hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
720badc8342a8777d1052bba1e6430c44f634e25
1,809
py
Python
aita/auth.py
ze-lin/AITA
0f2fe4e630c37fcc566a54621880b78ec67eefa6
[ "MIT" ]
null
null
null
aita/auth.py
ze-lin/AITA
0f2fe4e630c37fcc566a54621880b78ec67eefa6
[ "MIT" ]
null
null
null
aita/auth.py
ze-lin/AITA
0f2fe4e630c37fcc566a54621880b78ec67eefa6
[ "MIT" ]
1
2020-12-29T19:45:28.000Z
2020-12-29T19:45:28.000Z
import datetime, base64, functools from flask import Blueprint, g, request, session, jsonify, render_template from aita.db import get_collection bp = Blueprint('auth', __name__, url_prefix='/auth') @bp.route('/signup', methods=['POST']) def sign_up(): MEMBER = get_collection('member') result = MEMBER.find_one({'usr': request.form['usr']}) if result: return 'Taken' else: image = request.files['file'] document = { 'usr': request.form['usr'], 'pwd': request.form['pwd'], 'role': request.form['role'], 'date': str(datetime.date.today()), 'pic': base64.encodestring(image.read()) } MEMBER.insert_one(document) return 'Success!' @bp.route('/signin', methods=['POST']) def sign_in(): result_filter = { 'usr': request.form['usr'], 'pwd': request.form['pwd'] } MEMBER = get_collection('member') result = MEMBER.find_one(result_filter) if result: session.clear() # What is a session? And how does cookie work in this? session['usr'] = result['usr'] return jsonify(status=True, role=result['role']) else: return jsonify(status=False) @bp.before_app_request def load_logged_in_user(): usr_id = session.get('usr') if usr_id is None: g.usr = None else: MEMBER = get_collection('member') result = MEMBER.find_one({'usr': usr_id}) result.pop('pwd') g.usr = result @bp.route('/logout', methods=['GET']) def logout(): session.clear() return 'Success!' def login_required(view): @functools.wraps(view) def wrapped_view(**kwargs): if g.usr is None: return 'Invalid User' return view(**kwargs) return wrapped_view
24.780822
78
0.595909
4c0809bfbc5bbe4cc151050f60a215fb3ff072dd
4,940
py
Python
library/k8s_v1_component_status_list.py
ansible/ansible-kubernetes-modules-
b5c7a85de6173c2f6141f19a130ff37b1fdafbf6
[ "Apache-2.0" ]
91
2017-03-23T03:46:43.000Z
2021-06-03T18:30:03.000Z
library/k8s_v1_component_status_list.py
ansible/ansible-kubernetes-modules-
b5c7a85de6173c2f6141f19a130ff37b1fdafbf6
[ "Apache-2.0" ]
28
2017-06-02T18:21:13.000Z
2020-01-29T22:33:05.000Z
library/k8s_v1_component_status_list.py
ansible/ansible-kubernetes-modules-
b5c7a85de6173c2f6141f19a130ff37b1fdafbf6
[ "Apache-2.0" ]
40
2017-03-23T03:46:45.000Z
2022-02-01T14:29:21.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- from ansible.module_utils.k8s_common import KubernetesAnsibleModule, KubernetesAnsibleException DOCUMENTATION = ''' module: k8s_v1_component_status_list short_description: Kubernetes ComponentStatusList description: - Retrieve a list of component_status. List operations provide a snapshot read of the underlying objects, returning a resource_version representing a consistent version of the listed objects. version_added: 2.3.0 author: OpenShift (@openshift) options: api_key: description: - Token used to connect to the API. cert_file: description: - Path to a certificate used to authenticate with the API. type: path context: description: - The name of a context found in the Kubernetes config file. debug: description: - Enable debug output from the OpenShift helper. Logging info is written to KubeObjHelper.log default: false type: bool force: description: - If set to C(True), and I(state) is C(present), an existing object will updated, and lists will be replaced, rather than merged. default: false type: bool host: description: - Provide a URL for acessing the Kubernetes API. key_file: description: - Path to a key file used to authenticate with the API. type: path kubeconfig: description: - Path to an existing Kubernetes config file. If not provided, and no other connection options are provided, the openshift client will attempt to load the default configuration file from I(~/.kube/config.json). type: path password: description: - Provide a password for connecting to the API. Use in conjunction with I(username). ssl_ca_cert: description: - Path to a CA certificate used to authenticate with the API. type: path username: description: - Provide a username for connecting to the API. verify_ssl: description: - Whether or not to verify the API server's SSL certificates. type: bool requirements: - kubernetes == 4.0.0 ''' EXAMPLES = ''' ''' RETURN = ''' api_version: description: Requested API version type: string component_status_list: type: complex returned: on success contains: api_version: description: - APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. type: str items: description: - List of ComponentStatus objects. type: list contains: api_version: description: - APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. type: str conditions: description: - List of component conditions observed type: list contains: error: description: - Condition error code for a component. For example, a health check error code. type: str message: description: - Message about the condition for a component. For example, information about a health check. type: str status: description: - 'Status of the condition for a component. Valid values for "Healthy": "True", "False", or "Unknown".' type: str type: description: - 'Type of condition for a component. Valid value: "Healthy"' type: str kind: description: - Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. type: str metadata: description: - Standard object's metadata. type: complex kind: description: - Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. type: str metadata: description: - Standard list metadata. type: complex ''' def main(): try: module = KubernetesAnsibleModule('component_status_list', 'v1') except KubernetesAnsibleException as exc: # The helper failed to init, so there is no module object. All we can do is raise the error. raise Exception(exc.message) try: module.execute_module() except KubernetesAnsibleException as exc: module.fail_json(msg="Module failed!", error=str(exc)) if __name__ == '__main__': main()
31.265823
100
0.652632
6a434cb0184d36c03e7163fa656314a95b70e8c3
5,183
py
Python
backend/models.py
telemahos/decaf
b891f937b176bcf0edb0b0d99b8fd1c87eac1996
[ "Apache-2.0" ]
null
null
null
backend/models.py
telemahos/decaf
b891f937b176bcf0edb0b0d99b8fd1c87eac1996
[ "Apache-2.0" ]
null
null
null
backend/models.py
telemahos/decaf
b891f937b176bcf0edb0b0d99b8fd1c87eac1996
[ "Apache-2.0" ]
null
null
null
from sqlalchemy import Column, Boolean, Integer, String, ForeignKey, Date, Float from sqlalchemy.orm import relationship from .database import Base class Notes(Base): __tablename__ = 'notes' id = Column(Integer, primary_key=True, index=True) date = Column(Date, index=True) title = Column(String, index = True) body = Column(String, index = True) tags = Column(String, index = True) active = Column(Boolean, default=False) author_id = Column(Integer,ForeignKey("users.id")) class Blog(Base): __tablename__ = 'blogs' id = Column(Integer, primary_key=True, index=True) date = Column(Date, index=True) title = Column(String, index = True) body = Column(String, index = True) tags = Column(String, index = True) active = Column(Boolean, default=False) author_id = Column(Integer,ForeignKey("users.id")) owner = relationship("User", back_populates="the_blogs") class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True, index=True) name = Column(String, index=True) email = Column(String, index=True) password = Column(String) the_blogs = relationship("Blog", back_populates="owner") class Income_old(Base): __tablename__ = 'income_old' id = Column(Integer, primary_key=True, index=True) date = Column(Date, index=True) z_count = Column(Integer) early_income = Column(Float) late_income = Column(Float) notes = Column(String) class Outcome(Base): __tablename__ = 'outcome' id = Column(Integer, primary_key=True, index=True) date = Column(Date, index=True) description = Column(String, index=True) invoice_number = Column(String) cost = Column(Float) extra_cost = Column(Float) tax_perc = Column(Integer) tax_perc2 = Column(Integer) supplier_id = Column(Integer) staff_id = Column(Integer) fixed_cost_id = Column(Integer) # supplier_id = Column(Integer, ForeignKey("suppliers.id")) # staff_id = Column(Integer, ForeignKey("staff.id")) is_variable_cost = Column(Boolean(), default=False) is_fix_cost = Column(Boolean(), default=False) is_purchase_cost = Column(Boolean(), default=False) is_salary_cost = Column(Boolean(), default=False) is_insurance_cost = Column(Boolean(), default=False) is_misc_cost = Column(Boolean(), default=False) payment_way = Column(String) is_paid = Column(Boolean(), default=False) outcome_notes = Column(String) # the_supplier = relationship("Suppliers", back_populates="the_outcome") # the_staff = relationship("Staff", back_populates="the_outcome") class OutcomeDetails(Base): __tablename__ = 'outcome_details' id = Column(Integer, primary_key=True, index=True) # date = Column(Date, index=True) outcome_id = Column(Integer, ForeignKey("outcome.id"), index=True, nullable=False) product_name = Column(String) product_description = Column(String) price_per = Column(Float) amount = Column(Integer) tax = Column(Integer) notes = Column(String) class FixedCost(Base): __tablename__ = 'fixed_cost' id = Column(Integer, primary_key=True, index=True) name = Column(String) class Suppliers(Base): __tablename__ = 'suppliers' id = Column(Integer, primary_key=True, index=True) company_name = Column(String) responsible = Column(String) address = Column(String) telephone = Column(String) email = Column(String) payment_way = Column(String) notes = Column(String) # the_outcome = relationship("Outcome", back_populates="the_supplier") class Staff(Base): __tablename__ = 'staff' id = Column(Integer, primary_key=True, index=True) name = Column(String) position = Column(String) active = Column(Boolean(), default=False) daily_salary = Column(Float) insurance = Column(Float) notes = Column(String) # the_outcome = relationship("Outcome", back_populates="the_staff") # income = relationship("Income", back_populates="staff") class Shift(Base): __tablename__ = 'shift' id = Column(Integer, primary_key=True, index=True) service_id_1 = Column(Integer) barman_id_1 = Column(Integer) service_id_2 = Column(Integer) barman_id_2 = Column(Integer) the_income = relationship("Income", back_populates="the_shift") class Income(Base): __tablename__ = 'income' id = Column(Integer, primary_key=True, index=True) date = Column(Date, index=True) service_income_1 = Column(Float) service_income_2 = Column(Float) bar_income_1 = Column(Float) bar_income_2 = Column(Float) pos = Column(Float, default=0.0) z_count = Column(Integer, default=0.0) vat = Column(Float, default=0.0) waitress_1 = Column(String) waitress_2 = Column(String) barman_1 = Column(String) barman_2 = Column(String) notes = Column(String) shift_id = Column( String, ForeignKey('shift.id'), nullable=False) # staff_id = Column('staff_id', Integer(), ForeignKey('staff.id'), nullable=False) # staff = relationship("Staff", back_populates="income") the_shift = relationship("Shift", back_populates="the_income")
35.258503
86
0.693807
93ef979cf96b2d1ec5a23232a6f8671378363248
35,277
py
Python
nova/conductor/manager.py
larsbutler/nova
fb190f30a911658d8b0c4deaf43cbb8c9e35b672
[ "Apache-2.0" ]
null
null
null
nova/conductor/manager.py
larsbutler/nova
fb190f30a911658d8b0c4deaf43cbb8c9e35b672
[ "Apache-2.0" ]
null
null
null
nova/conductor/manager.py
larsbutler/nova
fb190f30a911658d8b0c4deaf43cbb8c9e35b672
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Handles database requests from other nova services.""" import copy from oslo_config import cfg from oslo_log import log as logging import oslo_messaging as messaging from oslo_utils import excutils import six from nova.compute import rpcapi as compute_rpcapi from nova.compute import task_states from nova.compute import utils as compute_utils from nova.compute.utils import wrap_instance_event from nova.compute import vm_states from nova.conductor.tasks import live_migrate from nova.conductor.tasks import migrate from nova.db import base from nova import exception from nova.i18n import _, _LE, _LI, _LW from nova import image from nova import manager from nova import network from nova import objects from nova.objects import base as nova_object from nova import rpc from nova.scheduler import client as scheduler_client from nova.scheduler import utils as scheduler_utils from nova import servicegroup from nova import utils LOG = logging.getLogger(__name__) CONF = cfg.CONF class ConductorManager(manager.Manager): """Mission: Conduct things. The methods in the base API for nova-conductor are various proxy operations performed on behalf of the nova-compute service running on compute nodes. Compute nodes are not allowed to directly access the database, so this set of methods allows them to get specific work done without locally accessing the database. The nova-conductor service also exposes an API in the 'compute_task' namespace. See the ComputeTaskManager class for details. """ target = messaging.Target(version='3.0') def __init__(self, *args, **kwargs): super(ConductorManager, self).__init__(service_name='conductor', *args, **kwargs) self.compute_task_mgr = ComputeTaskManager() self.additional_endpoints.append(self.compute_task_mgr) # NOTE(hanlind): This can be removed in version 4.0 of the RPC API def provider_fw_rule_get_all(self, context): # NOTE(hanlind): Simulate an empty db result for compat reasons. return [] def _object_dispatch(self, target, method, args, kwargs): """Dispatch a call to an object method. This ensures that object methods get called and any exception that is raised gets wrapped in an ExpectedException for forwarding back to the caller (without spamming the conductor logs). """ try: # NOTE(danms): Keep the getattr inside the try block since # a missing method is really a client problem return getattr(target, method)(*args, **kwargs) except Exception: raise messaging.ExpectedException() def object_class_action_versions(self, context, objname, objmethod, object_versions, args, kwargs): objclass = nova_object.NovaObject.obj_class_from_name( objname, object_versions[objname]) args = tuple([context] + list(args)) result = self._object_dispatch(objclass, objmethod, args, kwargs) # NOTE(danms): The RPC layer will convert to primitives for us, # but in this case, we need to honor the version the client is # asking for, so we do it before returning here. return (result.obj_to_primitive( target_version=object_versions[objname], version_manifest=object_versions) if isinstance(result, nova_object.NovaObject) else result) def object_action(self, context, objinst, objmethod, args, kwargs): """Perform an action on an object.""" oldobj = objinst.obj_clone() result = self._object_dispatch(objinst, objmethod, args, kwargs) updates = dict() # NOTE(danms): Diff the object with the one passed to us and # generate a list of changes to forward back for name, field in objinst.fields.items(): if not objinst.obj_attr_is_set(name): # Avoid demand-loading anything continue if (not oldobj.obj_attr_is_set(name) or getattr(oldobj, name) != getattr(objinst, name)): updates[name] = field.to_primitive(objinst, name, getattr(objinst, name)) # This is safe since a field named this would conflict with the # method anyway updates['obj_what_changed'] = objinst.obj_what_changed() return updates, result def object_backport_versions(self, context, objinst, object_versions): target = object_versions[objinst.obj_name()] LOG.debug('Backporting %(obj)s to %(ver)s with versions %(manifest)s', {'obj': objinst.obj_name(), 'ver': target, 'manifest': ','.join( ['%s=%s' % (name, ver) for name, ver in object_versions.items()])}) return objinst.obj_to_primitive(target_version=target, version_manifest=object_versions) def reset(self): objects.Service.clear_min_version_cache() class ComputeTaskManager(base.Base): """Namespace for compute methods. This class presents an rpc API for nova-conductor under the 'compute_task' namespace. The methods here are compute operations that are invoked by the API service. These methods see the operation to completion, which may involve coordinating activities on multiple compute nodes. """ target = messaging.Target(namespace='compute_task', version='1.15') def __init__(self): super(ComputeTaskManager, self).__init__() self.compute_rpcapi = compute_rpcapi.ComputeAPI() self.image_api = image.API() self.network_api = network.API() self.servicegroup_api = servicegroup.API() self.scheduler_client = scheduler_client.SchedulerClient() self.notifier = rpc.get_notifier('compute', CONF.host) def reset(self): LOG.info(_LI('Reloading compute RPC API')) compute_rpcapi.LAST_VERSION = None self.compute_rpcapi = compute_rpcapi.ComputeAPI() # TODO(tdurakov): remove `live` parameter here on compute task api RPC # version bump to 2.x @messaging.expected_exceptions( exception.NoValidHost, exception.ComputeServiceUnavailable, exception.ComputeHostNotFound, exception.InvalidHypervisorType, exception.InvalidCPUInfo, exception.UnableToMigrateToSelf, exception.DestinationHypervisorTooOld, exception.InvalidLocalStorage, exception.InvalidSharedStorage, exception.HypervisorUnavailable, exception.InstanceInvalidState, exception.MigrationPreCheckError, exception.MigrationPreCheckClientException, exception.LiveMigrationWithOldNovaNotSupported, exception.UnsupportedPolicyException) @wrap_instance_event(prefix='conductor') def migrate_server(self, context, instance, scheduler_hint, live, rebuild, flavor, block_migration, disk_over_commit, reservations=None, clean_shutdown=True, request_spec=None): if instance and not isinstance(instance, nova_object.NovaObject): # NOTE(danms): Until v2 of the RPC API, we need to tolerate # old-world instance objects here attrs = ['metadata', 'system_metadata', 'info_cache', 'security_groups'] instance = objects.Instance._from_db_object( context, objects.Instance(), instance, expected_attrs=attrs) # NOTE: Remove this when we drop support for v1 of the RPC API if flavor and not isinstance(flavor, objects.Flavor): # Code downstream may expect extra_specs to be populated since it # is receiving an object, so lookup the flavor to ensure this. flavor = objects.Flavor.get_by_id(context, flavor['id']) if live and not rebuild and not flavor: self._live_migrate(context, instance, scheduler_hint, block_migration, disk_over_commit, request_spec) elif not live and not rebuild and flavor: instance_uuid = instance.uuid with compute_utils.EventReporter(context, 'cold_migrate', instance_uuid): self._cold_migrate(context, instance, flavor, scheduler_hint['filter_properties'], reservations, clean_shutdown, request_spec) else: raise NotImplementedError() def _cold_migrate(self, context, instance, flavor, filter_properties, reservations, clean_shutdown, request_spec): image = utils.get_image_from_system_metadata( instance.system_metadata) # NOTE(sbauza): If a reschedule occurs when prep_resize(), then # it only provides filter_properties legacy dict back to the # conductor with no RequestSpec part of the payload. if not request_spec: # Make sure we hydrate a new RequestSpec object with the new flavor # and not the nested one from the instance request_spec = objects.RequestSpec.from_components( context, instance.uuid, image, flavor, instance.numa_topology, instance.pci_requests, filter_properties, None, instance.availability_zone) else: # NOTE(sbauza): Resizes means new flavor, so we need to update the # original RequestSpec object for make sure the scheduler verifies # the right one and not the original flavor request_spec.flavor = flavor task = self._build_cold_migrate_task(context, instance, flavor, request_spec, reservations, clean_shutdown) # TODO(sbauza): Provide directly the RequestSpec object once # _set_vm_state_and_notify() accepts it legacy_spec = request_spec.to_legacy_request_spec_dict() try: task.execute() except exception.NoValidHost as ex: vm_state = instance.vm_state if not vm_state: vm_state = vm_states.ACTIVE updates = {'vm_state': vm_state, 'task_state': None} self._set_vm_state_and_notify(context, instance.uuid, 'migrate_server', updates, ex, legacy_spec) # if the flavor IDs match, it's migrate; otherwise resize if flavor.id == instance.instance_type_id: msg = _("No valid host found for cold migrate") else: msg = _("No valid host found for resize") raise exception.NoValidHost(reason=msg) except exception.UnsupportedPolicyException as ex: with excutils.save_and_reraise_exception(): vm_state = instance.vm_state if not vm_state: vm_state = vm_states.ACTIVE updates = {'vm_state': vm_state, 'task_state': None} self._set_vm_state_and_notify(context, instance.uuid, 'migrate_server', updates, ex, legacy_spec) except Exception as ex: with excutils.save_and_reraise_exception(): updates = {'vm_state': instance.vm_state, 'task_state': None} self._set_vm_state_and_notify(context, instance.uuid, 'migrate_server', updates, ex, legacy_spec) # NOTE(sbauza): Make sure we persist the new flavor in case we had # a successful scheduler call if and only if nothing bad happened if request_spec.obj_what_changed(): request_spec.save() def _set_vm_state_and_notify(self, context, instance_uuid, method, updates, ex, request_spec): scheduler_utils.set_vm_state_and_notify( context, instance_uuid, 'compute_task', method, updates, ex, request_spec) def _cleanup_allocated_networks( self, context, instance, requested_networks): try: # If we were told not to allocate networks let's save ourselves # the trouble of calling the network API. if not (requested_networks and requested_networks.no_allocate): self.network_api.deallocate_for_instance( context, instance, requested_networks=requested_networks) except Exception: msg = _LE('Failed to deallocate networks') LOG.exception(msg, instance=instance) return instance.system_metadata['network_allocated'] = 'False' try: instance.save() except exception.InstanceNotFound: # NOTE: It's possible that we're cleaning up the networks # because the instance was deleted. If that's the case then this # exception will be raised by instance.save() pass @wrap_instance_event(prefix='conductor') def live_migrate_instance(self, context, instance, scheduler_hint, block_migration, disk_over_commit, request_spec): self._live_migrate(context, instance, scheduler_hint, block_migration, disk_over_commit, request_spec) def _live_migrate(self, context, instance, scheduler_hint, block_migration, disk_over_commit, request_spec): destination = scheduler_hint.get("host") def _set_vm_state(context, instance, ex, vm_state=None, task_state=None): request_spec = {'instance_properties': { 'uuid': instance.uuid, }, } scheduler_utils.set_vm_state_and_notify(context, instance.uuid, 'compute_task', 'migrate_server', dict(vm_state=vm_state, task_state=task_state, expected_task_state=task_states.MIGRATING,), ex, request_spec) migration = objects.Migration(context=context.elevated()) migration.dest_compute = destination migration.status = 'accepted' migration.instance_uuid = instance.uuid migration.source_compute = instance.host migration.migration_type = 'live-migration' if instance.obj_attr_is_set('flavor'): migration.old_instance_type_id = instance.flavor.id migration.new_instance_type_id = instance.flavor.id else: migration.old_instance_type_id = instance.instance_type_id migration.new_instance_type_id = instance.instance_type_id migration.create() task = self._build_live_migrate_task(context, instance, destination, block_migration, disk_over_commit, migration, request_spec) try: task.execute() except (exception.NoValidHost, exception.ComputeHostNotFound, exception.ComputeServiceUnavailable, exception.InvalidHypervisorType, exception.InvalidCPUInfo, exception.UnableToMigrateToSelf, exception.DestinationHypervisorTooOld, exception.InvalidLocalStorage, exception.InvalidSharedStorage, exception.HypervisorUnavailable, exception.InstanceInvalidState, exception.MigrationPreCheckError, exception.MigrationPreCheckClientException, exception.LiveMigrationWithOldNovaNotSupported, exception.MigrationSchedulerRPCError) as ex: with excutils.save_and_reraise_exception(): # TODO(johngarbutt) - eventually need instance actions here _set_vm_state(context, instance, ex, instance.vm_state) migration.status = 'error' migration.save() except Exception as ex: LOG.error(_LE('Migration of instance %(instance_id)s to host' ' %(dest)s unexpectedly failed.'), {'instance_id': instance.uuid, 'dest': destination}, exc_info=True) _set_vm_state(context, instance, ex, vm_states.ERROR, instance.task_state) migration.status = 'error' migration.save() raise exception.MigrationError(reason=six.text_type(ex)) def _build_live_migrate_task(self, context, instance, destination, block_migration, disk_over_commit, migration, request_spec=None): return live_migrate.LiveMigrationTask(context, instance, destination, block_migration, disk_over_commit, migration, self.compute_rpcapi, self.servicegroup_api, self.scheduler_client, request_spec) def _build_cold_migrate_task(self, context, instance, flavor, request_spec, reservations, clean_shutdown): return migrate.MigrationTask(context, instance, flavor, request_spec, reservations, clean_shutdown, self.compute_rpcapi, self.scheduler_client) def _destroy_build_request(self, context, instance): # The BuildRequest needs to be stored until the instance is mapped to # an instance table. At that point it will never be used again and # should be deleted. try: build_request = objects.BuildRequest.get_by_instance_uuid(context, instance.uuid) # TODO(alaski): Sync API updates of the build_request to the # instance before it is destroyed. Right now only locked_by can # be updated before this is destroyed. build_request.destroy() except exception.BuildRequestNotFound: with excutils.save_and_reraise_exception() as exc_ctxt: service_version = objects.Service.get_minimum_version( context, 'nova-api') if service_version >= 12: # A BuildRequest was created during the boot process, the # NotFound exception indicates a delete happened which # should abort the boot. pass else: LOG.debug('BuildRequest not found for instance %(uuid)s, ' 'likely due to an older nova-api service ' 'running.', {'uuid': instance.uuid}) exc_ctxt.reraise = False return def _populate_instance_mapping(self, context, instance, host): try: inst_mapping = objects.InstanceMapping.get_by_instance_uuid( context, instance.uuid) except exception.InstanceMappingNotFound: # NOTE(alaski): If nova-api is up to date this exception should # never be hit. But during an upgrade it's possible that an old # nova-api didn't create an instance_mapping during this boot # request. LOG.debug('Instance was not mapped to a cell, likely due ' 'to an older nova-api service running.', instance=instance) return None else: try: host_mapping = objects.HostMapping.get_by_host(context, host['host']) except exception.HostMappingNotFound: # NOTE(alaski): For now this exception means that a # deployment has not migrated to cellsv2 and we should # remove the instance_mapping that has been created. # Eventually this will indicate a failure to properly map a # host to a cell and we may want to reschedule. inst_mapping.destroy() return None else: inst_mapping.cell_mapping = host_mapping.cell_mapping inst_mapping.save() return inst_mapping def build_instances(self, context, instances, image, filter_properties, admin_password, injected_files, requested_networks, security_groups, block_device_mapping=None, legacy_bdm=True): # TODO(ndipanov): Remove block_device_mapping and legacy_bdm in version # 2.0 of the RPC API. # TODO(danms): Remove this in version 2.0 of the RPC API if (requested_networks and not isinstance(requested_networks, objects.NetworkRequestList)): requested_networks = objects.NetworkRequestList.from_tuples( requested_networks) # TODO(melwitt): Remove this in version 2.0 of the RPC API flavor = filter_properties.get('instance_type') if flavor and not isinstance(flavor, objects.Flavor): # Code downstream may expect extra_specs to be populated since it # is receiving an object, so lookup the flavor to ensure this. flavor = objects.Flavor.get_by_id(context, flavor['id']) filter_properties = dict(filter_properties, instance_type=flavor) request_spec = {} try: # check retry policy. Rather ugly use of instances[0]... # but if we've exceeded max retries... then we really only # have a single instance. scheduler_utils.populate_retry( filter_properties, instances[0].uuid) request_spec = scheduler_utils.build_request_spec( context, image, instances) hosts = self._schedule_instances( context, request_spec, filter_properties) except Exception as exc: updates = {'vm_state': vm_states.ERROR, 'task_state': None} for instance in instances: self._set_vm_state_and_notify( context, instance.uuid, 'build_instances', updates, exc, request_spec) self._cleanup_allocated_networks( context, instance, requested_networks) return for (instance, host) in six.moves.zip(instances, hosts): try: instance.refresh() except (exception.InstanceNotFound, exception.InstanceInfoCacheNotFound): LOG.debug('Instance deleted during build', instance=instance) continue local_filter_props = copy.deepcopy(filter_properties) scheduler_utils.populate_filter_properties(local_filter_props, host) # The block_device_mapping passed from the api doesn't contain # instance specific information bdms = objects.BlockDeviceMappingList.get_by_instance_uuid( context, instance.uuid) inst_mapping = self._populate_instance_mapping(context, instance, host) try: self._destroy_build_request(context, instance) except exception.BuildRequestNotFound: # This indicates an instance delete has been requested in the # API. Stop the build, cleanup the instance_mapping and # potentially the block_device_mappings # TODO(alaski): Handle block_device_mapping cleanup if inst_mapping: inst_mapping.destroy() return self.compute_rpcapi.build_and_run_instance(context, instance=instance, host=host['host'], image=image, request_spec=request_spec, filter_properties=local_filter_props, admin_password=admin_password, injected_files=injected_files, requested_networks=requested_networks, security_groups=security_groups, block_device_mapping=bdms, node=host['nodename'], limits=host['limits']) def _schedule_instances(self, context, request_spec, filter_properties): scheduler_utils.setup_instance_group(context, request_spec, filter_properties) # TODO(sbauza): Hydrate here the object until we modify the # scheduler.utils methods to directly use the RequestSpec object spec_obj = objects.RequestSpec.from_primitives( context, request_spec, filter_properties) hosts = self.scheduler_client.select_destinations(context, spec_obj) return hosts def unshelve_instance(self, context, instance, request_spec=None): sys_meta = instance.system_metadata def safe_image_show(ctx, image_id): if image_id: return self.image_api.get(ctx, image_id, show_deleted=False) else: raise exception.ImageNotFound(image_id='') if instance.vm_state == vm_states.SHELVED: instance.task_state = task_states.POWERING_ON instance.save(expected_task_state=task_states.UNSHELVING) self.compute_rpcapi.start_instance(context, instance) elif instance.vm_state == vm_states.SHELVED_OFFLOADED: image = None image_id = sys_meta.get('shelved_image_id') # No need to check for image if image_id is None as # "shelved_image_id" key is not set for volume backed # instance during the shelve process if image_id: with compute_utils.EventReporter( context, 'get_image_info', instance.uuid): try: image = safe_image_show(context, image_id) except exception.ImageNotFound: instance.vm_state = vm_states.ERROR instance.save() reason = _('Unshelve attempted but the image %s ' 'cannot be found.') % image_id LOG.error(reason, instance=instance) raise exception.UnshelveException( instance_id=instance.uuid, reason=reason) try: with compute_utils.EventReporter(context, 'schedule_instances', instance.uuid): if not request_spec: # NOTE(sbauza): We were unable to find an original # RequestSpec object - probably because the instance is # old. We need to mock that the old way filter_properties = {} request_spec = scheduler_utils.build_request_spec( context, image, [instance]) else: # NOTE(sbauza): Force_hosts/nodes needs to be reset # if we want to make sure that the next destination # is not forced to be the original host request_spec.reset_forced_destinations() # TODO(sbauza): Provide directly the RequestSpec object # when _schedule_instances(), # populate_filter_properties and populate_retry() # accept it filter_properties = request_spec.\ to_legacy_filter_properties_dict() request_spec = request_spec.\ to_legacy_request_spec_dict() scheduler_utils.populate_retry(filter_properties, instance.uuid) hosts = self._schedule_instances( context, request_spec, filter_properties) host_state = hosts[0] scheduler_utils.populate_filter_properties( filter_properties, host_state) (host, node) = (host_state['host'], host_state['nodename']) self.compute_rpcapi.unshelve_instance( context, instance, host, image=image, filter_properties=filter_properties, node=node) except (exception.NoValidHost, exception.UnsupportedPolicyException): instance.task_state = None instance.save() LOG.warning(_LW("No valid host found for unshelve instance"), instance=instance) return except Exception: with excutils.save_and_reraise_exception(): instance.task_state = None instance.save() LOG.error(_LE("Unshelve attempted but an error " "has occurred"), instance=instance) else: LOG.error(_LE('Unshelve attempted but vm_state not SHELVED or ' 'SHELVED_OFFLOADED'), instance=instance) instance.vm_state = vm_states.ERROR instance.save() return def rebuild_instance(self, context, instance, orig_image_ref, image_ref, injected_files, new_pass, orig_sys_metadata, bdms, recreate, on_shared_storage, preserve_ephemeral=False, host=None, request_spec=None): with compute_utils.EventReporter(context, 'rebuild_server', instance.uuid): node = limits = None if not host: if not request_spec: # NOTE(sbauza): We were unable to find an original # RequestSpec object - probably because the instance is old # We need to mock that the old way filter_properties = {'ignore_hosts': [instance.host]} request_spec = scheduler_utils.build_request_spec( context, image_ref, [instance]) else: # NOTE(sbauza): Augment the RequestSpec object by excluding # the source host for avoiding the scheduler to pick it request_spec.ignore_hosts = request_spec.ignore_hosts or [] request_spec.ignore_hosts.append(instance.host) # NOTE(sbauza): Force_hosts/nodes needs to be reset # if we want to make sure that the next destination # is not forced to be the original host request_spec.reset_forced_destinations() # TODO(sbauza): Provide directly the RequestSpec object # when _schedule_instances() and _set_vm_state_and_notify() # accept it filter_properties = request_spec.\ to_legacy_filter_properties_dict() request_spec = request_spec.to_legacy_request_spec_dict() try: hosts = self._schedule_instances( context, request_spec, filter_properties) host_dict = hosts.pop(0) host, node, limits = (host_dict['host'], host_dict['nodename'], host_dict['limits']) except exception.NoValidHost as ex: with excutils.save_and_reraise_exception(): self._set_vm_state_and_notify(context, instance.uuid, 'rebuild_server', {'vm_state': instance.vm_state, 'task_state': None}, ex, request_spec) LOG.warning(_LW("No valid host found for rebuild"), instance=instance) except exception.UnsupportedPolicyException as ex: with excutils.save_and_reraise_exception(): self._set_vm_state_and_notify(context, instance.uuid, 'rebuild_server', {'vm_state': instance.vm_state, 'task_state': None}, ex, request_spec) LOG.warning(_LW("Server with unsupported policy " "cannot be rebuilt"), instance=instance) try: migration = objects.Migration.get_by_instance_and_status( context, instance.uuid, 'accepted') except exception.MigrationNotFoundByStatus: LOG.debug("No migration record for the rebuild/evacuate " "request.", instance=instance) migration = None compute_utils.notify_about_instance_usage( self.notifier, context, instance, "rebuild.scheduled") self.compute_rpcapi.rebuild_instance(context, instance=instance, new_pass=new_pass, injected_files=injected_files, image_ref=image_ref, orig_image_ref=orig_image_ref, orig_sys_metadata=orig_sys_metadata, bdms=bdms, recreate=recreate, on_shared_storage=on_shared_storage, preserve_ephemeral=preserve_ephemeral, migration=migration, host=host, node=node, limits=limits)
49.407563
79
0.587011
8efdb885a680cab0421fed10a80c0e09050debcf
260
py
Python
manage.py
benstreb/daily-interesting
bac71fa54a1eb4e139d38af4e22fe38a69fee2cb
[ "MIT" ]
null
null
null
manage.py
benstreb/daily-interesting
bac71fa54a1eb4e139d38af4e22fe38a69fee2cb
[ "MIT" ]
null
null
null
manage.py
benstreb/daily-interesting
bac71fa54a1eb4e139d38af4e22fe38a69fee2cb
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "daily_interesting.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
23.636364
81
0.780769
5be420ba88ad39038f57b0e6cf80034293984036
27,310
py
Python
examples/slim/nets/resnet_v1_test.py
MohammadChalaki/morph-net
83addae677195b4beba34a321ccf9c0cd55d5b62
[ "Apache-2.0" ]
1,061
2019-03-12T20:35:41.000Z
2022-02-08T00:00:33.000Z
examples/slim/nets/resnet_v1_test.py
MohammadChalaki/morph-net
83addae677195b4beba34a321ccf9c0cd55d5b62
[ "Apache-2.0" ]
67
2019-03-16T18:50:59.000Z
2021-09-03T13:28:42.000Z
examples/slim/nets/resnet_v1_test.py
MohammadChalaki/morph-net
83addae677195b4beba34a321ccf9c0cd55d5b62
[ "Apache-2.0" ]
168
2019-03-23T09:36:39.000Z
2022-01-16T12:19:33.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.nets.resnet_v1.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from nets import resnet_utils from nets import resnet_v1 import numpy as np from six.moves import range from six.moves import zip import tensorflow as tf slim = tf.contrib.slim def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels])) class ResnetUtilsTest(tf.test.TestCase): def testSubsampleThreeByThree(self): x = tf.reshape(tf.to_float(tf.range(9)), [1, 3, 3, 1]) x = resnet_utils.subsample(x, 2) expected = tf.reshape(tf.constant([0, 2, 6, 8]), [1, 2, 2, 1]) with self.test_session(): self.assertAllClose(x.eval(), expected.eval()) def testSubsampleFourByFour(self): x = tf.reshape(tf.to_float(tf.range(16)), [1, 4, 4, 1]) x = resnet_utils.subsample(x, 2) expected = tf.reshape(tf.constant([0, 2, 8, 10]), [1, 2, 2, 1]) with self.test_session(): self.assertAllClose(x.eval(), expected.eval()) def testConv2DSameEven(self): n, n2 = 4, 2 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = tf.reshape(w, [3, 3, 1, 1]) tf.get_variable('Conv/weights', initializer=w) tf.get_variable('Conv/biases', initializer=tf.zeros([1])) tf.get_variable_scope().reuse_variables() y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = tf.to_float([[14, 28, 43, 26], [28, 48, 66, 37], [43, 66, 84, 46], [26, 37, 46, 22]]) y1_expected = tf.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = tf.to_float([[14, 43], [43, 84]]) y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = tf.to_float([[48, 37], [37, 22]]) y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def testConv2DSameOdd(self): n, n2 = 5, 3 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = tf.reshape(w, [3, 3, 1, 1]) tf.get_variable('Conv/weights', initializer=w) tf.get_variable('Conv/biases', initializer=tf.zeros([1])) tf.get_variable_scope().reuse_variables() y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = tf.to_float([[14, 28, 43, 58, 34], [28, 48, 66, 84, 46], [43, 66, 84, 102, 55], [58, 84, 102, 120, 64], [34, 46, 55, 64, 30]]) y1_expected = tf.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = tf.to_float([[14, 43, 34], [43, 84, 55], [34, 55, 30]]) y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = y2_expected with self.test_session() as sess: sess.run(tf.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None): """A plain ResNet without extra layers before or after the ResNet blocks.""" with tf.variable_scope(scope, values=[inputs]): with slim.arg_scope([slim.conv2d], outputs_collections='end_points'): net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) end_points = slim.utils.convert_collection_to_dict('end_points') return net, end_points def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, list(end_points.keys())) def _stack_blocks_nondense(self, net, blocks): """A simplified ResNet Block stacker without output stride control.""" for block in blocks: with tf.variable_scope(block.scope, 'block', [net]): for i, unit in enumerate(block.args): with tf.variable_scope('unit_%d' % (i + 1), values=[net]): net = block.unit_fn(net, rate=1, **unit) return net def testAtrousValuesBottleneck(self): """Verify the values of dense feature extraction by atrous convolution. Make sure that dense feature extraction by stack_blocks_dense() followed by subsampling gives identical results to feature extraction at the nominal network output stride using the simple self._stack_blocks_nondense() above. """ block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=2, stride=2), block('block2', base_depth=2, num_units=2, stride=2), block('block3', base_depth=4, num_units=2, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] nominal_stride = 8 # Test both odd and even input dimensions. height = 30 width = 31 with slim.arg_scope(resnet_utils.resnet_arg_scope()): with slim.arg_scope([slim.batch_norm], is_training=False): for output_stride in [1, 2, 4, 8, None]: with tf.Graph().as_default(): with self.test_session() as sess: tf.set_random_seed(0) inputs = create_test_input(1, height, width, 3) # Dense feature extraction followed by subsampling. output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. tf.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected = self._stack_blocks_nondense(inputs, blocks) sess.run(tf.global_variables_initializer()) output, expected = sess.run([output, expected]) self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) def testStridingLastUnitVsSubsampleBlockEnd(self): """Compares subsampling at the block's last unit or block's end. Makes sure that the final output is the same when we use a stride at the last unit of a block vs. we subsample activations at the end of a block. """ block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=2, stride=2), block('block2', base_depth=2, num_units=2, stride=2), block('block3', base_depth=4, num_units=2, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] # Test both odd and even input dimensions. height = 30 width = 31 with slim.arg_scope(resnet_utils.resnet_arg_scope()): with slim.arg_scope([slim.batch_norm], is_training=False): for output_stride in [1, 2, 4, 8, None]: with tf.Graph().as_default(): with self.test_session() as sess: tf.set_random_seed(0) inputs = create_test_input(1, height, width, 3) # Subsampling at the last unit of the block. output = resnet_utils.stack_blocks_dense( inputs, blocks, output_stride, store_non_strided_activations=False, outputs_collections='output') output_end_points = slim.utils.convert_collection_to_dict( 'output') # Make the two networks use the same weights. tf.get_variable_scope().reuse_variables() # Subsample activations at the end of the blocks. expected = resnet_utils.stack_blocks_dense( inputs, blocks, output_stride, store_non_strided_activations=True, outputs_collections='expected') expected_end_points = slim.utils.convert_collection_to_dict( 'expected') sess.run(tf.global_variables_initializer()) # Make sure that the final output is the same. output, expected = sess.run([output, expected]) self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) # Make sure that intermediate block activations in # output_end_points are subsampled versions of the corresponding # ones in expected_end_points. for i, block in enumerate(blocks[:-1:]): output = output_end_points[block.scope] expected = expected_end_points[block.scope] atrous_activated = (output_stride is not None and 2 ** i >= output_stride) if not atrous_activated: expected = resnet_utils.subsample(expected, 2) output, expected = sess.run([output, expected]) self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) class ResnetCompleteNetworkTest(tf.test.TestCase): """Tests with complete small ResNet v1 networks.""" def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) def testClassificationEndPoints(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('global_pool' in end_points) self.assertListEqual(end_points['global_pool'].get_shape().as_list(), [2, 1, 1, 32]) def testClassificationEndPointsWithNoBatchNormArgscope(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, is_training=None, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('global_pool' in end_points) self.assertListEqual(end_points['global_pool'].get_shape().as_list(), [2, 1, 1, 32]) def testEndpointNames(self): # Like ResnetUtilsTest.testEndPointsV1(), but for the public API. global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') expected = ['resnet/conv1'] for block in range(1, 5): for unit in range(1, 4 if block < 4 else 3): for conv in range(1, 4): expected.append('resnet/block%d/unit_%d/bottleneck_v1/conv%d' % (block, unit, conv)) expected.append('resnet/block%d/unit_%d/bottleneck_v1' % (block, unit)) expected.append('resnet/block%d/unit_1/bottleneck_v1/shortcut' % block) expected.append('resnet/block%d' % block) expected.extend(['global_pool', 'resnet/logits', 'resnet/spatial_squeeze', 'predictions']) self.assertItemsEqual(list(end_points.keys()), expected) def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testRootlessFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 128, 128, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, include_root_block=False, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 64, 64, 4], 'resnet/block2': [2, 32, 32, 8], 'resnet/block3': [2, 16, 16, 16], 'resnet/block4': [2, 16, 16, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 output_stride = 8 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, output_stride=output_stride, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 41, 41, 8], 'resnet/block3': [2, 41, 41, 16], 'resnet/block4': [2, 41, 41, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalValues(self): """Verify dense feature extraction with atrous convolution.""" nominal_stride = 32 for output_stride in [4, 8, 16, 32, None]: with slim.arg_scope(resnet_utils.resnet_arg_scope()): with tf.Graph().as_default(): with self.test_session() as sess: tf.set_random_seed(0) inputs = create_test_input(2, 81, 81, 3) # Dense feature extraction followed by subsampling. output, _ = self._resnet_small(inputs, None, is_training=False, global_pool=False, output_stride=output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. tf.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected, _ = self._resnet_small(inputs, None, is_training=False, global_pool=False) sess.run(tf.global_variables_initializer()) self.assertAllClose(output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes)) def testFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 3, 3, 32)) def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32)) def testDepthMultiplier(self): resnets = [ resnet_v1.resnet_v1_50, resnet_v1.resnet_v1_101, resnet_v1.resnet_v1_152, resnet_v1.resnet_v1_200 ] resnet_names = [ 'resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152', 'resnet_v1_200' ] for resnet, resnet_name in zip(resnets, resnet_names): depth_multiplier = 0.25 global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): scope_base = resnet_name + '_base' _, end_points_base = resnet( inputs, num_classes, global_pool=global_pool, min_base_depth=1, scope=scope_base) scope_test = resnet_name + '_test' _, end_points_test = resnet( inputs, num_classes, global_pool=global_pool, min_base_depth=1, depth_multiplier=depth_multiplier, scope=scope_test) for block in ['block1', 'block2', 'block3', 'block4']: block_name_base = scope_base + '/' + block block_name_test = scope_test + '/' + block self.assertTrue(block_name_base in end_points_base) self.assertTrue(block_name_test in end_points_test) self.assertEqual( len(end_points_base[block_name_base].get_shape().as_list()), 4) self.assertEqual( len(end_points_test[block_name_test].get_shape().as_list()), 4) self.assertListEqual( end_points_base[block_name_base].get_shape().as_list()[:3], end_points_test[block_name_test].get_shape().as_list()[:3]) self.assertEqual( int(depth_multiplier * end_points_base[block_name_base].get_shape().as_list()[3]), end_points_test[block_name_test].get_shape().as_list()[3]) def testMinBaseDepth(self): resnets = [ resnet_v1.resnet_v1_50, resnet_v1.resnet_v1_101, resnet_v1.resnet_v1_152, resnet_v1.resnet_v1_200 ] resnet_names = [ 'resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152', 'resnet_v1_200' ] for resnet, resnet_name in zip(resnets, resnet_names): min_base_depth = 5 global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = resnet( inputs, num_classes, global_pool=global_pool, min_base_depth=min_base_depth, depth_multiplier=0, scope=resnet_name) for block in ['block1', 'block2', 'block3', 'block4']: block_name = resnet_name + '/' + block self.assertTrue(block_name in end_points) self.assertEqual( len(end_points[block_name].get_shape().as_list()), 4) # The output depth is 4 times base_depth. depth_expected = min_base_depth * 4 self.assertEqual( end_points[block_name].get_shape().as_list()[3], depth_expected) if __name__ == '__main__': tf.test.main()
43.14376
80
0.598352
4ec77e6966e59b21687824e61f31b4a8a63461da
17,509
py
Python
sysinv/sysinv/sysinv/sysinv/api/controllers/v1/pci_device.py
riddopic/config
59f027fc42e2b34d9609c5fd6ec956b46a480235
[ "Apache-2.0" ]
10
2020-02-07T18:57:44.000Z
2021-09-11T10:29:34.000Z
sysinv/sysinv/sysinv/sysinv/api/controllers/v1/pci_device.py
riddopic/config
59f027fc42e2b34d9609c5fd6ec956b46a480235
[ "Apache-2.0" ]
1
2021-01-14T12:01:55.000Z
2021-01-14T12:01:55.000Z
sysinv/sysinv/sysinv/sysinv/api/controllers/v1/pci_device.py
riddopic/config
59f027fc42e2b34d9609c5fd6ec956b46a480235
[ "Apache-2.0" ]
10
2020-10-13T08:37:46.000Z
2022-02-09T00:21:25.000Z
# Copyright (c) 2015-2021 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # import jsonpatch import pecan from pecan import rest import wsme from wsme import types as wtypes import wsmeext.pecan as wsme_pecan from ast import literal_eval from oslo_log import log from sysinv._i18n import _ from sysinv.api.controllers.v1 import base from sysinv.api.controllers.v1 import collection from sysinv.api.controllers.v1 import link from sysinv.api.controllers.v1 import types from sysinv.api.controllers.v1 import utils from sysinv.common import constants from sysinv.common import device as dconstants from sysinv.common import exception from sysinv.common import utils as cutils from sysinv import objects LOG = log.getLogger(__name__) class PCIDevicePatchType(types.JsonPatchType): @staticmethod def mandatory_attrs(): return [] class PCIDevice(base.APIBase): """API representation of an PCI device This class enforces type checking and value constraints, and converts between the internal object model and the API representation of an Pci Device . """ uuid = types.uuid "Unique UUID for this device" type = wtypes.text "Represent the type of device" name = wtypes.text "Represent the name of the device. Unique per host" pciaddr = wtypes.text "Represent the pci address of the device" pclass_id = wtypes.text "Represent the numerical pci class of the device" pvendor_id = wtypes.text "Represent the numerical pci vendor of the device" pdevice_id = wtypes.text "Represent the numerical pci device of the device" pclass = wtypes.text "Represent the pci class description of the device" pvendor = wtypes.text "Represent the pci vendor description of the device" pdevice = wtypes.text "Represent the pci device description of the device" psvendor = wtypes.text "Represent the pci svendor of the device" psdevice = wtypes.text "Represent the pci sdevice of the device" numa_node = int "Represent the numa node or zone sdevice of the device" sriov_totalvfs = int "The total number of available SR-IOV VFs" sriov_numvfs = int "The number of configured SR-IOV VFs" sriov_vfs_pci_address = wtypes.text "The PCI Addresses of the VFs" sriov_vf_driver = wtypes.text "The driver of configured SR-IOV VFs" sriov_vf_pdevice_id = wtypes.text "The SR-IOV VF PCI device id for this device" driver = wtypes.text "The kernel driver for this device" extra_info = wtypes.text "Extra information for this device" host_id = int "Represent the host_id the device belongs to" host_uuid = types.uuid "Represent the UUID of the host the device belongs to" enabled = types.boolean "Represent the enabled status of the device" bmc_build_version = wtypes.text "Represent the BMC build version of the fpga device" bmc_fw_version = wtypes.text "Represent the BMC firmware version of the fpga device" retimer_a_version = wtypes.text "Represent the retimer A version of the fpga device" retimer_b_version = wtypes.text "Represent the retimer B version of the fpga device" root_key = wtypes.text "Represent the root key of the fpga device" revoked_key_ids = wtypes.text "Represent the key revocation ids of the fpga device" boot_page = wtypes.text "Represent the boot page of the fpga device" bitstream_id = wtypes.text "Represent the bitstream id of the fpga device" links = [link.Link] "Represent a list containing a self link and associated device links" def __init__(self, **kwargs): self.fields = list(objects.pci_device.fields.keys()) for k in self.fields: setattr(self, k, kwargs.get(k)) @classmethod def convert_with_links(cls, rpc_device, expand=True): device = PCIDevice(**rpc_device.as_dict()) if not expand: device.unset_fields_except(['uuid', 'host_id', 'name', 'pciaddr', 'pclass_id', 'pvendor_id', 'pdevice_id', 'pclass', 'pvendor', 'pdevice', 'psvendor', 'psdevice', 'numa_node', 'sriov_totalvfs', 'sriov_numvfs', 'sriov_vfs_pci_address', 'sriov_vf_driver', 'sriov_vf_pdevice_id', 'driver', 'host_uuid', 'enabled', 'bmc_build_version', 'bmc_fw_version', 'retimer_a_version', 'retimer_b_version', 'root_key', 'revoked_key_ids', 'boot_page', 'bitstream_id', 'created_at', 'updated_at', 'extra_info']) # do not expose the id attribute device.host_id = wtypes.Unset device.node_id = wtypes.Unset # if not FPGA device, hide these attributes if device.pclass_id != dconstants.PCI_DEVICE_CLASS_FPGA: device.bmc_build_version = wtypes.Unset device.bmc_fw_version = wtypes.Unset device.retimer_a_version = wtypes.Unset device.retimer_b_version = wtypes.Unset device.root_key = wtypes.Unset device.revoked_key_ids = wtypes.Unset device.boot_page = wtypes.Unset device.bitstream_id = wtypes.Unset device.links = [link.Link.make_link('self', pecan.request.host_url, 'pci_devices', device.uuid), link.Link.make_link('bookmark', pecan.request.host_url, 'pci_devices', device.uuid, bookmark=True) ] return device class PCIDeviceCollection(collection.Collection): """API representation of a collection of PciDevice objects.""" pci_devices = [PCIDevice] "A list containing PciDevice objects" def __init__(self, **kwargs): self._type = 'pci_devices' @classmethod def convert_with_links(cls, rpc_devices, limit, url=None, expand=False, **kwargs): collection = PCIDeviceCollection() collection.pci_devices = [PCIDevice.convert_with_links(d, expand) for d in rpc_devices] collection.next = collection.get_next(limit, url=url, **kwargs) return collection LOCK_NAME = 'PCIDeviceController' class PCIDeviceController(rest.RestController): """REST controller for PciDevices.""" _custom_actions = { 'detail': ['GET'], } def __init__(self, from_ihosts=False): self._from_ihosts = from_ihosts def _get_pci_devices_collection(self, uuid, marker, limit, sort_key, sort_dir, expand=False, resource_url=None): if self._from_ihosts and not uuid: raise exception.InvalidParameterValue(_( "Host id not specified.")) limit = utils.validate_limit(limit) sort_dir = utils.validate_sort_dir(sort_dir) marker_obj = None if marker: marker_obj = objects.pci_device.get_by_uuid( pecan.request.context, marker) if self._from_ihosts: devices = pecan.request.dbapi.pci_device_get_by_host( uuid, limit, marker_obj, sort_key=sort_key, sort_dir=sort_dir) else: if uuid: devices = pecan.request.dbapi.pci_device_get_by_host( uuid, limit, marker_obj, sort_key=sort_key, sort_dir=sort_dir) else: devices = pecan.request.dbapi.pci_device_get_list( limit, marker_obj, sort_key=sort_key, sort_dir=sort_dir) return PCIDeviceCollection.convert_with_links(devices, limit, url=resource_url, expand=expand, sort_key=sort_key, sort_dir=sort_dir) @wsme_pecan.wsexpose(PCIDeviceCollection, types.uuid, types.uuid, int, wtypes.text, wtypes.text) def get_all(self, uuid=None, marker=None, limit=None, sort_key='id', sort_dir='asc'): """Retrieve a list of devices.""" return self._get_pci_devices_collection(uuid, marker, limit, sort_key, sort_dir) @wsme_pecan.wsexpose(PCIDeviceCollection, types.uuid, types.uuid, int, wtypes.text, wtypes.text) def detail(self, uuid=None, marker=None, limit=None, sort_key='id', sort_dir='asc'): """Retrieve a list of devices with detail.""" # NOTE: /detail should only work against collections parent = pecan.request.path.split('/')[:-1][-1] if parent != "pci_devices": raise exception.HTTPNotFound expand = True resource_url = '/'.join(['pci_devices', 'detail']) return self._get_pci_devices_collection(uuid, marker, limit, sort_key, sort_dir, expand, resource_url) @wsme_pecan.wsexpose(PCIDevice, types.uuid) def get_one(self, device_uuid): """Retrieve information about the given device.""" if self._from_ihosts: raise exception.OperationNotPermitted rpc_device = objects.pci_device.get_by_uuid( pecan.request.context, device_uuid) return PCIDevice.convert_with_links(rpc_device) @cutils.synchronized(LOCK_NAME) @wsme.validate(types.uuid, [PCIDevicePatchType]) @wsme_pecan.wsexpose(PCIDevice, types.uuid, body=[PCIDevicePatchType]) def patch(self, device_uuid, patch): """Update an existing device.""" if self._from_ihosts: raise exception.OperationNotPermitted rpc_device = objects.pci_device.get_by_uuid( pecan.request.context, device_uuid) # replace host_uuid with corresponding host_id patch_obj = jsonpatch.JsonPatch(patch) for p in patch_obj: if p['path'] == '/host_uuid': p['path'] = '/host_id' host = objects.host.get_by_uuid(pecan.request.context, p['value']) p['value'] = host.id try: device = PCIDevice(**jsonpatch.apply_patch(rpc_device.as_dict(), patch_obj)) except utils.JSONPATCH_EXCEPTIONS as e: raise exception.PatchError(patch=patch, reason=e) # Semantic checks host = pecan.request.dbapi.ihost_get(device.host_id) _check_host(host) sriov_update = _check_device_sriov(device.as_dict(), host) # Update fields that have changed for field in objects.pci_device.fields: value = getattr(device, field) if rpc_device[field] != value: _check_field(field) if (field in ['sriov_vf_driver', 'driver'] and value == 'none'): rpc_device[field] = None else: rpc_device[field] = getattr(device, field) if field == 'sriov_numvfs': # Save desired number of VFs in extra_info since # sriov_numvfs may get overwritten by concurrent inventory report expected_numvfs = {'expected_numvfs': rpc_device[field]} if not rpc_device['extra_info']: rpc_device['extra_info'] = str(expected_numvfs) else: extra_info = literal_eval(rpc_device['extra_info']) extra_info.update(expected_numvfs) rpc_device['extra_info'] = str(extra_info) rpc_device.save() if sriov_update: pecan.request.rpcapi.update_sriov_config( pecan.request.context, host['uuid']) return PCIDevice.convert_with_links(rpc_device) def _check_host(host): if utils.is_aio_simplex_host_unlocked(host): raise wsme.exc.ClientSideError(_('Host must be locked.')) elif host.administrative != constants.ADMIN_LOCKED and not \ utils.is_host_simplex_controller(host): raise wsme.exc.ClientSideError(_('Host must be locked.')) if constants.WORKER not in host.subfunctions: raise wsme.exc.ClientSideError(_('Can only modify worker node cores.')) def _check_field(field): if field not in ["enabled", "name", "driver", "sriov_numvfs", "sriov_vf_driver", "extra_info"]: raise wsme.exc.ClientSideError(_('Modifying %s attribute restricted') % field) def _check_device_sriov(device, host): sriov_update = False if (device['pdevice_id'] in dconstants.SRIOV_ENABLED_FEC_DEVICE_IDS and host.invprovision != constants.PROVISIONED): raise wsme.exc.ClientSideError(_("Cannot configure device %s " "until host %s is unlocked for the first time." % (device['uuid'], host.hostname))) if (device['pdevice_id'] not in dconstants.SRIOV_ENABLED_FEC_DEVICE_IDS and 'sriov_numvfs' in device.keys() and device['sriov_numvfs']): raise wsme.exc.ClientSideError(_("The number of SR-IOV VFs is specified " "but the device is not supported for SR-IOV")) if (device['pdevice_id'] not in dconstants.SRIOV_ENABLED_FEC_DEVICE_IDS and 'sriov_vf_driver' in device.keys() and device['sriov_vf_driver']): raise wsme.exc.ClientSideError(_("The SR-IOV VF driver is specified " "but the device is not supported for SR-IOV")) if device['pdevice_id'] not in dconstants.SRIOV_ENABLED_FEC_DEVICE_IDS: return sriov_update if 'sriov_numvfs' not in device.keys(): raise wsme.exc.ClientSideError(_("The number of SR-IOV VFs must be specified")) else: if ('sriov_vf_driver' in device.keys() and device['sriov_vf_driver'] and device['sriov_vf_driver'] != dconstants.FPGA_INTEL_5GNR_FEC_DRIVER_NONE and device['sriov_numvfs'] is None): raise wsme.exc.ClientSideError(_("Value for number of SR-IOV VFs must be specified.")) if device['sriov_numvfs'] and device['sriov_numvfs'] < 0: raise wsme.exc.ClientSideError(_("Value for number of SR-IOV VFs must be >= 0.")) if ('sriov_vf_driver' in device.keys() and device['sriov_vf_driver'] and device['sriov_vf_driver'] != dconstants.FPGA_INTEL_5GNR_FEC_DRIVER_NONE and device['sriov_numvfs'] == 0): raise wsme.exc.ClientSideError(_("Value for number of SR-IOV VFs must be > 0.")) if 'sriov_totalvfs' in device.keys(): if not device['sriov_totalvfs']: raise wsme.exc.ClientSideError(_("SR-IOV cannot be configured on this interface")) if device['sriov_numvfs'] and device['sriov_numvfs'] > device['sriov_totalvfs']: raise wsme.exc.ClientSideError(_( "The device supports a maximum of %s VFs" % device['sriov_totalvfs'])) if 'sriov_vf_driver' not in device.keys(): raise wsme.exc.ClientSideError(_("The SR-IOV VF driver must be specified")) else: if (device['sriov_vf_driver'] is not None and device['pdevice_id'] in dconstants.SRIOV_ENABLED_FEC_DEVICE_IDS and device['sriov_vf_driver'] not in dconstants.FPGA_INTEL_5GNR_FEC_VF_VALID_DRIVERS): msg = (_("Value for SR-IOV VF driver must be one of " "{}").format(', '.join(dconstants.FPGA_INTEL_5GNR_FEC_VF_VALID_DRIVERS))) raise wsme.exc.ClientSideError(msg) if ('driver' in device.keys() and device['driver'] and device['pdevice_id'] in dconstants.SRIOV_ENABLED_FEC_DEVICE_IDS and device['driver'] not in dconstants.FPGA_INTEL_5GNR_FEC_PF_VALID_DRIVERS): msg = (_("Value for SR-IOV PF driver must be one of " "{}").format(', '.join(dconstants.FPGA_INTEL_5GNR_FEC_PF_VALID_DRIVERS))) raise wsme.exc.ClientSideError(msg) sriov_update = True return sriov_update
39.613122
99
0.585642
ba0aef25b83ff2be9ff3420c49e1946139569ad8
1,057
py
Python
bloodhound_dashboard/bhdashboard/tests/widgets/__init__.py
beebopkim/bloodhound
1a1d3c88309136229f4b64d9e75e0441a4c590e4
[ "Apache-2.0" ]
84
2015-01-07T03:42:53.000Z
2022-01-10T11:57:30.000Z
bloodhound_dashboard/bhdashboard/tests/widgets/__init__.py
beebopkim/bloodhound
1a1d3c88309136229f4b64d9e75e0441a4c590e4
[ "Apache-2.0" ]
1
2021-11-04T12:52:03.000Z
2021-11-04T12:52:03.000Z
bloodhound_dashboard/bhdashboard/tests/widgets/__init__.py
isabella232/bloodhound-1
c3e31294e68af99d4e040e64fbdf52394344df9e
[ "Apache-2.0" ]
35
2015-01-06T11:30:27.000Z
2021-11-10T16:34:52.000Z
# -*- coding: UTF-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from bhdashboard.tests.widgets import timeline def suite(): suite = unittest.TestSuite() suite.addTest(timeline.suite()) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
32.030303
63
0.741722
76af767e1c3fc5c5b10da38a714b4be10c297e7f
712
py
Python
astropy/wcs/wcsapi/tests/test_low_level_api.py
PriyankaH21/astropy
159fb9637ce4acdc60329d20517ed3dc7ba79581
[ "BSD-3-Clause" ]
null
null
null
astropy/wcs/wcsapi/tests/test_low_level_api.py
PriyankaH21/astropy
159fb9637ce4acdc60329d20517ed3dc7ba79581
[ "BSD-3-Clause" ]
1
2018-11-14T14:18:55.000Z
2020-01-21T10:36:05.000Z
astropy/wcs/wcsapi/tests/test_low_level_api.py
PriyankaH21/astropy
159fb9637ce4acdc60329d20517ed3dc7ba79581
[ "BSD-3-Clause" ]
null
null
null
from pytest import raises from ..low_level_api import validate_physical_types def test_validate_physical_types(): # Check valid cases validate_physical_types(['pos.eq.ra', 'pos.eq.ra']) validate_physical_types(['spect.dopplerVeloc.radio', 'custom:spam']) validate_physical_types(['time', None]) # Make sure validation is case sensitive with raises(ValueError) as exc: validate_physical_types(['pos.eq.ra', 'Pos.eq.dec']) assert exc.value.args[0] == 'Invalid physical type: Pos.eq.dec' # Make sure nonsense types are picked up with raises(ValueError) as exc: validate_physical_types(['spam']) assert exc.value.args[0] == 'Invalid physical type: spam'
32.363636
72
0.70927
a344fe938d109d99ec93b24717421e2b356a87bc
399
py
Python
utils/hardware_controller/wrappers.py
skal1ozz/AI-WordOfWarcraft-Bot
1d9659e76d1107909d6ca27b573d0dd83a25fce4
[ "Apache-2.0" ]
null
null
null
utils/hardware_controller/wrappers.py
skal1ozz/AI-WordOfWarcraft-Bot
1d9659e76d1107909d6ca27b573d0dd83a25fce4
[ "Apache-2.0" ]
null
null
null
utils/hardware_controller/wrappers.py
skal1ozz/AI-WordOfWarcraft-Bot
1d9659e76d1107909d6ca27b573d0dd83a25fce4
[ "Apache-2.0" ]
null
null
null
from .abstract_backend import AbstractBackend def wrapper_backend_required(fn): def wr(self, *args, **kwargs): backend = getattr(self, 'backend', None) if not isinstance(backend, AbstractBackend): raise AttributeError('Backend should be a child of ' 'AbstractKeyboardBackend') return fn(self, *args, **kwargs) return wr
33.25
64
0.626566
b9f43c5a9fbd87f85add6feeb941295158bdae9e
3,162
py
Python
main/utilities_v2/infrastructure_as_code/build_spec_to_cloud.py
emerginganalytics/cyberarena
311d179a30017285571f65752eaa91b78c7097aa
[ "MIT" ]
2
2022-01-24T20:15:08.000Z
2022-01-24T20:15:25.000Z
main/utilities_v2/infrastructure_as_code/build_spec_to_cloud.py
emerginganalytics/cyberarena
311d179a30017285571f65752eaa91b78c7097aa
[ "MIT" ]
26
2021-12-23T19:37:27.000Z
2022-03-28T04:03:41.000Z
main/utilities_v2/infrastructure_as_code/build_spec_to_cloud.py
emerginganalytics/cyberarena
311d179a30017285571f65752eaa91b78c7097aa
[ "MIT" ]
null
null
null
""" Parses yaml according to version 2 of the Cyber Arena specification and stores a build structure in the cloud datastore. We use marshmallow to perform serializer validation only. We define the required schemas in WorkoutComputeSchema, WorkoutContainerSchema, ArenaSchema, and perhaps more. New fields in the yaml should be accounted for in the schema validation. """ from datetime import datetime from marshmallow import ValidationError from google.cloud import logging_v2 import random import string from utilities_v2.globals import BuildConstants, DatastoreKeyTypes, PubSub from utilities_v2.infrastructure_as_code.schema import FixedArenaSchema, FixedArenaWorkoutSchema from utilities_v2.gcp.cloud_env import CloudEnv from utilities_v2.gcp.datastore_manager import DataStoreManager from utilities_v2.gcp.pubsub_manager import PubSubManager __author__ = "Philip Huff" __copyright__ = "Copyright 2022, UA Little Rock, Emerging Analytics Center" __credits__ = ["Philip Huff"] __license__ = "MIT" __version__ = "1.0.0" __maintainer__ = "Philip Huff" __email__ = "pdhuff@ualr.edu" __status__ = "Testing" class BuildSpecToCloud: def __init__(self, cyber_arena_spec, debug=False): """ Prepares the build of workouts based on a YAML specification by storing the information in the cloud datastore. :@param cyber_arena_spec: The specification for building the Cyber Arena :@param debug: Whether to publish to cloud functions or debug the build operations. """ self.env = CloudEnv() log_client = logging_v2.Client() log_client.setup_logging() if 'build_type' not in cyber_arena_spec: raise ValidationError cyber_arena_spec['creation_timestamp'] = datetime.utcnow().isoformat() self.pubsub_manager = PubSubManager(topic=PubSub.Topics.CYBER_ARENA) self.build_type = cyber_arena_spec['build_type'] if self.build_type == BuildConstants.BuildType.FIXED_ARENA.value: self.build_id = cyber_arena_spec['id'] self.cyber_arena_spec = FixedArenaSchema().load(cyber_arena_spec) self.datastore_manager = DataStoreManager(key_type=DatastoreKeyTypes.FIXED_ARENA, key_id=self.build_id) self.action = PubSub.BuildActions.FIXED_ARENA.value elif self.build_type == BuildConstants.BuildType.FIXED_ARENA_WORKOUT.value: self.build_id = ''.join(random.choice(string.ascii_lowercase) for j in range(10)) cyber_arena_spec['id'] = self.build_id self.cyber_arena_spec = FixedArenaWorkoutSchema().load(cyber_arena_spec) self.datastore_manager = DataStoreManager(key_type=DatastoreKeyTypes.FIXED_ARENA_WORKOUT, key_id=self.build_id) self.action = PubSub.BuildActions.FIXED_ARENA_WORKOUT.value self.debug = debug def commit(self): self.datastore_manager.put(self.cyber_arena_spec) if not self.debug: self.pubsub_manager.msg(handler=PubSub.Handlers.BUILD, action=self.action, fixed_arena_workout_id=self.build_id)
47.19403
120
0.728969
511d9c6371ab4661901f93033472cbc5d8de1ab6
13,232
py
Python
SNPLIB/snplib.py
VasLem/SNPLIB
aea1cb943a7db22faa592a53cf1132561ce50c4e
[ "BSD-3-Clause" ]
2
2019-11-21T04:55:13.000Z
2021-10-05T18:01:23.000Z
SNPLIB/snplib.py
VasLem/SNPLIB
aea1cb943a7db22faa592a53cf1132561ce50c4e
[ "BSD-3-Clause" ]
null
null
null
SNPLIB/snplib.py
VasLem/SNPLIB
aea1cb943a7db22faa592a53cf1132561ce50c4e
[ "BSD-3-Clause" ]
1
2022-02-17T17:20:24.000Z
2022-02-17T17:20:24.000Z
"""SNPLIB class Module This module contains the definition of SNPLIB class and some supportive methods. Example ------- Notes ----- """ import math import re import numpy as np import numpy.linalg as npl import pandas as pd from copy import deepcopy from scipy.stats import t, chi2, f from multiprocessing import cpu_count import _SNPLIB as lib chr_dict = { 'X': 23, 'Y': 24, 'XY': 25, 'MT': 26, } def convert_chr(chr_c): if chr_c.isdigit(): return int(chr_c) else: return chr_dict[chr_c.upper()] def CalcIBSConnection(src_geno, dest_geno, num_threads): return lib.CalcIBSConnection(src_geno.GENO, dest_geno.GENO, src_geno.nSamples, dest_geno.nSamples, num_threads) def UpdateAf(aaf, num_pops, num_generations, effective_sample_size): return lib.UpdateAf(aaf, num_pops, num_generations, effective_sample_size).T class SNPLIB: """The SNPLIB class stores the genotype data in plink binary format and provides methods analyzing genotype data Attributes ---------- nThreads : int Number of threads used for computation SNPs : :obj:`pandas.DataFrame`, optional `pandas.DataFrame` of SNPs' information imported from plink .bim file Samples : :obj:`pandas.DataFrame`, optional `pandas.DataFrame` of Samples' information imported from plink .fam file """ def __init__(self, nThreads=cpu_count()//2): """Constructor function Parameters ---------- nThreads : int, optional Number of threads used for computation """ self.nThreads = nThreads self.SNPs = [] self.Samples = [] def importPLINKDATA(self, bfile): """Import plink binary fileset Parameters ---------- bfile : str The name of plink binary fileset """ filename = bfile + '.bim' self.SNPs = pd.read_table( bfile+'.bim', sep=None, names=['CHR', 'RSID', 'Cm', 'POS', 'ALT', 'REF'], engine='python') self.Samples = pd.read_table(bfile+'.fam', sep=None, names=['FID', 'IID', 'PID', 'MID', 'Sex', 'Pheno'], engine='python') self.nSNPs = self.SNPs.shape[0] self.nSamples = self.Samples.shape[0] filename = bfile + '.bed' num_bytes = math.ceil(self.nSamples / 4.0) GENO = np.fromfile(filename, dtype=np.uint8, count=-1) GENO = GENO[3:] self.GENO = np.reshape(GENO, (num_bytes, - 1), order='F') # Simulations def GenerateIndividuals(self, af): """Simulate the genotypes according to the individual allele frequencies Parameters ---------- af : ndarray A `ndarray` matrix contains the individual allele frequencies, with shape of ``(num_samples, num_snps)`` """ self.nSamples = af.shape[0] self.nSNPs = af.shape[1] self.GENO = lib.GenerateIndividuals(af) def GenerateAdmixedIndividuals(self, af, num_samples): self.nSamples = num_samples self.nSNPs = af.shape[1] self.GENO = lib.GenerateAdmixedIndividuals(af, num_samples) def GeneratePairwiseSiblings(self, parent_obj): self.nSamples = parent_obj.nSamples self.nSNPs = parent_obj.nSNPs self.GENO = lib.GeneratePairwiseSiblings( parent_obj.GENO, self.nSamples//2) # Data manage def UnpackGeno(self): """Unpack the plink binary format into a double matrix Returns ------- `ndarray` A `ndarray` matrix contains the individual genotypes """ return lib.UnpackGeno(self.GENO, self.nSamples) def Keep(self, index): """Keep the individuals listed in the ``index``, same as the plink option --keep Returns ------- `SNPLIB` A `SNPLIB` object with the individuals in ``index`` """ result = SNPLIB(self.nThreads) result.nSamples = len(index) result.nSNPs = deepcopy(self.nSNPs) result.GENO = lib.Keep(self.GENO, self.nSamples, index) return result def Extract(self, index): result = SNPLIB(self.nThreads) result.nSamples = deepcopy(self.nSamples) result.nSNPs = len(index) result.GENO = deepcopy(self.GENO[:, index]) return result # Statistics def CalcAlleleFrequencies(self): return lib.CalcAlleleFrequencies(self.GENO, self.nSamples) def CalcMissing(self): return lib.CalcMissing(self.GENO, self.nSamples) def CalcAdjustedAF(self, covariates): return lib.CalcAdjustedAF(self.GENO, covariates, self.nThreads) def CalcAdjustedMAF(self, covariates): return lib.CalcAdjustedMAF(self.GENO, covariates, self.nThreads) # Relationships def CalcAdjustedGRM(self, covariates): matrix, gcta_diag = lib.CalcAdjustedGRM( self.GENO, covariates, self.nThreads) return matrix, gcta_diag def CalcAdmixedGRM(self, pop_af, pop): matrix, gcta_diag = lib.CalcAdmixedGRM( self.GENO, pop_af, pop, self.nThreads) return matrix, gcta_diag def CalcGRMMatrix(self): af = self.CalcAlleleFrequencies() matrix = lib.CalcGRMMatrix(self.GENO, af, self.nSamples, self.nThreads) gcta_diag = lib.CalcGCTADiagonal( self.GENO, af, self.nSamples, self.nThreads) return matrix, gcta_diag def CalcIBSMatrix(self): return lib.CalcIBSMatrix(self.GENO, self.nSamples, self.nThreads) def CalcKINGMatrix(self): return lib.CalcKINGMatrix(self.GENO, self.nSamples, self.nThreads) def CalcUGRMMatrix(self): return lib.CalcUGRMMatrix(self.GENO, self.nSamples, self.nThreads) def FindUnrelated(self, threshold=0.044): king = self.CalcKINGMatrix() return lib.FindUnrelatedGroup(king, threshold) # Ancestry Estimation def CalcPCAScores(self, nComponents): grm, _ = self.CalcGRMMatrix() w, V = npl.eig(grm) ind = np.argsort(-w) return V[:, ind[:nComponents]] def CalcPCALoadingsExact(self, nComponents): af = self.CalcAlleleFrequencies() A = lib.UnpackGRMGeno(self.GENO, af, self.nSamples) U, s, _ = npl.svd(A.T, full_matrices=False) S = np.diag(s[:nComponents]) U = U[:, :nComponents] return npl.solve(S, U.T) def CalcPCALoadingsApprox(self, nComponents, nParts=10): af = self.CalcAlleleFrequencies() grm = lib.CalcGRMMatrix(self.GENO, af, self.nSamples, self.nThreads) L = 2*nComponents I = 10 G = np.zeros((self.nSamples, L*(I+1)), dtype='double', order='F') G[:, :L] = np.random.randn(self.nSamples, L) for i in range(1, I): G[:, i*L: (i+1)*L] = grm@G[:, (i-1)*L:i*L] H = np.zeros((self.nSNPs, L*(I+1)), dtype='double', order='F') nSNPsPart = math.ceil(self.nSNPs/nParts) for i in range(nParts-1): A = lib.UnpackGRMGeno( self.GENO[:, i*nSNPsPart:(i+1)*nSNPsPart], af[i*nSNPsPart:(i+1)*nSNPsPart], self.nSamples) H[i*nSNPsPart:(i+1)*nSNPsPart, :] = A.T@G A = lib.UnpackGRMGeno( self.GENO[:, (nParts-1)*nSNPsPart:], af[(nParts-1)*nSNPsPart:], self.nSamples) H[(nParts-1)*nSNPsPart:, :] = A.T@G Q, _ = npl.qr(H) T = np.zeros((self.nSamples, L*(I+1)), dtype='double', order='F') for i in range(nParts-1): A = lib.UnpackGRMGeno( self.GENO[:, i*nSNPsPart:(i+1)*nSNPsPart], af[i*nSNPsPart:(i+1)*nSNPsPart], self.nSamples) T = T + A@Q[i*nSNPsPart:(i+1)*nSNPsPart, :] A = lib.UnpackGRMGeno( self.GENO[:, (nParts-1)*nSNPsPart:], af[(nParts-1)*nSNPsPart:], self.nSamples) T = T+A@Q[(nParts-1)*nSNPsPart:, :] _, S, W = npl.svd(T, full_matrices=False) U = Q@W.T S = S[:nComponents] S = np.diag(S) U = U[:, :nComponents] return npl.solve(S, U.T) def ProjectPCA(self, ref_obj, loadings, nParts=10): nSNPsPart = math.ceil(self.nSNPs/nParts) af = ref_obj.CalcAlleleFrequencies() nComponents = loadings.shape[0] scores = np.zeros((nComponents, self.nSamples)) for i in range(nParts-1): A = lib.UnpackGRMGeno( self.GENO[:, i*nSNPsPart:(i+1)*nSNPsPart], af[i*nSNPsPart:(i+1)*nSNPsPart], self.nSamples) scores = scores + loadings[:, i*nSNPsPart:(i+1)*nSNPsPart]@A.T A = lib.UnpackGRMGeno( self.GENO[:, (nParts-1)*nSNPsPart:], af[nParts*nSNPsPart:], self.nSamples) scores = scores + loadings[:, (nParts-1)*nSNPsPart:]@A.T return scores.T def CalcPCAiRScores(self, nComponents, is_exact=False): ind = self.FindUnrelated() Unrelated = self.Keep(ind) if is_exact: loadings = Unrelated.CalcPCALoadingsExact(nComponents) else: loadings = Unrelated.CalcPCALoadingsApprox(nComponents) return self.ProjectPCA(Unrelated, loadings) def CalcSUGIBSScores(self, nComponents): ibs = self.CalcIBSMatrix() d = np.sum(ibs, axis=0) ugrm = self.CalcUGRMMatrix() D = np.diag(d**-0.5) I = D@ugrm@D w, V = npl.eig(I) ind = np.argsort(-w) return D@V[:, ind[1:nComponents+1]] def CalcSUGIBSLoadingsExact(self, nComponents): ibs = self.CalcIBSMatrix() d = np.sum(ibs, axis=0) D = np.diag(d**-0.5) A = lib.UnpackUGeno(self.GENO, self.nSamples) A = D@A U, s, _ = npl.svd(A.T, full_matrices=False) S = np.diag(s[1:nComponents+1]) U = U[:, 1:nComponents+1] return npl.solve(S, U.T) def CalcSUGIBSLoadingsApprox(self, nComponents, nParts=10): L = 2*(nComponents+1) I = 10 G = np.zeros((self.nSamples, L*(I+1)), dtype='double', order='F') G[:, :L] = np.random.randn(self.nSamples, L) ibs = self.CalcIBSMatrix() ugrm = self.CalcUGRMMatrix() d = np.sum(ibs, axis=0) D = np.diag(d**-0.5) ugrm = D@ugrm@D for i in range(1, I): G[:, i*L: (i+1)*L] = ugrm@G[:, (i-1)*L:i*L] H = np.zeros((self.nSNPs, L*(I+1)), dtype='double', order='F') nSNPsPart = math.ceil(self.nSNPs/nParts) for i in range(nParts-1): A = lib.UnpackUGeno( self.GENO[:, i*nSNPsPart:(i+1)*nSNPsPart], self.nSamples) H[i*nSNPsPart:(i+1)*nSNPsPart, :] = A.T@D@G A = lib.UnpackUGeno(self.GENO[:, (nParts-1)*nSNPsPart:], self.nSamples) H[(nParts-1)*nSNPsPart:, :] = A.T@D@G Q, _ = npl.qr(H) T = np.zeros((self.nSamples, L*(I+1)), dtype='double', order='F') for i in range(nParts-1): A = lib.UnpackUGeno( self.GENO[:, i*nSNPsPart:(i+1)*nSNPsPart], self.nSamples) T = T + D@A@Q[i*nSNPsPart:(i+1)*nSNPsPart, :] A = lib.UnpackUGeno(self.GENO[:, (nParts-1)*nSNPsPart:], self.nSamples) T = T+D@A@Q[(nParts-1)*nSNPsPart:, :] _, S, W = npl.svd(T, full_matrices=False) U = Q@W.T S = S[1:nComponents+1] S = np.diag(S) U = U[:, 1:nComponents+1] return npl.solve(S, U.T) def ProjectSUGIBS(self, ref_obj, loadings, nParts=10): nSNPsPart = math.ceil(self.nSNPs/nParts) nComponents = loadings.shape[0] scores = np.zeros((nComponents, self.nSamples)) for i in range(nParts-1): A = lib.UnpackUGeno( self.GENO[:, i*nSNPsPart:(i+1)*nSNPsPart], self.nSamples) scores = scores + loadings[:, i*nSNPsPart:(i+1)*nSNPsPart]@A.T A = lib.UnpackUGeno( self.GENO[:, (nParts-1)*nSNPsPart:], self.nSamples) scores = scores + loadings[:, (nParts-1)*nSNPsPart:]@A.T connect = CalcIBSConnection(ref_obj, self, self.nThreads) D = np.diag(connect**-1) scores = scores@D return scores.T def CalcSUGIBSiRScores(self, nComponents, is_exact=False): ind = self.FindUnrelated() Unrelated = self.Keep(ind) if is_exact: loadings = Unrelated.CalcSUGIBSLoadingsExact(nComponents) else: loadings = Unrelated.CalcSUGIBSLoadingsApprox(nComponents) return self.ProjectSUGIBS(Unrelated, loadings) # GWAS def CalcLinearRegressionGWAS(self, trait, covariates): betas, stats = lib.CalcLinearRegressionGWAS( self.GENO, covariates, trait, self.nThreads) df = len(trait)-covariates.shape[1] pvalues = t.cdf(stats, df=df) return betas, pvalues def CalcCCAGWAS(self, trait): Y = trait - trait.mean(axis=0) betas, rho2 = lib.CalcCCAGWAS(self.GENO, Y, self.nThreads) nDims = trait.shape[1] t = (nDims**2-4)/(nDims**2+1-5) Lambda = 1.0 - rho2 t = np.sqrt(t) w = self.nSamples - (nDims+4)/2 df1 = nDims df2 = w*t-nDims/2+1 Lambda = np.power(Lambda, 1.0/t) F = (1-Lambda)/Lambda*df2/df1 pvalues = f.cdf(F, dfn=df2, dfd=df1) return betas, rho2, pvalues
35.098143
117
0.593183
cfa2898c4fb053e99a06848a322a8c26f5397eb4
10,398
py
Python
watchman/integration/eden/test_eden_pathgen.py
chadaustin/watchman
b01a841f3eca5ebaf5ce4a62e1937c95851f450e
[ "MIT" ]
9,308
2015-01-03T13:33:47.000Z
2022-03-31T06:45:26.000Z
watchman/integration/eden/test_eden_pathgen.py
00mjk/watchman
eb22a60e74f04065e24eb51ba1dd1342d66f2ad6
[ "MIT" ]
878
2015-01-07T15:28:33.000Z
2022-03-30T09:30:10.000Z
watchman/integration/eden/test_eden_pathgen.py
00mjk/watchman
eb22a60e74f04065e24eb51ba1dd1342d66f2ad6
[ "MIT" ]
932
2015-01-05T08:25:00.000Z
2022-03-25T11:11:42.000Z
# vim:ts=4:sw=4:et: # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # no unicode literals from __future__ import absolute_import, division, print_function import os import pywatchman import WatchmanEdenTestCase def populate(repo): # We ignore ".hg" here just so some of the tests that list files don't have to # explicitly filter out the contents of this directory. However, in most situations # the .hg directory normally should not be ignored. repo.write_file(".watchmanconfig", '{"ignore_dirs":[".buckd", ".hg"]}') repo.write_file("hello", "hola\n") repo.write_file("adir/file", "foo!\n") repo.write_file("bdir/test.sh", "#!/bin/bash\necho test\n", mode=0o755) repo.write_file("bdir/noexec.sh", "#!/bin/bash\necho test\n") repo.write_file("b*ir/star", "star") repo.write_file("b\\*ir/foo", "foo") repo.write_file("cdir/sub/file", "") repo.symlink("slink", "hello") repo.commit("initial commit.") class TestEdenPathGenerator(WatchmanEdenTestCase.WatchmanEdenTestCase): def test_defer_mtime(self): root = self.makeEdenMount(populate) res = self.watchmanCommand("watch", root) self.assertEqual("eden", res["watcher"]) # Ensure that the mtime field is loaded for rendering. # The expression doesn't use timestamps but the field list does. res = self.watchmanCommand( "query", root, {"glob": ["bdir/noexec.sh"], "fields": ["name", "mtime"]} ) print(res) self.assertEqual(res["files"][0]["name"], "bdir/noexec.sh") self.assertGreater(res["files"][0]["mtime"], 0) def test_eden_readlink(self): root = self.makeEdenMount(populate) res = self.watchmanCommand("watch", root) self.assertEqual("eden", res["watcher"]) res = self.watchmanCommand( "query", root, { "expression": ["allof", ["type", "l"], ["not", ["dirname", ".eden"]]], "fields": ["name", "symlink_target"], }, ) print(res) self.assertEqual(res["files"][0], {"name": "slink", "symlink_target": "hello"}) def test_non_existent_file(self): root = self.makeEdenMount(populate) res = self.watchmanCommand("watch", root) self.assertEqual("eden", res["watcher"]) clock = self.watchmanCommand("clock", root)["clock"] # Create the file that we want to remove self.touchRelative(root, "111") # We need to observe this file prior to deletion, otherwise # eden will optimize it out of the results after the delete res = self.watchmanCommand( "query", root, {"since": clock, "fields": ["name", "mode"]} ) clock = res["clock"] os.unlink(os.path.join(root, "111")) res = self.watchmanCommand( "query", root, {"since": clock, "fields": ["name", "mode"]} ) # Clunky piecemeal checks here because the `mode` value is set # to something, even though it is deleted, but we cannot portably # test the values from python land, so we want to check that it # is non-zero files = res["files"] self.assertEqual(len(files), 1) f = files[0] self.assertEqual(f["name"], "111") self.assertGreater(f["mode"], 0) def test_eden_watch(self): root = self.makeEdenMount(populate) # make sure this exists; we should not observe it in any of the results # that we get back from watchman because it is listed in the ignore_dirs # config section. os.mkdir(os.path.join(root, ".buckd")) res = self.watchmanCommand("watch", root) self.assertEqual("eden", res["watcher"]) self.assertFileList( root, self.eden_dir_entries + [ ".eden", ".watchmanconfig", "adir", "adir/file", "bdir", "bdir/noexec.sh", "bdir/test.sh", "b*ir", "b*ir/star", "b\\*ir", "b\\*ir/foo", "cdir", "cdir/sub", "cdir/sub/file", "hello", "slink", ], ) res = self.watchmanCommand( "query", root, {"expression": ["type", "f"], "fields": ["name"]} ) self.assertFileListsEqual( res["files"], [ ".watchmanconfig", "adir/file", "bdir/noexec.sh", "bdir/test.sh", "b*ir/star", "b\\*ir/foo", "cdir/sub/file", "hello", ], ) res = self.watchmanCommand( "query", root, {"expression": ["type", "l"], "fields": ["name"]} ) self.assertFileListsEqual(res["files"], self.eden_dir_entries + ["slink"]) res = self.watchmanCommand( "query", root, {"expression": ["type", "f"], "relative_root": "bdir", "fields": ["name"]}, ) self.assertFileListsEqual(res["files"], ["noexec.sh", "test.sh"]) res = self.watchmanCommand( "query", root, {"expression": ["type", "f"], "fields": ["name"], "glob": ["*.sh"]}, ) self.assertFileListsEqual([], res["files"]) res = self.watchmanCommand( "query", root, { "expression": ["type", "f"], "fields": ["name"], "relative_root": "bdir", "glob": ["*.sh"], }, ) self.assertFileListsEqual(res["files"], ["noexec.sh", "test.sh"]) res = self.watchmanCommand( "query", root, {"expression": ["type", "f"], "fields": ["name"], "glob": ["**/*.sh"]}, ) self.assertFileListsEqual(res["files"], ["bdir/noexec.sh", "bdir/test.sh"]) # glob_includedotfiles should be False by default. res = self.watchmanCommand( "query", root, {"fields": ["name"], "glob": ["**/root"]} ) self.assertFileListsEqual(res["files"], []) # Verify glob_includedotfiles=True is honored in Eden. res = self.watchmanCommand( "query", root, {"fields": ["name"], "glob": ["**/root"], "glob_includedotfiles": True}, ) self.assertFileListsEqual(res["files"], [".eden/root"]) res = self.watchmanCommand("query", root, {"path": [""], "fields": ["name"]}) self.assertFileListsEqual( res["files"], self.eden_dir_entries + [ ".eden", ".watchmanconfig", "adir", "adir/file", "b*ir", "b*ir/star", "bdir", "bdir/noexec.sh", "bdir/test.sh", "b\\*ir", "b\\*ir/foo", "cdir", "cdir/sub", "cdir/sub/file", "hello", "slink", ], ) res = self.watchmanCommand( "query", root, {"path": [{"path": "bdir", "depth": 0}], "fields": ["name"]} ) self.assertFileListsEqual(res["files"], ["bdir/noexec.sh", "bdir/test.sh"]) with self.assertRaises(pywatchman.CommandError) as ctx: self.watchmanCommand( "query", root, {"path": [{"path": "bdir", "depth": 1}], "fields": ["name"]}, ) self.assertIn("only supports depth", str(ctx.exception)) res = self.watchmanCommand( "query", root, {"path": [""], "relative_root": "bdir", "fields": ["name"]} ) self.assertFileListsEqual(res["files"], ["noexec.sh", "test.sh"]) # Don't wildcard match a name with a * in it res = self.watchmanCommand( "query", root, {"path": [{"path": "b*ir", "depth": 0}], "fields": ["name"]} ) self.assertFileListsEqual(res["files"], ["b*ir/star"]) # Check that the globbing stuff does the right thing # with a backslash literal here. Unfortunately, watchman # has a slight blindsport with such a path; we're normalizing # backslash to a forward slash in the name of portability... res = self.watchmanCommand( "query", root, {"path": [{"path": "b\\*ir", "depth": 0}], "fields": ["name"]}, ) # ... so the path that gets encoded in the query is # "b/*ir" and that gets expanded to "b/\*ir/*" when this # is mapped to a glob and passed to eden. This same # path query won't yield the correct set of matches # in the non-eden case either. self.assertFileListsEqual(res["files"], []) res = self.watchmanCommand( "query", root, {"expression": ["type", "f"], "fields": ["name"], "suffix": ["sh", "js"]}, ) self.assertFileListsEqual(res["files"], ["bdir/noexec.sh", "bdir/test.sh"]) res = self.watchmanCommand( "query", root, {"expression": ["type", "f"], "fields": ["name"], "suffix": ["s*"]}, ) # With overlapping glob patterns in the same generator, Watchman should # not return duplicate results. res = self.watchmanCommand( "query", root, {"fields": ["name"], "glob": ["bdir/*.sh", "bdir/test*"]} ) files = res["files"] self.assertFileListsEqual( files, ["bdir/noexec.sh", "bdir/test.sh"], "Overlapping patterns should yield no duplicates", ) # edenfs had a bug where a globFiles request like ["foo/*", "foo/*/*"] would # effectively ignore the second pattern. Ensure that bug has been fixed. res = self.watchmanCommand( "query", root, {"fields": ["name"], "glob": ["cdir/*", "cdir/*/*"]} ) self.assertFileListsEqual(res["files"], ["cdir/sub", "cdir/sub/file"])
35.855172
88
0.513464
4ecf99c3ba68768287b6fb5dda2748645e03c941
2,488
py
Python
utils/deploy/geoapp/makelocalcfg.py
d3m-purdue/geoapp
9d848688b988ec43cb0fe4f11650bbeb7779220e
[ "Apache-2.0" ]
null
null
null
utils/deploy/geoapp/makelocalcfg.py
d3m-purdue/geoapp
9d848688b988ec43cb0fe4f11650bbeb7779220e
[ "Apache-2.0" ]
null
null
null
utils/deploy/geoapp/makelocalcfg.py
d3m-purdue/geoapp
9d848688b988ec43cb0fe4f11650bbeb7779220e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os rootPath = os.environ['KWDEMO_KEY'] data = { 'LIMITED': os.environ.get('LIMITED_DATA', '') == 'true', 'LOCAL': os.environ.get('LIMITED_DATA', '') == 'local', 'FULL': True } for key in data: if data[key] and key != 'FULL': data['FULL'] = False cfg = """ [global] server.socket_port: 8080 tools.proxy.on: True [database] uri: "mongodb://%HOSTIP%:27017/%ROOTPATH%" [server] # Set to "production" or "development" mode: "production" api_root: "../api/v1" static_root: "girder/static" [resources] # The activityLog is where the Draper logging receiver is located. If this # optional module is not included, this parameter is irrelevant %FULL%activityLogURI: "http://10.1.93.208" %LIMITED%activityLogURI: %LOCAL%activityLogURI: # Each entry in this section is an available database. The order is by lowest # "order" value, then alphabetically for ties. Each entry consists of {"name": # (name shown to the user), "class": (internal database class, such as # TaxiViaPostgres), "params": (database specific parameters)} [taxidata] %FULL%postgresfullg: {"order": 0, "name": "Postgres Full w/ Green", "class": "TaxiViaPostgresSeconds", "params": {"db": "taxifullg", "host": "%HOSTIP%", "user": "taxi", "password": "taxi#1"}} %LIMITED%postgresfullg: %LOCAL%postgresfullg: {"order": 0, "name": "Postgres Full w/ Green", "class": "TaxiViaPostgresSeconds", "params": {"db": "taxifullg", "host": "parakon", "user": "taxi", "password": "taxi#1"}} %FULL%postgres12: %LIMITED%postgres12: {"order": 2, "name": "Postgres 1/12 Shuffled", "class": "TaxiViaPostgres", "params": {"db": "taxi12r", "host": "%HOSTIP%", "user": "taxi", "password": "taxi#1"}} %LOCAL%postgres12: postgresfull: mongofull: mongo12r: mongo12: mongo: tangelo: [instagramdata] %FULL%postgres: {"order": 0, "name": "Instagram and Twitter", "class": "InstagramViaPostgres", "params": {"db": "instatwitter", "host": "%HOSTIP%", "user": "taxi", "password": "taxi#1"}} %LIMITED%postgres: %LOCAL%postgres: {"order": 0, "name": "Instagram and Twitter", "class": "InstagramViaPostgres", "params": {"db": "instatwitter", "host": "parakon", "user": "taxi", "password": "taxi#1"}} """ hostip = os.popen("netstat -nr | grep '^0\.0\.0\.0' | awk '{print $2}'").read() cfg = cfg.replace('%HOSTIP%', hostip.strip()).strip() cfg = cfg.replace('%ROOTPATH%', rootPath) for key in data: cfg = cfg.replace('%' + key + '%', '' if data[key] else '#') print cfg
35.042254
191
0.65836
26cd1b2e58c7eb6ac59ef37eb4b1ce490f4bb9ec
6,977
py
Python
assignment/assignment3/python/task1/task1_dev.py
maple1eaf/data_mining_inf553
fba0c19f46aac5882e103dbe53155e7128a9290f
[ "MIT" ]
1
2021-05-04T05:17:57.000Z
2021-05-04T05:17:57.000Z
assignment/assignment3/python/task1/task1_dev.py
maple1eaf/data_mining_inf553
fba0c19f46aac5882e103dbe53155e7128a9290f
[ "MIT" ]
null
null
null
assignment/assignment3/python/task1/task1_dev.py
maple1eaf/data_mining_inf553
fba0c19f46aac5882e103dbe53155e7128a9290f
[ "MIT" ]
1
2021-09-24T08:17:23.000Z
2021-09-24T08:17:23.000Z
""" spark-submit task1.py <input_file> <output_file> spark-submit task1_dev.py "file:///Users/markduan/duan/USC_course/USC_APDS/INF553/homework/hw3/data/train_review.json" "./output/task1_dev_output.json" """ import sys import time import json import random from pyspark import SparkConf, SparkContext # for run on vocareum # import os # os.environ['PYSPARK_PYTHON'] = '/usr/local/bin/python3.6' # os.environ['PYSPARK_DRIVER_PYTHON'] = '/usr/local/bin/python3.6' NUM_HASHS = 30 LARGE_NUMBER = 999999 NUM_BANDS = NUM_HASHS JACCARD_SIMILARITY_THRESHOLD = 0.05 # >= input_file_path = sys.argv[1] output_file_path = sys.argv[2] class ProjectionTable(): """ key-value domains are one to one projection. """ def __init__(self, values): """ values - iterable iv - index-value pair """ self.values = values self.length = len(values) self.indice = list(range(self.length)) self.iv = list(enumerate(values)) def getIndex(self, value): for i, v in self.iv: if v == value: return i return None def getValue(self, index): for i, v in self.iv: if i == index: return v return None def isPrime(num): if num == 1: return False for divider in range(2, num): if num % divider == 0: return False return True def smallestPrime(num): while(1): num = num + 1 if isPrime(num): return num def generateHashs(n, m): """ generate a list of hash functions :n - number of hash functions we want to generate :m - number of attributes """ random.seed(12) ab = [] for i in range(2*n): n1 = random.randint(1,m) if n1 not in ab: ab.append(n1) a_list = ab[:n] b_list = ab[n:] m_new = smallestPrime(m) print('ab list length:', len(ab)) print('the prime number m_new:', m_new) def generateHash(i): a = a_list[i] b = b_list[i] def hashfunc(x): return (a * hash(x) + b) % m_new return hashfunc return [generateHash(i) for i in range(n)] def generateHashForLSH(r): random.seed(8) l_ = [] for i in range(r): a = random.randint(1, 10000) if a not in l_: l_.append(a) def h(l): # l - list of integers l_len = len(l) sum_ = 0 for i in range(l_len): sum_ = sum_ + l_[i] * l[i] return sum_ % 500000 return h def updateSignature(s_cur, s_new, length): for i in range(length): if s_new[i] < s_cur[i]: s_cur[i] = s_new[i] def minHash(x, hashs): b_id = x[0] u_ids = x[1] signature = [LARGE_NUMBER] * NUM_HASHS for u in u_ids: s_ = [hashs[i](u) for i in range(NUM_HASHS)] updateSignature(signature, s_, NUM_HASHS) res = (b_id, signature) return res # def minHash2(x, hashs): # b_id = x[0] # u_ids = x[1] # signature = [] # for hafunc in hashs: # cur_ = LARGE_NUMBER # for u in u_ids: # hash_value = hafunc(u) # if hash_value < cur_: # cur_ = hash_value # signature.append(cur_) # return(b_id, signature) def LSH(x, b, r, hash_lsh): b_id = x[0] signature = x[1] ress = [] for i in range(b): v_hash = hash_lsh(signature[i*r:(i+1)*r]) res = ((v_hash, i), b_id) ress.append(res) return ress def generatePairs(l): l_len = len(l) res_l = [(l[i],l[j]) for i in range(l_len) for j in range(i+1, l_len)] return res_l def jaccardSimilarity(l1, l2): # items in l1 are unique to each other, so does l2 l1_len = len(l1) l2_len = len(l2) intersect_set = set(l1).intersection(set(l2)) inter_len = len(intersect_set) union_len = l1_len + l2_len - inter_len js = inter_len / union_len return js def getData(sc): """ :return data - [(b_index, u_index), ...] """ raw_data = sc.textFile(input_file_path) \ .map(json.loads) \ .map(lambda r: (r['business_id'], r['user_id'])) \ .distinct() \ .cache() # count how many distinct business_id b_id_len = raw_data.map(lambda x: x[0]).distinct().count() # ount how many distinct user_id u_id_len = raw_data.map(lambda x: x[1]).distinct().count() # data - [(b_id, u_id), ...] data = raw_data.groupByKey().cache() return data, b_id_len, u_id_len def process(data, hashs, b, r, hash_lsh): candidates = data.map(lambda x: minHash(x, hashs)) \ .flatMap(lambda x: LSH(x, b, r, hash_lsh)) \ .groupByKey() \ .filter(lambda x: len(x[1]) > 1) \ .map(lambda x: list(x[1])) \ .flatMap(lambda x: generatePairs(x)) \ .distinct() \ .collect() t_candi = time.time() print('done candidates. time:%fs.' % (t_candi - t_a)) # print('candidates:', candidates) print('length of candidates:', len(candidates)) return candidates def process3(data, candidates): # no spark t_p4 = time.time() data_groupby_bid = data.map(lambda x: (x[0], list(x[1]))).collect() b_dict = {} for (k,v) in data_groupby_bid: b_dict[k] = v res_valid_pairs = [] for (b1, b2) in candidates: js_ = jaccardSimilarity(b_dict[b1], b_dict[b2]) if js_ >= JACCARD_SIMILARITY_THRESHOLD: res_valid_pairs.append(((b1, b2), js_)) print('---number of valid pairs:---', len(res_valid_pairs)) t_p5 = time.time() print('---done count jaccard similarity. time:%fs.---' % (t_p5 - t_p4)) return res_valid_pairs def process4(true_positives): with open(output_file_path, 'w', encoding='utf-8') as fp: for pair in true_positives: b1 = pair[0][0] b2 = pair[0][1] sim = pair[1] r_json = json.dumps({'b1': b1, 'b2': b2, 'sim': sim}) fp.write(r_json) fp.write('\n') if __name__ == "__main__": t_a = time.time() # define spark env conf = SparkConf() \ .setAppName("task1") \ .setMaster("local[*]") sc = SparkContext(conf=conf) # step 1: get data and the rename tables data, b_id_len, u_id_len = getData(sc) # generate a list of hash functions for Min-Hash hashs = generateHashs(NUM_HASHS, u_id_len) b = NUM_BANDS r = int(NUM_HASHS / NUM_BANDS) hash_for_lsh = generateHashForLSH(r) # step 2: implement Min-Hash to transfer user_id to signature candidates = process(data, hashs, b, r, hash_for_lsh) # step 4: verify candidates using Jaccard similarity true_positives = process3(data, candidates) # step 5: output process4(true_positives) # with open(output_file_path, 'w', encoding='utf-8') as fp: # json.dump(js_pairs, fp) t_b = time.time() print('time consume: %fs' % (t_b-t_a))
26.033582
151
0.578902
8a5628670ca908b9dfde19eaedbbd15b104e061f
4,752
py
Python
conpaas-services/src/conpaas/core/clouds/base.py
bopopescu/conpaas-1
cea3c02f499a729464697de7cf98c2041febc0ab
[ "BSD-3-Clause" ]
1
2015-08-03T03:57:06.000Z
2015-08-03T03:57:06.000Z
conpaas-services/src/conpaas/core/clouds/base.py
bopopescu/conpaas-1
cea3c02f499a729464697de7cf98c2041febc0ab
[ "BSD-3-Clause" ]
null
null
null
conpaas-services/src/conpaas/core/clouds/base.py
bopopescu/conpaas-1
cea3c02f499a729464697de7cf98c2041febc0ab
[ "BSD-3-Clause" ]
2
2017-05-27T09:07:53.000Z
2020-07-26T03:15:55.000Z
# -*- coding: utf-8 -*- """ conpaas.core.clouds.base ======================== ConPaaS core: cloud-independent IaaS code. :copyright: (C) 2010-2013 by Contrail Consortium. """ from conpaas.core.node import ServiceNode from conpaas.core.log import create_logger class Cloud: ''' Abstract Cloud ''' def __init__(self, cloud_name): #TODO: it shouldn't be cloud_name == config file section name self.cloud_name = cloud_name self.connected = False self.driver = None self.cx_template = None self.cx = None self.logger = create_logger(__name__) def get_cloud_name(self): return self.cloud_name def _check_cloud_params(self, iaas_config, cloud_params=[]): """Check for missing or empty parameters in iaas_config""" error_template = '%s config param %s for %s' for field in cloud_params: if not iaas_config.has_option(self.cloud_name, field): raise Exception('Missing ' + error_template % ( self.get_cloud_type(), field, self.cloud_name )) if iaas_config.get(self.cloud_name, field) == '': raise Exception('Empty ' + error_template % ( self.get_cloud_type(), field, self.cloud_name )) return None def _connect(self): ''' _connect is the method used to set the driver and connect to the cloud ''' raise NotImplementedError( '_connect not implemented for this cloud driver') def get_cloud_type(self): raise NotImplementedError( 'get_cloud_type not implemented for this cloud driver') def get_context_template(self): return self.cx_template def set_context_template(self, cx): """ Set the context template (i.e. without replacing anything in it) """ self.cx_template = cx self.cx = cx def config(self, config_params, context): raise NotImplementedError( 'config not implemented for this cloud driver') def list_vms(self, has_private_ip=True): ''' lists the service nodes in the cloud instances @return vms: List[ServiceNode] ''' self.logger.debug('list_vms(has_private_ip=%s)' % has_private_ip) if self.connected is False: self._connect() return [serviceNode for serviceNode in self._create_service_nodes(self.driver.list_nodes())] def new_instances(self, count, name='conpaas', inst_type=None): raise NotImplementedError( 'new_instances not implemented for this cloud driver') def _create_service_nodes(self, instances, has_private_ip=True): ''' creates a list of ServiceNode @param instances: List of nodes provide by the driver or a single node @type instances: L{libcloud.compute.Node} or C{libcloud.compute.Node} @param has_private_ip: some instances only need the public ip @type has_private_ip: C{bool} ''' if type(instances) is list: return [ self.__create_one_service_node(node, has_private_ip) for node in instances ] return self.__create_one_service_node(instances, has_private_ip) def __create_one_service_node(self, instance, has_private_ip=True): ''' creates a single ServiceNode @param instance: node provided by the driver @type instance: C{libcloud.compute.Node} @param has_private_ip: some instances only need the public ip @type has_private_ip: C{bool} ''' ip, private_ip = self.__get_ips(instance, has_private_ip) return ServiceNode(instance.id, ip, private_ip, self.cloud_name) def __get_ips(self, instance, has_private_ip): if instance.public_ips: ip = instance.public_ips[0] else: ip = '' if has_private_ip: if instance.private_ips: private_ip = instance.private_ips[0] else: private_ip = '' else: private_ip = ip if hasattr(ip, 'address'): ip = ip.address if hasattr(private_ip, 'address'): private_ip = private_ip.address return ip, private_ip def kill_instance(self, node): '''Kill a VM instance. @param node: A ServiceNode instance, where node.id is the vm_id ''' self.logger.debug('kill_instance(node=%s)' % node) if self.connected is False: self._connect() return self.driver.destroy_node(node.as_libcloud_node())
30.857143
79
0.608375
3f6dba3bcd5c4ebc2983a38da5d37c7a236f7bd0
20,531
py
Python
servers/unity/src/win/tango_pygame.py
arpitgogia/mars_city
30cacd80487a8c2354bbc15b4fad211ed1cb4f9d
[ "BSD-2-Clause-FreeBSD" ]
25
2016-07-20T04:49:14.000Z
2021-08-25T09:05:04.000Z
servers/unity/src/win/tango_pygame.py
arpitgogia/mars_city
30cacd80487a8c2354bbc15b4fad211ed1cb4f9d
[ "BSD-2-Clause-FreeBSD" ]
16
2016-12-27T08:30:27.000Z
2018-06-18T08:51:44.000Z
servers/unity/src/win/tango_pygame.py
arpitgogia/mars_city
30cacd80487a8c2354bbc15b4fad211ed1cb4f9d
[ "BSD-2-Clause-FreeBSD" ]
49
2016-07-20T13:08:27.000Z
2020-06-02T18:26:12.000Z
import argparse import ctypes import sys import PyTango import numpy import pygame from PyTango.server import Device, DeviceMeta, attribute from pykinect2 import * from pykinect2 import PyKinectRuntime from pykinect2 import PyKinectV2 import _ctypes import threading import time KINECT_FPS = 30 if sys.hexversion >= 0x03000000: pass else: pass # colors for drawing different bodies SKELETON_COLORS = [pygame.color.THECOLORS["red"], pygame.color.THECOLORS["blue"], pygame.color.THECOLORS["green"], pygame.color.THECOLORS["orange"], pygame.color.THECOLORS["purple"], pygame.color.THECOLORS["yellow"], pygame.color.THECOLORS["violet"]] class PyTracker(Device): """ PyTango class which is responsible for sending skeleton array. """ __metaclass__ = DeviceMeta POLLING = 30 # the Tracker object, from which get skeletal data skletonobj = None def init_device(self): Device.init_device(self) print "init tango" self.info_stream('In Python init_device method') self.set_state(PyTango.DevState.ON) self.skleton = PyTango.IMAGE def set_skleton(self, skletonobj): self.skletonobj = skletonobj # TODO! # skleton = attribute(label="skleton", # dtype=[[numpy.float64, # PyTango.IMAGE, # PyTango.READ, 100, 100], ], # polling_period=POLLING, # max_dim_x=1024, # max_dim_y=1024) skleton = attribute(label="skleton", dtype=PyTango.IMAGE, polling_period=POLLING, max_dim_x=1024, max_dim_y=1024) # skleton = attribute(label="skleton", # dtype=[[bytearray,numpy.int32],], # polling_period=POLLING, # max_dim_x=1024, # max_dim_y=1024) def aquire_skelton_status(self): if self.skletonobj is None: return False else: return True def read_skleton(self): # print self.aquire_skelton_status() if self.aquire_skelton_status(): try: # print "inside try statement" # print self.skletonobj self.bodies = self.skletonobj.get_bodies() # print self.bodies # print "after bodies" for i in range(0, self._kinect.max_body_count): body = self.bodies.bodies[i] if not body.is_tracked: continue joints = body.joints # print joints # convert joint coordinates to color space joint_points = self.skletonobj._kinect.body_joints_to_color_space(joints) self.coord_array = self.skletonobj.save_body_coodrinates(joints, joint_points) print self.coord_array self.push_change_event("skleton", self.coord_array) except: print("error reading skleton") return self.coord_array else: print("no skeleton found") class Tracker: """ This class has all the functions required to get data from Kinect and post them on a Pygame and it also initiates Tango server. """ device_name = None def get_bodies(self): """ Gets skeletons from kinect :return skeleton array: """ if self._bodies is not None: return self._bodies def set_tracker_in_device(self): util = PyTango.Util.instance() device = util.get_device_by_name("C3/unity/" + self.device_name) device.set_skleton(self) def start_tango(self): """ Starts the tango server. args should be equal to filename :return: """ PyTango.server.run((PyTracker,), post_init_callback=self.set_tracker_in_device, args=['tango_pygame', self.device_name]) def draw_body_bone(self, joints, jointPoints, color, joint0, joint1): """ Takes a start and an end joint to make a straight joint. :param joints: address of joints :param jointPoints: joints in colour space :param color: colors to be used to plot :param joint0: starting joint :param joint1: Ending Joint :return: """ joint0State = joints[joint0].TrackingState joint1State = joints[joint1].TrackingState # both joints are not tracked if (joint0State == PyKinectV2.TrackingState_NotTracked) or (joint1State == PyKinectV2.TrackingState_NotTracked): return # both joints are not *really* tracked if (joint0State == PyKinectV2.TrackingState_Inferred) and (joint1State == PyKinectV2.TrackingState_Inferred): return # ok, at least one is good start = (jointPoints[joint0].x, jointPoints[joint0].y) end = (jointPoints[joint1].x, jointPoints[joint1].y) try: # print start, " ", end pygame.draw.line(self._frame_surface, color, start, end, 8) except: # need to catch it due to possible invalid positions (with inf) pass def skleton2numpyarray(self, skleton, strlength): """ Converts a dictionary(skeleton) to Numpy array :param skleton: Input dictionary data type :param strlength: length of the string for value of the key :return: numpy array """ names = ['id', 'data'] len1 = "S" + str(strlength) # string length accepted formats = ['S9', len1] dtype = dict(names=names, formats=formats) array = numpy.array(skleton.items(), dtype=dtype) return array def get_coordinates(self, joints, jointPoints, color, start, end): """ :param joints: Joint address :param jointPoints: joint in colour space :param color: color of skeleton :param start: start joint :param end: end joint :return: list containing tuple of coordinates os tart and end """ final_coordinates = [] joint0State = joints[start].TrackingState joint1State = joints[end].TrackingState # both joints are not tracked if (joint0State == PyKinectV2.TrackingState_NotTracked) or (joint1State == PyKinectV2.TrackingState_NotTracked): return # both joints are not *really* tracked if (joint0State == PyKinectV2.TrackingState_Inferred) and (joint1State == PyKinectV2.TrackingState_Inferred): return # ok, at least one is good startcordinates = (jointPoints[start].x, jointPoints[start].y) endcoordinates = (jointPoints[end].x, jointPoints[end].y) try: # print start, " ", end final_coordinates.append(startcordinates) final_coordinates.append(endcoordinates) return final_coordinates except: # need to catch it due to possible invalid positions (with inf) pass def save_body_coodrinates(self, joints, jointPoints): # Torso torso = [] torso.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_Head, PyKinectV2.JointType_Neck)) torso.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_Neck, PyKinectV2.JointType_SpineShoulder)) torso.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_SpineShoulder, PyKinectV2.JointType_SpineMid)) torso.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_SpineMid, PyKinectV2.JointType_SpineBase)) torso.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_SpineShoulder, PyKinectV2.JointType_ShoulderRight)) torso.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_SpineShoulder, PyKinectV2.JointType_ShoulderLeft)) torso.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_SpineBase, PyKinectV2.JointType_HipRight)) torso.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_SpineBase, PyKinectV2.JointType_HipLeft)) # Right Arm right_arm = [] right_arm.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_ShoulderRight, PyKinectV2.JointType_ElbowRight)) right_arm.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_ElbowRight, PyKinectV2.JointType_WristRight)) right_arm.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_WristRight, PyKinectV2.JointType_HandRight)) right_arm.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_HandRight, PyKinectV2.JointType_HandTipRight)) right_arm.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_WristRight, PyKinectV2.JointType_ThumbRight)) # Left Arm left_arm = [] left_arm.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_ShoulderLeft, PyKinectV2.JointType_ElbowLeft)) left_arm.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_ElbowLeft, PyKinectV2.JointType_WristLeft)) left_arm.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_WristLeft, PyKinectV2.JointType_HandLeft)) left_arm.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_HandLeft, PyKinectV2.JointType_HandTipLeft)) left_arm.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_WristLeft, PyKinectV2.JointType_ThumbLeft)) # Right Leg right_leg = [] right_leg.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_HipRight, PyKinectV2.JointType_KneeRight)) right_leg.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_KneeRight, PyKinectV2.JointType_AnkleRight)) right_leg.append(self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_AnkleRight, PyKinectV2.JointType_FootRight)) # Left Leg left_leg = [] left_leg.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_HipLeft, PyKinectV2.JointType_KneeLeft)) left_leg.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_KneeLeft, PyKinectV2.JointType_AnkleLeft)) left_leg.append( self.get_coordinates(joints, jointPoints, PyKinectV2.JointType_AnkleLeft, PyKinectV2.JointType_FootLeft)) skeleton = {"torso": str(torso), "right arm": str(right_arm), "left arm": str(left_arm), "right leg": str(right_leg), "left leg": str(left_leg)} strlength = len(torso) + len(right_arm) + len(left_arm) + len(right_leg) + len(left_leg) skeletonnd = self.skleton2numpyarray(skeleton, strlength) return skeletonnd def draw_body(self, joints, jointPoints, color): """ :param joints: Joints :param jointPoints: joint point in color space :param color: color of skeleton :return: none """ # Torso self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_Head, PyKinectV2.JointType_Neck) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_Neck, PyKinectV2.JointType_SpineShoulder) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_SpineShoulder, PyKinectV2.JointType_SpineMid) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_SpineMid, PyKinectV2.JointType_SpineBase) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_SpineShoulder, PyKinectV2.JointType_ShoulderRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_SpineShoulder, PyKinectV2.JointType_ShoulderLeft) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_SpineBase, PyKinectV2.JointType_HipRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_SpineBase, PyKinectV2.JointType_HipLeft) # Right Arm self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_ShoulderRight, PyKinectV2.JointType_ElbowRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_ElbowRight, PyKinectV2.JointType_WristRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_WristRight, PyKinectV2.JointType_HandRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_HandRight, PyKinectV2.JointType_HandTipRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_WristRight, PyKinectV2.JointType_ThumbRight) # Left Arm self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_ShoulderLeft, PyKinectV2.JointType_ElbowLeft) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_ElbowLeft, PyKinectV2.JointType_WristLeft) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_WristLeft, PyKinectV2.JointType_HandLeft) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_HandLeft, PyKinectV2.JointType_HandTipLeft) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_WristLeft, PyKinectV2.JointType_ThumbLeft) # Right Leg self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_HipRight, PyKinectV2.JointType_KneeRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_KneeRight, PyKinectV2.JointType_AnkleRight) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_AnkleRight, PyKinectV2.JointType_FootRight) # Left Leg self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_HipLeft, PyKinectV2.JointType_KneeLeft) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_KneeLeft, PyKinectV2.JointType_AnkleLeft) self.draw_body_bone(joints, jointPoints, color, PyKinectV2.JointType_AnkleLeft, PyKinectV2.JointType_FootLeft) def draw_color_frame(self, frame, target_surface): """ utility function for pygame to write the color frame to the print buffer of pygame :param frame: :param target_surface: :return: """ target_surface.lock() address = self._kinect.surface_as_array(target_surface.get_buffer()) ctypes.memmove(address, frame.ctypes.data, frame.size) del address target_surface.unlock() def __init__(self, device_name): self.device_name = device_name main_thread = threading.Thread(target=self.run()) main_thread.daemon = True main_thread.run() time.sleep(0.1) print "starting tango" self.start_tango() def run(self): pygame.init() self._clock = pygame.time.Clock() # Set the width and height of the screen [width, height] self._infoObject = pygame.display.Info() self._screen = pygame.display.set_mode((self._infoObject.current_w >> 1, self._infoObject.current_h >> 1), pygame.HWSURFACE | pygame.DOUBLEBUF | pygame.RESIZABLE, 32) pygame.display.set_caption("Kinect for Windows v2 Body Game") self._done = False self._clock = pygame.time.Clock() # Kinect runtime object, we want only color and body frames self._kinect = PyKinectRuntime.PyKinectRuntime( PyKinectV2.FrameSourceTypes_Color | PyKinectV2.FrameSourceTypes_Body) # back buffer surface for getting Kinect color frames, 32bit color, width and height equal to the Kinect color frame size self._frame_surface = pygame.Surface( (self._kinect.color_frame_desc.Width, self._kinect.color_frame_desc.Height), 0, 32) # here we will store skeleton data self._bodies = None # -------- Main Program Loop ----------- while not self._done: # --- Main event loop for event in pygame.event.get(): # User did something if event.type == pygame.QUIT: # If user clicked close self._done = True # Flag that we are done so we exit this loop elif event.type == pygame.VIDEORESIZE: # window resized self._screen = pygame.display.set_mode(event.dict['size'], pygame.HWSURFACE | pygame.DOUBLEBUF | pygame.RESIZABLE, 32) # --- Woohoo! We've got a color frame! Let's fill out back buffer surface with frame's data if self._kinect.has_new_color_frame(): frame = self._kinect.get_last_color_frame() self.draw_color_frame(frame, self._frame_surface) frame = None # We have a body frame, so can get skeletons if self._kinect.has_new_body_frame(): self._bodies = self._kinect.get_last_body_frame() # --- draw skeletons to _frame_surface if self._bodies is not None: for i in range(0, self._kinect.max_body_count): body = self._bodies.bodies[i] if not body.is_tracked: continue joints = body.joints # convert joint coordinates to color space joint_points = self._kinect.body_joints_to_color_space(joints) self.draw_body(joints, joint_points, SKELETON_COLORS[i]) # self.save_body_coodrinates(joints,joint_points) h_to_w = float(self._frame_surface.get_height()) / self._frame_surface.get_width() target_height = int(h_to_w * self._screen.get_width()) surface_to_draw = pygame.transform.scale(self._frame_surface, (self._screen.get_width(), target_height)) self._screen.blit(surface_to_draw, (0, 0)) surface_to_draw = None pygame.display.update() # --- Go ahead and update the screen with what we've drawn. pygame.display.flip() # --- Limit to 60 frames per second self._clock.tick(60) # Close our Kinect sensor, close the window and quit. self._kinect.close() pygame.quit() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Enter the device name.') parser.add_argument('device', choices=['eras1'], help='the device where this data will be published' ) # # parse arguments try: args = parser.parse_args() except: pass else: print args.device, "hello" t = Tracker(args.device)
45.222467
130
0.612683
a9bb58fc9d1e7ccb23d15e8200e8d09450955908
8,290
py
Python
torchvision/models/shufflenetv2.py
ZJUGuoShuai/vision
a9940fe4b2b63bd82a2f853616e00fd0bd112f9a
[ "BSD-3-Clause" ]
3
2021-10-30T10:13:40.000Z
2021-12-12T10:26:14.000Z
torchvision/models/shufflenetv2.py
ZJUGuoShuai/vision
a9940fe4b2b63bd82a2f853616e00fd0bd112f9a
[ "BSD-3-Clause" ]
null
null
null
torchvision/models/shufflenetv2.py
ZJUGuoShuai/vision
a9940fe4b2b63bd82a2f853616e00fd0bd112f9a
[ "BSD-3-Clause" ]
1
2020-01-10T12:50:14.000Z
2020-01-10T12:50:14.000Z
from typing import Callable, Any, List import torch import torch.nn as nn from torch import Tensor from .._internally_replaced_utils import load_state_dict_from_url __all__ = ["ShuffleNetV2", "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "shufflenet_v2_x1_5", "shufflenet_v2_x2_0"] model_urls = { "shufflenetv2_x0.5": "https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth", "shufflenetv2_x1.0": "https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth", "shufflenetv2_x1.5": None, "shufflenetv2_x2.0": None, } def channel_shuffle(x: Tensor, groups: int) -> Tensor: batchsize, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x class InvertedResidual(nn.Module): def __init__(self, inp: int, oup: int, stride: int) -> None: super(InvertedResidual, self).__init__() if not (1 <= stride <= 3): raise ValueError("illegal stride value") self.stride = stride branch_features = oup // 2 assert (self.stride != 1) or (inp == branch_features << 1) if self.stride > 1: self.branch1 = nn.Sequential( self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(inp), nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d( inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False, ), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) @staticmethod def depthwise_conv( i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False ) -> nn.Conv2d: return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out class ShuffleNetV2(nn.Module): def __init__( self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual, ) -> None: super(ShuffleNetV2, self).__init__() if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = ["stage{}".format(i) for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # globalpool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _shufflenetv2(arch: str, pretrained: bool, progress: bool, *args: Any, **kwargs: Any) -> ShuffleNetV2: model = ShuffleNetV2(*args, **kwargs) if pretrained: model_url = model_urls[arch] if model_url is None: raise NotImplementedError("pretrained {} is not supported as of now".format(arch)) else: state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) return model def shufflenet_v2_x0_5(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 with 0.5x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" <https://arxiv.org/abs/1807.11164>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _shufflenetv2("shufflenetv2_x0.5", pretrained, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs) def shufflenet_v2_x1_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 with 1.0x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" <https://arxiv.org/abs/1807.11164>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _shufflenetv2("shufflenetv2_x1.0", pretrained, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs) def shufflenet_v2_x1_5(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 with 1.5x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" <https://arxiv.org/abs/1807.11164>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _shufflenetv2("shufflenetv2_x1.5", pretrained, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs) def shufflenet_v2_x2_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2: """ Constructs a ShuffleNetV2 with 2.0x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" <https://arxiv.org/abs/1807.11164>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _shufflenetv2("shufflenetv2_x2.0", pretrained, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)
37.511312
115
0.634741
55b6688029abd4e4424759b411ebdffcf832abb5
2,189
py
Python
test.py
e-rus/bumps
080ff80f939f3edf54a1fdc425e3f333d42ee8c4
[ "MIT" ]
null
null
null
test.py
e-rus/bumps
080ff80f939f3edf54a1fdc425e3f333d42ee8c4
[ "MIT" ]
null
null
null
test.py
e-rus/bumps
080ff80f939f3edf54a1fdc425e3f333d42ee8c4
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Run tests for bumps. Usage: ./test.py - run all tests ./test.py --with-coverage - run all tests with coverage report """ import os import sys import subprocess from glob import glob import nose from distutils.util import get_platform platform = '.%s-%s' % (get_platform(), sys.version[:3]) # Make sure that we have a private version of mplconfig mplconfig = os.path.join(os.getcwd(), '.mplconfig') os.environ['MPLCONFIGDIR'] = mplconfig if not os.path.exists(mplconfig): os.mkdir(mplconfig) import matplotlib matplotlib.use('Agg') def addpath(path): """ Add a directory to the python path environment, and to the PYTHONPATH environment variable for subprocesses. """ path = os.path.abspath(path) if 'PYTHONPATH' in os.environ: PYTHONPATH = path + os.pathsep + os.environ['PYTHONPATH'] else: PYTHONPATH = path os.environ['PYTHONPATH'] = PYTHONPATH sys.path.insert(0, path) sys.dont_write_bytecode = True sys.stderr = sys.stdout # Doctest doesn't see sys.stderr #import numpy as np; np.seterr(all='raise') # Check that we are running from the root. root = os.path.abspath(os.getcwd()) assert os.path.exists( os.path.join(root, 'bumps', 'cli.py')), "Not in bumps root" addpath(root) # Set the nosetest args nose_args = ['-v', '--all-modules', '-m(^_?test_|_test$|^test$)', '--with-doctest', '--doctest-extension=.rst', '--doctest-options=+ELLIPSIS,+NORMALIZE_WHITESPACE', '--cover-package=bumps', '-e.*amqp_map.*', ] # exclude gui subdirectory if wx is not available try: import wx except ImportError: nose_args.append('-egui') nose_args += sys.argv[1:] # allow coverage arguments # Add targets nose_args += [os.path.join(root,'bumps')] nose_args += glob('doc/g*/*.rst') nose_args += glob('doc/_examples/*/*.rst') print("nosetests " + " ".join(nose_args)) if not nose.run(argv=nose_args): sys.exit(1) # Run the command line version of bumps which should display help text. # for p in ['bin/bumps']: # ret = subprocess.call((sys.executable, p), shell=False) # if ret != 0: sys.exit()
25.453488
73
0.658748
b8f8619f73414e37cb8dc6621819db6b442dcfa3
18,296
py
Python
mvlearn/semi_supervised/ctclassifier.py
Gauravsinghal09/mvlearn
81092120595fadfc3d1f624d0a772594d8bb1578
[ "Apache-2.0" ]
1
2020-12-29T15:41:29.000Z
2020-12-29T15:41:29.000Z
mvlearn/semi_supervised/ctclassifier.py
Gauravsinghal09/mvlearn
81092120595fadfc3d1f624d0a772594d8bb1578
[ "Apache-2.0" ]
null
null
null
mvlearn/semi_supervised/ctclassifier.py
Gauravsinghal09/mvlearn
81092120595fadfc3d1f624d0a772594d8bb1578
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 NeuroData (http://neurodata.io) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Implements multi-view co-training classification for 2-view data. from .base import BaseCoTrainEstimator import numpy as np from sklearn.naive_bayes import GaussianNB from ..utils.utils import check_Xs, check_Xs_y_nan_allowed class CTClassifier(BaseCoTrainEstimator): r""" This class implements the co-training classifier for supervised and semi-supervised learning with the framework as described in [#1CTC]_. The best use case is when the 2 views of input data are sufficiently distinct and independent as detailed in [#1CTC]_. However, this can also be successful when a single matrix of input data is given as both views and two estimators are chosen which are quite different. [#2CTC]_. See the examples below. In the semi-supervised case, performance can vary greatly, so using a separate validation set or cross validation procedure is recommended to ensure the classifier has fit well. Parameters ---------- estimator1 : classifier object, (default=sklearn GaussianNB) The classifier object which will be trained on view 1 of the data. This classifier should support the predict_proba() function so that classification probabilities can be computed and co-training can be performed effectively. estimator2 : classifier object, (default=sklearn GaussianNB) The classifier object which will be trained on view 2 of the data. Does not need to be of the same type as ``estimator1``, but should support predict_proba(). p : int, optional (default=None) The number of positive classifications from the unlabeled_pool training set which will be given a positive "label". If None, the default is the floor of the ratio of positive to negative examples in the labeled training data (at least 1). If only one of ``p`` or ``n`` is not None, the other will be set to be the same. When the labels are 0 or 1, positive is defined as 1, and in general, positive is the larger label. n : int, optional (default=None) The number of negative classifications from the unlabeled_pool training set which will be given a negative "label". If None, the default is the floor of the ratio of positive to negative examples in the labeled training data (at least 1). If only one of ``p`` or ``n`` is not None, the other will be set to be the same. When the labels are 0 or 1, negative is defined as 0, and in general, negative is the smaller label. unlabeled_pool_size : int, optional (default=75) The number of unlabeled_pool samples which will be kept in a separate pool for classification and selection by the updated classifier at each training iteration. num_iter : int, optional (default=50) The maximum number of training iterations to run. random_state : int (default=None) The starting random seed for fit() and class operations, passed to numpy.random.seed(). Attributes ---------- estimator1_ : classifier object The classifier used on view 1. estimator2_ : classifier object The classifier used on view 2. class_name_: string The name of the class. p_ : int, optional (default=None) The number of positive classifications from the unlabeled_pool training set which will be given a positive "label" each round. n_ : int, optional (default=None) The number of negative classifications from the unlabeled_pool training set which will be given a negative "label" each round. classes_ : array-like of shape (n_classes,) Unique class labels. Examples -------- >>> # Supervised learning of single-view data with 2 distinct estimators >>> from mvlearn.semi_supervised import CTClassifier >>> from mvlearn.datasets import load_UCImultifeature >>> import numpy as np >>> from sklearn.ensemble import RandomForestClassifier >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.model_selection import train_test_split >>> data, labels = load_UCImultifeature(select_labeled=[0,1]) >>> X1 = data[0] # Only using the first view >>> X1_train, X1_test, l_train, l_test = train_test_split(X1, labels) >>> # Supervised learning with a single view of data and 2 estimator types >>> estimator1 = GaussianNB() >>> estimator2 = RandomForestClassifier() >>> ctc = CTClassifier(estimator1, estimator2, random_state=1) >>> # Use the same matrix for each view >>> ctc = ctc.fit([X1_train, X1_train], l_train) >>> preds = ctc.predict([X1_test, X1_test]) >>> print("Accuracy: ", sum(preds==l_test) / len(preds)) Accuracy: 0.97 Notes ----- Multi-view co-training is most helpful for tasks in semi-supervised learning where each view offers unique information not seen in the other. As is shown in the example notebooks for using this algorithm, multi-view co-training can provide good classification results even when number of unlabeled samples far exceeds the number of labeled samples. This classifier uses 2 classifiers which work individually on each view but which share information and thus result in improved performance over looking at the views completely separately or even when concatenating the views to get more features in a single-view setting. The classifier can be initialized with or without the classifiers desired for each view being specified, but if the classifier for a certain view is specified, then it must support a predict_proba() method in order to give a sense of the most likely labels for different examples. This is because the algorithm must be able to determine which of the training samples it is most confident about during training epochs. The algorithm, as first proposed by Blum and Mitchell, is described in detail below. *Algorithm* Given: * a set *L* of labeled training samples (with 2 views) * a set *U* of unlabeled samples (with 2 views) Create a pool *U'* of examples by choosing *u* examples at random from *U* Loop for *k* iterations * Use *L* to train a classifier *h1* (``estimator1``) that considers only the view 1 portion of the data (i.e. Xs[0]) * Use *L* to train a classifier *h2* (``estimator2``) that considers only the view 2 portion of the data (i.e. Xs[1]) * Allow *h1* to label *p* (``self.p_``) positive and *n* (``self.n_``) negative samples from view 1 of *U'* * Allow *h2* to label *p* positive and *n* negative samples from view 2 of *U'* * Add these self-labeled samples to *L* * Randomly take 2*p* + 2*n* samples from *U* to replenish *U'* References ---------- .. [#1CTC] Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled_pool data with co-training. In Proceedings of the eleventh annual conference on Computational learning theory (pp. 92-100). ACM. .. [#2CTC] Goldman, Sally, and Yan Zhou. "Enhancing supervised learning with unlabeled data." ICML. 2000. """ def __init__( self, estimator1=None, estimator2=None, p=None, n=None, unlabeled_pool_size=75, num_iter=50, random_state=None ): # initialize a BaseCTEstimator object super().__init__(estimator1, estimator2, random_state) # if not given, set classifiers as gaussian naive bayes estimators if self.estimator1_ is None: self.estimator1_ = GaussianNB() if self.estimator2_ is None: self.estimator2_ = GaussianNB() # If only 1 of p or n is not None, set them equal if (p is not None and n is None): n = p self.p_, self.n_ = p, n elif (p is None and n is not None): p = n self.p_, self.n_ = p, n else: self.p_, self.n_ = p, n self.n_views = 2 # only 2 view learning supported currently self.class_name_ = "CTClassifier" self.unlabeled_pool_size = unlabeled_pool_size self.num_iter = num_iter self._check_params() def _check_params(self): r""" Checks that cotraining parameters are valid. Throws AttributeError if estimators are invalid. Throws ValueError if any other parameters are not valid. The checks performed are: - estimator1 and estimator2 have predict_proba methods - p and n are both positive - unlabeled_pool_size is positive - num_iter is positive """ # verify that estimator1 and estimator2 have predict_proba if (not hasattr(self.estimator1_, 'predict_proba') or not hasattr(self.estimator2_, 'predict_proba')): raise AttributeError("Co-training classifier must be initialized " "with classifiers supporting " "predict_proba().") if (self.p_ is not None and self.p_ <= 0) or (self.n_ is not None and self.n_ <= 0): raise ValueError("Both p and n must be positive.") if self.unlabeled_pool_size <= 0: raise ValueError("unlabeled_pool_size must be positive.") if self.num_iter <= 0: raise ValueError("num_iter must be positive.") def fit( self, Xs, y ): r""" Fit the classifier object to the data in Xs, y. Parameters ---------- Xs : list of array-likes or numpy.ndarray - Xs length: n_views - Xs[i] shape: (n_samples, n_features_i) A list of the different views of data to train on. y : array, shape (n_samples,) The labels of the training data. Unlabeled_pool examples should have label np.nan. Returns ------- self : returns an instance of self """ # verify Xs and y Xs, y = check_Xs_y_nan_allowed(Xs, y, multiview=True, enforce_views=self.n_views, max_classes=2, min_classes=1) y = np.array(y) if self.random_state is not None: np.random.seed(self.random_state) self.classes_ = list(set(y[~np.isnan(y)])) self.n_classes = len(self.classes_) # extract the multiple views given X1 = Xs[0] X2 = Xs[1] # if don't have 2 classes of labeled data, then just fit and return, # since can't do any iterations of cotraining if self.n_classes > 1: # if both p & n are none, set as ratio of one class to the other if (self.p_ is None and self.n_ is None): num_class_n = sum(1 for y_n in y if y_n == self.classes_[0]) num_class_p = sum(1 for y_p in y if y_p == self.classes_[1]) p_over_n_ratio = num_class_p // num_class_n if p_over_n_ratio > 1: self.p_, self.n_ = p_over_n_ratio, 1 else: self.n_, self.p_ = num_class_n // num_class_p, 1 # the full set of unlabeled samples U = [i for i, y_i in enumerate(y) if np.isnan(y_i)] # shuffle unlabeled_pool data for easy random access np.random.shuffle(U) # the small pool of unlabled samples to draw from in training unlabeled_pool = U[-min(len(U), self.unlabeled_pool_size):] # the labeled samples L = [i for i, y_i in enumerate(y) if ~np.isnan(y_i)] # remove the pool from overall unlabeled data U = U[:-len(unlabeled_pool)] # number of rounds of co-training it = 0 # machine epsilon eps = np.finfo(float).eps while it < self.num_iter and U: it += 1 # fit each model to its respective view self.estimator1_.fit(X1[L], y[L]) self.estimator2_.fit(X2[L], y[L]) # predict log probability for greater spread in confidence y1_prob = np.log(self.estimator1_. predict_proba(X1[unlabeled_pool]) + eps) y2_prob = np.log(self.estimator2_. predict_proba(X2[unlabeled_pool]) + eps) n, p = [], [] accurate_guesses_estimator1 = 0 accurate_guesses_estimator2 = 0 wrong_guesses_estimator1 = 0 wrong_guesses_estimator2 = 0 # take the most confident labeled examples from the # unlabeled pool in each category and put them in L for i in (y1_prob[:, 0].argsort())[-self.n_:]: if y1_prob[i, 0] > np.log(0.5): n.append(i) for i in (y1_prob[:, 1].argsort())[-self.p_:]: if y1_prob[i, 1] > np.log(0.5): p.append(i) for i in (y2_prob[:, 0].argsort())[-self.n_:]: if y2_prob[i, 0] > np.log(0.5): n.append(i) for i in (y2_prob[:, 1].argsort())[-self.p_:]: if y2_prob[i, 1] > np.log(0.5): p.append(i) # create new labels for new additions to the labeled group y[[unlabeled_pool[x] for x in n]] = self.classes_[0] y[[unlabeled_pool[x] for x in p]] = self.classes_[1] L.extend([unlabeled_pool[x] for x in p]) L.extend([unlabeled_pool[x] for x in n]) # remove newly labeled samples from unlabeled_pool unlabeled_pool = [elem for elem in unlabeled_pool if not (elem in p or elem in n)] # add new elements to unlabeled_pool add_counter = 0 num_to_add = len(p) + len(n) while add_counter != num_to_add and U: add_counter += 1 unlabeled_pool.append(U.pop()) # if only had 1 class in the labeled examples else: # the labeled sample indices L = [i for i, y_i in enumerate(y) if ~np.isnan(y_i)] # fit the overall model on fully "labeled" data self.estimator1_.fit(X1[L], y[L]) self.estimator2_.fit(X2[L], y[L]) return self def predict(self, Xs): r""" Predict the classes of the examples in the two input views. Parameters ---------- Xs : list of array-likes or numpy.ndarray - Xs length: n_views - Xs[i] shape: (n_samples, n_features_i) A list of the different views of data to predict. Returns ------- y_pred : array-like (n_samples,) The predicted class of each input example. If the two classifiers don't agree, pick the one with the highest predicted probability from predict_proba() """ Xs = check_Xs(Xs, multiview=True, enforce_views=self.n_views) X1 = Xs[0] X2 = Xs[1] # predict each view independently y1 = self.estimator1_.predict(X1) y2 = self.estimator2_.predict(X2) # initialize y_pred = np.zeros(X1.shape[0],) num_disagree = 0 num_agree = 0 # predict samples based on trained classifiers for i, (y1_i, y2_i) in enumerate(zip(y1, y2)): # if classifiers agree, use their prediction if y1_i == y2_i: y_pred[i] = y1_i # if classifiers don't agree, take the more confident else: y1_probs = self.estimator1_.predict_proba([X1[i]])[0] y2_probs = self.estimator2_.predict_proba([X2[i]])[0] sum_y_probs = [prob1 + prob2 for (prob1, prob2) in zip(y1_probs, y2_probs)] max_sum_prob = max(sum_y_probs) y_pred[i] = self.classes_[sum_y_probs.index(max_sum_prob)] return y_pred def predict_proba(self, Xs): r""" Predict the probability of each example belonging to a each class. Parameters ---------- Xs : list of array-likes or numpy.ndarray - Xs length: n_views - Xs[i] shape: (n_samples, n_features_i) A list of the different views of data to predict. Returns ------- y_proba : array-like (n_samples, n_classes) The probability of each sample being in each class. """ Xs = check_Xs(Xs, multiview=True, enforce_views=self.n_views) X1 = Xs[0] X2 = Xs[1] y_proba = np.full((X1.shape[0], self.n_classes), -1) # predict each probability independently y1_proba = self.estimator1_.predict_proba(X1) y2_proba = self.estimator2_.predict_proba(X2) # return the average probability for the sample return (y1_proba + y2_proba) * .5
39.346237
78
0.595267
b97a7c6a2fddbc915914b6b5f474484b092b1931
4,176
py
Python
home_portal/kookboek/database.py
Runner-42/HomePortal
011bc6752e3212c151401139dbfe8d46ead985ad
[ "MIT" ]
null
null
null
home_portal/kookboek/database.py
Runner-42/HomePortal
011bc6752e3212c151401139dbfe8d46ead985ad
[ "MIT" ]
null
null
null
home_portal/kookboek/database.py
Runner-42/HomePortal
011bc6752e3212c151401139dbfe8d46ead985ad
[ "MIT" ]
null
null
null
'''Database Models for the Kookboek application''' from home_portal.extensions import db_kookboek as db class RecipesIngredients(db.Model): ''' The RecipiesIngredients class defines the attributes required to create a many-to-many relationship between recipes and ingredients. It also contains the amount and unit information for the required ingredients related to the recipe. ''' __bind_key__ = 'kookboek_db' __tablename__ = 'RecipesIngredients' recipe_id = db.Column( db.Integer, db.ForeignKey('Recipes.id'), primary_key=True ) ingredient_id = db.Column( db.Integer, db.ForeignKey('Ingredients.id'), primary_key=True ) amount = db.Column( db.Numeric, nullable=False ) unit = db.Column( db.String(64), unique=False, nullable=False ) unit_description = db.Column( db.Text(), unique=False, nullable=True ) class Recipe(db.Model): ''' The recipe class defines the attributes of the Recipes table ''' __bind_key__ = 'kookboek_db' __tablename__ = 'Recipes' id = db.Column( db.Integer, primary_key=True ) name = db.Column( db.String(128), unique=True, nullable=False ) category = db.Column( db.String(64), nullable=False ) preparation = db.Column( db.Text(), nullable=True, unique=False ) picture = db.Column( db.LargeBinary, nullable=True ) ingredients = db.relationship('Ingredient', secondary=lambda: RecipesIngredients.__table__, backref='Recipe') def __repr__(self): return "testeke {} {}".format(self.id, self.name) @property def get_recipe_id(self): if self.id: return self.id else: return 0 @property def get_ingredients_list(self): ''' Function returns the ingredients related to a recipe Recipe information is provided via it's ID ''' ingredients = Ingredient.query.join( RecipesIngredients, RecipesIngredients.recipe_id == self.id)\ .filter(RecipesIngredients.ingredient_id == Ingredient.id)\ .all() return ingredients class Unit(db.Model): ''' The Unit class defines the attributes of the unit table. ''' __bind_key__ = 'kookboek_db' __tablename__ = 'Units' id = db.Column( db.Integer, primary_key=True ) name = db.Column( db.String(64), unique=True, nullable=False ) description = db.Column( db.Text(), unique=False, nullable=True ) class Category(db.Model): ''' The Category class defines the attributes of the category table. ''' __bind_key__ = 'kookboek_db' __tablename__ = 'Categories' id = db.Column( db.Integer, primary_key=True ) name = db.Column( db.String(64), unique=True, nullable=False ) description = db.Column( db.Text(), unique=False, nullable=True ) class Ingredient(db.Model): ''' The Ingredient class defines the attributes of the ingredient table. ''' __bind_key__ = 'kookboek_db' __tablename__ = 'Ingredients' id = db.Column( db.Integer, primary_key=True ) name = db.Column( db.String(64), unique=True, nullable=False ) picture = db.Column( db.LargeBinary, nullable=True ) default_unit = db.Column( db.String(32), nullable=False ) unit_description = db.Column( db.String(128), nullable=True ) default_amount = db.Column( db.Numeric, nullable=True ) recipes = db.relationship('Recipe', secondary=lambda: RecipesIngredients.__table__, backref='Ingredient' )
23.2
81
0.564416
40bc299cc3be7154fb9e60a77b6996d238e91266
3,530
py
Python
__init__.py
slashx57/ipx800
b6ee9b6f316afb24a3d236bca0d7f4ac6101e10c
[ "MIT" ]
null
null
null
__init__.py
slashx57/ipx800
b6ee9b6f316afb24a3d236bca0d7f4ac6101e10c
[ "MIT" ]
1
2020-10-27T06:19:58.000Z
2020-10-27T12:37:41.000Z
__init__.py
slashx57/ipx800
b6ee9b6f316afb24a3d236bca0d7f4ac6101e10c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 *-* import sys import logging import voluptuous as vol from threading import Lock # Import the device class from the component that you want to support from homeassistant.const import CONF_HOST, CONF_API_KEY, CONF_PORT, CONF_USERNAME, CONF_PASSWORD import homeassistant.helpers.config_validation as cv from homeassistant.helpers.discovery import load_platform from pyipx800.pyipx800 import pyipx800 from pyipx800.pyipxInput import Input from pyipx800.pyipxRelay import Relay from pyipx800.pyipxAnalog import Analog from pyipx800.pyipxCounter import Counter from pyipx800.pyipxVirtuals import VirtualInput, VirtualOutput, VirtualAnalog DOMAIN = "ipx800" DEFAULT_PORT = 80 # Home Assistant depends on 3rd party packages for API specific code. REQUIREMENTS = ['requests', 'requests-xml'] _LOGGER = logging.getLogger(__name__) # Schema to validate the user's configuration CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Required(CONF_API_KEY): cv.string, vol.Optional(CONF_USERNAME): cv.string, vol.Optional(CONF_PASSWORD): cv.string }) },extra=vol.ALLOW_EXTRA) def setup(hass, config): """Set up is called when Home Assistant is loading our component.""" #from pyipx800 import pyipx800 _LOGGER.debug("Entering setup") # Assign configuration variables. The configuration check takes care they are # present. conf = config[DOMAIN] host = conf.get(CONF_HOST) port = conf.get(CONF_PORT) apikey = conf.get(CONF_API_KEY) username = conf.get(CONF_USERNAME) password = conf.get(CONF_PASSWORD) hass.data[DOMAIN] = IpxData(host, port, apikey) try: hass.data[DOMAIN].update() except: _LOGGER.error("Update error %s", str(sys.exc_info()[0])) return False #load_platform(hass, 'sensor', DOMAIN, {}, config) #load_platform(hass, 'light', DOMAIN, {}, config) _LOGGER.debug("Exiting setup") # Return boolean to indicate that initialization was successfully. return True class IpxData: """Stores the data """ def __init__(self, host, port, apikey): self.mutex = Lock() self._ipx = None self._host = host self._port = port self._apikey = apikey self.inputs = None self.relays = None self.analogs = None self.counters = None self.virt_inputs = None self.virt_outputs = None self.virt_analogs = None def update(self): with self.mutex: if self._ipx == None: # Setup connection with IPX800 self._ipx = pyipx800(self._host, self._port, self._apikey) self._ipx.configure() self.counters = self._ipx.counters _LOGGER.debug("counters found:"+str(len(self.counters))) self.relays = self._ipx.relays _LOGGER.debug("relays found:"+str(len(self.relays))) self.analogs = self._ipx.analogs _LOGGER.debug("analogs found:"+str(len(self.analogs))) self.inputs = self._ipx.inputs _LOGGER.debug("inputs found:"+str(len(self.inputs))) self.virt_inputs = self._ipx.virt_inputs _LOGGER.debug("virt_inputs found:"+str(len(self.virt_inputs))) self.virt_outputs = self._ipx.virt_outputs _LOGGER.debug("virt_outputs found:"+str(len(self.virt_outputs))) self.virt_analogs = self._ipx.virt_analogs _LOGGER.debug("virt_analogs found:"+str(len(self.virt_analogs))) return self._ipx
30.695652
96
0.6983
dce594e56d0b644ca22dae7c7059b28d282ec44c
155
py
Python
bin/django-admin.py
Ao99/try-django
645d965c25752e6d0ca1f400c5ee1b719f564802
[ "MIT" ]
null
null
null
bin/django-admin.py
Ao99/try-django
645d965c25752e6d0ca1f400c5ee1b719f564802
[ "MIT" ]
null
null
null
bin/django-admin.py
Ao99/try-django
645d965c25752e6d0ca1f400c5ee1b719f564802
[ "MIT" ]
null
null
null
#!/home/ubuntu/environment/TryDjango/bin/python3 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
25.833333
48
0.793548
83b7e601b7e570eeae9c23f307ddbcc27b2e015c
172
py
Python
aiorpc/__init__.py
brglng/aiorpc
575a898e54e61cd73ec5cf2b48348e70cfaa5b41
[ "WTFPL" ]
66
2016-10-17T19:16:44.000Z
2022-02-26T01:10:06.000Z
aiorpc/__init__.py
webclinic017/aiorpc
a46929d70f17a6a98ee8f071012656f57bcd073b
[ "WTFPL" ]
25
2018-05-13T03:14:43.000Z
2022-03-03T03:29:04.000Z
aiorpc/__init__.py
webclinic017/aiorpc
a46929d70f17a6a98ee8f071012656f57bcd073b
[ "WTFPL" ]
20
2017-09-13T17:04:21.000Z
2022-02-03T12:26:25.000Z
from aiorpc.client import RPCClient from aiorpc.server import * __all__ = ['RPCClient', 'RPCServer', 'register', 'msgpack_init', 'set_timeout', 'serve', 'register_class']
34.4
106
0.744186
34775be6ea07f6e8a518f900f4e55f7c07504765
7,274
py
Python
fuji_server/models/formal_metadata.py
FAIRsFAIR/fuji
71b771ec29b4a4405720b87a32631d05f4543a7b
[ "MIT" ]
null
null
null
fuji_server/models/formal_metadata.py
FAIRsFAIR/fuji
71b771ec29b4a4405720b87a32631d05f4543a7b
[ "MIT" ]
null
null
null
fuji_server/models/formal_metadata.py
FAIRsFAIR/fuji
71b771ec29b4a4405720b87a32631d05f4543a7b
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from fuji_server.models.base_model_ import Model from fuji_server.models.debug import Debug # noqa: F401,E501 from fuji_server.models.fair_result_common import FAIRResultCommon # noqa: F401,E501 from fuji_server.models.fair_result_common_score import FAIRResultCommonScore # noqa: F401,E501 from fuji_server.models.formal_metadata_output import FormalMetadataOutput # noqa: F401,E501 from fuji_server import util class FormalMetadata(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, id: int=None, metric_identifier: str=None, metric_name: str=None, test_status: str='fail', score: FAIRResultCommonScore=None, output: FormalMetadataOutput=None, test_debug: Debug=None): # noqa: E501 """FormalMetadata - a model defined in Swagger :param id: The id of this FormalMetadata. # noqa: E501 :type id: int :param metric_identifier: The metric_identifier of this FormalMetadata. # noqa: E501 :type metric_identifier: str :param metric_name: The metric_name of this FormalMetadata. # noqa: E501 :type metric_name: str :param test_status: The test_status of this FormalMetadata. # noqa: E501 :type test_status: str :param score: The score of this FormalMetadata. # noqa: E501 :type score: FAIRResultCommonScore :param output: The output of this FormalMetadata. # noqa: E501 :type output: FormalMetadataOutput :param test_debug: The test_debug of this FormalMetadata. # noqa: E501 :type test_debug: Debug """ self.swagger_types = { 'id': int, 'metric_identifier': str, 'metric_name': str, 'test_status': str, 'score': FAIRResultCommonScore, 'output': FormalMetadataOutput, 'test_debug': Debug } self.attribute_map = { 'id': 'id', 'metric_identifier': 'metric_identifier', 'metric_name': 'metric_name', 'test_status': 'test_status', 'score': 'score', 'output': 'output', 'test_debug': 'test_debug' } self._id = id self._metric_identifier = metric_identifier self._metric_name = metric_name self._test_status = test_status self._score = score self._output = output self._test_debug = test_debug @classmethod def from_dict(cls, dikt) -> 'FormalMetadata': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The FormalMetadata of this FormalMetadata. # noqa: E501 :rtype: FormalMetadata """ return util.deserialize_model(dikt, cls) @property def id(self) -> int: """Gets the id of this FormalMetadata. :return: The id of this FormalMetadata. :rtype: int """ return self._id @id.setter def id(self, id: int): """Sets the id of this FormalMetadata. :param id: The id of this FormalMetadata. :type id: int """ if id is None: raise ValueError("Invalid value for `id`, must not be `None`") # noqa: E501 self._id = id @property def metric_identifier(self) -> str: """Gets the metric_identifier of this FormalMetadata. :return: The metric_identifier of this FormalMetadata. :rtype: str """ return self._metric_identifier @metric_identifier.setter def metric_identifier(self, metric_identifier: str): """Sets the metric_identifier of this FormalMetadata. :param metric_identifier: The metric_identifier of this FormalMetadata. :type metric_identifier: str """ if metric_identifier is None: raise ValueError("Invalid value for `metric_identifier`, must not be `None`") # noqa: E501 self._metric_identifier = metric_identifier @property def metric_name(self) -> str: """Gets the metric_name of this FormalMetadata. :return: The metric_name of this FormalMetadata. :rtype: str """ return self._metric_name @metric_name.setter def metric_name(self, metric_name: str): """Sets the metric_name of this FormalMetadata. :param metric_name: The metric_name of this FormalMetadata. :type metric_name: str """ if metric_name is None: raise ValueError("Invalid value for `metric_name`, must not be `None`") # noqa: E501 self._metric_name = metric_name @property def test_status(self) -> str: """Gets the test_status of this FormalMetadata. :return: The test_status of this FormalMetadata. :rtype: str """ return self._test_status @test_status.setter def test_status(self, test_status: str): """Sets the test_status of this FormalMetadata. :param test_status: The test_status of this FormalMetadata. :type test_status: str """ allowed_values = ["pass", "fail", "indeterminate"] # noqa: E501 if test_status not in allowed_values: raise ValueError( "Invalid value for `test_status` ({0}), must be one of {1}" .format(test_status, allowed_values) ) self._test_status = test_status @property def score(self) -> FAIRResultCommonScore: """Gets the score of this FormalMetadata. :return: The score of this FormalMetadata. :rtype: FAIRResultCommonScore """ return self._score @score.setter def score(self, score: FAIRResultCommonScore): """Sets the score of this FormalMetadata. :param score: The score of this FormalMetadata. :type score: FAIRResultCommonScore """ if score is None: raise ValueError("Invalid value for `score`, must not be `None`") # noqa: E501 self._score = score @property def output(self) -> FormalMetadataOutput: """Gets the output of this FormalMetadata. :return: The output of this FormalMetadata. :rtype: FormalMetadataOutput """ return self._output @output.setter def output(self, output: FormalMetadataOutput): """Sets the output of this FormalMetadata. :param output: The output of this FormalMetadata. :type output: FormalMetadataOutput """ self._output = output @property def test_debug(self) -> Debug: """Gets the test_debug of this FormalMetadata. :return: The test_debug of this FormalMetadata. :rtype: Debug """ return self._test_debug @test_debug.setter def test_debug(self, test_debug: Debug): """Sets the test_debug of this FormalMetadata. :param test_debug: The test_debug of this FormalMetadata. :type test_debug: Debug """ self._test_debug = test_debug
30.691983
222
0.631152
e6ab7102e55dec6cf4044bb3191474f552bd6bb6
11,559
py
Python
solvers/prepare.py
brandhsn/pysat
95f2dd9760091bf3453ba6c0c7c12172cffefbb7
[ "MIT" ]
null
null
null
solvers/prepare.py
brandhsn/pysat
95f2dd9760091bf3453ba6c0c7c12172cffefbb7
[ "MIT" ]
null
null
null
solvers/prepare.py
brandhsn/pysat
95f2dd9760091bf3453ba6c0c7c12172cffefbb7
[ "MIT" ]
null
null
null
#!/usr/bin/env python #-*- coding:utf-8 -*- ## ## prepare.py ## ## Created on: Jan 23, 2018 ## Author: Alexey S. Ignatiev ## E-mail: aignatiev@ciencias.ulisboa.pt ## # #============================================================================== from __future__ import print_function import datetime import os import shutil import sys import tarfile import zipfile try: # Python 2 from urllib import urlopen except ImportError: # Python 3 from urllib.request import urlopen # #============================================================================== sources = { 'glucose30': ( 'http://www.labri.fr/perso/lsimon/downloads/softwares/glucose-3.0.tgz', 'solvers/glucose30.tar.gz' ), 'glucose41': ( 'http://www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup-4.1.tgz', 'solvers/glucose41.tar.gz' ), 'lingeling': ( 'http://fmv.jku.at/lingeling/lingeling-bbc-9230380-160707-druplig-009.tar.gz', 'solvers/lingeling.tar.gz' ), 'maplechrono': ( 'http://sat2018.forsyte.tuwien.ac.at/solvers/main_and_glucose_hack/MapleLCMDistChronoBT.zip', 'solvers/maplechrono.zip' ), 'maplecm': ( 'http://sat2018.forsyte.tuwien.ac.at/solvers/main_and_glucose_hack/Maple_CM.zip', 'solvers/maplecm.zip' ), 'maplesat': ( 'https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/MapleCOMSPS_pure_LRB.zip', 'solvers/maplesat.zip' ), 'minicard': ( 'https://github.com/liffiton/minicard/archive/v1.2.tar.gz', 'http://reason.di.fc.ul.pt/~aign/storage/mirror/minicard-v1.2.tar.gz', 'solvers/minicard.tar.gz' ), 'minisat22': ( 'http://minisat.se/downloads/minisat-2.2.0.tar.gz', 'solvers/minisat22.tar.gz' ), 'minisatgh': ( 'https://github.com/niklasso/minisat/archive/master.zip', 'http://reason.di.fc.ul.pt/~aign/storage/mirror/minisatgh-master.zip', 'solvers/minisatgh.zip' ) } # #============================================================================== to_extract = { 'glucose30': [], 'glucose41': [], 'lingeling': ['druplig-009.zip', 'lingeling-bbc-9230380-160707.tar.gz'], 'maplechrono': [], 'maplecm': [], 'maplesat': [], 'minicard': [], 'minisat22': [], 'minisatgh': [] } # #============================================================================== to_move = { 'glucose30': [], 'glucose41': [], 'lingeling': [ ('druplig-009/druplig.c', 'druplig.c'), ('druplig-009/druplig.h', 'druplig.h'), ('lingeling-bbc-9230380-160707/lglconst.h', 'lglconst.h'), ('lingeling-bbc-9230380-160707/lglib.c', 'lglib.c'), ('lingeling-bbc-9230380-160707/lglib.h', 'lglib.h'), ('lingeling-bbc-9230380-160707/lgloptl.h', 'lgloptl.h'), ('lingeling-bbc-9230380-160707/lglopts.c', 'lglopts.c'), ('lingeling-bbc-9230380-160707/lglopts.h', 'lglopts.h') ], 'maplechrono': [ ('sources/core', 'core'), ('sources/mtl', 'mtl'), ('sources/utils', 'utils') ], 'maplecm': [ ('sources/core', 'core'), ('sources/mtl', 'mtl'), ('sources/utils', 'utils') ], 'maplesat': [], 'minicard': [ ('core', '_core'), ('minicard', 'core') ], 'minisat22': [], 'minisatgh': [ ('minisat/core', 'core'), ('minisat/mtl', 'mtl'), ('minisat/utils', 'utils') ] } # #============================================================================== to_remove = { 'glucose30': [ 'core/Dimacs.h', 'core/Main.cc', 'core/Makefile', 'mtl/config.mk', 'mtl/template.mk', 'simp', 'utils/Makefile' ], 'glucose41': [ '._Changelog', '._LICENCE', '._README', '._core', '._mtl', '._parallel', '._simp', '._utils', 'Changelog', 'core/._BoundedQueue.h', 'core/._Constants.h', 'core/._Dimacs.h', 'core/._Makefile', 'core/._Solver.cc', 'core/._Solver.h', 'core/._SolverStats.h', 'core/._SolverTypes.h', 'core/Dimacs.h', 'core/Makefile', 'LICENCE', 'README', 'mtl/._Alg.h', 'mtl/._Alloc.h', 'mtl/._Clone.h', 'mtl/._Heap.h', 'mtl/._IntTypes.h', 'mtl/._Map.h', 'mtl/._Queue.h', 'mtl/._Sort.h', 'mtl/._Vec.h', 'mtl/._VecThreads.h', 'mtl/._XAlloc.h', 'mtl/._config.mk', 'mtl/._template.mk', 'mtl/config.mk', 'mtl/template.mk', 'simp', 'parallel', 'utils/._Makefile', 'utils/._Options.cc', 'utils/._Options.h', 'utils/._ParseUtils.h', 'utils/._System.cc', 'utils/._System.h', 'utils/Makefile' ], 'lingeling': [ 'druplig-009', 'druplig-009.zip', 'lingeling-bbc-9230380-160707', 'lingeling-bbc-9230380-160707.tar.gz', 'extract-and-compile.sh', '.tar.gz', 'README' ], 'maplechrono': [ 'bin', 'core/Dimacs.h', 'core/Main.cc', 'core/Makefile', 'mtl/config.mk', 'mtl/template.mk', 'utils/Makefile', 'sources', 'starexec_build' ], 'maplecm': [ '__MACOSX', 'bin', 'core/Dimacs.h', 'core/Main.cc', 'core/Makefile', 'mtl/config.mk', 'mtl/template.mk', 'utils/Makefile', 'utils/Options.o', 'utils/System.o', 'sources', 'starexec_build' ], 'maplesat': [ 'core/Dimacs.h', 'core/Main.cc', 'core/Makefile', 'doc', 'mtl/config.mk', 'mtl/template.mk', 'simp', 'utils/Makefile', 'LICENSE', 'README' ], 'minicard': [ '_core', 'encodings', 'minicard_encodings', 'minicard_simp_encodings', 'tests', 'core/Dimacs.h', 'core/Main.cc', 'core/Makefile', 'core/opb.h', 'mtl/config.mk', 'mtl/template.mk', 'utils/Makefile', 'LICENSE', 'README', '.gitignore' ], 'minisat22': [ 'core/Dimacs.h', 'core/Main.cc', 'core/Makefile', 'doc', 'mtl/config.mk', 'mtl/template.mk', 'simp', 'utils/Makefile', 'LICENSE', 'README' ], 'minisatgh': [ 'core/Dimacs.h', 'core/Main.cc', 'doc', 'minisat', 'CMakeLists.txt', 'LICENSE', 'Makefile', 'README', '.gitignore' ] } # #============================================================================== def do(to_install): """ Prepare all solvers specified in the command line. """ for solver in to_install: print('preparing {0}'.format(solver)) download_archive(sources[solver]) extract_archive(sources[solver][-1], solver) adapt_files(solver) patch_solver(solver) compile_solver(solver) # #============================================================================== def download_archive(sources): """ Downloads an archive and saves locally (taken from PySMT). """ # last element is expected to be the local archive name save_to = sources[-1] # not downloading the file again if it exists if os.path.exists(save_to): print('not downloading {0} since it exists locally'.format(save_to)) return # try all possible sources one by one for url in sources[:-1]: # make five attempts per source for i in range(5): # first attempt to get a response response = urlopen(url) # handling redirections u = urlopen(response.geturl()) meta = u.info() if meta.get('Content-Length') and len(meta.get('Content-Length')) > 0: filesz = int(meta.get('Content-Length')) if os.path.exists(save_to) and os.path.getsize(save_to) == filesz: print('not downloading {0} since it exists locally'.format(save_to)) return print('downloading: {0} ({1} bytes)...'.format(save_to, filesz), end=' ') with open(save_to, 'wb') as fp: block_sz = 8192 while True: buff = u.read(block_sz) if not buff: break fp.write(buff) print('done') break else: continue break # successfully got the file else: assert 0, 'something went wrong -- cannot download {0}'.format(save_to) # #============================================================================== def extract_archive(archive, solver, put_inside = False): """ Unzips/untars a previously downloaded archive file. """ print('extracting {0}'.format(archive)) root = os.path.join('solvers', solver if put_inside else '') if archive.endswith('.tar.gz'): if os.path.exists(archive[:-7]): shutil.rmtree(archive[:-7]) tfile = tarfile.open(archive, 'r:gz') tfile.extractall(root) # normally, directory should be the first name # but glucose4.1 has some garbage in the archive for name in tfile.getnames(): if not name.startswith('./.'): directory = name break elif archive.endswith('.zip'): if os.path.exists(archive[:-4]): shutil.rmtree(archive[:-4]) myzip = zipfile.ZipFile(archive, 'r') myzip.extractall(root) directory = myzip.namelist()[0] directory = directory.rstrip('/').split('/')[0] myzip.close() if not put_inside: if os.path.exists(os.path.join('solvers', solver)): shutil.rmtree(os.path.join('solvers', solver)) shutil.move(os.path.join('solvers', directory), os.path.join('solvers', solver)) # #============================================================================== def adapt_files(solver): """ Rename and remove files whenever necessary. """ print("adapting {0}'s files".format(solver)) root = os.path.join('solvers', solver) for arch in to_extract[solver]: arch = os.path.join(root, arch) extract_archive(arch, solver, put_inside=True) for fnames in to_move[solver]: old = os.path.join(root, fnames[0]) new = os.path.join(root, fnames[1]) os.rename(old, new) for f in to_remove[solver]: f = os.path.join(root, f) if os.path.isdir(f): shutil.rmtree(f) else: os.remove(f) # #============================================================================== def patch_solver(solver): """ Applies a patch to a given solver. """ print('patching {0}'.format(solver)) os.system('patch -p0 < solvers/patches/{0}.patch'.format(solver)) # #============================================================================== def compile_solver(solver): """ Compiles a given solver as a library. """ print('compiling {0}'.format(solver)) os.system('cd solvers/{0} && make && cd ../..'.format(solver))
27.197647
101
0.487758
e1fd4c9ff52e3287262a64e2b108208e3ae67c18
158
py
Python
engine/src/hopeit/server/runtime.py
pcanto-hopeit/hopeit.engine
c17b0438e56940a4d1b2f071cca90ae8b6f70629
[ "Apache-2.0" ]
15
2020-07-09T17:41:14.000Z
2021-10-04T20:13:08.000Z
engine/src/hopeit/server/runtime.py
pcanto-hopeit/hopeit.engine
c17b0438e56940a4d1b2f071cca90ae8b6f70629
[ "Apache-2.0" ]
48
2020-07-10T15:16:17.000Z
2022-03-03T19:46:46.000Z
engine/src/hopeit/server/runtime.py
pcanto-hopeit/hopeit.engine
c17b0438e56940a4d1b2f071cca90ae8b6f70629
[ "Apache-2.0" ]
3
2020-07-08T20:12:58.000Z
2021-01-10T15:57:21.000Z
""" Server runtime: module to keep a reference to current runtime hopeit engine Server object """ from hopeit.server.engine import Server server = Server()
19.75
89
0.765823
4a6e4556d2f19e3257d547aa7ffc1b38afd823e3
20,742
py
Python
code_python/3-CameraCalibration/main.py
khanfarhan10/Computer-Vision-2
9ed58481e48d95f43464fb34d4da74ee0184bd14
[ "MIT" ]
1
2022-01-05T23:11:51.000Z
2022-01-05T23:11:51.000Z
code_python/3-CameraCalibration/main.py
khanfarhan10/Computer-Vision-2
9ed58481e48d95f43464fb34d4da74ee0184bd14
[ "MIT" ]
null
null
null
code_python/3-CameraCalibration/main.py
khanfarhan10/Computer-Vision-2
9ed58481e48d95f43464fb34d4da74ee0184bd14
[ "MIT" ]
2
2021-08-14T13:03:12.000Z
2021-10-12T08:48:18.000Z
# region Imports # ------------------------------------------------------------------------------ # Imports # ------------------------------------------------------------------------------ import os from typing import Union from datetime import datetime from pyrealsense2 import pyrealsense2 as rs from cv2 import cv2 as cv import numpy as np # endregion # region Real Sense Functions # ------------------------------------------------------------------------------ # Real Sense Functions # ------------------------------------------------------------------------------ def rs_config_color_pipeline(config_rs: rs.config, stream_type_rs: rs.stream = rs.stream.color, width: int = 848, height: int = 480, format_rs: rs.format = rs.format.rgb8, fps: int = 15): """ Configs the pipeline to enable the color stream example: pipeline = rs.pipeline(ctx=rs.context()) config = rs.config() config = rs_config_color_pipeline(config_rs=config) pipeline.start(config=config) @param config_rs: real sense configuration @type config_rs: rs.config @param stream_type_rs: Sets the stream type, default is rs.stream.color @type stream_type_rs: rs.stream @param width: The width of the stream in pixels, default is 848 @type width: int @param height: The height of the stream in pixels, default is 480 @type height: int @param format_rs: real sense stream format, default is rs.format.rgb8 @type format_rs: rs.format @param fps: The fps of the stream, default is 15 @type fps: int @return: The configuration file already configured @rtype: rs.config """ # Configure the pipeline to stream the color stream config_rs.enable_stream(stream_type_rs, width, height, format_rs, fps) return config_rs def rs_config_IR_pipeline(config_rs: rs.config, stream_type_rs: rs.stream = rs.stream.infrared, width: int = 848, height: int = 480, format_rs: rs.format = rs.format.y8, fps: int = 15): """ Configs the pipeline to enable the infrared (IR) left and right stream example: pipeline = rs.pipeline(ctx=rs.context()) config = rs.config() config = rs_config_IR_pipeline(config_rs=config) pipeline.start(config=config) @param config_rs: real sense configuration @type config_rs: rs.config @param stream_type_rs: Sets the stream type, default is rs.stream.infrared @type stream_type_rs: rs.stream @param width: The width of the stream in pixels, default is 848 @type width: int @param height: The height of the stream in pixels, default is 480 @type height: int @param format_rs: real sense stream format, default is rs.format.y8 @type format_rs: rs.format @param fps: The fps of the stream, default is 15 @type fps: int @return: The configuration file already configured @rtype: rs.config """ # https://github.com/IntelRealSense/librealsense/issues/1140 # Configure the pipeline to stream the IR stream. One config to each cameras config_rs.enable_stream(stream_type_rs, 1, width, height, format_rs, fps) config_rs.enable_stream(stream_type_rs, 2, width, height, format_rs, fps) return config_rs def rs_config_depth_pipeline(config_rs: rs.config, stream_type_rs: rs.stream = rs.stream.depth, width: int = 848, height: int = 480, format_rs: rs.format = rs.format.z16, fps: int = 15): """ Configs the pipeline to enable the depth stream example: pipeline = rs.pipeline(ctx=rs.context()) config = rs.config() config = rs_config_depth_pipeline(config_rs=config) pipeline.start(config=config) @param config_rs: real sense configuration @type config_rs: rs.config @param stream_type_rs: Sets the stream type, default is rs.stream.depth @type stream_type_rs: rs.stream @param width: The width of the stream in pixels, default is 848 @type width: int @param height: The height of the stream in pixels, default is 480 @type height: int @param format_rs: real sense stream format, default is rs.format.z16 @type format_rs: rs.format @param fps: The fps of the stream, default is 15 @type fps: int @return: The configuration file already configured @rtype: rs.config """ # https://github.com/IntelRealSense/librealsense/issues/1140 # Configure the pipeline to stream the IR stream. One config to each cameras config_rs.enable_stream(stream_type_rs, width, height, format_rs, fps) return config_rs def get_extrinsics(src: rs.video_stream_profile, dst: rs.video_stream_profile): """ Returns R, T transform from src to dst. @param src: The source @type src: rs.video_stream_profile @param dst: The destiny @type dst: rs.video_stream_profile @return: Rotation and Transform Matrix @rtype: np.ndarray, np.ndarray """ _extrinsics = src.get_extrinsics_to(dst) R = np.reshape(_extrinsics.rotation, [3, 3]).T T = np.array(_extrinsics.translation) return R, T def unpack_profile(pipeline_rs: rs.pipeline): """ The keys are the names of the streams ie. Depth, Infrared 1, Infrared 2, Color example: unpacked_profiles = unpack_profile(pipeline_rs=pipeline) @param pipeline_rs: Pipeline where profiles need to be extracted. Extracted features are: Type, Video Profile, Stream Profile and Unique ID. @type pipeline_rs: rs.pipeline_profile @return: Dictionary in which the key is the profile name and the values are the extracted properties: Type, Video Profile, Stream Profile and Unique ID. @rtype: dict """ profiles = pipeline_rs.get_active_profile() unpacked = {} for profile in profiles.get_streams(): _key = profile.stream_name() values = { "Type": profile.stream_type(), "Video Profile": profile.as_video_stream_profile(), "Stream Profile": profile.as_stream_profile(), "UID": profile.unique_id(), } unpacked[_key] = values return unpacked def get_intrinsics_extrinsics(pipeline_rs: rs.pipeline): """ Gets the intrinsics and extrinsics parameters of the available streams Intrinsics parameters are from every profile available. Extrinsics parameters can only be from Color to Infrared 1 or Infrared 2 to Infrared 1. example: intrinsics, extrinsics = get_intrinsics_extrinsics(pipeline_rs=pipeline) @param pipeline_rs: The pipeline to extract the streams/profiles @type pipeline_rs: rs.pipeline @return: A dictionary with intrinsics parameters and another dictionary with extrinsics parameters @rtype: dict, dict """ unpacked_profiles = unpack_profile(pipeline_rs=pipeline_rs) _intrinsics = {} for _key, _value in unpacked_profiles.items(): _intrinsics[_key] = _value.get("Video Profile").get_intrinsics() _extrinsics = {} if unpacked_profiles.__contains__("Infrared 1"): if unpacked_profiles.__contains__("Color"): _extrinsics["Color -> Infrared 1"] = get_extrinsics( unpacked_profiles.get("Color").get("Video Profile"), unpacked_profiles.get("Infrared 1").get("Video Profile")) if unpacked_profiles.__contains__("Infrared 2"): _extrinsics["Infrared 2 -> Infrared 1"] = get_extrinsics( unpacked_profiles.get("Infrared 2").get("Video Profile"), unpacked_profiles.get("Infrared 1").get("Video Profile")) return _intrinsics, _extrinsics # endregion # region Utility Functions # ------------------------------------------------------------------------------ # Utility Functions # ------------------------------------------------------------------------------ def reject_outliers_2(data: np.ndarray, m: float = 2.): """ Sets the outliers to 0 on an numpy array. Based on: https://stackoverflow.com/questions/11686720/is-there-a-numpy-builtin-to-reject-outliers-from-a-list """ d = np.abs(data - np.median(data)) mdev = np.median(d) s = d / (mdev if mdev else 1.) return data[s < m] # endregion # ------------------------------------------------------------------------------ # Main # ------------------------------------------------------------------------------ path = os.path.join("..", "..", "data", "CV_D435_20201104_160738_RGB_calibration.bag") timestamp = "_" + datetime.now().strftime('%Y%m%d_%H%M%S') save_path = os.path.join(f"calib_params{timestamp}") # Number of corners required to compute the calibration matrix _MIN_CORNERS = 40 # Sets the length of the chessboard square square_size = 2.5 # Length of the square (2.5) units = 0.01 # Units of square_size (cm) # Distance between left and right IR cameras in meters. Cameras are # assumed to be parallel to each other. We are assuming no distortion for # all cameras baseline = 0.05 # m # Number of Inner Corners of the chessboard pattern chess_rows = 6 chess_cols = 9 # Creates a Real Sense Pipeline Object pipeline = rs.pipeline(ctx=rs.context()) # Create a config object config = rs.config() # Tell config that we will use a recorded device from file to be used by # the pipeline through playback (comment this line if you want to use a # real camera). config.enable_device_from_file(file_name=path, repeat_playback=True) config = rs_config_color_pipeline(config_rs=config) try: # Starts the pipeline with the configuration done previously pipeline.start(config=config) except RuntimeError as err: print(err) raise RuntimeError("Make sure the config streams exists in the device!") # Create colorizer object to apply to depth frames colorizer = rs.colorizer() # Get intrinsics and extrinsics parameters from the multiple profiles of # the pipeline intrinsics, extrinsics = get_intrinsics_extrinsics(pipeline_rs=pipeline) # patternSize = (points_per_row, points_per_column) chess_size = (chess_rows, chess_cols) # Stores all corner points that where found on the image image_points = [] # Creates a list with the real world object(chessboard pattern) coordinates obj_point = np.zeros((chess_rows * chess_cols, 3), dtype=np.float32) obj_point[:, :2] = np.mgrid[ 0:chess_rows * square_size:square_size, 0:chess_cols * square_size:square_size ].T.reshape(-1, 2) obj_point = obj_point * units # Used to store all the real world points of the chessboard pattern obj_points = [] # Window to show the stream cv.namedWindow("Color Stream", cv.WINDOW_AUTOSIZE) # FLAG (Don't touch) first_run = True trigger_pressed = False # Main cycle/loop while True: # Read key and waits 1ms key = cv.waitKey(1) # Wait for new frames and grabs the frameset frameset = pipeline.wait_for_frames() # Get RGB Camera frame rs_color_rgb = cv.cvtColor( np.asanyarray(frameset.get_color_frame().get_data()), cv.COLOR_BGR2RGB ) rs_color_gray = cv.cvtColor( np.asanyarray(frameset.get_color_frame().get_data()), cv.COLOR_BGR2GRAY ) # Gather image information on the first run if first_run: # Image dimensions _h_, _w_, _c_ = rs_color_rgb.shape[:3] # Resized image dimensions _h_rsz_, _w_rsz_ = cv.resize( src=rs_color_rgb, dsize=None, fx=1 / _MIN_CORNERS, fy=1 / _MIN_CORNERS).shape[:2] # Creates the space to hold the images image_corners = np.zeros((_h_rsz_, _w_, _c_)) image_corners[:, :, :] = [65, 65, 65] # Gray first_run = False # Creates a division bar and stacks it to the images div = np.zeros((4, _w_, _c_)) # NOQA div[:, :, :] = [100, 100, 65] # Dark Cyan Blue image_bar = np.vstack((div, image_corners)) # NOQA if not trigger_pressed: _show = np.copy(rs_color_rgb) _show = cv.putText(img=_show, text="PRESS <SPACE> TO CAPTURE", org=(3, 26), fontFace=cv.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255), thickness=3, bottomLeftOrigin=False) else: _show = rs_color_rgb # Render image in opencv window cv.imshow("Color Stream", np.uint8(np.vstack((_show, image_bar)))) # If SPACE is pressed if key == 32: # Find the chessboard inner corners ret_val, corners = cv.findChessboardCorners(image=rs_color_gray, patternSize=chess_size) trigger_pressed = True if ret_val: # Adds the real world coordinates to the array that stores the real # world coordinates. obj_points.append(obj_point) """ corners = cv.cornerSubPix(image=rs_color_gray, corners=corners, winSize=(11, 11), zeroZone=(-1, -1), criteria=(cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # """ # Adds the image point to the array. image_points.append(corners) # NOQA - Supressed # warnings on the current line. Used to prevent "Name corners can # be undefined" # Resizes the image to display it. _img_resized = cv.resize( src=cv.drawChessboardCorners(image=rs_color_rgb, patternSize=chess_size, corners=corners, patternWasFound=ret_val), dsize=None, fx=1 / _MIN_CORNERS, fy=1 / _MIN_CORNERS) # Stacks the resized image of the corners to the previous images image_corners = np.uint8(np.hstack((image_corners, _img_resized))) # Removes the oldest image. image_corners = image_corners[:, _w_rsz_:] # NOQA # If the array of the image points have more than the minimum # images required for computation... if len(image_points) >= _MIN_CORNERS: # Removes the first entry, meaning the oldest one, of the # image_points and object_points obj_points.pop(0) image_points.pop(0) _, cam_mat, dist_coef, rot_vec, trans_vec = cv.calibrateCamera( objectPoints=obj_points, imagePoints=image_points, imageSize=(rs_color_rgb.shape[1], rs_color_rgb.shape[0]), cameraMatrix=None, distCoeffs=None) rot_vec = np.array(rot_vec) """ rotX_avg = np.sum(rot_vec[:, 0, :]) / _MIN_CORNERS rotY_avg = np.sum(rot_vec[:, 1, :]) / _MIN_CORNERS rotZ_avg = np.sum(rot_vec[:, 2, :]) / _MIN_CORNERS # """ _inliers = reject_outliers_2(rot_vec[:, 0, :], m=2) rotX_avg = np.sum(_inliers) / len(_inliers) _inliers = reject_outliers_2(rot_vec[:, 1, :], m=2) rotY_avg = np.sum(_inliers) / len(_inliers) _inliers = reject_outliers_2(rot_vec[:, 2, :], m=2) rotZ_avg = np.sum(_inliers) / len(_inliers) rot_vec_avg = np.vstack((rotX_avg, rotY_avg, rotZ_avg)) rot_mat = cv.Rodrigues(rot_vec_avg)[0] trans_vec = np.array(trans_vec) """ transX_avg = np.sum(trans_vec[:, 0, :]) / _MIN_CORNERS transY_avg = np.sum(trans_vec[:, 1, :]) / _MIN_CORNERS transZ_avg = np.sum(trans_vec[:, 2, :]) / _MIN_CORNERS # """ _inliers = reject_outliers_2(trans_vec[:, 0, :], m=2) transX_avg = np.sum(_inliers) / len(_inliers) _inliers = reject_outliers_2(trans_vec[:, 1, :], m=2) transY_avg = np.sum(_inliers) / len(_inliers) _inliers = reject_outliers_2(trans_vec[:, 2, :], m=2) transZ_avg = np.sum(_inliers) / len(_inliers) trans_vec_avg = np.vstack((transX_avg, transY_avg, transZ_avg)) print("\n----------------------------------------") print("\tIntrinsics Matrix") print(np.round(cam_mat, 2)) print("----------------------------------------") print("\tExtrinsic Matrix") print(np.round(np.hstack((trans_vec_avg, rot_mat)), 2)) print("----------------------------------------\n") error_sum = 0 for i in range(len(obj_points)): image_points_reprojected, _ = cv.projectPoints( objectPoints=obj_points[i], rvec=rot_vec[i], tvec=trans_vec[i], cameraMatrix=cam_mat, distCoeffs=dist_coef ) error = cv.norm( src1=image_points[i], src2=image_points_reprojected, # NOQA normType=cv.NORM_L2 ) / len(image_points_reprojected) error_sum += error avg_error = error_sum / len(obj_points) print(f"Error: {avg_error}") new_cam_mat, ROI = cv.getOptimalNewCameraMatrix( cameraMatrix=cam_mat, distCoeffs=dist_coef, imageSize=(_w_, _h_), # NOQA alpha=1) img_undistorted = cv.undistort(src=rs_color_rgb, cameraMatrix=cam_mat, distCoeffs=dist_coef, dst=None, newCameraMatrix=new_cam_mat) rs_color_rgb = cv.putText(img=rs_color_rgb, text="PRESS <ESC> TO EXIT", org=(3, 26), fontFace=cv.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255), thickness=3, bottomLeftOrigin=False) rs_color_rgb = cv.resize(src=rs_color_rgb, dsize=None, fx=0.5, fy=0.5) img_undistorted = cv.resize(src=img_undistorted, dsize=None, fx=0.5, fy=0.5) cv.namedWindow("Original - Undistorted", cv.WINDOW_AUTOSIZE) cv.imshow("Original - Undistorted", np.hstack((rs_color_rgb, img_undistorted))) # if pressed ESCAPE exit program if key == 27: cv.destroyAllWindows() break try: np.savez(save_path, cam_mat, dist_coef, # NOQA rvec=rot_vec_avg, tvec=trans_vec_avg, # NOQA avg_error=avg_error) # NOQA except NameError: pass
37.989011
104
0.543631
6765eb37bdbb881a951bde4ad228361e913469b1
8,040
py
Python
docs/conf.py
hassanobeid1994/tr_b_causal_2020
1ffaeb7dcefccf5e1f24c459e9a2f140b2a052a5
[ "MIT" ]
null
null
null
docs/conf.py
hassanobeid1994/tr_b_causal_2020
1ffaeb7dcefccf5e1f24c459e9a2f140b2a052a5
[ "MIT" ]
89
2020-02-10T02:52:11.000Z
2020-06-23T03:50:27.000Z
docs/conf.py
hassan-obeid/tr_b_causal_2020
1ffaeb7dcefccf5e1f24c459e9a2f140b2a052a5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Causal_Inference_Transportation documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "Causal_Inference_Transportation" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.1" # The full version, including alpha/beta/rc tags. release = "0.1" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "ctr_b_causal_2020doc" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ( "index", "ctr_b_causal_2020.tex", "Causal_Inference_Transportation Documentation", "hassan", "manual", ), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "ctr_b_causal_2020", "Causal_Inference_Transportation Documentation", ["hassan"], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "ctr_b_causal_2020", "Causal_Inference_Transportation Documentation", "hassan", "Causal_Inference_Transportation", "causal graphs and transportatability", "Miscellaneous", ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
31.284047
84
0.701617
074279a742c1ca6ba48653ebaadc8507f7df174a
190
py
Python
test/test_cli.py
GochoMugo/remindme
6cf2f94ce07ead754f1ee5976a7e7d7cbfa1a2e4
[ "MIT" ]
17
2015-05-02T22:58:07.000Z
2017-04-17T06:33:43.000Z
test/test_cli.py
GochoMugo/remindme
6cf2f94ce07ead754f1ee5976a7e7d7cbfa1a2e4
[ "MIT" ]
8
2015-02-14T16:22:27.000Z
2016-10-26T13:15:19.000Z
test/test_cli.py
GochoMugo/remindme
6cf2f94ce07ead754f1ee5976a7e7d7cbfa1a2e4
[ "MIT" ]
2
2016-02-26T10:47:56.000Z
2019-10-09T05:49:51.000Z
''' Tests against remindme's command-line runner ''' import unittest from remindme import cli class Test_Cli(unittest.TestCase): '''Tests against the Command-line Runner.''' pass
15.833333
48
0.726316
17a66209bd2103b0fa62088d384d34cc7813ef49
105
py
Python
PrototypeSystem/BackEnd/application/settings/prob.py
SEVulDet/SEVulDet
df56196067b249d9550cabd0315413c35c8ff420
[ "MIT" ]
1
2022-03-15T00:44:57.000Z
2022-03-15T00:44:57.000Z
PrototypeSystem/BackEnd/application/settings/prob.py
SEVulDet/SEVulDet
df56196067b249d9550cabd0315413c35c8ff420
[ "MIT" ]
null
null
null
PrototypeSystem/BackEnd/application/settings/prob.py
SEVulDet/SEVulDet
df56196067b249d9550cabd0315413c35c8ff420
[ "MIT" ]
null
null
null
'''产品上线配置文件''' from . import Config class ProductionConfig(Config): '''生产模式下的配置''' DEBUG = False
17.5
31
0.657143
a5c6e7f9a4b968b181604e312d5be8cd90fa3dbf
30,539
py
Python
dibs/server.py
phette23/dibs
85dd630a95a36ded0acd87acb973139a5fd88742
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
dibs/server.py
phette23/dibs
85dd630a95a36ded0acd87acb973139a5fd88742
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
dibs/server.py
phette23/dibs
85dd630a95a36ded0acd87acb973139a5fd88742
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
''' server.py: DIBS server definition. Copyright --------- Copyright (c) 2021 by the California Institute of Technology. This code is open-source software released under a 3-clause BSD license. Please see the file "LICENSE" for more information. ''' from beaker.middleware import SessionMiddleware import bottle from bottle import Bottle, HTTPResponse, static_file, template from bottle import request, response, redirect, route, get, post, error from datetime import datetime, timedelta from decouple import config import functools from humanize import naturaldelta import json import os from os.path import realpath, dirname, join from peewee import * import sys import threading from topi import Tind from .database import Item, Loan, Recent from .date_utils import human_datetime from .email import send_email from .people import Person, check_password, person_from_session from .roles import role_to_redirect, has_required_role if __debug__: from sidetrack import log, logr, set_debug # General configuration and initialization. # ............................................................................. # Begin by creating a Bottle object on which we will define routes. At the end # of this file, we will replace this object with the final exported application. dibs = Bottle() # Tell Bottle where to find templates. This is necessary for both the Bottle # template() command to work and also to get %include to work inside our .tpl # template files. Rather surprisingly, the only way to tell Bottle where to # find the templates is to set this Bottle package-level variable. bottle.TEMPLATE_PATH.append(join(realpath(dirname(__file__)), 'templates')) # Cooling-off period after a loan ends, before user can borrow same title again. _RELOAN_WAIT_TIME = timedelta(minutes = int(config('RELOAN_WAIT_TIME') or 30)) # Where we send users to give feedback. _FEEDBACK_URL = config('FEEDBACK_URL') or '/' # The next constant is used to configure Beaker sessions. This is used at # the very end of this file in the call to SessionMiddleware. _SESSION_CONFIG = { # Use simple in-memory session handling. Ultimately we will only need # sessions for the admin pages, and we won't have many users. 'session.type' : 'memory', # Save session data automatically, without requiring us to call save(). 'session.auto' : True, # Session cookies should be accessible only to the browser, not JavaScript. 'session.httponly' : True, # Clear sessions when the user restarts their browser. 'session.cookie_expires' : True, # The name of the session cookie. 'session.key' : config('COOKIE_NAME') or 'dibs', # Seconds until the session is invalidated. 'session.timeout' : config('SESSION_TIMEOUT', cast = int) or 604800, } # General-purpose utilities used later. # ............................................................................. def page(name, **kargs): '''Create a page using template "name" with some standard variables set.''' # Bottle is unusual in providing global objects like 'request'. session = request.environ['beaker.session'] logged_in = bool(session.get('user', None)) staff_user = has_required_role(person_from_session(session), 'library') return template(name, base_url = dibs.base_url, logged_in = logged_in, staff_user = staff_user, feedback_url = _FEEDBACK_URL, **kargs) # Bootle hooks -- functions that are run every time a route is invoked. # ............................................................................. @dibs.hook('before_request') def expired_loan_removing_wrapper(): '''Clean up expired loans.''' for loan in Loan.select(): if datetime.now() >= loan.endtime: barcode = loan.item.barcode if __debug__: log(f'loan for {barcode} by {loan.user} expired') Recent.create(item = loan.item, user = loan.user, nexttime = loan.endtime + timedelta(minutes = 1)) loan.delete_instance() for recent in Recent.select(): if datetime.now() >= recent.nexttime: barcode = recent.item.barcode if __debug__: log(f'expiring recent record for {barcode} by {recent.user}') recent.delete_instance() # Decorators -- functions that are run selectively on certain routes. # ............................................................................. def barcode_verified(func): '''Check if the given barcode (passed as keyword argument) exists.''' @functools.wraps(func) def barcode_verification_wrapper(*args, **kwargs): if 'barcode' in kwargs: barcode = kwargs['barcode'] if not Item.get_or_none(Item.barcode == barcode): if __debug__: log(f'there is no item with barcode {barcode}') return page('error', summary = 'no such barcode', message = f'There is no item with barcode {barcode}.') return func(*args, **kwargs) return barcode_verification_wrapper def authenticated(func): '''Check if the user is authenticated and redirect to /login if not.''' @functools.wraps(func) def authentication_check_wrapper(*args, **kwargs): if request.method == 'HEAD': # A Beaker session is not present when we get a HEAD. Unsure if # that's expected or just a Bottle or Beaker behavior. We can't # proceed with the request, but it's not an error either. I # haven't found a better alternative than simply returning nothing. if __debug__: log(f'returning empty HEAD on {request.path}') return session = request.environ['beaker.session'] if not session.get('user', None): if __debug__: log(f'user not found in session object') redirect(f'{dibs.base_url}/login') else: if __debug__: log(f'user is authenticated: {session["user"]}') return func(*args, **kwargs) return authentication_check_wrapper # Administrative interface endpoints. # ............................................................................. # NOTE: there are three approaches for integrating SSO. First is always # require SSO before showing anything (not terribly useful here). # Second use existing end points (e.g. /login, /logout) this supports # everyone as SSO or not at all, third would be to support both # SSO via its own end points and allow the app based authentication # end points to remain for users who are defined in the system only. # This can be helpful in the case of admin users or service accounts. @dibs.get('/login') def show_login_page(): # NOTE: If SSO is implemented this should redirect to the # SSO end point with a return to /login on success. if __debug__: log('get /login invoked') return page('login') @dibs.post('/login') def login(): '''Handle performing the login action from the login page.''' # NOTE: If SSO is implemented this end point will handle the # successful login case applying role rules if necessary. email = request.forms.get('email').strip() password = request.forms.get('password') if __debug__: log(f'post /login invoked by {email}') # get our person obj from people.db for demo purposes user = (Person.get_or_none(Person.uname == email)) if user != None: if check_password(password, user.secret) == False: if __debug__: log(f'wrong password -- rejecting {email}') return page('login') else: if __debug__: log(f'creating session for {email}') session = request.environ['beaker.session'] session['user'] = email p = role_to_redirect(user.role) if __debug__: log(f'redirecting to "{p}"') redirect(f'{dibs.base_url}/{p}') return else: if __debug__: log(f'wrong password -- rejecting {email}') return page('login') @dibs.post('/logout') def logout(): '''Handle the logout action from the navbar menu on every page.''' session = request.environ['beaker.session'] if not session.get('user', None): if __debug__: log(f'post /logout invoked by unauthenticated user') return user = session['user'] if __debug__: log(f'post /logout invoked by {user}') del session['user'] redirect(f'{dibs.base_url}/login') @dibs.get('/list') @authenticated def list_items(): '''Display the list of known items.''' person = person_from_session(request.environ['beaker.session']) if has_required_role(person, 'library') == False: redirect(f'{dibs.base_url}/notallowed') return if __debug__: log('get /list invoked') return page('list', items = Item.select()) @dibs.get('/manage') @authenticated def list_items(): '''Display the list of known items.''' person = person_from_session(request.environ['beaker.session']) if has_required_role(person, 'library') == False: redirect(f'{dibs.base_url}/notallowed') return if __debug__: log('get /manage invoked') return page('manage', items = Item.select()) @dibs.get('/add') @authenticated def add(): '''Display the page to add new items.''' person = person_from_session(request.environ['beaker.session']) if has_required_role(person, 'library') == False: redirect(f'{dibs.base_url}/notallowed') return if __debug__: log('get /add invoked') return page('edit', action = 'add', item = None) @dibs.get('/edit/<barcode:int>') @barcode_verified @authenticated def edit(barcode): '''Display the page to add new items.''' person = person_from_session(request.environ['beaker.session']) if has_required_role(person, 'library') == False: redirect(f'{dibs.base_url}/notallowed') return if __debug__: log(f'get /edit invoked on {barcode}') return page('edit', action = 'edit', item = Item.get(Item.barcode == barcode)) @dibs.post('/update/add') @dibs.post('/update/edit') @authenticated def update_item(): '''Handle http post request to add a new item from the add-new-item page.''' person = person_from_session(request.environ['beaker.session']) if has_required_role(person, 'library') == False: redirect(f'{dibs.base_url}/notallowed') return if __debug__: log(f'post {request.path} invoked') if 'cancel' in request.POST: if __debug__: log(f'user clicked Cancel button') redirect(f'{dibs.base_url}/list') return # The HTML form validates the data types, but the POST might come from # elsewhere, so we always need to sanity-check the values. barcode = request.forms.get('barcode').strip() if not barcode.isdigit(): return page('error', summary = 'invalid barcode', message = f'{barcode} is not a valid barcode') duration = request.forms.get('duration').strip() if not duration.isdigit() or int(duration) <= 0: return page('error', summary = 'invalid duration', message = f'Duration must be a positive number') num_copies = request.forms.get('num_copies').strip() if not num_copies.isdigit() or int(num_copies) <= 0: return page('error', summary = 'invalid copy number', message = f'# of copies must be a positive number') # Our current approach only uses items with barcodes that exist in TIND. # If that ever changes, the following needs to change too. tind = Tind('https://caltech.tind.io') try: rec = tind.item(barcode = barcode).parent except: if __debug__: log(f'could not find {barcode} in TIND') return page('error', summary = 'no such barcode', message = f'There is no item with barcode {barcode}.') return item = Item.get_or_none(Item.barcode == barcode) if '/update/add' in request.path: if item: if __debug__: log(f'{barcode} already exists in the database') return page('error', summary = 'duplicate entry', message = f'An item with barcode {{barcode}} already exists.') if __debug__: log(f'adding {barcode}, title {rec.title}') Item.create(barcode = barcode, title = rec.title, author = rec.author, tind_id = rec.tind_id, year = rec.year, edition = rec.edition, thumbnail = rec.thumbnail_url, num_copies = num_copies, duration = duration) else: if not item: if __debug__: log(f'there is no item with barcode {barcode}') return page('error', summary = 'no such barcode', message = f'There is no item with barcode {barcode}.') if __debug__: log(f'updating {barcode} from {rec}') #FIXME: Need to validate these values. item.barcode = barcode item.num_copies = num_copies item.duration = duration # NOTE: Since we don't have these fields in the edit form we don't # go anything with them. #for field in ['title', 'author', 'year', 'edition', 'tind_id', 'thumbnail']: # setattr(item, field, getattr(rec, field, '')) # NOTE: We only update the specific editable fields. item.save(only=[Item.barcode, Item.num_copies, Item.duration]) redirect(f'{dibs.base_url}/list') @dibs.post('/ready') @barcode_verified @authenticated def toggle_ready(): '''Set the ready-to-loan field.''' barcode = request.POST.barcode.strip() ready = (request.POST.ready.strip() == 'True') if __debug__: log(f'post /ready invoked on barcode {barcode}') item = Item.get(Item.barcode == barcode) # The status we get is the availability status as it currently shown, # meaning the user's action is to change the status. item.ready = not ready #NOTE: We only save the ready value we toggled. item.save(only=[Item.ready]) if __debug__: log(f'readiness of {barcode} is now {item.ready}') # If the readiness state is changed after the item is let out for loans, # then there may be outstanding loans right now. Delete them. if list(Loan.select(Loan.item == item)): if __debug__: log(f'loans for {barcode} have been deleted') Loan.delete().where(Loan.item == item).execute() redirect(f'{dibs.base_url}/list') @dibs.post('/remove') @barcode_verified @authenticated def remove_item(): '''Handle http post request to remove an item from the list page.''' person = person_from_session(request.environ['beaker.session']) if has_required_role(person, 'library') == False: redirect(f'{dibs.base_url}/notallowed') return barcode = request.POST.barcode.strip() if __debug__: log(f'post /remove invoked on barcode {barcode}') item = Item.get(Item.barcode == barcode) item.ready = False # Don't forget to delete any loans involving this item. if list(Loan.select(Loan.item == item)): Loan.delete().where(Loan.item == item).execute() Item.delete().where(Item.barcode == barcode).execute() redirect(f'{dibs.base_url}/manage') # User endpoints. # ............................................................................. @dibs.get('/') @dibs.get('/<name:re:(info|welcome|about|thankyou)>') def general_page(name = '/'): '''Display the welcome page.''' if __debug__: log(f'get {name} invoked') if name == 'about': return page('about') elif name == 'thankyou': return page('thankyou') else: return page('info', reloan_wait_time = naturaldelta(_RELOAN_WAIT_TIME)) #FIXME: We need an item status which returns a JSON object # so the item page can update itself without reloading the whole page. @dibs.get('/item-status/<barcode:int>') @authenticated def item_status(barcode): '''Returns an item summary status as a JSON string''' user = request.environ['beaker.session'].get('user') if __debug__: log(f'get /item-status invoked on barcode {barcode} and {user}') obj = { 'barcode': barcode, 'ready': False, 'available': False, 'explanation': '', 'endtime' : None, 'base_url': dibs.base_url } item = Item.get_or_none(Item.barcode == barcode) if (item != None) and (user != None): obj['ready'] = item.ready user_loans = list(Loan.select().where(Loan.user == user)) recent_history = list(Recent.select().where(Recent.item == item)) endtime = None # First check if the user has recently loaned out this same item. if any(loan for loan in recent_history if loan.user == user): if __debug__: log(f'{user} recently borrowed {barcode}') recent = next(loan for loan in recent_history if loan.user == user) endtime = recent.nexttime obj['available'] = False obj['explanation'] = 'It is too soon after the last time you borrowed this book.' elif any(user_loans): # The user has a current loan. If it's for this title, redirect them # to the viewer; if it's for another title, block the loan button. if user_loans[0].item == item: if __debug__: log(f'{user} already has {barcode}; redirecting to uv') obj['explanation'] = 'You currently have borrowed this book.' else: if __debug__: log(f'{user} already has a loan on something else') obj['available'] = False endtime = user_loans[0].endtime loaned_item = user_loans[0].item obj['explanation'] = ('You have another item on loan' + f' ("{loaned_item.title}" by {loaned_item.author})' + ' and it has not yet been returned.') else: if __debug__: log(f'{user} is allowed to borrow {barcode}') loans = list(Loan.select().where(Loan.item == item)) obj['available'] = item.ready and (len(loans) < item.num_copies) if item.ready and not obj['available']: endtime = min(loan.endtime for loan in loans) obj['explanation'] = 'All available copies are currently on loan.' elif not item.ready: endtime = None obj['explanation'] = 'This item is not currently available through DIBS.' else: # It's available and they can have it. endtime = None obj['explanation'] = '' if endtime != None: obj['endtime'] = human_datetime(endtime) else: obj['endtime'] == None return json.dumps(obj) @dibs.get('/item/<barcode:int>') @barcode_verified @authenticated def show_item_info(barcode): '''Display information about the given item.''' user = request.environ['beaker.session'].get('user') if __debug__: log(f'get /item invoked on barcode {barcode} by {user}') item = Item.get(Item.barcode == barcode) user_loans = list(Loan.select().where(Loan.user == user)) recent_history = list(Recent.select().where(Recent.item == item)) # First check if the user has recently loaned out this same item. if any(loan for loan in recent_history if loan.user == user): if __debug__: log(f'{user} recently borrowed {barcode}') recent = next(loan for loan in recent_history if loan.user == user) endtime = recent.nexttime available = False explanation = 'It is too soon after the last time you borrowed this book.' elif any(user_loans): # The user has a current loan. If it's for this title, redirect them # to the viewer; if it's for another title, block the loan button. if user_loans[0].item == item: if __debug__: log(f'{user} already has {barcode}; redirecting to uv') redirect(f'{dibs.base_url}/view/{barcode}') return else: if __debug__: log(f'{user} already has a loan on something else') available = False endtime = user_loans[0].endtime loaned_item = user_loans[0].item explanation = ('You have another item on loan' + f' ("{loaned_item.title}" by {loaned_item.author})' + ' and it has not yet been returned.') else: if __debug__: log(f'{user} is allowed to borrow {barcode}') loans = list(Loan.select().where(Loan.item == item)) available = item.ready and (len(loans) < item.num_copies) if item.ready and not available: endtime = min(loan.endtime for loan in loans) explanation = 'All available copies are currently on loan.' elif not item.ready: endtime = None explanation = 'This item is not currently available through DIBS.' else: # It's available and they can have it. endtime = datetime.now() explanation = None return page('item', item = item, available = available, endtime = human_datetime(endtime), explanation = explanation) # Lock object used around some code to prevent concurrent modification. _THREAD_LOCK = threading.Lock() @dibs.post('/loan') @barcode_verified @authenticated def loan_item(): '''Handle http post request to loan out an item, from the item info page.''' user = request.environ['beaker.session'].get('user') barcode = request.POST.barcode.strip() if __debug__: log(f'post /loan invoked on barcode {barcode} by {user}') item = Item.get(Item.barcode == barcode) if not item.ready: # Normally we shouldn't see a loan request through our form in this # case, so either staff has changed the status after item was made # available or someone got here accidentally (or deliberately). if __debug__: log(f'{barcode} is not ready for loans') redirect(f'{dibs.base_url}/view/{barcode}') return # The default Bottle dev web server is single-thread, so we won't run into # the problem of 2 users simultaneously clicking on the loan button. Other # servers are multithreaded, and there's a risk that the time it takes us # to look through the loans introduces a window of time when another user # might click on the same loan button and cause another loan request to be # initiated before the 1st finishes. So, lock this block of code. with _THREAD_LOCK: if any(Loan.select().where(Loan.user == user)): if __debug__: log(f'{user} already has a loan on something else') return page('error', summary = 'only one loan at a time', message = ('Our policy currently prevents users from ' 'borrowing more than one item at a time.')) loans = list(Loan.select().where(Loan.item == item)) if any(loan.user for loan in loans if user == loan.user): # Shouldn't be able to reach this point b/c the item page shouldn't # make a loan available for this user & item combo. But if # something weird happens (e.g., double posting), we might. if __debug__: log(f'{user} already has a copy of {barcode} loaned out') if __debug__: log(f'redirecting {user} to /view for {barcode}') redirect(f'{dibs.base_url}/view/{barcode}') return if len(loans) >= item.num_copies: # This shouldn't be possible, but catch it anyway. if __debug__: log(f'# loans {len(loans)} >= num_copies for {barcode} ') redirect(f'{dibs.base_url}/item/{barcode}') return recent_history = list(Recent.select().where(Recent.item == item)) if any(loan for loan in recent_history if loan.user == user): if __debug__: log(f'{user} recently borrowed {barcode}') recent = next(loan for loan in recent_history if loan.user == user) return page('error', summary = 'too soon', message = ('We ask that you wait at least ' f'{naturaldelta(_RELOAN_WAIT_TIME)} before ' 'requesting the same item again. Please try ' f'after {human_datetime(recent.nexttime)}')) # OK, the user is allowed to loan out this item. start = datetime.now() end = start + timedelta(hours = item.duration) if __debug__: log(f'creating new loan for {barcode} for {user}') Loan.create(item = item, user = user, started = start, endtime = end) send_email(user, item, start, end, dibs.base_url) redirect(f'{dibs.base_url}/view/{barcode}') @dibs.post('/return') @barcode_verified @authenticated def end_loan(): '''Handle http post request to return the given item early.''' barcode = request.forms.get('barcode').strip() user = request.environ['beaker.session'].get('user') if __debug__: log(f'get /return invoked on barcode {barcode} by {user}') loans = list(Loan.select().join(Item).where(Loan.item.barcode == barcode)) user_loans = [loan for loan in loans if user == loan.user] if len(user_loans) > 1: # Internal error -- users should not have more than one loan of an # item. Right now, we simply log it and move on. if __debug__: log(f'error: more than one loan for {barcode} by {user}') elif user_loans: # Normal case: user has loaned a copy of item. Delete the record and # add a new Recent loan record. if __debug__: log(f'deleting loan record for {barcode} by {user}') user_loans[0].delete_instance() Recent.create(item = Item.get(Item.barcode == barcode), user = user, nexttime = datetime.now() + _RELOAN_WAIT_TIME) else: # User does not have this item loaned out. Ignore the request. if __debug__: log(f'{user} does not have {barcode} loaned out') redirect(f'{dibs.base_url}/thankyou') @dibs.get('/view/<barcode:int>') @barcode_verified @authenticated def send_item_to_viewer(barcode): '''Redirect to the viewer.''' user = request.environ['beaker.session'].get('user') if __debug__: log(f'get /view invoked on barcode {barcode} by {user}') loans = list(Loan.select().join(Item).where(Loan.item.barcode == barcode)) user_loans = [loan for loan in loans if user == loan.user] if user_loans: if __debug__: log(f'redirecting to viewer for {barcode} for {user}') return page('uv', barcode = barcode, endtime = human_datetime(user_loans[0].endtime), reloan_wait_time = naturaldelta(_RELOAN_WAIT_TIME)) else: if __debug__: log(f'{user} does not have {barcode} loaned out') redirect(f'{dibs.base_url}/item/{barcode}') @dibs.get('/manifests/<barcode:int>') @barcode_verified @authenticated def return_manifest(barcode): '''Return the manifest file for a given item.''' user = request.environ['beaker.session'].get('user') if __debug__: log(f'get /manifests/{barcode} invoked by {user}') loans = list(Loan.select().join(Item).where(Loan.item.barcode == barcode)) if any(loan.user for loan in loans if user == loan.user): if __debug__: log(f'returning manifest file for {barcode} for {user}') return static_file(f'{barcode}-manifest.json', root = 'manifests') else: if __debug__: log(f'{user} does not have {barcode} loaned out') redirect(f'{dibs.base_url}/notallowed') return # Universal viewer interface. # ............................................................................. # The uv subdirectory contains generic html and css. We serve them as static # files to anyone; they don't need to be controlled. The multiple routes # are because the UV files themselves reference different paths. @dibs.route('/view/uv/<filepath:path>') @dibs.route('/viewer/uv/<filepath:path>') def serve_uv_files(filepath): if __debug__: log(f'serving static uv file /viewer/uv/{filepath}') return static_file(filepath, root = 'viewer/uv') # The uv subdirectory contains generic html and css. Serve as static files. @dibs.route('/viewer/<filepath:path>') def serve_uv_files(filepath): if __debug__: log(f'serving static uv file /viewer/{filepath}') return static_file(filepath, root = 'viewer') # Error pages. # ............................................................................. # Note: the Bottle session plugin does not seem to supply session arg to @error. @dibs.get('/notallowed') @dibs.post('/notallowed') def not_allowed(): if __debug__: log(f'serving /notallowed') return page('error', summary = 'access error', message = ('The requested method does not exist or you do not ' 'not have permission to access the requested item.')) @error(404) def error404(error): if __debug__: log(f'error404 called with {error}') return page('404', code = error.status_code, message = error.body) @error(405) def error405(error): if __debug__: log(f'error405 called with {error}') return page('error', summary = 'method not allowed', message = ('The requested method does not exist or you do not ' 'not have permission to perform the action.')) # Miscellaneous static pages. # ............................................................................. @dibs.get('/favicon.ico') def favicon(): '''Return the favicon.''' if __debug__: log(f'returning favicon') return static_file('favicon.ico', root = 'dibs/static') @dibs.get('/static/<filename:re:[-a-zA-Z0-9]+.(html|jpg|svg|css|js)>') def included_file(filename): '''Return a static file used with %include in a template.''' if __debug__: log(f'returning included file {filename}') return static_file(filename, root = 'dibs/static') # Main exported application. # ............................................................................. # In the file above, we defined a Bottle application and its routes. Now we # take that application definition and hand it to a middleware layer for # session handling (using Beaker). The new "dibs" constitutes the final # application that is invoked by the WSGI server via ../adapter.wsgi. dibs = SessionMiddleware(dibs, _SESSION_CONFIG)
43.073343
93
0.62949
b87e692a19a88e824687aad7cdb6f012442f4772
6,526
py
Python
misc/mysqlproxy.py
pzure/CyMySQL
a6133a150f58f6752a80a73c74cd3277a6dedcd8
[ "MIT" ]
1
2018-06-24T07:29:15.000Z
2018-06-24T07:29:15.000Z
misc/mysqlproxy.py
pzure/CyMySQL
a6133a150f58f6752a80a73c74cd3277a6dedcd8
[ "MIT" ]
null
null
null
misc/mysqlproxy.py
pzure/CyMySQL
a6133a150f58f6752a80a73c74cd3277a6dedcd8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ############################################################################## #The MIT License (MIT) # #Copyright (c) 2016 Hajime Nakagami # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. ############################################################################## import sys import time import socket import binascii import select def recv_from_socket(sock, n): recieved = b'' while n: bs = sock.recv(n) recieved += bs n -= len(bs) return recieved def recv_mysql_packet(sock): head = recv_from_socket(sock, 4) n = int.from_bytes(head[:3], byteorder='little') return head + recv_from_socket(sock, n) def to_ascii(s): r = '' for c in s: r += chr(c) if (c >= 32 and c < 128) else '.' return r def print_command_type(code): r = { 0x01: 'COM_QUIT', 0x03: 'COM_QUERY', }.get(code, '') print("%-12s" % (r), end='') return r def print_response_type(code): r = { 0x00: 'OK', 0xFE: 'EOF', 0xFF: 'Error', }.get(code, '') print("%-12s" % (r), end='') return r def proxy_wire(server_name, server_port, listen_host, listen_port): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind((listen_host, listen_port)) sock.listen(1) client_sock, addr = sock.accept() server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_sock.connect((server_name, server_port)) # http://dev.mysql.com/doc/internals/en/connection-phase-packets.html # initial packet server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C initial packets', binascii.b2a_hex(server_data).decode('ascii')) r = print_response_type(server_data[4]) print(' [' + to_ascii(server_data) + ']') # initial response (authentication) client_data = recv_mysql_packet(client_sock) server_sock.send(client_data) print('C->S initial response', binascii.b2a_hex(client_data).decode('ascii')) print_command_type(client_data[4]) print(' [' + to_ascii(client_data) + ']') # auth result server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C auth result', binascii.b2a_hex(server_data).decode('ascii')) r = print_response_type(server_data[4]) print(' [' + to_ascii(server_data) + ']') # http://dev.mysql.com/doc/internals/en/packet-OK_Packet.html # payload first byte eq 0. if server_data[4:6] == b'\x01\x03': print("fast auth") server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C auth result', binascii.b2a_hex(server_data).decode('ascii')) if server_data[4:6] == b'\x01\x04': print("full auth") client_data = recv_mysql_packet(client_sock) server_sock.send(client_data) print('C->S', binascii.b2a_hex(client_data).decode('ascii')) server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C', binascii.b2a_hex(server_data).decode('ascii')) client_data = recv_mysql_packet(client_sock) server_sock.send(client_data) print('C->S', binascii.b2a_hex(client_data).decode('ascii')) server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C auth result', binascii.b2a_hex(server_data).decode('ascii')) else: assert server_data[4] == 0 while True: client_data = recv_mysql_packet(client_sock) server_sock.send(client_data) print('C->S', binascii.b2a_hex(client_data).decode('ascii')) print_command_type(client_data[4]) print(' [' + to_ascii(client_data) + ']') if client_data[4] == 0x01: # COM_QUIT break assert client_data[4] == 0x03 # COM_QUERY server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C', binascii.b2a_hex(server_data).decode('ascii')) r = print_response_type(server_data[4]) print(' [' + to_ascii(server_data) + ']') if r: continue print('[Column definition]') while True: server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C', binascii.b2a_hex(server_data).decode('ascii')) r = print_response_type(server_data[4]) print(' [' + to_ascii(server_data) + ']') if r: break print('[Result Rows]') while True: server_data = recv_mysql_packet(server_sock) client_sock.send(server_data) print('S->C', binascii.b2a_hex(server_data).decode('ascii')) r = print_response_type(server_data[4]) print(' [' + to_ascii(server_data) + ']') if r: break if __name__ == '__main__': if len(sys.argv) < 3: print('Usage : ' + sys.argv[0] + ' server[:port] [listen_host:]listen_port') sys.exit() server = sys.argv[1].split(':') server_name = server[0] if len(server) == 1: server_port = 3306 else: server_port = int(server[1]) listen = sys.argv[2].split(':') if len(listen) == 1: listen_host = 'localhost' listen_port = int(listen[0]) else: listen_host = listen[0] listen_port = int(listen[1]) proxy_wire(server_name, server_port, listen_host, listen_port)
35.086022
84
0.631168
9dadca4e49d91502b41182da4677f0146db48fcf
2,095
py
Python
loading_scripts/frames_to_redis.py
cltl/LongTailAnnotation
3c82873451f870ef1c2481a52f0fb881a7ce8631
[ "Apache-2.0" ]
2
2019-03-14T08:33:24.000Z
2021-03-04T14:12:50.000Z
loading_scripts/frames_to_redis.py
cltl/LongTailAnnotation
3c82873451f870ef1c2481a52f0fb881a7ce8631
[ "Apache-2.0" ]
null
null
null
loading_scripts/frames_to_redis.py
cltl/LongTailAnnotation
3c82873451f870ef1c2481a52f0fb881a7ce8631
[ "Apache-2.0" ]
null
null
null
import json import redis import pickle import sys import pandas as pd from collections import defaultdict fle = 'data/all' pool = redis.ConnectionPool(host='localhost', port=6379, db=0) r = redis.Redis(connection_pool=pool) def build_inc2que(): my_index = defaultdict(set) subtasks=['1','2','3'] for s in subtasks: with open('../test_data2/%s_answers.json' % s, 'r') as infile: answers=json.load(infile) for q_id in answers.keys(): incs = answers[q_id]["answer_docs"].keys() for i in incs: my_index[i].add(q_id) return my_index def any_empty_names(participants): for p in participants: if 'Name' not in p or p['Name']=='': return True return False def count_suspects(participants): c=0 for p in participants: if p['Type'].strip()=='Subject-Suspect': c+=1 return c inc2que = build_inc2que() new_inc2que = {} allf=pd.read_pickle(fle) bad_docs_num=0 empty_part=0 too_many_part=0 MAX_PARTICIPANTS=10 for index, row in allf.iterrows(): incident_id = row['incident_uri'] if incident_id not in inc2que.keys(): continue docs=list(row['hashed_ids'].values()) if len(docs)<2 or len(docs)>4: bad_docs_num+=1 continue if len(row['participants'])>MAX_PARTICIPANTS: too_many_part+=1 continue if any_empty_names(row['participants']): empty_part+=1 continue # suspects=count_suspects(row['participants']) # if suspects>1: # print(incident_id, suspects) new_inc2que[incident_id]=inc2que[incident_id] dockey = 'incdoc:%s' % incident_id # r.set(dockey, json.dumps(docs)) strkey = 'incstr:%s' % incident_id rval = row.to_json() # r.set(strkey, json.dumps(rval)) print(len(new_inc2que), bad_docs_num, too_many_part, empty_part) for k,v in new_inc2que.items(): quekey = 'incque:%s' % k #print(k, v) # r.set(quekey, json.dumps(list(v))) with open('../new_inc2que.bin', 'wb') as outfile: pickle.dump(new_inc2que, outfile)
26.1875
70
0.639141
bc7ee7fb500d08114f80eda3dd3c4e7fc1830729
1,545
py
Python
example/auto-xp-candy.py
nagata-yoshiteru/Switch-Fightstick
66685ff57c09444675e24c37455107eb529ce98a
[ "MIT" ]
1
2020-04-07T05:12:47.000Z
2020-04-07T05:12:47.000Z
example/auto-xp-candy.py
nagata-yoshiteru/Switch-Fightstick
66685ff57c09444675e24c37455107eb529ce98a
[ "MIT" ]
null
null
null
example/auto-xp-candy.py
nagata-yoshiteru/Switch-Fightstick
66685ff57c09444675e24c37455107eb529ce98a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import serial from time import sleep parser = argparse.ArgumentParser() parser.add_argument('--port', default='COM4') args = parser.parse_args() ser = serial.Serial(args.port, 9600) def send(msg, duration=0): global ser try: ser.write(f'{msg}\r\n'.encode('utf-8')) print(msg.replace('Button ', '').replace('HAT ', '').replace('LY MIN', '△ ').replace('LY MAX', '▽ ').replace('LX MIN', '◁').replace('LX MAX', '▷'), end=' ', flush=True) sleep(duration) ser.write(b'RELEASE\r\n') except serial.serialutil.SerialException: while True: print("Reconnecting... ", end=' ', flush=True) try: sleep(0.4) ser = serial.Serial(args.port, 9600) print("Success.") sleep(0.1) send(msg, duration) break except: print("Faild. Retrying...") try: while True: send('Button A', 0.1) sleep(3) send('LY MAX', 0.1) sleep(1.2) send('Button A', 0.1) sleep(1.2) send('Button A', 0.1) sleep(1.2) send('Button A', 0.1) sleep(1.2) send('Button A', 0.1) sleep(3) send('Button B', 0.1) sleep(3) send('Button B', 0.1) sleep(1.2) send('LY MAX', 0.1) sleep(1.2) send('Button L', 0.1) sleep(1.2) print(' ') except KeyboardInterrupt: send('RELEASE') ser.close()
27.105263
176
0.500324
515a94697c11b5b0b9813fd897f55fdb75eb130c
10,445
py
Python
msgraph-cli-extensions/v1_0/usersactions_v1_0/azext_usersactions_v1_0/vendored_sdks/usersactions/operations/_users_onenote_section_groups_sections_parent_notebook_sections_operations.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/v1_0/usersactions_v1_0/azext_usersactions_v1_0/vendored_sdks/usersactions/operations/_users_onenote_section_groups_sections_parent_notebook_sections_operations.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/v1_0/usersactions_v1_0/azext_usersactions_v1_0/vendored_sdks/usersactions/operations/_users_onenote_section_groups_sections_parent_notebook_sections_operations.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class UsersOnenoteSectionGroupsSectionsParentNotebookSectionsOperations(object): """UsersOnenoteSectionGroupsSectionsParentNotebookSectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~users_actions.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def copy_to_notebook( self, user_id, # type: str section_group_id, # type: str onenote_section_id, # type: str onenote_section_id1, # type: str body, # type: "models.PathsI6Vxt9UsersUserIdOnenoteSectiongroupsSectiongroupIdSectionsOnenotesectionIdParentnotebookSectionsOnenotesectionId1MicrosoftGraphCopytonotebookPostRequestbodyContentApplicationJsonSchema" **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphOnenoteOperation" """Invoke action copyToNotebook. Invoke action copyToNotebook. :param user_id: key: id of user. :type user_id: str :param section_group_id: key: id of sectionGroup. :type section_group_id: str :param onenote_section_id: key: id of onenoteSection. :type onenote_section_id: str :param onenote_section_id1: key: id of onenoteSection. :type onenote_section_id1: str :param body: Action parameters. :type body: ~users_actions.models.PathsI6Vxt9UsersUserIdOnenoteSectiongroupsSectiongroupIdSectionsOnenotesectionIdParentnotebookSectionsOnenotesectionId1MicrosoftGraphCopytonotebookPostRequestbodyContentApplicationJsonSchema :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphOnenoteOperation, or the result of cls(response) :rtype: ~users_actions.models.MicrosoftGraphOnenoteOperation :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphOnenoteOperation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.copy_to_notebook.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'sectionGroup-id': self._serialize.url("section_group_id", section_group_id, 'str'), 'onenoteSection-id': self._serialize.url("onenote_section_id", onenote_section_id, 'str'), 'onenoteSection-id1': self._serialize.url("onenote_section_id1", onenote_section_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'PathsI6Vxt9UsersUserIdOnenoteSectiongroupsSectiongroupIdSectionsOnenotesectionIdParentnotebookSectionsOnenotesectionId1MicrosoftGraphCopytonotebookPostRequestbodyContentApplicationJsonSchema') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphOnenoteOperation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized copy_to_notebook.metadata = {'url': '/users/{user-id}/onenote/sectionGroups/{sectionGroup-id}/sections/{onenoteSection-id}/parentNotebook/sections/{onenoteSection-id1}/microsoft.graph.copyToNotebook'} # type: ignore def copy_to_section_group( self, user_id, # type: str section_group_id, # type: str onenote_section_id, # type: str onenote_section_id1, # type: str body, # type: "models.PathsDoh0LaUsersUserIdOnenoteSectiongroupsSectiongroupIdSectionsOnenotesectionIdParentnotebookSectionsOnenotesectionId1MicrosoftGraphCopytosectiongroupPostRequestbodyContentApplicationJsonSchema" **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphOnenoteOperation" """Invoke action copyToSectionGroup. Invoke action copyToSectionGroup. :param user_id: key: id of user. :type user_id: str :param section_group_id: key: id of sectionGroup. :type section_group_id: str :param onenote_section_id: key: id of onenoteSection. :type onenote_section_id: str :param onenote_section_id1: key: id of onenoteSection. :type onenote_section_id1: str :param body: Action parameters. :type body: ~users_actions.models.PathsDoh0LaUsersUserIdOnenoteSectiongroupsSectiongroupIdSectionsOnenotesectionIdParentnotebookSectionsOnenotesectionId1MicrosoftGraphCopytosectiongroupPostRequestbodyContentApplicationJsonSchema :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphOnenoteOperation, or the result of cls(response) :rtype: ~users_actions.models.MicrosoftGraphOnenoteOperation :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphOnenoteOperation"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.copy_to_section_group.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'sectionGroup-id': self._serialize.url("section_group_id", section_group_id, 'str'), 'onenoteSection-id': self._serialize.url("onenote_section_id", onenote_section_id, 'str'), 'onenoteSection-id1': self._serialize.url("onenote_section_id1", onenote_section_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'PathsDoh0LaUsersUserIdOnenoteSectiongroupsSectiongroupIdSectionsOnenotesectionIdParentnotebookSectionsOnenotesectionId1MicrosoftGraphCopytosectiongroupPostRequestbodyContentApplicationJsonSchema') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphOnenoteOperation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized copy_to_section_group.metadata = {'url': '/users/{user-id}/onenote/sectionGroups/{sectionGroup-id}/sections/{onenoteSection-id}/parentNotebook/sections/{onenoteSection-id1}/microsoft.graph.copyToSectionGroup'} # type: ignore
53.290816
247
0.713451
4c9ef2f0373d75071f70783cddb2ed019259f174
961
py
Python
tremana/analysis/metrics.py
s-weigand/tremana
98a8a546c79ce4f248b3955da21374edfdd61dee
[ "Apache-2.0" ]
1
2022-03-07T02:52:25.000Z
2022-03-07T02:52:25.000Z
tremana/analysis/metrics.py
s-weigand/tremana
98a8a546c79ce4f248b3955da21374edfdd61dee
[ "Apache-2.0" ]
9
2021-04-26T07:08:27.000Z
2022-03-28T07:23:31.000Z
tremana/analysis/metrics.py
s-weigand/tremana
98a8a546c79ce4f248b3955da21374edfdd61dee
[ "Apache-2.0" ]
null
null
null
"""Module containing metrics to be calculated on tremor accelerometry data or their FFT.""" import numpy as np import pandas as pd def center_of_mass(fft_spectra: pd.DataFrame) -> pd.DataFrame: r"""Calculate the center of mass of FFT spectra. .. math:: H_{cm} = \dfrac{1}{N-1} \dfrac{\sum\limits_{i=1}^{N}((i-1)X_i)}{\sum\limits_{i=1}^{N}X_i} Parameters ---------- fft_spectra : pd.DataFrame Dataframe with each column being a FFT spectrum. Returns ------- pd.DataFrame Dataframe with the center of mass in the with columns names same as the spectra. """ results = {} N = fft_spectra.shape[0] weights = np.arange(0, N) for column in fft_spectra.columns: sorted_spectrum = fft_spectra[column].sort_values(ascending=False) results[column] = 1 / (N - 1) * sorted_spectrum.dot(weights).sum() / sorted_spectrum.sum() return pd.DataFrame(results, index=["H_cm"])
30.03125
98
0.648283
1011d173207d775882d348d00a438bdb465b58e3
2,762
py
Python
tests/integration/mongodb/test_parties.py
vegaprotocol/social-media-verification
5e2d23ff5781136de1692c4dc46b4bb02e588e65
[ "MIT" ]
null
null
null
tests/integration/mongodb/test_parties.py
vegaprotocol/social-media-verification
5e2d23ff5781136de1692c4dc46b4bb02e588e65
[ "MIT" ]
23
2021-03-31T10:19:54.000Z
2021-10-29T23:55:34.000Z
tests/integration/mongodb/test_parties.py
vegaprotocol/social-media-verification
5e2d23ff5781136de1692c4dc46b4bb02e588e65
[ "MIT" ]
null
null
null
import pytest from freezegun import freeze_time from datetime import datetime, timezone, timedelta from tools import setup_parties_collection from services.smv_storage import SMVStorage START_TIME = datetime(2021, 9, 13, 10, 34, 20, 1000, timezone.utc) START_TIME_EPOCH = int(START_TIME.timestamp()) PUB_KEY = "cc3a5912aba19291b070457f54652bb49b1b3a86ef0537e5224dbdc4e83b2102" TWITTER_ID = 18237215432962 TWITTER_HANDLE = "my_twt_handle" @pytest.mark.skipif_no_mongodb def test_insert(smv_storage: SMVStorage): setup_parties_collection( smv_storage, [], ) # Before assert smv_storage.get_parties() == [] # note: # - each call to get date-time will tick global time by 15seconds # - tz_offset - make sure it works with a random timezone with freeze_time(START_TIME, tz_offset=-10, auto_tick_seconds=15): # Insert smv_storage.upsert_verified_party( pub_key=PUB_KEY, user_id=TWITTER_ID, screen_name=TWITTER_HANDLE, ) # validate parties = smv_storage.get_parties() assert len(parties) == 1 party = parties[0] assert party["twitter_handle"] == TWITTER_HANDLE assert party["party_id"] == PUB_KEY assert party["twitter_user_id"] == TWITTER_ID assert party["created"] == START_TIME_EPOCH assert party["last_modified"] == START_TIME_EPOCH @pytest.mark.skipif_no_mongodb def test_dates_after_update(smv_storage: SMVStorage): setup_parties_collection( smv_storage, [], ) # # Create # # note: # - each call to get date-time will tick global time by 15seconds # - tz_offset - make sure it works with a random timezone with freeze_time(START_TIME, tz_offset=-10, auto_tick_seconds=15): smv_storage.upsert_verified_party( pub_key=PUB_KEY, user_id=TWITTER_ID, screen_name=TWITTER_HANDLE, ) parties = smv_storage.get_parties() assert len(parties) == 1 party = parties[0] assert party["created"] == START_TIME_EPOCH assert party["last_modified"] == START_TIME_EPOCH # # Update # # note: # - each call to get date-time will tick global time by 15seconds # - tz_offset - make sure it works with a random timezone with freeze_time( START_TIME + timedelta(seconds=11), tz_offset=-10, auto_tick_seconds=15 ): smv_storage.upsert_verified_party( pub_key=PUB_KEY, user_id=TWITTER_ID, screen_name=TWITTER_HANDLE, ) parties = smv_storage.get_parties() assert len(parties) == 1 party = parties[0] assert party["created"] == START_TIME_EPOCH assert party["last_modified"] == START_TIME_EPOCH + 11
29.073684
79
0.678856
80476526f7debf041ec2ef845aae6e9249da336a
4,055
py
Python
pypy/module/__builtin__/app_inspect.py
nanjekyejoannah/pypy
e80079fe13c29eda7b2a6b4cd4557051f975a2d9
[ "Apache-2.0", "OpenSSL" ]
333
2015-08-08T18:03:38.000Z
2022-03-22T18:13:12.000Z
pypy/module/__builtin__/app_inspect.py
nanjekyejoannah/pypy
e80079fe13c29eda7b2a6b4cd4557051f975a2d9
[ "Apache-2.0", "OpenSSL" ]
7
2020-02-16T16:49:05.000Z
2021-11-26T09:00:56.000Z
pypy/module/__builtin__/app_inspect.py
nanjekyejoannah/pypy
e80079fe13c29eda7b2a6b4cd4557051f975a2d9
[ "Apache-2.0", "OpenSSL" ]
55
2015-08-16T02:41:30.000Z
2022-03-20T20:33:35.000Z
""" Plain Python definition of the builtin functions related to run-time program introspection. """ import sys from __pypy__ import lookup_special def _caller_locals(): return sys._getframe(0).f_locals def vars(*obj): """Return a dictionary of all the attributes currently bound in obj. If called with no argument, return the variables bound in local scope.""" if len(obj) == 0: return _caller_locals() elif len(obj) != 1: raise TypeError("vars() takes at most 1 argument.") try: return obj[0].__dict__ except AttributeError: raise TypeError("vars() argument must have __dict__ attribute") # These are defined in the types module, but we cannot always import it. # virtualenv when run with -S for instance. Instead, copy the code to create # the needed types to be checked. class types(object): class _C: def _m(self): pass ModuleType = type(sys) ClassType = type(_C) TypeType = type _x = _C() InstanceType = type(_x) def dir(*args): """dir([object]) -> list of strings Return an alphabetized list of names comprising (some of) the attributes of the given object, and of attributes reachable from it: No argument: the names in the current scope. Module object: the module attributes. Type or class object: its attributes, and recursively the attributes of its bases. Otherwise: its attributes, its class's attributes, and recursively the attributes of its class's base classes. """ if len(args) > 1: raise TypeError("dir expected at most 1 arguments, got %d" % len(args)) if len(args) == 0: local_names = _caller_locals().keys() # 2 stackframes away if not isinstance(local_names, list): raise TypeError("expected locals().keys() to be a list") local_names.sort() return local_names # import types obj = args[0] if isinstance(obj, types.InstanceType): dir_meth = getattr(obj, '__dir__', None) else: dir_meth = lookup_special(obj, '__dir__') if dir_meth is not None: names = dir_meth() if not isinstance(names, list): raise TypeError("__dir__() must return a list, not %r" % ( type(names),)) names.sort() return names # From here, this is python2-specific since in python3 # everything has a __dir__ elif isinstance(obj, types.ModuleType): try: return sorted(obj.__dict__) except AttributeError: return [] elif isinstance(obj, (types.TypeType, types.ClassType)): # Don't look at __class__, as metaclass methods would be confusing. return sorted(_classdir(obj)) else: names = set() ns = getattr(obj, '__dict__', None) if isinstance(ns, dict): names.update(ns) klass = getattr(obj, '__class__', None) if klass is not None: names.update(_classdir(klass)) ## Comment from object.c: ## /* Merge in __members__ and __methods__ (if any). ## XXX Would like this to go away someday; for now, it's ## XXX needed to get at im_self etc of method objects. */ for attr in '__members__', '__methods__': l = getattr(obj, attr, None) if not isinstance(l, list): continue names.extend(item for item in l if isinstance(item, str)) return sorted(names) def _classdir(klass): """Return a set of the accessible attributes of class/type klass. This includes all attributes of klass and all of the base classes recursively. """ names = set() ns = getattr(klass, '__dict__', None) if ns is not None: names.update(ns) bases = getattr(klass, '__bases__', None) if bases is not None: # Note that since we are only interested in the keys, the order # we merge classes is unimportant for base in bases: names.update(_classdir(base)) return names
33.512397
79
0.631813
1e5f7509809284edb7aa6a8c63753d15a7aa6a66
4,110
py
Python
TRMM/trmm_embrace_diurnal_mean_bit_above_western_ghats.py
peterwilletts24/Python-Scripts
975d6b2e2923cbde40d2760eb9574acee2e10388
[ "MIT" ]
4
2017-05-24T09:14:14.000Z
2019-01-02T19:20:38.000Z
TRMM/trmm_embrace_diurnal_mean_bit_above_western_ghats.py
peterwilletts24/Python-Scripts
975d6b2e2923cbde40d2760eb9574acee2e10388
[ "MIT" ]
null
null
null
TRMM/trmm_embrace_diurnal_mean_bit_above_western_ghats.py
peterwilletts24/Python-Scripts
975d6b2e2923cbde40d2760eb9574acee2e10388
[ "MIT" ]
3
2017-05-24T09:14:15.000Z
2020-09-28T08:32:02.000Z
import cPickle as pickle import numpy as np from collections import defaultdict from netCDF4 import Dataset from scipy.interpolate import griddata lon_high = 71 lon_low = 67 lat_high= 28 lat_low=20 #lon_high = 116 #lon_low = 30.5 #lat_high= 40 #lat_low=-11.25 pcp_dom, longitude_dom, latitude_dom, time_dom, time_hour = pickle.load(open('/nfs/a90/eepdw/Data/Saved_data/TRMM/trmm_emb_time_update_large.p', 'rb')) # Load land sea mask. TRMM land sea mask is in % of water coverage so 100% is all water nc = Dataset('/nfs/a90/eepdw/Data/Observations/Satellite/TRMM/TMPA_mask.nc') # Regrid lsm to data grid (offset b 0.125 degrees lsm_lons, lsm_lats = np.meshgrid(nc.variables['lon'][:],nc.variables['lat'][:]) lons_data, lats_data = np.meshgrid(longitude_dom[0], latitude_dom[0]) lsm_regrid = griddata((lsm_lats.flatten(), lsm_lons.flatten()), nc.variables['landseamask'][:].flatten(), (lats_data,lons_data), method='linear') # Get min and max index positions for latitude and longitude - FOR LSM # Get min and max index positions for latitude and longitude - FOR PCP la_index_pcp = np.where((latitude_dom[0]<=lat_high) & (latitude_dom[0] >= lat_low)) lo_index_pcp = np.where((longitude_dom[0]<=lon_high) & (longitude_dom[0] >= lon_low)) la_i_max_pcp = np.max(la_index_pcp) la_i_min_pcp = np.min(la_index_pcp) lo_i_max_pcp = np.max(lo_index_pcp) lo_i_min_pcp = np.min(lo_index_pcp) print la_i_min_pcp,la_i_max_pcp, lo_i_min_pcp,lo_i_max_pcp pcp_dom_2 = pcp_dom[:,la_i_min_pcp:la_i_max_pcp, lo_i_min_pcp:lo_i_max_pcp] lsm= lsm_regrid[la_i_min_pcp:la_i_max_pcp, lo_i_min_pcp:lo_i_max_pcp] print pcp_dom.shape print pcp_dom_2.shape print lsm.shape #################################################### # Calculate mean for every time in the date range for entire area mean_of_each_time = pcp_dom_2.reshape((pcp_dom_2.shape[0], -1)).mean(axis=1) print pcp_dom_2.reshape(pcp_dom_2.shape[0], -1).shape mean_and_hour=zip(mean_of_each_time,time_hour) # OCEAN - Calculate mean for every time in the date range lsm_weights=lsm/100 print pcp_dom_2.reshape(pcp_dom_2.shape[0], -1).shape print lsm_weights.flatten().shape mean_oc = np.ma.average(pcp_dom_2.reshape(pcp_dom_2.shape[0], -1), axis=1, weights=lsm_weights.flatten()) oc_mean_and_hour=zip(mean_oc,time_hour) # LAND - Calculate mean for every time in the date range lsm_weights=1-(lsm/100) mean_la = np.ma.average(pcp_dom_2.reshape(pcp_dom_2.shape[0], -1), weights=lsm_weights.flatten(), axis=1) la_mean_and_hour=zip(mean_la,time_hour) ##################################################### # Sort into time of day ################# # Total i = defaultdict(list) for v,k in mean_and_hour: i[k.strip()].append(v) mean=[] hour=[] # Average for each time of day for q,a in enumerate(i.items()): #print a[1] if a[1]: mean.append(np.mean(a[1])) hour.append(a[0]) print mean print hour # Land i = defaultdict(list) for v,k in la_mean_and_hour: i[k.strip()].append(v) mean_l=[] hour_l=[] # Average for each time of day for q,a in enumerate(i.items()): #print a[1] if a[1]: mean_l.append(np.mean(a[1])) hour_l.append(a[0]) print mean_l print hour_l # Ocean i = defaultdict(list) for v,k in oc_mean_and_hour: i[k.strip()].append(v) mean_o=[] hour_o=[] # Average for each time of day for q,a in enumerate(i.items()): #print a[1] if a[1]: mean_o.append(np.mean(a[1])) hour_o.append(a[0]) print mean_o print hour_o # Save np.savez("/nfs/a90/eepdw/Data/Observations/Satellite/TRMM/Diurnal/total_trmm_diurnal_average_lat_%s_%s_lon_%s_%s_bit_above_western_ghats" % (lat_low,lat_high, lon_low, lon_high), mean=mean, hour=hour ) np.savez("/nfs/a90/eepdw/Data/Observations/Satellite/TRMM/Diurnal/sea_trmm_diurnal_average_lat_%s_%s_lon_%s_%s_bit_above_western_ghats" % (lat_low,lat_high, lon_low, lon_high), mean=mean_o, hour=hour_o ) np.savez("/nfs/a90/eepdw/Data/Observations/Satellite/TRMM/Diurnal/land_trmm_diurnal_average_lat_%s_%s_lon_%s_%s_bit_above_western_ghats" % (lat_low,lat_high, lon_low, lon_high), mean=mean_l, hour=hour_l )
27.4
204
0.717518
1cba168dc84ddb4447727536b922d1d547f11964
9,033
py
Python
pineboolib/application/database/pnsqlsavepoint.py
deavid/pineboo
acc96ab6d5b8bb182990af6dea4bf0986af15549
[ "MIT" ]
2
2015-09-19T16:54:49.000Z
2016-09-12T08:06:29.000Z
pineboolib/application/database/pnsqlsavepoint.py
deavid/pineboo
acc96ab6d5b8bb182990af6dea4bf0986af15549
[ "MIT" ]
1
2017-08-14T17:07:14.000Z
2017-08-15T00:22:47.000Z
pineboolib/application/database/pnsqlsavepoint.py
deavid/pineboo
acc96ab6d5b8bb182990af6dea4bf0986af15549
[ "MIT" ]
9
2015-01-15T18:15:42.000Z
2019-05-05T18:53:00.000Z
# -*- coding: utf-8 -*- """ Module for PNSqlSavePoint class. """ from pineboolib.core import decorators from typing import Any, List, Optional, TYPE_CHECKING if TYPE_CHECKING: from .pnsqlcursor import PNSqlCursor from .pnbuffer import PNBuffer class OpInfo: """ OpInfo Class. Information about an operation. The information of an operation is; the primary key, operation performed (0 = insert, 1 = edit, 2 = delete), buffer with the contents of the record affected by the operation, position of the current cursor record, cursor order, cursor filter, cursor name (from the table), associated cursor. """ primaryKey: str op: int buffer: "PNBuffer" at: int sort: str filter: str name: str cursor: "PNSqlCursor" autoDelete_: bool def __init__(self, *args, **kwargs) -> None: """Initialize a virtual save point.""" if len(args) > 0: self.opInfo(*args) self.setAutoDelete(False) def opInfo( self, pK: str, o: Any, b: "PNBuffer", a: int, s: str, f: str, n: str, c: "PNSqlCursor" ) -> None: """ Save initialization values. @param pK. primaryKey. @param o. option (1,2,3) @param b. PNBuffer @param a. cursor postition. @param s. sort. @param f. filter. @param n. cursor name. @param c. cursor object. """ self.primaryKey = pK self.op = o self.buffer = b self.at = a self.sort = s self.filter = f self.name = n self.cursor = c def setAutoDelete(self, b: bool) -> None: """I specify if I do autoDelete when closing.""" self.autoDelete_ = b class PNSqlSavePoint: """ PNSqlSavePoint Class. Safeguard point of a set of basic operations about cursors (insert, edit and delete). Through this class you can save a group of basic operations about cursors (insert, edit and delete). Undo a safeguard point, means that all operations stored are canceled by performing the necessary actions so that They have no effect. For proper operation you must keep the buffer's (QSqlRecord) with the content of the records to be modified or modified by an operation, indicating the name of the primary key and the cursor to which it belongs. """ """ Pila para almacenar informacion de las operaciones. """ opInfos: List[OpInfo] = [] """ Identificador del punto de salvaguarda """ id_: int countRefSavePoint = 0 def __init__(self, _id=None) -> None: """ Initialize the safeguard point. @param id SavePoint identifier. """ self.opInfos.append(OpInfo()) self.opInfos[0].setAutoDelete(True) self.id_ = _id self.countRefSavePoint = self.countRefSavePoint + 1 def __del__(self) -> None: """Process when the savePoint point is destroyed.""" if self.opInfos: self.opInfos = [] self.countRefSavePoint = self.countRefSavePoint - 1 def setId(self, id_: int) -> None: """ Set the SavePoint identifier. @param id_. Identifier """ self.id_ = id_ def id(self) -> int: """ Return the identifier. @return identifier. """ return self.id_ def clear(self) -> None: """ Clean the safeguard point. All stored operations are deleted, therefore, after invoke this method can no longer be undone. """ self.opInfos.clear() @decorators.BetaImplementation def undo(self) -> None: """ Undo the SavePoint. """ while self.opInfos: opInf = self.opInfos.pop() if opInf.op == 0: self.undoInsert(opInf) if opInf.op == 1: self.undoEdit(opInf) if opInf.op == 2: self.undoDel(opInf) del opInf self.clear() @decorators.BetaImplementation def saveInsert( self, primaryKey: str, buffer: Optional["PNBuffer"], cursor: Optional["PNSqlCursor"] ) -> None: """ Save the buffer with the contents of the inserted record. @param primaryKey Name of the field that is primary key. @param buffer buffer with the contents of the record. @param cursor Cursor associated. """ if not cursor or not buffer: return self.opInfos.append( OpInfo( primaryKey, 0, buffer, cursor.at(), cursor.sort(), cursor.filter(), cursor.name, cursor, ) ) def saveEdit( self, primaryKey: str, buffer: Optional["PNBuffer"], cursor: Optional["PNSqlCursor"] ) -> None: """ Save the buffer with the contents of the record to be edited. @param primaryKey Name of the field that is primary key. @param buffer buffer with the contents of the record. @param cursor Cursor associated. """ if not cursor or not buffer: return self.opInfos.append( OpInfo( primaryKey, 1, buffer, cursor.at(), cursor.sort(), cursor.filter(), cursor.name, cursor, ) ) @decorators.BetaImplementation def saveDel( self, primaryKey: str, buffer: Optional["PNBuffer"], cursor: Optional["PNSqlCursor"] ) -> None: """ Save the buffer with the contents of the record to be deleted. @param primaryKey Name of the field that is primary key. @param buffer buffer with the contents of the record. @param cursor Cursor associated. """ if not cursor or not buffer: return self.opInfos.append( OpInfo( primaryKey, 2, buffer, cursor.at(), cursor.sort(), cursor.filter(), cursor.name, cursor, ) ) @decorators.BetaImplementation def undoInsert(self, opInf: OpInfo) -> None: """ Undo an insert operation. @param opInf Operation information. """ cursor_ = opInf.cursor owner = False if not cursor_: from . import pnsqlcursor cursor_ = pnsqlcursor.PNSqlCursor(opInf.name) cursor_.setForwardOnly(True) owner = True if not cursor_: return if opInf.buffer.indexField(opInf.primaryKey) and not opInf.buffer.isNull(opInf.primaryKey): valuePrimaryKey = str( opInf.buffer.value(opInf.primaryKey) ) # FIXME: (deavid) plz add notes on what needs to be fixed here. ok = cursor_.select(opInf.primaryKey + "='" + valuePrimaryKey + "'") if ok and cursor_.next(): cursor_.primeDelete() if not owner: cursor_.select(opInf.filter, opInf.sort) cursor_.seek(opInf.at) @decorators.BetaImplementation def undoEdit(self, opInf: OpInfo) -> None: """ Undo an edit operation. @param opInf Operation information. """ cursor_ = opInf.cursor owner = False if not cursor_: from . import pnsqlcursor cursor_ = pnsqlcursor.PNSqlCursor(opInf.name) cursor_.setForwardOnly(True) owner = True if not cursor_: return valuePrimaryKey = str(opInf.buffer.value(opInf.primaryKey)) ok = cursor_.select(opInf.primaryKey + "='" + valuePrimaryKey + "'") if ok and cursor_.next(): # buf = cursor_.primeUpdate() # buf = opInf.buffer cursor_.primeUpdate() cursor_.update() if not owner: cursor_.select(opInf.filter, opInf.sort) cursor_.seek(opInf.at) else: del cursor_ @decorators.BetaImplementation def undoDel(self, opInf: OpInfo) -> None: """ Undo an delete operation. @param opInf Operation information. """ cursor_ = opInf.cursor owner = False if not cursor_: from . import pnsqlcursor cursor_ = pnsqlcursor.PNSqlCursor(opInf.name) cursor_.setForwardOnly(True) owner = True if not cursor_: return # buf = cursor_.primeInsert() # buf = opInf.buffer cursor_.primeInsert() cursor_.insert() if not owner: cursor_.select(opInf.filter, opInf.sort) cursor_.seek(opInf.at) else: del cursor_
26.335277
103
0.552972
0897edd60213c7028faf51cf5dad4953202a7b41
1,535
py
Python
py2neo/movies/models.py
srlabUsask/py2neo
80d3cf1ab0b4cfb03b7824fd7a407b33c95a1e8f
[ "Apache-2.0" ]
null
null
null
py2neo/movies/models.py
srlabUsask/py2neo
80d3cf1ab0b4cfb03b7824fd7a407b33c95a1e8f
[ "Apache-2.0" ]
null
null
null
py2neo/movies/models.py
srlabUsask/py2neo
80d3cf1ab0b4cfb03b7824fd7a407b33c95a1e8f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2011-2020, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from py2neo.ogm import GraphObject, Property, RelatedTo, RelatedFrom class Movie(GraphObject): __primarykey__ = "title" title = Property() tagline = Property() released = Property() actors = RelatedFrom("Person", "ACTED_IN") directors = RelatedFrom("Person", "DIRECTED") producers = RelatedFrom("Person", "PRODUCED") writers = RelatedFrom("Person", "WROTE") reviewers = RelatedFrom("Person", "REVIEWED") def __lt__(self, other): return self.title < other.title class Person(GraphObject): __primarykey__ = "name" name = Property() born = Property() acted_in = RelatedTo(Movie) directed = RelatedTo(Movie) produced = RelatedTo(Movie) wrote = RelatedTo(Movie) reviewed = RelatedTo(Movie) def __init__(self, name=None): self.name = name def __lt__(self, other): return self.name < other.name
27.410714
74
0.69316
6f47c01fcbf94689d771ef38297c286c8c1dc500
5,665
py
Python
test/functional/combine_logs.py
AzusNodes/AZUS
758d33a9d8d967080e1eeca6947886412523d5cc
[ "MIT" ]
1
2021-05-03T13:39:25.000Z
2021-05-03T13:39:25.000Z
test/functional/combine_logs.py
AzusNodes/AZUS
758d33a9d8d967080e1eeca6947886412523d5cc
[ "MIT" ]
null
null
null
test/functional/combine_logs.py
AzusNodes/AZUS
758d33a9d8d967080e1eeca6947886412523d5cc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Combine logs from multiple bitcoin nodes as well as the test_framework log. This streams the combined log output to stdout. Use combine_logs.py > outputfile to write to an outputfile. If no argument is provided, the most recent test directory will be used.""" import argparse from collections import defaultdict, namedtuple import heapq import itertools import os import re import sys import tempfile # N.B.: don't import any local modules here - this script must remain executable # without the parent module installed. # Should match same symbol in `test_framework.test_framework`. TMPDIR_PREFIX = "azus_func_test_" # Matches on the date format at the start of the log event TIMESTAMP_PATTERN = re.compile(r"^\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\.\d{6}") LogEvent = namedtuple('LogEvent', ['timestamp', 'source', 'event']) def main(): """Main function. Parses args, reads the log files and renders them as text or html.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( 'testdir', nargs='?', default='', help=('temporary test directory to combine logs from. ' 'Defaults to the most recent')) parser.add_argument('-c', '--color', dest='color', action='store_true', help='outputs the combined log with events colored by source (requires posix terminal colors. Use less -r for viewing)') parser.add_argument('--html', dest='html', action='store_true', help='outputs the combined log as html. Requires jinja2. pip install jinja2') args = parser.parse_args() if args.color and os.name != 'posix': print("Color output requires posix terminal colors.") sys.exit(1) if args.html and args.color: print("Only one out of --color or --html should be specified") sys.exit(1) testdir = args.testdir or find_latest_test_dir() if not args.testdir: print("Opening latest test directory: {}".format(testdir), file=sys.stderr) log_events = read_logs(testdir) print_logs(log_events, color=args.color, html=args.html) def read_logs(tmp_dir): """Reads log files. Delegates to generator function get_log_events() to provide individual log events for each of the input log files.""" files = [("test", "%s/test_framework.log" % tmp_dir)] for i in itertools.count(): logfile = "{}/node{}/regtest/debug.log".format(tmp_dir, i) if not os.path.isfile(logfile): break files.append(("node%d" % i, logfile)) return heapq.merge(*[get_log_events(source, f) for source, f in files]) def find_latest_test_dir(): """Returns the latest tmpfile test directory prefix.""" tmpdir = tempfile.gettempdir() def join_tmp(basename): return os.path.join(tmpdir, basename) def is_valid_test_tmpdir(basename): fullpath = join_tmp(basename) return ( os.path.isdir(fullpath) and basename.startswith(TMPDIR_PREFIX) and os.access(fullpath, os.R_OK) ) testdir_paths = [ join_tmp(name) for name in os.listdir(tmpdir) if is_valid_test_tmpdir(name) ] return max(testdir_paths, key=os.path.getmtime) if testdir_paths else None def get_log_events(source, logfile): """Generator function that returns individual log events. Log events may be split over multiple lines. We use the timestamp regex match as the marker for a new log event.""" try: with open(logfile, 'r') as infile: event = '' timestamp = '' for line in infile: # skip blank lines if line == '\n': continue # if this line has a timestamp, it's the start of a new log event. time_match = TIMESTAMP_PATTERN.match(line) if time_match: if event: yield LogEvent(timestamp=timestamp, source=source, event=event.rstrip()) event = line timestamp = time_match.group() # if it doesn't have a timestamp, it's a continuation line of the previous log. else: event += "\n" + line # Flush the final event yield LogEvent(timestamp=timestamp, source=source, event=event.rstrip()) except FileNotFoundError: print("File %s could not be opened. Continuing without it." % logfile, file=sys.stderr) def print_logs(log_events, color=False, html=False): """Renders the iterator of log events into text or html.""" if not html: colors = defaultdict(lambda: '') if color: colors["test"] = "\033[0;36m" # CYAN colors["node0"] = "\033[0;34m" # BLUE colors["node1"] = "\033[0;32m" # GREEN colors["node2"] = "\033[0;31m" # RED colors["node3"] = "\033[0;33m" # YELLOW colors["reset"] = "\033[0m" # Reset font color for event in log_events: print("{0} {1: <5} {2} {3}".format(colors[event.source.rstrip()], event.source, event.event, colors["reset"])) else: try: import jinja2 except ImportError: print("jinja2 not found. Try `pip install jinja2`") sys.exit(1) print(jinja2.Environment(loader=jinja2.FileSystemLoader('./')) .get_template('combined_log_template.html') .render(title="Combined Logs from testcase", log_events=[event._asdict() for event in log_events])) if __name__ == '__main__': main()
37.269737
196
0.630009
bb55ef547b3e5531bbccb478ef7ba69f7dff279f
48,638
py
Python
filebeat/tests/system/test_registrar.py
tetianakravchenko/beats
6aec024e0ab8239791be20885d6d3c58697d18cd
[ "ECL-2.0", "Apache-2.0" ]
1
2022-01-17T17:31:41.000Z
2022-01-17T17:31:41.000Z
filebeat/tests/system/test_registrar.py
tetianakravchenko/beats
6aec024e0ab8239791be20885d6d3c58697d18cd
[ "ECL-2.0", "Apache-2.0" ]
26
2021-11-04T11:17:36.000Z
2022-02-16T11:55:30.000Z
filebeat/tests/system/test_registrar.py
tetianakravchenko/beats
6aec024e0ab8239791be20885d6d3c58697d18cd
[ "ECL-2.0", "Apache-2.0" ]
2
2019-08-05T07:42:54.000Z
2020-09-02T14:23:19.000Z
#!/usr/bin/env python3 """Test the registrar""" import os import platform import re import shutil import stat import time import unittest from filebeat import BaseTest # Additional tests: to be implemented # * Check if registrar file can be configured, set config param # * Check "updating" of registrar file # * Check what happens when registrar file is deleted class Test(BaseTest): """Test class""" def test_registrar_file_content(self): """Check if registrar file is created correctly and content is as expected """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*" ) os.mkdir(self.working_dir + "/log/") # Use \n as line terminator on all platforms per docs. line = "hello world\n" line_len = len(line) - 1 + len(os.linesep) iterations = 5 testfile_path = self.working_dir + "/log/test.log" testfile = open(testfile_path, 'w') testfile.write(iterations * line) testfile.close() filebeat = self.start_beat() count = self.log_contains_count("Registry file updated") self.wait_until( lambda: self.output_has(lines=5), max_timeout=15) # Make sure states written appears one more time self.wait_until( lambda: self.log_contains("Registry file updated") > count, max_timeout=10) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until(self.has_registry, max_timeout=1) filebeat.check_kill_and_wait() # Check that a single file exists in the registry. data = self.get_registry() assert len(data) == 1 logfile_abs_path = os.path.abspath(testfile_path) record = self.get_registry_entry_by_path(logfile_abs_path) self.assertEqual(logfile_abs_path, record.get('source')) self.assertEqual(iterations * line_len, record.get('offset')) self.assertTrue("FileStateOS" in record) self.assertTrue("meta" not in record) file_state_os = record["FileStateOS"] if os.name == "nt": # Windows checks # TODO: Check for IdxHi, IdxLo, Vol in FileStateOS on Windows. self.assertEqual(len(file_state_os), 3) elif platform.system() == "SunOS": stat = os.stat(logfile_abs_path) self.assertEqual(file_state_os["inode"], stat.st_ino) # Python does not return the same st_dev value as Golang or the # command line stat tool so just check that it's present. self.assertTrue("device" in file_state_os) else: stat = os.stat(logfile_abs_path) self.assertEqual(stat.st_ino, file_state_os.get('inode')) self.assertEqual(stat.st_dev, file_state_os.get('device')) def test_registrar_files(self): """ Check that multiple files are put into registrar file """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*" ) os.mkdir(self.working_dir + "/log/") testfile_path1 = self.working_dir + "/log/test1.log" testfile_path2 = self.working_dir + "/log/test2.log" file1 = open(testfile_path1, 'w') file2 = open(testfile_path2, 'w') iterations = 5 for _ in range(0, iterations): file1.write("hello world") # 11 chars file1.write("\n") # 1 char file2.write("goodbye world") # 11 chars file2.write("\n") # 1 char file1.close() file2.close() filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=10), max_timeout=15) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until(self.has_registry, max_timeout=1) filebeat.check_kill_and_wait() # Check that file exist data = self.get_registry() # Check that 2 files are port of the registrar file assert len(data) == 2 def test_custom_registry_file_location(self): """ Check that when a custom registry file is used, the path is created automatically. """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", registry_home="a/b/c/registry", ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" with open(testfile_path, 'w') as testfile: testfile.write("hello world\n") filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=1), max_timeout=15) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until( lambda: self.has_registry("a/b/c/registry/filebeat"), max_timeout=1) filebeat.check_kill_and_wait() assert self.has_registry("a/b/c/registry/filebeat") def test_registry_file_default_permissions(self): """ Test that filebeat default registry permission is set """ if os.name == "nt": # This test is currently skipped on windows because file permission # configuration isn't implemented on Windows yet raise unittest.SkipTest registry_home = "a/b/c/registry" registry_path = os.path.join(registry_home, "filebeat") self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", registry_home=registry_home, ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" with open(testfile_path, 'w') as testfile: testfile.write("hello world\n") filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=1), max_timeout=15) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until( lambda: self.has_registry(registry_path), max_timeout=1) filebeat.check_kill_and_wait() self.assertEqual(self.file_permissions(os.path.join(registry_path, "log.json")), "0o600") def test_registry_file_custom_permissions(self): """ Test that filebeat registry permission is set as per configuration """ if os.name == "nt": # This test is currently skipped on windows because file permission # configuration isn't implemented on Windows yet raise unittest.SkipTest registry_home = "a/b/c/registry" registry_path = os.path.join(registry_home, "filebeat") self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", registry_home=registry_home, registry_file_permissions=0o640, ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" with open(testfile_path, 'w') as testfile: testfile.write("hello world\n") filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=1), max_timeout=15) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until( lambda: self.has_registry(registry_path), max_timeout=1) filebeat.check_kill_and_wait() self.assertEqual(self.file_permissions(os.path.join(registry_path, "log.json")), "0o640") def test_registry_file_update_permissions(self): """ Test that filebeat registry permission is updated along with configuration """ if os.name == "nt": # This test is currently skipped on windows because file permission # configuration isn't implemented on Windows yet raise unittest.SkipTest registry_home = "a/b/c/registry_x" registry_path = os.path.join(registry_home, "filebeat") self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", registry_home=registry_home, ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" with open(testfile_path, 'w') as testfile: testfile.write("hello world\n") filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=1), max_timeout=15) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until( lambda: self.has_registry(registry_path), max_timeout=1) filebeat.check_kill_and_wait() self.assertEqual(self.file_permissions(os.path.join(registry_path, "log.json")), "0o600") self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", registry_home="a/b/c/registry_x", registry_file_permissions=0o640 ) filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=1), max_timeout=15) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until( lambda: self.has_registry(registry_path), max_timeout=1) # Wait a moment to make sure registry is completely written time.sleep(1) filebeat.check_kill_and_wait() self.assertEqual(self.file_permissions(os.path.join(registry_path, "log.json")), "0o640") @unittest.skipIf(platform.system() == 'Darwin' or os.name == 'nt', 'Flaky test: https://github.com/elastic/beats/issues/26378') def test_rotating_file(self): """ Checks that the registry is properly updated after a file is rotated """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", close_inactive="1s" ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" filebeat = self.start_beat() with open(testfile_path, 'w') as testfile: testfile.write("offset 9\n") self.wait_until(lambda: self.output_has(lines=1), max_timeout=10) testfilerenamed = self.working_dir + "/log/test.1.log" os.rename(testfile_path, testfilerenamed) with open(testfile_path, 'w') as testfile: testfile.write("offset 10\n") self.wait_until(lambda: self.output_has(lines=2), max_timeout=10) # Wait until rotation is detected self.wait_until( lambda: self.log_contains( "Updating state for renamed file"), max_timeout=10) time.sleep(1) filebeat.check_kill_and_wait() # Check that file exist data = self.get_registry() # Make sure the offsets are correctly set if os.name == "nt": assert self.get_registry_entry_by_path(os.path.abspath(testfile_path))["offset"] == 11 assert self.get_registry_entry_by_path(os.path.abspath(testfilerenamed))["offset"] == 10 else: assert self.get_registry_entry_by_path(os.path.abspath(testfile_path))["offset"] == 10 assert self.get_registry_entry_by_path(os.path.abspath(testfilerenamed))["offset"] == 9 # Check that 2 files are port of the registrar file assert len(data) == 2 def test_data_path(self): """ Checks that the registry file is written in a custom data path. """ self.render_config_template( path=self.working_dir + "/test.log", path_data=self.working_dir + "/datapath", skip_registry_config=True, ) with open(self.working_dir + "/test.log", "w") as testfile: testfile.write("test message\n") filebeat = self.start_beat() self.wait_until(lambda: self.output_has(lines=1)) filebeat.check_kill_and_wait() assert self.has_registry(data_path=self.working_dir + "/datapath") def test_rotating_file_inode(self): """ Check that inodes are properly written during file rotation """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", scan_frequency="1s", close_inactive="1s", clean_removed="false", ) if os.name == "nt": raise unittest.SkipTest os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/input" filebeat = self.start_beat() with open(testfile_path, 'w') as testfile: testfile.write("entry1\n") self.wait_until( lambda: self.output_has(lines=1), max_timeout=10) # Wait until rotation is detected self.wait_until( lambda: self.log_contains_count( "Registry file updated. 1 active states") >= 1, max_timeout=10) data = self.get_registry() assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] testfilerenamed1 = self.working_dir + "/log/input.1" os.rename(testfile_path, testfilerenamed1) with open(testfile_path, 'w') as testfile: testfile.write("entry2\n") self.wait_until( lambda: self.output_has(lines=2), max_timeout=10) # Wait until rotation is detected self.wait_until( lambda: self.log_contains_count( "Updating state for renamed file") == 1, max_timeout=10) time.sleep(1) data = self.get_registry() assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] assert os.stat(testfilerenamed1).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfilerenamed1))["FileStateOS"]["inode"] # Rotate log file, create a new empty one and remove it afterwards testfilerenamed2 = self.working_dir + "/log/input.2" os.rename(testfilerenamed1, testfilerenamed2) os.rename(testfile_path, testfilerenamed1) with open(testfile_path, 'w') as testfile: testfile.write("") os.remove(testfilerenamed2) with open(testfile_path, 'w') as testfile: testfile.write("entry3\n") self.wait_until( lambda: self.output_has(lines=3), max_timeout=10) filebeat.check_kill_and_wait() data = self.get_registry() # Compare file inodes and the one in the registry assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] assert os.stat(testfilerenamed1).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfilerenamed1))["FileStateOS"]["inode"] # Check that 3 files are part of the registrar file. The deleted file # should never have been detected, but the rotated one should be in assert len(data) == 3, "Expected 3 files but got: %s" % data def test_restart_continue(self): """ Check that file reading continues after restart """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", scan_frequency="1s" ) if os.name == "nt": raise unittest.SkipTest os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/input" filebeat = self.start_beat() with open(testfile_path, 'w') as testfile: testfile.write("entry1\n") self.wait_until( lambda: self.output_has(lines=1), max_timeout=10) # Wait a moment to make sure registry is completely written time.sleep(1) assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] filebeat.check_kill_and_wait() # Store first registry file registry_file = "registry/filebeat/log.json" shutil.copyfile( self.working_dir + "/" + registry_file, self.working_dir + "/registry.first", ) # Append file with open(testfile_path, 'a') as testfile: testfile.write("entry2\n") filebeat = self.start_beat(output="filebeat2.log") # Output file was rotated self.wait_until( lambda: self.output_has(lines=1, output_file="output/filebeat-" + self.today + ".ndjson"), max_timeout=10) self.wait_until( lambda: self.output_has(lines=1, output_file="output/filebeat-" + self.today + "-1.ndjson"), max_timeout=10) filebeat.check_kill_and_wait() data = self.get_registry() # Compare file inodes and the one in the registry assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] # Check that 1 files are part of the registrar file. The deleted file # should never have been detected assert len(data) == 1 output = self.read_output(output_file="output/filebeat-" + self.today + "-1.ndjson") # Check that output file has the same number of lines as the log file assert len(output) == 1 assert output[0]["message"] == "entry2" def test_rotating_file_with_restart(self): """ Check that inodes are properly written during file rotation and restart """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", scan_frequency="1s", close_inactive="1s", clean_removed="false" ) if os.name == "nt": raise unittest.SkipTest os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/input" filebeat = self.start_beat() with open(testfile_path, 'w') as testfile: testfile.write("entry1\n") self.wait_until( lambda: self.output_has(lines=1), max_timeout=10) # Wait a moment to make sure registry is completely written time.sleep(1) data = self.get_registry() assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] testfilerenamed1 = self.working_dir + "/log/input.1" os.rename(testfile_path, testfilerenamed1) with open(testfile_path, 'w') as testfile: testfile.write("entry2\n") self.wait_until( lambda: self.output_has(lines=2), max_timeout=10) # Wait until rotation is detected self.wait_until( lambda: self.log_contains( "Updating state for renamed file"), max_timeout=10) # Wait a moment to make sure registry is completely written time.sleep(1) data = self.get_registry() assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] assert os.stat(testfilerenamed1).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfilerenamed1))["FileStateOS"]["inode"] filebeat.check_kill_and_wait() # Store first registry file registry_file = "registry/filebeat/log.json" shutil.copyfile( self.working_dir + "/" + registry_file, self.working_dir + "/registry.first", ) # Rotate log file, create a new empty one and remove it afterwards testfilerenamed2 = self.working_dir + "/log/input.2" os.rename(testfilerenamed1, testfilerenamed2) os.rename(testfile_path, testfilerenamed1) with open(testfile_path, 'w') as testfile: testfile.write("") os.remove(testfilerenamed2) with open(testfile_path, 'w') as testfile: testfile.write("entry3\n") filebeat = self.start_beat() # Output file was rotated self.wait_until( lambda: self.output_has(lines=2), max_timeout=10) self.wait_until( lambda: self.output_has(lines=1, output_file="output/filebeat-" + self.today + "-1.ndjson"), max_timeout=10) filebeat.check_kill_and_wait() data = self.get_registry() # Compare file inodes and the one in the registry assert os.stat(testfile_path).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfile_path))["FileStateOS"]["inode"] assert os.stat(testfilerenamed1).st_ino == self.get_registry_entry_by_path( os.path.abspath(testfilerenamed1))["FileStateOS"]["inode"] # Check that 3 files are part of the registrar file. The deleted file # should never have been detected, but the rotated one should be in assert len(data) == 3 def test_state_after_rotation(self): """ Checks that the state is written correctly after rotation """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", ignore_older="2m", scan_frequency="1s", close_inactive="1s" ) os.mkdir(self.working_dir + "/log/") testfile_path1 = self.working_dir + "/log/input" testfile_path2 = self.working_dir + "/log/input.1" testfile_path3 = self.working_dir + "/log/input.2" with open(testfile_path1, 'w') as testfile: testfile.write("entry10\n") with open(testfile_path2, 'w') as testfile: testfile.write("entry0\n") filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=2), max_timeout=10) # Wait a moment to make sure file exists time.sleep(1) self.get_registry() # Check that offsets are correct if os.name == "nt": # Under windows offset is +1 because of additional newline char assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 9 assert self.get_registry_entry_by_path(os.path.abspath(testfile_path2))["offset"] == 8 else: assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 8 assert self.get_registry_entry_by_path(os.path.abspath(testfile_path2))["offset"] == 7 # Rotate files and remove old one os.rename(testfile_path2, testfile_path3) os.rename(testfile_path1, testfile_path2) with open(testfile_path1, 'w') as testfile1: testfile1.write("entry200\n") # Remove file afterwards to make sure not inode reuse happens os.remove(testfile_path3) # Now wait until rotation is detected self.wait_until( lambda: self.log_contains( "Updating state for renamed file"), max_timeout=10) self.wait_until( lambda: self.log_contains_count( "Registry file updated. 2 active states.") >= 1, max_timeout=15) time.sleep(1) filebeat.kill_and_wait() # Check that offsets are correct if os.name == "nt": # Under windows offset is +1 because of additional newline char assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 10 assert self.get_registry_entry_by_path(os.path.abspath(testfile_path2))["offset"] == 9 else: assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 9 assert self.get_registry_entry_by_path(os.path.abspath(testfile_path2))["offset"] == 8 def test_state_after_rotation_ignore_older(self): """ Checks that the state is written correctly after rotation and ignore older """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", ignore_older="2m", scan_frequency="1s", close_inactive="1s" ) os.mkdir(self.working_dir + "/log/") testfile_path1 = self.working_dir + "/log/input" testfile_path2 = self.working_dir + "/log/input.1" testfile_path3 = self.working_dir + "/log/input.2" with open(testfile_path1, 'w') as testfile1: testfile1.write("entry10\n") with open(testfile_path2, 'w') as testfile2: testfile2.write("entry0\n") # Change modification time so file extends ignore_older yesterday = time.time() - 3600 * 24 os.utime(testfile_path2, (yesterday, yesterday)) filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=1), max_timeout=10) # Wait a moment to make sure file exists time.sleep(1) self.get_registry() # Check that offsets are correct if os.name == "nt": # Under windows offset is +1 because of additional newline char assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 9 else: assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 8 # Rotate files and remove old one os.rename(testfile_path2, testfile_path3) os.rename(testfile_path1, testfile_path2) with open(testfile_path1, 'w') as testfile1: testfile1.write("entry200\n") # Remove file afterwards to make sure not inode reuse happens os.remove(testfile_path3) # Now wait until rotation is detected self.wait_until( lambda: self.log_contains( "Updating state for renamed file"), max_timeout=10) self.wait_until( lambda: self.log_contains_count( "Registry file updated. 2 active states.") >= 1, max_timeout=15) # Wait a moment to make sure registry is completely written time.sleep(1) filebeat.kill_and_wait() # Check that offsets are correct if os.name == "nt": # Under windows offset is +1 because of additional newline char assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 10 assert self.get_registry_entry_by_path(os.path.abspath(testfile_path2))["offset"] == 9 else: assert self.get_registry_entry_by_path(os.path.abspath(testfile_path1))["offset"] == 9 assert self.get_registry_entry_by_path(os.path.abspath(testfile_path2))["offset"] == 8 @unittest.skipIf(os.name == 'nt' or platform.system() == "Darwin", 'flaky test https://github.com/elastic/beats/issues/8102') def test_clean_inactive(self): """ Checks that states are properly removed after clean_inactive """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", clean_inactive="3s", ignore_older="2s", close_inactive="0.2s", scan_frequency="0.1s" ) file1 = "input1" file2 = "input2" file3 = "input3" self.input_logs.write(file1, "first file\n") self.input_logs.write(file2, "second file\n") filebeat = self.start_beat() self.wait_until(lambda: self.output_has(lines=2), max_timeout=10) # Wait until registry file is created self.wait_until(lambda: self.registry.exists(), max_timeout=15) assert self.registry.count() == 2 # Wait until states are removed from inputs self.wait_until(self.logs.nextCheck("State removed for", count=2), max_timeout=15) # Write new file to make sure registrar is flushed again self.input_logs.write(file3, "third file\n") self.wait_until(lambda: self.output_has(lines=3), max_timeout=30) # Wait until state of new file is removed self.wait_until(self.logs.nextCheck("State removed for"), max_timeout=15) filebeat.check_kill_and_wait() # Check that the first two files were removed from the registry data = self.registry.load() assert len(data) == 1, "Expected a single file but got: %s" % data # Make sure the last file in the registry is the correct one and has the correct offset assert data[0]["offset"] == self.input_logs.size(file3) @unittest.skipIf(os.name == 'nt', 'flaky test https://github.com/elastic/beats/issues/7690') def test_clean_removed(self): """ Checks that files which were removed, the state is removed """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", scan_frequency="0.1s", clean_removed=True, close_removed=True ) file1 = "input1" file2 = "input2" self.input_logs.write(file1, "file to be removed\n") self.input_logs.write(file2, "2\n") filebeat = self.start_beat() self.wait_until(lambda: self.output_has(lines=2), max_timeout=10) # Wait until registry file is created self.wait_until(self.registry.exists) # Wait until registry is updated self.wait_until(lambda: self.registry.count() == 2) self.input_logs.remove(file1) # Wait until states are removed from inputs self.wait_until(self.logs.check("Remove state for file as file removed")) # Add one more line to make sure registry is written self.input_logs.append(file2, "make sure registry is written\n") self.wait_until(lambda: self.output_has(lines=3), max_timeout=10) # Make sure all states are cleaned up self.wait_until(lambda: self.registry.count() == 1) filebeat.check_kill_and_wait() # Make sure the last file in the registry is the correct one and has the correct offset data = self.registry.load() assert data[0]["offset"] == self.input_logs.size(file2) @unittest.skipIf(os.name == 'nt', 'flaky test https://github.com/elastic/beats/issues/10606') def test_clean_removed_with_clean_inactive(self): """ Checks that files which were removed, the state is removed """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/input*", scan_frequency="0.1s", clean_removed=True, clean_inactive="60s", ignore_older="15s", close_removed=True ) file1 = "input1" file2 = "input2" contents2 = [ "2\n", "make sure registry is written\n", ] self.input_logs.write(file1, "file to be removed\n") self.input_logs.write(file2, contents2[0]) filebeat = self.start_beat() self.wait_until(lambda: self.output_has(lines=2), max_timeout=10) # Wait until registry file is created self.wait_until( lambda: len(self.get_registry()) == 2, max_timeout=10) self.input_logs.remove(file1) # Wait until states are removed from inputs self.wait_until(self.logs.nextCheck("Remove state for file as file removed")) # Add one more line to make sure registry is written self.input_logs.append(file2, contents2[1]) self.wait_until(lambda: self.output_has(lines=3)) # wait until next gc and until registry file has been updated self.wait_until(self.logs.check("Before: 1, After: 1, Pending: 1")) self.wait_until( lambda: len(self.get_registry()) == 1, max_timeout=10) filebeat.check_kill_and_wait() # Check that the first two files were removed from the registry data = self.registry.load() assert len(data) == 1 # Make sure the last file in the registry is the correct one and has the correct offset assert data[0]["offset"] == self.input_logs.size(file2) def test_restart_state(self): """ Make sure that states are rewritten correctly on restart and cleaned """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", close_inactive="200ms", ignore_older="2000ms", ) init_files = ["test" + str(i) + ".log" for i in range(3)] restart_files = ["test" + str(i + 3) + ".log" for i in range(1)] for name in init_files: self.input_logs.write(name, "Hello World\n") filebeat = self.start_beat() # Make sure states written appears one more time self.wait_until( self.logs.check("Ignore file because ignore_older"), max_timeout=10) filebeat.check_kill_and_wait() self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", close_inactive="200ms", ignore_older="2000ms", clean_inactive="3s", ) filebeat = self.start_beat() logs = self.log_access() # Write additional file for name in restart_files: self.input_logs.write(name, "Hello World\n") # Make sure all 4 states are persisted self.wait_until(logs.nextCheck("input states cleaned up. Before: 4, After: 4")) # Wait until registry file is cleaned self.wait_until(logs.nextCheck("input states cleaned up. Before: 0, After: 0")) filebeat.check_kill_and_wait() def test_restart_state_reset(self): """ Test that ttl is set to -1 after restart and no inputs covering it """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", clean_inactive="10s", ignore_older="5s" ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" with open(testfile_path, 'w') as testfile: testfile.write("Hello World\n") filebeat = self.start_beat() # Wait until state written self.wait_until( lambda: self.output_has(lines=1), max_timeout=30) filebeat.check_kill_and_wait() # Check that ttl > 0 was set because of clean_inactive data = self.get_registry() assert len(data) == 1 assert data[0]["ttl"] > 0 # No config file which does not match the existing state self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/test2.log", clean_inactive="10s", ignore_older="5s", ) filebeat = self.start_beat(output="filebeat2.log") # Wait until inputs are started self.wait_until( lambda: self.log_contains_count( "Starting input", logfile="filebeat2.log") >= 1, max_timeout=10) filebeat.check_kill_and_wait() # Check that ttl was reset correctly data = self.get_registry() assert len(data) == 1 assert data[0]["ttl"] == -2 def test_restart_state_reset_ttl(self): """ Test that ttl is reset after restart if clean_inactive changes """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/test.log", clean_inactive="20s", ignore_older="15s" ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" with open(testfile_path, 'w') as testfile: testfile.write("Hello World\n") filebeat = self.start_beat() # Wait until state written self.wait_until( lambda: self.output_has(lines=1), max_timeout=30) self.wait_until(lambda: self.registry.count() == 1, max_timeout=10) filebeat.check_kill_and_wait() # Check that ttl > 0 was set because of clean_inactive data = self.get_registry() assert data[0]["ttl"] == 20 * 1000 * 1000 * 1000 # New config file which does not match the existing clean_inactive self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/test.log", clean_inactive="40s", ignore_older="20s", ) filebeat = self.start_beat(output="filebeat2.log") # Wait until new state is written self.wait_until( lambda: self.log_contains("Registry file updated", logfile="filebeat2.log"), max_timeout=10) filebeat.check_kill_and_wait() # Check that ttl was reset correctly data = self.get_registry() assert len(data) == 1 assert data[0]["ttl"] == 40 * 1000 * 1000 * 1000 def test_restart_state_reset_ttl_with_space(self): """ Test that ttl is reset after restart if clean_inactive changes This time it is tested with a space in the filename to see if everything is loaded as expected """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/test file.log", clean_inactive="20s", ignore_older="15s" ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test file.log" with open(testfile_path, 'w') as testfile: testfile.write("Hello World\n") filebeat = self.start_beat() # Wait until state written self.wait_until( lambda: self.output_has(lines=1), max_timeout=30) self.wait_until(lambda: self.registry.count() == 1) filebeat.check_kill_and_wait() # Check that ttl > 0 was set because of clean_inactive data = self.get_registry() assert data[0]["ttl"] == 20 * 1000 * 1000 * 1000 # new config file with other clean_inactive self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/test file.log", clean_inactive="40s", ignore_older="5s", ) filebeat = self.start_beat(output="filebeat2.log") # Wait until new state is written self.wait_until( lambda: self.log_contains("Registry file updated", logfile="filebeat2.log"), max_timeout=10) filebeat.check_kill_and_wait() # Check that ttl was reset correctly data = self.get_registry() assert len(data) == 1 assert data[0]["ttl"] == 40 * 1000 * 1000 * 1000 def test_restart_state_reset_ttl_no_clean_inactive(self): """ Test that ttl is reset after restart if clean_inactive is disabled """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/test.log", clean_inactive="10s", ignore_older="5s" ) os.mkdir(self.working_dir + "/log/") testfile_path = self.working_dir + "/log/test.log" with open(testfile_path, 'w') as testfile: testfile.write("Hello World\n") filebeat = self.start_beat() # Wait until state written self.wait_until( lambda: self.output_has(lines=1), max_timeout=30) filebeat.check_kill_and_wait() # Check that ttl > 0 was set because of clean_inactive data = self.get_registry() assert len(data) == 1 assert data[0]["ttl"] == 10 * 1000 * 1000 * 1000 # New config without clean_inactive self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/test.log", ) filebeat = self.start_beat(output="filebeat2.log") # Wait until inputs are started self.wait_until( lambda: self.log_contains("Registry file updated", logfile="filebeat2.log"), max_timeout=10) filebeat.check_kill_and_wait() # Check that ttl was reset correctly data = self.get_registry() assert len(data) == 1 assert data[0]["ttl"] == -1 def test_ignore_older_state(self): """ Check that state is also persisted for files falling under ignore_older on startup without a previous state """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", close_inactive="1s", ignore_older="1s", ) os.mkdir(self.working_dir + "/log/") testfile_path1 = self.working_dir + "/log/test.log" with open(testfile_path1, 'w') as testfile1: testfile1.write("Hello World\n") time.sleep(1) filebeat = self.start_beat() # Make sure file falls under ignore_older self.wait_until( lambda: self.log_contains("Ignore file because ignore_older reached"), max_timeout=10) # Make sure state is loaded for file self.wait_until( lambda: self.log_contains("Before: 1, After: 1"), max_timeout=10) # Make sure state is written self.wait_until( lambda: len(self.get_registry()) == 1, max_timeout=10) filebeat.check_kill_and_wait() data = self.get_registry() assert len(data) == 1 # Check that offset is set to the end of the file assert data[0]["offset"] == os.path.getsize(testfile_path1) @unittest.skipIf(platform.system() == 'Darwin', 'Flaky test: https://github.com/elastic/beats/issues/22407') def test_ignore_older_state_clean_inactive(self): """ Check that state for ignore_older is not persisted when falling under clean_inactive """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", close_inactive="1s", clean_inactive="2s", ignore_older="1s", ) os.mkdir(self.working_dir + "/log/") testfile_path1 = self.working_dir + "/log/test.log" with open(testfile_path1, 'w') as testfile1: testfile1.write("Hello World\n") time.sleep(2) filebeat = self.start_beat() # Make sure file falls under ignore_older self.wait_until( lambda: self.log_contains("Ignore file because ignore_older reached"), max_timeout=10) self.wait_until( lambda: self.log_contains( "Do not write state for ignore_older because clean_inactive reached"), max_timeout=10) # Make sure state is loaded for file self.wait_until( lambda: self.log_contains("Before: 0, After: 0"), max_timeout=10) # Make sure state is written self.wait_until( lambda: len(self.get_registry()) == 0, max_timeout=10) filebeat.check_kill_and_wait() data = self.get_registry() assert len(data) == 0 def test_registrar_files_with_input_level_processors(self): """ Check that multiple files are put into registrar file with drop event processor """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", input_processors=[{ "drop_event": {}, }] ) os.mkdir(self.working_dir + "/log/") testfile_path1 = self.working_dir + "/log/test1.log" testfile_path2 = self.working_dir + "/log/test2.log" file1 = open(testfile_path1, 'w') file2 = open(testfile_path2, 'w') iterations = 5 for _ in range(0, iterations): file1.write("hello world") # 11 chars file1.write("\n") # 1 char file2.write("goodbye world") # 11 chars file2.write("\n") # 1 char file1.close() file2.close() filebeat = self.start_beat() # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until( self.has_registry, max_timeout=10) # Wait a moment to make sure registry is completely written time.sleep(2) filebeat.check_kill_and_wait() # Check that file exist data = self.get_registry() # Check that 2 files are port of the registrar file assert len(data) == 2 logfile_abs_path = os.path.abspath(testfile_path1) record = self.get_registry_entry_by_path(logfile_abs_path) self.assertEqual(logfile_abs_path, record.get('source')) self.assertEqual(iterations * (len("hello world") + len(os.linesep)), record.get('offset')) self.assertTrue("FileStateOS" in record) file_state_os = record["FileStateOS"] if os.name == "nt": # Windows checks # TODO: Check for IdxHi, IdxLo, Vol in FileStateOS on Windows. self.assertEqual(len(file_state_os), 3) elif platform.system() == "SunOS": stat = os.stat(logfile_abs_path) self.assertEqual(file_state_os["inode"], stat.st_ino) # Python does not return the same st_dev value as Golang or the # command line stat tool so just check that it's present. self.assertTrue("device" in file_state_os) else: stat = os.stat(logfile_abs_path) self.assertEqual(stat.st_ino, file_state_os.get('inode')) self.assertEqual(stat.st_dev, file_state_os.get('device')) def test_registrar_meta(self): """ Check that multiple entries for the same file are on the registry when they have different meta """ self.render_config_template( type='container', input_raw=''' paths: {path} stream: stdout - type: container paths: {path} stream: stderr '''.format(path=os.path.abspath(self.working_dir) + "/log/*/*.log") ) os.mkdir(self.working_dir + "/log/") os.mkdir(self.working_dir + "/log/container_id") testfile_path1 = self.working_dir + "/log/container_id/test.log" with open(testfile_path1, 'w') as f: for i in range(0, 10): f.write('{"log":"hello\\n","stream":"stdout","time":"2018-04-13T13:39:57.924216596Z"}\n') f.write('{"log":"hello\\n","stream":"stderr","time":"2018-04-13T13:39:57.924216596Z"}\n') filebeat = self.start_beat() self.wait_until( lambda: self.output_has(lines=20), max_timeout=15) # wait until the registry file exist. Needed to avoid a race between # the logging and actual writing the file. Seems to happen on Windows. self.wait_until(self.has_registry, max_timeout=1) filebeat.check_kill_and_wait() # Check registry contains 2 entries with meta data = self.get_registry() assert len(data) == 2 assert data[0]["source"] == data[1]["source"] assert data[0]["meta"]["stream"] in ("stdout", "stderr") assert data[1]["meta"]["stream"] in ("stdout", "stderr") assert data[0]["meta"]["stream"] != data[1]["meta"]["stream"]
35.067051
112
0.608886
7e79f83009a80ea072e910c9f0ed15f6768fb670
3,123
py
Python
tests/functional/test_inc_push.py
kyocum/disdat-luigi
bd6a9733c053ebb114151e47ea18062f34b64000
[ "Apache-2.0" ]
null
null
null
tests/functional/test_inc_push.py
kyocum/disdat-luigi
bd6a9733c053ebb114151e47ea18062f34b64000
[ "Apache-2.0" ]
null
null
null
tests/functional/test_inc_push.py
kyocum/disdat-luigi
bd6a9733c053ebb114151e47ea18062f34b64000
[ "Apache-2.0" ]
null
null
null
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Test Incremental Push Use API to create a bundle with some files push to remote context author: Kenneth Yocum """ import boto3 import luigi import moto import pytest from disdatluigi.pipe import PipeTask import disdat.api as api import disdatluigi.api as dlapi from tests.functional.common import TEST_CONTEXT TEST_REMOTE = '__test_remote_context__' TEST_BUCKET = 'test-bucket' TEST_BUCKET_URL = "s3://{}".format(TEST_BUCKET) class APush(PipeTask): def pipe_requires(self): self.set_bundle_name('a') def pipe_run(self): target = self.create_output_file('a.txt') with target.open('w') as output: output.write('Hi!') return {'file': [target.path]} class BPush(PipeTask): n = luigi.IntParameter() def pipe_requires(self): self.set_bundle_name('b') self.add_dependency('a', APush, params={}) def pipe_run(self, a): target = self.create_output_file('b.txt') a_path = a['file'][0] with open(a_path) as f: print(f.read()) with target.open('w') as output: output.write(str(self.n)) return {'file': [target.path]} class CPush(PipeTask): n = luigi.IntParameter(default=2) def pipe_requires(self): self.set_bundle_name('c') self.add_dependency('b', BPush, params={'n': self.n}) def pipe_run(self, b=None): # Barf! raise Exception @moto.mock_s3 def test_add_with_treat_as_bundle(): api.delete_context(TEST_CONTEXT) api.context(context_name=TEST_CONTEXT) # Setup moto s3 resources s3_client = boto3.client('s3') s3_resource = boto3.resource('s3') s3_resource.create_bucket(Bucket=TEST_BUCKET) # Make sure bucket is empty objects = s3_client.list_objects(Bucket=TEST_BUCKET) assert 'Contents' not in objects, 'Bucket should be empty' # Bind remote context api.remote(TEST_CONTEXT, TEST_REMOTE, TEST_BUCKET_URL) # Try to run the pipeline - should fail try: # Run test pipeline dlapi.apply(TEST_CONTEXT, CPush, incremental_push=True) except Exception as e: pass # Get objects from remote objects = s3_client.list_objects(Bucket=TEST_BUCKET) keys = [o['Key'] for o in objects['Contents']] keys = [key.split('/')[-1] for key in keys] # Make sure files exist in S3 for output_file in ['a.txt', 'b.txt']: assert output_file in keys, 'Pipeline should have pushed file' api.delete_context(TEST_CONTEXT) if __name__ == '__main__': pytest.main([__file__])
26.025
74
0.679795
d6801dc35e6011c2ee6b771c7c451c87014d8446
3,435
py
Python
test/functional/wallet_zapwallettxes.py
limitstory/pyeongtaekcoin
c77889d1ec25759b67fab17180f17eb8f96bbaa1
[ "MIT" ]
null
null
null
test/functional/wallet_zapwallettxes.py
limitstory/pyeongtaekcoin
c77889d1ec25759b67fab17180f17eb8f96bbaa1
[ "MIT" ]
null
null
null
test/functional/wallet_zapwallettxes.py
limitstory/pyeongtaekcoin
c77889d1ec25759b67fab17180f17eb8f96bbaa1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Pyeongtaekcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the zapwallettxes functionality. - start two pyeongtaekcoind nodes - create two transactions on node 0 - one is confirmed and one is unconfirmed. - restart node 0 and verify that both the confirmed and the unconfirmed transactions are still available. - restart node 0 with zapwallettxes and persistmempool, and verify that both the confirmed and the unconfirmed transactions are still available. - restart node 0 with just zapwallettxes and verify that the confirmed transactions are still available, but that the unconfirmed transaction has been zapped. """ from test_framework.test_framework import PyeongtaekcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, wait_until, ) class ZapWalletTXesTest (PyeongtaekcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.sync_all() self.nodes[1].generate(100) self.sync_all() # This transaction will be confirmed txid1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 10) self.nodes[0].generate(1) self.sync_all() # This transaction will not be confirmed txid2 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 20) # Confirmed and unconfirmed transactions are now in the wallet. assert_equal(self.nodes[0].gettransaction(txid1)['txid'], txid1) assert_equal(self.nodes[0].gettransaction(txid2)['txid'], txid2) # Stop-start node0. Both confirmed and unconfirmed transactions remain in the wallet. self.stop_node(0) self.start_node(0) assert_equal(self.nodes[0].gettransaction(txid1)['txid'], txid1) assert_equal(self.nodes[0].gettransaction(txid2)['txid'], txid2) # Stop node0 and restart with zapwallettxes and persistmempool. The unconfirmed # transaction is zapped from the wallet, but is re-added when the mempool is reloaded. self.stop_node(0) self.start_node(0, ["-persistmempool=1", "-zapwallettxes=2"]) wait_until(lambda: self.nodes[0].getmempoolinfo()['size'] == 1, timeout=3) self.nodes[0].syncwithvalidationinterfacequeue() # Flush mempool to wallet assert_equal(self.nodes[0].gettransaction(txid1)['txid'], txid1) assert_equal(self.nodes[0].gettransaction(txid2)['txid'], txid2) # Stop node0 and restart with zapwallettxes, but not persistmempool. # The unconfirmed transaction is zapped and is no longer in the wallet. self.stop_node(0) self.start_node(0, ["-zapwallettxes=2"]) # tx1 is still be available because it was confirmed assert_equal(self.nodes[0].gettransaction(txid1)['txid'], txid1) # This will raise an exception because the unconfirmed transaction has been zapped assert_raises_rpc_error(-5, 'Invalid or non-wallet transaction id', self.nodes[0].gettransaction, txid2) if __name__ == '__main__': ZapWalletTXesTest().main()
41.385542
112
0.710335
3e926540f2fcc774497cc0e11061b74ccac7798d
17,472
py
Python
tests/model/fvcom_test.py
noaa-ocs-modeling/thyme
98f036bd49f8f3bcfc13c0593cd887224d971ac5
[ "BSD-2-Clause" ]
5
2019-07-09T15:18:52.000Z
2020-06-03T02:57:50.000Z
tests/model/fvcom_test.py
noaa-ocs-modeling/thyme
98f036bd49f8f3bcfc13c0593cd887224d971ac5
[ "BSD-2-Clause" ]
null
null
null
tests/model/fvcom_test.py
noaa-ocs-modeling/thyme
98f036bd49f8f3bcfc13c0593cd887224d971ac5
[ "BSD-2-Clause" ]
2
2019-10-10T09:54:47.000Z
2020-05-27T19:11:12.000Z
from collections import namedtuple import numpy import pytest from thyme.model.fvcom import node_to_centroid from thyme.model.fvcom import vertical_interpolation VerticalValues = namedtuple( 'VerticalValues', ['u', 'v', 'h', 'zeta', 'siglay_centroid', 'num_nele', 'num_siglay', 'time_index', 'target_depth_default', 'target_depth_surface', 'target_depth_deep', 'expected_u_target_depth_default', 'expected_v_target_depth_default', 'expected_u_target_depth_surface', 'expected_v_target_depth_surface', 'expected_u_target_depth_deep', 'expected_v_target_depth_deep']) @pytest.fixture def vertical_values(): time_index = 0 num_nele = 7 num_siglay = 20 target_depth_default = 4.5 target_depth_surface = 0 target_depth_deep = 15 u = numpy.array( [[ [-0.7951693, 0.1987104, 0.20282207, 0.22636837, 0.22338444, 0.22267905, 0.25851583], [-0.79512405, 0.17984135, 0.18718982, 0.20845266, 0.20881361, 0.2097686, 0.24099022], [-0.79499704, 0.11546519, 0.11235027, 0.12845743, 0.14677778, 0.17036788, 0.14718369], [-0.7947852, -0.04345991, -0.0362343, -0.01943639, 0.03145187, 0.05482485, 0.01756552], [-0.794485, -0.11175916, -0.10817654, -0.07648413, -0.05387694, -0.02363495, -0.07206099], [-0.79409266, -0.15002064, -0.1458673, -0.11296615, -0.09673776, -0.07272214, -0.11500881], [-0.7936041, -0.18279588, -0.17216434, -0.15122096, -0.13439055, -0.12422991, -0.15305918], [-0.7930144, -0.22257489, -0.21475703, -0.19943172, -0.19317457, -0.18883257, -0.19185503], [-0.7923182, -0.26589555, -0.26381484, -0.2563959, -0.2623669, -0.2418433, -0.22976391], [-0.7915093, -0.29618508, -0.3025776, -0.30066454, -0.30951524, -0.2785821, -0.2603346], [-0.62858844, -0.31844422, -0.3287656, -0.32818496, -0.34010696, -0.2991507, -0.28074494], [-0.59509104, -0.3200005, -0.3282557, -0.33371437, -0.3424295, -0.3079574, -0.2808675], [-0.5648844, -0.28674564, -0.29246253, -0.3045539, -0.3127165, -0.2805328, -0.26253417], [-0.53362864, -0.2308568, -0.23583505, -0.25023454, -0.25649628, -0.2430087, -0.21772045], [-0.49928024, -0.1515698, -0.17267239, -0.1813446, -0.19186072, -0.19516239, -0.16393802], [-0.45988485, -0.13119768, -0.10612836, -0.11343177, -0.12980227, -0.1302748, -0.12355448], [-0.41265842, -0.11103977, -0.09538705, -0.09509068, -0.11300715, -0.10742138, -0.10589793], [-0.35249037, -0.09441119, -0.0877323, -0.08854523, -0.10422827, -0.09832109, -0.098252], [-0.26714894, -0.08462795, -0.0790456, -0.07945603, -0.09364957, -0.08832049, -0.08927543], [-0.10820818, -0.06875627, -0.06421904, -0.06397585, -0.07394486, -0.07045165, -0.07252091] ]]) v = numpy.array( [[ [-0.6447422, 0.04272371, 0.03626542, 0.03629172, 0.02365562, 0.04447182, 0.02940587], [-0.64464253, 0.04550566, 0.03864311, 0.03937801, 0.02540983, 0.04566612, 0.03169739], [-0.6444702, 0.05464792, 0.05194416, 0.05265207, 0.03223358, 0.04813668, 0.0406685], [-0.6442224, 0.05445727, 0.05883322, 0.04983669, 0.0348991, 0.03746793, 0.04016836], [-0.64389604, 0.00415152, -0.00149629, -0.00077556, 0.01316911, 0.00495433, 0.01126673], [-0.6434879, -0.04056849, -0.0399819, -0.02377908, -0.01824965, -0.0271148, -0.02322751], [-0.64299417, -0.05177833, -0.05065423, -0.04175215, -0.03915307, -0.05457062, -0.0499136], [-0.6424107, -0.0646683, -0.0626291, -0.05882293, -0.06086947, -0.07759117, -0.06596889], [-0.64173275, -0.06379095, -0.06311549, -0.06392502, -0.07486805, -0.08554274, -0.06285658], [-0.6409548, -0.05030349, -0.05021876, -0.05602735, -0.06358989, -0.07058521, -0.04798502], [-0.48587024, -0.02668872, -0.02443161, -0.03338933, -0.03849523, -0.04692423, -0.03141288], [-0.45516193, -0.0020759, 0.00556405, -0.00915105, -0.01343074, -0.02884087, -0.01940906], [-0.4284155, 0.0134382, 0.01965301, 0.00118551, -0.00354341, -0.0235792, -0.01681828], [-0.40160605, 0.00625094, 0.0087254, -0.00298712, -0.01015626, -0.03078334, -0.02404925], [-0.3729973, -0.02794126, -0.02092287, -0.02809138, -0.03298125, -0.04707557, -0.04252515], [-0.34107724, -0.02949184, -0.03453156, -0.03266618, -0.04048001, -0.05651411, -0.03880842], [-0.30380374, -0.02897151, -0.0317935, -0.02676859, -0.03367185, -0.05099317, -0.03234524], [-0.2575078, -0.02654107, -0.02930111, -0.0243634, -0.03028261, -0.04743995, -0.02939028], [-0.19346614, -0.02417713, -0.0263748, -0.02134923, -0.02650077, -0.04303462, -0.02615478], [-0.07716001, -0.01982844, -0.02149794, -0.01682694, -0.02036272, -0.03471823, -0.02087618] ]]) h = numpy.array( [ 1.372000018755595, 1.91399347, 4.6028045, 3.29994912, 30.32372402, 9.3237240, 12.19253056 ]) zeta = numpy.array( [ -1.1558676163355508, -0.1443424, -0.14408446, -0.15902775, -0.16805193, -0.16938841, -0.16457143, ]) siglay_centroid = numpy.array( [ [-0.025, -0.02500004, -0.02500004, -0.02500004, -0.02500004, -0.02500004, -0.02500004], [-0.075, -0.07500005, -0.07500005, -0.07500005, -0.07500005, -0.07500005, -0.07500005], [-0.125, -0.12500003, -0.12500003, -0.12500003, -0.12500003, -0.12500003, -0.12500003], [-0.17500001, -0.17500001, -0.17500001, -0.17500001, -0.17500001, -0.17500001, -0.17500001], [-0.225, -0.22500002, -0.22500002, -0.22500002, -0.22500002, -0.22500002, -0.22500002], [-0.275, -0.27500007, -0.27500007, -0.27500007, -0.27500007, -0.27500007, -0.27500007], [-0.325, -0.32500005, -0.32500005, -0.32500005, -0.32500005, -0.32500005, -0.32500005], [-0.375, -0.37500003, -0.37500003, -0.37500003, -0.37500003, -0.37500003, -0.37500003], [-0.425, -0.42500004, -0.42500004, -0.42500004, -0.42500004, -0.42500004, -0.42500004], [-0.475, -0.47500002, -0.47500002, -0.47500002, -0.47500002, -0.47500002, -0.47500002], [-0.525, -0.52500004, -0.52500004, -0.52500004, -0.52500004, -0.52500004, -0.52500004], [-0.57500005, -0.57500005, -0.57500005, -0.57500005, -0.57500005, -0.57500005, -0.57500005], [-0.625, -0.6250001, -0.6250001, -0.6250001, -0.6250001, -0.6250001, -0.6250001], [-0.67499995, -0.6750001, -0.6750001, -0.6750001, -0.6750001, -0.6750001, -0.6750001], [-0.725, -0.725, -0.725, -0.725, -0.725, -0.725, -0.725], [-0.775, -0.7750001, -0.7750001, -0.7750001, -0.7750001, -0.7750001, -0.7750001], [-0.82500005, -0.82500005, -0.82500005, -0.82500005, -0.82500005, -0.82500005, -0.82500005], [-0.875, -0.87500006, -0.87500006, -0.87500006, -0.87500006, -0.87500006, -0.87500006], [-0.92499995, -0.9250001, -0.9250001, -0.9250001, -0.9250001, -0.9250001, -0.9250001], [-0.975, -0.975, -0.975, -0.975, -0.975, -0.975, -0.975] ]) expected_u_target_depth_default = numpy.array( [ -0.7100488057968346, -0.30731464, -0.31567158, -0.31442473, 0.09090091, -0.28539867, -0.19117865 ]) expected_v_target_depth_default = numpy.array( [ -0.5634124710903746, -0.03849612, -0.0373252, -0.04470835, 0.03352506, -0.06274381, -0.06568897 ]) expected_u_target_depth_surface = numpy.array( [ -0.79519192, 0.20814494, 0.21063821, 0.23532624, 0.23066987, 0.22913428, 0.26727865 ]) expected_v_target_depth_surface = numpy.array( [ -0.64479204, 0.04133273, 0.03507657, 0.03474857, 0.02277851, 0.04387467, 0.02826011 ]) expected_u_target_depth_deep = numpy.array( [ -0.71004887, -0.30731464, -0.31567158, -0.31442473, -0.32323185, -0.28886639, -0.27053976 ]) expected_v_target_depth_deep = numpy.array( [ -0.56341252, -0.03849612, -0.0373252, -0.04470835, -0.05233803, -0.05875473, -0.03969896 ]) return VerticalValues(u, v, h, zeta, siglay_centroid, num_nele, num_siglay, time_index, target_depth_default, target_depth_surface, target_depth_deep, expected_u_target_depth_default, expected_v_target_depth_default, expected_u_target_depth_surface, expected_v_target_depth_surface, expected_u_target_depth_deep, expected_v_target_depth_deep) def test_vertical_interpolation(vertical_values): """Test vertical interpolation.""" u_target_depth, v_target_depth = vertical_interpolation(vertical_values.u, vertical_values.v, vertical_values.h, vertical_values.zeta, vertical_values.siglay_centroid, vertical_values.num_nele, vertical_values.num_siglay, vertical_values.time_index, vertical_values.target_depth_default) # print(f"u_target_depth: {u_target_depth}") # print(f"v_target_depth: {v_target_depth}") assert numpy.allclose(u_target_depth, vertical_values.expected_u_target_depth_default) assert numpy.allclose(v_target_depth, vertical_values.expected_v_target_depth_default) def test_vertical_interpolation_at_surface(vertical_values): """Test vertical interpolation.""" u_target_depth, v_target_depth = vertical_interpolation(vertical_values.u, vertical_values.v, vertical_values.h, vertical_values.zeta, vertical_values.siglay_centroid, vertical_values.num_nele, vertical_values.num_siglay, vertical_values.time_index, vertical_values.target_depth_surface) # print(f"u_target_depth_surface: {u_target_depth}") # print(f"v_target_depth_surface: {v_target_depth}") assert numpy.allclose(u_target_depth, vertical_values.expected_u_target_depth_surface) assert numpy.allclose(v_target_depth, vertical_values.expected_v_target_depth_surface) def test_vertical_interpolation_deep(vertical_values): """Test vertical interpolation.""" u_target_depth, v_target_depth = vertical_interpolation(vertical_values.u, vertical_values.v, vertical_values.h, vertical_values.zeta, vertical_values.siglay_centroid, vertical_values.num_nele, vertical_values.num_siglay, vertical_values.time_index, vertical_values.target_depth_deep) # print(f"u_target_depth_deep: {u_target_depth}") # print(f"v_target_depth_deep: {v_target_depth}") assert numpy.allclose(u_target_depth, vertical_values.expected_u_target_depth_deep) assert numpy.allclose(v_target_depth, vertical_values.expected_v_target_depth_deep) NodeToCentroidValues = namedtuple( 'NodeToCentroidValues', ['zeta', 'h', 'lat_node', 'lon_node', 'lat_centroid', 'lon_centroid', 'time_index', 'expected_h_centroid', 'expected_zeta_centroid']) @pytest.fixture def node_to_centroid_values(): zeta = numpy.array( [ [-0.146551, -0.146383, -0.145782, -0.146226, -0.145688, -0.145071, -0.146047, -0.145581, -0.145099, -0.144439, -0.145729, -0.145431, -0.144983, -0.144627, -0.144069, -0.145415, -0.145071, -0.144579, -0.144391, -0.143806, -0.144057, -0.169269, -0.169959, -0.170395, -0.170738, -0.166229, -0.166729, -0.167032, -0.162118, -0.162876, -0.163448, -0.163812, -0.158493, -0.159403, -0.159949, -0.160389 ] ]) h = numpy.array( [ 1.6438, 1.8724, 1.875, 2.0302, 1.9946, 2.0446, 2.1169, 2.1307, 2.1457, 2.2134, 2.1768, 2.178, 2.2341, 2.2623, 2.331, 2.1949, 2.2047, 2.2817, 2.3537, 2.434, 2.404, 31.461, 31.874, 32.37, 32.361, 30.565, 31.089, 31.196, 29.231, 29.033, 28.687, 28.761, 26.053, 25.788, 26.267, 26.835 ]) lat_centroid = numpy.array( [ 30.260946, 30.262287, 30.260996, 30.259796, 30.26362, 30.262392, 30.261309, 30.260002, 30.258938, 30.264635, 30.263693, 30.262672, 30.261517, 30.260561, 30.259289, 30.258574, 30.264799, 30.264191, 30.263008, 30.262444, 30.261324, 30.260527, 30.259325, 30.259058, 30.260839, 30.259773, 29.969425, 29.963093, 29.967611, 29.961212, 29.96579, 29.959322, 29.980326, 29.985025, 29.978645, 29.983408, 29.976954, 29.981771, 29.996161, 30.001049, 29.994678, 29.999624, 29.993172, 29.998173 ]) lon_centroid = numpy.array( [ -88.126221, -88.124329, -88.124817, -88.123871, -88.122406, -88.122925, -88.12204, -88.122498, -88.12149, -88.120361, -88.120972, -88.120026, -88.120575, -88.119843, -88.1203, -88.119263, -88.118958, -88.118195, -88.118652, -88.117645, -88.117676, -88.118591, -88.118286, -88.117096, -88.116516, -88.116272, -88.264221, -88.25528, -88.245392, -88.236328, -88.226379, -88.217194, -88.265015, -88.256958, -88.246277, -88.238129, -88.227295, -88.219116, -88.260498, -88.253448, -88.241791, -88.23468, -88.222839, -88.215698 ]) lat_node = numpy.array( [ 30.260969, 30.262211, 30.259659, 30.263531, 30.26112, 30.258608, 30.264805, 30.262526, 30.260281, 30.257925, 30.265354, 30.263748, 30.261744, 30.259661, 30.258137, 30.265295, 30.263531, 30.262054, 30.260176, 30.25886, 30.260286, 29.958637, 29.956696, 29.954746, 29.952793, 29.973944, 29.972195, 29.970428, 29.991339, 29.989796, 29.988235, 29.986652, 30.007345, 30.006006, 30.004629, 30.003235 ]) lon_node = numpy.array( [ -88.127625, -88.125763, -88.125275, -88.12384, -88.123413, -88.122894, -88.121857, -88.12149, -88.121185, -88.120422, -88.119629, -88.119568, -88.119049, -88.119293, -88.118073, -88.117676, -88.11734, -88.116516, -88.117462, -88.115784, -88.11557, -88.265167, -88.246277, -88.227234, -88.207947, -88.254395, -88.235504, -88.2164, -88.267578, -88.248901, -88.230011, -88.210937, -88.265045, -88.246429, -88.2276, -88.208527 ]) time_index = 0 expected_h_centroid = numpy.array( [ 1.79706003, 1.96634453, 1.91399347, 1.97068808, 2.09215354, 2.05125885, 2.08959921, 2.06159611, 2.13525152, 2.15697391, 2.14185806, 2.1812977, 2.17015265, 2.2140166, 2.20713333, 2.26888473, 2.18323025, 2.19253056, 2.20559465, 2.23989205, 2.28985895, 2.28394075, 2.31515434, 2.37337259, 2.3464489, 2.39725858, 30.74697778, 31.29994912, 31.1760438, 31.77788929, 31.55164158, 31.9756924, 30.00374208, 29.60978718, 30.22881187, 29.6028045, 30.32372402, 29.54809818, 28.10520577, 26.95770733, 27.83656214, 26.91390017, 27.90491454, 27.28733678 ]) expected_zeta_centroid = numpy.array( [ -0.1462386, -0.14609691, -0.14595087, -0.1455159, -0.14595329, -0.14583367, -0.14545806, -0.14528592, -0.14486764, -0.14573735, -0.1456864, -0.14532972, -0.14522106, -0.14490293, -0.14472167, -0.14437832, -0.14552505, -0.14530566, -0.14516168, -0.14487977, -0.14465093, -0.14466511, -0.1443643, -0.14408686, -0.1443424, -0.14408446, -0.16695492, -0.16848552, -0.16763914, -0.16902775, -0.16805193, -0.16938841, -0.16457143, -0.16374129, -0.16527793, -0.16435127, -0.16573603, -0.16476413, -0.16116232, -0.16025768, -0.16190908, -0.16093319, -0.16240301, -0.16138305 ]) return NodeToCentroidValues(zeta, h, lat_node, lon_node, lat_centroid, lon_centroid, time_index, expected_h_centroid, expected_zeta_centroid) def test_node_to_centroid(node_to_centroid_values): """Test horizontal interpolation from nodes to centroids(elements).""" h_centroid, zeta_centroid = node_to_centroid(node_to_centroid_values.zeta, node_to_centroid_values.h, node_to_centroid_values.lon_node, node_to_centroid_values.lat_node, node_to_centroid_values.lon_centroid, node_to_centroid_values.lat_centroid, node_to_centroid_values.time_index) # print(f"h_centroid: {h_centroid}") # print(f"zeta_centroid: {zeta_centroid}") assert numpy.allclose(h_centroid, node_to_centroid_values.expected_h_centroid) assert numpy.allclose(zeta_centroid, node_to_centroid_values.expected_zeta_centroid)
53.431193
120
0.602278
23673b1284e13b6568c8357ec84e688351f1cc6c
3,157
py
Python
scripts/ms-gui.py
btobab/minesweeper
0baec6b1535374a436fd878187e556780972de15
[ "MIT" ]
null
null
null
scripts/ms-gui.py
btobab/minesweeper
0baec6b1535374a436fd878187e556780972de15
[ "MIT" ]
null
null
null
scripts/ms-gui.py
btobab/minesweeper
0baec6b1535374a436fd878187e556780972de15
[ "MIT" ]
null
null
null
#!/usr/bin/env python """GUI for Mine Sweeper. Author: Yuhuang Hu Email : duguyue100@gmail.com """ # from __future__ import print_function import argparse try: from PyQt4 import QtGui, QtCore from PyQt4.QCore import QWidget, QApplication, QGridLayout except ImportError: from PyQt5 import QtCore from PyQt5.QtWidgets import QWidget, QApplication, QGridLayout import sys sys.path.append("..") from minesweeper.msgame import MSGame from minesweeper import gui def ms_game_main(board_width, board_height, num_mines, port, ip_add): """Main function for Mine Sweeper Game. Parameters ---------- board_width : int the width of the board (> 0) board_height : int the height of the board (> 0) num_mines : int the number of mines, cannot be larger than (board_width x board_height) port : int UDP port number, default is 5678 ip_add : string the ip address for receiving the command, default is localhost. """ ms_game = MSGame(board_width, board_height, num_mines, port=port, ip_add=ip_add) ms_app = QApplication([]) ms_window = QWidget() ms_window.setAutoFillBackground(True) ms_window.setWindowTitle("Mine Sweeper") ms_layout = QGridLayout() ms_window.setLayout(ms_layout) fun_wg = gui.ControlWidget() grid_wg = gui.GameWidget(ms_game, fun_wg) remote_thread = gui.RemoteControlThread() def update_grid_remote(move_msg): """Update grid from remote control.""" if grid_wg.ms_game.game_status == 2: grid_wg.ms_game.play_move_msg(str(move_msg)) grid_wg.update_grid() remote_thread.transfer.connect(update_grid_remote) def reset_button_state(): """Reset button state.""" grid_wg.reset_game() fun_wg.reset_button.clicked.connect(reset_button_state) ms_layout.addWidget(fun_wg, 0, 0) ms_layout.addWidget(grid_wg, 1, 0) remote_thread.control_start(grid_wg.ms_game) ms_window.show() ms_app.exec_() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Mine Sweeper Minesweeper \ with interfaces for \ Reinforcement Learning \ by Yuhuang Hu") parser.add_argument("--board-width", type=int, default=20, help="width of the board.") parser.add_argument("--board-height", type=int, default=20, help="height of the board.") parser.add_argument("--num-mines", type=int, default=40, help="number of mines.") parser.add_argument("--port", type=int, default=5678, help="The port for TCP connection.") parser.add_argument("--ip-add", type=str, default="127.0.0.1", help="The IP address for TCP connection.") args = parser.parse_args() ms_game_main(**vars(args))
30.95098
76
0.604371
6d79d41c5854a6d242be3d6bb3b5c731a151d80d
19
py
Python
__init__.py
spacecoalmen/asteroid_scraper
eea0c1700479e62d08eb60ead547c9ce5e37d7ba
[ "MIT" ]
null
null
null
__init__.py
spacecoalmen/asteroid_scraper
eea0c1700479e62d08eb60ead547c9ce5e37d7ba
[ "MIT" ]
null
null
null
__init__.py
spacecoalmen/asteroid_scraper
eea0c1700479e62d08eb60ead547c9ce5e37d7ba
[ "MIT" ]
null
null
null
__author__ = 'gas'
9.5
18
0.684211
af1db83b3edecd1d33a04a34bc5e6c68c79f8391
254
py
Python
manage.py
jessamynsmith/quotations
b2a9b70190756fa261840faea181860b166e253f
[ "MIT" ]
2
2015-05-01T19:44:41.000Z
2015-07-17T13:52:46.000Z
manage.py
jessamynsmith/quotations
b2a9b70190756fa261840faea181860b166e253f
[ "MIT" ]
13
2019-10-18T17:06:52.000Z
2022-02-10T07:37:30.000Z
manage.py
jessamynsmith/quotations
b2a9b70190756fa261840faea181860b166e253f
[ "MIT" ]
3
2015-05-06T15:38:30.000Z
2015-07-26T21:12:32.000Z
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "underquoted.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
23.090909
75
0.775591
294648a88995f06643dba79c995c4aa91693ab41
469
py
Python
aether/gallery/views.py
katajakasa/aetherguild4
a7e294f0cff11e2508751f1013e6648fdc56bb94
[ "MIT" ]
null
null
null
aether/gallery/views.py
katajakasa/aetherguild4
a7e294f0cff11e2508751f1013e6648fdc56bb94
[ "MIT" ]
1
2021-06-10T17:36:11.000Z
2021-06-10T17:36:11.000Z
aether/gallery/views.py
katajakasa/aetherguild4
a7e294f0cff11e2508751f1013e6648fdc56bb94
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.core.paginator import Paginator from django.views.decorators.cache import never_cache from .models import GalleryGroup from aether.utils.misc import get_page @never_cache def gallery_index(request): paginator = Paginator(GalleryGroup.objects.order_by('-created_at').all(), 5) page = get_page(request) return render(request, 'gallery/galleries.html', { 'galleries': paginator.get_page(page), })
29.3125
80
0.763326
7ced7654419825afbac8cdee8b4960f93470ad0d
148
py
Python
while_with_break.py
agolla0440/my_python_workbook
3595037467e89e0950d0c356b2ba087e574e2bd9
[ "Apache-2.0" ]
null
null
null
while_with_break.py
agolla0440/my_python_workbook
3595037467e89e0950d0c356b2ba087e574e2bd9
[ "Apache-2.0" ]
null
null
null
while_with_break.py
agolla0440/my_python_workbook
3595037467e89e0950d0c356b2ba087e574e2bd9
[ "Apache-2.0" ]
null
null
null
i = 1 while i < 6: # print(i) if i == 2: i += 1 continue if i == 5: break else: print(i) i += 1
12.333333
16
0.337838
31317ebb52ea98eaf6c931c267eb860198105e22
991
py
Python
examples/basic/midiout.py
Czaki/python-rtmidi
eb16ab3268b29b94cd2baa6bfc777f5cf5f908ba
[ "MIT" ]
260
2015-06-25T06:44:31.000Z
2022-02-28T15:44:29.000Z
examples/basic/midiout.py
rwreynolds/python-rtmidi
04ba3a69da0437b21ca3bb6f359c8ebaf06f3bd2
[ "MIT" ]
99
2016-02-10T22:19:23.000Z
2022-03-31T06:22:15.000Z
examples/basic/midiout.py
rwreynolds/python-rtmidi
04ba3a69da0437b21ca3bb6f359c8ebaf06f3bd2
[ "MIT" ]
70
2015-06-25T06:57:01.000Z
2022-03-02T05:25:28.000Z
#!/usr/bin/env python # # midiout.py # """Show how to open an output port and send MIDI events.""" from __future__ import print_function import logging import sys import time from rtmidi.midiutil import open_midioutput from rtmidi.midiconstants import NOTE_OFF, NOTE_ON log = logging.getLogger('midiout') logging.basicConfig(level=logging.DEBUG) # Prompts user for MIDI input port, unless a valid port number or name # is given as the first argument on the command line. # API backend defaults to ALSA on Linux. port = sys.argv[1] if len(sys.argv) > 1 else None try: midiout, port_name = open_midioutput(port) except (EOFError, KeyboardInterrupt): sys.exit() note_on = [NOTE_ON, 60, 112] # channel 1, middle C, velocity 112 note_off = [NOTE_OFF, 60, 0] with midiout: print("Sending NoteOn event.") midiout.send_message(note_on) time.sleep(1) print("Sending NoteOff event.") midiout.send_message(note_off) time.sleep(0.1) del midiout print("Exit.")
23.046512
70
0.733602
e369e53119fa1bf7d97223640a58c642b73a1c32
180
py
Python
config.py
SnoozeTime/kucoin-trade-report
c71be0ad327908abfbbeddf8fbf75f442c63e5af
[ "WTFPL" ]
2
2018-04-16T01:46:35.000Z
2021-11-11T21:30:30.000Z
config.py
SnoozeTime/kucoin-trade-report
c71be0ad327908abfbbeddf8fbf75f442c63e5af
[ "WTFPL" ]
1
2021-06-01T21:47:23.000Z
2021-06-01T21:47:23.000Z
config.py
SnoozeTime/kucoin-trade-report
c71be0ad327908abfbbeddf8fbf75f442c63e5af
[ "WTFPL" ]
null
null
null
import os # Either add KUCOIN_API and KUCOIN_SECRET as environment variable, or write them directly here. KEY = os.getenv("KUCOIN_API", "") SECRET = os.getenv("KUCOIN_SECRET", "")
36
95
0.75
9004c1c26b9635e6e17a2d299ca6437399fcb06d
2,694
py
Python
caffe2/python/operator_test/decay_adagrad_test.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
60,067
2017-01-18T17:21:31.000Z
2022-03-31T21:37:45.000Z
caffe2/python/operator_test/decay_adagrad_test.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
66,955
2017-01-18T17:21:38.000Z
2022-03-31T23:56:11.000Z
caffe2/python/operator_test/decay_adagrad_test.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
19,210
2017-01-18T17:45:04.000Z
2022-03-31T23:51:56.000Z
import functools from hypothesis import given import hypothesis.strategies as st import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestDecayAdagrad(hu.HypothesisTestCase): @staticmethod def ref_decay_adagrad(param, mom1, mom2, grad, LR, ITER, beta1, beta2, epsilon, weight_decay, bias_correction_first, output_grad=False): t = ITER + 1 mom1_out = (beta1 * mom1) + (1 - beta1) * grad mom2_out = mom2 + np.square(grad) if bias_correction_first: c = 1 - np.power(beta1, t) else: c = 1.0 grad_out = mom1_out / c / (np.sqrt(mom2_out) + epsilon) + weight_decay * param param_out = param + LR * grad_out return param_out, mom1_out, mom2_out @given(inputs=hu.tensors(n=4), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), weight_decay=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) def test_decay_adagrad(self, inputs, ITER, LR, beta1, beta2, epsilon, weight_decay, gc, dc): bias_correction_first = True param, mom1, mom2, grad = inputs mom2 = np.abs(mom2) ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) op = core.CreateOperator( "DecayAdagrad", ["param", "mom1", "mom2", "grad", "lr", "iter"], ["output_param", "output_mom1", "output_mom2"], beta1=beta1, beta2=beta2, epsilon=epsilon, weight_decay=weight_decay, bias_correction_first=bias_correction_first) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [param, mom1, mom2, grad, LR, ITER], functools.partial( self.ref_decay_adagrad, beta1=beta1, beta2=beta2, epsilon=epsilon, weight_decay=weight_decay, bias_correction_first=bias_correction_first), input_device_options=input_device_options) if __name__ == "__main__": import unittest unittest.main()
39.043478
131
0.612843
6ae23ac19b0ec7dfc760086f1f8546debc834f4b
4,796
py
Python
10 On-policy control with approximation/Mountain Car/mountaincar.py
c-boe/Reinforcement-learning
a8cfcf3ff022a31e6f21fe3497c5557443778258
[ "MIT" ]
1
2021-04-20T00:43:53.000Z
2021-04-20T00:43:53.000Z
12 Eligibility Traces/Mountain Car/mountaincar.py
c-boe/Reinforcement-learning
a8cfcf3ff022a31e6f21fe3497c5557443778258
[ "MIT" ]
null
null
null
12 Eligibility Traces/Mountain Car/mountaincar.py
c-boe/Reinforcement-learning
a8cfcf3ff022a31e6f21fe3497c5557443778258
[ "MIT" ]
null
null
null
""" Implementation of mountaincar environment for example 10.1 of "Reinforcement learning" by Sutton and Barto """ import numpy as np import matplotlib.pyplot as plt class MountainCar(): """Mountain car environment from example 10.1 of Sutton and Barto's "Reinforcement Learning" """ def __init__(self): self.x_bound_l = -1.2 self.x_bound_u = 0.5 self.v_bound_l = -0.07 self.v_bound_u = 0.07 self.x_init_l = -0.6 self.x_init_u = -0.4 def reset(self): """ Initialize position and velocity of mountain car Returns ------- state : list [position, velocity] state at beginning of every episode """ x = np.random.uniform(low=self.x_init_l, high=self.x_init_u, size=1) v = 0 state = [x, v] return state def step(self, state, action): """ Take action in current state Parameters ---------- state : list [current position, current velocity] state before taking action action : int action taken by agent Returns ------- next_state : list [next position, next velocity] state after taking action reward : int negative reward for every step done : bool episode finished or not. final_state : list [final position, final velocity] state at the end of the episode """ done = False final_state = [] x, v = state throttle = self.action(action) next_v = self.__bound_v(v + 0.001*throttle - 0.0025*np.cos(3*x)) next_x = self.__bound_x(x + next_v) if next_x == self.x_bound_l: next_v = 0 next_state = np.array([next_x, next_v]) if next_x == self.x_bound_u: done = True final_state = [next_x, next_v] reward = -1 return next_state, reward, done, final_state def __bound_v(self, v): """ Apply velocity boundaries """ if v < self.v_bound_l: v = self.v_bound_l elif v > self.v_bound_u: v = self.v_bound_u return v def __bound_x(self, x): """ Apply positional boundaries """ if x < self.x_bound_l: x = self.x_bound_l elif x > self.x_bound_u: x = self.x_bound_u return x def action(self, action): """ Parameters ---------- action : int action taken by agent Returns ------- throttle : int reverse, forward or zero throttle """ if action == 0: throttle = -1 #reverse elif action == 1: throttle = 0 elif action == 2: throttle = 1 # foreward return throttle def render(self, x): """ Plot mountain car position x at every step of episode Parameters ---------- x : int x coordinate of mountain car Returns ------- None. """ x = np.array([x]) y = np.cos(2*np.pi*(x/2 + 0.75)) x_mountain = np.linspace(self.x_bound_l, self.x_bound_u,100) y_mountain = np.cos(2*np.pi*(x_mountain/2 + 0.75)) plt.figure("Mountain car") plt.clf() plt.plot(x_mountain, y_mountain) plt.title("Mountain car") if len(x) == 1: plt.plot(x, y,'o') plt.xlim((self.x_bound_l, self.x_bound_u)) plt.ylim((-1, 1)) plt.pause(0.01) else: nr_steps = len(x) for step in range(nr_steps): plt.clf() plt.plot(x[step], y[step],'o') plt.xlim((self.x_bound_l, self.x_bound_u)) plt.ylim((-1, 1)) plt.pause(0.1) def plot_step_per_ep(self, episode, steps): """ Plot number of steps per episode of mountain car as function of episode Parameters ---------- episode : int current episode steps : int number of steps until episode is done Returns ------- None. """ plt.figure("Steps per episode") plt.plot(episode, steps,'o') plt.yscale("log") plt.pause(0.001) plt.xlabel("Episode") plt.ylabel("Steps per episode (log scale)")
24.222222
79
0.4804
d6e8cef0a969e3df068ff5dfa3a19d1acec67b32
989
py
Python
app/app/urls.py
Omar2B/recipe-app-api
8031bf1e1f0050bac6ad60ceff9615365f1a5720
[ "MIT" ]
null
null
null
app/app/urls.py
Omar2B/recipe-app-api
8031bf1e1f0050bac6ad60ceff9615365f1a5720
[ "MIT" ]
6
2021-03-19T01:47:22.000Z
2021-09-08T01:54:59.000Z
app/app/urls.py
Omar2B/recipe-app-api
8031bf1e1f0050bac6ad60ceff9615365f1a5720
[ "MIT" ]
null
null
null
"""app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('api/user/', include('user.urls')), path('api/recipe/', include('recipe.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
36.62963
77
0.715875
3e05fc0b3653e4bbdbe636b73a7db05321e3074f
1,390
py
Python
SLACKBOT/Api/config.py
edoi777/tokenGL
0a96c9a75213374527867031fa2ee5c1dd74e96a
[ "MIT" ]
null
null
null
SLACKBOT/Api/config.py
edoi777/tokenGL
0a96c9a75213374527867031fa2ee5c1dd74e96a
[ "MIT" ]
null
null
null
SLACKBOT/Api/config.py
edoi777/tokenGL
0a96c9a75213374527867031fa2ee5c1dd74e96a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from tcr.ttypes import ApplicationType import re class Config(): LINE_HOST_DOMAIN = 'https://gd2.line.naver.jp' LINE_OBS_DOMAIN = 'https://obs-sg.line-apps.com' LINE_TIMELINE_API = 'https://gd2.line.naver.jp/mh/api' LINE_TIMELINE_MH = 'https://gd2.line.naver.jp/mh' LINE_LOGIN_QUERY_PATH = '/api/v4p/rs' LINE_AUTH_QUERY_PATH = '/api/v4/TalkService.do' LINE_API_QUERY_PATH_FIR = '/S4' LINE_POLL_QUERY_PATH_FIR = '/P4' LINE_CALL_QUERY_PATH = '/V4' LINE_CERTIFICATE_PATH = '/Q' LINE_CHAN_QUERY_PATH = '/CH4' LINE_SQUARE_QUERY_PATH = '/SQS1' CHANNEL_ID = { 'LINE_TIMELINE': '1341209950', 'LINE_WEBTOON': '1401600689', 'LINE_TODAY': '1518712866', 'LINE_STORE': '1376922440', 'LINE_MUSIC': '1381425814', 'LINE_SERVICES': '1459630796' } APP_TYPE = ApplicationType._VALUES_TO_NAMES[400] APP_VER = '7.18.1' CARRIER = '51089, 1-0' SYSTEM_NAME = 'SlackBOT' SYSTEM_VER = '11.2.5' IP_ADDR = '8.8.8.8' EMAIL_REGEX = re.compile(r"[^@]+@[^@]+\.[^@]+") def __init__(self): self.APP_NAME = '%s\t%s\t%s\t%s' % (self.APP_TYPE, self.APP_VER, self.SYSTEM_NAME, self.SYSTEM_VER) self.USER_AGENT = 'SlackBOT/%s' % self.APP_VER
33.902439
107
0.584892
bc35e02e6a58135193f75176bc85a487b2edb75c
3,099
py
Python
pandas/tests/plotting/frame/test_frame_groupby.py
CJL89/pandas
6210077d32a9e9675526ea896e6d1f9189629d4a
[ "BSD-3-Clause" ]
28,899
2016-10-13T03:32:12.000Z
2022-03-31T21:39:05.000Z
pandas/tests/plotting/frame/test_frame_groupby.py
CJL89/pandas
6210077d32a9e9675526ea896e6d1f9189629d4a
[ "BSD-3-Clause" ]
31,004
2016-10-12T23:22:27.000Z
2022-03-31T23:17:38.000Z
pandas/tests/plotting/frame/test_frame_groupby.py
CJL89/pandas
6210077d32a9e9675526ea896e6d1f9189629d4a
[ "BSD-3-Clause" ]
15,149
2016-10-13T03:21:31.000Z
2022-03-31T18:46:47.000Z
""" Test cases for DataFrame.plot """ import numpy as np import pytest import pandas.util._test_decorators as td from pandas import DataFrame import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase pytestmark = pytest.mark.slow @td.skip_if_no_mpl class TestDataFramePlotsGroupby(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame( { "A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform(size=20), } ) def _assert_ytickslabels_visibility(self, axes, expected): for ax, exp in zip(axes, expected): self._check_visible(ax.get_yticklabels(), visible=exp) def _assert_xtickslabels_visibility(self, axes, expected): for ax, exp in zip(axes, expected): self._check_visible(ax.get_xticklabels(), visible=exp) @pytest.mark.parametrize( "kwargs, expected", [ # behavior without keyword ({}, [True, False, True, False]), # set sharey=True should be identical ({"sharey": True}, [True, False, True, False]), # sharey=False, all yticklabels should be visible ({"sharey": False}, [True, True, True, True]), ], ) def test_groupby_boxplot_sharey(self, kwargs, expected): # https://github.com/pandas-dev/pandas/issues/20968 # sharey can now be switched check whether the right # pair of axes is turned on or off df = DataFrame( { "a": [-1.43, -0.15, -3.70, -1.43, -0.14], "b": [0.56, 0.84, 0.29, 0.56, 0.85], "c": [0, 1, 2, 3, 1], }, index=[0, 1, 2, 3, 4], ) axes = df.groupby("c").boxplot(**kwargs) self._assert_ytickslabels_visibility(axes, expected) @pytest.mark.parametrize( "kwargs, expected", [ # behavior without keyword ({}, [True, True, True, True]), # set sharex=False should be identical ({"sharex": False}, [True, True, True, True]), # sharex=True, xticklabels should be visible # only for bottom plots ({"sharex": True}, [False, False, True, True]), ], ) def test_groupby_boxplot_sharex(self, kwargs, expected): # https://github.com/pandas-dev/pandas/issues/20968 # sharex can now be switched check whether the right # pair of axes is turned on or off df = DataFrame( { "a": [-1.43, -0.15, -3.70, -1.43, -0.14], "b": [0.56, 0.84, 0.29, 0.56, 0.85], "c": [0, 1, 2, 3, 1], }, index=[0, 1, 2, 3, 4], ) axes = df.groupby("c").boxplot(**kwargs) self._assert_xtickslabels_visibility(axes, expected)
33.322581
66
0.552436
03b9f4a1284b7165c1012042f8d132e3a257c65b
1,015
py
Python
client_code/utils/__init__.py
hugetim/anvil-extras
ca83f6ada5149514c2affbe1ab081a4ca677c7e0
[ "MIT" ]
null
null
null
client_code/utils/__init__.py
hugetim/anvil-extras
ca83f6ada5149514c2affbe1ab081a4ca677c7e0
[ "MIT" ]
null
null
null
client_code/utils/__init__.py
hugetim/anvil-extras
ca83f6ada5149514c2affbe1ab081a4ca677c7e0
[ "MIT" ]
null
null
null
# SPDX-License-Identifier: MIT # # Copyright (c) 2021 The Anvil Extras project team members listed at # https://github.com/anvilistas/anvil-extras/graphs/contributors # # This software is published at https://github.com/anvilistas/anvil-extras from functools import cache __version__ = "1.7.1" def __dir__(): return ["auto_refreshing", "wait_for_writeback", "timed", "BindingRefreshDict"] @cache def __getattr__(name): # todo use dynamic imports but __import__ is not yet supported in skult if name == "auto_refreshing": from ._auto_refreshing import auto_refreshing return auto_refreshing elif name == "timed": from ._timed import timed return timed elif name == "wait_for_writeback": from ._writeback_waiter import wait_for_writeback return wait_for_writeback elif name == "BindingRefreshDict": from ._auto_refreshing import BindingRefreshDict return BindingRefreshDict else: raise AttributeError(name)
26.710526
83
0.715271
fb8850eb046f6cd0ae3d874216809a8c18ddd654
9,359
py
Python
CartPole_HSPGA.py
unc-optimization/ProxHSPGA
8860ac7acccffcc46eb8e89c2ad4249488c69ad5
[ "MIT" ]
null
null
null
CartPole_HSPGA.py
unc-optimization/ProxHSPGA
8860ac7acccffcc46eb8e89c2ad4249488c69ad5
[ "MIT" ]
null
null
null
CartPole_HSPGA.py
unc-optimization/ProxHSPGA
8860ac7acccffcc46eb8e89c2ad4249488c69ad5
[ "MIT" ]
3
2020-03-10T19:08:01.000Z
2022-01-05T01:49:32.000Z
"""@package CartPole_HSPGA This package implements the HSPGA algorithm for CartPole-v0 environment. Copyright (c) 2020 Nhan H. Pham, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill Copyright (c) 2020 Lam M. Nguyen, IBM Research, Thomas J. Watson Research Center Yorktown Heights Copyright (c) 2020 Dzung T. Phan, IBM Research, Thomas J. Watson Research Center Yorktown Heights Copyright (c) 2020 Phuong Ha Nguyen, Department of Electrical and Computer Engineering, University of Connecticut Copyright (c) 2020 Marten van Dijk, Department of Electrical and Computer Engineering, University of Connecticut Copyright (c) 2020 Quoc Tran-Dinh, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill All rights reserved. If you found this helpful and are using it within our software please cite the following publication: * N. H. Pham, L. M. Nguyen, D. T. Phan, P. H. Nguyen, M. van Dijk and Q. Tran-Dinh, **A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning**, The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020), Palermo, Italy, 2020. """ from rllab.envs.gym_env import GymEnv from rllab.policies.categorical_mlp_policy import CategoricalMLPPolicy import numpy as np import theano import theano.tensor as TT from rllab.sampler import parallel_sampler from lasagne.updates import adam import pandas as pd import random import os from utils.utils import * # whether to load existing policy load_policy=True # snapshot batchsize snap_bs = 20 # effective length of a trajectory traj_length = 200 # minibatch size in the inner loop m_bs = 3 # number of trajectories for evaluation num_eval_traj = 50 # discount factor discount = 0.99 # stepsizes learning_rate = 5e-3 beta = 0.99 # number of inner iterations max_inner = 3 # total number of trajectories max_num_traj = 5000 # initialize environment env = GymEnv("CartPole-v0") # initialize a neural network policy with a single hidden layer of 8 hidden units policy = CategoricalMLPPolicy(env.spec, hidden_sizes=(8,)) prev_policy = CategoricalMLPPolicy(env.spec, hidden_sizes=(8,)) # policy.distribution returns a distribution object under rllab.distributions. It contains many utilities for computing # distribution-related quantities, given the computed dist_info_vars. Below we use dist.log_likelihood_sym to compute # the symbolic log-likelihood. For this example, the corresponding distribution is an instance of the class # rllab.distributions.DiagonalGaussian dist = policy.distribution prev_dist = prev_policy.distribution # create placeholders observations_var = env.observation_space.new_tensor_variable( 'observations', # It should have 1 extra dimension since we want to represent a list of observations extra_dims=1 ) actions_var = env.action_space.new_tensor_variable( 'actions', extra_dims=1 ) d_rewards_var = TT.vector('d_rewards') importance_weights_var = TT.vector('importance_weight') # policy.dist_info_sym returns a dictionary, whose values are symbolic expressions for quantities related to the # distribution of the actions. For a Gaussian policy, it contains the mean and (log) standard deviation. dist_info_vars = policy.dist_info_sym(observations_var) prev_dist_info_vars = prev_policy.dist_info_sym(observations_var) params = policy.get_params(trainable=True) prev_params = prev_policy.get_params(trainable=True) importance_weights = dist.likelihood_ratio_sym(actions_var,dist_info_vars,prev_dist_info_vars) # create surrogate losses surr_on1 = TT.mean(- dist.log_likelihood_sym(actions_var,dist_info_vars)*d_rewards_var) surr_on2 = TT.mean(prev_dist.log_likelihood_sym(actions_var,prev_dist_info_vars)*d_rewards_var*importance_weights_var) grad = theano.grad(surr_on1, params) grad_diff = [sum(x) for x in zip(theano.grad(surr_on1,params),theano.grad(surr_on2,prev_params))] print("Parameters shapes") for i in range(len(params)): print(params[i].shape.eval()) eval_grad1 = TT.matrix('eval_grad0',dtype=params[0].dtype) eval_grad2 = TT.vector('eval_grad1',dtype=params[1].dtype) eval_grad3 = TT.matrix('eval_grad3',dtype=params[2].dtype) eval_grad4 = TT.vector('eval_grad4',dtype=params[3].dtype) f_compute_grad = theano.function( inputs = [observations_var, actions_var, d_rewards_var], outputs = grad, allow_input_downcast=True ) f_update = theano.function( inputs = [eval_grad1, eval_grad2, eval_grad3, eval_grad4], outputs = None, updates = adam([eval_grad1, eval_grad2, eval_grad3, eval_grad4], params, learning_rate=learning_rate) ) f_importance_weights = theano.function( inputs = [observations_var, actions_var], outputs = importance_weights, allow_input_downcast=True ) f_compute_grad_diff = theano.function( inputs=[observations_var, actions_var, d_rewards_var, importance_weights_var], outputs=grad_diff, allow_input_downcast=True ) # log directory log_dir = "log_file/Cartpole_Discrete/HSPGA" + "_lr" + str(learning_rate) # check if directory exists, if not, create directory if not os.path.exists( log_dir ): os.makedirs( log_dir ) # setup parallel sampler parallel_sampler.populate_task(env, policy) parallel_sampler.initialize(8) # initialize log Data Frame avg_return_data = pd.DataFrame() # loop for 10 runs for k in range(10): print("Run #{}".format(k)) # load policy file_name = 'cartpole_policy' + '.txt' if load_policy: policy.set_param_values(np.loadtxt('save_model/' + file_name), trainable=True) else: np.savetxt("save_model/" + file_name,policy.get_param_values(trainable=True)) load_policy = True # intial setup avg_return = list() eps_list = [] max_rewards = -np.inf num_traj = 0 # loop till done while num_traj <= max_num_traj: # sample snapshot batch of trajectories paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),snap_bs,traj_length,show_bar=False) paths = paths[:snap_bs] # extract information observations, actions, d_rewards = extract_path(paths, discount) # compute policy gradient v_est = compute_snapshot_grad_est(f_compute_grad, observations, actions, d_rewards) # perform update f_update(v_est[0],v_est[1],v_est[2],v_est[3]) # sample trajectories for evaluating current policy tmp_paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),num_eval_traj,show_bar=False) avg_return.append(np.mean([sum(p["rewards"]) for p in tmp_paths])) eps_list.append(num_traj) print(str(num_traj)+' Average Return:', avg_return[-1]) # update best policy if avg_return[-1] > max_rewards: max_rewards = avg_return[-1] best_policy_ = policy.get_param_values(trainable=True) # update number of trajectories sampled num_traj += snap_bs # inner loop for _ in range(max_inner): # sample trajectories sub_paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),2*m_bs,traj_length,show_bar=False) # update number of trajectories sampled num_traj += 2*m_bs sub_paths_1 = sub_paths[0:m_bs-1] sub_paths_2 = sub_paths[m_bs:2*m_bs-1] # extract information sub_observations_1, sub_actions_1, sub_d_rewards_1 = extract_path(sub_paths_1, discount) sub_observations_2, sub_actions_2, sub_d_rewards_2 = extract_path(sub_paths_2, discount) path_info_1 = { 'obs': sub_observations_1, 'acts': sub_actions_1, 'rws': sub_d_rewards_1, } path_info_2 = { 'obs': sub_observations_2, 'acts': sub_actions_2, 'rws': sub_d_rewards_2, } # compute Hybrid SPG estimator v_est = compute_hybrid_spg_est(f_compute_grad,f_compute_grad_diff,f_importance_weights,path_info_1,path_info_2,beta,v_est) # perform update prev_policy.set_param_values(policy.get_param_values(trainable=True), trainable=True) f_update(v_est[0],v_est[1],v_est[2],v_est[3]) # check if we are done if num_traj >= max_num_traj: tmp_paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),num_eval_traj,show_bar=False) avg_return.append(np.mean([sum(p["rewards"]) for p in tmp_paths])) eps_list.append(num_traj) print(str(num_traj)+' Average Return:', avg_return[-1]) break # log data if k==0: avg_return_data["Episodes"]=eps_list avg_return_data["MeanRewards_"+str(k)]=avg_return avg_return_df = pd.DataFrame() avg_return_df["Episodes"]=eps_list avg_return_df["MeanRewards"]=avg_return avg_return_df.to_csv(os.path.join(log_dir,"avg_return_" + str(k) + ".csv"), index=False) np.savetxt(os.path.join(log_dir,"final_policy_"+str(k) + ".txt"),policy.get_param_values(trainable=True)) print(avg_return_data) avg_return_data.to_csv(os.path.join(log_dir,"avg_return_total.csv"),index=False)
34.921642
275
0.726573
bce15b3a324020907ab870e60a049109e42b132e
8,566
py
Python
plugins/tcpsubnet.py
whoISstar/lmp
d16c80d377eb479133eb4441b1a76d99013f5876
[ "Apache-2.0" ]
null
null
null
plugins/tcpsubnet.py
whoISstar/lmp
d16c80d377eb479133eb4441b1a76d99013f5876
[ "Apache-2.0" ]
1
2021-11-12T07:53:06.000Z
2021-11-12T07:53:06.000Z
plugins/tcpsubnet.py
dxlearn/lmp
2bf9b3e38a72a263bb6b02410a6e7a37fa1855f5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # @lint-avoid-python-3-compatibility-imports # # tcpsubnet Summarize TCP bytes sent to different subnets. # For Linux, uses BCC, eBPF. Embedded C. # # USAGE: tcpsubnet [-h] [-v] [-J] [-f FORMAT] [-i INTERVAL] [subnets] # # This uses dynamic tracing of kernel functions, and will need to be updated # to match kernel changes. # # This is an adaptation of tcptop from written by Brendan Gregg. # # WARNING: This traces all send at the TCP level, and while it # summarizes data in-kernel to reduce overhead, there may still be some # overhead at high TCP send/receive rates (eg, ~13% of one CPU at 100k TCP # events/sec. This is not the same as packet rate: funccount can be used to # count the kprobes below to find out the TCP rate). Test in a lab environment # first. If your send rate is low (eg, <1k/sec) then the overhead is # expected to be negligible. # # Copyright 2017 Rodrigo Manyari # Licensed under the Apache License, Version 2.0 (the "License") # # 03-Oct-2017 Rodrigo Manyari Created this based on tcptop. # 13-Feb-2018 Rodrigo Manyari Fix pep8 errors, some refactoring. # 05-Mar-2018 Rodrigo Manyari Add date time to output. import argparse import json import logging import struct import socket from bcc import BPF from datetime import datetime as dt from time import sleep # for influxdb from init_db import influx_client from db_modules import write2db from const import DatabaseType # arguments examples = """examples: ./tcpsubnet # Trace TCP sent to the default subnets: # 127.0.0.1/32,10.0.0.0/8,172.16.0.0/12, # 192.168.0.0/16,0.0.0.0/0 ./tcpsubnet -f K # Trace TCP sent to the default subnets # aggregated in KBytes. ./tcpsubnet 10.80.0.0/24 # Trace TCP sent to 10.80.0.0/24 only ./tcpsubnet -J # Format the output in JSON. """ default_subnets = "127.0.0.1/32,10.0.0.0/8," \ "172.16.0.0/12,192.168.0.0/16,0.0.0.0/0" parser = argparse.ArgumentParser( description="Summarize TCP send and aggregate by subnet", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("subnets", help="comma separated list of subnets", type=str, nargs="?", default=default_subnets) parser.add_argument("-v", "--verbose", action="store_true", help="output debug statements") parser.add_argument("-J", "--json", action="store_true", help="format output in JSON") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) parser.add_argument("-f", "--format", default="B", help="[bkmBKM] format to report: bits, Kbits, Mbits, bytes, " + "KBytes, MBytes (default B)", choices=["b", "k", "m", "B", "K", "M"]) parser.add_argument("-i", "--interval", default=1, type=int, help="output interval, in seconds (default 1)") args = parser.parse_args() level = logging.INFO if args.verbose: level = logging.DEBUG logging.basicConfig(level=level) logging.debug("Starting with the following args:") logging.debug(args) # args checking if int(args.interval) <= 0: logging.error("Invalid interval, must be > 0. Exiting.") exit(1) else: args.interval = int(args.interval) # map of supported formats formats = { "b": lambda x: (x * 8), "k": lambda x: ((x * 8) / 1024), "m": lambda x: ((x * 8) / pow(1024, 2)), "B": lambda x: x, "K": lambda x: x / 1024, "M": lambda x: x / pow(1024, 2) } # Let's swap the string with the actual numeric value # once here so we don't have to do it on every interval formatFn = formats[args.format] # define the basic structure of the BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #include <net/sock.h> #include <bcc/proto.h> struct index_key_t { u32 index; }; BPF_HASH(ipv4_send_bytes, struct index_key_t); int kprobe__tcp_sendmsg(struct pt_regs *ctx, struct sock *sk, struct msghdr *msg, size_t size) { u16 family = sk->__sk_common.skc_family; if (family == AF_INET) { u32 dst = sk->__sk_common.skc_daddr; unsigned categorized = 0; __SUBNETS__ } return 0; } """ # data structure from template class lmp_data(object): def __init__(self,a,b,c,d): self.time = a self.glob = b self.subnet = c self.throughput = d data_struct = {"measurement":'tcpsubnet', "time":[], "tags":['glob',], "fields":['time','subnet','throughput']} # Takes in a mask and returns the integer equivalent # e.g. # mask_to_int(8) returns 4278190080 def mask_to_int(n): return ((1 << n) - 1) << (32 - n) # Takes in a list of subnets and returns a list # of tuple-3 containing: # - The subnet info at index 0 # - The addr portion as an int at index 1 # - The mask portion as an int at index 2 # # e.g. # parse_subnets([10.10.0.0/24]) returns # [ # ['10.10.0.0/24', 168427520, 4294967040], # ] def parse_subnets(subnets): m = [] for s in subnets: parts = s.split("/") if len(parts) != 2: msg = "Subnet [%s] is invalid, please refer to the examples." % s raise ValueError(msg) netaddr_int = 0 mask_int = 0 try: netaddr_int = struct.unpack("!I", socket.inet_aton(parts[0]))[0] except: msg = ("Invalid net address in subnet [%s], " + "please refer to the examples.") % s raise ValueError(msg) try: mask_int = int(parts[1]) except: msg = "Invalid mask in subnet [%s]. Mask must be an int" % s raise ValueError(msg) if mask_int < 0 or mask_int > 32: msg = ("Invalid mask in subnet [%s]. Must be an " + "int between 0 and 32.") % s raise ValueError(msg) mask_int = mask_to_int(int(parts[1])) m.append([s, netaddr_int, mask_int]) return m def generate_bpf_subnets(subnets): template = """ if (!categorized && (__NET_ADDR__ & __NET_MASK__) == (dst & __NET_MASK__)) { struct index_key_t key = {.index = __POS__}; ipv4_send_bytes.increment(key, size); categorized = 1; } """ bpf = '' for i, s in enumerate(subnets): branch = template branch = branch.replace("__NET_ADDR__", str(socket.htonl(s[1]))) branch = branch.replace("__NET_MASK__", str(socket.htonl(s[2]))) branch = branch.replace("__POS__", str(i)) bpf += branch return bpf subnets = [] if args.subnets: subnets = args.subnets.split(",") subnets = parse_subnets(subnets) logging.debug("Packets are going to be categorized in the following subnets:") logging.debug(subnets) bpf_subnets = generate_bpf_subnets(subnets) # initialize BPF bpf_text = bpf_text.replace("__SUBNETS__", bpf_subnets) logging.debug("Done preprocessing the BPF program, " + "this is what will actually get executed:") logging.debug(bpf_text) if args.ebpf: print(bpf_text) exit() b = BPF(text=bpf_text) ipv4_send_bytes = b["ipv4_send_bytes"] # if not args.json: # print("Tracing... Output every %d secs. Hit Ctrl-C to end" % args.interval) # output exiting = 0 while (1): try: sleep(args.interval) except KeyboardInterrupt: exiting = 1 # IPv4: build dict of all seen keys keys = ipv4_send_bytes for k, v in ipv4_send_bytes.items(): if k not in keys: keys[k] = v # to hold json data data = {} # output # now = dt.now() # data['date'] = now.strftime('%x') # data['time'] = now.strftime('%X') # data['entries'] = {} # if not args.json: # print(now.strftime('%x %X')) for k, v in reversed(sorted(keys.items(), key=lambda keys: keys[1].value)): send_bytes = 0 if k in ipv4_send_bytes: send_bytes = int(ipv4_send_bytes[k].value) subnet = subnets[k.index][0] send = formatFn(send_bytes) # if args.json: # data['entries'][subnet] = send # else: # print("%-21s %6d" % (subnet, send)) # write to influxdb test_data = lmp_data(dt.now().isoformat(),'glob',subnet, send) #print(test_data) write2db(data_struct, test_data, influx_client, DatabaseType.INFLUXDB.value) if args.json: print(json.dumps(data)) ipv4_send_bytes.clear() if exiting: exit(0)
30.05614
84
0.618842
1a29e8021f43c52bd2436ef9b804215ae2571660
107
py
Python
test_project/tests/admin.py
epanchee/django-autocomplete-light
ebc00e78456aed51cf943890d899a75a6b56400d
[ "MIT" ]
1
2020-09-18T21:35:06.000Z
2020-09-18T21:35:06.000Z
test_project/tests/admin.py
epanchee/django-autocomplete-light
ebc00e78456aed51cf943890d899a75a6b56400d
[ "MIT" ]
null
null
null
test_project/tests/admin.py
epanchee/django-autocomplete-light
ebc00e78456aed51cf943890d899a75a6b56400d
[ "MIT" ]
1
2020-09-18T21:35:08.000Z
2020-09-18T21:35:08.000Z
from django.contrib import admin from django.contrib.auth.models import User admin.site.unregister(User)
17.833333
43
0.82243
12967185a9bff3ff51bfb781411bb007ec0ec512
229
py
Python
rhea/system/memmap/__init__.py
mngr0/rhea
9ad8d193f7f78f1d192af438568d45fb5a398c8c
[ "MIT" ]
null
null
null
rhea/system/memmap/__init__.py
mngr0/rhea
9ad8d193f7f78f1d192af438568d45fb5a398c8c
[ "MIT" ]
null
null
null
rhea/system/memmap/__init__.py
mngr0/rhea
9ad8d193f7f78f1d192af438568d45fb5a398c8c
[ "MIT" ]
null
null
null
from __future__ import absolute_import # generic memory-space object from .memspace import MemorySpace # register file objects from .regfile import RegisterBits from .regfile import Register from .regfile import RegisterFile
19.083333
38
0.829694
ac6d95a06ca58025d8e0b4c59463f6fa7b7ac887
3,124
py
Python
sympy/printing/python.py
bigfooted/sympy
1fb2490fa2fa9b476da450f02a25b03c1dc07cf0
[ "BSD-3-Clause" ]
603
2020-12-23T13:49:32.000Z
2022-03-31T23:38:03.000Z
sympy/printing/python.py
bigfooted/sympy
1fb2490fa2fa9b476da450f02a25b03c1dc07cf0
[ "BSD-3-Clause" ]
387
2020-12-15T14:54:04.000Z
2022-03-31T07:00:21.000Z
sympy/printing/python.py
bigfooted/sympy
1fb2490fa2fa9b476da450f02a25b03c1dc07cf0
[ "BSD-3-Clause" ]
35
2021-03-26T03:12:04.000Z
2022-03-23T10:15:10.000Z
import keyword as kw import sympy from .repr import ReprPrinter from .str import StrPrinter # A list of classes that should be printed using StrPrinter STRPRINT = ("Add", "Infinity", "Integer", "Mul", "NegativeInfinity", "Pow", "Zero") class PythonPrinter(ReprPrinter, StrPrinter): """A printer which converts an expression into its Python interpretation.""" def __init__(self, settings=None): super().__init__(settings) self.symbols = [] self.functions = [] # Create print methods for classes that should use StrPrinter instead # of ReprPrinter. for name in STRPRINT: f_name = "_print_%s" % name f = getattr(StrPrinter, f_name) setattr(PythonPrinter, f_name, f) def _print_Function(self, expr): func = expr.func.__name__ if not hasattr(sympy, func) and not func in self.functions: self.functions.append(func) return StrPrinter._print_Function(self, expr) # procedure (!) for defining symbols which have be defined in print_python() def _print_Symbol(self, expr): symbol = self._str(expr) if symbol not in self.symbols: self.symbols.append(symbol) return StrPrinter._print_Symbol(self, expr) def _print_module(self, expr): raise ValueError('Modules in the expression are unacceptable') def python(expr, **settings): """Return Python interpretation of passed expression (can be passed to the exec() function without any modifications)""" printer = PythonPrinter(settings) exprp = printer.doprint(expr) result = '' # Returning found symbols and functions renamings = {} for symbolname in printer.symbols: newsymbolname = symbolname # Escape symbol names that are reserved python keywords if kw.iskeyword(newsymbolname): while True: newsymbolname += "_" if (newsymbolname not in printer.symbols and newsymbolname not in printer.functions): renamings[sympy.Symbol( symbolname)] = sympy.Symbol(newsymbolname) break result += newsymbolname + ' = Symbol(\'' + symbolname + '\')\n' for functionname in printer.functions: newfunctionname = functionname # Escape function names that are reserved python keywords if kw.iskeyword(newfunctionname): while True: newfunctionname += "_" if (newfunctionname not in printer.symbols and newfunctionname not in printer.functions): renamings[sympy.Function( functionname)] = sympy.Function(newfunctionname) break result += newfunctionname + ' = Function(\'' + functionname + '\')\n' if renamings: exprp = expr.subs(renamings) result += 'e = ' + printer._str(exprp) return result def print_python(expr, **settings): """Print output of python() function""" print(python(expr, **settings))
35.5
80
0.620038
748d7141f121f1071e4788807d20fc1fe277aa5a
7,906
py
Python
sdk/lusid/api/scopes_api.py
finbourne/lusid-sdk-python
d238c5c661908639dab57d026966630448bfb0d6
[ "MIT" ]
6
2018-06-19T15:50:17.000Z
2022-03-26T22:53:16.000Z
sdk/lusid/api/scopes_api.py
finbourne/lusid-sdk-python-preview
6b1ae2c634f4b9a816e070470e9c8e6e06eae0ee
[ "MIT" ]
98
2020-04-15T06:05:43.000Z
2022-03-01T10:25:25.000Z
sdk/lusid/api/scopes_api.py
finbourne/lusid-sdk-python-preview
6b1ae2c634f4b9a816e070470e9c8e6e06eae0ee
[ "MIT" ]
9
2019-09-30T11:19:25.000Z
2021-11-17T19:49:59.000Z
# coding: utf-8 """ LUSID API FINBOURNE Technology # noqa: E501 The version of the OpenAPI document: 0.11.3648 Contact: info@finbourne.com Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from lusid.api_client import ApiClient from lusid.exceptions import ( # noqa: F401 ApiTypeError, ApiValueError ) class ScopesApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def list_scopes(self, **kwargs): # noqa: E501 """[EARLY ACCESS] ListScopes: List Scopes # noqa: E501 List all the scopes that contain data. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_scopes(async_req=True) >>> result = thread.get() :param filter: Expression to filter the result set. For example, to filter on the Scope, use \"scope eq 'string'\" Read more about filtering results from LUSID here https://support.lusid.com/filtering-results-from-lusid. :type filter: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: ResourceListOfScopeDefinition """ kwargs['_return_http_data_only'] = True return self.list_scopes_with_http_info(**kwargs) # noqa: E501 def list_scopes_with_http_info(self, **kwargs): # noqa: E501 """[EARLY ACCESS] ListScopes: List Scopes # noqa: E501 List all the scopes that contain data. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_scopes_with_http_info(async_req=True) >>> result = thread.get() :param filter: Expression to filter the result set. For example, to filter on the Scope, use \"scope eq 'string'\" Read more about filtering results from LUSID here https://support.lusid.com/filtering-results-from-lusid. :type filter: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(ResourceListOfScopeDefinition, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'filter' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method list_scopes" % key ) local_var_params[key] = val del local_var_params['kwargs'] if self.api_client.client_side_validation and ('filter' in local_var_params and # noqa: E501 len(local_var_params['filter']) > 2147483647): # noqa: E501 raise ApiValueError("Invalid value for parameter `filter` when calling `list_scopes`, length must be less than or equal to `2147483647`") # noqa: E501 if self.api_client.client_side_validation and ('filter' in local_var_params and # noqa: E501 len(local_var_params['filter']) < 0): # noqa: E501 raise ApiValueError("Invalid value for parameter `filter` when calling `list_scopes`, length must be greater than or equal to `0`") # noqa: E501 if self.api_client.client_side_validation and 'filter' in local_var_params and not re.search(r'^[\s\S]*$', local_var_params['filter']): # noqa: E501 raise ApiValueError("Invalid value for parameter `filter` when calling `list_scopes`, must conform to the pattern `/^[\s\S]*$/`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'filter' in local_var_params and local_var_params['filter'] is not None: # noqa: E501 query_params.append(('filter', local_var_params['filter'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['text/plain', 'application/json', 'text/json']) # noqa: E501 header_params['Accept-Encoding'] = "gzip, deflate, br" # Authentication setting auth_settings = ['oauth2'] # noqa: E501 response_types_map = { 200: "ResourceListOfScopeDefinition", 400: "LusidValidationProblemDetails", } return self.api_client.call_api( '/api/scopes', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_types_map=response_types_map, auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth'))
43.679558
254
0.605742
25038f40daf1252fd827d5ec357322e0d21a070f
184,026
py
Python
numpy/ma/tests/test_core.py
schaefed/numpy
6d5a74261d497f9989c823626ec955efe88348ae
[ "BSD-3-Clause" ]
null
null
null
numpy/ma/tests/test_core.py
schaefed/numpy
6d5a74261d497f9989c823626ec955efe88348ae
[ "BSD-3-Clause" ]
null
null
null
numpy/ma/tests/test_core.py
schaefed/numpy
6d5a74261d497f9989c823626ec955efe88348ae
[ "BSD-3-Clause" ]
1
2019-08-14T08:08:41.000Z
2019-08-14T08:08:41.000Z
# pylint: disable-msg=W0400,W0511,W0611,W0612,W0614,R0201,E1102 """Tests suite for MaskedArray & subclassing. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu """ from __future__ import division, absolute_import, print_function __author__ = "Pierre GF Gerard-Marchant" import warnings import pickle import operator import itertools from functools import reduce import numpy as np import numpy.ma.core import numpy.core.fromnumeric as fromnumeric import numpy.core.umath as umath from numpy.testing import ( run_module_suite, assert_raises, assert_warns, suppress_warnings ) from numpy import ndarray from numpy.compat import asbytes, asbytes_nested from numpy.ma.testutils import ( assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal ) from numpy.ma.core import ( MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, ) pi = np.pi suppress_copy_mask_on_assignment = suppress_warnings() suppress_copy_mask_on_assignment.filter( numpy.ma.core.MaskedArrayFutureWarning, "setting an item on a masked array which has a shared mask will not copy") class TestMaskedArray(object): # Base test class for MaskedArrays. def setup(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) def test_basicattributes(self): # Tests some basic array attributes. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a.ndim, 1) assert_equal(b.ndim, 1) assert_equal(a.size, 3) assert_equal(b.size, 3) assert_equal(a.shape, (3,)) assert_equal(b.shape, (3,)) def test_basic0d(self): # Checks masking a scalar x = masked_array(0) assert_equal(str(x), '0') x = masked_array(0, mask=True) assert_equal(str(x), str(masked_print_option)) x = masked_array(0, mask=False) assert_equal(str(x), '0') x = array(0, mask=1) assert_(x.filled().dtype is x._data.dtype) def test_basic1d(self): # Test of basic array creation and properties in 1 dimension. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_(not isMaskedArray(x)) assert_(isMaskedArray(xm)) assert_((xm - ym).filled(0).any()) fail_if_equal(xm.mask.astype(int), ym.mask.astype(int)) s = x.shape assert_equal(np.shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.dtype, x.dtype) assert_equal(zm.dtype, z.dtype) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_array_equal(xm, xf) assert_array_equal(filled(xm, 1.e20), xf) assert_array_equal(x, xm) def test_basic2d(self): # Test of basic array creation and properties in 2 dimensions. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d for s in [(4, 3), (6, 2)]: x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s assert_(not isMaskedArray(x)) assert_(isMaskedArray(xm)) assert_equal(shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_equal(xm, xf) assert_equal(filled(xm, 1.e20), xf) assert_equal(x, xm) def test_concatenate_basic(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # basic concatenation assert_equal(np.concatenate((x, y)), concatenate((xm, ym))) assert_equal(np.concatenate((x, y)), concatenate((x, y))) assert_equal(np.concatenate((x, y)), concatenate((xm, y))) assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x))) def test_concatenate_alongaxis(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # Concatenation along an axis s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s assert_equal(xm.mask, np.reshape(m1, s)) assert_equal(ym.mask, np.reshape(m2, s)) xmym = concatenate((xm, ym), 1) assert_equal(np.concatenate((x, y), 1), xmym) assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask) x = zeros(2) y = array(ones(2), mask=[False, True]) z = concatenate((x, y)) assert_array_equal(z, [0, 0, 1, 1]) assert_array_equal(z.mask, [False, False, False, True]) z = concatenate((y, x)) assert_array_equal(z, [1, 1, 0, 0]) assert_array_equal(z.mask, [False, True, False, False]) def test_concatenate_flexible(self): # Tests the concatenation on flexible arrays. data = masked_array(list(zip(np.random.rand(10), np.arange(10))), dtype=[('a', float), ('b', int)]) test = concatenate([data[:5], data[5:]]) assert_equal_records(test, data) def test_creation_ndmin(self): # Check the use of ndmin x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2) assert_equal(x.shape, (1, 3)) assert_equal(x._data, [[1, 2, 3]]) assert_equal(x._mask, [[1, 0, 0]]) def test_creation_ndmin_from_maskedarray(self): # Make sure we're not losing the original mask w/ ndmin x = array([1, 2, 3]) x[-1] = masked xx = array(x, ndmin=2, dtype=float) assert_equal(x.shape, x._mask.shape) assert_equal(xx.shape, xx._mask.shape) def test_creation_maskcreation(self): # Tests how masks are initialized at the creation of Maskedarrays. data = arange(24, dtype=float) data[[3, 6, 15]] = masked dma_1 = MaskedArray(data) assert_equal(dma_1.mask, data.mask) dma_2 = MaskedArray(dma_1) assert_equal(dma_2.mask, dma_1.mask) dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6) fail_if_equal(dma_3.mask, dma_1.mask) x = array([1, 2, 3], mask=True) assert_equal(x._mask, [True, True, True]) x = array([1, 2, 3], mask=False) assert_equal(x._mask, [False, False, False]) y = array([1, 2, 3], mask=x._mask, copy=False) assert_(np.may_share_memory(x.mask, y.mask)) y = array([1, 2, 3], mask=x._mask, copy=True) assert_(not np.may_share_memory(x.mask, y.mask)) def test_creation_with_list_of_maskedarrays(self): # Tests creating a masked array from a list of masked arrays. x = array(np.arange(5), mask=[1, 0, 0, 0, 0]) data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]) x.mask = nomask data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) assert_(data.mask is nomask) def test_creation_from_ndarray_with_padding(self): x = np.array([('A', 0)], dtype={'names':['f0','f1'], 'formats':['S4','i8'], 'offsets':[0,8]}) data = array(x) # used to fail due to 'V' padding field in x.dtype.descr def test_asarray(self): (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d xm.fill_value = -9999 xm._hardmask = True xmm = asarray(xm) assert_equal(xmm._data, xm._data) assert_equal(xmm._mask, xm._mask) assert_equal(xmm.fill_value, xm.fill_value) assert_equal(xmm._hardmask, xm._hardmask) def test_asarray_default_order(self): # See Issue #6646 m = np.eye(3).T assert_(not m.flags.c_contiguous) new_m = asarray(m) assert_(new_m.flags.c_contiguous) def test_asarray_enforce_order(self): # See Issue #6646 m = np.eye(3).T assert_(not m.flags.c_contiguous) new_m = asarray(m, order='C') assert_(new_m.flags.c_contiguous) def test_fix_invalid(self): # Checks fix_invalid. with np.errstate(invalid='ignore'): data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1]) data_fixed = fix_invalid(data) assert_equal(data_fixed._data, [data.fill_value, 0., 1.]) assert_equal(data_fixed._mask, [1., 0., 1.]) def test_maskedelement(self): # Test of masked element x = arange(6) x[1] = masked assert_(str(masked) == '--') assert_(x[1] is masked) assert_equal(filled(x[1], 0), 0) def test_set_element_as_object(self): # Tests setting elements with object a = empty(1, dtype=object) x = (1, 2, 3, 4, 5) a[0] = x assert_equal(a[0], x) assert_(a[0] is x) import datetime dt = datetime.datetime.now() a[0] = dt assert_(a[0] is dt) def test_indexing(self): # Tests conversions and indexing x1 = np.array([1, 2, 4, 3]) x2 = array(x1, mask=[1, 0, 0, 0]) x3 = array(x1, mask=[0, 1, 0, 1]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? assert_equal(np.sort(x1), sort(x2, endwith=False)) # tests of indexing assert_(type(x2[1]) is type(x1[1])) assert_(x1[1] == x2[1]) assert_(x2[0] is masked) assert_equal(x1[2], x2[2]) assert_equal(x1[2:5], x2[2:5]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[2] = 9 x2[2] = 9 assert_equal(x1, x2) x1[1:3] = 99 x2[1:3] = 99 assert_equal(x1, x2) x2[1] = masked assert_equal(x1, x2) x2[1:3] = masked assert_equal(x1, x2) x2[:] = x1 x2[1] = masked assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) assert_(allequal(x4, array([1, 2, 3, 4]))) x1 = np.arange(5) * 1.0 x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_equal(3.0, x2.fill_value) x1 = array([1, 'hello', 2, 3], object) x2 = np.array([1, 'hello', 2, 3], object) s1 = x1[1] s2 = x2[1] assert_equal(type(s2), str) assert_equal(type(s1), str) assert_equal(s1, s2) assert_(x1[1:1].shape == (0,)) def test_matrix_indexing(self): # Tests conversions and indexing x1 = np.matrix([[1, 2, 3], [4, 3, 2]]) x2 = array(x1, mask=[[1, 0, 0], [0, 1, 0]]) x3 = array(x1, mask=[[0, 1, 0], [1, 0, 0]]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? # tests of indexing assert_(type(x2[1, 0]) is type(x1[1, 0])) assert_(x1[1, 0] == x2[1, 0]) assert_(x2[1, 1] is masked) assert_equal(x1[0, 2], x2[0, 2]) assert_equal(x1[0, 1:], x2[0, 1:]) assert_equal(x1[:, 2], x2[:, 2]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[0, 2] = 9 x2[0, 2] = 9 assert_equal(x1, x2) x1[0, 1:] = 99 x2[0, 1:] = 99 assert_equal(x1, x2) x2[0, 1] = masked assert_equal(x1, x2) x2[0, 1:] = masked assert_equal(x1, x2) x2[0, :] = x1[0, :] x2[0, 1] = masked assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]]))) x3[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x3)[1], array([1, 1, 0]))) assert_(allequal(getmask(x3[1]), array([1, 1, 0]))) x4[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x4[1]), array([1, 1, 0]))) assert_(allequal(x4[1], array([1, 2, 3]))) x1 = np.matrix(np.arange(5) * 1.0) x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_equal(3.0, x2.fill_value) @suppress_copy_mask_on_assignment def test_copy(self): # Tests of some subtle points of copying and sizing. n = [0, 0, 1, 0, 0] m = make_mask(n) m2 = make_mask(m) assert_(m is m2) m3 = make_mask(m, copy=1) assert_(m is not m3) x1 = np.arange(5) y1 = array(x1, mask=m) assert_equal(y1._data.__array_interface__, x1.__array_interface__) assert_(allequal(x1, y1.data)) assert_equal(y1._mask.__array_interface__, m.__array_interface__) y1a = array(y1) assert_(y1a._data.__array_interface__ == y1._data.__array_interface__) assert_(y1a.mask is y1.mask) y2 = array(x1, mask=m3) assert_(y2._data.__array_interface__ == x1.__array_interface__) assert_(y2._mask.__array_interface__ == m3.__array_interface__) assert_(y2[2] is masked) y2[2] = 9 assert_(y2[2] is not masked) assert_(y2._mask.__array_interface__ == m3.__array_interface__) assert_(allequal(y2.mask, 0)) y2a = array(x1, mask=m, copy=1) assert_(y2a._data.__array_interface__ != x1.__array_interface__) #assert_( y2a.mask is not m) assert_(y2a._mask.__array_interface__ != m.__array_interface__) assert_(y2a[2] is masked) y2a[2] = 9 assert_(y2a[2] is not masked) #assert_( y2a.mask is not m) assert_(y2a._mask.__array_interface__ != m.__array_interface__) assert_(allequal(y2a.mask, 0)) y3 = array(x1 * 1.0, mask=m) assert_(filled(y3).dtype is (x1 * 1.0).dtype) x4 = arange(4) x4[2] = masked y4 = resize(x4, (8,)) assert_equal(concatenate([x4, x4]), y4) assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) y5 = repeat(x4, (2, 2, 2, 2), axis=0) assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) y6 = repeat(x4, 2, axis=0) assert_equal(y5, y6) y7 = x4.repeat((2, 2, 2, 2), axis=0) assert_equal(y5, y7) y8 = x4.repeat(2, 0) assert_equal(y5, y8) y9 = x4.copy() assert_equal(y9._data, x4._data) assert_equal(y9._mask, x4._mask) x = masked_array([1, 2, 3], mask=[0, 1, 0]) # Copy is False by default y = masked_array(x) assert_equal(y._data.ctypes.data, x._data.ctypes.data) assert_equal(y._mask.ctypes.data, x._mask.ctypes.data) y = masked_array(x, copy=True) assert_not_equal(y._data.ctypes.data, x._data.ctypes.data) assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data) def test_copy_on_python_builtins(self): # Tests copy works on python builtins (issue#8019) assert_(isMaskedArray(np.ma.copy([1,2,3]))) assert_(isMaskedArray(np.ma.copy((1,2,3)))) def test_copy_immutable(self): # Tests that the copy method is immutable, GitHub issue #5247 a = np.ma.array([1, 2, 3]) b = np.ma.array([4, 5, 6]) a_copy_method = a.copy b.copy assert_equal(a_copy_method(), [1, 2, 3]) def test_deepcopy(self): from copy import deepcopy a = array([0, 1, 2], mask=[False, True, False]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) assert_not_equal(id(a._mask), id(copied._mask)) copied[1] = 1 assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) copied.mask[1] = False assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) def test_str_repr(self): a = array([0, 1, 2], mask=[False, True, False]) assert_equal(str(a), '[0 -- 2]') assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n' ' mask = [False True False],\n' ' fill_value = 999999)\n') a = np.ma.arange(2000) a[1:50] = np.ma.masked assert_equal( repr(a), 'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n' ' mask = [False True True ..., False False False],\n' ' fill_value = 999999)\n' ) def test_pickling(self): # Tests pickling for dtype in (int, float, str, object): a = arange(10).astype(dtype) a.fill_value = 999 masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1], # partially masked True, # Fully masked False) # Fully unmasked for mask in masks: a.mask = mask a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled._data, a._data) if dtype in (object, int): assert_equal(a_pickled.fill_value, 999) else: assert_equal(a_pickled.fill_value, dtype(999)) assert_array_equal(a_pickled.mask, mask) def test_pickling_subbaseclass(self): # Test pickling w/ a subclass of ndarray a = array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) assert_(isinstance(a_pickled._data, np.matrix)) def test_pickling_maskedconstant(self): # Test pickling MaskedConstant mc = np.ma.masked mc_pickled = pickle.loads(mc.dumps()) assert_equal(mc_pickled._baseclass, mc._baseclass) assert_equal(mc_pickled._mask, mc._mask) assert_equal(mc_pickled._data, mc._data) def test_pickling_wstructured(self): # Tests pickling w/ structured array a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)], dtype=[('a', int), ('b', float)]) a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) def test_pickling_keepalignment(self): # Tests pickling w/ F_CONTIGUOUS arrays a = arange(10) a.shape = (-1, 2) b = a.T test = pickle.loads(pickle.dumps(b)) assert_equal(test, b) def test_single_element_subscript(self): # Tests single element subscripts of Maskedarrays. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a[0].shape, ()) assert_equal(b[0].shape, ()) assert_equal(b[1].shape, ()) def test_topython(self): # Tests some communication issues with Python. assert_equal(1, int(array(1))) assert_equal(1.0, float(array(1))) assert_equal(1, int(array([[[1]]]))) assert_equal(1.0, float(array([[1]]))) assert_raises(TypeError, float, array([1, 1])) with suppress_warnings() as sup: sup.filter(UserWarning, 'Warning: converting a masked element') assert_(np.isnan(float(array([1], mask=[1])))) a = array([1, 2, 3], mask=[1, 0, 0]) assert_raises(TypeError, lambda: float(a)) assert_equal(float(a[-1]), 3.) assert_(np.isnan(float(a[0]))) assert_raises(TypeError, int, a) assert_equal(int(a[-1]), 3) assert_raises(MAError, lambda:int(a[0])) def test_oddfeatures_1(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_equal(z.real, x) assert_equal(z.imag, 10 * x) assert_equal((z * conjugate(z)).real, 101 * x * x) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_equal(x, z) def test_oddfeatures_2(self): # Tests some more features. x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) @suppress_copy_mask_on_assignment def test_oddfeatures_3(self): # Tests some generic features atest = array([10], mask=True) btest = array([20]) idx = atest.mask atest[idx] = btest[idx] assert_equal(atest, [20]) def test_filled_with_object_dtype(self): a = np.ma.masked_all(1, dtype='O') assert_equal(a.filled('x')[0], 'x') def test_filled_with_flexible_dtype(self): # Test filled w/ flexible dtype flexi = array([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)]) flexi[0] = masked assert_equal(flexi.filled(), np.array([(default_fill_value(0), default_fill_value('0'), default_fill_value(0.),)], dtype=flexi.dtype)) flexi[0] = masked assert_equal(flexi.filled(1), np.array([(1, '1', 1.)], dtype=flexi.dtype)) def test_filled_with_mvoid(self): # Test filled w/ mvoid ndtype = [('a', int), ('b', float)] a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype) # Filled using default test = a.filled() assert_equal(tuple(test), (1, default_fill_value(1.))) # Explicit fill_value test = a.filled((-1, -1)) assert_equal(tuple(test), (1, -1)) # Using predefined filling values a.fill_value = (-999, -999) assert_equal(tuple(a.filled()), (1, -999)) def test_filled_with_nested_dtype(self): # Test filled w/ nested dtype ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([(1, (1, 1)), (2, (2, 2))], mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype) test = a.filled(0) control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype) assert_equal(test, control) test = a['B'].filled(0) control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype) assert_equal(test, control) # test if mask gets set correctly (see #6760) Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))])) assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)), ('f1', 'i1', (2, 2))], (2, 2))])) assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)), ('f1', '?', (2, 2))], (2, 2))])) def test_filled_with_f_order(self): # Test filled w/ F-contiguous array a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'), mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'), order='F') # this is currently ignored assert_(a.flags['F_CONTIGUOUS']) assert_(a.filled(0).flags['F_CONTIGUOUS']) def test_optinfo_propagation(self): # Checks that _optinfo dictionary isn't back-propagated x = array([1, 2, 3, ], dtype=float) x._optinfo['info'] = '???' y = x.copy() assert_equal(y._optinfo['info'], '???') y._optinfo['info'] = '!!!' assert_equal(x._optinfo['info'], '???') def test_optinfo_forward_propagation(self): a = array([1,2,2,4]) a._optinfo["key"] = "value" assert_equal(a._optinfo["key"], (a == 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a != 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a > 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a >= 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a <= 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a + 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a - 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a * 2)._optinfo["key"]) assert_equal(a._optinfo["key"], (a / 2)._optinfo["key"]) assert_equal(a._optinfo["key"], a[:2]._optinfo["key"]) assert_equal(a._optinfo["key"], a[[0,0,2]]._optinfo["key"]) assert_equal(a._optinfo["key"], np.exp(a)._optinfo["key"]) assert_equal(a._optinfo["key"], np.abs(a)._optinfo["key"]) assert_equal(a._optinfo["key"], array(a, copy=True)._optinfo["key"]) assert_equal(a._optinfo["key"], np.zeros_like(a)._optinfo["key"]) def test_fancy_printoptions(self): # Test printing a masked array w/ fancy dtype. fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = array([(1, (2, 3.0)), (4, (5, 6.0))], mask=[(1, (0, 1)), (0, (1, 0))], dtype=fancydtype) control = "[(--, (2, --)) (4, (--, 6.0))]" assert_equal(str(test), control) # Test 0-d array with multi-dimensional dtype t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 0.0), mask = (False, [[True, False, True], [False, False, True]], False), dtype = "int, (2,3)float, float") control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)" assert_equal(str(t_2d0), control) def test_flatten_structured_array(self): # Test flatten_structured_array on arrays # On ndarray ndtype = [('a', int), ('b', float)] a = np.array([(1, 1), (2, 2)], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[1., 1.], [2., 2.]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) # On masked_array a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1.], [2., 2.]], mask=[[0, 1], [1, 0]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # On masked array with nested structure ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])] a = array([(1, (1, 1.1)), (2, (2, 2.2))], mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1., 1.1], [2., 2., 2.2]], mask=[[0, 1, 0], [1, 0, 1]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # Keeping the initial shape ndtype = [('a', int), ('b', float)] a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) def test_void0d(self): # Test creating a mvoid object ndtype = [('a', int), ('b', int)] a = np.array([(1, 2,)], dtype=ndtype)[0] f = mvoid(a) assert_(isinstance(f, mvoid)) a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0] assert_(isinstance(a, mvoid)) a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) f = mvoid(a._data[0], a._mask[0]) assert_(isinstance(f, mvoid)) def test_mvoid_getitem(self): # Test mvoid.__getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask f = a[0] assert_(isinstance(f, mvoid)) assert_equal((f[0], f['a']), (1, 1)) assert_equal(f['b'], 2) # w/ mask f = a[1] assert_(isinstance(f, mvoid)) assert_(f[0] is masked) assert_(f['a'] is masked) assert_equal(f[1], 4) # exotic dtype A = masked_array(data=[([0,1],)], mask=[([True, False],)], dtype=[("A", ">i2", (2,))]) assert_equal(A[0]["A"], A["A"][0]) assert_equal(A[0]["A"], masked_array(data=[0, 1], mask=[True, False], dtype=">i2")) def test_mvoid_iter(self): # Test iteration on __getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask assert_equal(list(a[0]), [1, 2]) # w/ mask assert_equal(list(a[1]), [masked, 4]) def test_mvoid_print(self): # Test printing a mvoid mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)]) assert_equal(str(mx[0]), "(1, 1)") mx['b'][0] = masked ini_display = masked_print_option._display masked_print_option.set_display("-X-") try: assert_equal(str(mx[0]), "(1, -X-)") assert_equal(repr(mx[0]), "(1, -X-)") finally: masked_print_option.set_display(ini_display) # also check if there are object datatypes (see gh-7493) mx = array([(1,), (2,)], dtype=[('a', 'O')]) assert_equal(str(mx[0]), "(1,)") def test_mvoid_multidim_print(self): # regression test for gh-6019 t_ma = masked_array(data = [([1, 2, 3],)], mask = [([False, True, False],)], fill_value = ([999999, 999999, 999999],), dtype = [('a', '<i4', (3,))]) assert_(str(t_ma[0]) == "([1, --, 3],)") assert_(repr(t_ma[0]) == "([1, --, 3],)") # additional tests with structured arrays t_2d = masked_array(data = [([[1, 2], [3,4]],)], mask = [([[False, True], [True, False]],)], dtype = [('a', '<i4', (2,2))]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)") t_0d = masked_array(data = [(1,2)], mask = [(True,False)], dtype = [('a', '<i4'), ('b', '<i4')]) assert_(str(t_0d[0]) == "(--, 2)") assert_(repr(t_0d[0]) == "(--, 2)") t_2d = masked_array(data = [([[1, 2], [3,4]], 1)], mask = [([[False, True], [True, False]], False)], dtype = [('a', '<i4', (2,2)), ('b', float)]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") t_ne = masked_array(data=[(1, (1, 1))], mask=[(True, (True, False))], dtype = [('a', '<i4'), ('b', 'i4,i4')]) assert_(str(t_ne[0]) == "(--, (--, 1))") assert_(repr(t_ne[0]) == "(--, (--, 1))") def test_object_with_array(self): mx1 = masked_array([1.], mask=[True]) mx2 = masked_array([1., 2.]) mx = masked_array([mx1, mx2], mask=[False, True]) assert_(mx[0] is mx1) assert_(mx[1] is not mx2) assert_(np.all(mx[1].data == mx2.data)) assert_(np.all(mx[1].mask)) # check that we return a view. mx[1].data[0] = 0. assert_(mx2[0] == 0.) class TestMaskedArrayArithmetic(object): # Base test class for MaskedArrays. def setup(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def teardown(self): np.seterr(**self.err_status) def test_basic_arithmetic(self): # Test of basic arithmetic. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d a2d = array([[1, 2], [0, 4]]) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) assert_equal(a2d * a2d, a2d * a2dm) assert_equal(a2d + a2d, a2d + a2dm) assert_equal(a2d - a2d, a2d - a2dm) for s in [(12,), (4, 3), (2, 6)]: x = x.reshape(s) y = y.reshape(s) xm = xm.reshape(s) ym = ym.reshape(s) xf = xf.reshape(s) assert_equal(-x, -xm) assert_equal(x + y, xm + ym) assert_equal(x - y, xm - ym) assert_equal(x * y, xm * ym) assert_equal(x / y, xm / ym) assert_equal(a10 + y, a10 + ym) assert_equal(a10 - y, a10 - ym) assert_equal(a10 * y, a10 * ym) assert_equal(a10 / y, a10 / ym) assert_equal(x + a10, xm + a10) assert_equal(x - a10, xm - a10) assert_equal(x * a10, xm * a10) assert_equal(x / a10, xm / a10) assert_equal(x ** 2, xm ** 2) assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5) assert_equal(x ** y, xm ** ym) assert_equal(np.add(x, y), add(xm, ym)) assert_equal(np.subtract(x, y), subtract(xm, ym)) assert_equal(np.multiply(x, y), multiply(xm, ym)) assert_equal(np.divide(x, y), divide(xm, ym)) def test_divide_on_different_shapes(self): x = arange(6, dtype=float) x.shape = (2, 3) y = arange(3, dtype=float) z = x / y assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) z = x / y[None,:] assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) y = arange(2, dtype=float) z = x / y[:, None] assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]]) assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]]) def test_mixed_arithmetic(self): # Tests mixed arithmetics. na = np.array([1]) ma = array([1]) assert_(isinstance(na + ma, MaskedArray)) assert_(isinstance(ma + na, MaskedArray)) def test_limits_arithmetic(self): tiny = np.finfo(float).tiny a = array([tiny, 1. / tiny, 0.]) assert_equal(getmaskarray(a / 2), [0, 0, 0]) assert_equal(getmaskarray(2 / a), [1, 0, 1]) def test_masked_singleton_arithmetic(self): # Tests some scalar arithmetics on MaskedArrays. # Masked singleton should remain masked no matter what xm = array(0, mask=1) assert_((1 / array(0)).mask) assert_((1 + xm).mask) assert_((-xm).mask) assert_(maximum(xm, xm).mask) assert_(minimum(xm, xm).mask) def test_masked_singleton_equality(self): # Tests (in)equality on masked singleton a = array([1, 2, 3], mask=[1, 1, 0]) assert_((a[0] == 0) is masked) assert_((a[0] != 0) is masked) assert_equal((a[-1] == 0), False) assert_equal((a[-1] != 0), True) def test_arithmetic_with_masked_singleton(self): # Checks that there's no collapsing to masked x = masked_array([1, 2]) y = x * masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) y = x[0] * masked assert_(y is masked) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) def test_arithmetic_with_masked_singleton_on_1d_singleton(self): # Check that we're not losing the shape of a singleton x = masked_array([1, ]) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y.mask, [True, ]) def test_scalar_arithmetic(self): x = array(0, mask=0) assert_equal(x.filled().ctypes.data, x.ctypes.data) # Make sure we don't lose the shape in some circumstances xm = array((0, 0)) / 0. assert_equal(xm.shape, (2,)) assert_equal(xm.mask, [1, 1]) def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm)) def test_count_func(self): # Tests count assert_equal(1, count(1)) assert_equal(0, array(1, mask=[1])) ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) ott = ott.reshape((2, 2)) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_equal([1, 2], res) assert_(getmask(res) is nomask) ott = array([0., 1., 2., 3.]) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_(res.dtype.type is np.intp) assert_raises(np.AxisError, ott.count, axis=1) def test_count_on_python_builtins(self): # Tests count works on python builtins (issue#8019) assert_equal(3, count([1,2,3])) assert_equal(2, count((1,2))) def test_minmax_func(self): # Tests minimum and maximum. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # max doesn't work if shaped xr = np.ravel(x) xmr = ravel(xm) # following are true because of careful selection of data assert_equal(max(xr), maximum.reduce(xmr)) assert_equal(min(xr), minimum.reduce(xmr)) assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]) assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]) x = arange(5) y = arange(5) - 2 x[3] = masked y[0] = masked assert_equal(minimum(x, y), where(less(x, y), x, y)) assert_equal(maximum(x, y), where(greater(x, y), x, y)) assert_(minimum.reduce(x) == 0) assert_(maximum.reduce(x) == 4) x = arange(4).reshape(2, 2) x[-1, -1] = masked assert_equal(maximum.reduce(x, axis=None), 2) def test_minimummaximum_func(self): a = np.ones((2, 2)) aminimum = minimum(a, a) assert_(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum(a, a)) aminimum = minimum.outer(a, a) assert_(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum.outer(a, a)) amaximum = maximum(a, a) assert_(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum(a, a)) amaximum = maximum.outer(a, a) assert_(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum.outer(a, a)) def test_minmax_reduce(self): # Test np.min/maximum.reduce on array w/ full False mask a = array([1, 2, 3], mask=[False, False, False]) b = np.maximum.reduce(a) assert_equal(b, 3) def test_minmax_funcs_with_output(self): # Tests the min/max functions with explicit outputs mask = np.random.rand(12).round() xm = array(np.random.uniform(0, 10, 12), mask=mask) xm.shape = (3, 4) for funcname in ('min', 'max'): # Initialize npfunc = getattr(np, funcname) mafunc = getattr(numpy.ma.core, funcname) # Use the np version nout = np.empty((4,), dtype=int) try: result = npfunc(xm, axis=0, out=nout) except MaskError: pass nout = np.empty((4,), dtype=float) result = npfunc(xm, axis=0, out=nout) assert_(result is nout) # Use the ma version nout.fill(-999) result = mafunc(xm, axis=0, out=nout) assert_(result is nout) def test_minmax_methods(self): # Additional tests on max/min (_, _, _, _, _, xm, _, _, _, _) = self.d xm.shape = (xm.size,) assert_equal(xm.max(), 10) assert_(xm[0].max() is masked) assert_(xm[0].max(0) is masked) assert_(xm[0].max(-1) is masked) assert_equal(xm.min(), -10.) assert_(xm[0].min() is masked) assert_(xm[0].min(0) is masked) assert_(xm[0].min(-1) is masked) assert_equal(xm.ptp(), 20.) assert_(xm[0].ptp() is masked) assert_(xm[0].ptp(0) is masked) assert_(xm[0].ptp(-1) is masked) x = array([1, 2, 3], mask=True) assert_(x.min() is masked) assert_(x.max() is masked) assert_(x.ptp() is masked) def test_addsumprod(self): # Tests add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.add.reduce(x), add.reduce(x)) assert_equal(np.add.accumulate(x), add.accumulate(x)) assert_equal(4, sum(array(4), axis=0)) assert_equal(4, sum(array(4), axis=0)) assert_equal(np.sum(x, axis=0), sum(x, axis=0)) assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)) assert_equal(np.sum(x, 0), sum(x, 0)) assert_equal(np.product(x, axis=0), product(x, axis=0)) assert_equal(np.product(x, 0), product(x, 0)) assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0)) s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s if len(s) > 1: assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1)) assert_equal(np.add.reduce(x, 1), add.reduce(x, 1)) assert_equal(np.sum(x, 1), sum(x, 1)) assert_equal(np.product(x, 1), product(x, 1)) def test_binops_d2D(self): # Test binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a * b control = array([[2., 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a * b control = array([[2, 3], [8, 10], [18, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2, 3], [8, 10], [18, 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_domained_binops_d2D(self): # Test domained binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a / b control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a / b control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_noshrinking(self): # Check that we don't shrink a mask when not wanted # Binary operations a = masked_array([1., 2., 3.], mask=[False, False, False], shrink=False) b = a + 1 assert_equal(b.mask, [0, 0, 0]) # In place binary operation a += 1 assert_equal(a.mask, [0, 0, 0]) # Domained binary operation b = a / 1. assert_equal(b.mask, [0, 0, 0]) # In place binary operation a /= 1. assert_equal(a.mask, [0, 0, 0]) def test_ufunc_nomask(self): # check the case ufuncs should set the mask to false m = np.ma.array([1]) # check we don't get array([False], dtype=bool) assert_equal(np.true_divide(m, 5).mask.shape, ()) def test_noshink_on_creation(self): # Check that the mask is not shrunk on array creation when not wanted a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False) assert_equal(a.mask, [0, 0, 0]) def test_mod(self): # Tests mod (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(mod(x, y), mod(xm, ym)) test = mod(ym, xm) assert_equal(test, np.mod(ym, xm)) assert_equal(test.mask, mask_or(xm.mask, ym.mask)) test = mod(xm, ym) assert_equal(test, np.mod(xm, ym)) assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0))) def test_TakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))) assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)) assert_equal(np.inner(filled(x, 0), filled(y, 0)), inner(x, y)) assert_equal(np.outer(filled(x, 0), filled(y, 0)), outer(x, y)) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3) def test_imag_real(self): # Check complex xx = array([1 + 10j, 20 + 2j], mask=[1, 0]) assert_equal(xx.imag, [10, 2]) assert_equal(xx.imag.filled(), [1e+20, 2]) assert_equal(xx.imag.dtype, xx._data.imag.dtype) assert_equal(xx.real, [1, 20]) assert_equal(xx.real.filled(), [1e+20, 20]) assert_equal(xx.real.dtype, xx._data.real.dtype) def test_methods_with_output(self): xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',) for funcname in funclist: npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty(4, dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty(4, dtype=int) result = xmmeth(axis=0, out=output) assert_(result is output) assert_(output[0] is masked) def test_count_mean_with_matrix(self): m = np.ma.array(np.matrix([[1,2],[3,4]]), mask=np.zeros((2,2))) assert_equal(m.count(axis=0).shape, (1,2)) assert_equal(m.count(axis=1).shape, (2,1)) #make sure broadcasting inside mean and var work assert_equal(m.mean(axis=0), [[2., 3.]]) assert_equal(m.mean(axis=1), [[1.5], [3.5]]) def test_eq_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a == a) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, False]) test = (a == a[0]) assert_equal(test.data, [True, False]) assert_equal(test.mask, [False, False]) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a == b) assert_equal(test.data, [False, True]) assert_equal(test.mask, [True, False]) test = (a[0] == b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, False]) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a == b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, False]) # complicated dtype, 2-dimensional array. ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([[(1, (1, 1)), (2, (2, 2))], [(3, (3, 3)), (4, (4, 4))]], mask=[[(0, (1, 0)), (0, (0, 1))], [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) test = (a[0, 0] == a) assert_equal(test.data, [[True, False], [False, False]]) assert_equal(test.mask, [[False, False], [False, True]]) def test_ne_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a != a) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, False]) test = (a != a[0]) assert_equal(test.data, [False, True]) assert_equal(test.mask, [False, False]) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a != b) assert_equal(test.data, [True, False]) assert_equal(test.mask, [True, False]) test = (a[0] != b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, False]) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a != b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, False]) # complicated dtype, 2-dimensional array. ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([[(1, (1, 1)), (2, (2, 2))], [(3, (3, 3)), (4, (4, 4))]], mask=[[(0, (1, 0)), (0, (0, 1))], [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) test = (a[0, 0] != a) assert_equal(test.data, [[False, True], [True, True]]) assert_equal(test.mask, [[False, False], [False, True]]) def test_eq_ne_structured_extra(self): # ensure simple examples are symmetric and make sense. # from https://github.com/numpy/numpy/pull/8590#discussion_r101126465 dt = np.dtype('i4,i4') for m1 in (mvoid((1, 2), mask=(0, 0), dtype=dt), mvoid((1, 2), mask=(0, 1), dtype=dt), mvoid((1, 2), mask=(1, 0), dtype=dt), mvoid((1, 2), mask=(1, 1), dtype=dt)): ma1 = m1.view(MaskedArray) r1 = ma1.view('2i4') for m2 in (np.array((1, 1), dtype=dt), mvoid((1, 1), dtype=dt), mvoid((1, 0), mask=(0, 1), dtype=dt), mvoid((3, 2), mask=(0, 1), dtype=dt)): ma2 = m2.view(MaskedArray) r2 = ma2.view('2i4') eq_expected = (r1 == r2).all() assert_equal(m1 == m2, eq_expected) assert_equal(m2 == m1, eq_expected) assert_equal(ma1 == m2, eq_expected) assert_equal(m1 == ma2, eq_expected) assert_equal(ma1 == ma2, eq_expected) # Also check it is the same if we do it element by element. el_by_el = [m1[name] == m2[name] for name in dt.names] assert_equal(array(el_by_el, dtype=bool).all(), eq_expected) ne_expected = (r1 != r2).any() assert_equal(m1 != m2, ne_expected) assert_equal(m2 != m1, ne_expected) assert_equal(ma1 != m2, ne_expected) assert_equal(m1 != ma2, ne_expected) assert_equal(ma1 != ma2, ne_expected) el_by_el = [m1[name] != m2[name] for name in dt.names] assert_equal(array(el_by_el, dtype=bool).any(), ne_expected) def test_eq_with_None(self): # Really, comparisons with None should not be done, but check them # anyway. Note that pep8 will flag these tests. # Deprecation is in place for arrays, and when it happens this # test will fail (and have to be changed accordingly). # With partial mask with suppress_warnings() as sup: sup.filter(FutureWarning, "Comparison to `None`") a = array([None, 1], mask=[0, 1]) assert_equal(a == None, array([True, False], mask=[0, 1])) assert_equal(a.data == None, [True, False]) assert_equal(a != None, array([False, True], mask=[0, 1])) # With nomask a = array([None, 1], mask=False) assert_equal(a == None, [True, False]) assert_equal(a != None, [False, True]) # With complete mask a = array([None, 2], mask=True) assert_equal(a == None, array([False, True], mask=True)) assert_equal(a != None, array([True, False], mask=True)) # Fully masked, even comparison to None should return "masked" a = masked assert_equal(a == None, masked) def test_eq_with_scalar(self): a = array(1) assert_equal(a == 1, True) assert_equal(a == 0, False) assert_equal(a != 1, False) assert_equal(a != 0, True) b = array(1, mask=True) assert_equal(b == 0, masked) assert_equal(b == 1, masked) assert_equal(b != 0, masked) assert_equal(b != 1, masked) def test_eq_different_dimensions(self): m1 = array([1, 1], mask=[0, 1]) # test comparison with both masked and regular arrays. for m2 in (array([[0, 1], [1, 2]]), np.array([[0, 1], [1, 2]])): test = (m1 == m2) assert_equal(test.data, [[False, False], [True, False]]) assert_equal(test.mask, [[False, True], [False, True]]) def test_numpyarithmetics(self): # Check that the mask is not back-propagated when using numpy functions a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) control = masked_array([np.nan, np.nan, 0, np.log(2), -1], mask=[1, 1, 0, 0, 1]) test = log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) test = np.log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) class TestMaskedArrayAttributes(object): def test_keepmask(self): # Tests the keep mask flag x = masked_array([1, 2, 3], mask=[1, 0, 0]) mx = masked_array(x) assert_equal(mx.mask, x.mask) mx = masked_array(x, mask=[0, 1, 0], keep_mask=False) assert_equal(mx.mask, [0, 1, 0]) mx = masked_array(x, mask=[0, 1, 0], keep_mask=True) assert_equal(mx.mask, [1, 1, 0]) # We default to true mx = masked_array(x, mask=[0, 1, 0]) assert_equal(mx.mask, [1, 1, 0]) def test_hardmask(self): # Test hard_mask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) # We need to copy, to avoid updating d in xh ! xs = array(d, mask=m, hard_mask=False, copy=True) xh[[1, 4]] = [10, 40] xs[[1, 4]] = [10, 40] assert_equal(xh._data, [0, 10, 2, 3, 4]) assert_equal(xs._data, [0, 10, 2, 3, 40]) assert_equal(xs.mask, [0, 0, 0, 1, 0]) assert_(xh._hardmask) assert_(not xs._hardmask) xh[1:4] = [10, 20, 30] xs[1:4] = [10, 20, 30] assert_equal(xh._data, [0, 10, 20, 3, 4]) assert_equal(xs._data, [0, 10, 20, 30, 40]) assert_equal(xs.mask, nomask) xh[0] = masked xs[0] = masked assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, [1, 0, 0, 0, 0]) xh[:] = 1 xs[:] = 1 assert_equal(xh._data, [0, 1, 1, 3, 4]) assert_equal(xs._data, [1, 1, 1, 1, 1]) assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, nomask) # Switch to soft mask xh.soften_mask() xh[:] = arange(5) assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh.mask, nomask) # Switch back to hard mask xh.harden_mask() xh[xh < 3] = masked assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh[filled(xh > 1, False)] = 5 assert_equal(xh._data, [0, 1, 2, 5, 5]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True) xh[0] = 0 assert_equal(xh._data, [[1, 0], [3, 4]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[-1, -1] = 5 assert_equal(xh._data, [[1, 0], [3, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[filled(xh < 5, False)] = 2 assert_equal(xh._data, [[1, 2], [2, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) def test_hardmask_again(self): # Another test of hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) xh[4:5] = 999 xh[0:1] = 999 assert_equal(xh._data, [999, 1, 2, 3, 4]) def test_hardmask_oncemore_yay(self): # OK, yet another test of hardmask # Make sure that harden_mask/soften_mask//unshare_mask returns self a = array([1, 2, 3], mask=[1, 0, 0]) b = a.harden_mask() assert_equal(a, b) b[0] = 0 assert_equal(a, b) assert_equal(b, array([1, 2, 3], mask=[1, 0, 0])) a = b.soften_mask() a[0] = 0 assert_equal(a, b) assert_equal(b, array([0, 2, 3], mask=[0, 0, 0])) def test_smallmask(self): # Checks the behaviour of _smallmask a = arange(10) a[1] = masked a[1] = 1 assert_equal(a._mask, nomask) a = arange(10) a._smallmask = False a[1] = masked a[1] = 1 assert_equal(a._mask, zeros(10)) def test_shrink_mask(self): # Tests .shrink_mask() a = array([1, 2, 3], mask=[0, 0, 0]) b = a.shrink_mask() assert_equal(a, b) assert_equal(a.mask, nomask) def test_flat(self): # Test that flat can return all types of items [#4585, #4615] # test simple access test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) assert_equal(test.flat[1], 2) assert_equal(test.flat[2], masked) assert_(np.all(test.flat[0:2] == test[0, 0:2])) # Test flat on masked_matrices test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) test.flat = masked_array([3, 2, 1], mask=[1, 0, 0]) control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0]) assert_equal(test, control) # Test setting test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) testflat = test.flat testflat[:] = testflat[[2, 1, 0]] assert_equal(test, control) testflat[0] = 9 assert_equal(test[0, 0], 9) # test 2-D record array # ... on structured array w/ masked records x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')], [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]], dtype=[('a', int), ('b', float), ('c', '|S8')]) x['a'][0, 1] = masked x['b'][1, 0] = masked x['c'][0, 2] = masked x[-1, -1] = masked xflat = x.flat assert_equal(xflat[0], x[0, 0]) assert_equal(xflat[1], x[0, 1]) assert_equal(xflat[2], x[0, 2]) assert_equal(xflat[:3], x[0]) assert_equal(xflat[3], x[1, 0]) assert_equal(xflat[4], x[1, 1]) assert_equal(xflat[5], x[1, 2]) assert_equal(xflat[3:], x[1]) assert_equal(xflat[-1], x[-1, -1]) i = 0 j = 0 for xf in xflat: assert_equal(xf, x[j, i]) i += 1 if i >= x.shape[-1]: i = 0 j += 1 # test that matrices keep the correct shape (#4615) a = masked_array(np.matrix(np.eye(2)), mask=0) b = a.flat b01 = b[:2] assert_equal(b01.data, array([[1., 0.]])) assert_equal(b01.mask, array([[False, False]])) def test_assign_dtype(self): # check that the mask's dtype is updated when dtype is changed a = np.zeros(4, dtype='f4,i4') m = np.ma.array(a) m.dtype = np.dtype('f4') repr(m) # raises? assert_equal(m.dtype, np.dtype('f4')) # check that dtype changes that change shape of mask too much # are not allowed def assign(): m = np.ma.array(a) m.dtype = np.dtype('f8') assert_raises(ValueError, assign) b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises? assert_equal(b.dtype, np.dtype('f4')) # check that nomask is preserved a = np.zeros(4, dtype='f4') m = np.ma.array(a) m.dtype = np.dtype('f4,i4') assert_equal(m.dtype, np.dtype('f4,i4')) assert_equal(m._mask, np.ma.nomask) class TestFillingValues(object): def test_check_on_scalar(self): # Test _check_fill_value set to valid and invalid values _check_fill_value = np.ma.core._check_fill_value fval = _check_fill_value(0, int) assert_equal(fval, 0) fval = _check_fill_value(None, int) assert_equal(fval, default_fill_value(0)) fval = _check_fill_value(0, "|S3") assert_equal(fval, b"0") fval = _check_fill_value(None, "|S3") assert_equal(fval, default_fill_value(b"camelot!")) assert_raises(TypeError, _check_fill_value, 1e+20, int) assert_raises(TypeError, _check_fill_value, 'stuff', int) def test_check_on_fields(self): # Tests _check_fill_value with records _check_fill_value = np.ma.core._check_fill_value ndtype = [('a', int), ('b', float), ('c', "|S3")] # A check on a list should return a single record fval = _check_fill_value([-999, -12345678.9, "???"], ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) # A check on None should output the defaults fval = _check_fill_value(None, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [default_fill_value(0), default_fill_value(0.), asbytes(default_fill_value("0"))]) #.....Using a structured type as fill_value should work fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype) fval = _check_fill_value(fill_val, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....Using a flexible type w/ a different type shouldn't matter # BEHAVIOR in 1.5 and earlier: match structured types by position #fill_val = np.array((-999, -12345678.9, "???"), # dtype=[("A", int), ("B", float), ("C", "|S3")]) # BEHAVIOR in 1.6 and later: match structured types by name fill_val = np.array(("???", -999, -12345678.9), dtype=[("c", "|S3"), ("a", int), ("b", float), ]) # suppress deprecation warning in 1.12 (remove in 1.13) with assert_warns(FutureWarning): fval = _check_fill_value(fill_val, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....Using an object-array shouldn't matter either fill_val = np.ndarray(shape=(1,), dtype=object) fill_val[0] = (-999, -12345678.9, b"???") fval = _check_fill_value(fill_val, object) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) # NOTE: This test was never run properly as "fill_value" rather than # "fill_val" was assigned. Written properly, it fails. #fill_val = np.array((-999, -12345678.9, "???")) #fval = _check_fill_value(fill_val, ndtype) #assert_(isinstance(fval, ndarray)) #assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....One-field-only flexible type should work as well ndtype = [("a", int)] fval = _check_fill_value(-999999999, ndtype) assert_(isinstance(fval, ndarray)) assert_equal(fval.item(), (-999999999,)) def test_fillvalue_conversion(self): # Tests the behavior of fill_value during conversion # We had a tailored comment to make sure special attributes are # properly dealt with a = array([b'3', b'4', b'5']) a._optinfo.update({'comment':"updated!"}) b = array(a, dtype=int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) b = array(a, dtype=float) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0.)) b = a.astype(int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) assert_equal(b._optinfo['comment'], "updated!") b = a.astype([('a', '|S3')]) assert_equal(b['a']._data, a._data) assert_equal(b['a'].fill_value, a.fill_value) def test_default_fill_value(self): # check all calling conventions f1 = default_fill_value(1.) f2 = default_fill_value(np.array(1.)) f3 = default_fill_value(np.array(1.).dtype) assert_equal(f1, f2) assert_equal(f1, f3) def test_default_fill_value_structured(self): fields = array([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)]) f1 = default_fill_value(fields) f2 = default_fill_value(fields.dtype) expected = np.array((default_fill_value(0), default_fill_value('0'), default_fill_value(0.)), dtype=fields.dtype) assert_equal(f1, expected) assert_equal(f2, expected) def test_default_fill_value_void(self): dt = np.dtype([('v', 'V7')]) f = default_fill_value(dt) assert_equal(f['v'], np.array(default_fill_value(dt['v']), dt['v'])) def test_fillvalue(self): # Yet more fun with the fill_value data = masked_array([1, 2, 3], fill_value=-999) series = data[[0, 2, 1]] assert_equal(series._fill_value, data._fill_value) mtype = [('f', float), ('s', '|S3')] x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype) x.fill_value = 999 assert_equal(x.fill_value.item(), [999., b'999']) assert_equal(x['f'].fill_value, 999) assert_equal(x['s'].fill_value, b'999') x.fill_value = (9, '???') assert_equal(x.fill_value.item(), (9, b'???')) assert_equal(x['f'].fill_value, 9) assert_equal(x['s'].fill_value, b'???') x = array([1, 2, 3.1]) x.fill_value = 999 assert_equal(np.asarray(x.fill_value).dtype, float) assert_equal(x.fill_value, 999.) assert_equal(x._fill_value, np.array(999.)) def test_fillvalue_exotic_dtype(self): # Tests yet more exotic flexible dtypes _check_fill_value = np.ma.core._check_fill_value ndtype = [('i', int), ('s', '|S8'), ('f', float)] control = np.array((default_fill_value(0), default_fill_value('0'), default_fill_value(0.),), dtype=ndtype) assert_equal(_check_fill_value(None, ndtype), control) # The shape shouldn't matter ndtype = [('f0', float, (2, 2))] control = np.array((default_fill_value(0.),), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(None, ndtype), control) control = np.array((0,), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) ndtype = np.dtype("int, (2,3)float, float") control = np.array((default_fill_value(0), default_fill_value(0.), default_fill_value(0.),), dtype="int, float, float").astype(ndtype) test = _check_fill_value(None, ndtype) assert_equal(test, control) control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) # but when indexing, fill value should become scalar not tuple # See issue #6723 M = masked_array(control) assert_equal(M["f1"].fill_value.ndim, 0) def test_fillvalue_datetime_timedelta(self): # Test default fillvalue for datetime64 and timedelta64 types. # See issue #4476, this would return '?' which would cause errors # elsewhere for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m", "h", "D", "W", "M", "Y"): control = numpy.datetime64("NaT", timecode) test = default_fill_value(numpy.dtype("<M8[" + timecode + "]")) np.testing.assert_equal(test, control) control = numpy.timedelta64("NaT", timecode) test = default_fill_value(numpy.dtype("<m8[" + timecode + "]")) np.testing.assert_equal(test, control) def test_extremum_fill_value(self): # Tests extremum fill values for flexible type. a = array([(1, (2, 3)), (4, (5, 6))], dtype=[('A', int), ('B', [('BA', int), ('BB', int)])]) test = a.fill_value assert_equal(test.dtype, a.dtype) assert_equal(test['A'], default_fill_value(a['A'])) assert_equal(test['B']['BA'], default_fill_value(a['B']['BA'])) assert_equal(test['B']['BB'], default_fill_value(a['B']['BB'])) test = minimum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], minimum_fill_value(a['A'])) assert_equal(test[1][0], minimum_fill_value(a['B']['BA'])) assert_equal(test[1][1], minimum_fill_value(a['B']['BB'])) assert_equal(test[1], minimum_fill_value(a['B'])) test = maximum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], maximum_fill_value(a['A'])) assert_equal(test[1][0], maximum_fill_value(a['B']['BA'])) assert_equal(test[1][1], maximum_fill_value(a['B']['BB'])) assert_equal(test[1], maximum_fill_value(a['B'])) def test_extremum_fill_value_subdtype(self): a = array(([2, 3, 4],), dtype=[('value', np.int8, 3)]) test = minimum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], np.full(3, minimum_fill_value(a['value']))) test = maximum_fill_value(a) assert_equal(test.dtype, a.dtype) assert_equal(test[0], np.full(3, maximum_fill_value(a['value']))) def test_fillvalue_individual_fields(self): # Test setting fill_value on individual fields ndtype = [('a', int), ('b', int)] # Explicit fill_value a = array(list(zip([1, 2, 3], [4, 5, 6])), fill_value=(-999, -999), dtype=ndtype) aa = a['a'] aa.set_fill_value(10) assert_equal(aa._fill_value, np.array(10)) assert_equal(tuple(a.fill_value), (10, -999)) a.fill_value['b'] = -10 assert_equal(tuple(a.fill_value), (10, -10)) # Implicit fill_value t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype) tt = t['a'] tt.set_fill_value(10) assert_equal(tt._fill_value, np.array(10)) assert_equal(tuple(t.fill_value), (10, default_fill_value(0))) def test_fillvalue_implicit_structured_array(self): # Check that fill_value is always defined for structured arrays ndtype = ('b', float) adtype = ('a', float) a = array([(1.,), (2.,)], mask=[(False,), (False,)], fill_value=(np.nan,), dtype=np.dtype([adtype])) b = empty(a.shape, dtype=[adtype, ndtype]) b['a'] = a['a'] b['a'].set_fill_value(a['a'].fill_value) f = b._fill_value[()] assert_(np.isnan(f[0])) assert_equal(f[-1], default_fill_value(1.)) def test_fillvalue_as_arguments(self): # Test adding a fill_value parameter to empty/ones/zeros a = empty(3, fill_value=999.) assert_equal(a.fill_value, 999.) a = ones(3, fill_value=999., dtype=float) assert_equal(a.fill_value, 999.) a = zeros(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) a = identity(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) def test_shape_argument(self): # Test that shape can be provides as an argument # GH issue 6106 a = empty(shape=(3, )) assert_equal(a.shape, (3, )) a = ones(shape=(3, ), dtype=float) assert_equal(a.shape, (3, )) a = zeros(shape=(3, ), dtype=complex) assert_equal(a.shape, (3, )) def test_fillvalue_in_view(self): # Test the behavior of fill_value in view # Create initial masked array x = array([1, 2, 3], fill_value=1, dtype=np.int64) # Check that fill_value is preserved by default y = x.view() assert_(y.fill_value == 1) # Check that fill_value is preserved if dtype is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute y = x.view(MaskedArray) assert_(y.fill_value == 1) # Check that fill_value is preserved if type is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute (by # default, the first argument is dtype, not type) y = x.view(type=MaskedArray) assert_(y.fill_value == 1) # Check that code does not crash if passed an ndarray sub-class that # does not have a _fill_value attribute y = x.view(np.ndarray) y = x.view(type=np.ndarray) # Check that fill_value can be overridden with view y = x.view(MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value can be overridden with view (using type=) y = x.view(type=MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value gets reset if passed a dtype but not a # fill_value. This is because even though in some cases one can safely # cast the fill_value, e.g. if taking an int64 view of an int32 array, # in other cases, this cannot be done (e.g. int32 view of an int64 # array with a large fill_value). y = x.view(dtype=np.int32) assert_(y.fill_value == 999999) def test_fillvalue_bytes_or_str(self): # Test whether fill values work as expected for structured dtypes # containing bytes or str. See issue #7259. a = empty(shape=(3, ), dtype="(2)3S,(2)3U") assert_equal(a["f0"].fill_value, default_fill_value(b"spam")) assert_equal(a["f1"].fill_value, default_fill_value("eggs")) class TestUfuncs(object): # Test class for the application of ufuncs on MaskedArrays. def setup(self): # Base data definition. self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def teardown(self): np.seterr(**self.err_status) def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f) def test_reduce(self): # Tests reduce on MaskedArrays. a = self.d[0] assert_(not alltrue(a, axis=0)) assert_(sometrue(a, axis=0)) assert_equal(sum(a[:3], axis=0), 0) assert_equal(product(a, axis=0), 0) assert_equal(add.reduce(a), pi) def test_minmax(self): # Tests extrema on MaskedArrays. a = arange(1, 13).reshape(3, 4) amask = masked_where(a < 5, a) assert_equal(amask.max(), a.max()) assert_equal(amask.min(), 5) assert_equal(amask.max(0), a.max(0)) assert_equal(amask.min(0), [5, 6, 7, 8]) assert_(amask.max(1)[0].mask) assert_(amask.min(1)[0].mask) def test_ndarray_mask(self): # Check that the mask of the result is a ndarray (not a MaskedArray...) a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) test = np.sqrt(a) control = masked_array([-1, 0, 1, np.sqrt(2), -1], mask=[1, 0, 0, 0, 1]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_(not isinstance(test.mask, MaskedArray)) def test_treatment_of_NotImplemented(self): # Check that NotImplemented is returned at appropriate places a = masked_array([1., 2.], mask=[1, 0]) assert_raises(TypeError, operator.mul, a, "abc") assert_raises(TypeError, operator.truediv, a, "abc") class MyClass(object): __array_priority__ = a.__array_priority__ + 1 def __mul__(self, other): return "My mul" def __rmul__(self, other): return "My rmul" me = MyClass() assert_(me * a == "My mul") assert_(a * me == "My rmul") # and that __array_priority__ is respected class MyClass2(object): __array_priority__ = 100 def __mul__(self, other): return "Me2mul" def __rmul__(self, other): return "Me2rmul" def __rdiv__(self, other): return "Me2rdiv" __rtruediv__ = __rdiv__ me_too = MyClass2() assert_(a.__mul__(me_too) is NotImplemented) assert_(all(multiply.outer(a, me_too) == "Me2rmul")) assert_(a.__truediv__(me_too) is NotImplemented) assert_(me_too * a == "Me2mul") assert_(a * me_too == "Me2rmul") assert_(a / me_too == "Me2rdiv") def test_no_masked_nan_warnings(self): # check that a nan in masked position does not # cause ufunc warnings m = np.ma.array([0.5, np.nan], mask=[0,1]) with warnings.catch_warnings(): warnings.filterwarnings("error") # test unary and binary ufuncs exp(m) add(m, 1) m > 0 # test different unary domains sqrt(m) log(m) tan(m) arcsin(m) arccos(m) arccosh(m) # test binary domains divide(m, 2) # also check that allclose uses ma ufuncs, to avoid warning allclose(m, 0.5) class TestMaskedArrayInPlaceArithmetics(object): # Test MaskedArray Arithmetics def setup(self): x = arange(10) y = arange(10) xm = arange(10) xm[2] = masked self.intdata = (x, y, xm) self.floatdata = (x.astype(float), y.astype(float), xm.astype(float)) self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] self.othertypes = [np.dtype(_).type for _ in self.othertypes] self.uint8data = ( x.astype(np.uint8), y.astype(np.uint8), xm.astype(np.uint8) ) def test_inplace_addition_scalar(self): # Test of inplace additions (x, y, xm) = self.intdata xm[2] = masked x += 1 assert_equal(x, y + 1) xm += 1 assert_equal(xm, y + 1) (x, _, xm) = self.floatdata id1 = x.data.ctypes._data x += 1. assert_(id1 == x.data.ctypes._data) assert_equal(x, y + 1.) def test_inplace_addition_array(self): # Test of inplace additions (x, y, xm) = self.intdata m = xm.mask a = arange(10, dtype=np.int16) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_subtraction_scalar(self): # Test of inplace subtractions (x, y, xm) = self.intdata x -= 1 assert_equal(x, y - 1) xm -= 1 assert_equal(xm, y - 1) def test_inplace_subtraction_array(self): # Test of inplace subtractions (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_multiplication_scalar(self): # Test of inplace multiplication (x, y, xm) = self.floatdata x *= 2.0 assert_equal(x, y * 2) xm *= 2.0 assert_equal(xm, y * 2) def test_inplace_multiplication_array(self): # Test of inplace multiplication (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_division_scalar_int(self): # Test of inplace division (x, y, xm) = self.intdata x = arange(10) * 2 xm = arange(10) * 2 xm[2] = masked x //= 2 assert_equal(x, y) xm //= 2 assert_equal(xm, y) def test_inplace_division_scalar_float(self): # Test of inplace division (x, y, xm) = self.floatdata x /= 2.0 assert_equal(x, y / 2.0) xm /= arange(10) assert_equal(xm, ones((10,))) def test_inplace_division_array_float(self): # Test of inplace division (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x /= a xm /= a assert_equal(x, y / a) assert_equal(xm, y / a) assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0))) def test_inplace_division_misc(self): x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.] y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.] m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = xm / ym assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) xm = xm.copy() xm /= ym assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) def test_datafriendly_add(self): # Test keeping data w/ (inplace) addition x = array([1, 2, 3], mask=[0, 0, 1]) # Test add w/ scalar xx = x + 1 assert_equal(xx.data, [2, 3, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test iadd w/ scalar x += 1 assert_equal(x.data, [2, 3, 3]) assert_equal(x.mask, [0, 0, 1]) # Test add w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x + array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 4, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test iadd w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x += array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 4, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_sub(self): # Test keeping data w/ (inplace) subtraction # Test sub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - 1 assert_equal(xx.data, [0, 1, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test isub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x -= 1 assert_equal(x.data, [0, 1, 3]) assert_equal(x.mask, [0, 0, 1]) # Test sub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 0, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test isub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x -= array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 0, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_mul(self): # Test keeping data w/ (inplace) multiplication # Test mul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * 2 assert_equal(xx.data, [2, 4, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test imul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x *= 2 assert_equal(x.data, [2, 4, 3]) assert_equal(x.mask, [0, 0, 1]) # Test mul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * array([10, 20, 30], mask=[1, 0, 0]) assert_equal(xx.data, [1, 40, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test imul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x *= array([10, 20, 30], mask=[1, 0, 0]) assert_equal(x.data, [1, 40, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_div(self): # Test keeping data w/ (inplace) division # Test div on scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x / 2. assert_equal(xx.data, [1 / 2., 2 / 2., 3]) assert_equal(xx.mask, [0, 0, 1]) # Test idiv on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) x /= 2. assert_equal(x.data, [1 / 2., 2 / 2., 3]) assert_equal(x.mask, [0, 0, 1]) # Test div on array x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x / array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(xx.data, [1., 2. / 20., 3.]) assert_equal(xx.mask, [1, 0, 1]) # Test idiv on array x = array([1., 2., 3.], mask=[0, 0, 1]) x /= array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(x.data, [1., 2 / 20., 3.]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_pow(self): # Test keeping data w/ (inplace) power # Test pow on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x ** 2.5 assert_equal(xx.data, [1., 2. ** 2.5, 3.]) assert_equal(xx.mask, [0, 0, 1]) # Test ipow on scalar x **= 2.5 assert_equal(x.data, [1., 2. ** 2.5, 3]) assert_equal(x.mask, [0, 0, 1]) def test_datafriendly_add_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a += b assert_equal(a, [[2, 2], [4, 4]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a += b assert_equal(a, [[2, 2], [4, 4]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_sub_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a -= b assert_equal(a, [[0, 0], [2, 2]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a -= b assert_equal(a, [[0, 0], [2, 2]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_mul_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a *= b assert_equal(a, [[1, 1], [3, 3]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a *= b assert_equal(a, [[1, 1], [3, 3]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_inplace_addition_scalar_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) xm[2] = masked x += t(1) assert_equal(x, y + t(1)) xm += t(1) assert_equal(xm, y + t(1)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_addition_array_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_subtraction_scalar_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x -= t(1) assert_equal(x, y - t(1)) xm -= t(1) assert_equal(xm, y - t(1)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_subtraction_array_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_multiplication_scalar_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x *= t(2) assert_equal(x, y * t(2)) xm *= t(2) assert_equal(xm, y * t(2)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_multiplication_array_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_floor_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked x //= t(2) xm //= t(2) assert_equal(x, y) assert_equal(xm, y) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_floor_division_array_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x //= a xm //= a assert_equal(x, y // a) assert_equal(xm, y // a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with suppress_warnings() as sup: sup.record(UserWarning) (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= t(2) assert_equal(x, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) try: xm /= t(2) assert_equal(xm, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) if issubclass(t, np.integer): assert_equal(len(sup.log), 2, "Failed on type=%s." % t) else: assert_equal(len(sup.log), 0, "Failed on type=%s." % t) def test_inplace_division_array_type(self): # Test of inplace division for t in self.othertypes: with suppress_warnings() as sup: sup.record(UserWarning) (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= a assert_equal(x, y / a) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) try: xm /= a assert_equal(xm, y / a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) if issubclass(t, np.integer): assert_equal(len(sup.log), 2, "Failed on type=%s." % t) else: assert_equal(len(sup.log), 0, "Failed on type=%s." % t) def test_inplace_pow_type(self): # Test keeping data w/ (inplace) power for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") # Test pow on scalar x = array([1, 2, 3], mask=[0, 0, 1], dtype=t) xx = x ** t(2) xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t) assert_equal(xx.data, xx_r.data) assert_equal(xx.mask, xx_r.mask) # Test ipow on scalar x **= t(2) assert_equal(x.data, xx_r.data) assert_equal(x.mask, xx_r.mask) assert_equal(len(w), 0, "Failed on type=%s." % t) class TestMaskedArrayMethods(object): # Test class for miscellaneous MaskedArrays methods. def setup(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose()) def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 assert_(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf assert_(not allclose(a, b)) b[0] = np.inf assert_(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked assert_(allclose(a, b, masked_equal=True)) assert_(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 assert_(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) assert_(allclose(a, a)) def test_allany(self): # Checks the any/all methods/functions. x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mx = masked_array(x, mask=m) mxbig = (mx > 0.5) mxsmall = (mx < 0.5) assert_(not mxbig.all()) assert_(mxbig.any()) assert_equal(mxbig.all(0), [False, False, True]) assert_equal(mxbig.all(1), [False, False, True]) assert_equal(mxbig.any(0), [False, False, True]) assert_equal(mxbig.any(1), [True, True, True]) assert_(not mxsmall.all()) assert_(mxsmall.any()) assert_equal(mxsmall.all(0), [True, True, False]) assert_equal(mxsmall.all(1), [False, False, False]) assert_equal(mxsmall.any(0), [True, True, False]) assert_equal(mxsmall.any(1), [True, True, False]) def test_allany_onmatrices(self): x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) X = np.matrix(x) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mX = masked_array(X, mask=m) mXbig = (mX > 0.5) mXsmall = (mX < 0.5) assert_(not mXbig.all()) assert_(mXbig.any()) assert_equal(mXbig.all(0), np.matrix([False, False, True])) assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) assert_equal(mXbig.any(0), np.matrix([False, False, True])) assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) assert_(not mXsmall.all()) assert_(mXsmall.any()) assert_equal(mXsmall.all(0), np.matrix([True, True, False])) assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) assert_equal(mXsmall.any(0), np.matrix([True, True, False])) assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) def test_allany_oddities(self): # Some fun with all and any store = empty((), dtype=bool) full = array([1, 2, 3], mask=True) assert_(full.all() is masked) full.all(out=store) assert_(store) assert_(store._mask, True) assert_(store is not masked) store = empty((), dtype=bool) assert_(full.any() is masked) full.any(out=store) assert_(not store) assert_(store._mask, True) assert_(store is not masked) def test_argmax_argmin(self): # Tests argmin & argmax on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_equal(mx.argmin(), 35) assert_equal(mX.argmin(), 35) assert_equal(m2x.argmin(), 4) assert_equal(m2X.argmin(), 4) assert_equal(mx.argmax(), 28) assert_equal(mX.argmax(), 28) assert_equal(m2x.argmax(), 31) assert_equal(m2X.argmax(), 31) assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5]) assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4]) assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0]) assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0]) assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ]) assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3]) assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1]) assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1]) def test_clip(self): # Tests clip on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(x, mask=m) clipped = mx.clip(2, 8) assert_equal(clipped.mask, mx.mask) assert_equal(clipped._data, x.clip(2, 8)) assert_equal(clipped._data, mx._data.clip(2, 8)) def test_compress(self): # test compress a = masked_array([1., 2., 3., 4., 5.], fill_value=9999) condition = (a > 1.5) & (a < 3.5) assert_equal(a.compress(condition), [2., 3.]) a[[2, 3]] = masked b = a.compress(condition) assert_equal(b._data, [2., 3.]) assert_equal(b._mask, [0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) condition = (a < 4.) b = a.compress(condition) assert_equal(b._data, [1., 2., 3.]) assert_equal(b._mask, [0, 0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) a = masked_array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0]]) b = a.compress(a.ravel() >= 22) assert_equal(b._data, [30, 40, 50, 60]) assert_equal(b._mask, [1, 1, 0, 0]) x = np.array([3, 1, 2]) b = a.compress(x >= 2, axis=1) assert_equal(b._data, [[10, 30], [40, 60]]) assert_equal(b._mask, [[0, 1], [1, 0]]) def test_compressed(self): # Tests compressed a = array([1, 2, 3, 4], mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) a[0] = masked b = a.compressed() assert_equal(b, [2, 3, 4]) a = array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) assert_(isinstance(b, np.matrix)) a[0, 0] = masked b = a.compressed() assert_equal(b, [[2, 3, 4]]) def test_empty(self): # Tests empty/like datatype = [('a', int), ('b', float), ('c', '|S8')] a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], dtype=datatype) assert_equal(len(a.fill_value.item()), len(datatype)) b = empty_like(a) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) b = empty(len(a), dtype=datatype) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) # check empty_like mask handling a = masked_array([1, 2, 3], mask=[False, True, False]) b = empty_like(a) assert_(not np.may_share_memory(a.mask, b.mask)) b = a.view(masked_array) assert_(np.may_share_memory(a.mask, b.mask)) @suppress_copy_mask_on_assignment def test_put(self): # Tests put. d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) x = array(d, mask=m) assert_(x[3] is masked) assert_(x[4] is masked) x[[1, 4]] = [10, 40] assert_(x[3] is masked) assert_(x[4] is not masked) assert_equal(x, [0, 10, 2, -1, 40]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) i = [0, 2, 4, 6] x.put(i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) put(x, i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) def test_put_nomask(self): # GitHub issue 6425 x = zeros(10) z = array([3., -1.], mask=[False, True]) x.put([1, 2], z) assert_(x[0] is not masked) assert_equal(x[0], 0) assert_(x[1] is not masked) assert_equal(x[1], 3) assert_(x[2] is masked) assert_(x[3] is not masked) assert_equal(x[3], 0) def test_put_hardmask(self): # Tests put on hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d + 1, mask=m, hard_mask=True, copy=True) xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5]) assert_equal(xh._data, [3, 4, 2, 4, 5]) def test_putmask(self): x = arange(6) + 1 mx = array(x, mask=[0, 0, 0, 1, 1, 1]) mask = [0, 0, 1, 0, 0, 1] # w/o mask, w/o masked values xx = x.copy() putmask(xx, mask, 99) assert_equal(xx, [1, 2, 99, 4, 5, 99]) # w/ mask, w/o masked values mxx = mx.copy() putmask(mxx, mask, 99) assert_equal(mxx._data, [1, 2, 99, 4, 5, 99]) assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0]) # w/o mask, w/ masked values values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0]) xx = x.copy() putmask(xx, mask, values) assert_equal(xx._data, [1, 2, 30, 4, 5, 60]) assert_equal(xx._mask, [0, 0, 1, 0, 0, 0]) # w/ mask, w/ masked values mxx = mx.copy() putmask(mxx, mask, values) assert_equal(mxx._data, [1, 2, 30, 4, 5, 60]) assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0]) # w/ mask, w/ masked values + hardmask mxx = mx.copy() mxx.harden_mask() putmask(mxx, mask, values) assert_equal(mxx, [1, 2, 30, 4, 5, 60]) def test_ravel(self): # Tests ravel a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]]) aravel = a.ravel() assert_equal(aravel._mask.shape, aravel.shape) a = array([0, 0], mask=[1, 1]) aravel = a.ravel() assert_equal(aravel._mask.shape, a.shape) a = array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]]) aravel = a.ravel() assert_equal(aravel.shape, (1, 5)) assert_equal(aravel._mask.shape, a.shape) # Checks that small_mask is preserved a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False) assert_equal(a.ravel()._mask, [0, 0, 0, 0]) # Test that the fill_value is preserved a.fill_value = -99 a.shape = (2, 2) ar = a.ravel() assert_equal(ar._mask, [0, 0, 0, 0]) assert_equal(ar._data, [1, 2, 3, 4]) assert_equal(ar.fill_value, -99) # Test index ordering assert_equal(a.ravel(order='C'), [1, 2, 3, 4]) assert_equal(a.ravel(order='F'), [1, 3, 2, 4]) def test_reshape(self): # Tests reshape x = arange(4) x[0] = masked y = x.reshape(2, 2) assert_equal(y.shape, (2, 2,)) assert_equal(y._mask.shape, (2, 2,)) assert_equal(x.shape, (4,)) assert_equal(x._mask.shape, (4,)) def test_sort(self): # Test sort x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) sortedx = sort(x) assert_equal(sortedx._data, [1, 2, 3, 4]) assert_equal(sortedx._mask, [0, 0, 0, 1]) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [4, 1, 2, 3]) assert_equal(sortedx._mask, [1, 0, 0, 0]) x.sort() assert_equal(x._data, [1, 2, 3, 4]) assert_equal(x._mask, [0, 0, 0, 1]) x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) x.sort(endwith=False) assert_equal(x._data, [4, 1, 2, 3]) assert_equal(x._mask, [1, 0, 0, 0]) x = [1, 4, 2, 3] sortedx = sort(x) assert_(not isinstance(sorted, MaskedArray)) x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [-2, -1, 0, 1, 2]) x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [1, 2, -2, -1, 0]) assert_equal(sortedx._mask, [1, 1, 0, 0, 0]) def test_argsort_matches_sort(self): x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) for kwargs in [dict(), dict(endwith=True), dict(endwith=False), dict(fill_value=2), dict(fill_value=2, endwith=True), dict(fill_value=2, endwith=False)]: sortedx = sort(x, **kwargs) argsortedx = x[argsort(x, **kwargs)] assert_equal(sortedx._data, argsortedx._data) assert_equal(sortedx._mask, argsortedx._mask) def test_sort_2d(self): # Check sort of 2D array. # 2D array w/o mask a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) # 2D array w/mask a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]]) a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]]) # 3D a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]], [[1, 2, 3], [7, 8, 9], [4, 5, 6]], [[7, 8, 9], [1, 2, 3], [4, 5, 6]], [[4, 5, 6], [1, 2, 3], [7, 8, 9]]]) a[a % 4 == 0] = masked am = a.copy() an = a.filled(99) am.sort(0) an.sort(0) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(1) an.sort(1) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(2) an.sort(2) assert_equal(am, an) def test_sort_flexible(self): # Test sort on structured dtype. a = array( data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)], mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)], dtype=[('A', int), ('B', int)]) mask_last = array( data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)], mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)], dtype=[('A', int), ('B', int)]) mask_first = array( data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)], mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)], dtype=[('A', int), ('B', int)]) test = sort(a) assert_equal(test, mask_last) assert_equal(test.mask, mask_last.mask) test = sort(a, endwith=False) assert_equal(test, mask_first) assert_equal(test.mask, mask_first.mask) # Test sort on dtype with subarray (gh-8069) dt = np.dtype([('v', int, 2)]) a = a.view(dt) mask_last = mask_last.view(dt) mask_first = mask_first.view(dt) test = sort(a) assert_equal(test, mask_last) assert_equal(test.mask, mask_last.mask) test = sort(a, endwith=False) assert_equal(test, mask_first) assert_equal(test.mask, mask_first.mask) def test_argsort(self): # Test argsort a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0]) assert_equal(np.argsort(a), argsort(a)) def test_squeeze(self): # Check squeeze data = masked_array([[1, 2, 3]]) assert_equal(data.squeeze(), [1, 2, 3]) data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]]) assert_equal(data.squeeze(), [1, 2, 3]) assert_equal(data.squeeze()._mask, [1, 1, 1]) data = masked_array([[1]], mask=True) assert_(data.squeeze() is masked) def test_swapaxes(self): # Tests swapaxes on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mX = array(x, mask=m).reshape(6, 6) mXX = mX.reshape(3, 2, 2, 3) mXswapped = mX.swapaxes(0, 1) assert_equal(mXswapped[-1], mX[:, -1]) mXXswapped = mXX.swapaxes(0, 2) assert_equal(mXXswapped.shape, (2, 2, 3, 3)) def test_take(self): # Tests take x = masked_array([10, 20, 30, 40], [0, 1, 0, 1]) assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1])) assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]]) assert_equal(x.take([[0, 1], [0, 1]]), masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]])) # assert_equal crashes when passed np.ma.mask assert_(x[1] is np.ma.masked) assert_(x.take(1) is np.ma.masked) x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]]) assert_equal(x.take([0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) assert_equal(take(x, [0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) def test_take_masked_indices(self): # Test take w/ masked indices a = np.array((40, 18, 37, 9, 22)) indices = np.arange(3)[None,:] + np.arange(5)[:, None] mindices = array(indices, mask=(indices >= len(a))) # No mask test = take(a, mindices, mode='clip') ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 22], [22, 22, 22]]) assert_equal(test, ctrl) # Masked indices test = take(a, mindices) ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 40], [22, 40, 40]]) ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # Masked input + masked indices a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0)) test = take(a, mindices) ctrl[0, 1] = ctrl[1, 0] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_tolist(self): # Tests to list # ... on 1D x = array(np.arange(12)) x[[1, -2]] = masked xlist = x.tolist() assert_(xlist[1] is None) assert_(xlist[-2] is None) # ... on 2D x.shape = (3, 4) xlist = x.tolist() ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]] assert_equal(xlist[0], [0, None, 2, 3]) assert_equal(xlist[1], [4, 5, 6, 7]) assert_equal(xlist[2], [8, 9, None, 11]) assert_equal(xlist, ctrl) # ... on structured array w/ masked records x = array(list(zip([1, 2, 3], [1.1, 2.2, 3.3], ['one', 'two', 'thr'])), dtype=[('a', int), ('b', float), ('c', '|S8')]) x[-1] = masked assert_equal(x.tolist(), [(1, 1.1, b'one'), (2, 2.2, b'two'), (None, None, None)]) # ... on structured array w/ masked fields a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)], dtype=[('a', int), ('b', int)]) test = a.tolist() assert_equal(test, [[1, None], [3, 4]]) # ... on mvoid a = a[0] test = a.tolist() assert_equal(test, [1, None]) def test_tolist_specialcase(self): # Test mvoid.tolist: make sure we return a standard Python object a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)]) # w/o mask: each entry is a np.void whose elements are standard Python for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) # w/ mask: each entry is a ma.void whose elements should be # standard Python a.mask[0] = (0, 1) for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) def test_toflex(self): # Test the conversion to records data = arange(10) record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = [('i', int), ('s', '|S3'), ('f', float)] data = array([(i, s, f) for (i, s, f) in zip(np.arange(10), 'ABCDEFGHIJKLM', np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = np.dtype("int, (2,3)float, float") data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10), np.random.rand(10), np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal_records(record['_data'], data._data) assert_equal_records(record['_mask'], data._mask) def test_fromflex(self): # Test the reconstruction of a masked_array from a record a = array([1, 2, 3]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([1, 2, 3], mask=[0, 0, 1]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)], dtype=[('A', int), ('B', float)]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.data, a.data) def test_arraymethod(self): # Test a _arraymethod w/ n argument marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0]) control = masked_array([[1], [2], [3], [4], [5]], mask=[0, 0, 1, 0, 0]) assert_equal(marray.T, control) assert_equal(marray.transpose(), control) assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0)) class TestMaskedArrayMathMethods(object): def setup(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_cumsumprod(self): # Tests cumsum & cumprod on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXcp = mX.cumsum(0) assert_equal(mXcp._data, mX.filled(0).cumsum(0)) mXcp = mX.cumsum(1) assert_equal(mXcp._data, mX.filled(0).cumsum(1)) mXcp = mX.cumprod(0) assert_equal(mXcp._data, mX.filled(1).cumprod(0)) mXcp = mX.cumprod(1) assert_equal(mXcp._data, mX.filled(1).cumprod(1)) def test_cumsumprod_with_output(self): # Tests cumsum/cumprod w/ output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked for funcname in ('cumsum', 'cumprod'): npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty((3, 4), dtype=int) result = xmmeth(axis=0, out=output) assert_(result is output) def test_ptp(self): # Tests ptp on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d (n, m) = X.shape assert_equal(mx.ptp(), mx.compressed().ptp()) rows = np.zeros(n, float) cols = np.zeros(m, float) for k in range(m): cols[k] = mX[:, k].compressed().ptp() for k in range(n): rows[k] = mX[k].compressed().ptp() assert_equal(mX.ptp(0), cols) assert_equal(mX.ptp(1), rows) def test_add_object(self): x = masked_array(['a', 'b'], mask=[1, 0], dtype=object) y = x + 'x' assert_equal(y[1], 'bx') assert_(y.mask[0]) def test_sum_object(self): # Test sum on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object) assert_equal(a.sum(), 5) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.sum(axis=0), [5, 7, 9]) def test_prod_object(self): # Test prod on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object) assert_equal(a.prod(), 2 * 3) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.prod(axis=0), [4, 10, 18]) def test_meananom_object(self): # Test mean/anom on object dtype a = masked_array([1, 2, 3], dtype=object) assert_equal(a.mean(), 2) assert_equal(a.anom(), [-1, 0, 1]) def test_trace(self): # Tests trace on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXdiag = mX.diagonal() assert_equal(mX.trace(), mX.diagonal().compressed().sum()) assert_almost_equal(mX.trace(), X.trace() - sum(mXdiag.mask * X.diagonal(), axis=0)) assert_equal(np.trace(mX), mX.trace()) def test_dot(self): # Tests dot on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d fx = mx.filled(0) r = mx.dot(mx) assert_almost_equal(r.filled(0), fx.dot(fx)) assert_(r.mask is nomask) fX = mX.filled(0) r = mX.dot(mX) assert_almost_equal(r.filled(0), fX.dot(fX)) assert_(r.mask[1,3]) r1 = empty_like(r) mX.dot(mX, out=r1) assert_almost_equal(r, r1) mYY = mXX.swapaxes(-1, -2) fXX, fYY = mXX.filled(0), mYY.filled(0) r = mXX.dot(mYY) assert_almost_equal(r.filled(0), fXX.dot(fYY)) r1 = empty_like(r) mXX.dot(mYY, out=r1) assert_almost_equal(r, r1) def test_dot_shape_mismatch(self): # regression test x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) z = masked_array([[0,1],[3,3]]) x.dot(y, out=z) assert_almost_equal(z.filled(0), [[1, 0], [15, 16]]) assert_almost_equal(z.mask, [[0, 1], [0, 0]]) def test_varmean_nomask(self): # gh-5769 foo = array([1,2,3,4], dtype='f8') bar = array([1,2,3,4], dtype='f8') assert_equal(type(foo.mean()), np.float64) assert_equal(type(foo.var()), np.float64) assert((foo.mean() == bar.mean()) is np.bool_(True)) # check array type is preserved and out works foo = array(np.arange(16).reshape((4,4)), dtype='f8') bar = empty(4, dtype='f4') assert_equal(type(foo.mean(axis=1)), MaskedArray) assert_equal(type(foo.var(axis=1)), MaskedArray) assert_(foo.mean(axis=1, out=bar) is bar) assert_(foo.var(axis=1, out=bar) is bar) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_almost_equal(mX.std(axis=None, ddof=1), mX.compressed().std(ddof=1)) assert_almost_equal(mX.var(axis=None, ddof=1), mX.compressed().var(ddof=1)) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) @suppress_copy_mask_on_assignment def test_varstd_specialcases(self): # Test a special case for var nout = np.array(-1, dtype=float) mout = array(-1, dtype=float) x = array(arange(10), mask=True) for methodname in ('var', 'std'): method = getattr(x, methodname) assert_(method() is masked) assert_(method(0) is masked) assert_(method(-1) is masked) # Using a masked array as explicit output method(out=mout) assert_(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output method(out=nout) assert_(np.isnan(nout)) x = array(arange(10), mask=True) x[-1] = 9 for methodname in ('var', 'std'): method = getattr(x, methodname) assert_(method(ddof=1) is masked) assert_(method(0, ddof=1) is masked) assert_(method(-1, ddof=1) is masked) # Using a masked array as explicit output method(out=mout, ddof=1) assert_(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output method(out=nout, ddof=1) assert_(np.isnan(nout)) def test_varstd_ddof(self): a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]]) test = a.std(axis=0, ddof=0) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=1) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=2) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [1, 1, 1]) def test_diag(self): # Test diag x = arange(9).reshape((3, 3)) x[1, 1] = masked out = np.diag(x) assert_equal(out, [0, 4, 8]) out = diag(x) assert_equal(out, [0, 4, 8]) assert_equal(out.mask, [0, 1, 0]) out = diag(out) control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]], mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(out, control) def test_axis_methods_nomask(self): # Test the combination nomask & methods w/ axis a = array([[1, 2, 3], [4, 5, 6]]) assert_equal(a.sum(0), [5, 7, 9]) assert_equal(a.sum(-1), [6, 15]) assert_equal(a.sum(1), [6, 15]) assert_equal(a.prod(0), [4, 10, 18]) assert_equal(a.prod(-1), [6, 120]) assert_equal(a.prod(1), [6, 120]) assert_equal(a.min(0), [1, 2, 3]) assert_equal(a.min(-1), [1, 4]) assert_equal(a.min(1), [1, 4]) assert_equal(a.max(0), [4, 5, 6]) assert_equal(a.max(-1), [3, 6]) assert_equal(a.max(1), [3, 6]) class TestMaskedArrayMathMethodsComplex(object): # Test class for miscellaneous MaskedArrays methods. def setup(self): # Base data definition. x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479j, 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) class TestMaskedArrayFunctions(object): # Test class for miscellaneous functions. def setup(self): x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) self.info = (xm, ym) def test_masked_where_bool(self): x = [1, 2] y = masked_where(False, x) assert_equal(y, [1, 2]) assert_equal(y[1], 2) def test_masked_equal_wlist(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [0, 0, 1]) mx = masked_not_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [1, 1, 0]) def test_masked_equal_fill_value(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx._mask, [0, 0, 1]) assert_equal(mx.fill_value, 3) def test_masked_where_condition(self): # Tests masking functions. x = array([1., 2., 3., 4., 5.]) x[2] = masked assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2)) assert_equal(masked_where(greater_equal(x, 2), x), masked_greater_equal(x, 2)) assert_equal(masked_where(less(x, 2), x), masked_less(x, 2)) assert_equal(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), [99, 99, 3, 4, 5]) def test_masked_where_oddities(self): # Tests some generic features. atest = ones((10, 10, 10), dtype=float) btest = zeros(atest.shape, MaskType) ctest = masked_where(btest, atest) assert_equal(atest, ctest) def test_masked_where_shape_constraint(self): a = arange(10) try: test = masked_equal(1, a) except IndexError: pass else: raise AssertionError("Should have failed...") test = masked_equal(a, 1) assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_masked_where_structured(self): # test that masked_where on a structured array sets a structured # mask (see issue #2972) a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")]) am = np.ma.masked_where(a["A"] < 5, a) assert_equal(am.mask.dtype.names, am.dtype.names) assert_equal(am["A"], np.ma.masked_array(np.zeros(10), np.ones(10))) def test_masked_otherfunctions(self): assert_equal(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4]) assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]) assert_equal(masked_inside(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 1, 3).mask, [1, 1, 1, 1, 0]) assert_equal(masked_outside(array(list(range(5)), mask=[0, 1, 0, 0, 0]), 1, 3).mask, [1, 1, 0, 0, 1]) assert_equal(masked_equal(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 0]) assert_equal(masked_not_equal(array([2, 2, 1, 2, 1], mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 1]) def test_round(self): a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890], mask=[0, 1, 0, 0, 0]) assert_equal(a.round(), [1., 2., 3., 5., 6.]) assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7]) assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679]) b = empty_like(a) a.round(out=b) assert_equal(b, [1., 2., 3., 5., 6.]) x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) def test_round_with_output(self): # Testing round with an explicit output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = np.round(xm, decimals=2, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xm.round(decimals=2, out=output)) output = empty((3, 4), dtype=float) result = xm.round(decimals=2, out=output) assert_(result is output) def test_round_with_scalar(self): # Testing round with scalar/zero dimension input # GH issue 2244 a = array(1.1, mask=[False]) assert_equal(a.round(), 1) a = array(1.1, mask=[True]) assert_(a.round() is masked) a = array(1.1, mask=[False]) output = np.empty(1, dtype=float) output.fill(-9999) a.round(out=output) assert_equal(output, 1) a = array(1.1, mask=[False]) output = array(-9999., mask=[True]) a.round(out=output) assert_equal(output[()], 1) a = array(1.1, mask=[True]) output = array(-9999., mask=[False]) a.round(out=output) assert_(output[()] is masked) def test_identity(self): a = identity(5) assert_(isinstance(a, MaskedArray)) assert_equal(a, np.identity(5)) def test_power(self): x = -1.1 assert_almost_equal(power(x, 2.), 1.21) assert_(power(x, masked) is masked) x = array([-1.1, -1.1, 1.1, 1.1, 0.]) b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1]) y = power(x, b) assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.]) assert_equal(y._mask, [1, 0, 0, 0, 1]) b.mask = nomask y = power(x, b) assert_equal(y._mask, [1, 0, 0, 0, 1]) z = x ** b assert_equal(z._mask, y._mask) assert_almost_equal(z, y) assert_almost_equal(z._data, y._data) x **= b assert_equal(x._mask, y._mask) assert_almost_equal(x, y) assert_almost_equal(x._data, y._data) def test_power_with_broadcasting(self): # Test power w/ broadcasting a2 = np.array([[1., 2., 3.], [4., 5., 6.]]) a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]]) b1 = np.array([2, 4, 3]) b2 = np.array([b1, b1]) b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]]) ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]], mask=[[1, 1, 0], [0, 1, 1]]) # No broadcasting, base & exp w/ mask test = a2m ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # No broadcasting, base w/ mask, exp w/o mask test = a2m ** b2 assert_equal(test, ctrl) assert_equal(test.mask, a2m.mask) # No broadcasting, base w/o mask, exp w/ mask test = a2 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, b2m.mask) ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]], mask=[[0, 1, 0], [0, 1, 0]]) test = b1 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) test = b2m ** b1 assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_where(self): # Test the where function x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) d = where(xm > 2, xm, -9) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) assert_equal(d._mask, xm._mask) d = where(xm > 2, -9, ym) assert_equal(d, [5., 0., 3., 2., -1., -9., -9., -10., -9., 1., 0., -9.]) assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]) d = where(xm > 2, xm, masked) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) tmp = xm._mask.copy() tmp[(xm <= 2).filled(True)] = True assert_equal(d._mask, tmp) ixm = xm.astype(int) d = where(ixm > 2, ixm, masked) assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3]) assert_equal(d.dtype, ixm.dtype) def test_where_object(self): a = np.array(None) b = masked_array(None) r = b.copy() assert_equal(np.ma.where(True, a, a), r) assert_equal(np.ma.where(True, b, b), r) def test_where_with_masked_choice(self): x = arange(10) x[3] = masked c = x >= 8 # Set False to masked z = where(c, x, masked) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is masked) assert_(z[7] is masked) assert_(z[8] is not masked) assert_(z[9] is not masked) assert_equal(x, z) # Set True to masked z = where(c, masked, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) def test_where_with_masked_condition(self): x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) x = arange(1, 6) x[-1] = masked y = arange(1, 6) * 10 y[2] = masked c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0]) cm = c.filled(1) z = where(c, x, y) zm = where(cm, x, y) assert_equal(z, zm) assert_(getmask(zm) is nomask) assert_equal(zm, [1, 2, 3, 40, 50]) z = where(c, masked, 1) assert_equal(z, [99, 99, 99, 1, 1]) z = where(c, 1, masked) assert_equal(z, [99, 1, 1, 99, 99]) def test_where_type(self): # Test the type conservation with where x = np.arange(4, dtype=np.int32) y = np.arange(4, dtype=np.float32) * 2.2 test = where(x > 1.5, y, x).dtype control = np.find_common_type([np.int32, np.float32], []) assert_equal(test, control) def test_where_broadcast(self): # Issue 8599 x = np.arange(9).reshape(3, 3) y = np.zeros(3) core = np.where([1, 0, 1], x, y) ma = where([1, 0, 1], x, y) assert_equal(core, ma) assert_equal(core.dtype, ma.dtype) def test_where_structured(self): # Issue 8600 dt = np.dtype([('a', int), ('b', int)]) x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) y = np.array((10, 20), dtype=dt) core = np.where([0, 1, 1], x, y) ma = np.where([0, 1, 1], x, y) assert_equal(core, ma) assert_equal(core.dtype, ma.dtype) def test_where_structured_masked(self): dt = np.dtype([('a', int), ('b', int)]) x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) ma = where([0, 1, 1], x, masked) expected = masked_where([1, 0, 0], x) assert_equal(ma.dtype, expected.dtype) assert_equal(ma, expected) assert_equal(ma.mask, expected.mask) def test_choose(self): # Test choose choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] chosen = choose([2, 3, 1, 0], choices) assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='clip') assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='wrap') assert_equal(chosen, array([20, 1, 12, 3])) # Check with some masked indices indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([99, 1, 12, 99])) assert_equal(chosen.mask, [1, 0, 0, 1]) # Check with some masked choices choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([20, 31, 12, 3])) assert_equal(chosen.mask, [1, 0, 0, 1]) def test_choose_with_out(self): # Test choose with an explicit out keyword choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] store = empty(4, dtype=int) chosen = choose([2, 3, 1, 0], choices, out=store) assert_equal(store, array([20, 31, 12, 3])) assert_(store is chosen) # Check with some masked indices + out store = empty(4, dtype=int) indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([99, 31, 12, 99])) assert_equal(store.mask, [1, 0, 0, 1]) # Check with some masked choices + out ina ndarray ! choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] store = empty(4, dtype=int).view(ndarray) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([999999, 31, 12, 999999])) def test_reshape(self): a = arange(10) a[0] = masked # Try the default b = a.reshape((5, 2)) assert_equal(b.shape, (5, 2)) assert_(b.flags['C']) # Try w/ arguments as list instead of tuple b = a.reshape(5, 2) assert_equal(b.shape, (5, 2)) assert_(b.flags['C']) # Try w/ order b = a.reshape((5, 2), order='F') assert_equal(b.shape, (5, 2)) assert_(b.flags['F']) # Try w/ order b = a.reshape(5, 2, order='F') assert_equal(b.shape, (5, 2)) assert_(b.flags['F']) c = np.reshape(a, (2, 5)) assert_(isinstance(c, MaskedArray)) assert_equal(c.shape, (2, 5)) assert_(c[0, 0] is masked) assert_(c.flags['C']) def test_make_mask_descr(self): # Flexible ntype = [('a', float), ('b', float)] test = make_mask_descr(ntype) assert_equal(test, [('a', bool), ('b', bool)]) assert_(test is make_mask_descr(test)) # Standard w/ shape ntype = (float, 2) test = make_mask_descr(ntype) assert_equal(test, (bool, 2)) assert_(test is make_mask_descr(test)) # Standard standard ntype = float test = make_mask_descr(ntype) assert_equal(test, np.dtype(bool)) assert_(test is make_mask_descr(test)) # Nested ntype = [('a', float), ('b', [('ba', float), ('bb', float)])] test = make_mask_descr(ntype) control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])]) assert_equal(test, control) assert_(test is make_mask_descr(test)) # Named+ shape ntype = [('a', (float, 2))] test = make_mask_descr(ntype) assert_equal(test, np.dtype([('a', (bool, 2))])) assert_(test is make_mask_descr(test)) # 2 names ntype = [(('A', 'a'), float)] test = make_mask_descr(ntype) assert_equal(test, np.dtype([(('A', 'a'), bool)])) assert_(test is make_mask_descr(test)) # nested boolean types should preserve identity base_type = np.dtype([('a', int, 3)]) base_mtype = make_mask_descr(base_type) sub_type = np.dtype([('a', int), ('b', base_mtype)]) test = make_mask_descr(sub_type) assert_equal(test, np.dtype([('a', bool), ('b', [('a', bool, 3)])])) assert_(test.fields['b'][0] is base_mtype) def test_make_mask(self): # Test make_mask # w/ a list as an input mask = [0, 1] test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a ndarray as an input mask = np.array([0, 1], dtype=bool) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a flexible-type ndarray as an input - use default mdtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [1, 1]) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, mdtype) assert_equal(test, mask) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', float), ('b', float)] bdtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, bdtype) assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype)) # Ensure this also works for void mask = np.array((False, True), dtype='?,?')[()] assert_(isinstance(mask, np.void)) test = make_mask(mask, dtype=mask.dtype) assert_equal(test, mask) assert_(test is not mask) mask = np.array((0, 1), dtype='i4,i4')[()] test2 = make_mask(mask, dtype=mask.dtype) assert_equal(test2, test) # test that nomask is returned when m is nomask. bools = [True, False] dtypes = [MaskType, float] msgformat = 'copy=%s, shrink=%s, dtype=%s' for cpy, shr, dt in itertools.product(bools, bools, dtypes): res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt) assert_(res is nomask, msgformat % (cpy, shr, dt)) def test_mask_or(self): # Initialize mtype = [('a', bool), ('b', bool)] mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype) # Test using nomask as input test = mask_or(mask, nomask) assert_equal(test, mask) test = mask_or(nomask, mask) assert_equal(test, mask) # Using False as input test = mask_or(mask, False) assert_equal(test, mask) # Using another array w / the same dtype other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype) test = mask_or(mask, other) control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype) assert_equal(test, control) # Using another array w / a different dtype othertype = [('A', bool), ('B', bool)] other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype) try: test = mask_or(mask, other) except ValueError: pass # Using nested arrays dtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype) bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype) cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype) assert_equal(mask_or(amask, bmask), cntrl) def test_flatten_mask(self): # Tests flatten mask # Standard dtype mask = np.array([0, 0, 1], dtype=bool) assert_equal(flatten_mask(mask), mask) # Flexible dtype mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) test = flatten_mask(mask) control = np.array([0, 0, 0, 1], dtype=bool) assert_equal(test, control) mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] data = [(0, (0, 0)), (0, (0, 1))] mask = np.array(data, dtype=mdtype) test = flatten_mask(mask) control = np.array([0, 0, 0, 0, 0, 1], dtype=bool) assert_equal(test, control) def test_on_ndarray(self): # Test functions on ndarrays a = np.array([1, 2, 3, 4]) m = array(a, mask=False) test = anom(a) assert_equal(test, m.anom()) test = reshape(a, (2, 2)) assert_equal(test, m.reshape(2, 2)) def test_compress(self): # Test compress function on ndarray and masked array # Address Github #2495. arr = np.arange(8) arr.shape = 4, 2 cond = np.array([True, False, True, True]) control = arr[[0, 2, 3]] test = np.ma.compress(cond, arr, axis=0) assert_equal(test, control) marr = np.ma.array(arr) test = np.ma.compress(cond, marr, axis=0) assert_equal(test, control) def test_compressed(self): # Test ma.compressed function. # Address gh-4026 a = np.ma.array([1, 2]) test = np.ma.compressed(a) assert_(type(test) is np.ndarray) # Test case when input data is ndarray subclass class A(np.ndarray): pass a = np.ma.array(A(shape=0)) test = np.ma.compressed(a) assert_(type(test) is A) # Test that compress flattens test = np.ma.compressed([[1],[2]]) assert_equal(test.ndim, 1) test = np.ma.compressed([[[[[1]]]]]) assert_equal(test.ndim, 1) # Test case when input is MaskedArray subclass class M(MaskedArray): pass test = np.ma.compressed(M(shape=(0,1,2))) assert_equal(test.ndim, 1) # with .compressed() overridden class M(MaskedArray): def compressed(self): return 42 test = np.ma.compressed(M(shape=(0,1,2))) assert_equal(test, 42) def test_convolve(self): a = masked_equal(np.arange(5), 2) b = np.array([1, 1]) test = np.ma.convolve(a, b) assert_equal(test, masked_equal([0, 1, -1, -1, 7, 4], -1)) test = np.ma.convolve(a, b, propagate_mask=False) assert_equal(test, masked_equal([0, 1, 1, 3, 7, 4], -1)) test = np.ma.convolve([1, 1], [1, 1, 1]) assert_equal(test, masked_equal([1, 2, 2, 1], -1)) a = [1, 1] b = masked_equal([1, -1, -1, 1], -1) test = np.ma.convolve(a, b, propagate_mask=False) assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1)) test = np.ma.convolve(a, b, propagate_mask=True) assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1)) class TestMaskedFields(object): def setup(self): ilist = [1, 2, 3, 4, 5] flist = [1.1, 2.2, 3.3, 4.4, 5.5] slist = ['one', 'two', 'three', 'four', 'five'] ddtype = [('a', int), ('b', float), ('c', '|S8')] mdtype = [('a', bool), ('b', bool), ('c', bool)] mask = [0, 1, 0, 0, 1] base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype) self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype) def test_set_records_masks(self): base = self.data['base'] mdtype = self.data['mdtype'] # Set w/ nomask or masked base.mask = nomask assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = masked assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ simple boolean base.mask = False assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = True assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ list base.mask = [0, 0, 0, 1, 1] assert_equal_records(base._mask, np.array([(x, x, x) for x in [0, 0, 0, 1, 1]], dtype=mdtype)) def test_set_record_element(self): # Check setting an element of a record) base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[0] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 2, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, [b'pi', b'two', b'three', b'four', b'five']) def test_set_record_slice(self): base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[:3] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 3, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, [b'pi', b'pi', b'pi', b'four', b'five']) def test_mask_element(self): "Check record access" base = self.data['base'] base[0] = masked for n in ('a', 'b', 'c'): assert_equal(base[n].mask, [1, 1, 0, 0, 1]) assert_equal(base[n]._data, base._data[n]) def test_getmaskarray(self): # Test getmaskarray on flexible dtype ndtype = [('a', int), ('b', float)] test = empty(3, dtype=ndtype) assert_equal(getmaskarray(test), np.array([(0, 0), (0, 0), (0, 0)], dtype=[('a', '|b1'), ('b', '|b1')])) test[:] = masked assert_equal(getmaskarray(test), np.array([(1, 1), (1, 1), (1, 1)], dtype=[('a', '|b1'), ('b', '|b1')])) def test_view(self): # Test view w/ flexible dtype iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) # Transform globally to simple dtype test = a.view(float) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) # Transform globally to dty test = a.view((float, 2)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) test = a.view((float, 2), np.matrix) assert_equal(test, data) assert_(isinstance(test, np.matrix)) def test_getitem(self): ndtype = [('a', float), ('b', float)] a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype) a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])), dtype=[('a', bool), ('b', bool)]) def _test_index(i): assert_equal(type(a[i]), mvoid) assert_equal_records(a[i]._data, a._data[i]) assert_equal_records(a[i]._mask, a._mask[i]) assert_equal(type(a[i, ...]), MaskedArray) assert_equal_records(a[i,...]._data, a._data[i,...]) assert_equal_records(a[i,...]._mask, a._mask[i,...]) _test_index(1) # No mask _test_index(0) # One element masked _test_index(-2) # All element masked def test_setitem(self): # Issue 4866: check that one can set individual items in [record][col] # and [col][record] order ndtype = np.dtype([('a', float), ('b', int)]) ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype) ma['a'][1] = 3.0 assert_equal(ma['a'], np.array([1.0, 3.0])) ma[1]['a'] = 4.0 assert_equal(ma['a'], np.array([1.0, 4.0])) # Issue 2403 mdtype = np.dtype([('a', bool), ('b', bool)]) # soft mask control = np.array([(False, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a[0]['a'] = 2 assert_equal(a.mask, control) # hard mask control = np.array([(True, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a[0]['a'] = 2 assert_equal(a.mask, control) def test_setitem_scalar(self): # 8510 mask_0d = np.ma.masked_array(1, mask=True) arr = np.ma.arange(3) arr[0] = mask_0d assert_array_equal(arr.mask, [True, False, False]) def test_element_len(self): # check that len() works for mvoid (Github issue #576) for rec in self.data['base']: assert_equal(len(rec), len(self.data['ddtype'])) class TestMaskedObjectArray(object): def test_getitem(self): arr = np.ma.array([None, None]) for dt in [float, object]: a0 = np.eye(2).astype(dt) a1 = np.eye(3).astype(dt) arr[0] = a0 arr[1] = a1 assert_(arr[0] is a0) assert_(arr[1] is a1) assert_(isinstance(arr[0,...], MaskedArray)) assert_(isinstance(arr[1,...], MaskedArray)) assert_(arr[0,...][()] is a0) assert_(arr[1,...][()] is a1) arr[0] = np.ma.masked assert_(arr[1] is a1) assert_(isinstance(arr[0,...], MaskedArray)) assert_(isinstance(arr[1,...], MaskedArray)) assert_equal(arr[0,...].mask, True) assert_(arr[1,...][()] is a1) # gh-5962 - object arrays of arrays do something special assert_equal(arr[0].data, a0) assert_equal(arr[0].mask, True) assert_equal(arr[0,...][()].data, a0) assert_equal(arr[0,...][()].mask, True) def test_nested_ma(self): arr = np.ma.array([None, None]) # set the first object to be an unmasked masked constant. A little fiddly arr[0,...] = np.array([np.ma.masked], object)[0,...] # check the above line did what we were aiming for assert_(arr.data[0] is np.ma.masked) # test that getitem returned the value by identity assert_(arr[0] is np.ma.masked) # now mask the masked value! arr[0] = np.ma.masked assert_(arr[0] is np.ma.masked) class TestMaskedView(object): def setup(self): iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) self.data = (data, a, controlmask) def test_view_to_nothing(self): (data, a, controlmask) = self.data test = a.view() assert_(isinstance(test, MaskedArray)) assert_equal(test._data, a._data) assert_equal(test._mask, a._mask) def test_view_to_type(self): (data, a, controlmask) = self.data test = a.view(np.ndarray) assert_(not isinstance(test, MaskedArray)) assert_equal(test, a._data) assert_equal_records(test, data.view(a.dtype).squeeze()) def test_view_to_simple_dtype(self): (data, a, controlmask) = self.data # View globally test = a.view(float) assert_(isinstance(test, MaskedArray)) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) def test_view_to_flexible_dtype(self): (data, a, controlmask) = self.data test = a.view([('A', float), ('B', float)]) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a']) assert_equal(test['B'], a['b']) test = a[0].view([('A', float), ('B', float)]) assert_(isinstance(test, MaskedArray)) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][0]) assert_equal(test['B'], a['b'][0]) test = a[-1].view([('A', float), ('B', float)]) assert_(isinstance(test, MaskedArray)) assert_equal(test.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][-1]) assert_equal(test['B'], a['b'][-1]) def test_view_to_subdtype(self): (data, a, controlmask) = self.data # View globally test = a.view((float, 2)) assert_(isinstance(test, MaskedArray)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) # View on 1 masked element test = a[0].view((float, 2)) assert_(isinstance(test, MaskedArray)) assert_equal(test, data[0]) assert_equal(test.mask, (1, 0)) # View on 1 unmasked element test = a[-1].view((float, 2)) assert_(isinstance(test, MaskedArray)) assert_equal(test, data[-1]) def test_view_to_dtype_and_type(self): (data, a, controlmask) = self.data test = a.view((float, 2), np.matrix) assert_equal(test, data) assert_(isinstance(test, np.matrix)) assert_(not isinstance(test, MaskedArray)) class TestOptionalArgs(object): def test_ndarrayfuncs(self): # test axis arg behaves the same as ndarray (including multiple axes) d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) # mask out last element of last dimension m[:,:,-1] = True a = np.ma.array(d, mask=m) def testaxis(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test axis arg assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1)) assert_equal(ma_f(a, axis=(0,1))[...,:-1], numpy_f(d[...,:-1], axis=(0,1))) def testkeepdims(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test keepdims arg assert_equal(ma_f(a, keepdims=True).shape, numpy_f(d, keepdims=True).shape) assert_equal(ma_f(a, keepdims=False).shape, numpy_f(d, keepdims=False).shape) # test both at once assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=1, keepdims=True)) assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=(0,1), keepdims=True)) for f in ['sum', 'prod', 'mean', 'var', 'std']: testaxis(f, a, d) testkeepdims(f, a, d) for f in ['min', 'max']: testaxis(f, a, d) d = (np.arange(24).reshape((2,3,4))%2 == 0) a = np.ma.array(d, mask=m) for f in ['all', 'any']: testaxis(f, a, d) testkeepdims(f, a, d) def test_count(self): # test np.ma.count specially d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) m[:,0,:] = True a = np.ma.array(d, mask=m) assert_equal(count(a), 16) assert_equal(count(a, axis=1), 2*ones((2,4))) assert_equal(count(a, axis=(0,1)), 4*ones((4,))) assert_equal(count(a, keepdims=True), 16*ones((1,1,1))) assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4))) assert_equal(count(a, axis=-2), 2*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(np.AxisError, count, a, axis=3) # check the 'nomask' path a = np.ma.array(d, mask=nomask) assert_equal(count(a), 24) assert_equal(count(a, axis=1), 3*ones((2,4))) assert_equal(count(a, axis=(0,1)), 6*ones((4,))) assert_equal(count(a, keepdims=True), 24*ones((1,1,1))) assert_equal(np.ndim(count(a, keepdims=True)), 3) assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4))) assert_equal(count(a, axis=-2), 3*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(np.AxisError, count, a, axis=3) # check the 'masked' singleton assert_equal(count(np.ma.masked), 0) # check 0-d arrays do not allow axis > 0 assert_raises(np.AxisError, count, np.ma.array(1), axis=1) class TestMaskedConstant(object): def _do_add_test(self, add): # sanity check assert_(add(np.ma.masked, 1) is np.ma.masked) # now try with a vector vector = np.array([1, 2, 3]) result = add(np.ma.masked, vector) # lots of things could go wrong here assert_(result is not np.ma.masked) assert_(not isinstance(result, np.ma.core.MaskedConstant)) assert_equal(result.shape, vector.shape) assert_equal(np.ma.getmask(result), np.ones(vector.shape, dtype=bool)) def test_ufunc(self): self._do_add_test(np.add) def test_operator(self): self._do_add_test(lambda a, b: a + b) def test_ctor(self): m = np.ma.array(np.ma.masked) # most importantly, we do not want to create a new MaskedConstant # instance assert_(not isinstance(m, np.ma.core.MaskedConstant)) assert_(m is not np.ma.masked) def test_masked_array(): a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0]) assert_equal(np.argwhere(a), [[1], [3]]) def test_append_masked_array(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_equal([4,3,2], value=2) result = np.ma.append(a, b) expected_data = [1, 2, 3, 4, 3, 2] expected_mask = [False, True, False, False, False, True] assert_array_equal(result.data, expected_data) assert_array_equal(result.mask, expected_mask) a = np.ma.masked_all((2,2)) b = np.ma.ones((3,1)) result = np.ma.append(a, b) expected_data = [1] * 3 expected_mask = [True] * 4 + [False] * 3 assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) result = np.ma.append(a, b, axis=None) assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) def test_append_masked_array_along_axis(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) # When `axis` is specified, `values` must have the correct shape. assert_raises(ValueError, np.ma.append, a, b, axis=0) result = np.ma.append(a[np.newaxis,:], b, axis=0) expected = np.ma.arange(1, 10) expected[[1, 6]] = np.ma.masked expected = expected.reshape((3,3)) assert_array_equal(result.data, expected.data) assert_array_equal(result.mask, expected.mask) def test_default_fill_value_complex(): # regression test for Python 3, where 'unicode' was not defined assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j) def test_ufunc_with_output(): # check that giving an output argument always returns that output. # Regression test for gh-8416. x = array([1., 2., 3.], mask=[0, 0, 1]) y = np.add(x, 1., out=x) assert_(y is x) def test_astype(): descr = [('v', int, 3), ('x', [('y', float)])] x = array(([1, 2, 3], (1.0,)), dtype=descr) assert_equal(x, x.astype(descr)) ############################################################################### if __name__ == "__main__": run_module_suite()
38.124301
81
0.514324
973ffe8f46131dcce1847617099087c3b5f18237
1,907
py
Python
data/diabetes/tpot/fold8/pipeline.py
luisferreira97/autoautoml
501d2de8b2153748b57e5c8cb247058c587ce29c
[ "MIT" ]
7
2020-05-15T23:10:26.000Z
2022-01-21T10:36:50.000Z
data/diabetes/tpot/fold8/pipeline.py
luisferreira97/autoautoml
501d2de8b2153748b57e5c8cb247058c587ce29c
[ "MIT" ]
13
2020-11-13T18:47:51.000Z
2021-07-24T10:04:57.000Z
data/diabetes/tpot/fold8/pipeline.py
luisferreira97/autoautoml
501d2de8b2153748b57e5c8cb247058c587ce29c
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import (SelectPercentile, VarianceThreshold, f_classif) from sklearn.linear_model import SGDClassifier from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures from tpot.builtins import StackingEstimator from tpot.export_utils import set_param_recursive # NOTE: Make sure that the outcome column is labeled 'target' in the data file tpot_data = pd.read_csv("PATH/TO/DATA/FILE", sep="COLUMN_SEPARATOR", dtype=np.float64) features = tpot_data.drop("target", axis=1) training_features, testing_features, training_target, testing_target = train_test_split( features, tpot_data["target"], random_state=42 ) # Average CV score on the training set was: 0.8601459527631278 exported_pipeline = make_pipeline( PolynomialFeatures(degree=2, include_bias=False, interaction_only=False), SelectPercentile(score_func=f_classif, percentile=53), VarianceThreshold(threshold=0.005), StackingEstimator( estimator=SGDClassifier( alpha=0.0, eta0=0.01, fit_intercept=True, l1_ratio=0.75, learning_rate="constant", loss="squared_hinge", penalty="elasticnet", power_t=50.0, ) ), RandomForestClassifier( bootstrap=True, criterion="entropy", max_features=0.55, min_samples_leaf=1, min_samples_split=11, n_estimators=100, ), ) # Fix random state for all the steps in exported pipeline set_param_recursive(exported_pipeline.steps, "random_state", 42) exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features)
36.673077
88
0.718406
c656421b86cef86c44486c7b55c66e9b54ee4af0
845
py
Python
simulation/bin/collapse_utr_bed.py
LuChenLab/SCAPE
49c4063f1ec3ac2d72f935b61de4a18c66db754d
[ "MIT" ]
3
2022-03-15T05:22:29.000Z
2022-03-21T18:32:04.000Z
simulation/bin/collapse_utr_bed.py
LuChenLab/SCAPE
49c4063f1ec3ac2d72f935b61de4a18c66db754d
[ "MIT" ]
3
2022-02-20T04:43:18.000Z
2022-03-19T12:19:56.000Z
simulation/bin/collapse_utr_bed.py
LuChenLab/SCAPE
49c4063f1ec3ac2d72f935b61de4a18c66db754d
[ "MIT" ]
1
2022-03-21T18:32:15.000Z
2022-03-21T18:32:15.000Z
import sys from collections import defaultdict def main(args): bedin, bedout = args out_dic = defaultdict(list) with open(bedin) as fh, open(bedout, 'w') as fo: for line in fh: gid = line.strip().split('\t')[-1] out_dic[gid].extend([line]) for gid, detail in out_dic.items(): detail = list(map(lambda x: x.strip().split('\t'), detail)) detail_ = list(map(lambda x: ','.join(x), zip(*detail))) chrom, st, en = detail_[:3] strand = detail_[-2].split(',')[0] chrom = chrom.split(',')[0] if strand == '+' or strand == '-': st = str(min(map(lambda x: int(x), st.split(',')))) en = str(max(map(lambda x: int(x), en.split(',')))) else: raise(f'Unrecognize strand {strand}') for i in detail: fo.write('\t'.join([chrom, st, en, strand] + i) + '\n') if __name__ == '__main__': main(sys.argv[1:])
28.166667
62
0.592899
ff717dbd2769c74a2caa4ff19ef057520a27d1eb
30,776
py
Python
src/transformers/models/auto/auto_factory.py
holazzer/transformers
53191d75ecca21c028077b3227f9ac47379e4690
[ "Apache-2.0" ]
28
2021-09-15T01:25:00.000Z
2022-03-01T20:21:28.000Z
src/transformers/models/auto/auto_factory.py
holazzer/transformers
53191d75ecca21c028077b3227f9ac47379e4690
[ "Apache-2.0" ]
1
2021-08-09T01:51:17.000Z
2021-08-09T01:51:17.000Z
src/transformers/models/auto/auto_factory.py
holazzer/transformers
53191d75ecca21c028077b3227f9ac47379e4690
[ "Apache-2.0" ]
1
2021-12-02T05:20:55.000Z
2021-12-02T05:20:55.000Z
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory function to build auto-model classes.""" import importlib from collections import OrderedDict from ...configuration_utils import PretrainedConfig from ...file_utils import copy_func from ...utils import logging from .configuration_auto import AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings logger = logging.get_logger(__name__) CLASS_DOCSTRING = """ This is a generic model class that will be instantiated as one of the model classes of the library when created with the :meth:`~transformers.BaseAutoModelClass.from_pretrained` class method or the :meth:`~transformers.BaseAutoModelClass.from_config` class method. This class cannot be instantiated directly using ``__init__()`` (throws an error). """ FROM_CONFIG_DOCSTRING = """ Instantiates one of the model classes of the library from a configuration. Note: Loading a model from its configuration file does **not** load the model weights. It only affects the model's configuration. Use :meth:`~transformers.BaseAutoModelClass.from_pretrained` to load the model weights. Args: config (:class:`~transformers.PretrainedConfig`): The model class to instantiate is selected based on the configuration class: List options Examples:: >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download configuration from huggingface.co and cache. >>> config = AutoConfig.from_pretrained('checkpoint_placeholder') >>> model = BaseAutoModelClass.from_config(config) """ FROM_PRETRAINED_TORCH_DOCSTRING = """ Instantiate one of the model classes of the library from a pretrained model. The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`: List options The model is set in evaluation mode by default using ``model.eval()`` (so for instance, dropout modules are deactivated). To train the model, you should first set it back in training mode with ``model.train()`` Args: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (additional positional arguments, `optional`): Will be passed along to the underlying model ``__init__()`` method. config (:class:`~transformers.PretrainedConfig`, `optional`): Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the `model id` string of a pretrained model). - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict (`Dict[str, torch.Tensor]`, `optional`): A state dictionary to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`): Load the model weights from a TensorFlow checkpoint save file (see docstring of ``pretrained_model_name_or_path`` argument). force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to only look at local files (e.g., not try downloading the model). revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. kwargs (additional keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download model and configuration from huggingface.co and cache. >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') >>> # Update configuration during loading >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower) >>> config = AutoConfig.from_pretrained('./tf_model/shortcut_placeholder_tf_model_config.json') >>> model = BaseAutoModelClass.from_pretrained('./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ FROM_PRETRAINED_TF_DOCSTRING = """ Instantiate one of the model classes of the library from a pretrained model. The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`: List options Args: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards. model_args (additional positional arguments, `optional`): Will be passed along to the underlying model ``__init__()`` method. config (:class:`~transformers.PretrainedConfig`, `optional`): Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the `model id` string of a pretrained model). - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`): Load the model weights from a PyTorch checkpoint save file (see docstring of ``pretrained_model_name_or_path`` argument). force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to only look at local files (e.g., not try downloading the model). revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. kwargs (additional keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download model and configuration from huggingface.co and cache. >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') >>> # Update configuration during loading >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json') >>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config) """ FROM_PRETRAINED_FLAX_DOCSTRING = """ Instantiate one of the model classes of the library from a pretrained model. The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`: List options Args: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards. model_args (additional positional arguments, `optional`): Will be passed along to the underlying model ``__init__()`` method. config (:class:`~transformers.PretrainedConfig`, `optional`): Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the `model id` string of a pretrained model). - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`): Load the model weights from a PyTorch checkpoint save file (see docstring of ``pretrained_model_name_or_path`` argument). force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to only look at local files (e.g., not try downloading the model). revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. kwargs (additional keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: >>> from transformers import AutoConfig, BaseAutoModelClass >>> # Download model and configuration from huggingface.co and cache. >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder') >>> # Update configuration during loading >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True) >>> model.config.output_attentions True >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower) >>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json') >>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config) """ def _get_model_class(config, model_mapping): supported_models = model_mapping[type(config)] if not isinstance(supported_models, (list, tuple)): return supported_models name_to_model = {model.__name__: model for model in supported_models} architectures = getattr(config, "architectures", []) for arch in architectures: if arch in name_to_model: return name_to_model[arch] elif f"TF{arch}" in name_to_model: return name_to_model[f"TF{arch}"] elif f"Flax{arch}" in name_to_model: return name_to_model[f"Flax{arch}"] # If not architecture is set in the config or match the supported models, the first element of the tuple is the # defaults. return supported_models[0] class _BaseAutoModelClass: # Base class for auto models. _model_mapping = None def __init__(self, *args, **kwargs): raise EnvironmentError( f"{self.__class__.__name__} is designed to be instantiated " f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " f"`{self.__class__.__name__}.from_config(config)` methods." ) @classmethod def from_config(cls, config, **kwargs): if type(config) in cls._model_mapping.keys(): model_class = _get_model_class(config, cls._model_mapping) return model_class._from_config(config, **kwargs) raise ValueError( f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): config = kwargs.pop("config", None) kwargs["_from_auto"] = True if not isinstance(config, PretrainedConfig): config, kwargs = AutoConfig.from_pretrained( pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs ) if type(config) in cls._model_mapping.keys(): model_class = _get_model_class(config, cls._model_mapping) return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) raise ValueError( f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n" f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}." ) def insert_head_doc(docstring, head_doc=""): if len(head_doc) > 0: return docstring.replace( "one of the model classes of the library ", f"one of the model classes of the library (with a {head_doc} head) ", ) return docstring.replace( "one of the model classes of the library ", "one of the base model classes of the library " ) def auto_class_update(cls, checkpoint_for_example="bert-base-cased", head_doc=""): # Create a new class with the right name from the base class model_mapping = cls._model_mapping name = cls.__name__ class_docstring = insert_head_doc(CLASS_DOCSTRING, head_doc=head_doc) cls.__doc__ = class_docstring.replace("BaseAutoModelClass", name) # Now we need to copy and re-register `from_config` and `from_pretrained` as class methods otherwise we can't # have a specific docstrings for them. from_config = copy_func(_BaseAutoModelClass.from_config) from_config_docstring = insert_head_doc(FROM_CONFIG_DOCSTRING, head_doc=head_doc) from_config_docstring = from_config_docstring.replace("BaseAutoModelClass", name) from_config_docstring = from_config_docstring.replace("checkpoint_placeholder", checkpoint_for_example) from_config.__doc__ = from_config_docstring from_config = replace_list_option_in_docstrings(model_mapping._model_mapping, use_model_types=False)(from_config) cls.from_config = classmethod(from_config) if name.startswith("TF"): from_pretrained_docstring = FROM_PRETRAINED_TF_DOCSTRING elif name.startswith("Flax"): from_pretrained_docstring = FROM_PRETRAINED_FLAX_DOCSTRING else: from_pretrained_docstring = FROM_PRETRAINED_TORCH_DOCSTRING from_pretrained = copy_func(_BaseAutoModelClass.from_pretrained) from_pretrained_docstring = insert_head_doc(from_pretrained_docstring, head_doc=head_doc) from_pretrained_docstring = from_pretrained_docstring.replace("BaseAutoModelClass", name) from_pretrained_docstring = from_pretrained_docstring.replace("checkpoint_placeholder", checkpoint_for_example) shortcut = checkpoint_for_example.split("/")[-1].split("-")[0] from_pretrained_docstring = from_pretrained_docstring.replace("shortcut_placeholder", shortcut) from_pretrained.__doc__ = from_pretrained_docstring from_pretrained = replace_list_option_in_docstrings(model_mapping._model_mapping)(from_pretrained) cls.from_pretrained = classmethod(from_pretrained) return cls def get_values(model_mapping): result = [] for model in model_mapping.values(): if isinstance(model, (list, tuple)): result += list(model) else: result.append(model) return result def getattribute_from_module(module, attr): if attr is None: return None if isinstance(attr, tuple): return tuple(getattribute_from_module(module, a) for a in attr) if hasattr(module, attr): return getattr(module, attr) # Some of the mappings have entries model_type -> object of another model type. In that case we try to grab the # object at the top level. transformers_module = importlib.import_module("transformers") return getattribute_from_module(transformers_module, attr) class _LazyAutoMapping(OrderedDict): """ " A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed. Args: - config_mapping: The map model type to config class - model_mapping: The map model type to model (or tokenizer) class """ def __init__(self, config_mapping, model_mapping): self._config_mapping = config_mapping self._reverse_config_mapping = {v: k for k, v in config_mapping.items()} self._model_mapping = model_mapping self._modules = {} def __getitem__(self, key): model_type = self._reverse_config_mapping[key.__name__] if model_type not in self._model_mapping: raise KeyError(key) model_name = self._model_mapping[model_type] return self._load_attr_from_module(model_type, model_name) def _load_attr_from_module(self, model_type, attr): module_name = model_type_to_module_name(model_type) if module_name not in self._modules: self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models") return getattribute_from_module(self._modules[module_name], attr) def keys(self): return [ self._load_attr_from_module(key, name) for key, name in self._config_mapping.items() if key in self._model_mapping.keys() ] def get(self, key, default): try: return self.__getitem__(key) except KeyError: return default def __bool__(self): return bool(self.keys()) def values(self): return [ self._load_attr_from_module(key, name) for key, name in self._model_mapping.items() if key in self._config_mapping.keys() ] def items(self): return [ ( self._load_attr_from_module(key, self._config_mapping[key]), self._load_attr_from_module(key, self._model_mapping[key]), ) for key in self._model_mapping.keys() if key in self._config_mapping.keys() ] def __iter__(self): return iter(self._mapping.keys()) def __contains__(self, item): if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping: return False model_type = self._reverse_config_mapping[item.__name__] return model_type in self._model_mapping
57.525234
147
0.65824
3457fd67ec44990abe89ab83cfdb62ab7e2b32cb
10,530
py
Python
GameFiles/Generator.py
ConnerGallimore/Project-Run
1a65f238412eafd675064b888d365c80a4516fa5
[ "MIT" ]
1
2021-06-08T21:22:42.000Z
2021-06-08T21:22:42.000Z
GameFiles/Generator.py
ConnerGallimore/Project-Run
1a65f238412eafd675064b888d365c80a4516fa5
[ "MIT" ]
null
null
null
GameFiles/Generator.py
ConnerGallimore/Project-Run
1a65f238412eafd675064b888d365c80a4516fa5
[ "MIT" ]
2
2021-06-14T20:41:30.000Z
2021-06-24T19:18:48.000Z
from ast import Param import pygame from GameFiles.Bug import * from GameFiles.Platform import * from GameFiles.Currency import * """Functions listed here are intended to generate non-player sprites.""" def coin_gen(coins, sprites, screen_width, screen_height): """Generate the coin obstacles for the game.""" # generate 20 coins for i in range(20): coin = Currency(screen_width, screen_height) # add coin to lists sprites.add(coin) coins.add(coin) def plat_gen(platforms, sprites, screen_width, screen_height): """Generate the platform obstacles for the game.""" # generate 4 platforms for i in range(4): platform = Platform(screen_width, screen_height) # add platforms to lists platforms.add(platform) sprites.add(platform) def bug_gen(bugs, obstacles, sprites, screen_width, screen_height): """Generate the bug obstacles for the game.""" # generate 6 bugs for i in range(6): bug = Bug(screen_width, screen_height) # add bugs to lists bugs.add(bug) obstacles.add(bug) sprites.add(bug) def change_coins(coins, index): """Change the locations of the coins.""" x = 0 y = 0 count = 0 # special set that occurs when the end condition is met. if index == -1: for coin in coins: coin.relocate(0,0) coin.invisible = True coin.touched = False # 1st set if index == 0: for coin in coins: if count < 6: coin.relocate(coin.width + 45*x, coin.height - 120) count += 1 coin.invisible = False elif 6 <= count < 9: y += 1 coin.relocate(coin.width + 45*x, (coin.height - 120) - 30*y) count += 1 coin.invisible = False elif 9 <= count < 12: y -= 1 coin.relocate(coin.width + 45*x, (coin.height - 150) - 30*y) count += 1 coin.invisible = False elif count < 18: coin.relocate(coin.width + 45*x, coin.height - 120) count += 1 coin.invisible = False else: coin.relocate(0,0) coin.invisible = True x += 1 coin.touched = False # 2nd set if index == 1: for coin in coins: if count < 4: coin.relocate((coin.width + 460) + 35*x, (coin.height - 280) + 30*count) count += 1 coin.invisible = False else: count = 0 x += 1 coin.relocate(0,0) coin.invisible = True coin.touched = False if index == 2: for coin in coins: if count < 2: if y < 6: coin.relocate((coin.height + 370) + 35*x, (coin.height - 190) + 30*count) elif y < 12: coin.relocate((coin.height + 600) + 35*x, (coin.height - 190) + 30*count) count += 1 y += 1 coin.invisible = False else: count = 0 x += 1 coin.invisible = True coin.touched = False if index == 3: for coin in coins: if count < 8: coin.relocate(700 + 35*x, 350) coin.invisible = False elif count < 10: coin.relocate(700 + 35*x, 350) coin.invisible = True elif count < 18: coin.relocate(700 + 35*x, 275) coin.invisible = False else: coin.relocate(0, 0) coin.invisible = True count += 1 x += 1 coin.touched = False if index == 4: for coin in coins: if count < 5: coin.relocate(700 + 35*x, 420) coin.invisible = False count += 1 elif count < 9: coin.relocate(0,0) coin.invisible = True count += 1 elif count == 9: coin.relocate(0, 0) count = 0 coin.invisible = True x += 1 coin.touched = False if index == 5: for coin in coins: if count < 3: coin.relocate(670 + 35*x, 275 + 30*count) count += 1 coin.invisible = False else: count = 0 x += 1 coin.relocate(0,0) coin.invisible = True coin.touched = False def change_platforms(platforms, index): """Change the locations of the platforms.""" # used to change positions of certain platforms x = 0 y = 0 count = 0 # special set that occurs when the end condition is met. if index == -1: for platform in platforms: if isinstance(platform, Platform): platform.relocate(0,0) platform.invisible = True if index == 0: for platform in platforms: if isinstance(platform, Platform): if y % 2 == 0: platform.relocate(platform.width+ 250*x, platform.height - 80) platform.invisible = False else: platform.invisible = True x += 1 y += 1 platform.invisible = False if index == 1: for platform in platforms: if isinstance(platform, Platform): if count < 1: platform.relocate(platform.width + 60, platform.height - 80) x += 1 y += 1 platform.invisible = False if index == 2: for platform in platforms: if isinstance(platform, Platform): platform.relocate(0,0) platform.invisible = True if index == 3: for platform in platforms: if isinstance(platform, Platform): if count < 2: platform.relocate(700 + 350*x, 400 - 75*y) platform.invisible = False else: platform.relocate(0, 0) platform.invisible = True x += 1 y += 1 count += 1 if index == 4: for platform in platforms: if isinstance(platform, Platform): platform.relocate(0,0) platform.invisible = True if index == 5: for platform in platforms: if isinstance(platform, Platform): platform.relocate(0,0) platform.invisible = True def change_bugs(bugs, index): """Change the locations of the bugs.""" # used to change positions of certain bugs x = 0 y = 0 count = 0 # special set that occurs when the end condition is met. if index == -1: for bug in bugs: bug.relocate(0,0) bug.invisible = True bug.touched = False if index == 0: for bug in bugs: if count < 1: bug.relocate(bug.width + 345 + 250*x, (bug.height - 145) - 250*y) bug.invisible = False count += 1 elif count < 2: bug.relocate(bug.width + 395, bug.height - 80) bug.invisible = False count += 1 else: bug.relocate(0,0) bug.invisible = True bug.touched = False x += 1 y += 1 if index == 1: for bug in bugs: if count < 1: bug.relocate(bug.width + 50*x, bug.height - 70) count += 1 bug.invisible = False elif count < 2: bug.relocate(bug.width + 385, bug.height - 130) count += 1 bug.invisible = False elif count < 5: bug.relocate((bug.width + 510) + 50*x, bug.height - 50) bug.invisible = False count += 1 else: bug.relocate(0,0) bug.invisible = True bug.touched = False x += 1 y += 1 if index == 2: for bug in bugs: if count < 3: bug.relocate(1000 + 45*x, 420) bug.invisible = False count += 1 else: bug.relocate(1200 + 45*x, 420) bug.invisible = False x += 1 bug.touched = False if index == 3: for bug in bugs: if count < 1: bug.relocate(720, 430) bug.invisible = False elif count < 2: bug.relocate(1000, 330) bug.invisible = False elif count < 3: bug.relocate(1345, 275) bug.invisible = False else: bug.relocate(0,0) bug.invisible = True count += 1 bug.touched = False if index == 4: for bug in bugs: if count < 3: bug.relocate(915 + 40*x, 420) bug.invisible = False count += 1 x += 1 else: bug.relocate(1150 + 40*x, 420) bug.invisible = False x += 1 bug.touched = False if index == 5: for bug in bugs: if count < 2: bug.relocate(700, 420 - 45*y) count += 1 y += 1 bug.invisible = False elif count < 4: bug.relocate(700, 240 - 45*x) count += 1 y = 0 x += 1 bug.invisible = False else: bug.relocate(855, 330 - 45*y) y += 1 bug.invisible = False bug.touched = False
25.373494
93
0.439411
d1f01811f8688f69e74366e63bb44e1c45178106
1,755
py
Python
authentik/outposts/controllers/k8s/utils.py
BeryJu/passbook
350f0d836580f4411524614f361a76c4f27b8a2d
[ "MIT" ]
15
2020-01-05T09:09:57.000Z
2020-11-28T05:27:39.000Z
authentik/outposts/controllers/k8s/utils.py
BeryJu/passbook
350f0d836580f4411524614f361a76c4f27b8a2d
[ "MIT" ]
302
2020-01-21T08:03:59.000Z
2020-12-04T05:04:57.000Z
authentik/outposts/controllers/k8s/utils.py
BeryJu/passbook
350f0d836580f4411524614f361a76c4f27b8a2d
[ "MIT" ]
3
2020-03-04T08:21:59.000Z
2020-08-01T20:37:18.000Z
"""k8s utils""" from pathlib import Path from kubernetes.client.models.v1_container_port import V1ContainerPort from kubernetes.client.models.v1_service_port import V1ServicePort from kubernetes.config.incluster_config import SERVICE_TOKEN_FILENAME from authentik.outposts.controllers.k8s.triggers import NeedsRecreate def get_namespace() -> str: """Get the namespace if we're running in a pod, otherwise default to default""" path = Path(SERVICE_TOKEN_FILENAME.replace("token", "namespace")) if path.exists(): with open(path, "r", encoding="utf8") as _namespace_file: return _namespace_file.read() return "default" def compare_port( current: V1ServicePort | V1ContainerPort, reference: V1ServicePort | V1ContainerPort ) -> bool: """Compare a single port""" if current.name != reference.name: return False if current.protocol != reference.protocol: return False if isinstance(current, V1ServicePort) and isinstance(reference, V1ServicePort): # We only care about the target port if current.target_port != reference.target_port: return False if isinstance(current, V1ContainerPort) and isinstance(reference, V1ContainerPort): # We only care about the target port if current.container_port != reference.container_port: return False return True def compare_ports( current: list[V1ServicePort | V1ContainerPort], reference: list[V1ServicePort | V1ContainerPort] ): """Compare ports of a list""" if len(current) != len(reference): raise NeedsRecreate() for port in reference: if not any(compare_port(port, current_port) for current_port in current): raise NeedsRecreate()
36.5625
100
0.71567
2bfddc7e206a757a3b2fd3e79bb0ee01853d1c11
213
py
Python
boot.py
jfcherng/Sublime-VisualizeZeroWidthChars
9469b01a13c0c8bfde17ca9627d08ba0ee757d43
[ "MIT" ]
2
2021-03-27T05:55:22.000Z
2021-04-01T13:40:24.000Z
boot.py
jfcherng-sublime/ST-VisualizeZeroWidthChars
9469b01a13c0c8bfde17ca9627d08ba0ee757d43
[ "MIT" ]
1
2019-08-25T20:08:05.000Z
2019-08-26T07:02:54.000Z
boot.py
jfcherng/Sublime-VisualizeZeroWidthChars
9469b01a13c0c8bfde17ca9627d08ba0ee757d43
[ "MIT" ]
null
null
null
from .plugin import set_up, tear_down # main plugin classes from .plugin.sublime_text.VisualizeZeroWidthChars import * def plugin_loaded() -> None: set_up() def plugin_unloaded() -> None: tear_down()
16.384615
58
0.732394
9f33c01ff3f6e61346080a60b314d9f8c5894ece
2,808
py
Python
hw/scripts/gen_config.py
ausbin/vortex
592a8400e2f3323dce398ab36d435752e959e033
[ "BSD-3-Clause" ]
9
2021-04-19T02:07:14.000Z
2021-12-13T07:00:37.000Z
hw/scripts/gen_config.py
ausbin/vortex
592a8400e2f3323dce398ab36d435752e959e033
[ "BSD-3-Clause" ]
null
null
null
hw/scripts/gen_config.py
ausbin/vortex
592a8400e2f3323dce398ab36d435752e959e033
[ "BSD-3-Clause" ]
4
2021-04-08T22:12:45.000Z
2022-03-25T00:39:01.000Z
#!/usr/bin/env python3 # coding=utf-8 from __future__ import print_function import os import os.path as path import re import argparse from datetime import datetime script_dir = path.dirname(path.realpath(__file__)) defines = {} for k, v in os.environ.items(): if k.upper().startswith('V_'): defines[k[2:]] = v print('Custom params:', ', '.join(['='.join(x) for x in defines.items()])) parser = argparse.ArgumentParser() parser.add_argument('--outc', default='none', help='Output C header') parser.add_argument('--outv', default='none', help='Output Verilog header') args = parser.parse_args() if args.outc == 'none' and args.outv == 'none': print('Warning: not emitting any files. Specify arguments') if args.outv != 'none': with open(args.outv, 'w') as f: print(''' // auto-generated by gen_config.py. DO NOT EDIT // Generated at {date} `ifndef VX_USER_CONFIG `define VX_USER_CONFIG '''[1:].format(date=datetime.now()), file=f) for k, v in defines.items(): print('`define {} {}'.format(k, v), file=f) print('\n`endif', file=f) if args.outc != 'none': with open(args.outc, 'w') as f: print(''' // auto-generated by gen_config.py. DO NOT EDIT // Generated at {date} #ifndef VX_USER_CONFIG #define VX_USER_CONFIG '''[1:].format(date=datetime.now()), file=f) for k, v in defines.items(): print('#define {} {}'.format(k, v), file=f) print('\n#endif', file=f) translation_rules = [ # preprocessor directives (re.compile(r'^\s*`include .*$'), r''), (re.compile(r'`ifdef'), r'#ifdef'), (re.compile(r'`ifndef'), r'#ifndef'), (re.compile(r'`elif'), r'#elif'), (re.compile(r'`else'), r'#else'), (re.compile(r'`define'), r'#define'), (re.compile(r'`endif'), r'#endif'), # macro expansion (re.compile(r"`([A-Za-z_][$_0-9A-Za-z]*)"), r'\1'), # literals (re.compile(r"\d+'d(\d+)"), r'\1'), (re.compile(r"\d+'b([01]+)"), r'0b\1'), (re.compile(r"\d+'h([\da-fA-F]+)"), r'0x\1') ] if args.outc != 'none': with open(args.outc, 'a') as f: print(''' // auto-generated by gen_config.py. DO NOT EDIT // Generated at {date} // Translated from VX_config.vh: '''[1:].format(date=datetime.now()), file=f) with open(path.join(script_dir, '../rtl/VX_config.vh'), 'r') as r: lineno = 0 for line in r: for pat, repl in translation_rules: match = pat.search(line) if match: line = re.sub(pat, repl, line) #print("*** match @" + str(lineno) + ": " + match.group() + " => " + line) f.write(line) lineno = lineno + 1 print(''' '''[1:], file=f)
27.80198
98
0.558048
686318af8b6e3f2347106a329f11cb755711e6ce
17,390
py
Python
testui/support/appium_driver.py
ty-hob/Py-TestUI
08fa460deafd15f970f39edce1c5060f581449bc
[ "Apache-2.0" ]
3
2020-07-10T06:50:49.000Z
2022-02-18T02:14:09.000Z
testui/support/appium_driver.py
ty-hob/Py-TestUI
08fa460deafd15f970f39edce1c5060f581449bc
[ "Apache-2.0" ]
13
2021-02-26T07:49:36.000Z
2022-03-29T11:32:19.000Z
testui/support/appium_driver.py
ty-hob/Py-TestUI
08fa460deafd15f970f39edce1c5060f581449bc
[ "Apache-2.0" ]
3
2021-03-23T18:38:21.000Z
2021-09-16T14:57:57.000Z
import atexit import os import subprocess import threading from pathlib import Path from time import sleep from ppadb.client import Client as AdbClient from appium.webdriver import Remote from appium.webdriver.webdriver import WebDriver from selenium import webdriver from selenium.webdriver.firefox.firefox_binary import FirefoxBinary from webdriver_manager import chrome from testui.support import logger from testui.support.api_support import get_chrome_version from testui.support.testui_driver import TestUIDriver from testui.support.configuration import Configuration class NewDriver: __configuration = Configuration() def __init__(self): self.browser = False self.__driver: WebDriver = None self.__app_path = None self.udid = None self.__appium_url = None self.__remote_url = None self.__browser_name = 'chrome' self.device_name = 'Device' self.appium_port = 4723 self.__version = None self.__platform_name = 'Android' self.__app_package = None self.__app_activity = None self.__automation_name = None self.logger_name = None self.__full_reset = False self.__debug = False self.soft_assert = False self.__auto_accept_alerts = True self.process = None self.file_name = None self.__appium_log_file = 'appium-stdout.log' self.__chromedriverArgs = ['relaxed security'] self.__desired_capabilities = {} self.__chrome_options = {} # Possible loggers str: behave, pytest, None def set_logger(self, logger_name='pytest'): self.logger_name = logger_name return self def set_appium_log_file(self, file='appium-stdout.log'): self.__appium_log_file = file return self def set_browser(self, browser): self.__browser_name = browser return self def set_remote_url(self, url): self.__remote_url = url return self def set_soft_assert(self, soft_assert: bool): self.soft_assert = soft_assert return self def set_appium_port(self, port: int): self.appium_port = port return self def set_full_reset(self, full_reset: bool): self.__full_reset = full_reset return self def set_appium_url(self, appium_url: str): self.__appium_url = appium_url return self def set_extra_caps(self, caps=None): if caps is None: caps = {} for cap in caps: self.__desired_capabilities[cap] = caps[cap] return self def set_app_path(self, path: str): self.__app_path = path if os.path.isabs(self.__app_path): return self else: root_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) self.__app_path = os.path.join(root_dir, path) logger.log(self.__app_path) return self def set_udid(self, udid: str): self.udid = udid return self def set_udid_if_exists(self, udid: str, number=None): self.udid = check_device_exist(udid) if self.udid is None: self.udid = get_device_udid(number) return self def set_connected_device(self, number: int): self.udid = get_device_udid(number) return self def set_device_name(self, device_name: str): self.device_name = device_name return self def set_version(self, version: str): self.__version = version return self def set_grant_permissions(self, permissions: bool): self.__auto_accept_alerts = permissions return self def set_app_package_activity(self, app_package: str, app_activity: str): self.__app_package = app_package self.__app_activity = app_activity return self def get_driver(self): driver = self.__driver return driver @property def configuration(self) -> Configuration: return self.__configuration def get_testui_driver(self) -> TestUIDriver: return TestUIDriver(self) def set_chrome_driver(self, version=''): mobile_version = version if version == '': if self.udid is None: self.udid = get_device_udid(0) mobile_version = check_chrome_version(self.udid) chrome_driver = chrome.ChromeDriverManager(version=mobile_version).install() logger.log(f'Driver installed in {chrome_driver}', True) self.__desired_capabilities['chromedriverExecutable'] = chrome_driver return self def set_screenshot_path(self, screenshot_path: str): self.__configuration.screenshot_path = screenshot_path return self def set_save_screenshot_on_fail(self, save_screenshot_on_fail: bool): self.__configuration.save_full_stacktrace = save_screenshot_on_fail return self def set_save_full_stacktrace(self, save_full_stacktrace: bool): self.__configuration.save_full_stacktrace = save_full_stacktrace return self # Available platforms: Android, iOS def set_platform(self, platform): self.__platform_name = platform return self def __set_common_caps(self): self.__desired_capabilities['adbExecTimeout'] = 30000 self.__desired_capabilities['platformName'] = self.__platform_name self.__desired_capabilities['automationName'] = self.__automation_name self.__desired_capabilities['deviceName'] = self.device_name if self.__full_reset: self.__desired_capabilities['enforceAppInstall'] = True else: self.__desired_capabilities['noReset'] = True if self.__version is not None: self.__desired_capabilities['platformVersion'] = self.__version if self.udid is not None: self.__desired_capabilities['udid'] = self.udid def __set_android_caps(self): if self.__automation_name is None: self.__automation_name = 'UiAutomator2' self.__desired_capabilities['chromeOptions'] = {'w3c': False} # ToDo It is not being passed to executable. Tried this # https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/caps.md self.__desired_capabilities['chromedriverArgs'] = self.__chromedriverArgs self.__desired_capabilities['chromeDriverPort'] = self.appium_port - 4723 + 8100 self.__desired_capabilities['systemPort'] = self.appium_port - 4723 + 8200 if self.__app_path is None and self.__app_package is None: self.__desired_capabilities['browserName'] = "chrome" self.browser = True if self.__app_package is not None: self.__desired_capabilities['appPackage'] = self.__app_package self.__desired_capabilities['appActivity'] = self.__app_activity if self.__app_path is not None: self.__desired_capabilities['app'] = self.__app_path self.__desired_capabilities['androidInstallPath'] = self.__app_path def __set_ios_caps(self): if self.__automation_name is None: self.__automation_name = 'XCUITest' if self.__app_path is None and self.__app_package is None: self.__desired_capabilities['browserName'] = "safari" self.browser = True if self.__app_path is not None: self.__desired_capabilities['app'] = self.__app_path if self.__version is None: self.__desired_capabilities['platformVersion'] = '13.2' def __set_selenium_caps(self): self.__desired_capabilities['browserName'] = self.__browser_name def set_appium_driver(self) -> TestUIDriver: if self.__platform_name.lower() == 'android': self.__set_android_caps() else: self.__set_ios_caps() self.__set_common_caps() self.__driver, self.process, self.file_name = start_driver( self.__desired_capabilities, self.__appium_url, self.__debug, self.appium_port, self.udid, self.__appium_log_file ) return self.get_testui_driver() def set_selenium_driver(self, chrome_options=None, firefox_options=None) -> TestUIDriver: self.__set_selenium_caps() self.__driver = start_selenium_driver( self.__desired_capabilities, self.__remote_url, self.__debug, self.__browser_name, chrome_options, firefox_options) return self.get_testui_driver() def set_driver(self, driver) -> TestUIDriver: self.__set_selenium_caps() self.__driver = driver return self.get_testui_driver() def start_driver(desired_caps, url, debug, port, udid, log_file): lock = threading.Lock() lock.acquire() logger.log("setting capabilities: " + desired_caps.__str__()) logger.log("starting appium driver...") process = None if desired_caps['platformName'].lower().__contains__('android'): url, desired_caps, process, file = __local_run(url, desired_caps, port, udid, log_file) else: url, desired_caps, file = __local_run_ios(url, desired_caps, port, udid, log_file) err = None for x in range(2): try: driver = Remote(url, desired_caps) atexit.register(__quit_driver, driver, debug) logger.log(f"appium running on {url}. \n") lock.release() return driver, process, file except Exception as error: err = error lock.release() raise err def start_selenium_driver(desired_caps, url=None, debug=None, browser=None, chrome_options=None, firefox_options=None) -> WebDriver: options = chrome_options if firefox_options is not None: options = firefox_options if options is not None: logger.log("setting options: " + options.to_capabilities().__str__()) logger.log("setting capabilities: " + desired_caps.__str__()) logger.log(f"starting selenium {browser.lower()} driver...") err = None for x in range(2): try: if url is not None: logger.log(f"selenium running on {url}. \n") driver = webdriver.Remote(url, desired_caps, options=options) else: if browser.lower() == 'chrome': driver = webdriver.Chrome(desired_capabilities=desired_caps, options=options) elif browser.lower() == 'firefox': import geckodriver_autoinstaller try: geckodriver_autoinstaller.install() except Exception as error: logger.log_warn("Could not retrieve geckodriver: " + error.__str__()) if "marionette" not in desired_caps: desired_caps["marionette"] = True driver = webdriver.Firefox(firefox_options=options, desired_capabilities=desired_caps) elif browser.lower() == 'safari': driver = webdriver.Safari(desired_capabilities=desired_caps) elif browser.lower() == 'edge': driver = webdriver.Edge(capabilities=desired_caps) elif browser.lower() == 'ie': driver = webdriver.Ie(capabilities=desired_caps) elif browser.lower() == 'opera': driver = webdriver.Opera(desired_capabilities=desired_caps) elif browser.lower() == 'phantomjs': driver = webdriver.PhantomJS(desired_capabilities=desired_caps) else: raise Exception(f"Invalid browser '{browser}'. Please choose one from: chrome,firefox,safari,edge," f"ie,opera,phantomjs") atexit.register(__quit_driver, driver, debug) return driver except Exception as error: err = error raise err def __local_run(url, desired_caps, use_port, udid, log_file): if url is None: port = use_port bport = use_port + 1 device = 0 if os.getenv('PYTEST_XDIST_WORKER') is not None: device += os.getenv('PYTEST_XDIST_WORKER').split("w")[1] port += int(os.getenv('PYTEST_XDIST_WORKER').split("w")[1]) * 2 desired_caps['chromeDriverPort'] = 8200 + int(os.getenv('PYTEST_XDIST_WORKER').split("w")[1]) desired_caps['systemPort'] = 8300 + int(os.getenv('PYTEST_XDIST_WORKER').split("w")[1]) bport += int(os.getenv('PYTEST_XDIST_WORKER').split("w")[1]) * 2 logger.log(f"running: appium -p {port.__str__()} -bp {bport.__str__()}") if udid is None: desired_caps = __set_android_device(desired_caps, device) logger.log(f'setting device for automation: {desired_caps["udid"]}') root_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + '/' Path(root_dir + "appium_logs").mkdir(parents=True, exist_ok=True) file_path: str if log_file == 'appium-stdout.log': file = f'appium_logs/testui-{udid}-' + log_file else: file = f'appium_logs/{log_file}' with open(root_dir + file, 'wb') as out: process = subprocess.Popen( ['appium', '-p', port.__str__(), '-bp', bport.__str__()], stdout=out, stderr=subprocess.STDOUT ) atexit.register(process.kill) file_path = root_dir + file while True: sleep(0.5) out = open(file_path) text = out.read() if text.__contains__("already be in use") or text.__contains__("listener started"): out.close() break out.close() return f"http://localhost:{port.__str__()}/wd/hub", desired_caps, process, file_path return url, desired_caps, None def __local_run_ios(url, desired_caps, use_port, udid, log_file): process = None if url is None: port = use_port + 100 device = 0 if os.getenv('PYTEST_XDIST_WORKER') is not None: device += os.getenv('PYTEST_XDIST_WORKER').split("w")[1] port += int(os.getenv('PYTEST_XDIST_WORKER').split("w")[1]) * 2 desired_caps['chromeDriverPort'] = 8200 + int(os.getenv('PYTEST_XDIST_WORKER').split("w")[1]) desired_caps['systemPort'] = 8300 + int(os.getenv('PYTEST_XDIST_WORKER').split("w")[1]) logger.log(f"running: appium -p {port.__str__()}") root_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + '/' Path(root_dir + "appium_logs").mkdir(parents=True, exist_ok=True) file_path: str if log_file == 'appium-stdout.log': file = f'appium_logs/testui-{udid}-' + log_file else: file = f'appium_logs/{log_file}' with open(root_dir + file, 'wb') as out: process = subprocess.Popen( ['appium', '-p', port.__str__()], stdout=out, stderr=subprocess.STDOUT ) atexit.register(process.kill) file_path = root_dir + file if udid is None: desired_caps = __set_ios_device(desired_caps, device) while True: sleep(0.5) out = open(file_path) text = out.read() if text.__contains__("already be in use") or text.__contains__("listener started"): out.close() break out.close() return f"http://localhost:{port.__str__()}/wd/hub", desired_caps, file_path return url, desired_caps, process def __set_android_device(desired_caps, number: int): desired_caps['udid'] = get_device_udid(number) return desired_caps def __set_ios_device(desired_caps, number: int): # TODO return desired_caps def get_device_udid(number: int): client = AdbClient(host="127.0.0.1", port=5037) devices = client.devices() if len(devices) == 0: raise Exception("There are 0 devices connected to the computer!") if len(devices) > number: return devices[number].get_serial_no() else: new_number = number - (number // len(devices)) * len(devices) logger.log_warn(f'You choose device number {number + 1} but there are only {len(devices)} connected. ' f'Will use device number {new_number + 1} instead', jump_line=True) return devices[new_number].get_serial_no() def check_device_exist(udid): client = AdbClient(host="127.0.0.1", port=5037) devices = client.devices() for device in devices: if device.get_serial_no() == udid: return udid return None def check_chrome_version(udid): output = subprocess.Popen(['adb', '-s', udid, 'shell', 'dumpsys', 'package', 'com.android.chrome', '|', 'grep', 'versionName'], stdout=subprocess.PIPE) response = output.communicate() if response.__str__().__contains__('versionName='): return get_chrome_version(response.__str__().split('versionName=')[1].split('.')[0]) def __quit_driver(driver, debug): try: driver.quit() except Exception as err: if debug: logger.log_debug(f"appium was probably closed {err}. \n")
39.343891
132
0.635078
8e36864d3e1657a4ddc428a2be560e60809ef8ca
16,642
py
Python
src/sage/combinat/rigged_configurations/rc_crystal.py
vbraun/sage
07d6c37d18811e2b377a9689790a7c5e24da16ba
[ "BSL-1.0" ]
3
2016-06-19T14:48:31.000Z
2022-01-28T08:46:01.000Z
src/sage/combinat/rigged_configurations/rc_crystal.py
vbraun/sage
07d6c37d18811e2b377a9689790a7c5e24da16ba
[ "BSL-1.0" ]
null
null
null
src/sage/combinat/rigged_configurations/rc_crystal.py
vbraun/sage
07d6c37d18811e2b377a9689790a7c5e24da16ba
[ "BSL-1.0" ]
7
2021-11-08T10:01:59.000Z
2022-03-03T11:25:52.000Z
r""" Crystal of Rigged Configurations AUTHORS: - Travis Scrimshaw (2010-09-26): Initial version We only consider the highest weight crystal structure, not the Kirillov-Reshetikhin structure, and we extend this to symmetrizable types. """ #***************************************************************************** # Copyright (C) 2013 Travis Scrimshaw <tscrim at ucdavis.edu> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #***************************************************************************** from sage.misc.lazy_attribute import lazy_attribute from sage.structure.unique_representation import UniqueRepresentation from sage.structure.parent import Parent from sage.categories.highest_weight_crystals import HighestWeightCrystals from sage.categories.regular_crystals import RegularCrystals from sage.categories.classical_crystals import ClassicalCrystals from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.combinat.root_system.cartan_type import CartanType from sage.combinat.rigged_configurations.rigged_configurations import RiggedConfigurations from sage.combinat.rigged_configurations.rigged_configuration_element import ( RiggedConfigurationElement, RCHighestWeightElement, RCHWNonSimplyLacedElement) from sage.combinat.rigged_configurations.rigged_partition import RiggedPartition # Note on implementation, this class is used for simply-laced types only class CrystalOfRiggedConfigurations(UniqueRepresentation, Parent): r""" A highest weight crystal of rigged configurations. The crystal structure for finite simply-laced types is given in [CrysStructSchilling06]_. These were then shown to be the crystal operators in all finite types in [SS2015]_, all simply-laced and a large class of foldings of simply-laced types in [SS2015II]_, and all symmetrizable types (uniformly) in [SS2017]_. INPUT: - ``cartan_type`` -- (optional) a Cartan type or a Cartan type given as a folding - ``wt`` -- the highest weight vector in the weight lattice EXAMPLES: For simplicity, we display the rigged configurations horizontally:: sage: RiggedConfigurations.options.display='horizontal' We start with a simply-laced finite type:: sage: La = RootSystem(['A', 2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1] + La[2]) sage: mg = RC.highest_weight_vector() sage: mg.f_string([1,2]) 0[ ]0 0[ ]-1 sage: mg.f_string([1,2,2]) 0[ ]0 -2[ ][ ]-2 sage: mg.f_string([1,2,2,2]) sage: mg.f_string([2,1,1,2]) -1[ ][ ]-1 -1[ ][ ]-1 sage: RC.cardinality() 8 sage: T = crystals.Tableaux(['A', 2], shape=[2,1]) sage: RC.digraph().is_isomorphic(T.digraph(), edge_labels=True) True We construct a non-simply-laced affine type:: sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[2]) sage: mg = RC.highest_weight_vector() sage: mg.f_string([2,3]) (/) 1[ ]1 -1[ ]-1 sage: T = crystals.Tableaux(['C', 3], shape=[1,1]) sage: RC.digraph().is_isomorphic(T.digraph(), edge_labels=True) True We can construct rigged configurations using a diagram folding of a simply-laced type. This yields an equivalent but distinct crystal:: sage: vct = CartanType(['C', 3]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[2]) sage: mg = RC.highest_weight_vector() sage: mg.f_string([2,3]) (/) 0[ ]0 -1[ ]-1 sage: T = crystals.Tableaux(['C', 3], shape=[1,1]) sage: RC.digraph().is_isomorphic(T.digraph(), edge_labels=True) True We reset the global options:: sage: RiggedConfigurations.options._reset() REFERENCES: - [SS2015]_ - [SS2015II]_ - [SS2017]_ """ @staticmethod def __classcall_private__(cls, cartan_type, wt=None, WLR=None): r""" Normalize the input arguments to ensure unique representation. EXAMPLES:: sage: La = RootSystem(['A', 2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1]) sage: RC2 = crystals.RiggedConfigurations(['A', 2], La[1]) sage: RC3 = crystals.RiggedConfigurations(['A', 2], La[1], La[1].parent()) sage: RC is RC2 and RC2 is RC3 True sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() sage: LaE = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1]) sage: RCE = crystals.RiggedConfigurations(LaE[1]) sage: RC is RCE False """ from sage.combinat.root_system.type_folded import CartanTypeFolded if wt is None: wt = cartan_type cartan_type = wt.parent().cartan_type() else: if not isinstance(cartan_type, CartanTypeFolded): cartan_type = CartanType(cartan_type) if WLR is None: WLR = wt.parent() else: wt = WLR(wt) if isinstance(cartan_type, CartanTypeFolded): return CrystalOfNonSimplyLacedRC(cartan_type, wt, WLR) return super(CrystalOfRiggedConfigurations, cls).__classcall__(cls, wt, WLR=WLR) def __init__(self, wt, WLR): r""" Initialize ``self``. EXAMPLES:: sage: La = RootSystem(['A', 2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1] + La[2]) sage: TestSuite(RC).run() sage: La = RootSystem(['A', 2, 1]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[0]) sage: TestSuite(RC).run() # long time """ self._cartan_type = WLR.cartan_type() self._wt = wt self._rc_index = self._cartan_type.index_set() self._rc_index_inverse = {i: ii for ii,i in enumerate(self._rc_index)} # We store the Cartan matrix for the vacancy number calculations for speed self._cartan_matrix = self._cartan_type.cartan_matrix() if self._cartan_type.is_finite(): category = ClassicalCrystals() else: category = (RegularCrystals(), HighestWeightCrystals(), InfiniteEnumeratedSets()) Parent.__init__(self, category=category) n = self._cartan_type.rank() #== len(self._cartan_type.index_set()) self.module_generators = (self.element_class( self, partition_list=[[] for i in range(n)] ),) options = RiggedConfigurations.options def _repr_(self): """ Return a string representation of ``self``. EXAMPLES:: sage: La = RootSystem(['A', 3]).weight_lattice().fundamental_weights() sage: crystals.RiggedConfigurations(La[1]) Crystal of rigged configurations of type ['A', 3] and weight Lambda[1] """ return "Crystal of rigged configurations of type {0} and weight {1}".format( self._cartan_type, self._wt) def _element_constructor_(self, *lst, **options): """ Construct a ``RiggedConfigurationElement``. Typically the user should not call this method since it does not check if it is an actual configuration in the crystal. Instead the user should use the iterator. EXAMPLES:: sage: La = RootSystem(['A', 2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1] + La[2]) sage: RC(partition_list=[[1],[1]], rigging_list=[[0],[-1]]) <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]-1 <BLANKLINE> sage: RC(partition_list=[[1],[2]]) <BLANKLINE> 0[ ]0 <BLANKLINE> -2[ ][ ]-2 <BLANKLINE> TESTS: Check that :trac:`17054` is fixed:: sage: La = RootSystem(['A', 2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(4*La[1] + 4*La[2]) sage: B = crystals.infinity.RiggedConfigurations(['A',2]) sage: x = B.an_element().f_string([2,2,1,1,2,1,2,1]) sage: ascii_art(x) -4[ ][ ][ ][ ]-4 -4[ ][ ][ ][ ]0 sage: ascii_art(RC(x.nu())) 0[ ][ ][ ][ ]-4 0[ ][ ][ ][ ]0 sage: x == B.an_element().f_string([2,2,1,1,2,1,2,1]) True """ if isinstance(lst[0], (list, tuple)): lst = lst[0] if isinstance(lst[0], RiggedPartition): lst = [p._clone() for p in lst] # Make a deep copy elif isinstance(lst[0], RiggedConfigurationElement): lst = [p._clone() for p in lst[0]] # Make a deep copy return self.element_class(self, list(lst), **options) def _calc_vacancy_number(self, partitions, a, i, **options): r""" Calculate the vacancy number `p_i^{(a)}(\nu)` in ``self``. This assumes that `\gamma_a = 1` for all `a` and `(\alpha_a | \alpha_b ) = A_{ab}`. INPUT: - ``partitions`` -- the list of rigged partitions we are using - ``a`` -- the rigged partition index - ``i`` -- the row length TESTS:: sage: La = RootSystem(['A', 2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1] + La[2]) sage: elt = RC(partition_list=[[1],[2]]) sage: RC._calc_vacancy_number(elt.nu(), 1, 2) -2 """ vac_num = self._wt[self.index_set()[a]] for b in range(self._cartan_matrix.ncols()): val = self._cartan_matrix[a,b] if val: vac_num -= val * partitions[b].get_num_cells_to_column(i) return vac_num def weight_lattice_realization(self): """ Return the weight lattice realization used to express the weights of elements in ``self``. EXAMPLES:: sage: La = RootSystem(['A', 2, 1]).weight_lattice(extended=True).fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[0]) sage: RC.weight_lattice_realization() Extended weight lattice of the Root system of type ['A', 2, 1] """ return self._wt.parent() Element = RCHighestWeightElement class CrystalOfNonSimplyLacedRC(CrystalOfRiggedConfigurations): """ Highest weight crystal of rigged configurations in non-simply-laced type. """ def __init__(self, vct, wt, WLR): """ Initialize ``self``. EXAMPLES:: sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1]) sage: TestSuite(RC).run() """ self._folded_ct = vct CrystalOfRiggedConfigurations.__init__(self, wt, WLR) @lazy_attribute def virtual(self): """ Return the corresponding virtual crystal. EXAMPLES:: sage: La = RootSystem(['C', 2, 1]).weight_lattice().fundamental_weights() sage: vct = CartanType(['C', 2, 1]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[0]) sage: RC Crystal of rigged configurations of type ['C', 2, 1] and weight Lambda[0] sage: RC.virtual Crystal of rigged configurations of type ['A', 3, 1] and weight 2*Lambda[0] """ P = self._folded_ct._folding.root_system().weight_lattice() gamma = self._folded_ct.scaling_factors() sigma = self._folded_ct.folding_orbit() vwt = P.sum_of_terms((b, gamma[a]*c) for a,c in self._wt for b in sigma[a]) return CrystalOfRiggedConfigurations(vwt) def _calc_vacancy_number(self, partitions, a, i, **options): r""" Calculate the vacancy number `p_i^{(a)}(\nu)` in ``self``. INPUT: - ``partitions`` -- the list of rigged partitions we are using - ``a`` -- the rigged partition index - ``i`` -- the row length TESTS:: sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights() sage: vct = CartanType(['C', 3]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[2]) sage: elt = RC(partition_list=[[], [1], [1]]) sage: RC._calc_vacancy_number(elt.nu(), 1, 1) 0 sage: RC._calc_vacancy_number(elt.nu(), 2, 1) -1 """ I = self.index_set() ia = I[a] vac_num = self._wt[ia] gamma = self._folded_ct.scaling_factors() g = gamma[ia] for b in range(self._cartan_matrix.ncols()): ib = I[b] q = partitions[b].get_num_cells_to_column(g*i, gamma[ib]) vac_num -= self._cartan_matrix[a,b] * q / gamma[ib] return vac_num def to_virtual(self, rc): """ Convert ``rc`` into a rigged configuration in the virtual crystal. INPUT: - ``rc`` -- a rigged configuration element EXAMPLES:: sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights() sage: vct = CartanType(['C', 3]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[2]) sage: elt = RC(partition_list=[[], [1], [1]]); elt <BLANKLINE> (/) <BLANKLINE> 0[ ]0 <BLANKLINE> -1[ ]-1 <BLANKLINE> sage: RC.to_virtual(elt) <BLANKLINE> (/) <BLANKLINE> 0[ ]0 <BLANKLINE> -2[ ][ ]-2 <BLANKLINE> 0[ ]0 <BLANKLINE> (/) <BLANKLINE> """ gamma = [int(_) for _ in self._folded_ct.scaling_factors()] sigma = self._folded_ct._orbit n = self._folded_ct._folding.rank() vindex = self._folded_ct._folding.index_set() partitions = [None] * n riggings = [None] * n for a, rp in enumerate(rc): for i in sigma[a]: k = vindex.index(i) partitions[k] = [row_len*gamma[a] for row_len in rp._list] riggings[k] = [rig_val*gamma[a] for rig_val in rp.rigging] return self.virtual.element_class(self.virtual, partition_list=partitions, rigging_list=riggings) def from_virtual(self, vrc): """ Convert ``vrc`` in the virtual crystal into a rigged configuration of the original Cartan type. INPUT: - ``vrc`` -- a virtual rigged configuration EXAMPLES:: sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights() sage: vct = CartanType(['C', 3]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[2]) sage: elt = RC(partition_list=[[0], [1], [1]]) sage: elt == RC.from_virtual(RC.to_virtual(elt)) True """ gamma = list(self._folded_ct.scaling_factors()) #map(int, self._folded_ct.scaling_factors()) sigma = self._folded_ct._orbit n = self._cartan_type.rank() partitions = [None] * n riggings = [None] * n vac_nums = [None] * n vindex = self._folded_ct._folding.index_set() for a in range(n): index = vindex.index(sigma[a][0]) partitions[a] = [row_len // gamma[a] for row_len in vrc[index]._list] riggings[a] = [rig_val / gamma[a] for rig_val in vrc[index].rigging] return self.element_class(self, partition_list=partitions, rigging_list=riggings) Element = RCHWNonSimplyLacedElement # deprecations from trac:18555 from sage.misc.superseded import deprecated_function_alias CrystalOfRiggedConfigurations.global_options = deprecated_function_alias(18555, CrystalOfRiggedConfigurations.options)
36.575824
118
0.591636
3a22cae9527978ab063610ba622a4ee004e4edf4
13,426
py
Python
nitro/resource/config/lb/lbvserver_transformpolicy_binding.py
HanseMerkur/nitro-python
d03eb11f492a35a2a8b2a140322fbce22d25a8f7
[ "Apache-2.0" ]
2
2020-08-24T18:04:22.000Z
2020-08-24T18:04:47.000Z
nitro/resource/config/lb/lbvserver_transformpolicy_binding.py
HanseMerkur/nitro-python
d03eb11f492a35a2a8b2a140322fbce22d25a8f7
[ "Apache-2.0" ]
null
null
null
nitro/resource/config/lb/lbvserver_transformpolicy_binding.py
HanseMerkur/nitro-python
d03eb11f492a35a2a8b2a140322fbce22d25a8f7
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nitro.resource.base.base_resource import base_resource from nitro.resource.base.base_resource import base_response from nitro.service.options import options from nitro.exception.nitro_exception import nitro_exception from nitro.util.nitro_util import nitro_util class lbvserver_transformpolicy_binding(base_resource) : """Binding class showing the transformpolicy that can be bound to lbvserver.""" def __init__(self) : self._policyname = "" self._priority = 0 self._gotopriorityexpression = "" self._bindpoint = "" self._invoke = False self._labeltype = "" self._labelname = "" self._name = "" self.___count = 0 @property def priority(self) : """Priority.""" try : return self._priority except Exception as e: raise e @priority.setter def priority(self, priority) : """Priority. :param priority: """ try : self._priority = priority except Exception as e: raise e @property def gotopriorityexpression(self) : """Expression specifying the priority of the next policy which will get evaluated if the current policy rule evaluates to TRUE.""" try : return self._gotopriorityexpression except Exception as e: raise e @gotopriorityexpression.setter def gotopriorityexpression(self, gotopriorityexpression) : """Expression specifying the priority of the next policy which will get evaluated if the current policy rule evaluates to TRUE. :param gotopriorityexpression: """ try : self._gotopriorityexpression = gotopriorityexpression except Exception as e: raise e @property def policyname(self) : """Name of the policy bound to the LB vserver.""" try : return self._policyname except Exception as e: raise e @policyname.setter def policyname(self, policyname) : """Name of the policy bound to the LB vserver. :param policyname: """ try : self._policyname = policyname except Exception as e: raise e @property def name(self) : """Name for the virtual server. Must begin with an ASCII alphanumeric or underscore (_) character, and must contain only ASCII alphanumeric, underscore, hash (#), period (.), space, colon (:), at sign (@), equal sign (=), and hyphen (-) characters. Can be changed after the virtual server is created. CLI Users: If the name includes one or more spaces, enclose the name in double or single quotation marks (for example, "my vserver" or 'my vserver'). .<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : """Name for the virtual server. Must begin with an ASCII alphanumeric or underscore (_) character, and must contain only ASCII alphanumeric, underscore, hash (#), period (.), space, colon (:), at sign (@), equal sign (=), and hyphen (-) characters. Can be changed after the virtual server is created. CLI Users: If the name includes one or more spaces, enclose the name in double or single quotation marks (for example, "my vserver" or 'my vserver'). .<br/>Minimum length = 1 :param name: """ try : self._name = name except Exception as e: raise e @property def bindpoint(self) : """The bindpoint to which the policy is bound.<br/>Possible values = REQUEST, RESPONSE.""" try : return self._bindpoint except Exception as e: raise e @bindpoint.setter def bindpoint(self, bindpoint) : """The bindpoint to which the policy is bound.<br/>Possible values = REQUEST, RESPONSE :param bindpoint: """ try : self._bindpoint = bindpoint except Exception as e: raise e @property def labeltype(self) : """The invocation type.<br/>Possible values = reqvserver, resvserver, policylabel.""" try : return self._labeltype except Exception as e: raise e @labeltype.setter def labeltype(self, labeltype) : """The invocation type.<br/>Possible values = reqvserver, resvserver, policylabel :param labeltype: """ try : self._labeltype = labeltype except Exception as e: raise e @property def labelname(self) : """Name of the label invoked.""" try : return self._labelname except Exception as e: raise e @labelname.setter def labelname(self, labelname) : """Name of the label invoked. :param labelname: """ try : self._labelname = labelname except Exception as e: raise e @property def invoke(self) : """Invoke policies bound to a virtual server or policy label.""" try : return self._invoke except Exception as e: raise e @invoke.setter def invoke(self, invoke) : """Invoke policies bound to a virtual server or policy label. :param invoke: """ try : self._invoke = invoke except Exception as e: raise e def _get_nitro_response(self, service, response) : """converts nitro response into object and returns the object array in case of get request. :param service: :param response: """ try : result = service.payload_formatter.string_to_resource(lbvserver_transformpolicy_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.lbvserver_transformpolicy_binding except Exception as e : raise e def _get_object_name(self) : """Returns the value of object identifier argument""" try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def add(cls, client, resource) : """ :param client: :param resource: """ try : if resource and type(resource) is not list : updateresource = lbvserver_transformpolicy_binding() updateresource.name = resource.name updateresource.policyname = resource.policyname updateresource.priority = resource.priority updateresource.gotopriorityexpression = resource.gotopriorityexpression updateresource.bindpoint = resource.bindpoint updateresource.invoke = resource.invoke updateresource.labeltype = resource.labeltype updateresource.labelname = resource.labelname return updateresource.update_resource(client) else : if resource and len(resource) > 0 : updateresources = [lbvserver_transformpolicy_binding() for _ in range(len(resource))] for i in range(len(resource)) : updateresources[i].name = resource[i].name updateresources[i].policyname = resource[i].policyname updateresources[i].priority = resource[i].priority updateresources[i].gotopriorityexpression = resource[i].gotopriorityexpression updateresources[i].bindpoint = resource[i].bindpoint updateresources[i].invoke = resource[i].invoke updateresources[i].labeltype = resource[i].labeltype updateresources[i].labelname = resource[i].labelname return cls.update_bulk_request(client, updateresources) except Exception as e : raise e @classmethod def delete(cls, client, resource) : """ :param client: :param resource: """ try : if resource and type(resource) is not list : deleteresource = lbvserver_transformpolicy_binding() deleteresource.name = resource.name deleteresource.policyname = resource.policyname deleteresource.bindpoint = resource.bindpoint deleteresource.priority = resource.priority return deleteresource.delete_resource(client) else : if resource and len(resource) > 0 : deleteresources = [lbvserver_transformpolicy_binding() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].name = resource[i].name deleteresources[i].policyname = resource[i].policyname deleteresources[i].bindpoint = resource[i].bindpoint deleteresources[i].priority = resource[i].priority return cls.delete_bulk_request(client, deleteresources) except Exception as e : raise e @classmethod def get(cls, service, name) : """Use this API to fetch lbvserver_transformpolicy_binding resources. :param service: :param name: """ try : obj = lbvserver_transformpolicy_binding() obj.name = name response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, name, filter_) : """Use this API to fetch filtered set of lbvserver_transformpolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". :param service: :param name: :param filter_: """ try : obj = lbvserver_transformpolicy_binding() obj.name = name option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, name) : """Use this API to count lbvserver_transformpolicy_binding resources configued on NetScaler. :param service: :param name: """ try : obj = lbvserver_transformpolicy_binding() obj.name = name option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, name, filter_) : """Use this API to count the filtered set of lbvserver_transformpolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". :param service: :param name: :param filter_: """ try : obj = lbvserver_transformpolicy_binding() obj.name = name option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class Bindpoint: """ """ REQUEST = "REQUEST" RESPONSE = "RESPONSE" class Labeltype: """ """ reqvserver = "reqvserver" resvserver = "resvserver" policylabel = "policylabel" class lbvserver_transformpolicy_binding_response(base_response) : """ """ def __init__(self, length=1) : self.lbvserver_transformpolicy_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.lbvserver_transformpolicy_binding = [lbvserver_transformpolicy_binding() for _ in range(length)]
33.733668
308
0.591986
ef5c9936d6df45f2d6f051c3dfbc25a2fcaddc55
4,351
py
Python
python/dazl/_gen/com/daml/ledger/api/v1/command_submission_service_pb2.py
digital-asset/dazl-client
5d54edaea26d7704cc8d73e5945b37ed2806265b
[ "Apache-2.0" ]
8
2019-09-08T09:41:03.000Z
2022-02-19T12:54:30.000Z
python/dazl/_gen/com/daml/ledger/api/v1/command_submission_service_pb2.py
digital-asset/dazl-client
5d54edaea26d7704cc8d73e5945b37ed2806265b
[ "Apache-2.0" ]
55
2019-05-30T23:00:31.000Z
2022-01-24T01:51:32.000Z
python/dazl/_gen/com/daml/ledger/api/v1/command_submission_service_pb2.py
digital-asset/dazl-client
5d54edaea26d7704cc8d73e5945b37ed2806265b
[ "Apache-2.0" ]
9
2019-06-30T18:15:27.000Z
2021-12-03T10:15:27.000Z
# Copyright (c) 2017-2021 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # fmt: off # isort: skip_file # -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: com/daml/ledger/api/v1/command_submission_service.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from . import commands_pb2 as com_dot_daml_dot_ledger_dot_api_dot_v1_dot_commands__pb2 from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='com/daml/ledger/api/v1/command_submission_service.proto', package='com.daml.ledger.api.v1', syntax='proto3', serialized_options=b'\n\026com.daml.ledger.api.v1B\"CommandSubmissionServiceOuterClassZOgithub.com/digital-asset/dazl-client/go/v7/pkg/generated/com/daml/ledger/api/v1\252\002\026Com.Daml.Ledger.Api.V1', create_key=_descriptor._internal_create_key, serialized_pb=b'\n7com/daml/ledger/api/v1/command_submission_service.proto\x12\x16\x63om.daml.ledger.api.v1\x1a%com/daml/ledger/api/v1/commands.proto\x1a\x1bgoogle/protobuf/empty.proto\"M\n\rSubmitRequest\x12<\n\x08\x63ommands\x18\x01 \x01(\x0b\x32 .com.daml.ledger.api.v1.CommandsR\x08\x63ommands2c\n\x18\x43ommandSubmissionService\x12G\n\x06Submit\x12%.com.daml.ledger.api.v1.SubmitRequest\x1a\x16.google.protobuf.EmptyB\xa6\x01\n\x16\x63om.daml.ledger.api.v1B\"CommandSubmissionServiceOuterClassZOgithub.com/digital-asset/dazl-client/go/v7/pkg/generated/com/daml/ledger/api/v1\xaa\x02\x16\x43om.Daml.Ledger.Api.V1b\x06proto3' , dependencies=[com_dot_daml_dot_ledger_dot_api_dot_v1_dot_commands__pb2.DESCRIPTOR,google_dot_protobuf_dot_empty__pb2.DESCRIPTOR,]) _SUBMITREQUEST = _descriptor.Descriptor( name='SubmitRequest', full_name='com.daml.ledger.api.v1.SubmitRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='commands', full_name='com.daml.ledger.api.v1.SubmitRequest.commands', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, json_name='commands', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=151, serialized_end=228, ) _SUBMITREQUEST.fields_by_name['commands'].message_type = com_dot_daml_dot_ledger_dot_api_dot_v1_dot_commands__pb2._COMMANDS DESCRIPTOR.message_types_by_name['SubmitRequest'] = _SUBMITREQUEST _sym_db.RegisterFileDescriptor(DESCRIPTOR) SubmitRequest = _reflection.GeneratedProtocolMessageType('SubmitRequest', (_message.Message,), { 'DESCRIPTOR' : _SUBMITREQUEST, '__module__' : 'com.daml.ledger.api.v1.command_submission_service_pb2' # @@protoc_insertion_point(class_scope:com.daml.ledger.api.v1.SubmitRequest) }) _sym_db.RegisterMessage(SubmitRequest) DESCRIPTOR._options = None _COMMANDSUBMISSIONSERVICE = _descriptor.ServiceDescriptor( name='CommandSubmissionService', full_name='com.daml.ledger.api.v1.CommandSubmissionService', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=230, serialized_end=329, methods=[ _descriptor.MethodDescriptor( name='Submit', full_name='com.daml.ledger.api.v1.CommandSubmissionService.Submit', index=0, containing_service=None, input_type=_SUBMITREQUEST, output_type=google_dot_protobuf_dot_empty__pb2._EMPTY, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_COMMANDSUBMISSIONSERVICE) DESCRIPTOR.services_by_name['CommandSubmissionService'] = _COMMANDSUBMISSIONSERVICE # @@protoc_insertion_point(module_scope)
41.04717
630
0.800965
597e5efc6b3515a3eac06f4cc85a53396734a11a
2,154
py
Python
dia 09 FastAPI/site-packages/prospector/postfilter.py
RamonNicolas/100-Dias-com-Python
b4678b5981415b385528c5fe67c7bb02c8d2f4ca
[ "MIT" ]
null
null
null
dia 09 FastAPI/site-packages/prospector/postfilter.py
RamonNicolas/100-Dias-com-Python
b4678b5981415b385528c5fe67c7bb02c8d2f4ca
[ "MIT" ]
null
null
null
dia 09 FastAPI/site-packages/prospector/postfilter.py
RamonNicolas/100-Dias-com-Python
b4678b5981415b385528c5fe67c7bb02c8d2f4ca
[ "MIT" ]
null
null
null
import os from prospector.suppression import get_suppressions def filter_messages(relative_filepaths, root, messages): """ This method post-processes all messages output by all tools, in order to filter out any based on the overall output. The main aim currently is to use information about messages suppressed by pylint due to inline comments, and use that to suppress messages from other tools representing the same problem. For example: import banana # pylint:disable=unused-import In this situation, pylint will not warn about an unused import as there is inline configuration to disable the warning. Pyflakes will still raise that error, however, because it does not understand pylint disabling messages. This method uses the information about suppressed messages from pylint to squash the unwanted redundant error from pyflakes and frosted. """ paths_to_ignore, lines_to_ignore, messages_to_ignore = get_suppressions(relative_filepaths, root, messages) filtered = [] for message in messages: # first get rid of the pylint informational messages relative_message_path = os.path.relpath(message.location.path) if message.source == "pylint" and message.code in ( "suppressed-message", "file-ignored", ): continue # some files are skipped entirely by messages if relative_message_path in paths_to_ignore: continue # some lines are skipped entirely by messages if relative_message_path in lines_to_ignore: if message.location.line in lines_to_ignore[relative_message_path]: continue # and some lines have only certain messages explicitly ignored if relative_message_path in messages_to_ignore: if message.location.line in messages_to_ignore[relative_message_path]: if message.code in messages_to_ignore[relative_message_path][message.location.line]: continue # otherwise this message was not filtered filtered.append(message) return filtered
37.789474
111
0.708914
0c3aea2e1c3210fdcdf6c48eb2eee848fab50884
1,447
py
Python
python/nltk_service_pb2_grpc.py
Cartmanishere/grpc-python-golang
a07b0509964fe6d4427254e73bc5875abb9cfabc
[ "MIT" ]
4
2019-11-01T11:48:03.000Z
2021-03-23T17:52:02.000Z
python/nltk_service_pb2_grpc.py
Cartmanishere/grpc-python-golang
a07b0509964fe6d4427254e73bc5875abb9cfabc
[ "MIT" ]
null
null
null
python/nltk_service_pb2_grpc.py
Cartmanishere/grpc-python-golang
a07b0509964fe6d4427254e73bc5875abb9cfabc
[ "MIT" ]
5
2019-11-27T05:38:05.000Z
2020-07-22T16:59:10.000Z
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import nltk_service_pb2 as nltk__service__pb2 class KeywordServiceStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetKeywords = channel.unary_unary( '/KeywordService/GetKeywords', request_serializer=nltk__service__pb2.Request.SerializeToString, response_deserializer=nltk__service__pb2.Response.FromString, ) class KeywordServiceServicer(object): # missing associated documentation comment in .proto file pass def GetKeywords(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_KeywordServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetKeywords': grpc.unary_unary_rpc_method_handler( servicer.GetKeywords, request_deserializer=nltk__service__pb2.Request.FromString, response_serializer=nltk__service__pb2.Response.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'KeywordService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
30.787234
76
0.755356
f747a292c1faff5cac56ac5fe3ddced9c9b86c5d
4,284
py
Python
Chatbot_Model/Info_Extraction/Entity_Extraction/data.py
chenpocufa/Chatbot_CN
5e13c129c159143610f4dfc99478d401dd5777e6
[ "Apache-2.0" ]
1
2019-08-02T06:09:34.000Z
2019-08-02T06:09:34.000Z
Chatbot_Model/Info_Extraction/Entity_Extraction/data.py
yuxuan2015/Chatbot_CN
1adf1c01d3eced5f0644102bdec9be22705b6f3f
[ "Apache-2.0" ]
null
null
null
Chatbot_Model/Info_Extraction/Entity_Extraction/data.py
yuxuan2015/Chatbot_CN
1adf1c01d3eced5f0644102bdec9be22705b6f3f
[ "Apache-2.0" ]
1
2019-06-10T00:36:17.000Z
2019-06-10T00:36:17.000Z
#-*- coding:utf-8 _*- """ @author:charlesXu @file: data.py @desc: 构建字向量、词向量 @time: 2018/08/08 """ import sys, pickle, os, random import numpy as np import pdb ## tags, BIO 标注策略 标签矩阵 tag2label = {"O": 0, "B-PER": 1, "I-PER": 2, "B-LOC": 3, "I-LOC": 4, "B-ORG": 5, "I-ORG": 6, "B-TIM": 7, "I-TIM": 8 # 时间标签 } def read_corpus(corpus_path): """ read corpus and return the list of samples :param corpus_path: :return: data """ data = [] with open(corpus_path, encoding='utf-8') as fr: lines = fr.readlines() sent_, tag_ = [], [] for line in lines: if line != '\n': [char, label] = line.strip().split() sent_.append(char) tag_.append(label) else: data.append((sent_, tag_)) sent_, tag_ = [], [] return data def vocab_build(vocab_path, corpus_path, min_count): """ :param vocab_path: :param corpus_path: :param min_count: :return: """ data = read_corpus(corpus_path) word2id = {} for sent_, tag_ in data: for word in sent_: if word.isdigit(): word = '<NUM>' elif ('\u0041' <= word <='\u005a') or ('\u0061' <= word <='\u007a'): word = '<ENG>' if word not in word2id: word2id[word] = [len(word2id)+1, 1] else: word2id[word][1] += 1 low_freq_words = [] for word, [word_id, word_freq] in word2id.items(): if word_freq < min_count and word != '<NUM>' and word != '<ENG>': low_freq_words.append(word) for word in low_freq_words: del word2id[word] new_id = 1 for word in word2id.keys(): word2id[word] = new_id new_id += 1 word2id['<UNK>'] = new_id word2id['<PAD>'] = 0 print(len(word2id)) with open(vocab_path, 'wb') as fw: pickle.dump(word2id, fw) def sentence2id(sent, word2id): """ :param sent: :param word2id: :return: """ sentence_id = [] for word in sent: if word.isdigit(): word = '<NUM>' elif ('\u0041' <= word <= '\u005a') or ('\u0061' <= word <= '\u007a'): word = '<ENG>' if word not in word2id: word = '<UNK>' sentence_id.append(word2id[word]) return sentence_id def read_dictionary(vocab_path): """ :param vocab_path: :return: """ vocab_path = os.path.join(vocab_path) with open(vocab_path, 'rb') as fr: word2id = pickle.load(fr) print('vocab_size:', len(word2id)) return word2id def random_embedding(vocab, embedding_dim): """ :param vocab: :param embedding_dim: :return: """ embedding_mat = np.random.uniform(-0.25, 0.25, (len(vocab), embedding_dim)) embedding_mat = np.float32(embedding_mat) return embedding_mat def pad_sequences(sequences, pad_mark=0): """ :param sequences: :param pad_mark: :return: """ max_len = max(map(lambda x : len(x), sequences)) seq_list, seq_len_list = [], [] for seq in sequences: seq = list(seq) seq_ = seq[:max_len] + [pad_mark] * max(max_len - len(seq), 0) seq_list.append(seq_) seq_len_list.append(min(len(seq), max_len)) return seq_list, seq_len_list def batch_yield(data, batch_size, vocab, tag2label, shuffle=False): """ :param data: :param batch_size: :param vocab: :param tag2label: 标签矩阵转化为数字 :param shuffle: :return: """ if shuffle: random.shuffle(data) # 每次训练都打乱数据 seqs, labels = [], [] for (sent_, tag_) in data: sent_ = sentence2id(sent_, vocab) label_ = [tag2label[tag] for tag in tag_] if len(seqs) == batch_size: yield seqs, labels seqs, labels = [], [] seqs.append(sent_) labels.append(label_) if len(seqs) != 0: yield seqs, labels # 构建word2id.pkl # vocab_path = 'D:\project\Chatbot_CN\Chatbot_Model\Info_Extraction\Entity_Extraction\data\word2id_tim.pkl' # corpus_path = 'D:\project\Chatbot_CN\Chatbot_Data\Info_Extraction\\train_data_tim' # min = 5 # vocab_build(vocab_path, corpus_path, min)
23.8
107
0.556256
2166f30e71f6bd4a6376817e28ff4af3628abab5
2,162
py
Python
env/Lib/site-packages/jeepney/io/tests/test_asyncio.py
iamswayam/DRF-API-Logger
4acd2ee709df98c2e22d6bd0a97bf9191a0d8e4e
[ "MIT" ]
1
2020-10-20T12:55:21.000Z
2020-10-20T12:55:21.000Z
env/Lib/site-packages/jeepney/io/tests/test_asyncio.py
iamswayam/DRF-API-Logger
4acd2ee709df98c2e22d6bd0a97bf9191a0d8e4e
[ "MIT" ]
29
2021-08-17T19:09:23.000Z
2022-03-29T19:08:23.000Z
env/Lib/site-packages/jeepney/io/tests/test_asyncio.py
iamswayam/DRF-API-Logger
4acd2ee709df98c2e22d6bd0a97bf9191a0d8e4e
[ "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
import asyncio import pytest from jeepney import DBusAddress, new_method_call from jeepney.bus_messages import message_bus, MatchRule from jeepney.io.asyncio import ( open_dbus_connection, open_dbus_router, Proxy ) from .utils import have_session_bus pytestmark = [ pytest.mark.asyncio, pytest.mark.skipif( not have_session_bus, reason="Tests require DBus session bus" ), ] bus_peer = DBusAddress( bus_name='org.freedesktop.DBus', object_path='/org/freedesktop/DBus', interface='org.freedesktop.DBus.Peer' ) @pytest.fixture() async def connection(): conn = await open_dbus_connection(bus='SESSION') yield conn await conn.close() async def test_connect(connection): assert connection.unique_name.startswith(':') @pytest.fixture() async def router(): async with open_dbus_router(bus='SESSION') as router: yield router async def test_send_and_get_reply(router): ping_call = new_method_call(bus_peer, 'Ping') reply = await asyncio.wait_for( router.send_and_get_reply(ping_call), timeout=5 ) assert reply.body == () async def test_proxy(router): proxy = Proxy(message_bus, router) name = "io.gitlab.takluyver.jeepney.examples.Server" res = await proxy.RequestName(name) assert res in {(1,), (2,)} # 1: got the name, 2: queued has_owner, = await proxy.NameHasOwner(name) assert has_owner is True async def test_filter(router): bus = Proxy(message_bus, router) name = "io.gitlab.takluyver.jeepney.tests.asyncio_test_filter" match_rule = MatchRule( type="signal", sender=message_bus.bus_name, interface=message_bus.interface, member="NameOwnerChanged", path=message_bus.object_path, ) match_rule.add_arg_condition(0, name) # Ask the message bus to subscribe us to this signal await bus.AddMatch(match_rule) with router.filter(match_rule) as queue: res, = await bus.RequestName(name) assert res == 1 # 1: got the name signal_msg = await asyncio.wait_for(queue.get(), timeout=2.0) assert signal_msg.body == (name, '', router.unique_name)
27.717949
69
0.701665
1654942c3ce882d710d0e804cfffdfa574d488a5
128
py
Python
__init__.py
Mem-Tech/meme-voice-assistant
9ec4c6bcd7decb5593095fa53646bc8ff2810ce7
[ "MIT" ]
1
2021-03-05T21:36:14.000Z
2021-03-05T21:36:14.000Z
__init__.py
Mem-Tech/meme-voice-assistant
9ec4c6bcd7decb5593095fa53646bc8ff2810ce7
[ "MIT" ]
2
2021-04-30T22:09:03.000Z
2021-04-30T22:11:19.000Z
__init__.py
Mem-Tech/meme-voice-assistant
9ec4c6bcd7decb5593095fa53646bc8ff2810ce7
[ "MIT" ]
null
null
null
from .util import KEYWORDS from .util import KEYWORD_FILE_PATHS from .util import LIBRARY_PATH from .util import MODEL_FILE_PATH
32
36
0.851563
49a317b0295df5a38461bfe7b496daf6b5be3808
742
py
Python
question_bank/populating-next-right-pointers-in-each-node-ii/populating-next-right-pointers-in-each-node-ii.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
9
2020-08-12T10:01:00.000Z
2022-01-05T04:37:48.000Z
question_bank/populating-next-right-pointers-in-each-node-ii/populating-next-right-pointers-in-each-node-ii.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
1
2021-02-16T10:19:31.000Z
2021-02-16T10:19:31.000Z
question_bank/populating-next-right-pointers-in-each-node-ii/populating-next-right-pointers-in-each-node-ii.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
4
2020-08-12T10:13:31.000Z
2021-11-05T01:26:58.000Z
# -*- coding: utf-8 -*- # @Author : LG """ 执行用时:60 ms, 在所有 Python3 提交中击败了81.56% 的用户 内存消耗:14.5 MB, 在所有 Python3 提交中击败了54.12% 的用户 解题思路: 先把每层的节点以自左向右的顺序保存, 然后修改next """ class Solution: def connect(self, root: 'Node') -> 'Node': record = {} def find(root, h): # 遍历,并保存每层的节点 if root: if h in record: record[h].append(root) else: record[h] = [root] find(root.left, h+1) # 自左向右的顺序遍历 find(root.right, h+1) find(root, 1) for h, ns in record.items(): # 处理每层的节点 for i in range(len(ns)-1): ns[i].next = ns[i+1] ns[-1] = None return root
25.586207
51
0.463612
4b020a0db2cde3115d4c68fdace8bf9d66478795
34
py
Python
lemora.py
javaarchive/Lemora
25414cae68eb744fe1dba589000acb6b45b8f1a0
[ "MIT" ]
null
null
null
lemora.py
javaarchive/Lemora
25414cae68eb744fe1dba589000acb6b45b8f1a0
[ "MIT" ]
null
null
null
lemora.py
javaarchive/Lemora
25414cae68eb744fe1dba589000acb6b45b8f1a0
[ "MIT" ]
null
null
null
import SQLiteKV import EnhancedDB
11.333333
17
0.882353
3710a872cbc5ae9bb631f603819d7857aa148476
3,894
py
Python
python_scripts/create_essentialgenes_list.py
Gregory94/LaanLab-SATAY-DataAnalysis
276cb96d42dfcf4bed16aaaf0786519d96831ed0
[ "Apache-2.0" ]
2
2020-04-01T14:54:34.000Z
2020-09-03T11:11:40.000Z
python_scripts/create_essentialgenes_list.py
Gregory94/LaanLab-SATAY-DataAnalysis
276cb96d42dfcf4bed16aaaf0786519d96831ed0
[ "Apache-2.0" ]
39
2020-03-22T08:59:11.000Z
2021-03-23T16:34:25.000Z
python_scripts/create_essentialgenes_list.py
leilaicruz/LaanLab-SATAY-DataAnalysis
276cb96d42dfcf4bed16aaaf0786519d96831ed0
[ "Apache-2.0" ]
2
2021-03-31T12:45:44.000Z
2021-05-20T08:25:34.000Z
# -*- coding: utf-8 -*- """ Created on Thu Aug 6 13:41:44 2020 @author: gregoryvanbeek This python code creates a .txt file that includes all essential genes that are annotated as essential genes in Saccharomyces Cerevisiae. It gets this information from multiple .txt files and combines all information in one file. It checks whether a gene is already present in the file (either with the same name or an alias). It stores the gene names using the oln naming convention. """ import os, sys file_dirname = os.path.dirname(os.path.abspath('__file__')) sys.path.insert(1,os.path.join(file_dirname,'python_modules')) from gene_names import gene_aliases #%%INPUT file_list = [os.path.join(file_dirname, '..','data_files','Cerevisiae_EssentialGenes_List_1.txt'), os.path.join(file_dirname, '..','data_files','Cerevisiae_EssentialGenes_List_2.txt')] #%% def create_essentialgenes_list(inputfiles_list = None): ''' This function requires as input a list of paths to files containing essential genes. Multiple files can be present in this list. The input files have to have the following layout: - Three header lines (can be empty or containing any text) - Each new lines should contain one gene name in either oln or designation naming convention. This function is dependable on the following custom made modules: - gene_names.py (requires the file Yeast_Protein_Names.txt) The output will be a text file containing all uniquely found genes in all input files given. The file will be stored at the same location of the first file of the input list with the name 'Cerevisiae_AllEssentialGenes_List.txt'. In this file each line contains one gene and it has a single header line containing all the filenames that were used to create this file. ''' if inputfiles_list == None: raise ValueError('Input list containing one or more paths is missing.') else: files = inputfiles_list path = os.path.dirname(files[0]) filename_list = [] for file in files: filename_list.append(os.path.basename(file)) del (inputfiles_list, file) #%% all_genes_list = [] for file in files:#ASSUMES THREE HEADER LINES filename = os.path.basename(file) with open(file) as f: lines = f.readlines() print('Number of genes found in %s: %i' % (filename, (len(lines)-3))) for line in lines[3:]: all_genes_list.append(line.strip('\n')) del (file, f, lines, line) #%% gene_aliases_dict = gene_aliases(os.path.join(file_dirname,'..','data_files','Yeast_Protein_Names.txt'))[0] # r"C:\Users\gregoryvanbeek\Documents\GitHub\LaanLab-SATAY-DataAnalysis\Python_scripts\Data_Files\Yeast_Protein_Names.txt")[0] #%% all_genes_oln_list = [] for gene in all_genes_list: if gene in gene_aliases_dict: all_genes_oln_list.append(gene) else: for key, val in gene_aliases_dict.items(): if gene in val: all_genes_oln_list.append(key) break del (gene, all_genes_list, key, val, gene_aliases_dict) #%% unique_genes_list = list(set(all_genes_oln_list)) unique_genes_list.sort() print('Number of unique essential genes found : %i' % len(unique_genes_list)) del (all_genes_oln_list) #%% save_filename = r'Cerevisiae_AllEssentialGenes_List.txt' save_file = os.path.join(path, save_filename) print('Creating text file with all unique genes at %s' % save_file) with open(save_file, 'w') as f: f.write('All essential genes found in lists:' + str(filename_list) + '\n') for gene in unique_genes_list: f.write(gene + '\n') del (gene) #%% if __name__ == '__main__': create_essentialgenes_list(file_list)
30.904762
141
0.681561
5bc5d96a5d628d55c5fbc4fd0d6f4c71ff2d248f
7,631
py
Python
GDAL_RapidEye_NDVI.py
leandromet/Geoprocessamento---Geoprocessing
21e72dc6ac51d958a5570c35ea9db6f976c30a03
[ "MIT" ]
2
2016-05-29T14:46:54.000Z
2022-03-31T13:05:52.000Z
GDAL_RapidEye_NDVI.py
leandromet/Geoprocessamento---Geoprocessing
21e72dc6ac51d958a5570c35ea9db6f976c30a03
[ "MIT" ]
null
null
null
GDAL_RapidEye_NDVI.py
leandromet/Geoprocessamento---Geoprocessing
21e72dc6ac51d958a5570c35ea9db6f976c30a03
[ "MIT" ]
1
2016-06-22T12:18:41.000Z
2016-06-22T12:18:41.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ #------------------------------------------------------------------------------- # Name: RapidEyeNDVIfromCutRegions # Purpose: Calculates the NDVI of a defined region based on centroid of features from a shapefile. # # Author: leandro.biondo@florestal.gov.br # # Created: 29/12/2014 # Copyright: (c) leandro.biondo 2015 # Licence: GPL #------------------------------------------------------------------------------- """ import os import sys import numpy as np from osgeo import gdal from osgeo import ogr import glob def calculate_ndvi ( red_filename, nir_filename ): """ A function to calculate the Normalised Difference Vegetation Index from red and near infrarred reflectances. The reflectance data ought to be present on two different files, specified by the varaibles `red_filename` and `nir_filename`. The file format ought to be recognised by GDAL """ g_red = gdal.Open ( red_filename ) red = g_red.ReadAsArray() g_nir = gdal.Open ( nir_filename ) nir = g_nir.ReadAsArray() if ( g_red.RasterXSize != g_nir.RasterXSize ) or \ ( g_red.RasterYSize != g_nir.RasterYSize ): print "ERROR: Input datasets do't match!" print "\t Red data shape is %dx%d" % ( red.shape ) print "\t NIR data shape is %dx%d" % ( nir.shape ) sys.exit ( -1 ) passer = np.logical_and ( red > 1, nir > 1 ) ndvi = np.where ( passer, (1.*nir - 1.*red ) / ( 1.*nir + 1.*red ), -999 ) return ndvi def save_raster ( output_name, raster_data, dataset, driver="GTiff" ): """ A function to save a 1-band raster using GDAL to the file indicated by ``output_name``. It requires a GDAL-accesible dataset to collect the projection and geotransform. """ # Open the reference dataset g_input = gdal.Open ( dataset ) # Get the Geotransform vector geo_transform = g_input.GetGeoTransform () x_size = g_input.RasterXSize # Raster xsize y_size = g_input.RasterYSize # Raster ysize srs = g_input.GetProjectionRef () # Projection # Need a driver object. By default, we use GeoTIFF if driver == "GTiff": driver = gdal.GetDriverByName ( driver ) dataset_out = driver.Create ( output_name, x_size, y_size, 1, \ gdal.GDT_Float32, ['TFW=YES', \ 'COMPRESS=LZW', 'TILED=YES'] ) else: driver = gdal.GetDriverByName ( driver ) dataset_out = driver.Create ( output_name, x_size, y_size, 1, \ gdal.GDT_Float32 ) dataset_out.SetGeoTransform ( geo_transform ) dataset_out.SetProjection ( srs ) dataset_out.GetRasterBand ( 1 ).WriteArray ( \ raster_data.astype(np.float32) ) dataset_out.GetRasterBand ( 1 ).SetNoDataValue ( float(-999) ) dataset_out = None def prep_cut_call (caminhoi, imagemtif, ptcenter, NameT): # "Funcao que prepara um TIF e calcula o NDVI para uma area relacionada um ponto central" #Ponto para corte, no caso o centro da imagem pelos seus dados redcorte = (map(sum,zip(ptcenter,(-150,-150))), map(sum,zip(ptcenter,(150,150)))) print 'redcorte', redcorte #Corte imagem os.system("gdalwarp -overwrite -te "+str(redcorte[0][0])+" "+str(redcorte[0][1])+" "\ +str(redcorte[1][0])+" "+str(redcorte[1][1])+\ " %s %sRD_cut.tif"%(imagemtif, caminhoi)) os.system("gdal_translate -b 3 %sRD_cut.tif %sred2_cut.tif" %(caminhoi, caminhoi)) os.system("gdal_translate -b 5 %sRD_cut.tif %snir2_cut.tif" %(caminhoi, caminhoi)) #Calculo NDVI do corte RED/NIR c_ndvi = calculate_ndvi ( "%sred2_cut.tif"%caminhoi, "%snir2_cut.tif"%caminhoi) save_raster ( "%sndvi2_cutdes.tif"%(caminhoi), c_ndvi,\ "%sred2_cut.tif"%caminhoi, "GTiff" ) #Estatisticas do resultado src_ds = gdal.Open("%sndvi2_cutdes.tif"%(caminhoi)) srcband = src_ds.GetRasterBand(1) stats = srcband.GetStatistics(0,1) M_ndvi = srcband.ReadAsArray().astype(np.float) print M_ndvi, (stats[0], stats[1], stats[2], stats[3] ), np.histogram(M_ndvi, bins=[-10,0.0,0.2,0.4,0.6,0.8,1.0,10]) return (stats[0], stats[1], stats[2], stats[3] ), np.histogram(M_ndvi, bins=[-10,0.0,0.2,0.4,0.6,0.8,1.0,10]) if __name__ == "__main__": caminhoi="//home//leandro//NDVI_UTM//s19//" #Arquivo de feicoes que se deseja usar os centroides shapefile = "//home//leandro//NDVI_UTM//s19//grid_comp_S19.shp" driver = ogr.GetDriverByName("ESRI Shapefile") dataSource = driver.Open(shapefile, True) layer = dataSource.GetLayer() #Cria campos para saidas estatisticas layer.CreateField(ogr.FieldDefn("ndvi_med", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_desvP", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_neg", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_0p0", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_0p2", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_0p4", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_0p6", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_0p8", ogr.OFTReal),False) layer.CreateField(ogr.FieldDefn("ndvi_1p0", ogr.OFTReal),False) #exit(0) #Arquivo de feicoes que representam o grid de imagens shapefile2 = "//home//leandro//NDVI_UTM//s19//rd_comp_S19.shp" dataSource2 = driver.Open(shapefile2, 0) layer2 = dataSource2.GetLayer() c5 = 0 for feature2 in layer2: c = 0 dentro = 0 geom2 = feature2.GetGeometryRef() TileId = int(feature2.GetField("TILE_ID")) for feature in layer: geom = feature.GetGeometryRef() ptcenter = (geom.GetX(), geom.GetY()) # print ptcenter if geom.Intersects(geom2): dentro+=1 print "dentro",dentro # print ptcenter #Laco que encontra todos os arquivos TIF a serem processados samef=0 for infile in glob.glob(r'/home/leandro/geodados/imagens/RapidEye/brasil/*/fuso_19s/*/*%s*.tif'%TileId): #Ignora arquivos "browse." print infile if infile.find("browse.") == -1: #Ignora arquivos "udm." if infile.find("udm.") == -1: print "c5=",c5 samef+=1 imagemtif = infile NameT = "_"+str(TileId)+"_"+str(dentro)+"_"+str(samef) Statistica, ( Stat2, Bins ) = prep_cut_call (caminhoi, imagemtif, ptcenter, NameT) print caminhoi, imagemtif, ptcenter, NameT, TileId, "(Min, Max, Mean, StDv)", Statistica, Stat2, Bins feature.SetField("ndvi_med", round(Statistica[2], 3)) feature.SetField("ndvi_DesvP", round(Statistica[3], 3)) feature.SetField("ndvi_neg", int(Stat2[0])) feature.SetField("ndvi_0p0", int(Stat2[1])) feature.SetField("ndvi_0p2", int(Stat2[2])) feature.SetField("ndvi_0p4", int(Stat2[3])) feature.SetField("ndvi_0p6", int(Stat2[4])) feature.SetField("ndvi_0p8", int(Stat2[5])) feature.SetField("ndvi_1p0", int(Stat2[6])) layer.SetFeature(feature) c5+=1 #if c5==5: # exit(0) c+=1 feature.Destroy() layer.ResetReading() print "Pontos: %i sendo %i contidas e %i nao" %( c, dentro, (c-dentro)) if dentro > 0: print TileId layer=None layer2=None dataSource=None dataSource2=None
39.133333
125
0.614205
0d521455abf779fed1fe67706e333f40bb5a43dc
38,189
py
Python
test/vpp_papi_provider.py
akanouras/vpp
a55a9fc239b5e47487a9489aa5dba9d229502d7e
[ "Apache-2.0" ]
751
2017-07-13T06:16:46.000Z
2022-03-30T09:14:35.000Z
test/vpp_papi_provider.py
akanouras/vpp
a55a9fc239b5e47487a9489aa5dba9d229502d7e
[ "Apache-2.0" ]
15
2018-03-19T15:20:07.000Z
2022-03-18T19:48:21.000Z
test/vpp_papi_provider.py
akanouras/vpp
a55a9fc239b5e47487a9489aa5dba9d229502d7e
[ "Apache-2.0" ]
479
2017-07-13T06:17:26.000Z
2022-03-31T18:20:43.000Z
# NB NB NB NB NB NB NB NB NB NB NB # # NOTE: The API binary wrappers in this file are in the process of being # deprecated. DO NOT ADD NEW WRAPPERS HERE. Call the functions using # named arguments directly instead. # import os import time from collections import deque import queue from six import moves, iteritems from vpp_papi import VPPApiClient, mac_pton from hook import Hook from vpp_ip_route import MPLS_IETF_MAX_LABEL, MPLS_LABEL_INVALID # # Dictionary keyed on message name to override default values for # named parameters # defaultmapping = { 'acl_interface_add_del': {'is_add': 1, 'is_input': 1}, 'bd_ip_mac_add_del': {'is_add': 1, }, 'bfd_udp_add': {'is_authenticated': False, 'bfd_key_id': None, 'conf_key_id': None}, 'bfd_udp_auth_activate': {'bfd_key_id': None, 'conf_key_id': None, 'is_delayed': False}, 'bier_disp_entry_add_del': {'next_hop_rpf_id': -1, 'next_hop_is_ip4': 1, 'is_add': 1, }, 'bier_disp_table_add_del': {'is_add': 1, }, 'bier_imp_add': {'is_add': 1, }, 'bier_route_add_del': {'is_add': 1, }, 'bier_table_add_del': {'is_add': 1, }, 'bridge_domain_add_del': {'flood': 1, 'uu_flood': 1, 'forward': 1, 'learn': 1, 'is_add': 1, }, 'bvi_delete': {}, 'geneve_add_del_tunnel': {'mcast_sw_if_index': 4294967295, 'is_add': 1, 'decap_next_index': 4294967295, }, 'input_acl_set_interface': {'ip4_table_index': 4294967295, 'ip6_table_index': 4294967295, 'l2_table_index': 4294967295, }, 'ip6_add_del_address_using_prefix': {'is_add': 1, }, 'ip6nd_send_router_solicitation': {'irt': 1, 'mrt': 120, }, 'ip_add_del_route': {'next_hop_sw_if_index': 4294967295, 'next_hop_weight': 1, 'next_hop_via_label': 1048576, 'classify_table_index': 4294967295, 'is_add': 1, }, 'ip_mroute_add_del': {'is_add': 1, }, 'ip_neighbor_add_del': {'is_add': 1, }, 'ipsec_interface_add_del_spd': {'is_add': 1, }, 'ipsec_spd_add_del': {'is_add': 1, }, 'ipsec_spd_dump': {'sa_id': 4294967295, }, 'ipsec_spd_entry_add_del': {'local_port_stop': 65535, 'remote_port_stop': 65535, 'priority': 100, 'is_outbound': 1, 'is_add': 1, }, 'ipsec_tunnel_if_add_del': {'is_add': 1, 'anti_replay': 1, }, 'l2_emulation': {'enable': 1, }, 'l2fib_add_del': {'is_add': 1, }, 'lisp_add_del_adjacency': {'is_add': 1, }, 'lisp_add_del_local_eid': {'is_add': 1, }, 'lisp_add_del_locator': {'priority': 1, 'weight': 1, 'is_add': 1, }, 'lisp_add_del_locator_set': {'is_add': 1, }, 'lisp_add_del_remote_mapping': {'is_add': 1, }, 'macip_acl_interface_add_del': {'is_add': 1, }, 'mpls_ip_bind_unbind': {'is_ip4': 1, 'is_bind': 1, }, 'mpls_route_add_del': {'mr_next_hop_sw_if_index': 4294967295, 'mr_next_hop_weight': 1, 'mr_next_hop_via_label': 1048576, 'mr_is_add': 1, 'mr_classify_table_index': 4294967295, }, 'mpls_table_add_del': {'is_add': 1, }, 'mpls_tunnel_add_del': {'next_hop_sw_if_index': 4294967295, 'next_hop_weight': 1, 'next_hop_via_label': 1048576, 'is_add': 1, }, 'output_acl_set_interface': {'ip4_table_index': 4294967295, 'ip6_table_index': 4294967295, 'l2_table_index': 4294967295, }, 'pppoe_add_del_session': {'is_add': 1, }, 'policer_add_del': {'is_add': 1, 'conform_action': {'type': 1}, }, 'set_ipfix_exporter': {'collector_port': 4739, }, 'sr_policy_add': {'weight': 1, 'is_encap': 1, }, 'sw_interface_add_del_address': {'is_add': 1, }, 'sw_interface_ip6nd_ra_prefix': {'val_lifetime': 4294967295, 'pref_lifetime': 4294967295, }, 'sw_interface_set_ip_directed_broadcast': {'enable': 1, }, 'sw_interface_set_l2_bridge': {'enable': 1, }, 'sw_interface_set_mpls_enable': {'enable': 1, }, 'sw_interface_set_mtu': {'mtu': [0, 0, 0, 0], }, 'sw_interface_set_unnumbered': {'is_add': 1, }, 'sw_interface_span_enable_disable': {'state': 1, }, 'vxlan_add_del_tunnel': {'mcast_sw_if_index': 4294967295, 'is_add': 1, 'decap_next_index': 4294967295, 'instance': 4294967295, }, 'want_bfd_events': {'enable_disable': 1, }, 'want_igmp_events': {'enable': 1, }, 'want_interface_events': {'enable_disable': 1, }, 'want_l2_macs_events': {'enable_disable': 1, 'pid': os.getpid(), }, 'want_l2_macs_events2': {'enable_disable': 1, 'pid': os.getpid(), }, } def as_fn_signature(d): return ", ".join(f"{k}={v}" for k, v in d.items()) class CliFailedCommandError(Exception): """ cli command failed.""" class CliSyntaxError(Exception): """ cli command had a syntax error.""" class UnexpectedApiReturnValueError(Exception): """ exception raised when the API return value is unexpected """ pass class VppPapiProvider(object): """VPP-api provider using vpp-papi @property hook: hook object providing before and after api/cli hooks """ _zero, _negative = range(2) def __init__(self, name, test_class, read_timeout): self.hook = Hook(test_class) self.name = name self.test_class = test_class self._expect_api_retval = self._zero self._expect_stack = [] # install_dir is a class attribute. We need to set it before # calling the constructor. VPPApiClient.apidir = os.getenv('VPP_INSTALL_PATH') self.vpp = VPPApiClient(logger=test_class.logger, read_timeout=read_timeout, use_socket=True, server_address=test_class.get_api_sock_path()) self._events = queue.Queue() def __enter__(self): return self def assert_negative_api_retval(self): """ Expect API failure - used with with, e.g.:: with self.vapi.assert_negative_api_retval(): self.vapi.<api call expected to fail> .. """ self._expect_stack.append(self._expect_api_retval) self._expect_api_retval = self._negative return self def assert_zero_api_retval(self): """ Expect API success - used with with, e.g.:: with self.vapi.assert_negative_api_retval(): self.vapi.<api call expected to succeed> :note: this is useful only inside another with block as success is the default expected value """ self._expect_stack.append(self._expect_api_retval) self._expect_api_retval = self._zero return self def __exit__(self, exc_type, exc_value, traceback): self._expect_api_retval = self._expect_stack.pop() def register_hook(self, hook): """Replace hook registration with new hook :param hook: """ self.hook = hook def collect_events(self): """ Collect all events from the internal queue and clear the queue. """ result = [] while True: try: e = self._events.get(block=False) result.append(e) except queue.Empty: return result return result def wait_for_event(self, timeout, name=None): """ Wait for and return next event. """ if name: self.test_class.logger.debug("Expecting event '%s' within %ss", name, timeout) else: self.test_class.logger.debug("Expecting event within %ss", timeout) try: e = self._events.get(timeout=timeout) except queue.Empty: raise Exception("Event did not occur within timeout") msgname = type(e).__name__ if name and msgname != name: raise Exception("Unexpected event received: %s, expected: %s" % msgname) self.test_class.logger.debug("Returning event %s:%s" % (name, e)) return e def __call__(self, name, event): """ Enqueue event in the internal event queue. """ self.test_class.logger.debug("New event: %s: %s" % (name, event)) self._events.put(event) def factory(self, name, apifn): def f(*a, **ka): fields = apifn._func.msg.fields # add positional and kw arguments d = ka for i, o in enumerate(fields[3:]): try: d[o] = a[i] except BaseException: break # Default override if name in defaultmapping: for k, v in iteritems(defaultmapping[name]): if k in d: continue d[k] = v return self.api(apifn, d) return f def __getattribute__(self, name): try: method = super(VppPapiProvider, self).__getattribute__(name) except AttributeError: method = self.factory(name, getattr(self.papi, name)) # lazily load the method so we don't need to call factory # again for this name. setattr(self, name, method) return method def connect(self): """Connect the API to VPP""" # This might be called before VPP is prepared to listen to the socket retries = 0 while not os.path.exists(self.test_class.get_api_sock_path()): time.sleep(0.5) retries += 1 if retries > 120: break self.vpp.connect(self.name[:63]) self.papi = self.vpp.api self.vpp.register_event_callback(self) def disconnect(self): """Disconnect the API from VPP""" self.vpp.disconnect() def api(self, api_fn, api_args, expected_retval=0): """ Call API function and check it's return value. Call the appropriate hooks before and after the API call :param api_fn: API function to call :param api_args: tuple of API function arguments :param expected_retval: Expected return value (Default value = 0) :returns: reply from the API """ self.hook.before_api(api_fn.__name__, api_args) reply = api_fn(**api_args) if self._expect_api_retval == self._negative: if hasattr(reply, 'retval') and reply.retval >= 0: msg = "%s(%s) passed unexpectedly: expected negative " \ "return value instead of %d in %s" % \ (api_fn.__name__, as_fn_signature(api_args), reply.retval, moves.reprlib.repr(reply)) self.test_class.logger.info(msg) raise UnexpectedApiReturnValueError(msg) elif self._expect_api_retval == self._zero: if hasattr(reply, 'retval') and reply.retval != expected_retval: msg = "%s(%s) failed, expected %d return value instead " \ "of %d in %s" % (api_fn.__name__, as_fn_signature(api_args), expected_retval, reply.retval, repr(reply)) self.test_class.logger.info(msg) raise UnexpectedApiReturnValueError(msg) else: raise Exception("Internal error, unexpected value for " "self._expect_api_retval %s" % self._expect_api_retval) self.hook.after_api(api_fn.__name__, api_args) return reply def cli_return_response(self, cli): """ Execute a CLI, calling the before/after hooks appropriately. Return the reply without examining it :param cli: CLI to execute :returns: response object """ self.hook.before_cli(cli) cli += '\n' r = self.papi.cli_inband(cmd=cli) self.hook.after_cli(cli) return r def cli(self, cli): """ Execute a CLI, calling the before/after hooks appropriately. :param cli: CLI to execute :returns: CLI output """ r = self.cli_return_response(cli) if r.retval == -156: raise CliSyntaxError(r.reply) if r.retval != 0: raise CliFailedCommandError(r.reply) if hasattr(r, 'reply'): return r.reply def ppcli(self, cli): """ Helper method to print CLI command in case of info logging level. :param cli: CLI to execute :returns: CLI output """ return cli + "\n" + self.cli(cli) def ip6nd_send_router_solicitation(self, sw_if_index, irt=1, mrt=120, mrc=0, mrd=0): return self.api(self.papi.ip6nd_send_router_solicitation, {'irt': irt, 'mrt': mrt, 'mrc': mrc, 'mrd': mrd, 'sw_if_index': sw_if_index}) def want_interface_events(self, enable_disable=1): return self.api(self.papi.want_interface_events, {'enable_disable': enable_disable, 'pid': os.getpid(), }) def sw_interface_set_mac_address(self, sw_if_index, mac): return self.api(self.papi.sw_interface_set_mac_address, {'sw_if_index': sw_if_index, 'mac_address': mac}) def p2p_ethernet_add(self, sw_if_index, remote_mac, subif_id): """Create p2p ethernet subinterface :param sw_if_index: main (parent) interface :param remote_mac: client (remote) mac address """ return self.api( self.papi.p2p_ethernet_add, {'parent_if_index': sw_if_index, 'remote_mac': remote_mac, 'subif_id': subif_id}) def p2p_ethernet_del(self, sw_if_index, remote_mac): """Delete p2p ethernet subinterface :param sw_if_index: main (parent) interface :param remote_mac: client (remote) mac address """ return self.api( self.papi.p2p_ethernet_del, {'parent_if_index': sw_if_index, 'remote_mac': remote_mac}) def create_vlan_subif(self, sw_if_index, vlan): """ :param vlan: :param sw_if_index: """ return self.api(self.papi.create_vlan_subif, {'sw_if_index': sw_if_index, 'vlan_id': vlan}) def create_loopback(self, mac=''): """ :param mac: (Optional) """ return self.api(self.papi.create_loopback, {'mac_address': mac}) def ip_route_dump(self, table_id, is_ip6=False): return self.api(self.papi.ip_route_dump, {'table': { 'table_id': table_id, 'is_ip6': is_ip6 }}) def ip_route_v2_dump(self, table_id, is_ip6=False, src=0): return self.api(self.papi.ip_route_v2_dump, { 'src': src, 'table': { 'table_id': table_id, 'is_ip6': is_ip6 } }) def ip_neighbor_add_del(self, sw_if_index, mac_address, ip_address, is_add=1, flags=0): """ Add neighbor MAC to IPv4 or IPv6 address. :param sw_if_index: :param mac_address: :param dst_address: :param is_add: (Default value = 1) :param flags: (Default value = 0/NONE) """ return self.api( self.papi.ip_neighbor_add_del, { 'is_add': is_add, 'neighbor': { 'sw_if_index': sw_if_index, 'flags': flags, 'mac_address': mac_address, 'ip_address': ip_address } } ) def udp_encap_add(self, src_ip, dst_ip, src_port, dst_port, table_id=0): """ Add a GRE tunnel :param src_ip: :param dst_ip: :param src_port: :param dst_port: :param outer_fib_id: (Default value = 0) """ return self.api( self.papi.udp_encap_add, { 'udp_encap': { 'src_ip': src_ip, 'dst_ip': dst_ip, 'src_port': src_port, 'dst_port': dst_port, 'table_id': table_id } }) def udp_encap_del(self, id): return self.api(self.papi.udp_encap_del, {'id': id}) def udp_encap_dump(self): return self.api(self.papi.udp_encap_dump, {}) def want_udp_encap_stats(self, enable=1): return self.api(self.papi.want_udp_encap_stats, {'enable': enable, 'pid': os.getpid()}) def mpls_route_dump(self, table_id): return self.api(self.papi.mpls_route_dump, {'table': { 'mt_table_id': table_id }}) def mpls_table_dump(self): return self.api(self.papi.mpls_table_dump, {}) def mpls_table_add_del( self, table_id, is_add=1): """ :param table_id :param is_add: (Default value = 1) """ return self.api( self.papi.mpls_table_add_del, {'mt_table': { 'mt_table_id': table_id, }, 'mt_is_add': is_add}) def mpls_route_add_del(self, table_id, label, eos, eos_proto, is_multicast, paths, is_add, is_multipath): """ MPLS Route add/del """ return self.api( self.papi.mpls_route_add_del, {'mr_route': { 'mr_table_id': table_id, 'mr_label': label, 'mr_eos': eos, 'mr_eos_proto': eos_proto, 'mr_is_multicast': is_multicast, 'mr_n_paths': len(paths), 'mr_paths': paths, }, 'mr_is_add': is_add, 'mr_is_multipath': is_multipath}) def mpls_ip_bind_unbind( self, label, prefix, table_id=0, ip_table_id=0, is_bind=1): """ """ return self.api( self.papi.mpls_ip_bind_unbind, {'mb_mpls_table_id': table_id, 'mb_label': label, 'mb_ip_table_id': ip_table_id, 'mb_is_bind': is_bind, 'mb_prefix': prefix}) def mpls_tunnel_add_del( self, tun_sw_if_index, paths, is_add=1, l2_only=0, is_multicast=0): """ """ return self.api( self.papi.mpls_tunnel_add_del, {'mt_is_add': is_add, 'mt_tunnel': { 'mt_sw_if_index': tun_sw_if_index, 'mt_l2_only': l2_only, 'mt_is_multicast': is_multicast, 'mt_n_paths': len(paths), 'mt_paths': paths, }}) def input_acl_set_interface( self, is_add, sw_if_index, ip4_table_index=0xFFFFFFFF, ip6_table_index=0xFFFFFFFF, l2_table_index=0xFFFFFFFF): """ :param is_add: :param sw_if_index: :param ip4_table_index: (Default value = 0xFFFFFFFF) :param ip6_table_index: (Default value = 0xFFFFFFFF) :param l2_table_index: (Default value = 0xFFFFFFFF) """ return self.api( self.papi.input_acl_set_interface, {'sw_if_index': sw_if_index, 'ip4_table_index': ip4_table_index, 'ip6_table_index': ip6_table_index, 'l2_table_index': l2_table_index, 'is_add': is_add}) def output_acl_set_interface( self, is_add, sw_if_index, ip4_table_index=0xFFFFFFFF, ip6_table_index=0xFFFFFFFF, l2_table_index=0xFFFFFFFF): """ :param is_add: :param sw_if_index: :param ip4_table_index: (Default value = 0xFFFFFFFF) :param ip6_table_index: (Default value = 0xFFFFFFFF) :param l2_table_index: (Default value = 0xFFFFFFFF) """ return self.api( self.papi.output_acl_set_interface, {'sw_if_index': sw_if_index, 'ip4_table_index': ip4_table_index, 'ip6_table_index': ip6_table_index, 'l2_table_index': l2_table_index, 'is_add': is_add}) def set_ipfix_exporter( self, collector_address, src_address, path_mtu, template_interval, vrf_id=0, collector_port=4739, udp_checksum=0): return self.api( self.papi.set_ipfix_exporter, { 'collector_address': collector_address, 'collector_port': collector_port, 'src_address': src_address, 'vrf_id': vrf_id, 'path_mtu': path_mtu, 'template_interval': template_interval, 'udp_checksum': udp_checksum, }) def mfib_signal_dump(self): return self.api(self.papi.mfib_signal_dump, {}) def ip_mroute_dump(self, table_id, is_ip6=False): return self.api(self.papi.ip_mroute_dump, {'table': { 'table_id': table_id, 'is_ip6': is_ip6 }}) def vxlan_gbp_tunnel_dump(self, sw_if_index=0xffffffff): return self.api(self.papi.vxlan_gbp_tunnel_dump, {'sw_if_index': sw_if_index}) def pppoe_add_del_session( self, client_ip, client_mac, session_id=0, is_add=1, decap_vrf_id=0): """ :param is_add: (Default value = 1) :param is_ipv6: (Default value = 0) :param client_ip: :param session_id: (Default value = 0) :param client_mac: :param decap_vrf_id: (Default value = 0) """ return self.api(self.papi.pppoe_add_del_session, {'is_add': is_add, 'session_id': session_id, 'client_ip': client_ip, 'decap_vrf_id': decap_vrf_id, 'client_mac': client_mac}) def sr_mpls_policy_add(self, bsid, weight, type, segments): return self.api(self.papi.sr_mpls_policy_add, {'bsid': bsid, 'weight': weight, 'is_spray': type, 'n_segments': len(segments), 'segments': segments}) def sr_mpls_policy_del(self, bsid): return self.api(self.papi.sr_mpls_policy_del, {'bsid': bsid}) def bier_table_add_del(self, bti, mpls_label, is_add=1): """ BIER Table add/del """ return self.api( self.papi.bier_table_add_del, {'bt_tbl_id': {"bt_set": bti.set_id, "bt_sub_domain": bti.sub_domain_id, "bt_hdr_len_id": bti.hdr_len_id}, 'bt_label': mpls_label, 'bt_is_add': is_add}) def bier_table_dump(self): return self.api(self.papi.bier_table_dump, {}) def bier_route_add_del(self, bti, bp, paths, is_add=1, is_replace=0): """ BIER Route add/del """ return self.api( self.papi.bier_route_add_del, { 'br_route': { 'br_tbl_id': {"bt_set": bti.set_id, "bt_sub_domain": bti.sub_domain_id, "bt_hdr_len_id": bti.hdr_len_id}, 'br_bp': bp, 'br_n_paths': len(paths), 'br_paths': paths, }, 'br_is_add': is_add, 'br_is_replace': is_replace }) def bier_route_dump(self, bti): return self.api( self.papi.bier_route_dump, {'br_tbl_id': {"bt_set": bti.set_id, "bt_sub_domain": bti.sub_domain_id, "bt_hdr_len_id": bti.hdr_len_id}}) def bier_imp_add(self, bti, src, ibytes, is_add=1): """ BIER Imposition Add """ return self.api( self.papi.bier_imp_add, {'bi_tbl_id': {"bt_set": bti.set_id, "bt_sub_domain": bti.sub_domain_id, "bt_hdr_len_id": bti.hdr_len_id}, 'bi_src': src, 'bi_n_bytes': len(ibytes), 'bi_bytes': ibytes}) def bier_imp_del(self, bi_index): """ BIER Imposition del """ return self.api( self.papi.bier_imp_del, {'bi_index': bi_index}) def bier_imp_dump(self): return self.api(self.papi.bier_imp_dump, {}) def bier_disp_table_add_del(self, bdti, is_add=1): """ BIER Disposition Table add/del """ return self.api( self.papi.bier_disp_table_add_del, {'bdt_tbl_id': bdti, 'bdt_is_add': is_add}) def bier_disp_table_dump(self): return self.api(self.papi.bier_disp_table_dump, {}) def bier_disp_entry_add_del(self, bdti, bp, payload_proto, next_hop_afi, next_hop, next_hop_tbl_id=0, next_hop_rpf_id=~0, next_hop_is_ip4=1, is_add=1): """ BIER Route add/del """ lstack = [] while (len(lstack) < 16): lstack.append({}) return self.api( self.papi.bier_disp_entry_add_del, {'bde_tbl_id': bdti, 'bde_bp': bp, 'bde_payload_proto': payload_proto, 'bde_n_paths': 1, 'bde_paths': [{'table_id': next_hop_tbl_id, 'rpf_id': next_hop_rpf_id, 'n_labels': 0, 'label_stack': lstack}], 'bde_is_add': is_add}) def bier_disp_entry_dump(self, bdti): return self.api( self.papi.bier_disp_entry_dump, {'bde_tbl_id': bdti}) def ipsec_spd_add_del(self, spd_id, is_add=1): """ SPD add/del - Wrapper to add or del ipsec SPD Sample CLI : 'ipsec spd add 1' :param spd_id - SPD ID to be created in the vpp . mandatory :param is_add - create (1) or delete(0) SPD (Default 1 - add) . optional :returns: reply from the API """ return self.api( self.papi.ipsec_spd_add_del, { 'spd_id': spd_id, 'is_add': is_add}) def ipsec_spds_dump(self): return self.api(self.papi.ipsec_spds_dump, {}) def ipsec_interface_add_del_spd(self, spd_id, sw_if_index, is_add=1): """ IPSEC interface SPD add/del - \ Wrapper to associate/disassociate SPD to interface in VPP Sample CLI : 'set interface ipsec spd GigabitEthernet0/6/0 1' :param spd_id - SPD ID to associate with the interface . mandatory :param sw_if_index - Interface Index which needs to ipsec \ association mandatory :param is_add - add(1) or del(0) association with interface \ (Default 1 - add) . optional :returns: reply from the API """ return self.api( self.papi.ipsec_interface_add_del_spd, {'spd_id': spd_id, 'sw_if_index': sw_if_index, 'is_add': is_add}) def ipsec_spd_interface_dump(self, spd_index=None): return self.api(self.papi.ipsec_spd_interface_dump, {'spd_index': spd_index if spd_index else 0, 'spd_index_valid': 1 if spd_index else 0}) def ipsec_spd_entry_add_del(self, spd_id, sa_id, local_address_start, local_address_stop, remote_address_start, remote_address_stop, local_port_start=0, local_port_stop=65535, remote_port_start=0, remote_port_stop=65535, protocol=0, policy=0, priority=100, is_outbound=1, is_add=1, is_ipv6=0, is_ip_any=0): """ IPSEC policy SPD add/del - Wrapper to configure ipsec SPD policy entries in VPP :param spd_id: SPD ID for the policy :param local_address_start: local-ip-range start address :param local_address_stop: local-ip-range stop address :param remote_address_start: remote-ip-range start address :param remote_address_stop: remote-ip-range stop address :param local_port_start: (Default value = 0) :param local_port_stop: (Default value = 65535) :param remote_port_start: (Default value = 0) :param remote_port_stop: (Default value = 65535) :param protocol: Any(0), AH(51) & ESP(50) protocol (Default value = 0) :param sa_id: Security Association ID for mapping it to SPD :param policy: bypass(0), discard(1), resolve(2) or protect(3) action (Default value = 0) :param priority: value for the spd action (Default value = 100) :param is_outbound: flag for inbound(0) or outbound(1) (Default value = 1) :param is_add: (Default value = 1) """ return self.api( self.papi.ipsec_spd_entry_add_del, { 'is_add': is_add, 'entry': { 'spd_id': spd_id, 'sa_id': sa_id, 'local_address_start': local_address_start, 'local_address_stop': local_address_stop, 'remote_address_start': remote_address_start, 'remote_address_stop': remote_address_stop, 'local_port_start': local_port_start, 'local_port_stop': local_port_stop, 'remote_port_start': remote_port_start, 'remote_port_stop': remote_port_stop, 'protocol': protocol, 'policy': policy, 'priority': priority, 'is_outbound': is_outbound, } }) def ipsec_spd_dump(self, spd_id, sa_id=0xffffffff): return self.api(self.papi.ipsec_spd_dump, {'spd_id': spd_id, 'sa_id': sa_id}) def ipsec_tunnel_if_add_del(self, local_ip, remote_ip, local_spi, remote_spi, crypto_alg, local_crypto_key, remote_crypto_key, integ_alg, local_integ_key, remote_integ_key, is_add=1, esn=0, salt=0, anti_replay=1, renumber=0, udp_encap=0, show_instance=0xffffffff): return self.api( self.papi.ipsec_tunnel_if_add_del, { 'local_ip': local_ip, 'remote_ip': remote_ip, 'local_spi': local_spi, 'remote_spi': remote_spi, 'crypto_alg': crypto_alg, 'local_crypto_key_len': len(local_crypto_key), 'local_crypto_key': local_crypto_key, 'remote_crypto_key_len': len(remote_crypto_key), 'remote_crypto_key': remote_crypto_key, 'integ_alg': integ_alg, 'local_integ_key_len': len(local_integ_key), 'local_integ_key': local_integ_key, 'remote_integ_key_len': len(remote_integ_key), 'remote_integ_key': remote_integ_key, 'is_add': is_add, 'esn': esn, 'anti_replay': anti_replay, 'renumber': renumber, 'show_instance': show_instance, 'udp_encap': udp_encap, 'salt': salt }) def ipsec_select_backend(self, protocol, index): return self.api(self.papi.ipsec_select_backend, {'protocol': protocol, 'index': index}) def ipsec_backend_dump(self): return self.api(self.papi.ipsec_backend_dump, {}) def punt_socket_register(self, reg, pathname, header_version=1): """ Register punt socket """ return self.api(self.papi.punt_socket_register, {'header_version': header_version, 'punt': reg, 'pathname': pathname}) def punt_socket_deregister(self, reg): """ Unregister punt socket """ return self.api(self.papi.punt_socket_deregister, {'punt': reg}) def gbp_endpoint_dump(self): """ GBP endpoint Dump """ return self.api(self.papi.gbp_endpoint_dump, {}) def gbp_recirc_dump(self): """ GBP recirc Dump """ return self.api(self.papi.gbp_recirc_dump, {}) def gbp_ext_itf_dump(self): """ GBP recirc Dump """ return self.api(self.papi.gbp_ext_itf_dump, {}) def gbp_subnet_dump(self): """ GBP Subnet Dump """ return self.api(self.papi.gbp_subnet_dump, {}) def gbp_contract_dump(self): """ GBP contract Dump """ return self.api(self.papi.gbp_contract_dump, {}) def gbp_vxlan_tunnel_dump(self): """ GBP VXLAN tunnel add/del """ return self.api(self.papi.gbp_vxlan_tunnel_dump, {}) def igmp_enable_disable(self, sw_if_index, enable, host): """ Enable/disable IGMP on a given interface """ return self.api(self.papi.igmp_enable_disable, {'enable': enable, 'mode': host, 'sw_if_index': sw_if_index}) def igmp_proxy_device_add_del(self, vrf_id, sw_if_index, add): """ Add/del IGMP proxy device """ return self.api(self.papi.igmp_proxy_device_add_del, {'vrf_id': vrf_id, 'sw_if_index': sw_if_index, 'add': add}) def igmp_proxy_device_add_del_interface(self, vrf_id, sw_if_index, add): """ Add/del interface to/from IGMP proxy device """ return self.api(self.papi.igmp_proxy_device_add_del_interface, {'vrf_id': vrf_id, 'sw_if_index': sw_if_index, 'add': add}) def igmp_listen(self, filter, sw_if_index, saddrs, gaddr): """ Listen for new (S,G) on specified interface :param enable: add/delas :param sw_if_index: interface sw index :param saddr: source ip4 addr :param gaddr: group ip4 addr """ return self.api(self.papi.igmp_listen, { 'group': { 'filter': filter, 'sw_if_index': sw_if_index, 'n_srcs': len(saddrs), 'saddrs': saddrs, 'gaddr': gaddr } }) def igmp_clear_interface(self, sw_if_index): """ Remove all (S,G)s from specified interface doesn't send IGMP report! """ return self.api( self.papi.igmp_clear_interface, { 'sw_if_index': sw_if_index}) def want_igmp_events(self, enable=1): return self.api(self.papi.want_igmp_events, {'enable': enable, 'pid': os.getpid()})
36.826422
79
0.513394
83268a3562d671fa42d9905ea25c04cab6227db2
16,779
py
Python
myven/lib/python3.8/site-packages/ansible/modules/cloud/centurylink/clc_group.py
baltham/dne-dna-code
4a13309a790a670d2f07e635c9264a0c29976c6a
[ "MIT" ]
1
2021-04-02T08:08:39.000Z
2021-04-02T08:08:39.000Z
myven/lib/python3.8/site-packages/ansible/modules/cloud/centurylink/clc_group.py
baltham/dne-dna-code
4a13309a790a670d2f07e635c9264a0c29976c6a
[ "MIT" ]
null
null
null
myven/lib/python3.8/site-packages/ansible/modules/cloud/centurylink/clc_group.py
baltham/dne-dna-code
4a13309a790a670d2f07e635c9264a0c29976c6a
[ "MIT" ]
1
2020-05-03T01:13:16.000Z
2020-05-03T01:13:16.000Z
#!/usr/bin/python # # Copyright (c) 2015 CenturyLink # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' module: clc_group short_description: Create/delete Server Groups at Centurylink Cloud description: - Create or delete Server Groups at Centurylink Centurylink Cloud version_added: "2.0" options: name: description: - The name of the Server Group required: True description: description: - A description of the Server Group required: False parent: description: - The parent group of the server group. If parent is not provided, it creates the group at top level. required: False location: description: - Datacenter to create the group in. If location is not provided, the group gets created in the default datacenter associated with the account required: False state: description: - Whether to create or delete the group default: present choices: ['present', 'absent'] wait: description: - Whether to wait for the tasks to finish before returning. choices: [ True, False ] default: True required: False requirements: - python = 2.7 - requests >= 2.5.0 - clc-sdk author: "CLC Runner (@clc-runner)" notes: - To use this module, it is required to set the below environment variables which enables access to the Centurylink Cloud - CLC_V2_API_USERNAME, the account login id for the centurylink cloud - CLC_V2_API_PASSWORD, the account password for the centurylink cloud - Alternatively, the module accepts the API token and account alias. The API token can be generated using the CLC account login and password via the HTTP api call @ https://api.ctl.io/v2/authentication/login - CLC_V2_API_TOKEN, the API token generated from https://api.ctl.io/v2/authentication/login - CLC_ACCT_ALIAS, the account alias associated with the centurylink cloud - Users can set CLC_V2_API_URL to specify an endpoint for pointing to a different CLC environment. ''' EXAMPLES = ''' # Create a Server Group --- - name: Create Server Group hosts: localhost gather_facts: False connection: local tasks: - name: Create / Verify a Server Group at CenturyLink Cloud clc_group: name: My Cool Server Group parent: Default Group state: present register: clc - name: debug debug: var: clc # Delete a Server Group --- - name: Delete Server Group hosts: localhost gather_facts: False connection: local tasks: - name: Delete / Verify Absent a Server Group at CenturyLink Cloud clc_group: name: My Cool Server Group parent: Default Group state: absent register: clc - name: debug debug: var: clc ''' RETURN = ''' group: description: The group information returned: success type: dict sample: { "changeInfo":{ "createdBy":"service.wfad", "createdDate":"2015-07-29T18:52:47Z", "modifiedBy":"service.wfad", "modifiedDate":"2015-07-29T18:52:47Z" }, "customFields":[ ], "description":"test group", "groups":[ ], "id":"bb5f12a3c6044ae4ad0a03e73ae12cd1", "links":[ { "href":"/v2/groups/wfad", "rel":"createGroup", "verbs":[ "POST" ] }, { "href":"/v2/servers/wfad", "rel":"createServer", "verbs":[ "POST" ] }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1", "rel":"self", "verbs":[ "GET", "PATCH", "DELETE" ] }, { "href":"/v2/groups/wfad/086ac1dfe0b6411989e8d1b77c4065f0", "id":"086ac1dfe0b6411989e8d1b77c4065f0", "rel":"parentGroup" }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1/defaults", "rel":"defaults", "verbs":[ "GET", "POST" ] }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1/billing", "rel":"billing" }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1/archive", "rel":"archiveGroupAction" }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1/statistics", "rel":"statistics" }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1/upcomingScheduledActivities", "rel":"upcomingScheduledActivities" }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1/horizontalAutoscalePolicy", "rel":"horizontalAutoscalePolicyMapping", "verbs":[ "GET", "PUT", "DELETE" ] }, { "href":"/v2/groups/wfad/bb5f12a3c6044ae4ad0a03e73ae12cd1/scheduledActivities", "rel":"scheduledActivities", "verbs":[ "GET", "POST" ] } ], "locationId":"UC1", "name":"test group", "status":"active", "type":"default" } ''' __version__ = '${version}' import os from distutils.version import LooseVersion try: import requests except ImportError: REQUESTS_FOUND = False else: REQUESTS_FOUND = True # # Requires the clc-python-sdk. # sudo pip install clc-sdk # try: import clc as clc_sdk from clc import CLCException except ImportError: CLC_FOUND = False clc_sdk = None else: CLC_FOUND = True from ansible.module_utils.basic import AnsibleModule class ClcGroup(object): clc = None root_group = None def __init__(self, module): """ Construct module """ self.clc = clc_sdk self.module = module self.group_dict = {} if not CLC_FOUND: self.module.fail_json( msg='clc-python-sdk required for this module') if not REQUESTS_FOUND: self.module.fail_json( msg='requests library is required for this module') if requests.__version__ and LooseVersion(requests.__version__) < LooseVersion('2.5.0'): self.module.fail_json( msg='requests library version should be >= 2.5.0') self._set_user_agent(self.clc) def process_request(self): """ Execute the main code path, and handle the request :return: none """ location = self.module.params.get('location') group_name = self.module.params.get('name') parent_name = self.module.params.get('parent') group_description = self.module.params.get('description') state = self.module.params.get('state') self._set_clc_credentials_from_env() self.group_dict = self._get_group_tree_for_datacenter( datacenter=location) if state == "absent": changed, group, requests = self._ensure_group_is_absent( group_name=group_name, parent_name=parent_name) if requests: self._wait_for_requests_to_complete(requests) else: changed, group = self._ensure_group_is_present( group_name=group_name, parent_name=parent_name, group_description=group_description) try: group = group.data except AttributeError: group = group_name self.module.exit_json(changed=changed, group=group) @staticmethod def _define_module_argument_spec(): """ Define the argument spec for the ansible module :return: argument spec dictionary """ argument_spec = dict( name=dict(required=True), description=dict(default=None), parent=dict(default=None), location=dict(default=None), state=dict(default='present', choices=['present', 'absent']), wait=dict(type='bool', default=True)) return argument_spec def _set_clc_credentials_from_env(self): """ Set the CLC Credentials on the sdk by reading environment variables :return: none """ env = os.environ v2_api_token = env.get('CLC_V2_API_TOKEN', False) v2_api_username = env.get('CLC_V2_API_USERNAME', False) v2_api_passwd = env.get('CLC_V2_API_PASSWD', False) clc_alias = env.get('CLC_ACCT_ALIAS', False) api_url = env.get('CLC_V2_API_URL', False) if api_url: self.clc.defaults.ENDPOINT_URL_V2 = api_url if v2_api_token and clc_alias: self.clc._LOGIN_TOKEN_V2 = v2_api_token self.clc._V2_ENABLED = True self.clc.ALIAS = clc_alias elif v2_api_username and v2_api_passwd: self.clc.v2.SetCredentials( api_username=v2_api_username, api_passwd=v2_api_passwd) else: return self.module.fail_json( msg="You must set the CLC_V2_API_USERNAME and CLC_V2_API_PASSWD " "environment variables") def _ensure_group_is_absent(self, group_name, parent_name): """ Ensure that group_name is absent by deleting it if necessary :param group_name: string - the name of the clc server group to delete :param parent_name: string - the name of the parent group for group_name :return: changed, group """ changed = False group = [] results = [] if self._group_exists(group_name=group_name, parent_name=parent_name): if not self.module.check_mode: group.append(group_name) result = self._delete_group(group_name) results.append(result) changed = True return changed, group, results def _delete_group(self, group_name): """ Delete the provided server group :param group_name: string - the server group to delete :return: none """ response = None group, parent = self.group_dict.get(group_name) try: response = group.Delete() except CLCException as ex: self.module.fail_json(msg='Failed to delete group :{0}. {1}'.format( group_name, ex.response_text )) return response def _ensure_group_is_present( self, group_name, parent_name, group_description): """ Checks to see if a server group exists, creates it if it doesn't. :param group_name: the name of the group to validate/create :param parent_name: the name of the parent group for group_name :param group_description: a short description of the server group (used when creating) :return: (changed, group) - changed: Boolean- whether a change was made, group: A clc group object for the group """ if not self.root_group: raise AssertionError("Implementation Error: Root Group not set") parent = parent_name if parent_name is not None else self.root_group.name description = group_description changed = False group = group_name parent_exists = self._group_exists(group_name=parent, parent_name=None) child_exists = self._group_exists( group_name=group_name, parent_name=parent) if parent_exists and child_exists: group, parent = self.group_dict[group_name] changed = False elif parent_exists and not child_exists: if not self.module.check_mode: group = self._create_group( group=group, parent=parent, description=description) changed = True else: self.module.fail_json( msg="parent group: " + parent + " does not exist") return changed, group def _create_group(self, group, parent, description): """ Create the provided server group :param group: clc_sdk.Group - the group to create :param parent: clc_sdk.Parent - the parent group for {group} :param description: string - a text description of the group :return: clc_sdk.Group - the created group """ response = None (parent, grandparent) = self.group_dict[parent] try: response = parent.Create(name=group, description=description) except CLCException as ex: self.module.fail_json(msg='Failed to create group :{0}. {1}'.format( group, ex.response_text)) return response def _group_exists(self, group_name, parent_name): """ Check to see if a group exists :param group_name: string - the group to check :param parent_name: string - the parent of group_name :return: boolean - whether the group exists """ result = False if group_name in self.group_dict: (group, parent) = self.group_dict[group_name] if parent_name is None or parent_name == parent.name: result = True return result def _get_group_tree_for_datacenter(self, datacenter=None): """ Walk the tree of groups for a datacenter :param datacenter: string - the datacenter to walk (ex: 'UC1') :return: a dictionary of groups and parents """ self.root_group = self.clc.v2.Datacenter( location=datacenter).RootGroup() return self._walk_groups_recursive( parent_group=None, child_group=self.root_group) def _walk_groups_recursive(self, parent_group, child_group): """ Walk a parent-child tree of groups, starting with the provided child group :param parent_group: clc_sdk.Group - the parent group to start the walk :param child_group: clc_sdk.Group - the child group to start the walk :return: a dictionary of groups and parents """ result = {str(child_group): (child_group, parent_group)} groups = child_group.Subgroups().groups if len(groups) > 0: for group in groups: if group.type != 'default': continue result.update(self._walk_groups_recursive(child_group, group)) return result def _wait_for_requests_to_complete(self, requests_lst): """ Waits until the CLC requests are complete if the wait argument is True :param requests_lst: The list of CLC request objects :return: none """ if not self.module.params['wait']: return for request in requests_lst: request.WaitUntilComplete() for request_details in request.requests: if request_details.Status() != 'succeeded': self.module.fail_json( msg='Unable to process group request') @staticmethod def _set_user_agent(clc): if hasattr(clc, 'SetRequestsSession'): agent_string = "ClcAnsibleModule/" + __version__ ses = requests.Session() ses.headers.update({"Api-Client": agent_string}) ses.headers['User-Agent'] += " " + agent_string clc.SetRequestsSession(ses) def main(): """ The main function. Instantiates the module and calls process_request. :return: none """ module = AnsibleModule( argument_spec=ClcGroup._define_module_argument_spec(), supports_check_mode=True) clc_group = ClcGroup(module) clc_group.process_request() if __name__ == '__main__': main()
32.707602
120
0.581799
2f8426b3618682e3773a391edbc46b450b5d5969
10,295
py
Python
pytest_subprocessor/__init__.py
AnyVisionltd/automation-infra
e94c10224b0711160c9fc361045b8f2cfc9c4ca8
[ "MIT" ]
6
2021-03-10T14:02:42.000Z
2021-12-08T20:17:21.000Z
pytest_subprocessor/__init__.py
solganik/automation-infra
66379f7366eaa52f412a9150a018ea17ddcdf59b
[ "MIT" ]
5
2021-05-10T18:00:07.000Z
2022-03-12T00:36:54.000Z
pytest_subprocessor/__init__.py
solganik/automation-infra
66379f7366eaa52f412a9150a018ea17ddcdf59b
[ "MIT" ]
5
2021-03-10T14:02:11.000Z
2021-07-16T20:58:13.000Z
import copy import queue import threading from plumbum import local import sys import uuid from concurrent.futures.thread import ThreadPoolExecutor from datetime import datetime import json import logging import os import subprocess from concurrent import futures from json import JSONDecodeError import pytest from _pytest.outcomes import Exit from _pytest.runner import CallInfo from infra.utils.plugin_logging import InfraFormatter from .worker import Worker SESSION_ID_ENV_VAR = "HABERTEST_SESSION_ID" ITEM_ID_ENV_VAR = "HABERTEST_ITEM_ID" SERIALIZED_REPORT_LOCATION = '/tmp/habertest_infra_reports' @pytest.hookimpl(tryfirst=True) def pytest_cmdline_parse(pluginmanager, args): now = datetime.now().strftime("%Y_%m_%d__%H%M_%S") if not any(['--logs-dir' in arg for arg in args]): args.append(f'--logs-dir=logs/{now}') if not any(['--html' in arg for arg in args]): args.extend([f'--html=logs/{now}/report.html', '--self-contained-html']) def pytest_addoption(parser): group = parser.getgroup("pytest_subprocessor") group.addoption("--num-parallel", type=int, default=1, help="number of resourcess to provision and run tests against in parallel") group.addoption("--logs-dir", action="store", default=f'logs/{datetime.now().strftime("%Y_%m_%d__%H%M_%S")}', help="custom directory to store logs in") group.addoption("--sf", dest="secondary_flags", action="append", default=[], help='flags to pass to the secondary pytest call (after provisioning).' 'Can be passed individually like --sf=-flag1 --sf=--flag2 or with escaped " marks like ' '--sf=\\"--flag1 value1 --flag2\\"') def pytest_addhooks(pluginmanager): from pytest_subprocessor import hooks pluginmanager.add_hookspecs(hooks) @pytest.hookimpl(tryfirst=True) def pytest_configure(config): config.option.assertmode = 'rewrite' configure_logging(config) def configure_logging(config): session_logs_dir = config.getoption("--logs-dir") os.makedirs(session_logs_dir, exist_ok=True) config.option.logger_logsdir = session_logs_dir main_process_logs_dir = f'{config.option.logger_logsdir}/infra' os.makedirs(main_process_logs_dir, exist_ok=True) root_logger = logging.getLogger() root_logger.setLevel(logging.DEBUG) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(InfraFormatter()) root_logger.addHandler(console_handler) debug_file_handler = logging.FileHandler(f'{main_process_logs_dir}/debug.log', mode='w') debug_file_handler.setLevel(logging.DEBUG) debug_file_handler.setFormatter(InfraFormatter()) root_logger.addHandler(debug_file_handler) info_file_handler = logging.FileHandler(f'{main_process_logs_dir}/info.log', mode='w') info_file_handler.setLevel(logging.INFO) info_file_handler.setFormatter(InfraFormatter()) root_logger.addHandler(info_file_handler) def pytest_sessionstart(session): session.tests_queue = queue.Queue() def pytest_exception_interact(node, call, report): logging.error(call) os._exit(666) @pytest.hookimpl(tryfirst=True) def pytest_runtestloop(session): """ This is the (interesting part of the) pytest implementation of runtest_loop: ├── pytest_runtestloop │ └── pytest_runtest_protocol │ ├── pytest_runtest_logstart │ ├── pytest_runtest_setup │ │ └── pytest_fixture_setup │ ├── pytest_runtest_makereport │ ├── pytest_runtest_logreport │ │ └── pytest_report_teststatus │ ├── pytest_runtest_call │ │ └── pytest_pyfunc_call │ ├── pytest_runtest_teardown │ │ └── pytest_fixture_post_finalizer │ └── pytest_runtest_logfinish In this plugin, we implement our own version of runtest_protocol which runs before pytest default implementation (tryfirst=True), which builds and calls pytest commands of gathered tests on a subprocess. After the subprocess finishes, the pytest default implementation hook is called, which triggeres runtest_protocol hook, which we implement further down in this module. """ if session.testsfailed and not session.config.option.continue_on_collection_errors: raise session.Interrupted("%d errors during collection" % session.testsfailed) if session.config.option.collectonly: return True workers = list() for i in range(session.config.option.num_parallel): worker = Worker(session) workers.append(worker) session.config.hook.pytest_build_items_iter(session=session, workers=workers) for worker in workers: logging.debug(f"starting worker {worker.id}") worker.start() for fut in futures.as_completed([worker.completion for worker in workers]): logging.debug("waiting for futures to complete") try: fut.result() for i, item in enumerate(fut.worker.handled_items): nextitem = fut.worker.handled_items[i + 1] if i + 1 < len(fut.worker.handled_items) else None session.config.hook.pytest_runtest_protocol(item=item, nextitem=nextitem) except: raise if session.shouldfail: raise session.Failed(session.shouldfail) if session.shouldstop: raise session.Interrupted(session.shouldstop) # TODO: add another pytest command which says only run post-mortem hoooks # At this point the tests have run and wrote their serialized reports to disk on /tmp/habertest... # using pytest_report_from_serializable return True @pytest.hookimpl(tryfirst=True) def pytest_runtest_protocol(item, nextitem): """ This hook is a firstResult hook, which means it stops calling other hooks when 1 hook implementation returns a value. We return True at the end of this implementation, and we run first (tryfirst=True), therefore pytests implementation of this hook WILL NOT BE TRIGGERED. In pytests implementation, the hook calls the 2 log hooks (logstart and logfinish) which we call here as well, but in the middle it (basically) calls call_and_report for each item. We have already called the test items our runtest_loop we implemented up above in this module, so the items already ran and all we need to do is collect the serialized reports. REMINDER: the tests have already run on a subprocess in the runtest_loop. """ item.ihook.pytest_runtest_logstart(nodeid=item.nodeid, location=item.location) # here all we really need to do is collect the reports already written to disk by the child # which ran the actual tests.. run_fictitious_testprotocol(item) item.ihook.pytest_runtest_logfinish(nodeid=item.nodeid, location=item.location) return True def run_fictitious_testprotocol(item): """ REMINDER: Tests have already run on subprocess. Here we just need to convince the current pytest process that the tests have already run and to collect their reports. """ call = CallInfo.from_call( lambda: True, when="setup", reraise=(Exit,) ) item.ihook.pytest_runtest_makereport(item=item, call=call) call = CallInfo.from_call( lambda: True, when="call", reraise=(Exit,) ) item.ihook.pytest_runtest_makereport(item=item, call=call) call = CallInfo.from_call( lambda: True, when="teardown", reraise=(Exit,) ) item.ihook.pytest_runtest_makereport(item=item, call=call) @pytest.hookimpl(tryfirst=True) def pytest_runtest_makereport(item, call): """ REMINDER: We already invoked the tests on a subprocess. The tests after they ran serialized the reports onto the disk, so here we just need to deserialize the existing reports, and attach them to the existing "test run". """ report = report_from_disk(item, call) if not report: return None # After getting the report, we need to log it and report the teststatus so that the current pytest_session # will believe acknowledge that the tests ran. # We need to call these hooks because they are called by pytests implementation of runtest_protocol which we # overode, such that if we dont call the hooks ourselves no one will. item.ihook.pytest_runtest_logreport(report=report) item.ihook.pytest_report_teststatus(report=report, config=item.config) return report def report_from_disk(item, call): """The tests have been run via pytest subprocess, which writes serialized reports to the disk. All thats left to do is read from the disk and deserialize :) """ report_file = serialized_path(item, call) # f'{SERIALIZED_REPORT_LOCATION}/{item.nodeid.replace("/", "-").replace(":", "..")}.{call.when}.report' if not os.path.exists(report_file): # This probably means the subprocess test run froze/timed_out/got fucked somehow: logging.error(f"report: {report_file} doesnt exists") item.teardown() return with open(report_file, 'r') as f: report_ser = json.load(f) report = item.config.hook.pytest_report_from_serializable(data=report_ser, config=item.config) os.remove(report_file) return report def serialized_path(item, call): item_id = getattr(item, 'id', None) or item.config.option.item_id return f'{SERIALIZED_REPORT_LOCATION}/{item_id}.{call.when}.report' @pytest.hookimpl(trylast=True) def pytest_build_items_iter(session, workers): logging.debug("subprocessor building items_iter. This is the trivial case and shouldn't usually happen..") session.tests_queue.queue = queue.deque(session.items) @pytest.hookimpl(trylast=True) def pytest_get_next_item(session, worker): logging.debug("trying to get_next_item via trivial implementation") try: item = session.tests_queue.get(block=False) logging.debug(f"trivial implementation returning item {os.path.split(item.nodeid)[1]}.. " f"This shouldn't usually happen") return item except queue.Empty: return None @pytest.hookimpl(tryfirst=True) def pytest_keyboard_interrupt(excinfo): logging.info("exiting from ctrl+c") os._exit(9)
39.293893
155
0.71763
deeaa5004302a879ac7a5a538c4202e680342ce4
6,735
py
Python
models/convolution_lstm.py
yaorong0921/Driver-Intention-Prediction
baeb3e15dc75f113cbf03d58cb0dc66bd6cc8b39
[ "MIT" ]
10
2020-08-19T11:24:48.000Z
2022-03-06T11:24:41.000Z
models/convolution_lstm.py
Harlan728/Driver-Intention-Prediction
ec1d435895ab234b2fff5aef7668577773122354
[ "MIT" ]
3
2021-03-16T03:15:39.000Z
2022-02-23T22:22:00.000Z
models/convolution_lstm.py
Harlan728/Driver-Intention-Prediction
ec1d435895ab234b2fff5aef7668577773122354
[ "MIT" ]
3
2021-03-07T20:46:23.000Z
2022-03-28T14:10:48.000Z
import torch import torch.nn as nn from torch.autograd import Variable class ConvLSTMCell(nn.Module): def __init__(self, input_channels, hidden_channels, kernel_size): super(ConvLSTMCell, self).__init__() assert hidden_channels % 2 == 0 self.input_channels = input_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.num_features = 4 self.padding = int((kernel_size - 1) / 2) self.Wxi = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True) self.Whi = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False) self.Wxf = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True) self.Whf = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False) self.Wxc = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True) self.Whc = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False) self.Wxo = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True) self.Who = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False) self.Wci = None self.Wcf = None self.Wco = None def forward(self, x, h, c): ci = torch.sigmoid(self.Wxi(x) + self.Whi(h) + c * self.Wci) cf = torch.sigmoid(self.Wxf(x) + self.Whf(h) + c * self.Wcf) cc = cf * c + ci * torch.tanh(self.Wxc(x) + self.Whc(h)) co = torch.sigmoid(self.Wxo(x) + self.Who(h) + cc * self.Wco) ch = co * torch.tanh(cc) return ch, cc def init_hidden(self, batch_size, hidden, shape): if self.Wci is None: self.Wci = Variable(torch.zeros(1, hidden, shape[0], shape[1])).cuda() self.Wcf = Variable(torch.zeros(1, hidden, shape[0], shape[1])).cuda() self.Wco = Variable(torch.zeros(1, hidden, shape[0], shape[1])).cuda() else: assert shape[0] == self.Wci.size()[2], 'Input Height Mismatched!' assert shape[1] == self.Wci.size()[3], 'Input Width Mismatched!' return (Variable(torch.zeros(batch_size, hidden, shape[0], shape[1])).cuda(), Variable(torch.zeros(batch_size, hidden, shape[0], shape[1])).cuda()) class ConvLSTM(nn.Module): # input_channels corresponds to the first input feature map # hidden state is a list of succeeding lstm layers. def __init__(self, input_channels, hidden_channels, kernel_size, step=1, effective_step=[1]): super(ConvLSTM, self).__init__() self.input_channels = [input_channels] + hidden_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.num_layers = len(hidden_channels) self.step = step self.effective_step = effective_step self._all_layers = [] for i in range(self.num_layers): name = 'cell{}'.format(i) cell = ConvLSTMCell(self.input_channels[i], self.hidden_channels[i], self.kernel_size) setattr(self, name, cell) self._all_layers.append(cell) def forward(self, input): internal_state = [] outputs = [] for step in range(self.step): x = input[step] for i in range(self.num_layers): # all cells are initialized in the first step name = 'cell{}'.format(i) if step == 0: bsize, _, height, width = x.size() (h, c) = getattr(self, name).init_hidden(batch_size=bsize, hidden=self.hidden_channels[i], shape=(height, width)) internal_state.append((h, c)) # do forward (h, c) = internal_state[i] x, new_c = getattr(self, name)(x, h, c) internal_state[i] = (x, new_c) # only record effective steps if step in self.effective_step: outputs.append(x) return outputs, (x, new_c) class Decoder(nn.Module): def __init__(self, num_step, num_channel): super(Decoder, self).__init__() self._all_layers = [] self.num_step = num_step self.num_channel = num_channel for i in range(self.num_step): name = 'conv{}'.format(i) conv = nn.Conv2d(self.num_channel, 3, 1, stride=1, padding=0) setattr(self, name, conv) self._all_layers.append(conv) def forward(self, input): output = [] for i in range(self.num_step): name = 'conv{}'.format(i) y = getattr(self, name)(input[i]) output.append(y) return output class Encoder(nn.Module): def __init__(self, hidden_channels, sample_size, sample_duration): super(Encoder, self).__init__() self.convlstm = ConvLSTM(input_channels=3, hidden_channels=hidden_channels, kernel_size=3, step=sample_duration, effective_step=[sample_duration-1]) ################## W/o output decoder self.conv2 = nn.Conv2d(32, 3, 1, stride=1, padding=0) ################## With output decoder # self.decoder = Decoder(sample_duration, 32) def forward(self, x): b,t,c,h,w = x.size() x = x.permute(1,0,2,3,4) output_convlstm, _ = self.convlstm(x) # x = self.decoder(output_convlstm) x = self.conv2(output_convlstm[0]) return x def test(): #if __name__ == '__main__': # gradient check convlstm = ConvLSTM(input_channels=48, hidden_channels=[128, 64, 64, 32, 32], kernel_size=3, step=5, effective_step=[2,4]).cuda() loss_fn = torch.nn.MSELoss() input = Variable(torch.randn(1, 48, 64, 64)).cuda() target = Variable(torch.randn(1, 32, 64, 64)).double().cuda() output = convlstm(input) output = output[0][0].double() res = torch.autograd.gradcheck(loss_fn, (output, target), eps=1e-6, raise_exception=True) print(res) def test_convlstm(): """Constructs a convlstm model. """ model = encoder(hidden_channels=[128, 64, 64, 32], sample_size=[112,112], sample_duration=4).cuda() input = Variable(torch.randn(20, 3, 4, 112, 112)).cuda() output = model(input) print(output.size()) def encoder(**kwargs): """Constructs a ResNet-101 model. """ model = Encoder(**kwargs) return model #if __name__ == '__main__': # test_convlstm()
40.329341
120
0.610245
b04bfb7d75c07ec32bfa969a3d0c5ca5465509f6
2,741
py
Python
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/mock/procenv.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/mock/procenv.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/mock/procenv.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
# (c) 2016, Matt Davis <mdavis@ansible.com> # (c) 2016, Toshio Kuratomi <tkuratomi@ansible.com> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import sys import json from contextlib import contextmanager from io import BytesIO, StringIO from ansible_collections.f5networks.f5_modules.tests.unit.compat import unittest from ansible.module_utils.six import PY3 from ansible.module_utils._text import to_bytes @contextmanager def swap_stdin_and_argv(stdin_data='', argv_data=tuple()): """ context manager that temporarily masks the test runner's values for stdin and argv """ real_stdin = sys.stdin real_argv = sys.argv if PY3: fake_stream = StringIO(stdin_data) fake_stream.buffer = BytesIO(to_bytes(stdin_data)) else: fake_stream = BytesIO(to_bytes(stdin_data)) try: sys.stdin = fake_stream sys.argv = argv_data yield finally: sys.stdin = real_stdin sys.argv = real_argv @contextmanager def swap_stdout(): """ context manager that temporarily replaces stdout for tests that need to verify output """ old_stdout = sys.stdout if PY3: fake_stream = StringIO() else: fake_stream = BytesIO() try: sys.stdout = fake_stream yield fake_stream finally: sys.stdout = old_stdout class ModuleTestCase(unittest.TestCase): def setUp(self, module_args=None): if module_args is None: module_args = {'_ansible_remote_tmp': '/tmp', '_ansible_keep_remote_files': False} args = json.dumps(dict(ANSIBLE_MODULE_ARGS=module_args)) # unittest doesn't have a clean place to use a context manager, so we have to enter/exit manually self.stdin_swap = swap_stdin_and_argv(stdin_data=args) self.stdin_swap.__enter__() def tearDown(self): # unittest doesn't have a clean place to use a context manager, so we have to enter/exit manually self.stdin_swap.__exit__(None, None, None)
30.120879
105
0.711054
32fa649c1f69c9f03c3aac81b7234c6d26939624
9,426
py
Python
ansible_navigator/ui_framework/colorize.py
NilashishC/ansible-navigator
8f6e546ea29308786b89248ac778b7af15f50c4b
[ "Apache-2.0", "MIT" ]
null
null
null
ansible_navigator/ui_framework/colorize.py
NilashishC/ansible-navigator
8f6e546ea29308786b89248ac778b7af15f50c4b
[ "Apache-2.0", "MIT" ]
null
null
null
ansible_navigator/ui_framework/colorize.py
NilashishC/ansible-navigator
8f6e546ea29308786b89248ac778b7af15f50c4b
[ "Apache-2.0", "MIT" ]
null
null
null
""" Tokenize and color text """ import json import logging import os import re import colorsys import curses import functools from itertools import chain from ..tm_tokenize.grammars import Grammars from ..tm_tokenize.tokenize import tokenize from .curses_defs import CursesLine from .curses_defs import CursesLinePart CURSES_STYLES = { 0: None, 1: getattr(curses, "A_BOLD", None), 2: getattr(curses, "A_DIM", None), 3: getattr(curses, "A_ITALIC", None), 4: getattr(curses, "A_UNDERLINE", None), 5: getattr(curses, "A_BLINK", None), 6: getattr(curses, "A_BLINK", None), 7: getattr(curses, "A_REVERSE", None), 8: getattr(curses, "A_INVIS", None), } THEME = "dark_vs.json" class ColorSchema: """Simple holer for the schema (theme)""" # pylint: disable=too-few-public-methods def __init__(self, schema): """start :param schema: The color scheme, theme to use :type schema: dict """ self._schema = schema @functools.lru_cache(maxsize=None) def get_color(self, scope): """Get a color from the schema, from most specific to least :param scope: The scope, aka format :type scope: str :return: the color in rgb format or None :rtype: tuple or None """ for name in reversed(scope): for parts in range(0, len(name.split("."))): prop = name.split()[-1].rsplit(".", parts)[0] color = next( (tc for tc in self._schema["tokenColors"] if prop in to_list(tc["scope"])), None ) if color: foreground = color.get("settings", {}).get("foreground", None) return hex_to_rgb(foreground) return None class Colorize: """Functionality for coloring""" # pylint: disable=too-few-public-methods def __init__(self, share_dir): self._logger = logging.getLogger(__name__) self._schema = None self._theme_dir = os.path.join(share_dir, "themes") self._grammar_dir = os.path.join(share_dir, "grammar") self._grammars = Grammars(self._grammar_dir) self._load() def _load(self): with open(os.path.join(self._theme_dir, THEME)) as data_file: self._schema = ColorSchema(json.load(data_file)) @functools.lru_cache(maxsize=100) def render(self, doc, scope): """render some text into columns and colors :param doc: The thing to tokenize and color :type doc: str :param scope: The scope, aka the format of the string :type scope: str :return: A list of lines, each a list of dicts :rtype: list """ if scope == "source.ansi": return [ansi_to_curses(l) for l in doc.splitlines()] try: compiler = self._grammars.compiler_for_scope(scope) except KeyError: compiler = None if compiler: state = compiler.root_state lines = [] for line_idx, line in enumerate(doc.splitlines()): first_line = line_idx == 0 state, regions = tokenize(compiler, state, line, first_line) lines.append((regions, line)) return columns_and_colors(lines, self._schema) res = [[{"column": 0, "chars": l, "color": None}] for l in doc.splitlines()] return res def to_list(thing): """convert something to a list if necessary :param thing: Maybe a list? :type thing: str or list :return: listified thing :rtype: list """ if not isinstance(thing, list): return [thing] return thing def hex_to_rgb(value): """Convert a hex value to RGB :param value: the hex color :type value: string :returns: rgb tuple :rtype: tuple """ if value: value = value.lstrip("#") lenv = len(value) return tuple(int(value[i : i + lenv // 3], 16) for i in range(0, lenv, lenv // 3)) return None def hex_to_rgb_curses(value): """Convert a hex color to RGB scaled to 1000 b/c that's what curses needs :param value: a rgb color :type value: tuple :return: The colors scaled to 1000 :rtype: tuple """ scale = lambda x: int(x * 1000 / 255) red, green, blue = hex_to_rgb(value) return (scale(red), scale(green), scale(blue)) def rgb_to_ansi(red: int, green: int, blue: int, colors: int) -> int: """Convert an RGB color to an terminal color :param red: the red component :type red: int :param green: the green component :type green: int :param blue: the blue component :type blue: int :param colors: The number of color supported by the termina :type colors: int """ # https://github.com/Qix-/color-convert/blob/master/conversions.js if colors == 256: if red == green and green == blue: if red < 8: ansi = 16 if red > 248: ansi = 231 ansi = round(((red - 8) / 247) * 24) + 232 else: ansi = ( 16 + (36 * round(red / 255 * 5)) + (6 * round(green / 255 * 5)) + round(blue / 255 * 5) ) elif colors == 16: value = colorsys.rgb_to_hsv(red, green, blue)[2] value = round(value / 50) if value == 0: ansi = 30 else: ansi = (round(blue / 255) << 2) | (round(green / 255) << 1) | round(red / 255) if value == 2: ansi += 8 else: # colors == 8, sorry ansi = (round(blue / 255) << 2) | (round(green / 255) << 1) | round(red / 255) return ansi def columns_and_colors(lines, schema): """Convert to colors and columns :param lines: A list of regiosn (line parts) and the line :type lines: list of lines, each a ([regions], line) :param scheam: An instance of the ColorSchema :type schema: ColorSchema """ result = [] for line in lines: column = 0 char_dicts = [{"chars": c, "color": None} for c in line[1]] for region in line[0]: color = schema.get_color(region.scope) if color: for idx in range(region.start, region.end): char_dicts[idx]["color"] = color if char_dicts: grouped = [char_dicts.pop(0)] while char_dicts: entry = char_dicts.pop(0) if entry["color"] == grouped[-1]["color"]: grouped[-1]["chars"] += entry["chars"] else: grouped.append(entry) result.append(grouped) else: result.append([{"chars": line[1], "color": None}]) for line in result: column = 0 for chunk in line: chunk["column"] = column column += len(chunk["chars"]) return result def ansi_to_curses(line: str) -> CursesLine: # pylint: disable=too-many-branches # pylint: disable=too-many-locals """Convert ansible color codes to curses colors :param line: A string with ansi colors :type line: string :return: A list of str tuples [(x, s, c), (x, s, c)...] :rtype: list """ printable = [] ansi_regex = re.compile(r"(\x1b\[[\d;]*m)") color_regex = re.compile( r"""(?x) \x1b\[ # Control Sequence Introducer (?P<fg_action>(38;5|39);)? # optional FG color action (?P<_bg_action>(48;5|49);)? # optional BG color action (?P<one>\d+) # required, one number (;(?P<two>\d+))? # optional 2nd number m """ ) parts = ansi_regex.split(line) colno = 0 color = 0 style = 0 while parts: part = parts.pop(0) if part: match = color_regex.match(part) if match: cap = match.groupdict() one = cap["one"] two = cap["two"] if cap["fg_action"] == "39;": pass # default color elif one == "0" and two is None: pass # default color elif cap["fg_action"] == "38;5;": color = curses.color_pair(int(one) % curses.COLORS) if two: style = CURSES_STYLES.get(int(two), None) or 0 elif not cap["fg_action"]: ansi_16 = list(chain(range(30, 38), range(90, 98))) if two is None: color = ansi_16.index(int(one)) if int(one) in ansi_16 else int(one) color = curses.color_pair(color % curses.COLORS) else: color = ansi_16.index(int(two)) if int(two) in ansi_16 else int(two) color = curses.color_pair(color % curses.COLORS) style = CURSES_STYLES.get(int(one), None) or 0 else: curses_line = CursesLinePart( column=colno, string=part, color=color, decoration=style ) printable.append(curses_line) colno += len(part) color = 0 style = 0 return tuple(printable)
31.525084
100
0.53745
b6390ba1ac14add6f86e4c46067c63e9c74a075a
493
py
Python
utils/csv_reader.py
dsc-jnec/mailmerge-pyth
4fa6f896008cfa28ef0e29b0b9b4e8481b5841e9
[ "MIT" ]
1
2020-12-09T10:23:24.000Z
2020-12-09T10:23:24.000Z
utils/csv_reader.py
dsc-jnec/mailmerge-pyth
4fa6f896008cfa28ef0e29b0b9b4e8481b5841e9
[ "MIT" ]
3
2020-11-19T06:57:23.000Z
2020-11-21T13:41:31.000Z
utils/csv_reader.py
dsc-jnec/mailmerge-pyth
4fa6f896008cfa28ef0e29b0b9b4e8481b5841e9
[ "MIT" ]
null
null
null
import csv res={} def csvread(filename): with open(filename, 'r') as file: csv_file = csv.reader(file) f=0 for row in csv_file: if(f == 0): for i in row: res[i]=[] f+=1 else: j = 0 for key, value in res.items(): value.append(row[j]) j+=1 return res res = csvread("sample.csv") for i in res: print(i,res[i])
21.434783
46
0.409736
cc0398182a0e1c70be76cab4f3d7dc82367fd04e
3,401
py
Python
python/tvm/rpc/tornado_util.py
mostafaelhoushi/tvm
ae21eddf5f13ffa82d514e8311c87f38bcac559a
[ "Apache-2.0" ]
1
2021-03-07T15:30:16.000Z
2021-03-07T15:30:16.000Z
python/tvm/rpc/tornado_util.py
mostafaelhoushi/tvm
ae21eddf5f13ffa82d514e8311c87f38bcac559a
[ "Apache-2.0" ]
null
null
null
python/tvm/rpc/tornado_util.py
mostafaelhoushi/tvm
ae21eddf5f13ffa82d514e8311c87f38bcac559a
[ "Apache-2.0" ]
1
2020-02-09T10:42:31.000Z
2020-02-09T10:42:31.000Z
"""Utilities used in tornado.""" import socket import errno from tornado import ioloop class TCPHandler(object): """TCP socket handler backed tornado event loop. Parameters ---------- sock : Socket The TCP socket, will set it to non-blocking mode. """ def __init__(self, sock): self._sock = sock self._ioloop = ioloop.IOLoop.current() self._sock.setblocking(0) self._pending_write = [] self._signal_close = False def _event_handler(_, events): self._event_handler(events) self._ioloop.add_handler( self._sock.fileno(), _event_handler, self._ioloop.READ | self._ioloop.ERROR) def signal_close(self): """Signal the handler to close. The handler will be closed after the existing pending message are sent to the peer. """ if not self._pending_write: self.close() else: self._signal_close = True def close(self): """Close the socket""" if self._sock is not None: try: self._ioloop.remove_handler(self._sock.fileno()) self._sock.close() except socket.error: pass self._sock = None self.on_close() def write_message(self, message, binary=True): assert binary if self._sock is None: raise IOError("socket is already closed") self._pending_write.append(message) self._update_write() def _event_handler(self, events): """centeral event handler""" if (events & self._ioloop.ERROR) or (events & self._ioloop.READ): if self._update_read() and (events & self._ioloop.WRITE): self._update_write() elif events & self._ioloop.WRITE: self._update_write() def _update_write(self): """Update the state on write""" while self._pending_write: try: msg = self._pending_write[0] if self._sock is None: return nsend = self._sock.send(msg) if nsend != len(msg): self._pending_write[0] = msg[nsend:] else: self._pending_write.pop(0) except socket.error as err: if err.args[0] in (errno.EAGAIN, errno.EWOULDBLOCK): break else: self.on_error(err) if self._pending_write: self._ioloop.update_handler( self._sock.fileno(), self._ioloop.READ | self._ioloop.ERROR | self._ioloop.WRITE) else: if self._signal_close: self.close() else: self._ioloop.update_handler( self._sock.fileno(), self._ioloop.READ | self._ioloop.ERROR) def _update_read(self): """Update state when there is read event""" try: msg = bytes(self._sock.recv(4096)) if msg: self.on_message(msg) return True # normal close, remote is closed self.close() except socket.error as err: if err.args[0] in (errno.EAGAIN, errno.EWOULDBLOCK): pass else: self.on_error(err) return False
32.084906
97
0.539547
8a898ba7aa8f29a4187d26cc93a0131abe98a036
403
py
Python
wave2.0/division2B/hw2/E_diplomas_in_folders.py
stanislav-kudriavtsev/Yandex-Algorithms-Training
0ad882e04847f6c2a973716a419befb21aa1df20
[ "CC0-1.0" ]
null
null
null
wave2.0/division2B/hw2/E_diplomas_in_folders.py
stanislav-kudriavtsev/Yandex-Algorithms-Training
0ad882e04847f6c2a973716a419befb21aa1df20
[ "CC0-1.0" ]
null
null
null
wave2.0/division2B/hw2/E_diplomas_in_folders.py
stanislav-kudriavtsev/Yandex-Algorithms-Training
0ad882e04847f6c2a973716a419befb21aa1df20
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """https://contest.yandex.ru/contest/28738/problems/E/""" # pylint: disable=invalid-name if __name__ == "__main__": folders_total = int(input()) folders = tuple(map(int, input().split())) summ, maxx = 0, folders[0] for folder in folders: summ += folder if folder > maxx: maxx = folder print(summ - maxx)
22.388889
57
0.590571
f72ef0d45883357b7389e4970e9395830f94792a
80
py
Python
run.py
5x/ds-ants-geopy-extended
6017b5da444cc33bde47f0c7cf2cf06a640a354c
[ "MIT" ]
null
null
null
run.py
5x/ds-ants-geopy-extended
6017b5da444cc33bde47f0c7cf2cf06a640a354c
[ "MIT" ]
null
null
null
run.py
5x/ds-ants-geopy-extended
6017b5da444cc33bde47f0c7cf2cf06a640a354c
[ "MIT" ]
1
2019-12-06T10:20:08.000Z
2019-12-06T10:20:08.000Z
from ants.ants import demonstrate if __name__ == '__main__': demonstrate()
16
33
0.725
3093c94958966ef44830ce87bd26e8ddd31e291d
308
py
Python
2017/02day/sol.py
zagura/aoc-2017
bfd38fb6fbe4211017a306d218b32ecff741e006
[ "MIT" ]
2
2018-12-09T16:00:09.000Z
2018-12-09T17:56:15.000Z
2017/02day/sol.py
zagura/aoc-2017
bfd38fb6fbe4211017a306d218b32ecff741e006
[ "MIT" ]
null
null
null
2017/02day/sol.py
zagura/aoc-2017
bfd38fb6fbe4211017a306d218b32ecff741e006
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import sys lines = sys.stdin.readlines() #print("Read lines finished!") fullsum = 0 for l in lines: vals = l.strip().split('\t') # print(vals) vals2 = list(map(lambda x: int(x), vals)) # print(vals2) diff = max(vals2) - min(vals2) fullsum += diff print(fullsum)
16.210526
45
0.616883
f23857ab9b6ba46fcd36d92f03c30c76aa51d610
918
py
Python
backupCynanBot.py
Omnigazer/CynanBotCommon
9055a63ffcc5bfb2f95f6934f8fd981088a11d9b
[ "Unlicense" ]
2
2021-02-27T16:45:19.000Z
2021-05-21T15:57:02.000Z
backupCynanBot.py
Omnigazer/CynanBotCommon
9055a63ffcc5bfb2f95f6934f8fd981088a11d9b
[ "Unlicense" ]
1
2021-03-03T14:05:16.000Z
2021-03-03T14:05:16.000Z
backupCynanBot.py
Omnigazer/CynanBotCommon
9055a63ffcc5bfb2f95f6934f8fd981088a11d9b
[ "Unlicense" ]
3
2021-02-27T16:54:55.000Z
2021-05-06T14:12:32.000Z
import os import shutil import sys from shutil import SameFileError def find_files(src): relevant_files = [] for root, dirs, files in os.walk(src): relevant_files.extend(os.path.join(root, f) for f in files if f.endswith(".json") or f.endswith(".sqlite")) return relevant_files def copy_files(dest, file_list): for file in file_list: dir = os.path.join(dest, os.path.dirname(file)) os.makedirs(dir, exist_ok = True) try: shutil.copy2(file, dir) except SameFileError as e: print(f'Encountered crazy copy error with file \"{file}\" in dir \"{dir}\"') def main(): args = sys.argv[1:] if not args: print("./backupCynanBot.py <src> <dest>") sys.exit(1) file_list = find_files(args[0]) copy_files(args[1], file_list) if __name__ == '__main__': main()
24.810811
89
0.592593
d1fe94ffbd0404de860e527cb144606693004b52
834
py
Python
dcmanager/tests/unit/test_dcmanager.py
starlingx-staging/stx-kingbird
9869ad4640e76384fa14f031a59134cd439929a8
[ "Apache-2.0" ]
null
null
null
dcmanager/tests/unit/test_dcmanager.py
starlingx-staging/stx-kingbird
9869ad4640e76384fa14f031a59134cd439929a8
[ "Apache-2.0" ]
null
null
null
dcmanager/tests/unit/test_dcmanager.py
starlingx-staging/stx-kingbird
9869ad4640e76384fa14f031a59134cd439929a8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # Copyright (c) 2017 Wind River Systems, Inc. # """ test_dcmanager ---------------------------------- Tests for `dcmanager` module. """ from dcmanager.tests import base class TestDCManager(base.DCManagerTestCase): def test_something(self): pass
26.903226
75
0.705036