC294810EEDF8AD363A85CC8ECC8AA061538BB31BAE5252377D77E7FA3 2 095E45DDF417D05FB10933FFC63D474548B7FFFF7888802F07FFFFFF7D07A8A8 1 0000000000000000000000000000000000000000000000000000000000000000", "u_i": "1 017A61B7C8B5B80EB245BE6788A28F926D8CBB9829E657D437640EF09ACD0C80 1 1AF4229C05C728AEAEEE6FC411B357B857E773BA79FF677373A6BE8F60C02C3A 1 10CB82C4913E2324C06164BF22A2BD38CEE528C797C55061C2D2486C3F6BF747 1 116CE544B1CB99556BFC0621C57C3D9F2B78D034946322EEA218DFDBDD940EA3 2 095E45DDF417D05FB10933FFC63D474548B7FFFF7888802F07FFFFFF7D07A8A8 1 0000000000000000000000000000000000000000000000000000000000000000", "g_i": "1 0042BF46E9BAE9696F394FE7C26AFDE3C8963A2A0658D4C32737405F1576EB46 1 0194E97A9D92D46AAD61DAE06926D3361F531EB10D03C7520F3BD69D3E49311C 2 095E45DDF417D05FB10933FFC63D474548B7FFFF7888802F07FFFFFF7D07A8A8", }, "g_i": "1 0042BF46E9BAE9696F394FE7C26AFDE3C8963A2A0658D4C32737405F1576EB46 1 0194E97A9D92D46AAD61DAE06926D3361F531EB10D03C7520F3BD69D3E49311C 2 095E45DDF417D05FB10933FFC63D474548B7FFFF7888802F07FFFFFF7D07A8A8", "i": 1, "m2": "84B5722AE3A1CF27CB1EA56CD33D289CB87A4401C6B103D0D7B7EA869DAF6BB3", }, }, "signature_correctness_proof": { "se": "19792617148120152105226254239016588540058878757479987545108556827210662529343348161518678852958020771878595740749192412985440625444455760950622452787061547854765389520937092533324699495837410270589105368479415954380927050080439536019149709356488657394895381670676082762285043378943096265107585990717517541825549361747506315768406364562926877132553754434293723146759285511815164904802662712140021121638529229138315163496513377824821704164701067409581646133944445999621553849950380606679724798867481070896073389886302519310697801643262282687875393404841657943289557895895565050618203027512724917946512514235898009424924", "c": "20346348618412341786428948997994890734628812067145521907471418530511751955386", }, "rev_reg": { "accum": "21 12E821764448DE2B5754DEC16864096CFAE4BB68D4DC0CE3E5C4849FC7CBCCC0C 21 11677132B2DFB0C291D0616811BF2AC0CD464A35FF6927B821A5EACF24D94F3A5 6 5471991A0950DBD431A4DD86A8AD101E033AB5EBC29A97CAFE0E4F2C426F5821 4 1B34A4C75174974A698061A09AFFED62B78AC2AAF876BF7788BAF3FC9A8B47DF 6 7D7C5E96AE17DDB21EC98378E3185707A69CF86426F5526C9A55D1FAA2F6FA83 4 277100094333E24170CD3B020B0C91A7E9510F69218AD96AC966565AEF66BC71" }, "witness": { "omega": "21 136960A5E73C494F007BFE156889137E8B6DF301D5FF673C410CEE0F14AFAF1AE 21 132D4BA49C6BD8AB3CF52929D115976ABB1785D288F311CBB4455A85D07E2568C 6 70E7C40BA4F607262697556BB17FA6C85E9C188FA990264F4F031C39B5811239 4 351B98620B239DF14F3AB0B754C70597035A3B099D287A9855D11C55BA9F0C16 6 8AA1C473D792DF4F8287D0A93749046385CE411AAA1D685AA3C874C15B8628DB 4 0D6491BF5F127C1A0048CF137AEE17B62F4E49F3BDD9ECEBD14D56C43D211544" }, } cred_issue = CredentialIssue( comment="Test", credentials_attach=[ AttachDecorator.data_base64( mapping=indy_cred, ident=ATTACH_DECO_IDS[CREDENTIAL_ISSUE], ) ], ) def test_init(self): """Test initializer""" credential_issue = CredentialIssue( comment="Test", credentials_attach=[ AttachDecorator.data_base64( mapping=self.indy_cred, ident=ATTACH_DECO_IDS[CREDENTIAL_ISSUE], ) ], ) assert credential_issue.credentials_attach[0].content == self.indy_cred assert credential_issue.credentials_attach[0].ident # auto-generates UUID4 assert credential_issue.indy_credential(0) == self.indy_cred def test_type(self): """Test type""" credential_issue = CredentialIssue( comment="Test", credentials_attach=[ AttachDecorator.data_base64( mapping=self.indy_cred, ident=ATTACH_DECO_IDS[CREDENTIAL_ISSUE], ) ], ) assert credential_issue._type == DIDCommPrefix.qualify_current(CREDENTIAL_ISSUE) @mock.patch( f"{PROTOCOL_PACKAGE}.messages.credential_issue.CredentialIssueSchema.load" ) def test_deserialize(self, mock_credential_issue_schema_load): """ Test deserialize """ obj = self.cred_issue credential_issue = CredentialIssue.deserialize(obj) mock_credential_issue_schema_load.assert_called_once_with(obj) assert credential_issue is mock_credential_issue_schema_load.return_value @mock.patch( f"{PROTOCOL_PACKAGE}.messages.credential_issue.CredentialIssueSchema.dump" ) def test_serialize(self, mock_credential_issue_schema_dump): """ Test serialization. """ obj = self.cred_issue credential_issue_dict = obj.serialize() mock_credential_issue_schema_dump.assert_called_once_with(obj) assert credential_issue_dict is mock_credential_issue_schema_dump.return_value class TestCredentialIssueSchema(TestCase): """Test credential cred issue schema""" credential_issue = CredentialIssue( comment="Test", credentials_attach=[AttachDecorator.data_base64({"hello": "world"})], ) def test_make_model(self): """Test making model.""" data = self.credential_issue.serialize() model_instance = CredentialIssue.deserialize(data) assert isinstance(model_instance, CredentialIssue)
63.860927
844
0.772374
1b632ce197382f4375dd44a121127b2b8aefab47
1,854
py
Python
orio/downloadBinaries.py
NIEHS/orio
bf996ebcf41d14b945cd5848460b023376b637ad
[ "MIT" ]
6
2017-04-19T08:49:20.000Z
2020-12-18T16:13:28.000Z
orio/downloadBinaries.py
NIEHS/orio
bf996ebcf41d14b945cd5848460b023376b637ad
[ "MIT" ]
null
null
null
orio/downloadBinaries.py
NIEHS/orio
bf996ebcf41d14b945cd5848460b023376b637ad
[ "MIT" ]
1
2020-12-18T16:14:45.000Z
2020-12-18T16:14:45.000Z
import os import sys import platform from clint.textui import progress import requests import . import utils REQUIRED_SOFTWARE = ('bigWigAverageOverBed', 'validateFiles', ) def binaries_exist(): root = utils.get_bin_path() return all([ os.path.exists(os.path.join(root, fn)) for fn in REQUIRED_SOFTWARE ]) def get_root_url(): system = platform.system() if system == 'Darwin': return 'http://hgdownload.soe.ucsc.edu/admin/exe/macOSX.x86_64' elif system == 'Linux': return 'http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64' else: raise OSError('Mac or Linux system required.') def download_ucsc_tools(): bits, _ = platform.architecture() # check architecture if bits != '64bit': raise OSError('64-bit architecture required.') root_url = get_root_url() root = utils.get_bin_path() # download required software and place in appropriate location sys.stdout.write("Downloading UCSC binaries for ORIO\n") for fn in REQUIRED_SOFTWARE: url = os.path.join(root_url, fn) path = os.path.join(root, fn) sys.stdout.write("Downloading: {}\n".format(url)) r = requests.get(url, stream=True) if r.status_code == 200: with open(path, 'wb') as f: total_length = int(r.headers.get('content-length')) for chunk in progress.bar(r.iter_content(chunk_size=1024), expected_size=(total_length / 1024) + 1): if chunk: f.write(chunk) f.flush() os.chmod(path, 0o751) else: sys.stderr.write("URL returned a non-200 status\n") sys.stdout.write("Downloads complete!\n") if __name__ == '__main__': download_ucsc_tools()
28.090909
83
0.606257
44ab9432684515a768655ee09d6f9f0b0988927f
2,175
py
Python
setup.py
jklynch/bluesky-kafka-livegrid
1bd316f9e243e005278a9ac9404b32eaa03cb73f
[ "BSD-3-Clause" ]
null
null
null
setup.py
jklynch/bluesky-kafka-livegrid
1bd316f9e243e005278a9ac9404b32eaa03cb73f
[ "BSD-3-Clause" ]
null
null
null
setup.py
jklynch/bluesky-kafka-livegrid
1bd316f9e243e005278a9ac9404b32eaa03cb73f
[ "BSD-3-Clause" ]
null
null
null
from os import path from setuptools import setup, find_packages import sys import versioneer # NOTE: This file must remain Python 2 compatible for the foreseeable future, # to ensure that we error out properly for people with outdated setuptools # and/or pip. min_version = (3, 6) if sys.version_info < min_version: error = """ bluesky-kafka does not support Python {0}.{1}. Python {2}.{3} and above is required. Check your Python version like so: python3 --version This may be due to an out-of-date pip. Make sure you have pip >= 9.0.1. Upgrade pip like so: pip install --upgrade pip """.format(*(sys.version_info[:2] + min_version)) sys.exit(error) here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as readme_file: readme = readme_file.read() with open(path.join(here, 'requirements.txt')) as requirements_file: # Parse requirements.txt, ignoring any commented-out lines. requirements = [line for line in requirements_file.read().splitlines() if not line.startswith('#')] setup( name='bluesky-kafka-livegrid', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description="Kafka integration for bluesky.", long_description=readme, author="Brookhaven National Lab", author_email='jlynch@bnl.gov', url='https://github.com/jklynch/bluesky-kafka-livegrid', python_requires='>={}'.format('.'.join(str(n) for n in min_version)), packages=find_packages(exclude=['docs', 'tests']), entry_points={ 'console_scripts': [ # 'command = some.module:some_function', ], }, include_package_data=True, package_data={ 'bluesky_kafka_livegrid': [ # When adding files here, remember to update MANIFEST.in as well, # or else they will not be included in the distribution on PyPI! # 'path/to/data_file', ] }, install_requires=requirements, license="BSD (3-clause)", classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Natural Language :: English', 'Programming Language :: Python :: 3', ], )
31.985294
77
0.670345
cd0f00a663211ea7a9ee2f780241ab9b762134c3
1,844
py
Python
AlgorithmsDS/ex2.3.4appAnalyzis.py
w1ld/StepikExercies
3efe07819a0456aa3846587b2a23bad9dd9710db
[ "MIT" ]
4
2019-05-11T17:26:24.000Z
2022-01-30T17:48:25.000Z
AlgorithmsDS/ex2.3.4appAnalyzis.py
w1ld/StepikExercises
3efe07819a0456aa3846587b2a23bad9dd9710db
[ "MIT" ]
null
null
null
AlgorithmsDS/ex2.3.4appAnalyzis.py
w1ld/StepikExercises
3efe07819a0456aa3846587b2a23bad9dd9710db
[ "MIT" ]
4
2019-01-24T22:15:21.000Z
2020-12-21T10:23:52.000Z
import sys sys.setrecursionlimit(50000) class DisjointSet: def __init__(self, n): self.a = [i for i in range(n)] self.rank = [0 for i in range(n)] def union(self, l, r): lp = self.find(l) rp = self.find(r) if self.rank[lp] > self.rank[rp]: self.a[rp] = lp else: self.a[lp] = rp self.rank[lp] += 1 def find(self, i): p = i while True: if p == self.a[p]: break p = self.a[p] # flatten: # if i != self.a[i]: # self.a[i] = self.find(self.a[i]) return self.a[p] def readinput(): n, e, d = [int(i) for i in input().strip().split(' ')] ds = DisjointSet(n) for k in range(e): i, j = [int(i) for i in input().strip().split(' ')] i -= 1 j -= 1 ds.union(i, j) for k in range(d): i, j = [int(i) for i in input().strip().split(' ')] i -= 1 j -= 1 if ds.find(i) == ds.find(j): print(0) exit() print(1) # =============================================================== def test(): from test import Tester t = Tester(__file__) t.test( '''4 6 0 1 2 1 3 1 4 2 3 2 4 3 4''', "1") t.test( '''6 5 3 2 3 1 5 2 5 3 4 4 2 6 1 4 6 4 5''', "0") t.test( str.format('''100000 100000 100000 {} {}''', '\n'.join( [str(i+1) + ' ' + str(i+2) for i in range(99999)] + ['1 1'] ), '\n'.join( ['1 100000' for i in range(100000)] ) ), "1") if __name__ == '__main__': import sys if '-t' in sys.argv: test() else: readinput()
18.626263
66
0.383948
1055d7b55601c24be2fedc4813df69f19511c59b
1,240
py
Python
website/templatetags/reservation.py
jrdbnntt-com/com_jrdbnntt_wedding
101c825f420076e36ea598332abc87da403910be
[ "MIT" ]
null
null
null
website/templatetags/reservation.py
jrdbnntt-com/com_jrdbnntt_wedding
101c825f420076e36ea598332abc87da403910be
[ "MIT" ]
null
null
null
website/templatetags/reservation.py
jrdbnntt-com/com_jrdbnntt_wedding
101c825f420076e36ea598332abc87da403910be
[ "MIT" ]
null
null
null
from django import template from django.utils.html import escape from django.utils.safestring import mark_safe from website.models.guest import Guest from website.models.reservation import Reservation register = template.Library() @register.simple_tag def guest_full_name(guest: Guest) -> str: return guest.full_name() @register.simple_tag def guest_rsvp_summary(guest: Guest) -> str: summary = guest.rsvp_answer_display() if guest.rsvp_comment is not None: summary += '; ' + guest.rsvp_comment return summary @register.simple_tag def guest_rsvp_status_sentence(reservation: Reservation, guest: Guest) -> str: result = escape(guest.first_name) if guest.rsvp_answer is None: result += " has <b>not yet RSVP'd</b> to the wedding ceremony" else: result += " is <b>" + guest.rsvp_answer_display().lower() + "</b> to the wedding ceremony" if reservation.invited_to_rehearsal: if guest.rehearsal_rsvp_answer is None: result += " and has <b>not yet RSVP'd</b> to the rehearsal dinner" else: result += " and is <b>" + guest.rehearsal_rsvp_answer_display().lower() + "</b> to the rehearsal dinner" result += '.' return mark_safe(result)
32.631579
116
0.698387
d9eca831f861c0a0c59e92767940fc06d3e8be84
1,201
py
Python
shadow-hunters/tests/class_tests/test_area.py
dolphonie/shadow-hunters
2257a67f965cf43e1e5c9c8e7af87fe9ae16f5c9
[ "MIT" ]
17
2019-05-04T13:25:33.000Z
2022-01-22T14:50:49.000Z
shadow-hunters/tests/class_tests/test_area.py
dolphonie/shadow-hunters
2257a67f965cf43e1e5c9c8e7af87fe9ae16f5c9
[ "MIT" ]
25
2020-05-24T03:29:42.000Z
2021-03-29T07:07:47.000Z
shadow-hunters/tests/class_tests/test_area.py
dolphonie/shadow-hunters
2257a67f965cf43e1e5c9c8e7af87fe9ae16f5c9
[ "MIT" ]
7
2019-05-30T00:15:58.000Z
2022-01-16T14:37:25.000Z
import pytest from area import Area from zone import Zone # test_area.py # Tests for the Area object def test_fields(): # test initialization a = Area( name="area_name", desc="area_desc", domain=[9], action=lambda: 5, resource_id="r_id" ) # test fields assert a.name == "area_name" assert a.desc == "area_desc" assert len(a.domain) == 1 and a.domain[0] == 9 assert a.action() == 5 assert a.resource_id == "r_id" # test dump dump = a.dump() assert dump['name'] == "area_name" assert dump['desc'] == "area_desc" assert dump['domain'] == "[9]" assert str(dump) == str(a) def test_getAdjacent(): # Put two areas in a zone a = Area( name="A", desc="area_desc", domain=[8], action=lambda: 5, resource_id="a_id" ) b = Area( name="B", desc="area_desc", domain=[9], action=lambda: 5, resource_id="b_id" ) z = Zone([a, b]) for x in z.areas: x.zone = z assert a.zone == z assert b.zone == z # Test adjacency assert a.getAdjacent() == b assert b.getAdjacent() == a
19.063492
50
0.535387
1ca162323202f5f9f581f7de1679a6cb12409d32
1,359
py
Python
onepage/models.py
naichilab/onepage
b656ac76fd83d80e45a8d13835436865461432a1
[ "MIT" ]
null
null
null
onepage/models.py
naichilab/onepage
b656ac76fd83d80e45a8d13835436865461432a1
[ "MIT" ]
null
null
null
onepage/models.py
naichilab/onepage
b656ac76fd83d80e45a8d13835436865461432a1
[ "MIT" ]
null
null
null
from math import ceil from orator import DatabaseManager from orator import Model from orator.orm import scope from orator.orm import has_many from orator.orm import belongs_to from orator.orm import belongs_to_many from onepage.db import dbconfig from onepage.db import schema Model.set_connection_resolver(DatabaseManager(dbconfig.DATABASES)) class User(Model): __table__ = schema.USER_TABLE_NAME __fillable__ = ['pen_name'] __guarded__ = ['email', 'password_hash'] __timestamps__ = False @classmethod def find_by_email(cls, email): return cls.query().where_email(email).get().first() @has_many def novels(self): return Novel class Tag(Model): __table__ = schema.TAG_TABLE_NAME __fillable__ = ['name'] @has_many def novels(self): return Novel class Novel(Model): __table__ = schema.NOVEL_TABLE_NAME __fillable__ = ['title', 'text', 'user_id', 'category_id'] @belongs_to def user(self): return User @belongs_to_many def tags(self): return Tag @scope def author(self, query, user_id): return query.where_user_id(user_id) @scope def pagenation(self, query, page): return query.order_by('created_at').paginate(20, page) @classmethod def page_count(cls): return ceil(cls.count() / 20)
21.571429
66
0.688742
2703a253f374f79ec71113a7792cec606a715f36
2,089
py
Python
Demo/pyasn1/psearch.py
reqa/python-ldap
e75c24dd70dcf10c8315d6f30ecf98f2c30f08e8
[ "MIT" ]
299
2017-11-23T14:24:32.000Z
2022-03-25T08:45:24.000Z
Demo/pyasn1/psearch.py
reqa/python-ldap
e75c24dd70dcf10c8315d6f30ecf98f2c30f08e8
[ "MIT" ]
412
2017-11-23T22:21:36.000Z
2022-03-18T11:20:59.000Z
Demo/pyasn1/psearch.py
reqa/python-ldap
e75c24dd70dcf10c8315d6f30ecf98f2c30f08e8
[ "MIT" ]
114
2017-11-23T14:24:37.000Z
2022-03-24T20:55:42.000Z
""" Demo script for Persistent Search Control (see https://tools.ietf.org/html/draft-ietf-ldapext-psearch) See https://www.python-ldap.org/ for project details. This needs the following software: Python pyasn1 pyasn1-modules python-ldap 2.4+ """ import sys,ldap,ldapurl,getpass from ldap.controls.psearch import PersistentSearchControl,EntryChangeNotificationControl,CHANGE_TYPES_STR try: ldap_url = ldapurl.LDAPUrl(sys.argv[1]) except IndexError: print('Usage: psearch.py <LDAP URL>') sys.exit(1) # Set debugging level #ldap.set_option(ldap.OPT_DEBUG_LEVEL,255) ldapmodule_trace_level = 2 ldapmodule_trace_file = sys.stderr ldap_conn = ldap.ldapobject.LDAPObject( ldap_url.initializeUrl(), trace_level=ldapmodule_trace_level, trace_file=ldapmodule_trace_file ) if ldap_url.cred is None: print('Password for %s:' % (repr(ldap_url.who))) ldap_url.cred = getpass.getpass() try: ldap_conn.simple_bind_s(ldap_url.who,ldap_url.cred) except ldap.INVALID_CREDENTIALS as e: print('Simple bind failed:',str(e)) sys.exit(1) psc = PersistentSearchControl() msg_id = ldap_conn.search_ext( ldap_url.dn, ldap_url.scope, ldap_url.filterstr, attrlist = ldap_url.attrs or ['*','+'], serverctrls=[psc], ) while True: try: res_type,res_data,res_msgid,_,_,_ = ldap_conn.result4( msg_id, all=0, timeout=10.0, add_ctrls=1, add_intermediates=1, resp_ctrl_classes={EntryChangeNotificationControl.controlType:EntryChangeNotificationControl}, ) except ldap.TIMEOUT: print('Timeout waiting for results...') else: for dn,entry,srv_ctrls in res_data: ecn_ctrls = [ c for c in srv_ctrls if c.controlType == EntryChangeNotificationControl.controlType ] if ecn_ctrls: changeType,previousDN,changeNumber = ecn_ctrls[0].changeType,ecn_ctrls[0].previousDN,ecn_ctrls[0].changeNumber change_type_desc = CHANGE_TYPES_STR[changeType] print('changeType: %s (%d), changeNumber: %s, previousDN: %s' % (change_type_desc,changeType,changeNumber,repr(previousDN)))
26.443038
132
0.733365
6d200cca3ea103bcf1f1aa0cd39caa76f4d4e06e
4,708
py
Python
Data/basis_converter_jaguar.py
certik/pyquante
f5cae27f519b1c1b70afbebfe8b5c83cb4b3c2a6
[ "DOC" ]
8
2016-08-26T14:57:01.000Z
2019-12-23T07:39:37.000Z
Data/basis_converter_jaguar.py
nicodgomez/pyquante
483571110b83cab406d3d4d8f2eba5cae0a2da58
[ "DOC" ]
1
2019-02-03T10:44:02.000Z
2019-02-03T10:44:02.000Z
Data/basis_converter_jaguar.py
nicodgomez/pyquante
483571110b83cab406d3d4d8f2eba5cae0a2da58
[ "DOC" ]
8
2016-02-23T19:22:11.000Z
2021-08-28T12:12:59.000Z
#!/usr/bin/env python """\ basis_converter.py Convert a Jaguar basis record to a native python format. This program is part of the PyQuante quantum chemistry suite. PyQuante is copyright (c) 2002 Richard P. Muller. All Rights Reserved. You may contact the author at rpm@wag.caltech.edu. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 """ import sys,string sym2no = { 'X' : 0, 'H' : 1, 'He' : 2, 'Li' : 3, 'Be' : 4, 'B' : 5, 'C' : 6, 'N' : 7, 'O' : 8, 'F' : 9, 'Ne' : 10, 'Na' : 11, 'Mg' : 12, 'Al' : 13, 'Si' : 14, 'P' : 15, 'S' : 16, 'Cl' : 17, 'Ar' : 18, 'K' : 19, 'Ca' : 20, 'Sc':21, 'Ti':22, 'V':23,'Cr':24,'Mn':25, 'Fe' : 26, 'Co':27, 'Ni':28, 'Cu':29,'Zn':30, 'Ga' : 31,'Ge':32,'As':33,'Se':34,'Br':35,'Kr':36, 'Rb':37, 'Sr':38,'Y':39,'Zr':40,'Nb':41,'Mo':42,'Tc':43, 'Ru' : 44,'Rh':45,'Pd':46,'Ag':47,'Cd':48,'In':49, 'Sn':50,'Sb':51,'Te':52,'I':53,'Xe':54, 'Cs':55,'Ba':56,'La':57,'Ce':58,'Pr':59,'Nd':60,'Pm':61,'Sm':62, 'Eu':63,'Gd':64,'Tb':65,'Dy':66,'Ho':67,'Er':68,'Tm':69,'Yb':70, 'Lu':71,'Hf':72,'Ta':73,'W':74,'Re':75,'Os':76,'Ir':77,'Pt':78, 'Au':79,'Hg':80,'Tl':81,'Pb':82,'Bi':83,'At':85,'Rn':86, 'U' : 92, 'x' : 0, 'h' : 1, 'he' : 2, 'li' : 3, 'be' : 4, 'b' : 5, 'c' : 6, 'n' : 7, 'o' : 8, 'f' : 9, 'ne' : 10, 'na' : 11, 'mg' : 12, 'al' : 13, 'si' : 14, 'p' : 15, 's' : 16, 'cl' : 17, 'ar' : 18, 'k' : 19, 'ca' : 20, 'sc':21, 'ti':22, 'v':23,'cr':24,'mn':25, 'fe' : 26, 'co':27, 'ni':28, 'cu':29,'zn':30, 'ga' : 31,'ge':32,'as':33,'se':34,'br':35,'kr':36, 'rb':37, 'sr':38,'y':39,'zr':40,'nb':41,'mo':42,'tc':43, 'ru' : 44,'rh':45,'pd':46,'ag':47,'cd':48,'in':49, 'sn':50,'sb':51,'te':52,'i':53,'xe':54, 'cs':55,'ba':56,'la':57,'ce':58,'pr':59,'nd':60,'pm':61,'sm':62, 'eu':63,'gd':64,'tb':65,'dy':66,'ho':67,'er':68,'tm':69,'yb':70, 'lu':71,'hf':72,'ta':73,'w':74,'re':75,'os':76,'ir':77,'pt':78, 'au':79,'hg':80,'tl':81,'pb':82,'bi':83,'at':85,'rn':86, 'u' : 92, } def main(filename="basis_631ss.dat"): outfilename = string.replace(filename,'.dat','.py') file = open(filename) bfs = [] while 1: line = file.readline() if not line: break words = string.split(line) sym = words[0] atno = sym2no[sym] nat = len(bfs) if len(bfs) < atno+1: for i in range(atno+1-len(bfs)): bfs.append([]) while 1: line = file.readline() if not line: break words = string.split(line) if len(words) < 1: break if words[0] == '****': break type,nprim = words[0],int(words[2]) try: nprim2 = int(words[3]) nprim = nprim + nprim2 except: pass prims = [] pprims = [] for i in range(nprim): line = file.readline() words = string.split(line) expnt = float(words[0]) coef = float(words[1]) prims.append((expnt,coef)) if type == 'SP': coef2 = float(words[2]) pprims.append((expnt,coef2)) if type == 'SP': bfs[atno].append(('S',prims)) bfs[atno].append(('P',pprims)) else: bfs[atno].append((type,prims)) file.close() file = open(outfilename,'w') file.write('basis = [\n') for bf in bfs: if bf: file.write(' [\n') for type,prims in bf: file.write(' (\'%s\',[\n' % type) for expnt,coef in prims: file.write(' (%f, %f),\n' % (expnt,coef)) file.write(' ]),\n') file.write(' ],\n') else: file.write(' None,\n') file.write(' ]\n') if __name__ == '__main__': if len(sys.argv) < 2: main() else: main(sys.argv[1])
34.617647
76
0.481308
0eb89d848120d9018abefbfc5157d132b66f497f
139
py
Python
python_3/aula10a.py
felipesch92/CursoEmVideo
df443e4771adc4506c96d8f419aa7acb97b28366
[ "MIT" ]
null
null
null
python_3/aula10a.py
felipesch92/CursoEmVideo
df443e4771adc4506c96d8f419aa7acb97b28366
[ "MIT" ]
null
null
null
python_3/aula10a.py
felipesch92/CursoEmVideo
df443e4771adc4506c96d8f419aa7acb97b28366
[ "MIT" ]
null
null
null
if 5 > 3: print('5 é maior que 3') else: print('5 não é maior que 3') print('5 é maior que 3' if 5 > 3 else '5 não é maior que 3')
23.166667
60
0.582734
3768e61dd43aba147dd49389e546ec40fc87d8bf
1,419
py
Python
Chapter07/07_fcn_32s_keras.py
PacktPublishing/Practical-Computer-Vision
8cf8ee58d306e0fb1a2e21b6518136bb4c174ff5
[ "MIT" ]
23
2018-02-28T05:00:34.000Z
2022-02-04T13:26:03.000Z
Chapter07/07_fcn_32s_keras.py
PacktPublishing/Practical-Computer-Vision
8cf8ee58d306e0fb1a2e21b6518136bb4c174ff5
[ "MIT" ]
4
2018-03-23T11:35:31.000Z
2022-01-31T14:52:57.000Z
Chapter07/07_fcn_32s_keras.py
PacktPublishing/Practical-Computer-Vision
8cf8ee58d306e0fb1a2e21b6518136bb4c174ff5
[ "MIT" ]
23
2018-02-08T03:17:16.000Z
2022-01-03T09:12:47.000Z
from keras.models import * from keras.layers import * from keras.applications.vgg16 import VGG16 def create_model_fcn32(nb_class, input_w=256): """ Create FCN-32s model for segmentaiton. Input: nb_class: number of detection categories input_w: input width, using square image Returns model created for training. """ input = Input(shape=(input_w, input_w, 3)) # initialize feature extractor excuding fully connected layers # here we use VGG model, with pre-trained weights. vgg = VGG16(include_top=False, weights='imagenet', input_tensor=input) # create further network x = Conv2D(4096, kernel_size=(7,7), use_bias=False, activation='relu', padding="same")(vgg.output) x = Dropout(0.5)(x) x = Conv2D(4096, kernel_size=(1,1), use_bias=False, activation='relu', padding="same")(x) x = Dropout(0.5)(x) x = Conv2D(nb_class, kernel_size=(1,1), use_bias=False, padding="same")(x) # upsampling to image size x = Conv2DTranspose(nb_class , kernel_size=(64,64), strides=(32,32), use_bias=False, padding='same')(x) x = Activation('softmax')(x) model = Model(input, x) model.summary() return model # Create model for pascal voc image segmentation for 21 classes model = create_model_fcn32(21)
33.785714
74
0.627907
ea11e6903e2d0696fffa09b8d9d3fa1d9fba8eba
67,569
py
Python
spectractor/fit/fitter.py
LSSTDESC/Spectractor
547f2ed6a6882ddc66030e2be989bee38401f213
[ "BSD-3-Clause" ]
14
2018-04-05T06:55:32.000Z
2021-12-28T09:44:18.000Z
spectractor/fit/fitter.py
LSSTDESC/Spectractor
547f2ed6a6882ddc66030e2be989bee38401f213
[ "BSD-3-Clause" ]
73
2018-04-23T09:39:07.000Z
2022-03-29T14:08:18.000Z
spectractor/fit/fitter.py
LSSTDESC/Spectractor
547f2ed6a6882ddc66030e2be989bee38401f213
[ "BSD-3-Clause" ]
6
2018-07-05T05:36:25.000Z
2020-04-10T10:52:38.000Z
from iminuit import Minuit from scipy import optimize from schwimmbad import MPIPool import emcee import time import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import numpy as np import sys import os import multiprocessing from spectractor import parameters from spectractor.config import set_logger from spectractor.tools import formatting_numbers, compute_correlation_matrix, plot_correlation_matrix_simple from spectractor.fit.statistics import Likelihood class FitWorkspace: def __init__(self, file_name="", nwalkers=18, nsteps=1000, burnin=100, nbins=10, verbose=0, plot=False, live_fit=False, truth=None): """Generic class to create a fit workspace with parameters, bounds and general fitting methods. Parameters ---------- file_name: str, optional The generic file name to save results. If file_name=="", nothing is saved ond disk (default: ""). nwalkers: int, optional Number of walkers for MCMC exploration (default: 18). nsteps: int, optional Number of steps for MCMC exploration (default: 1000). burnin: int, optional Number of burn-in steps for MCMC exploration (default: 100). nbins: int, optional Number of bins to make histograms after MCMC exploration (default: 10). verbose: int, optional Level of verbosity (default: 0). plot: bool, optional Level of plotting (default: False). live_fit: bool, optional, optional If True, model, data and residuals plots are made along the fitting procedure (default: False). truth: array_like, optional Array of true parameters (default: None). Examples -------- >>> w = FitWorkspace() >>> w.ndim 0 """ self.my_logger = set_logger(self.__class__.__name__) self.filename = file_name self.truth = truth self.verbose = verbose self.plot = plot self.live_fit = live_fit self.p = np.array([]) self.cov = np.array([[]]) self.rho = np.array([[]]) self.data = None self.err = None self.data_cov = None self.W = None self.x = None self.outliers = [] self.mask = [] self.sigma_clip = 5 self.model = None self.model_err = None self.model_noconv = None self.input_labels = [] self.axis_names = [] self.input_labels = [] self.bounds = ((), ()) self.fixed = [] self.nwalkers = max(2 * self.ndim, nwalkers) self.nsteps = nsteps self.nbins = nbins self.burnin = burnin self.start = [] self.likelihood = np.array([[]]) self.gelmans = np.array([]) self.chains = np.array([[]]) self.lnprobs = np.array([[]]) self.costs = np.array([[]]) self.params_table = None self.flat_chains = np.array([[]]) self.valid_chains = [False] * self.nwalkers self.global_average = None self.global_std = None self.title = "" self.use_grid = False if self.filename != "": if "." in self.filename: self.emcee_filename = os.path.splitext(self.filename)[0] + "_emcee.h5" else: self.my_logger.warning("\n\tFile name must have an extension.") else: self.emcee_filename = "emcee.h5" @property def ndim(self): """Number of parameters of the model. Returns ------- ndim: int Examples -------- >>> from spectractor.fit.fitter import FitWorkspace >>> import numpy as np >>> w = FitWorkspace() >>> w.p = np.ones(5) >>> w.ndim 5 """ return len(self.p) def get_bad_indices(self): """List of indices that are outliers rejected by a sigma-clipping method or other masking method. Returns ------- outliers: list Examples -------- >>> from spectractor.fit.fitter import FitWorkspace >>> import numpy as np >>> w = FitWorkspace() >>> w.data = np.array([np.array([1,2,3]), np.array([1,2,3,4])]) >>> w.outliers = [2, 6] >>> w.get_bad_indices() [array([2]), array([3])] """ bad_indices = np.asarray(self.outliers, dtype=int) if self.data.dtype == np.object: if len(self.outliers) > 0: bad_indices = [] start_index = 0 for k in range(self.data.shape[0]): mask = np.zeros(self.data[k].size, dtype=bool) outliers = np.asarray(self.outliers)[np.logical_and(np.asarray(self.outliers) > start_index, np.asarray(self.outliers) < start_index + self.data[k].size)] mask[outliers - start_index] = True bad_indices.append(np.arange(self.data[k].size)[mask]) start_index += self.data[k].size else: bad_indices = [[] for _ in range(self.data.shape[0])] return bad_indices def set_start(self, percent=0.02, a_random=1e-5): """Set the random starting points for MCMC exploration. A set of parameters are drawn with a uniform distribution between +/- percent times the starting guess. For null guess parameters, starting points are drawn from a uniform distribution between +/- a_random. Parameters ---------- percent: float, optional Percent of the guess parameters to set the uniform interval to draw random points (default: 0.02). a_random: float, optional Absolute value to set the +/- uniform interval to draw random points for null guess parameters (default: 1e-5). Returns ------- start: np.array Array of starting points of shape (ndim, nwalkers). """ self.start = np.array( [np.random.uniform(self.p[i] - percent * self.p[i], self.p[i] + percent * self.p[i], self.nwalkers) for i in range(self.ndim)]).T self.start[self.start == 0] = a_random * np.random.uniform(-1, 1) return self.start def load_chains(self): """Load the MCMC chains from a hdf5 file. The burn-in points are not rejected at this stage. Returns ------- chains: np.array Array of the chains. lnprobs: np.array Array of the logarithmic posterior probability. """ self.chains = [[]] self.lnprobs = [[]] self.nsteps = 0 # tau = -1 reader = emcee.backends.HDFBackend(self.emcee_filename) try: tau = reader.get_autocorr_time() except emcee.autocorr.AutocorrError: tau = -1 self.chains = reader.get_chain(discard=0, flat=False, thin=1) self.lnprobs = reader.get_log_prob(discard=0, flat=False, thin=1) self.nsteps = self.chains.shape[0] self.nwalkers = self.chains.shape[1] print(f"Auto-correlation time: {tau}") print(f"Burn-in: {self.burnin}") print(f"Chains shape: {self.chains.shape}") print(f"Log prob shape: {self.lnprobs.shape}") return self.chains, self.lnprobs def build_flat_chains(self): """Flatten the chains array and apply burn-in. Returns ------- flat_chains: np.array Flat chains. """ self.flat_chains = self.chains[self.burnin:, self.valid_chains, :].reshape((-1, self.ndim)) return self.flat_chains def simulate(self, *p): """Compute the model prediction given a set of parameters. Parameters ---------- p: array_like Array of parameters for the computation of the model. Returns ------- x: array_like The abscisse of the model prediction. model: array_like The model prediction. model_err: array_like The uncertainty on the model prediction. Examples -------- >>> w = FitWorkspace() >>> p = np.zeros(3) >>> x, model, model_err = w.simulate(*p) .. doctest:: :hide: >>> assert x is not None """ self.x = np.array([]) self.model = np.array([]) self.model_err = np.array([]) return self.x, self.model, self.model_err def analyze_chains(self): """Load the chains, build the probability densities for the parameters, compute the best fitting values and the uncertainties and covariance matrices, and plot. """ self.load_chains() self.set_chain_validity() self.convergence_tests() self.build_flat_chains() self.likelihood = self.chain2likelihood() self.cov = self.likelihood.cov_matrix self.rho = self.likelihood.rho_matrix self.p = self.likelihood.mean_vec self.simulate(*self.p) self.plot_fit() figure_name = os.path.splitext(self.emcee_filename)[0] + '_triangle.pdf' self.likelihood.triangle_plots(output_filename=figure_name) def plot_fit(self): """Generic function to plot the result of the fit for 1D curves. Returns ------- fig: plt.FigureClass The figure. """ fig = plt.figure() plt.errorbar(self.x, self.data, yerr=self.err, fmt='ko', label='Data') if self.truth is not None: x, truth, truth_err = self.simulate(*self.truth) plt.plot(self.x, truth, label="Truth") plt.plot(self.x, self.model, label='Best fitting model') plt.xlabel('$x$') plt.ylabel('$y$') title = "" for i, label in enumerate(self.input_labels): if self.cov.size > 0: err = np.sqrt(self.cov[i, i]) formatting_numbers(self.p[i], err, err) _, par, err, _ = formatting_numbers(self.p[i], err, err, label=label) title += rf"{label} = {par} $\pm$ {err}" else: title += f"{label} = {self.p[i]:.3g}" if i < len(self.input_labels) - 1: title += ", " plt.title(title) plt.legend() plt.grid() if parameters.DISPLAY: # pragma: no cover plt.show() return fig def chain2likelihood(self, pdfonly=False, walker_index=-1): """Convert the chains to a psoterior probability density function via histograms. Parameters ---------- pdfonly: bool, optional If True, do not compute the covariances and the 2D correlation plots (default: False). walker_index: int, optional The walker index to plot. If -1, all walkers are selected (default: -1). Returns ------- likelihood: np.array Posterior density function. """ if walker_index >= 0: chains = self.chains[self.burnin:, walker_index, :] else: chains = self.flat_chains rangedim = range(chains.shape[1]) centers = [] for i in rangedim: centers.append(np.linspace(np.min(chains[:, i]), np.max(chains[:, i]), self.nbins - 1)) likelihood = Likelihood(centers, labels=self.input_labels, axis_names=self.axis_names, truth=self.truth) if walker_index < 0: for i in rangedim: likelihood.pdfs[i].fill_histogram(chains[:, i], weights=None) if not pdfonly: for j in rangedim: if i != j: likelihood.contours[i][j].fill_histogram(chains[:, i], chains[:, j], weights=None) output_file = "" if self.filename != "": output_file = os.path.splitext(self.filename)[0] + "_bestfit.txt" likelihood.stats(output=output_file) else: for i in rangedim: likelihood.pdfs[i].fill_histogram(chains[:, i], weights=None) return likelihood def compute_local_acceptance_rate(self, start_index, last_index, walker_index): """Compute the local acceptance rate in a chain. Parameters ---------- start_index: int Beginning index. last_index: int End index. walker_index: int Index of the walker. Returns ------- freq: float The acceptance rate. """ frequences = [] test = -2 * self.lnprobs[start_index, walker_index] counts = 1 for index in range(start_index + 1, last_index): chi2 = -2 * self.lnprobs[index, walker_index] if np.isclose(chi2, test): counts += 1 else: frequences.append(float(counts)) counts = 1 test = chi2 frequences.append(counts) return 1.0 / np.mean(frequences) def set_chain_validity(self): """Test the validity of a chain: reject chains whose chi2 is far from the mean of the others. Returns ------- valid_chains: list List of boolean values, True if the chain is valid, or False if invalid. """ nchains = [k for k in range(self.nwalkers)] chisq_averages = [] chisq_std = [] for k in nchains: chisqs = -2 * self.lnprobs[self.burnin:, k] # if np.mean(chisqs) < 1e5: chisq_averages.append(np.mean(chisqs)) chisq_std.append(np.std(chisqs)) self.global_average = np.mean(chisq_averages) self.global_std = np.mean(chisq_std) self.valid_chains = [False] * self.nwalkers for k in nchains: chisqs = -2 * self.lnprobs[self.burnin:, k] chisq_average = np.mean(chisqs) chisq_std = np.std(chisqs) if 3 * self.global_std + self.global_average < chisq_average < 1e5: self.valid_chains[k] = False elif chisq_std < 0.1 * self.global_std: self.valid_chains[k] = False else: self.valid_chains[k] = True return self.valid_chains def convergence_tests(self): """Compute the convergence tests (Gelman-Rubin, acceptance rate). """ chains = self.chains[self.burnin:, :, :] # .reshape((-1, self.ndim)) nchains = [k for k in range(self.nwalkers)] fig, ax = plt.subplots(self.ndim + 1, 2, figsize=(16, 7), sharex='all') fontsize = 8 steps = np.arange(self.burnin, self.nsteps) # Chi2 vs Index print("Chisq statistics:") for k in nchains: chisqs = -2 * self.lnprobs[self.burnin:, k] text = f"\tWalker {k:d}: {float(np.mean(chisqs)):.3f} +/- {float(np.std(chisqs)):.3f}" if not self.valid_chains[k]: text += " -> excluded" ax[self.ndim, 0].plot(steps, chisqs, c='0.5', linestyle='--') else: ax[self.ndim, 0].plot(steps, chisqs) print(text) # global_average = np.mean(-2*self.lnprobs[self.valid_chains, self.burnin:]) # global_std = np.std(-2*self.lnprobs[self.valid_chains, self.burnin:]) ax[self.ndim, 0].set_ylim( [self.global_average - 5 * self.global_std, self.global_average + 5 * self.global_std]) # Parameter vs Index print("Computing Parameter vs Index plots...") for i in range(self.ndim): ax[i, 0].set_ylabel(self.axis_names[i], fontsize=fontsize) for k in nchains: if self.valid_chains[k]: ax[i, 0].plot(steps, chains[:, k, i]) else: ax[i, 0].plot(steps, chains[:, k, i], c='0.5', linestyle='--') ax[i, 0].get_yaxis().set_label_coords(-0.05, 0.5) ax[self.ndim, 0].set_ylabel(r'$\chi^2$', fontsize=fontsize) ax[self.ndim, 0].set_xlabel('Steps', fontsize=fontsize) ax[self.ndim, 0].get_yaxis().set_label_coords(-0.05, 0.5) # Acceptance rate vs Index print("Computing acceptance rate...") min_len = self.nsteps window = 100 if min_len > window: for k in nchains: ARs = [] indices = [] for pos in range(self.burnin + window, self.nsteps, window): ARs.append(self.compute_local_acceptance_rate(pos - window, pos, k)) indices.append(pos) if self.valid_chains[k]: ax[self.ndim, 1].plot(indices, ARs, label=f'Walker {k:d}') else: ax[self.ndim, 1].plot(indices, ARs, label=f'Walker {k:d}', c='gray', linestyle='--') ax[self.ndim, 1].set_xlabel('Steps', fontsize=fontsize) ax[self.ndim, 1].set_ylabel('Aceptance rate', fontsize=fontsize) # ax[self.dim + 1, 2].legend(loc='upper left', ncol=2, fontsize=10) # Parameter PDFs by chain print("Computing chain by chain PDFs...") for k in nchains: likelihood = self.chain2likelihood(pdfonly=True, walker_index=k) likelihood.stats(pdfonly=True, verbose=False) # for i in range(self.dim): # ax[i, 1].plot(likelihood.pdfs[i].axe.axis, likelihood.pdfs[i].grid, lw=var.LINEWIDTH, # label=f'Walker {k:d}') # ax[i, 1].set_xlabel(self.axis_names[i]) # ax[i, 1].set_ylabel('PDF') # ax[i, 1].legend(loc='upper right', ncol=2, fontsize=10) # Gelman-Rubin test.py if len(nchains) > 1: step = max(1, (self.nsteps - self.burnin) // 20) self.gelmans = [] print(f'Gelman-Rubin tests (burnin={self.burnin:d}, step={step:d}, nsteps={self.nsteps:d}):') for i in range(self.ndim): Rs = [] lens = [] for pos in range(self.burnin + step, self.nsteps, step): chain_averages = [] chain_variances = [] global_average = np.mean(self.chains[self.burnin:pos, self.valid_chains, i]) for k in nchains: if not self.valid_chains[k]: continue chain_averages.append(np.mean(self.chains[self.burnin:pos, k, i])) chain_variances.append(np.var(self.chains[self.burnin:pos, k, i], ddof=1)) W = np.mean(chain_variances) B = 0 for n in range(len(chain_averages)): B += (chain_averages[n] - global_average) ** 2 B *= ((pos + 1) / (len(chain_averages) - 1)) R = (W * pos / (pos + 1) + B / (pos + 1) * (len(chain_averages) + 1) / len(chain_averages)) / W Rs.append(R - 1) lens.append(pos) print(f'\t{self.input_labels[i]}: R-1 = {Rs[-1]:.3f} (l = {lens[-1] - 1:d})') self.gelmans.append(Rs[-1]) ax[i, 1].plot(lens, Rs, lw=1, label=self.axis_names[i]) ax[i, 1].axhline(0.03, c='k', linestyle='--') ax[i, 1].set_xlabel('Walker length', fontsize=fontsize) ax[i, 1].set_ylabel('$R-1$', fontsize=fontsize) ax[i, 1].set_ylim(0, 0.6) # ax[self.dim, 3].legend(loc='best', ncol=2, fontsize=10) self.gelmans = np.array(self.gelmans) fig.tight_layout() plt.subplots_adjust(hspace=0) if parameters.DISPLAY: # pragma: no cover plt.show() figure_name = self.emcee_filename.replace('.h5', '_convergence.pdf') print(f'Save figure: {figure_name}') fig.savefig(figure_name, dpi=100) def print_settings(self): """Print the main settings of the FitWorkspace. """ print('************************************') print(f"Input file: {self.filename}\nWalkers: {self.nwalkers}\t Steps: {self.nsteps}") print(f"Output file: {self.emcee_filename}") print('************************************') def save_parameters_summary(self, ipar, header=""): """Save the best fitting parameter summary in a text file. The file name is build from self.file_name, adding the suffix _bestfit.txt. Parameters ---------- ipar: list The list of parameter indices to save. header: str, optional A header to add to the file (default: ""). """ output_filename = os.path.splitext(self.filename)[0] + "_bestfit.txt" f = open(output_filename, 'w') txt = self.filename + "\n" if header != "": txt += header + "\n" for k, ip in enumerate(ipar): txt += "%s: %s +%s -%s\n" % formatting_numbers(self.p[ip], np.sqrt(self.cov[k, k]), np.sqrt(self.cov[k, k]), label=self.input_labels[ip]) for row in self.cov: txt += np.array_str(row, max_line_width=20 * self.cov.shape[0]) + '\n' self.my_logger.info(f"\n\tSave best fit parameters in {output_filename}.") f.write(txt) f.close() def plot_correlation_matrix(self, ipar=None): """Compute and plot a correlation matrix. Save the plot if parameters.SAVE is True. The output file name is build from self.file_name, adding the suffix _correlation.pdf. Parameters ---------- ipar: list, optional The list of parameter indices to include in the matrix. Examples -------- >>> w = FitWorkspace() >>> w.axis_names = ["x", "y", "z"] >>> w.cov = np.array([[1,-0.5,0],[-0.5,1,-1],[0,-1,1]]) >>> w.plot_correlation_matrix() """ if ipar is None: ipar = np.arange(self.cov.shape[0]).astype(int) fig = plt.figure() self.rho = compute_correlation_matrix(self.cov) plot_correlation_matrix_simple(plt.gca(), self.rho, axis_names=[self.axis_names[i] for i in ipar]) if parameters.SAVE and self.filename != "": # pragma: no cover figname = os.path.splitext(self.filename)[0] + "_correlation.pdf" self.my_logger.info(f"Save figure {figname}.") fig.savefig(figname, dpi=100, bbox_inches='tight') if parameters.DISPLAY: # pragma: no cover if self.live_fit: plt.draw() plt.pause(1e-8) else: plt.show() def weighted_residuals(self, p): # pragma: nocover """Compute the weighted residuals array for a set of model parameters p. Parameters ---------- p: array_like The array of model parameters. Returns ------- residuals: np.array The array of weighted residuals. """ x, model, model_err = self.simulate(*p) if self.data_cov is None: if len(self.outliers) > 0: model_err = model_err.flatten() err = self.err.flatten() res = (model.flatten() - self.data.flatten()) / np.sqrt(model_err * model_err + err * err) else: res = ((model - self.data) / np.sqrt(model_err * model_err + self.err * self.err)).flatten() else: if self.data_cov.ndim > 2: K = self.data_cov.shape[0] if np.any(model_err > 0): cov = [self.data_cov[k] + np.diag(model_err[k] ** 2) for k in range(K)] L = [np.linalg.inv(np.linalg.cholesky(cov[k])) for k in range(K)] else: L = [np.linalg.cholesky(self.W[k]) for k in range(K)] res = [L[k] @ (model[k] - self.data[k]) for k in range(K)] res = np.concatenate(res).ravel() else: if np.any(model_err > 0): cov = self.data_cov + np.diag(model_err * model_err) L = np.linalg.inv(np.linalg.cholesky(cov)) else: if self.W.ndim == 1 and self.W.dtype != np.object: L = np.sqrt(self.W) elif self.W.ndim == 2 and self.W.dtype != np.object: L = np.linalg.cholesky(self.W) else: raise ValueError(f"Case not implemented with self.W.ndim={self.W.ndim} " f"and self.W.dtype={self.W.dtype}") res = L @ (model - self.data) return res def chisq(self, p, model_output=False): """Compute the chi square for a set of model parameters p. Four cases are implemented: diagonal W, 2D W, array of diagonal Ws, array of 2D Ws. The two latter cases are for multiple independent data vectors with W being block diagonal. Parameters ---------- p: array_like The array of model parameters. model_output: bool, optional If true, the simulated model is output. Returns ------- chisq: float The chi square value. """ # check data format if (self.data.dtype != np.object and self.data.ndim > 1) or (self.err.dtype != np.object and self.err.ndim > 1): raise ValueError("Fitworkspace.data and Fitworkspace.err must be a flat 1D array," " or an array of flat arrays of unequal lengths.") # prepare weight matrices in case they have not been built before self.prepare_weight_matrices() x, model, model_err = self.simulate(*p) if self.W.ndim == 1 and self.W.dtype != np.object: if np.any(model_err > 0): W = 1 / (self.data_cov + model_err * model_err) else: W = self.W res = (model - self.data) chisq = res @ (W * res) # fit_workspace.my_logger.warning(f"ll {tmp_params}") # fit_workspace.my_logger.warning(f"yyyy {np.sum(residuals)} {np.sum(W)} {np.sum(W*residuals)}") # fit_workspace.my_logger.warning(f"yoooo {np.sum(residuals)} {np.sum(W*residuals)} ") # fit_workspace.my_logger.warning(f"yiiii {np.sum(tmp_model.flatten()[fit_workspace.not_outliers])} {np.sum(fit_workspace.data.flatten()[fit_workspace.not_outliers])} ") # self.my_logger.warning(f"ll {p}") # self.my_logger.warning(f"yyyy {np.sum(res)} {np.sum(W)} {np.sum(W*res)}") # self.my_logger.warning(f"yoooo {np.sum(res[self.not_outliers])} {np.sum(W[self.not_outliers]*res[self.not_outliers])} ") # self.my_logger.warning(f"yiiii {np.sum(model[self.not_outliers])} {np.sum(self.data[self.not_outliers])} ") elif self.W.dtype == np.object: K = len(self.W) if self.W[0].ndim == 1: if np.any(model_err > 0): W = [1 / (self.data_cov[k] + model_err * model_err) for k in range(K)] else: W = self.W res = [model[k] - self.data[k] for k in range(K)] chisq = np.sum([res[k] @ (W[k] * res[k]) for k in range(K)]) elif self.W[0].ndim == 2: K = len(self.W) if np.any(model_err > 0): cov = [self.data_cov[k] + np.diag(model_err[k] ** 2) for k in range(K)] L = [np.linalg.inv(np.linalg.cholesky(cov[k])) for k in range(K)] W = [L[k].T @ L[k] for k in range(K)] else: W = self.W res = [model[k] - self.data[k] for k in range(K)] chisq = np.sum([res[k] @ W[k] @ res[k] for k in range(K)]) else: raise ValueError(f"First element of fitworkspace.W has no ndim attribute or has a dimension above 2. " f"I get W[0]={self.W[0]}") elif self.W.ndim == 2 and self.W.dtype != np.object: if np.any(model_err > 0): cov = self.data_cov + np.diag(model_err * model_err) L = np.linalg.inv(np.linalg.cholesky(cov)) W = L.T @ L else: W = self.W res = (model - self.data) chisq = res @ W @ res else: raise ValueError( f"Data inverse covariance matrix must be a np.ndarray of dimension 1 or 2," f"either made of 1D or 2D arrays of equal lengths or not for block diagonal matrices." f"\nHere W type is {type(self.W)}, shape is {self.W.shape} and W is {self.W}.") if model_output: return chisq, x, model, model_err else: return chisq def prepare_weight_matrices(self): # Prepare covariance matrix for data if self.data_cov is None: self.data_cov = np.asarray(self.err.flatten() ** 2) # Prepare inverse covariance matrix for data if self.W is None: if self.data_cov.ndim == 1 and self.data_cov.dtype != np.object: self.W = 1 / self.data_cov elif self.data_cov.ndim == 2 and self.data_cov.dtype != np.object: L = np.linalg.inv(np.linalg.cholesky(self.data_cov)) self.W = L.T @ L elif self.data_cov.dtype is np.object: if self.data_cov[0].ndim == 1: self.W = np.array([1 / self.data_cov[k] for k in range(self.data_cov.shape[0])]) else: self.W = [] for k in range(len(self.data_cov)): L = np.linalg.inv(np.linalg.cholesky(self.data_cov[k])) self.W[k] = L.T @ L self.W = np.asarray(self.W) if len(self.outliers) > 0: bad_indices = self.get_bad_indices() if self.W.ndim == 1 and self.W.dtype != np.object: self.W[bad_indices] = 0 elif self.W.ndim == 2 and self.W.dtype != np.object: self.W[:, bad_indices] = 0 self.W[bad_indices, :] = 0 elif self.W.dtype == np.object: if self.data_cov[0].ndim == 1: for k in range(len(self.W)): self.W[k][bad_indices[k]] = 0 else: for k in range(len(self.W)): self.W[k][:, bad_indices[k]] = 0 self.W[k][bad_indices[k], :] = 0 else: raise ValueError( f"Data inverse covariance matrix must be a np.ndarray of dimension 1 or 2," f"either made of 1D or 2D arrays of equal lengths or not for block diagonal matrices." f"\nHere W type is {type(self.W)}, shape is {self.W.shape} and W is {self.W}.") def lnlike(self, p): """Compute the logarithmic likelihood for a set of model parameters p as -0.5*chisq. Parameters ---------- p: array_like The array of model parameters. Returns ------- lnlike: float The logarithmic likelihood value. """ return -0.5 * self.chisq(p) def lnprior(self, p): """Compute the logarithmic prior for a set of model parameters p. The function returns 0 for good parameters, and -np.inf for parameters out of their boundaries. Parameters ---------- p: array_like The array of model parameters. Returns ------- lnprior: float The logarithmic value fo the prior. """ in_bounds = True for npar, par in enumerate(p): if par < self.bounds[npar][0] or par > self.bounds[npar][1]: in_bounds = False break if in_bounds: return 0.0 else: return -np.inf def jacobian(self, params, epsilon, fixed_params=None, model_input=None): """Generic function to compute the Jacobian matrix of a model, with numerical derivatives. Parameters ---------- params: array_like The array of model parameters. epsilon: array_like The array of small steps to compute the partial derivatives of the model. fixed_params: array_like List of boolean values. If True, the parameter is considered fixed and no derivative are computed. model_input: array_like, optional A model input as a list with (x, model, model_err) to avoid an additional call to simulate(). Returns ------- J: np.array The Jacobian matrix. """ if model_input: x, model, model_err = model_input else: x, model, model_err = self.simulate(*params) if self.W.dtype == np.object and self.W[0].ndim == 2: J = [[] for _ in range(params.size)] else: model = model.flatten() J = np.zeros((params.size, model.size)) for ip, p in enumerate(params): if fixed_params[ip]: continue tmp_p = np.copy(params) if tmp_p[ip] + epsilon[ip] < self.bounds[ip][0] or tmp_p[ip] + epsilon[ip] > self.bounds[ip][1]: epsilon[ip] = - epsilon[ip] tmp_p[ip] += epsilon[ip] tmp_x, tmp_model, tmp_model_err = self.simulate(*tmp_p) if self.W.dtype == np.object and self.W[0].ndim == 2: for k in range(model.shape[0]): J[ip].append((tmp_model[k] - model[k]) / epsilon[ip]) else: J[ip] = (tmp_model.flatten() - model) / epsilon[ip] return np.asarray(J) def hessian(self, params, epsilon, fixed_params=None): # pragma: nocover """Experimental function to compute the hessian of a model. Parameters ---------- params: array_like The array of model parameters. epsilon: array_like The array of small steps to compute the partial derivatives of the model. fixed_params: array_like List of boolean values. If True, the parameter is considered fixed and no derivative are computed. Returns ------- """ x, model, model_err = self.simulate(*params) model = model.flatten() J = self.jacobian(params, epsilon, fixed_params=fixed_params) H = np.zeros((params.size, params.size, model.size)) tmp_p = np.copy(params) for ip, p1 in enumerate(params): print(ip, p1, params[ip], tmp_p[ip], self.bounds[ip], epsilon[ip], tmp_p[ip] + epsilon[ip]) if fixed_params[ip]: continue if tmp_p[ip] + epsilon[ip] < self.bounds[ip][0] or tmp_p[ip] + epsilon[ip] > self.bounds[ip][1]: epsilon[ip] = - epsilon[ip] tmp_p[ip] += epsilon[ip] print(tmp_p) # tmp_x, tmp_model, tmp_model_err = self.simulate(*tmp_p) # J[ip] = (tmp_model.flatten() - model) / epsilon[ip] tmp_J = self.jacobian(tmp_p, epsilon, fixed_params=fixed_params) for ip, p1 in enumerate(params): if fixed_params[ip]: continue for jp, p2 in enumerate(params): if fixed_params[jp]: continue x, modelplus, model_err = self.simulate(params + epsilon) x, modelmoins, model_err = self.simulate(params - epsilon) model = model.flatten() print("hh", ip, jp, tmp_J[ip], J[jp], tmp_p[ip], params, (tmp_J[ip] - J[jp]) / epsilon) print((modelplus + modelmoins - 2 * model) / (np.asarray(epsilon) ** 2)) H[ip, jp] = (tmp_J[ip] - J[jp]) / epsilon H[ip, jp] = (modelplus + modelmoins - 2 * model) / (np.asarray(epsilon) ** 2) return H def lnprob(p): # pragma: no cover global fit_workspace lp = fit_workspace.lnprior(p) if not np.isfinite(lp): return -1e20 return lp + fit_workspace.lnlike(p) def gradient_descent(fit_workspace, params, epsilon, niter=10, fixed_params=None, xtol=1e-3, ftol=1e-3, with_line_search=True): """ Four cases are implemented: diagonal W, 2D W, array of diagonal Ws, array of 2D Ws. The two latter cases are for multiple independent data vectors with W being block diagonal. Parameters ---------- fit_workspace: FitWorkspace params epsilon niter fixed_params xtol ftol with_line_search Returns ------- """ my_logger = set_logger(__name__) tmp_params = np.copy(params) fit_workspace.prepare_weight_matrices() W = fit_workspace.W ipar = np.arange(params.size) if fixed_params is not None: ipar = np.array(np.where(np.array(fixed_params).astype(int) == 0)[0]) costs = [] params_table = [] inv_JT_W_J = np.zeros((len(ipar), len(ipar))) for i in range(niter): start = time.time() cost, tmp_lambdas, tmp_model, tmp_model_err = fit_workspace.chisq(tmp_params, model_output=True) if isinstance(fit_workspace.W, np.ndarray) and fit_workspace.W.dtype != np.object: residuals = (tmp_model - fit_workspace.data).flatten() elif isinstance(fit_workspace.W, np.ndarray) and fit_workspace.W.dtype == np.object: residuals = [(tmp_model[k] - fit_workspace.data[k]) for k in range(len(fit_workspace.W))] else: raise TypeError(f"Type of fit_workspace.W is {type(fit_workspace.W)}. It must be a np.ndarray.") # Jacobian J = fit_workspace.jacobian(tmp_params, epsilon, fixed_params=fixed_params, model_input=[tmp_lambdas, tmp_model, tmp_model_err]) # remove parameters with unexpected null Jacobian vectors for ip in range(J.shape[0]): if ip not in ipar: continue if np.all(np.array(J[ip]).flatten() == np.zeros(np.array(J[ip]).size)): ipar = np.delete(ipar, list(ipar).index(ip)) fixed_params[ip] = True # tmp_params[ip] = 0 my_logger.warning( f"\n\tStep {i}: {fit_workspace.input_labels[ip]} has a null Jacobian; parameter is fixed " f"at its last known current value ({tmp_params[ip]}).") # remove fixed parameters J = J[ipar].T # algebra if fit_workspace.W.ndim == 1 and fit_workspace.W.dtype != np.object: JT_W = J.T * W JT_W_J = JT_W @ J elif fit_workspace.W.ndim == 2 and fit_workspace.W.dtype != np.object: JT_W = J.T @ W JT_W_J = JT_W @ J else: if fit_workspace.W[0].ndim == 1: JT_W = J.T * np.concatenate(W).ravel() JT_W_J = JT_W @ J else: # warning ! here the data arrays indexed by k can have different lengths because outliers # because W inverse covariance is block diagonal and blocks can have different sizes # the philosophy is to temporarily flatten the data arrays JT_W = [np.concatenate([J[ip][k].T @ W[k] for k in range(fit_workspace.W.shape[0])]).ravel() for ip in range(len(J))] JT_W_J = np.array([[JT_W[ip2] @ np.concatenate(J[ip1][:]).ravel() for ip1 in range(len(J))] for ip2 in range(len(J))]) try: L = np.linalg.inv(np.linalg.cholesky(JT_W_J)) # cholesky is too sensible to the numerical precision inv_JT_W_J = L.T @ L except np.linalg.LinAlgError: inv_JT_W_J = np.linalg.inv(JT_W_J) if fit_workspace.W.dtype != np.object: JT_W_R0 = JT_W @ residuals else: JT_W_R0 = JT_W @ np.concatenate(residuals).ravel() dparams = - inv_JT_W_J @ JT_W_R0 if with_line_search: def line_search(alpha): tmp_params_2 = np.copy(tmp_params) tmp_params_2[ipar] = tmp_params[ipar] + alpha * dparams for ipp, pp in enumerate(tmp_params_2): if pp < fit_workspace.bounds[ipp][0]: tmp_params_2[ipp] = fit_workspace.bounds[ipp][0] if pp > fit_workspace.bounds[ipp][1]: tmp_params_2[ipp] = fit_workspace.bounds[ipp][1] return fit_workspace.chisq(tmp_params_2) # tol parameter acts on alpha (not func) alpha_min, fval, iter, funcalls = optimize.brent(line_search, full_output=True, tol=5e-1, brack=(0, 1)) else: alpha_min = 1 fval = np.copy(cost) funcalls = 0 iter = 0 tmp_params[ipar] += alpha_min * dparams # check bounds for ip, p in enumerate(tmp_params): if p < fit_workspace.bounds[ip][0]: tmp_params[ip] = fit_workspace.bounds[ip][0] if p > fit_workspace.bounds[ip][1]: tmp_params[ip] = fit_workspace.bounds[ip][1] # prepare outputs costs.append(fval) params_table.append(np.copy(tmp_params)) fit_workspace.p = tmp_params if fit_workspace.verbose: my_logger.info(f"\n\tIteration={i}: initial cost={cost:.5g} initial chisq_red={cost / (tmp_model.size - len(fit_workspace.mask)):.5g}" f"\n\t\t Line search: alpha_min={alpha_min:.3g} iter={iter} funcalls={funcalls}" f"\n\tParameter shifts: {alpha_min * dparams}" f"\n\tNew parameters: {tmp_params[ipar]}" f"\n\tFinal cost={fval:.5g} final chisq_red={fval / (tmp_model.size - len(fit_workspace.mask)):.5g} " f"computed in {time.time() - start:.2f}s") if fit_workspace.live_fit: # pragma: no cover fit_workspace.simulate(*tmp_params) fit_workspace.plot_fit() fit_workspace.cov = inv_JT_W_J # fit_workspace.plot_correlation_matrix(ipar) if len(ipar) == 0: my_logger.warning(f"\n\tGradient descent terminated in {i} iterations because all parameters " f"have null Jacobian.") break if np.sum(np.abs(alpha_min * dparams)) / np.sum(np.abs(tmp_params[ipar])) < xtol: my_logger.info(f"\n\tGradient descent terminated in {i} iterations because the sum of parameter shift " f"relative to the sum of the parameters is below xtol={xtol}.") break if len(costs) > 1 and np.abs(costs[-2] - fval) / np.max([np.abs(fval), np.abs(costs[-2])]) < ftol: my_logger.info(f"\n\tGradient descent terminated in {i} iterations because the " f"relative change of cost is below ftol={ftol}.") break plt.close() return tmp_params, inv_JT_W_J, np.array(costs), np.array(params_table) def simple_newton_minimisation(fit_workspace, params, epsilon, niter=10, fixed_params=None, xtol=1e-3, ftol=1e-3): # pragma: no cover """Experimental function to minimize a function. Parameters ---------- fit_workspace: FitWorkspace params epsilon niter fixed_params xtol ftol Returns ------- """ my_logger = set_logger(__name__) tmp_params = np.copy(params) ipar = np.arange(params.size) if fixed_params is not None: ipar = np.array(np.where(np.array(fixed_params).astype(int) == 0)[0]) funcs = [] params_table = [] inv_H = np.zeros((len(ipar), len(ipar))) for i in range(niter): start = time.time() tmp_lambdas, tmp_model, tmp_model_err = fit_workspace.simulate(*tmp_params) # if fit_workspace.live_fit: # fit_workspace.plot_fit() J = fit_workspace.jacobian(tmp_params, epsilon, fixed_params=fixed_params) # remove parameters with unexpected null Jacobian vectors for ip in range(J.shape[0]): if ip not in ipar: continue if np.all(J[ip] == np.zeros(J.shape[1])): ipar = np.delete(ipar, list(ipar).index(ip)) # tmp_params[ip] = 0 my_logger.warning( f"\n\tStep {i}: {fit_workspace.input_labels[ip]} has a null Jacobian; parameter is fixed " f"at its last known current value ({tmp_params[ip]}).") # remove fixed parameters J = J[ipar].T # hessian H = fit_workspace.hessian(tmp_params, epsilon, fixed_params=fixed_params) try: L = np.linalg.inv(np.linalg.cholesky(H)) # cholesky is too sensible to the numerical precision inv_H = L.T @ L except np.linalg.LinAlgError: inv_H = np.linalg.inv(H) dparams = - inv_H[:, :, 0] @ J[:, 0] print("dparams", dparams, inv_H, J, H) tmp_params[ipar] += dparams # check bounds print("tmp_params", tmp_params, dparams, inv_H, J) for ip, p in enumerate(tmp_params): if p < fit_workspace.bounds[ip][0]: tmp_params[ip] = fit_workspace.bounds[ip][0] if p > fit_workspace.bounds[ip][1]: tmp_params[ip] = fit_workspace.bounds[ip][1] tmp_lambdas, new_model, tmp_model_err = fit_workspace.simulate(*tmp_params) new_func = new_model[0] funcs.append(new_func) r = np.log10(fit_workspace.regs) js = [fit_workspace.jacobian(np.asarray([rr]), epsilon, fixed_params=fixed_params)[0] for rr in np.array(r)] plt.plot(r, js, label="J") plt.grid() plt.legend() plt.show() if parameters.DISPLAY: fig = plt.figure() plt.plot(r, js, label="prior") mod = tmp_model + J[0] * (r - (tmp_params - dparams)[0]) plt.plot(r, mod) plt.axvline(tmp_params) plt.axhline(tmp_model) plt.grid() plt.legend() plt.draw() plt.pause(1e-8) plt.close(fig) # prepare outputs params_table.append(np.copy(tmp_params)) if fit_workspace.verbose: my_logger.info(f"\n\tIteration={i}: initial func={tmp_model[0]:.5g}" f"\n\tParameter shifts: {dparams}" f"\n\tNew parameters: {tmp_params[ipar]}" f"\n\tFinal func={new_func:.5g}" f" computed in {time.time() - start:.2f}s") if fit_workspace.live_fit: fit_workspace.simulate(*tmp_params) fit_workspace.plot_fit() fit_workspace.cov = inv_H[:, :, 0] print("shape", fit_workspace.cov.shape) # fit_workspace.plot_correlation_matrix(ipar) if len(ipar) == 0: my_logger.warning(f"\n\tGradient descent terminated in {i} iterations because all parameters " f"have null Jacobian.") break if np.sum(np.abs(dparams)) / np.sum(np.abs(tmp_params[ipar])) < xtol: my_logger.info(f"\n\tGradient descent terminated in {i} iterations because the sum of parameter shift " f"relative to the sum of the parameters is below xtol={xtol}.") break if len(funcs) > 1 and np.abs(funcs[-2] - new_func) / np.max([np.abs(new_func), np.abs(funcs[-2])]) < ftol: my_logger.info(f"\n\tGradient descent terminated in {i} iterations because the " f"relative change of cost is below ftol={ftol}.") break plt.close() return tmp_params, inv_H[:, :, 0], np.array(funcs), np.array(params_table) def print_parameter_summary(params, cov, labels): """Print the best fitting parameters on screen. Parameters ---------- params: array_like The best fitting parameter values. cov: array_like The associated covariance matrix. labels: array_like The list of associated parameter labels. """ my_logger = set_logger(__name__) txt = "" for ip in np.arange(0, cov.shape[0]).astype(int): txt += "%s: %s +%s -%s\n\t" % formatting_numbers(params[ip], np.sqrt(cov[ip, ip]), np.sqrt(cov[ip, ip]), label=labels[ip]) my_logger.info(f"\n\t{txt}") def plot_gradient_descent(fit_workspace, costs, params_table): fig, ax = plt.subplots(2, 1, figsize=(10, 6), sharex="all") iterations = np.arange(params_table.shape[0]) ax[0].plot(iterations, costs, lw=2) for ip in range(params_table.shape[1]): ax[1].plot(iterations, params_table[:, ip], label=f"{fit_workspace.axis_names[ip]}") ax[1].set_yscale("symlog") ax[1].legend(ncol=6, loc=9) ax[1].grid() ax[0].set_yscale("log") ax[0].set_ylabel(r"$\chi^2$") ax[1].set_ylabel("Parameters") ax[0].grid() ax[1].set_xlabel("Iterations") ax[0].xaxis.set_major_locator(MaxNLocator(integer=True)) fig.tight_layout() plt.subplots_adjust(wspace=0, hspace=0) if parameters.SAVE and fit_workspace.filename != "": # pragma: no cover figname = os.path.splitext(fit_workspace.filename)[0] + "_fitting.pdf" fit_workspace.my_logger.info(f"\n\tSave figure {figname}.") fig.savefig(figname, dpi=100, bbox_inches='tight') if parameters.DISPLAY: # pragma: no cover plt.show() fit_workspace.simulate(*fit_workspace.p) fit_workspace.live_fit = False fit_workspace.plot_fit() def save_gradient_descent(fit_workspace, costs, params_table): iterations = np.arange(params_table.shape[0]).astype(int) t = np.zeros((params_table.shape[1] + 2, params_table.shape[0])) t[0] = iterations t[1] = costs t[2:] = params_table.T h = 'iter,costs,' + ','.join(fit_workspace.input_labels) output_filename = os.path.splitext(fit_workspace.filename)[0] + "_fitting.txt" np.savetxt(output_filename, t.T, header=h, delimiter=",") fit_workspace.my_logger.info(f"\n\tSave gradient descent log {output_filename}.") def run_gradient_descent(fit_workspace, guess, epsilon, params_table, costs, fix, xtol, ftol, niter, verbose=False, with_line_search=True): fit_workspace.p, fit_workspace.cov, tmp_costs, tmp_params_table = gradient_descent(fit_workspace, guess, epsilon, niter=niter, fixed_params=fix, xtol=xtol, ftol=ftol, with_line_search=with_line_search) params_table = np.concatenate([params_table, tmp_params_table]) costs = np.concatenate([costs, tmp_costs]) ipar = np.array(np.where(np.array(fix).astype(int) == 0)[0]) if verbose or fit_workspace.verbose: print_parameter_summary(fit_workspace.p[ipar], fit_workspace.cov, [fit_workspace.input_labels[ip] for ip in ipar]) if parameters.DEBUG and (verbose or fit_workspace.verbose): # plot_psf_poly_params(fit_workspace.p[fit_workspace.psf_params_start_index:]) # fit_workspace.plot_fit() plot_gradient_descent(fit_workspace, costs, params_table) if len(ipar) > 1: fit_workspace.plot_correlation_matrix(ipar=ipar) return params_table, costs def run_simple_newton_minimisation(fit_workspace, guess, epsilon, fix=None, xtol=1e-8, ftol=1e-8, niter=50, verbose=False): # pragma: no cover if fix is None: fix = [False] * guess.size fit_workspace.p, fit_workspace.cov, funcs, params_table = simple_newton_minimisation(fit_workspace, guess, epsilon, niter=niter, fixed_params=fix, xtol=xtol, ftol=ftol) ipar = np.array(np.where(np.array(fix).astype(int) == 0)[0]) if verbose or fit_workspace.verbose: print_parameter_summary(fit_workspace.p[ipar], fit_workspace.cov, [fit_workspace.input_labels[ip] for ip in ipar]) if parameters.DEBUG and (verbose or fit_workspace.verbose): # plot_psf_poly_params(fit_workspace.p[fit_workspace.psf_params_start_index:]) # fit_workspace.plot_fit() plot_gradient_descent(fit_workspace, funcs, params_table) if len(ipar) > 1: fit_workspace.plot_correlation_matrix(ipar=ipar) return params_table, funcs def run_minimisation(fit_workspace, method="newton", epsilon=None, fix=None, xtol=1e-4, ftol=1e-4, niter=50, verbose=False, with_line_search=True, minimizer_method="L-BFGS-B"): my_logger = set_logger(__name__) bounds = fit_workspace.bounds nll = lambda params: -fit_workspace.lnlike(params) guess = fit_workspace.p.astype('float64') if verbose: my_logger.debug(f"\n\tStart guess: {guess}") if method == "minimize": start = time.time() result = optimize.minimize(nll, fit_workspace.p, method=minimizer_method, options={'ftol': ftol, 'maxiter': 100000}, bounds=bounds) fit_workspace.p = result['x'] if verbose: my_logger.debug(f"\n\t{result}") my_logger.debug(f"\n\tMinimize: total computation time: {time.time() - start}s") fit_workspace.plot_fit() elif method == 'basinhopping': start = time.time() minimizer_kwargs = dict(method=minimizer_method, bounds=bounds) result = optimize.basinhopping(nll, guess, minimizer_kwargs=minimizer_kwargs) fit_workspace.p = result['x'] if verbose: my_logger.debug(f"\n\t{result}") my_logger.debug(f"\n\tBasin-hopping: total computation time: {time.time() - start}s") fit_workspace.plot_fit() elif method == "least_squares": # pragma: no cover fit_workspace.my_logger.warning("least_squares might not work, use with caution... " "or repair carefully the function weighted_residuals()") start = time.time() x_scale = np.abs(guess) x_scale[x_scale == 0] = 0.1 p = optimize.least_squares(fit_workspace.weighted_residuals, guess, verbose=2, ftol=1e-6, x_scale=x_scale, diff_step=0.001, bounds=bounds.T) fit_workspace.p = p.x # m.np_values() if verbose: my_logger.debug(f"\n\t{p}") my_logger.debug(f"\n\tLeast_squares: total computation time: {time.time() - start}s") fit_workspace.plot_fit() elif method == "minuit": start = time.time() # fit_workspace.simulation.fix_psf_cube = False error = 0.1 * np.abs(guess) * np.ones_like(guess) error[2:5] = 0.3 * np.abs(guess[2:5]) * np.ones_like(guess[2:5]) z = np.where(np.isclose(error, 0.0, 1e-6)) error[z] = 1. if fix is None: fix = [False] * guess.size # noinspection PyArgumentList # m = Minuit(fcn=nll, values=guess, error=error, errordef=1, fix=fix, print_level=verbose, limit=bounds) m = Minuit(nll, np.copy(guess)) m.errors = error m.errordef = 1 m.fixed = fix m.print_level = verbose m.limits = bounds m.tol = 10 m.migrad() fit_workspace.p = np.array(m.values[:]) if verbose: my_logger.debug(f"\n\t{m}") my_logger.debug(f"\n\tMinuit: total computation time: {time.time() - start}s") fit_workspace.plot_fit() elif method == "newton": if fit_workspace.costs.size == 0: costs = np.array([fit_workspace.chisq(guess)]) params_table = np.array([guess]) else: costs = np.concatenate([fit_workspace.costs, np.array([fit_workspace.chisq(guess)])]) params_table = np.concatenate([fit_workspace.params_table, np.array([guess])]) if epsilon is None: epsilon = 1e-4 * guess epsilon[epsilon == 0] = 1e-4 if fix is None: fix = [False] * guess.size start = time.time() params_table, costs = run_gradient_descent(fit_workspace, guess, epsilon, params_table, costs, fix=fix, xtol=xtol, ftol=ftol, niter=niter, verbose=verbose, with_line_search=with_line_search) fit_workspace.costs = costs fit_workspace.params_table = params_table if verbose: my_logger.debug(f"\n\tNewton: total computation time: {time.time() - start}s") if fit_workspace.filename != "": ipar = np.array(np.where(np.array(fit_workspace.fixed).astype(int) == 0)[0]) fit_workspace.save_parameters_summary(ipar) save_gradient_descent(fit_workspace, costs, params_table) def run_minimisation_sigma_clipping(fit_workspace, method="newton", epsilon=None, fix=None, xtol=1e-4, ftol=1e-4, niter=50, sigma_clip=5.0, niter_clip=3, verbose=False): my_logger = set_logger(__name__) fit_workspace.sigma_clip = sigma_clip for step in range(niter_clip): if verbose: my_logger.info(f"\n\tSigma-clipping step {step}/{niter_clip} (sigma={sigma_clip})") run_minimisation(fit_workspace, method=method, epsilon=epsilon, fix=fix, xtol=xtol, ftol=ftol, niter=niter) # remove outliers if fit_workspace.data.dtype == np.object: # indices_no_nan = ~np.isnan(np.concatenate(fit_workspace.data).ravel()) data = np.concatenate(fit_workspace.data).ravel() # [indices_no_nan] model = np.concatenate(fit_workspace.model).ravel() # [indices_no_nan] err = np.concatenate(fit_workspace.err).ravel() # [indices_no_nan] else: # indices_no_nan = ~np.isnan(fit_workspace.data.flatten()) data = fit_workspace.data.flatten() # [indices_no_nan] model = fit_workspace.model.flatten() # [indices_no_nan] err = fit_workspace.err.flatten() # [indices_no_nan] residuals = np.abs(data - model) / err outliers = residuals > sigma_clip outliers = [i for i in range(data.size) if outliers[i]] outliers.sort() if len(outliers) > 0: my_logger.debug(f'\n\tOutliers flat index list: {outliers}') my_logger.info(f'\n\tOutliers: {len(outliers)} / {data.size} data points ' f'({100 * len(outliers) / data.size:.2f}%) ' f'at more than {sigma_clip}-sigma from best-fit model.') if np.all(fit_workspace.outliers == outliers): my_logger.info(f'\n\tOutliers flat index list unchanged since last iteration: ' f'break the sigma clipping iterations.') break else: fit_workspace.outliers = outliers else: my_logger.info(f'\n\tNo outliers detected at first iteration: break the sigma clipping iterations.') break def run_emcee(fit_workspace, ln=lnprob): my_logger = set_logger(__name__) fit_workspace.print_settings() nsamples = fit_workspace.nsteps p0 = fit_workspace.set_start() filename = fit_workspace.emcee_filename backend = emcee.backends.HDFBackend(filename) try: # pragma: no cover pool = MPIPool() if not pool.is_master(): pool.wait() sys.exit(0) sampler = emcee.EnsembleSampler(fit_workspace.nwalkers, fit_workspace.ndim, ln, args=(), pool=pool, backend=backend) my_logger.info(f"\n\tInitial size: {backend.iteration}") if backend.iteration > 0: p0 = backend.get_last_sample() if nsamples - backend.iteration > 0: sampler.run_mcmc(p0, nsteps=max(0, nsamples - backend.iteration), progress=True) pool.close() except ValueError: sampler = emcee.EnsembleSampler(fit_workspace.nwalkers, fit_workspace.ndim, ln, args=(), threads=multiprocessing.cpu_count(), backend=backend) my_logger.info(f"\n\tInitial size: {backend.iteration}") if backend.iteration > 0: p0 = sampler.get_last_sample() for _ in sampler.sample(p0, iterations=max(0, nsamples - backend.iteration), progress=True, store=True): continue fit_workspace.chains = sampler.chain fit_workspace.lnprobs = sampler.lnprobability class RegFitWorkspace(FitWorkspace): def __init__(self, w, opt_reg=parameters.PSF_FIT_REG_PARAM, verbose=0, live_fit=False): """ Parameters ---------- w: ChromaticPSFFitWorkspace """ FitWorkspace.__init__(self, verbose=verbose, live_fit=live_fit) self.x = np.array([0]) self.data = np.array([0]) self.err = np.array([1]) self.w = w self.p = np.asarray([np.log10(opt_reg)]) self.bounds = [(-20, np.log10(self.w.amplitude_priors.size) + 2)] self.input_labels = ["log10_reg"] self.axis_names = [r"$\log_{10} r$"] self.fixed = [False] * self.p.size self.opt_reg = opt_reg self.resolution = np.zeros_like((self.w.amplitude_params.size, self.w.amplitude_params.size)) self.G = 0 self.chisquare = -1 def print_regularisation_summary(self): self.my_logger.info(f"\n\tOptimal regularisation parameter: {self.opt_reg}" f"\n\tTr(R) = {np.trace(self.resolution)}" f"\n\tN_params = {len(self.w.amplitude_params)}" f"\n\tN_data = {self.w.data.size - len(self.w.mask) - len(self.w.outliers)}" f" (without mask and outliers)") def simulate(self, log10_r): reg = 10 ** log10_r M_dot_W_dot_M_plus_Q = self.w.M_dot_W_dot_M + reg * self.w.Q try: L = np.linalg.inv(np.linalg.cholesky(M_dot_W_dot_M_plus_Q)) cov = L.T @ L except np.linalg.LinAlgError: cov = np.linalg.inv(M_dot_W_dot_M_plus_Q) if self.w.W.ndim == 1: A = cov @ (self.w.M.T @ (self.w.W * self.w.data) + reg * self.w.Q_dot_A0) else: A = cov @ (self.w.M.T @ (self.w.W @ self.w.data) + reg * self.w.Q_dot_A0) if A.ndim == 2: # ndim == 2 when A comes from a sparse matrix computation A = np.asarray(A).reshape(-1) self.resolution = np.eye(A.size) - reg * cov @ self.w.Q diff = self.w.data - self.w.M @ A if self.w.W.ndim == 1: self.chisquare = diff @ (self.w.W * diff) else: self.chisquare = diff @ self.w.W @ diff self.w.amplitude_params = A self.w.amplitude_cov_matrix = cov self.w.amplitude_params_err = np.array([np.sqrt(cov[x, x]) for x in range(cov.shape[0])]) self.G = self.chisquare / ((self.w.data.size - len(self.w.mask) - len(self.w.outliers)) - np.trace(self.resolution)) ** 2 return np.asarray([log10_r]), np.asarray([self.G]), np.zeros_like(self.data) def plot_fit(self): log10_opt_reg = self.p[0] opt_reg = 10 ** log10_opt_reg regs = 10 ** np.linspace(min(-10, 0.9 * log10_opt_reg), max(3, 1.2 * log10_opt_reg), 50) Gs = [] chisqs = [] resolutions = [] x = np.arange(len(self.w.amplitude_priors)) for r in regs: self.simulate(np.log10(r)) if parameters.DISPLAY and False: # pragma: no cover fig = plt.figure() plt.errorbar(x, self.w.amplitude_params, yerr=[np.sqrt(self.w.amplitude_cov_matrix[i, i]) for i in x], label=f"fit r={r:.2g}") plt.plot(x, self.w.amplitude_priors, label="prior") plt.grid() plt.legend() plt.draw() plt.pause(1e-8) plt.close(fig) Gs.append(self.G) chisqs.append(self.chisquare) resolutions.append(np.trace(self.resolution)) fig, ax = plt.subplots(3, 1, figsize=(7, 5), sharex="all") ax[0].plot(regs, Gs) ax[0].axvline(opt_reg, color="k") ax[1].axvline(opt_reg, color="k") ax[2].axvline(opt_reg, color="k") ax[0].set_ylabel(r"$G(r)$") ax[0].set_xlabel("Regularisation hyper-parameter $r$") ax[0].grid() ax[0].set_title(f"Optimal regularisation parameter: {opt_reg:.3g}") ax[1].plot(regs, chisqs) ax[1].set_ylabel(r"$\chi^2(\mathbf{A}(r) \vert \mathbf{\theta})$") ax[1].set_xlabel("Regularisation hyper-parameter $r$") ax[1].grid() ax[1].set_xscale("log") ax[2].set_xscale("log") ax[2].plot(regs, resolutions) ax[2].set_ylabel(r"$\mathrm{Tr}\,\mathbf{R}$") ax[2].set_xlabel("Regularisation hyper-parameter $r$") ax[2].grid() fig.tight_layout() plt.subplots_adjust(hspace=0) if parameters.DISPLAY: plt.show() if parameters.LSST_SAVEFIGPATH: fig.savefig(os.path.join(parameters.LSST_SAVEFIGPATH, 'regularisation.pdf')) fig = plt.figure(figsize=(7, 5)) rho = compute_correlation_matrix(self.w.amplitude_cov_matrix) plot_correlation_matrix_simple(plt.gca(), rho, axis_names=[''] * len(self.w.amplitude_params)) # ipar=np.arange(10, 20)) plt.gca().set_title(r"Correlation matrix $\mathbf{\rho}$") if parameters.LSST_SAVEFIGPATH: fig.savefig(os.path.join(parameters.LSST_SAVEFIGPATH, 'amplitude_correlation_matrix.pdf')) if parameters.DISPLAY: plt.show() def run_regularisation(self): run_minimisation(self, method="minimize", ftol=1e-4, xtol=1e-2, verbose=self.verbose, epsilon=[1e-1], minimizer_method="Nelder-Mead") self.opt_reg = 10 ** self.p[0] self.simulate(np.log10(self.opt_reg)) self.print_regularisation_summary() if __name__ == "__main__": import doctest doctest.testmod()
43.14751
181
0.556187
2dd52a741d4c910b5b7360bc99589f35d51f8da3
298
py
Python
tests/kivy_garden/qrcode/test_qrcode.py
AndiEcker/qrcode
79673e9cb57cbc44d9c6a9e7970cb51b80f6df6b
[ "MIT" ]
7
2019-10-25T00:46:16.000Z
2022-03-19T20:47:14.000Z
tests/kivy_garden/qrcode/test_qrcode.py
AndiEcker/qrcode
79673e9cb57cbc44d9c6a9e7970cb51b80f6df6b
[ "MIT" ]
16
2019-10-26T13:30:40.000Z
2021-03-14T11:32:57.000Z
tests/kivy_garden/qrcode/test_qrcode.py
AndiEcker/qrcode
79673e9cb57cbc44d9c6a9e7970cb51b80f6df6b
[ "MIT" ]
4
2019-10-25T00:48:09.000Z
2022-01-27T16:49:24.000Z
from kivy_garden.qrcode import QRCodeWidget class TestQRCodeWidget: def test_init(self): """ Simply initialises the widget and checks a property. """ qrcode_widget = QRCodeWidget() assert qrcode_widget.loading_image == 'data/images/image-loading.gif'
24.833333
77
0.677852
fb1ef459ec8a83cdd8057f7844344e12a67e47b3
6,441
py
Python
tests/alerters/telegram_test.py
konstantin-kornienko/elastalert2
3e34751bf53b49cc12b923e5e6d3438fe5753611
[ "Apache-2.0" ]
null
null
null
tests/alerters/telegram_test.py
konstantin-kornienko/elastalert2
3e34751bf53b49cc12b923e5e6d3438fe5753611
[ "Apache-2.0" ]
null
null
null
tests/alerters/telegram_test.py
konstantin-kornienko/elastalert2
3e34751bf53b49cc12b923e5e6d3438fe5753611
[ "Apache-2.0" ]
null
null
null
import json import logging import pytest from unittest import mock from requests import RequestException from requests.auth import HTTPProxyAuth from elastalert.alerters.telegram import TelegramAlerter from elastalert.loaders import FileRulesLoader from elastalert.util import EAException def test_telegram(caplog): caplog.set_level(logging.INFO) rule = { 'name': 'Test Telegram Rule', 'type': 'any', 'telegram_bot_token': 'xxxxx1', 'telegram_room_id': 'xxxxx2', 'alert': [] } rules_loader = FileRulesLoader({}) rules_loader.load_modules(rule) alert = TelegramAlerter(rule) match = { '@timestamp': '2021-01-01T00:00:00', 'somefield': 'foobarbaz' } with mock.patch('requests.post') as mock_post_request: alert.alert([match]) expected_data = { 'chat_id': rule['telegram_room_id'], 'text': '⚠ *Test Telegram Rule* ⚠ ```\nTest Telegram Rule\n\n@timestamp: 2021-01-01T00:00:00\nsomefield: foobarbaz\n ```', 'parse_mode': 'markdown', 'disable_web_page_preview': True } mock_post_request.assert_called_once_with( 'https://api.telegram.org/botxxxxx1/sendMessage', data=mock.ANY, headers={'content-type': 'application/json'}, proxies=None, auth=None ) actual_data = json.loads(mock_post_request.call_args_list[0][1]['data']) assert expected_data == actual_data assert ('elastalert', logging.INFO, 'Alert sent to Telegram room xxxxx2') == caplog.record_tuples[0] def test_telegram_proxy(): rule = { 'name': 'Test Telegram Rule', 'type': 'any', 'telegram_bot_token': 'xxxxx1', 'telegram_room_id': 'xxxxx2', 'telegram_proxy': 'http://proxy.url', 'telegram_proxy_login': 'admin', 'telegram_proxy_pass': 'password', 'alert': [] } rules_loader = FileRulesLoader({}) rules_loader.load_modules(rule) alert = TelegramAlerter(rule) match = { '@timestamp': '2021-01-01T00:00:00', 'somefield': 'foobarbaz' } with mock.patch('requests.post') as mock_post_request: alert.alert([match]) expected_data = { 'chat_id': rule['telegram_room_id'], 'text': '⚠ *Test Telegram Rule* ⚠ ```\nTest Telegram Rule\n\n@timestamp: 2021-01-01T00:00:00\nsomefield: foobarbaz\n ```', 'parse_mode': 'markdown', 'disable_web_page_preview': True } mock_post_request.assert_called_once_with( 'https://api.telegram.org/botxxxxx1/sendMessage', data=mock.ANY, headers={'content-type': 'application/json'}, proxies={'https': 'http://proxy.url'}, auth=HTTPProxyAuth('admin', 'password') ) actual_data = json.loads(mock_post_request.call_args_list[0][1]['data']) assert expected_data == actual_data def test_telegram_text_maxlength(): rule = { 'name': 'Test Telegram Rule' + ('a' * 3985), 'type': 'any', 'telegram_bot_token': 'xxxxx1', 'telegram_room_id': 'xxxxx2', 'alert': [] } rules_loader = FileRulesLoader({}) rules_loader.load_modules(rule) alert = TelegramAlerter(rule) match = { '@timestamp': '2021-01-01T00:00:00', 'somefield': 'foobarbaz' } with mock.patch('requests.post') as mock_post_request: alert.alert([match]) expected_data = { 'chat_id': rule['telegram_room_id'], 'text': '⚠ *Test Telegram Rule' + ('a' * 3979) + '\n⚠ *message was cropped according to telegram limits!* ⚠ ```', 'parse_mode': 'markdown', 'disable_web_page_preview': True } mock_post_request.assert_called_once_with( 'https://api.telegram.org/botxxxxx1/sendMessage', data=mock.ANY, headers={'content-type': 'application/json'}, proxies=None, auth=None ) actual_data = json.loads(mock_post_request.call_args_list[0][1]['data']) assert expected_data == actual_data def test_telegram_ea_exception(): with pytest.raises(EAException) as ea: rule = { 'name': 'Test Telegram Rule', 'type': 'any', 'telegram_bot_token': 'xxxxx1', 'telegram_room_id': 'xxxxx2', 'alert': [] } rules_loader = FileRulesLoader({}) rules_loader.load_modules(rule) alert = TelegramAlerter(rule) match = { '@timestamp': '2021-01-01T00:00:00', 'somefield': 'foobarbaz' } mock_run = mock.MagicMock(side_effect=RequestException) with mock.patch('requests.post', mock_run), pytest.raises(RequestException): alert.alert([match]) assert 'Error posting to Telegram: . Details: ' in str(ea) def test_telegram_getinfo(): rule = { 'name': 'Test Telegram Rule', 'type': 'any', 'telegram_bot_token': 'xxxxx1', 'telegram_room_id': 'xxxxx2', 'alert': [] } rules_loader = FileRulesLoader({}) rules_loader.load_modules(rule) alert = TelegramAlerter(rule) expected_data = { 'type': 'telegram', 'telegram_room_id': 'xxxxx2' } actual_data = alert.get_info() assert expected_data == actual_data @pytest.mark.parametrize('telegram_bot_token, telegram_room_id, expected_data', [ ('', '', 'Missing required option(s): telegram_bot_token, telegram_room_id'), ('xxxxx1', '', 'Missing required option(s): telegram_bot_token, telegram_room_id'), ('', 'xxxxx2', 'Missing required option(s): telegram_bot_token, telegram_room_id'), ('xxxxx1', 'xxxxx2', { 'type': 'telegram', 'telegram_room_id': 'xxxxx2' }), ]) def test_telegram_required_error(telegram_bot_token, telegram_room_id, expected_data): try: rule = { 'name': 'Test Telegram Rule', 'type': 'any', 'alert': [] } if telegram_bot_token: rule['telegram_bot_token'] = telegram_bot_token if telegram_room_id: rule['telegram_room_id'] = telegram_room_id rules_loader = FileRulesLoader({}) rules_loader.load_modules(rule) alert = TelegramAlerter(rule) actual_data = alert.get_info() assert expected_data == actual_data except Exception as ea: assert expected_data in str(ea)
31.729064
130
0.613569
10ff1512834ddaca1df0d6277b249f2a8a0d5a76
559
py
Python
randomized_uncertain_social_preferences/rusp/test_env_oasis.py
bglick13/multi-agent-emergence-environments
e02d66f0734d95470d15a4508ff369a75fa093a4
[ "MIT" ]
1,317
2019-09-17T15:50:42.000Z
2022-03-30T18:24:24.000Z
randomized_uncertain_social_preferences/rusp/test_env_oasis.py
jihan1218/multi-agent-predator-prey
ebf11e601de07e80c27c87dc41837d91f53e9465
[ "MIT" ]
35
2019-09-20T11:36:20.000Z
2022-02-10T00:24:27.000Z
randomized_uncertain_social_preferences/rusp/test_env_oasis.py
jihan1218/multi-agent-predator-prey
ebf11e601de07e80c27c87dc41837d91f53e9465
[ "MIT" ]
279
2019-09-18T00:14:19.000Z
2022-03-30T09:39:12.000Z
import subprocess import unittest import os EXAMPLES_DIR = os.path.dirname(os.path.abspath(__file__)) EXAMINE_FILE_PATH = os.path.join(EXAMPLES_DIR, "../../bin/examine.py") class ExamineTest(unittest.TestCase): def test_examine_env(self): envs = [ "env_oasis.py" ] for env in envs: with self.assertRaises(subprocess.TimeoutExpired): subprocess.check_call( ["/usr/bin/env", "python", EXAMINE_FILE_PATH, os.path.join(EXAMPLES_DIR, env)], timeout=10)
29.421053
99
0.620751
883e71720b9f0c7e4186408e03c38b8755b69591
43,150
py
Python
sdscli/adapters/hysds/fabfile.py
sdskit/sdscli
9bb96e880c8251d1dce56b901c1289ed80f83ce7
[ "Apache-2.0" ]
null
null
null
sdscli/adapters/hysds/fabfile.py
sdskit/sdscli
9bb96e880c8251d1dce56b901c1289ed80f83ce7
[ "Apache-2.0" ]
24
2018-03-14T15:37:38.000Z
2021-11-30T21:59:44.000Z
sdscli/adapters/hysds/fabfile.py
sdskit/sdscli
9bb96e880c8251d1dce56b901c1289ed80f83ce7
[ "Apache-2.0" ]
13
2018-02-22T15:01:35.000Z
2019-02-07T18:58:57.000Z
""" Fabric file for HySDS. """ from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from sdscli.prompt_utils import highlight, blink from sdscli.conf_utils import get_user_config_path, get_user_files_path from sdscli.log_utils import logger from fabric.contrib.project import rsync_project from fabric.contrib.files import upload_template, exists, append from fabric.api import run, cd, put, sudo, prefix, env, settings, hide from copy import deepcopy import requests import json import yaml import re import os from builtins import open from future import standard_library standard_library.install_aliases() # ssh_opts and extra_opts for rsync and rsync_project ssh_opts = "-o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no" extra_opts = "-k" # repo regex repo_re = re.compile(r'.+//.*?/(.*?)/(.*?)(?:\.git)?$') # define private EC2 IP addresses for infrastructure hosts context = {} this_dir = os.path.dirname(os.path.abspath(__file__)) sds_cfg = get_user_config_path() if not os.path.isfile(sds_cfg): raise RuntimeError( "SDS configuration file doesn't exist. Run 'sds configure'.") with open(sds_cfg) as f: context = yaml.load(f, Loader=yaml.FullLoader) # define and build groups to reduce redundancy in defining roles # mozart hosts mozart_host = '%s' % context['MOZART_PVT_IP'] mozart_rabbit_host = '%s' % context['MOZART_RABBIT_PVT_IP'] mozart_redis_host = '%s' % context['MOZART_REDIS_PVT_IP'] mozart_es_host = '%s' % context['MOZART_ES_PVT_IP'] # metrics host metrics_host = '%s' % context['METRICS_PVT_IP'] metrics_redis_host = '%s' % context['METRICS_REDIS_PVT_IP'] metrics_es_host = '%s' % context['METRICS_ES_PVT_IP'] # grq host grq_host = '%s' % context['GRQ_PVT_IP'] grq_es_host = '%s' % context['GRQ_ES_PVT_IP'] # factotum host factotum_host = '%s' % context['FACTOTUM_PVT_IP'] # continuous integration host ci_host = '%s' % context['CI_PVT_IP'] # all verdi hosts verdi_hosts = [ '%s' % context['VERDI_PVT_IP'], ] if context.get('OTHER_VERDI_HOSTS', None) is not None: verdi_hosts.extend([i['VERDI_PVT_IP'] for i in context['OTHER_VERDI_HOSTS'] if i['VERDI_PVT_IP'] is not None]) # define roles env.roledefs = { 'mozart': [mozart_host], 'mozart-rabbit': [mozart_rabbit_host], 'mozart-redis': [mozart_redis_host], 'mozart-es': [mozart_es_host], 'metrics': [metrics_host], 'metrics-redis': [metrics_redis_host], 'metrics-es': [metrics_es_host], 'grq': [grq_host], 'grq-es': [grq_es_host], 'factotum': [factotum_host], 'ci': [ci_host], 'verdi': verdi_hosts, } # define key file env.key_filename = context['KEY_FILENAME'] if not os.path.isfile(env.key_filename): raise RuntimeError("SSH key filename %s doesn't exist. " % env.key_filename + "Run 'ssh-keygen -t rsa' or copy existing key.") # abort on prompts (password, hosts, etc.) env.abort_on_prompts = True # do all tasks in parallel env.parallel = True # set connection timeout env.timeout = 60 # define ops home directory ops_dir = context['OPS_HOME'] ########################## # general functions ########################## def get_context(node_type=None): """Modify context based on host string.""" ctx = deepcopy(context) if node_type == 'mozart': if ctx['MOZART_PVT_IP'] == ctx['MOZART_RABBIT_PVT_IP']: ctx['MOZART_RABBIT_PVT_IP'] = "127.0.0.1" if ctx['MOZART_PVT_IP'] == ctx['MOZART_REDIS_PVT_IP']: ctx['MOZART_REDIS_PVT_IP'] = "127.0.0.1" if ctx['MOZART_PVT_IP'] == ctx['MOZART_ES_PVT_IP']: ctx['MOZART_ES_PVT_IP'] = "127.0.0.1" if node_type == 'metrics': if ctx['METRICS_PVT_IP'] == ctx['METRICS_REDIS_PVT_IP']: ctx['METRICS_REDIS_PVT_IP'] = "127.0.0.1" if ctx['METRICS_PVT_IP'] == ctx['METRICS_ES_PVT_IP']: ctx['METRICS_ES_PVT_IP'] = "127.0.0.1" if node_type == 'grq': if ctx['GRQ_PVT_IP'] == ctx['GRQ_ES_PVT_IP']: ctx['GRQ_ES_PVT_IP'] = "127.0.0.1" # set redis passwords if ctx['MOZART_REDIS_PASSWORD'] is None: ctx['MOZART_REDIS_PASSWORD'] = '' if ctx['METRICS_REDIS_PASSWORD'] is None: ctx['METRICS_REDIS_PASSWORD'] = '' # set hostname ctx['HOST_STRING'] = env.host_string # split LDAP groups ctx['LDAP_GROUPS'] = [i.strip() for i in ctx['LDAP_GROUPS'].split(',')] return ctx def resolve_files_dir(fname, files_dir): """Resolve file or template from user SDS files or default location.""" user_path = get_user_files_path() return user_path if os.path.exists(os.path.join(user_path, fname)) else files_dir def resolve_role(): """Resolve role and hysds directory.""" for role in env.effective_roles: if env.host_string in env.roledefs[role]: if '@' in env.host_string: hostname = env.host_string.split('@')[1] else: hostname = env.host_string break if role in ('factotum', 'ci'): hysds_dir = "verdi" elif role == 'grq': hysds_dir = "sciflo" else: hysds_dir = role return role, hysds_dir, hostname def host_type(): run('uname -s') def fqdn(): run('hostname --fqdn') def get_ram_size_bytes(): return run("free -b | grep ^Mem: | awk '{print $2}'") def yum_update(): sudo('yum -y -q update') def yum_install(package): sudo('yum -y install %s' % package) def yum_remove(package): sudo('yum -y remove %s' % package) def ps_x(): run('ps x') def df_hv(): run('df -hv') def echo(s): run('echo "%s"' % s) def mpstat(): sudo('mpstat -P ALL 5 1') def copy(src, dest): put(src, dest) def ln_sf(src, dest): if exists(dest): run('rm -rf %s' % dest) with cd(os.path.dirname(dest)): run('ln -sf %s %s' % (src, os.path.basename(dest))) def cp_rp(src, dest): run('cp -rp %s %s' % (src, dest)) def cp_rp_exists(src, dest): if exists(src): run('cp -rp %s %s' % (src, dest)) def rm_rf(path): run('rm -rf %s' % path) def sudo_rm_rf(path): run('sudo rm -rf %s' % path) def send_template(tmpl, dest, tmpl_dir=None, node_type=None): if tmpl_dir is None: tmpl_dir = get_user_files_path() else: tmpl_dir = os.path.expanduser(tmpl_dir) upload_template(tmpl, dest, use_jinja=True, context=get_context(node_type), template_dir=tmpl_dir) def send_template_user_override(tmpl, dest, tmpl_dir=None, node_type=None): """ Write filled-out template to destination using the template found in a specified template directory. If template exists in the user files (i.e. ~/.sds/files), that template will be used. :param tmpl: template file name :param dest: output file name :param tmpl_dir: nominal directory containing the template :param node_type: node type/role :return: None """ if tmpl_dir is None: tmpl_dir = get_user_files_path() else: tmpl_dir = os.path.expanduser(tmpl_dir) upload_template(tmpl, dest, use_jinja=True, context=get_context(node_type), template_dir=resolve_files_dir(tmpl, tmpl_dir)) def set_spyddder_settings(): upload_template('settings.json.tmpl', '~/verdi/ops/spyddder-man/settings.json', use_jinja=True, context=get_context(), template_dir=os.path.join(ops_dir, 'mozart/ops/spyddder-man')) def rsync_code(node_type, dir_path=None): if dir_path is None: dir_path = node_type rm_rf('%s/ops/osaka' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/osaka'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/hysds_commons' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/hysds_commons'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/hysds' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/hysds'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/prov_es' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/prov_es'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/sciflo' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/sciflo'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/chimera' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/chimera'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/container-builder' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/container-builder'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/lightweight-jobs' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/lightweight-jobs'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/hysds-dockerfiles' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/hysds-dockerfiles'), extra_opts=extra_opts, ssh_opts=ssh_opts) if node_type == 'mozart': rm_rf('%s/ops/mozart' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/mozart'), extra_opts=extra_opts, ssh_opts=ssh_opts) if node_type == 'verdi': rm_rf('%s/ops/spyddder-man' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/spyddder-man'), extra_opts=extra_opts, ssh_opts=ssh_opts) if node_type == 'factotum': rm_rf('%s/ops/spyddder-man' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/spyddder-man'), extra_opts=extra_opts, ssh_opts=ssh_opts) if node_type == 'grq': rm_rf('%s/ops/grq2' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/grq2'), extra_opts=extra_opts, ssh_opts=ssh_opts) rm_rf('%s/ops/pele' % dir_path) rsync_project('%s/ops/' % dir_path, os.path.join(ops_dir, 'mozart/ops/pele'), extra_opts=extra_opts, ssh_opts=ssh_opts) def svn_co(path, svn_url): if not exists(path): with cd(os.path.dirname(path)): run('svn co --non-interactive --trust-server-cert %s' % svn_url) def svn_rev(rev, path): run('svn up -r %s %s' % (rev, path)) def ls(path): run('ls -al {}'.format(path)) def cat(path): run('cat {}'.format(path)) def tail(path): run('tail {}'.format(path)) def tail_f(path): run('tail -f {}'.format(path)) def grep(grep_str, dir_path): try: run('grep -r %s %s' % (grep_str, dir_path)) except: pass def chmod(perms, path): run('chmod -R %s %s' % (perms, path)) def reboot(): sudo('reboot') def mkdir(d, o, g): #sudo('mkdir -p %s' % d) #sudo('chown -R %s:%s %s' % (o, g, d)) run("mkdir -p %s" % d) def untar(tarfile, chdir): with cd(chdir): run('tar xvfj %s' % tarfile) def untar_gz(cwd, tar_file): with cd(cwd): run('tar xvfz %s' % tar_file) def untar_bz(cwd, tar_file): with cd(cwd): run('tar xvfj %s' % tar_file) def mv(src, dest): sudo('mv -f %s %s' % (src, dest)) def rsync(src, dest): rsync_project(dest, src, extra_opts=extra_opts, ssh_opts=ssh_opts) def remove_docker_images(): run('docker rmi -f $(docker images -q)') def remove_running_containers(): run('docker rm -f $(docker ps -aq)') def remove_docker_volumes(): run('docker volume rm $(docker volume ls -q)') def list_docker_images(): run('docker images') def stop_docker_containers(): run('docker stop $(docker ps -aq)') def systemctl(cmd, service): with settings(warn_only=True): with hide('everything'): return run('sudo systemctl %s %s' % (cmd, service), pty=False) def status(): role, hysds_dir, hostname = resolve_role() if exists('%s/run/supervisor.sock' % hysds_dir): with prefix('source %s/bin/activate' % hysds_dir): run('supervisorctl status') else: print((blink(highlight("Supervisord is not running on %s." % role, 'red')))) def ensure_venv(hysds_dir, update_bash_profile=True, system_site_packages=True, install_supervisor=True): act_file = "~/%s/bin/activate" % hysds_dir if system_site_packages: venv_cmd = "virtualenv --system-site-packages %s" % hysds_dir else: venv_cmd = "virtualenv %s" % hysds_dir if not exists(act_file): run(venv_cmd) with prefix('source %s/bin/activate' % hysds_dir): run('pip install -U pip') run('pip install -U setuptools') if install_supervisor: run('pip install --ignore-installed supervisor') mkdir('%s/etc' % hysds_dir, context['OPS_USER'], context['OPS_USER']) mkdir('%s/log' % hysds_dir, context['OPS_USER'], context['OPS_USER']) mkdir('%s/run' % hysds_dir, context['OPS_USER'], context['OPS_USER']) if update_bash_profile: append('.bash_profile', "source $HOME/{}/bin/activate".format(hysds_dir), escape=True) append('.bash_profile', "export FACTER_ipaddress=$(/usr/sbin/ifconfig $(/usr/sbin/route | awk '/default/{print $NF}') | grep 'inet ' | sed 's/addr://' | awk '{print $2}')", escape=True) def install_pkg_es_templates(): role, hysds_dir, hostname = resolve_role() if role not in ('grq', 'mozart'): raise RuntimeError("Invalid fabric function for %s." % role) with prefix('source %s/bin/activate' % hysds_dir): run('%s/ops/mozart/scripts/install_es_template.sh %s' % (hysds_dir, role)) def install_base_es_template(): role, hysds_dir, hostname = resolve_role() send_template( "es_template-base.json", "/tmp/es_template-base.json" ) run("curl -XPUT 'localhost:9200/_template/index_defaults?pretty' -H 'Content-Type: application/json' -d@/tmp/es_template-base.json") ########################## # grq functions ########################## def grqd_start(force=False): mkdir('sciflo/run', context['OPS_USER'], context['OPS_USER']) if not exists('sciflo/run/supervisord.pid') or force: with prefix('source sciflo/bin/activate'): run('supervisord', pty=False) def grqd_clean_start(): run('rm -rf %s/sciflo/log/*' % ops_dir) # with prefix('source %s/sciflo/bin/activate' % ops_dir): # with cd(os.path.join(ops_dir, 'sciflo/ops/grq2/scripts')): # run('./reset_dumby_indices.sh') grqd_start(True) def grqd_stop(): if exists('sciflo/run/supervisor.sock'): with prefix('source sciflo/bin/activate'): run('supervisorctl shutdown') def install_es_template(): with prefix('source sciflo/bin/activate'): run('sciflo/ops/grq2/scripts/install_es_template.sh') def clean_hysds_ios(): with prefix('source sciflo/bin/activate'): run('sciflo/ops/grq2/scripts/clean_hysds_ios_indexes.sh http://localhost:9200') def create_grq_user_rules_index(): with prefix('source ~/sciflo/bin/activate'): with cd('~/sciflo/ops/grq2/scripts'): run('./create_user_rules_index.py') def create_hysds_ios_grq_index(): with prefix('source ~/sciflo/bin/activate'): with cd('~/sciflo/ops/grq2/scripts'): run('./create_hysds_ios_index.py') def install_ingest_pipeline(): with cd('~/sciflo/ops/grq2/scripts'): run('python install_ingest_pipeline.py') ########################## # mozart functions ########################## def mozartd_start(force=False): if not exists('mozart/run/supervisord.pid') or force: with prefix('source mozart/bin/activate'): run('supervisord', pty=False) def mozartd_clean_start(): run('rm -rf %s/mozart/log/*' % ops_dir) mozartd_start(True) def mozartd_stop(): if exists('mozart/run/supervisor.sock'): with prefix('source mozart/bin/activate'): run('supervisorctl shutdown') def redis_flush(): role, hysds_dir, hostname = resolve_role() ctx = get_context() if role == 'mozart' and ctx['MOZART_REDIS_PASSWORD'] != '': cmd = 'redis-cli -a {MOZART_REDIS_PASSWORD} flushall'.format(**ctx) elif role == 'metrics' and ctx['METRICS_REDIS_PASSWORD'] != '': cmd = 'redis-cli -a {METRICS_REDIS_PASSWORD} flushall'.format(**ctx) else: cmd = 'redis-cli flushall'.format(**ctx) run(cmd) def mozart_redis_flush(): ctx = get_context() if ctx['MOZART_REDIS_PASSWORD'] != '': run('redis-cli -a {MOZART_REDIS_PASSWORD} -h {MOZART_REDIS_PVT_IP} flushall'.format(**ctx)) else: run('redis-cli -h {MOZART_REDIS_PVT_IP} flushall'.format(**ctx)) def rabbitmq_queues_flush(): ctx = get_context() url = 'http://%s:15672/api/queues' % ctx['MOZART_RABBIT_PVT_IP'] r = requests.get('%s?columns=name' % url, auth=(ctx['MOZART_RABBIT_USER'], ctx['MOZART_RABBIT_PASSWORD'])) r.raise_for_status() res = r.json() for i in res: r = requests.delete('%s/%%2f/%s' % (url, i['name']), auth=(ctx['MOZART_RABBIT_USER'], ctx['MOZART_RABBIT_PASSWORD'])) r.raise_for_status() logger.debug("Deleted queue %s." % i['name']) def mozart_es_flush(): ctx = get_context() run('curl -XDELETE http://{MOZART_ES_PVT_IP}:9200/_template/*_status'.format(**ctx)) run('~/mozart/ops/hysds/scripts/clean_job_status_indexes.sh http://{MOZART_ES_PVT_IP}:9200'.format( **ctx)) run('~/mozart/ops/hysds/scripts/clean_task_status_indexes.sh http://{MOZART_ES_PVT_IP}:9200'.format( **ctx)) run('~/mozart/ops/hysds/scripts/clean_worker_status_indexes.sh http://{MOZART_ES_PVT_IP}:9200'.format( **ctx)) run('~/mozart/ops/hysds/scripts/clean_event_status_indexes.sh http://{MOZART_ES_PVT_IP}:9200'.format( **ctx)) #run('~/mozart/ops/hysds/scripts/clean_job_spec_container_indexes.sh http://{MOZART_ES_PVT_IP}:9200'.format(**ctx)) def npm_install_package_json(dest): with cd(dest): run('npm install --silent') ########################## # metrics functions ########################## def metricsd_start(force=False): if not exists('metrics/run/supervisord.pid') or force: with prefix('source metrics/bin/activate'): run('supervisord', pty=False) def metricsd_clean_start(): run('rm -rf /home/ops/metrics/log/*') metricsd_start(True) def metricsd_stop(): if exists('metrics/run/supervisor.sock'): with prefix('source metrics/bin/activate'): run('supervisorctl shutdown') ########################## # verdi functions ########################## def kill_hung(): try: run( 'ps x | grep [j]ob_worker | awk \'{print $1}\' | xargs kill -TERM', quiet=True) except: pass try: run( 'ps x | grep [s]flExec | awk \'{print $1}\' | xargs kill -TERM', quiet=True) except: pass try: run( 'ps x | grep [s]flExec | awk \'{print $1}\' | xargs kill -KILL', quiet=True) except: pass ps_x() def import_kibana(path): with cd(path): run("./import_dashboard.sh") def verdid_start(force=False): if not exists('verdi/run/supervisord.pid') or force: with prefix('source verdi/bin/activate'): run('supervisord', pty=False) def verdid_clean_start(): run('rm -rf /data/work/scifloWork-ops/* /data/work/jobs/* /data/work/cache/* %s/verdi/log/*' % ops_dir) verdid_start(True) def verdid_stop(): if exists('verdi/run/supervisor.sock'): with prefix('source verdi/bin/activate'): run('supervisorctl shutdown') def supervisorctl_up(): with prefix('source verdi/bin/activate'): run('supervisorctl reread') run('supervisorctl update') def supervisorctl_status(): with prefix('source verdi/bin/activate'): run('supervisorctl status') def pip_install(pkg, node_type='verdi'): with prefix('source ~/%s/bin/activate' % node_type): run('pip install %s' % pkg) def pip_upgrade(pkg, node_type='verdi'): with prefix('source ~/%s/bin/activate' % node_type): run('pip install -U %s' % pkg) def pip_uninstall(pkg, node_type='verdi'): with prefix('source ~/%s/bin/activate' % node_type): run('pip uninstall -y %s' % pkg) def pip_install_with_req(node_type, dest): with prefix('source ~/%s/bin/activate' % node_type): with cd(dest): run('pip install -e .') def pip_install_with_req(node_type, dest, ndeps): with prefix('source ~/%s/bin/activate' % node_type): with cd(dest): if ndeps: logger.debug("ndeps is set, so running pip with --no-deps") run('pip install --no-deps -e .') else: logger.debug( "ndeps is NOT set, so running pip without --no-deps") run('pip install -e .') def python_setup_develop(node_type, dest): with prefix('source ~/%s/bin/activate' % node_type): with cd(dest): run('python setup.py develop') ########################## # ci functions ########################## def get_ci_job_info(repo, branch=None): ctx = get_context() match = repo_re.search(repo) if not match: raise RuntimeError("Failed to parse repo owner and name: %s" % repo) owner, name = match.groups() if branch is None: job_name = "%s_container-builder_%s_%s" % (ctx['VENUE'], owner, name) config_tmpl = 'config.xml' else: job_name = "%s_container-builder_%s_%s_%s" % ( ctx['VENUE'], owner, name, branch) config_tmpl = 'config-branch.xml' return job_name, config_tmpl def add_ci_job(repo, proto, branch=None, release=False): with settings(sudo_user=context["JENKINS_USER"]): job_name, config_tmpl = get_ci_job_info(repo, branch) ctx = get_context() ctx['PROJECT_URL'] = repo ctx['BRANCH'] = branch job_dir = '%s/jobs/%s' % (ctx['JENKINS_DIR'], job_name) dest_file = '%s/config.xml' % job_dir mkdir(job_dir, None, None) chmod('777', job_dir) if release: ctx['BRANCH_SPEC'] = "origin/tags/release-*" else: ctx['BRANCH_SPEC'] = "**" if proto in ('s3', 's3s'): ctx['STORAGE_URL'] = "%s://%s/%s/" % ( proto, ctx['S3_ENDPOINT'], ctx['CODE_BUCKET']) elif proto == 'gs': ctx['STORAGE_URL'] = "%s://%s/%s/" % ( proto, ctx['GS_ENDPOINT'], ctx['CODE_BUCKET']) elif proto in ('dav', 'davs'): ctx['STORAGE_URL'] = "%s://%s:%s@%s/repository/products/containers/" % \ (proto, ctx['DAV_USER'], ctx['DAV_PASSWORD'], ctx['DAV_SERVER']) else: raise RuntimeError( "Unrecognized storage type for containers: %s" % proto) upload_template(config_tmpl, "tmp-jenkins-upload", use_jinja=True, context=ctx, template_dir=get_user_files_path()) cp_rp("tmp-jenkins-upload", dest_file) run("rm tmp-jenkins-upload") def add_ci_job_release(repo, proto): add_ci_job(repo, proto, release=True) def run_jenkins_cli(cmd): ctx = get_context() juser = ctx.get("JENKINS_API_USER", "").strip() jkey = ctx.get("JENKINS_API_KEY", "").strip() if juser == "" or jkey == "": raise RuntimeError( "An API user/key is needed for Jenkins. Reload manually or specify one.") with prefix('source verdi/bin/activate'): run('java -jar %s/war/WEB-INF/jenkins-cli.jar -s http://localhost:8080 -http -auth %s:%s %s' % (ctx['JENKINS_DIR'], juser, jkey, cmd)) def reload_configuration(): run_jenkins_cli('reload-configuration') def build_ci_job(repo, branch=None): job_name, config_tmpl = get_ci_job_info(repo, branch) run_jenkins_cli('build %s -s -v' % job_name) def remove_ci_job(repo, branch=None): job_name, config_tmpl = get_ci_job_info(repo, branch) run_jenkins_cli('delete-job %s' % job_name) ########################## # logstash functions ########################## def send_shipper_conf(node_type, log_dir, cluster_jobs, redis_ip_job_status, cluster_metrics, redis_ip_metrics): role, hysds_dir, hostname = resolve_role() ctx = get_context(node_type) ctx.update({'cluster_jobs': cluster_jobs, 'cluster_metrics': cluster_metrics}) if node_type == 'mozart': upload_template('indexer.conf.mozart', '~/mozart/etc/indexer.conf', use_jinja=True, context=ctx, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('job_status.template', '~/mozart/etc/job_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('worker_status.template', '~/mozart/etc/worker_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('task_status.template', '~/mozart/etc/task_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('event_status.template', '~/mozart/etc/event_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('sdswatch_client.conf', '~/mozart/etc/sdswatch_client.conf', use_jinja=True, context=ctx, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) send_template("run_sdswatch_client.sh", "~/mozart/bin/run_sdswatch_client.sh") run("chmod 755 ~/mozart/bin/run_sdswatch_client.sh") send_template("watch_supervisord_services.py", "~/mozart/bin/watch_supervisord_services.py") run("chmod 755 ~/mozart/bin/watch_supervisord_services.py") send_template("watch_systemd_services.py", "~/mozart/bin/watch_systemd_services.py") run("chmod 755 ~/mozart/bin/watch_systemd_services.py") elif node_type == 'metrics': upload_template('indexer.conf.metrics', '~/metrics/etc/indexer.conf', use_jinja=True, context=ctx, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('job_status.template', '~/metrics/etc/job_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('worker_status.template', '~/metrics/etc/worker_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('task_status.template', '~/metrics/etc/task_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('event_status.template', '~/metrics/etc/event_status.template', use_jinja=True, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) upload_template('sdswatch_client.conf', '~/metrics/etc/sdswatch_client.conf', use_jinja=True, context=ctx, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) send_template("run_sdswatch_client.sh", "~/metrics/bin/run_sdswatch_client.sh") run("chmod 755 ~/metrics/bin/run_sdswatch_client.sh") send_template("watch_supervisord_services.py", "~/metrics/bin/watch_supervisord_services.py") run("chmod 755 ~/metrics/bin/watch_supervisord_services.py") send_template("watch_systemd_services.py", "~/metrics/bin/watch_systemd_services.py") run("chmod 755 ~/metrics/bin/watch_systemd_services.py") elif node_type == 'grq': upload_template('sdswatch_client.conf', '~/sciflo/etc/sdswatch_client.conf', use_jinja=True, context=ctx, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) send_template("run_sdswatch_client.sh", "~/sciflo/bin/run_sdswatch_client.sh") run("chmod 755 ~/sciflo/bin/run_sdswatch_client.sh") send_template("watch_supervisord_services.py", "~/sciflo/bin/watch_supervisord_services.py") run("chmod 755 ~/sciflo/bin/watch_supervisord_services.py") send_template("watch_systemd_services.py", "~/sciflo/bin/watch_systemd_services.py") run("chmod 755 ~/sciflo/bin/watch_systemd_services.py") elif node_type in ('verdi', 'verdi-asg', 'factotum'): upload_template('sdswatch_client.conf', '~/verdi/etc/sdswatch_client.conf', use_jinja=True, context=ctx, template_dir=os.path.join(ops_dir, 'mozart/ops/hysds/configs/logstash')) send_template("run_sdswatch_client.sh", "~/verdi/bin/run_sdswatch_client.sh") run("chmod 755 ~/verdi/bin/run_sdswatch_client.sh") send_template("watch_supervisord_services.py", "~/verdi/bin/watch_supervisord_services.py") run("chmod 755 ~/verdi/bin/watch_supervisord_services.py") send_template("watch_systemd_services.py", "~/verdi/bin/watch_systemd_services.py") run("chmod 755 ~/verdi/bin/watch_systemd_services.py") else: raise RuntimeError("Unknown node type: %s" % node_type) def send_logstash_jvm_options(node_type): ctx = get_context(node_type) ram_size_gb = int(get_ram_size_bytes())//1024**3 echo("instance RAM size: {}GB".format(ram_size_gb)) ram_size_gb_half = int(ram_size_gb//2) ctx['LOGSTASH_HEAP_SIZE'] = 8 if ram_size_gb_half >= 8 else ram_size_gb_half echo("configuring logstash heap size: {}GB".format(ctx['LOGSTASH_HEAP_SIZE'])) upload_template('jvm.options', '~/logstash/config/jvm.options', use_jinja=True, context=ctx, template_dir=get_user_files_path()) ########################## # hysds config functions ########################## def send_celeryconf(node_type): ctx = get_context(node_type) template_dir = os.path.join(ops_dir, 'mozart/ops/hysds/configs/celery') if node_type == 'mozart': base_dir = "mozart" elif node_type == 'metrics': base_dir = "metrics" elif node_type in ('verdi', 'verdi-asg'): base_dir = "verdi" elif node_type == 'grq': base_dir = "sciflo" else: raise RuntimeError("Unknown node type: %s" % node_type) tmpl = 'celeryconfig.py.tmpl' user_path = get_user_files_path() if node_type == 'verdi-asg': tmpl_asg = 'celeryconfig.py.tmpl.asg' if os.path.exists(os.path.join(user_path, tmpl_asg)): tmpl = tmpl_asg dest_file = '~/%s/ops/hysds/celeryconfig.py' % base_dir upload_template(tmpl, dest_file, use_jinja=True, context=ctx, template_dir=resolve_files_dir(tmpl, template_dir)) def send_mozartconf(): dest_file = '~/mozart/ops/mozart/settings.cfg' upload_template('settings.cfg.tmpl', dest_file, use_jinja=True, context=get_context('mozart'), template_dir=os.path.join(ops_dir, 'mozart/ops/mozart/settings')) with prefix('source ~/mozart/bin/activate'): with cd('~/mozart/ops/mozart'): mkdir('~/mozart/ops/mozart/data', context['OPS_USER'], context['OPS_USER']) run('./db_create.py') def send_hysds_ui_conf(): dest_file = '~/mozart/ops/hysds_ui/src/config/index.js' upload_template('index.template.js', dest_file, use_jinja=True, context=get_context('mozart'), template_dir=os.path.join(ops_dir, 'mozart/ops/hysds_ui/src/config')) user_path = get_user_files_path() tosca_cfg = '~/mozart/etc/tosca.js' if os.path.exists(os.path.join(user_path, 'tosca.js')): print('using custom tosca configuration in .sds/files') send_template_user_override('tosca.js', tosca_cfg, node_type='mozart') else: print('using default tosca configuration') send_template_user_override('tosca.template.js', tosca_cfg, tmpl_dir=os.path.join(ops_dir, 'mozart/ops/hysds_ui/src/config'), node_type='mozart') figaro_cfg = '~/mozart/etc/figaro.js' if os.path.exists(os.path.join(user_path, 'figaro.js')): print('using custom figaro configuration in .sds/files') send_template_user_override('figaro.js', figaro_cfg, node_type='mozart') else: print('using default figaro configuration') send_template_user_override('figaro.template.js', figaro_cfg, tmpl_dir=os.path.join(ops_dir, 'mozart/ops/hysds_ui/src/config'), node_type='mozart') # symlink to ~/mozart/ops/hysds_ui/src/config/ ln_sf(tosca_cfg, os.path.join(ops_dir, 'mozart/ops/hysds_ui/src/config', 'tosca.js')) ln_sf(figaro_cfg, os.path.join(ops_dir, 'mozart/ops/hysds_ui/src/config', 'figaro.js')) def send_grq2conf(): dest_file = '~/sciflo/ops/grq2/settings.cfg' upload_template('settings.cfg.tmpl', dest_file, use_jinja=True, context=get_context('grq'), template_dir=os.path.join(ops_dir, 'mozart/ops/grq2/config')) def send_peleconf(send_file='settings.cfg.tmpl', template_dir=get_user_files_path()): tmpl_dir = os.path.expanduser(template_dir) dest_file = '~/sciflo/ops/pele/settings.cfg' upload_template(send_file, dest_file, use_jinja=True, context=get_context('grq'), template_dir=tmpl_dir) with prefix('source ~/sciflo/bin/activate'): with cd('~/sciflo/ops/pele'): run('flask create-db') run('flask db init', warn_only=True) run('flask db migrate', warn_only=True) def build_hysds_ui(): with cd('~/mozart/ops/hysds_ui'): run('npm run build') def create_user_rules_index(): with prefix('source ~/mozart/bin/activate'): with cd('~/mozart/ops/mozart/scripts'): run('./create_user_rules_index.py') def create_hysds_ios_index(): with prefix('source ~/mozart/bin/activate'): with cd('~/mozart/ops/mozart/scripts'): run('./create_hysds_ios_index.py') def send_hysds_scripts(node_type): role, hysds_dir, hostname = resolve_role() if node_type == 'mozart': send_template("run_docker_registry.sh", "~/mozart/bin/run_docker_registry.sh") run("chmod 755 ~/mozart/bin/run_docker_registry.sh") elif node_type == 'metrics': send_template("run_docker_registry.sh", "~/metrics/bin/run_docker_registry.sh") run("chmod 755 ~/metrics/bin/run_docker_registry.sh") elif node_type == 'grq': send_template("run_docker_registry.sh", "~/sciflo/bin/run_docker_registry.sh") run("chmod 755 ~/sciflo/bin/run_docker_registry.sh") elif node_type in ('verdi', 'verdi-asg', 'factotum'): send_template("run_docker_registry.sh", "~/verdi/bin/run_docker_registry.sh") run("chmod 755 ~/verdi/bin/run_docker_registry.sh") else: raise RuntimeError("Unknown node type: %s" % node_type) ########################## # self-signed SSL certs ########################## def ensure_ssl(node_type): ctx = get_context(node_type) if node_type == "grq": commonName = ctx['GRQ_FQDN'] elif node_type == "mozart": commonName = ctx['MOZART_FQDN'] else: raise RuntimeError("Unknown node type: %s" % node_type) if not exists('ssl/server.key') or not exists('ssl/server.pem'): mkdir('ssl', context['OPS_USER'], context['OPS_USER']) upload_template('ssl_server.cnf', 'ssl/server.cnf', use_jinja=True, context={'commonName': commonName}, template_dir=get_user_files_path()) with cd('ssl'): run('openssl genrsa -des3 -passout pass:hysds -out server.key 1024', pty=False) run('OPENSSL_CONF=server.cnf openssl req -passin pass:hysds -new -key server.key -out server.csr', pty=False) run('cp server.key server.key.org') run('openssl rsa -passin pass:hysds -in server.key.org -out server.key', pty=False) run('chmod 600 server.key*') run('openssl x509 -passin pass:hysds -req -days 99999 -in server.csr -signkey server.key -out server.pem', pty=False) ########################## # ship code ########################## def ship_code(cwd, tar_file, encrypt=False): ctx = get_context() with cd(cwd): run('tar --exclude-vcs -cvjf %s *' % tar_file) if encrypt is False: run('aws s3 cp %s s3://%s/' % (tar_file, ctx['CODE_BUCKET'])) else: run('aws s3 cp --sse %s s3://%s/' % (tar_file, ctx['CODE_BUCKET'])) ########################## # ship creds ########################## def send_awscreds(suffix=None): ctx = get_context() if suffix is None: aws_dir = '.aws' boto_file = '.boto' s3cfg_file = '.s3cfg' else: aws_dir = '.aws{}'.format(suffix) boto_file = '.boto{}'.format(suffix) s3cfg_file = '.s3cfg{}'.format(suffix) if exists(aws_dir): run('rm -rf {}'.format(aws_dir)) mkdir(aws_dir, context['OPS_USER'], context['OPS_USER']) run('chmod 700 {}'.format(aws_dir)) upload_template('aws_config', '{}/config'.format(aws_dir), use_jinja=True, context=ctx, template_dir=get_user_files_path()) if ctx['AWS_ACCESS_KEY'] not in (None, ""): upload_template('aws_credentials', '{}/credentials'.format(aws_dir), use_jinja=True, context=ctx, template_dir=get_user_files_path()) run('chmod 600 {}/*'.format(aws_dir)) if exists(boto_file): run('rm -rf {}'.format(boto_file)) upload_template('boto', boto_file, use_jinja=True, context=ctx, template_dir=get_user_files_path()) run('chmod 600 {}'.format(boto_file)) if exists(s3cfg_file): run('rm -rf {}'.format(s3cfg_file)) upload_template('s3cfg', s3cfg_file, use_jinja=True, context=ctx, template_dir=get_user_files_path()) run('chmod 600 {}'.format(s3cfg_file)) ########################## # ship verdi code bundle ########################## def send_queue_config(queue): ctx = get_context() ctx.update({'queue': queue}) upload_template('install.sh', '~/verdi/ops/install.sh', use_jinja=True, context=ctx, template_dir=get_user_files_path()) upload_template('datasets.json.tmpl.asg', '~/verdi/etc/datasets.json', use_jinja=True, context=ctx, template_dir=get_user_files_path()) upload_template('supervisord.conf.tmpl', '~/verdi/etc/supervisord.conf.tmpl', use_jinja=True, context=ctx, template_dir=get_user_files_path()) ########################## # ship s3-bucket style ########################## def ship_style(bucket=None, encrypt=False): ctx = get_context() if bucket is None: bucket = ctx['DATASET_BUCKET'] else: ctx.update({'DATASET_BUCKET': bucket}) repo_dir = os.path.join(ops_dir, 'mozart/ops/s3-bucket-listing') index_file = os.path.join(repo_dir, 'tmp_index.html') list_js = os.path.join(repo_dir, 'list.js') index_style = os.path.join(repo_dir, 'index-style') upload_template('s3-bucket-listing.html.tmpl', index_file, use_jinja=True, context=ctx, template_dir=get_user_files_path()) if encrypt is False: run('aws s3 cp %s s3://%s/index.html' % (index_file, bucket)) run('aws s3 cp %s s3://%s/' % (list_js, bucket)) run('aws s3 sync %s s3://%s/index-style' % (index_style, bucket)) else: run('aws s3 cp --sse %s s3://%s/index.html' % (index_file, bucket)) run('aws s3 cp --sse %s s3://%s/' % (list_js, bucket)) run('aws s3 sync --sse %s s3://%s/index-style' % (index_style, bucket)) ########################## # create cloud function zip ########################## def create_zip(zip_dir, zip_file): if exists(zip_file): run('rm -rf %s' % zip_file) with cd(zip_dir): run('zip -r -9 {} *'.format(zip_file)) ########################## # container orchestration ########################## def rsync_sdsadm(): role, hysds_dir, hostname = resolve_role() rm_rf('%s/ops/sdsadm' % hysds_dir) rsync_project('%s/ops/' % hysds_dir, os.path.join(ops_dir, 'mozart/ops/sdsadm'), extra_opts=extra_opts, ssh_opts=ssh_opts) def init_sdsadm(): role, hysds_dir, hostname = resolve_role() with cd(os.path.join(hysds_dir, 'ops', 'sdsadm')): with prefix('source ~/%s/bin/activate' % hysds_dir): run("./sdsadm init {} -f".format(role)) def start_sdsadm(release): role, hysds_dir, hostname = resolve_role() with cd(os.path.join(hysds_dir, 'ops', 'sdsadm')): with prefix('source ~/%s/bin/activate' % hysds_dir): run("./sdsadm -r {} start {} -d".format(release, role)) def stop_sdsadm(): role, hysds_dir, hostname = resolve_role() with cd(os.path.join(hysds_dir, 'ops', 'sdsadm')): with prefix('source ~/%s/bin/activate' % hysds_dir): run("./sdsadm stop {}".format(role)) def logs_sdsadm(follow=False): role, hysds_dir, hostname = resolve_role() with cd(os.path.join(hysds_dir, 'ops', 'sdsadm')): with prefix('source ~/%s/bin/activate' % hysds_dir): if follow: run("./sdsadm logs {} -f".format(role)) else: run("./sdsadm logs {}".format(role)) def ps_sdsadm(): role, hysds_dir, hostname = resolve_role() with cd(os.path.join(hysds_dir, 'ops', 'sdsadm')): with prefix('source ~/%s/bin/activate' % hysds_dir): run("./sdsadm ps {}".format(role)) def run_sdsadm(cmd): role, hysds_dir, hostname = resolve_role() with cd(os.path.join(hysds_dir, 'ops', 'sdsadm')): with prefix('source ~/%s/bin/activate' % hysds_dir): run("./sdsadm run {} {}".format(role, cmd)) def conf_sdsadm(tmpl, dest, shared=False): role, hysds_dir, hostname = resolve_role() if shared: tmpl_dir = os.path.join(get_user_files_path(), 'orch') else: if role in ('factotum', 'ci'): tmpl_dir = os.path.join(get_user_files_path(), 'orch', 'verdi') else: tmpl_dir = os.path.join(get_user_files_path(), 'orch', role) upload_template(tmpl, dest, use_jinja=True, context=get_context(role), template_dir=tmpl_dir)
36.018364
176
0.627486
81f1731e3477258d79fb08e4036db0cea44d216c
50
py
Python
src/game/player.py
ziyadedher/ml-game-base
de9e68b385cc5c49c584577df8ea9ce45ef31b4e
[ "MIT" ]
null
null
null
src/game/player.py
ziyadedher/ml-game-base
de9e68b385cc5c49c584577df8ea9ce45ef31b4e
[ "MIT" ]
null
null
null
src/game/player.py
ziyadedher/ml-game-base
de9e68b385cc5c49c584577df8ea9ce45ef31b4e
[ "MIT" ]
null
null
null
"""Manages the player independent of the game."""
25
49
0.72
2301408459fb77e8bffd9a4e251c7f3d2db89c9f
14,297
py
Python
addons/account/tests/test_tax_report.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/account/tests/test_tax_report.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/account/tests/test_tax_report.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from odoo.addons.account.tests.common import AccountTestInvoicingCommon from odoo.tests import tagged @tagged('post_install', '-at_install') class TaxReportTest(AccountTestInvoicingCommon): @classmethod def setUpClass(cls, chart_template_ref=None): super().setUpClass(chart_template_ref=chart_template_ref) cls.test_country_1 = cls.env['res.country'].create({ 'name': "The Old World", 'code': 'YY', }) cls.test_country_2 = cls.env['res.country'].create({ 'name': "The Principality of Zeon", 'code': 'ZZ', }) cls.test_country_3 = cls.env['res.country'].create({ 'name': "Alagaësia", 'code': 'QQ', }) cls.tax_report_1 = cls.env['account.tax.report'].create({ 'name': "Tax report 1", 'country_id': cls.test_country_1.id, }) cls.tax_report_line_1_1 = cls.env['account.tax.report.line'].create({ 'name': "[01] Line 01", 'tag_name': '01', 'report_id': cls.tax_report_1.id, 'sequence': 2, }) cls.tax_report_line_1_2 = cls.env['account.tax.report.line'].create({ 'name': "[01] Line 02", 'tag_name': '02', 'report_id': cls.tax_report_1.id, 'sequence': 3, }) cls.tax_report_line_1_3 = cls.env['account.tax.report.line'].create({ 'name': "[03] Line 03", 'tag_name': '03', 'report_id': cls.tax_report_1.id, 'sequence': 4, }) cls.tax_report_line_1_4 = cls.env['account.tax.report.line'].create({ 'name': "[04] Line 04", 'report_id': cls.tax_report_1.id, 'sequence': 5, }) cls.tax_report_line_1_5 = cls.env['account.tax.report.line'].create({ 'name': "[05] Line 05", 'report_id': cls.tax_report_1.id, 'sequence': 6, }) cls.tax_report_line_1_55 = cls.env['account.tax.report.line'].create({ 'name': "[55] Line 55", 'tag_name': '55', 'report_id': cls.tax_report_1.id, 'sequence': 7, }) cls.tax_report_line_1_6 = cls.env['account.tax.report.line'].create({ 'name': "[100] Line 100", 'tag_name': '100', 'report_id': cls.tax_report_1.id, 'sequence': 8, }) cls.tax_report_2 = cls.env['account.tax.report'].create({ 'name': "Tax report 2", 'country_id': cls.test_country_1.id, }) cls.tax_report_line_2_1 = cls.env['account.tax.report.line'].create({ 'name': "[01] Line 01, but in report 2", 'tag_name': '01', 'report_id': cls.tax_report_2.id, 'sequence': 1, }) cls.tax_report_line_2_2 = cls.env['account.tax.report.line'].create({ 'name': "[02] Line 02, but in report 2", 'report_id': cls.tax_report_2.id, 'sequence': 2, }) cls.tax_report_line_2_42 = cls.env['account.tax.report.line'].create({ 'name': "[42] Line 42", 'tag_name': '42', 'report_id': cls.tax_report_2.id, 'sequence': 3, }) cls.tax_report_line_2_6 = cls.env['account.tax.report.line'].create({ 'name': "[100] Line 100", 'tag_name': '100', 'report_id': cls.tax_report_2.id, 'sequence': 4, }) def _get_tax_tags(self, tag_name=None): domain = [('country_id', '=', self.test_country_1.id), ('applicability', '=', 'taxes')] if tag_name: domain.append(('name', 'like', '_' + tag_name )) return self.env['account.account.tag'].search(domain) def test_write_add_tagname(self): """ Adding a tag_name to a line without any should create new tags. """ tags_before = self._get_tax_tags() self.tax_report_line_2_2.tag_name = 'tournicoti' tags_after = self._get_tax_tags() self.assertEqual(len(tags_after), len(tags_before) + 2, "Two tags should have been created, +tournicoti and -tournicoti.") def test_write_single_line_tagname(self): """ Writing on the tag_name of a line with a non-null tag_name used in no other line should overwrite the name of the existing tags. """ start_tags = self._get_tax_tags() original_tag_name = self.tax_report_line_1_55.tag_name original_tags = self.tax_report_line_1_55.tag_ids self.tax_report_line_1_55.tag_name = 'Mille sabords !' self.assertEqual(len(self._get_tax_tags(original_tag_name)), 0, "The original tag name of the line should not correspond to any tag anymore.") self.assertEqual(original_tags, self.tax_report_line_1_55.tag_ids, "The tax report line should still be linked to the same tags.") self.assertEqual(len(self._get_tax_tags()), len(start_tags), "No new tag should have been created.") def test_write_single_line_remove_tagname(self): """ Setting None as the tag_name of a line with a non-null tag_name used in a unique line should delete the tags, also removing all the references to it from tax repartition lines and account move lines """ test_tax = self.env['account.tax'].create({ 'name': "Test tax", 'amount_type': 'percent', 'amount': 25, 'type_tax_use': 'sale', 'invoice_repartition_line_ids': [ (0,0, { 'factor_percent': 100, 'repartition_type': 'base', }), (0,0, { 'factor_percent': 100, 'repartition_type': 'tax', 'tag_ids': [(6, 0, self.tax_report_line_1_55.tag_ids[0].ids)], }), ], 'refund_repartition_line_ids': [ (0,0, { 'factor_percent': 100, 'repartition_type': 'base', }), (0,0, { 'factor_percent': 100, 'repartition_type': 'tax', }), ], }) test_invoice = self.env['account.move'].create({ 'move_type': 'out_invoice', 'partner_id': self.partner_a.id, 'date': '1992-12-22', 'invoice_line_ids': [ (0, 0, {'quantity': 1, 'price_unit': 42, 'tax_ids': [(6, 0, test_tax.ids)]}), ], }) test_invoice.action_post() self.assertTrue(any(line.tax_tag_ids == self.tax_report_line_1_55.tag_ids[0] for line in test_invoice.line_ids), "The test invoice should contain a tax line with tag 55") tag_name_before = self.tax_report_line_1_55.tag_name tag_nber_before = len(self._get_tax_tags()) self.tax_report_line_1_55.tag_name = None self.assertFalse(self.tax_report_line_1_55.tag_name, "The tag name for line 55 should now be None") self.assertEqual(len(self._get_tax_tags(tag_name_before)), 0, "None of the original tags for this line should be left after setting tag_name to None if no other line was using this tag_name.") self.assertEqual(len(self._get_tax_tags()), tag_nber_before - 2, "No new tag should have been created, and the two that were assigned to the report line should have been removed.") self.assertFalse(test_tax.mapped('invoice_repartition_line_ids.tag_ids'), "There should be no tag left on test tax's repartition lines after the removal of tag 55.") self.assertFalse(test_invoice.mapped('line_ids.tax_tag_ids'), "The link between test invoice and tag 55 should have been broken. There should be no tag left on the invoice's lines.") def test_write_multi_no_change(self): """ Writing the same tag_name as they already use on a set of tax report lines with the same tag_name should not do anything. """ tags_before = self._get_tax_tags().ids (self.tax_report_line_1_1 + self.tax_report_line_2_1).write({'tag_name': '01'}) tags_after = self._get_tax_tags().ids self.assertEqual(tags_before, tags_after, "Re-assigning the same tag_name should keep the same tags.") def test_edit_line_shared_tags(self): """ Setting the tag_name of a tax report line sharing its tags with another line should edit the tags' name and the tag_name of this other report line, to keep consistency. """ original_tag_name = self.tax_report_line_1_1.tag_name self.tax_report_line_1_1.tag_name = 'Groucha' self.assertEqual(self.tax_report_line_2_1.tag_name, self.tax_report_line_1_1.tag_name, "Modifying the tag name of a tax report line sharing it with another one should also modify the other's.") def test_edit_multi_line_tagname_all_different_new(self): """ Writing a tag_name on multiple lines with distinct tag_names should delete all the former tags and replace them by new ones (also on lines sharing tags with them). """ lines = self.tax_report_line_1_1 + self.tax_report_line_2_2 + self.tax_report_line_2_42 previous_tag_ids = lines.mapped('tag_ids.id') lines.write({'tag_name': 'crabe'}) new_tags = lines.mapped('tag_ids') self.assertNotEqual(new_tags.ids, previous_tag_ids, "All the tags should have changed") self.assertEqual(len(new_tags), 2, "Only two distinct tags should be assigned to all the lines after writing tag_name on them all") surviving_tags = self.env['account.account.tag'].search([('id', 'in', previous_tag_ids)]) self.assertEqual(len(surviving_tags), 0, "All former tags should have been deleted") self.assertEqual(self.tax_report_line_1_1.tag_ids, self.tax_report_line_2_1.tag_ids, "The report lines initially sharing their tag_name with the written-on lines should also have been impacted") def test_remove_line_dependency(self): """ Setting to None the tag_name of a report line sharing its tags with other lines should only impact this line ; the other ones should keep their link to the initial tags (their tag_name will hence differ in the end). """ tags_before = self.tax_report_line_1_1.tag_ids self.tax_report_line_1_1.tag_name = None self.assertEqual(len(self.tax_report_line_1_1.tag_ids), 0, "Setting the tag_name to None should have removed the tags.") self.assertEqual(self.tax_report_line_2_1.tag_ids, tags_before, "Setting tag_name to None on a line linked to another one via tag_name should break this link.") def test_tax_report_change_country(self): """ Tests that duplicating and modifying the country of a tax report works as intended (countries wanting to use the tax report of another country need that). """ # Copy our first report tags_before = self._get_tax_tags().ids copied_report_1 = self.tax_report_1.copy() copied_report_2 = self.tax_report_1.copy() tags_after = self._get_tax_tags().ids self.assertEqual(tags_before, tags_after, "Report duplication should not create or remove any tag") for original, copy in zip(self.tax_report_1.get_lines_in_hierarchy(), copied_report_1.get_lines_in_hierarchy()): self.assertEqual(original.tag_ids, copy.tag_ids, "Copying the lines of a tax report should keep the same tags on lines") # Assign another country to one of the copies copied_report_1.country_id = self.test_country_2 for original, copy in zip(self.tax_report_1.get_lines_in_hierarchy(), copied_report_1.get_lines_in_hierarchy()): if original.tag_ids or copy.tag_ids: self.assertNotEqual(original.tag_ids, copy.tag_ids, "Changing the country of a copied report should create brand new tags for all of its lines") for original, copy in zip(self.tax_report_1.get_lines_in_hierarchy(), copied_report_2.get_lines_in_hierarchy()): self.assertEqual(original.tag_ids, copy.tag_ids, "Changing the country of a copied report should not impact the other copies or the original report") # Direclty change the country of a report without copying it first (some of its tags are shared, but not all) original_report_2_tags = {line.id: line.tag_ids.ids for line in self.tax_report_2.get_lines_in_hierarchy()} self.tax_report_2.country_id = self.test_country_2 for line in self.tax_report_2.get_lines_in_hierarchy(): if line == self.tax_report_line_2_42: # This line is the only one of the report not sharing its tags self.assertEqual(line.tag_ids.ids, original_report_2_tags[line.id], "The tax report lines not sharing their tags with any other report should keep the same tags when the country of their report is changed") elif line.tag_ids or original_report_2_tags[line.id]: self.assertNotEqual(line.tag_ids.ids, original_report_2_tags[line.id], "The tax report lines sharing their tags with other report should receive new tags when the country of their report is changed") def test_unlink_report_line_tags(self): """ Under certain circumstances, unlinking a tax report line should also unlink the tags that are linked to it. We test those cases here. """ def check_tags_unlink(tag_name, report_lines, unlinked, error_message): report_lines.unlink() surviving_tags = self._get_tax_tags(tag_name) required_len = 0 if unlinked else 2 # 2 for + and - tag self.assertEqual(len(surviving_tags), required_len, error_message) check_tags_unlink('42', self.tax_report_line_2_42, True, "Unlinking one line not sharing its tags should also unlink them") check_tags_unlink('01', self.tax_report_line_1_1, False, "Unlinking one line sharing its tags with others should keep the tags") check_tags_unlink('100', self.tax_report_line_1_6 + self.tax_report_line_2_6, True, "Unlinkink all the lines sharing the same tags should also unlink them")
49.98951
222
0.638665
31fde5c69a5219440b7aabd672f18928d88b9d4f
6,082
py
Python
simple_icd_10.py
StefanoTrv/simple_icd_10
4995baacb8a5f5e78c067a5c17734ff1af283704
[ "CC0-1.0" ]
8
2020-12-07T14:41:00.000Z
2022-02-05T09:15:44.000Z
simple_icd_10.py
StefanoTrv/simple-icd-10
c1a0d15ab6a7a924bfaac3d889716380e5441370
[ "CC0-1.0" ]
2
2021-08-16T09:55:18.000Z
2021-09-23T21:00:31.000Z
simple_icd_10.py
StefanoTrv/simple-icd-10
c1a0d15ab6a7a924bfaac3d889716380e5441370
[ "CC0-1.0" ]
null
null
null
import xml.etree.ElementTree as ET try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 `importlib_resources`. import importlib_resources as pkg_resources import data # relative-import the "package" containing the data chapter_list = [] code_to_node = {} all_codes_list = [] all_codes_list_no_dots = [] code_to_index_dictionary = {} class _CodeTree: def __init__(self, tree, parent = None): #initialize all the values self.name = "" self.description = "" self.type = "" self.parent = parent self.children = [] #reads the data from the subtrees self.type=tree.attrib["type"] for subtree in tree: if subtree.tag=="name": self.name=subtree.text elif subtree.tag=="description": self.description=subtree.text else: self.children.append(_CodeTree(subtree, parent=self)) #adds the new node to the dictionary code_to_node[self.name]=self def _load_codes(): #creates the tree root = ET.fromstring(pkg_resources.read_text(data, 'icd_10_v2019.xml')) for child in root: chapter_list.append(_CodeTree(child)) _load_codes() def _add_dot_to_code(code): if len(code)<4 or code[3]==".": return code elif code[:3]+"."+code[3:] in code_to_node: return code[:3]+"."+code[3:] else: return code def is_valid_item(code): return code in code_to_node or len(code)>=4 and code[:3]+"."+code[3:] in code_to_node def is_chapter(code): code = _add_dot_to_code(code) if code in code_to_node: return code_to_node[code].type=="chapter" else: return False def is_block(code): code = _add_dot_to_code(code) if code in code_to_node: return code_to_node[code].type=="block" else: return False def is_category(code): code = _add_dot_to_code(code) if code in code_to_node: return code_to_node[code].type=="category" else: return False def is_subcategory(code): code = _add_dot_to_code(code) if code in code_to_node: return code_to_node[code].type=="subcategory" else: return False def is_category_or_subcategory(code): return is_subcategory(code) or is_category(code) def is_chapter_or_block(code): return is_block(code) or is_chapter(code) def get_description(code): if not is_valid_item(code): raise ValueError("The code \""+code+"\" does not exist.") node = code_to_node[_add_dot_to_code(code)] return node.description def get_parent(code): if not is_valid_item(code): raise ValueError("The code \""+code+"\" does not exist.") node = code_to_node[_add_dot_to_code(code)] if node.parent!=None: return node.parent.name else: return "" def get_children(code): if not is_valid_item(code): raise ValueError("The code \""+code+"\" does not exist.") node = code_to_node[_add_dot_to_code(code)] res = [] for child in node.children: res.append(child.name) return res def is_leaf(code): if not is_valid_item(code): raise ValueError("The code \""+code+"\" does not exist.") node = code_to_node[_add_dot_to_code(code)] return len(node.children)==0 def get_ancestors(code): if not is_valid_item(code): raise ValueError("The code \""+code+"\" does not exist.") node = code_to_node[_add_dot_to_code(code)] result = [] while node.parent != None: result.append(node.parent.name) node=node.parent return result def get_descendants(code): if not is_valid_item(code): raise ValueError("The code \""+code+"\" does not exist.") node = code_to_node[_add_dot_to_code(code)] result = [] _add_children_to_list(node, result) return result def _add_children_to_list(node, list): for child in node.children: list.append(child.name) _add_children_to_list(child,list) def is_ancestor(a,b): if not is_valid_item(a): raise ValueError("The code \""+a+"\" does not exist.") node = code_to_node[_add_dot_to_code(a)] return a in get_ancestors(b) and a!=b def is_descendant(a,b): return is_ancestor(b,a) def get_nearest_common_ancestor(a,b): anc_a = [_add_dot_to_code(a)] + get_ancestors(a) anc_b = [_add_dot_to_code(b)] + get_ancestors(b) if len(anc_b) > len(anc_a): temp = anc_a anc_a = anc_b anc_b = temp for anc in anc_a: if anc in anc_b: return anc return "" def get_all_codes(with_dots=True): if all_codes_list==[]: for chapter in chapter_list: _add_tree_to_list(chapter) if with_dots: return all_codes_list.copy() else: return all_codes_list_no_dots.copy() def _add_tree_to_list(tree): all_codes_list.append(tree.name) if(len(tree.name)>4 and tree.name[3]=="."): all_codes_list_no_dots.append(tree.name[:3]+tree.name[4:]) else: all_codes_list_no_dots.append(tree.name) for child in tree.children: _add_tree_to_list(child) def get_index(code): if not is_valid_item(code): raise ValueError("The code \""+code+"\" does not exist.") code = _add_dot_to_code(code) if all_codes_list==[]: for chapter in chapter_list: _add_tree_to_list(chapter) if code in code_to_index_dictionary: return code_to_index_dictionary[code] else: i=0 for c in all_codes_list: if c==code: code_to_index_dictionary[code]=i return i else: i=i+1 def remove_dot(code): if all_codes_list==[]: for chapter in chapter_list: _add_tree_to_list(chapter) return all_codes_list_no_dots[get_index(code)] def add_dot(code): if all_codes_list==[]: for chapter in chapter_list: _add_tree_to_list(chapter) return all_codes_list[get_index(code)]
28.157407
89
0.643374
43512cc067e70620f4ec0c95779359cf60eea53b
5,572
py
Python
configs/representation/ssb/ssb_r18_ncg_sgd_cos_50e_r2_2x8x1_k400.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
configs/representation/ssb/ssb_r18_ncg_sgd_cos_50e_r2_2x8x1_k400.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
configs/representation/ssb/ssb_r18_ncg_sgd_cos_50e_r2_2x8x1_k400.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
# model settings temperature = 0.2 with_norm = True query_dim = 128 model = dict( type='SimSiamBaseTracker', backbone=dict( type='ResNet', pretrained=None, depth=18, out_indices=(3, ), # strides=(1, 2, 1, 1), norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, zero_init_residual=True), # cls_head=None, # patch_head=None, img_head=dict( type='SimSiamHead', in_channels=512, norm_cfg=dict(type='SyncBN'), num_projection_fcs=3, projection_mid_channels=512, projection_out_channels=512, num_predictor_fcs=2, predictor_mid_channels=128, predictor_out_channels=512, with_norm=True, loss_feat=dict(type='CosineSimLoss', negative=False), spatial_type='avg')) # model training and testing settings train_cfg = dict(intra_video=False, transpose_temporal=True) test_cfg = dict( precede_frames=20, topk=10, temperature=0.2, strides=(1, 2, 1, 1), out_indices=(2, 3), neighbor_range=24, with_first=True, with_first_neighbor=True, output_dir='eval_results') # dataset settings dataset_type = 'VideoDataset' dataset_type_val = 'DavisDataset' data_prefix = 'data/kinetics400/videos_train' ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt' data_prefix_val = 'data/davis/DAVIS/JPEGImages/480p' anno_prefix_val = 'data/davis/DAVIS/Annotations/480p' data_root_val = 'data/davis/DAVIS' ann_file_val = 'data/davis/DAVIS/ImageSets/davis2017_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='DecordInit'), dict(type='SampleFrames', clip_len=2, frame_interval=8, num_clips=1), # dict(type='DuplicateFrames', times=2), dict(type='DecordDecode'), # dict( # type='RandomResizedCrop', # area_range=(0.2, 1.), # same_across_clip=False, # same_on_clip=False), dict(type='Resize', scale=(224, 224), keep_ratio=False), # dict( # type='Flip', # flip_ratio=0.5, # same_across_clip=False, # same_on_clip=False), # dict( # type='ColorJitter', # brightness=0.4, # contrast=0.4, # saturation=0.4, # hue=0.1, # p=0.8, # same_across_clip=False, # same_on_clip=False), # dict( # type='RandomGrayScale', # p=0.2, # same_across_clip=False, # same_on_clip=False), # dict( # type='RandomGaussianBlur', # p=0.5, # same_across_clip=False, # same_on_clip=False), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict(type='SequentialSampleFrames', frame_interval=1), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 480), keep_ratio=True), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict( type='Collect', keys=['imgs', 'ref_seg_map'], meta_keys=('frame_dir', 'frame_inds', 'original_shape', 'seg_map')), dict(type='ToTensor', keys=['imgs', 'ref_seg_map']) ] data = dict( videos_per_gpu=128, workers_per_gpu=16, val_workers_per_gpu=1, train=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_prefix, pipeline=train_pipeline)), val=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True), test=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True)) # optimizer # optimizer = dict(type='Adam', lr=1e-4) optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False) # lr_config = dict(policy='Fixed') # lr_config = dict( # policy='step', # warmup='linear', # warmup_iters=100, # warmup_ratio=0.001, # step=[1, 2]) total_epochs = 50 checkpoint_config = dict(interval=1) evaluation = dict( interval=1, metrics='davis', key_indicator='feat_1.J&F-Mean', rule='greater') log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), dict( type='WandbLoggerHook', init_kwargs=dict( project='mmaction2', name='{{fileBasenameNoExtension}}', resume=True, tags=['ssb'], dir='wandb/{{fileBasenameNoExtension}}', config=dict( model=model, train_cfg=train_cfg, test_cfg=test_cfg, data=data))), ]) # runtime settings dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] find_unused_parameters = False
30.78453
78
0.61827
ebf5b5c7e4c142c242656d1f859b26eeb4ce462a
5,555
py
Python
GoogleTTS.py
zisti/79
775cce82c67bf45317f235f5dd2696203de3b21f
[ "MIT" ]
110
2015-01-10T14:11:03.000Z
2022-03-25T14:53:56.000Z
GoogleTTS.py
zisti/79
775cce82c67bf45317f235f5dd2696203de3b21f
[ "MIT" ]
4
2015-02-08T21:55:49.000Z
2018-04-25T18:51:52.000Z
GoogleTTS.py
zisti/79
775cce82c67bf45317f235f5dd2696203de3b21f
[ "MIT" ]
44
2015-01-04T23:18:25.000Z
2022-03-25T14:53:58.000Z
#!/usr/bin/python import sys import argparse import re import urllib, urllib2 import time from collections import namedtuple def split_text(input_text, max_length=100): """ Try to split between sentences to avoid interruptions mid-sentence. Failing that, split between words. See split_text_rec """ def split_text_rec(input_text, regexps, max_length=max_length): """ Split a string into substrings which are at most max_length. Tries to make each substring as big as possible without exceeding max_length. Will use the first regexp in regexps to split the input into substrings. If it it impossible to make all the segments less or equal than max_length with a regexp then the next regexp in regexps will be used to split those into subsegments. If there are still substrings who are too big after all regexps have been used then the substrings, those will be split at max_length. Args: input_text: The text to split. regexps: A list of regexps. If you want the separator to be included in the substrings you can add parenthesis around the regular expression to create a group. Eg.: '[ab]' -> '([ab])' Returns: a list of strings of maximum max_length length. """ if(len(input_text) <= max_length): return [input_text] #mistakenly passed a string instead of a list if isinstance(regexps, basestring): regexps = [regexps] regexp = regexps.pop(0) if regexps else '(.{%d})' % max_length text_list = re.split(regexp, input_text) combined_text = [] #first segment could be >max_length combined_text.extend(split_text_rec(text_list.pop(0), regexps, max_length)) for val in text_list: current = combined_text.pop() concat = current + val if(len(concat) <= max_length): combined_text.append(concat) else: combined_text.append(current) #val could be >max_length combined_text.extend(split_text_rec(val, regexps, max_length)) return combined_text return split_text_rec(input_text.replace('\n', ''), ['([\,|\.|;]+)', '( )']) audio_args = namedtuple('audio_args',['language','output']) def audio_extract(input_text='',args=None): # This accepts : # a dict, # an audio_args named tuple # or arg parse object if args is None: args = audio_args(language='en',output=open('output.mp3', 'w')) if type(args) is dict: args = audio_args( language=args.get('language','en'), output=open(args.get('output','output.mp3'), 'w') ) #process input_text into chunks #Google TTS only accepts up to (and including) 100 characters long texts. #Split the text in segments of maximum 100 characters long. combined_text = split_text(input_text) #download chunks and write them to the output file for idx, val in enumerate(combined_text): mp3url = "http://translate.google.com/translate_tts?tl=%s&q=%s&total=%s&idx=%s" % ( args.language, urllib.quote(val), len(combined_text), idx) headers = {"Host": "translate.google.com", "Referer": "http://www.gstatic.com/translate/sound_player2.swf", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) " "AppleWebKit/535.19 (KHTML, like Gecko) " "Chrome/18.0.1025.163 Safari/535.19" } req = urllib2.Request(mp3url, '', headers) sys.stdout.write('.') sys.stdout.flush() if len(val) > 0: try: response = urllib2.urlopen(req) args.output.write(response.read()) time.sleep(.5) except urllib2.URLError as e: print ('%s' % e) args.output.close() print('Saved MP3 to %s' % args.output.name) def text_to_speech_mp3_argparse(): description = 'Google TTS Downloader.' parser = argparse.ArgumentParser(description=description, epilog='tunnel snakes rule') parser.add_argument('-o', '--output', action='store', nargs='?', help='Filename to output audio to', type=argparse.FileType('wb'), default='out.mp3') parser.add_argument('-l', '--language', action='store', nargs='?', help='Language to output text to.', default='en') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('-f', '--file', type=argparse.FileType('r'), help='File to read text from.') group.add_argument('-s', '--string', action='store', nargs='+', help='A string of text to convert to speech.') if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() if __name__ == "__main__": args = text_to_speech_mp3_argparse() if args.file: input_text = args.file.read() if args.string: input_text = ' '.join(map(str, args.string)) audio_extract(input_text=input_text, args=args)
38.576389
91
0.578398
4dc558e78479f2fc07c46b49a21c0c61024a7498
397
py
Python
DjangoKoan/wsgi.py
sarvex/DjangoKoans
a4ba1e787dc508d1706897f26d3e91219ad5d982
[ "0BSD" ]
null
null
null
DjangoKoan/wsgi.py
sarvex/DjangoKoans
a4ba1e787dc508d1706897f26d3e91219ad5d982
[ "0BSD" ]
null
null
null
DjangoKoan/wsgi.py
sarvex/DjangoKoans
a4ba1e787dc508d1706897f26d3e91219ad5d982
[ "0BSD" ]
null
null
null
""" WSGI config for DjangoKoan project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "DjangoKoan.settings") application = get_wsgi_application()
23.352941
78
0.788413
ac66e9927f71bc58680e077b0dd19f9c2c6ce41a
789
py
Python
src/main.py
lukefav/Reinforcement-Learning-Sandbox
0f705e9f0d663594c7169839c55fd8e6b5d01c7b
[ "MIT" ]
null
null
null
src/main.py
lukefav/Reinforcement-Learning-Sandbox
0f705e9f0d663594c7169839c55fd8e6b5d01c7b
[ "MIT" ]
null
null
null
src/main.py
lukefav/Reinforcement-Learning-Sandbox
0f705e9f0d663594c7169839c55fd8e6b5d01c7b
[ "MIT" ]
null
null
null
import argparse from argparse import RawTextHelpFormatter from q_learning.q_learning import QLearning def main(): help_description = "Choose Project:\n" \ "0: QLearning" parser = argparse.ArgumentParser(description="Choose Reinforcement Learning Project", formatter_class=RawTextHelpFormatter) parser.add_argument("project", metavar='p', type=int, help=help_description) project_num = parser.parse_args().project if project_num == 0: print("QLearning Loading...") project = QLearning() print("Running Project.") project.run() else: print(f"Incorrect project number, you entered: {project_num}") if __name__ == "__main__": main()
27.206897
89
0.627376
045617c66a6763adac6a0a732fcb31d244e7bdfb
4,316
py
Python
PhysicsTools/SelectorUtils/python/VIDSelectorValidator.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
PhysicsTools/SelectorUtils/python/VIDSelectorValidator.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
PhysicsTools/SelectorUtils/python/VIDSelectorValidator.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
from __future__ import print_function import md5 import ROOT # load FWLite C++ libraries ROOT.gSystem.Load("libFWCoreFWLite.so") ROOT.gSystem.Load("libDataFormatsFWLite.so") ROOT.FWLiteEnabler.enable() #cms python data types import FWCore.ParameterSet.Config as cms # load FWlite python libraries from DataFormats.FWLite import Handle, Events #hasher= md5.new() # #hasher.update('hello world') # #print hasher.digest() #print hasher.hexdigest() class VIDSelectorValidator: def __init__(self, selector, collection_type, collection_name): self.__hasher = md5.new() self.__selector = selector self.__colltype = collection_type self.__collname = collection_name self.__signalfiles = [] self.__backgroundfiles = [] self.__mixfiles = [] def setSignalFiles(self, files): if not isinstance(files,list): raise Exception('BadFileInput','You need to give "setSignalFiles" a list of strings') self.__signalfiles = files[:] def setBackgroundFiles(self, files): if not isinstance(files,list): raise Exception('BadFileInput','You need to give "setBackgroundFiles" a list of strings') self.__backgroundfiles = files[:] def setMixFiles(self, files): if not isinstance(files,list): raise Exception('BadFileInput','You need to give "setMixFiles" a list of strings') self.__mixfiles = files[:] def runValidation(self): samples = {} samples['signal'] = self.__signalfiles samples['background'] = self.__backgroundfiles samples['mix'] = self.__mixfiles select = self.__selector print('running validation for: %s'%(select.name())) # checksum of the input files if not len(samples['signal'] + samples['background'] + samples['mix']): raise Exception('NoInputFiles','There were no input files given, cannot validate!') for key in sorted(samples.keys()): self.processInputList(samples[key],key) print('input files checksum: %s'%(self.__hasher.hexdigest())) for key in sorted(samples.keys()): if len(samples[key]): local_hash = md5.new() self.processEvents(samples[key],key,local_hash) self.__hasher.update(local_hash.hexdigest()) print('event processing checksum: %s'%(self.__hasher.hexdigest())) self.__hasher.update(select.md5String()) print('total checksum: %s'%(self.__hasher.hexdigest())) def processInputList(self,the_list,name): for item in the_list: self.__hasher.update(item) print('Input %s file: %s'%(name,item)) def processEvents(self,the_list,name,hasher): #data products handle, productLabel = Handle(self.__colltype), self.__collname #now loop over the events in each category events = Events(the_list) n_pass, n_fail = 0,0 sub_cutnames = [] sub_hashes = [] for idstring in repr(self.__selector).split('\n'): if idstring == '': continue sub_cutnames.append(idstring.split()[2]) # gets the cutname sub_hashes.append(md5.new(idstring)) for event in events: event.getByLabel(productLabel,handle) for i,obj in enumerate(handle.product()): if self.__selector(handle.product(),i,event): n_pass += 1 else: n_fail += 1 icut = 0 for idstring in repr(self.__selector).split('\n'): if idstring == '': continue sub_hashes[icut].update(idstring) icut += 1 for sub_hash in sub_hashes: hasher.update(sub_hash.hexdigest()) hasher.update(str(n_pass)) hasher.update(str(n_fail)) print('%s sample pass : fail : hash -> %d : %d : %s'%(name,n_pass,n_fail,hasher.hexdigest())) print('%s sample cut breakdown:'%(name)) for i,sub_hash in enumerate(sub_hashes): print('\t%s hash -> %s'%(sub_cutnames[i],sub_hash.hexdigest()))
35.669421
101
0.596386
71dc823685969f017e26e36c4383e28ba3f8196e
2,172
py
Python
nstcentertainmentbot/helpers/database/spotify_sql.py
TharukRenuja/NSTC-ENTERTAINMENT-BOT
683bf584fa8c87c7249ea462fbffb5b0879b8633
[ "MIT" ]
1
2021-10-04T07:48:47.000Z
2021-10-04T07:48:47.000Z
nstcentertainmentbot/helpers/database/spotify_sql.py
TharukRenuja/NSTC-ENTERTAINMENT-BOT
683bf584fa8c87c7249ea462fbffb5b0879b8633
[ "MIT" ]
null
null
null
nstcentertainmentbot/helpers/database/spotify_sql.py
TharukRenuja/NSTC-ENTERTAINMENT-BOT
683bf584fa8c87c7249ea462fbffb5b0879b8633
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # MIT License # Copyright (c) 2021 Tharuk , This is a part of nstcentertainmentbot # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE import threading from sqlalchemy import Column, Integer, UnicodeText from nstcentertainmentbot.helpers.database import SESSION, BASE class SpotifyCreds(BASE): __tablename__ = "spotifycreds" user_id = Column(Integer, primary_key=True) spotify_id = Column(UnicodeText) spotify_access_token = Column(UnicodeText) spotify_refresh_token = Column(UnicodeText) def __init__( self, user_id, spotify_id=None, spotify_access_token=None, spotify_refresh_token=None, ): self.user_id = user_id self.spotify_id = spotify_id self.spotify_access_token = spotify_access_token self.spotify_refresh_token = spotify_refresh_token SpotifyCreds.__table__.create(checkfirst=True) SPT_INSERTION_LOCK = threading.RLock() def update_creds( user_id, spotify_id=None, spotify_access_token=None, spotify_refresh_token=None ): with SPT_INSERTION_LOCK: sptcreds = SESSION.query(SpotifyCreds).get(user_id) if not sptcreds: sptcreds = SpotifyCreds( user_id, spotify_id, spotify_access_token, spotify_refresh_token ) SESSION.add(sptcreds) SESSION.flush() else: sptcreds.spotify_id = spotify_id sptcreds.spotify_access_token = spotify_access_token sptcreds.spotify_refresh_token = spotify_refresh_token SESSION.commit() def get_sptuser(user_id): try: return SESSION.query(SpotifyCreds).get(user_id) finally: SESSION.close()
31.478261
83
0.710866
49d689e7329299832a2abc18d9c46a87998afd36
3,966
py
Python
nodes/skadilance.py
fryougi/farmbot
739511965cdbcba444fd39235da2dbed84809cba
[ "MIT" ]
1
2020-07-02T18:06:41.000Z
2020-07-02T18:06:41.000Z
nodes/skadilance.py
fryougi/farmbot
739511965cdbcba444fd39235da2dbed84809cba
[ "MIT" ]
null
null
null
nodes/skadilance.py
fryougi/farmbot
739511965cdbcba444fd39235da2dbed84809cba
[ "MIT" ]
1
2020-06-29T04:18:42.000Z
2020-06-29T04:18:42.000Z
# -*- coding: utf-8 -*- """ LSS (2k4) Lancelot YourOwnSkader SupportSkader """ # Adding to the system path is needed # because no longer in parent directory # and I want to run this file as a script import sys, os sys.path.append(os.path.abspath('../')) import farmbot as fb class Farmer_DSS(fb.Farmbot): def __init__(self): fb.Farmbot.__init__(self,'blue','../') def wave1(self): res = self.advancestart() if res < 0: return -1 # Skills selection (may be empty) res = self.useskill(self.xy_skillb1) if res < 0: return -1 res = self.seltarget(self.xy_targeta) if res < 0: return -1 res = self.useskill(self.xy_skillc1) if res < 0: return -1 res = self.seltarget(self.xy_targeta) if res < 0: return -1 res = self.usemcskill(self.xy_mcskill3) if res < 0: return -1 res = self.seltarget(self.xy_targeta) if res < 0: return -1 # Attack res = self.attack() if res < 0: return -1 # Card selection (pick 3) self.usecard(self.xy_npa) self.usecard(self.xy_card2) self.usecard(self.xy_card3) return 0 def wave2(self): res = self.advancewave() if res < 0: return -1 # Skills selection (may be empty) res = self.useskill(self.xy_skilla3) if res < 0: return -1 res = self.useskill(self.xy_skillb2) if res < 0: return -1 res = self.useskill(self.xy_skillb3) if res < 0: return -1 res = self.seltarget(self.xy_targeta) if res < 0: return -1 # Attack res = self.attack() if res < 0: return -1 # Card selection (pick 3) self.usecard(self.xy_npa) self.usecard(self.xy_card2) self.usecard(self.xy_card3) return 0 def wave3(self): res = self.advancewave() if res < 0: return -1 # Skills selection (may be empty) #res = self.useskill(self.xy_skillb2) #if res < 0: # return -1 res = self.useskill(self.xy_skillc2) if res < 0: return -1 res = self.useskill(self.xy_skillc3) if res < 0: return -1 res = self.seltarget(self.xy_targeta) if res < 0: return -1 res = self.usemcskill(self.xy_mcskill1) if res < 0: return -1 res = self.seltarget(self.xy_targeta) if res < 0: return -1 # Attack res = self.attack() if res < 0: return -1 # Card selection (pick 3) self.usecard(self.xy_npa) self.usecard(self.xy_card2) self.usecard(self.xy_card3) # Potential cleanup res = self.cardcleanup(3) if res < 0: return -1 return 0 def farm(self,nruns=1): self.runs = 0 self.refills = 0 self.refilltype = 'gapple' # [rapple,gapple,sapple,bapple] self.supportce = 'first' # [lunchtime,training,lesson,monalisa,eventspecific] self.supportservant = 'skadi' # [waver,skadi] self.saveframe = False while True: # Start quest (set it up for the farmer) # Repeat quest no longer uses the party screen # Battle procedure Wave1 res = self.wave1() if res < 0: return -1 # Battle prodedure Wave2 res = self.wave2() if res < 0: return -1 # Battle prodedure Wave3 res = self.wave3() if res < 0: return -1 # Finished run res = self.finishbattle() if res < 0: return -1 self.runs += 1 # Exit out to main menu if finished if self.runs >= nruns: res = self.norepeatquest() break # Repeat quest if not done (automatic refills) res = self.repeatquestrefill() if res < 0: return -1 # Select new support res = self.selectsupport() if res < 0: return -1 return self.runs def farmalarm(self, nruns=1): res = self.farm(nruns) print(res) self.playalarm() return if __name__ == "__main__": farmer = Farmer_DSS() farmer.activate()
23.607143
81
0.590267
0e8fe5ba20fe2167d28a9366dab7c347244b12a8
2,487
py
Python
deepdrive_zero/experiments/intersection_2_agents_fine_tune_collision_resume_add_comfort1.py
shantanuwadnerkar/deepdrive-zero
3134a5b092a53ff60e4207d7419fd6a19cb5a6e9
[ "MIT" ]
null
null
null
deepdrive_zero/experiments/intersection_2_agents_fine_tune_collision_resume_add_comfort1.py
shantanuwadnerkar/deepdrive-zero
3134a5b092a53ff60e4207d7419fd6a19cb5a6e9
[ "MIT" ]
null
null
null
deepdrive_zero/experiments/intersection_2_agents_fine_tune_collision_resume_add_comfort1.py
shantanuwadnerkar/deepdrive-zero
3134a5b092a53ff60e4207d7419fd6a19cb5a6e9
[ "MIT" ]
null
null
null
import os import sys from deepdrive_zero.experiments import utils from spinup.utils.run_utils import ExperimentGrid from spinup import ppo_pytorch import torch experiment_name = os.path.basename(__file__)[:-3] notes = """Previously, we diverged by forgetting how to avoid collisions. However, g-force/jerk did fall and episode return did rise nicely throughout, so reward did not match well with desired perf (i.e. not to collide). Going to resume from the best trip pct model (before divergence of intersection_2_agents_fine_tune_collision_resume_add_comfort.py) and lower the jerk and gforce penalties. Also going to drop the learning rate and increase steps per epoch to curtail forgetting. Also we were underestimating jerk by 60x and it was already 10x higher on average than g-force, so this is a crazy amount of jerk #1, but #2 we need to decrease jerk penalty by a lot to not dominate reward.""" env_config = dict( env_name='deepdrive-2d-intersection-w-gs-allow-decel-v0', is_intersection_map=True, expect_normalized_action_deltas=False, jerk_penalty_coeff=0.10 / (60*10), # dropped from 0.10, see notes gforce_penalty_coeff=0.031, collision_penalty_coeff=1, end_on_harmful_gs=False, incent_win=True, constrain_controls=False, ) net_config = dict( hidden_units=(256, 256), activation=torch.nn.Tanh ) eg = ExperimentGrid(name=experiment_name) eg.add('env_name', env_config['env_name'], '', False) # eg.add('seed', 0) eg.add('resume', '/home/c2/src/tmp/spinningup/data/intersection_2_agents_fine_tune_collision_resume_add_comfort/intersection_2_agents_fine_tune_collision_resume_add_comfort_s0_2020_03-13_15-24.07/best_trip_pct/2020_03-13_16-18.59') eg.add('reinitialize_optimizer_on_resume', True) eg.add('pi_lr', 3e-6) # doesn't seem to have an effect, but playing it safe and lowering learning rate since we're not restoring adam rates eg.add('vf_lr', 1e-5) # doesn't seem to have an effect, but playing it safe and lowering learning rate since we're not restoring adam rates eg.add('epochs', 8000) eg.add('steps_per_epoch', 8000) eg.add('ac_kwargs:hidden_sizes', net_config['hidden_units'], 'hid') eg.add('ac_kwargs:activation', net_config['activation'], '') eg.add('notes', notes, '') eg.add('run_filename', os.path.realpath(__file__), '') eg.add('env_config', env_config, '') def train(): eg.run(ppo_pytorch) if __name__ == '__main__': utils.run(train_fn=train, env_config=env_config, net_config=net_config)
42.87931
231
0.7692
eec9d821076d4e657808a530fe841598fb6097ee
3,883
py
Python
datacube/ui/common.py
Kirill888/datacube-core
996b395e15f975decb77c0ca9fa0555177674b2f
[ "Apache-2.0" ]
2
2019-10-24T15:29:54.000Z
2019-10-24T15:29:58.000Z
datacube/ui/common.py
Kirill888/datacube-core
996b395e15f975decb77c0ca9fa0555177674b2f
[ "Apache-2.0" ]
2
2021-03-26T00:37:36.000Z
2021-03-31T20:05:01.000Z
datacube/ui/common.py
Kirill888/datacube-core
996b395e15f975decb77c0ca9fa0555177674b2f
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 """ Common methods for UI code. """ from pathlib import Path from typing import Union from toolz.functoolz import identity from datacube.utils import read_documents, InvalidDocException, SimpleDocNav, is_supported_document_type, is_url def get_metadata_path(possible_path: Union[str, Path]): """ Find a metadata path for a given input/dataset path. Needs to handle local files as well as remote URLs :rtype: str """ # We require exact URLs, lets skip any sort of fancy investigation and mapping if isinstance(possible_path, str) and is_url(possible_path): return possible_path dataset_path = Path(possible_path) # They may have given us a metadata file directly. if dataset_path.is_file() and is_supported_document_type(dataset_path): return dataset_path # Otherwise there may be a sibling file with appended suffix '.agdc-md.yaml'. expected_name = dataset_path.parent.joinpath('{}.agdc-md'.format(dataset_path.name)) found = _find_any_metadata_suffix(expected_name) if found: return found # Otherwise if it's a directory, there may be an 'agdc-metadata.yaml' file describing all contained datasets. if dataset_path.is_dir(): expected_name = dataset_path.joinpath('agdc-metadata') found = _find_any_metadata_suffix(expected_name) if found: return found raise ValueError('No metadata found for input %r' % dataset_path) def _find_any_metadata_suffix(path): """ Find any supported metadata files that exist with the given file path stem. (supported suffixes are tried on the name) Eg. searching for '/tmp/ga-metadata' will find if any files such as '/tmp/ga-metadata.yaml' or '/tmp/ga-metadata.json', or '/tmp/ga-metadata.yaml.gz' etc that exist: any suffix supported by read_documents() :type path: pathlib.Path """ existing_paths = list(filter(is_supported_document_type, path.parent.glob(path.name + '*'))) if not existing_paths: return None if len(existing_paths) > 1: raise ValueError('Multiple matched metadata files: {!r}'.format(existing_paths)) return existing_paths[0] def ui_path_doc_stream(paths, logger=None, uri=True, raw=False): """Given a stream of URLs, or Paths that could be directories, generate a stream of (path, doc) tuples. For every path: 1. If directory find the metadata file or log error if not found 2. Load all documents from that path and return one at a time (parsing errors are logged, but processing should continue) :param paths: Filesystem paths :param logger: Logger to use to report errors :param uri: If True return path in uri format, else return it as filesystem path :param raw: By default docs are wrapped in :class:`SimpleDocNav`, but you can instead request them to be raw dictionaries """ def on_error1(p, e): if logger is not None: logger.error('No supported metadata docs found for dataset %s', str(p)) def on_error2(p, e): if logger is not None: logger.error('Failed reading documents from %s', str(p)) yield from _path_doc_stream(_resolve_doc_files(paths, on_error=on_error1), on_error=on_error2, uri=uri, raw=raw) def _resolve_doc_files(paths, on_error): for p in paths: try: yield get_metadata_path(p) except ValueError as e: on_error(p, e) def _path_doc_stream(files, on_error, uri=True, raw=False): """See :func:`ui_path_doc_stream` for documentation""" maybe_wrap = identity if raw else SimpleDocNav for fname in files: try: for p, doc in read_documents(fname, uri=uri): yield p, maybe_wrap(doc) except InvalidDocException as e: on_error(fname, e)
32.630252
115
0.68993
56f5dbc9ef3ce178368b9a59a6cb1a180da3b181
5,003
py
Python
datamax_printer/datamax_printer.py
inNETMonitoring/datamax-python-adapter
ca47992a3a1f30577a90e6ea01d5f0aae79f8dfb
[ "MIT" ]
1
2019-05-20T18:48:16.000Z
2019-05-20T18:48:16.000Z
datamax_printer/datamax_printer.py
inNETMonitoring/datamax-python-adapter
ca47992a3a1f30577a90e6ea01d5f0aae79f8dfb
[ "MIT" ]
2
2019-06-19T09:36:23.000Z
2021-10-20T22:33:49.000Z
datamax_printer/datamax_printer.py
inNETMonitoring/datamax-python-adapter
ca47992a3a1f30577a90e6ea01d5f0aae79f8dfb
[ "MIT" ]
3
2019-06-18T12:34:19.000Z
2021-03-17T12:57:39.000Z
import socket class DPLPrinter: SOH = '\x01' STX = '\x02' command_mode = True def __init__(self, printer_ip, printer_port=9100): self.printer = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.connection_info = (printer_ip, printer_port) self.printer.connect(self.connection_info) def __send_to_printer(self, command: str): print('Sent: ' + command) return self.printer.send(command.encode('ASCII')) def __adjust_number_length(self, value: str, length: int): while len(value) < length: value = '0' + value return value def start_document(self): """ Sets the printer into label formating mode. Call this function before using set_label() or set_qr_code() :return: True if successful, False otherwise """ if not self.command_mode: raise RuntimeError('Already in label formatting mode') success = False if self.command_mode and self.__send_to_printer(f'{self.STX}L') == 2: self.__send_to_printer('D11\x0D') self.command_mode = False success = True return success def configure(self, border_bottom=0, imperial=False): """ :param border_bottom: The distance (in 0.1mm) from the bottom for labels. This value will be added to the y-coordinate every time you specify a label. If a value bellow 50 is passed, it is reset to the default value (the default values can be found in the DPL Guide). :param imperial: For those who like no SI measurements it is possible to set the printer to imperial mode. If this flag is true, al distances are passed in inches/100. :return: """ if not self.command_mode: raise RuntimeError('Cannot configure printer label formatting mode') if imperial: self.__send_to_printer(f'{self.STX}n') else: self.__send_to_printer(f'{self.STX}m') sop = str(border_bottom) while len(sop) < 4: sop = '0' + sop self.__send_to_printer(f'{self.STX}O{sop}') def set_label(self, x_pos, y_pos, text, font_id, font_size, rotation=0): """ :param x_pos: Position of the text label on the X-Axis (in 0.1mm) :param y_pos: Position of the text label on the Y-Axis (in 0.1mm) :param text: The text to print :param font_id: The font ID (1 - 9). Please refer to the DPL Manual Appendix C for examples. :param font_size: If you are a monospaced font (1-8) this value is a tuple containig the factors to multiply width and the height (width_multiplier, height_multiplier). Values 1-9 are supported. In case you use the CG Triumvirate font (ID = 9) this value is the font size in pt. :return: Number of bytes sent to the printer """ if self.command_mode: raise RuntimeError('Cannot print label in command mode') rot_value = 1 # default = no rotation if rotation == 90: rot_value = 2 elif rotation == 180: rot_value = 3 elif rotation == 270: rot_value = 4 # Adjust lengths x_pos = self.__adjust_number_length(str(x_pos), 4) y_pos = self.__adjust_number_length(str(y_pos), 4) size = '000' width_multiplier = 1 height_multiplier = 1 if font_id == 9: size = 'A' + self.__adjust_number_length(str(font_size), 2) else: if len(font_size) == 2: width_multiplier = font_size[0] height_multiplier = font_size[1] data = str(rot_value) + str(font_id) + str(width_multiplier) + str(height_multiplier) + size + y_pos + x_pos + \ text + '\x0D' return self.__send_to_printer(data) def set_qr_code(self, x_pos, y_pos, data, size=8): """ Generates a QR-Code. :param x_pos: Position of the QR-Code on the X-Axis (in 0.1mm) :param y_pos: Position of the QR-Code on the Y-Axis (in 0.1mm) :param data: Data to be encoded in the QR-Code. (Numeric Data, Alphanumeric Data, 8-bit byte data or Kanji characters) :param size: Size of 1 dot in QR-Code (in 0.1mm) (1-37) :return: Number of bytes sent to the printer """ if self.command_mode: raise RuntimeError('Cannot print qr-code in command mode') x_pos = str(x_pos) while len(x_pos) < 4: x_pos = '0' + x_pos y_pos = str(y_pos) while len(y_pos) < 4: y_pos = '0' + y_pos if size > 9: size = chr(ord('A') + (size - 10)) command = f'1W1d{size}{size}000{y_pos}{x_pos}{data}\x0D\x0D' return self.__send_to_printer(command) def print(self): self.__send_to_printer('E') self.command_mode = True # After sending E, the printer switches bach to command mode
38.782946
120
0.608035
e0ea5ef69acc96ddbf81d992d4bd0d6e4a0f3c53
1,427
py
Python
python/misc/collatz_conjecture.py
christopher-burke/warmups
140c96ada87ec5e9faa4622504ddee18840dce4a
[ "MIT" ]
null
null
null
python/misc/collatz_conjecture.py
christopher-burke/warmups
140c96ada87ec5e9faa4622504ddee18840dce4a
[ "MIT" ]
2
2022-03-10T03:49:14.000Z
2022-03-14T00:49:54.000Z
python/misc/collatz_conjecture.py
christopher-burke/warmups
140c96ada87ec5e9faa4622504ddee18840dce4a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Collatz Conjecture. A Collatz sequence is generated like this. Start with a positive number. If it's even, halve it. If it's odd, multiply it by 3 and add one. Repeat the process with the resulting number. The Collatz Conjecture is that every sequence eventually reaches 1 (continuing past 1 just results in an endless repeat of the sequence (4, 2, 1)). The length of the sequence from starting number to 1 varies widely. Create a function that takes a number as an argument and returns a tuple of two elements — the number of steps in the Collatz sequence of the number, and the highest number reached. Source: https://edabit.com/challenge/Z8REdTE5P57f4q7dK """ def collatz_sequence(n: int): """Find the Collatz sequence of n.""" CACHE = {1: [1]} if n in CACHE: return CACHE[n] next_ = int(n // 2) if n % 2 == 0 else int(3 * n + 1) CACHE[n] = [n] + collatz_sequence(next_) return CACHE[n] def collatz(n: int): """Take number n and calculate steps and highest Collatz sequence.""" sequence = collatz_sequence(n) return (len(sequence), max(sequence),) def main(): """Run sample functions. Do not import.""" assert collatz(3) == (8, 16) assert collatz(7) == (17, 52) assert collatz(17) == (13, 52) assert collatz(42) == (9, 64) assert collatz(33) == (27, 100) print('Passed.') if __name__ == "__main__": main()
27.980392
75
0.673441
c3c3b36b48c0af9437451e9c88202a4b3f891459
1,712
py
Python
src/autoks/core/prior.py
lschlessinger1/MS-project
e1c02d1d1a7a2480ff6f14f30625dc42ee3417e3
[ "MIT" ]
2
2019-04-29T15:18:11.000Z
2019-12-13T18:58:40.000Z
src/autoks/core/prior.py
lschlessinger1/MS-project
e1c02d1d1a7a2480ff6f14f30625dc42ee3417e3
[ "MIT" ]
275
2019-02-19T22:59:39.000Z
2020-10-03T08:56:08.000Z
src/autoks/core/prior.py
lschlessinger1/MS-project
e1c02d1d1a7a2480ff6f14f30625dc42ee3417e3
[ "MIT" ]
null
null
null
import importlib from typing import Type from src.autoks.backend.prior import RawPriorType, PRIOR_DICT from src.evalg.serialization import Serializable class PriorDist(Serializable): """Wrapper for backend prior.""" def __init__(self, raw_prior_cls: Type[RawPriorType], raw_prior_args: dict): self._raw_prior_cls = raw_prior_cls self._raw_prior_args = raw_prior_args self.raw_prior = self._raw_prior_cls(**self._raw_prior_args) @classmethod def from_prior_str(cls, prior_name: str, raw_prior_args: dict): return cls(PRIOR_DICT[prior_name], raw_prior_args) def to_dict(self) -> dict: """Get a dictionary representation of the object. This dict representation includes metadata such as the object's module and class name. :return: """ input_dict = super().to_dict() input_dict["raw_prior_cls"] = self.raw_prior.__class__.__name__ input_dict["raw_prior_module"] = self.raw_prior.__module__ input_dict["raw_prior_args"] = self._raw_prior_args return input_dict @classmethod def _format_input_dict(cls, input_dict: dict) -> dict: input_dict = super()._format_input_dict(input_dict) class_name = input_dict.pop("raw_prior_cls") module_name = input_dict.pop("raw_prior_module") module = importlib.import_module(module_name) class_ = getattr(module, class_name) input_dict["raw_prior_cls"] = class_ return input_dict def __eq__(self, other): if isinstance(other, PriorDist): return self._raw_prior_cls == other._raw_prior_cls and self._raw_prior_args == other._raw_prior_args return False
35.666667
112
0.702687