hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
โŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
โŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
โŒ€
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
โŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
โŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
โŒ€
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
โŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
โŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
โŒ€
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
1914ea214453a028d5c02ba5c0227b60cbbf920c
1,432
py
Python
Scripts4Orthofinder/renaming_cds_headers_TA.py
macmanes-lab/GeosmithiaComparativeGenomics
61dfa4d50dece25e9420d8b4cf2a7343489056fd
[ "CC0-1.0" ]
1
2017-07-10T16:49:45.000Z
2017-07-10T16:49:45.000Z
Scripts4Orthofinder/renaming_cds_headers_TA.py
yuzhenpeng/GeosmithiaComparativeGenomics
61dfa4d50dece25e9420d8b4cf2a7343489056fd
[ "CC0-1.0" ]
1
2018-09-30T00:17:31.000Z
2018-09-30T00:17:31.000Z
Scripts4Orthofinder/renaming_cds_headers_TA.py
yuzhenpeng/GeosmithiaComparativeGenomics
61dfa4d50dece25e9420d8b4cf2a7343489056fd
[ "CC0-1.0" ]
3
2016-01-23T13:18:37.000Z
2021-06-17T13:48:59.000Z
#!/usr/bin/python3 # A program for renaming fasta headers # USAGE: ./renaming_headers_TA.py --input path_to_input_directory # Author: Taruna Aggarwal # Affiliation: University of New Hampshire, Durham, NH, USA # Date: 1/27/2016 # Purpose is to replace headers with their corresponding file names # and add consecutive numbers to the new headers # This script assumes there is a 1:1 relationship between your cds and pep files # and that your cds files are named in a specific manner - SpeciesInitial_genusName.cds and an example is F_solani.cds # The script will generate new files in the same directory as itself. import argparse import os parser = argparse.ArgumentParser(description="This script renames files and their headers in a directory.") parser.add_argument('--input', help="PATH to the directory with input files.", required=True) args = parser.parse_args() for file in os.listdir(args.input): if file.endswith(".cds"): working_file = open(args.input + '/' + file, "r") new_file = open(file[:-4] + "_renamed.cds", "w") print("Renaming {0}".format(file)) counter = 1 for currentLine in working_file: currentLine = currentLine.rstrip() if currentLine.startswith(">"): new_file.write("{0}_{1}\n".format((file[:-4]), counter)) counter += 1 else: new_file.write("{0}\n".format(currentLine))
39.777778
118
0.683659
567af8aebcf404e04e9d6d97ba0de7fbb63a13db
2,292
py
Python
google/cloud/aiplatform/v1/schema/predict/instance_v1/types/video_classification.py
sakagarwal/python-aiplatform
62b4a1ea589235910c6e87f027899a29bf1bacb1
[ "Apache-2.0" ]
1
2022-03-30T05:23:29.000Z
2022-03-30T05:23:29.000Z
google/cloud/aiplatform/v1/schema/predict/instance_v1/types/video_classification.py
sakagarwal/python-aiplatform
62b4a1ea589235910c6e87f027899a29bf1bacb1
[ "Apache-2.0" ]
null
null
null
google/cloud/aiplatform/v1/schema/predict/instance_v1/types/video_classification.py
sakagarwal/python-aiplatform
62b4a1ea589235910c6e87f027899a29bf1bacb1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.aiplatform.v1.schema.predict.instance", manifest={"VideoClassificationPredictionInstance",}, ) class VideoClassificationPredictionInstance(proto.Message): r"""Prediction input format for Video Classification. Attributes: content (str): The Google Cloud Storage location of the video on which to perform the prediction. mime_type (str): The MIME type of the content of the video. Only the following are supported: video/mp4 video/avi video/quicktime time_segment_start (str): The beginning, inclusive, of the video's time segment on which to perform the prediction. Expressed as a number of seconds as measured from the start of the video, with "s" appended at the end. Fractions are allowed, up to a microsecond precision. time_segment_end (str): The end, exclusive, of the video's time segment on which to perform the prediction. Expressed as a number of seconds as measured from the start of the video, with "s" appended at the end. Fractions are allowed, up to a microsecond precision, and "inf" or "Infinity" is allowed, which means the end of the video. """ content = proto.Field(proto.STRING, number=1,) mime_type = proto.Field(proto.STRING, number=2,) time_segment_start = proto.Field(proto.STRING, number=3,) time_segment_end = proto.Field(proto.STRING, number=4,) __all__ = tuple(sorted(__protobuf__.manifest))
38.2
74
0.67801
d796592a9dbc404e04f2ab4cdfe7c60bb100e5ad
202
py
Python
GeneratorInterface/GenFilters/python/BCToEFilter_cfi.py
menglu21/cmssw
c3d6cb102c0aaddf652805743370c28044d53da6
[ "Apache-2.0" ]
null
null
null
GeneratorInterface/GenFilters/python/BCToEFilter_cfi.py
menglu21/cmssw
c3d6cb102c0aaddf652805743370c28044d53da6
[ "Apache-2.0" ]
null
null
null
GeneratorInterface/GenFilters/python/BCToEFilter_cfi.py
menglu21/cmssw
c3d6cb102c0aaddf652805743370c28044d53da6
[ "Apache-2.0" ]
null
null
null
import FWCore.ParameterSet.Config as cms bctoefilter = cms.EDFilter("BCToEFilter", filterAlgoPSet = cms.PSet( maxAbsEta = cms.double(3.05), eTThreshold = cms.double(10.0) ) )
18.363636
41
0.658416
a68806eef7261d87a879fa40b52c88f47973860b
2,034
py
Python
Day 8/PROJECT: Caesar Cipher.py
Nishi-16-K/100DaysCodeChallenge-Python-
96df953bbc60c2bf8802cf31ed6c593469521482
[ "MIT" ]
1
2021-08-29T12:44:23.000Z
2021-08-29T12:44:23.000Z
Day 8/PROJECT: Caesar Cipher.py
Nishi-16-K/100DaysofCodeChallenge-Python
96df953bbc60c2bf8802cf31ed6c593469521482
[ "MIT" ]
null
null
null
Day 8/PROJECT: Caesar Cipher.py
Nishi-16-K/100DaysofCodeChallenge-Python
96df953bbc60c2bf8802cf31ed6c593469521482
[ "MIT" ]
null
null
null
import math alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] def caesar(t_text, shift_amount, direct): l_text = "" if direct == "decode": shift_amount *= -1 for i in l_text: if i in alphabet: position = alphabet.index(i) new_position = position + shift_amount l_text += alphabet[new_position] else: l_text = l_text+i print(f"\nThe {direct}d result: {l_text}") logo = """ ,adPPYba, ,adPPYYba, ,adPPYba, ,adPPYba, ,adPPYYba, 8b,dPPYba, a8" "" "" `Y8 a8P_____88 I8[ "" "" `Y8 88P' "Y8 8b ,adPPPPP88 8PP""""""" `"Y8ba, ,adPPPPP88 88 "8a, ,aa 88, ,88 "8b, ,aa aa ]8I 88, ,88 88 `"Ybbd8"' `"8bbdP"Y8 `"Ybbd8"' `"YbbdP"' `"8bbdP"Y8 88 88 88 "" 88 88 ,adPPYba, 88 8b,dPPYba, 88,dPPYba, ,adPPYba, 8b,dPPYba, a8" "" 88 88P' "8a 88P' "8a a8P_____88 88P' "Y8 8b 88 88 d8 88 88 8PP""""""" 88 "8a, ,aa 88 88b, ,a8" 88 88 "8b, ,aa 88 `"Ybbd8"' 88 88`YbbdP"' 88 88 `"Ybbd8"' 88 88 88 """ print(logo) s_continue = True while s_continue: direction = input("Type 'encode' to encrypt, type 'decode' to decrypt: ") text = input("\nType your message: ").lower() shift = int(input("\nType the shift number: ")) shift = shift % 26 caesar(t_text=text, shift_amount=shift, direct=direction) result = input("Type 'yes' if you want to go again. Otherwise type 'no'") if result == "no": s_continue = False print("Bye. See You")
42.375
271
0.436087
37407c8b813d73c81e4cc168f0458556bc2b2f9e
1,224
py
Python
testapp/testapp/urls.py
shizus/django-afip
ee2f13923eea1c341d58fe1cd45c8a5736242e22
[ "ISC" ]
1
2019-10-23T02:59:16.000Z
2019-10-23T02:59:16.000Z
testapp/testapp/urls.py
shizus/django-afip
ee2f13923eea1c341d58fe1cd45c8a5736242e22
[ "ISC" ]
null
null
null
testapp/testapp/urls.py
shizus/django-afip
ee2f13923eea1c341d58fe1cd45c8a5736242e22
[ "ISC" ]
null
null
null
"""testapp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf import settings from django.conf.urls import url from django.contrib import admin from django.views.static import serve from django_afip import views urlpatterns = [ url(r'^admin/', admin.site.urls), url( r'^invoices/pdf/(?P<pk>\d+)$', views.ReceiptPDFView.as_view(), name='receipt_displaypdf_view', ), url( r'^invoices/pdf/(?P<pk>\d+)$', views.ReceiptPDFDownloadView.as_view(), name='receipt_pdf_view', ), url( r'^media/(?P<path>.*)$', serve, {'document_root': settings.MEDIA_ROOT}, ), ]
29.853659
77
0.654412
b8596f10d86a62b0ed3bd16adff1b50b04b21849
254
py
Python
nc/lookups.py
OpenDataPolicingNC/Traffic-Stops
74e0d16ad2ac32addca6f04d34c2ddf36d023990
[ "MIT" ]
25
2015-09-12T23:10:52.000Z
2021-03-24T08:39:46.000Z
nc/lookups.py
OpenDataPolicingNC/Traffic-Stops
74e0d16ad2ac32addca6f04d34c2ddf36d023990
[ "MIT" ]
159
2015-07-01T03:57:23.000Z
2021-04-17T21:09:19.000Z
nc/lookups.py
copelco/NC-Traffic-Stops
74e0d16ad2ac32addca6f04d34c2ddf36d023990
[ "MIT" ]
8
2015-10-02T16:56:40.000Z
2020-10-18T01:16:29.000Z
from selectable.base import ModelLookup from selectable.registry import registry from nc.models import Agency class AgencyLookup(ModelLookup): model = Agency search_fields = ( 'name__icontains', ) registry.register(AgencyLookup)
16.933333
40
0.748031
fa15c47ab1862a3b40dba9fc0294479fb7df7e8e
3,977
py
Python
awx/main/utils/ansible.py
Avinesh/awx
6310a2edd890d6062a9f6bcdeb2b46c4b876c2bf
[ "Apache-2.0" ]
1
2019-10-22T09:55:28.000Z
2019-10-22T09:55:28.000Z
awx/main/utils/ansible.py
Avinesh/awx
6310a2edd890d6062a9f6bcdeb2b46c4b876c2bf
[ "Apache-2.0" ]
2
2021-01-06T09:40:57.000Z
2022-03-02T09:54:55.000Z
awx/main/utils/ansible.py
Avinesh/awx
6310a2edd890d6062a9f6bcdeb2b46c4b876c2bf
[ "Apache-2.0" ]
1
2020-01-28T05:34:09.000Z
2020-01-28T05:34:09.000Z
# Copyright (c) 2017 Ansible by Red Hat # All Rights Reserved. # Python import codecs import re import os import logging from itertools import islice from configparser import ConfigParser # Django from django.utils.encoding import smart_str logger = logging.getLogger('awx.main.utils.ansible') __all__ = ['skip_directory', 'could_be_playbook', 'could_be_inventory'] valid_playbook_re = re.compile(r'^\s*?-?\s*?(?:hosts|include|import_playbook):\s*?.*?$') valid_inventory_re = re.compile(r'^[a-zA-Z0-9_.=\[\]]') def skip_directory(relative_directory_path): path_elements = relative_directory_path.split(os.sep) # Exclude files in a roles subdirectory. if 'roles' in path_elements: return True # Filter files in a tasks subdirectory. if 'tasks' in path_elements: return True for element in path_elements: # Do not include dot files or dirs if element.startswith('.'): return True # Exclude anything inside of group or host vars directories if 'group_vars' in path_elements or 'host_vars' in path_elements: return True return False def could_be_playbook(project_path, dir_path, filename): if os.path.splitext(filename)[-1] not in ['.yml', '.yaml']: return None playbook_path = os.path.join(dir_path, filename) # Filter files that do not have either hosts or top-level # includes. Use regex to allow files with invalid YAML to # show up. matched = False try: for n, line in enumerate(codecs.open( playbook_path, 'r', encoding='utf-8', errors='ignore' )): if valid_playbook_re.match(line): matched = True break # Any YAML file can also be encrypted with vault; # allow these to be used as the main playbook. elif n == 0 and line.startswith('$ANSIBLE_VAULT;'): matched = True break except IOError: return None if not matched: return None return os.path.relpath(playbook_path, smart_str(project_path)) def could_be_inventory(project_path, dir_path, filename): # Decisions based exclusively on filename inventory_path = os.path.join(dir_path, filename) inventory_rel_path = os.path.relpath(inventory_path, smart_str(project_path)) suspected_ext = os.path.splitext(filename)[-1] if filename in ['inventory', 'hosts']: # Users commonly name their inventory files these names return inventory_rel_path elif suspected_ext == '.ini' or os.access(inventory_path, os.X_OK): # Files with any of these extensions are always included return inventory_rel_path elif '.' in suspected_ext: # If not using those extensions, inventory must have _no_ extension return None # Filter files that do not use a character set consistent with # Ansible inventory mainly try: # only read through first 10 lines for performance with codecs.open( inventory_path, 'r', encoding='utf-8', errors='ignore' ) as inv_file: for line in islice(inv_file, 10): if not valid_inventory_re.match(line): return None except IOError: return None return inventory_rel_path def read_ansible_config(project_path, variables_of_interest): fnames = ['/etc/ansible/ansible.cfg'] if project_path: fnames.insert(0, os.path.join(project_path, 'ansible.cfg')) values = {} try: parser = ConfigParser() parser.read(fnames) if 'defaults' in parser: for var in variables_of_interest: if var in parser['defaults']: values[var] = parser['defaults'][var] except Exception: logger.exception('Failed to read ansible configuration(s) {}'.format(fnames)) return values
32.867769
88
0.644456
e99066c8cdf1ab45bfaa4446e1a2efe4691be8dc
651
py
Python
LeetCode/0110_balanced_binary_tree.py
LenartBucar/PythonAlgorithms
7256a9e3bb71d37614c8cfa7bbb6d011ac456ae3
[ "MIT" ]
144
2020-09-13T22:54:57.000Z
2022-02-24T21:54:25.000Z
LeetCode/0110_balanced_binary_tree.py
theGreenJedi/PythonAlgorithms
72e0608ba0ce41229653e75f0b03ea212be8f88e
[ "MIT" ]
587
2020-05-06T18:55:07.000Z
2021-09-20T13:14:53.000Z
LeetCode/0110_balanced_binary_tree.py
theGreenJedi/PythonAlgorithms
72e0608ba0ce41229653e75f0b03ea212be8f88e
[ "MIT" ]
523
2020-09-09T12:07:13.000Z
2022-02-24T21:54:31.000Z
#class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): # @param root, a tree node # @return a boolean def isBalanced(self, root): def getHeight(root): if root is None: return 0 left_height, right_height = \ getHeight(root.left), getHeight(root.right) if left_height < 0 or right_height < 0 or \ abs(left_height - right_height) > 1: return -1 return max(left_height, right_height) + 1 return (getHeight(root) >= 0)
31
59
0.539171
4522c801b6279c5cbd8d964ac5ffdc93112e6513
1,074
py
Python
10/adapter_array.py
tsalgie/advent_of_code_2020
b944a9f04cf7cf24ca74edfa6f1e713b9bae1f11
[ "MIT" ]
null
null
null
10/adapter_array.py
tsalgie/advent_of_code_2020
b944a9f04cf7cf24ca74edfa6f1e713b9bae1f11
[ "MIT" ]
null
null
null
10/adapter_array.py
tsalgie/advent_of_code_2020
b944a9f04cf7cf24ca74edfa6f1e713b9bae1f11
[ "MIT" ]
null
null
null
def adapter_array_01(jolts): differences = [0, 0, 1] for i in range(len(jolts) - 1): differences[jolts[i + 1] - jolts[i] - 1] += 1 return differences[0] * differences[2] def adapter_array_02(jolts): groups = [True if jolts[i + 2] - jolts[i] <= 3 else False for i in range(len(jolts) - 2)] group_counts = [0] for g in groups: if g: group_counts[-1] += 1 else: group_counts += [0] if group_counts[-1] != 0 else [] mult = lambda l : l[0] * mult(l[1:]) if len(l) > 1 else l[0] valid_subchains = lambda length : len(["{0:b}".format(i) for i in range(pow(2, length)) if '111' not in "{0:b}".format(i)]) return mult(list(map(valid_subchains, group_counts))) if __name__ == "__main__": with open('input.txt') as f: contents = sorted([int(l.strip()) for l in f.readlines()]) with open('output.txt', 'w') as f: f.write("Part one: {}\n".format(adapter_array_01([0] + contents))) f.write("Part two: {}\n".format(adapter_array_02([0] + contents + [contents[-1] + 3])))
42.96
127
0.581006
b9f4a8d1f9f372c6b78fc54736d833b63d573a58
4,087
py
Python
tests/metadata/test_roundtrips.py
zeburek/cattrs
c1aea4cf3a74cc42c90bf4e8a1e79390a323d774
[ "MIT" ]
3
2019-12-13T23:54:38.000Z
2021-06-08T18:29:51.000Z
tests/metadata/test_roundtrips.py
zeburek/cattrs
c1aea4cf3a74cc42c90bf4e8a1e79390a323d774
[ "MIT" ]
null
null
null
tests/metadata/test_roundtrips.py
zeburek/cattrs
c1aea4cf3a74cc42c90bf4e8a1e79390a323d774
[ "MIT" ]
null
null
null
"""Test both structuring and unstructuring.""" from dataclasses import MISSING, dataclass, fields, make_dataclass from typing import Optional, Union import pytest from hypothesis import assume, given from hypothesis.strategies import sampled_from from convclasses import Converter, UnstructureStrategy, mod from . import nested_typed_classes, simple_typed_attrs, simple_typed_classes unstructure_strats = sampled_from(list(UnstructureStrategy)) @given(simple_typed_classes(), unstructure_strats) def test_simple_roundtrip(cls_and_vals, strat): """ Simple classes with metadata can be unstructured and restructured. """ converter = Converter(unstruct_strat=strat) cl, vals = cls_and_vals inst = cl(*vals) assert inst == converter.structure(converter.unstructure(inst), cl) @given(simple_typed_attrs(defaults=True), unstructure_strats) def test_simple_roundtrip_defaults(cls_and_vals, strat): """ Simple classes with metadata can be unstructured and restructured. """ a, _ = cls_and_vals cl = make_dataclass("HypClass", [("a", a.type, a)]) converter = Converter(unstruct_strat=strat) inst = cl() assert inst == converter.structure(converter.unstructure(inst), cl) @given(simple_typed_classes()) def test_simple_name_modifiers(cls_and_vals): """ Simple classes with metadata can be unstructured and restructured. """ a, vals = cls_and_vals converter = Converter() if len(fields(a)) > 0: fld = mod.name("t-t", fields(a)[0]) cl = make_dataclass("HypClass", [("t_t", fld.type, fld)]) inst = cl(vals[0]) assert converter.unstructure(inst).get("t-t", MISSING) is not MISSING else: cl = make_dataclass("HypClass", []) inst = cl() assert inst == converter.structure(converter.unstructure(inst), cl) @given(nested_typed_classes, unstructure_strats) def test_nested_roundtrip(cls_and_vals, strat): """ Nested classes with metadata can be unstructured and restructured. """ converter = Converter(unstruct_strat=strat) cl, vals = cls_and_vals # Vals are a tuple, convert into a dictionary. inst = cl(*vals) assert inst == converter.structure(converter.unstructure(inst), cl) @given( simple_typed_classes(defaults=False), simple_typed_classes(defaults=False), unstructure_strats, ) def test_union_field_roundtrip(cl_and_vals_a, cl_and_vals_b, strat): """ Classes with union fields can be unstructured and structured. """ converter = Converter(unstruct_strat=strat) cl_a, vals_a = cl_and_vals_a cl_b, vals_b = cl_and_vals_b a_field_names = {a.name for a in fields(cl_a)} b_field_names = {a.name for a in fields(cl_b)} assume(a_field_names) assume(b_field_names) common_names = a_field_names & b_field_names assume(len(a_field_names) > len(common_names)) @dataclass class C(object): a: Union[cl_a, cl_b] inst = C(a=cl_a(*vals_a)) if strat is UnstructureStrategy.AS_DICT: assert inst == converter.structure(converter.unstructure(inst), C) else: # Our disambiguation functions only support dictionaries for now. with pytest.raises(ValueError): converter.structure(converter.unstructure(inst), C) def handler(obj, _): return converter.structure(obj, cl_a) converter._union_registry[Union[cl_a, cl_b]] = handler assert inst == converter.structure(converter.unstructure(inst), C) del converter._union_registry[Union[cl_a, cl_b]] @given(simple_typed_classes(defaults=False)) def test_optional_field_roundtrip(cl_and_vals): """ Classes with optional fields can be unstructured and structured. """ converter = Converter() cl, vals = cl_and_vals @dataclass class C(object): a: Optional[cl] inst = C(a=cl(*vals)) assert inst == converter.structure(converter.unstructure(inst), C) inst = C(a=None) unstructured = converter.unstructure(inst) assert inst == converter.structure(unstructured, C)
31.682171
77
0.706141
a00081a94558434b1dfea5311fb70543790c62b3
6,094
py
Python
advection-1d/run_sampling.py
themisbo/Rule-based-Bayesian-regr
9dc3e896e67117a43580f0a58199d3b8203f6f9d
[ "Apache-2.0" ]
null
null
null
advection-1d/run_sampling.py
themisbo/Rule-based-Bayesian-regr
9dc3e896e67117a43580f0a58199d3b8203f6f9d
[ "Apache-2.0" ]
null
null
null
advection-1d/run_sampling.py
themisbo/Rule-based-Bayesian-regr
9dc3e896e67117a43580f0a58199d3b8203f6f9d
[ "Apache-2.0" ]
1
2022-02-11T14:20:12.000Z
2022-02-11T14:20:12.000Z
#!/usr/bin/env python from cycler import cycler import matplotlib.pyplot as plt import numpy as np import pymc3 as pm import scipy as sp import theano from simulator import run plt.style.use("ggplot") np.random.seed(1000005) scale = 0.002 y_true, x = run(amplitude=0.001, phi=np.pi) y_true = y_true * 10 shape = y_true.shape times = shape[0] noise = np.random.normal(scale=scale, size=shape) y = y_true + noise y_flat = y.flatten() N_KNOT = 10 knots = np.linspace(0, 2 * np.pi, N_KNOT) N_MODEL_KNOTS = 5 * N_KNOT basis_funcs = sp.interpolate.BSpline(knots, np.eye(N_MODEL_KNOTS), k=3) colors = ["red", "green", "blue"] fig = plt.figure(figsize=(7.5, 5)) ax = fig.gca() for i in range(times): plt.plot( x, y_true[i, :], color=colors[i], label="Exact solution for t=" + str(i + 1) ) plt.plot(x, y[i, :], "o", color=colors[i], label="Data for t=" + str(i + 1)) plt.axvline(x=np.pi, linestyle="--") ax.set_ylabel("u") ax.set_xlabel("x") ax.legend() # plt.savefig("plots/advection_1d_data.png") class BasisFunc: def __init__(self): """ Initialize the class """ self.Bx = None self.Bx_ = None def create_basis(self, x): """ Create the basis object """ Bx = basis_funcs(x) Bx_ = theano.shared(Bx) self.Bx = Bx self.Bx_ = Bx_ class RuleBasisFunc(BasisFunc): def __init__(self): """ Initialize the class """ super().__init__() self.discr = None def create_discr(self, no_points, min, max): """ Create discretization """ self.discr = np.linspace(min, max, no_points) no_points = 25 xlow = 0 xmid = np.pi xhi = 2 * np.pi data_base = BasisFunc() data_base.create_basis(x) rule_first = RuleBasisFunc() rule_first.create_discr(no_points, xlow, xmid) rule_first.create_basis(rule_first.discr) rule_second = RuleBasisFunc() rule_second.create_discr(no_points, xmid, xhi) rule_second.create_basis(rule_second.discr) rule_third = RuleBasisFunc() rule_third.create_discr(2, xlow, xhi) rule_third.create_basis(rule_third.discr) def logp_rule(a0, ฯƒ_a, ฮ”_a): """ Construct the rule penalty """ a = a0 + (ฯƒ_a * ฮ”_a).cumsum(axis=0) points_r1 = rule_first.Bx_.dot(a).T.flatten() points_r2 = rule_second.Bx_.dot(a).T.flatten() points_r3 = rule_third.Bx_.dot(a).T.flatten() rule_log_lik = 0 for i in range(no_points): rule_log_lik = rule_log_lik + pm.math.switch(pm.math.lt(points_r1[i], 0), 1, 0) rule_log_lik = rule_log_lik + pm.math.switch(pm.math.gt(points_r2[i], 0), 1, 0) rule_log_lik = rule_log_lik + pm.math.switch( pm.math.gt(pm.math.abs_(points_r3[0] - points_r3[1]), 0.001), 1, 0 ) rule_log_lik = rule_log_lik + pm.math.switch( pm.math.gt(pm.math.abs_(points_r3[2] - points_r3[3]), 0.001), 1, 0 ) rule_log_lik = rule_log_lik + pm.math.switch( pm.math.gt(pm.math.abs_(points_r3[4] - points_r3[5]), 0.001), 1, 0 ) for num in range(times - 1): rule_log_lik = rule_log_lik + pm.math.switch( pm.math.lt( points_r1[i + (num + 1) * no_points], points_r1[i + num * no_points] ), 1, 0, ) rule_log_lik = rule_log_lik + pm.math.switch( pm.math.gt( points_r2[i + (num + 1) * no_points], points_r2[i + num * no_points] ), 1, 0, ) rule_ratio = rule_log_lik / ((times + 3) * no_points) return pm.Beta.dist(alpha=1.0, beta=100.0).logp(rule_ratio) use_rule = True with pm.Model() as model: ฯƒ_a = pm.HalfCauchy("ฯƒ_a", 0.1, shape=times) a0 = pm.Normal("a0", 0.0, 0.1, shape=times) ฮ”_a = pm.Normal("ฮ”_a", 0.0, 5.0, shape=(N_MODEL_KNOTS, times)) a = pm.Deterministic("a", a0 + (ฯƒ_a * ฮ”_a).cumsum(axis=0)) res = data_base.Bx_.dot(a) res_fl = res.T.flatten() obs = pm.Normal("obs", res_fl, scale, observed=y_flat) if use_rule: LL_rule = pm.Potential("LL_rule", logp_rule(a0, ฯƒ_a, ฮ”_a)) with model: trace = pm.sample_smc(draws=10000) plt.rc("axes", prop_cycle=cycler("color", ["r", "g", "b"])) thin = 10 fig = plt.figure(figsize=(7.5, 5)) ax = fig.gca() for j in range(trace["a"].shape[2]): a = trace["a"][0 * thin, :, j] yvals = data_base.Bx.dot(a) plt.plot(x, yvals, label="Posterior curves for t=" + str(j + 1)) for iter in range(int(trace["a"].shape[0] / thin)): for j in range(trace["a"].shape[2]): a = trace["a"][iter * thin, :, j] yvals = data_base.Bx.dot(a) plt.plot(x, yvals, alpha=0.1) for j in range(times): plt.scatter(x, y[j, :], label="Data for t=" + str(j + 1)) plt.plot(x, y_true[j, :], color="k") plt.plot(x, y_true[j, :], color="k", label="Exact solutions") if use_rule: plt.axvline(x=np.pi, linestyle="--") ax.set_ylabel("u") ax.set_xlabel("x") ax.legend() plt.savefig("plots/advection_1d_posterior" + "_rule" * use_rule + ".png") import pickle pickle.dump(trace["a"], open("rule_spline", "wb")) trace = pickle.load(open("rule_spline", "rb")) mean_post = np.mean(trace["a"], axis=0) mean_post = np.mean(trace, axis=0) for j in range(mean_post.shape[1]): a = mean_post[:, j] yvals = data_base.Bx.dot(a) plt.plot(x, yvals, label="Posterior curves for t=" + str(j + 1)) # y_pred = [] # for j in range(mean_post.shape[1]): # a = mean_post[:, j] # yvals = data_base.Bx.dot(a) # y_pred.append(yvals) # y_pred = np.array(y_pred) res = data_base.Bx.dot(mean_post) res_fl = res.T.flatten() from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import explained_variance_score from sklearn.metrics import r2_score mean_squared_error(res_fl, y_flat) mean_absolute_error(res_fl, y_flat) explained_variance_score(res_fl, y_flat) r2_score(res_fl, y_flat) norule_waic = pm.waic(trace, model) norule_loo = pm.loo(trace, model)
26.611354
88
0.615852
9afb106a80ff4e3c67efda3159e90bd69eee442e
202
py
Python
addons/google_account/__init__.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/google_account/__init__.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/google_account/__init__.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from . import models from . import controllers from .models.google_service import TIMEOUT # noqa
25.25
74
0.727723
cffcd5ae6ca68f4643d868d6a6a7f0652ae5b102
8,022
py
Python
cw/simulation/gym_wrapper.py
aarondewindt/cw
6be9770da0f0fc34ea47d7ab83e6929c4823e98a
[ "MIT" ]
1
2021-10-06T07:20:43.000Z
2021-10-06T07:20:43.000Z
cw/simulation/gym_wrapper.py
aarondewindt/cw
6be9770da0f0fc34ea47d7ab83e6929c4823e98a
[ "MIT" ]
3
2019-02-18T13:49:39.000Z
2020-12-28T04:13:27.000Z
cw/simulation/gym_wrapper.py
aarondewindt/cw
6be9770da0f0fc34ea47d7ab83e6929c4823e98a
[ "MIT" ]
null
null
null
from typing import Tuple, Any, Union from abc import ABC, abstractmethod from threading import Thread, RLock, Condition from enum import Flag, auto from concurrent.futures import Future import gym import xarray as xr from gym import spaces from tqdm.auto import trange from tqdm import tqdm from cw.simulation.module_base import ModuleBase from cw.simulation.logging import BatchLogger from cw.synchronization import BinarySemaphore class ResetState(Flag): no_reset = auto() reset = auto() running = auto() first_step = auto() no_reset_running = no_reset | running no_reset_first_step = no_reset | first_step reset_ending_episode = reset | running reset_first_step = reset | first_step class GymEnvironment(ModuleBase, gym.Env): metadata = {'render.modes': []} def __init__(self, required_states=None, target_time_step=None): super().__init__( is_discreet=True, target_time_step=target_time_step, required_states=required_states, ) self.simulation_thread: Union[Thread, None] = None self.environment_semaphore: Union[BinarySemaphore, None] = None self.agent_semaphore: Union[BinarySemaphore, None] = None self.reset_semaphore: Union[BinarySemaphore, None] = None self.last_results: Union[xr.Dataset, Any, None] = None self.last_batch_results: Union[xr.Dataset, None] = None self.simulation_result_futures = [] self.simulation_result_futures_lock = RLock() self.is_done_lock = RLock() self.step_lock = RLock() self.thread_running = False self.reset_state = ResetState.no_reset_first_step self.is_done = False def initialize(self, simulation): super().initialize(simulation) def simulation_thread_target(self, n_steps) -> None: """ Thread target running simulantion batch. :param n_steps: Number of steps per episode. """ # Set a batch logger on the simulation. batch_logger = BatchLogger() batch_logger.initialize(self.simulation) original_logger = self.simulation.logging self.simulation.logging = batch_logger # Set reset state to not resetting, and processing the first step. self.reset_state = ResetState.no_reset_first_step try: while True: # Break the loop if the thread is not supposed to be running anymore. if not self.thread_running: break # Restore the initial simulation states at the start of each episode. self.simulation.restore_states() # Run simulation self.last_results = self.simulation.run(n_steps) with self.simulation_result_futures_lock: for future in self.simulation_result_futures: if not future.done(): future.set_result(self.last_results) self.simulation_result_futures = [] # If resetting we need to run the first iteration up the agent and # let the reset function return an observation of the first step. if self.reset_state & ResetState.reset: # Set reset state to resetting and first iteration. self.reset_state = ResetState.reset_first_step else: # Set reset state to not resetting and first step. self.reset_state = ResetState.no_reset_first_step except KeyboardInterrupt: self.thread_running = False finally: self.environment_semaphore = None self.agent_semaphore = None self.reset_semaphore = None self.simulation_thread = None self.thread_running = False self.last_batch_results = batch_logger.finish_batch() self.simulation.logging = original_logger def start_simulation_thread(self, n_steps): # Don't start simulation thread if it's already running. if self.simulation_thread is None: self.simulation.stash_states() # Initialize binary Semaphores to False to they are blocked by default. self.environment_semaphore = BinarySemaphore(False) self.agent_semaphore = BinarySemaphore(False) self.reset_semaphore = BinarySemaphore(False) # Create and start thread. self.simulation_thread = Thread(target=self.simulation_thread_target, daemon=True, args=(n_steps,)) self.thread_running = True self.simulation_thread.start() else: print("Simulation thread already running") def end_simulation_thread(self): if self.simulation_thread is not None: self.thread_running = False self.simulation.stop() def run_step(self, is_last): if self.reset_state == ResetState.reset_ending_episode: return with self.is_done_lock: self.is_done = is_last # Run the environment step function. self.environment_step(is_last) self.agent_semaphore.release() # Release the reset function if this is the first step # after a reset. if self.reset_state == ResetState.reset_first_step: self.reset_semaphore.release() self.environment_semaphore.acquire() def run_end(self): pass def environment_step(self, is_last): pass def step(self, action: Any) -> Tuple[Any, float, bool, dict]: if self.reset_state & ResetState.first_step: # We are running the first step, so change the reset state. # And make sure we block on the agent_semaphore later on. self.reset_state = ResetState.no_reset_running self.agent_semaphore.acquire(False) # Make sure we are running a simulation batch. if self.simulation_thread is None: raise Exception("Simulation thread not running.") # Perform action. self.act(action) # Release the simulation. self.environment_semaphore.release() # Lock until the simulation has run the iteration. self.agent_semaphore.acquire() with self.is_done_lock: # Observe environment. observation, reward, info = self.observe(self.is_done) if self.is_done: self.environment_semaphore.release() return observation, reward, self.is_done, info @abstractmethod def act(self, action: Any): pass @abstractmethod def observe(self, done: bool) -> Tuple[Any, float, dict]: pass def reset(self): if self.reset_state == ResetState.no_reset_first_step: # No actions have been taken yet on the current episode # so there is no need to reset it. Just return the current # observation. observation = self.observe(self.is_done)[0] return observation # Set the state to reset and still running (aka, ending episode) # Stop simulation # Release the environment semaphore to let the simulation finish. self.reset_state = ResetState.reset_ending_episode self.simulation.stop() self.environment_semaphore.release() # Wait for the new episode to start. self.reset_semaphore.acquire() # Return observation. observation = self.observe(self.is_done)[0] return observation def render(self, mode='human'): pass def close(self): pass def seed(self, seed=None): pass def create_result_future(self): future = Future() with self.simulation_result_futures_lock: self.simulation_result_futures.append(future) return future
33.848101
85
0.633009
1d9d11a4ccd8aa8bd286678bd9dea643b128a408
5,541
py
Python
otp/nametag/Nametag.py
CrankySupertoon01/Toontown-2
60893d104528a8e7eb4aced5d0015f22e203466d
[ "MIT" ]
1
2021-02-13T22:40:50.000Z
2021-02-13T22:40:50.000Z
otp/nametag/Nametag.py
CrankySupertoonArchive/Toontown-2
60893d104528a8e7eb4aced5d0015f22e203466d
[ "MIT" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
otp/nametag/Nametag.py
CrankySupertoonArchive/Toontown-2
60893d104528a8e7eb4aced5d0015f22e203466d
[ "MIT" ]
2
2019-12-02T01:39:10.000Z
2021-02-13T22:41:00.000Z
from NametagConstants import * import NametagGlobals from otp.margins.ClickablePopup import ClickablePopup from otp.otpbase import OTPGlobals from pandac.PandaModules import * from direct.interval.IntervalGlobal import * class Nametag(ClickablePopup): CName = 1 CSpeech = 2 CThought = 4 NAME_PADDING = 0.2 CHAT_ALPHA = 1.0 DEFAULT_CHAT_WORDWRAP = 10.0 IS_3D = False # 3D variants will set this to True. def __init__(self): if self.IS_3D: ClickablePopup.__init__(self, NametagGlobals.camera) else: ClickablePopup.__init__(self) self.contents = 0 # To be set by subclass. self.innerNP = NodePath.anyPath(self).attachNewNode('nametag_contents') self.wordWrap = 7.5 self.chatWordWrap = None self.font = None self.speechFont = None self.name = '' self.displayName = '' self.qtColor = VBase4(1,1,1,1) self.colorCode = CCNormal self.avatar = None self.icon = NodePath('icon') self.frame = (0, 0, 0, 0) self.nameFg = (0,0,0,1) self.nameBg = (1,1,1,1) self.chatFg = (0,0,0,1) self.chatBg = (1,1,1,1) self.chatString = '' self.chatFlags = 0 def destroy(self): ClickablePopup.destroy(self) def setContents(self, contents): self.contents = contents self.update() def setAvatar(self, avatar): self.avatar = avatar def setChatWordwrap(self, chatWordWrap): self.chatWordWrap = chatWordWrap def tick(self): pass # Does nothing by default. def clickStateChanged(self): self.update(False) def getButton(self): cs = self.getClickState() if self.buttons is None: return None elif cs in self.buttons: return self.buttons[cs] else: return self.buttons.get(0) def update(self, scale=True): if self.colorCode in NAMETAG_COLORS: cc = self.colorCode else: cc = CCNormal self.nameFg, self.nameBg, self.chatFg, self.chatBg = NAMETAG_COLORS[cc][self.getClickState()] self.innerNP.node().removeAllChildren() if self.contents & self.CThought and self.chatFlags & CFThought: balloon = self.showBalloon(self.getThoughtBalloon(), self.chatString) elif self.contents & self.CSpeech and self.chatFlags&CFSpeech: balloon = self.showBalloon(self.getSpeechBalloon(), self.chatString) elif self.contents & self.CName and self.displayName: self.showName() return else: return if scale and self.IS_3D: balloon.setScale(0) scaleLerp = Sequence(Wait(0.10), LerpScaleInterval(balloon, 0.2, VBase3(1, 1, 1), VBase3(0, 0, 0), blendType='easeInOut')) scaleLerp.start() def showBalloon(self, balloon, text): if not self.speechFont: # If no font is set, we can't display anything yet... return color = self.qtColor if (self.chatFlags&CFQuicktalker) else self.chatBg if color[3] > self.CHAT_ALPHA: color = (color[0], color[1], color[2], self.CHAT_ALPHA) reversed = (self.IS_3D and (self.chatFlags&CFReversed)) balloon, frame = balloon.generate(text, self.speechFont, textColor=self.chatFg, balloonColor=color, wordWrap=self.chatWordWrap or \ self.DEFAULT_CHAT_WORDWRAP, button=self.getButton(), reversed=reversed) balloon.reparentTo(self.innerNP) self.frame = frame return balloon def showName(self): if not self.font: # If no font is set, we can't actually display a name yet... return # Create text node: self.innerNP.attachNewNode(self.icon) t = self.innerNP.attachNewNode(TextNode('name'), 1) t.node().setFont(self.font) t.node().setAlign(TextNode.ACenter) t.node().setWordwrap(self.wordWrap) t.node().setText(self.displayName) t.node().setTextColor(self.nameFg) t.setTransparency(self.nameFg[3] < 1.0) width, height = t.node().getWidth(), t.node().getHeight() # Put the actual written name a little in front of the nametag and # disable depth write so the text appears nice and clear, free from # z-fighting and bizarre artifacts. The text renders *after* the tag # behind it, due to both being in the transparency bin, # so there's really no problem with doing this. t.setY(-0.05) t.setAttrib(DepthWriteAttrib.make(0)) # Apply panel behind the text: panel = NametagGlobals.nametagCardModel.copyTo(self.innerNP, 0) panel.setPos((t.node().getLeft()+t.node().getRight())/2.0, 0, (t.node().getTop()+t.node().getBottom())/2.0) panel.setScale(width + self.NAME_PADDING, 1, height + self.NAME_PADDING) panel.setColor(self.nameBg) panel.setTransparency(self.nameBg[3] < 1.0) self.frame = (t.node().getLeft()-self.NAME_PADDING/2.0, t.node().getRight()+self.NAME_PADDING/2.0, t.node().getBottom()-self.NAME_PADDING/2.0, t.node().getTop()+self.NAME_PADDING/2.0)
34.416149
134
0.590507
ec7379ebdebe4ffc10d5c05215a99e8b909d4cf0
28,110
py
Python
coordination/formation_communication_demo/control/script/sim_addleader_1.py
robin-shaun/xtdrone
f255d001e2b83e2dd54e8086f881c58a4efd53ee
[ "MIT" ]
null
null
null
coordination/formation_communication_demo/control/script/sim_addleader_1.py
robin-shaun/xtdrone
f255d001e2b83e2dd54e8086f881c58a4efd53ee
[ "MIT" ]
null
null
null
coordination/formation_communication_demo/control/script/sim_addleader_1.py
robin-shaun/xtdrone
f255d001e2b83e2dd54e8086f881c58a4efd53ee
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- """ * This is the version that leader can hover, last modify on 2022.1.27 by Lan Framework for Parallel Simulation * To control all UAV in Gazebo(simulation environment) using MPI Before running this code, you need to launch your simulation Environment and px4 via: $ roslaunch px4 iris3_parallel_simulation.launch # 3 UAVs in simulation $ roslaunch px4 iris10_parallel_simulation.launch # 10 UAVs in simulation And then, you can run this code via: $ mpiexec -n 3 python px4_control_sim_addleader.py # 3 UAVs in simulation $ mpiexec -n 10 python px4_control_sim_addleader.py # 10 UAVs in simulation """ import tf import time import math from pyquaternion import Quaternion from mpi4py import MPI import rospy from mavros_msgs.msg import GlobalPositionTarget, State, PositionTarget from mavros_msgs.srv import CommandBool, CommandTOL, SetMode, SetMavFrame from geometry_msgs.msg import PoseStamped, Twist, TwistStamped from sensor_msgs.msg import Imu, NavSatFix from std_msgs.msg import Float32, Float64, String from control.msg import UAVDataMsg, AllUAVData, NeighborMsg, AllNeighborMsg, CommVerify, UavComm import numpy as np import copy import tf_conversions as tfc comm = MPI.COMM_WORLD uav_id = comm.Get_rank() uav_num_sim = comm.Get_size() uav_num_real = 0 uav_num = uav_num_sim + uav_num_real uav_bias = [[0,0,0],[1.2,-1.2,0],[-1.2,-1.2,0],[1.2,1.2,0],[-1.2,1.2,0],[2.4,-2.4,0],[0,-2.4,0],[-2.4,-2.4,0],[2.4,0,0],[-2.4,0,0],[2.4,2.4,0],[0,2.4,0],[-2.4,2.4,0],[-7,-7,0],[-6,-7,0],[-5,-7,0],[-4,-7,0],[3,6,0],[4,6,0],[5,6,0]] #uav_bias = [[2,-6,0],[-2,-6,0],[2,2,0],[-2,2,0],[4,-6,0],[4,-8,0],[2,-8,0],[3,-7,0],[-4,-6,0],[-4,-8,0],[-2,-8,0],[-3,-7,0],[4,2,0],[4,4,0],[2,4,0],[3,3,0],[-4,2,0],[-4,4,0],[-2,4,0],[-3,3,0]] formation_keys = ['waiting', 'FORM_1', 'FORM_2', 'FORM_3', 'AUTO.TAKEOFF', 'OFFBOARD', 'HOVER', 'AUTO.LAND'] class Px4Controller: def __init__(self): self.uav_id = uav_id + uav_num_real self.namespace = "UAV{proc}".format(proc=self.uav_id) self.imu = None self.gps = None self.local_pose = PoseStamped() self.local_velocity = TwistStamped() self.current_state = None self.current_heading = None self.takeoff_height = 0.6 self.local_enu_position = None self.cur_target_pose = None self.global_target = None self.target_yaw = 0.0 self.global_pose = PoseStamped() self.takeoff_target_pose = PoseStamped() self.hover_target_pose = PoseStamped() self.target_pose = None self.target_vel = TwistStamped() self.motion_type = 0 # 0:position 1:vel 2: accel self.frame_id = 7 # 1 :flu, 7: position self.received_new_task = False self.arm_state = False self.mavros_state = None self.received_imu = False self.frame = "BODY" self.formation_config = 'waiting' self.cmd = None self.gcs_cmd = String() self.last_gcs_cmd = String() self.form_flag = 0 self.first_form3_flag = True self.first_form1_flag = True self.first_form2_flag = True self.leader_desire_pose = None self.last_form = 0 self.uav_data = UAVDataMsg() self.all_uav_data_sim = AllUAVData() self.all_uav_data_real = AllUAVData() self.all_comm_data = CommVerify() # Expand to uav_num lines,add neighbor information in "def read_set_file" self.neighbor_num = 0 self.neighbor_id = [] self.comm_succ = [] for i in range(0, uav_num): self.neighbor_id.append([]) self.comm_succ.append([]) self.leader_id = [0] self.all_desired_position = [] self.all_neighbor_data = AllNeighborMsg() # control parameters self.Kpx = 0.5 self.Kpy = 0.5 self.Kpz = 0.5 self.Kpangz = 1 self.velxy_max = 1.5 self.velz_max = 1.5 self.velangz_max = 0.5 self.gamma = 1 self.integral_x = 0 # integralgrete self.integral_y = 0 # integralgrete self.integral_z = 0 # integralgrete # ros subscribers self.local_pose_sub = rospy.Subscriber(self.namespace + "/mavros/local_position/pose", PoseStamped, self.local_pose_callback) self.local_velocity_sub = rospy.Subscriber(self.namespace + "/mavros/local_position/velocity_local", TwistStamped, self.local_velocity_callback) self.mavros_sub = rospy.Subscriber(self.namespace + "/mavros/state", State, self.mavros_state_callback) self.gps_sub = rospy.Subscriber(self.namespace + "/mavros/global_position/global", NavSatFix, self.gps_callback) self.imu_sub = rospy.Subscriber(self.namespace + "/mavros/imu/data", Imu, self.imu_callback) self.gcs_cmd_sub = rospy.Subscriber("/xtdrone_gcs/cmd", String, self.gcs_cmd_callback) self.keyboard_cmd_sub = rospy.Subscriber("/xtdrone/leader/cmd", String, self.cmd_callback) self.keyboard_cmd_sub2 = rospy.Subscriber("/xtdrone/iris_1/cmd", String, self.cmd_callback) self.all_uav_data_sub = rospy.Subscriber("/xtdrone_gcs/all_uav_data", AllUAVData, self.all_uav_data_callback) self.communication_verify_sub = rospy.Subscriber("/communication_verify", CommVerify, self.communication_verify_callback) # ros publishers # self.pose_target_pub = rospy.Publisher(self.namespace + '/mavros/setpoint_position/local', PoseStamped, queue_size=10) self.local_target_pub = rospy.Publisher(self.namespace + '/mavros/setpoint_raw/local', PositionTarget, queue_size=10) # self.twist_target_pub = rospy.Publisher(self.namespace + '/mavros/setpoint_velocity/cmd_vel', TwistStamped, queue_size=10) self.uav_data_pub = rospy.Publisher(self.namespace + '/formation/uav_data', UAVDataMsg, queue_size=10) self.global_position_pub = rospy.Publisher(self.namespace + '/global_position/uav_data', PoseStamped, queue_size=10) # ros services self.armService = rospy.ServiceProxy(self.namespace + '/mavros/cmd/arming', CommandBool) self.takeoffService = rospy.ServiceProxy(self.namespace + '/mavros/cmd/takeoff', CommandTOL) self.landService = rospy.ServiceProxy(self.namespace + '/mavros/cmd/land', CommandTOL) self.flightModeService = rospy.ServiceProxy(self.namespace + '/mavros/set_mode', SetMode) self.frameService = rospy.ServiceProxy(self.namespace + '/mavros/setpoint_velocity/mav_frame', SetMavFrame) print(self.namespace, ": Px4 Controller Start!") self.data_velocity = [] self.data_position = [] self.read_set_file('UAV_pos1') def working(self): rospy.init_node(self.namespace + "_control_node") for i in range(10): if self.current_heading is not None: break else: print(self.namespace, ": Waiting for initialization.") time.sleep(0.5) rate = rospy.Rate(15) loop_count = 0 loop_factor = 4 # self.read_set_file('UAV_pos') while rospy.is_shutdown() is False: self.neighbor_num = len(self.neighbor_id[self.uav_id]) loop_count += 1 self.global_position_pub.publish(self.global_pose) self.construct_uav_data() self.uav_data_pub.publish(self.uav_data) # 15Hz # if loop_count % 10 == 0: # print(str(self.uav_id)+"'s neighbor number: ", self.neighbor_num) if self.gcs_cmd == "AUTO.TAKEOFF": self.last_gcs_cmd = "AUTO.TAKEOFF" self.form_flag = 0 self.motion_type = 0 self.frame_id = 7 if self.arm_state == False: self.arm() if self.mavros_state != "OFFBOARD": self.flight_mode_set(mode='OFFBOARD') self.target_pose = self.construct_target(x=self.takeoff_target_pose.pose.position.x, y=self.takeoff_target_pose.pose.position.y, z=self.takeoff_height, yaw=self.current_heading) self.local_target_pub.publish(self.target_pose) elif self.gcs_cmd == 'FORM_1': self.motion_type = 1 self.frame_id = 1 self.last_gcs_cmd = 'FORM_1' if self.form_flag != 1: self.form_flag = 1 if self.mavros_state != "OFFBOARD": self.flight_mode_set(mode='OFFBOARD') if self.uav_id == 0 or self.neighbor_num == 0: self.motion_type = 1 if self.first_form1_flag: self.leader_desire_pose = copy.deepcopy(self.uav_data) self.last_form = 1 self.first_form1_flag = False if self.uav_id == 0: self.leader_desire_pose.pose.position.y += 0.04 self.leader_formation_control() self.target_pose = self.construct_target(vx=self.target_vel.twist.linear.x, vy=self.target_vel.twist.linear.y, vz=self.target_vel.twist.linear.z, yaw_rate=self.target_vel.twist.angular.z) else: self.leader_desire_pose = copy.deepcopy(self.uav_data) self.formation_control() self.target_pose = self.construct_target(vx=self.target_vel.twist.linear.x, vy=self.target_vel.twist.linear.y, vz=self.target_vel.twist.linear.z, yaw_rate=self.target_vel.twist.angular.z) self.local_target_pub.publish(self.target_pose) elif self.gcs_cmd == 'FORM_2': self.motion_type = 1 self.frame_id = 1 self.last_gcs_cmd = 'FORM_2' if self.form_flag != 2: self.form_flag = 2 if self.mavros_state != "OFFBOARD": self.flight_mode_set(mode='OFFBOARD') if self.uav_id == 0 or self.neighbor_num == 0: self.motion_type = 1 if self.first_form2_flag: self.leader_desire_pose = copy.deepcopy(self.uav_data) self.last_form = 2 self.first_form2_flag = False if self.uav_id == 0: self.leader_desire_pose.pose.position.y -= 0.04 self.leader_formation_control() self.target_pose = self.construct_target(vx=self.target_vel.twist.linear.x, vy=self.target_vel.twist.linear.y, vz=self.target_vel.twist.linear.z, yaw_rate=self.target_vel.twist.angular.z) else: self.formation_control() self.leader_desire_pose = copy.deepcopy(self.uav_data) self.target_pose = self.construct_target(vx=self.target_vel.twist.linear.x, vy=self.target_vel.twist.linear.y, vz=self.target_vel.twist.linear.z, yaw_rate=self.target_vel.twist.angular.z) self.local_target_pub.publish(self.target_pose) elif self.gcs_cmd == 'AUTO.LAND': self.last_gcs_cmd = 'AUTO.LAND' self.form_flag = 0 self.last_form = 0 if self.mavros_state != "AUTO.LAND": self.flight_mode_set(mode='AUTO.LAND') if (self.mavros_state == 'AUTO.LAND') and (self.local_pose.pose.position.z < 0.15): if self.arm_state == True: self.disarm() # print(self.namespace, ": Land Success!") elif self.gcs_cmd == "HOVER": self.last_gcs_cmd = "HOVER" self.form_flag = 0 self.motion_type = 0 self.frame_id = 7 if self.arm_state == False: self.arm() if self.mavros_state != "OFFBOARD": self.flight_mode_set(mode='OFFBOARD') self.target_pose = self.construct_target(x=self.hover_target_pose.pose.position.x, y=self.hover_target_pose.pose.position.y, z=self.hover_target_pose.pose.position.z, yaw=self.current_heading) self.local_target_pub.publish(self.target_pose) else: self.gcs_cmd = self.last_gcs_cmd self.form_flag = 0 # self.state = self.flight_mode_set(mode='OFFBOARD') # if (self.uav_id == 11) or self.uav_id == 18: # print(str(self.uav_id),"'s neighbors: ", self.neighbor_id[self.uav_id]) rate.sleep() print("over over over") def formation_control(self): local_desire_relative_pose = self.all_desired_position[self.uav_id] delta_x = 0 delta_vx = 0 delta_y = 0 delta_vy = 0 delta_z = 0 delta_vz = 0 self.target_vel.twist.angular.x = 0 self.target_vel.twist.angular.y = 0 self.target_vel.twist.angular.z = self.Kpangz * (self.target_yaw - self.current_heading) self.neighbor_num = len(self.neighbor_id[self.uav_id]) if self.neighbor_num > 0: weight = 4.0 / (self.gamma * self.gamma*self.neighbor_num) else: weight = 0.0 for i in range(self.neighbor_num): try: delta_x += self.all_uav_data_sim.data[self.neighbor_id[self.uav_id][i]].pose.position.x - self.uav_data.pose.position.x - \ self.all_desired_position[self.neighbor_id[self.uav_id][i]][0] + local_desire_relative_pose[0] delta_vx += self.all_uav_data_sim.data[self.neighbor_id[self.uav_id][i]].velocity.linear.x - self.uav_data.velocity.linear.x delta_y += self.all_uav_data_sim.data[self.neighbor_id[self.uav_id][i]].pose.position.y - self.uav_data.pose.position.y - \ self.all_desired_position[self.neighbor_id[self.uav_id][i]][1] + local_desire_relative_pose[1] delta_vy += self.all_uav_data_sim.data[self.neighbor_id[self.uav_id][i]].velocity.linear.y - self.uav_data.velocity.linear.y delta_z += self.all_uav_data_sim.data[self.neighbor_id[self.uav_id][i]].pose.position.z - self.uav_data.pose.position.z - \ self.all_desired_position[self.neighbor_id[self.uav_id][i]][2] + local_desire_relative_pose[2] delta_vz += self.all_uav_data_sim.data[self.neighbor_id[self.uav_id][i]].velocity.linear.z - self.uav_data.velocity.linear.z except: print("id: ",self.uav_id) print("neighbor: ", self.neighbor_id[self.uav_id]) print("num: ", self.neighbor_num) if self.uav_id == 10: print(delta_z) print(delta_vz) # accel self.integral_x = weight * (delta_x + self.gamma * delta_vx) self.integral_y = weight * (delta_y + self.gamma * delta_vy) self.integral_z = weight * (delta_z + self.gamma * delta_vz) # v(k+1)=vk+ak*T self.target_vel.twist.linear.x = self.uav_data.velocity.linear.x + self.integral_x * 0.5 * self.Kpx self.target_vel.twist.linear.y = self.uav_data.velocity.linear.y + self.integral_y * 0.5 * self.Kpy self.target_vel.twist.linear.z = self.uav_data.velocity.linear.z + self.integral_z * 0.5 * self.Kpz self.target_vel.twist.linear.x = self.limit_amplitude(self.target_vel.twist.linear.x, self.velxy_max) self.target_vel.twist.linear.y = self.limit_amplitude(self.target_vel.twist.linear.y, self.velxy_max) self.target_vel.twist.linear.z = self.limit_amplitude(self.target_vel.twist.linear.z, self.velz_max) self.target_vel.twist.angular.z = self.limit_amplitude(self.target_vel.twist.angular.z * self.Kpangz, self.velangz_max) self.data_position.append( [self.uav_data.pose.position.x, self.uav_data.pose.position.y, self.uav_data.pose.position.z]) self.data_velocity.append( [self.uav_data.velocity.linear.x, self.uav_data.velocity.linear.y, self.uav_data.velocity.linear.z]) #np.save('data/'+str(self.uav_id) + ' data_position_demo1.txt', self.data_position) #np.save('data/'+str(self.uav_id) + ' data_velocity_demo1.txt', self.data_velocity) def leader_formation_control(self): self.target_vel.twist.angular.x = 0 self.target_vel.twist.angular.y = 0 self.target_vel.twist.angular.z = self.Kpangz * (self.target_yaw - self.current_heading) self.target_vel.twist.linear.x = self.leader_desire_pose.pose.position.x - self.uav_data.pose.position.x self.target_vel.twist.linear.y = self.leader_desire_pose.pose.position.y - self.uav_data.pose.position.y self.target_vel.twist.linear.z = self.takeoff_height - self.uav_data.pose.position.z # print(self.target_vel.twist.linear) self.target_vel.twist.linear.x = self.limit_amplitude(self.target_vel.twist.linear.x * 0.7, self.velxy_max) self.target_vel.twist.linear.y = self.limit_amplitude(self.target_vel.twist.linear.y * 0.7, self.velxy_max) self.target_vel.twist.linear.z = self.limit_amplitude(self.target_vel.twist.linear.z * 0.7, self.velz_max) self.target_vel.twist.angular.z = self.limit_amplitude(self.target_vel.twist.angular.z * self.Kpangz, self.velangz_max) self.data_position.append( [self.uav_data.pose.position.x, self.uav_data.pose.position.y, self.uav_data.pose.position.z]) self.data_velocity.append( [self.uav_data.velocity.linear.x, self.uav_data.velocity.linear.y, self.uav_data.velocity.linear.z]) #np.save('data/' + str(self.uav_id) + ' data_position_demo1.txt', self.data_position) #np.save('data/' + str(self.uav_id) + ' data_velocity_demo1.txt', self.data_velocity) def trans_flu2enu(self): self.q = np.array( [self.local_pose.pose.orientation.x, self.local_pose.pose.orientation.y, self.local_pose.pose.orientation.z, self.local_pose.pose.orientation.w]) Pw = np.array( [self.target_vel.twist.linear.x, self.target_vel.twist.linear.y, self.target_vel.twist.linear.z, 0]) self.q_ = self.qconj(self.q) Ps = self.qAd(self.q_, Pw) self.target_vel.twist.linear.x = Ps[0] self.target_vel.twist.linear.y = Ps[1] self.target_vel.twist.linear.z = Ps[2] def limit_amplitude(self, data, max_amplitude): if max_amplitude < 0: print('Warning! Max Amplitude should be positive!') if data <= -max_amplitude: data = -max_amplitude elif data >= max_amplitude: data = max_amplitude return data def communication_verify_callback(self, msg): self.all_comm_data = msg self.leader_id = msg.leader self.neighbor_id[self.uav_id] = [] self.comm_succ[self.uav_id] = msg.transMatrix[self.uav_id].transMatrix for j in range(len(self.leader_id)): if self.uav_id in self.leader_id: if self.leader_id[j]< self.uav_id and self.comm_succ[self.uav_id][j] == 1: self.neighbor_id[self.uav_id].append(self.leader_id[j]) else: if self.comm_succ[self.uav_id][j] == 1: self.neighbor_id[self.uav_id].append(self.leader_id[j]) self.neighbor_num = len(self.neighbor_id[self.uav_id]) # print("UAV",self.uav_id,"'s neighbor_num: ", self.neighbor_num) def read_set_file(self, txt_all_pos): all_pos_path = 'txt/' + txt_all_pos + '.txt' self.all_desired_position = np.loadtxt(all_pos_path) def construct_uav_data(self): self.uav_data.header.stamp = rospy.Time.now() self.uav_data.uav_id = self.uav_id self.uav_data.pose = self.global_pose.pose self.uav_data.velocity = self.local_velocity.twist self.uav_data.heading = self.current_heading self.uav_data.is_sim = 1 def construct_target(self, x=0, y=0, z=0, vx=0, vy=0, vz=0, afx=0, afy=0, afz=0, yaw=0, yaw_rate=0): target_raw_pose = PositionTarget() target_raw_pose.coordinate_frame = self.frame_id target_raw_pose.position.x = x target_raw_pose.position.y = y target_raw_pose.position.z = z target_raw_pose.velocity.x = vx target_raw_pose.velocity.y = vy target_raw_pose.velocity.z = vz target_raw_pose.acceleration_or_force.x = afx target_raw_pose.acceleration_or_force.y = afy target_raw_pose.acceleration_or_force.z = afz target_raw_pose.yaw = yaw target_raw_pose.yaw_rate = yaw_rate if (self.motion_type == 0): target_raw_pose.type_mask = PositionTarget.IGNORE_VX + PositionTarget.IGNORE_VY + PositionTarget.IGNORE_VZ \ + PositionTarget.IGNORE_AFX + PositionTarget.IGNORE_AFY + PositionTarget.IGNORE_AFZ \ + PositionTarget.IGNORE_YAW_RATE if (self.motion_type == 1): target_raw_pose.type_mask = PositionTarget.IGNORE_PX + PositionTarget.IGNORE_PY + PositionTarget.IGNORE_PZ \ + PositionTarget.IGNORE_AFX + PositionTarget.IGNORE_AFY + PositionTarget.IGNORE_AFZ \ + PositionTarget.IGNORE_YAW if (self.motion_type == 2): target_raw_pose.type_mask = PositionTarget.IGNORE_PX + PositionTarget.IGNORE_PY + PositionTarget.IGNORE_PZ \ + PositionTarget.IGNORE_VX + PositionTarget.IGNORE_VY + PositionTarget.IGNORE_VZ \ + PositionTarget.IGNORE_YAW return target_raw_pose ''' cur_p : poseStamped target_p: positionTarget ''' def position_distance(self, cur_p, target_p, threshold=0.1): delta_x = math.fabs(cur_p.pose.position.x - target_p.position.x) delta_y = math.fabs(cur_p.pose.position.y - target_p.position.y) delta_z = math.fabs(cur_p.pose.position.z - target_p.position.z) if delta_x + delta_y + delta_z < threshold: return True else: return False def cmd_yaw(self, yaw): quaternion = tf.transformations.quaternion_from_euler(0, 0, yaw) self.target_pose.pose.orientation.x = quaternion[0] self.target_pose.pose.orientation.y = quaternion[1] self.target_pose.pose.orientation.z = quaternion[2] self.target_pose.pose.orientation.w = quaternion[3] def gcs_cmd_callback(self, msg): self.gcs_cmd = msg.data def all_uav_data_callback(self, msg): self.all_uav_data_sim = msg def local_pose_callback(self, msg): self.local_pose = msg self.local_enu_position = msg self.global_pose = copy.deepcopy(msg) if self.gcs_cmd != "AUTO.TAKEOFF": self.takeoff_target_pose = msg if self.gcs_cmd != "HOVER": self.hover_target_pose = msg if self.gcs_cmd != "FORM_1": self.first_form1_flag = True if self.gcs_cmd != "FORM_2": self.first_form2_flag = True if self.gcs_cmd != "FORM_3": self.first_form3_flag = True if self.uav_id < len(uav_bias): self.global_pose.pose.position.x += uav_bias[self.uav_id][0] self.global_pose.pose.position.y += uav_bias[self.uav_id][1] self.global_pose.pose.position.z += uav_bias[self.uav_id][2] def local_velocity_callback(self, msg): self.local_velocity = msg def mavros_state_callback(self, msg): self.mavros_state = msg.mode self.arm_state = msg.armed def imu_callback(self, msg): global global_imu, current_heading self.imu = msg self.current_heading = self.q2yaw(self.imu.orientation) self.received_imu = True def cmd_vel_flu_callback(self, msg): # self.target_vel.twist.linear.x, self.target_vel.twist.linear.y = self.flu2enu(msg.linear.x, msg.linear.y) self.target_vel.twist.linear.x = msg.linear.x self.target_vel.twist.linear.y = msg.linear.y self.target_vel.twist.linear.z = msg.linear.z self.target_vel.twist.angular.x = 0 self.target_vel.twist.angular.y = 0 self.target_vel.twist.angular.z = msg.angular.z def cmd_vel_enu_callback(self, msg): self.target_vel.twist = msg def gps_callback(self, msg): self.gps = msg def cmd_callback(self, msg): if (msg.data in formation_keys and not msg.data == self.formation_config): self.formation_config = msg.data #print("keyboard cmd: ", self.formation_config) self.gcs_cmd = self.formation_config def q2yaw(self, q): if isinstance(q, Quaternion): rotate_z_rad = q.yaw_pitch_roll[0] else: q_ = Quaternion(q.w, q.x, q.y, q.z) rotate_z_rad = q_.yaw_pitch_roll[0] return rotate_z_rad def arm(self): if self.armService(True): return True else: print("Vehicle arming failed!") return False def takeoff(self): if self.takeoffService(True): return True else: print("Vehicle takeoff failed!") return False def disarm(self): if self.armService(False): return True else: print("Vehicle disarming failed!") return False def flight_mode_set(self, mode): """ mode selectable MANUAL, ACRO, ALTCTL, POSCTL, OFFBOARD, STABILIZED, RATTITUDE AUTO.MISSION, AUTO.LOITER, AUTO.RTL, AUTO.LAND, AUTO.RTGS, AUTO.READY, AUTO.TAKEOFF """ if self.flightModeService(custom_mode=mode): return True else: print(self.namespace + mode + "Failed") def takeoff_detection(self): if self.local_pose.pose.position.z > 0.2 and self.arm_state: return True else: return False def qprod(self, q1, q2): return tfc.transformations.quaternion_multiply(q1, q2) def qconj(self, q): return np.hstack((-q[:3], q[3])) def qAd(self, q, p): return self.qprod(self.qprod(q, p), self.q) if __name__ == '__main__': controller = Px4Controller() controller.working()
48.216123
230
0.591996
c86a454c43579753111d971d356c495e671ae1f1
8,447
py
Python
api/serializers.py
cusele/DB_OPS
f666bc56844cb6985937314190508ed393ce2171
[ "Apache-2.0" ]
null
null
null
api/serializers.py
cusele/DB_OPS
f666bc56844cb6985937314190508ed393ce2171
[ "Apache-2.0" ]
null
null
null
api/serializers.py
cusele/DB_OPS
f666bc56844cb6985937314190508ed393ce2171
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # _#_ coding:utf-8 _*_ from rest_framework import serializers from OpsManage.models import * from wiki.models import * from orders.models import * from filemanage.models import * from django.contrib.auth.models import Group,User class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id','last_login','is_superuser','username', 'first_name','last_name','email','is_staff', 'is_active','date_joined') class ServiceSerializer(serializers.ModelSerializer): project_name = serializers.CharField(source='project.project_name', read_only=True) project_id = serializers.IntegerField(source='project.id', read_only=True) class Meta: model = Service_Assets fields = ('id','service_name','project_name','project_id') class ProjectSerializer(serializers.ModelSerializer): service_assets = ServiceSerializer(many=True, read_only=True,required=False) class Meta: model = Project_Assets fields = ('id','project_name','service_assets') class GroupSerializer(serializers.ModelSerializer): class Meta: model = Group fields = ('id','name') class ZoneSerializer(serializers.ModelSerializer): class Meta: model = Zone_Assets fields = ('id','zone_name','zone_network','zone_contact','zone_number') # class AssetStatusSerializer(serializers.ModelSerializer): # class Meta: # model = Assets_Satus # fields = ('id','status_name') class CronSerializer(serializers.ModelSerializer): class Meta: model = Cron_Config fields = ('id','cron_minute','cron_hour','cron_day', 'cron_week','cron_month','cron_user', 'cron_name','cron_desc','cron_server', 'cron_command','cron_script','cron_status') class AssetsSerializer(serializers.ModelSerializer): class Meta: model = Assets fields = ('id','assets_type','name','sn','buy_time','expire_date', 'buy_user','management_ip','manufacturer','provider', 'model','status','put_zone','group','business','project') class AssetsLogsSerializer(serializers.ModelSerializer): class Meta: model = Log_Assets fields = ('id','assets_id','assets_user','assets_content','assets_type','create_time') class ProjectConfigSerializer(serializers.ModelSerializer): project_number = serializers.StringRelatedField(many=True) class Meta: model = Project_Config fields = ('id','project_env','project_name','project_local_command', 'project_repo_dir','project_dir','project_exclude', "project_type",'project_address','project_repertory', 'project_status','project_remote_command','project_user', 'project_uuid','project_number') class DeployLogsSerializer(serializers.ModelSerializer): class Meta: model = Log_Project_Config fields = ('id','project_id','project_user','project_name', 'project_content','project_branch','create_time') class AnbiblePlaybookSerializer(serializers.ModelSerializer): server_number = serializers.StringRelatedField(many=True) class Meta: model = Ansible_Playbook fields = ('id','playbook_name','playbook_desc','playbook_vars', 'playbook_uuid','playbook_file','playbook_auth_group', 'playbook_auth_user','server_number') class AnsibleModelLogsSerializer(serializers.ModelSerializer): class Meta: model = Log_Ansible_Model fields = ('id','ans_user','ans_model','ans_args', 'ans_server','create_time') class AnsiblePlaybookLogsSerializer(serializers.ModelSerializer): class Meta: model = Log_Ansible_Playbook fields = ('id','ans_user','ans_name','ans_content','ans_id', 'ans_server','ans_content','create_time') class CronLogsSerializer(serializers.ModelSerializer): class Meta: model = Log_Cron_Config fields = ('id','cron_id','cron_user','cron_name','cron_content', 'cron_server','create_time') class ServerSerializer(serializers.ModelSerializer): assets = AssetsSerializer(required=False) # keyfile = serializers.FileField(max_length=None, use_url=True) class Meta: model = Server_Assets fields = ('id','ip','hostname','username','port','passwd', 'cpu','cpu_number','vcpu_number','keyfile', 'cpu_core','disk_total','ram_total','kernel', 'selinux','swap','system','assets', 'sudo_passwd') def create(self, data): if(data.get('assets')): assets_data = data.pop('assets') assets = Assets.objects.create(**assets_data) else: assets = Assets() data['assets'] = assets; server = Server_Assets.objects.create(**data) return server class NetworkSerializer(serializers.ModelSerializer): assets = AssetsSerializer(required=False) class Meta: model = Network_Assets fields = ('id','ip','bandwidth','port_number','firmware', 'cpu','stone','configure_detail','assets', 'port','passwd','sudo_passwd','username') def create(self, data): if(data.get('assets')): assets_data = data.pop('assets') assets = Assets.objects.create(**assets_data) else: assets = Assets() data['assets'] = assets; server = Network_Assets.objects.create(**data) return server class DeployOrderSerializer(serializers.ModelSerializer): class Meta: model = Project_Order fields = ('id','order_project','order_subject','order_content', 'order_branch','order_comid','order_tag','order_audit', 'order_status','order_level','order_cancel','create_time', 'order_user') class InceptionSerializer(serializers.ModelSerializer): class Meta: model = Inception_Server_Config fields = ('id','db_name','db_host','db_user','db_passwd','db_port', 'db_backup_host','db_backup_user','db_backup_port', 'db_backup_passwd') class OrderSerializer(serializers.ModelSerializer): class Meta: model = Order_System fields = ('id','order_subject','order_status','order_cancel','order_level') class DataBaseServerSerializer(serializers.ModelSerializer): class Meta: model = DataBase_Server_Config fields = ('id','db_env','db_name','db_host','db_user', 'db_passwd','db_port','db_mark','db_service', 'db_group','db_project','db_type',"db_mode") class CustomSQLSerializer(serializers.ModelSerializer): class Meta: model = Custom_High_Risk_SQL fields = ('id','sql') class HistroySQLSerializer(serializers.ModelSerializer): class Meta: model = SQL_Execute_Histroy fields = ('id','exe_sql','exe_user','exec_status','exe_result') class TagSerializer(serializers.ModelSerializer): class Meta: model = Tag fields = ('id','name') class CategorySerializer(serializers.ModelSerializer): class Meta: model = Category fields = ('id','name') class PostSerializer(serializers.ModelSerializer): class Meta: model = Post fields = ('id','title','content','category','author') class UploadFilesSerializer(serializers.ModelSerializer): class Meta: model = UploadFiles fields = ('file_path', 'file_type') class UploadFilesOrderSerializer(serializers.ModelSerializer): files = UploadFilesSerializer(many=True) class Meta: model = FileUpload_Audit_Order fields = ('id', 'dest_path', 'dest_server', 'chown_user','chown_rwx','files') class DownloadFilesSerializer(serializers.ModelSerializer): class Meta: model = FileDownload_Audit_Order fields = ('id','order_content', 'dest_server','dest_path')
37.542222
95
0.626613
410747b6e64a6aac948591d4c25638b708fa92d1
184
py
Python
users/urls.py
GuillaumeStaub/client-manager
81298dc43956499f05c0f4d55992fd7dfced49b0
[ "MIT" ]
null
null
null
users/urls.py
GuillaumeStaub/client-manager
81298dc43956499f05c0f4d55992fd7dfced49b0
[ "MIT" ]
null
null
null
users/urls.py
GuillaumeStaub/client-manager
81298dc43956499f05c0f4d55992fd7dfced49b0
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('login/', views.UsersLogin.as_view(), name='login'), path('logout/',views.logout_view, name='logout'), ]
23
61
0.684783
2299238e662bfd4a024a5d2be64439c166def86b
263
py
Python
.vscode/desafios/desafio 010.py
FonsecaThay/Curso-de-python
58095dcb1f59d9e61aeab5a9de332e463f330d12
[ "MIT" ]
null
null
null
.vscode/desafios/desafio 010.py
FonsecaThay/Curso-de-python
58095dcb1f59d9e61aeab5a9de332e463f330d12
[ "MIT" ]
null
null
null
.vscode/desafios/desafio 010.py
FonsecaThay/Curso-de-python
58095dcb1f59d9e61aeab5a9de332e463f330d12
[ "MIT" ]
null
null
null
v = float(input('Coloque seu saldo aqui e descubra quantos dรณlares vocรช pode comprar: R$')) uss = v / 5.15 #uss2= v / 3.27 euro = v / 5.82 print(f'Com R${v:.2f} vocรช pode comprar US${uss:.2f} dรณlares') print(f'Com R${v:.2f} vocรช pode comprar US${euro:.2f} euros')
43.833333
91
0.665399
518409a322cf2cf5de0a5302471422cdcb77b500
521
py
Python
examples/dind/python/__main__.py
jaxxstorm/pulumi-rke
9031a8509ce0f210348ece7419c1e7392174d603
[ "ECL-2.0", "Apache-2.0" ]
3
2020-03-13T20:27:32.000Z
2020-12-10T15:47:31.000Z
examples/dind/python/__main__.py
jaxxstorm/pulumi-rke
9031a8509ce0f210348ece7419c1e7392174d603
[ "ECL-2.0", "Apache-2.0" ]
97
2020-03-24T01:00:33.000Z
2021-04-25T20:27:28.000Z
examples/dind/python/__main__.py
jaxxstorm/pulumi-rke
9031a8509ce0f210348ece7419c1e7392174d603
[ "ECL-2.0", "Apache-2.0" ]
4
2020-03-23T21:44:29.000Z
2021-05-13T14:28:22.000Z
"""A Python Pulumi program""" import pulumi import pulumi_rke as rke cluster = rke.Cluster("actions", cluster_name="python-test-cluster", ignore_docker_version=True, dind=True, dind_dns_server=True, nodes=[{ "user": "docker", "roles": [ "controlplane", "worker", "etcd" ], "address": "pulumi-gha-node1" }])
28.944444
72
0.424184
7622ad8bc4ee5e99bfe7e20f6f7600399a6cae21
963
py
Python
00.basic_interaction/code/13.globals/main.py
Gaetz/python-training
542f658883c66aaa932fb9e385225cfd573bb6de
[ "MIT" ]
1
2021-10-05T11:45:28.000Z
2021-10-05T11:45:28.000Z
00.basic_interaction/code/13.globals/main.py
Gaetz/python-training
542f658883c66aaa932fb9e385225cfd573bb6de
[ "MIT" ]
null
null
null
00.basic_interaction/code/13.globals/main.py
Gaetz/python-training
542f658883c66aaa932fb9e385225cfd573bb6de
[ "MIT" ]
null
null
null
import pygame, time, sys def main(): pygame.init() load() while not quit_game: inputs() update() draw() time.sleep(2) # End program after 2 seconds def load(): global screen, font, text, key, quit_game screen = pygame.display.set_mode((800, 600)) font = pygame.font.Font(None, 24) text = font.render("Hello, world :)", False, (50, 200, 100)) key = False quit_game = False def inputs(): global key for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() if event.type == pygame.KEYDOWN: key = True def update(): global key, text, font, quit if key: text = font.render("How are you ?", False, (255, 255, 255)) quit = True def draw(): global screen, text screen.fill((0, 0, 150)) screen.blit(text, (10, 10)) pygame.display.update() if __name__ == "__main__": main()
21.4
67
0.559709
53b773b6e2a5fdd2946d8d850d51f5c467d3e8ca
555
py
Python
src/radios/__init__.py
frenck/python-radios
f5b36cab45b639f2d11fe003033914473e66db08
[ "MIT" ]
7
2022-02-21T13:20:15.000Z
2022-02-26T10:58:17.000Z
src/radios/__init__.py
frenck/python-radios
f5b36cab45b639f2d11fe003033914473e66db08
[ "MIT" ]
2
2022-03-07T16:46:22.000Z
2022-03-30T06:34:03.000Z
src/radios/__init__.py
frenck/python-radios
f5b36cab45b639f2d11fe003033914473e66db08
[ "MIT" ]
null
null
null
"""Asynchronous Python client for the Radio Browser APIs.""" from .const import FilterBy, Order from .exceptions import ( RadioBrowserConnectionError, RadioBrowserConnectionTimeoutError, RadioBrowserError, ) from .models import Country, Language, Station, Stats, Tag from .radio_browser import RadioBrowser __all__ = [ "RadioBrowser", "Stats", "Station", "Order", "Country", "Language", "Tag", "FilterBy", "RadioBrowserConnectionError", "RadioBrowserConnectionTimeoutError", "RadioBrowserError", ]
23.125
60
0.708108
041c6a8b85eb7e24e55a1ecfd4b1878ed03000b9
3,675
py
Python
huaweicloud-sdk-kms/huaweicloudsdkkms/v1/model/import_key_material_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-kms/huaweicloudsdkkms/v1/model/import_key_material_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-kms/huaweicloudsdkkms/v1/model/import_key_material_request.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ImportKeyMaterialRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'version_id': 'str', 'body': 'ImportKeyMaterialRequestBody' } attribute_map = { 'version_id': 'version_id', 'body': 'body' } def __init__(self, version_id=None, body=None): """ImportKeyMaterialRequest - a model defined in huaweicloud sdk""" self._version_id = None self._body = None self.discriminator = None self.version_id = version_id if body is not None: self.body = body @property def version_id(self): """Gets the version_id of this ImportKeyMaterialRequest. API็‰ˆๆœฌๅท :return: The version_id of this ImportKeyMaterialRequest. :rtype: str """ return self._version_id @version_id.setter def version_id(self, version_id): """Sets the version_id of this ImportKeyMaterialRequest. API็‰ˆๆœฌๅท :param version_id: The version_id of this ImportKeyMaterialRequest. :type: str """ self._version_id = version_id @property def body(self): """Gets the body of this ImportKeyMaterialRequest. :return: The body of this ImportKeyMaterialRequest. :rtype: ImportKeyMaterialRequestBody """ return self._body @body.setter def body(self, body): """Sets the body of this ImportKeyMaterialRequest. :param body: The body of this ImportKeyMaterialRequest. :type: ImportKeyMaterialRequestBody """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ImportKeyMaterialRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.438849
79
0.564082
26ecf1356a94670f7ec987d7db7041d9ccdadc0e
14,904
py
Python
pandas/tests/frame/methods/test_rename.py
mathause/pandas
72327f32e2328d3e13b6c55617d71036fccdd0e1
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2021-01-20T21:13:08.000Z
2021-01-31T09:59:18.000Z
pandas/tests/frame/methods/test_rename.py
mathause/pandas
72327f32e2328d3e13b6c55617d71036fccdd0e1
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2019-11-13T22:07:00.000Z
2019-11-14T13:46:34.000Z
pandas/tests/frame/methods/test_rename.py
mathause/pandas
72327f32e2328d3e13b6c55617d71036fccdd0e1
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2017-05-08T13:57:21.000Z
2017-05-08T13:57:21.000Z
from collections import ChainMap import inspect import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, Index, MultiIndex, Series, merge, ) import pandas._testing as tm class TestRename: def test_rename_signature(self): sig = inspect.signature(DataFrame.rename) parameters = set(sig.parameters) assert parameters == { "self", "mapper", "index", "columns", "axis", "inplace", "copy", "level", "errors", } @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_rename_mi(self, klass): obj = klass( [11, 21, 31], index=MultiIndex.from_tuples([("A", x) for x in ["a", "B", "c"]]), ) obj.rename(str.lower) def test_rename(self, float_frame): mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} renamed = float_frame.rename(columns=mapping) renamed2 = float_frame.rename(columns=str.lower) tm.assert_frame_equal(renamed, renamed2) tm.assert_frame_equal( renamed2.rename(columns=str.upper), float_frame, check_names=False ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = DataFrame(data) renamed = df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["foo", "bar"])) renamed = df.rename(index=str.upper) tm.assert_index_equal(renamed.index, Index(["BAR", "FOO"])) # have to pass something with pytest.raises(TypeError, match="must pass an index to rename"): float_frame.rename() # partial columns renamed = float_frame.rename(columns={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.columns, Index(["A", "B", "foo", "bar"])) # other axis renamed = float_frame.T.rename(index={"C": "foo", "D": "bar"}) tm.assert_index_equal(renamed.index, Index(["A", "B", "foo", "bar"])) # index with name index = Index(["foo", "bar"], name="name") renamer = DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, Index(["bar", "foo"], name="name")) assert renamed.index.name == renamer.index.name @pytest.mark.parametrize( "args,kwargs", [ ((ChainMap({"A": "a"}, {"B": "b"}),), {"axis": "columns"}), ((), {"columns": ChainMap({"A": "a"}, {"B": "b"})}), ], ) def test_rename_chainmap(self, args, kwargs): # see gh-23859 colAData = range(1, 11) colBdata = np.random.randn(10) df = DataFrame({"A": colAData, "B": colBdata}) result = df.rename(*args, **kwargs) expected = DataFrame({"a": colAData, "b": colBdata}) tm.assert_frame_equal(result, expected) def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) df = DataFrame([(0, 0), (1, 1)], index=index, columns=columns) # # without specifying level -> across all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar3")], names=["foo", "bar"] ) new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) tm.assert_index_equal(renamed.index, new_index) tm.assert_index_equal(renamed.columns, new_columns) assert renamed.index.names == df.index.names assert renamed.columns.names == df.columns.names # # with specifying a level (GH13766) # dict new_columns = MultiIndex.from_tuples( [("fizz3", "buzz1"), ("fizz2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "buzz1"), ("fizz2", "buzz3")], names=["fizz", "buzz"] ) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # function func = str.upper new_columns = MultiIndex.from_tuples( [("FIZZ1", "buzz1"), ("FIZZ2", "buzz2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=0) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="fizz") tm.assert_index_equal(renamed.columns, new_columns) new_columns = MultiIndex.from_tuples( [("fizz1", "BUZZ1"), ("fizz2", "BUZZ2")], names=["fizz", "buzz"] ) renamed = df.rename(columns=func, level=1) tm.assert_index_equal(renamed.columns, new_columns) renamed = df.rename(columns=func, level="buzz") tm.assert_index_equal(renamed.columns, new_columns) # index new_index = MultiIndex.from_tuples( [("foo3", "bar1"), ("foo2", "bar2")], names=["foo", "bar"] ) renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) tm.assert_index_equal(renamed.index, new_index) @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) setitem copy/view def test_rename_nocopy(self, float_frame): renamed = float_frame.rename(columns={"C": "foo"}, copy=False) assert np.shares_memory(renamed["foo"]._values, float_frame["C"]._values) renamed.loc[:, "foo"] = 1.0 assert (float_frame["C"] == 1.0).all() def test_rename_inplace(self, float_frame): float_frame.rename(columns={"C": "foo"}) assert "C" in float_frame assert "foo" not in float_frame c_id = id(float_frame["C"]) float_frame = float_frame.copy() return_value = float_frame.rename(columns={"C": "foo"}, inplace=True) assert return_value is None assert "C" not in float_frame assert "foo" in float_frame assert id(float_frame["foo"]) != c_id def test_rename_bug(self): # GH 5344 # rename set ref_locs, and set_index was not resetting df = DataFrame({0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]}) df = df.rename(columns={0: "a"}) df = df.rename(columns={1: "b"}) df = df.set_index(["a", "b"]) df.columns = ["2001-01-01"] expected = DataFrame( [[1], [2]], index=MultiIndex.from_tuples( [("foo", "bah"), ("bar", "bas")], names=["a", "b"] ), columns=["2001-01-01"], ) tm.assert_frame_equal(df, expected) def test_rename_bug2(self): # GH 19497 # rename was changing Index to MultiIndex if Index contained tuples df = DataFrame(data=np.arange(3), index=[(0, 0), (1, 1), (2, 2)], columns=["a"]) df = df.rename({(1, 1): (5, 4)}, axis="index") expected = DataFrame( data=np.arange(3), index=[(0, 0), (5, 4), (2, 2)], columns=["a"] ) tm.assert_frame_equal(df, expected) def test_rename_errors_raises(self): df = DataFrame(columns=["A", "B", "C", "D"]) with pytest.raises(KeyError, match="'E'] not found in axis"): df.rename(columns={"A": "a", "E": "e"}, errors="raise") @pytest.mark.parametrize( "mapper, errors, expected_columns", [ ({"A": "a", "E": "e"}, "ignore", ["a", "B", "C", "D"]), ({"A": "a"}, "raise", ["a", "B", "C", "D"]), (str.lower, "raise", ["a", "b", "c", "d"]), ], ) def test_rename_errors(self, mapper, errors, expected_columns): # GH 13473 # rename now works with errors parameter df = DataFrame(columns=["A", "B", "C", "D"]) result = df.rename(columns=mapper, errors=errors) expected = DataFrame(columns=expected_columns) tm.assert_frame_equal(result, expected) def test_rename_objects(self, float_string_frame): renamed = float_string_frame.rename(columns=str.upper) assert "FOO" in renamed assert "foo" not in renamed def test_rename_axis_style(self): # https://github.com/pandas-dev/pandas/issues/12392 df = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["X", "Y"]) expected = DataFrame({"a": [1, 2], "b": [1, 2]}, index=["X", "Y"]) result = df.rename(str.lower, axis=1) tm.assert_frame_equal(result, expected) result = df.rename(str.lower, axis="columns") tm.assert_frame_equal(result, expected) result = df.rename({"A": "a", "B": "b"}, axis=1) tm.assert_frame_equal(result, expected) result = df.rename({"A": "a", "B": "b"}, axis="columns") tm.assert_frame_equal(result, expected) # Index expected = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["x", "y"]) result = df.rename(str.lower, axis=0) tm.assert_frame_equal(result, expected) result = df.rename(str.lower, axis="index") tm.assert_frame_equal(result, expected) result = df.rename({"X": "x", "Y": "y"}, axis=0) tm.assert_frame_equal(result, expected) result = df.rename({"X": "x", "Y": "y"}, axis="index") tm.assert_frame_equal(result, expected) result = df.rename(mapper=str.lower, axis="index") tm.assert_frame_equal(result, expected) def test_rename_mapper_multi(self): df = DataFrame({"A": ["a", "b"], "B": ["c", "d"], "C": [1, 2]}).set_index( ["A", "B"] ) result = df.rename(str.upper) expected = df.rename(index=str.upper) tm.assert_frame_equal(result, expected) def test_rename_positional_named(self): # https://github.com/pandas-dev/pandas/issues/12392 df = DataFrame({"a": [1, 2], "b": [1, 2]}, index=["X", "Y"]) result = df.rename(index=str.lower, columns=str.upper) expected = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["x", "y"]) tm.assert_frame_equal(result, expected) def test_rename_axis_style_raises(self): # see gh-12392 df = DataFrame({"A": [1, 2], "B": [1, 2]}, index=["0", "1"]) # Named target and axis over_spec_msg = "Cannot specify both 'axis' and any of 'index' or 'columns'" with pytest.raises(TypeError, match=over_spec_msg): df.rename(index=str.lower, axis=1) with pytest.raises(TypeError, match=over_spec_msg): df.rename(index=str.lower, axis="columns") with pytest.raises(TypeError, match=over_spec_msg): df.rename(columns=str.lower, axis="columns") with pytest.raises(TypeError, match=over_spec_msg): df.rename(index=str.lower, axis=0) # Multiple targets and axis with pytest.raises(TypeError, match=over_spec_msg): df.rename(str.lower, index=str.lower, axis="columns") # Too many targets over_spec_msg = "Cannot specify both 'mapper' and any of 'index' or 'columns'" with pytest.raises(TypeError, match=over_spec_msg): df.rename(str.lower, index=str.lower, columns=str.lower) # Duplicates with pytest.raises(TypeError, match="multiple values"): df.rename(id, mapper=id) def test_rename_positional_raises(self): # GH 29136 df = DataFrame(columns=["A", "B"]) msg = r"rename\(\) takes from 1 to 2 positional arguments" with pytest.raises(TypeError, match=msg): df.rename(None, str.lower) def test_rename_no_mappings_raises(self): # GH 29136 df = DataFrame([[1]]) msg = "must pass an index to rename" with pytest.raises(TypeError, match=msg): df.rename() with pytest.raises(TypeError, match=msg): df.rename(None, index=None) with pytest.raises(TypeError, match=msg): df.rename(None, columns=None) with pytest.raises(TypeError, match=msg): df.rename(None, columns=None, index=None) def test_rename_mapper_and_positional_arguments_raises(self): # GH 29136 df = DataFrame([[1]]) msg = "Cannot specify both 'mapper' and any of 'index' or 'columns'" with pytest.raises(TypeError, match=msg): df.rename({}, index={}) with pytest.raises(TypeError, match=msg): df.rename({}, columns={}) with pytest.raises(TypeError, match=msg): df.rename({}, columns={}, index={}) @td.skip_array_manager_not_yet_implemented def test_rename_with_duplicate_columns(self): # GH#4403 df4 = DataFrame( {"RT": [0.0454], "TClose": [22.02], "TExg": [0.0422]}, index=MultiIndex.from_tuples( [(600809, 20130331)], names=["STK_ID", "RPT_Date"] ), ) df5 = DataFrame( { "RPT_Date": [20120930, 20121231, 20130331], "STK_ID": [600809] * 3, "STK_Name": ["้ฅก้ฉฆ", "้ฅก้ฉฆ", "้ฅก้ฉฆ"], "TClose": [38.05, 41.66, 30.01], }, index=MultiIndex.from_tuples( [(600809, 20120930), (600809, 20121231), (600809, 20130331)], names=["STK_ID", "RPT_Date"], ), ) # TODO: can we construct this without merge? k = merge(df4, df5, how="inner", left_index=True, right_index=True) result = k.rename(columns={"TClose_x": "TClose", "TClose_y": "QT_Close"}) str(result) result.dtypes expected = DataFrame( [[0.0454, 22.02, 0.0422, 20130331, 600809, "้ฅก้ฉฆ", 30.01]], columns=[ "RT", "TClose", "TExg", "RPT_Date", "STK_ID", "STK_Name", "QT_Close", ], ).set_index(["STK_ID", "RPT_Date"], drop=False) tm.assert_frame_equal(result, expected)
36.440098
88
0.558038
d1442331e870f10fa1cbba13ab526e098c1c29fb
1,081
py
Python
elasticsearch6/client/xpack/monitoring.py
turtle321/elasticsearch-py
80cd96ef96f34e3bb291fdf4f643da5a1016a8d7
[ "Apache-2.0" ]
null
null
null
elasticsearch6/client/xpack/monitoring.py
turtle321/elasticsearch-py
80cd96ef96f34e3bb291fdf4f643da5a1016a8d7
[ "Apache-2.0" ]
null
null
null
elasticsearch6/client/xpack/monitoring.py
turtle321/elasticsearch-py
80cd96ef96f34e3bb291fdf4f643da5a1016a8d7
[ "Apache-2.0" ]
null
null
null
from elasticsearch6.client.utils import NamespacedClient, query_params, _make_path, SKIP_IN_PATH class MonitoringClient(NamespacedClient): @query_params('interval', 'system_api_version', 'system_id') def bulk(self, body, doc_type=None, params=None): """ `<http://www.elastic.co/guide/en/monitoring/current/appendix-api-bulk.html>`_ :arg body: The operation definition and data (action-data pairs), separated by newlines :arg doc_type: Default document type for items which don't provide one :arg interval: Collection interval (e.g., '10s' or '10000ms') of the payload :arg system_api_version: API Version of the monitored system :arg system_id: Identifier of the monitored system """ if body in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'body'.") return self.transport.perform_request('POST', _make_path('_xpack', 'monitoring', doc_type, '_bulk'), params=params, body=self.client._bulk_body(body))
49.136364
96
0.678076
f746b62b4f4b6d73439630f4f196227fbc7aaa2f
3,836
py
Python
cirq/ion/convert_to_ion_gates_test.py
kunalq/Cirq
e73c9bef672e83143ab04e7f169988149055d630
[ "Apache-2.0" ]
1
2019-09-04T16:55:30.000Z
2019-09-04T16:55:30.000Z
cirq/ion/convert_to_ion_gates_test.py
1eedaegon/Cirq
de0c5e855069bba71e55b070fc9b06f58c07a861
[ "Apache-2.0" ]
null
null
null
cirq/ion/convert_to_ion_gates_test.py
1eedaegon/Cirq
de0c5e855069bba71e55b070fc9b06f58c07a861
[ "Apache-2.0" ]
1
2020-12-18T16:36:41.000Z
2020-12-18T16:36:41.000Z
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import cirq class OtherX(cirq.SingleQubitGate): def _unitary_(self) -> np.ndarray: return np.array([[0, 1], [1, 0]]) class NoUnitary(cirq.SingleQubitGate): pass class OtherCNOT(cirq.TwoQubitGate): def _unitary_(self) -> np.ndarray: return np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) def test_convert_to_ion_gates(): q0 = cirq.GridQubit(0, 0) q1 = cirq.GridQubit(0, 1) op = cirq.CNOT(q0, q1) circuit = cirq.Circuit() with pytest.raises(TypeError): cirq.ion.ConvertToIonGates().convert_one(circuit) with pytest.raises(TypeError): cirq.ion.ConvertToIonGates().convert_one(NoUnitary().on(q0)) no_unitary_op = NoUnitary().on(q0) assert cirq.ion.ConvertToIonGates(ignore_failures=True).convert_one( no_unitary_op) == [no_unitary_op] rx = cirq.ion.ConvertToIonGates().convert_one(OtherX().on(q0)) rop = cirq.ion.ConvertToIonGates().convert_one(op) rcnot = cirq.ion.ConvertToIonGates().convert_one(OtherCNOT().on(q0, q1)) assert rx == [ cirq.PhasedXPowGate(phase_exponent=1).on(cirq.GridQubit(0, 0)) ] assert rop == [cirq.Ry(np.pi/2).on(op.qubits[0]), cirq.ion.MS(np.pi/4).on(op.qubits[0], op.qubits[1]), cirq.ops.Rx(-1*np.pi/2).on(op.qubits[0]), cirq.ops.Rx(-1*np.pi/2).on(op.qubits[1]), cirq.ops.Ry(-1*np.pi/2).on(op.qubits[0])] assert rcnot == [ cirq.PhasedXPowGate(phase_exponent=-0.75, exponent=0.5).on(cirq.GridQubit(0, 0)), cirq.PhasedXPowGate(phase_exponent=1, exponent=0.25).on(cirq.GridQubit(0, 1)), cirq.T.on(cirq.GridQubit(0, 0)), cirq.MS(-0.5 * np.pi / 2).on(cirq.GridQubit(0, 0), cirq.GridQubit(0, 1)), (cirq.Y**0.5).on(cirq.GridQubit(0, 0)), cirq.PhasedXPowGate(phase_exponent=1, exponent=0.25).on(cirq.GridQubit(0, 1)), (cirq.Z**-0.75).on(cirq.GridQubit(0, 0)) ] def test_convert_to_ion_circuit(): q0 = cirq.LineQubit(0) q1 = cirq.LineQubit(1) us = cirq.Duration(nanos=1000) ion_device = cirq.IonDevice(us, us, us, [q0, q1]) clifford_circuit_1 = cirq.Circuit() clifford_circuit_1.append([cirq.X(q0), cirq.H(q1), cirq.MS(np.pi/4).on(q0, q1)]) ion_circuit_1 = cirq.ion.ConvertToIonGates().convert_circuit( clifford_circuit_1) ion_device.validate_circuit(ion_circuit_1) cirq.testing.assert_circuits_with_terminal_measurements_are_equivalent( clifford_circuit_1, ion_circuit_1, atol=1e-6) clifford_circuit_2 = cirq.Circuit() clifford_circuit_2.append([cirq.X(q0), cirq.CNOT(q1, q0), cirq.MS( np.pi/4).on(q0, q1)]) ion_circuit_2 = cirq.ion.ConvertToIonGates().convert_circuit( clifford_circuit_2) ion_device.validate_circuit(ion_circuit_2) cirq.testing.assert_circuits_with_terminal_measurements_are_equivalent( clifford_circuit_2, ion_circuit_2, atol=1e-6)
36.884615
78
0.62513
698db812382f1e3a23f2fa7b39ff96f689930cf8
40,774
py
Python
tensorflow_probability/python/distributions/vector_diffeomixture.py
timudk/probability
8bdbf1c0b0f801edaf342f4ffc9caf1cfd6f1103
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/vector_diffeomixture.py
timudk/probability
8bdbf1c0b0f801edaf342f4ffc9caf1cfd6f1103
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/vector_diffeomixture.py
timudk/probability
8bdbf1c0b0f801edaf342f4ffc9caf1cfd6f1103
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The VectorDiffeomixture distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import affine_linear_operator as affine_linear_operator_bijector from tensorflow_probability.python.bijectors import softmax_centered as softmax_centered_bijector from tensorflow_probability.python.distributions import categorical from tensorflow_probability.python.distributions import distribution as distribution_lib from tensorflow_probability.python.distributions import normal from tensorflow_probability.python.distributions import seed_stream from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensorshape_util from tensorflow.python.ops.linalg import linear_operator_addition as linop_add_lib # pylint: disable=g-direct-tensorflow-import __all__ = [ "VectorDiffeomixture", "quadrature_scheme_softmaxnormal_gauss_hermite", "quadrature_scheme_softmaxnormal_quantiles", ] def quadrature_scheme_softmaxnormal_gauss_hermite( normal_loc, normal_scale, quadrature_size, validate_args=False, name=None): """Use Gauss-Hermite quadrature to form quadrature on `K - 1` simplex. A `SoftmaxNormal` random variable `Y` may be generated via ``` Y = SoftmaxCentered(X), X = Normal(normal_loc, normal_scale) ``` Note: for a given `quadrature_size`, this method is generally less accurate than `quadrature_scheme_softmaxnormal_quantiles`. Args: normal_loc: `float`-like `Tensor` with shape `[b1, ..., bB, K-1]`, B>=0. The location parameter of the Normal used to construct the SoftmaxNormal. normal_scale: `float`-like `Tensor`. Broadcastable with `normal_loc`. The scale parameter of the Normal used to construct the SoftmaxNormal. quadrature_size: Python `int` scalar representing the number of quadrature points. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: grid: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the convex combination of affine parameters for `K` components. `grid[..., :, n]` is the `n`-th grid point, living in the `K - 1` simplex. probs: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the associated with each grid point. """ with tf.name_scope( name or "quadrature_scheme_softmaxnormal_gauss_hermite"): normal_loc = tf.convert_to_tensor(value=normal_loc, name="normal_loc") npdt = dtype_util.as_numpy_dtype(normal_loc.dtype) normal_scale = tf.convert_to_tensor( value=normal_scale, dtype=npdt, name="normal_scale") normal_scale = maybe_check_quadrature_param( normal_scale, "normal_scale", validate_args) grid, probs = np.polynomial.hermite.hermgauss(deg=quadrature_size) grid = grid.astype(npdt) probs = probs.astype(npdt) probs /= np.linalg.norm(probs, ord=1, keepdims=True) probs = tf.convert_to_tensor(value=probs, name="probs", dtype=npdt) grid = softmax( -distribution_util.pad( (normal_loc[..., tf.newaxis] + np.sqrt(2.) * normal_scale[..., tf.newaxis] * grid), axis=-2, front=True), axis=-2) # shape: [B, components, deg] return grid, probs def quadrature_scheme_softmaxnormal_quantiles( normal_loc, normal_scale, quadrature_size, validate_args=False, name=None): """Use SoftmaxNormal quantiles to form quadrature on `K - 1` simplex. A `SoftmaxNormal` random variable `Y` may be generated via ``` Y = SoftmaxCentered(X), X = Normal(normal_loc, normal_scale) ``` Args: normal_loc: `float`-like `Tensor` with shape `[b1, ..., bB, K-1]`, B>=0. The location parameter of the Normal used to construct the SoftmaxNormal. normal_scale: `float`-like `Tensor`. Broadcastable with `normal_loc`. The scale parameter of the Normal used to construct the SoftmaxNormal. quadrature_size: Python `int` scalar representing the number of quadrature points. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: grid: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the convex combination of affine parameters for `K` components. `grid[..., :, n]` is the `n`-th grid point, living in the `K - 1` simplex. probs: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the associated with each grid point. """ with tf.name_scope(name or "softmax_normal_grid_and_probs"): normal_loc = tf.convert_to_tensor(value=normal_loc, name="normal_loc") dt = dtype_util.base_dtype(normal_loc.dtype) normal_scale = tf.convert_to_tensor( value=normal_scale, dtype=dt, name="normal_scale") normal_scale = maybe_check_quadrature_param( normal_scale, "normal_scale", validate_args) dist = normal.Normal(loc=normal_loc, scale=normal_scale) def _get_batch_ndims(): """Helper to get rank(dist.batch_shape), statically if possible.""" ndims = tensorshape_util.rank(dist.batch_shape) if ndims is None: ndims = tf.shape(input=dist.batch_shape_tensor())[0] return ndims batch_ndims = _get_batch_ndims() def _get_final_shape(qs): """Helper to build `TensorShape`.""" bs = tensorshape_util.with_rank_at_least(dist.batch_shape, 1) num_components = tf.compat.dimension_value(bs[-1]) if num_components is not None: num_components += 1 tail = tf.TensorShape([num_components, qs]) return bs[:-1].concatenate(tail) def _compute_quantiles(): """Helper to build quantiles.""" # Omit {0, 1} since they might lead to Inf/NaN. zero = tf.zeros([], dtype=dist.dtype) edges = tf.linspace(zero, 1., quadrature_size + 3)[1:-1] # Expand edges so its broadcast across batch dims. edges = tf.reshape( edges, shape=tf.concat( [[-1], tf.ones([batch_ndims], dtype=tf.int32)], axis=0)) quantiles = dist.quantile(edges) quantiles = softmax_centered_bijector.SoftmaxCentered().forward(quantiles) # Cyclically permute left by one. perm = tf.concat([tf.range(1, 1 + batch_ndims), [0]], axis=0) quantiles = tf.transpose(a=quantiles, perm=perm) tensorshape_util.set_shape( quantiles, _get_final_shape(quadrature_size + 1)) return quantiles quantiles = _compute_quantiles() # Compute grid as quantile midpoints. grid = (quantiles[..., :-1] + quantiles[..., 1:]) / 2. # Set shape hints. tensorshape_util.set_shape(grid, _get_final_shape(quadrature_size)) # By construction probs is constant, i.e., `1 / quadrature_size`. This is # important, because non-constant probs leads to non-reparameterizable # samples. probs = tf.fill( dims=[quadrature_size], value=1. / tf.cast(quadrature_size, dist.dtype)) return grid, probs class VectorDiffeomixture(distribution_lib.Distribution): """VectorDiffeomixture distribution. A vector diffeomixture (VDM) is a distribution parameterized by a convex combination of `K` component `loc` vectors, `loc[k], k = 0,...,K-1`, and `K` `scale` matrices `scale[k], k = 0,..., K-1`. It approximates the following [compound distribution] (https://en.wikipedia.org/wiki/Compound_probability_distribution) ```none p(x) = int p(x | z) p(z) dz, where z is in the K-simplex, and p(x | z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k]) ``` The integral `int p(x | z) p(z) dz` is approximated with a quadrature scheme adapted to the mixture density `p(z)`. The `N` quadrature points `z_{N, n}` and weights `w_{N, n}` (which are non-negative and sum to 1) are chosen such that ```q_N(x) := sum_{n=1}^N w_{n, N} p(x | z_{N, n}) --> p(x)``` as `N --> infinity`. Since `q_N(x)` is in fact a mixture (of `N` points), we may sample from `q_N` exactly. It is important to note that the VDM is *defined* as `q_N` above, and *not* `p(x)`. Therefore, sampling and pdf may be implemented as exact (up to floating point error) methods. A common choice for the conditional `p(x | z)` is a multivariate Normal. The implemented marginal `p(z)` is the `SoftmaxNormal`, which is a `K-1` dimensional Normal transformed by a `SoftmaxCentered` bijector, making it a density on the `K`-simplex. That is, ``` Z = SoftmaxCentered(X), X = Normal(mix_loc / temperature, 1 / temperature) ``` The default quadrature scheme chooses `z_{N, n}` as `N` midpoints of the quantiles of `p(z)` (generalized quantiles if `K > 2`). See [Dillon and Langmore (2018)][1] for more details. #### About `Vector` distributions in TensorFlow. The `VectorDiffeomixture` is a non-standard distribution that has properties particularly useful in [variational Bayesian methods](https://en.wikipedia.org/wiki/Variational_Bayesian_methods). Conditioned on a draw from the SoftmaxNormal, `X|z` is a vector whose components are linear combinations of affine transformations, thus is itself an affine transformation. Note: The marginals `X_1|v, ..., X_d|v` are *not* generally identical to some parameterization of `distribution`. This is due to the fact that the sum of draws from `distribution` are not generally itself the same `distribution`. #### About `Diffeomixture`s and reparameterization. The `VectorDiffeomixture` is designed to be reparameterized, i.e., its parameters are only used to transform samples from a distribution which has no trainable parameters. This property is important because backprop stops at sources of stochasticity. That is, as long as the parameters are used *after* the underlying source of stochasticity, the computed gradient is accurate. Reparametrization means that we can use gradient-descent (via backprop) to optimize Monte-Carlo objectives. Such objectives are a finite-sample approximation of an expectation and arise throughout scientific computing. WARNING: If you backprop through a VectorDiffeomixture sample and the "base" distribution is both: not `FULLY_REPARAMETERIZED` and a function of trainable variables, then the gradient is not guaranteed correct! #### Examples ```python tfd = tfp.distributions # Create two batches of VectorDiffeomixtures, one with mix_loc=[0.], # another with mix_loc=[1]. In both cases, `K=2` and the affine # transformations involve: # k=0: loc=zeros(dims) scale=LinearOperatorScaledIdentity # k=1: loc=[2.]*dims scale=LinOpDiag dims = 5 vdm = tfd.VectorDiffeomixture( mix_loc=[[0.], [1]], temperature=[1.], distribution=tfd.Normal(loc=0., scale=1.), loc=[ None, # Equivalent to `np.zeros(dims, dtype=np.float32)`. np.float32([2.]*dims), ], scale=[ tf.linalg.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.1), is_positive_definite=True), tf.linalg.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], validate_args=True) ``` #### References [1]: Joshua Dillon and Ian Langmore. Quadrature Compound: An approximating family of distributions. _arXiv preprint arXiv:1801.03080_, 2018. https://arxiv.org/abs/1801.03080 """ def __init__(self, mix_loc, temperature, distribution, loc=None, scale=None, quadrature_size=8, quadrature_fn=quadrature_scheme_softmaxnormal_quantiles, validate_args=False, allow_nan_stats=True, name="VectorDiffeomixture"): """Constructs the VectorDiffeomixture on `R^d`. The vector diffeomixture (VDM) approximates the compound distribution ```none p(x) = int p(x | z) p(z) dz, where z is in the K-simplex, and p(x | z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k]) ``` Args: mix_loc: `float`-like `Tensor` with shape `[b1, ..., bB, K-1]`. In terms of samples, larger `mix_loc[..., k]` ==> `Z` is more likely to put more weight on its `kth` component. temperature: `float`-like `Tensor`. Broadcastable with `mix_loc`. In terms of samples, smaller `temperature` means one component is more likely to dominate. I.e., smaller `temperature` makes the VDM look more like a standard mixture of `K` components. distribution: `tfp.distributions.Distribution`-like instance. Distribution from which `d` iid samples are used as input to the selected affine transformation. Must be a scalar-batch, scalar-event distribution. Typically `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is a function of non-trainable parameters. WARNING: If you backprop through a VectorDiffeomixture sample and the `distribution` is not `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then the gradient will be incorrect! loc: Length-`K` list of `float`-type `Tensor`s. The `k`-th element represents the `shift` used for the `k`-th affine transformation. If the `k`-th item is `None`, `loc` is implicitly `0`. When specified, must have shape `[B1, ..., Bb, d]` where `b >= 0` and `d` is the event size. scale: Length-`K` list of `LinearOperator`s. Each should be positive-definite and operate on a `d`-dimensional vector space. The `k`-th element represents the `scale` used for the `k`-th affine transformation. `LinearOperator`s must have shape `[B1, ..., Bb, d, d]`, `b >= 0`, i.e., characterizes `b`-batches of `d x d` matrices quadrature_size: Python `int` scalar representing number of quadrature points. Larger `quadrature_size` means `q_N(x)` better approximates `p(x)`. quadrature_fn: Python callable taking `normal_loc`, `normal_scale`, `quadrature_size`, `validate_args` and returning `tuple(grid, probs)` representing the SoftmaxNormal grid and corresponding normalized weight. normalized) weight. Default value: `quadrature_scheme_softmaxnormal_quantiles`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if `not scale or len(scale) < 2`. ValueError: if `len(loc) != len(scale)` ValueError: if `quadrature_grid_and_probs is not None` and `len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])` ValueError: if `validate_args` and any not scale.is_positive_definite. TypeError: if any scale.dtype != scale[0].dtype. TypeError: if any loc.dtype != scale[0].dtype. NotImplementedError: if `len(scale) != 2`. ValueError: if `not distribution.is_scalar_batch`. ValueError: if `not distribution.is_scalar_event`. """ parameters = dict(locals()) with tf.name_scope(name) as name: if not scale or len(scale) < 2: raise ValueError("Must specify list (or list-like object) of scale " "LinearOperators, one for each component with " "num_component >= 2.") if loc is None: loc = [None]*len(scale) if len(loc) != len(scale): raise ValueError("loc/scale must be same-length lists " "(or same-length list-like objects).") dtype = dtype_util.base_dtype(scale[0].dtype) loc = [ tf.convert_to_tensor(value=loc_, dtype=dtype, name="loc{}".format(k)) if loc_ is not None else None for k, loc_ in enumerate(loc) ] for k, scale_ in enumerate(scale): if validate_args and not scale_.is_positive_definite: raise ValueError("scale[{}].is_positive_definite = {} != True".format( k, scale_.is_positive_definite)) if dtype_util.base_dtype(scale_.dtype) != dtype: raise TypeError( "dtype mismatch; scale[{}].base_dtype=\"{}\" != \"{}\"".format( k, dtype_util.name(scale_.dtype), dtype_util.name(dtype))) self._endpoint_affine = [ affine_linear_operator_bijector.AffineLinearOperator( # pylint: disable=g-complex-comprehension shift=loc_, scale=scale_, validate_args=validate_args, name="endpoint_affine_{}".format(k)) for k, (loc_, scale_) in enumerate(zip(loc, scale))] # TODO(jvdillon): Remove once we support k-mixtures. # We make this assertion here because otherwise `grid` would need to be a # vector not a scalar. if len(scale) != 2: raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(scale))) mix_loc = tf.convert_to_tensor(value=mix_loc, dtype=dtype, name="mix_loc") temperature = tf.convert_to_tensor( value=temperature, dtype=dtype, name="temperature") self._grid, probs = tuple(quadrature_fn( mix_loc / temperature, 1. / temperature, quadrature_size, validate_args)) # Note: by creating the logits as `log(prob)` we ensure that # `self.mixture_distribution.logits` is equivalent to # `math_ops.log(self.mixture_distribution.probs)`. self._mixture_distribution = categorical.Categorical( logits=tf.math.log(probs), validate_args=validate_args, allow_nan_stats=allow_nan_stats) asserts = distribution_util.maybe_check_scalar_distribution( distribution, dtype, validate_args) if asserts: self._grid = distribution_util.with_dependencies( asserts, self._grid) self._distribution = distribution self._interpolated_affine = [ affine_linear_operator_bijector.AffineLinearOperator( # pylint: disable=g-complex-comprehension shift=loc_, scale=scale_, validate_args=validate_args, name="interpolated_affine_{}".format(k)) for k, (loc_, scale_) in enumerate(zip( interpolate_loc(self._grid, loc), interpolate_scale(self._grid, scale)))] [ self._batch_shape_, self._batch_shape_tensor_, self._event_shape_, self._event_shape_tensor_, ] = determine_batch_event_shapes(self._grid, self._endpoint_affine) super(VectorDiffeomixture, self).__init__( dtype=dtype, # We hard-code `FULLY_REPARAMETERIZED` because when # `validate_args=True` we verify that indeed # `distribution.reparameterization_type == FULLY_REPARAMETERIZED`. A # distribution which is a function of only non-trainable parameters # also implies we can use `FULLY_REPARAMETERIZED`. However, we cannot # easily test for that possibility thus we use `validate_args=False` # as a "back-door" to allow users a way to use non # `FULLY_REPARAMETERIZED` distribution. In such cases IT IS THE USERS # RESPONSIBILITY to verify that the base distribution is a function of # non-trainable parameters. reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=( distribution._graph_parents # pylint: disable=protected-access + [loc_ for loc_ in loc if loc_ is not None] + [p for scale_ in scale for p in scale_.graph_parents]), # pylint: disable=g-complex-comprehension name=name) @property def mixture_distribution(self): """Distribution used to select a convex combination of affine transforms.""" return self._mixture_distribution @property def distribution(self): """Base scalar-event, scalar-batch distribution.""" return self._distribution @property def grid(self): """Grid of mixing probabilities, one for each grid point.""" return self._grid @property def endpoint_affine(self): """Affine transformation for each of `K` components.""" return self._endpoint_affine @property def interpolated_affine(self): """Affine transformation for each convex combination of `K` components.""" return self._interpolated_affine def _batch_shape_tensor(self): return self._batch_shape_tensor_ def _batch_shape(self): return self._batch_shape_ def _event_shape_tensor(self): return self._event_shape_tensor_ def _event_shape(self): return self._event_shape_ def _sample_n(self, n, seed=None): stream = seed_stream.SeedStream(seed, salt="VectorDiffeomixture") x = self.distribution.sample( sample_shape=concat_vectors( [n], self.batch_shape_tensor(), self.event_shape_tensor()), seed=stream()) # shape: [n, B, e] x = [aff.forward(x) for aff in self.endpoint_affine] # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get # ids as a [n]-shaped vector. batch_size = tensorshape_util.num_elements(self.batch_shape) if batch_size is None: batch_size = tf.reduce_prod(input_tensor=self.batch_shape_tensor()) mix_batch_size = tensorshape_util.num_elements( self.mixture_distribution.batch_shape) if mix_batch_size is None: mix_batch_size = tf.reduce_prod( input_tensor=self.mixture_distribution.batch_shape_tensor()) ids = self.mixture_distribution.sample( sample_shape=concat_vectors( [n], distribution_util.pick_vector( self.is_scalar_batch(), np.int32([]), [batch_size // mix_batch_size])), seed=stream()) # We need to flatten batch dims in case mixture_distribution has its own # batch dims. ids = tf.reshape( ids, shape=concat_vectors([n], distribution_util.pick_vector( self.is_scalar_batch(), np.int32([]), np.int32([-1])))) # Stride `components * quadrature_size` for `batch_size` number of times. stride = tensorshape_util.num_elements( tensorshape_util.with_rank_at_least(self.grid.shape, 2)[-2:]) if stride is None: stride = tf.reduce_prod(input_tensor=tf.shape(input=self.grid)[-2:]) offset = tf.range( start=0, limit=batch_size * stride, delta=stride, dtype=ids.dtype) weight = tf.gather(tf.reshape(self.grid, shape=[-1]), ids + offset) # At this point, weight flattened all batch dims into one. # We also need to append a singleton to broadcast with event dims. if tensorshape_util.is_fully_defined(self.batch_shape): new_shape = [-1] + tensorshape_util.as_list(self.batch_shape) + [1] else: new_shape = tf.concat(([-1], self.batch_shape_tensor(), [1]), axis=0) weight = tf.reshape(weight, shape=new_shape) if len(x) != 2: # We actually should have already triggered this exception. However as a # policy we're putting this exception wherever we exploit the bimixture # assumption. raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(x))) # Alternatively: # x = weight * x[0] + (1. - weight) * x[1] x = weight * (x[0] - x[1]) + x[1] return x def _log_prob(self, x): # By convention, we always put the grid points right-most. y = tf.stack([aff.inverse(x) for aff in self.interpolated_affine], axis=-1) log_prob = tf.reduce_sum( input_tensor=self.distribution.log_prob(y), axis=-2) # Because the affine transformation has a constant Jacobian, it is the case # that `affine.fldj(x) = -affine.ildj(x)`. This is not true in general. fldj = tf.stack( [ aff.forward_log_det_jacobian( x, event_ndims=tf.rank(self.event_shape_tensor())) for aff in self.interpolated_affine ], axis=-1) return tf.reduce_logsumexp( input_tensor=self.mixture_distribution.logits - fldj + log_prob, axis=-1) def _mean(self): p = self._expand_mix_distribution_probs() m = self._expand_base_distribution_mean() mean = None for k, aff in enumerate(self.interpolated_affine): # aff.forward is going to do this: # y = tf.squeeze(aff.scale.matmul(m), axis=[-1]) # if aff.shift is not None: # y += aff.shift mean = add(mean, p[..., k] * aff.forward(m)) return mean def _covariance(self): # Law of total variance: # # Cov[Z] = E[Cov[Z | V]] + Cov[E[Z | V]] # # where, # # E[Cov[Z | V]] = sum_i mix_prob[i] Scale[i] # Cov[E[Z | V]] = sum_i mix_prob[i] osquare(loc[i]) # - osquare(sum_i mix_prob[i] loc[i]) # # osquare(x) = x.transpose @ x return add( self._mean_of_covariance_given_quadrature_component(diag_only=False), self._covariance_of_mean_given_quadrature_component(diag_only=False)) def _variance(self): # Equivalent to: tf.diag_part(self._covariance()), return add( self._mean_of_covariance_given_quadrature_component(diag_only=True), self._covariance_of_mean_given_quadrature_component(diag_only=True)) def _mean_of_covariance_given_quadrature_component(self, diag_only): p = self.mixture_distribution.probs_parameter() # To compute E[Cov(Z|V)], we'll add matrices within three categories: # scaled-identity, diagonal, and full. Then we'll combine these at the end. scale_identity_multiplier = None diag = None full = None for k, aff in enumerate(self.interpolated_affine): s = aff.scale # Just in case aff.scale has side-effects, we'll call once. if (s is None or isinstance(s, tf.linalg.LinearOperatorIdentity)): scale_identity_multiplier = add(scale_identity_multiplier, p[..., k, tf.newaxis]) elif isinstance(s, tf.linalg.LinearOperatorScaledIdentity): scale_identity_multiplier = add( scale_identity_multiplier, (p[..., k, tf.newaxis] * tf.square(s.multiplier))) elif isinstance(s, tf.linalg.LinearOperatorDiag): diag = add(diag, (p[..., k, tf.newaxis] * tf.square(s.diag_part()))) else: x = ( p[..., k, tf.newaxis, tf.newaxis] * s.matmul( s.to_dense(), adjoint_arg=True)) if diag_only: x = tf.linalg.diag_part(x) full = add(full, x) # We must now account for the fact that the base distribution might have a # non-unity variance. Recall that, since X ~ iid Law(X_0), # `Cov(SX+m) = S Cov(X) S.T = S S.T Diag(Var(X_0))`. # We can scale by `Var(X)` (vs `Cov(X)`) since X corresponds to `d` iid # samples from a scalar-event distribution. v = self.distribution.variance() if scale_identity_multiplier is not None: scale_identity_multiplier = scale_identity_multiplier * v if diag is not None: diag = diag * v[..., tf.newaxis] if full is not None: full = full * v[..., tf.newaxis] if diag_only: # Apparently we don't need the full matrix, just the diagonal. r = add(diag, full) if r is None and scale_identity_multiplier is not None: ones = tf.ones(self.event_shape_tensor(), dtype=self.dtype) return scale_identity_multiplier[..., tf.newaxis] * ones return add(r, scale_identity_multiplier) # `None` indicates we don't know if the result is positive-definite. is_positive_definite = (True if all(aff.scale.is_positive_definite for aff in self.endpoint_affine) else None) to_add = [] if diag is not None: to_add.append( tf.linalg.LinearOperatorDiag( diag=diag, is_positive_definite=is_positive_definite)) if full is not None: to_add.append( tf.linalg.LinearOperatorFullMatrix( matrix=full, is_positive_definite=is_positive_definite)) if scale_identity_multiplier is not None: to_add.append( tf.linalg.LinearOperatorScaledIdentity( num_rows=self.event_shape_tensor()[0], multiplier=scale_identity_multiplier, is_positive_definite=is_positive_definite)) return (linop_add_lib.add_operators(to_add)[0].to_dense() if to_add else None) def _covariance_of_mean_given_quadrature_component(self, diag_only): square = tf.square if diag_only else vec_osquare p = self._expand_mix_distribution_probs() if not diag_only: p = p[..., tf.newaxis, :] # Assuming tensorshape_util.rank(event)=1. m = self._expand_base_distribution_mean() cov_e_z_given_v = None e_z_given_v = self._mean() for k, aff in enumerate(self.interpolated_affine): y = aff.forward(m) cov_e_z_given_v = add(cov_e_z_given_v, p[..., k] * square(y - e_z_given_v)) return cov_e_z_given_v def _expand_base_distribution_mean(self): """Ensures `self.distribution.mean()` has `[batch, event]` shape.""" single_draw_shape = concat_vectors(self.batch_shape_tensor(), self.event_shape_tensor()) m = tf.reshape( self.distribution.mean(), # A scalar. shape=tf.ones_like(single_draw_shape, dtype=tf.int32)) m = tf.tile(m, multiples=single_draw_shape) tensorshape_util.set_shape( m, tensorshape_util.concatenate(self.batch_shape, self.event_shape)) return m def _expand_mix_distribution_probs(self): p = self.mixture_distribution.probs_parameter() # [B, deg] deg = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(p.shape, 1)[-1]) if deg is None: deg = tf.shape(input=p)[-1] event_ndims = tensorshape_util.rank(self.event_shape) if event_ndims is None: event_ndims = tf.shape(input=self.event_shape_tensor())[0] expand_shape = tf.concat( [ self.mixture_distribution.batch_shape_tensor(), tf.ones([event_ndims], dtype=tf.int32), [deg], ], axis=0) return tf.reshape(p, shape=expand_shape) def maybe_check_quadrature_param(param, name, validate_args): """Helper which checks validity of `loc` and `scale` init args.""" with tf.name_scope("check_" + name): assertions = [] if tensorshape_util.rank(param.shape) is not None: if tensorshape_util.rank(param.shape) == 0: raise ValueError("Mixing params must be a (batch of) vector; " "{}.rank={} is not at least one.".format( name, tensorshape_util.rank(param.shape))) elif validate_args: assertions.append( assert_util.assert_rank_at_least( param, 1, message=("Mixing params must be a (batch of) vector; " "{}.rank is not at least one.".format(name)))) # TODO(jvdillon): Remove once we support k-mixtures. if tensorshape_util.with_rank_at_least(param.shape, 1)[-1] is not None: if tf.compat.dimension_value(param.shape[-1]) != 1: raise NotImplementedError("Currently only bimixtures are supported; " "{}.shape[-1]={} is not 1.".format( name, tf.compat.dimension_value( param.shape[-1]))) elif validate_args: assertions.append( assert_util.assert_equal( tf.shape(input=param)[-1], 1, message=("Currently only bimixtures are supported; " "{}.shape[-1] is not 1.".format(name)))) if assertions: return distribution_util.with_dependencies(assertions, param) return param def determine_batch_event_shapes(grid, endpoint_affine): """Helper to infer batch_shape and event_shape.""" with tf.name_scope("determine_batch_event_shapes"): # grid # shape: [B, k, q] # endpoint_affine # len=k, shape: [B, d, d] batch_shape = grid.shape[:-2] batch_shape_tensor = tf.shape(input=grid)[:-2] event_shape = None event_shape_tensor = None def _set_event_shape(shape, shape_tensor): if event_shape is None: return shape, shape_tensor return (tf.broadcast_static_shape(event_shape, shape), tf.broadcast_dynamic_shape(event_shape_tensor, shape_tensor)) for aff in endpoint_affine: if aff.shift is not None: batch_shape = tf.broadcast_static_shape(batch_shape, aff.shift.shape[:-1]) batch_shape_tensor = tf.broadcast_dynamic_shape( batch_shape_tensor, tf.shape(input=aff.shift)[:-1]) event_shape, event_shape_tensor = _set_event_shape( aff.shift.shape[-1:], tf.shape(input=aff.shift)[-1:]) if aff.scale is not None: batch_shape = tf.broadcast_static_shape(batch_shape, aff.scale.batch_shape) batch_shape_tensor = tf.broadcast_dynamic_shape( batch_shape_tensor, aff.scale.batch_shape_tensor()) event_shape, event_shape_tensor = _set_event_shape( tf.TensorShape([aff.scale.range_dimension]), aff.scale.range_dimension_tensor()[tf.newaxis]) return batch_shape, batch_shape_tensor, event_shape, event_shape_tensor def interpolate_loc(grid, loc): """Helper which interpolates between two locs.""" if len(loc) != 2: raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(loc))) deg = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(grid.shape, 1)[-1]) if deg is None: raise ValueError("Num quadrature grid points must be known prior " "to graph execution.") with tf.name_scope("interpolate_loc"): if loc is None or loc[0] is None and loc[1] is None: return [None]*deg # shape: [B, 1, k, deg] w = grid[..., tf.newaxis, :, :] loc = [ x[..., tf.newaxis] # shape: [B, e, 1] if x is not None else None for x in loc ] if loc[0] is None: x = w[..., 1, :] * loc[1] # shape: [B, e, deg] elif loc[1] is None: x = w[..., 0, :] * loc[0] # shape: [B, e, deg] else: delta = loc[0] - loc[1] x = w[..., 0, :] * delta + loc[1] # shape: [B, e, deg] return [x[..., k] for k in range(deg)] # list(shape:[B, e]) def interpolate_scale(grid, scale): """Helper which interpolates between two scales.""" if len(scale) != 2: raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(scale))) deg = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(grid.shape, 1)[-1]) if deg is None: raise ValueError("Num quadrature grid points must be known prior " "to graph execution.") with tf.name_scope("interpolate_scale"): return [linop_add_lib.add_operators([ # pylint: disable=g-complex-comprehension linop_scale(grid[..., k, q], s) for k, s in enumerate(scale) ])[0] for q in range(deg)] def linop_scale(w, op): """Creates weighted `LinOp` from existing `LinOp`.""" # We assume w > 0. (This assumption only relates to the is_* attributes.) with tf.name_scope("linop_scale"): # TODO(b/35301104): LinearOperatorComposition doesn't combine operators, so # special case combinations here. Once it does, this function can be # replaced by: # return linop_composition_lib.LinearOperatorComposition([ # scaled_identity(w), op]) def scaled_identity(w): return tf.linalg.LinearOperatorScaledIdentity( num_rows=op.range_dimension_tensor(), multiplier=w, is_non_singular=op.is_non_singular, is_self_adjoint=op.is_self_adjoint, is_positive_definite=op.is_positive_definite) if isinstance(op, tf.linalg.LinearOperatorIdentity): return scaled_identity(w) if isinstance(op, tf.linalg.LinearOperatorScaledIdentity): return scaled_identity(w * op.multiplier) if isinstance(op, tf.linalg.LinearOperatorDiag): return tf.linalg.LinearOperatorDiag( diag=w[..., tf.newaxis] * op.diag_part(), is_non_singular=op.is_non_singular, is_self_adjoint=op.is_self_adjoint, is_positive_definite=op.is_positive_definite) if isinstance(op, tf.linalg.LinearOperatorLowerTriangular): return tf.linalg.LinearOperatorLowerTriangular( tril=w[..., tf.newaxis, tf.newaxis] * op.to_dense(), is_non_singular=op.is_non_singular, is_self_adjoint=op.is_self_adjoint, is_positive_definite=op.is_positive_definite) raise NotImplementedError( "Unsupported Linop type ({})".format(type(op).__name__)) def concat_vectors(*args): """Concatenates input vectors, statically if possible.""" args_ = [tf.get_static_value(x) for x in args] if any(vec is None for vec in args_): return tf.concat(args, axis=0) return [val for vec in args_ for val in vec] # pylint: disable=g-complex-comprehension def add(x, y): """Adds inputs; interprets `None` as zero.""" if x is None: return y if y is None: return x return x + y def vec_osquare(x): """Computes the outer-product of a (batch of) vector, i.e., x.T x.""" return x[..., :, tf.newaxis] * x[..., tf.newaxis, :] def softmax(x, axis, name=None): """Equivalent to tf.nn.softmax but works around b/70297725.""" with tf.name_scope(name or "softmax"): x = tf.convert_to_tensor(value=x, name="x") ndims = ( tensorshape_util.rank(x.shape) if tensorshape_util.rank(x.shape) is not None else tf.rank( x, name="ndims")) axis = tf.convert_to_tensor(value=axis, dtype=tf.int32, name="axis") axis_ = tf.get_static_value(axis) if axis_ is not None: axis = np.int(ndims + axis_ if axis_ < 0 else axis_) else: axis = tf1.where(axis < 0, ndims + axis, axis) return tf.nn.softmax(x, axis=axis)
41.862423
128
0.658189
82201950d4ce249a659d7a43b3faedd9956a3c4f
574
py
Python
adventofcode2021/main.py
barthogenes/AdventOfCode2021
b54ed6dca83df48ede5efff8ed1e3b6d827eac94
[ "MIT" ]
null
null
null
adventofcode2021/main.py
barthogenes/AdventOfCode2021
b54ed6dca83df48ede5efff8ed1e3b6d827eac94
[ "MIT" ]
null
null
null
adventofcode2021/main.py
barthogenes/AdventOfCode2021
b54ed6dca83df48ede5efff8ed1e3b6d827eac94
[ "MIT" ]
null
null
null
from dive import dive_part_1, dive_part_2 from get_puzzle_input import get_puzzle_input from sonar_sweep import sonar_sweep_part_1, sonar_sweep_part_2 if __name__ == "__main__": puzzle_input = get_puzzle_input(2021, 1) print("Day 1: Sonar Sweep") print(f"Part 1 answer = {sonar_sweep_part_1(puzzle_input)}") print(f"Part 2 answer = {sonar_sweep_part_2(puzzle_input)}") puzzle_input = get_puzzle_input(2021, 2) print("Day 2: Dive!") print(f"Part 1 answer = {dive_part_1(puzzle_input)}") print(f"Part 2 answer = {dive_part_2(puzzle_input)}")
38.266667
64
0.740418
3c3cda57663be55e45eb15947104f25bd3b93659
487
py
Python
local.py
Alyetama/CarbonDate
576f53fa9809a61a896ecf9286f172fded1cb3bf
[ "MIT" ]
69
2016-09-27T10:43:28.000Z
2022-03-01T22:24:07.000Z
local.py
Alyetama/CarbonDate
576f53fa9809a61a896ecf9286f172fded1cb3bf
[ "MIT" ]
27
2016-10-05T20:32:04.000Z
2019-01-16T15:02:00.000Z
local.py
Alyetama/CarbonDate
576f53fa9809a61a896ecf9286f172fded1cb3bf
[ "MIT" ]
12
2016-05-12T04:10:43.000Z
2021-12-13T23:42:28.000Z
#!/usr/bin/env python3 import json import logging def start(args, mod): ''' Start local version of Carbon Tool ''' result = {} loglevel = logging.WARNING if args.verbose: loglevel = logging.DEBUG logging.basicConfig(level=loglevel, format='%(message)s') logger = logging.getLogger('local') result['self'] = "" results = mod.run(args=args, resultDict=result, logger=logger) print(json.dumps(results, indent=4))
23.190476
61
0.622177
88c91722e0b11da7f83c8e07a5f9db9f40724eb8
2,406
py
Python
entertainment_center.py
angnaerxisen/Udacity
fb2c9ddb16582ec36ec7f400c8b0c1530c769bbc
[ "Apache-2.0" ]
null
null
null
entertainment_center.py
angnaerxisen/Udacity
fb2c9ddb16582ec36ec7f400c8b0c1530c769bbc
[ "Apache-2.0" ]
null
null
null
entertainment_center.py
angnaerxisen/Udacity
fb2c9ddb16582ec36ec7f400c8b0c1530c769bbc
[ "Apache-2.0" ]
null
null
null
import fresh_tomatoes import media # Dead pool the story line ,poster and treailer find on IMDB ,cool websites dead_pool = media.Movie( "Dead Pool", "A fast-talking mercenary with a morbid sense of humor is subjected to\ a rogue experiment that leaves him with accelerated healing powers and \ a quest for revenge.", # naqa "http://bit.ly/2m5Kw07", "https://www.youtube.com/watch?v=17CUxUduw-g" ) # Shawshank redepemtion Shawshank_redepemtion = media.Movie( "Shawshank redepemtion", "Two imprisoned men bond over a number of years,\ finding solace and eventual redemption\ through acts of common decency.", # naqa "http://bit.ly/2e2Yn28", "https://www.youtube.com/watch?v=6hB3S9bIaco" ) # batman VS superman Batman_VS_Superman = media.Movie( "Batman VS Superman", "Two DC superhero fight on the City", # naqa "http://bit.ly/2hvTqP9", "https://www.youtube.com/watch?v=0WWzgGyAH6Y" ) # killsing Bills Vol 2 Killing_Bills_Vol_2 = media.Movie( "Killing Bills Vol 2", "A Woman's revenge her boss", # napa "http://bit.ly/2lnggKh", "https://www.youtube.com/watch?v=WTt8cCIvGYI" ) # Zootopia Zootopia = media.Movie("Zootopia", "In a city of anthropomorphic animals,\ a rookie bunny cop and a cynical con artist \ fox must work together to uncover a conspiracy.", # naqa "http://bit.ly/2m5Nphr", "https://www.youtube.com/watch?v=yCOPJi0Urq4" ) # Account The_Accountant = media.Movie("The Accountant", "As a math savant uncooks the books for a new client, \ the Treasury Department closes in on his activities \ and the body count starts to rise.", # napa "http://bit.ly/2mr9QPd", "http://www.imdb.com/video/imdb/vi2433726233?playlistId=tt2140479&ref_=tt_ov_vi" ) movies = [dead_pool, Shawshank_redepemtion, Batman_VS_Superman, Killing_Bills_Vol_2, Zootopia, The_Accountant] fresh_tomatoes.open_movies_page(movies) print(media, movie, valid_ratings)
33.416667
110
0.583541
c6dccbd1259492fa15f2d9fc161aaef790c4e61a
10,594
py
Python
synthetic/orbitreducer.py
adrn/GalaxySynth
784e99706b6ca9b4d9402da3a453d0066fa76e8b
[ "MIT" ]
1
2015-04-11T01:03:33.000Z
2015-04-11T01:03:33.000Z
synthetic/orbitreducer.py
adrn/GalaxySynth
784e99706b6ca9b4d9402da3a453d0066fa76e8b
[ "MIT" ]
null
null
null
synthetic/orbitreducer.py
adrn/GalaxySynth
784e99706b6ca9b4d9402da3a453d0066fa76e8b
[ "MIT" ]
null
null
null
# coding: utf-8 """ Turn a collection of orbits into something we can make into music. """ from __future__ import division, print_function __author__ = "adrn <adrn@astro.columbia.edu>" # Third-party import gary.dynamics as gd import numpy as np from scipy.signal import argrelmin, argrelmax __all__ = ['cyl_orbit_to_events', 'cyl_orbit_to_events2', 'xyz_orbit_to_events', 'halo_orbit_to_events', 'elliptical_orbit_to_events', 'elliptical_orbit_to_events2'] def quantize(x, nbins, min=None, max=None): if min is None: min = x.min() if max is None: max = x.max() if max > min: q = np.round((x - min) / (max - min) * (nbins-1)).astype(int) q[x > max] = nbins-1 q[x < min] = 0 else: max = -max min = -min x = -x.copy() q = np.round((x - min) / (max - min) * (nbins-1)).astype(int) q[x > max] = nbins-1 q[x < min] = 0 return q def cyl_orbit_to_events(t, w, midi_pool_hi, midi_pool_lo, time_resolution=None): """ Convert an orbit to MIDI events using cylindrical coordinates and rules. For cylindrical orbits, crossing the disk midplane (x-y plane) triggers a high note. Crossing the x-z plane triggers a low note. The pitch of the note is set by the cylindrical radius at the time of either crossing. Smaller radius triggers a higher pitch note. Parameters ---------- t : array_like w : array_like midi_pool : array_like """ R = np.sqrt(w[:,:,0]**2 + w[:,:,1]**2) phi = np.arctan2(w[:,:,1], w[:,:,0]) % (2*np.pi) z = w[:,:,2] # set amplitudes from size of z oscillations all_amps = np.abs(z).max(axis=0) / 10. # variable length arrays phi_cross = np.array([argrelmin(pphi)[0] for pphi in phi.T]) z_cross = np.array([argrelmin(zz**2)[0] for zz in z.T]) # quantize R orbit RR = np.sqrt(R) nbins_hi = len(midi_pool_hi) q_R_hi = quantize(RR, nbins=nbins_hi, min=RR.max(), max=RR.min()) nbins_lo = len(midi_pool_lo) q_R_lo = quantize(RR, nbins=nbins_lo, min=RR.max(), max=RR.min()) delays = [] notes = [] amps = [] for j in range(w.shape[0]): _no = [] _amps = [] for i in range(w.shape[1]): if j in z_cross[i]: _no.append(midi_pool_hi[q_R_hi[j,i]]) _amps.append(all_amps[i]) if j in phi_cross[i]: _no.append(midi_pool_lo[q_R_lo[j,i]]) _amps.append(all_amps[i]) if len(_no) > 0: delays.append(t[j]) notes.append(np.unique(_no).tolist()) amps.append(_amps) delays = np.array(delays) notes = np.array(notes) amps = np.array(amps) return delays, notes, amps # if time_resolution is None: # return delays, notes # new_delays = [] # new_notes = [] # q_delays = quantize(delays, nbins=int(delays.max()/time_resolution)) # for xx in np.unique(q_delays): # ix = q_delays == xx # new_delays.append(delays[ix][0]) # new_notes.append([item for sublist in notes[ix] for item in sublist]) # return np.array(new_delays), np.array(new_notes) def cyl_orbit_to_events2(t, w, midi_pool_hi, midi_pool_lo): """ Convert an orbit to MIDI events using cylindrical coordinates and rules. For cylindrical orbits, crossing the disk midplane (x-y plane) triggers a high note with pitch set by the vertical oscillation frequency. Crossing the x-z plane triggers a low note with pitch set by the azimuthal frequency. The radial oscillations modulate the volume of the note. Parameters ---------- t : array_like w : array_like """ ntimes,norbits,_ = w.shape R = np.sqrt(w[:,:,0]**2 + w[:,:,1]**2) phi = np.arctan2(w[:,:,1], w[:,:,0]) % (2*np.pi) z = w[:,:,2] # normalized R for oscillations normed_R = (R - R.min()) / (R.max() - R.min()) # variable length arrays phi_cross = np.array([argrelmin(pphi)[0] for pphi in phi.T]) z_cross = np.array([argrelmin(zz**2)[0] for zz in z.T]) # estimate periods T_z = np.array([gd.peak_to_peak_period(t, z[:,i]) for i in range(norbits)]) T_phi = np.array([gd.peak_to_peak_period(t, phi[:,i]) for i in range(norbits)]) # quantize the periods and map on to notes # q_z = quantize(T_z, nbins=len(midi_pool_hi), min=T_z.max(), max=T_z.min()) # q_phi = quantize(T_phi, nbins=len(midi_pool_lo), min=T_phi.max(), max=T_phi.min()) q_z = quantize(T_z, nbins=len(midi_pool_hi), min=120., max=30.) # TOTAL HACk q_phi = quantize(T_phi, nbins=len(midi_pool_lo), min=350., max=50.) # TOTAL HACk delays = [] notes = [] Rphase = [] for j in range(w.shape[0]): _no = [] _ph = [] for i in range(w.shape[1]): if j in z_cross[i]: _no.append(midi_pool_hi[q_z[i]]) _ph.append(normed_R[j,i]) if j in phi_cross[i]: _no.append(midi_pool_lo[q_phi[i]]) _ph.append(1.) if len(_no) > 0: delays.append(t[j]) notes.append(np.unique(_no).tolist()) Rphase.append(_ph) delays = np.array(delays) notes = np.array(notes) Rphase = np.array(Rphase) return delays, notes, Rphase def xyz_orbit_to_events(t, w, midi_pool): """ Convert an orbit to MIDI events using Cartesian coordinates and rules. For Cartesian orbits... Parameters ---------- t : array_like w : array_like midi_pool : array_like """ x,y,z = w.T[:3] r = np.sqrt(x**2 + y**2 + z**2) phi = np.arctan2(y,x) theta = np.arccos(z/r) # variable length arrays per = np.array([argrelmin(rr)[0] for rr in r]) apo = np.array([argrelmax(rr)[0] for rr in r]) # quantize the periods and map on to notes q_theta = quantize(theta, nbins=len(midi_pool)) q_phi = quantize(phi, nbins=len(midi_pool)) delays = [] notes = [] for j in range(w.shape[0]): _no = [] for i in range(w.shape[1]): # if j in per[i]: # _no.append(midi_pool[q_theta[i,j]]) if j in apo[i]: _no.append(midi_pool[q_phi[i,j]]) if len(_no) > 0: delays.append(t[j]) notes.append(np.unique(_no).tolist()) delays = np.array(delays) notes = np.array(notes) return delays, notes def halo_orbit_to_events(t, w, midi_pool): """ Convert an orbit to MIDI events using Cartesian coordinates and rules. For Cartesian orbits... Parameters ---------- t : array_like w : array_like midi_pool : array_like """ x,y,z = w.T[:3] r = np.sqrt(x**2 + y**2 + z**2) # quantize the periods and map on to notes x_cross = np.array([argrelmin(xx**2)[0] for xx in x]) y_cross = np.array([argrelmin(yy**2)[0] for yy in y]) z_cross = np.array([argrelmin(zz**2)[0] for zz in z]) q_r = quantize(np.sqrt(r), nbins=len(midi_pool), max=np.sqrt(r).min(), min=np.sqrt(r).max()) delays = [] notes = [] for j in range(w.shape[0]): _no = [] for i in range(w.shape[1]): if j in x_cross[i] or j in y_cross[i] or j in z_cross[i]: _no.append(midi_pool[q_r[i,j]]) if len(_no) > 0: delays.append(t[j]) notes.append(np.unique(_no).tolist()) delays = np.array(delays) notes = np.array(notes) return delays, notes def elliptical_orbit_to_events(t, w): """ Convert an orbit to MIDI events using Cartesian coordinates and rules. Parameters ---------- t : array_like w : array_like midi_pool : array_like """ loop = gd.classify_orbit(w) # apocenters x,y,z = w.T[:3] r = np.sqrt(x**2 + y**2 + z**2) apo = np.array([argrelmax(rr)[0] for rr in r]) # get periods periods = [] for i in range(w.shape[1]): if np.any(loop[i] == 1): w2 = gd.align_circulation_with_z(w[:,i], loop[i]) R = np.sqrt(w2[:,0]**2 + w2[:,1]**2) phi = np.arctan2(w2[:,1], w2[:,0]) % (2*np.pi) z = w2[:,2] # loop T1 = gd.peak_to_peak_period(t, R) T2 = gd.peak_to_peak_period(t, phi) T3 = gd.peak_to_peak_period(t, z) else: # box T1 = gd.peak_to_peak_period(t, w[:,i,0]) T2 = gd.peak_to_peak_period(t, w[:,i,1]) T3 = gd.peak_to_peak_period(t, w[:,i,2]) periods.append([T1,T2,T3]) freqs = (2*np.pi / np.array(periods)) * 10000. delays = [] notes = [] for j in range(w.shape[0]): _no = [] for i in range(w.shape[1]): if j in apo[i]: _no.append(freqs[i].tolist()) if len(_no) > 0: delays.append(t[j]) notes.append(np.unique(_no).tolist()) delays = np.array(delays) notes = np.array(notes) return delays, notes def elliptical_orbit_to_events2(t, w, x_pool, y_pool, z_pool): """ Convert an orbit to MIDI events using Cartesian coordinates and rules. For Cartesian orbits... Parameters ---------- t : array_like w : array_like midi_pool : array_like """ x,y,z = w.T[:3] # quantize the periods and map on to notes x_cross = np.array([argrelmin(xx**2)[0] for xx in x]) y_cross = np.array([argrelmin(yy**2)[0] for yy in y]) z_cross = np.array([argrelmin(zz**2)[0] for zz in z]) r_x = np.sqrt(y**2 + z**2) r_y = np.sqrt(x**2 + z**2) r_z = np.sqrt(x**2 + y**2) q_r_x = quantize(np.sqrt(r_x), nbins=len(x_pool), max=np.sqrt(r_x).min(), min=np.sqrt(r_x).max()) q_r_y = quantize(np.sqrt(r_y), nbins=len(y_pool), max=np.sqrt(r_y).min(), min=np.sqrt(r_y).max()) q_r_z = quantize(np.sqrt(r_z), nbins=len(z_pool), max=np.sqrt(r_z).min(), min=np.sqrt(r_z).max()) delays = [] notes = [] for j in range(w.shape[0]): _no = [] for i in range(w.shape[1]): if j in x_cross[i]: _no.append(x_pool[q_r_x[i,j]]) if j in y_cross[i]: _no.append(y_pool[q_r_y[i,j]]) if j in z_cross[i]: _no.append(z_pool[q_r_z[i,j]]) if len(_no) > 0: delays.append(t[j]) notes.append(np.unique(_no).tolist()) delays = np.array(delays) notes = np.array(notes) return delays, notes
27.878947
95
0.560695
ee298c6bbf583e839324553e23380bd69afee7f1
41
py
Python
music/__init__.py
dkassen/music
0a356dcf9891fd1d5a2f07150868c06905de5ef4
[ "MIT" ]
null
null
null
music/__init__.py
dkassen/music
0a356dcf9891fd1d5a2f07150868c06905de5ef4
[ "MIT" ]
null
null
null
music/__init__.py
dkassen/music
0a356dcf9891fd1d5a2f07150868c06905de5ef4
[ "MIT" ]
null
null
null
from models.accidentals import Accidental
41
41
0.902439
b364bc8a4ae53249b86e3496c38c0799a9b766d1
2,939
py
Python
fine-tune/evaluation/eval_gen.py
muyeby/AMRBART
8f52f9d6a23dcf4132d2cc1272d6605ebc78a16f
[ "MIT" ]
14
2022-03-16T02:36:30.000Z
2022-03-26T07:46:18.000Z
fine-tune/evaluation/eval_gen.py
muyeby/AMRBART
8f52f9d6a23dcf4132d2cc1272d6605ebc78a16f
[ "MIT" ]
2
2022-03-24T12:45:27.000Z
2022-03-30T03:25:15.000Z
fine-tune/evaluation/eval_gen.py
muyeby/AMRBART
8f52f9d6a23dcf4132d2cc1272d6605ebc78a16f
[ "MIT" ]
2
2022-03-24T06:12:19.000Z
2022-03-31T10:44:57.000Z
import sys import os import argparse from typing import Iterable, Optional import datasets import re def argument_parser(): parser = argparse.ArgumentParser(description="Preprocess AMR data") # Multiple input parameters parser.add_argument("--in-tokens", help="input tokens", required=True, type=str) parser.add_argument("--in-reference-tokens", help="refrence tokens to compute metric", type=str) args = parser.parse_args() return args def tokenize_sentence(text, debug=False): text = re.sub(r"('ll|n't|'m|'s|'d|'re)", r" \1", text) text = re.sub(r"(\s+)", r" ", text) return text def raw_corpus_bleu( hypothesis: Iterable[str], reference: Iterable[str], offset: Optional[float] = 0.01 ) -> float: bleu = datasets.load_metric("bleu") hypothesis = [itm.strip().split() for itm in hypothesis] reference = [[itm.strip().split()] for itm in reference] res = bleu.compute(predictions=hypothesis, references=reference) return res def raw_corpus_chrf(hypotheses: Iterable[str], references: Iterable[str]) -> float: chrf = datasets.load_metric("chrf") hypotheses = [itm.strip() for itm in hypotheses] references = [[itm.strip()] for itm in references] res = chrf.compute(predictions=hypotheses, references=references) return res def raw_corpus_meteor(hypotheses: Iterable[str], references: Iterable[str]): hypotheses = [itm.strip() for itm in hypotheses] references = [[itm.strip()] for itm in references] meteor = datasets.load_metric("meteor") res = meteor.compute(predictions=hypotheses, references=references) return res def raw_corpus_bleurt(hypotheses: Iterable[str], references: Iterable[str]): hypotheses = [itm.strip() for itm in hypotheses] references = [itm.strip() for itm in references] bleurt = datasets.load_metric("bleurt", 'bleurt-base-512') res = bleurt.compute(predictions=hypotheses, references=references) return res def read_tokens(in_tokens_file): with open(in_tokens_file) as fid: lines = fid.readlines() return lines if __name__ == "__main__": # Argument handlig args = argument_parser() # read files ref = read_tokens(args.in_reference_tokens) hyp = read_tokens(args.in_tokens) # Lower evaluation for i in range(len(ref)): ref[i] = ref[i].lower() # Lower case output for i in range(len(hyp)): if "<generate>" in hyp[i]: hyp[i] = hyp[i].split("<generate>")[-1] hyp[i] = tokenize_sentence(hyp[i].lower()) # results bleu = raw_corpus_bleu(hyp, ref) print("BLEU {}".format(bleu)) chrFpp = raw_corpus_chrf(hyp, ref) print("chrF++ {}".format(chrFpp)) #meteor = raw_corpus_meteor(hyp, ref) #print("meteor {}".format(meteor)) #bleurt = raw_corpus_bleurt(hyp, ref) #b_res = sum(bleurt["scores"]) / len(bleurt["scores"]) #print("bleurt {}".format(b_res))
29.686869
100
0.674039
569958d364ae0330878f0255f2506ef39c0b709c
2,172
py
Python
src/sage/categories/ring_ideals.py
sensen1/sage
d6c5cd9be78cc448ee4c54bac93385b1244a234c
[ "BSL-1.0" ]
10
2018-06-01T21:54:53.000Z
2022-03-14T20:11:34.000Z
src/sage/categories/ring_ideals.py
sensen1/sage
d6c5cd9be78cc448ee4c54bac93385b1244a234c
[ "BSL-1.0" ]
2
2021-04-02T20:43:29.000Z
2021-04-05T23:38:58.000Z
src/sage/categories/ring_ideals.py
sensen1/sage
d6c5cd9be78cc448ee4c54bac93385b1244a234c
[ "BSL-1.0" ]
15
2020-07-23T10:46:25.000Z
2022-01-25T15:37:24.000Z
r""" Ring ideals """ #***************************************************************************** # Copyright (C) 2005 David Kohel <kohel@maths.usyd.edu> # William Stein <wstein@math.ucsd.edu> # 2008-2009 Nicolas M. Thiery <nthiery at users.sf.net> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #****************************************************************************** from .category_types import Category_ideal from .modules import Modules from sage.categories.rings import Rings _Rings = Rings() class RingIdeals(Category_ideal): """ The category of two-sided ideals in a fixed ring. EXAMPLES:: sage: Ideals(Integers(200)) Category of ring ideals in Ring of integers modulo 200 sage: C = Ideals(IntegerRing()); C Category of ring ideals in Integer Ring sage: I = C([8,12,18]) sage: I Principal ideal (2) of Integer Ring See also: :class:`CommutativeRingIdeals`. .. TODO:: - If useful, implement ``RingLeftIdeals`` and ``RingRightIdeals`` of which ``RingIdeals`` would be a subcategory. - Make ``RingIdeals(R)``, return ``CommutativeRingIdeals(R)`` when ``R`` is commutative. """ def __init__(self, R): """ EXAMPLES:: sage: RingIdeals(ZZ) Category of ring ideals in Integer Ring sage: RingIdeals(3) Traceback (most recent call last): ... TypeError: R (=3) must be a ring TESTS:: sage: TestSuite(RingIdeals(ZZ)).run() """ if not R in _Rings: raise TypeError("R (=%s) must be a ring"%R) Category_ideal.__init__(self, R) def super_categories(self): """ EXAMPLES:: sage: RingIdeals(ZZ).super_categories() [Category of modules over Integer Ring] sage: RingIdeals(QQ).super_categories() [Category of vector spaces over Rational Field] """ R = self.ring() return [Modules(R)]
30.166667
79
0.533149
9161fd3f0a514f37a97cfd735eafbe5ae6ff4b84
5,956
py
Python
src/data/account.py
vincent-lg/talismud
645bdae3d2e71cde51a25fe48c8f1bde15319631
[ "BSD-3-Clause" ]
4
2020-05-16T21:58:55.000Z
2020-08-29T11:17:31.000Z
src/data/account.py
vincent-lg/talismud
645bdae3d2e71cde51a25fe48c8f1bde15319631
[ "BSD-3-Clause" ]
1
2020-12-15T11:22:32.000Z
2020-12-15T11:22:32.000Z
src/data/account.py
vincent-lg/talismud
645bdae3d2e71cde51a25fe48c8f1bde15319631
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020-20201, LE GOFF Vincent # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. """Account entity. An account plays the role of an intermediate between a connection from a player (a session object), and one or more characters. The account contains the username, hashed password and email address of the player. One or more characters can be gathered in the same account. Even if you plan to have only one character per account, this separation is useful (no need to put passwords in characters, after all). """ from datetime import datetime import hashlib import os import pickle import typing as ty from pony.orm import Optional, Required, Set from data.base import db, PicklableEntity from data.decorators import lazy_property from data.handlers import BlueprintHandler, OptionHandler import settings class Account(PicklableEntity, db.Entity): """Account entity, to connect a session to characters.""" username = Required(str, max_len=64, unique=True) hashed_password = Required(bytes) email = Optional(str, max_len=320, unique=True, index=True) created_on = Required(datetime, default=datetime.utcnow) updated_on = Required(datetime, default=datetime.utcnow) sessions = Set("Session") web_sessions = Set("WebSession") players = Set("Player") binary_options = Required(bytes, default=pickle.dumps({})) @lazy_property def blueprints(self): return BlueprintHandler(self) @lazy_property def options(self): """Return the session option handler.""" return OptionHandler(self) def before_update(self): """Change the 'updated_on' datetime.""" self.updated_on = datetime.utcnow() def is_correct_password(self, password: str) -> bool: """ Return whether the given password is correct for this account. Args: password (str): the plain text password. Returns: correct (bool): whether this password is correct. """ return self.test_password(self.hashed_password, password) def change_password(self, new_password: str): """ Change the account password, hashing it. Args: new_password (str): the new account password (not hashed). """ self.hashed_password = self.hash_password(new_password) @classmethod def create_with_password(cls, username: str, plain_password: str, email: ty.Optional[str]) -> "Account": """ Create a new account object and hash its plain password. Passwords aren't stored in clear in the database. This method will hash the password according to settings and will create and return an account object with this hashed password. Args: username (str): the username. plain_password (str): the password (in plain text). email (str, optional): the optional email address. Returns: new_account (Account): the new account with a hashed password. """ password = cls.hash_password(plain_password) return cls(username=username, hashed_password=password, email=email) @staticmethod def hash_password(plain_password: str, salt: ty.Optional[bytes] = None) -> bytes: """ Hash the given plain password, return it hashed. If the salt is provided, it is used for hashing. If not, it is randomly generated. Args: plain_password (str): the plain password. salt (bytes, optional): the salt to use to hash the password. Args: hashed_password (bytes): the hashed passowrd containing the salt and key. """ if salt is None: # Generate a random salt salt = os.urandom(settings.SALT_SIZE) # Hash the password with pbkdf2_hmac key = hashlib.pbkdf2_hmac(settings.HASH_ALGORITHM, plain_password.encode("utf-8"), salt, settings.HASH_ITERATIONS, settings.KEY_SIZE) return salt + key @staticmethod def test_password(hashed_password: bytes, plain_password: str) -> bool: """Return whether the hashed and non hashed password match.""" salt = hashed_password[:settings.SALT_SIZE] key = hashed_password[settings.SALT_SIZE:] hashed_attempt = Account.hash_password(plain_password, salt) return hashed_password == hashed_attempt
36.765432
78
0.695601
cd879934339a82d66a76c1d28a53db05e5460943
900
py
Python
tests/plugins/hold_htlcs.py
mosqueiro/lightning
793a25a0e5ee0c3c80d1403d556a4a013ee233fd
[ "MIT" ]
2
2019-10-03T16:52:59.000Z
2019-10-04T14:35:16.000Z
tests/plugins/hold_htlcs.py
mosqueiro/lightning
793a25a0e5ee0c3c80d1403d556a4a013ee233fd
[ "MIT" ]
1
2019-09-18T23:38:38.000Z
2019-09-18T23:38:38.000Z
tests/plugins/hold_htlcs.py
jtimon/lightning
61383408a45960bf7fd045fc420c95478de699c0
[ "MIT" ]
2
2020-01-11T13:14:39.000Z
2021-05-10T14:10:36.000Z
#!/usr/bin/env python3 """Plugin that holds on to HTLCs for 10 seconds. Used to test restarts / crashes while HTLCs were accepted, but not yet settled/forwarded/ """ from lightning import Plugin import json import os import tempfile import time plugin = Plugin() @plugin.hook("htlc_accepted") def on_htlc_accepted(htlc, onion, plugin, **kwargs): # Stash the onion so the test can check it fname = os.path.join(tempfile.mkdtemp(), "onion.json") with open(fname, 'w') as f: f.write(json.dumps(onion)) plugin.log("Holding onto an incoming htlc for 10 seconds") time.sleep(10) print("Onion written to {}".format(fname)) # Give the tester something to look for plugin.log("htlc_accepted hook called") return {'result': 'continue'} @plugin.init() def init(options, configuration, plugin): plugin.log("hold_htlcs.py initializing") plugin.run()
20.930233
70
0.698889
b2becbfb76f5d22b95737f1c020cdb78f56491bd
1,200
py
Python
fedlearner/common/hooks.py
Hsy-Intel/fedlearner
d5d0bb5549e115eaf0dec5a00a78dcb21ac0909d
[ "Apache-2.0" ]
772
2020-01-21T13:59:42.000Z
2022-03-30T08:20:16.000Z
fedlearner/common/hooks.py
Hsy-Intel/fedlearner
d5d0bb5549e115eaf0dec5a00a78dcb21ac0909d
[ "Apache-2.0" ]
126
2020-03-03T07:54:39.000Z
2022-03-08T23:24:03.000Z
fedlearner/common/hooks.py
Hsy-Intel/fedlearner
d5d0bb5549e115eaf0dec5a00a78dcb21ac0909d
[ "Apache-2.0" ]
198
2020-01-22T02:16:17.000Z
2022-03-31T01:13:05.000Z
# Copyright 2021 The FedLearner Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import os import importlib from typing import Any def parse_and_call_fn(module_fn_path: str) -> Any: if module_fn_path.find(':') == -1: raise RuntimeError(f'Invalid module_fn_path: {module_fn_path}') module_path, func_name = module_fn_path.split(':') module = importlib.import_module(module_path) # Dynamically run the function return getattr(module, func_name)() def pre_start_hook() -> Any: before_hook_path = os.getenv('PRE_START_HOOK', None) if before_hook_path: return parse_and_call_fn(before_hook_path) return None
33.333333
74
0.743333
79affd92ba3ca5b74d1bde5149d5507ee187a5a3
933
py
Python
file_syncer/constants.py
Kami/python-file-syncer
4ce8e771653324388d9b0ff5c3b1040089d58525
[ "Apache-2.0" ]
5
2015-01-10T18:22:54.000Z
2021-07-11T00:11:31.000Z
file_syncer/constants.py
ogrisel/python-file-syncer
4bab4c9a046b61de1b9631a0aa4d3513bc872abe
[ "Apache-2.0" ]
null
null
null
file_syncer/constants.py
ogrisel/python-file-syncer
4bab4c9a046b61de1b9631a0aa4d3513bc872abe
[ "Apache-2.0" ]
4
2016-08-20T04:44:28.000Z
2021-11-05T05:38:49.000Z
# Licensed to Tomaz Muraus under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # Tomaz muraus licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'VALID_LOG_LEVELS', 'MANIFEST_FILE' ] VALID_LOG_LEVELS = ['DEBUG', 'ERROR', 'FATAL', 'CRITICAL', 'INFO', 'WARNING'] MANIFEST_FILE = 'manifest.json'
38.875
78
0.754555
a7f462909a12b385e0135018764efe9d121113e3
17,705
py
Python
tests/labeling/text_classification/test_label_models.py
InquestGeronimo/rubrix
04b6e619c900cc67f79020197d7ef242501b360e
[ "Apache-2.0" ]
888
2021-03-26T20:39:21.000Z
2022-03-31T18:09:37.000Z
tests/labeling/text_classification/test_label_models.py
InquestGeronimo/rubrix
04b6e619c900cc67f79020197d7ef242501b360e
[ "Apache-2.0" ]
805
2021-04-29T09:24:44.000Z
2022-03-31T18:29:34.000Z
tests/labeling/text_classification/test_label_models.py
InquestGeronimo/rubrix
04b6e619c900cc67f79020197d7ef242501b360e
[ "Apache-2.0" ]
72
2021-04-30T08:53:36.000Z
2022-03-31T10:48:33.000Z
# coding=utf-8 # Copyright 2021-present, the Recognai S.L. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np import pytest from rubrix import TextClassificationRecord from rubrix.labeling.text_classification import FlyingSquid, Snorkel, WeakLabels from rubrix.labeling.text_classification.label_models import ( LabelModel, MissingAnnotationError, NotFittedError, TieBreakPolicy, TooFewRulesError, ) @pytest.fixture def weak_labels(monkeypatch): def mock_load(*args, **kwargs): return [TextClassificationRecord(inputs="test", id=i) for i in range(4)] monkeypatch.setattr( "rubrix.labeling.text_classification.weak_labels.load", mock_load ) def mock_apply(self, *args, **kwargs): weak_label_matrix = np.array( [[0, 1, -1], [2, 0, -1], [-1, -1, -1], [0, 2, 2]], dtype=np.short, ) annotation_array = np.array([0, 1, -1, 2], dtype=np.short) label2int = {None: -1, "negative": 0, "positive": 1, "neutral": 2} return weak_label_matrix, annotation_array, label2int monkeypatch.setattr(WeakLabels, "_apply_rules", mock_apply) return WeakLabels(rules=[lambda: None] * 3, dataset="mock") @pytest.fixture def weak_labels_from_guide(monkeypatch, resources): matrix_and_annotation = np.load( str(resources / "weak-supervision-guide-matrix.npy") ) matrix, annotation = matrix_and_annotation[:, :-1], matrix_and_annotation[:, -1] def mock_load(*args, **kwargs): return [ TextClassificationRecord(inputs="mock", id=i) for i in range(len(matrix)) ] monkeypatch.setattr( "rubrix.labeling.text_classification.weak_labels.load", mock_load ) def mock_apply(self, *args, **kwargs): return matrix, annotation, {None: -1, "SPAM": 0, "HAM": 1} monkeypatch.setattr(WeakLabels, "_apply_rules", mock_apply) return WeakLabels(rules=[lambda x: "mock"] * matrix.shape[1], dataset="mock") def test_tie_break_policy_enum(): with pytest.raises(ValueError, match="mock is not a valid TieBreakPolicy"): TieBreakPolicy("mock") class TestLabelModel: def test_weak_label_property(self): weak_labels = object() label_model = LabelModel(weak_labels) assert label_model.weak_labels is weak_labels def test_abstract_methods(self): label_model = LabelModel(None) with pytest.raises(NotImplementedError): label_model.fit() with pytest.raises(NotImplementedError): label_model.score() with pytest.raises(NotImplementedError): label_model.predict() class TestSnorkel: def test_not_installed(self, monkeypatch): monkeypatch.setitem(sys.modules, "snorkel", None) with pytest.raises(ModuleNotFoundError, match="pip install snorkel"): Snorkel(None) def test_init(self, weak_labels): from snorkel.labeling.model import LabelModel as SnorkelLabelModel label_model = Snorkel(weak_labels) assert label_model.weak_labels is weak_labels assert isinstance(label_model._model, SnorkelLabelModel) assert label_model._model.cardinality == 3 @pytest.mark.parametrize( "wrong_mapping,expected", [ ( {None: -10, "negative": 0, "positive": 1, "neutral": 2}, {-10: -1, 0: 0, 1: 1, 2: 2}, ), ( {None: -1, "negative": 1, "positive": 3, "neutral": 4}, {-1: -1, 1: 0, 3: 1, 4: 2}, ), ], ) def test_init_wrong_mapping(self, weak_labels, wrong_mapping, expected): weak_labels.change_mapping(wrong_mapping) label_model = Snorkel(weak_labels) assert label_model._weaklabels2snorkel == expected assert label_model._snorkel2weaklabels == {k: v for v, k in expected.items()} @pytest.mark.parametrize( "include_annotated_records", [True, False], ) def test_fit(self, monkeypatch, weak_labels, include_annotated_records): def mock_fit(self, L_train, *args, **kwargs): if include_annotated_records: assert (L_train == weak_labels.matrix()).all() else: assert (L_train == weak_labels.matrix(has_annotation=False)).all() assert kwargs == {"passed_on": None} monkeypatch.setattr( "snorkel.labeling.model.LabelModel.fit", mock_fit, ) label_model = Snorkel(weak_labels) label_model.fit( include_annotated_records=include_annotated_records, passed_on=None ) def test_fit_automatically_added_kwargs(self, weak_labels): label_model = Snorkel(weak_labels) with pytest.raises(ValueError, match="provided automatically"): label_model.fit(L_train=None) @pytest.mark.parametrize( "policy,include_annotated_records,include_abstentions,expected", [ ("abstain", True, False, (2, ["positive", "negative"], [0.8, 0.9])), ( "abstain", True, True, (4, [None, None, "positive", "negative"], [None, None, 0.8, 0.9]), ), ("random", False, True, (1, ["positive"], [0.8])), ( "random", True, True, ( 4, ["positive", "negative", "positive", "negative"], [0.4 + 0.0001, 1.0 / 3 + 0.0001, 0.8, 0.9], ), ), ], ) def test_predict( self, weak_labels, monkeypatch, policy, include_annotated_records, include_abstentions, expected, ): def mock_predict(self, L, return_probs, tie_break_policy, *args, **kwargs): assert tie_break_policy == policy assert return_probs is True if include_annotated_records: assert len(L) == 4 preds = np.array([-1, -1, 1, 0]) if policy == "random": preds = np.array([1, 0, 1, 0]) return preds, np.array( [ [0.4, 0.4, 0.2], [1.0 / 3, 1.0 / 3, 1.0 / 3], [0.1, 0.8, 0.1], [0.9, 0.05, 0.05], ] ) else: assert len(L) == 1 return np.array([1]), np.array([[0.1, 0.8, 0.1]]) monkeypatch.setattr( "snorkel.labeling.model.LabelModel.predict", mock_predict, ) label_model = Snorkel(weak_labels) records = label_model.predict( tie_break_policy=policy, include_annotated_records=include_annotated_records, include_abstentions=include_abstentions, ) assert len(records) == expected[0] assert [ rec.prediction[0][0] if rec.prediction else None for rec in records ] == expected[1] assert [ rec.prediction[0][1] if rec.prediction else None for rec in records ] == expected[2] @pytest.mark.parametrize("policy,expected", [("abstain", 0.5), ("random", 2.0 / 3)]) def test_score(self, monkeypatch, weak_labels, policy, expected): def mock_predict(self, L, return_probs, tie_break_policy): assert (L == weak_labels.matrix(has_annotation=True)).all() assert return_probs is True assert tie_break_policy == policy if policy == "abstain": predictions = np.array([-1, 1, 0]) elif policy == "random": predictions = np.array([0, 1, 0]) else: raise ValueError("Untested policy!") probabilities = None # accuracy does not need probabs ... return predictions, probabilities monkeypatch.setattr( "snorkel.labeling.model.LabelModel.predict", mock_predict, ) label_model = Snorkel(weak_labels) assert label_model.score(tie_break_policy=policy)["accuracy"] == pytest.approx( expected ) def test_score_without_annotations(self, weak_labels): weak_labels._annotation_array = np.array([], dtype=np.short) label_model = Snorkel(weak_labels) with pytest.raises(MissingAnnotationError, match="need annotated records"): label_model.score() @pytest.mark.parametrize( "change_mapping", [False, True], ) def test_integration(self, weak_labels_from_guide, change_mapping): if change_mapping: weak_labels_from_guide.change_mapping({None: -10, "HAM": 2, "SPAM": 5}) label_model = Snorkel(weak_labels_from_guide) label_model.fit(seed=43) metrics = label_model.score() assert metrics["accuracy"] == pytest.approx(0.8947368421052632) records = label_model.predict() assert len(records) == 1177 assert records[0].prediction == [ ("SPAM", pytest.approx(0.5633776670811805)), ("HAM", pytest.approx(0.4366223329188196)), ] class TestFlyingSquid: def test_not_installed(self, monkeypatch): monkeypatch.setitem(sys.modules, "flyingsquid", None) with pytest.raises(ModuleNotFoundError, match="pip install pgmpy flyingsquid"): FlyingSquid(None) def test_init(self, weak_labels): label_model = FlyingSquid(weak_labels) assert label_model._labels == ["negative", "positive", "neutral"] with pytest.raises(ValueError, match="must not contain 'm'"): FlyingSquid(weak_labels, m="mock") weak_labels._rules = weak_labels.rules[:2] with pytest.raises(TooFewRulesError, match="at least three"): FlyingSquid(weak_labels) @pytest.mark.parametrize("include_annotated,expected", [(False, 1), (True, 4)]) def test_fit(self, monkeypatch, weak_labels, include_annotated, expected): def mock_fit(*args, **kwargs): if not include_annotated: assert (kwargs["L_train"] == np.array([0, 0, 0])).all() assert len(kwargs["L_train"]) == expected monkeypatch.setattr( "flyingsquid.label_model.LabelModel.fit", mock_fit, ) label_model = FlyingSquid(weak_labels) label_model.fit(include_annotated_records=include_annotated) assert len(label_model._models) == 3 def test_fit_init_kwargs(self, monkeypatch, weak_labels): class MockLabelModel: def __init__(self, m, mock): assert m == len(weak_labels.rules) assert mock == "mock" def fit(self, L_train, mock): assert mock == "mock_fit_kwargs" monkeypatch.setattr( "flyingsquid.label_model.LabelModel", MockLabelModel, ) label_model = FlyingSquid(weak_labels, mock="mock") label_model.fit(mock="mock_fit_kwargs") @pytest.mark.parametrize( "policy,include_annotated_records,include_abstentions,verbose,expected", [ ( "abstain", False, False, True, { "verbose": True, "L_matrix_length": 1, "return": np.array([[0.5, 0.5]]), "nr_of_records": 0, }, ), ( "abstain", True, True, False, { "verbose": False, "L_matrix_length": 4, "return": np.array([[0.5, 0.5] * 4]), "nr_of_records": 4, "prediction": None, }, ), ( "random", False, False, False, { "verbose": False, "L_matrix_length": 1, "return": np.array([[0.5, 0.5]]), "nr_of_records": 1, "prediction": [ ("negative", 0.3334333333333333), ("neutral", 0.3332833333333333), ("positive", 0.3332833333333333), ], }, ), ], ) def test_predict( self, weak_labels, monkeypatch, policy, include_annotated_records, include_abstentions, verbose, expected, ): class MockPredict: calls_count = 0 @classmethod def __call__(cls, L_matrix, verbose): assert verbose is expected["verbose"] assert len(L_matrix) == expected["L_matrix_length"] cls.calls_count += 1 return expected["return"] monkeypatch.setattr( "flyingsquid.label_model.LabelModel.predict_proba", MockPredict(), ) label_model = FlyingSquid(weak_labels) label_model.fit() records = label_model.predict( tie_break_policy=policy, include_annotated_records=include_annotated_records, include_abstentions=include_abstentions, verbose=verbose, ) assert MockPredict.calls_count == 3 assert len(records) == expected["nr_of_records"] if records: assert records[0].prediction == expected["prediction"] def test_predict_binary(self, monkeypatch, weak_labels): class MockPredict: calls_count = 0 @classmethod def __call__(cls, L_matrix, verbose): cls.calls_count += 1 return np.array([[0.6, 0.4]]) monkeypatch.setattr( "flyingsquid.label_model.LabelModel.predict_proba", MockPredict(), ) weak_labels._label2int = {None: -1, "negative": 0, "positive": 1} label_model = FlyingSquid(weak_labels=weak_labels) label_model.fit() records = label_model.predict() assert MockPredict.calls_count == 1 assert len(records) == 1 assert records[0].prediction == [("negative", 0.6), ("positive", 0.4)] def test_predict_not_implented_tbp(self, weak_labels): label_model = FlyingSquid(weak_labels) label_model.fit() with pytest.raises(NotImplementedError, match="true-random"): label_model.predict(tie_break_policy="true-random") def test_predict_not_fitted_error(self, weak_labels): label_model = FlyingSquid(weak_labels) with pytest.raises(NotFittedError, match="not fitted yet"): label_model.predict() def test_score_not_fitted_error(self, weak_labels): label_model = FlyingSquid(weak_labels) with pytest.raises(NotFittedError, match="not fitted yet"): label_model.score() def test_score(self, monkeypatch, weak_labels): def mock_predict(self, weak_label_matrix, verbose): assert verbose is False assert len(weak_label_matrix) == 3 return np.array([[0.8, 0.1, 0.1], [0.1, 0.8, 0.1], [0.1, 0.1, 0.8]]) monkeypatch.setattr(FlyingSquid, "_predict", mock_predict) label_model = FlyingSquid(weak_labels) metrics = label_model.score() assert "accuracy" in metrics assert metrics["accuracy"] == pytest.approx(1.0) @pytest.mark.parametrize( "tbp,vrb,expected", [("abstain", False, 1.0), ("random", True, 2 / 3.0)] ) def test_score_tbp(self, monkeypatch, weak_labels, tbp, vrb, expected): def mock_predict(self, weak_label_matrix, verbose): assert verbose is vrb assert len(weak_label_matrix) == 3 return np.array( [[0.8, 0.1, 0.1], [0.4, 0.4, 0.2], [1 / 3.0, 1 / 3.0, 1 / 3.0]] ) monkeypatch.setattr(FlyingSquid, "_predict", mock_predict) label_model = FlyingSquid(weak_labels) metrics = label_model.score(tie_break_policy=tbp, verbose=vrb) assert metrics["accuracy"] == pytest.approx(expected) def test_score_not_implemented_tbp(self, weak_labels): label_model = FlyingSquid(weak_labels) label_model.fit() with pytest.raises(NotImplementedError, match="true-random"): label_model.score(tie_break_policy="true-random") def test_integration(self, weak_labels_from_guide): label_model = FlyingSquid(weak_labels_from_guide) label_model.fit() metrics = label_model.score() assert metrics["accuracy"] == pytest.approx(0.9282296650717703) records = label_model.predict() assert len(records) == 1177 assert records[0].prediction == [ ("SPAM", 0.8236983486087645), ("HAM", 0.17630165139123552), ]
33.917625
88
0.577633
2068526162b27630307c7b206043a5d49a87b6bd
7,966
py
Python
smartmeter.py
BasvanderWorp/smartmeter
76fd3a0f55ff8081879f1e7884030e8a2e46d2a4
[ "MIT" ]
null
null
null
smartmeter.py
BasvanderWorp/smartmeter
76fd3a0f55ff8081879f1e7884030e8a2e46d2a4
[ "MIT" ]
null
null
null
smartmeter.py
BasvanderWorp/smartmeter
76fd3a0f55ff8081879f1e7884030e8a2e46d2a4
[ "MIT" ]
null
null
null
# Dutch Smart Meter Reader (P1) import sys import serial from util import read_config import argparse import os import logging from datetime import datetime import socket ############################################################################## # Part 0.1: Set global variables ############################################################################## PROGRAM_NAME = 'dsmr' PROGRAM_VERSION = "0.01" PROGRAM_VERSION_DATE = "11-07-2021" PROGRAM_AUTHOR = "Bas van der Worp" CONFIG_STORE = '/dsmr/dsmr_config.json' CONFIG = read_config(CONFIG_STORE) LOG_PATH_BASE = CONFIG['LOG_PATH_BASE'] OUTPUT_PATH_BASE = CONFIG['OUTPUT_PATH_BASE'] DSMR_PORT = CONFIG['DSMR_PORT'] DSMR_BAUDRATE = eval(CONFIG['DSMR_BAUDRATE']) DSMR_BYTESIZE = eval(CONFIG['DSMR_BYTESIZE']) DSMR_PARITY = eval(CONFIG['DSMR_PARITY']) ############################################################################## # Main program ############################################################################## if __name__ == '__main__': ########################################################################## # === Part 0.2: Commandline parameter initialisation ########################################################################## parser = argparse.ArgumentParser() requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument("-d", "--dummy", help="Dummy") args = parser.parse_args() if args.dummy: dummy = args.dummy else: dummy = "" ########################################################################## # Part 0.3: Initialise logging ########################################################################## # Check whether logfolder exists. If not, write to 'log' folder LOG_PATH = f'{LOG_PATH_BASE}{PROGRAM_NAME}/' if not os.path.exists(LOG_PATH): try: os.makedirs(LOG_PATH) except OSError as e: if e.errno != errno.EEXIST: LOG_PATH = "" raise OS_USER = os.getlogin().lower() LOGLEVEL_DEBUG = eval('logging.DEBUG') LOGLEVEL_INFO = eval('logging.INFO') LOGFILE = os.path.normpath(LOG_PATH + "log" "_" + "{:%Y%m%d}".format(datetime.now()) + ".log") logging.basicConfig( filename=LOGFILE, level='INFO', format='%(asctime)s %(levelname)s ' + '%(name)s %(funcName)s: %(message)s', datefmt='%d-%m-%Y %H:%M:%S') logger = logging.getLogger(__name__) msg_1 = '='*80 logger.info(msg_1) logger.info(f'Start program : {PROGRAM_NAME}') logger.info(f'Version : {PROGRAM_VERSION}') logger.info(f'Version date : {PROGRAM_VERSION_DATE}') logger.info(f'Host : {socket.gethostname()}') logger.info(f'parameters : {CONFIG}') ########################################################################## # Part 0.4: Start logging ########################################################################## print ("Digital Smart Meter Reader (P1), version ", PROGRAM_VERSION) print ("Press Control-C to stop") # Set COM port config ser = serial.Serial() ser.port = DSMR_PORT ser.baudrate = DSMR_BAUDRATE ser.bytesize = DSMR_BYTESIZE ser.parity = DSMR_PARITY # Open COM port try: ser.open() logger.info('Serial port opened!') except serial.serialutil.SerialException as err1: if err1.args[0] == 'Port is already open.': logger.warning(err1) pass else: msg = f'Error opening port {ser.name}, error: {err1}' logger.warning(msg) print (msg, ' program terminated') sys.exit(msg) # Initialize telegram_counter = 1 line_counter = 0 while telegram_counter < 25: p1_line = '' telegram_start_line_found = False # Read lines from serial port, search start of telegram while not telegram_start_line_found: try: p1_raw = ser.readline() line_counter += 1 except: sys.exit (f"Seriele port {ser.name} cannot be read.") if p1_raw == b'/ISK5\\2M550T-1011\r\n': telegram_start_line_found = True print(f'{str(line_counter).zfill(4)} telegram {telegram_counter}', end="") else: # skip line, not a start line print(f'{str(line_counter).zfill(4)} SKIPPED: {p1_raw}') if telegram_start_line_found: # read first line p1_raw = ser.readline() p1_str = p1_raw.decode('utf-8') line_counter += 1 if p1_str == '!': telegram_last_line_found = True else: telegram_last_line_found = False else: msg = 'start line not found' logger.error(msg) sys.exit(msg) # Read all telegram lines while not telegram_last_line_found: p1_str = p1_raw.decode('utf-8') msg = f'{str(line_counter).zfill(4)}: RAW: {p1_raw}, DECODE:{p1_str}' # print(msg, end="") if p1_str[0] == '!': # print(f'{str(line_counter).zfill(4)} LAST LINE FOUND: {p1_raw}') telegram_last_line_found = True telegram_counter += 1 else: telegram_last_line_found = False if p1_str[-2:] == '\r\n': p1_str = p1_str[:-2] else: msg = f'Unexpected end of line in telegram line {p1_raw}' logger.error(msg) sys.exit(msg) if len(p1_str) > 3: if p1_str[3] == ':': p1_str = p1_str[4:] else: # skip line try: # print(f'{str(line_counter).zfill(4)} SKIPPED2: {p1_raw}') p1_raw = ser.readline() line_counter += 1 except: sys.exit (f"Seriele port {ser.name} cannot be read.") continue else: # skip line (maybe error) try: # print(f'{str(line_counter).zfill(4)} SKIPPED3: {p1_raw}') p1_raw = ser.readline() line_counter += 1 except: sys.exit (f"Seriele port {ser.name} cannot be read.") if p1_raw == b'!5AC3\r\n': telegram_last_line_found = True telegram_counter += 1 print(f'{str(line_counter).zfill(4)} LAST LINE FOUND: {p1_raw}') continue # print(p1_str) measure = "" value = "" obis_code = p1_str.split('(')[0] p1_value = p1_str.split('(')[1][:-1] # remove closing bracket if obis_code == '1.7.0': measure = "actual_delivery (kW)" value = p1_value[:-1] print(f'---- {measure}:{value}') # print(f'{str(line_counter).zfill(4)}: {p1_raw}, {measure}:{value}') try: p1_raw = ser.readline() line_counter += 1 except: sys.exit (f"Seriele port {ser.name} cannot be read.") # Close port and show status try: ser.close() msg = f"Serial port {ser.name} succesfully closed." logger.info(msg) except: msg = f"Oops {ser.name}. Programma terminated. Could not close serial port" logger.error(msg) sys.exit (msg)
37.051163
90
0.467989
8c66b2ca4c7662321a5ec627105265e1275aa02b
218
py
Python
app/logic/bluesteel/controllers/__init__.py
imvu/bluesteel
ab52133249a693b3cd2d8593c5d47408a3b0fce6
[ "MIT" ]
10
2017-01-13T06:28:04.000Z
2020-11-18T13:00:26.000Z
app/logic/bluesteel/controllers/__init__.py
imvu/bluesteel
ab52133249a693b3cd2d8593c5d47408a3b0fce6
[ "MIT" ]
null
null
null
app/logic/bluesteel/controllers/__init__.py
imvu/bluesteel
ab52133249a693b3cd2d8593c5d47408a3b0fce6
[ "MIT" ]
2
2018-03-29T14:10:53.000Z
2019-11-20T08:21:57.000Z
""" Automatic file """ from app.logic.bluesteel.controllers.BluesteelLayoutController import BluesteelLayoutController from app.logic.bluesteel.controllers.BluesteelProjectController import BluesteelProjectController
43.6
97
0.876147
86a0861b7a37452603165bac313e8b230c774011
1,474
py
Python
vframe/vframe/commands/save_images.py
kant/vframe
28e49ca62d9036a78a25b26eb0fb7e3cf8c79031
[ "MIT" ]
1
2021-04-18T10:42:10.000Z
2021-04-18T10:42:10.000Z
vframe/vframe/commands/save_images.py
vframeio/_vframe_v0_archived
28e49ca62d9036a78a25b26eb0fb7e3cf8c79031
[ "MIT" ]
null
null
null
vframe/vframe/commands/save_images.py
vframeio/_vframe_v0_archived
28e49ca62d9036a78a25b26eb0fb7e3cf8c79031
[ "MIT" ]
null
null
null
""" Generates metadata using Yolo/Darknet Python interface - about 20-30 FPS on NVIDIA 1080 Ti GPU - SPP currently not working - enusre image size matches network image size """ import click from vframe.settings import types from vframe.utils import click_utils from vframe.settings import vframe_cfg as cfg from cli_vframe import processor @click.command() @click.option('-o', '--output', 'opt_dir_media', required=True, help='Path to media folder') @processor @click.pass_context def cli(ctx, sink, opt_dir_media): """Saves keyframes for still-frame-video""" # ------------------------------------------------- # imports from os.path import join import cv2 as cv from vframe.utils import file_utils, logger_utils from vframe.settings.paths import Paths # ------------------------------------------------- # initialize log = logger_utils.Logger.getLogger() log.debug('init saves images') file_utils.mkdirs(opt_dir_media) # ------------------------------------------------- # process frame_count = 0 while True: chair_item = yield for frame_idx, frame in chair_item.drawframes.items(): # save frame to the output folder fp_im = join(opt_dir_media, 'frame_{}.png'.format(file_utils.zpad(frame_count))) cv.imwrite(fp_im, frame) frame_count += 1 # ------------------------------------------------------------ # send back to generator sink.send(chair_item)
23.396825
86
0.603121
175d6896e49edee309c13404160dfc62f4db8196
1,471
py
Python
ngram-protein-classifier/generate.py
yasithmilinda/uom-projects
d1810a78ff8de1c57b760836cf102f63c5945962
[ "MIT" ]
null
null
null
ngram-protein-classifier/generate.py
yasithmilinda/uom-projects
d1810a78ff8de1c57b760836cf102f63c5945962
[ "MIT" ]
null
null
null
ngram-protein-classifier/generate.py
yasithmilinda/uom-projects
d1810a78ff8de1c57b760836cf102f63c5945962
[ "MIT" ]
null
null
null
import re import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) ds = pd.read_csv("data/dataset_clean_p1.csv") # Remove class labels with low frequencies ds_vc = ds['Classification'].value_counts() ds_vc = ds_vc[(ds_vc >= ds_vc.mean() + ds_vc.std())].head() print(ds_vc) ds_clean = ds[ds['Classification'].isin(ds_vc.index)] # Data Cleaning ds_clean['Sequence'] = ds_clean['Sequence'].map(lambda x: re.sub(r'([^A-Z]|\s)+', '-', str(x).upper())) # Sample Dataset ds_sampled = ds_clean.groupby('Classification') ds_sampled = pd.DataFrame(ds_sampled.apply(lambda x: x.sample(ds_sampled.size().min())).reset_index(drop=True)) ds_sampled.insert(len(ds_sampled.columns) - 1, 'Sequence Length', ds_sampled['Sequence'].apply(lambda x: len(x))) print(ds_sampled) # Feature expansion V = CountVectorizer(lowercase=False, ngram_range=(2, 2), tokenizer=lambda x: list(x), dtype=np.int) X = V.fit_transform(ds_sampled['Sequence'].tolist()) print(len(V.get_feature_names())) vec_df = pd.DataFrame(X.toarray(), columns=V.get_feature_names()) ds_sampled = ds_sampled.drop(['Sequence'], axis=1) df = pd.merge(left=vec_df, right=ds_sampled, left_index=True, right_index=True).drop_duplicates() # Postprocessing df['Classification'] = df['Classification'].apply(lambda x: str(x).replace(',', '&')) # Write out df.to_csv("data/dataset_out.csv", index=False)
35.878049
113
0.738273
b3ad70037afe5dfce34b8a0a06b590f171553ffb
7,067
py
Python
accelbyte_py_sdk/api/iam/operations/users_v4/public_generate_my_back_da569a.py
AccelByte/accelbyte-python-sdk
dcd311fad111c59da828278975340fb92e0f26f7
[ "MIT" ]
null
null
null
accelbyte_py_sdk/api/iam/operations/users_v4/public_generate_my_back_da569a.py
AccelByte/accelbyte-python-sdk
dcd311fad111c59da828278975340fb92e0f26f7
[ "MIT" ]
1
2021-10-13T03:46:58.000Z
2021-10-13T03:46:58.000Z
accelbyte_py_sdk/api/iam/operations/users_v4/public_generate_my_back_da569a.py
AccelByte/accelbyte-python-sdk
dcd311fad111c59da828278975340fb92e0f26f7
[ "MIT" ]
null
null
null
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template file: justice_py_sdk_codegen/__main__.py # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import # justice-iam-service (5.10.1) from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from .....core import Operation from .....core import HeaderStr from .....core import HttpResponse from ...models import ModelBackupCodesResponseV4 from ...models import RestErrorResponse class PublicGenerateMyBackupCodesV4(Operation): """Generate backup codes (PublicGenerateMyBackupCodesV4) This endpoint is used to generate 8-digits backup codes. Each code is a one-time code and will be deleted once used. This endpoint Requires valid user access token Properties: url: /iam/v4/public/namespaces/{namespace}/users/me/mfa/backupCode method: POST tags: ["Users V4"] consumes: [] produces: ["application/json"] securities: [BEARER_AUTH] namespace: (namespace) REQUIRED str in path Responses: 200: OK - ModelBackupCodesResponseV4 (Backup codes generated) 400: Bad Request - RestErrorResponse (10191: email address not verified | 10192: factor not enabled | 10171: email address not found) 401: Unauthorized - RestErrorResponse (20001: unauthorized access) 403: Forbidden - RestErrorResponse (20003: forbidden access) 404: Not Found - RestErrorResponse (10139: platform account not found | 20008: user not found) 500: Internal Server Error - RestErrorResponse (20000: internal server error) """ # region fields _url: str = "/iam/v4/public/namespaces/{namespace}/users/me/mfa/backupCode" _method: str = "POST" _consumes: List[str] = [] _produces: List[str] = ["application/json"] _securities: List[List[str]] = [["BEARER_AUTH"]] _location_query: str = None namespace: str # REQUIRED in [path] # endregion fields # region properties @property def url(self) -> str: return self._url @property def method(self) -> str: return self._method @property def consumes(self) -> List[str]: return self._consumes @property def produces(self) -> List[str]: return self._produces @property def securities(self) -> List[List[str]]: return self._securities @property def location_query(self) -> str: return self._location_query # endregion properties # region get methods # endregion get methods # region get_x_params methods def get_all_params(self) -> dict: return { "path": self.get_path_params(), } def get_path_params(self) -> dict: result = {} if hasattr(self, "namespace"): result["namespace"] = self.namespace return result # endregion get_x_params methods # region is/has methods # endregion is/has methods # region with_x methods def with_namespace(self, value: str) -> PublicGenerateMyBackupCodesV4: self.namespace = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result: dict = {} if hasattr(self, "namespace") and self.namespace: result["namespace"] = str(self.namespace) elif include_empty: result["namespace"] = "" return result # endregion to methods # region response methods # noinspection PyMethodMayBeStatic def parse_response(self, code: int, content_type: str, content: Any) -> Tuple[Union[None, ModelBackupCodesResponseV4], Union[None, HttpResponse, RestErrorResponse]]: """Parse the given response. 200: OK - ModelBackupCodesResponseV4 (Backup codes generated) 400: Bad Request - RestErrorResponse (10191: email address not verified | 10192: factor not enabled | 10171: email address not found) 401: Unauthorized - RestErrorResponse (20001: unauthorized access) 403: Forbidden - RestErrorResponse (20003: forbidden access) 404: Not Found - RestErrorResponse (10139: platform account not found | 20008: user not found) 500: Internal Server Error - RestErrorResponse (20000: internal server error) ---: HttpResponse (Undocumented Response) ---: HttpResponse (Unexpected Content-Type Error) ---: HttpResponse (Unhandled Error) """ pre_processed_response, error = self.pre_process_response(code=code, content_type=content_type, content=content) if error is not None: return None, None if error.is_no_content() else error code, content_type, content = pre_processed_response if code == 200: return ModelBackupCodesResponseV4.create_from_dict(content), None if code == 400: return None, RestErrorResponse.create_from_dict(content) if code == 401: return None, RestErrorResponse.create_from_dict(content) if code == 403: return None, RestErrorResponse.create_from_dict(content) if code == 404: return None, RestErrorResponse.create_from_dict(content) if code == 500: return None, RestErrorResponse.create_from_dict(content) return None, self.handle_undocumented_response(code=code, content_type=content_type, content=content) # endregion response methods # region static methods @classmethod def create( cls, namespace: str, ) -> PublicGenerateMyBackupCodesV4: instance = cls() instance.namespace = namespace return instance @classmethod def create_from_dict(cls, dict_: dict, include_empty: bool = False) -> PublicGenerateMyBackupCodesV4: instance = cls() if "namespace" in dict_ and dict_["namespace"] is not None: instance.namespace = str(dict_["namespace"]) elif include_empty: instance.namespace = "" return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "namespace": "namespace", } @staticmethod def get_required_map() -> Dict[str, bool]: return { "namespace": True, } # endregion static methods
29.569038
169
0.660959
c289bf3ba0b8566e47489cad6a057ac4349350fb
58,232
py
Python
ugali/utils/plotting.py
DarkEnergySurvey/ugali
82abffcc92bddf830d89f85cb3966870f7d9f720
[ "MIT" ]
12
2016-10-26T20:45:33.000Z
2021-11-24T04:07:43.000Z
ugali/utils/plotting.py
DarkEnergySurvey/ugali
82abffcc92bddf830d89f85cb3966870f7d9f720
[ "MIT" ]
64
2017-04-14T15:04:24.000Z
2022-02-03T19:42:57.000Z
ugali/utils/plotting.py
DarkEnergySurvey/ugali
82abffcc92bddf830d89f85cb3966870f7d9f720
[ "MIT" ]
12
2016-06-23T21:42:46.000Z
2021-06-19T05:29:49.000Z
""" Basic plotting tools. """ import os import collections import copy import matplotlib try: os.environ['DISPLAY'] except KeyError: matplotlib.use('Agg') import yaml import numpy as np import pylab as plt import healpy as hp import fitsio import scipy.ndimage as nd import scipy.misc from mpl_toolkits.axes_grid1 import AxesGrid,Grid,ImageGrid, make_axes_locatable from matplotlib.ticker import MaxNLocator import mpl_toolkits.axes_grid1.axes_divider as axes_divider import ugali.utils.config import ugali.observation.roi import ugali.observation.catalog import ugali.utils.skymap import ugali.utils.projector import ugali.utils.healpix import ugali.isochrone import ugali.analysis.loglike from ugali.utils import fileio from ugali.utils.healpix import ang2pix, get_nside from ugali.utils.projector import mod2dist,gal2cel,cel2gal from ugali.utils.projector import sphere2image,image2sphere from ugali.utils.config import Config from ugali.utils.logger import logger from ugali.utils.mlab import isstring params = { #'backend': 'eps', 'axes.labelsize': 12, #'text.fontsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'xtick.major.size': 3, # major tick size in points 'xtick.minor.size': 1.5, # minor tick size in points 'xtick.major.size': 3, # major tick size in points 'xtick.minor.size': 1.5, # minor tick size in points #'text.usetex': True, ##'figure.figsize': fig_size, #'font.family':'serif', #'font.serif':'Computer Modern Roman', #'font.size': 10 } matplotlib.rcParams.update(params) ############################################################ def histogram(title, title_x, title_y, x, bins_x): """ Plot a basic histogram. """ plt.figure() plt.hist(x, bins_x) plt.xlabel(title_x) plt.ylabel(title_y) plt.title(title) ############################################################ def twoDimensionalHistogram(title, title_x, title_y, z, bins_x, bins_y, lim_x=None, lim_y=None, vmin=None, vmax=None): """ Create a two-dimension histogram plot or binned map. If using the outputs of np.histogram2d, remember to transpose the histogram. INPUTS """ plt.figure() mesh_x, mesh_y = np.meshgrid(bins_x, bins_y) if vmin != None and vmin == vmax: plt.pcolor(mesh_x, mesh_y, z) else: plt.pcolor(mesh_x, mesh_y, z, vmin=vmin, vmax=vmax) plt.xlabel(title_x) plt.ylabel(title_y) plt.title(title) plt.colorbar() if lim_x: plt.xlim(lim_x[0], lim_x[1]) if lim_y: plt.ylim(lim_y[0], lim_y[1]) ############################################################ def twoDimensionalScatter(title, title_x, title_y, x, y, lim_x = None, lim_y = None, color = 'b', size = 20, alpha=None): """ Create a two-dimensional scatter plot. INPUTS """ plt.figure() plt.scatter(x, y, c=color, s=size, alpha=alpha, edgecolors='none') plt.xlabel(title_x) plt.ylabel(title_y) plt.title(title) if type(color) is not str: plt.colorbar() if lim_x: plt.xlim(lim_x[0], lim_x[1]) if lim_y: plt.ylim(lim_y[0], lim_y[1]) ############################################################ def zoomedHealpixMap(title, map, lon, lat, radius, xsize=1000, **kwargs): """ Inputs: lon (deg), lat (deg), radius (deg) """ reso = 60. * 2. * radius / xsize # Deg to arcmin hp.gnomview(map=map, rot=[lon, lat, 0], title=title, xsize=xsize, reso=reso, degree=False, **kwargs) ############################################################ def projScatter(lon, lat, **kwargs): """ Create a scatter plot on HEALPix projected axes. Inputs: lon (deg), lat (deg) """ hp.projscatter(lon, lat, lonlat=True, **kwargs) ############################################################ def sparseHealpixFiles(title, infiles, field='MAGLIM',**kwargs): """ Inputs: field """ #map = ugali.utils.skymap.readSparseHealpixMaps(infiles,field) map = ugali.utils.skymap.read_partial_map(infiles,field) ax = hp.mollview(map=map, title=title, **kwargs) return ax, map ############################################################ def drawHealpixMap(hpxmap, lon, lat, size=1.0, xsize=501, coord='GC', **kwargs): """ Draw local projection of healpix map. """ ax = plt.gca() x = np.linspace(-size,size,xsize) y = np.linspace(-size,size,xsize) xx, yy = np.meshgrid(x,y) coord = coord.upper() if coord == 'GC': #Assumes map and (lon,lat) are Galactic, but plotting celestial llon, llat = image2sphere(*gal2cel(lon,lat),x=xx.flat,y=yy.flat) pix = ang2pix(get_nside(hpxmap),*cel2gal(llon,llat)) elif coord == 'CG': #Assumes map and (lon,lat) are celestial, but plotting Galactic llon, llat = image2sphere(*cel2gal(lon,lat),x=xx.flat,y=yy.flat) pix = ang2pix(get_nside(hpxmap),*gal2cel(llon,llat)) else: #Assumes plotting the native coordinates llon, llat = image2sphere(lon,lat,xx.flat,yy.flat) pix = ang2pix(get_nside(hpxmap),llon,llat) values = hpxmap[pix].reshape(xx.shape) zz = np.ma.array(values,mask=(values==hp.UNSEEN),fill_value=np.nan) return drawProjImage(xx,yy,zz,coord=coord,**kwargs) def drawProjImage(xx, yy, zz=None, coord='C',**kwargs): ax = plt.gca() coord = coord.upper() if coord[-1] == 'G': ax.set_xlabel(r'$\Delta \ell\,(\deg)}$') ax.set_ylabel(r'$\Delta b\,(\deg)$') elif coord[-1] == 'C': ax.set_xlabel(r'$\Delta \alpha_{2000}\,(\deg)$') ax.set_ylabel(r'$\Delta \delta_{2000}\,(\deg)$') else: msg = "Unrecognized coordinate: %"%coord logger.warning(msg) # Celestial orientation (increasing to the east) #ax.set_xlim(xx.max(),xx.min()) ax.set_xlim(xx.min(),xx.max()) ax.set_ylim(yy.min(),yy.max()) if zz is None: return None return ax.pcolormesh(xx,yy,zz,**kwargs) ############################################################ def getSDSSImage(ra,dec,radius=1.0,xsize=800,opt='GML',**kwargs): """ Download Sloan Digital Sky Survey images http://skyserver.sdss3.org/dr9/en/tools/chart/chart.asp radius (degrees) opts: (G) Grid, (L) Label, P (PhotoObj), S (SpecObj), O (Outline), (B) Bounding Box, (F) Fields, (M) Mask, (Q) Plates, (I) Invert """ import subprocess import tempfile url="http://skyservice.pha.jhu.edu/DR10/ImgCutout/getjpeg.aspx?" scale = 2. * radius * 3600. / xsize params=dict(ra=ra,dec=dec, width=xsize,height=xsize, scale=scale,opt=opt) query='&'.join("%s=%s"%(k,v) for k,v in params.items()) tmp = tempfile.NamedTemporaryFile(suffix='.jpeg') cmd='wget --progress=dot:mega -O %s "%s"'%(tmp.name,url+query) subprocess.call(cmd,shell=True) im = plt.imread(tmp.name) tmp.close() return im def getDSSImage(ra,dec,radius=1.0,xsize=800,**kwargs): """ Download Digitized Sky Survey images https://archive.stsci.edu/cgi-bin/dss_form https://archive.stsci.edu/cgi-bin/dss_search Image is in celestial orientation (RA increases to the right) https://archive.stsci.edu/dss/script_usage.html ra (r) - right ascension dec (d) - declination equinox (e) - equinox (B1950 or J2000; default: J2000) height (h) - height of image (arcminutes; default: 15.0) width (w) - width of image (arcminutes; default: 15.0) format (f) - image format (FITS or GIF; default: FITS) compression (c) - compression (UNIX, GZIP, or NONE; default: NONE; compression applies to FITS only) version (v) - Which version of the survey to use: 1 - First Generation survey (garden variety) 2 - Second generation survey (incomplete) 3 - Check the 2nd generation; if no image is available, then go to the 1st generation. 4 - The Quick V survey (whence came the Guide Stars Catalog; used mostly for Phase II proposal submission) save (s) - Save the file to disk instead of trying to display. (ON (or anything) or not defined; default: not defined.) For the skyview service, see: https://skyview.gsfc.nasa.gov/current/docs/batchpage.html """ import subprocess import tempfile service = 'skyview' if service == 'stsci': url="https://archive.stsci.edu/cgi-bin/dss_search?" scale = 2.0 * radius * 60. params=dict(ra='%.3f'%ra,dec='%.3f'%dec,width=scale,height=scale, format='gif',version=1) #v='poss2ukstu_red' elif service == 'skyview': url="https://skyview.gsfc.nasa.gov/cgi-bin/images?" params=dict(survey='DSS',position='%.3f,%.3f'%(ra,dec),scaling='Linear', Return='GIF',size=2*radius,projection='Car',pixels=xsize) else: raise Exception("Unrecognized service.") query='&'.join("%s=%s"%(k,v) for k,v in params.items()) tmp = tempfile.NamedTemporaryFile(suffix='.gif') cmd='wget --progress=dot:mega -O %s "%s"'%(tmp.name,url+query) subprocess.call(cmd,shell=True) im = plt.imread(tmp.name) tmp.close() if service == 'stsci' and xsize: im = scipy.misc.imresize(im,size=(xsize,xsize)) return im ############################################################ class BasePlotter(object): def __init__(self,glon,glat,config,radius=1.0): self.config = ugali.utils.config.Config(config) self.coordsys = self.config['coords']['coordsys'].lower() self.coord = 'G' if (self.coordsys=='gal') else 'C' self.glon,self.glat = glon,glat self.ra,self.dec = ugali.utils.projector.galToCel(self.glon,self.glat) if self.coordsys=='gal': self.lon,self.lat = self.glon,self.glat else: self.lon,self.lat = self.ra,self.dec self.roi = ugali.observation.roi.ROI(self.config,self.lon,self.lat) self.nside = self.config.params['coords']['nside_pixel'] self.radius = radius xsize=800 reso = 60. * 2. * radius / xsize self.image_kwargs = dict(ra=self.ra,dec=self.dec,radius=self.radius) self.gnom_kwargs = dict(rot=[self.ra,self.dec],reso=reso,xsize=xsize,coord=self.coord, return_projected_map=True,hold=True) self.label_kwargs = dict(xy=(0.05,0.05),xycoords='axes fraction', xytext=(0, 0), textcoords='offset points',ha='left', va='bottom',size=10, bbox={'boxstyle':"round",'fc':'1'}, zorder=10) def _create_catalog(self): if hasattr(self,'catalog'): return self.catalog = self.get_stars() def get_objects(self,select=None): config = copy.deepcopy(self.config) config['catalog']['selection'] = select #catalog = ugali.observation.catalog.Catalog(config,roi=self.roi) catalog = ugali.analysis.loglike.createCatalog(config,roi=self.roi) mask = ugali.analysis.loglike.createMask(config,roi=self.roi) cut = mask.restrictCatalogToObservableSpace(catalog) catalog = catalog.applyCut(cut) sep = ugali.utils.projector.angsep(self.lon, self.lat, catalog.lon, catalog.lat) radius = self.radius*np.sqrt(2) cut = (sep < radius) return catalog.applyCut(cut) def get_stars(self,select=None): if hasattr(self,'stars'): return self.stars if select is None: select = self.config['catalog']['selection'] self.stars = self.get_objects(select) return self.stars def get_galaxies(self,select=None): if hasattr(self,'galaxies'): return self.galaxies if select is not None: self.galaxies = self.get_objects(select) else: catalog = self.get_objects() stars = self.get_stars() cut = ~np.in1d(catalog.objid,stars.objid) self.galaxies = catalog.applyCut(cut) return self.galaxies def get_likelihood(self,select=None): nside = self.config.params['coords']['nside_merge'] pixel = ang2pix(nside, self.lon, self.lat) pixels = np.append([pixel],hp.get_all_neighbours(nside,pixel)) filenames = [] for p in pixels: f = self.config.mergefile%p if os.path.exists(f): filenames.append(f) return ugali.utils.healpix.merge_partial_maps(filenames,None) def drawSmoothCatalog(self, catalog, label=None, **kwargs): ax = plt.gca() ra,dec = catalog.ra_dec x, y = sphere2image(self.ra,self.dec,ra,dec) delta_x = self.radius/100. smoothing = 2*delta_x bins = np.arange(-self.radius, self.radius + 1.e-10, delta_x) h, xbins, ybins = np.histogram2d(x, y, bins=[bins, bins]) blur = nd.filters.gaussian_filter(h.T, smoothing / delta_x) defaults = dict(cmap='gray_r',rasterized=True) kwargs = dict(list(defaults.items())+list(kwargs.items())) xx,yy = np.meshgrid(xbins,ybins) im = drawProjImage(xx,yy,blur,coord='C',**kwargs) if label: plt.text(0.05, 0.95, label, fontsize=10, ha='left', va='top', color='k', transform=plt.gca().transAxes, bbox=dict(facecolor='white', alpha=1., edgecolor='none')) def drawROI(self, ax=None, value=None, pixel=None): if not ax: ax = plt.gca() roi_map = np.array(hp.UNSEEN*np.ones(hp.nside2npix(self.nside))) if value is None: roi_map[self.roi.pixels] = 1 roi_map[self.roi.pixels_annulus] = 0 roi_map[self.roi.pixels_target] = 2 elif value is not None and pixel is None: roi_map[self.pixels] = value elif value is not None and pixel is not None: roi_map[pixel] = value else: logger.warning('Unable to parse input') #im = hp.gnomview(roi_map,**self.gnom_kwargs) im = drawHealpixMap(roi_map,self.lon,self.lat,self.radius,coord=self.coord) return im def drawImage(self,ax=None,invert=True): if not ax: ax = plt.gca() if self.config['data']['survey']=='sdss': # Optical Image im = ugali.utils.plotting.getSDSSImage(**self.image_kwargs) # Flipping JPEG: # https://github.com/matplotlib/matplotlib/issues/101 im = im[::-1] ax.annotate("SDSS Image",**self.label_kwargs) else: im = ugali.utils.plotting.getDSSImage(**self.image_kwargs) im = im[::-1,::-1] ax.annotate("DSS Image",**self.label_kwargs) size=self.image_kwargs.get('radius',1.0) # Celestial coordinates x = np.linspace(-size,size,im.shape[0]) y = np.linspace(-size,size,im.shape[1]) xx, yy = np.meshgrid(x,y) #kwargs = dict(cmap='gray',interpolation='none') kwargs = dict(cmap='gray',coord='C') im = drawProjImage(xx,yy,im,**kwargs) try: plt.gcf().delaxes(ax.cax) except AttributeError: pass return im def drawStellarDensity(self,ax=None,nside=None): if not ax: ax = plt.gca() if nside is None: nside = self.nside # Stellar Catalog self._create_catalog() catalog = self.catalog #catalog=ugali.observation.catalog.Catalog(self.config,roi=self.roi) pix = ang2pix(nside, catalog.lon, catalog.lat) counts = collections.Counter(pix) pixels, number = np.array(sorted(counts.items())).T star_map = hp.UNSEEN * np.ones(hp.nside2npix(nside)) star_map[pixels] = number star_map[star_map == 0] = hp.UNSEEN #im = hp.gnomview(star_map,**self.gnom_kwargs) #hp.graticule(dpar=1,dmer=1,color='0.5',verbose=False) #plt.close() im = drawHealpixMap(star_map,self.lon,self.lat,self.radius,coord=self.coord) #im = ax.imshow(im,origin='bottom') try: ax.cax.colorbar(im) except: plt.colorbar(im,ax=ax) ax.annotate("Stars",**self.label_kwargs) return im def drawMask(self,ax=None, mask=None, mtype='maglim'): """ Draw the maglim from the mask. """ if not ax: ax = plt.gca() if mask is None: mask = ugali.analysis.loglike.createMask(self.config,roi=self.roi) mask_map = hp.UNSEEN*np.ones(hp.nside2npix(self.nside)) if mtype.lower() == 'maglim': mask_map[mask.roi.pixels] = mask.mask_1.mask_roi_sparse elif mtype.lower() == 'fracdet': mask_map[mask.roi.pixels] = mask.mask_1.frac_roi_sparse else: raise Exception("Unrecognized type: %s"%mtype) masked = (mask_map==hp.UNSEEN) | (mask_map==0) mask_map = np.ma.array(mask_map,mask=masked,fill_value=np.nan) im = drawHealpixMap(mask_map,self.lon,self.lat,self.radius,coord=self.coord) try: cbar = ax.cax.colorbar(im) except: cbar = plt.colorbar(im) cbar.ax.set_xticklabels(cbar.ax.get_xticklabels(),rotation=90) ax.annotate(mtype,**self.label_kwargs) return im def drawMaglim(self,ax=None, mask=None): """ Draw the maglim from the mask. """ return self.drawMask(ax,mask,mtype='maglim') def drawFracdet(self,ax=None, mask=None): """ Draw the fracdet map from the mask. """ return self.drawMask(ax,mask,mtype='fracdet') def drawTS(self,ax=None, filename=None, zidx=0): if not ax: ax = plt.gca() if filename: data = fitsio.read(filename) else: data = self.get_likelihood()[1] pixels = data['PIXEL'] values = 2*data['LOG_LIKELIHOOD'] if values.ndim == 1: values = values.reshape(-1,1) ts_map = hp.UNSEEN * np.ones(hp.nside2npix(self.nside)) # Sum through all distance_moduli #ts_map[pixels] = values.sum(axis=1) # Just at maximum slice from object ts_map[pixels] = values[:,zidx] im = drawHealpixMap(ts_map,self.lon,self.lat,self.radius,coord=self.coord) try: ax.cax.colorbar(im) except: plt.colorbar(im) ax.annotate("TS",**self.label_kwargs) return im def drawCatalog(self, ax=None): if not ax: ax = plt.gca() # Stellar Catalog self._create_catalog() hp.projscatter(self.catalog.lon,self.catalog.lat,c='k',marker='.',lonlat=True,coord=self.gnom_kwargs['coord']) ax.annotate("Stars",**self.label_kwargs) def drawSpatial(self, ax=None): if not ax: ax = plt.gca() # Stellar Catalog self._create_catalog() cut = (self.catalog.color > 0) & (self.catalog.color < 1) catalog = self.catalog.applyCut(cut) ax.scatter(catalog.lon,catalog.lat,c='k',marker='.',s=1) ax.set_xlim(self.lon-0.5,self.lon+0.5) ax.set_ylim(self.lat-0.5,self.lat+0.5) if self.coordsys == 'gal': ax.set_xlabel('GLON (deg)'); ax.set_ylabel('GLAT (deg)') else: ax.set_xlabel('RA (deg)'); ax.set_ylabel('DEC (deg)') ax.invert_xaxis() def drawCMD(self, ax=None, radius=None, zidx=None): """ Draw color magnitude diagram with isochrone Parameters: ax : matplotlib axis radius : selection radius zidx : distance modulus index Returns: None """ if not ax: ax = plt.gca() import ugali.isochrone if zidx is not None: distance_modulus = self.get_likelihood()[2][zidx] iso = ugali.isochrone.Padova(age=12,z=0.0002,mod=distance_modulus) #drawIsochrone(iso,ls='',marker='.',ms=1,c='k') drawIsochrone(iso) # Stellar Catalog self._create_catalog() if radius is not None: sep = ugali.utils.projector.angsep(self.lon,self.lat, self.catalog.lon,self.catalog.lat) cut = (sep < radius) catalog_cmd = self.catalog.applyCut(cut) else: catalog_cmd = self.catalog ax.scatter(catalog_cmd.color, catalog_cmd.mag,color='b',marker='.',s=1) ax.set_xlim(self.roi.bins_color[0],self.roi.bins_color[-1]) ax.set_ylim(self.roi.bins_mag[-1],self.roi.bins_mag[0]) ax.set_xlabel('Color (mag)') ax.set_ylabel('Magnitude (mag)') ax.annotate("Stars",**self.label_kwargs) def drawMembership(self, ax=None, radius=None, zidx=0, mc_source_id=1): if not ax: ax = plt.gca() import ugali.analysis.scan distance_modulus = self.get_likelihood()[2] for ii, name in enumerate(self.config.params['isochrone']['infiles']): logger.info('%s %s'%(ii, name)) isochrone = ugali.isochrone.Isochrone(self.config, name) mag = isochrone.mag + distance_modulus ax.scatter(isochrone.color,mag, color='0.5', s=800, zorder=0) pix = ang2pix(self.nside, self.lon, self.lat) likelihood_pix = ugali.utils.skymap.superpixel(pix,self.nside,self.config.params['coords']['nside_likelihood']) config = self.config scan = ugali.analysis.scan.Scan(self.config,likelihood_pix) likelihood = scan.likelihood distance_modulus_array = [self.config.params['scan']['distance_modulus_array'][zidx]] likelihood.precomputeGridSearch(distance_modulus_array) likelihood.gridSearch() p = likelihood.membershipGridSearch() sep = ugali.utils.projector.angsep(self.lon, self.lat, likelihood.catalog.lon, likelihood.catalog.lat) radius = self.radius if radius is None else radius cut = (sep < radius) catalog = likelihood.catalog.applyCut(cut) p = p[cut] cut_mc_source_id = (catalog.mc_source_id == mc_source_id) ax.scatter(catalog.color[cut_mc_source_id], catalog.mag[cut_mc_source_id], c='gray', s=100, edgecolors='none') sc = ax.scatter(catalog.color, catalog.mag, c=p, edgecolors='none') ax.set_xlim(likelihood.roi.bins_color[0], likelihood.roi.bins_color[-1]) ax.set_ylim(likelihood.roi.bins_mag[-1], likelihood.roi.bins_mag[0]) ax.set_xlabel('Color (mag)') ax.set_ylabel('Magnitude (mag)') try: ax.cax.colorbar(sc) except: plt.colorbar(sc) def plotDistance(self): _,d,distances = self.get_likelihood() pixels,values = d['PIXEL'],2*d['LOG_LIKELIHOOD'] if values.ndim == 1: values = values.reshape(-1,1) if distances.ndim == 1: distances = distances.reshape(-1,1) ts_map = hp.UNSEEN * np.ones(hp.nside2npix(self.nside)) ndim = len(distances) nrows = int(np.sqrt(ndim)) ncols = ndim // nrows + (ndim%nrows > 0) # Create the healpy images, but close the figures images = [] for i,val in enumerate(values.T): ts_map[pixels] = val im = hp.gnomview(ts_map,**self.gnom_kwargs) plt.close() images.append(im) data = np.array(images); mask = (data == hp.UNSEEN) images = np.ma.array(data=data,mask=mask) vmin = np.ma.min(images) vmax = np.ma.max(images) # Create the image grid fig = plt.figure() axes = AxesGrid(fig, 111, nrows_ncols = (nrows, ncols), axes_pad=0,label_mode='1', cbar_mode='single',cbar_pad=0,cbar_size='5%', share_all=True,add_all=False) for i,val in enumerate(values.T): ax = axes[i] #https://github.com/matplotlib/matplotlib/issues/9720/ im = ax.imshow(images[i].data,origin='bottom',vmin=vmin,vmax=vmax) try: ax.cax.colorbar(im) except TypeError as e: print(e) #ax.annotate(r"$\mu = %g$"%distances[i],**self.label_kwargs) ax.annotate(r"$d = %.0f$ kpc"%mod2dist(distances[i]),**self.label_kwargs) ax.axis["left"].major_ticklabels.set_visible(False) ax.axis["bottom"].major_ticklabels.set_visible(False) fig.add_axes(ax) fig.add_axes(ax.cax) plt.draw() return fig,axes def plot3(self): fig = plt.figure(figsize=(8,4)) axes = AxesGrid(fig, 111,nrows_ncols = (1, 3),axes_pad=0.1, cbar_mode='each',cbar_pad=0,cbar_size='5%', cbar_location='top',share_all=True) for ax in axes: ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) self.drawImage(axes[0]) self.drawTS(axes[1]) #self.drawStellarDensity(axes[1]) self.drawMaglim(axes[2]) return fig,axes def plot4(self): fig = plt.figure(figsize=(10,8)) axes = AxesGrid(fig, 111,nrows_ncols=(2, 2), axes_pad=0.35, cbar_mode='each',cbar_pad=0,cbar_size='5%', share_all=True,aspect=True, label_mode='L') #fig,axes = plt.subplots(2,2) #axes = axes.flatten() #for ax in axes: # ax.get_xaxis().set_visible(False) # ax.get_yaxis().set_visible(False) #plt.sca(axes[0]); self.drawImage(axes[0]) #plt.sca(axes[1]); self.drawStellarDensity(axes[1]) #plt.sca(axes[2]); self.drawMask(axes[2]) #plt.sca(axes[3]); self.drawTS(axes[3]) # To draw DSS image #try: plt.sca(axes[0]); self.drawImage() #except IOError as e: logger.warn(str(e)) plt.sca(axes[0]); self.drawFracdet() plt.sca(axes[1]); self.drawStellarDensity() plt.sca(axes[2]); self.drawMaglim() try: plt.sca(axes[3]); self.drawTS() except IOError as e: logger.warn(str(e)) axes[0].set_xlim(self.radius,-self.radius) axes[0].set_ylim(-self.radius,self.radius) plt.subplots_adjust(wspace=0.2) return fig,axes plot = plot3 class ObjectPlotter(BasePlotter): """ For plotting 'Objects' identified through candidate search. """ def __init__(self,obj,config,radius=1.0): self.obj = obj glon,glat = self.obj['GLON'],self.obj['GLAT'] super(ObjectPlotter,self).__init__(glon,glat,config,radius) self.set_zidx() def set_zidx(self): #names = [n.upper() for n in self.obj.array.dtype.names] names = [n.upper() for n in self.obj.dtype.names] mod = np.array(self.config['scan']['distance_modulus_array']) if 'ZIDX_MAX' in names: self.zidx = self.obj['ZIDX_MAX'] elif 'DISTANCE_MODULUS' in names: dist_mod = self.obj['DISTANCE_MODULUS'] self.zidx = np.abs(mod - dist_mod).argmin() elif 'MODULUS' in names: dist_mod = self.obj['MODULUS'] self.zidx = np.abs(mod - dist_mod).argmin() elif 'DISTANCE' in names: dist_mod = mod2dist(self.obj['DISTANCE']) self.zidx = np.argmax((mod - dist_mod) > 0) else: msg = "Failed to parse distance index" raise Exception(msg) def drawTS(self, ax=None, filename=None, zidx=None): if zidx is None: zidx = self.zidx super(ObjectPlotter,self).drawTS(ax,filename,zidx) def drawCMD(self, ax=None, radius=None, zidx=None): if zidx is None: zidx = self.zidx super(ObjectPlotter,self).drawCMD(ax,radius,zidx) def drawMembership(self, ax=None, radius=None, zidx=None, mc_source_id=1): if zidx is None: zidx = self.zidx super(ObjectPlotter,self).drawMembership(ax,radius,zidx,mc_source_id) class SourcePlotter(BasePlotter): """ For plotting 'Objects' identified through candidate search. """ # Expects GLON, GLAT... def __init__(self,source,config,radius=1.0): if Config(config)['coords']['coordsys'].lower()=='gal': glon,glat = source.lon,source.lat else: glon,glat = cel2gal(source.lon,source.lat) super(SourcePlotter,self).__init__(glon,glat,config,radius) #self.select = self.config['catalog'].pop('selection') self.source = source self.isochrone = self.source.isochrone self.kernel = self.source.kernel self.set_zidx() def isochrone_selection(self,catalog,dist=0.1): # Cookie cutter return cutIsochronePath(catalog.mag_1, catalog.mag_2, catalog.mag_err_1, catalog.mag_err_2, self.isochrone, radius=dist) def set_zidx(self): mod = np.array(self.config['scan']['distance_modulus_array']) dist_mod = self.isochrone.distance_modulus self.zidx = np.abs(mod - dist_mod).argmin() def drawSmoothStars(self,**kwargs): stars = self.get_stars() sel = self.isochrone_selection(stars,dist=0.1) self.drawSmoothCatalog(stars.applyCut(sel),'Filtered Stars',**kwargs) def drawSmoothGalaxies(self,**kwargs): galaxies = self.get_galaxies() sel = self.isochrone_selection(galaxies,dist=0.1) self.drawSmoothCatalog(galaxies.applyCut(sel),'Filtered Galaxies',**kwargs) def drawHessDiagram(self,catalog=None): ax = plt.gca() if not catalog: catalog = self.get_stars() r_peak = self.kernel.extension angsep = ugali.utils.projector.angsep(self.ra, self.dec, catalog.ra, catalog.dec) cut_inner = (angsep < r_peak) cut_annulus = (angsep > 0.5) & (angsep < 1.) # deg mmin, mmax = 16., 24. cmin, cmax = -0.5, 1.0 mbins = np.linspace(mmin, mmax, 150) cbins = np.linspace(cmin, cmax, 150) color = catalog.color[cut_annulus] mag = catalog.mag[cut_annulus] h, xbins, ybins = np.histogram2d(color, mag, bins=[cbins,mbins]) blur = nd.filters.gaussian_filter(h.T, 2) kwargs = dict(extent=[xbins.min(),xbins.max(),ybins.min(),ybins.max()], cmap='gray_r', aspect='auto', origin='lower', rasterized=True, interpolation='none') ax.imshow(blur, **kwargs) plt.scatter(catalog.color[cut_inner], catalog.mag[cut_inner], c='red', s=7, edgecolor='none')# label=r'$r < %.2f$ deg'%(r_peak)) ugali.utils.plotting.drawIsochrone(self.isochrone, c='b', zorder=10) ax.set_xlim(-0.5, 1.) ax.set_ylim(24., 16.) plt.xlabel(r'$%s - %s$' % (self.isochrone.band_1, self.isochrone.band_2)) plt.ylabel(r'$%s$' % self.isochrone.band_1) plt.xticks([-0.5, 0., 0.5, 1.]) plt.yticks(np.arange(mmax - 1., mmin - 1., -1.)) radius_string = (r'${\rm r}<%.1f$ arcmin'%( 60 * r_peak)) plt.text(0.05, 0.95, radius_string, fontsize=10, ha='left', va='top', color='red', transform=plt.gca().transAxes, bbox=dict(facecolor='white', alpha=1., edgecolor='none')) def drawMembersSpatial(self,data): ax = plt.gca() if isstring(data): filename = data data = fitsio.read(filename) xmin, xmax = -0.25,0.25 ymin, ymax = -0.25,0.25 xx,yy = np.meshgrid(np.linspace(xmin,xmax),np.linspace(ymin,ymax)) x_prob, y_prob = sphere2image(self.ra, self.dec, data['RA'], data['DEC']) sel = (x_prob > xmin)&(x_prob < xmax) & (y_prob > ymin)&(y_prob < ymax) sel_prob = data['PROB'][sel] > 5.e-2 index_sort = np.argsort(data['PROB'][sel][sel_prob]) plt.scatter(x_prob[sel][~sel_prob], y_prob[sel][~sel_prob], marker='o', s=2, c='0.75', edgecolor='none') sc = plt.scatter(x_prob[sel][sel_prob][index_sort], y_prob[sel][sel_prob][index_sort], c=data['PROB'][sel][sel_prob][index_sort], marker='o', s=10, edgecolor='none', cmap='jet', vmin=0., vmax=1.) # Spectral_r drawProjImage(xx,yy,None,coord='C') #ax.set_xlim(xmax, xmin) #ax.set_ylim(ymin, ymax) #plt.xlabel(r'$\Delta \alpha_{2000}\,(\deg)$') #plt.ylabel(r'$\Delta \delta_{2000}\,(\deg)$') plt.xticks([-0.2, 0., 0.2]) plt.yticks([-0.2, 0., 0.2]) divider = make_axes_locatable(ax) ax_cb = divider.new_horizontal(size="7%", pad=0.1) plt.gcf().add_axes(ax_cb) plt.colorbar(sc, cax=ax_cb, orientation='vertical', ticks=[0, 0.2, 0.4, 0.6, 0.8, 1.0], label='Membership Probability') ax_cb.yaxis.tick_right() def drawMembersCMD(self,data): ax = plt.gca() if isstring(data): filename = data data = fitsio.read(filename) xmin, xmax = -0.25,0.25 ymin, ymax = -0.25,0.25 mmin, mmax = 16., 24. cmin, cmax = -0.5, 1.0 mbins = np.linspace(mmin, mmax, 150) cbins = np.linspace(cmin, cmax, 150) mag_1 = data[self.config['catalog']['mag_1_field']] mag_2 = data[self.config['catalog']['mag_2_field']] x_prob, y_prob = sphere2image(self.ra, self.dec, data['RA'], data['DEC']) sel = (x_prob > xmin)&(x_prob < xmax) & (y_prob > ymin)&(y_prob < ymax) sel_prob = data['PROB'][sel] > 5.e-2 index_sort = np.argsort(data['PROB'][sel][sel_prob]) plt.scatter(data['COLOR'][sel][~sel_prob], mag_1[sel][~sel_prob], marker='o',s=2,c='0.75',edgecolor='none') sc = plt.scatter(data['COLOR'][sel][sel_prob][index_sort], mag_1[sel][sel_prob][index_sort], c=data['PROB'][sel][sel_prob][index_sort], marker='o', s=10, edgecolor='none', cmap='jet', vmin=0., vmax=1) plt.xlim(cmin, cmax) plt.ylim(mmax, mmin) plt.xlabel(r'$%s - %s$' % (self.isochrone.band_1, self.isochrone.band_2)) plt.ylabel(r'$%s$' % self.isochrone.band_1) #axes[1].yaxis.set_major_locator(MaxNLocator(prune='lower')) plt.xticks([-0.5, 0., 0.5, 1.]) plt.yticks(np.arange(mmax - 1., mmin - 1., -1.)) ugali.utils.plotting.drawIsochrone(self.isochrone, c='k', zorder=10) plt.text(0.05, 0.95, r'$\Sigma p_{i} = %i$'%(data['PROB'].sum()), fontsize=10, horizontalalignment='left', verticalalignment='top', color='k', transform=plt.gca().transAxes, bbox=dict(facecolor='white', alpha=1., edgecolor='none')) divider = make_axes_locatable(plt.gca()) ax_cb = divider.new_horizontal(size="7%", pad=0.1) plt.gcf().add_axes(ax_cb) plt.colorbar(sc, cax=ax_cb, orientation='vertical', ticks=[0, 0.2, 0.4, 0.6, 0.8, 1.0], label='Membership Probability') ax_cb.yaxis.tick_right() def drawDensityProfile(self, catalog=None): rmax = 24. # arcmin bins = np.arange(0, rmax + 1.e-10, 2.) centers = 0.5 * (bins[1:] + bins[0:-1]) area = np.pi * (bins[1:]**2 - bins[0:-1]**2) r_peak = self.kernel.extension stars = self.get_stars() angsep = ugali.utils.projector.angsep(self.ra, self.dec, stars.ra, stars.dec) angsep_arcmin = angsep * 60 # arcmin cut_iso = self.isochrone_selection(stars) h = np.histogram(angsep_arcmin[(angsep_arcmin < rmax) & cut_iso], bins=bins)[0] h_out = np.histogram(angsep_arcmin[(angsep_arcmin < rmax) & (~cut_iso)], bins=bins)[0] gals = self.get_galaxies() if len(gals): angsep_gal = ugali.utils.projector.angsep(self.ra, self.dec, gals.ra, gals.dec) angsep_gal_arcmin = angsep_gal * 60 # arcmin cut_iso_gal = self.isochrone_selection(gals) h_gal = np.histogram(angsep_gal_arcmin[(angsep_gal_arcmin < rmax) & cut_iso_gal], bins=bins)[0] h_gal_out = np.histogram(angsep_gal_arcmin[(angsep_gal_arcmin < rmax) & (~cut_iso_gal)], bins=bins)[0] plt.plot(centers, h/area, c='red', label='Filtered Stars') plt.errorbar(centers, h/area, yerr=(np.sqrt(h) / area), ecolor='red', c='red') plt.scatter(centers, h/area, edgecolor='none', c='red', zorder=22) plt.plot(centers, h_out/area, c='gray', label='Unfiltered Stars') plt.errorbar(centers, h_out/area, yerr=(np.sqrt(h_out) / area), ecolor='gray', c='gray') plt.scatter(centers, h_out/area, edgecolor='none', c='gray', zorder=21) if len(gals): plt.plot(centers, h_gal/area, c='black', label='Filtered Galaxies') plt.errorbar(centers, h_gal/area, yerr=(np.sqrt(h_gal) / area), ecolor='black', c='black') plt.scatter(centers, h_gal/area, edgecolor='none', c='black', zorder=20) plt.xlabel('Angular Separation (arcmin)') plt.ylabel(r'Density (arcmin$^{-2}$)') plt.xlim(0., rmax) ymax = plt.ylim()[1] #plt.ylim(0, ymax) plt.ylim(0, 4) plt.legend(loc='upper right', frameon=False, fontsize=10) def plot6(self, filename, title=None): fig = plt.figure('summary', figsize=(11, 6)) fig.subplots_adjust(wspace=0.4, hspace=0.25) fdg = r'{.}\!^\circ' coordstring = ('%.2f, %.2f'%(self.ra, self.dec)).replace('.',fdg) if title is None: #title = r'%s; ($\alpha_{2000}$, $\delta_{2000}$, $m-M$) = (%s, %.2f)'%(self.source.name, coordstring, self.isochrone.distance_modulus) title = r'$(\alpha_{2000}, \delta_{2000}, m-M) = (%s, %.1f)$'%(coordstring, self.isochrone.distance_modulus) if title: plt.suptitle(title, fontsize=14) logger.debug("Drawing smooth stars...") plt.subplot(2, 3, 1) self.drawSmoothStars() logger.debug("Drawing density profile...") plt.subplot(2, 3, 2) self.drawDensityProfile() logger.debug("Drawing spatial distribution of members...") plt.subplot(2, 3, 3) self.drawMembersSpatial(filename) logger.debug("Drawing smooth galaxies...") plt.subplot(2, 3, 4) self.drawSmoothGalaxies() logger.debug("Drawing Hess diagram...") plt.subplot(2,3,5) self.drawHessDiagram() logger.debug("Drawing CMD of members...") plt.subplot(2, 3, 6) self.drawMembersCMD(filename) def plot_candidates(candidates, config, ts_min=50, outdir='./'): for candidate in candidates: if candidate['TS'] < ts_min: continue logger.info("Plotting %s (%.2f,%.2f)..."%(candidate['name'],candidate['glon'],candidate['glat'])) plotter = ugali.utils.plotting.ObjectPlotter(candidate,config) fig,ax = plotter.plot4() basename = '%s_plot.png'%candidate['name'] outfile = os.path.join(outdir,basename) plt.savefig(outfile) ################################################### def draw_slices(hist, func=np.sum, **kwargs): """ Draw horizontal and vertical slices through histogram """ from mpl_toolkits.axes_grid1 import make_axes_locatable kwargs.setdefault('ls','-') ax = plt.gca() data = hist # Slices vslice = func(data,axis=0) hslice = func(data,axis=1) npix = np.array(data.shape) #xlim,ylim = plt.array(zip([0,0],npix-1)) xlim = ax.get_xlim() ylim = ax.get_ylim() #extent = ax.get_extent() #xlim =extent[:2] #ylim = extent[2:] # Bin centers xbin = np.linspace(xlim[0],xlim[1],len(vslice))#+0.5 ybin = np.linspace(ylim[0],ylim[1],len(hslice))#+0.5 divider = make_axes_locatable(ax) #gh2 = pywcsgrid2.GridHelperSimple(wcs=self.header, axis_nums=[2, 1]) hax = divider.append_axes("right", size=1.2, pad=0.05,sharey=ax, axes_class=axes_divider.LocatableAxes) hax.axis["left"].toggle(label=False, ticklabels=False) #hax.plot(hslice, plt.arange(*ylim)+0.5,'-') # Bin center hax.plot(hslice, ybin, **kwargs) # Bin center hax.xaxis.set_major_locator(MaxNLocator(4,prune='both')) hax.set_ylim(*ylim) #gh1 = pywcsgrid2.GridHelperSimple(wcs=self.header, axis_nums=[0, 2]) vax = divider.append_axes("top", size=1.2, pad=0.05, sharex=ax, axes_class=axes_divider.LocatableAxes) vax.axis["bottom"].toggle(label=False, ticklabels=False) vax.plot(xbin, vslice, **kwargs) vax.yaxis.set_major_locator(MaxNLocator(4,prune='lower')) vax.set_xlim(*xlim) return vax,hax def draw_sum_slices(hist, **kwargs): return draw_slices(hist,func=np.sum, **kwargs) def draw_max_slices(hist, **kwargs): return draw_slices(hist,func=np.max, **kwargs) def plotKernel(kernel): fig = plt.figure() axes = AxesGrid(fig, 111, nrows_ncols = (1,1), cbar_mode='none',cbar_pad=0,cbar_size='5%', cbar_location='top', share_all=True) drawKernel(axes[0],kernel) def drawKernelHist(ax, kernel): ext = kernel.extension theta = kernel.theta lon, lat = kernel.lon, kernel.lat xmin,xmax = -5*ext,5*ext ymin,ymax = -5*ext,5*ext, x = np.linspace(xmin,xmax,100)+kernel.lon y = np.linspace(ymin,ymax,100)+kernel.lat xx,yy = np.meshgrid(x,y) zz = kernel.pdf(xx,yy) im = ax.imshow(zz)#,extent=[xmin,xmax,ymin,ymax]) hax,vax = draw_slices(ax,zz,color='k') mc_lon,mc_lat = kernel.sample(1e5) hist,xedges,yedges = np.histogram2d(mc_lon,mc_lat,bins=[len(x),len(y)], range=[[x.min(),x.max()],[y.min(),y.max()]]) xbins,ybins = np.arange(hist.shape[0])+0.5,np.arange(hist.shape[1])+0.5 vzz = zz.sum(axis=0) hzz = zz.sum(axis=1) vmc = hist.sum(axis=0) hmc = hist.sum(axis=1) vscale = vzz.max()/vmc.max() hscale = hzz.max()/hmc.max() kwargs = dict(marker='.',ls='',color='r') hax.errorbar(hmc*hscale, ybins, xerr=np.sqrt(hmc)*hscale,**kwargs) vax.errorbar(xbins, vmc*vscale,yerr=np.sqrt(vmc)*vscale,**kwargs) ax.set_ylim(0,len(y)) ax.set_xlim(0,len(x)) #try: ax.cax.colorbar(im) #except: plt.colorbar(im) #a0 = np.array([0.,0.]) #a1 =kernel.a*np.array([np.sin(np.deg2rad(theta)),-np.cos(np.deg2rad(theta))]) #ax.plot([a0[0],a1[0]],[a0[1],a1[1]],'-ob') # #b0 = np.array([0.,0.]) #b1 =kernel.b*np.array([np.cos(np.radians(theta)),np.sin(np.radians(theta))]) #ax.plot([b0[0],b1[0]],[b0[1],b1[1]],'-or') label_kwargs = dict(xy=(0.05,0.05),xycoords='axes fraction', xytext=(0, 0), textcoords='offset points',ha='left', va='bottom',size=10, bbox={'boxstyle':"round",'fc':'1'}, zorder=10) norm = zz.sum() * (x[1]-x[0])**2 ax.annotate("Sum = %.2f"%norm,**label_kwargs) #ax.set_xlabel(r'$\Delta$ LON (deg)') #ax.set_ylabel(r'$\Delta$ LAT (deg)') ################################################### def plotMembership(config, data=None, kernel=None, isochrone=None, **kwargs): from mpl_toolkits.axes_grid1 import make_axes_locatable config = ugali.utils.config.Config(config) if isstring(data): data,header = fitsio.read(data,header=True) defaults = dict(s=20,edgecolor='none',vmin=0,vmax=1,zorder=3) kwargs = dict(list(defaults.items())+list(kwargs.items())) bkg_kwargs = dict(s=3,zorder=0,c='0.70') bkg_kwargs = dict(list(kwargs.items())+list(bkg_kwargs.items())) try: sort = np.argsort(data['PROB']) prob = data['PROB'][sort] except: prob = np.zeros(len(data['RA']))+1 lon,lat = data['RA'][sort],data['DEC'][sort] lon0,lat0 = np.median(lon),np.median(lat) x,y = sphere2image(lon0,lat0,lon,lat) lon0,lat0 = image2sphere(lon0,lat0,(x.max()+x.min())/2.,(y.max()+y.min())/2.) lon,lat = sphere2image(lon0,lat0,lon,lat) color = data['COLOR'][sort] cut = (prob > 0.01) # ADW: Sometimes may be mag_2 mag = data[config['catalog']['mag_1_field']][sort] mag_err_1 = data[config['catalog']['mag_err_1_field']][sort] mag_err_2 = data[config['catalog']['mag_err_2_field']][sort] fig,axes = plt.subplots(1,2,figsize=(10,5)) #proj = ugali.utils.projector.Projector(np.median(lon),np.median(lat)) #x,y = proj.sphereToImage(lon,lat) #sc = axes[0].scatter(x,y,c=prob,vmin=0,vmax=1) axes[0].scatter(lon[~cut],lat[~cut],**bkg_kwargs) axes[0].scatter(lon[cut],lat[cut],c=prob[cut],**kwargs) #if kernel is not None: # plt.sca(axes[0]) # k = copy.deepcopy(kernel) # levels=[0,k._pdf(k.extension),np.inf] # k.lon,k.lat = cel2gal(0,0) # drawKernel(k,contour=True,linewidths=2,zorder=0,levels=levels) #axes[0].set_xlim(lon0-0.4,lon0+0.4) #axes[0].set_ylim(lat0-0.4,lat0+0.4) #axes[0].set_xlabel('RA (deg)') #axes[0].set_ylabel('DEC (deg)') axes[0].set_xlim(lon.min(),lon.max()) axes[0].set_ylim(lat.min(),lat.max()) axes[0].set_ylabel(r'$\Delta$ DEC (deg)') axes[0].set_xlabel(r'$\Delta$ RA (deg)') axes[0].xaxis.set_major_locator(MaxNLocator(4)) axes[0].yaxis.set_major_locator(MaxNLocator(4)) axes[0].invert_xaxis() axes[1].errorbar(color[cut],mag[cut],yerr=mag_err_1[cut],fmt='.',c='k',zorder=0.5) axes[1].scatter(color[~cut],mag[~cut],**bkg_kwargs) sc = axes[1].scatter(color[cut],mag[cut],c=prob[cut],**kwargs) if isochrone is not None: plt.sca(axes[1]) drawIsochrone(isochrone,cookie=False) axes[1].set_xlabel(r'$%s - %s$' % (config['catalog']['mag_1_band'], config['catalog']['mag_2_band'])) axes[1].set_ylabel(r'$%s$' % config['catalog']['mag_1_band']) axes[1].set_ylim(config['mag']['max'],config['mag']['min']) axes[1].set_xlim(config['color']['min'],config['color']['max']) axes[1].xaxis.set_major_locator(MaxNLocator(4)) try: divider = make_axes_locatable(axes[1]) #ax_cb = divider.new_vertical(size="5%", pad=0.05) ax_cb = divider.new_horizontal(size="7%", pad=0.1) fig.add_axes(ax_cb) plt.colorbar(sc, cax=ax_cb, orientation='vertical') ax_cb.yaxis.tick_right() except: logger.warning("No colorbar") return fig,axes def drawIsochrone(isochrone, **kwargs): ax = plt.gca() logger.debug(str(isochrone)) if kwargs.pop('cookie',None): # Broad cookie cutter defaults = dict(alpha=0.5, color='0.5', zorder=0, linewidth=15, linestyle='-') else: # Thin lines defaults = dict(color='k', linestyle='-') kwargs = dict(list(defaults.items())+list(kwargs.items())) isos = isochrone.isochrones if hasattr(isochrone,'isochrones') else [isochrone] for iso in isos: iso = copy.deepcopy(iso) logger.debug(iso.filename) iso.hb_spread = False mass_init,mass_pdf,mass_act,mag_1,mag_2 = iso.sample(mass_steps=1e3) mag = mag_1 + isochrone.distance_modulus color = mag_1 - mag_2 # Find discontinuities in the color magnitude distributions dmag = np.fabs(mag[1:]-mag[:-1]) dcolor = np.fabs(color[1:]-color[:-1]) idx = np.where( (dmag>1.0) | (dcolor>0.25))[0] # +1 to map from difference array to original array mags = np.split(mag,idx+1) colors = np.split(color,idx+1) for i,(c,m) in enumerate(zip(colors,mags)): msg = '%-4i (%g,%g) -- (%g,%g)'%(i,m[0],c[0],m[-1],c[-1]) logger.debug(msg) if i > 0: kwargs['label'] = None ax.plot(c,m,**kwargs) return ax def drawKernel(kernel, contour=False, coords='C', **kwargs): ax = plt.gca() if 'colors' not in kwargs: kwargs.setdefault('cmap',matplotlib.cm.jet) kwargs.setdefault('origin','lower') ext = kernel.extension theta = kernel.theta xmin,xmax = -kernel.edge,kernel.edge ymin,ymax = -kernel.edge,kernel.edge if coords[-1] == 'G': lon, lat = kernel.lon, kernel.lat elif coords[-1] == 'C': lon,lat = gal2cel(kernel.lon, kernel.lat) else: msg = 'Unrecognized coordinate: %s'%coords raise Exception(msg) x = np.linspace(xmin,xmax,500)+lon y = np.linspace(ymin,ymax,500)+lat xx,yy = np.meshgrid(x,y) extent = [x[0],x[-1],y[0],y[-1]] kwargs.setdefault('extent',extent) if coords[-1] == 'C': xx,yy = cel2gal(xx,yy) zz = kernel.pdf(xx.flat,yy.flat).reshape(xx.shape) zmax = zz.max() if contour: levels = kwargs.pop('levels',10) #levels = np.logspace(np.log10(zmax)-1,np.log10(zmax),7) ret = ax.contour(zz,levels,**kwargs) else: val = np.ma.array(zz,mask=zz<zz.max()/100.) ret = ax.imshow(val,**kwargs) return ret ################################################### def drawChernoff(ax,ts,bands='smooth',pdf=False,color='r'): from scipy.stats import chi2 logger.debug("Drawing %i simulations..."%len(ts)) x = plt.linspace(0.1,50,5000) bins = np.linspace(-1e-2,50,501) centers = (bins[1:]+bins[:-1])/2. ax.set_xscale('linear') ax.set_yscale('log',nonposy='clip') dof = 1 patches,labels = [],[] label = r"$\chi^2_{1} / 2$" kwargs = dict(label=label, lw=2, c='k',dashes=(5,2)) clip_ts = np.where(ts<1e-4, 0, ts) if not pdf: ax.plot(x,(1-chi2.cdf(x,dof))/2.,**kwargs) #fudge = 1/1.4 #ax.plot(x,(1-chi2.cdf(x,dof))/2.*fudge,**kwargs) # Histogram is normalized so first bin = 1 n,b,p = ax.hist(clip_ts,cumulative=-1,bins=bins,normed=True,log=True,histtype='step',color=color) else: num,b = np.histogram(clip_ts,bins=bins) c = (b[1:]+b[:-1])/2. norm = float(num.sum()*(b[1]-b[0])) n = num/norm ax.plot(x,(chi2.pdf(x,dof))/2.,**kwargs) err = np.sqrt(num)/norm yerr = [np.where(err>=n,0.9999*n,err),err] # Histogram is normalized so n = num/(len(x)*dbin) ax.errorbar(c,n,yerr=yerr,fmt='_',color=color,zorder=0) n,b,p = ax.hist(clip_ts,bins=bins,normed=True,log=True,color=color) idx = np.argmax(n==0) n = n[1:idx]; b=b[1:idx+1] ax.set_xlim([0,np.ceil(ts.max())]) ax.set_ylim([10**np.floor(np.log10(n.min())),1]) if bands != 'none': if bands == 'smooth': xvals = np.hstack([b[0],((b[1:]+b[:-1])/2.),b[-1]]) yvals = np.hstack([n[0],n,n[-1]]) elif bands == 'sharp': xvals = np.repeat(b,2)[1:-1] yvals = np.repeat(n,2) else: msg = 'Unrecognized band type: %s'%bands raise Exception(msg) # Bands... err = np.sqrt(yvals/float(len(ts))) y_hi = np.clip(yvals+err,1e-32,np.inf) y_lo = np.clip(yvals-err,1e-32,np.inf) #cut = (y_lo > 0) kwargs = dict(color='r', alpha='0.5', zorder=0.5) #ax.fill_between(c[cut], y_lo[cut], y_hi[cut], **kwargs) ax.fill_between(xvals, y_lo, y_hi, **kwargs) ax.add_patch(plt.Rectangle((0,0),0,0, **kwargs)) # Legend #ax.annotate(r"$N=%i$"%len(ts), xy=(0.15,0.85), xycoords='axes fraction', # bbox={'boxstyle':"round",'fc':'1'}) ax.set_xlabel('TS') ax.set_ylabel('PDF' if pdf else 'CDF') def plotChernoff(ts,bands='smooth',pdf=False): fig,ax = plt.subplots(1,1) drawChernoff(ax,ts,bands,pdf) def plot_chain(chain,burn=None,clip=None): #import triangle import corner from ugali.analysis.mcmc import Samples samples = Samples(chain) names = samples.names results = samples.results(clip=clip,burn=burn) truths = [results[n][0] for n in names] data = samples[burn:].view((float,len(names))) fig = corner.corner(data, labels=names, truths=truths) return fig ################################################### def drawSkymapCatalog(ax,lon,lat,**kwargs): mapping = { 'ait':'aitoff', 'mol':'mollweide', 'lam':'lambert', 'ham':'hammer' } kwargs.setdefault('proj','aitoff') kwargs.setdefault('s',2) kwargs.setdefault('marker','.') kwargs.setdefault('c','k') proj = kwargs.pop('proj') projection = mapping.get(proj,proj) #ax.grid() # Convert from # [0. < lon < 360] -> [-pi < lon < pi] # [-90 < lat < 90] -> [-pi/2 < lat < pi/2] lon,lat= np.radians([lon-360.*(lon>180),lat]) ax.scatter(lon,lat,**kwargs) def plotSkymap(skymap, proj='mol', **kwargs): kwargs.setdefault('xsize',1000) if proj.upper() == 'MOL': im = hp.mollview(skymap,**kwargs) elif proj.upper() == 'CAR': im = hp.cartview(skymap,**kwargs) return im def plotTriangle(srcfile,samples,burn=0,**kwargs): #import triangle import corner import ugali.analysis.source import ugali.analysis.mcmc #matplotlib.rcParams.update({'text.usetex': True}) source = ugali.analysis.source.Source() source.load(srcfile,section='source') params = source.get_params() results = yaml.load(open(srcfile))['results'] samples = ugali.analysis.mcmc.Samples(samples) names = samples.names labels = names truths = [params[n] for n in names] chain = samples.get(burn=burn,clip=5) ### Triangle plot #extents = [[0,15e3],[323.6,323.8],[-59.8,-59.7],[0,0.1],[19.5,20.5]] kwargs.setdefault('range',None) kwargs.setdefault('plot_contours',True) kwargs.setdefault('plot_datapoints',True) kwargs.setdefault('verbose',False) kwargs.setdefault('quantiles',[0.16,0.84]) if len(names) > 1: fig = corner.corner(chain,labels=labels,truths=truths,**kwargs) else: fig = plt.figure() plt.hist(chain,bins=100) plt.xlabel(names[0]) try: text = 'RA,DEC = (%.2f,%.2f)\n'%(results['ra'][0],results['dec'][0]) text += '(m-M,D) = (%.1f, %.0f kpc)\n'%(results['distance_modulus'][0],results['distance'][0]) text += r'$r_h$ = %.1f arcmin'%(results['extension_arcmin'][0])+'\n' text += 'TS = %.1f\n'%results['ts'][0] text += 'NSamples = %i\n'%(len(chain)) #plt.figtext(0.65,0.90,text,ha='left',va='top') except KeyError as e: logger.warning(str(e)) pass label = list(map(str.capitalize,source.name.split('_'))) label[-1] = label[-1].upper() title = '%s'%' '.join(label) plt.suptitle(title) ############################################################ def makePath(x_path, y_path, epsilon=1.e-10): """ Create closed path. """ x_path_closed = np.concatenate([x_path, x_path[::-1]]) y_path_closed = np.concatenate([y_path, epsilon + y_path[::-1]]) path = matplotlib.path.Path(list(zip(x_path_closed, y_path_closed))) return path ############################################################ def cutIsochronePath(g, r, g_err, r_err, isochrone, radius=0.1, return_all=False): """ Cut to identify objects within isochrone cookie-cutter. ADW: This should be moved into the isochrone class. """ import scipy.interpolate from ugali.isochrone import CompositeIsochrone if isinstance(isochrone, CompositeIsochrone): isochrone = isochrone.isochrones[0] if len(g) == 0: return np.array([],dtype=bool) try: if np.all(isochrone.stage == 'Main'): # Dotter case index_transition = len(isochrone.stage) else: # Other cases index_transition = np.nonzero(isochrone.stage > 3)[0][0] + 1 except AttributeError: index_transition = 1 mag_1_rgb = isochrone.mag_1[0: index_transition] + isochrone.distance_modulus mag_2_rgb = isochrone.mag_2[0: index_transition] + isochrone.distance_modulus mag_1_rgb = mag_1_rgb[::-1] mag_2_rgb = mag_2_rgb[::-1] # Cut one way... f_isochrone = scipy.interpolate.interp1d(mag_2_rgb, mag_1_rgb - mag_2_rgb, bounds_error=False, fill_value = 999.) color_diff = np.fabs((g - r) - f_isochrone(r)) cut_2 = (color_diff < np.sqrt(0.1**2 + r_err**2 + g_err**2)) # ...and now the other f_isochrone = scipy.interpolate.interp1d(mag_1_rgb, mag_1_rgb - mag_2_rgb, bounds_error=False, fill_value = 999.) color_diff = np.fabs((g - r) - f_isochrone(g)) cut_1 = (color_diff < np.sqrt(0.1**2 + r_err**2 + g_err**2)) cut = np.logical_or(cut_1, cut_2) # Include horizontal branch if it exists if not np.any(isochrone.stage == isochrone.hb_stage): index_transition = np.nonzero(isochrone.stage==isochrone.hb_stage)[0][0]+1 mag_1_hb = isochrone.mag_1[index_transition:] + isochrone.distance_modulus mag_2_hb = isochrone.mag_2[index_transition:] + isochrone.distance_modulus path_hb = makePath(mag_1_hb, mag_2_hb) cut_hb = path_hb.contains_points(list(zip(g, r)), radius=0.1) logger.debug('Applying HB selection') logger.debug(np.sum(cut)) cut = np.logical_or(cut, cut_hb) logger.debug(np.sum(cut)) mag_bins = np.arange(16., 24.1, 0.1) mag_centers = 0.5 * (mag_bins[1:] + mag_bins[0:-1]) magerr = np.tile(0., len(mag_centers)) for ii in range(0, len(mag_bins) - 1): cut_mag_bin = (g > mag_bins[ii]) & (g < mag_bins[ii + 1]) magerr[ii] = np.median(np.sqrt(0.1**2 + r_err[cut_mag_bin]**2 + g_err[cut_mag_bin]**2)) if return_all: return cut, mag_centers[f_isochrone(mag_centers) < 100], (f_isochrone(mag_centers) + magerr)[f_isochrone(mag_centers) < 100], (f_isochrone(mag_centers) - magerr)[f_isochrone(mag_centers) < 100] else: return cut ############################################################
36.902408
201
0.586018
288d0e694f21a4992a0c4f5f5d094fba80417cab
17,637
py
Python
tensorflow/python/data/kernel_tests/from_generator_test.py
xuzhezhaozhao/tensorflow
282828af67de29d13dd2c69d96413c030b02543c
[ "Apache-2.0" ]
1
2020-03-25T01:18:44.000Z
2020-03-25T01:18:44.000Z
tensorflow/python/data/kernel_tests/from_generator_test.py
xuzhezhaozhao/tensorflow
282828af67de29d13dd2c69d96413c030b02543c
[ "Apache-2.0" ]
2
2020-03-21T20:23:54.000Z
2020-03-21T20:25:05.000Z
tensorflow/python/data/kernel_tests/from_generator_test.py
xuzhezhaozhao/tensorflow
282828af67de29d13dd2c69d96413c030b02543c
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.data.Dataset.from_generator().""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from absl.testing import parameterized import numpy as np from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import combinations from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import script_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.platform import test class FromGeneratorTest(test_base.DatasetTestBase, parameterized.TestCase): def _testFromGenerator(self, generator, elem_sequence, num_repeats, requires_initialization): dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtypes.int64).repeat(num_repeats).prefetch(5) self.assertDatasetProduces( dataset, elem_sequence * num_repeats, requires_initialization=requires_initialization, num_test_iterations=2) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine( num_repeats=[1, 5], requires_initialization=[True, False]))) def testFromGeneratorUsingFn(self, num_repeats, requires_initialization): def generator(): for i in range(1, 100): yield [i] * i elem_sequence = list(generator()) self._testFromGenerator( generator, elem_sequence, num_repeats=num_repeats, requires_initialization=requires_initialization) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine( num_repeats=[1, 5], requires_initialization=[True, False]))) def testFromGeneratorUsingList(self, num_repeats, requires_initialization): generator = lambda: [[i] * i for i in range(1, 100)] elem_sequence = list(generator()) self._testFromGenerator( generator, elem_sequence, num_repeats=num_repeats, requires_initialization=requires_initialization) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine( num_repeats=[1, 5], requires_initialization=[True, False]))) def testFromGeneratorUsingNdarray(self, num_repeats, requires_initialization): generator = lambda: np.arange(100, dtype=np.int64) elem_sequence = list(generator()) self._testFromGenerator( generator, elem_sequence, num_repeats=num_repeats, requires_initialization=requires_initialization) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine( num_repeats=[1, 5], requires_initialization=[True, False]))) def testFromGeneratorUsingGeneratorExpression(self, num_repeats, requires_initialization): # NOTE(mrry): Generator *expressions* are not repeatable (or in general # reusable), because they eagerly evaluate the `for` expression as # `iter(range(1, 100))` and discard the means of reconstructing # `range(1, 100)`. Wrapping the generator expression in a `lambda` makes # it repeatable. generator = lambda: ([i] * i for i in range(1, 100)) elem_sequence = list(generator()) self._testFromGenerator( generator, elem_sequence, num_repeats=num_repeats, requires_initialization=requires_initialization) @combinations.generate(test_base.default_test_combinations()) def testFromMultipleConcurrentGenerators(self): num_inner_repeats = 5 num_outer_repeats = 100 def generator(): for i in range(1, 10): yield ([i] * i, [i, i ** 2, i ** 3]) input_list = list(generator()) # The interleave transformation is essentially a flat map that # draws from multiple input datasets concurrently (in a cyclic # fashion). By placing `Dataset.from_generator()` inside an # interleave, we test its behavior when multiple iterators are # active at the same time; by additionally prefetching inside the # interleave, we create the possibility of parallel (modulo GIL) # invocations to several iterators created by the same dataset. def interleave_fn(_): return (dataset_ops.Dataset.from_generator( generator, output_types=(dtypes.int64, dtypes.int64), output_shapes=([None], [3])) .repeat(num_inner_repeats).prefetch(5)) dataset = dataset_ops.Dataset.range(num_outer_repeats).interleave( interleave_fn, cycle_length=10, block_length=len(input_list)) get_next = self.getNext(dataset) for _ in range(num_inner_repeats * num_outer_repeats): for elem in input_list: val0, val1 = self.evaluate(get_next()) self.assertAllEqual(elem[0], val0) self.assertAllEqual(elem[1], val1) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # TODO(b/67868766): Reenable this when the source of flakiness is discovered. def _testFromGeneratorsRunningInParallel(self): num_parallel_iterators = 3 # Define shared state that multiple iterator instances will access to # demonstrate their concurrent activity. lock = threading.Lock() condition = threading.Condition(lock) next_ticket = [0] # GUARDED_BY(lock) def generator(): # NOTE(mrry): We yield one element before the barrier, because # the current implementation of `Dataset.interleave()` must # fetch one element from each incoming dataset to start the # prefetching. yield 0 # Define a barrier that `num_parallel_iterators` iterators must enter # before any can proceed. Demonstrates that multiple iterators may be # active at the same time. condition.acquire() ticket = next_ticket[0] next_ticket[0] += 1 if ticket == num_parallel_iterators - 1: # The last iterator to join the barrier notifies the others. condition.notify_all() else: # Wait until the last iterator enters the barrier. while next_ticket[0] < num_parallel_iterators: condition.wait() condition.release() yield 1 # As in `testFromMultipleConcurrentGenerators()`, we use a combination of # `Dataset.interleave()` and `Dataset.prefetch()` to cause multiple # iterators to be active concurrently. def interleave_fn(_): return dataset_ops.Dataset.from_generator( generator, output_types=dtypes.int64, output_shapes=[]).prefetch(2) dataset = dataset_ops.Dataset.range(num_parallel_iterators).interleave( interleave_fn, cycle_length=num_parallel_iterators, block_length=1) get_next = self.getNext(dataset) for elem in [0, 1]: for _ in range(num_parallel_iterators): self.assertAllEqual(elem, self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorImplicitConversion(self): def generator(): yield [1] yield [2] yield [3] for dtype in [dtypes.int8, dtypes.int32, dtypes.int64]: dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtype, output_shapes=[1]) get_next = self.getNext(dataset) for expected in [[1], [2], [3]]: next_val = self.evaluate(get_next()) self.assertEqual(dtype.as_numpy_dtype, next_val.dtype) self.assertAllEqual(expected, next_val) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorString(self): def generator(): yield "foo" yield b"bar" yield u"baz" dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtypes.string, output_shapes=[]) self.assertDatasetProduces( dataset, expected_output=[b"foo", b"bar", b"baz"]) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorTypeError(self): def generator(): yield np.array([1, 2, 3], dtype=np.int64) yield np.array([4, 5, 6], dtype=np.int64) yield "ERROR" yield np.array([7, 8, 9], dtype=np.int64) dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtypes.int64, output_shapes=[3]) get_next = self.getNext(dataset) self.assertAllEqual([1, 2, 3], self.evaluate(get_next())) self.assertAllEqual([4, 5, 6], self.evaluate(get_next())) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) self.assertAllEqual([7, 8, 9], self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorShapeError(self): def generator(): yield np.array([1, 2, 3], dtype=np.int64) yield np.array([4, 5, 6], dtype=np.int64) yield np.array([7, 8, 9, 10], dtype=np.int64) yield np.array([11, 12, 13], dtype=np.int64) dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtypes.int64, output_shapes=[3]) get_next = self.getNext(dataset) self.assertAllEqual([1, 2, 3], self.evaluate(get_next())) self.assertAllEqual([4, 5, 6], self.evaluate(get_next())) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) self.assertAllEqual([11, 12, 13], self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorStructureError(self): def generator(): yield 1, 2 yield 3, 4 yield 5 yield 6, 7, 8 yield 9, 10 dataset = dataset_ops.Dataset.from_generator( generator, output_types=(dtypes.int64, dtypes.int64)) get_next = self.getNext(dataset) self.assertEqual((1, 2), self.evaluate(get_next())) self.assertEqual((3, 4), self.evaluate(get_next())) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) with self.assertRaises(errors.InvalidArgumentError): self.evaluate(get_next()) self.assertEqual((9, 10), self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorHeterogeneous(self): def generator(): yield 1 yield [2, 3] dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtypes.int64) self.assertDatasetProduces(dataset, expected_output=[1, [2, 3]]) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorStopShort(self): def generator(): yield 0 yield 1 yield 2 dataset = dataset_ops.Dataset.from_generator( generator, output_types=dtypes.int64) get_next = self.getNext(dataset) self.assertAllEqual(0, self.evaluate(get_next())) self.assertAllEqual(1, self.evaluate(get_next())) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorDestructorCalled(self): # Use an `Event` to signal that the generator has been deleted. event = threading.Event() class GeneratorWrapper(object): def __iter__(self): return self def next(self): return self.__next__() def __next__(self): return 42 def __del__(self): event.set() dataset = dataset_ops.Dataset.from_generator( GeneratorWrapper, output_types=dtypes.int64).take(2) get_next = self.getNext(dataset) self.assertAllEqual(42, self.evaluate(get_next())) self.assertAllEqual(42, self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Test that `GeneratorWrapper` object is destroyed when the # iterator terminates (and the generator iterator is deleted). self.assertTrue(event.is_set()) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorWithArgs(self): def flat_map_fn(elem): def generator_with_arg(n): for _ in range(n): yield np.array(n, dtype=np.int64) return dataset_ops.Dataset.from_generator( generator_with_arg, output_types=dtypes.int64, output_shapes=(), args=(elem,)) dataset = dataset_ops.Dataset.range(5).flat_map(flat_map_fn) self.assertDatasetProduces( dataset, expected_output=[1, 2, 2, 3, 3, 3, 4, 4, 4, 4]) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorWithTwoArgs(self): def flat_map_fn(elem, message): def generator_with_arg(n, msg): for i in range(n): yield i, msg return dataset_ops.Dataset.from_generator( generator_with_arg, output_types=(dtypes.int64, dtypes.string), output_shapes=((), ()), args=(elem, message)) dataset = dataset_ops.Dataset.zip( (dataset_ops.Dataset.range(5), dataset_ops.Dataset.from_tensors("Hi!").repeat(None) )).flat_map(flat_map_fn) self.assertDatasetProduces( dataset, expected_output=[(0, b"Hi!"), (0, b"Hi!"), (1, b"Hi!"), (0, b"Hi!"), (1, b"Hi!"), (2, b"Hi!"), (0, b"Hi!"), (1, b"Hi!"), (2, b"Hi!"), (3, b"Hi!")]) @combinations.generate(test_base.default_test_combinations()) def testGeneratorDatasetFinalizeFunctionCalled(self): # NOTE(mrry): This test tests the internal `_GeneratorDataset`, # which affords more control over what the finalize function can do than # the `Dataset.from_generator()` wrapper. # Use an `Event` to signal that the generator has been deleted. event = threading.Event() def finalize_fn(_): def finalize_py_func(): event.set() return 0 return script_ops.py_func(finalize_py_func, [], [dtypes.int64], stateful=True) dummy = constant_op.constant(37) dataset = dataset_ops._GeneratorDataset( dummy, lambda x: x, lambda x: x, finalize_fn, tensor_spec.TensorSpec((), dtypes.int32)) dataset = dataset.take(2) get_next = self.getNext(dataset) self.assertAllEqual(37, self.evaluate(get_next())) self.assertAllEqual(37, self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) @combinations.generate(test_base.default_test_combinations()) def testSharedName(self): def generator(): for _ in range(10): yield [20] dataset = dataset_ops.Dataset.from_generator( generator, output_types=(dtypes.int64)) get_next = self.getNext( dataset, requires_initialization=True, shared_name="shared_dataset") self.assertAllEqual([20], self.evaluate(get_next())) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorRaggedTensor(self): def generator(): yield ragged_factory_ops.constant([[1, 2], [3]], dtype=dtypes.int64, ragged_rank=1) dataset = dataset_ops.Dataset.from_generator( generator, output_signature=ragged_tensor.RaggedTensorSpec( shape=(2, None), dtype=dtypes.int64)) get_next = self.getNext(dataset) ret = get_next() self.assertIsInstance(ret, ragged_tensor.RaggedTensor) self.assertAllEqual([1, 2, 3], ret.values) @combinations.generate(test_base.default_test_combinations()) def testFromGeneratorSparseTensor(self): def generator(): yield sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=constant_op.constant([1, 2], dtype=dtypes.int64), dense_shape=[3, 4]) dataset = dataset_ops.Dataset.from_generator( generator, output_signature=sparse_tensor.SparseTensorSpec([3, 4], dtypes.int64)) get_next = self.getNext(dataset) ret = get_next() self.assertIsInstance(ret, sparse_tensor.SparseTensor) self.assertAllEqual([[1, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]], sparse_ops.sparse_tensor_to_dense(ret)) if __name__ == "__main__": test.main()
36.66736
80
0.688212
eff830e824fc5425b224ac3c81a82be04ee6f22d
1,047
py
Python
beamit/resources/signup.py
ksweta/BeamIt-Server
0678bab9fce6427c5af45c85e24d851ccd5fbdfb
[ "Apache-2.0" ]
null
null
null
beamit/resources/signup.py
ksweta/BeamIt-Server
0678bab9fce6427c5af45c85e24d851ccd5fbdfb
[ "Apache-2.0" ]
null
null
null
beamit/resources/signup.py
ksweta/BeamIt-Server
0678bab9fce6427c5af45c85e24d851ccd5fbdfb
[ "Apache-2.0" ]
null
null
null
from beamit.resources.base import Resource class SignupRequest(Resource): MEDIA_TYPE = 'application/vnd.beamit.signup.request+json' def __init__(self, email, password): self.email = email self.password = password def __repr__(self): return "<SignupRequest email: {}, password: {}>".format( self.email, self.password, ) def to_dict(self): return dict(email=self.email, password=self.password) @classmethod def from_dict(cls, dct): return cls( email=dct.get("email"), password=dct.get("password"), ) class SignupResponse(Resource): MEDIA_TYPE = 'application/vnd.beamit.signup.response+json' def __init__(self, user_id): self.user_id = user_id def __repr__(self): return "<SignupResponse user_id: {}>".format(self.user_id) def to_dict(self): return dict(user_id=self.user_id) @classmethod def from_dict(cls, dct): return cls(user_id=dct.get("user_id"))
23.795455
66
0.624642
bd91533376a2bd7230bfda81126a33d879bed4f2
1,992
py
Python
tests/common/test_run/sigmoid_run.py
KnowingNothing/akg-test
114d8626b824b9a31af50a482afc07ab7121862b
[ "Apache-2.0" ]
null
null
null
tests/common/test_run/sigmoid_run.py
KnowingNothing/akg-test
114d8626b824b9a31af50a482afc07ab7121862b
[ "Apache-2.0" ]
null
null
null
tests/common/test_run/sigmoid_run.py
KnowingNothing/akg-test
114d8626b824b9a31af50a482afc07ab7121862b
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from tests.common.test_op import sigmoid from tests.common.tensorio import compare_tensor from tests.common.gen_random import random_gaussian def sigmoid_run(shape, dtype, kernel_name, attrs): input_shape = [shape] input_dtype = [dtype] if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(sigmoid.sigmoid, input_shape, input_dtype, attrs=attrs, kernel_name=kernel_name, tuning=t) if t: expect, input, output = gen_data(dtype, shape) return mod, expect, (input, output) else: return mod else: expect, input, output = gen_data(dtype, shape) mod = utils.op_build_test(sigmoid.sigmoid, input_shape, input_dtype, kernel_name=kernel_name, attrs=attrs) accOutput = utils.mod_launch(mod, (input, output), expect=expect) return input, accOutput, expect, compare_tensor(accOutput, expect, rtol=5e-03, equal_nan=True) def gen_data(dtype, shape): input = random_gaussian(shape, miu=0, sigma=0.5).astype(dtype) expect = 1. / (1. + np.exp(-input)) output = np.full(shape, np.nan, dtype) return expect, input, output
41.5
115
0.670683
23ea30f38330d86ee376b5d2fbea7c49c138da7a
34,957
py
Python
src/AeroelasticSE/CaseLibrary.py
WISDEM/AeroelasticSE
486e89ce129f97796fd9b64e2c3562102287403d
[ "Apache-2.0" ]
7
2015-01-19T18:22:32.000Z
2022-02-26T10:04:16.000Z
src/AeroelasticSE/CaseLibrary.py
WISDEM/AeroelasticSE
486e89ce129f97796fd9b64e2c3562102287403d
[ "Apache-2.0" ]
3
2016-07-25T19:23:54.000Z
2018-09-24T16:09:26.000Z
src/AeroelasticSE/CaseLibrary.py
WISDEM/AeroelasticSE
486e89ce129f97796fd9b64e2c3562102287403d
[ "Apache-2.0" ]
15
2015-03-03T17:38:40.000Z
2021-04-19T18:39:45.000Z
import os import numpy as np from AeroelasticSE.CaseGen_General import CaseGen_General from AeroelasticSE.CaseGen_IEC import CaseGen_IEC # def power_curve_fit(fst_vt, runDir, namebase, TMax, turbine_class, turbulence_class, Vrated, U_init=[], Omega_init=[], pitch_init=[], Turbsim_exe='', ptfm_U_init=[], ptfm_pitch_init=[], ptfm_surge_init=[], ptfm_heave_init=[], metocean_U_init=[], metocean_Hs_init=[], metocean_Tp_init=[]): # # Default Runtime # T = 240. # TStart = 120. # # T = 120. # # TStart = 60. # # Overwrite for testing # if TMax < T: # T = TMax # TStart = 0. # # Run conditions for points which will be used for a cubic polynomial fit # # U = [10.] # U = [4.,8.,9.,10.] # omega = np.interp(U, U_init, Omega_init) # pitch = np.interp(U, U_init, pitch_init) # # Check if floating # floating_dof = [fst_vt['ElastoDyn']['PtfmSgDOF'], fst_vt['ElastoDyn']['PtfmSwDOF'], fst_vt['ElastoDyn']['PtfmHvDOF'], fst_vt['ElastoDyn']['PtfmRDOF'], fst_vt['ElastoDyn']['PtfmPDOF'], fst_vt['ElastoDyn']['PtfmYDOF']] # if any(floating_dof): # floating = True # if ptfm_U_init == []: # ptfm_U_init = [4., 5., 6., 7., 8., 9., 10., 10.5, 11., 12., 14., 19., 24.] # ptfm_surge_init = [3.8758245863838807, 5.57895688031965, 7.619719770801395, 9.974666446553552, 12.675469235464321, 16.173740623041965, 20.069526574594757, 22.141906121375552, 23.835466098954708, 22.976075549477354, 17.742743260748373, 14.464576583154068, 14.430969814391759] # ptfm_heave_init = [0.030777174904620515, 0.008329930604820483, -0.022973502300090893, -0.06506947653943342, -0.12101317451310406, -0.20589689839069836, -0.3169518280533253, -0.3831692055885472, -0.4409624802614755, -0.41411738171337675, -0.2375323506471747, -0.1156867221814119, -0.07029955933167854] # ptfm_pitch_init = [0.7519976895165884, 1.104483050851386, 1.5180416334025146, 1.9864587671004394, 2.5152769741130134, 3.1937704945765795, 3.951314212429935, 4.357929703098016, 4.693765745171944, 4.568760630312074, 3.495057478277534, 2.779958240049992, 2.69008798174216] # if metocean_U_init == []: # metocean_U_init = [4.00, 6.00, 8.00, 10.00, 12.00, 14.00, 16.00, 18.00, 20.00, 22.00, 24.00] # metocean_Hs_init = [1.908567568, 1.960162595, 2.062722244, 2.224539415, 2.489931091, 2.802984019, 3.182301485, 3.652236101, 4.182596165, 4.695439504, 5.422289377] # metocean_Tp_init = [12.23645701, 12.14497777, 11.90254947, 11.5196666, 11.05403739, 10.65483551, 10.27562225, 10.13693777, 10.27842325, 10.11660396, 10.96177917] # ptfm_heave = np.interp(U, ptfm_U_init, ptfm_heave_init) # ptfm_surge = np.interp(U, ptfm_U_init, ptfm_surge_init) # ptfm_pitch = np.interp(U, ptfm_U_init, ptfm_pitch_init) # metocean_Hs = np.interp(U, metocean_U_init, metocean_Hs_init) # metocean_Tp = np.interp(U, metocean_U_init, metocean_Tp_init) # else: # floating = False # case_inputs = {} # # simulation settings # # case_inputs[("ElastoDyn","PtfmSgDOF")] = {'vals':['False'], 'group':0} # # case_inputs[("ElastoDyn","PtfmHvDOF")] = {'vals':['False'], 'group':0} # # case_inputs[("ElastoDyn","PtfmPDOF")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","PtfmSwDOF")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","PtfmRDOF")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","PtfmYDOF")] = {'vals':['False'], 'group':0} # case_inputs[("Fst","TMax")] = {'vals':[T], 'group':0} # case_inputs[("Fst","TStart")] = {'vals':[TStart], 'group':0} # case_inputs[("ElastoDyn","YawDOF")] = {'vals':['True'], 'group':0} # case_inputs[("ElastoDyn","FlapDOF1")] = {'vals':['True'], 'group':0} # case_inputs[("ElastoDyn","FlapDOF2")] = {'vals':['True'], 'group':0} # case_inputs[("ElastoDyn","EdgeDOF")] = {'vals':['True'], 'group':0} # case_inputs[("ElastoDyn","DrTrDOF")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","GenDOF")] = {'vals':['True'], 'group':0} # case_inputs[("ElastoDyn","TwFADOF1")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","TwFADOF2")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","TwSSDOF1")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","TwSSDOF2")] = {'vals':['False'], 'group':0} # case_inputs[("ServoDyn","PCMode")] = {'vals':[5], 'group':0} # case_inputs[("ServoDyn","VSContrl")] = {'vals':[5], 'group':0} # case_inputs[("ServoDyn","YCMode")] = {'vals':[5], 'group':0} # case_inputs[("AeroDyn15","WakeMod")] = {'vals':[1], 'group':0} # case_inputs[("AeroDyn15","AFAeroMod")] = {'vals':[2], 'group':0} # case_inputs[("AeroDyn15","TwrPotent")] = {'vals':[0], 'group':0} # case_inputs[("AeroDyn15","TwrShadow")] = {'vals':['False'], 'group':0} # case_inputs[("AeroDyn15","TwrAero")] = {'vals':['False'], 'group':0} # case_inputs[("AeroDyn15","SkewMod")] = {'vals':[1], 'group':0} # case_inputs[("AeroDyn15","TipLoss")] = {'vals':['True'], 'group':0} # case_inputs[("AeroDyn15","HubLoss")] = {'vals':['True'], 'group':0} # case_inputs[("AeroDyn15","TanInd")] = {'vals':['True'], 'group':0} # case_inputs[("AeroDyn15","AIDrag")] = {'vals':['True'], 'group':0} # case_inputs[("AeroDyn15","TIDrag")] = {'vals':['True'], 'group':0} # case_inputs[("AeroDyn15","IndToler")] = {'vals':[1.e-5], 'group':0} # case_inputs[("AeroDyn15","MaxIter")] = {'vals':[5000], 'group':0} # case_inputs[("AeroDyn15","UseBlCm")] = {'vals':['True'], 'group':0} # # inital conditions # case_inputs[("InflowWind","WindType")] = {'vals':[1], 'group':0} # case_inputs[("InflowWind","HWindSpeed")] = {'vals':U, 'group':1} # case_inputs[("ElastoDyn","RotSpeed")] = {'vals':omega, 'group':1} # case_inputs[("ElastoDyn","BlPitch1")] = {'vals':pitch, 'group':1} # case_inputs[("ElastoDyn","BlPitch2")] = case_inputs[("ElastoDyn","BlPitch1")] # case_inputs[("ElastoDyn","BlPitch3")] = case_inputs[("ElastoDyn","BlPitch1")] # if floating == True: # case_inputs[("ElastoDyn","PtfmSurge")] = {'vals':ptfm_surge, 'group':1} # case_inputs[("ElastoDyn","PtfmHeave")] = {'vals':ptfm_heave, 'group':1} # case_inputs[("ElastoDyn","PtfmPitch")] = {'vals':ptfm_pitch, 'group':1} # case_inputs[("HydroDyn","WaveHs")] = {'vals':metocean_Hs, 'group':1} # case_inputs[("HydroDyn","WaveTp")] = {'vals':metocean_Tp, 'group':1} # case_inputs[("HydroDyn","RdtnDT")] = {'vals':[fst_vt["Fst"]["DT"]], 'group':0} # case_inputs[("HydroDyn","WaveMod")] = {'vals':[1], 'group':0} # from CaseGen_General import CaseGen_General # case_list, case_name_list = CaseGen_General(case_inputs, dir_matrix=runDir, namebase=namebase) # channels = ['Wind1VelX','GenPwr'] # return case_list, case_name_list, channels def power_curve(fst_vt, runDir, namebase, TMax, turbine_class, turbulence_class, Vrated, U_init=[], Omega_init=[], pitch_init=[], Turbsim_exe='', ptfm_U_init=[], ptfm_pitch_init=[], ptfm_surge_init=[], ptfm_heave_init=[], metocean_U_init=[], metocean_Hs_init=[], metocean_Tp_init=[], V_R25=0.): # Default Runtime T = 360. TStart = 120. # T = 120. # TStart = 60. # Overwrite for testing if TMax < T: T = TMax TStart = 0. # Run conditions U_all = list(sorted([4., 6., 8., 9., 10., 10.5, 11., 11.5, 11.75, 12., 12.5, 13., 14., 19., 25., Vrated])) if V_R25 != 0.: U_all.append(V_R25) U_all = list(sorted(U_all)) U = [Vi for Vi in U_all if Vi <= Vrated] # print(U) # dt = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001] dt = [0.01]*len(U) # U = [4.,8.,9.,10.] omega = np.interp(U, U_init, Omega_init) pitch = np.interp(U, U_init, pitch_init) for i, (omegai, pitchi) in enumerate(zip(omega, pitch)): if pitchi > 0. and omegai < Omega_init[-1]: pitch[i] = 0. # Check if floating floating_dof = [fst_vt['ElastoDyn']['PtfmSgDOF'], fst_vt['ElastoDyn']['PtfmSwDOF'], fst_vt['ElastoDyn']['PtfmHvDOF'], fst_vt['ElastoDyn']['PtfmRDOF'], fst_vt['ElastoDyn']['PtfmPDOF'], fst_vt['ElastoDyn']['PtfmYDOF']] if any(floating_dof): floating = True if ptfm_U_init == []: ptfm_U_init = [3., 5., 6., 7., 8., 9., 10., 10.5, 11., 12., 14., 19., 25.] ptfm_surge_init = [3.8758245863838807, 5.57895688031965, 7.619719770801395, 9.974666446553552, 12.675469235464321, 16.173740623041965, 20.069526574594757, 22.141906121375552, 23.835466098954708, 22.976075549477354, 17.742743260748373, 14.464576583154068, 14.430969814391759] ptfm_heave_init = [0.030777174904620515, 0.008329930604820483, -0.022973502300090893, -0.06506947653943342, -0.12101317451310406, -0.20589689839069836, -0.3169518280533253, -0.3831692055885472, -0.4409624802614755, -0.41411738171337675, -0.2375323506471747, -0.1156867221814119, -0.07029955933167854] ptfm_pitch_init = [0.7519976895165884, 1.104483050851386, 1.5180416334025146, 1.9864587671004394, 2.5152769741130134, 3.1937704945765795, 3.951314212429935, 4.357929703098016, 4.693765745171944, 4.568760630312074, 3.495057478277534, 2.779958240049992, 2.69008798174216] if metocean_U_init == []: metocean_U_init = [3.00, 6.00, 8.00, 10.00, 12.00, 14.00, 16.00, 18.00, 20.00, 22.00, 25.00] metocean_Hs_init = [1.908567568, 1.960162595, 2.062722244, 2.224539415, 2.489931091, 2.802984019, 3.182301485, 3.652236101, 4.182596165, 4.695439504, 5.422289377] metocean_Tp_init = [12.23645701, 12.14497777, 11.90254947, 11.5196666, 11.05403739, 10.65483551, 10.27562225, 10.13693777, 10.27842325, 10.11660396, 10.96177917] ptfm_heave = np.interp(U, ptfm_U_init, ptfm_heave_init) ptfm_surge = np.interp(U, ptfm_U_init, ptfm_surge_init) ptfm_pitch = np.interp(U, ptfm_U_init, ptfm_pitch_init) metocean_Hs = np.interp(U, metocean_U_init, metocean_Hs_init) metocean_Tp = np.interp(U, metocean_U_init, metocean_Tp_init) else: floating = False case_inputs = {} # simulation settings # case_inputs[("ElastoDyn","PtfmSgDOF")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","PtfmHvDOF")] = {'vals':['False'], 'group':0} # case_inputs[("ElastoDyn","PtfmPDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","PtfmSwDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","PtfmRDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","PtfmYDOF")] = {'vals':['False'], 'group':0} case_inputs[("Fst","TMax")] = {'vals':[T], 'group':0} case_inputs[("Fst","TStart")] = {'vals':[TStart], 'group':0} case_inputs[("Fst","DT")] = {'vals':dt, 'group':1} case_inputs[("ElastoDyn","YawDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","FlapDOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","FlapDOF2")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","EdgeDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","DrTrDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","GenDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","TwFADOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwFADOF2")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF2")] = {'vals':['False'], 'group':0} case_inputs[("ServoDyn","PCMode")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","VSContrl")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","YCMode")] = {'vals':[5], 'group':0} case_inputs[("AeroDyn15","WakeMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","AFAeroMod")] = {'vals':[2], 'group':0} case_inputs[("AeroDyn15","TwrPotent")] = {'vals':[0], 'group':0} case_inputs[("AeroDyn15","TwrShadow")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","TwrAero")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","SkewMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","TipLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","HubLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TanInd")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","AIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","IndToler")] = {'vals':[1.e-5], 'group':0} case_inputs[("AeroDyn15","MaxIter")] = {'vals':[5000], 'group':0} case_inputs[("AeroDyn15","UseBlCm")] = {'vals':['True'], 'group':0} # inital conditions case_inputs[("InflowWind","WindType")] = {'vals':[1], 'group':0} case_inputs[("InflowWind","HWindSpeed")] = {'vals':U, 'group':1} case_inputs[("ElastoDyn","RotSpeed")] = {'vals':omega, 'group':1} case_inputs[("ElastoDyn","BlPitch1")] = {'vals':pitch, 'group':1} case_inputs[("ElastoDyn","BlPitch2")] = case_inputs[("ElastoDyn","BlPitch1")] case_inputs[("ElastoDyn","BlPitch3")] = case_inputs[("ElastoDyn","BlPitch1")] if floating == True: case_inputs[("ElastoDyn","PtfmSurge")] = {'vals':ptfm_surge, 'group':1} case_inputs[("ElastoDyn","PtfmHeave")] = {'vals':ptfm_heave, 'group':1} case_inputs[("ElastoDyn","PtfmPitch")] = {'vals':ptfm_pitch, 'group':1} case_inputs[("HydroDyn","WaveHs")] = {'vals':metocean_Hs, 'group':1} case_inputs[("HydroDyn","WaveTp")] = {'vals':metocean_Tp, 'group':1} case_inputs[("HydroDyn","RdtnDT")] = {'vals':dt, 'group':1} case_inputs[("HydroDyn","WaveMod")] = {'vals':[1], 'group':0} from AeroelasticSE.CaseGen_General import CaseGen_General case_list, case_name_list = CaseGen_General(case_inputs, dir_matrix=runDir, namebase=namebase) channels = ['Wind1VelX','GenPwr',"RtAeroCp", "RotTorq", "RotThrust", "RotSpeed", "BldPitch1"] return case_list, case_name_list, channels def RotorSE_rated(fst_vt, runDir, namebase, TMax, turbine_class, turbulence_class, Vrated, U_init=[], Omega_init=[], pitch_init=[], Turbsim_exe='', ptfm_U_init=[], ptfm_pitch_init=[], ptfm_surge_init=[], ptfm_heave_init=[], metocean_U_init=[], metocean_Hs_init=[], metocean_Tp_init=[]): # Default Runtime T = 240. TStart = 120. # dt = 0.001 dt = 0.01 # Overwrite for testing if TMax < T: T = TMax TStart = 0. omega = np.interp(Vrated, U_init, Omega_init) pitch = np.interp(Vrated, U_init, pitch_init) # Check if floating floating_dof = [fst_vt['ElastoDyn']['PtfmSgDOF'], fst_vt['ElastoDyn']['PtfmSwDOF'], fst_vt['ElastoDyn']['PtfmHvDOF'], fst_vt['ElastoDyn']['PtfmRDOF'], fst_vt['ElastoDyn']['PtfmPDOF'], fst_vt['ElastoDyn']['PtfmYDOF']] if any(floating_dof): floating = True if ptfm_U_init == []: ptfm_U_init = [4., 5., 6., 7., 8., 9., 10., 10.5, 11., 12., 14., 19., 24.] ptfm_surge_init = [3.8758245863838807, 5.57895688031965, 7.619719770801395, 9.974666446553552, 12.675469235464321, 16.173740623041965, 20.069526574594757, 22.141906121375552, 23.835466098954708, 22.976075549477354, 17.742743260748373, 14.464576583154068, 14.430969814391759] ptfm_heave_init = [0.030777174904620515, 0.008329930604820483, -0.022973502300090893, -0.06506947653943342, -0.12101317451310406, -0.20589689839069836, -0.3169518280533253, -0.3831692055885472, -0.4409624802614755, -0.41411738171337675, -0.2375323506471747, -0.1156867221814119, -0.07029955933167854] ptfm_pitch_init = [0.7519976895165884, 1.104483050851386, 1.5180416334025146, 1.9864587671004394, 2.5152769741130134, 3.1937704945765795, 3.951314212429935, 4.357929703098016, 4.693765745171944, 4.568760630312074, 3.495057478277534, 2.779958240049992, 2.69008798174216] if metocean_U_init == []: metocean_U_init = [4.00, 6.00, 8.00, 10.00, 12.00, 14.00, 16.00, 18.00, 20.00, 22.00, 24.00] metocean_Hs_init = [1.908567568, 1.960162595, 2.062722244, 2.224539415, 2.489931091, 2.802984019, 3.182301485, 3.652236101, 4.182596165, 4.695439504, 5.422289377] metocean_Tp_init = [12.23645701, 12.14497777, 11.90254947, 11.5196666, 11.05403739, 10.65483551, 10.27562225, 10.13693777, 10.27842325, 10.11660396, 10.96177917] ptfm_heave = [np.interp(Vrated, ptfm_U_init, ptfm_heave_init)] ptfm_surge = [np.interp(Vrated, ptfm_U_init, ptfm_surge_init)] ptfm_pitch = [np.interp(Vrated, ptfm_U_init, ptfm_pitch_init)] metocean_Hs = [np.interp(Vrated, metocean_U_init, metocean_Hs_init)] metocean_Tp = [np.interp(Vrated, metocean_U_init, metocean_Tp_init)] else: floating = False case_inputs = {} case_inputs[("Fst","TMax")] = {'vals':[T], 'group':0} case_inputs[("Fst","TStart")] = {'vals':[TStart], 'group':0} case_inputs[("Fst","DT")] = {'vals':[dt], 'group':0} case_inputs[("Fst","OutFileFmt")] = {'vals':[2], 'group':0} case_inputs[("InflowWind","WindType")] = {'vals':[1], 'group':0} case_inputs[("InflowWind","HWindSpeed")] = {'vals':[Vrated], 'group':0} case_inputs[("ElastoDyn","RotSpeed")] = {'vals':[omega], 'group':0} case_inputs[("ElastoDyn","BlPitch1")] = {'vals':[pitch], 'group':0} case_inputs[("ElastoDyn","BlPitch2")] = {'vals':[pitch], 'group':0} case_inputs[("ElastoDyn","BlPitch3")] = {'vals':[pitch], 'group':0} case_inputs[("ElastoDyn","YawDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","FlapDOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","FlapDOF2")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","EdgeDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","DrTrDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","GenDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","TwFADOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwFADOF2")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF2")] = {'vals':['False'], 'group':0} case_inputs[("ServoDyn","PCMode")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","VSContrl")] = {'vals':[5], 'group':0} case_inputs[("AeroDyn15","WakeMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","AFAeroMod")] = {'vals':[2], 'group':0} case_inputs[("AeroDyn15","TwrPotent")] = {'vals':[0], 'group':0} case_inputs[("AeroDyn15","TwrShadow")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","TwrAero")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","SkewMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","TipLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","HubLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TanInd")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","AIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","IndToler")] = {'vals':[1.e-5], 'group':0} case_inputs[("AeroDyn15","MaxIter")] = {'vals':[5000], 'group':0} case_inputs[("AeroDyn15","UseBlCm")] = {'vals':['True'], 'group':0} if floating == True: case_inputs[("ElastoDyn","PtfmSurge")] = {'vals':ptfm_surge, 'group':1} case_inputs[("ElastoDyn","PtfmHeave")] = {'vals':ptfm_heave, 'group':1} case_inputs[("ElastoDyn","PtfmPitch")] = {'vals':ptfm_pitch, 'group':1} case_inputs[("HydroDyn","WaveHs")] = {'vals':metocean_Hs, 'group':1} case_inputs[("HydroDyn","WaveTp")] = {'vals':metocean_Tp, 'group':1} case_inputs[("HydroDyn","RdtnDT")] = {'vals':[dt], 'group':0} case_inputs[("HydroDyn","WaveMod")] = {'vals':[1], 'group':0} namebase += '_rated' case_list, case_name_list = CaseGen_General(case_inputs, dir_matrix=runDir, namebase=namebase) channels = ["TipDxc1", "TipDyc1"] channels += ["RootMxc1", "RootMyc1", "RootMzc1", "RootMxc2", "RootMyc2", "RootMzc2", "RootMxc3", "RootMyc3", "RootMzc3"] channels += ["RootFxc1", "RootFyc1", "RootFzc1", "RootFxc2", "RootFyc2", "RootFzc2", "RootFxc3", "RootFyc3", "RootFzc3"] channels += ["RtAeroCp", "RotTorq", "RotThrust", "RotSpeed"] return case_list, case_name_list, channels def RotorSE_DLC_1_4_Rated(fst_vt, runDir, namebase, TMax, turbine_class, turbulence_class, Vrated, U_init=[], Omega_init=[], pitch_init=[], Turbsim_exe=''): # Default Runtime T = 360. TStart = 60. # TStart = 0. # Overwrite for testing if TMax < T: T = TMax TStart = 0. iec = CaseGen_IEC() iec.init_cond[("ElastoDyn","RotSpeed")] = {'U': U_init} iec.init_cond[("ElastoDyn","RotSpeed")]['val'] = Omega_init iec.init_cond[("ElastoDyn","BlPitch1")] = {'U': U_init} iec.init_cond[("ElastoDyn","BlPitch1")]['val'] = pitch_init iec.init_cond[("ElastoDyn","BlPitch2")] = iec.init_cond[("ElastoDyn","BlPitch1")] iec.init_cond[("ElastoDyn","BlPitch3")] = iec.init_cond[("ElastoDyn","BlPitch1")] iec.Turbine_Class = turbine_class iec.Turbulence_Class = turbulence_class iec.D = fst_vt['ElastoDyn']['TipRad']*2. iec.z_hub = fst_vt['InflowWind']['RefHt'] iec.TF = T iec.Tstart = T*3./4. iec.dlc_inputs = {} iec.dlc_inputs['DLC'] = [1.4] iec.dlc_inputs['U'] = [[Vrated]] iec.dlc_inputs['Seeds'] = [[]] iec.dlc_inputs['Yaw'] = [[]] iec.transient_dir_change = '-' # '+','-','both': sign for transient events in EDC, EWS iec.transient_shear_orientation = 'v' # 'v','h','both': vertical or horizontal shear for EWS iec.wind_dir = runDir iec.case_name_base = namebase + '_gust' iec.Turbsim_exe = '' iec.debug_level = 0 iec.parallel_windfile_gen = False iec.run_dir = runDir case_inputs = {} case_inputs[("Fst","TMax")] = {'vals':[T], 'group':0} case_inputs[("Fst","TStart")] = {'vals':[TStart], 'group':0} case_inputs[("Fst","OutFileFmt")] = {'vals':[2], 'group':0} case_inputs[("ElastoDyn","YawDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","FlapDOF1")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","FlapDOF2")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","EdgeDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","DrTrDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","GenDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","TwFADOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwFADOF2")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF2")] = {'vals':['False'], 'group':0} case_inputs[("ServoDyn","PCMode")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","VSContrl")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","YCMode")] = {'vals':[5], 'group':0} case_inputs[("AeroDyn15","WakeMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","AFAeroMod")] = {'vals':[2], 'group':0} case_inputs[("AeroDyn15","TwrPotent")] = {'vals':[0], 'group':0} case_inputs[("AeroDyn15","TwrShadow")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","TwrAero")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","SkewMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","TipLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","HubLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TanInd")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","AIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","IndToler")] = {'vals':[1.e-5], 'group':0} case_inputs[("AeroDyn15","MaxIter")] = {'vals':[5000], 'group':0} case_inputs[("AeroDyn15","UseBlCm")] = {'vals':['True'], 'group':0} case_list, case_name_list = iec.execute(case_inputs=case_inputs) channels = ["TipDxc1", "TipDyc1", "TipDzc1", "TipDxc2", "TipDyc2", "TipDzc2", "TipDxc3", "TipDyc3", "TipDzc3"] channels += ["RootMxc1", "RootMyc1", "RootMzc1", "RootMxc2", "RootMyc2", "RootMzc2", "RootMxc3", "RootMyc3", "RootMzc3"] channels += ["RootFxc1", "RootFyc1", "RootFzc1", "RootFxc2", "RootFyc2", "RootFzc2", "RootFxc3", "RootFyc3", "RootFzc3"] channels += ["RtAeroCp", "RotTorq", "RotThrust", "RotSpeed", "NacYaw", "Wind1VelX"] channels += ["B1N1Fx", "B1N2Fx", "B1N3Fx", "B1N4Fx", "B1N5Fx", "B1N6Fx", "B1N7Fx", "B1N8Fx", "B1N9Fx"] channels += ["B1N1Fy", "B1N2Fy", "B1N3Fy", "B1N4Fy", "B1N5Fy", "B1N6Fy", "B1N7Fy", "B1N8Fy", "B1N9Fy"] return case_list, case_name_list, channels def RotorSE_DLC_7_1_Steady(fst_vt, runDir, namebase, TMax, turbine_class, turbulence_class, U, U_init=[], Omega_init=[], pitch_init=[], Turbsim_exe=''): # Extreme 1yr return period wind speed with a power fault resulting in the blade not feathering # Default Runtime T = 60. TStart = 30. # Overwrite for testing if TMax < T: T = TMax TStart = 0. Pitch = 0. Omega = 0. case_inputs = {} case_inputs[("Fst","TMax")] = {'vals':[T], 'group':0} case_inputs[("Fst","TStart")] = {'vals':[TStart], 'group':0} case_inputs[("Fst","OutFileFmt")] = {'vals':[2], 'group':0} case_inputs[("InflowWind","WindType")] = {'vals':[1], 'group':0} case_inputs[("InflowWind","HWindSpeed")] = {'vals':[U], 'group':0} case_inputs[("InflowWind","PLexp")] = {'vals':[0.11], 'group':0} case_inputs[("ElastoDyn","RotSpeed")] = {'vals':[Omega], 'group':0} case_inputs[("ElastoDyn","BlPitch1")] = {'vals':[Pitch], 'group':0} case_inputs[("ElastoDyn","BlPitch2")] = {'vals':[Pitch], 'group':0} case_inputs[("ElastoDyn","BlPitch3")] = {'vals':[Pitch], 'group':0} case_inputs[("ElastoDyn","YawDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","FlapDOF1")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","FlapDOF2")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","EdgeDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","DrTrDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","GenDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwFADOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwFADOF2")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF2")] = {'vals':['False'], 'group':0} case_inputs[("ServoDyn","PCMode")] = {'vals':[0], 'group':0} case_inputs[("ServoDyn","VSContrl")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","YCMode")] = {'vals':[5], 'group':0} case_inputs[("AeroDyn15","WakeMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","AFAeroMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","TwrPotent")] = {'vals':[0], 'group':0} case_inputs[("AeroDyn15","TwrShadow")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","TwrAero")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","SkewMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","TipLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","HubLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TanInd")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","AIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","IndToler")] = {'vals':[1.e-5], 'group':0} case_inputs[("AeroDyn15","MaxIter")] = {'vals':[5000], 'group':0} case_inputs[("AeroDyn15","UseBlCm")] = {'vals':['True'], 'group':0} namebase += '_idle50yr' case_list, case_name_list = CaseGen_General(case_inputs, namebase=namebase, save_matrix=False) channels = ["TipDxc1", "TipDyc1", "TipDzc1", "TipDxc2", "TipDyc2", "TipDzc2", "TipDxc3", "TipDyc3", "TipDzc3"] channels += ["RootMxc1", "RootMyc1", "RootMzc1", "RootMxc2", "RootMyc2", "RootMzc2", "RootMxc3", "RootMyc3", "RootMzc3"] channels += ["RootFxc1", "RootFyc1", "RootFzc1", "RootFxc2", "RootFyc2", "RootFzc2", "RootFxc3", "RootFyc3", "RootFzc3"] channels += ["RtAeroCp", "RotTorq", "RotThrust", "RotSpeed", "NacYaw"] channels += ["B1N1Fx", "B1N2Fx", "B1N3Fx", "B1N4Fx", "B1N5Fx", "B1N6Fx", "B1N7Fx", "B1N8Fx", "B1N9Fx"] channels += ["B1N1Fy", "B1N2Fy", "B1N3Fy", "B1N4Fy", "B1N5Fy", "B1N6Fy", "B1N7Fy", "B1N8Fy", "B1N9Fy"] return case_list, case_name_list, channels def RotorSE_DLC_1_1_Turb(fst_vt, runDir, namebase, TMax, turbine_class, turbulence_class, U, U_init=[], Omega_init=[], pitch_init=[], Turbsim_exe='', debug_level=0, cores=0, mpi_run=False, mpi_comm_map_down=[]): # Default Runtime T = 630. TStart = 30. # Overwrite for testing if TMax < T: T = TMax TStart = 0. iec = CaseGen_IEC() iec.init_cond[("ElastoDyn","RotSpeed")] = {'U': U_init} iec.init_cond[("ElastoDyn","RotSpeed")]['val'] = [0.95*omega_i for omega_i in Omega_init] iec.init_cond[("ElastoDyn","BlPitch1")] = {'U': U_init} iec.init_cond[("ElastoDyn","BlPitch1")]['val'] = pitch_init iec.init_cond[("ElastoDyn","BlPitch2")] = iec.init_cond[("ElastoDyn","BlPitch1")] iec.init_cond[("ElastoDyn","BlPitch3")] = iec.init_cond[("ElastoDyn","BlPitch1")] iec.Turbine_Class = turbine_class iec.Turbulence_Class = turbulence_class iec.D = fst_vt['ElastoDyn']['TipRad']*2. iec.z_hub = fst_vt['InflowWind']['RefHt'] iec.dlc_inputs = {} iec.dlc_inputs['DLC'] = [1.1] iec.dlc_inputs['U'] = [[U]] # iec.dlc_inputs['Seeds'] = [[1]] iec.dlc_inputs['Seeds'] = [[310414237, 1764051066, 1935526301, 333954657, -960771537, 714191176]] # nothing special about these seeds, randomly generated iec.dlc_inputs['Yaw'] = [[]] iec.transient_dir_change = '-' # '+','-','both': sign for transient events in EDC, EWS iec.transient_shear_orientation = 'v' # 'v','h','both': vertical or horizontal shear for EWS iec.wind_dir = runDir iec.case_name_base = namebase + '_turb' iec.Turbsim_exe = Turbsim_exe iec.debug_level = debug_level iec.cores = cores iec.run_dir = runDir iec.overwrite = True # iec.overwrite = False if cores > 1: iec.parallel_windfile_gen = True else: iec.parallel_windfile_gen = False # mpi_run = False if mpi_run: iec.mpi_run = mpi_run iec.comm_map_down = mpi_comm_map_down case_inputs = {} case_inputs[("Fst","TMax")] = {'vals':[T], 'group':0} case_inputs[("Fst","TStart")] = {'vals':[TStart], 'group':0} case_inputs[("Fst","OutFileFmt")] = {'vals':[2], 'group':0} case_inputs[("ElastoDyn","YawDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","FlapDOF1")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","FlapDOF2")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","EdgeDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","DrTrDOF")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","GenDOF")] = {'vals':['True'], 'group':0} case_inputs[("ElastoDyn","TwFADOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwFADOF2")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF1")] = {'vals':['False'], 'group':0} case_inputs[("ElastoDyn","TwSSDOF2")] = {'vals':['False'], 'group':0} case_inputs[("ServoDyn","PCMode")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","VSContrl")] = {'vals':[5], 'group':0} case_inputs[("ServoDyn","YCMode")] = {'vals':[5], 'group':0} case_inputs[("AeroDyn15","WakeMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","AFAeroMod")] = {'vals':[2], 'group':0} case_inputs[("AeroDyn15","TwrPotent")] = {'vals':[0], 'group':0} case_inputs[("AeroDyn15","TwrShadow")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","TwrAero")] = {'vals':['False'], 'group':0} case_inputs[("AeroDyn15","SkewMod")] = {'vals':[1], 'group':0} case_inputs[("AeroDyn15","TipLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","HubLoss")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TanInd")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","AIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","TIDrag")] = {'vals':['True'], 'group':0} case_inputs[("AeroDyn15","IndToler")] = {'vals':[1.e-5], 'group':0} case_inputs[("AeroDyn15","MaxIter")] = {'vals':[5000], 'group':0} case_inputs[("AeroDyn15","UseBlCm")] = {'vals':['True'], 'group':0} case_list, case_name_list = iec.execute(case_inputs=case_inputs) channels = ["TipDxc1", "TipDyc1", "TipDzc1", "TipDxc2", "TipDyc2", "TipDzc2", "TipDxc3", "TipDyc3", "TipDzc3"] channels += ["RootMxc1", "RootMyc1", "RootMzc1", "RootMxc2", "RootMyc2", "RootMzc2", "RootMxc3", "RootMyc3", "RootMzc3"] channels += ["RootFxc1", "RootFyc1", "RootFzc1", "RootFxc2", "RootFyc2", "RootFzc2", "RootFxc3", "RootFyc3", "RootFzc3"] channels += ["RtAeroCp", "RotTorq", "RotThrust", "RotSpeed", "NacYaw"] channels += ["B1N1Fx", "B1N2Fx", "B1N3Fx", "B1N4Fx", "B1N5Fx", "B1N6Fx", "B1N7Fx", "B1N8Fx", "B1N9Fx"] channels += ["B1N1Fy", "B1N2Fy", "B1N3Fy", "B1N4Fy", "B1N5Fy", "B1N6Fy", "B1N7Fy", "B1N8Fy", "B1N9Fy"] return case_list, case_name_list, channels if __name__ == "__main__": # power_curve() case_list, case_name_list = RotorSE_rated('test', 60., 11., 12.1, 0.)
58.751261
314
0.597935
baa32c0ccbac1f941e696bd3040e70b51ad664c0
550
py
Python
bin/datapackage-dataset.py
anthonyrandell-madetech/specification
c675576c5cd2103b52938a6cd8cad546da3433e1
[ "MIT" ]
null
null
null
bin/datapackage-dataset.py
anthonyrandell-madetech/specification
c675576c5cd2103b52938a6cd8cad546da3433e1
[ "MIT" ]
6
2020-07-14T07:55:38.000Z
2022-01-11T09:50:59.000Z
bin/datapackage-dataset.py
anthonyrandell-madetech/specification
c675576c5cd2103b52938a6cd8cad546da3433e1
[ "MIT" ]
2
2022-01-06T14:29:05.000Z
2022-01-07T09:52:52.000Z
#!/usr/bin/env python3 import sys import csv import frontmatter fieldnames = ["datapackage", "dataset"] w = csv.DictWriter(open(sys.argv[1], "w", newline=""), fieldnames=fieldnames, extrasaction='ignore') w.writeheader() for row in csv.DictReader(open("specification/datapackage.csv", newline="")): datapackage = row["datapackage"] path = "content/datapackage/%s.md" % datapackage post = frontmatter.load(path) for dataset in post.metadata.get("datasets", []): w.writerow({"datapackage": datapackage, "dataset": dataset})
30.555556
100
0.701818
03b3505855d7610ca829c8d18ee7ba367efb94f7
450
py
Python
tests/test_toggle_fullscreen.py
vault-the/pywebview
8608378ab62732d52640478c572c4f83994c0cbf
[ "BSD-3-Clause" ]
null
null
null
tests/test_toggle_fullscreen.py
vault-the/pywebview
8608378ab62732d52640478c572c4f83994c0cbf
[ "BSD-3-Clause" ]
null
null
null
tests/test_toggle_fullscreen.py
vault-the/pywebview
8608378ab62732d52640478c572c4f83994c0cbf
[ "BSD-3-Clause" ]
null
null
null
import pytest import threading from .util import run_test, destroy_window def toggle_fullscreen(): import webview def _toggle_fullscreen(webview): webview.toggle_fullscreen() t = threading.Thread(target=_toggle_fullscreen, args=(webview,)) t.start() destroy_window(webview) webview.create_window('Toggle fullscreen test', 'https://www.example.org') def test_toggle_fullscreen(): run_test(toggle_fullscreen)
21.428571
78
0.742222
168068cf53acdfef09cd6f2571184f5e8e420004
2,980
py
Python
mlearn_for_image.py
busyyang/easy12306
707d34f7a868fd6155ed6e7a1703b79ef5f62c73
[ "Artistic-2.0" ]
null
null
null
mlearn_for_image.py
busyyang/easy12306
707d34f7a868fd6155ed6e7a1703b79ef5f62c73
[ "Artistic-2.0" ]
null
null
null
mlearn_for_image.py
busyyang/easy12306
707d34f7a868fd6155ed6e7a1703b79ef5f62c73
[ "Artistic-2.0" ]
null
null
null
# coding: utf-8 import sys import cv2 import numpy as np from keras import models from keras import layers from keras import optimizers from keras.applications import VGG16 from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator def preprocess_input(x): x = x.astype('float32') # ๆˆ‘ๆ˜ฏ็”จcv2ๆฅ่ฏปๅ–็š„ๅ›พ็‰‡๏ผŒๅ…ถๅทฒ็ปๆ˜ฏBGRๆ ผๅผไบ† mean = [103.939, 116.779, 123.68] x -= mean return x def load_data(): # ่ฟ™ๆ˜ฏ็ปŸ่ฎกๅญฆไธ“ๅฎถๆไพ›็š„่ฎญ็ปƒ้›† data = np.load('./data/captcha.npz') train_x, train_y = data['images'], data['labels'] train_x = preprocess_input(train_x) # ็”ฑไบŽๆ˜ฏ็ปŸ่ฎกๅพ—ๆฅ็š„ไฟกๆฏ๏ผŒๆ‰€ไปฅๅœจๆญค็ป™ๅฎšๅฏไฟกๅบฆ sample_weight = train_y.max(axis=1) / np.sqrt(train_y.sum(axis=1)) sample_weight /= sample_weight.mean() train_y = train_y.argmax(axis=1) # ่ฟ™ๆ˜ฏไบบๅทฅๆไพ›็š„้ชŒ่ฏ้›† data = np.load('./data/captcha.test.npz') test_x, test_y = data['images'], data['labels'] test_x = preprocess_input(test_x) return (train_x, train_y, sample_weight), (test_x, test_y) def learn(): (train_x, train_y, sample_weight), (test_x, test_y) = load_data() datagen = ImageDataGenerator(horizontal_flip=True, vertical_flip=True) train_generator = datagen.flow(train_x, train_y, sample_weight=sample_weight) base = VGG16(weights='imagenet', include_top=False, input_shape=(None, None, 3)) for layer in base.layers[:-4]: layer.trainable = False model = models.Sequential([ base, layers.BatchNormalization(), layers.Conv2D(64, (3, 3), activation='relu', padding='same'), layers.GlobalAveragePooling2D(), layers.BatchNormalization(), layers.Dense(64, activation='relu'), layers.BatchNormalization(), layers.Dropout(0.20), layers.Dense(80, activation='softmax') ]) model.compile(optimizer=optimizers.RMSprop(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() reduce_lr = ReduceLROnPlateau(verbose=1) model.fit_generator(train_generator, epochs=400, steps_per_epoch=100, validation_data=(test_x[:800], test_y[:800]), callbacks=[reduce_lr], verbose=2) result = model.evaluate(test_x, test_y) print(result) model.save('./models/12306.image.model.h5', include_optimizer=False) def predict(imgs): imgs = preprocess_input(imgs) model = models.load_model('./models/12306.image.model.h5') labels = model.predict(imgs) return labels def _predict(fn): imgs = cv2.imread(fn) imgs = cv2.resize(imgs, (67, 67)) imgs.shape = (-1, 67, 67, 3) labels = predict(imgs) print(labels.max(axis=1)) print(labels.argmax(axis=1)) if __name__ == '__main__': if len(sys.argv) >= 2: _predict(sys.argv[1]) else: learn()
32.043011
85
0.628523
382ff03bb286d4cd75a1a8a8d293686eb55bb82f
2,734
py
Python
test/test_cashbook_entry.py
fattureincloud/fattureincloud-python-sdk
f3a40fac345751014ea389680efdaef90f03bac1
[ "MIT" ]
2
2022-02-17T08:33:17.000Z
2022-03-22T09:27:00.000Z
test/test_cashbook_entry.py
fattureincloud/fattureincloud-python-sdk
f3a40fac345751014ea389680efdaef90f03bac1
[ "MIT" ]
null
null
null
test/test_cashbook_entry.py
fattureincloud/fattureincloud-python-sdk
f3a40fac345751014ea389680efdaef90f03bac1
[ "MIT" ]
null
null
null
""" Fatture in Cloud API v2 - API Reference Connect your software with Fatture in Cloud, the invoicing platform chosen by more than 400.000 businesses in Italy. The Fatture in Cloud API is based on REST, and makes possible to interact with the user related data prior authorization via OAuth2 protocol. # noqa: E501 The version of the OpenAPI document: 2.0.9 Contact: info@fattureincloud.it Generated by: https://openapi-generator.tech """ import json import sys import unittest import datetime import fattureincloud_python_sdk from functions import json_serial from functions import create_from_json from fattureincloud_python_sdk.model.cashbook_entry_document import CashbookEntryDocument from fattureincloud_python_sdk.model.cashbook_entry import CashbookEntry from fattureincloud_python_sdk.model.cashbook_entry_kind import CashbookEntryKind from fattureincloud_python_sdk.model.cashbook_entry_type import CashbookEntryType from fattureincloud_python_sdk.model.payment_account import PaymentAccount globals()['CashbookEntryDocument'] = CashbookEntryDocument globals()['CashbookEntry'] = CashbookEntry globals()['CashbookEntryKind'] = CashbookEntryKind globals()['CashbookEntryType'] = CashbookEntryType globals()['PaymentAccount'] = PaymentAccount class TestCashbookEntry(unittest.TestCase): """CashbookEntry unit test stubs""" def setUp(self): pass def tearDown(self): pass def testCashbookEntry(self): """Test CashbookEntry""" model = CashbookEntry( id="1", date=datetime.datetime.strptime("2022-02-02", '%Y-%m-%d').date(), description="description", kind=CashbookEntryKind("cashbook"), type=CashbookEntryType("in"), entity_name="name", document=CashbookEntryDocument( id=1, path="/path", type="doc" ), amount_in=10.0, payment_account_in=PaymentAccount( id=1, name="banca" ), amount_out=0.0, payment_account_out=PaymentAccount( id=1, name="banca" ) ) expected_json = '{"id": "1", "date": "2022-02-02", "description": "description", "kind": "cashbook", "type": "in", "entity_name": "name", "document": {"id": 1, "path": "/path", "type": "doc"}, "amount_in": 10.0, "payment_account_in": {"id": 1, "name": "banca"}, "amount_out": 0.0, "payment_account_out": {"id": 1, "name": "banca"}}' actual_json = json.dumps(model.to_dict(), default=json_serial) assert actual_json == expected_json if __name__ == '__main__': unittest.main()
37.972222
340
0.66496
56f2f0dfea4f614ed6626a23e9b6b182c6203646
649
py
Python
eggs/docutils-0.7-py2.6.egg/EGG-INFO/scripts/rst2xml.py
psnehal/MethylSig
5efad71e71ff2515feff2e49579c856ef9a1bbd8
[ "CC-BY-3.0" ]
null
null
null
eggs/docutils-0.7-py2.6.egg/EGG-INFO/scripts/rst2xml.py
psnehal/MethylSig
5efad71e71ff2515feff2e49579c856ef9a1bbd8
[ "CC-BY-3.0" ]
null
null
null
eggs/docutils-0.7-py2.6.egg/EGG-INFO/scripts/rst2xml.py
psnehal/MethylSig
5efad71e71ff2515feff2e49579c856ef9a1bbd8
[ "CC-BY-3.0" ]
null
null
null
#!/afs/bx.psu.edu/project/pythons/linux-x86_64-ucs4/bin/python2.6 # $Id: rst2xml.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing Docutils XML. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates Docutils-native XML from standalone ' 'reStructuredText sources. ' + default_description) publish_cmdline(writer_name='xml', description=description)
27.041667
70
0.74114
aaaf8bcecbaeb47a96000cf95fc818ddf954c4e3
6,113
py
Python
kospeech/models/transformer/model.py
daiyaanarfeen/kospeech
5aff5c7647e5cceceddf7b22c991777fc3792400
[ "Apache-2.0" ]
257
2020-06-06T14:20:47.000Z
2021-08-12T05:01:39.000Z
kospeech/models/transformer/model.py
daiyaanarfeen/kospeech
5aff5c7647e5cceceddf7b22c991777fc3792400
[ "Apache-2.0" ]
100
2020-06-08T00:39:28.000Z
2021-08-04T11:22:02.000Z
kospeech/models/transformer/model.py
daiyaanarfeen/kospeech
5aff5c7647e5cceceddf7b22c991777fc3792400
[ "Apache-2.0" ]
96
2020-06-10T06:12:52.000Z
2021-08-09T14:40:01.000Z
# Copyright (c) 2020, Soohwan Kim. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch import Tensor from typing import Tuple from kospeech.models.model import EncoderDecoderModel from kospeech.models.transformer.decoder import TransformerDecoder from kospeech.models.transformer.encoder import TransformerEncoder class SpeechTransformer(EncoderDecoderModel): """ A Speech Transformer model. User is able to modify the attributes as needed. The model is based on the paper "Attention Is All You Need". Args: input_dim (int): dimension of input vector num_classes (int): number of classification extractor (str): type of CNN extractor (default: vgg) num_encoder_layers (int, optional): number of recurrent layers (default: 12) num_decoder_layers (int, optional): number of recurrent layers (default: 6) encoder_dropout_p (float, optional): dropout probability of encoder (default: 0.2) decoder_dropout_p (float, optional): dropout probability of decoder (default: 0.2) d_model (int): dimension of model (default: 512) d_ff (int): dimension of feed forward net (default: 2048) pad_id (int): identification of <PAD_token> (default: 0) sos_id (int): identification of <SOS_token> (default: 1) eos_id (int): identification of <EOS_token> (default: 2) num_heads (int): number of attention heads (default: 8) max_length (int, optional): max decoding step (default: 400) joint_ctc_attention (bool, optional): flag indication joint ctc attention or not (default: False) Inputs: inputs, input_lengths, targets, teacher_forcing_ratio - **inputs** (torch.Tensor): tensor of sequences, whose length is the batch size and within which each sequence is a list of token IDs. This information is forwarded to the encoder. - **input_lengths** (torch.Tensor): tensor of sequences, whose contains length of inputs. - **targets** (torch.Tensor): tensor of sequences, whose length is the batch size and within which each sequence is a list of token IDs. This information is forwarded to the decoder. Returns: (Tensor, Tensor, Tensor) * predicted_log_probs (torch.FloatTensor): Log probability of model predictions. * encoder_output_lengths: The length of encoder outputs. ``(batch)`` * encoder_log_probs: Log probability of encoder outputs will be passed to CTC Loss. If joint_ctc_attention is False, return None. """ def __init__( self, input_dim: int, num_classes: int, extractor: str, num_encoder_layers: int = 12, num_decoder_layers: int = 6, encoder_dropout_p: float = 0.2, decoder_dropout_p: float = 0.2, d_model: int = 512, d_ff: int = 2048, pad_id: int = 0, sos_id: int = 1, eos_id: int = 2, num_heads: int = 8, joint_ctc_attention: bool = False, max_length: int = 400, ) -> None: assert d_model % num_heads == 0, "d_model % num_heads should be zero." encoder = TransformerEncoder( input_dim=input_dim, extractor=extractor, d_model=d_model, d_ff=d_ff, num_layers=num_encoder_layers, num_heads=num_heads, dropout_p=encoder_dropout_p, joint_ctc_attention=joint_ctc_attention, num_classes=num_classes, ) decoder = TransformerDecoder( num_classes=num_classes, d_model=d_model, d_ff=d_ff, num_layers=num_decoder_layers, num_heads=num_heads, dropout_p=decoder_dropout_p, pad_id=pad_id, sos_id=sos_id, eos_id=eos_id, max_length=max_length, ) super(SpeechTransformer, self).__init__(encoder, decoder) self.num_classes = num_classes self.joint_ctc_attention = joint_ctc_attention self.sos_id = sos_id self.eos_id = eos_id self.pad_id = pad_id self.max_length = max_length def forward( self, inputs: Tensor, input_lengths: Tensor, targets: Tensor, target_lengths: Tensor, ) -> Tuple[Tensor, Tensor, Tensor]: """ Forward propagate a `inputs` and `targets` pair for training. Args: inputs (torch.FloatTensor): A input sequence passed to encoder. Typically for inputs this will be a padded `FloatTensor` of size ``(batch, seq_length, dimension)``. input_lengths (torch.LongTensor): The length of input tensor. ``(batch)`` targets (torch.LongTensr): A target sequence passed to decoder. `IntTensor` of size ``(batch, seq_length)`` Returns: (Tensor, Tensor, Tensor) * predicted_log_probs (torch.FloatTensor): Log probability of model predictions. * encoder_output_lengths: The length of encoder outputs. ``(batch)`` * encoder_log_probs: Log probability of encoder outputs will be passed to CTC Loss. If joint_ctc_attention is False, return None. """ encoder_outputs, output_lengths, encoder_log_probs = self.encoder(inputs, input_lengths) predicted_log_probs = self.decoder(targets, encoder_outputs, output_lengths, target_lengths) return predicted_log_probs, output_lengths, encoder_log_probs
43.978417
119
0.653852
1a2410005f2532d1763ca1c5df397a343ce96ef8
2,545
py
Python
fish_contents.py
v1ztep/fish_sale_TG_bot
adfb5fbcbea29a5e60f64940ec082ba733196189
[ "MIT" ]
null
null
null
fish_contents.py
v1ztep/fish_sale_TG_bot
adfb5fbcbea29a5e60f64940ec082ba733196189
[ "MIT" ]
null
null
null
fish_contents.py
v1ztep/fish_sale_TG_bot
adfb5fbcbea29a5e60f64940ec082ba733196189
[ "MIT" ]
null
null
null
import textwrap from telegram import InlineKeyboardButton from telegram import InlineKeyboardMarkup from moltin import get_all_products def get_menu_keyboard(context): all_products = get_all_products(context.bot_data['moltin_token']) keyboard = [] for product in all_products['data']: keyboard.append([InlineKeyboardButton(product['name'], callback_data=product['id'])]) keyboard.append([InlineKeyboardButton("ะšะพั€ะทะธะฝะฐ", callback_data='to_cart')]) reply_markup = InlineKeyboardMarkup(keyboard) return reply_markup def get_description_text(product): text = f''' {product['name']} {product['meta']['display_price']['with_tax']['formatted']} per kg {product['meta']['stock']['level']}kg on stock {product['description']} fish from deep-deep ocean ''' return textwrap.dedent(text) def get_description_keyboard(product_id): keyboard = [[InlineKeyboardButton('1 ะบะณ', callback_data=f'{product_id} 1'), InlineKeyboardButton('5 ะบะณ', callback_data=f'{product_id} 5'), InlineKeyboardButton('10 ะบะณ', callback_data=f'{product_id} 10')], [InlineKeyboardButton("ะšะพั€ะทะธะฝะฐ", callback_data='to_cart')], [InlineKeyboardButton("ะ’ ะผะตะฝัŽ", callback_data='to_menu')] ] reply_markup = InlineKeyboardMarkup(keyboard) return reply_markup def get_cart_text(cart_items): text = '' for product in cart_items['data']: text += f''' {product['name']} {product['description']} fish from deep-deep ocean {product['meta']['display_price']['with_tax']['unit']['formatted']} per kg {product['quantity']}kg in cart for {product['meta']['display_price'] ['with_tax']['value']['formatted']} ''' text += f''' Total: {cart_items['meta']['display_price']['with_tax']['formatted']} ''' return textwrap.dedent(text) def get_cart_keyboard(cart_items): keyboard = [] for product in cart_items['data']: keyboard.append([InlineKeyboardButton(f"ะฃะฑั€ะฐั‚ัŒ ะธะท ะบะพั€ะทะธะฝั‹ {product['name']}", callback_data=product['id'])]) if keyboard: keyboard.append( [InlineKeyboardButton('ะžะฟะปะฐั‚ะฐ', callback_data='to_payment')]) keyboard.append([InlineKeyboardButton('ะ’ ะผะตะฝัŽ', callback_data='to_menu')]) reply_markup = InlineKeyboardMarkup(keyboard) return reply_markup
36.357143
86
0.628684
8a0956ecf8e08abcbfa8099cfdbe674f32a29ceb
3,403
py
Python
airflow/providers/amazon/aws/sensors/sagemaker_base.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
15,947
2019-01-05T13:51:02.000Z
2022-03-31T23:33:16.000Z
airflow/providers/amazon/aws/sensors/sagemaker_base.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
14,603
2019-01-05T09:43:19.000Z
2022-03-31T23:11:59.000Z
airflow/providers/amazon/aws/sensors/sagemaker_base.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
8,429
2019-01-05T19:45:47.000Z
2022-03-31T22:13:01.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Optional, Set from airflow.exceptions import AirflowException from airflow.providers.amazon.aws.hooks.sagemaker import SageMakerHook from airflow.sensors.base import BaseSensorOperator class SageMakerBaseSensor(BaseSensorOperator): """ Contains general sensor behavior for SageMaker. Subclasses should implement get_sagemaker_response() and state_from_response() methods. Subclasses should also implement NON_TERMINAL_STATES and FAILED_STATE methods. """ ui_color = '#ededed' def __init__(self, *, aws_conn_id: str = 'aws_default', **kwargs): super().__init__(**kwargs) self.aws_conn_id = aws_conn_id self.hook: Optional[SageMakerHook] = None def get_hook(self) -> SageMakerHook: """Get SageMakerHook""" if self.hook: return self.hook self.hook = SageMakerHook(aws_conn_id=self.aws_conn_id) return self.hook def poke(self, context): response = self.get_sagemaker_response() if not response['ResponseMetadata']['HTTPStatusCode'] == 200: self.log.info('Bad HTTP response: %s', response) return False state = self.state_from_response(response) self.log.info('Job currently %s', state) if state in self.non_terminal_states(): return False if state in self.failed_states(): failed_reason = self.get_failed_reason_from_response(response) raise AirflowException(f'Sagemaker job failed for the following reason: {failed_reason}') return True def non_terminal_states(self) -> Set[str]: """Placeholder for returning states with should not terminate.""" raise NotImplementedError('Please implement non_terminal_states() in subclass') def failed_states(self) -> Set[str]: """Placeholder for returning states with are considered failed.""" raise NotImplementedError('Please implement failed_states() in subclass') def get_sagemaker_response(self) -> Optional[dict]: """Placeholder for checking status of a SageMaker task.""" raise NotImplementedError('Please implement get_sagemaker_response() in subclass') def get_failed_reason_from_response(self, response: dict) -> str: """Placeholder for extracting the reason for failure from an AWS response.""" return 'Unknown' def state_from_response(self, response: dict) -> str: """Placeholder for extracting the state from an AWS response.""" raise NotImplementedError('Please implement state_from_response() in subclass')
39.569767
101
0.714076
56d8a0b2eb3ffcb2edd9f3465e463b18202aae96
41
py
Python
tests/__init__.py
bendhouseart/codecounter
e73c2043d33133ab330eb067c348198afda6ce88
[ "MIT" ]
null
null
null
tests/__init__.py
bendhouseart/codecounter
e73c2043d33133ab330eb067c348198afda6ce88
[ "MIT" ]
null
null
null
tests/__init__.py
bendhouseart/codecounter
e73c2043d33133ab330eb067c348198afda6ce88
[ "MIT" ]
null
null
null
"""Unit test package for codecounter."""
20.5
40
0.707317
ab6a6140d2c356e59a03ce0d29766ad3285de944
4,499
py
Python
leather/scales/base.py
nickromano/django-daily-digest
8f9a289d772cfd6b6c72536dd40c2012516b9d28
[ "MIT" ]
6
2019-03-02T09:16:12.000Z
2021-08-17T13:54:49.000Z
leather/scales/base.py
nickromano/django-daily-digest
8f9a289d772cfd6b6c72536dd40c2012516b9d28
[ "MIT" ]
66
2018-01-04T07:25:13.000Z
2022-03-29T09:19:09.000Z
leather/scales/base.py
nickromano/django-daily-digest
8f9a289d772cfd6b6c72536dd40c2012516b9d28
[ "MIT" ]
2
2019-09-03T09:35:44.000Z
2021-12-28T15:29:13.000Z
#!/usr/bin/env python from datetime import date, datetime import six from leather.data_types import Date, DateTime, Number, Text from leather.shapes import Bars, Columns class Scale(object): """ Base class for various kinds of scale objects. """ @classmethod def infer(cls, layers, dimension, data_type): """ Infer's an appropriate default scale for a given sequence of :class:`.Series`. :param chart_series: A sequence of :class:`.Series` instances :param dimension: The dimension, :code:`X` or :code:`Y` of the data to infer for. :param data_type: The type of data contained in the series dimension. """ from leather.scales.linear import Linear from leather.scales.ordinal import Ordinal from leather.scales.temporal import Temporal # Default Time scale is Temporal if data_type is Date: data_min = date.max data_max = date.min for series, shape in layers: data_min = min(data_min, series.min(dimension)) data_max = max(data_max, series.max(dimension)) scale = Temporal(data_min, data_max) elif data_type is DateTime: data_min = datetime.max data_max = datetime.min for series, shape in layers: data_min = min(data_min, series.min(dimension)) data_max = max(data_max, series.max(dimension)) scale = Temporal(data_min, data_max) # Default Number scale is Linear elif data_type is Number: force_zero = False data_min = None data_max = None for series, shape in layers: if isinstance(shape, (Bars, Columns)): force_zero = True if data_min is None: data_min = series.min(dimension) else: data_min = min(data_min, series.min(dimension)) if data_max is None: data_max = series.max(dimension) else: data_max = max(data_max, series.max(dimension)) if force_zero: if data_min > 0: data_min = 0 if data_max < 0: data_max = 0 scale = Linear(data_min, data_max) # Default Text scale is Ordinal elif data_type is Text: scale_values = None # First case: a single set of ordinal labels if len(layers) == 1: scale_values = layers[0][0].values(dimension) else: first_series = set(layers[0][0].values(dimension)) data_series = [series.values(dimension) for series, shape in layers] all_same = True for series in data_series: if set(series) != first_series: all_same = False break # Second case: multiple identical sets of ordinal labels if all_same: scale_values = layers[0][0].values(dimension) # Third case: multiple different sets of ordinal labels else: scale_values = sorted(list(set().union(*data_series))) scale = Ordinal(scale_values) return scale def contains(self, v): """ Return :code:`True` if a given value is contained within this scale's displayed domain. """ raise NotImplementedError def project(self, value, range_min, range_max): """ Project a value in this scale's domain to a target range. """ raise NotImplementedError def project_interval(self, value, range_min, range_max): """ Project a value in this scale's domain to an interval in the target range. This is used for places :class:`.Bars` and :class:`.Columns`. """ raise NotImplementedError def ticks(self): """ Generate a series of ticks for this scale. """ raise NotImplementedError def format_tick(self, value, i, count): """ Format ticks for display. This method is used as a default which will be ignored if the user provides a custom tick formatter to the axis. """ return six.text_type(value)
31.683099
84
0.555012
9f1d9dc058546b8e18a3574c91fb8b66c19d5c97
19,020
py
Python
TM1py/Objects/Process.py
beckyconning/tm1py
1ed0be35c5d6e946ae2f9c110359facfd8c0f269
[ "MIT" ]
null
null
null
TM1py/Objects/Process.py
beckyconning/tm1py
1ed0be35c5d6e946ae2f9c110359facfd8c0f269
[ "MIT" ]
null
null
null
TM1py/Objects/Process.py
beckyconning/tm1py
1ed0be35c5d6e946ae2f9c110359facfd8c0f269
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import json import re from typing import Optional, Iterable, Dict, List, Union from TM1py.Objects.TM1Object import TM1Object class Process(TM1Object): """ Abstraction of a TM1 Process. IMPORTANT. doesn't work with Processes that were generated through the Wizard """ """ the auto_generated_string code is required to be in all code-tabs. """ BEGIN_GENERATED_STATEMENTS = "#****Begin: Generated Statements***" END_GENERATED_STATEMENTS = "#****End: Generated Statements****" AUTO_GENERATED_STATEMENTS = "{}\r\n{}\r\n".format(BEGIN_GENERATED_STATEMENTS, END_GENERATED_STATEMENTS) MAX_STATEMENTS = 16380 @staticmethod def add_generated_string_to_code(code: str) -> str: pattern = r"(?s)#\*\*\*\*Begin: Generated Statements(.*)#\*\*\*\*End: Generated Statements\*\*\*\*" if re.search(pattern=pattern, string=code): return code else: return Process.AUTO_GENERATED_STATEMENTS + code def __init__(self, name: str, has_security_access: Optional[bool] = False, ui_data: str = "CubeAction=1511โ‚ฌDataAction=1503โ‚ฌCubeLogChanges=0โ‚ฌ", parameters: Iterable = None, variables: Iterable = None, variables_ui_data: Iterable = None, prolog_procedure: str = '', metadata_procedure: str = '', data_procedure: str = '', epilog_procedure: str = '', datasource_type: str = 'None', datasource_ascii_decimal_separator: str = '.', datasource_ascii_delimiter_char: str = ';', datasource_ascii_delimiter_type: str = 'Character', datasource_ascii_header_records: int = 1, datasource_ascii_quote_character: str = '', datasource_ascii_thousand_separator: str = ',', datasource_data_source_name_for_client: str = '', datasource_data_source_name_for_server: str = '', datasource_password: str = '', datasource_user_name: str = '', datasource_query: str = '', datasource_uses_unicode: bool = True, datasource_view: str = '', datasource_subset: str = ''): """ Default construcor :param name: name of the process - mandatory :param has_security_access: :param ui_data: :param parameters: :param variables: :param variables_ui_data: :param prolog_procedure: :param metadata_procedure: :param data_procedure: :param epilog_procedure: :param datasource_type: :param datasource_ascii_decimal_separator: :param datasource_ascii_delimiter_char: :param datasource_ascii_delimiter_type: :param datasource_ascii_header_records: :param datasource_ascii_quote_character: :param datasource_ascii_thousand_separator: :param datasource_data_source_name_for_client: :param datasource_data_source_name_for_server: :param datasource_password: :param datasource_user_name: :param datasource_query: :param datasource_uses_unicode: :param datasource_view: :param datasource_subset: """ self._name = name self._has_security_access = has_security_access self._ui_data = ui_data self._parameters = list(parameters) if parameters else [] self._variables = list(variables) if variables else [] if variables_ui_data: # Handle encoding issue in variable_ui_data for async requests self._variables_ui_data = [entry.replace("โ‚ฌ", "\f") for entry in variables_ui_data] else: self._variables_ui_data = [] self._prolog_procedure = Process.add_generated_string_to_code(prolog_procedure) self._metadata_procedure = Process.add_generated_string_to_code(metadata_procedure) self._data_procedure = Process.add_generated_string_to_code(data_procedure) self._epilog_procedure = Process.add_generated_string_to_code(epilog_procedure) self._datasource_type = datasource_type self._datasource_ascii_decimal_separator = datasource_ascii_decimal_separator self._datasource_ascii_delimiter_char = datasource_ascii_delimiter_char self._datasource_ascii_delimiter_type = datasource_ascii_delimiter_type self._datasource_ascii_header_records = datasource_ascii_header_records self._datasource_ascii_quote_character = datasource_ascii_quote_character self._datasource_ascii_thousand_separator = datasource_ascii_thousand_separator self._datasource_data_source_name_for_client = datasource_data_source_name_for_client self._datasource_data_source_name_for_server = datasource_data_source_name_for_server self._datasource_password = datasource_password self._datasource_user_name = datasource_user_name self._datasource_query = datasource_query self._datasource_uses_unicode = datasource_uses_unicode self._datasource_view = datasource_view self._datasource_subset = datasource_subset @classmethod def from_json(cls, process_as_json: str) -> 'Process': """ :param process_as_json: response of /api/v1/Processes('x')?$expand=* :return: an instance of this class """ process_as_dict = json.loads(process_as_json) return cls.from_dict(process_as_dict) @classmethod def from_dict(cls, process_as_dict: Dict) -> 'Process': """ :param process_as_dict: Dictionary, process as dictionary :return: an instance of this class """ return cls(name=process_as_dict['Name'], has_security_access=process_as_dict['HasSecurityAccess'], ui_data=process_as_dict['UIData'], parameters=process_as_dict['Parameters'], variables=process_as_dict['Variables'], variables_ui_data=process_as_dict['VariablesUIData'], prolog_procedure=process_as_dict['PrologProcedure'], metadata_procedure=process_as_dict['MetadataProcedure'], data_procedure=process_as_dict['DataProcedure'], epilog_procedure=process_as_dict['EpilogProcedure'], datasource_type=process_as_dict['DataSource'].get('Type', ''), datasource_ascii_decimal_separator=process_as_dict['DataSource'].get('asciiDecimalSeparator', ''), datasource_ascii_delimiter_char=process_as_dict['DataSource'].get('asciiDelimiterChar', ''), datasource_ascii_delimiter_type=process_as_dict['DataSource'].get('asciiDelimiterType', ''), datasource_ascii_header_records=process_as_dict['DataSource'].get('asciiHeaderRecords', ''), datasource_ascii_quote_character=process_as_dict['DataSource'].get('asciiQuoteCharacter', ''), datasource_ascii_thousand_separator=process_as_dict['DataSource'].get('asciiThousandSeparator', ''), datasource_data_source_name_for_client=process_as_dict['DataSource'].get('dataSourceNameForClient',''), datasource_data_source_name_for_server=process_as_dict['DataSource'].get('dataSourceNameForServer',''), datasource_password=process_as_dict['DataSource'].get('password', ''), datasource_user_name=process_as_dict['DataSource'].get('userName', ''), datasource_query=process_as_dict['DataSource'].get('query', ''), datasource_uses_unicode=process_as_dict['DataSource'].get('usesUnicode', ''), datasource_view=process_as_dict['DataSource'].get('view', ''), datasource_subset=process_as_dict['DataSource'].get('subset', '')) @property def body(self) -> str: return self._construct_body() @property def name(self) -> str: return self._name @name.setter def name(self, value: str): self._name = value @property def has_security_access(self) -> bool: return self._has_security_access @has_security_access.setter def has_security_access(self, value: bool): self._has_security_access = value @property def variables(self) -> List: return self._variables @property def parameters(self) -> List: return self._parameters @property def prolog_procedure(self) -> str: return self._prolog_procedure @prolog_procedure.setter def prolog_procedure(self, value: str): self._prolog_procedure = Process.add_generated_string_to_code(value) @property def metadata_procedure(self) -> str: return self._metadata_procedure @metadata_procedure.setter def metadata_procedure(self, value: str): self._metadata_procedure = Process.add_generated_string_to_code(value) @property def data_procedure(self) -> str: return self._data_procedure @data_procedure.setter def data_procedure(self, value: str): self._data_procedure = Process.add_generated_string_to_code(value) @property def epilog_procedure(self) -> str: return self._epilog_procedure @epilog_procedure.setter def epilog_procedure(self, value: str): self._epilog_procedure = Process.add_generated_string_to_code(value) @property def datasource_type(self) -> str: return self._datasource_type @datasource_type.setter def datasource_type(self, value: str): self._datasource_type = value @property def datasource_ascii_decimal_separator(self) -> str: return self._datasource_ascii_decimal_separator @datasource_ascii_decimal_separator.setter def datasource_ascii_decimal_separator(self, value: str): self._datasource_ascii_decimal_separator = value @property def datasource_ascii_delimiter_char(self) -> str: return self._datasource_ascii_delimiter_char @datasource_ascii_delimiter_char.setter def datasource_ascii_delimiter_char(self, value: str): self._datasource_ascii_delimiter_char = value @property def datasource_ascii_delimiter_type(self) -> str: return self._datasource_ascii_delimiter_type @datasource_ascii_delimiter_type.setter def datasource_ascii_delimiter_type(self, value: str): self._datasource_ascii_delimiter_type = value @property def datasource_ascii_header_records(self) -> int: return self._datasource_ascii_header_records @datasource_ascii_header_records.setter def datasource_ascii_header_records(self, value: int): self._datasource_ascii_header_records = value @property def datasource_ascii_quote_character(self) -> str: return self._datasource_ascii_quote_character @datasource_ascii_quote_character.setter def datasource_ascii_quote_character(self, value: str): self._datasource_ascii_quote_character = value @property def datasource_ascii_thousand_separator(self) -> str: return self._datasource_ascii_thousand_separator @datasource_ascii_thousand_separator.setter def datasource_ascii_thousand_separator(self, value: str): self._datasource_ascii_thousand_separator = value @property def datasource_data_source_name_for_client(self) -> str: return self._datasource_data_source_name_for_client @datasource_data_source_name_for_client.setter def datasource_data_source_name_for_client(self, value: str): self._datasource_data_source_name_for_client = value @property def datasource_data_source_name_for_server(self) -> str: return self._datasource_data_source_name_for_server @datasource_data_source_name_for_server.setter def datasource_data_source_name_for_server(self, value: str): self._datasource_data_source_name_for_server = value @property def datasource_password(self) -> str: return self._datasource_password @datasource_password.setter def datasource_password(self, value: str): self._datasource_password = value @property def datasource_user_name(self) -> str: return self._datasource_user_name @datasource_user_name.setter def datasource_user_name(self, value: str): self._datasource_user_name = value @property def datasource_query(self) -> str: return self._datasource_query @datasource_query.setter def datasource_query(self, value: str): self._datasource_query = value @property def datasource_uses_unicode(self) -> bool: return self._datasource_uses_unicode @datasource_uses_unicode.setter def datasource_uses_unicode(self, value: bool): self._datasource_uses_unicode = value @property def datasource_view(self) -> str: return self._datasource_view @datasource_view.setter def datasource_view(self, value: str): self._datasource_view = value @property def datasource_subset(self) -> str: return self._datasource_subset @datasource_subset.setter def datasource_subset(self, value: str): self._datasource_subset = value def add_variable(self, name: str, variable_type: str): """ add variable to the process :param name: - :param variable_type: 'String' or 'Numeric' :return: """ # variable consists of actual variable and UI-Information ('ignore','other', etc.) # 1. handle Variable info variable = {'Name': name, 'Type': variable_type, 'Position': len(self._variables) + 1, 'StartByte': 0, 'EndByte': 0} self._variables.append(variable) # 2. handle UI info var_type = 33 if variable_type == 'Numeric' else 32 # '\f' ! variable_ui_data = 'VarType=' + str(var_type) + '\f' + 'ColType=' + str(827) + '\f' """ mapping VariableUIData: VarType 33 -> Numeric VarType 32 -> String ColType 827 -> Other """ self._variables_ui_data.append(variable_ui_data) def remove_variable(self, name: str): for variable in self.variables[:]: if variable['Name'] == name: vuid = self._variables_ui_data[self._variables.index(variable)] self._variables_ui_data.remove(vuid) self._variables.remove(variable) def add_parameter(self, name: str, prompt: str, value: Union[str, int, float], parameter_type: Optional[str] = None): """ :param name: :param prompt: :param value: :param parameter_type: introduced in TM1 11 REST API, therefor optional. if Not given type is derived from value :return: """ if not parameter_type: parameter_type = 'String' if isinstance(value, str) else 'Numeric' parameter = {'Name': name, 'Prompt': prompt, 'Value': value, 'Type': parameter_type} self._parameters.append(parameter) def remove_parameter(self, name: str): for parameter in self.parameters[:]: if parameter['Name'] == name: self._parameters.remove(parameter) def drop_parameter_types(self): for p in range(len(self.parameters)): if 'Type' in self.parameters[p]: del self.parameters[p]['Type'] # construct self.body (json) from the class-attributes def _construct_body(self) -> str: # general parameters body_as_dict = { 'Name': self._name, 'PrologProcedure': self._prolog_procedure, 'MetadataProcedure': self._metadata_procedure, 'DataProcedure': self._data_procedure, 'EpilogProcedure': self._epilog_procedure, 'HasSecurityAccess': self._has_security_access, 'UIData': self._ui_data, 'DataSource': {}, 'Parameters': self._parameters, 'Variables': self._variables, 'VariablesUIData': self._variables_ui_data} # specific parameters (depending on datasource type) if self._datasource_type == 'ASCII': body_as_dict['DataSource'] = { "Type": self._datasource_type, "asciiDecimalSeparator": self._datasource_ascii_decimal_separator, "asciiDelimiterChar": self._datasource_ascii_delimiter_char, "asciiDelimiterType": self._datasource_ascii_delimiter_type, "asciiHeaderRecords": self._datasource_ascii_header_records, "asciiQuoteCharacter": self._datasource_ascii_quote_character, "asciiThousandSeparator": self._datasource_ascii_thousand_separator, "dataSourceNameForClient": self._datasource_data_source_name_for_client, "dataSourceNameForServer": self._datasource_data_source_name_for_server } if self._datasource_ascii_delimiter_type == 'FixedWidth': del body_as_dict['DataSource']['asciiDelimiterChar'] elif self._datasource_type == 'None': body_as_dict['DataSource'] = { "Type": "None" } elif self._datasource_type == 'ODBC': body_as_dict['DataSource'] = { "Type": self._datasource_type, "dataSourceNameForClient": self._datasource_data_source_name_for_client, "dataSourceNameForServer": self._datasource_data_source_name_for_server, "userName": self._datasource_user_name, "password": self._datasource_password, "query": self._datasource_query, "usesUnicode": self._datasource_uses_unicode } elif self._datasource_type == 'TM1CubeView': body_as_dict['DataSource'] = { "Type": self._datasource_type, "dataSourceNameForClient": self._datasource_data_source_name_for_server, "dataSourceNameForServer": self._datasource_data_source_name_for_server, "view": self._datasource_view } elif self._datasource_type == 'TM1DimensionSubset': body_as_dict['DataSource'] = { "Type": self._datasource_type, "dataSourceNameForClient": self._datasource_data_source_name_for_server, "dataSourceNameForServer": self._datasource_data_source_name_for_server, "subset": self._datasource_subset } return json.dumps(body_as_dict, ensure_ascii=False)
41.528384
122
0.660673
31bb9d4d2dc19de248be9f248d996c214009c0a1
2,228
py
Python
cloudly/cache.py
ooda/cloudly
42f28ebe1ec732ddd801f204cb33201a8ce192e9
[ "MIT" ]
null
null
null
cloudly/cache.py
ooda/cloudly
42f28ebe1ec732ddd801f204cb33201a8ce192e9
[ "MIT" ]
null
null
null
cloudly/cache.py
ooda/cloudly
42f28ebe1ec732ddd801f204cb33201a8ce192e9
[ "MIT" ]
null
null
null
"""This module provide access to redis and memcache servers with some sugar coating. """ import os import json import memcache import redis from cloudly.aws import ec2 from cloudly.decorators import Memoized import cloudly.logger as logger log = logger.init(__name__) @Memoized def get_redis_connection(hostname=None, port=None): """ Get a connection to a Redis server. The priority is: - look for an environment variable REDISTOGO_URL (Heroku), else - look for an environment variable REDIS_HOST, else - look for an EC2 hosted server offering the service 'redis', else - use localhost, 127.0.0.1. """ host = ( hostname or os.environ.get("REDIS_HOST") or ec2.get_hostname("redis") or "127.0.0.1" ) port = port or os.environ.get("REDIS_PORT", 6379) url = os.environ.get('REDISTOGO_URL', # Set when on Heroku. 'redis://{}:{}'.format(host, port)) log.info("Connecting to Redis server at {}".format(url)) server = redis.from_url(url) # Add some utility function. These functions first # serialize to/from JSON the given object, then call redis get/set. def redis_jget(key): value = server.get(key) return json.loads(value) if value else None server.jset = lambda key, obj: server.set(key, json.dumps(obj)) server.jget = redis_jget return server @Memoized def get_memcache_connection(): return memcache.Client(['127.0.0.1:11211'], debug=0) class MemProxy(object): def __init__(self): self.cache = get_memcache_connection() def set(self, key, obj, time=0): if key.find(" ") > -1: raise ValueError("A memcached key cannot contain spaces.") return self.cache.set(key.encode("utf-8"), obj, time=time, min_compress_len=1024) def get(self, key): return self.cache.get(key.encode("utf-8")) def set_multi(self, mapping, time=0): return self.cache.set_multi(mapping, time, min_compress_len=1024) def get_multi(self, keys): return self.cache.get_multi(keys) def delete(self, key): self.cache.delete(key) memcache = MemProxy() # noqa
27.85
75
0.647666
ffcce65f2e710b49bafff39157801551b410f55b
2,671
py
Python
basics of python/loops.py
devnetlearning/python
6f03027bb8e4eb1003ac766a72922f29ed03fec4
[ "MIT" ]
null
null
null
basics of python/loops.py
devnetlearning/python
6f03027bb8e4eb1003ac766a72922f29ed03fec4
[ "MIT" ]
null
null
null
basics of python/loops.py
devnetlearning/python
6f03027bb8e4eb1003ac766a72922f29ed03fec4
[ "MIT" ]
null
null
null
""" for - loop that is making specific action for certain number of times. range - set specific number of times. Allows to choose at which number starts and how long do the loop """ #for example1 - print every number in range of 200 which could be devided #by 5 but not by 7 without the remainder for i in range(200): if ( i % 5 == 0 and i % 7 != 0): print (i) #for example2 - multiplies each by each numbers between 2 provided values in set. a = int(input(" 1st number: ")) b = int(input(" 2st number: ")) multiply = 1 for i in range (a,b+1): alist =[i] multiply = multiply * i print(multiply) #for example3 - aritmetic average (compare with the same example using while) values = 0 i = 0 for i in range(5): value = int(input(" Input value: ")) if value > 0: values = values + value i += 1 else: print("Value must be positive number" ) continue print(values/i) """ while - conditional loop break - exiting the loop """ #while example1 - same function like in if statement but shorter and easier to expand test = input(" What's your name?\n") tries = 0 if test == "mark": print("Access Granted") elif test != "mark": while(test != "mark"): print("Access deneid. Type your name again." ,2 - tries, "tries left") test = input(" What's your name?\n") if (tries >= 1 and test!="mark"): print("Access deneid. Contact with your admin") break tries = tries + 1 else: print("Access granted") #wghile example2 arithmetic average with loop while values = 0 i = 0 while i < 5: value = int(input(" Input value")) if value > 0: values = values + value i += 1 else: print("value must be positive number" ) continue print("arithmetic average: ", values/i) #while example3 adding 3 positive and even numbers. Inform if numbor is not positive or even summ = 0 i = 0 while i < 3: number = int(input("Number: ")) if number % 2 == 0 and number > 0: summ = summ + number i += 1 else: print(" This number is not even or positve. Try again") print(" Sum: ", summ) #while example4 guessing correct number. 3 tries to gues number = 17 i = 0 print("You have 3 tries to guess the number") while i <= 2: guess = int(input("Your number: ")) i+=1 if guess > number: print(" Wrong number. Correct number is lower!") elif guess < number: print(" Wrong number. Correct number is higher!") else: print(" Great! You guessed it") if guess != number: print("Out of tries. You loose it!")
20.867188
92
0.610258
79740ed0c103e841b6e280af920f8be65e3d1d0d
9,893
py
Python
charmhelpers/contrib/openstack/audits/openstack_security_guide.py
AurelienLourot/charm-helpers
b5725ac546372e7d4004d15095f79cdd5e7da687
[ "Apache-2.0" ]
19
2016-04-17T04:00:53.000Z
2020-05-06T14:18:16.000Z
charmhelpers/contrib/openstack/audits/openstack_security_guide.py
AurelienLourot/charm-helpers
b5725ac546372e7d4004d15095f79cdd5e7da687
[ "Apache-2.0" ]
313
2017-09-15T13:22:58.000Z
2022-02-25T17:55:01.000Z
charmhelpers/contrib/openstack/audits/openstack_security_guide.py
AurelienLourot/charm-helpers
b5725ac546372e7d4004d15095f79cdd5e7da687
[ "Apache-2.0" ]
136
2017-09-19T13:37:33.000Z
2022-03-29T11:08:00.000Z
# Copyright 2019 Canonical Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import configparser import glob import os.path import subprocess from charmhelpers.contrib.openstack.audits import ( audit, AuditType, # filters is_audit_type, it_has_config, ) from charmhelpers.core.hookenv import ( cached, ) """ The Security Guide suggests a specific list of files inside the config directory for the service having 640 specifically, but by ensuring the containing directory is 750, only the owner can write, and only the group can read files within the directory. By restricting access to the containing directory, we can more effectively ensure that there is no accidental leakage if a new file is added to the service without being added to the security guide, and to this check. """ FILE_ASSERTIONS = { 'barbican': { '/etc/barbican': {'group': 'barbican', 'mode': '750'}, }, 'ceph-mon': { '/var/lib/charm/ceph-mon/ceph.conf': {'owner': 'root', 'group': 'root', 'mode': '644'}, '/etc/ceph/ceph.client.admin.keyring': {'owner': 'ceph', 'group': 'ceph'}, '/etc/ceph/rbdmap': {'mode': '644'}, '/var/lib/ceph': {'owner': 'ceph', 'group': 'ceph', 'mode': '750'}, '/var/lib/ceph/bootstrap-*/ceph.keyring': {'owner': 'ceph', 'group': 'ceph', 'mode': '600'} }, 'ceph-osd': { '/var/lib/charm/ceph-osd/ceph.conf': {'owner': 'ceph', 'group': 'ceph', 'mode': '644'}, '/var/lib/ceph': {'owner': 'ceph', 'group': 'ceph', 'mode': '750'}, '/var/lib/ceph/*': {'owner': 'ceph', 'group': 'ceph', 'mode': '755'}, '/var/lib/ceph/bootstrap-*/ceph.keyring': {'owner': 'ceph', 'group': 'ceph', 'mode': '600'}, '/var/lib/ceph/radosgw': {'owner': 'ceph', 'group': 'ceph', 'mode': '755'}, }, 'cinder': { '/etc/cinder': {'group': 'cinder', 'mode': '750'}, }, 'glance': { '/etc/glance': {'group': 'glance', 'mode': '750'}, }, 'keystone': { '/etc/keystone': {'owner': 'keystone', 'group': 'keystone', 'mode': '750'}, }, 'manilla': { '/etc/manila': {'group': 'manilla', 'mode': '750'}, }, 'neutron-gateway': { '/etc/neutron': {'group': 'neutron', 'mode': '750'}, }, 'neutron-api': { '/etc/neutron/': {'group': 'neutron', 'mode': '750'}, }, 'nova-cloud-controller': { '/etc/nova': {'group': 'nova', 'mode': '750'}, }, 'nova-compute': { '/etc/nova/': {'group': 'nova', 'mode': '750'}, }, 'openstack-dashboard': { # From security guide '/etc/openstack-dashboard/local_settings.py': {'group': 'horizon', 'mode': '640'}, }, } Ownership = collections.namedtuple('Ownership', 'owner group mode') @cached def _stat(file): """ Get the Ownership information from a file. :param file: The path to a file to stat :type file: str :returns: owner, group, and mode of the specified file :rtype: Ownership :raises subprocess.CalledProcessError: If the underlying stat fails """ out = subprocess.check_output( ['stat', '-c', '%U %G %a', file]).decode('utf-8') return Ownership(*out.strip().split(' ')) @cached def _config_ini(path): """ Parse an ini file :param path: The path to a file to parse :type file: str :returns: Configuration contained in path :rtype: Dict """ # When strict is enabled, duplicate options are not allowed in the # parsed INI; however, Oslo allows duplicate values. This change # causes us to ignore the duplicate values which is acceptable as # long as we don't validate any multi-value options conf = configparser.ConfigParser(strict=False) conf.read(path) return dict(conf) def _validate_file_ownership(owner, group, file_name, optional=False): """ Validate that a specified file is owned by `owner:group`. :param owner: Name of the owner :type owner: str :param group: Name of the group :type group: str :param file_name: Path to the file to verify :type file_name: str :param optional: Is this file optional, ie: Should this test fail when it's missing :type optional: bool """ try: ownership = _stat(file_name) except subprocess.CalledProcessError as e: print("Error reading file: {}".format(e)) if not optional: assert False, "Specified file does not exist: {}".format(file_name) assert owner == ownership.owner, \ "{} has an incorrect owner: {} should be {}".format( file_name, ownership.owner, owner) assert group == ownership.group, \ "{} has an incorrect group: {} should be {}".format( file_name, ownership.group, group) print("Validate ownership of {}: PASS".format(file_name)) def _validate_file_mode(mode, file_name, optional=False): """ Validate that a specified file has the specified permissions. :param mode: file mode that is desires :type owner: str :param file_name: Path to the file to verify :type file_name: str :param optional: Is this file optional, ie: Should this test fail when it's missing :type optional: bool """ try: ownership = _stat(file_name) except subprocess.CalledProcessError as e: print("Error reading file: {}".format(e)) if not optional: assert False, "Specified file does not exist: {}".format(file_name) assert mode == ownership.mode, \ "{} has an incorrect mode: {} should be {}".format( file_name, ownership.mode, mode) print("Validate mode of {}: PASS".format(file_name)) @cached def _config_section(config, section): """Read the configuration file and return a section.""" path = os.path.join(config.get('config_path'), config.get('config_file')) conf = _config_ini(path) return conf.get(section) @audit(is_audit_type(AuditType.OpenStackSecurityGuide), it_has_config('files')) def validate_file_ownership(config): """Verify that configuration files are owned by the correct user/group.""" files = config.get('files', {}) for file_name, options in files.items(): for key in options.keys(): if key not in ["owner", "group", "mode"]: raise RuntimeError( "Invalid ownership configuration: {}".format(key)) owner = options.get('owner', config.get('owner', 'root')) group = options.get('group', config.get('group', 'root')) optional = options.get('optional', config.get('optional', False)) if '*' in file_name: for file in glob.glob(file_name): if file not in files.keys(): if os.path.isfile(file): _validate_file_ownership(owner, group, file, optional) else: if os.path.isfile(file_name): _validate_file_ownership(owner, group, file_name, optional) @audit(is_audit_type(AuditType.OpenStackSecurityGuide), it_has_config('files')) def validate_file_permissions(config): """Verify that permissions on configuration files are secure enough.""" files = config.get('files', {}) for file_name, options in files.items(): for key in options.keys(): if key not in ["owner", "group", "mode"]: raise RuntimeError( "Invalid ownership configuration: {}".format(key)) mode = options.get('mode', config.get('permissions', '600')) optional = options.get('optional', config.get('optional', False)) if '*' in file_name: for file in glob.glob(file_name): if file not in files.keys(): if os.path.isfile(file): _validate_file_mode(mode, file, optional) else: if os.path.isfile(file_name): _validate_file_mode(mode, file_name, optional) @audit(is_audit_type(AuditType.OpenStackSecurityGuide)) def validate_uses_keystone(audit_options): """Validate that the service uses Keystone for authentication.""" section = _config_section(audit_options, 'api') or _config_section(audit_options, 'DEFAULT') assert section is not None, "Missing section 'api / DEFAULT'" assert section.get('auth_strategy') == "keystone", \ "Application is not using Keystone" @audit(is_audit_type(AuditType.OpenStackSecurityGuide)) def validate_uses_tls_for_keystone(audit_options): """Verify that TLS is used to communicate with Keystone.""" section = _config_section(audit_options, 'keystone_authtoken') assert section is not None, "Missing section 'keystone_authtoken'" assert not section.get('insecure') and \ "https://" in section.get("auth_uri"), \ "TLS is not used for Keystone" @audit(is_audit_type(AuditType.OpenStackSecurityGuide)) def validate_uses_tls_for_glance(audit_options): """Verify that TLS is used to communicate with Glance.""" section = _config_section(audit_options, 'glance') assert section is not None, "Missing section 'glance'" assert not section.get('insecure') and \ "https://" in section.get("api_servers"), \ "TLS is not used for Glance"
36.505535
96
0.625998
1f7b4d18a8a4632a54cb377bdeaa0a6ad36a7ad6
2,251
py
Python
jogo_da_forca.py
gialencar/jogo-da-forca
0e6d9f4298b069ed59c2070ed499c6275e04267f
[ "MIT" ]
null
null
null
jogo_da_forca.py
gialencar/jogo-da-forca
0e6d9f4298b069ed59c2070ed499c6275e04267f
[ "MIT" ]
null
null
null
jogo_da_forca.py
gialencar/jogo-da-forca
0e6d9f4298b069ed59c2070ed499c6275e04267f
[ "MIT" ]
null
null
null
from random import randint from unicodedata import normalize def remover_acentos(string): """Recebe uma string e retorna a versรฃo dela sem acentos ortogrรกficos e em lowercase.""" normalizado = normalize('NFD', string) return normalizado.encode('ascii', 'ignore').decode('utf8').lower() def validar_entrada(string): """Recebe uma string e retorna True se ela tiver 1 caractere.""" return len(string) == 1 def obter_palavra(): """Abre um arquivo com as palavras, armazena em uma lista; obtรฉm um nรบmero aleatรณrio de 0 a x, onde x รฉ o nรบmero de itens da lista; e usa esse nรบmero para escolher e retornar uma palavra aleatรณria da lista.""" arquivo = open('palavras_faceis.txt', 'r', encoding='UTF-8') lista_de_palavras = arquivo.read().split('\n') arquivo.close() sorteio = randint(0, len(lista_de_palavras)) return lista_de_palavras[sorteio] def main(): palavra = obter_palavra() parcial = "_" * len(palavra) # cria uma string de "_" do tamanho da palavra n_tentativas = 0 erros = "" while True: entrada = input("-- Entre com uma letra --> ").lower() if validar_entrada(entrada): # se a entrada for vรกlida n_tentativas += 1 palavra_normalizada = remover_acentos(palavra) print(f"A palavra รฉ: {palavra}") # Debug print(f"A letra aparece {palavra_normalizada.count(entrada)} vezes") print(f"Tentativas = {n_tentativas}") if remover_acentos(entrada) not in palavra.lower(): erros += entrada + " " contador = 0 for letra in palavra: if remover_acentos(letra) == entrada: # se o jogador acertou a letra parcial_lista = list(parcial) # converte parcial para lista parcial_lista[contador] = letra # substitui a letra na lista parcial = "".join(parcial_lista) # converte a lista de volta para string contador += 1 # adiciona 1 ao contador print('\n') print(parcial) print(f"Erros: {erros.upper()}") if "_" not in parcial: print("Game Over\nParabรฉns!") break if __name__ == "__main__": main()
35.730159
116
0.620613
75aa73384faa9a15573f12b1b56df11c73f8ba49
1,778
py
Python
ament_copyright/setup.py
emersonknapp/ament_lint
92badcaa44aa0a67a55bbf32dba9ae6adab62597
[ "Apache-2.0" ]
null
null
null
ament_copyright/setup.py
emersonknapp/ament_lint
92badcaa44aa0a67a55bbf32dba9ae6adab62597
[ "Apache-2.0" ]
null
null
null
ament_copyright/setup.py
emersonknapp/ament_lint
92badcaa44aa0a67a55bbf32dba9ae6adab62597
[ "Apache-2.0" ]
null
null
null
from setuptools import find_packages from setuptools import setup package_name = 'ament_copyright' setup( name=package_name, version='0.7.4', packages=find_packages(exclude=['test']), data_files=[ ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], package_data={'': [ 'template/*', ]}, zip_safe=False, author='Dirk Thomas', author_email='dthomas@osrfoundation.org', maintainer='Dirk Thomas', maintainer_email='dthomas@osrfoundation.org', url='https://github.com/ament/ament_lint', download_url='https://github.com/ament/ament_lint/releases', keywords=['ROS'], classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Topic :: Software Development', ], description='Check source files for copyright reference.', long_description="""\ The ability to check sources file for copyright and license information.""", license='Apache License, Version 2.0', tests_require=['pytest'], entry_points={ 'ament_copyright.copyright_name': [ 'osrf = ament_copyright.copyright_names:osrf', ], 'ament_copyright.license': [ 'apache2 = ament_copyright.licenses:apache2', 'bsd2 = ament_copyright.licenses:bsd2', 'mit = ament_copyright.licenses:mit', 'gplv3 = ament_copyright.licenses:gplv3', 'lgplv3 = ament_copyright.licenses:lgplv3', ], 'console_scripts': [ 'ament_copyright = ament_copyright.main:main', ], 'pytest11': [ 'ament_copyright = ament_copyright.pytest_marker', ], }, )
32.327273
76
0.626547
07074b8d72e617e7f5eebc1f905a5756f4d7ccab
3,161
py
Python
FindMyNews/settings.py
StarkDevHouse/FindMyNews
896e3fe19720252b224574dccf12a7ded9ef0ef0
[ "MIT" ]
null
null
null
FindMyNews/settings.py
StarkDevHouse/FindMyNews
896e3fe19720252b224574dccf12a7ded9ef0ef0
[ "MIT" ]
null
null
null
FindMyNews/settings.py
StarkDevHouse/FindMyNews
896e3fe19720252b224574dccf12a7ded9ef0ef0
[ "MIT" ]
null
null
null
""" Django settings for FindMyNews project. Generated by 'django-admin startproject' using Django 1.10.4. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'vvp&u)jnd6l#omn(oi*u+2jk!*ehnc2#$9gx+0808u7ht$l+6f' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'FindMyNews.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'FindMyNews.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Seoul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
26.123967
91
0.698829
78b547a7d1aee3a6fee9f6d83049364269911468
10,990
py
Python
tests/scripts/thread-cert/Cert_9_2_03_ActiveDatasetGet.py
paragdixit-g/openthread
a41a1f3fcae3351c9216e4ba02e44c8f9d3ea0d3
[ "BSD-3-Clause" ]
null
null
null
tests/scripts/thread-cert/Cert_9_2_03_ActiveDatasetGet.py
paragdixit-g/openthread
a41a1f3fcae3351c9216e4ba02e44c8f9d3ea0d3
[ "BSD-3-Clause" ]
null
null
null
tests/scripts/thread-cert/Cert_9_2_03_ActiveDatasetGet.py
paragdixit-g/openthread
a41a1f3fcae3351c9216e4ba02e44c8f9d3ea0d3
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # # Copyright (c) 2020, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest import mesh_cop import thread_cert from pktverify.consts import MLE_DATA_RESPONSE, MGMT_ACTIVE_GET_URI, NM_CHANNEL_TLV, NM_COMMISSIONER_ID_TLV, NM_COMMISSIONER_SESSION_ID_TLV, NM_STEERING_DATA_TLV, NM_BORDER_AGENT_LOCATOR_TLV, NM_PAN_ID_TLV, NM_NETWORK_NAME_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_PSKC_TLV, NM_SCAN_DURATION, NM_ENERGY_LIST_TLV, NM_ACTIVE_TIMESTAMP_TLV, NM_CHANNEL_MASK_TLV, NM_EXTENDED_PAN_ID_TLV, NM_NETWORK_MASTER_KEY_TLV, NM_SECURITY_POLICY_TLV, LEADER_ALOC from pktverify.packet_verifier import PacketVerifier from pktverify.null_field import nullField COMMISSIONER = 1 LEADER = 2 # Test Purpose and Description: # ----------------------------- # The purpose of this test case is to verify Leader's and active Commissioner's behavior via # MGMT_ACTIVE_GET request and response # # Test Topology: # ------------- # Commissioner # | # Leader # # DUT Types: # ---------- # Leader # Commissioner class Cert_9_2_03_ActiveDatasetGet(thread_cert.TestCase): SUPPORT_NCP = False TOPOLOGY = { COMMISSIONER: { 'name': 'COMMISSIONER', 'mode': 'rdn', 'panid': 0xface, 'router_selection_jitter': 1, 'allowlist': [LEADER] }, LEADER: { 'name': 'LEADER', 'mode': 'rdn', 'panid': 0xface, 'router_selection_jitter': 1, 'allowlist': [COMMISSIONER] }, } def test(self): self.nodes[LEADER].start() self.simulator.go(5) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[COMMISSIONER].start() self.simulator.go(5) self.assertEqual(self.nodes[COMMISSIONER].get_state(), 'router') self.simulator.get_messages_sent_by(LEADER) self.collect_rlocs() self.collect_rloc16s() leader_rloc = self.nodes[LEADER].get_rloc() self.nodes[COMMISSIONER].commissioner_start() self.simulator.go(3) self.nodes[COMMISSIONER].send_mgmt_active_get() self.simulator.go(5) self.nodes[COMMISSIONER].send_mgmt_active_get( leader_rloc, [mesh_cop.TlvType.CHANNEL_MASK, mesh_cop.TlvType.NETWORK_MESH_LOCAL_PREFIX, mesh_cop.TlvType.NETWORK_NAME]) self.simulator.go(5) self.nodes[COMMISSIONER].send_mgmt_active_get(leader_rloc, [ mesh_cop.TlvType.CHANNEL, mesh_cop.TlvType.NETWORK_MESH_LOCAL_PREFIX, mesh_cop.TlvType.NETWORK_NAME, mesh_cop.TlvType.SCAN_DURATION, mesh_cop.TlvType.ENERGY_LIST ]) self.simulator.go(5) commissioner_rloc = self.nodes[COMMISSIONER].get_rloc() self.assertTrue(self.nodes[COMMISSIONER].ping(leader_rloc)) self.simulator.go(1) self.assertTrue(self.nodes[LEADER].ping(commissioner_rloc)) def verify(self, pv): pkts = pv.pkts pv.summary.show() LEADER = pv.vars['LEADER'] LEADER_RLOC = pv.vars['LEADER_RLOC'] COMMISSIONER = pv.vars['COMMISSIONER'] COMMISSIONER_RLOC = pv.vars['COMMISSIONER_RLOC'] # Step 1: Ensure topology is formed correctly pv.verify_attached('COMMISSIONER', 'LEADER') # Step 2: Commissioner sends a MGMT_ACTIVE_GET.req to Leader Anycast # or Routing Locator: # CoAP Request URI # CON POST coap://<L>:MM/c/ag # CoAP Payload # <empty> - get all Active Operational Dataset parameters _pkt = pkts.filter_wpan_src64(COMMISSIONER).\ filter_ipv6_2dsts(LEADER_ALOC, LEADER_RLOC).\ filter_coap_request(MGMT_ACTIVE_GET_URI).\ filter(lambda p: p.coap.tlv.type is nullField).\ must_next() # Step 3: Leader sends a MGMT_ACTIVE_GET.rsp to Commissioner with # the following format: # CoAP Response Code # 2.04 Changed # CoAP Payload # (entire Active Operational Dataset) # Active Timestamp TLV # Channel TLV # Channel Mask TLV # Extended PAN ID TLV # Network Mesh-Local Prefix TLV # Network Master Key TLV # Network Name TLV # PAN ID TLV # PSKc TLV # Security Policy TLV pkts.filter_ipv6_src_dst(LEADER_RLOC, COMMISSIONER_RLOC).\ filter_coap_ack(MGMT_ACTIVE_GET_URI).\ filter(lambda p: { NM_ACTIVE_TIMESTAMP_TLV, NM_CHANNEL_TLV, NM_CHANNEL_MASK_TLV, NM_EXTENDED_PAN_ID_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_NETWORK_MASTER_KEY_TLV, NM_NETWORK_NAME_TLV, NM_PAN_ID_TLV, NM_PSKC_TLV, NM_SECURITY_POLICY_TLV } == set(p.thread_meshcop.tlv.type) ).\ must_next() # Step 4: Commissioner sends a MGMT_ACTIVE_GET.req to Leader Anycast # or Routing Locator: # CoAP Request URI # CON POST coap://<L>:MM/c/ag # CoAP Payload # Channel Mask TLV # Network Mesh-Local Prefix TLV # Network Name TLV pkts.filter_wpan_src64(COMMISSIONER).\ filter_ipv6_2dsts(LEADER_ALOC, LEADER_RLOC).\ filter_coap_request(MGMT_ACTIVE_GET_URI).\ filter(lambda p: { NM_CHANNEL_MASK_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_NETWORK_NAME_TLV } <= set(p.thread_meshcop.tlv.type) ).\ must_next() # Step 5: Leader sends a MGMT_ACTIVE_GET.rsp to Commissioner with # the following format: # CoAP Response Code # 2.04 Changed # CoAP Payload # Channel Mask TLV # Network Mesh-Local Prefix TLV # Network Name TLV pkts.filter_ipv6_src_dst(LEADER_RLOC, COMMISSIONER_RLOC).\ filter_coap_ack(MGMT_ACTIVE_GET_URI).\ filter(lambda p: { NM_CHANNEL_MASK_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_NETWORK_NAME_TLV } == set(p.thread_meshcop.tlv.type) ).\ must_next() # Step 6: Commissioner sends a MGMT_ACTIVE_GET.req to Leader Anycast # or Routing Locator: # CoAP Request URI # CON POST coap://<L>:MM/c/ag # CoAP Payload # Channel TLV # Network Mesh-Local Prefix TLV # Network Name TLV # Scan Duration TLV (not allowed TLV) # Energy List TLV (not allowed TLV) pkts.filter_wpan_src64(COMMISSIONER).\ filter_ipv6_2dsts(LEADER_ALOC, LEADER_RLOC).\ filter_coap_request(MGMT_ACTIVE_GET_URI).\ filter(lambda p: { NM_CHANNEL_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_NETWORK_NAME_TLV, NM_SCAN_DURATION, NM_ENERGY_LIST_TLV } <= set(p.thread_meshcop.tlv.type) ).\ must_next() # Step 7: Leader sends a MGMT_ACTIVE_GET.rsp to Commissioner with # the following format: # CoAP Response Code # 2.04 Changed # CoAP Payload # Channel TLV # Network Mesh-Local Prefix TLV # Network Name TLV pkts.filter_ipv6_src_dst(LEADER_RLOC, COMMISSIONER_RLOC).\ filter_coap_ack(MGMT_ACTIVE_GET_URI).\ filter(lambda p: { NM_CHANNEL_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_NETWORK_NAME_TLV, } == set(p.thread_meshcop.tlv.type) ).\ must_next() # Step 8: Verify connectivity by sending an ICMPv6 Echo Request to the # DUT mesh local address _pkt = pkts.filter_ping_request().\ filter_ipv6_src_dst(COMMISSIONER_RLOC, LEADER_RLOC).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_ipv6_src_dst(LEADER_RLOC, COMMISSIONER_RLOC).\ must_next() _pkt = pkts.filter_ping_request().\ filter_ipv6_src_dst(LEADER_RLOC, COMMISSIONER_RLOC).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_ipv6_src_dst(COMMISSIONER_RLOC, LEADER_RLOC).\ must_next() if __name__ == '__main__': unittest.main()
40.855019
445
0.582348
cab1abd1382b47693300375333fe7426f0112266
1,468
py
Python
qa/rpc-tests/dao/given/iHaveAnAcceptedProposal.py
garretlaxton/navcoin-core
7a2919b5ac14ba3b8a1dbf5aad08524db8d5ce08
[ "MIT" ]
1
2020-08-28T02:32:47.000Z
2020-08-28T02:32:47.000Z
qa/rpc-tests/dao/given/iHaveAnAcceptedProposal.py
garretlaxton/navcoin-core
7a2919b5ac14ba3b8a1dbf5aad08524db8d5ce08
[ "MIT" ]
null
null
null
qa/rpc-tests/dao/given/iHaveAnAcceptedProposal.py
garretlaxton/navcoin-core
7a2919b5ac14ba3b8a1dbf5aad08524db8d5ce08
[ "MIT" ]
1
2020-08-26T22:35:06.000Z
2020-08-26T22:35:06.000Z
#!/usr/bin/env python3 # Copyright (c) 2019 The NavCoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Expanded helper routines for regression testing of the NAV Coin community fund # import sys, os #include the parent folder so the test_framework is available sys.path.insert(1, os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..'))) from test_framework.util import * from dao.given import (givenIHaveActivatedTheCFund, givenIHaveDonatedToTheCFund, givenIHaveCreatedANewAddress, givenIHaveCreatedAProposal, givenIHaveVotedOnTheProposal) from dao.when import * from dao.then import * def givenIHaveAnAcceptedProposal(node=None, address=None, amount=None, duration=None, description=None, dump=False): if (node is None or address is None or amount is None or duration is None or description is None): print('givenIHaveAnAcceptedProposal: invalid parameters') assert(False) givenIHaveActivatedTheCFund(node) givenIHaveDonatedToTheCFund(node, amount) if (address == False): address = givenIHaveCreatedANewAddress(node)["pubkey"] hash = givenIHaveCreatedAProposal(node, address, amount, duration, description) givenIHaveVotedOnTheProposal(node, hash, 'yes') whenTheVotingCycleEnds(node, 2) thenTheProposalShouldBeAccepted(node, hash) return { "hash": hash, "address": address }
27.185185
84
0.76703
2896382dc93d57a8c3caab3f6cd689f5dd043b05
1,515
py
Python
pythonlearn/travelList.py
kuljotbiring/Python
743c93b91c5e4a4bf5066cf50e72e5a51d98d1ad
[ "MIT" ]
null
null
null
pythonlearn/travelList.py
kuljotbiring/Python
743c93b91c5e4a4bf5066cf50e72e5a51d98d1ad
[ "MIT" ]
null
null
null
pythonlearn/travelList.py
kuljotbiring/Python
743c93b91c5e4a4bf5066cf50e72e5a51d98d1ad
[ "MIT" ]
null
null
null
# Think of at least five places in the world youโ€™d like to # visit. # โ€ข Store the locations in a list. Make sure the list is not in alphabetical order. travel_list = ['italy', 'greece', 'switzerland', 'japan', 'thailand', 'new zealand', 'brazil', 'peru', 'hong kong'] # โ€ข Print your list in its original order. Donโ€™t worry about printing the list neatly, # just print it as a raw Python list. print(travel_list) # โ€ข Use sorted() to print your list in alphabetical order without modifying the # actual list. print(sorted(travel_list)) # โ€ข Show that your list is still in its original order by printing it again. print(travel_list) # โ€ข Use sorted() to print your list in reverse alphabetical order without changing # the order of the original list. print(sorted(travel_list, reverse=True)) # โ€ข Show that your list is still in its original order by printing it again. print(travel_list) # โ€ข Use reverse() to change the order of your list. Print the list to show that its # order has changed. reversed(travel_list) # โ€ข Use reverse() to change the order of your list again. Print the list to show # itโ€™s back to its original order. reversed(travel_list) # โ€ข Use sort() to change your list so itโ€™s stored in alphabetical order. Print the # list to show that its order has been changed. travel_list.sort() print(travel_list) # โ€ข Use sort() to change your list so itโ€™s stored in reverse alphabetical order. # Print the list to show that its order has changed. travel_list.sort(reverse=True) print(travel_list)
33.666667
115
0.744554
a1044e7a33bd8d90b881d3c3fcc88b0f177c63db
4,383
py
Python
sdks/python/apache_beam/runners/direct/consumer_tracking_pipeline_visitor_test.py
rodrigob/beam
e2ce4037f85619f946b3d6a3a90955cdf1c19b4a
[ "Apache-2.0", "BSD-3-Clause" ]
1
2018-07-13T02:57:48.000Z
2018-07-13T02:57:48.000Z
sdks/python/apache_beam/runners/direct/consumer_tracking_pipeline_visitor_test.py
rodrigob/beam
e2ce4037f85619f946b3d6a3a90955cdf1c19b4a
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
sdks/python/apache_beam/runners/direct/consumer_tracking_pipeline_visitor_test.py
rodrigob/beam
e2ce4037f85619f946b3d6a3a90955cdf1c19b4a
[ "Apache-2.0", "BSD-3-Clause" ]
1
2019-09-23T08:45:00.000Z
2019-09-23T08:45:00.000Z
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests for consumer_tracking_pipeline_visitor.""" from __future__ import absolute_import import logging import unittest from apache_beam import pvalue from apache_beam.io import Read from apache_beam.io import iobase from apache_beam.pipeline import Pipeline from apache_beam.pvalue import AsList from apache_beam.runners.direct import DirectRunner from apache_beam.runners.direct.consumer_tracking_pipeline_visitor import ConsumerTrackingPipelineVisitor from apache_beam.transforms import CoGroupByKey from apache_beam.transforms import Create from apache_beam.transforms import DoFn from apache_beam.transforms import FlatMap from apache_beam.transforms import Flatten from apache_beam.transforms import ParDo # Disable frequent lint warning due to pipe operator for chaining transforms. # pylint: disable=expression-not-assigned # pylint: disable=pointless-statement class ConsumerTrackingPipelineVisitorTest(unittest.TestCase): def setUp(self): self.pipeline = Pipeline(DirectRunner()) self.visitor = ConsumerTrackingPipelineVisitor() def test_root_transforms(self): class DummySource(iobase.BoundedSource): pass root_read = Read(DummySource()) root_flatten = Flatten(pipeline=self.pipeline) pbegin = pvalue.PBegin(self.pipeline) pcoll_read = pbegin | 'read' >> root_read pcoll_read | FlatMap(lambda x: x) [] | 'flatten' >> root_flatten self.pipeline.visit(self.visitor) root_transforms = sorted( [t.transform for t in self.visitor.root_transforms]) self.assertEqual(root_transforms, sorted( [root_read, root_flatten])) pbegin_consumers = sorted( [c.transform for c in self.visitor.value_to_consumers[pbegin]]) self.assertEqual(pbegin_consumers, sorted([root_read])) self.assertEqual(len(self.visitor.step_names), 3) def test_side_inputs(self): class SplitNumbersFn(DoFn): def process(self, element): if element < 0: yield pvalue.TaggedOutput('tag_negative', element) else: yield element class ProcessNumbersFn(DoFn): def process(self, element, negatives): yield element class DummySource(iobase.BoundedSource): pass root_read = Read(DummySource()) result = (self.pipeline | 'read' >> root_read | ParDo(SplitNumbersFn()).with_outputs('tag_negative', main='positive')) positive, negative = result positive | ParDo(ProcessNumbersFn(), AsList(negative)) self.pipeline.visit(self.visitor) root_transforms = sorted( [t.transform for t in self.visitor.root_transforms]) self.assertEqual(root_transforms, sorted([root_read])) self.assertEqual(len(self.visitor.step_names), 3) self.assertEqual(len(self.visitor.views), 1) self.assertTrue(isinstance(self.visitor.views[0], pvalue.AsList)) def test_co_group_by_key(self): emails = self.pipeline | 'email' >> Create([('joe', 'joe@example.com')]) phones = self.pipeline | 'phone' >> Create([('mary', '111-222-3333')]) {'emails': emails, 'phones': phones} | CoGroupByKey() self.pipeline.visit(self.visitor) root_transforms = sorted( [t.transform for t in self.visitor.root_transforms]) self.assertEqual(len(root_transforms), 2) self.assertGreater( len(self.visitor.step_names), 3) # 2 creates + expanded CoGBK self.assertEqual(len(self.visitor.views), 0) if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) unittest.main()
33.976744
105
0.722336
7abce4f0e182cacef57e4d8921d6c65fb9d21b16
8,003
py
Python
distances/q_image.py
npielawski/py_alpha_amd_release
6fb5b3cdef65ba8902daea050785dd73970002c2
[ "MIT" ]
14
2019-02-12T20:30:23.000Z
2021-11-04T01:10:34.000Z
distances/q_image.py
npielawski/py_alpha_amd_release
6fb5b3cdef65ba8902daea050785dd73970002c2
[ "MIT" ]
null
null
null
distances/q_image.py
npielawski/py_alpha_amd_release
6fb5b3cdef65ba8902daea050785dd73970002c2
[ "MIT" ]
7
2019-02-20T12:19:28.000Z
2021-02-09T10:12:06.000Z
# # Py-Alpha-AMD Registration Framework # Author: Johan Ofverstedt # Reference: Fast and Robust Symmetric Image Registration Based on Distances Combining Intensity and Spatial Information # # Copyright 2019 Johan Ofverstedt # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # # Quantized image representation. # import numpy as np import math import sys ### class: QuantizedImage ### Represents an image quantized to a given number of equally sized levels ### with related point-sets (with a weight for each point) partitioned by ### level. ### ### Random sampling (with replacement) which preserves the partitioning ### so that a list of randomly selected points for each distinct level ### is obtained. class QuantizedImage: def __init__(self, A, alpha_levels, weights, spacing, remove_zero_weight_pnts = True, center_point = None, contraction_factor=1): if A.dtype == 'int32': self.im = A else: self.im = (1 + np.floor(A * (alpha_levels) - 0.5)).astype('int') self.alpha_levels = alpha_levels self.contraction_factor = contraction_factor self.distance_shape = tuple([int(A.shape[i] / contraction_factor) for i in range(A.ndim)]) self.spacing = spacing if remove_zero_weight_pnts == True: self.im[weights <= 0.0] = -1 #linspaces = [np.linspace(0, A.shape[i]*self.spacing[i], A.shape[i], endpoint=False) for i in range(A.ndim)] linspaces = [make_space_1d(A.shape[i], contraction_factor, self.spacing[i]) for i in range(A.ndim)] #self.spacing = self.spacing * contraction_factor if center_point is None: center_point = self.spacing * (np.array(self.get_image_shape())-1.0) / 2.0 # Store the center point as a member, and # bake the contraction offset into the stored offset self.center_point = center_point + get_contraction_offset(contraction_factor, spacing) grid1 = np.array(np.meshgrid(*linspaces,indexing='ij')) grid = np.zeros(A.shape + (A.ndim+1,), dtype = 'float64') for i in range(A.ndim): grid[..., i] = grid1[i, ...] - center_point[i] #grid[..., :-1] = grid[..., :-1] - center_point grid[..., A.ndim] = weights self.weights = weights self.dense_point_count = np.prod(A.shape) self.point_count = 0 self.freq = np.zeros((alpha_levels+1,), dtype = 'int') self.pnts = [] all_indices = np.arange(np.prod(A.shape)).reshape(self.get_image_shape()) self.indices = []#np.arange(np.prod(A.shape[i])) self.grid = grid[..., :] for i in range(alpha_levels+1): filt = (self.im == i) if remove_zero_weight_pnts: filt[weights <= 0.0] = False cnt = np.count_nonzero(filt) self.freq[i] = cnt self.point_count = self.point_count + cnt filt_pnts = grid[filt] filt_indices = all_indices[filt] self.pnts.append(filt_pnts) self.indices.append(filt_indices) self.freq = self.freq * (1.0 / self.point_count) self.grid = self.grid.reshape((self.dense_point_count, A.ndim+1)) def print_image(self): print(self.im) def print_point_sets(self): print(self.pnts) def get_distance_shape(self): return self.distance_shape def get_alpha_levels(self): return self.alpha_levels def get_weights(self): return self.weights def get_dense_point_count(self): return self.dense_point_count def get_image_dim(self): return self.im.ndim def get_image_shape(self): return self.im.shape def get_image(self): return self.im def get_center_point(self): return self.center_point def get_sampling_fraction_count(self, f): return np.int(np.round(f * self.point_count)) def get_grid(self): return self.grid def get_indices(self): return self.indices def random_from_level(self, n, level): arr = self.pnts[level] m = arr.shape[0] if m == 0: return arr else: return arr[np.random.random_integers(0, m-1, n), :] def random_integers(self, m, n): if m > 0 and n > 0: return np.random.random_integers(0, m, n) else: return np.zeros((0, self.pnts[0].shape[1]), dtype='int') def random_sample(self, n): if n == self.point_count: return self.pnts else: cnt = np.random.multinomial(n, self.freq) return [self.pnts[i][self.random_integers(len(self.pnts[i])-1, cnt[i]), :] for i in range(self.alpha_levels+1)] ### Helper functions ### # Generate a space of n pixels, with given spacing and contraction_factor # contraction_factor means compressing a number of pixels into the center # of the super-pixel. # # 0, 1, 2, 3, 4, 5, 6 -> 1, 1, 1, 4, 4, 4, 6, 6 (n=7, spacing=1, contraction_factor=3) def make_space_1d(n, contraction_factor, spacing): assert(n > 0) assert(contraction_factor >= 1) assert(spacing > 0.0) if contraction_factor == 1: return np.linspace(0, n*spacing, n, endpoint=False) superpix_spacing = spacing * contraction_factor midp = np.mean(np.arange(contraction_factor)*spacing) whole_pix = int(n / contraction_factor) rem = n - whole_pix * contraction_factor seq_whole_pix = midp + (np.arange(whole_pix) * superpix_spacing) exp_seq = np.repeat(seq_whole_pix, contraction_factor) if rem > 0: out = np.empty(shape=[n]) # Fill the first part with the expanded sequence out[0:exp_seq.size] = exp_seq[:] # Fill the remainder with constant value out[exp_seq.size:] = (midp + (whole_pix * superpix_spacing)) return out else: return exp_seq # Compute the offset required for look-ups due to contraction/fusing # of pixels, which is dependent on contraction_factor and spacing. def get_contraction_offset(contraction_factor, spacing=None): if spacing is None: return -(contraction_factor-1.0) / 2.0 else: return -(spacing * (contraction_factor-1.0)) / 2.0 # A few tests to exercise the code def main(): test_space_1d_a = make_space_1d(11, 2.0, 1) test_space_1d_b = make_space_1d(11, 2.0, 2) test_space_1d_c = make_space_1d(11, 2.0, 3) test_space_1d_d = make_space_1d(11, 2.0, 4) test_space_1d_e = make_space_1d(12, 2.0, 4) print(test_space_1d_a) print(test_space_1d_b) print(test_space_1d_c) print(test_space_1d_d) print(test_space_1d_e) return im = np.zeros((3, 4, 5)) w = np.ones((3, 4, 5)) im[1, 1, 3] = 1.0 im[1, 2, 3] = 1.0 q_im = QuantizedImage(im, 1, w, [2, 2, 2], True) np.random.seed(1000) sampling = q_im.random_sample(13) print(sampling) if __name__ == '__main__': main()
35.255507
150
0.649381
a26c35e2837b16fe883d6f59f1b07a63d942add6
26,450
py
Python
model/lib/sklearn/decomposition/online_lda.py
nelango/ViralityAnalysis
1ddbaccb4ea04fc908a01b4964ab080f1d2b2f60
[ "MIT" ]
4
2018-01-21T21:18:35.000Z
2022-03-23T21:57:56.000Z
model/lib/sklearn/decomposition/online_lda.py
nelango/ViralityAnalysis
1ddbaccb4ea04fc908a01b4964ab080f1d2b2f60
[ "MIT" ]
null
null
null
model/lib/sklearn/decomposition/online_lda.py
nelango/ViralityAnalysis
1ddbaccb4ea04fc908a01b4964ab080f1d2b2f60
[ "MIT" ]
null
null
null
""" ============================================================= Online Latent Dirichlet Allocation with variational inference ============================================================= This implementation is modified from Matthew D. Hoffman's onlineldavb code Link: http://www.cs.princeton.edu/~mdhoffma/code/onlineldavb.tar """ # Author: Chyi-Kwei Yau # Author: Matthew D. Hoffman (original onlineldavb implementation) import numpy as np import scipy.sparse as sp from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import (check_random_state, check_array, gen_batches, gen_even_slices, _get_n_jobs) from ..utils.validation import NotFittedError, check_non_negative from ..utils.extmath import logsumexp from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange from ._online_lda import (mean_change, _dirichlet_expectation_1d, _dirichlet_expectation_2d) EPS = np.finfo(np.float).eps def _update_doc_distribution(X, exp_topic_word_distr, doc_topic_prior, max_iters, mean_change_tol, cal_sstats, random_state): """E-step: update document-topic distribution. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. exp_topic_word_distr : dense matrix, shape=(n_topics, n_features) Exponential value of expection of log topic word distribution. In the literature, this is `exp(E[log(beta)])`. doc_topic_prior : float Prior of document topic distribution `theta`. max_iters : int Max number of iterations for updating document topic distribution in the E-step. mean_change_tol : float Stopping tolerance for updating document topic distribution in E-setp. cal_sstats : boolean Parameter that indicate to calculate sufficient statistics or not. Set `cal_sstats` to `True` when we need to run M-step. random_state : RandomState instance or None Parameter that indicate how to initialize document topic distribution. Set `random_state` to None will initialize document topic distribution to a constant number. Returns ------- (doc_topic_distr, suff_stats) : `doc_topic_distr` is unnormalized topic distribution for each document. In the literature, this is `gamma`. we can calcuate `E[log(theta)]` from it. `suff_stats` is expected sufficient statistics for the M-step. When `cal_sstats == False`, this will be None. """ is_sparse_x = sp.issparse(X) n_samples, n_features = X.shape n_topics = exp_topic_word_distr.shape[0] if random_state: doc_topic_distr = random_state.gamma(100., 0.01, (n_samples, n_topics)) else: doc_topic_distr = np.ones((n_samples, n_topics)) # In the literature, this is `exp(E[log(theta)])` exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr)) # diff on `component_` (only calculate it when `cal_diff` is True) suff_stats = np.zeros(exp_topic_word_distr.shape) if cal_sstats else None if is_sparse_x: X_data = X.data X_indices = X.indices X_indptr = X.indptr for idx_d in xrange(n_samples): if is_sparse_x: ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]] cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]] else: ids = np.nonzero(X[idx_d, :])[0] cnts = X[idx_d, ids] doc_topic_d = doc_topic_distr[idx_d, :] # The next one is a copy, since the inner loop overwrites it. exp_doc_topic_d = exp_doc_topic[idx_d, :].copy() exp_topic_word_d = exp_topic_word_distr[:, ids] # Iterate between `doc_topic_d` and `norm_phi` until convergence for _ in xrange(0, max_iters): last_d = doc_topic_d # The optimal phi_{dwk} is proportional to # exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]). norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS doc_topic_d = (exp_doc_topic_d * np.dot(cnts / norm_phi, exp_topic_word_d.T)) # Note: adds doc_topic_prior to doc_topic_d, in-place. _dirichlet_expectation_1d(doc_topic_d, doc_topic_prior, exp_doc_topic_d) if mean_change(last_d, doc_topic_d) < mean_change_tol: break doc_topic_distr[idx_d, :] = doc_topic_d # Contribution of document d to the expected sufficient # statistics for the M step. if cal_sstats: norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi) return (doc_topic_distr, suff_stats) class LatentDirichletAllocation(BaseEstimator, TransformerMixin): """Latent Dirichlet Allocation with online variational Bayes algorithm .. versionadded:: 0.17 Parameters ---------- n_topics : int, optional (default=10) Number of topics. doc_topic_prior : float, optional (default=None) Prior of document topic distribution `theta`. If the value is None, defaults to `1 / n_topics`. In the literature, this is called `alpha`. topic_word_prior : float, optional (default=None) Prior of topic word distribution `beta`. If the value is None, defaults to `1 / n_topics`. In the literature, this is called `eta`. learning_method : 'batch' | 'online', default='online' Method used to update `_component`. Only used in `fit` method. In general, if the data size is large, the online update will be much faster than the batch update. Valid options:: 'batch': Batch variational Bayes method. Use all training data in each EM update. Old `components_` will be overwritten in each iteration. 'online': Online variational Bayes method. In each EM update, use mini-batch of training data to update the ``components_`` variable incrementally. The learning rate is controlled by the ``learning_decay`` and the ``learning_offset`` parameters. learning_decay : float, optional (default=0.7) It is a parameter that control learning rate in the online learning method. The value should be set between (0.5, 1.0] to guarantee asymptotic convergence. When the value is 0.0 and batch_size is ``n_samples``, the update method is same as batch learning. In the literature, this is called kappa. learning_offset : float, optional (default=10.) A (positive) parameter that downweights early iterations in online learning. It should be greater than 1.0. In the literature, this is called tau_0. max_iter : integer, optional (default=10) The maximum number of iterations. total_samples : int, optional (default=1e6) Total number of documents. Only used in the `partial_fit` method. batch_size : int, optional (default=128) Number of documents to use in each EM iteration. Only used in online learning. evaluate_every : int optional (default=0) How often to evaluate perplexity. Only used in `fit` method. set it to 0 or and negative number to not evalute perplexity in training at all. Evaluating perplexity can help you check convergence in training process, but it will also increase total training time. Evaluating perplexity in every iteration might increase training time up to two-fold. perp_tol : float, optional (default=1e-1) Perplexity tolerance in batch learning. Only used when ``evaluate_every`` is greater than 0. mean_change_tol : float, optional (default=1e-3) Stopping tolerance for updating document topic distribution in E-step. max_doc_update_iter : int (default=100) Max number of iterations for updating document topic distribution in the E-step. n_jobs : int, optional (default=1) The number of jobs to use in the E-step. If -1, all CPUs are used. For ``n_jobs`` below -1, (n_cpus + 1 + n_jobs) are used. verbose : int, optional (default=0) Verbosity level. random_state : int or RandomState instance or None, optional (default=None) Pseudo-random number generator seed control. Attributes ---------- components_ : array, [n_topics, n_features] Topic word distribution. ``components_[i, j]`` represents word j in topic `i`. In the literature, this is called lambda. n_batch_iter_ : int Number of iterations of the EM step. n_iter_ : int Number of passes over the dataset. References ---------- [1] "Online Learning for Latent Dirichlet Allocation", Matthew D. Hoffman, David M. Blei, Francis Bach, 2010 [2] "Stochastic Variational Inference", Matthew D. Hoffman, David M. Blei, Chong Wang, John Paisley, 2013 [3] Matthew D. Hoffman's onlineldavb code. Link: http://www.cs.princeton.edu/~mdhoffma/code/onlineldavb.tar """ def __init__(self, n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method='online', learning_decay=.7, learning_offset=10., max_iter=10, batch_size=128, evaluate_every=-1, total_samples=1e6, perp_tol=1e-1, mean_change_tol=1e-3, max_doc_update_iter=100, n_jobs=1, verbose=0, random_state=None): self.n_topics = n_topics self.doc_topic_prior = doc_topic_prior self.topic_word_prior = topic_word_prior self.learning_method = learning_method self.learning_decay = learning_decay self.learning_offset = learning_offset self.max_iter = max_iter self.batch_size = batch_size self.evaluate_every = evaluate_every self.total_samples = total_samples self.perp_tol = perp_tol self.mean_change_tol = mean_change_tol self.max_doc_update_iter = max_doc_update_iter self.n_jobs = n_jobs self.verbose = verbose self.random_state = random_state def _check_params(self): """Check model parameters.""" if self.n_topics <= 0: raise ValueError("Invalid 'n_topics' parameter: %r" % self.n_topics) if self.total_samples <= 0: raise ValueError("Invalid 'total_samples' parameter: %r" % self.total_samples) if self.learning_offset < 0: raise ValueError("Invalid 'learning_offset' parameter: %r" % self.learning_offset) if self.learning_method not in ("batch", "online"): raise ValueError("Invalid 'learning_method' parameter: %r" % self.learning_method) def _init_latent_vars(self, n_features): """Initialize latent variables.""" self.random_state_ = check_random_state(self.random_state) self.n_batch_iter_ = 1 self.n_iter_ = 0 if self.doc_topic_prior is None: self.doc_topic_prior_ = 1. / self.n_topics else: self.doc_topic_prior_ = self.doc_topic_prior if self.topic_word_prior is None: self.topic_word_prior_ = 1. / self.n_topics else: self.topic_word_prior_ = self.topic_word_prior init_gamma = 100. init_var = 1. / init_gamma # In the literature, this is called `lambda` self.components_ = self.random_state_.gamma( init_gamma, init_var, (self.n_topics, n_features)) # In the literature, this is `exp(E[log(beta)])` self.exp_dirichlet_component_ = np.exp( _dirichlet_expectation_2d(self.components_)) def _e_step(self, X, cal_sstats, random_init, parallel=None): """E-step in EM update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. cal_sstats : boolean Parameter that indicate whether to calculate sufficient statistics or not. Set ``cal_sstats`` to True when we need to run M-step. random_init : boolean Parameter that indicate whether to initialize document topic distribution randomly in the E-step. Set it to True in training steps. parallel : joblib.Parallel (optional) Pre-initialized instance of joblib.Parallel. Returns ------- (doc_topic_distr, suff_stats) : `doc_topic_distr` is unnormailzed topic distribution for each document. In the literature, this is called `gamma`. `suff_stats` is expected sufficient statistics for the M-step. When `cal_sstats == False`, it will be None. """ # Run e-step in parallel random_state = self.random_state_ if random_init else None # TODO: make Parallel._effective_n_jobs public instead? n_jobs = _get_n_jobs(self.n_jobs) if parallel is None: parallel = Parallel(n_jobs=n_jobs, verbose=self.verbose) results = parallel( delayed(_update_doc_distribution)(X[idx_slice, :], self.exp_dirichlet_component_, self.doc_topic_prior_, self.max_doc_update_iter, self.mean_change_tol, cal_sstats, random_state) for idx_slice in gen_even_slices(X.shape[0], n_jobs)) # merge result doc_topics, sstats_list = zip(*results) doc_topic_distr = np.vstack(doc_topics) if cal_sstats: # This step finishes computing the sufficient statistics for the # M-step. suff_stats = np.zeros(self.components_.shape) for sstats in sstats_list: suff_stats += sstats suff_stats *= self.exp_dirichlet_component_ else: suff_stats = None return (doc_topic_distr, suff_stats) def _em_step(self, X, total_samples, batch_update, parallel=None): """EM update for 1 iteration. update `_component` by batch VB or online VB. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. total_samples : integer Total umber of documents. It is only used when batch_update is `False`. batch_update : boolean Parameter that controls updating method. `True` for batch learning, `False` for online learning. parallel : joblib.Parallel Pre-initialized instance of joblib.Parallel Returns ------- doc_topic_distr : array, shape=(n_samples, n_topics) Unnormalized document topic distribution. """ # E-step _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True, parallel=parallel) # M-step if batch_update: self.components_ = self.topic_word_prior_ + suff_stats else: # online update # In the literature, the weight is `rho` weight = np.power(self.learning_offset + self.n_batch_iter_, -self.learning_decay) doc_ratio = float(total_samples) / X.shape[0] self.components_ *= (1 - weight) self.components_ += (weight * (self.topic_word_prior_ + doc_ratio * suff_stats)) # update `component_` related variables self.exp_dirichlet_component_ = np.exp( _dirichlet_expectation_2d(self.components_)) self.n_batch_iter_ += 1 return def _check_non_neg_array(self, X, whom): """check X format check X format and make sure no negative value in X. Parameters ---------- X : array-like or sparse matrix """ X = check_array(X, accept_sparse='csr') check_non_negative(X, whom) return X def partial_fit(self, X, y=None): """Online VB with Mini-Batch update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- self """ self._check_params() X = self._check_non_neg_array(X, "LatentDirichletAllocation.partial_fit") n_samples, n_features = X.shape batch_size = self.batch_size # initialize parameters or check if not hasattr(self, 'components_'): self._init_latent_vars(n_features) if n_features != self.components_.shape[1]: raise ValueError( "The provided data has %d dimensions while " "the model was trained with feature size %d." % (n_features, self.components_.shape[1])) n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=self.verbose) as parallel: for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=self.total_samples, batch_update=False, parallel=parallel) return self def fit(self, X, y=None): """Learn model for the data X with variational Bayes method. When `learning_method` is 'online', use mini-batch update. Otherwise, use batch update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- self """ self._check_params() X = self._check_non_neg_array(X, "LatentDirichletAllocation.fit") n_samples, n_features = X.shape max_iter = self.max_iter evaluate_every = self.evaluate_every learning_method = self.learning_method batch_size = self.batch_size # initialize parameters self._init_latent_vars(n_features) # change to perplexity later last_bound = None n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=self.verbose) as parallel: for i in xrange(max_iter): if learning_method == 'online': for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=n_samples, batch_update=False, parallel=parallel) else: # batch update self._em_step(X, total_samples=n_samples, batch_update=True, parallel=parallel) # check perplexity if evaluate_every > 0 and (i + 1) % evaluate_every == 0: doc_topics_distr, _ = self._e_step(X, cal_sstats=False, random_init=False) bound = self.perplexity(X, doc_topics_distr, sub_sampling=False) if self.verbose: print('iteration: %d, perplexity: %.4f' % (i + 1, bound)) if last_bound and abs(last_bound - bound) < self.perp_tol: break last_bound = bound self.n_iter_ += 1 return self def transform(self, X): """Transform data X according to the fitted model. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- doc_topic_distr : shape=(n_samples, n_topics) Document topic distribution for X. """ if not hasattr(self, 'components_'): raise NotFittedError("no 'components_' attribute in model." " Please fit model first.") # make sure feature size is the same in fitted model and in X X = self._check_non_neg_array(X, "LatentDirichletAllocation.transform") n_samples, n_features = X.shape if n_features != self.components_.shape[1]: raise ValueError( "The provided data has %d dimensions while " "the model was trained with feature size %d." % (n_features, self.components_.shape[1])) doc_topic_distr, _ = self._e_step(X, cal_sstats=False, random_init=False) return doc_topic_distr def _approx_bound(self, X, doc_topic_distr, sub_sampling): """Estimate the variational bound. Estimate the variational bound over "all documents" using only the documents passed in as X. Since log-likelihood of each word cannot be computed directly, we use this bound to estimate it. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. doc_topic_distr : array, shape=(n_samples, n_topics) Document topic distribution. In the literature, this is called gamma. sub_sampling : boolean, optional, (default=False) Compensate for subsampling of documents. It is used in calcuate bound in online learning. Returns ------- score : float """ def _loglikelihood(prior, distr, dirichlet_distr, size): # calculate log-likelihood score = np.sum((prior - distr) * dirichlet_distr) score += np.sum(gammaln(distr) - gammaln(prior)) score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1))) return score is_sparse_x = sp.issparse(X) n_samples, n_topics = doc_topic_distr.shape n_features = self.components_.shape[1] score = 0 dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr) dirichlet_component_ = _dirichlet_expectation_2d(self.components_) doc_topic_prior = self.doc_topic_prior_ topic_word_prior = self.topic_word_prior_ if is_sparse_x: X_data = X.data X_indices = X.indices X_indptr = X.indptr # E[log p(docs | theta, beta)] for idx_d in xrange(0, n_samples): if is_sparse_x: ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]] cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]] else: ids = np.nonzero(X[idx_d, :])[0] cnts = X[idx_d, ids] temp = (dirichlet_doc_topic[idx_d, :, np.newaxis] + dirichlet_component_[:, ids]) norm_phi = logsumexp(temp) score += np.dot(cnts, norm_phi) # compute E[log p(theta | alpha) - log q(theta | gamma)] score += _loglikelihood(doc_topic_prior, doc_topic_distr, dirichlet_doc_topic, self.n_topics) # Compensate for the subsampling of the population of documents if sub_sampling: doc_ratio = float(self.total_samples) / n_samples score *= doc_ratio # E[log p(beta | eta) - log q (beta | lambda)] score += _loglikelihood(topic_word_prior, self.components_, dirichlet_component_, n_features) return score def score(self, X, y=None): """Calculate approximate log-likelihood as score. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- score : float Use approximate bound as score. """ X = self._check_non_neg_array(X, "LatentDirichletAllocation.score") doc_topic_distr = self.transform(X) score = self._approx_bound(X, doc_topic_distr, sub_sampling=False) return score def perplexity(self, X, doc_topic_distr=None, sub_sampling=False): """Calculate approximate perplexity for data X. Perplexity is defined as exp(-1. * log-likelihood per word) Parameters ---------- X : array-like or sparse matrix, [n_samples, n_features] Document word matrix. doc_topic_distr : None or array, shape=(n_samples, n_topics) Document topic distribution. If it is None, it will be generated by applying transform on X. Returns ------- score : float Perplexity score. """ if not hasattr(self, 'components_'): raise NotFittedError("no 'components_' attribute in model." " Please fit model first.") X = self._check_non_neg_array(X, "LatentDirichletAllocation.perplexity") if doc_topic_distr is None: doc_topic_distr = self.transform(X) else: n_samples, n_topics = doc_topic_distr.shape if n_samples != X.shape[0]: raise ValueError("Number of samples in X and doc_topic_distr" " do not match.") if n_topics != self.n_topics: raise ValueError("Number of topics does not match.") current_samples = X.shape[0] bound = self._approx_bound(X, doc_topic_distr, sub_sampling) if sub_sampling: word_cnt = X.sum() * (float(self.total_samples) / current_samples) else: word_cnt = X.sum() perword_bound = bound / word_cnt return np.exp(-1.0 * perword_bound)
37.411598
79
0.600076
8d1f794ad8f00047b23c05e6a1f3e378a06a4f3a
3,866
py
Python
commaai_drive.py
alanswx/udacity-hw-cloning
c5b8f888eeea4368d8ced2ce30a1ea860a7ed872
[ "MIT" ]
null
null
null
commaai_drive.py
alanswx/udacity-hw-cloning
c5b8f888eeea4368d8ced2ce30a1ea860a7ed872
[ "MIT" ]
null
null
null
commaai_drive.py
alanswx/udacity-hw-cloning
c5b8f888eeea4368d8ced2ce30a1ea860a7ed872
[ "MIT" ]
null
null
null
import argparse import base64 import json import cv2 import numpy as np import socketio import eventlet import eventlet.wsgi import time from PIL import Image from PIL import ImageOps from flask import Flask, render_template from io import BytesIO import scipy.misc from keras.models import model_from_json from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array from keras.optimizers import Adam import driving_data # Fix error with Keras and TensorFlow import tensorflow as tf tf.python.control_flow_ops = tf sio = socketio.Server() app = Flask(__name__) model = None prev_image_array = None @sio.on('telemetry') def telemetry(sid, data): # The current steering angle of the car steering_angle = data["steering_angle"] # The current throttle of the car throttle = data["throttle"] # The current speed of the car speed = data["speed"] # The current image from the center camera of the car imgString = data["image"] image = Image.open(BytesIO(base64.b64decode(imgString))) image_array = np.asarray(image) #print(image_array.shape) #transformed_image_array=driving_data.process_image_comma_pixels(image_array) b = image_array[None, :, :, :].transpose(0, 3, 1, 2) transformed_image_array = b #print(transformed_image_array.shape) ''' image_array = image_array[55:135, :, :] mean=0 image_array=cv2.copyMakeBorder(image_array, top=55, bottom=25 , left=0, right=0, borderType= cv2.BORDER_CONSTANT, value=[mean,mean,mean] ) #cv2.resize(image, (160,320)) b = image_array[None, :, :, :].transpose(0, 3, 1, 2) print(b.shape) transformed_image_array = b ''' #transformed_image_array = image_array[None, :, :, :] # This model currently assumes that the features of the model are just the images. Feel free to change this. #print("about to call predict") steering_angle = float(model.predict(transformed_image_array, batch_size=1)) #print("after predict") steering_angle = steering_angle * scipy.pi / 180 #steering_angle = steering_angle * scipy.pi / 180 # steering_angle = steering_angle / 2 #print("steering angle"+str(steering_angle)) # The driving model currently just outputs a constant throttle. Feel free to edit this. speed = float(speed) # TODO - change this if speed < 10.0: throttle = 0.7 elif speed < 15.0: throttle = 0.4 elif speed < 22.0: throttle = 0.18 else: throttle = 0.15 #throttle = 0.2 #print(steering_angle, throttle) send_control(steering_angle, throttle) @sio.on('connect') def connect(sid, environ): print("connect ", sid) send_control(0, 0) def send_control(steering_angle, throttle): sio.emit("steer", data={ 'steering_angle': steering_angle.__str__(), 'throttle': throttle.__str__() }, skip_sid=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Remote Driving') parser.add_argument('model', type=str, help='Path to model definition json. Model weights should be on the same path.') args = parser.parse_args() with open(args.model, 'r') as jfile: # NOTE: if you saved the file by calling json.dump(model.to_json(), ...) # then you will have to call: # #model = model_from_json(json.loads(jfile.read())) #model.summary() # # instead. model = model_from_json(jfile.read()) model.summary() learning_rate=0.0001 model.compile(Adam(lr=learning_rate), "mse") weights_file = args.model.replace('json', 'h5') model.load_weights(weights_file) # wrap Flask application with engineio's middleware app = socketio.Middleware(sio, app) # deploy as an eventlet WSGI server eventlet.wsgi.server(eventlet.listen(('', 4567)), app)
30.203125
142
0.688826
d51345ad361b2eb08899e336f924e6455d290fc3
1,141
py
Python
test/gst-msdk/decode/12bit/vp9.py
Bin-CI/vaapi-fits
9c43ea65f7fe99f11fa3c49bb14d30f5de09f010
[ "BSD-3-Clause" ]
19
2019-03-05T01:59:05.000Z
2022-01-11T15:31:49.000Z
test/gst-msdk/decode/12bit/vp9.py
Bin-CI/vaapi-fits
9c43ea65f7fe99f11fa3c49bb14d30f5de09f010
[ "BSD-3-Clause" ]
213
2019-01-29T18:44:05.000Z
2022-03-30T05:57:04.000Z
test/gst-msdk/decode/12bit/vp9.py
Bin-CI/vaapi-fits
9c43ea65f7fe99f11fa3c49bb14d30f5de09f010
[ "BSD-3-Clause" ]
26
2019-01-29T05:21:22.000Z
2022-02-09T00:57:35.000Z
### ### Copyright (C) 2018-2020 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### from .....lib import * from .....lib.gstreamer.msdk.util import * from .....lib.gstreamer.msdk.decoder import DecoderTest spec = load_test_spec("vp9", "decode", "12bit") @slash.requires(*platform.have_caps("decode", "vp9_12")) @slash.requires(*have_gst_element("msdkvp9dec")) class default(DecoderTest): def before(self): super().before() vars(self).update( # default metric metric = dict(type = "ssim", miny = 1.0, minu = 1.0, minv = 1.0), caps = platform.get_caps("decode", "vp9_12"), gstdecoder = "msdkvp9dec", gstparser = "vp9parse", ) @slash.parametrize(("case"), sorted(spec.keys())) def test(self, case): vars(self).update(spec[case].copy()) dxmap = {".ivf" : "ivfparse", ".webm" : "matroskademux", ".mkv" : "matroskademux"} ext = os.path.splitext(self.source)[1] assert ext in dxmap.keys(), "Unrecognized source file extension {}".format(ext) vars(self).update( case = case, gstdemuxer = dxmap[ext], ) self.decode()
29.25641
86
0.618755
e05c38a52bb00617c05e399722c2ef1df42a4922
4,827
py
Python
adet/modeling/MEInst/pca/pca_valid.py
maxpark/ABCNet_Chinese
7c7d2f322411ebf933a91b4e9e476562e5d3a012
[ "BSD-2-Clause" ]
27
2021-08-05T06:56:17.000Z
2022-03-20T06:47:34.000Z
adet/modeling/MEInst/pca/pca_valid.py
maxpark/ABCNet_Chinese
7c7d2f322411ebf933a91b4e9e476562e5d3a012
[ "BSD-2-Clause" ]
6
2021-08-09T06:50:30.000Z
2021-11-05T09:09:24.000Z
adet/modeling/MEInst/pca/pca_valid.py
maxpark/ABCNet_Chinese
7c7d2f322411ebf933a91b4e9e476562e5d3a012
[ "BSD-2-Clause" ]
8
2021-08-05T14:31:30.000Z
2022-03-29T07:29:31.000Z
# coding:utf-8 import argparse import os import time import numpy as np from .pca_labels import parse_json from .pca_utils import transform, inverse_transform, IOUMetric, direct_sigmoid, inverse_sigmoid VALUE_MAX = 0.05 VALUE_MIN = 0.01 def pca_valid(masks, components_c, explained_variance_c, mean_c=None, n_components=60, class_agnostic=True, whiten=True, sigmoid=True, mask_size=28): mIoU = [] if class_agnostic: masks = np.concatenate([np.array(mask).astype(np.float32).reshape((-1, mask_size**2)) for mask in masks]) components_c = np.squeeze(components_c) mean_c = np.squeeze(mean_c) explained_variance_c = np.squeeze(explained_variance_c) assert n_components == components_c.shape[0], print( "The n_components in component_ must equal to the supposed shape.") # generate the reconstruction mask. if sigmoid: value_random = VALUE_MAX * np.random.rand(masks.shape[0], masks.shape[1]) value_random = np.maximum(value_random, VALUE_MIN) masks_random = np.where(masks > value_random, 1 - value_random, value_random) masks_random = inverse_sigmoid(masks_random) else: masks_random = masks mask_rc = transform(masks_random, components_=components_c, explained_variance_=explained_variance_c, mean_=mean_c, whiten=whiten) mask_rc = inverse_transform(mask_rc, components_=components_c, explained_variance_=explained_variance_c, mean_=mean_c, whiten=whiten) if sigmoid: mask_rc = direct_sigmoid(mask_rc) mask_rc = np.where(mask_rc >= 0.5, 1, 0) IoUevaluate = IOUMetric(2) IoUevaluate.add_batch(mask_rc, masks) _, _, _, mean_iu, _ = IoUevaluate.evaluate() mIoU.append(mean_iu) else: # TODO: We have not achieve the function in class-specific. raise NotImplementedError return np.mean(mIoU) if __name__ == '__main__': # ArgumentParser. parser = argparse.ArgumentParser() parser.add_argument('--gt_set', default='/mnt/cephfs_new_wj/mlnlp/zhangrufeng/projects/' 'adet/datasets/28x28/coco_2017_train/coco_2017_train_%s.json', type=str) parser.add_argument('--output_dir', default='/mnt/cephfs_new_wj/mlnlp/zhangrufeng/projects/' 'adet/datasets/28x28/components/', type=str) parser.add_argument('--n_split', default=4, type=int) parser.add_argument('--mask_size', default=28, type=int) parser.add_argument('--n_components', default=60, type=int) parser.add_argument('--class_agnostic', default=True, type=bool) parser.add_argument('--whiten', default=True, type=bool) parser.add_argument('--sigmoid', default=True, type=bool) parser.add_argument('--on_val', default=True, type=bool) args = parser.parse_args() gt_set = args.gt_set output_dir = args.output_dir n_split = args.n_split mask_size = args.mask_size n_components = args.n_components class_agnostic = args.class_agnostic whiten = args.whiten sigmoid = args.sigmoid on_val = args.on_val # load the parameters output_path = os.path.join(output_dir, os.path.basename(gt_set).split('.')[0][:-3] + '_class_agnostic' + str(class_agnostic) + '_whiten' + str(whiten) + '_sigmoid' + str(sigmoid) + '_' + str(n_components) + '.npz') print("Load the pca parameters: " + output_path) tic = time.time() parameters = np.load(output_path) components_c = parameters['components_c'] mean_c = parameters['mean_c'] ratio_c = parameters['ratio_c'] explained_variance_c = parameters['explained_variance_c'] toc = time.time() - tic print("Finish the load in %2fs."%toc) if on_val: gt_set = gt_set.replace('train', 'val') else: pass mIoU = [] for split in range(n_split): print("Start to Load the Segmentation Masks Split %d." % (split + 1)) gt_set_split = gt_set % str(split + 1) tic = time.time() _, _, masks = parse_json(gt_set_split) toc = time.time() - tic print("Finish the load of split-%d in %2fs." % (split + 1, toc)) print("Start to valid pca of split-%d..."% (split + 1)) mIoU_split = pca_valid(masks=masks, components_c=components_c, explained_variance_c=explained_variance_c, mean_c=mean_c, n_components=n_components, class_agnostic=class_agnostic, whiten=whiten, sigmoid=sigmoid, mask_size=mask_size) mIoU.append(mIoU_split) print("Finish the valid pca of split-%d"% (split + 1)) print("The mIoU for %s is %f"%(output_path, np.mean(mIoU)))
43.098214
141
0.650715
9c8abf7ade4a7ae05d9afbc442dcef180f7f01e4
1,954
py
Python
problems/three_qubits_yz/three_q_yz_generators.py
JammyL/BayesianOptimization
e8deec2136379af875692c455321fbf47f20fb7d
[ "MIT" ]
null
null
null
problems/three_qubits_yz/three_q_yz_generators.py
JammyL/BayesianOptimization
e8deec2136379af875692c455321fbf47f20fb7d
[ "MIT" ]
null
null
null
problems/three_qubits_yz/three_q_yz_generators.py
JammyL/BayesianOptimization
e8deec2136379af875692c455321fbf47f20fb7d
[ "MIT" ]
null
null
null
import qutip as qt import numpy as np import matplotlib.pyplot as plt import matplotlib from qutip.qip.circuit import QubitCircuit, Gate from qutip.qip.operations import gate_sequence_product from qutip.tensor import tensor def calcStateFidelity(finalState, targetState): finalState = finalState.dag() return abs(targetState.overlap(finalState))**2 def calcGateFidelityN(finalGate, targetGate, N): product = finalGate * targetGate.dag() trace = np.trace(product) return (abs(trace)**2)/(4**N) def N3qubitGateFunc(targetGate): def testGateParams(a1, a2, a3, a4, a5, a6): QC = QubitCircuit(3) QC.add_gate("RY", targets=0, arg_value=a1) QC.add_gate("RZ", targets=1, arg_value=a2) QC.add_gate("RY", targets=2, arg_value=a3) QC.add_gate("CNOT", targets=1, controls=0) QC.add_gate("CNOT", targets=2, controls=0) QC.add_gate("RZ", targets=0, arg_value=a4) QC.add_gate("RY", targets=1, arg_value=a5) QC.add_gate("RZ", targets=2, arg_value=a6) U_list = QC.propagators() finalGate = gate_sequence_product(U_list) return calcGateFidelityN(finalGate, targetGate, 3) return testGateParams def N3qubitStateFunc(initialState, targetState): def testStateParams(a1, a2, a3, a4, a5, a6): QC = QubitCircuit(3) QC.add_gate("RY", targets=0, arg_value=a1) QC.add_gate("RZ", targets=1, arg_value=a2) QC.add_gate("RY", targets=2, arg_value=a3) QC.add_gate("CNOT", targets=1, controls=0) QC.add_gate("CNOT", targets=2, controls=0) QC.add_gate("RZ", targets=0, arg_value=a4) QC.add_gate("RY", targets=1, arg_value=a5) QC.add_gate("RZ", targets=2, arg_value=a6) U_list = QC.propagators() finalGate = gate_sequence_product(U_list) finalState = finalGate * initialState return calcStateFidelity(targetState, finalState) return testStateParams
39.08
58
0.676049
b2b839d4b016dcac14d2ab825d02bd98bab236c1
12,280
py
Python
qiskit/backends/local/qasm_simulator_cpp.py
nonhermitian/arrogant_seahorse
2be1ff60857c75fcbbb0c23aa594f41e1a33c89c
[ "Apache-2.0" ]
null
null
null
qiskit/backends/local/qasm_simulator_cpp.py
nonhermitian/arrogant_seahorse
2be1ff60857c75fcbbb0c23aa594f41e1a33c89c
[ "Apache-2.0" ]
1
2018-08-08T17:56:06.000Z
2018-08-08T17:56:06.000Z
qiskit/backends/local/qasm_simulator_cpp.py
nonhermitian/arrogant_seahorse
2be1ff60857c75fcbbb0c23aa594f41e1a33c89c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2017 IBM RESEARCH. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """ Interface to C++ quantum circuit simulator with realistic noise. """ import json import logging import os import subprocess from subprocess import PIPE import platform import warnings import numpy as np from qiskit._result import Result from qiskit.backends import BaseBackend from qiskit.backends.local.localjob import LocalJob from qiskit.cython.qasm_simulator import SimulatorWrapper logger = logging.getLogger(__name__) EXTENSION = '.exe' if platform.system() == 'Windows' else '' # Add path to compiled qasm simulator DEFAULT_SIMULATOR_PATHS = [ # This is the path where Makefile creates the simulator by default os.path.abspath(os.path.join(os.path.dirname(__file__), '../../../out/src/qasm-simulator-cpp/qasm_simulator_cpp' + EXTENSION)), # This is the path where PIP installs the simulator os.path.abspath(os.path.join(os.path.dirname(__file__), 'qasm_simulator_cpp' + EXTENSION)), ] class QasmSimulatorCpp(BaseBackend): """C++ quantum circuit simulator with realistic noise""" DEFAULT_CONFIGURATION = { 'name': 'local_qasm_simulator_cpp', 'url': 'https://github.com/QISKit/qiskit-sdk-py/src/qasm-simulator-cpp', 'simulator': True, 'local': True, 'description': 'A C++ realistic noise simulator for qobj files', 'coupling_map': 'all-to-all', "basis_gates": 'u0,u1,u2,u3,cx,cz,id,x,y,z,h,s,sdg,t,tdg,rzz,' + 'snapshot,wait,noise,save,load' } def __init__(self, configuration=None): super().__init__(configuration or self.DEFAULT_CONFIGURATION.copy()) # Try to use the default executable if not specified. def run(self, q_job): """Run a QuantumJob on the the backend.""" return LocalJob(self._run_job, q_job) def _run_job(self, q_job): qobj = q_job.qobj self._validate(qobj) simulator = SimulatorWrapper() result = simulator.run(json.dumps(qobj, cls=QASMSimulatorEncoder)) result = json.loads(result, cls=QASMSimulatorDecoder) return Result(result, qobj) def _validate(self, qobj): if qobj['config']['shots'] == 1: warnings.warn('The behavior of getting statevector from simulators ' 'by setting shots=1 is deprecated and will be removed. ' 'Use the local_statevector_simulator instead, or place ' 'explicit snapshot instructions.', DeprecationWarning) for circ in qobj['circuits']: if 'measure' not in [op['name'] for op in circ['compiled_circuit']['operations']]: logger.warning("no measurements in circuit '%s', " "classical register will remain all zeros.", circ['name']) return class CliffordSimulatorCpp(BaseBackend): """"C++ Clifford circuit simulator with realistic noise.""" DEFAULT_CONFIGURATION = { 'name': 'local_clifford_simulator_cpp', 'url': 'https://github.com/QISKit/qiskit-sdk-py/src/qasm-simulator-cpp', 'simulator': True, 'local': True, 'description': 'A C++ Clifford simulator with approximate noise', 'coupling_map': 'all-to-all', 'basis_gates': 'cx,id,x,y,z,h,s,sdg,snapshot,wait,noise,save,load' } def __init__(self, configuration=None): super().__init__(configuration or self.DEFAULT_CONFIGURATION.copy()) def run(self, q_job): """Run a QuantumJob on the the backend. Args: q_job (QuantumJob): QuantumJob object Returns: LocalJob: derived from BaseJob """ return LocalJob(self._run_job, q_job) def _run_job(self, q_job): qobj = q_job.qobj self._validate() # set backend to Clifford simulator if 'config' in qobj: qobj['config']['simulator'] = 'clifford' else: qobj['config'] = {'simulator': 'clifford'} simulator = SimulatorWrapper() result = simulator.run(json.dumps(qobj, cls=QASMSimulatorEncoder)) result = json.loads(result, cls=QASMSimulatorDecoder) return Result(result, qobj) def _validate(self): return class QASMSimulatorEncoder(json.JSONEncoder): """ JSON encoder for NumPy arrays and complex numbers. This functions as the standard JSON Encoder but adds support for encoding: complex numbers z as lists [z.real, z.imag] ndarrays as nested lists. """ # pylint: disable=method-hidden,arguments-differ def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, complex): return [obj.real, obj.imag] return json.JSONEncoder.default(self, obj) class QASMSimulatorDecoder(json.JSONDecoder): """ JSON decoder for the output from C++ qasm_simulator. This converts complex vectors and matrices into numpy arrays for the following keys. """ def __init__(self, *args, **kwargs): json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs) # pylint: disable=method-hidden def object_hook(self, obj): """Special decoding rules for simulator output.""" for key in ['U_error', 'density_matrix']: # JSON is a complex matrix if key in obj and isinstance(obj[key], list): tmp = np.array(obj[key]) obj[key] = tmp[::, ::, 0] + 1j * tmp[::, ::, 1] for key in ['statevector', 'inner_products']: # JSON is a list of complex vectors if key in obj: for j in range(len(obj[key])): if isinstance(obj[key][j], list): tmp = np.array(obj[key][j]) obj[key][j] = tmp[::, 0] + 1j * tmp[::, 1] return obj def run(qobj, executable): """ Run simulation on C++ simulator inside a subprocess. Args: qobj (dict): qobj dictionary defining the simulation to run executable (string): filename (with path) of the simulator executable Returns: dict: A dict of simulation results """ # Open subprocess and execute external command try: with subprocess.Popen([executable, '-'], stdin=PIPE, stdout=PIPE, stderr=PIPE) as proc: cin = json.dumps(qobj, cls=QASMSimulatorEncoder).encode() cout, cerr = proc.communicate(cin) if cerr: logger.error('ERROR: Simulator encountered a runtime error: %s', cerr.decode()) sim_output = cout.decode() return json.loads(sim_output, cls=QASMSimulatorDecoder) except FileNotFoundError: msg = "ERROR: Simulator exe not found at: %s" % executable logger.error(msg) return {"status": msg, "success": False} def cx_error_matrix(cal_error, zz_error): """ Return the coherent error matrix for CR error model of a CNOT gate. Args: cal_error (double): calibration error of rotation zz_error (double): ZZ interaction term error Returns: numpy.ndarray: A coherent error matrix U_error for the CNOT gate. Details: The ideal cross-resonsance (CR) gate corresponds to a 2-qubit rotation U_CR_ideal = exp(-1j * (pi/2) * XZ/2) where qubit-0 is the control, and qubit-1 is the target. This can be converted to a CNOT gate by single-qubit rotations U_CX = U_L * U_CR_ideal * U_R. The noisy rotation is implemented as U_CR_noise = exp(-1j * (pi/2 + cal_error) * (XZ + zz_error ZZ)/2) The retured error matrix is given by U_error = U_L * U_CR_noise * U_R * U_CX^dagger """ # pylint: disable=invalid-name if cal_error == 0 and zz_error == 0: return np.eye(4) cx_ideal = np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) b = np.sqrt(1.0 + zz_error * zz_error) a = b * (np.pi / 2.0 + cal_error) / 2.0 sp = (1.0 + 1j * zz_error) * np.sin(a) / b sm = (1.0 - 1j * zz_error) * np.sin(a) / b c = np.cos(a) cx_noise = np.array([[c + sm, 0, -1j * (c - sm), 0], [0, 1j * (c - sm), 0, c + sm], [-1j * (c - sp), 0, c + sp, 0], [0, c + sp, 0, 1j * (c - sp)]]) / np.sqrt(2) return cx_noise.dot(cx_ideal.conj().T) def x90_error_matrix(cal_error, detuning_error): """ Return the coherent error matrix for a X90 rotation gate. Args: cal_error (double): calibration error of rotation detuning_error (double): detuning amount for rotation axis error Returns: numpy.ndarray: A coherent error matrix U_error for the X90 gate. Details: The ideal X90 rotation is a pi/2 rotation about the X-axis: U_X90_ideal = exp(-1j (pi/2) X/2) The noisy rotation is implemented as U_X90_noise = exp(-1j (pi/2 + cal_error) (cos(d) X + sin(d) Y)/2) where d is the detuning_error. The retured error matrix is given by U_error = U_X90_noise * U_X90_ideal^dagger """ # pylint: disable=invalid-name if cal_error == 0 and detuning_error == 0: return np.eye(2) else: x90_ideal = np.array([[1., -1.j], [-1.j, 1]]) / np.sqrt(2) c = np.cos(0.5 * cal_error) s = np.sin(0.5 * cal_error) gamma = np.exp(-1j * detuning_error) x90_noise = np.array([[c - s, -1j * (c + s) * gamma], [-1j * (c + s) * np.conj(gamma), c - s]]) / np.sqrt(2) return x90_noise.dot(x90_ideal.conj().T) def _generate_coherent_error_matrix(config): """ Generate U_error matrix for CX and X90 gates. Args: config (dict): the config of a qobj circuit This parses the config for the following noise parameter keys and returns a coherent error matrix for simulation coherent noise. 'CX' gate: 'calibration_error', 'zz_error' 'X90' gate: 'calibration_error', 'detuning_error' """ # pylint: disable=invalid-name if 'noise_params' in config: # Check for CR coherent error parameters if 'CX' in config['noise_params']: noise_cx = config['noise_params']['CX'] cal_error = noise_cx.pop('calibration_error', 0) zz_error = noise_cx.pop('zz_error', 0) # Add to current coherent error matrix if not cal_error == 0 or not zz_error == 0: u_error = noise_cx.get('U_error', np.eye(4)) u_error = u_error.dot(cx_error_matrix(cal_error, zz_error)) config['noise_params']['CX']['U_error'] = u_error # Check for X90 coherent error parameters if 'X90' in config['noise_params']: noise_x90 = config['noise_params']['X90'] cal_error = noise_x90.pop('calibration_error', 0) detuning_error = noise_x90.pop('detuning_error', 0) # Add to current coherent error matrix if not cal_error == 0 or not detuning_error == 0: u_error = noise_x90.get('U_error', np.eye(2)) u_error = u_error.dot(x90_error_matrix(cal_error, detuning_error)) config['noise_params']['X90']['U_error'] = u_error
36.656716
89
0.597883
f1b853b4daa6a362a86d83730bfb8ccd32203d31
6,668
py
Python
chemprop/features/features_generators.py
jasperhyp/Chemprop4SE
c02b604b63b6766464db829fea0b306c67302e82
[ "MIT" ]
1
2021-12-15T05:18:07.000Z
2021-12-15T05:18:07.000Z
chemprop/features/features_generators.py
jasperhyp/chemprop4SE
c02b604b63b6766464db829fea0b306c67302e82
[ "MIT" ]
null
null
null
chemprop/features/features_generators.py
jasperhyp/chemprop4SE
c02b604b63b6766464db829fea0b306c67302e82
[ "MIT" ]
null
null
null
from typing import Callable, List, Union import pandas as pd import numpy as np from rdkit import Chem, DataStructs from rdkit.Chem import AllChem Molecule = Union[str, Chem.Mol] FeaturesGenerator = Callable[[Molecule], np.ndarray] FEATURES_GENERATOR_REGISTRY = {} def register_features_generator(features_generator_name: str) -> Callable[[FeaturesGenerator], FeaturesGenerator]: """ Creates a decorator which registers a features generator in a global dictionary to enable access by name. :param features_generator_name: The name to use to access the features generator. :return: A decorator which will add a features generator to the registry using the specified name. """ def decorator(features_generator: FeaturesGenerator) -> FeaturesGenerator: FEATURES_GENERATOR_REGISTRY[features_generator_name] = features_generator return features_generator return decorator def get_features_generator(features_generator_name: str) -> FeaturesGenerator: """ Gets a registered features generator by name. :param features_generator_name: The name of the features generator. :return: The desired features generator. """ if features_generator_name not in FEATURES_GENERATOR_REGISTRY: raise ValueError(f'Features generator "{features_generator_name}" could not be found. ' f'If this generator relies on rdkit features, you may need to install descriptastorus.') return FEATURES_GENERATOR_REGISTRY[features_generator_name] def get_available_features_generators() -> List[str]: """Returns a list of names of available features generators.""" return list(FEATURES_GENERATOR_REGISTRY.keys()) MORGAN_RADIUS = 2 MORGAN_NUM_BITS = 2048 @register_features_generator('morgan') def morgan_binary_features_generator(mol: Molecule, radius: int = MORGAN_RADIUS, num_bits: int = MORGAN_NUM_BITS) -> np.ndarray: """ Generates a binary Morgan fingerprint for a molecule. :param mol: A molecule (i.e., either a SMILES or an RDKit molecule). :param radius: Morgan fingerprint radius. :param num_bits: Number of bits in Morgan fingerprint. :return: A 1D numpy array containing the binary Morgan fingerprint. """ mol = Chem.MolFromSmiles(mol) if type(mol) == str else mol features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=num_bits) features = np.zeros((1,)) DataStructs.ConvertToNumpyArray(features_vec, features) return features @register_features_generator('morgan_count') def morgan_counts_features_generator(mol: Molecule, radius: int = MORGAN_RADIUS, num_bits: int = MORGAN_NUM_BITS) -> np.ndarray: """ Generates a counts-based Morgan fingerprint for a molecule. :param mol: A molecule (i.e., either a SMILES or an RDKit molecule). :param radius: Morgan fingerprint radius. :param num_bits: Number of bits in Morgan fingerprint. :return: A 1D numpy array containing the counts-based Morgan fingerprint. """ mol = Chem.MolFromSmiles(mol) if type(mol) == str else mol features_vec = AllChem.GetHashedMorganFingerprint(mol, radius, nBits=num_bits) features = np.zeros((1,)) DataStructs.ConvertToNumpyArray(features_vec, features) return features try: from descriptastorus.descriptors import rdDescriptors, rdNormalizedDescriptors @register_features_generator('rdkit_2d') def rdkit_2d_features_generator(mol: Molecule) -> np.ndarray: """ Generates RDKit 2D features for a molecule. :param mol: A molecule (i.e., either a SMILES or an RDKit molecule). :return: A 1D numpy array containing the RDKit 2D features. """ smiles = Chem.MolToSmiles(mol, isomericSmiles=True) if type(mol) != str else mol generator = rdDescriptors.RDKit2D() features = generator.process(smiles)[1:] return features @register_features_generator('rdkit_2d_normalized') def rdkit_2d_normalized_features_generator(mol: Molecule) -> np.ndarray: """ Generates RDKit 2D normalized features for a molecule. :param mol: A molecule (i.e., either a SMILES or an RDKit molecule). :return: A 1D numpy array containing the RDKit 2D normalized features. """ smiles = Chem.MolToSmiles(mol, isomericSmiles=True) if type(mol) != str else mol generator = rdNormalizedDescriptors.RDKit2DNormalized() features = generator.process(smiles)[1:] return features except ImportError: @register_features_generator('rdkit_2d') def rdkit_2d_features_generator(mol: Molecule) -> np.ndarray: """Mock implementation raising an ImportError if descriptastorus cannot be imported.""" raise ImportError('Failed to import descriptastorus. Please install descriptastorus ' '(https://github.com/bp-kelley/descriptastorus) to use RDKit 2D features.') @register_features_generator('rdkit_2d_normalized') def rdkit_2d_normalized_features_generator(mol: Molecule) -> np.ndarray: """Mock implementation raising an ImportError if descriptastorus cannot be imported.""" raise ImportError('Failed to import descriptastorus. Please install descriptastorus ' '(https://github.com/bp-kelley/descriptastorus) to use RDKit 2D normalized features.') """ Custom features generator template. Note: The name you use to register the features generator is the name you will specify on the command line when using the --features_generator <name> flag. Ex. python train.py ... --features_generator custom ... """ @register_features_generator('mono') def custom_features_generator(smile: str, monoSE_dict: dict) -> np.ndarray: """ Generates a mono side effect fingerprint for a molecule. :param mol: A molecule (i.e., either a SMILES or an RDKit molecule). :param monoSE_dict: monoSE dictionary. :return: A 1D numpy array containing the mono side effect fingerprint. """ # If you want to use the SMILES string # smiles = Chem.MolToSmiles(mol, isomericSmiles=True) if type(mol) != str else mol try: features = monoSE_dict[smile].astype(float) except: features = np.linspace(0, 0, len([*monoSE_dict.values()][0])) # If you want to use the RDKit molecule # mol = Chem.MolFromSmiles(mol) if type(mol) == str else mol # Replace this with code which generates features from the molecule return features
39.928144
114
0.705609
ae402ebeab93bdcf524e1dd06d0e20e09af403c2
11,254
py
Python
classify/train/dataset/download_and_convert_17flowers.py
NobuoTsukamoto/edge_tpu
bfde6ba34b11113eb7db28032be74b1eb491efaa
[ "MIT" ]
56
2019-05-23T05:05:29.000Z
2021-04-26T05:53:17.000Z
classify/train/dataset/download_and_convert_17flowers.py
PINTO0309/edge_tpu
ee82324f810ce64b6f98f40f5679dfbfbd1a4233
[ "MIT" ]
4
2020-04-26T15:43:46.000Z
2021-04-19T12:41:17.000Z
classify/train/dataset/download_and_convert_17flowers.py
PINTO0309/edge_tpu
ee82324f810ce64b6f98f40f5679dfbfbd1a4233
[ "MIT" ]
10
2020-02-01T18:18:35.000Z
2021-04-28T17:23:02.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Copyright (c) 2018 Nobuo Tsukamoto This software is released under the MIT License. See the LICENSE file in the project root for more information. Downloads and converts Oxford 17 Category Flower dataset to TF-Example protos. This modult downloads the Oxford 17 Category Flower Dataset, uncompresses it, reads the files that make up the Flowers data and creates two TFRecord dataset: one for train and one for test. Each TFRecord dataset is comprised of a set of TF-Example protocol buffers, each of which contain a single image and label. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import random import sys import argparse import tarfile import glob import shutil from PIL import Image, ImageOps from six.moves import urllib import tensorflow as tf # The URL where the Flowers data can be downloaded. _DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/17/17flowers.tgz' # The number of images in the validation set. _NUM_VALIDATION = 136 # Seed for repeatability. _RANDOM_SEED = 0 # The number of shards per dataset split. _NUM_SHARDS = 5 # The Class labels CLASS_NAMES = ['Tulip', 'Snowdrop', 'LilyValley', 'Bluebell', 'Crocus', 'Iris',\ 'Tigerlily', 'Daffodil', 'Fritillary', 'Sunflower', 'Daisy', 'ColtsFoot',\ 'Dandelion', 'Cowslip', 'Buttercup', 'Widnflower', 'Pansy'] class ImageReader(object): """Helper class that provides TensorFlow image coding utilites. """ def __init__(self): # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def read_image_dims(self, sess, image_data): image = self.decode_jpeg(sess, image_data) return image.shape[0], image.shape[1] def decode_jpeg(self, sess, image_data): image = sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def _get_filenames_and_classes(dataset_dir, is_data_augmentation=False): """ Returns a dictionary of file names and inferred class names. Args: dataset_dir: A directory containing a JPG encoded images. is_data_augmantation: If True, Image data augmantation. flip image horizontal Returns: A dictionary of class names and file paths and representing class names. """ flower_root = os.path.join(dataset_dir, 'jpg') # Move files by category. files = glob.glob(os.path.join(flower_root, '*.jpg')) files.sort() par_category = 80 photo_filename = [] for i, class_name in enumerate(CLASS_NAMES): directory = os.path.join(dataset_dir, class_name) os.mkdir(directory) for j in range(par_category): index = (par_category * i) + j shutil.move(files[index], directory) # Data augmantation. if is_data_augmentation: file_path = os.path.join(directory, os.path.basename(files[index])) im = Image.open(file_path) mirror_im = ImageOps.mirror(im) flip_path = os.path.join(directory, os.path.splitext(os.path.basename(files[index]))[0] + '_flip.jpg') mirror_im.save(flip_path) # Add photo filename list. for class_name in CLASS_NAMES: directory = os.path.join(dataset_dir, class_name) for file_name in os.listdir(directory): file_path = os.path.join(directory, file_name) photo_filename.append(file_path) return photo_filename, sorted(CLASS_NAMES) def _get_dataset_filename(dataset_dir, split_name, shard_id): """ Return TF-Recode file name. Args: dataset_dir: dataset directory. split_name: train or validation. shard_id: id. Returns: TF-Recode file path. """ output_filename = 'flowers_%s_%05d-of-%05d.tfrecord' % ( split_name, shard_id, _NUM_SHARDS) return os.path.join(dataset_dir, output_filename) def int64_feature(values): """Returns a TF-Feature of int64s. Args: values: A scalar or list of values. Returns: A TF-Feature. """ if not isinstance(values, (tuple, list)): values = [values] return tf.train.Feature(int64_list=tf.train.Int64List(value=values)) def bytes_feature(values): """Returns a TF-Feature of bytes. Args: values: A string. Returns: A TF-Feature. """ return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values])) def _image_to_tfexample(image_data, image_format, height, width, class_id): return tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': bytes_feature(image_data), 'image/format': bytes_feature(image_format), 'image/class/label': int64_feature(class_id), 'image/height': int64_feature(height), 'image/width': int64_feature(width), })) def _conver_dataset(split_name, file_names, class_names_to_ids, dataset_dir): """Converts the given file names to a TF-Recode dataset. Args: split_name: The name of thedataset, either 'train' or 'validation'. file_names: A List of absolute paths to jpg images. class_names_to_ids: A dictionary from class names (strings) to ids (integers). dataset_dir: The directory where the converted datasets are stored. """ assert split_name in ['train', 'validation'] num_per_shard = int(math.ceil(len(file_names) / float(_NUM_SHARDS))) print(num_per_shard) with tf.Graph().as_default(): image_reader = ImageReader() with tf.Session('') as sess: for shard_id in range(_NUM_SHARDS): output_file_name = _get_dataset_filename(dataset_dir, split_name, shard_id) with tf.python_io.TFRecordWriter(output_file_name) as tfrecord_writer: start_ndx = shard_id * num_per_shard end_ndx = min((shard_id+1) * num_per_shard, len(file_names)) for i in range(start_ndx, end_ndx): sys.stdout.write('\r>> Converting image %d/%d shard %d' % (i + 1, len(file_names), shard_id)) sys.stdout.flush() # Read the file name. image_data = tf.gfile.GFile(file_names[i], 'rb').read() height, width = image_reader.read_image_dims(sess, image_data) class_name = os.path.basename(os.path.dirname(file_names[i])) class_id = class_names_to_ids[class_name] example = _image_to_tfexample(image_data, b'jpg', height, width, class_id) tfrecord_writer.write(example.SerializeToString()) sys.stdout.write('\n') sys.stdout.flush() def _clean_up_temporary_files(dataset_dir): """Removes temporary files used to create the dataset. Args: dataset_dir: The directory where the temporary files are stoerd. """ file_name = _DATA_URL.split('/')[-1] file_path = os.path.join(dataset_dir, file_name) tf.gfile.Remove(file_path) tmp_dir = os.path.join(dataset_dir, 'jpg') tf.gfile.DeleteRecursively(tmp_dir) for sub_dir in CLASS_NAMES: tf.gfile.DeleteRecursively(os.path.join(dataset_dir, sub_dir)) def _dataset_exists(dataset_dir): """ Check if TF-Recoed exists. Args: dataset_dir: dataset directory. Returns: True: TF-Recode are exist. False: TF-Recodes are not exist. """ for split_name in ['train', 'validation']: for shard_id in range(_NUM_SHARDS): output_file_name = _get_dataset_filename(dataset_dir, split_name, shard_id) if not tf.gfile.Exists(output_file_name): return False return True def _download_and_uncompress_tarball(tarball_url, dataset_dir): """ Downloads the 'tarball_url' and uncompresses it locally. Args: tarball_url: The URL of a tarball file. dataset_dir: The directory where the temporary files are stored. """ file_name = tarball_url.split('/')[-1] file_path = os.path.join(dataset_dir, file_name) def _progress(count, block_size, total_size): sys.stdout.write('\r >> Downloading %s %.1f%%' % (file_name, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() file_path, _ = urllib.request.urlretrieve(tarball_url, file_path, _progress) print() statinfo = os.stat(file_path) print('Successfully downladed', file_name, statinfo.st_size, 'bytes.') tarfile.open(file_path, 'r:gz').extractall(dataset_dir) def _write_label_file(labels_to_class_names, dataset_dir, filename='labels.txt'): """Writes a file with the list of class names. Args: labels_to_class_names: A map of (integer) labels to class names. dataset_dir: The directory in which the labels file should be written. filename: The filename where the class names are written. """ labels_file_name = os.path.join(dataset_dir, filename) with tf.gfile.Open(labels_file_name, 'w') as f: for label in labels_to_class_names: class_name = labels_to_class_names[label] f.write('%d:%s\n' % (label, class_name)) def main(): parser = argparse.ArgumentParser() parser.add_argument('dataset_dir', help='Path to dataset dir.') parser.add_argument('--flip', action='store_true') args = parser.parse_args() if not tf.gfile.Exists(args.dataset_dir): tf.gfile.MakeDirs(args.dataset_dir) if _dataset_exists(args.dataset_dir): print('Dataset files already exist. Exiting without re-creating them.') return _download_and_uncompress_tarball(_DATA_URL, args.dataset_dir) photo_file_names, CLASS_NAMES = _get_filenames_and_classes(args.dataset_dir, args.flip) class_names_to_ids = dict(zip(CLASS_NAMES, range(len(CLASS_NAMES)))) # Divide into train and test. random.seed(_RANDOM_SEED) random.shuffle(photo_file_names) num_split = _NUM_VALIDATION if args.flip: num_split = _NUM_VALIDATION * 2 training_file_names = photo_file_names[num_split:] validation_file_names = photo_file_names[:num_split] # First, convert the training and validation sets. _conver_dataset('train', training_file_names, class_names_to_ids, args.dataset_dir) _conver_dataset('validation', validation_file_names, class_names_to_ids, args.dataset_dir) # Finally, write the labels file. labels_to_class_names = dict(zip(range(len(CLASS_NAMES)), CLASS_NAMES)) _write_label_file(labels_to_class_names, args.dataset_dir) _clean_up_temporary_files(args.dataset_dir) print('\nFinished converting the 17 Flowers dataset!') if __name__ == '__main__': main()
36.186495
91
0.666252
41c055cdba3e07431e85d8a26dd36bfac10cf7c2
10,416
py
Python
cumulus/storage.py
wearespindle/django-cumulus
1c6fc1691ff459b38a3103c020213eb1a6b6f8e5
[ "BSD-3-Clause" ]
null
null
null
cumulus/storage.py
wearespindle/django-cumulus
1c6fc1691ff459b38a3103c020213eb1a6b6f8e5
[ "BSD-3-Clause" ]
null
null
null
cumulus/storage.py
wearespindle/django-cumulus
1c6fc1691ff459b38a3103c020213eb1a6b6f8e5
[ "BSD-3-Clause" ]
null
null
null
import mimetypes import pyrax import re import warnings from gzip import GzipFile try: from cStringIO import StringIO except ImportError: try: from StringIO import StringIO except ImportError: from io import StringIO from django.core.files.storage import Storage from django.core.files.base import File, ContentFile try: from django.utils.deconstruct import deconstructible except ImportError: # Make a no-op decorator to avoid errors def deconstructible(*args, **kwargs): def decorator(klass): return klass if not args: return decorator return decorator(*args, **kwargs) from cumulus.authentication import Auth from cumulus.settings import CUMULUS HEADER_PATTERNS = tuple((re.compile(p), h) for p, h in CUMULUS.get("HEADERS", {})) def get_content_type(name, content): """ Checks if the content_type is already set. Otherwise uses the mimetypes library to guess. """ if hasattr(content, "content_type"): content_type = content.content_type else: mime_type, encoding = mimetypes.guess_type(name) content_type = mime_type return content_type def get_headers(name, content_type): headers = {"Content-Type": content_type} # gzip the file if its of the right content type if content_type in CUMULUS.get("GZIP_CONTENT_TYPES", []): headers["Content-Encoding"] = "gzip" if CUMULUS["HEADERS"]: for pattern, pattern_headers in HEADER_PATTERNS: if pattern.match(name): headers.update(pattern_headers.copy()) return headers def sync_headers(cloud_obj, headers=None, header_patterns=HEADER_PATTERNS): """ Overwrites the given cloud_obj's headers with the ones given as ``headers` and adds additional headers as defined in the HEADERS setting depending on the cloud_obj's file name. """ if headers is None: headers = {} # don't set headers on directories content_type = getattr(cloud_obj, "content_type", None) if content_type == "application/directory": return matched_headers = {} for pattern, pattern_headers in header_patterns: if pattern.match(cloud_obj.name): matched_headers.update(pattern_headers.copy()) # preserve headers already set matched_headers.update(cloud_obj.headers) # explicitly set headers overwrite matches and already set headers matched_headers.update(headers) if matched_headers != cloud_obj.headers: cloud_obj.headers = matched_headers cloud_obj.sync_metadata() def get_gzipped_contents(input_file): """ Returns a gzipped version of a previously opened file's buffer. """ zbuf = StringIO() zfile = GzipFile(mode="wb", compresslevel=6, fileobj=zbuf) zfile.write(input_file.read()) zfile.close() return ContentFile(zbuf.getvalue()) @deconstructible class CumulusStorage(Auth, Storage): """ Custom storage for Cumulus. """ default_quick_listdir = True container_name = CUMULUS["CONTAINER"] container_uri = CUMULUS["CONTAINER_URI"] container_ssl_uri = CUMULUS["CONTAINER_SSL_URI"] ttl = CUMULUS["TTL"] file_ttl = CUMULUS["FILE_TTL"] use_ssl = CUMULUS["USE_SSL"] def _open(self, name, mode="rb"): """ Returns the CumulusStorageFile. """ return ContentFile(self._get_object(name).get()) def _save(self, name, content): """ Uses the Cumulus service to write ``content`` to a remote file (called ``name``). """ content_type = get_content_type(name, content.file) headers = get_headers(name, content_type) if self.use_pyrax: if headers.get("Content-Encoding") == "gzip": content = get_gzipped_contents(content) self.connection.store_object(container=self.container_name, obj_name=name, data=content.read(), content_type=content_type, content_encoding=headers.get("Content-Encoding", None), ttl=self.file_ttl, etag=None) # set headers/object metadata self.connection.set_object_metadata(container=self.container_name, obj=name, metadata=headers, prefix='', clear=True) else: # TODO gzipped content when using swift client self.connection.put_object(self.container_name, name, content, headers=headers) return name def delete(self, name): """ Deletes the specified file from the storage system. Deleting a model doesn't delete associated files: bit.ly/12s6Oox """ try: self.connection.delete_object(self.container_name, name) except pyrax.exceptions.ClientException as exc: if exc.http_status == 404: pass else: raise except pyrax.exceptions.NoSuchObject: pass def exists(self, name): """ Returns True if a file referenced by the given name already exists in the storage system, or False if the name is available for a new file. """ return bool(self._get_object(name)) def size(self, name): """ Returns the total size, in bytes, of the file specified by name. """ file_object = self._get_object(name) if file_object: return file_object.total_bytes else: return 0 def url(self, name): """ Returns an absolute URL where the content of each file can be accessed directly by a web browser. """ return u"{0}/{1}".format(self.container_url, name) def listdir(self, path): """ Lists the contents of the specified path, returning a 2-tuple; the first being an empty list of directories (not available for quick-listing), the second being a list of filenames. If the list of directories is required, use the full_listdir method. """ files = [] if path and not path.endswith("/"): path = u"{0}/".format(path) path_len = len(path) for name in [x["name"] for x in self.connection.get_container(self.container_name, full_listing=True)[1]]: files.append(name[path_len:]) return ([], files) def full_listdir(self, path): """ Lists the contents of the specified path, returning a 2-tuple of lists; the first item being directories, the second item being files. """ dirs = set() files = [] if path and not path.endswith("/"): path = u"{0}/".format(path) path_len = len(path) for name in [x["name"] for x in self.connection.get_container(self.container_name, full_listing=True)[1]]: name = name[path_len:] slash = name[1:-1].find("/") + 1 if slash: dirs.add(name[:slash]) elif name: files.append(name) dirs = list(dirs) dirs.sort() return (dirs, files) class CumulusStaticStorage(CumulusStorage): """ Subclasses CumulusStorage to automatically set the container to the one specified in CUMULUS["STATIC_CONTAINER"]. This provides the ability to specify a separate storage backend for Django's collectstatic command. To use, make sure CUMULUS["STATIC_CONTAINER"] is set to something other than CUMULUS["CONTAINER"]. Then, tell Django's staticfiles app by setting STATICFILES_STORAGE = "cumulus.storage.CumulusStaticStorage". """ container_name = CUMULUS["STATIC_CONTAINER"] container_uri = CUMULUS["STATIC_CONTAINER_URI"] container_ssl_uri = CUMULUS["STATIC_CONTAINER_SSL_URI"] class ThreadSafeCumulusStorage(CumulusStorage): """ Extends CumulusStorage to make it mostly thread safe. As long as you do not pass container or cloud objects between threads, you will be thread safe. Uses one connection/container per thread. """ def __init__(self, *args, **kwargs): super(ThreadSafeCumulusStorage, self).__init__(*args, **kwargs) import threading self.local_cache = threading.local() def _get_connection(self): if not hasattr(self.local_cache, "connection"): super(ThreadSafeSwiftclientStorage, self)._get_connection() self.local_cache.connection = connection return self.local_cache.connection connection = property(_get_connection, CumulusStorage._set_connection) def _get_container(self): if not hasattr(self.local_cache, "container"): container = self.connection.create_container(self.container_name) self.local_cache.container = container return self.local_cache.container container = property(_get_container, CumulusStorage._set_container) class SwiftclientStorage(CumulusStorage): def __init__(self, *args, **kwargs): warnings.warn("SwiftclientStorage is deprecated and will be removed in django-cumulus==1.3: \ Use CumulusStorage instead.", DeprecationWarning) super(SwiftclientStorage, self).__init__() class SwiftclientStaticStorage(CumulusStaticStorage): def __init__(self, *args, **kwargs): warnings.warn("SwiftclientStaticStorage is deprecated and will be removed in django-cumulus==1.3: \ Use CumulusStaticStorage instead.", DeprecationWarning) super(SwiftclientStaticStorage, self).__init__() class ThreadSafeSwiftclientStorage(ThreadSafeCumulusStorage): def __init__(self, *args, **kwargs): warnings.warn("ThreadSafeSwiftclientStorage is deprecated and will be removed in django-cumulus==1.3: \ Use ThreadSafeCumulusStorage instead.", DeprecationWarning) super(ThreadSafeSwiftclientStorage, self).__init__()
34.72
111
0.628168
5457a1983edba1eceaeb6934cf39fff9fad03f32
2,578
py
Python
lib/googlecloudsdk/command_lib/compute/http_health_checks/flags.py
bopopescu/Google-Cloud-SDK-1
c4683bacb2f6192d8a816932e438a0493085469b
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/compute/http_health_checks/flags.py
bopopescu/Google-Cloud-SDK-1
c4683bacb2f6192d8a816932e438a0493085469b
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/compute/http_health_checks/flags.py
bopopescu/Google-Cloud-SDK-1
c4683bacb2f6192d8a816932e438a0493085469b
[ "Apache-2.0" ]
1
2020-07-24T20:13:29.000Z
2020-07-24T20:13:29.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flags and helpers for the compute http-health-checks commands.""" from googlecloudsdk.command_lib.compute import completers as compute_completers from googlecloudsdk.command_lib.compute import flags as compute_flags DEFAULT_LIST_FORMAT = """\ table( name, host, port, requestPath )""" def HttpHealthCheckArgument(required=True, plural=False): return compute_flags.ResourceArgument( resource_name='HTTP health check', completer=compute_completers.HttpHealthChecksCompleter, plural=plural, required=required, global_collection='compute.httpHealthChecks') def HttpHealthCheckArgumentForTargetPool(action, required=True): return compute_flags.ResourceArgument( resource_name='http health check', name='--http-health-check', completer=compute_completers.HttpHealthChecksCompleter, plural=False, required=required, global_collection='compute.httpHealthChecks', short_help=('Specifies an HTTP health check object to {0} the ' 'target pool.'.format(action))) def HttpHealthCheckArgumentForTargetPoolCreate(required=True): return compute_flags.ResourceArgument( resource_name='http health check', name='--http-health-check', completer=compute_completers.HttpHealthChecksCompleter, plural=False, required=required, global_collection='compute.httpHealthChecks', short_help=( 'Specifies HttpHealthCheck to determine the health of instances ' 'in the pool.'), detailed_help="""\ Specifies an HTTP health check resource to use to determine the health of instances in this pool. If no health check is specified, traffic will be sent to all instances in this target pool as if the instances were healthy, but the health status of this pool will appear as unhealthy as a warning that this target pool does not have a health check. """)
37.362319
80
0.726532
f3363c2d8952dca6c59f93b5240d050900b1322a
989
py
Python
selfdrive/controls/lib/fingerprints.py
skynetera/openpilot
a7e099c946800c7a8b60c47678801d9a95f95549
[ "MIT" ]
4
2017-02-17T07:02:37.000Z
2022-03-17T13:50:00.000Z
selfdrive/controls/lib/fingerprints.py
mjiujiang/openpilot
a7e099c946800c7a8b60c47678801d9a95f95549
[ "MIT" ]
null
null
null
selfdrive/controls/lib/fingerprints.py
mjiujiang/openpilot
a7e099c946800c7a8b60c47678801d9a95f95549
[ "MIT" ]
3
2017-10-12T23:31:24.000Z
2022-01-26T09:59:28.000Z
fingerprints = { "ACURA ILX 2016 ACURAWATCH PLUS": { 1024L: 5, 513L: 5, 1027L: 5, 1029L: 8, 929L: 4, 1057L: 5, 777L: 8, 1034L: 5, 1036L: 8, 398L: 3, 399L: 7, 145L: 8, 660L: 8, 985L: 3, 923L: 2, 542L: 7, 773L: 7, 800L: 8, 432L: 7, 419L: 8, 420L: 8, 1030L: 5, 422L: 8, 808L: 8, 428L: 8, 304L: 8, 819L: 7, 821L: 5, 57L: 3, 316L: 8, 545L: 4, 464L: 8, 1108L: 8, 597L: 8, 342L: 6, 983L: 8, 344L: 8, 804L: 8, 1039L: 8, 476L: 4, 892L: 8, 490L: 8, 1064L: 7, 882L: 2, 884L: 7, 887L: 8, 888L: 8, 380L: 8, 1365L: 5 }, "HONDA CIVIC 2016 TOURING": { 1024L: 5, 513L: 5, 1027L: 5, 1029L: 8, 777L: 8, 1036L: 8, 1039L: 8, 1424L: 5, 401L: 8, 148L: 8, 662L: 4, 985L: 3, 795L: 8, 773L: 7, 800L: 8, 545L: 6, 420L: 8, 806L: 8, 808L: 8, 1322L: 5, 427L: 3, 428L: 8, 304L: 8, 432L: 7, 57L: 3, 450L: 8, 929L: 8, 330L: 8, 1302L: 8, 464L: 8, 1361L: 5, 1108L: 8, 597L: 8, 470L: 2, 344L: 8, 804L: 8, 399L: 7, 476L: 7, 1633L: 8, 487L: 4, 892L: 8, 490L: 8, 493L: 5, 884L: 8, 891L: 8, 380L: 8, 1365L: 5 } }
109.888889
453
0.566229
0fa2be26d83071c739a5fbf971bf3b5a373527b5
493
py
Python
flask_app_8_machine_learning_plots_dataframes/forms.py
tagler/Data_Science_Flask_Tutorials_Python_HTML_CSS
3cc0aae5825048d7b84cfb636add3270f0f410a1
[ "MIT" ]
null
null
null
flask_app_8_machine_learning_plots_dataframes/forms.py
tagler/Data_Science_Flask_Tutorials_Python_HTML_CSS
3cc0aae5825048d7b84cfb636add3270f0f410a1
[ "MIT" ]
null
null
null
flask_app_8_machine_learning_plots_dataframes/forms.py
tagler/Data_Science_Flask_Tutorials_Python_HTML_CSS
3cc0aae5825048d7b84cfb636add3270f0f410a1
[ "MIT" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField, FloatField, SubmitField from wtforms.validators import DataRequired class MyForm(FlaskForm): sepal_length = FloatField('Sepal Length:', validators=[DataRequired()]) sepal_width = FloatField('Sepal Width:', validators=[DataRequired()]) petal_length = FloatField('Petal Length:', validators=[DataRequired()]) petal_width = FloatField('Petal Width:', validators=[DataRequired()]) submit = SubmitField('Submit')
49.3
75
0.760649
dec1d25dd0aa7b1bf32300c92a8600b0fb7be6ec
6,893
py
Python
tests/migrations/test_multidb.py
spapas/django
d6ecce683682eb67ebd7f2c6766195131ea30158
[ "BSD-3-Clause" ]
null
null
null
tests/migrations/test_multidb.py
spapas/django
d6ecce683682eb67ebd7f2c6766195131ea30158
[ "BSD-3-Clause" ]
null
null
null
tests/migrations/test_multidb.py
spapas/django
d6ecce683682eb67ebd7f2c6766195131ea30158
[ "BSD-3-Clause" ]
1
2020-05-25T08:55:19.000Z
2020-05-25T08:55:19.000Z
import unittest try: import sqlparse except ImportError: sqlparse = None from django.db import migrations, models, connection from django.db.migrations.state import ProjectState from django.test import override_settings from .test_operations import OperationTestBase class AgnosticRouter(object): """ A router that doesn't have an opinion regarding migrating. """ def allow_migrate(self, db, model, **hints): return None class MigrateNothingRouter(object): """ A router that doesn't allow migrating. """ def allow_migrate(self, db, model, **hints): return False class MigrateEverythingRouter(object): """ A router that always allows migrating. """ def allow_migrate(self, db, model, **hints): return True class MigrateWhenFooRouter(object): """ A router that allows migrating depending on a hint. """ def allow_migrate(self, db, model, **hints): return hints.get('foo', False) class MultiDBOperationTests(OperationTestBase): multi_db = True def _test_create_model(self, app_label, should_run): """ Tests that CreateModel honours multi-db settings. """ operation = migrations.CreateModel( "Pony", [("id", models.AutoField(primary_key=True))], ) # Test the state alteration project_state = ProjectState() new_state = project_state.clone() operation.state_forwards(app_label, new_state) # Test the database alteration self.assertTableNotExists("%s_pony" % app_label) with connection.schema_editor() as editor: operation.database_forwards(app_label, editor, project_state, new_state) if should_run: self.assertTableExists("%s_pony" % app_label) else: self.assertTableNotExists("%s_pony" % app_label) # And test reversal with connection.schema_editor() as editor: operation.database_backwards(app_label, editor, new_state, project_state) self.assertTableNotExists("%s_pony" % app_label) @override_settings(DATABASE_ROUTERS=[AgnosticRouter()]) def test_create_model(self): """ Test when router doesn't have an opinion (i.e. CreateModel should run). """ self._test_create_model("test_mltdb_crmo", should_run=True) @override_settings(DATABASE_ROUTERS=[MigrateNothingRouter()]) def test_create_model2(self): """ Test when router returns False (i.e. CreateModel shouldn't run). """ self._test_create_model("test_mltdb_crmo2", should_run=False) @override_settings(DATABASE_ROUTERS=[MigrateEverythingRouter()]) def test_create_model3(self): """ Test when router returns True (i.e. CreateModel should run). """ self._test_create_model("test_mltdb_crmo3", should_run=True) def test_create_model4(self): """ Test multiple routers. """ with override_settings(DATABASE_ROUTERS=[AgnosticRouter(), AgnosticRouter()]): self._test_create_model("test_mltdb_crmo4", should_run=True) with override_settings(DATABASE_ROUTERS=[MigrateNothingRouter(), MigrateEverythingRouter()]): self._test_create_model("test_mltdb_crmo4", should_run=False) with override_settings(DATABASE_ROUTERS=[MigrateEverythingRouter(), MigrateNothingRouter()]): self._test_create_model("test_mltdb_crmo4", should_run=True) def _test_run_sql(self, app_label, should_run, hints=None): with override_settings(DATABASE_ROUTERS=[MigrateEverythingRouter()]): project_state = self.set_up_test_model(app_label) sql = """ INSERT INTO {0}_pony (pink, weight) VALUES (1, 3.55); INSERT INTO {0}_pony (pink, weight) VALUES (3, 5.0); """.format(app_label) operation = migrations.RunSQL(sql, hints=hints or {}) # Test the state alteration does nothing new_state = project_state.clone() operation.state_forwards(app_label, new_state) self.assertEqual(new_state, project_state) # Test the database alteration self.assertEqual(project_state.apps.get_model(app_label, "Pony").objects.count(), 0) with connection.schema_editor() as editor: operation.database_forwards(app_label, editor, project_state, new_state) Pony = project_state.apps.get_model(app_label, "Pony") if should_run: self.assertEqual(Pony.objects.count(), 2) else: self.assertEqual(Pony.objects.count(), 0) @unittest.skipIf(sqlparse is None and connection.features.requires_sqlparse_for_splitting, "Missing sqlparse") @override_settings(DATABASE_ROUTERS=[MigrateNothingRouter()]) def test_run_sql(self): self._test_run_sql("test_mltdb_runsql", should_run=False) @unittest.skipIf(sqlparse is None and connection.features.requires_sqlparse_for_splitting, "Missing sqlparse") @override_settings(DATABASE_ROUTERS=[MigrateWhenFooRouter()]) def test_run_sql2(self): self._test_run_sql("test_mltdb_runsql2", should_run=False) self._test_run_sql("test_mltdb_runsql2", should_run=True, hints={'foo': True}) def _test_run_python(self, app_label, should_run, hints=None): with override_settings(DATABASE_ROUTERS=[MigrateEverythingRouter()]): project_state = self.set_up_test_model(app_label) # Create the operation def inner_method(models, schema_editor): Pony = models.get_model(app_label, "Pony") Pony.objects.create(pink=1, weight=3.55) Pony.objects.create(weight=5) operation = migrations.RunPython(inner_method, hints=hints or {}) # Test the state alteration does nothing new_state = project_state.clone() operation.state_forwards(app_label, new_state) self.assertEqual(new_state, project_state) # Test the database alteration self.assertEqual(project_state.apps.get_model(app_label, "Pony").objects.count(), 0) with connection.schema_editor() as editor: operation.database_forwards(app_label, editor, project_state, new_state) Pony = project_state.apps.get_model(app_label, "Pony") if should_run: self.assertEqual(Pony.objects.count(), 2) else: self.assertEqual(Pony.objects.count(), 0) @override_settings(DATABASE_ROUTERS=[MigrateNothingRouter()]) def test_run_python(self): self._test_run_python("test_mltdb_runpython", should_run=False) @override_settings(DATABASE_ROUTERS=[MigrateWhenFooRouter()]) def test_run_python2(self): self._test_run_python("test_mltdb_runpython2", should_run=False) self._test_run_python("test_mltdb_runpython2", should_run=True, hints={'foo': True})
39.388571
114
0.685623
8dc94c07aabb8be5e6887621fb9bb027204f8bca
3,950
py
Python
test/functional/feature_minchainwork.py
Cobra-Technologies-GmbH/PIVX
9c45238847a9afe4d6bb3fca4af5a876ed52b72f
[ "MIT" ]
null
null
null
test/functional/feature_minchainwork.py
Cobra-Technologies-GmbH/PIVX
9c45238847a9afe4d6bb3fca4af5a876ed52b72f
[ "MIT" ]
null
null
null
test/functional/feature_minchainwork.py
Cobra-Technologies-GmbH/PIVX
9c45238847a9afe4d6bb3fca4af5a876ed52b72f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test logic for setting nMinimumChainWork on command line. Nodes don't consider themselves out of "initial block download" until their active chain has more work than nMinimumChainWork. Nodes don't download blocks from a peer unless the peer's best known block has more work than nMinimumChainWork. While in initial block download, nodes won't relay blocks to their peers, so test that this parameter functions as intended by verifying that block relay only succeeds past a given node once its nMinimumChainWork has been exceeded. """ import time from test_framework.test_framework import OmegacoinTestFramework from test_framework.util import connect_nodes, assert_equal # 2 hashes required per regtest block (with no difficulty adjustment) REGTEST_WORK_PER_BLOCK = 2 class MinimumChainWorkTest(OmegacoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], ["-minimumchainwork=0x65"], ["-minimumchainwork=0x65"]] self.node_min_work = [0, 101, 101] def setup_network(self): # This test relies on the chain setup being: # node0 <- node1 <- node2 # Before leaving IBD, nodes prefer to download blocks from outbound # peers, so ensure that we're mining on an outbound peer and testing # block relay to inbound peers. self.setup_nodes() for i in range(self.num_nodes-1): connect_nodes(self.nodes[i+1], i) def run_test(self): # Start building a chain on node0. node2 shouldn't be able to sync until node1's # minchainwork is exceeded starting_chain_work = REGTEST_WORK_PER_BLOCK # Genesis block's work self.log.info("Testing relay across node %d (minChainWork = %d)", 1, self.node_min_work[1]) starting_blockcount = self.nodes[2].getblockcount() num_blocks_to_generate = int((self.node_min_work[1] - starting_chain_work) / REGTEST_WORK_PER_BLOCK) self.log.info("Generating %d blocks on node0", num_blocks_to_generate) hashes = self.nodes[0].generate(num_blocks_to_generate) self.log.info("Node0 current chain work: %s", self.nodes[0].getblockheader(hashes[-1])['chainwork']) # Sleep a few seconds and verify that node2 didn't get any new blocks # or headers. We sleep, rather than sync_blocks(node0, node1) because # it's reasonable either way for node1 to get the blocks, or not get # them (since they're below node1's minchainwork). time.sleep(3) self.log.info("Verifying node 2 has no more blocks than before") self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) # Node2 shouldn't have any new headers yet, because node1 should not # have relayed anything. assert_equal(len(self.nodes[2].getchaintips()), 1) assert_equal(self.nodes[2].getchaintips()[0]['height'], 0) assert self.nodes[1].getbestblockhash() != self.nodes[0].getbestblockhash() assert_equal(self.nodes[2].getblockcount(), starting_blockcount) self.log.info("Generating one more block") self.nodes[0].generate(1) self.log.info("Verifying nodes are all synced") # Because nodes in regtest are all manual connections (eg using # addnode), node1 should not have disconnected node0. If not for that, # we'd expect node1 to have disconnected node0 for serving an # insufficient work chain, in which case we'd need to reconnect them to # continue the test. self.sync_all() self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) if __name__ == '__main__': MinimumChainWorkTest().main()
43.888889
108
0.702278
ba7c08914b15e1050e4ab7d6e3c20aea0b22fbec
306
py
Python
handlers/users/help.py
YoshlikMedia/Dssinnercircle
3811ebccedea8e47091d05509ce2867a57675285
[ "MIT" ]
null
null
null
handlers/users/help.py
YoshlikMedia/Dssinnercircle
3811ebccedea8e47091d05509ce2867a57675285
[ "MIT" ]
null
null
null
handlers/users/help.py
YoshlikMedia/Dssinnercircle
3811ebccedea8e47091d05509ce2867a57675285
[ "MIT" ]
null
null
null
from aiogram import types from aiogram.dispatcher.filters.builtin import CommandHelp from data.text import text from filters import IsPrivate from loader import dp @dp.message_handler(IsPrivate(), CommandHelp()) async def bot_help(message: types.Message): await message.answer(text['help_button'])
23.538462
58
0.800654
9aa315921fac95865e5446d962323cfd750ca2bd
2,298
py
Python
sirepo/pkcli/elegant.py
njsmith/sirepo
82bdc848899a8d7bcd5e1ae73f91ca37d88f647c
[ "Apache-2.0" ]
1
2019-06-06T08:08:11.000Z
2019-06-06T08:08:11.000Z
sirepo/pkcli/elegant.py
yeeon/sirepo
081595df256d40fbc7959614689d64ad2bc745d4
[ "Apache-2.0" ]
null
null
null
sirepo/pkcli/elegant.py
yeeon/sirepo
081595df256d40fbc7959614689d64ad2bc745d4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Wrapper to run elegant from the command line. :copyright: Copyright (c) 2015 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkio from pykern import pksubprocess from pykern.pkdebug import pkdp, pkdc, pkdlog from sirepo import mpi from sirepo import simulation_db from sirepo.template import elegant_common from sirepo.template import template_common from sirepo.template.elegant import save_report_data, parse_elegant_log, ELEGANT_LOG_FILE import py.path def run(cfg_dir): """Run elegant in ``cfg_dir`` The files in ``cfg_dir`` must be configured properly. Args: cfg_dir (str): directory to run elegant in """ with pkio.save_chdir(cfg_dir): try: _run_elegant(bunch_report=True) except Exception as e: err = parse_elegant_log(py.path.local(cfg_dir)) if not err: err = ['A server error occurred'] simulation_db.write_result({ 'error': err[0], }) save_report_data(simulation_db.read_json(template_common.INPUT_BASE_NAME), py.path.local(cfg_dir)) def run_background(cfg_dir): """Run elegant as a background task Args: cfg_dir (str): directory to run elegant in """ with pkio.save_chdir(cfg_dir): _run_elegant(with_mpi=True); simulation_db.write_result({}) def _run_elegant(bunch_report=False, with_mpi=False): exec(pkio.read_text(template_common.PARAMETERS_PYTHON_FILE), locals(), locals()) pkio.write_text('elegant.lte', lattice_file) ele = 'elegant.ele' pkio.write_text(ele, elegant_file) kwargs = { 'output': ELEGANT_LOG_FILE, 'env': elegant_common.subprocess_env(), } try: #TODO(robnagler) Need to handle this specially, b/c different binary if execution_mode == 'parallel' and with_mpi and mpi.cfg.cores > 1: mpi.run_program(['Pelegant', ele], **kwargs) else: pksubprocess.check_call_with_signals(['elegant', ele], msg=pkdlog, **kwargs) except Exception as e: # ignore elegant failures - errors will be parsed from the log pass
33.304348
106
0.678416
bf01b909dc94bfe1569e71c6e30585f70c50a1be
229
py
Python
examples/pup/hub_technichub/system_shutdown.py
TheVinhLuong102/pybricks-api
1259d5d33acb41b383445a4b1776b38084efb481
[ "MIT" ]
51
2020-04-02T10:03:45.000Z
2022-03-27T23:49:39.000Z
examples/pup/hub_technichub/system_shutdown.py
LEGO-Robotics/Pybricks-API
1259d5d33acb41b383445a4b1776b38084efb481
[ "MIT" ]
77
2020-03-22T17:32:14.000Z
2022-03-28T18:02:43.000Z
examples/pup/hub_technichub/system_shutdown.py
LEGO-Robotics/Pybricks-API
1259d5d33acb41b383445a4b1776b38084efb481
[ "MIT" ]
25
2020-03-18T23:35:17.000Z
2022-01-01T12:52:01.000Z
from pybricks.hubs import TechnicHub from pybricks.tools import wait # Initialize the hub. hub = TechnicHub() # Say goodbye and give some time to send it. print("Goodbye!") wait(100) # Shut the hub down. hub.system.shutdown()
17.615385
44
0.746725
62387c6d699147752416f40b344c61ef00f39e46
6,992
py
Python
dohq_teamcity/models/investigation.py
DenKoren/teamcity
69acb4d1402c316129b4602882a9cce2d55cf926
[ "MIT" ]
23
2018-10-19T07:28:45.000Z
2021-11-12T12:46:09.000Z
dohq_teamcity/models/investigation.py
DenKoren/teamcity
69acb4d1402c316129b4602882a9cce2d55cf926
[ "MIT" ]
31
2018-10-16T05:53:11.000Z
2021-09-09T14:44:14.000Z
dohq_teamcity/models/investigation.py
DenKoren/teamcity
69acb4d1402c316129b4602882a9cce2d55cf926
[ "MIT" ]
12
2018-10-28T23:00:17.000Z
2021-09-07T12:07:13.000Z
# coding: utf-8 from dohq_teamcity.custom.base_model import TeamCityObject # from dohq_teamcity.models.comment import Comment # noqa: F401,E501 # from dohq_teamcity.models.problem_scope import ProblemScope # noqa: F401,E501 # from dohq_teamcity.models.problem_target import ProblemTarget # noqa: F401,E501 # from dohq_teamcity.models.resolution import Resolution # noqa: F401,E501 # from dohq_teamcity.models.user import User # noqa: F401,E501 class Investigation(TeamCityObject): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'state': 'str', 'href': 'str', 'assignee': 'User', 'assignment': 'Comment', 'scope': 'ProblemScope', 'target': 'ProblemTarget', 'resolution': 'Resolution', 'responsible': 'User' } attribute_map = { 'id': 'id', 'state': 'state', 'href': 'href', 'assignee': 'assignee', 'assignment': 'assignment', 'scope': 'scope', 'target': 'target', 'resolution': 'resolution', 'responsible': 'responsible' } def __init__(self, id=None, state=None, href=None, assignee=None, assignment=None, scope=None, target=None, resolution=None, responsible=None, teamcity=None): # noqa: E501 """Investigation - a model defined in Swagger""" # noqa: E501 self._id = None self._state = None self._href = None self._assignee = None self._assignment = None self._scope = None self._target = None self._resolution = None self._responsible = None self.discriminator = None if id is not None: self.id = id if state is not None: self.state = state if href is not None: self.href = href if assignee is not None: self.assignee = assignee if assignment is not None: self.assignment = assignment if scope is not None: self.scope = scope if target is not None: self.target = target if resolution is not None: self.resolution = resolution if responsible is not None: self.responsible = responsible super(Investigation, self).__init__(teamcity=teamcity) @property def id(self): """Gets the id of this Investigation. # noqa: E501 :return: The id of this Investigation. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this Investigation. :param id: The id of this Investigation. # noqa: E501 :type: str """ self._id = id @property def state(self): """Gets the state of this Investigation. # noqa: E501 :return: The state of this Investigation. # noqa: E501 :rtype: str """ return self._state @state.setter def state(self, state): """Sets the state of this Investigation. :param state: The state of this Investigation. # noqa: E501 :type: str """ self._state = state @property def href(self): """Gets the href of this Investigation. # noqa: E501 :return: The href of this Investigation. # noqa: E501 :rtype: str """ return self._href @href.setter def href(self, href): """Sets the href of this Investigation. :param href: The href of this Investigation. # noqa: E501 :type: str """ self._href = href @property def assignee(self): """Gets the assignee of this Investigation. # noqa: E501 :return: The assignee of this Investigation. # noqa: E501 :rtype: User """ return self._assignee @assignee.setter def assignee(self, assignee): """Sets the assignee of this Investigation. :param assignee: The assignee of this Investigation. # noqa: E501 :type: User """ self._assignee = assignee @property def assignment(self): """Gets the assignment of this Investigation. # noqa: E501 :return: The assignment of this Investigation. # noqa: E501 :rtype: Comment """ return self._assignment @assignment.setter def assignment(self, assignment): """Sets the assignment of this Investigation. :param assignment: The assignment of this Investigation. # noqa: E501 :type: Comment """ self._assignment = assignment @property def scope(self): """Gets the scope of this Investigation. # noqa: E501 :return: The scope of this Investigation. # noqa: E501 :rtype: ProblemScope """ return self._scope @scope.setter def scope(self, scope): """Sets the scope of this Investigation. :param scope: The scope of this Investigation. # noqa: E501 :type: ProblemScope """ self._scope = scope @property def target(self): """Gets the target of this Investigation. # noqa: E501 :return: The target of this Investigation. # noqa: E501 :rtype: ProblemTarget """ return self._target @target.setter def target(self, target): """Sets the target of this Investigation. :param target: The target of this Investigation. # noqa: E501 :type: ProblemTarget """ self._target = target @property def resolution(self): """Gets the resolution of this Investigation. # noqa: E501 :return: The resolution of this Investigation. # noqa: E501 :rtype: Resolution """ return self._resolution @resolution.setter def resolution(self, resolution): """Sets the resolution of this Investigation. :param resolution: The resolution of this Investigation. # noqa: E501 :type: Resolution """ self._resolution = resolution @property def responsible(self): """Gets the responsible of this Investigation. # noqa: E501 :return: The responsible of this Investigation. # noqa: E501 :rtype: User """ return self._responsible @responsible.setter def responsible(self, responsible): """Sets the responsible of this Investigation. :param responsible: The responsible of this Investigation. # noqa: E501 :type: User """ self._responsible = responsible
25.705882
176
0.586241
a139ae98e8a97536dd827986a1f05ca730dc5251
963
py
Python
knownly/console/migrations/0007_auto_20150713_1558.py
dwightgunning/knownly
55a3f82887dca1ff94723e3272ef79ed5f2d0eb2
[ "MIT" ]
2
2017-11-21T20:24:01.000Z
2018-12-24T04:32:31.000Z
knownly/console/migrations/0007_auto_20150713_1558.py
dwightgunning/knownly
55a3f82887dca1ff94723e3272ef79ed5f2d0eb2
[ "MIT" ]
2
2020-06-05T18:05:19.000Z
2021-06-10T20:04:02.000Z
knownly/console/migrations/0007_auto_20150713_1558.py
dwightgunning/knownly
55a3f82887dca1ff94723e3272ef79ed5f2d0eb2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('console', '0006_auto_20150713_1343'), ] operations = [ migrations.AddField( model_name='archiveddropboxsite', name='date_modified', field=models.DateTimeField(null=True, blank=True), ), migrations.AddField( model_name='archiveddropboxsite', name='dropbox_hash', field=models.CharField(max_length=64, blank=True), ), migrations.AddField( model_name='dropboxsite', name='date_modified', field=models.DateTimeField(null=True, blank=True), ), migrations.AddField( model_name='dropboxsite', name='dropbox_hash', field=models.CharField(max_length=64, blank=True), ), ]
27.514286
62
0.588785
fedd7825f644bda85bb32e6222ea8a436928d3de
949
py
Python
photo_booth.py
nasreddino/faceAttendance
baecad8bc7e6ae98003552aea02fd05fa21017f3
[ "MIT" ]
null
null
null
photo_booth.py
nasreddino/faceAttendance
baecad8bc7e6ae98003552aea02fd05fa21017f3
[ "MIT" ]
null
null
null
photo_booth.py
nasreddino/faceAttendance
baecad8bc7e6ae98003552aea02fd05fa21017f3
[ "MIT" ]
null
null
null
# USAGE # python photo_booth.py --output output # import the necessary packages from __future__ import print_function from pyimagesearch.photoboothapp import PhotoBoothApp from imutils.video import VideoStream import argparse import time # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-o", "--output", required=True, help="path to output directory to store snapshots") ap.add_argument("-p", "--picamera", type=int, default=-1, help="whether or not the Raspberry Pi camera should be used") ap.add_argument("-n", "--name", required=True, help="Fill FirstNmae Entry to label image ") args = vars(ap.parse_args()) # initialize the video stream and allow the camera sensor to warmup print("[INFO] warming up camera...") vs = VideoStream(usePiCamera=args["picamera"] > 0).start() time.sleep(2.0) # start the app pba = PhotoBoothApp(vs, args["output"], args["name"]) pba.root.mainloop()
29.65625
67
0.748156
3340d8324072f679b4ac570eb34ade269e661621
414
py
Python
saas/system/api/resource/backend-framework/webpy/tesla-faas/examples/hello/handlers/base_test_handler.py
harry-xiaomi/SREWorks
e85c723ff15d2c9739d4d240be449b00b6db096d
[ "Apache-2.0" ]
1
2022-03-22T01:09:10.000Z
2022-03-22T01:09:10.000Z
saas/system/api/resource/backend-framework/webpy/tesla-faas/examples/hello/handlers/base_test_handler.py
Kwafoor/SREWorks
37a64a0a84b29c65cf6b77424bd2acd0c7b42e2b
[ "Apache-2.0" ]
null
null
null
saas/system/api/resource/backend-framework/webpy/tesla-faas/examples/hello/handlers/base_test_handler.py
Kwafoor/SREWorks
37a64a0a84b29c65cf6b77424bd2acd0c7b42e2b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 """ """ from container.webpy.common import BaseHandler __author__ = 'adonis' class TestBaseHandler(BaseHandler): def test(self, params): return params def echo(self, params): return { 'params': params, 'body': self.body, 'json_body': self.json_body, } def test_model(self, params): pass
17.25
46
0.57971
41b6c2de179a1e9dd433f3c4ebf238032e4ec929
20,105
py
Python
niteshade/attack.py
oskarfernlund/data-poisoning-attacks
f45a90fe6057e1cf158ce85a824626acd5f34b64
[ "MIT" ]
null
null
null
niteshade/attack.py
oskarfernlund/data-poisoning-attacks
f45a90fe6057e1cf158ce85a824626acd5f34b64
[ "MIT" ]
null
null
null
niteshade/attack.py
oskarfernlund/data-poisoning-attacks
f45a90fe6057e1cf158ce85a824626acd5f34b64
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Data poisoning attack strategy classes following a logical hierarchy. """ # ============================================================================= # IMPORTS AND DEPENDENCIES # ============================================================================= import math import random import numpy as np from sklearn.utils import shuffle from sklearn.preprocessing import OneHotEncoder from sklearn.datasets import load_iris import torch import niteshade.utils as utils # ============================================================================= # CLASSES # ============================================================================= class Attacker(): """ General abstract Attacker class """ def __init__(self): pass def attack(self): """ Abstract attack method """ raise NotImplementedError("attack method needs to be implemented") class AddPointsAttacker(Attacker): """ Abstract class for attackers that add points to the batch of data. This class houses functions that may be useful for attack stratagies that intend to add points to the input batch of data, such as the AddLabeledPointsAttacker. Args: aggressiveness (float) : decides how many points to add one_hot (bool) : tells if labels are one_hot encoded or not """ def __init__(self, aggressiveness, one_hot=False): super().__init__() self.aggressiveness = aggressiveness self.one_hot = one_hot def num_pts_to_add(self, x): """ Calculates the number of points to add to the databatch. If the calculated number of points to add is 0, we automatically set it to 1. This is to help for testing purposes when batch size is 1. In practice, batch size will be much larger, and so a small aggressiveness value will be workable, but if batch size is 1, then for aggressiveness value but 1, the calculated points to add will be 0. Args: x (array) : data Returns: num_to_add (int) : number of points to add """ num_points = len(x) num_to_add = math.floor(num_points * self.aggressiveness) if num_to_add == 0: num_to_add = 1 return num_to_add def pick_data_to_add(self, x, n, point=None): """ Add n points of data. n points will be added, where n can be determind by _num_pts_to_add. If point!=None, then point will be added n times. Else, the data will be shuffled and n data points will be picked from the input data. Args: x (array) : data n (int) : number of data points to add point (datapoint) : (optional) a specific point to add Returns: rows (array) : data to add """ if point == None: x = shuffle(x) rows = x[:n,] return rows class ChangeLabelAttacker(Attacker): """ Abstract class for attacker that can change labels. Args: aggressiveness (float) : decides how many points labels to change one_hot (bool) : tells if labels are one_hot encoded or not """ def __init__(self, aggressiveness, one_hot=False): super().__init__() self.aggressiveness = aggressiveness self.one_hot = one_hot def num_pts_to_change(self, x): """ Calculate the number of points to change labels for. Args: x (array) : data Returns: num_to_change (int) : number of points to change labels for """ num_points = len(x) num_to_change = math.floor(num_points * self.aggressiveness) if num_to_change == 0: num_to_change = 1 return num_to_change class PerturbPointsAttacker(Attacker): """ Abstract class for attacker that can change the input data. Args: aggressiveness (float) : decides how many points to perturb one_hot (bool) : tells if labels are one_hot encoded or not """ def __init__(self, aggressiveness, one_hot=False): super().__init__() self.aggressiveness = aggressiveness self.one_hot = one_hot class RandomAttacker(ChangeLabelAttacker): """ Randomly change the labels of points. Given an input batch of data and corresponding labels, use aggressiveness to caculate how many points in the batch to poison. Then, given the set of labels for the batch of data, obtain a new set of unique labels of the data. Then, for the number of points to poison, pick a datapoint and change its label to a random label in the unique set of labels. This is a strategy that flips labels, and is inspired by ideas in the following paper: "On Defending Against Label Flipping Attacks on Malware Detection Systems", https://arxiv.org/abs/1908.04473. Args: aggressiveness (float) : decides how many points to perturb one_hot (bool) : tells if labels are one_hot encoded or not """ def __init__(self, aggressiveness, one_hot=False): super().__init__(aggressiveness, one_hot) def attack(self, X, y): """Attack the input batch of data. Args: X (array) : data y (array/list) : labels Returns: X (array) : data y (array/list) : random labels """ is_tensor = False if [type(X), type(y)] == [torch.Tensor,torch.Tensor]: is_tensor = True X = X.numpy() y = y.numpy() og_y = y # remember orignal y if self.one_hot: y = utils.decode_one_hot(y) unique_labels = np.unique(y) num_to_change = super().num_pts_to_change(X) for i in range(num_to_change): y[i] = np.random.choice(unique_labels, 1) if self.one_hot: num_classes = utils.check_num_of_classes(og_y) y = utils.one_hot_encoding(y, num_classes) if is_tensor: X = torch.tensor(X) y = torch.tensor(y) return X, y class AddLabeledPointsAttacker(AddPointsAttacker): """ Adds points with a specified label. Args: aggressiveness (float) : decides how many points to add label (any) : label for added points one_hot (bool) : tells if labels are one_hot encoded or not """ def __init__(self, aggressiveness, label, one_hot=False): super().__init__(aggressiveness, one_hot) self.label = label def attack(self, x, y): """ Adds points to the minibatch Add a certain number of points (based on the aggressiveness) to the minibatch, with the y lable being as specified by the user. Args: x (array) : data y (list/array) : labels label : label attached to new points added Returns: x (array) : new data with added points y (list/array) : labels of new data """ is_tensor = False if [type(x), type(y)] == [torch.Tensor,torch.Tensor]: is_tensor = True x = x.numpy() y = y.numpy() og_y = y # remember orignal y if self.one_hot: y = utils.decode_one_hot(y) num_to_add = super().num_pts_to_add(x) x_add = super().pick_data_to_add(x, num_to_add) x = np.append(x, x_add, axis=0) y_add = np.full((num_to_add, 1), self.label) y = np.append(y, y_add) x, y = shuffle(x, y) if self.one_hot: num_classes = utils.check_num_of_classes(og_y) y = utils.one_hot_encoding(y, num_classes) if is_tensor: x = torch.tensor(x) y = torch.tensor(y) return x, y class LabelFlipperAttacker(ChangeLabelAttacker): """ Flip labels based on a dictionary of information. This is a strategy that flips labels, and is inspired by ideas in the following paper: "On Defending Against Label Flipping Attacks on Malware Detection Systems", https://arxiv.org/abs/1908.04473. Args: aggressiveness (float) : decides how many points labels to change label_flips (dict) : defines how to flip labels one_hot (bool) : tells if labels are one_hot encoded or not """ def __init__(self, aggressiveness, label_flips, one_hot=False): super().__init__(aggressiveness, one_hot) self.label_flips = label_flips def attack(self, x, y): """ Method to change labels of points. For given minibatch of data x and associated labels y, the labels in y will be flipped based on the label_flips dict that will be specified by the user. Args: x (array) : data y (array/list) : labels Returns: x (array) : data y (array/list) : flipped labels """ is_tensor = False if [type(x), type(y)] == [torch.Tensor,torch.Tensor]: is_tensor = True x = x.numpy() y = y.numpy() og_y = y if self.one_hot: y = utils.decode_one_hot(y) if random.random() < self.aggressiveness: for i in range(len(y)): element = y[i] if self.one_hot: element = element[0] if element in self.label_flips: y[i] = self.label_flips[element] if self.one_hot: num_classes = utils.check_num_of_classes(og_y) y = utils.one_hot_encoding(y, num_classes) if is_tensor: x = torch.tensor(x) y = torch.tensor(y) return x, y class BrewPoison(PerturbPointsAttacker): """Perturb points while minimising detectability. Given a batch of input data and corresponding labels, the user chooses which label to target. Lets take the example of MNIST, and say the user targets the label 1. Then, all points in the batch with label 1 will be identified. Aggressiveness helps determine the maximum number of points that can be perturbed, ie, poison_budget. So, poison_budget number of points are identified from the set of points with label 1. A random perturbation is initialised in the range (0,1). However, the data probably is not normalised to this range. For image data, the data is likely to be in the range of (1, 255). So, after initialising a perturbation, it is multiplied by the max of input data to scale it up.The perturbation is applied to the datapoints that are to bne poisoned. Then, using the model, a prediction is made. If the perturbed points are able to cause a misclassification, ie the model predicts the label to not be 1, then the infinity norm of the perturbation is calculated, and a new, 'smaller' perturbation is initialised by sampling between (0, alpha*inf_norm), where inf_norm is the infinity norm of the previous perturbation. The perturbation is then applied to the orignal points to be poisoned, ie, now we have a set of perturbed points, but which is more similar to the unperturbed points, and we use the model to predict again. If instead, there is no misclassification, ie, the predicted label is 1, then we return the unperturbed set or previously successful perturbed set that was able to cause a misclassification. This is repeated for either M optimization steps or until the perturbation is unable to cause a misclassification. The perturbed points then replace the orignal points in the batch. For such an attacker which makes use of a model and its predictions to poison, it would make sense to be using a model that has already been pre-trained. The user may use a pretrained or an untrained model. In the case of an untrained model (or otherwise), the user has the ability to implement a delay to BrewPoison, so as to allow the model to train for a few episodes without the attacker intervening, thus simulating a pretrained model. This is done by passing in the total_eps and start_ep parameters. Here, for a 20 episode run where the attacker should poison in the last 10 episodes, the user should set total_eps=20 and start_ep=10. This strategy is not a direct implementation, but it is inspired by the following paper: "Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching", https://arxiv.org/abs/2009.02276. Args: target (label) : label to use as a target for misclassification M (int) : number of optimization steps for perturbation aggressiveness (float) : determine max number of points to poison alpha (float) : perturbation reduction parameter start_ep (int) : number of episode after which attacker will poison total_eps (int) : total number of eps in the simulation one_hot (bool) : tells if labels are one_hot encoded or not """ def __init__(self, target, M=10, aggressiveness=0.1, alpha = 0.8, start_ep=10, total_eps=20, one_hot=False): self.target = target self.M = M self.aggressiveness = aggressiveness self.alpha = alpha self.start_ep = start_ep self.total_eps = total_eps self.one_hot = one_hot self.curr_ep = 0 def apply_pert(self, selected_X, pert): """Apply the perturbation to a list of inputs. Args: selected_X (list) : list of tensors to perturb pert (torch.tensor) : tensor used to perturb Returns: perturbed_X (list) : list of perturbed tensors """ perturbed_X = [] for tensor in selected_X: perturbed_X.append(tensor + pert) return perturbed_X def get_new_pert(self, pert, alpha, X): """Initialise a new perturbation using the previous perturbation. Given a perturbation, calculate the infinity norm of the perturbation, then sample a new perturbation, with the maximum value being alpha*infinity norm. Args: pert (tensor) : tensor to determine infinity norm alpha (float) : Used to limit inf norm for max of new_pert X (tensor) : tensor to use for shaping the pert Returns: new_pert (tensor) : new pert tensor limited by alpha and pert """ inf_norm = torch.max(torch.abs(pert.reshape(-1,1))) init_pert_shape = torch.FloatTensor(X.shape[2:]) sample_pert = init_pert_shape.uniform_(0, alpha*inf_norm) new_pert = sample_pert.repeat(X.shape[1], 1, 1) return new_pert def inc_reset_ep(self, curr_ep, total_eps): """Increase or reset the current episode number back to 0. Increase the current episode number by 1 or reset it. Reset needed since the attacker is initialised only once, and so when we add to the attribute curr_ep, it carries ahead through simulations. So, when running two simulations, this function will reset the attribute to 0 before the next simulation starts. Args: curr_ep (int) : current episode number total_eps (int) : total number of episodes Returns: curr_ep (int) : current episode number """ curr_ep += 1 if curr_ep == total_eps: curr_ep = 0 return curr_ep def attack(self, X, y, model): """Attacks batch of input data by perturbing. Args: X (array) : data y (array/list) : labels Returns: X (array) : data y (array/list) : flipped labels """ if self.curr_ep < self.start_ep: # increase current episode self.curr_ep = self.inc_reset_ep(self.curr_ep, self.total_eps) return X, y else: # keep track of orignal labels for encoding og_y = y # decode if needed if self.one_hot: y = utils.decode_one_hot(y) # convert to tensors if needed was_ndarray = False if [type(X), type(y)] != [torch.Tensor,torch.Tensor]: X = torch.tensor(X) y = torch.tensor(y) was_ndarray = True # initialise points to be poisoned poison_budget = int(len(X) * self.aggressiveness) idxs = [] for i in range(len(y)): if y[i] == self.target: idxs.append(i) poison_budget = min(poison_budget, len(idxs)) attacked_idxs = random.sample(idxs, poison_budget) selected_y = [y[i] for i in attacked_idxs] selected_X = [X[i] for i in attacked_idxs] # initialise perturbation perturbation = torch.rand(X.shape[2:]).repeat(X.shape[1], 1, 1) # rescale to range of X perturbation = torch.mul(perturbation, torch.max(X)) # optimization loop i = 0 new_pert = perturbation old_pert = torch.zeros(X.shape[2:]).repeat(X.shape[1], 1, 1) perturbed_X = self.apply_pert(selected_X, new_pert) while i<self.M: # test result point = perturbed_X[0] # reshape into 4d tensor with batchsize = 1 test_point = point.reshape(1, point.shape[0], point.shape[1], point.shape[2]) model.eval() with torch.no_grad(): result = torch.argmax(model.forward(test_point)) if result == selected_y[0]: perturbed_X = self.apply_pert(selected_X, old_pert) break else: old_pert = new_pert new_pert = self.get_new_pert(old_pert, self.alpha, X) i += 1 perturbed_X = self.apply_pert(selected_X, new_pert) # replace points in X with points in perturbed_X nth_point = 0 for index in attacked_idxs: X[index] = perturbed_X[nth_point] nth_point += 1 # convert to ndarray if needed if was_ndarray: X = X.numpy() y = y.numpy() # encode if needed if self.one_hot: num_classes = utils.check_num_of_classes(og_y) y = utils.one_hot_encoding(y, num_classes) # increase current episode self.curr_ep = self.inc_reset_ep(self.curr_ep, self.total_eps) return X, y # ============================================================================= # MAIN ENTRY POINT # ============================================================================= if __name__ == "__main__": pass
35.584071
93
0.566178
3a55c7e2a76cf29d964e39b9d75f450e0b7a62e1
1,272
py
Python
setup.py
campenr/FileExplorer
49b268c0996de287319f5fbe9ac8ce2ef31b0ed5
[ "BSD-3-Clause" ]
1
2015-07-06T17:37:59.000Z
2015-07-06T17:37:59.000Z
setup.py
campenr/dirbrowser
49b268c0996de287319f5fbe9ac8ce2ef31b0ed5
[ "BSD-3-Clause" ]
null
null
null
setup.py
campenr/dirbrowser
49b268c0996de287319f5fbe9ac8ce2ef31b0ed5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 """Setup.py for dirbrowser.""" from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name="dirbrowser", version="1.0b2", description="Command line based directory browser", long_description=long_description, url="https://github.com/campenr/dirbrowser", author="Richard Campen", author_email="richard@campen.co", license="BSD License", # TODO add more classifiers (e.g. platform) classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Topic :: Software Development :: User Interfaces", "License :: OSI Approved :: BSD License", 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], keywords="directory browser interface", packages=find_packages(), include_package_data=True # TODO add entry into scripts folder )
27.06383
63
0.664308
eeadd8debf7b07deb2c6ccbcdc03e70311764ec8
4,688
py
Python
genomic_data_service/rnaseq/tests/test_rnaseq_gene.py
ENCODE-DCC/genomic-data-service
954017a5bcc5f448fbe2867768186df5e066c67c
[ "MIT" ]
3
2020-10-26T02:15:55.000Z
2022-01-26T18:39:09.000Z
genomic_data_service/rnaseq/tests/test_rnaseq_gene.py
ENCODE-DCC/genomic-data-service
954017a5bcc5f448fbe2867768186df5e066c67c
[ "MIT" ]
3
2021-08-17T02:01:54.000Z
2022-03-30T17:14:02.000Z
genomic_data_service/rnaseq/tests/test_rnaseq_gene.py
ENCODE-DCC/genomic-data-service
954017a5bcc5f448fbe2867768186df5e066c67c
[ "MIT" ]
1
2022-03-24T21:15:34.000Z
2022-03-24T21:15:34.000Z
import pytest def test_rnaseq_gene_init(): from genomic_data_service.rnaseq.domain.gene import Gene gene = Gene({}) assert gene.props == {} assert isinstance(gene, Gene) def test_rnaseq_gene_extract_ensembl_ids(raw_human_genes): from genomic_data_service.rnaseq.domain.gene import Gene gene = Gene(raw_human_genes[0]) gene._extract_ensembl_ids() assert gene._ensembl_ids == [ 'ENSG00000224939', ] gene.props['dbxrefs'].append('ENSEMBL:ENSG00000221650') gene._extract_ensembl_ids() assert gene._ensembl_ids == [ 'ENSG00000224939', 'ENSG00000221650', ] def test_rnaseq_gene_extract_gene_properties(raw_human_genes): from genomic_data_service.rnaseq.domain.gene import Gene gene = Gene(raw_human_genes[0]) gene._extract_gene_properties() assert gene._gene_properties == { 'geneid': '100302691', 'name': 'long intergenic non-protein coding RNA 184', 'symbol': 'LINC00184', 'synonyms': ['HANC', 'NCRNA00184'], 'title': 'LINC00184 (Homo sapiens)', '@id': '/genes/100302691/' } def test_rnaseq_gene_by_ensembl_ids(raw_human_genes): from genomic_data_service.rnaseq.domain.gene import Gene gene = Gene(raw_human_genes[0]) gene_by_ensembl_ids = list(gene.by_ensembl_ids()) assert gene_by_ensembl_ids == [ ( 'ENSG00000224939', { 'geneid': '100302691', 'name': 'long intergenic non-protein coding RNA 184', 'symbol': 'LINC00184', 'synonyms': ['HANC', 'NCRNA00184'], 'title': 'LINC00184 (Homo sapiens)', '@id': '/genes/100302691/' } ) ] gene.props['dbxrefs'].append('ENSEMBL:ENSG00000221650') gene_by_ensembl_ids = list(gene.by_ensembl_ids()) assert gene_by_ensembl_ids == [ ( 'ENSG00000224939', { 'geneid': '100302691', 'name': 'long intergenic non-protein coding RNA 184', 'symbol': 'LINC00184', 'synonyms': ['HANC', 'NCRNA00184'], 'title': 'LINC00184 (Homo sapiens)', '@id': '/genes/100302691/', } ), ( 'ENSG00000221650', { 'geneid': '100302691', 'name': 'long intergenic non-protein coding RNA 184', 'symbol': 'LINC00184', 'synonyms': ['HANC', 'NCRNA00184'], 'title': 'LINC00184 (Homo sapiens)', '@id': '/genes/100302691/', } ) ] def test_rnaseq_gene_get_genes_by_ensembl_id(human_genes): from genomic_data_service.rnaseq.domain.gene import get_genes_by_ensembl_id genes_by_ensembl_id = get_genes_by_ensembl_id(human_genes) assert genes_by_ensembl_id == { 'ENSG00000224939': { '@id': '/genes/100302691/', 'geneid': '100302691', 'name': 'long intergenic non-protein coding RNA 184', 'symbol': 'LINC00184', 'synonyms': ['HANC', 'NCRNA00184'], 'title': 'LINC00184 (Homo sapiens)' }, 'ENSG00000283857': { '@id': '/genes/100302145/', 'geneid': '100302145', 'name': 'microRNA 1247', 'symbol': 'MIR1247', 'synonyms': ['MIRN1247', 'hsa-mir-1247', 'mir-1247'], 'title': 'MIR1247 (Homo sapiens)' }, 'ENSG00000260442': { '@id': '/genes/100289092/', 'geneid': '100289092', 'name': 'ATP2A1 antisense RNA 1', 'symbol': 'ATP2A1-AS1', 'title': 'ATP2A1-AS1 (Homo sapiens)' }, 'ENSG00000221650': { '@id': '/genes/100302286/', 'geneid': '100302286', 'name': 'microRNA 1267', 'symbol': 'MIR1267', 'synonyms': ['MIRN1267', 'hsa-mir-1267'], 'title': 'MIR1267 (Homo sapiens)' }, 'ENSG00000034677': { 'geneid': '25897', 'symbol': 'RNF19A', 'name': 'ring finger protein 19A, RBR E3 ubiquitin protein ligase', 'synonyms': ['DKFZp566B1346', 'RNF19', 'dorfin'], '@id': '/genes/25897/', 'title': 'RNF19A (Homo sapiens)' } } assert len(genes_by_ensembl_id) == 5 human_genes[0].props['dbxrefs'].append('ENSEMBL:ENSG00000221444') genes_by_ensembl_id = get_genes_by_ensembl_id(human_genes) assert len(genes_by_ensembl_id) == 6 assert ( genes_by_ensembl_id['ENSG00000224939'] == genes_by_ensembl_id['ENSG00000221444'] )
34.470588
88
0.556527
1b37d6b65c0bb339a666fdcfec4bce78a5a6d9ea
9,243
py
Python
utils/utils_activation_maps.py
GlowingHorse/Class-Discriminative-Vis
c4dec263f13225eed8598544b46c984784953c50
[ "MIT" ]
2
2020-06-25T15:35:19.000Z
2020-07-08T11:14:46.000Z
utils/utils_activation_maps.py
GlowingHorse/class-discriminative-vis
c4dec263f13225eed8598544b46c984784953c50
[ "MIT" ]
1
2020-06-25T15:59:54.000Z
2020-10-23T06:09:39.000Z
utils/utils_activation_maps.py
GlowingHorse/Class-Discriminative-Vis
c4dec263f13225eed8598544b46c984784953c50
[ "MIT" ]
null
null
null
""" The utils_activation_maps.py provides all tools for handling the activation maps and attributions for proper size or format before visualizing """ import numpy as np from skimage.transform import resize import os from utils.utils import save_imgs, plot, resize_show, \ MatrixDecomposer, SklearnCluster from operator import itemgetter import umap import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler def create_root_dir(img_name, attr_class, flag1): name_str = os.path.splitext(os.path.basename(img_name))[-2] root_directory = './' + name_str + '/' + attr_class + '_' + flag1 if not os.path.exists(root_directory): os.makedirs(root_directory) return root_directory def create_factorization_dir(root_directory, factorization_method, no_slash_layer_name, reverse_suffix, n_groups): save_directory = root_directory + '/' + factorization_method + '/' \ + no_slash_layer_name + reverse_suffix + str(n_groups) if not os.path.exists(save_directory): os.makedirs(save_directory) return save_directory def print_result_from_logit(logit_list, labels): sorted_logit = logit_list.argsort() pred_index = sorted_logit[-10:][::-1] # np.argmax(logit, axis=1) print(itemgetter(*pred_index)(labels)) print(logit_list[sorted_logit[-10:][::-1]]) def debug_show_AM_plus_img(grad_cam_list, img, model): # Visualize the activation maps on original image for grad_cams_backup in grad_cam_list: sort_grad_cams_idx = np.argsort(-(grad_cams_backup.sum(0).sum(0))) grad_cams_backup_trans = np.transpose(grad_cams_backup, (2, 0, 1)) for i_sort_grad_cams in range(sort_grad_cams_idx.shape[0]): grad_cam_backup = grad_cams_backup[..., sort_grad_cams_idx[i_sort_grad_cams]] grad_cam_backup = grad_cam_backup.reshape([grad_cam_backup.shape[-1], grad_cam_backup.shape[-1]]) grad_cam_backup = resize(grad_cam_backup, (model.image_shape[0], model.image_shape[1]), order=1, mode='constant', anti_aliasing=False) grad_cam_backup = grad_cam_backup / grad_cam_backup.max() * 255 resize_show(grad_cam_backup, xi=img) print("image {} in all {} images".format(i_sort_grad_cams, sort_grad_cams_idx.shape[0])) def decompose_AM_get_group_num(factorization_method, AM, thres_explained_var): for i_n_groups in range(3, 999): factor_model = MatrixDecomposer(i_n_groups, factorization_method) if factorization_method == 'FactorAnalysis': _ = factor_model.fit(AM) spatial_factors = factor_model.transform(AM) else: spatial_factors = factor_model.fit_transform(AM) score = factor_model.get_score(AM, spatial_factors) if score > thres_explained_var: spatial_factors = spatial_factors.transpose(2, 0, 1).astype("float32") channel_factors = factor_model._decomposer.components_.astype("float32") n_groups = i_n_groups return spatial_factors, channel_factors, n_groups def cluster_AM_get_group_num(cluster_method, AM, **kwargs): scaler = MinMaxScaler() AM_scaled = scaler.fit_transform(np.reshape(AM, (-1, AM.shape[-1]))) cluster_max_num = 26 inertia = np.empty(cluster_max_num) secondDerivative = np.empty((cluster_max_num - 5)) for i_n_groups in range(cluster_max_num): cluster_model = SklearnCluster(i_n_groups+1, cluster_method, **kwargs) _ = cluster_model.fit_predict(AM_scaled) inertia[i_n_groups] = cluster_model._decomposer.inertia_ for i_n_groups in range(4, cluster_max_num-1): secondDerivative[i_n_groups-4] = inertia[i_n_groups+1] + inertia[i_n_groups-1] - 2*inertia[i_n_groups] # plt.figure() # plt.plot(range(cluster_max_num - 3), inertia) n_groups = np.argmax(secondDerivative)+4 cluster_model = SklearnCluster(n_groups, cluster_method) labels = cluster_model.fit_predict(AM) return labels, n_groups def decompose_AM_with_UMAP(AM, n_groups): umap_reducer = umap.umap_.UMAP(n_components=n_groups) grad_cam_flat = AM.reshape([-1, AM.shape[-1]]) spatial_factors = umap_reducer.fit_transform(grad_cam_flat) spatial_factors = spatial_factors.reshape(AM.shape) spatial_factors = spatial_factors.transpose(2, 0, 1).astype("float32") def map_shap_attr_to_long(channel_factors, channel_attr, kept_channel_index): channel_factors_max_index = channel_factors.argmax(axis=0) channel_shap = np.zeros((channel_factors.shape[0], channel_attr.shape[0])) short_index = [] long_index = [] n_groups = channel_factors.shape[0] for channel_factors_i in range(n_groups): short_index.append( np.squeeze(np.argwhere(channel_factors_max_index == channel_factors_i), axis=1)) map_short_to_long_idx = \ kept_channel_index[short_index[channel_factors_i]] long_index.append(map_short_to_long_idx) channel_shap[channel_factors_i, map_short_to_long_idx] = \ channel_attr[map_short_to_long_idx] return channel_factors_max_index, channel_shap, short_index, long_index, n_groups def map_cluster_label_to_long(labels, channel_attr, kept_channel_index): channel_factors_max_index = labels n_groups = labels.max() + 1 channel_shap = np.zeros((n_groups, channel_attr.shape[0])) short_index = [] long_index = [] for channel_factors_i in range(n_groups): short_index.append( np.squeeze(np.argwhere(channel_factors_max_index == channel_factors_i), axis=1)) map_short_to_long_idx = \ kept_channel_index[short_index[channel_factors_i]] long_index.append(map_short_to_long_idx) channel_shap[channel_factors_i, map_short_to_long_idx] = \ channel_attr[map_short_to_long_idx] return channel_factors_max_index, channel_shap, short_index, long_index, n_groups def weight_AM2spatial_factor(AM, spatial_factors, n_groups, short_index, kept_channel_index, channel_attr, i_grad_cam_list_L): """ Weighting Activation maps using feature attributions ''' # Alternatives AM = np.squeeze(AM) spatial_factors = np.zeros_like(spatial_factors) for channel_factors_i in range(n_groups): if len(short_index[channel_factors_i]) == 0: continue temp = np.squeeze(AM[..., short_index[channel_factors_i]]) if len(temp.shape) == 3: spatial_factors[channel_factors_i, ...] = np.sum(temp, axis=-1) else: spatial_factors[channel_factors_i, ...] = temp ''' """ spatial_factors = np.zeros_like(spatial_factors) for channel_factors_i in range(n_groups): if len(short_index[channel_factors_i]) == 0: continue map_short_to_long_idx = \ kept_channel_index[short_index[channel_factors_i]] temp = np.squeeze(AM[..., short_index[channel_factors_i]]) temp = temp * channel_attr[map_short_to_long_idx] if i_grad_cam_list_L > 0: temp *= -1 if len(temp.shape) == 3: spatial_factors[channel_factors_i, ...] = np.sum(temp, axis=-1) else: spatial_factors[channel_factors_i, ...] = temp return spatial_factors def weight_AM2spatial_factor2(AM, spatial_factors, channel_factors, channel_attr, n_groups, i_grad_cam_list_L): """ Using feature attributions and channel factors to weight activation maps """ spatial_factors = np.zeros_like(spatial_factors) for i in range(n_groups): temp = channel_factors[i] * channel_attr[i] * AM if i_grad_cam_list_L > 0: temp *= -1 if len(temp.shape) == 3: spatial_factors[i, ...] = np.sum(temp, axis=-1) else: spatial_factors[i, ...] = temp return spatial_factors def weight_AM2spatial_factor_FGSM(AM, spatial_factors, n_groups, short_index, kept_channel_index, channel_shap, i_grad_cam_list_L): """ The same with weight_AM2spatial_factor, but apply to adversarial samples """ spatial_factors = np.zeros_like(spatial_factors) for channel_factors_i in range(n_groups): if len(short_index[channel_factors_i]) == 0: continue map_short_to_long_idx = \ kept_channel_index[short_index[channel_factors_i]] temp = AM[..., short_index[channel_factors_i]] temp = temp * channel_shap[channel_factors_i, map_short_to_long_idx] if i_grad_cam_list_L > 0: temp *= -1 if len(temp.shape) == 3: spatial_factors[channel_factors_i, ...] = np.sum(temp, axis=-1) else: spatial_factors[channel_factors_i, ...] = temp return spatial_factors def get_sort_groups_with_shap_scores(channel_shap): every_group_attr = np.sum(channel_shap, axis=1) ns_sorted = np.argsort(-every_group_attr) return ns_sorted def sort_groups_features(ns_sorted, spatial_factors, channel_shap, n_groups): every_group_attr = np.sum(channel_shap, axis=1) every_group_attr_sorted = every_group_attr[ns_sorted] spatial_factors = spatial_factors[ns_sorted] channel_shap = channel_shap[ns_sorted] for i_remove_zero_attr in range(n_groups): if every_group_attr_sorted[i_remove_zero_attr] == 0: spatial_factors = np.delete(spatial_factors, -1, 0) channel_shap = np.delete(channel_shap, -1, 0) n_groups = channel_shap.shape[0] return every_group_attr_sorted, spatial_factors, channel_shap, n_groups
38.836134
106
0.730066
b86e8d4480f28723e2ffd0c4669fc88f5914ab7e
11,788
py
Python
gooddata-metadata-client/gooddata_metadata_client/model/declarative_users.py
hkad98/gooddata-python-sdk
64942080ecb44c2d8e914e57f7a591daa6cca205
[ "MIT" ]
null
null
null
gooddata-metadata-client/gooddata_metadata_client/model/declarative_users.py
hkad98/gooddata-python-sdk
64942080ecb44c2d8e914e57f7a591daa6cca205
[ "MIT" ]
null
null
null
gooddata-metadata-client/gooddata_metadata_client/model/declarative_users.py
hkad98/gooddata-python-sdk
64942080ecb44c2d8e914e57f7a591daa6cca205
[ "MIT" ]
null
null
null
""" OpenAPI definition No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v0 Contact: support@gooddata.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from gooddata_metadata_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from gooddata_metadata_client.exceptions import ApiAttributeError def lazy_import(): from gooddata_metadata_client.model.declarative_user import DeclarativeUser globals()['DeclarativeUser'] = DeclarativeUser class DeclarativeUsers(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'users': ([DeclarativeUser],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'users': 'users', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, users, *args, **kwargs): # noqa: E501 """DeclarativeUsers - a model defined in OpenAPI Args: users ([DeclarativeUser]): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', True) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.users = users for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, users, *args, **kwargs): # noqa: E501 """DeclarativeUsers - a model defined in OpenAPI Args: users ([DeclarativeUser]): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.users = users for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
42.555957
124
0.563454
f237d654ebdecd8bddd9870468a65394c8886d87
1,570
py
Python
Python/bfs.py
radome/algorithms-and-data-structures
06b7dab6e5865e199a682cb52d1ed70aeb6dfcab
[ "Apache-2.0" ]
1
2018-02-15T16:59:55.000Z
2018-02-15T16:59:55.000Z
Python/bfs.py
radome/algorithms_and_data_structures
06b7dab6e5865e199a682cb52d1ed70aeb6dfcab
[ "Apache-2.0" ]
null
null
null
Python/bfs.py
radome/algorithms_and_data_structures
06b7dab6e5865e199a682cb52d1ed70aeb6dfcab
[ "Apache-2.0" ]
null
null
null
"""Breadth First Search on a graph""" from sets import Set from linked_list import Node class lightQueue(object): """Simple queue""" def __init__(self): self.head = None self.tail = None def enqueue(self, lst): """Enqueue a list of nodes""" for obj in lst: if self.head: self.tail.nextn = Node(obj) self.tail = self.tail.nextn else: self.tail = Node(obj) self.head = self.tail def dequeue(self): """Returns the head of the queue""" if self.head: popped = self.head self.head = popped.nextn return popped.data else: raise IndexError('Popping from empty queue') def isEmpty(self): """Returns True if the the queue is empty, False otherwise""" if self.head: return False else: return True def bfsTraverse(graphDict, start): """Returns a tuple with the nodes traversed in BFS order""" queue = lightQueue() notVisited = Set(graphDict.keys()) queue.enqueue([start]) notVisited.remove(start) result = [start] while not queue.isEmpty(): curNode = queue.dequeue() neighbours = graphDict[curNode] toSort = [] for node in neighbours: if node in notVisited: toSort.append(node) notVisited.remove(node) toSort.sort() queue.enqueue(toSort) result.extend(toSort) return tuple(result)
26.166667
69
0.555414
cf23f2575939dff2b1aed4a18eb0fbd3cc17bd0e
46,448
py
Python
visualizer.py
call518/virtual-network-visualizer
dfa10c249768a82125e901f2c3357e0278b8b4ea
[ "Apache-2.0" ]
3
2019-04-02T14:22:26.000Z
2021-03-16T06:52:54.000Z
visualizer.py
call518/OpenStack-Network-Visualizer
dfa10c249768a82125e901f2c3357e0278b8b4ea
[ "Apache-2.0" ]
null
null
null
visualizer.py
call518/OpenStack-Network-Visualizer
dfa10c249768a82125e901f2c3357e0278b8b4ea
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- mode:python; coding:utf-8 -*- ### Whole Topology ## ex) python visualizer.py ### Local-VM to Local-VM ## ex) python visualizer.py --src "T:tap94d54818-a5" --dst "T:tapeee4966d-68" [--onlypath] ### Local-VM to Remote-VM ## ex) python visualizer.py --src "T:tap94d54818-a5" --dst "T:tap708a8386-2f" [--onlypath] ### Local-VM to External ## ex) python visualizer.py --src "T:tap94d54818-a5" --dst "I:eth1(pub-compute-001)" [--onlypath] import warnings warnings.filterwarnings("ignore") import paramiko import time import sys, getopt import json #import socket import networkx as nx import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import pandas as pd import random import operator import re import time import plotly #plotly.tools.set_credentials_file(username='your-account', api_key='your-api-key') import plotly.plotly as py import plotly.graph_objs as go def exec_ssh(ssh_hostname, ssh_cmd): SSH_USERNAME = "root" SSH_PASSWORD = "password" SSH_KEY_FILE = "/root/.ssh/id_rsa" ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh_stdin = ssh_stdout = ssh_stderr = None try: #ssh.connect(SSH_ADDRESS, username=SSH_USERNAME, password=SSH_PASSWORD) ssh.connect(hostname=ssh_hostname, port=22, username=SSH_USERNAME, key_filename=SSH_KEY_FILE) ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(ssh_cmd, timeout=None, bufsize=-1, get_pty=False, environment=None) except Exception as e: sys.stderr.write("SSH connection error: {0}".format(e)) output = ssh_stdout.read() return output def removeDup(src_list): return set([tuple(sorted(item)) for item in src_list]) def xstr(value): if value is None: return 'NONE' else: return str(value) def findDictValue(xstr, xdict): if xstr in xdict: return xdict[xstr] else: return "NONE" def getArgs(argv): src_node = None dst_node = None only_path = False enable_fip = False enable_plotly = False usage_str = " [{-s|--src} <src node> {-d|--dst} <dst node> [-o|--onlypath] [-f|--fip] [-p|--plotly]" try: opts, args = getopt.getopt(argv, "hsdofp", ["help", "src=", "dst=", "onlypath", "fip", "plotly"]) except getopt.GetoptError: print("# python " + sys.argv[0] + usage_str) sys.exit(2) for opt, arg in opts: if opt in ('-h', '--help'): print("# python " + sys.argv[0] + usage_str) sys.exit() elif opt in ("-s", "--src"): src_node = arg elif opt in ("-d", "--dst"): dst_node = arg elif opt in ("-o", "--onlypath"): only_path = True elif opt in ("-f", "--fip"): enable_fip = True elif opt in ("-p", "--plotly"): enable_plotly = True if (src_node == None and dst_node != None) or (src_node != None and dst_node == None): print("# python " + sys.argv[0] + usage_str) sys.exit(2) elif (src_node == None and dst_node == None) and only_path: print("# python " + sys.argv[0] + usage_str) sys.exit(2) return src_node, dst_node, only_path, enable_fip, enable_plotly def getHostnameByOvsLocalIp(ip): for hostname, ovs_local_ip in hostnames.items(): if ip == ovs_local_ip: return hostname return None ##################################################################################### if __name__ == '__main__': ## ์ตœ๋‹จ ๊ฒฝ๋กœ ์กฐ์‚ฌ ๋Œ€์ƒ ์ธ์ž src_node, dst_node, only_path, enable_fip, enable_plotly = getArgs(sys.argv[1:]) print("\nProcessing.............") start_time = time.time() ## ์ธ์ž ์ฒดํฌ. isSP = False if src_node != None and dst_node != None: isSP = True if isSP == False: only_path = False ############################################### ### Raw ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ############################################### result = [] result_linux_bridge = [] result_dvr_fip = [] #hostnames = ( # #"dev-r2network-001", # "dev-r2compute-001", # #"dev-r2compute-002", #) ## pair of hostanem and ovs-local-ip. #ovs_local_ip_by_hostname = { hostnames = { "dev-r2network-001": "10.0.42.18", "dev-r2compute-001": "10.0.42.36", "dev-r2compute-002": "10.0.42.37", } for hostname in hostnames: ## Network ํ˜ธ์ŠคํŠธ์ธ์ง€ ์ฒดํฌ # snat-xxx ๋„ค์ž„์ŠคํŽ˜์ด์Šค ์กด์žฌ ์œ ๋ฌด๋กœ ํŒ๋‹จ # ์žˆ์œผ๋ฉด, Networkํ˜ธ์ŠคํŠธ, ์—†์œผ๋ฉด Compute ํ˜ธ์ŠคํŠธ๋กœ ๋ณธ๋‹ค. isNetworkHost = False return_chk_network_node = exec_ssh(hostname, "if `ip netns | grep -q snat`; then echo network-node; fi") if return_chk_network_node.strip() == "network-node": isNetworkHost = True output_bridge = exec_ssh(hostname, "ovs-vsctl -f json list br") output_port = exec_ssh(hostname, "ovs-vsctl -f json list port") output_interface = exec_ssh(hostname, "ovs-vsctl -f json list interface") json_data_bridge = json.loads(output_bridge) json_data_interface = json.loads(output_interface) json_data_port = json.loads(output_port) for item_interface in json_data_interface['data']: if_hostname = hostname if_uuid = item_interface[0][1] if_admin_state = item_interface[1] #if_name = "I:" + item_interface[26] + "(" + if_hostname + ")" if_name = "I:" + item_interface[26] if if_name.startswith("I:eth"): if_name = if_name + "(" + hostname + ")" if_type = item_interface[33] if if_type in ["vxlan", "patch", "internal"]: if_name = if_name + "(" + hostname + ")" if_external_ids = item_interface[13][1] if_link_state = item_interface[20] if type(item_interface[24]) is list: if_mtu = None else: if_mtu = item_interface[24] if_ofport = item_interface[27] if_options = item_interface[29][1] if_other_config = item_interface[30][1] if_statistics = item_interface[31][1] if_status = item_interface[32][1] ## OpenStack ๋ฉ”ํƒ€ ์ •๋ณด ๊ฒ€์ƒ‰ if_external_ids_attached_mac = if_external_ids_iface_id = if_external_ids_iface_status = if_external_ids_vm_uuid = None if len(if_external_ids) > 0: if_external_ids_attached_mac = if_external_ids[0][1] if_external_ids_iface_id = if_external_ids[1][1] if_external_ids_iface_status = if_external_ids[2][1] if len(if_external_ids) > 3: if_external_ids_vm_uuid = if_external_ids[3][1] ## Options ์†์„ฑ ๊ฒ€์ƒ‰ if_options_patch_peer = if_options_vxlan_df_default = if_options_vxlan_in_key = if_options_vxlan_local_ip = if_options_vxlan_out_key = if_options_vxlan_remote_ip = None if if_type == "patch": if_options_patch_peer = if_options[0][1] elif if_type == "vxlan": if_options_vxlan_df_default = if_options[0][1] if_options_vxlan_in_key = if_options[1][1] if_options_vxlan_local_ip = if_options[2][1] if_options_vxlan_out_key = if_options[3][1] if_options_vxlan_remote_ip = if_options[4][1] ## Statistics ์†์„ฑ ๊ฒ€์ƒ‰ if_statistics_collisions = if_statistics_rx_bytes = if_statistics_rx_crc_err = if_statistics_rx_dropped = if_statistics_rx_errors = if_statistics_rx_frame_err = if_statistics_rx_over_err = if_statistics_rx_packets = if_statistics_tx_bytes = if_statistics_tx_dropped = if_statistics_tx_errors = if_statistics_tx_packets = None statistics_dict = {} for k, v in if_statistics: statistics_dict[k] = v if_statistics_collisions = findDictValue("collisions", statistics_dict) if_statistics_rx_bytes = findDictValue("rx_bytes", statistics_dict) if_statistics_rx_crc_err = findDictValue("rx_crc_err", statistics_dict) if_statistics_rx_dropped = findDictValue("rx_dropped", statistics_dict) if_statistics_rx_errors = findDictValue("rx_dropped", statistics_dict) if_statistics_rx_frame_err = findDictValue("rx_frame_err", statistics_dict) if_statistics_rx_over_err = findDictValue("rx_over_err", statistics_dict) if_statistics_rx_packets = findDictValue("rx_packets", statistics_dict) if_statistics_tx_bytes = findDictValue("tx_bytes", statistics_dict) if_statistics_tx_dropped = findDictValue("tx_dropped", statistics_dict) if_statistics_tx_errors = findDictValue("tx_errors", statistics_dict) if_statistics_tx_packets = findDictValue("tx_packets", statistics_dict) ## Interface๊ฐ€ ์†ํ•ด ์žˆ๋Š” Port ๊ฒ€์ƒ‰ if_port_uuid = if_port_name = tmp_port_interface_uuid = tmp_port_name = None for item_port in json_data_port['data']: ## OVS ๋ฒ„์ „์— ๋”ฐ๋ฅธ ์†์„ฑ ์ˆœ์„œ ์ฐจ์ด๋กœ ์ธํ•ด ๊ตฌ๋ณ„ํ•จ (์ž„์‹œ) try: tmp_port_interface_uuid = item_port[8][1] except TypeError: tmp_port_interface_uuid = item_port[9][1] if if_uuid == tmp_port_interface_uuid: if_port_uuid = item_port[0][1] try: if_port_name = "P:" + item_port[11] + "(" + hostname + ")" except TypeError: if_port_name = "P:" + item_port[12] + "(" + hostname + ")" break ## Port๊ฐ€ ์†ํ•ด ์žˆ๋Š” Bridge ๊ฒ€์ƒ‰ if_br_uuid = if_br_name = None if if_port_uuid: for item_bridge in json_data_bridge['data']: tmp_br_uuid = item_bridge[0][1] tmp_br_name = item_bridge[13] for port in item_bridge[16][1]: if if_port_uuid == port[1]: if_br_uuid = tmp_br_uuid if_br_name = "B:" + tmp_br_name + "(" + hostname + ")" break result.append({ "isNetworkHost": isNetworkHost, "if_hostname": if_hostname, "if_uuid": if_uuid, "if_name": if_name, "if_admin_state": if_admin_state, "if_name": if_name, "if_type": if_type, "if_external_ids_attached_mac": if_external_ids_attached_mac, "if_external_ids_iface_id": if_external_ids_iface_id, "if_external_ids_iface_status": if_external_ids_iface_status, "if_external_ids_vm_uuid": if_external_ids_vm_uuid, "if_link_state": if_link_state, "if_mtu": if_mtu, "if_ofport": if_ofport, "if_options_patch_peer": if_options_patch_peer, "if_options_vxlan_df_default": if_options_vxlan_df_default, "if_options_vxlan_in_key": if_options_vxlan_in_key, "if_options_vxlan_local_ip": if_options_vxlan_local_ip, "if_options_vxlan_out_key": if_options_vxlan_out_key, "if_options_vxlan_remote_ip": if_options_vxlan_remote_ip, "if_other_config": if_other_config, "if_statistics_collisions": if_statistics_collisions, "if_statistics_rx_bytes": if_statistics_rx_bytes, "if_statistics_rx_crc_err": if_statistics_rx_crc_err, "if_statistics_rx_dropped": if_statistics_rx_dropped, "if_statistics_rx_errors": if_statistics_rx_errors, "if_statistics_rx_frame_err": if_statistics_rx_frame_err, "if_statistics_rx_over_err": if_statistics_rx_over_err, "if_statistics_rx_packets": if_statistics_rx_packets, "if_statistics_tx_bytes": if_statistics_tx_bytes, "if_statistics_tx_dropped": if_statistics_tx_dropped, "if_statistics_tx_errors": if_statistics_tx_errors, "if_statistics_tx_packets": if_statistics_tx_packets, "if_status": if_status, "if_port_uuid": if_port_uuid, "if_port_name": if_port_name, "if_br_uuid": if_br_uuid, "if_br_name": if_br_name }) ## Linux Bridge ์ •๋ณด ์ˆ˜์ง‘ cmd = "BR_ARRAY=(`ip link list type bridge | awk '/^[0-9]/ {print $2}' | sed -e 's/:$//g'`); num_br=1; for br in ${BR_ARRAY[@]}; do if [ $num_br -eq 1 ]; then echo '['; fi; echo '{\"'$br'\": ['; IF_ARRAY=(`ls -1 /sys/devices/virtual/net/$br/brif/`); num=1; for if in ${IF_ARRAY[@]}; do echo '\"'$if'\"'; if [ $num -lt ${#IF_ARRAY[@]} ]; then echo ','; fi; ((num++)); done; echo ']}'; if [ $num_br -lt ${#BR_ARRAY[@]} ]; then echo ','; else echo ']'; fi; ((num_br++)); done | tr '\n' ' '" output_linux_bridge = exec_ssh(hostname, cmd) if len(output_linux_bridge) > 0: output_linux_bridge = "{ \"hostname\": \"" + hostname + "\", \"data\": " + output_linux_bridge + "}" json_data_linux_bridge = json.loads(output_linux_bridge) else: json_data_linux_bridge = json.loads('{ "hostname": "%s", "data": [] }' % hostname) ## Linux Bridge ๋ชฉ๋ก ์ƒ์„ฑ for data in json_data_linux_bridge['data']: for bridge, interfaces in data.items(): #print(bridge, interfaces) result_linux_bridge.append({ "isNetworkHost": isNetworkHost, "hostname": hostname, "bridge_name": bridge, "interfaces": interfaces, }) ## FIPํ™œ์„ฑํ™” ๋ฐ Compute ํ˜ธ์ŠคํŠธ์ผ ๊ฒฝ์šฐ๋งŒ(snat-xxx ๋„ค์ž„์ŠคํŽ˜์ด์Šค ์กด์žฌ ์œ ๋ฌด๋กœ ํŒ๋‹จ), FIP์—ฐ๊ฒฐ์„ฑ ๋ฉ”ํƒ€ ์ •๋ณด ์ˆ˜์ง‘ if enable_fip and not isNetworkHost: output_dvr_fip = exec_ssh(hostname, "(echo \"[\"; for NS in `ip netns | awk '{print $1}' | egrep \"qrouter|fip\"`; do IFs=`ip netns exec $NS ip -o link show | awk '{print $2\",\"$5\",\"$17 | \"sed -e 's/:,/,/g'\"}' | egrep \"^rfp|^fpr|^fg|^qr\"`; for IF in $IFs; do IF_ARRAY=(`echo $IF | awk -F',' '{print $1,$2,$3}'`); IF_NAME_ARRAY=(`echo ${IF_ARRAY[0]} | awk -F'@' '{print $1, $2}'`); IF_NAME=${IF_NAME_ARRAY[0]}; IF_ID=`ip netns exec $NS ip -o link show $IF_NAME | awk '{print $1 | \"sed -e 's/://g'\"}'`; IF_MTU=${IF_ARRAY[1]}; IF_MAC=${IF_ARRAY[2]}; IF_PAIR_ID=`echo ${IF_NAME_ARRAY[1]} | sed -e 's/^if//g'`; echo \"{\"; echo \"\\\"if_name\\\": \\\"$IF_NAME\\\",\"; echo \"\\\"if_namespace\\\": \\\"$NS\\\",\"; echo \"\\\"if_id\\\": \\\"$IF_ID\\\",\"; echo \"\\\"if_mtu\\\": \\\"$IF_MTU\\\",\"; echo \"\\\"if_mac\\\": \\\"$IF_MAC\\\",\"; echo \"\\\"if_pair_id\\\": \\\"$IF_PAIR_ID\\\"\"; echo \"},\"; done ;done | sed -e '$s/,//'; echo \"]\")") for item in json.loads(output_dvr_fip): item['if_hostname'] = hostname if_name = item['if_name'] if if_name.startswith(("qr-","fg-")): item['if_name'] = "I:" + if_name + "(" + hostname + ")" else: item['if_name'] = "VP:" + if_name + "(" + hostname + ")" result_dvr_fip.append(item) ############################################### ### ์ด๋ฏธ์ง€ ์ƒ์„ฑ ์ž‘์—… ์‹œ์ž‘ ############################################### plt.figure(figsize=(10,10)) ## ์บ”๋ฒ„์Šค ํฌ๊ธฐ ์ฆ๊ฐ€ G = nx.Graph() for interface in result: #print("if_name: %s (%s)" % (interface['if_name'], interface['if_uuid'])) #print(" if_port_name: %s (%s)" % (interface['if_port_name'], interface['if_port_uuid'])) #print(" if_br_name: %s (%s)" % (interface['if_br_name'], interface['if_br_uuid'])) if_name = interface['if_name'] if_type = interface['if_type'] ## ๋ชจ๋“  Interface ํƒ€์ž… -> Node๋กœ ๋“ฑ๋ก G.add_node(if_name, isNetworkHost = xstr(interface['isNetworkHost']), if_name = xstr(interface['if_name']), if_hostname = xstr(interface['if_hostname']), if_uuid = xstr(interface['if_uuid']), if_admin_state = xstr(interface['if_admin_state']), if_type = xstr(if_type), if_external_ids_attached_mac = xstr(interface['if_external_ids_attached_mac']), if_external_ids_iface_id = xstr(interface['if_external_ids_iface_id']), if_external_ids_iface_status = xstr(interface['if_external_ids_iface_status']), if_external_ids_vm_uuid = xstr(interface['if_external_ids_vm_uuid']), if_link_state = xstr(interface['if_link_state']), if_mtu = xstr(interface['if_mtu']), if_ofport = xstr(interface['if_ofport']), if_options_patch_peer = xstr(interface['if_options_patch_peer']), if_options_vxlan_df_default = xstr(interface['if_options_vxlan_df_default']), if_options_vxlan_in_key = xstr(interface['if_options_vxlan_in_key']), if_options_vxlan_local_ip = xstr(interface['if_options_vxlan_local_ip']), if_options_vxlan_out_key = xstr(interface['if_options_vxlan_out_key']), if_options_vxlan_remote_ip = xstr(interface['if_options_vxlan_remote_ip']), if_other_config = xstr(interface['if_other_config']), if_statistics_collisions = xstr(interface['if_statistics_collisions']), if_statistics_rx_bytes = xstr(interface['if_statistics_rx_bytes']), if_statistics_rx_crc_err = xstr(interface['if_statistics_rx_crc_err']), if_statistics_rx_dropped = xstr(interface['if_statistics_rx_dropped']), if_statistics_rx_errors = xstr(interface['if_statistics_rx_errors']), if_statistics_rx_frame_err = xstr(interface['if_statistics_rx_frame_err']), if_statistics_rx_over_err = xstr(interface['if_statistics_rx_over_err']), if_statistics_rx_packets = xstr(interface['if_statistics_rx_packets']), if_statistics_tx_bytes = xstr(interface['if_statistics_tx_bytes']), if_statistics_tx_dropped = xstr(interface['if_statistics_tx_dropped']), if_statistics_tx_errors = xstr(interface['if_statistics_tx_errors']), if_statistics_tx_packets = xstr(interface['if_statistics_tx_packets']), if_status = xstr(interface['if_status']), if_port_uuid = xstr(interface['if_port_uuid']), if_port_name = xstr(interface['if_port_name']), if_br_uuid = xstr(interface['if_br_uuid']), if_br_name = xstr(interface['if_br_name']) ) ## ์ธํ„ฐํŽ˜์ด์Šค <-> Bridge <-> Port ๊ฐ„ Edge ์ •๋ณด ์ถ”๊ฐ€ # Edge๋“ฑ๋ก์„ ํ†ตํ•ด, ์—†๋Š” Port/Bridge ๋…ธ๋“œ ์ž๋™ ์ถ”๊ฐ€๋จ. G.add_edge(interface['if_name'], interface['if_port_name']) G.add_edge(interface['if_port_name'], interface['if_br_name']) #print G.nodes(data=True) #sys.exit(1) # ์ž๋™ ์ถ”๊ฐ€๋œ Port/Bridge์— isNetworkHost ๋ฐ if_type ์†์„ฑ ์ถ”๊ฐ€ G.node[interface['if_port_name']]['isNetworkHost'] = interface['isNetworkHost'] G.node[interface['if_port_name']]['if_type'] = '' G.node[interface['if_port_name']]['if_hostname'] = interface['if_hostname'] G.node[interface['if_br_name']]['isNetworkHost'] = interface['isNetworkHost'] G.node[interface['if_br_name']]['if_type'] = '' G.node[interface['if_br_name']]['if_hostname'] = interface['if_hostname'] #print G.node['P:qr-47ac2c1a-b0(pub-compute-001)']['isNetworkHost'] #print G.nodes(data=True) #sys.exit(1) ## VxLAN ํ„ฐ๋„ ์—ฐ๊ฒฐ ๊ตฌ์„ฑ if if_type == "vxlan": vxlan_local_ip = interface['if_options_vxlan_local_ip'] vxlan_remote_ip = interface['if_options_vxlan_remote_ip'] vxlan_local_hostname = interface['if_options_vxlan_local_ip'] vxlan_remote_hostname = interface['if_options_vxlan_remote_ip'] #print(vxlan_local_ip, vxlan_remote_ip) #G.add_edge(interface['if_name'], interface['if_port_name']) #print(if_name, interface['if_options']) ## Linux Bridge ์ •๋ณด 'G'์— ์ถ”๊ฐ€ (๋…ธ๋“œ/์—ฃ์ง€) edge_VP2LB = [] edge_I2VP = [] edge_T2LB = [] for item in result_linux_bridge: isNetworkHost = item['isNetworkHost'] hostname = item['hostname'] br_name = "LB:" + item['bridge_name'] interfaces = item['interfaces'] G.add_node(br_name) G.node[br_name]['isNetworkHost'] = isNetworkHost G.node[br_name]['if_type'] = '' for interface in interfaces: if interface.startswith("qvb"): if_name = "VP:" + interface if_name_ovs_pair = re.sub(r'^VP:qvb', 'I:qvo', if_name) G.add_node(if_name) G.node[if_name]['isNetworkHost'] = isNetworkHost G.node[if_name]['if_type'] = '' G.node[if_name]['if_hostname'] = hostname G.add_edge(if_name_ovs_pair, if_name) G.add_edge(if_name, br_name) edge_VP2LB.append((if_name, br_name)) edge_I2VP.append((if_name_ovs_pair, if_name)) elif interface.startswith("tap"): if_name = "T:" + interface G.add_node(if_name) G.node[if_name]['isNetworkHost'] = isNetworkHost G.node[if_name]['if_type'] = '' G.node[if_name]['if_hostname'] = hostname G.add_edge(if_name, br_name) edge_T2LB.append((if_name, br_name)) ## VxLAN ํ„ฐ๋„ ๋งํฌ ์ •๋ณด Dictionay ์ƒ์„ฑ vxlan_link_dict = {} for node_data in G.nodes(data=True): if_name = node_data[0] data_dict = node_data[1] #print if_name, data_dict #sys.exit(1) if len(data_dict) > 0: if_type = data_dict['if_type'] if if_type == "vxlan": vxlan_local_ip = data_dict['if_options_vxlan_local_ip'] vxlan_remote_ip = data_dict['if_options_vxlan_remote_ip'] #vxlan_local_hostname = socket.gethostbyaddr(vxlan_local_ip)[0] vxlan_local_hostname = getHostnameByOvsLocalIp(vxlan_local_ip) #vxlan_remote_hostname = socket.gethostbyaddr(vxlan_remote_ip)[0] vxlan_remote_hostname = getHostnameByOvsLocalIp(vxlan_remote_ip) vxlan_link_dict[vxlan_local_hostname + "---" + vxlan_remote_hostname] = if_name ## if_type ์†์„ฑ์— ๋”ฐ๋ฅธ Node ๋ฐ Edge ๋ชฉ๋ก ์ƒ์„ฑ ## if_link_state ๊ฐ’์ด Down์ธ Interface ๋…ธ๋“œ ๋ชฉ๋ก ์ƒ์„ฑ nodes_if_type_patch = [] nodes_if_type_vxlan = [] nodes_if_type_internal = [] nodes_if_type_internal_fg = [] nodes_if_type_normal = [] edge_if_type_patch = [] edge_if_type_vxlan = [] #nodes_if_link_state_down = [] for node_data in G.nodes(data=True): if_name = node_data[0] data_dict = node_data[1] if len(data_dict) > 0: if_type = data_dict['if_type'] #if_link_state = data_dict['if_link_state'] if if_type == "patch": nodes_if_type_patch.append(if_name) peer_if_hostname = data_dict['if_hostname'] peer_if_name = "I:" + data_dict['if_options_patch_peer'] + "(" + peer_if_hostname + ")" edge_if_type_patch.append((if_name, peer_if_name)) elif if_type == "vxlan": nodes_if_type_vxlan.append(if_name) vxlan_local_ip = data_dict['if_options_vxlan_local_ip'] #vxlan_local_hostname = socket.gethostbyaddr(vxlan_local_ip)[0] vxlan_local_hostname = getHostnameByOvsLocalIp(vxlan_local_ip) vxlan_remote_ip = data_dict['if_options_vxlan_remote_ip'] #vxlan_remote_hostname = socket.gethostbyaddr(vxlan_remote_ip)[0] vxlan_remote_hostname = getHostnameByOvsLocalIp(vxlan_remote_ip) if vxlan_remote_hostname in hostnames: find_key = vxlan_remote_hostname + "---" + vxlan_local_hostname remote_if_name = vxlan_link_dict[find_key] edge_if_type_vxlan.append((if_name, remote_if_name)) elif if_type == "internal": if if_name.startswith("I:fg-"): nodes_if_type_internal_fg.append(if_name) else: nodes_if_type_internal.append(if_name) else: nodes_if_type_normal.append(if_name) #if if_link_state == "down": # nodes_if_link_state_down.append(if_name) ## Interface/Port/Bridge Edge ๋ชฉ๋ก ์ƒ์„ฑ (์ค‘๋ณต ์กด์žฌ ๊ฐ€๋Šฅ) edge_I2P = [(u, v) for (u, v) in G.edges() if (u.startswith("I:") and v.startswith("P:")) or (u.startswith("P:") and v.startswith("I:"))] edge_P2B = [(u, v) for (u, v) in G.edges() if (u.startswith("P:") and v.startswith("B:")) or (u.startswith("B:") and v.startswith("P:"))] if enable_fip: ## FIP ์ •๋ณด ์ถ”๊ฐ€๋ฅผ ์œ„ํ•ด, (B:br-int, P:int-br-ex) ํƒ€์ž…์˜ Edge ์ œ๊ฑฐ list_isNetworkHost = G.nodes(data='isNetworkHost') for (u, v) in edge_P2B: #print u #sys.exit(1) if not G.node[u]['isNetworkHost']: if (u.startswith("B:br-int") and v.startswith("P:int-br-ex")) or (u.startswith("P:int-br-ex") and v.startswith("B:br-int")): #print(u, v) G.remove_edge(u, v) ## "namespace + hostname"๋ฅผ key๋กœ ํ•ด์„œ, VP:rfp-* ์ธํ„ฐํŽ˜์ด์Šค ์ด๋ฆ„ ์กฐํšŒ ๊ฐ€๋Šฅํ•œ dict ์ƒ์„ฑ dvr_fip_ns_hostname_rfp_pair = {} for item in result_dvr_fip: if_name = item['if_name'] if_hostname = item['if_hostname'] if if_name.startswith("VP:rfp-"): if_namespace = item['if_namespace'] key = if_namespace + "(" + if_hostname + ")" dvr_fip_ns_hostname_rfp_pair[key] = if_name ## I:qr-* <-> VP:rfp-* ์— ๋Œ€ํ•œ Node/Edge ์ •๋ณด ์ƒ์„ฑ/์ถ”๊ฐ€ edge_SNAT = [] for item in result_dvr_fip: if_name = item['if_name'] if if_name.startswith("I:qr-"): if_namespace = item['if_namespace'] if_hostname = item['if_hostname'] key = item['if_namespace'] + "(" + if_hostname + ")" if_rfp = dvr_fip_ns_hostname_rfp_pair[key] #print if_namespace, if_name, if_rfp G.add_node(if_rfp) G.add_edge(if_name, if_rfp) #print if_name, if_rfp #edge_I2P.append((if_name, if_rfp)) edge_SNAT.append((if_name, if_rfp)) ## VP:fpr-* ์ธํ„ฐํŽ˜์ด์Šค์˜ Index-ID๋ฅผ key๋กœ ํ•ด์„œ, VP:fpr-* ์ด๋ฆ„์„ ์กฐํฌ ๊ฐ€๋Šฅํ•œ dict ์ƒ์„ฑ dvr_fip_id_hostname_fpr_pair = {} for item in result_dvr_fip: if_name = item['if_name'] if if_name.startswith("VP:fpr-"): if_id = item['if_id'] if_hostname = item['if_hostname'] key = if_id + "(" + if_hostname + ")" #print if_id, if_name dvr_fip_id_hostname_fpr_pair[key] = if_name ## VP:rfp-* <-> VP:fpr-* ์— ๋Œ€ํ•œ Node/Edge ์ •๋ณด ์ƒ์„ฑ/์ถ”๊ฐ€ for item in result_dvr_fip: if_name = item['if_name'] if if_name.startswith("VP:rfp-"): if_pair_id = item['if_pair_id'] if_hostname = item['if_hostname'] key = if_pair_id + "(" + if_hostname + ")" #print if_pair_id if_pair_name = dvr_fip_id_hostname_fpr_pair[key] #print if_name, if_pair_name G.add_node(if_pair_name) G.add_edge(if_name, if_pair_name) edge_I2VP.append((if_name, if_pair_name)) ## hostname์„ key๋กœ ํ•ด์„œ, I:fg-* ์ธํ„ฐํŽ˜์ด์Šค ์ด๋ฆ„ ์กฐํšŒ ๊ฐ€๋Šฅํ•œ dict ์ƒ์„ฑ dvr_fip_hostname_fg_pair = {} for item in result_dvr_fip: if_name = item['if_name'] if_hostname = item['if_hostname'] if if_name.startswith("I:fg-"): dvr_fip_hostname_fg_pair[if_hostname] = if_name ## VP:fpr-* <-> I:fg-* ์— ๋Œ€ํ•œ Edge ์ •๋ณด ์ƒ์„ฑ/์ถ”๊ฐ€ edge_ROUTING = [] for item in result_dvr_fip: if_name = item['if_name'] if if_name.startswith("VP:fpr-"): if_hostname = item['if_hostname'] if_fg_name = dvr_fip_hostname_fg_pair[if_hostname] #print if_name, if_hostname, if_fg_name G.add_edge(if_name, if_fg_name) edge_ROUTING.append((if_name, if_fg_name)) ## ์ˆœ์„œ์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ์ค‘๋ณต ์ œ๊ฑฐ ์ฒ˜๋ฆฌ edge_I2P = removeDup(edge_I2P) edge_P2B = removeDup(edge_P2B) edge_VP2LB = removeDup(edge_VP2LB) edge_I2VP = removeDup(edge_I2VP) edge_T2LB = removeDup(edge_T2LB) if enable_fip: edge_SNAT = removeDup(edge_SNAT) edge_ROUTING = removeDup(edge_ROUTING) edge_if_type_patch = removeDup(edge_if_type_patch) edge_if_type_vxlan = removeDup(edge_if_type_vxlan) ## ๋ชจ๋“  Egde ๋ชฉ๋ก์„ G ๊ฐ์ฒด์— ํ†ตํ•ฉ G.add_edges_from(edge_I2P) G.add_edges_from(edge_P2B) G.add_edges_from(edge_VP2LB) G.add_edges_from(edge_I2VP) G.add_edges_from(edge_T2LB) if enable_fip: G.add_edges_from(edge_SNAT) G.add_edges_from(edge_ROUTING) G.add_edges_from(edge_if_type_patch) G.add_edges_from(edge_if_type_vxlan) ## ์š”์ฒญ๋œ ์‹œ์ž‘๊ณผ ๋ ๋…ธ๋“œ์— ๋Œ€ํ•œ '์ตœ๋‹จ ๊ฒฝ๋กœ' ๋…ธ๋“œ ๋ฆฌ์ŠคํŠธ ์ž‘์„ฑ if isSP: shortest_path_list = nx.astar_path(G, source=src_node, target=dst_node) #shortest_path_list = nx.shortest_path(G, source=src_node, target=dst_node) #shortest_path_list = nx.all_shortest_paths(G, source=src_node, target=dst_node) #shortest_path_list = nx.shortest_path_length(G, source=src_node, target=dst_node) #shortest_path_list = nx.average_shortest_path_length(G, source=src_node, target=dst_node) #shortest_path_list = nx.has_path(G, source=src_node, target=dst_node) #for p in shortest_path_list: # print(p) #sys.exit(1) ## Node ์ข…๋ฅ˜(Interface/Port/Bridge)๋ณ„ ๋ชฉ๋ก ์ƒ์„ฑ nodes_interface = [node for node in G.nodes() if node.startswith("I:")] nodes_port = [node for node in G.nodes() if node.startswith("P:")] nodes_bridge = [node for node in G.nodes() if node.startswith("B:")] nodes_linux_bridge = [node for node in G.nodes() if node.startswith("LB:")] nodes_linux_interface_pair = [node for node in G.nodes() if node.startswith("VP:")] nodes_linux_interface_tap = [node for node in G.nodes() if node.startswith("T:")] if isSP: nodes_sp_interface = [node for node in shortest_path_list if node.startswith("I:")] nodes_sp_port = [node for node in shortest_path_list if node.startswith("P:")] nodes_sp_bridge = [node for node in shortest_path_list if node.startswith("B:")] nodes_sp_linux_bridge = [node for node in shortest_path_list if node.startswith("LB:")] nodes_sp_linux_interface_pair = [node for node in shortest_path_list if node.startswith("VP:")] nodes_sp_linux_interface_tap = [node for node in shortest_path_list if node.startswith("T:")] nodes_sp_if_type_patch = [node for node in nodes_if_type_patch if node in shortest_path_list] nodes_sp_if_type_vxlan = [node for node in nodes_if_type_vxlan if node in shortest_path_list] nodes_sp_if_type_internal = [node for node in nodes_if_type_internal if node in shortest_path_list] nodes_sp_if_type_internal_fg = [node for node in nodes_if_type_internal_fg if node in shortest_path_list] #nodes_sp_if_link_state_down = [node for node in nodes_if_link_state_down if node in shortest_path_list] ## SP Node ์ข…๋ฅ˜(Interface/Port/Bridge)๋ณ„ ๋ชฉ๋ก ์ƒ์„ฑ if isSP: ## SP Edge ๋ชฉ๋ก ์ƒ์„ฑ edge_I2P_sp = [] for edge in edge_I2P: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_I2P_sp.append(edge) edge_P2B_sp = [] for edge in edge_P2B: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_P2B_sp.append(edge) edge_VP2LB_sp = [] for edge in edge_VP2LB: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_VP2LB_sp.append(edge) edge_I2VP_sp = [] for edge in edge_I2VP: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_I2VP_sp.append(edge) edge_T2LB_sp = [] for edge in edge_T2LB: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_T2LB_sp.append(edge) edge_if_type_patch_sp = [] for edge in edge_if_type_patch: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_if_type_patch_sp.append(edge) edge_if_type_vxlan_sp = [] for edge in edge_if_type_vxlan: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_if_type_vxlan_sp.append(edge) if only_path: ## ํ•„์š”ํ•œ Node ์ •๋ณด๋งŒ ๋‚จ๊ธฐ๊ณ  ์ •๋ฆฌ nodes_sp_if_type_patch_tmp = [] for node in nodes_sp_if_type_patch: if node in shortest_path_list: nodes_sp_if_type_patch_tmp.append(node) nodes_sp_if_type_patch = nodes_sp_if_type_patch_tmp nodes_sp_if_type_vxlan_tmp = [] for node in nodes_sp_if_type_vxlan: if node in shortest_path_list: nodes_sp_if_type_vxlan_tmp.append(node) nodes_sp_if_type_vxlan = nodes_sp_if_type_vxlan_tmp nodes_sp_if_type_internal_tmp = [] for node in nodes_sp_if_type_internal: if node in shortest_path_list: nodes_sp_if_type_internal_tmp.append(node) nodes_sp_if_type_internal = nodes_sp_if_type_internal_tmp if enable_fip: nodes_sp_if_type_internal_fg_tmp = [] for node in nodes_sp_if_type_internal_fg: if node in shortest_path_list: nodes_sp_if_type_internal_fg_tmp.append(node) nodes_sp_if_type_internal_fg = nodes_sp_if_type_internal_fg_tmp ## ํ•„์š”ํ•œ Edge ์ •๋ณด๋งŒ ๋‚จ๊ธฐ๊ณ  ์ •๋ฆฌ edge_I2P_sp_tmp = [] for edge in edge_I2P: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_I2P_sp_tmp.append(edge) edge_I2P_sp = edge_I2P_sp_tmp edge_P2B_sp_tmp = [] for edge in edge_P2B: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_P2B_sp_tmp.append(edge) edge_P2B_sp = edge_P2B_sp_tmp edge_VP2LB_sp_tmp = [] for edge in edge_VP2LB: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_VP2LB_sp_tmp.append(edge) edge_VP2LB_sp = edge_VP2LB_sp_tmp edge_I2VP_sp_tmp = [] for edge in edge_I2VP: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_I2VP_sp_tmp.append(edge) edge_I2VP_sp = edge_I2VP_sp_tmp edge_T2LB_sp_tmp = [] for edge in edge_T2LB: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_T2LB_sp_tmp.append(edge) edge_T2LB_sp = edge_T2LB_sp_tmp edge_if_type_patch_sp_tmp = [] for edge in edge_if_type_patch: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_if_type_patch_sp_tmp.append(edge) edge_if_type_patch_sp = edge_if_type_patch_sp_tmp edge_if_type_vxlan_sp_tmp = [] for edge in edge_if_type_vxlan: src = edge[0] dst = edge[1] if src in shortest_path_list and dst in shortest_path_list: edge_if_type_vxlan_sp_tmp.append(edge) edge_if_type_vxlan_sp = edge_if_type_vxlan_sp_tmp ## 'G'์˜ ๋…ธ๋“œ ๋ชฉ๋ก์—์„œ ๋ฌด๊ด€ํ•œ ๋…ธ๋“œ ์ œ๊ฑฐ for node in list(G.nodes()): if node not in shortest_path_list: G.remove_node(node) ## ๋ ˆ์ด์•„์›ƒ ์ •์˜ if only_path == True: pos = nx.spring_layout(G, k=0.05, iterations=70) else: pos = nx.kamada_kawai_layout(G, scale=1) #pos = nx.shell_layout(G) # positions for all nodes #pos = nx.spring_layout(G, k=0.05, iterations=50) # positions for all nodes #pos = nx.spring_layout(G, iterations=50) #pos = nx.spectral_layout(G, scale=2) # positions for all nodes #pos = nx.circular_layout(G) # positions for all nodes #pos = nx.random_layout(G) # positions for all nodes ## ๋…ธ๋“œ ๊ฒน์นจ ํšŒํ”ผ ๋ ˆ์ด์•„์›ƒ::kamada kawai (์ฃผ์˜: ๋…ธ๋“œ๊ฐ€ ๋งŽ์„ ๊ฒฝ์šฐ, ์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ฆผ) #df = pd.DataFrame(index=G.nodes(), columns=G.nodes()) #for row, data in nx.shortest_path_length(G): # for col, dist in data.items(): # df.loc[row,col] = dist #df = df.fillna(df.max().max()) #pos = nx.kamada_kawai_layout(G, dist=df.to_dict()) ## Default Node ์‚ฌ์ด์ฆˆ node_szie = 3 if isSP: alpha_normal = 0.1 else: alpha_normal = 0.5 alpha_sp = 0.9 ### ๊ธฐ๋ณธ Node ์Šคํƒ€์ผ ์ •์˜/์ƒ์„ฑ if not only_path: ## Interface Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_interface, with_labels=True, node_size=node_szie, node_shape='o', node_color='#F972FF', alpha=alpha_normal, linewidths=1, label='OVS Interface') ## Port Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_port, with_labels=True, node_size=node_szie, node_shape='o', node_color='#72B2FF', alpha=alpha_normal, linewidths=1, label='OVS POrt') ## Bridge Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_bridge, with_labels=True, node_size=node_szie, node_shape='o', node_color='#FF5634', alpha=alpha_normal, linewidths=1, label='OVS Bridge') ## Linux Interface Node ๊ทธ๋ฆฌ๊ธฐ (veth pair) nx.draw_networkx_nodes(G, pos, nodelist=nodes_linux_interface_pair, with_labels=True, node_size=node_szie, node_shape='o', node_color='#F972FF', alpha=alpha_normal, linewidths=1, label='Linux VETH (One of Pair)') ## Linux Interface Node ๊ทธ๋ฆฌ๊ธฐ (tap) nx.draw_networkx_nodes(G, pos, nodelist=nodes_linux_interface_tap, with_labels=True, node_size=node_szie, node_shape='o', node_color='#7E7E7E', alpha=alpha_normal, linewidths=1, label='Linux TAP') ## Linux Bridge Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_linux_bridge, with_labels=True, node_size=node_szie, node_shape='o', node_color='#0C00A0', alpha=alpha_normal, linewidths=1, label='Linux Bridge') ## Patch ํƒ€์ž… ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) nx.draw_networkx_nodes(G, pos, nodelist=nodes_if_type_patch, with_labels=True, node_size=node_szie, node_shape='o', node_color='#279700', alpha=alpha_normal, linewidths=1, label='OVS Patch (One of Patch)') ## VxLAN ํƒ€์ž… ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) nx.draw_networkx_nodes(G, pos, nodelist=nodes_if_type_vxlan, with_labels=True, node_size=node_szie, node_shape='o', node_color='#E9D000', alpha=alpha_normal, linewidths=1, label='OVS VxLAN') ## Internal ํƒ€์ž… ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) nx.draw_networkx_nodes(G, pos, nodelist=nodes_if_type_internal, with_labels=True, node_size=node_szie, node_shape='o', node_color='#382000', alpha=alpha_normal, linewidths=1, label='OVS Internal') nx.draw_networkx_nodes(G, pos, nodelist=nodes_if_type_internal_fg, with_labels=True, node_size=node_szie, node_shape='o', node_color='#FF0000', alpha=alpha_normal, linewidths=1, label='OVS Internal(fg)') ## Down ์ƒํƒœ ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) ## ๋ฏธ์‚ฌ์šฉ (OVS์˜ link_state๊ฐ’์ด ์ •ํ™•ํ•˜์ง€ ์•Š์Œ. namespace์— ์†ํ•œ Interface์˜ ์ƒํƒœ ์ฒดํฌ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •) #nx.draw_networkx_nodes(G, pos, nodelist=nodes_if_link_state_down, with_labels=True, node_size=node_szie, node_shape='o', node_color='#FF0000', alpha=alpha_normal, linewidths=1, label='OVS Link-Down') #nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_if_link_state_down, with_labels=True, node_size=node_szie_ap, node_shape='o', node_color='#FF0000', alpha=alpha_sp, linewidths=1, label='OVS Link-Down') ### SP ๋ชจ๋“œ์ผ ๊ฒฝ์šฐ Node ์Šคํƒ€์ผ ์ •์˜/๋ฎ์–ด์“ฐ๊ธฐ if isSP: if only_path: node_szie_sp = 300 else: node_szie_sp = 20 ## Interface Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_interface, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#F972FF', alpha=alpha_sp, linewidths=1, label='OVS Interface') ## Port Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_port, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#72B2FF', alpha=alpha_sp, linewidths=1, label='OVS POrt') ## Bridge Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_bridge, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#FF5634', alpha=alpha_sp, linewidths=1, label='OVS Bridge') ## Linux Interface Node ๊ทธ๋ฆฌ๊ธฐ (veth pair) nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_linux_interface_pair, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#F972FF', alpha=alpha_sp, linewidths=1, label='Linux VETH (One of Pair)') ## Linux Interface Node ๊ทธ๋ฆฌ๊ธฐ (tap) nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_linux_interface_tap, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#7E7E7E', alpha=alpha_sp, linewidths=1, label='Linux TAP') ## Linux Bridge Node ๊ทธ๋ฆฌ๊ธฐ nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_linux_bridge, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#0C00A0', alpha=alpha_sp, linewidths=1, label='Linux Bridge') ## Patch ํƒ€์ž… ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_if_type_patch, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#279700', alpha=alpha_sp, linewidths=1, label='OVS Patch (One of Patch)') ## VxLAN ํƒ€์ž… ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_if_type_vxlan, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#E9D000', alpha=alpha_sp, linewidths=1, label='OVS VxLAN') ## Internal ํƒ€์ž… ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_if_type_internal, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#382000', alpha=alpha_sp, linewidths=1, label='OVS Internal') nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_if_type_internal_fg, with_labels=True, node_size=node_szie_sp, node_shape='o', node_color='#FF0000', alpha=alpha_sp, linewidths=1, label='OVS Internal(fg)') ## Down ์ƒํƒœ ๋…ธ๋“œ ์—…๋ฐ์ดํŠธ (์ƒ‰์ƒ ๋ณ€๊ฒฝ) ## ๋ฏธ์‚ฌ์šฉ (OVS์˜ link_state๊ฐ’์ด ์ •ํ™•ํ•˜์ง€ ์•Š์Œ. namespace์— ์†ํ•œ Interface์˜ ์ƒํƒœ ์ฒดํฌ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •) #nx.draw_networkx_nodes(G, pos, nodelist=nodes_sp_if_link_state_down, with_labels=True, node_size=node_szie_ap, node_shape='o', node_color='#FF0000', alpha=alpha_sp, linewidths=1, label='OVS Link-Down') ## Node Label ๊ทธ๋ฆฌ๊ธฐ (Interface/Port/Bridge) label_font_size = 1 label_font_size_sp = 2 label_font_size_sp_only = 5 labels = {} labels_sp = {} for node in G.nodes(): if isSP: if node not in shortest_path_list: labels[node] = node else: labels_sp[node] = node else: labels[node] = node if not isSP: nx.draw_networkx_labels(G, pos, labels, font_size=label_font_size, font_family='sans-serif', alpha=alpha_normal) elif isSP and not only_path: nx.draw_networkx_labels(G, pos, labels, font_size=label_font_size, font_family='sans-serif', alpha=alpha_normal) nx.draw_networkx_labels(G, pos, labels_sp, font_size=label_font_size_sp, font_family='sans-serif', alpha=alpha_sp) else: nx.draw_networkx_labels(G, pos, labels_sp, font_size=label_font_size_sp_only, font_family='sans-serif', alpha=alpha_sp) ## Edge ๊ทธ๋ฆฌ๊ธฐ # Only Path์˜ ๊ฒฝ์šฐ Edge ์Šคํƒ€์ผ ์ •์˜/์ƒ์„ฑ if only_path: nx.draw_networkx_edges(G, pos, edgelist=edge_I2P_sp, width=1, alpha=0.5, edge_color='#E67E22', label='OVS-Interface <--> OVS-Port') nx.draw_networkx_edges(G, pos, edgelist=edge_P2B_sp, width=2, alpha=0.5, edge_color='#2ECC71', label='OVS-Port <--> OVS-Bridge') nx.draw_networkx_edges(G, pos, edgelist=edge_if_type_patch_sp, width=5, alpha=0.5, edge_color='#00FFE8', label='OVS-Patch') nx.draw_networkx_edges(G, pos, edgelist=edge_if_type_vxlan_sp, width=5, alpha=0.5, edge_color='#FFF818', label='VxLAN Tunnel') nx.draw_networkx_edges(G, pos, edgelist=edge_I2VP_sp, width=0.8, alpha=0.5, edge_color='#68FF66', label='Linux VETH-Pair') nx.draw_networkx_edges(G, pos, edgelist=edge_VP2LB_sp, width=0.2, alpha=0.5, edge_color='#16BFFF', label='Linux-VETH <--> Linux-Bridge') nx.draw_networkx_edges(G, pos, edgelist=edge_T2LB_sp, width=0.2, alpha=0.5, edge_color='#6A6A6A', label='Linux-TAP <--> Linux-Bridge') # ๊ทธ์™ธ, ๋ชจ๋“  ๋…ธ๋“œ ์ •๋ณด ํ‘œ์‹œ ๋ชจ๋“œ์—์„œ Edge ์Šคํƒ€์ผ ์ •์˜/์ƒ์„ฑ else: nx.draw_networkx_edges(G, pos, edgelist=edge_I2P, width=0.1, alpha=alpha_normal, edge_color='#E67E22', label='OVS-Interface <--> OVS-Port') nx.draw_networkx_edges(G, pos, edgelist=edge_P2B, width=0.2, alpha=alpha_normal, edge_color='#2ECC71', label='OVS-Port <--> OVS-Bridge') nx.draw_networkx_edges(G, pos, edgelist=edge_if_type_patch, width=0.8, alpha=alpha_normal, edge_color='#00FFE8', label='OVS-Patch') nx.draw_networkx_edges(G, pos, edgelist=edge_if_type_vxlan, width=1, alpha=alpha_normal, edge_color='#FFF818', label='VxLAN Tunnel') nx.draw_networkx_edges(G, pos, edgelist=edge_I2VP, width=0.8, alpha=alpha_normal, edge_color='#68FF66', label='Linux VETH-Pair') nx.draw_networkx_edges(G, pos, edgelist=edge_VP2LB, width=0.2, alpha=alpha_normal, edge_color='#16BFFF', label='Linux-VETH <--> Linux-Bridge') nx.draw_networkx_edges(G, pos, edgelist=edge_T2LB, width=0.2, alpha=alpha_normal, edge_color='#6A6A6A', label='Linux-TAP <--> Linux-Bridge') if enable_fip: nx.draw_networkx_edges(G, pos, edgelist=edge_SNAT, width=0.2, alpha=alpha_normal, edge_color='#FF0000', style='dashed', label='fg <--> fpr (SNAT in F-IP Namespace)') nx.draw_networkx_edges(G, pos, edgelist=edge_ROUTING, width=0.2, alpha=alpha_normal, edge_color='#0000C7', style='dashed', label='rfp <--> qr (ROUTING in Dist-Router Namespace)') ## ๋ชจ๋“  ๋…ธ๋“œ ํ‘œ์‹œ ๋ชจ๋“œ์—์„œ, SP ๊ฒฝ๋กœ๋งŒ ๊ฐ•์กฐ Edge ์Šคํƒ€์ผ ์ •์˜/์ƒ์„ฑ if isSP and not only_path: nx.draw_networkx_edges(G, pos, edgelist=edge_I2P_sp, width=0.1, alpha=alpha_sp, edge_color='#E67E22', label='OVS-Interface <--> OVS-Port') nx.draw_networkx_edges(G, pos, edgelist=edge_P2B_sp, width=0.2, alpha=alpha_sp, edge_color='#2ECC71', label='OVS-Port <--> OVS-Bridge') nx.draw_networkx_edges(G, pos, edgelist=edge_if_type_patch_sp, width=0.8, alpha=alpha_sp, edge_color='#00FFE8', label='OVS-Patch') nx.draw_networkx_edges(G, pos, edgelist=edge_if_type_vxlan_sp, width=1, alpha=alpha_sp, edge_color='#FFF818', label='VxLAN Tunnel') nx.draw_networkx_edges(G, pos, edgelist=edge_I2VP_sp, width=0.8, alpha=alpha_sp, edge_color='#68FF66', label='Linux VETH-Pair') nx.draw_networkx_edges(G, pos, edgelist=edge_VP2LB_sp, width=0.2, alpha=alpha_sp, edge_color='#16BFFF', label='Linux-VETH <--> Linux-Bridge') nx.draw_networkx_edges(G, pos, edgelist=edge_T2LB_sp, width=0.2, alpha=alpha_sp, edge_color='#6A6A6A', label='Linux-TAP <--> Linux-Bridge') if enable_fip: nx.draw_networkx_edges(G, pos, edgelist=edge_SNAT, width=0.2, alpha=alpha_normal, edge_color='#FF0000', style='dashed', label='fg <--> fpr (SNAT in F-IP Namespace)') nx.draw_networkx_edges(G, pos, edgelist=edge_ROUTING, width=0.2, alpha=alpha_normal, edge_color='#0000C7', style='dashed', label='rfp <--> qr (ROUTING in Dist-Router Namespace)') plt.axis('off') #plt.figure(figsize = (10,9)) plt.title("OpenStack Network Connectivity") print("Processed [elapsed time: %f sec]\n" % (time.time() - start_time)) print("Creating GEXF.........") start_time = time.time() nx.write_gexf(G, "/var/www/html/OpenStack-Network-Connectivity.gexf") #nx.write_gexf(G, "/var/www/html/OpenStack-Network-Connectivity.gexf", version="1.1draft") print("Created GEXF [elapsed time: %f sec]\n" % (time.time() - start_time)) print("Creating Image........") start_time = time.time() #plt.legend(numpoints = 1) plt.legend(loc=2, prop={'size': 2}) plt.savefig("/var/www/html/OpenStack-Network-Connectivity.png", format = "png", dpi = 800) print("Created Image [elapsed time: %f sec]\n" % (time.time() - start_time)) ##### plot.ly ๊ทธ๋ž˜ํ”„ ์ž‘์„ฑ/์ „์†ก ######################################################## if enable_plotly: print("Creating Plotly........") start_time = time.time() #G=nx.random_geometric_graph(200,0.125) #pos=nx.get_node_attributes(G,'pos') ## 'G'์— ๋…ธ๋“œ๋ณ„ ํฌ์ง€์…˜ ์ •๋ณด ์ถ”๊ฐ€ nx.set_node_attributes(G, name='pos', values=pos) ## ๊ธฐ์ค€ ๋…ธ๋“œ ์„ ์ • (์ค‘์‹ฌ์—์„œ 0.5, 0.5 ๊ฑฐ๋ฆฌ์— ์žˆ๋Š” ๋…ธ๋“œ ์„ ํƒ) dmin = 1 ncenter = 0 for n in pos: x,y = pos[n] d = (x - 0.5) ** 2 + (y - 0.5) ** 2 if d < dmin: ncenter = n dmin = d p = nx.single_source_shortest_path_length(G,ncenter) ## Edge ์ถ”์  edge_trace = go.Scatter( x = [], y = [], line = dict(width=0.5, color='#888'), hoverinfo = 'none', mode = 'lines') ## Edge ํฌ์ง€์…˜ ์ƒ์„ฑ for edge in G.edges(): x0, y0 = G.node[edge[0]]['pos'] x1, y1 = G.node[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) ## Node ์ถ”์  node_trace = go.Scatter( x = [], y = [], text = [], mode = 'markers', hoverinfo = 'text', marker = dict( showscale = True, # colorscale options #'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' | #'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' | #'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' | colorscale = 'YlGnBu', reversescale = True, color = [], size = 10, colorbar = dict( thickness = 15, title = 'Node Connections', xanchor = 'left', titleside = 'right' ), line = dict(width=2))) ## Node ํฌ์ง€์…˜ ์ƒ์„ฑ for node in G.nodes(): x, y = G.node[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) ## Node ํ‘œํ˜„ ์ •๋ณด ์ƒ์„ฑ for node, adjacencies in enumerate(G.adjacency()): node_trace['marker']['color'] += tuple([len(adjacencies[1])]) #node_info = '# of connections: ' + str(len(adjacencies[1])) node_info = adjacencies[0] + " (#" + str(len(adjacencies[1])) + ") " node_trace['text'] += tuple([node_info]) ## ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ fig = go.Figure( data = [edge_trace, node_trace], layout = go.Layout( title = '<br>Network graph made with Python', titlefont = dict(size = 16), showlegend = False, hovermode = 'closest', margin = dict(b=20, l=5, r=5, t=40), annotations = [ dict( text = "Python code: <a href='https://plot.ly/ipython-notebooks/network-graphs/'> https://plot.ly/ipython-notebooks/network-graphs/</a>", showarrow = False, xref = "paper", yref="paper", x=0.005, y=-0.002 ) ], xaxis = dict(showgrid=False, zeroline=False, showticklabels=False), yaxis = dict(showgrid=False, zeroline=False, showticklabels=False) ) ) ## plot.ly๋กœ ๋ฐ์ดํ„ฐ ์ „์†ก py.plot(fig, filename='networkx') print("Created Plotly [elapsed time: %f sec]\n" % (time.time() - start_time)) #### (์ฐธ๊ณ ์šฉ) ######################################################## print("======= Summary of Graph =======") ## ๊ทธ๋ž˜ํ”„ ์ •๋ณด ์ถœ๋ ฅ print(nx.info(G)) ## ๊ทธ๋ž˜ํ”„ ๋ฐ€๋„ ์ถœ๋ ฅ (0~1 ์‚ฌ์ด ๊ฐ’์œผ๋กœ, 1์€ ์ตœ๋Œ€ ๋ฐ€๋„) #print("Network density:", nx.density(G)) ## ์ตœ๋‹จ ๊ฒฝ๋กœ ์ฐพ๊ธฐ ์˜ˆ์ œ #fell_whitehead_path = nx.shortest_path(G, source="I:qvoeee4966d-68", target="I:vxlan-0a00e8ae(pub-compute-001)") #print("Shortest path between Fell and Whitehead:", fell_whitehead_path) ## ๋…ธ๋“œ๋ณ„ ์ค‘์š”๋„(์ค‘์‹ฌ์„ฑ) ์ธก์ • #degree_dict = dict(G.degree(G.nodes())) #sorted_degree = sorted(degree_dict.items(), key=operator.itemgetter(1), reverse=True) #print("Top 20 nodes by degree:") #for d in sorted_degree[:20]: # print(d)
42.187103
953
0.703561
7bcb7f613021b08a4b51ba9ae69a1765bb8a14ea
2,062
py
Python
orco/internals/browser.py
spirali/orco
32c839b4d691a3eb83cfa379a1ec429adcf7f1b0
[ "MIT" ]
3
2019-08-15T08:06:59.000Z
2020-06-14T13:13:09.000Z
orco/internals/browser.py
spirali/orco
32c839b4d691a3eb83cfa379a1ec429adcf7f1b0
[ "MIT" ]
8
2019-08-06T11:38:08.000Z
2020-03-01T21:44:12.000Z
orco/internals/browser.py
spirali/xstore
32c839b4d691a3eb83cfa379a1ec429adcf7f1b0
[ "MIT" ]
2
2019-07-29T18:33:13.000Z
2019-08-30T07:54:43.000Z
import os import threading from flask import Flask, Response from flask_cors import CORS from flask_restful import Resource, Api from .database import Database STATIC_ROOT = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "static" ) app = Flask(__name__, static_url_path=STATIC_ROOT) cors = CORS(app) api = Api(app, prefix="/rest") thread_local_db = threading.local() def get_db(): # TODO: Do something better then creating a DB each time db = Database(app.db_url) return db class Builders(Resource): def get(self): return get_db().builder_summaries(app.builders) api.add_resource(Builders, "/builders") class Jobs(Resource): def get(self, builder_name): return get_db().job_summaries(builder_name) api.add_resource(Jobs, "/jobs/<string:builder_name>") class Blobs(Resource): def get(self, job_id): return get_db().blob_summaries(job_id) api.add_resource(Blobs, "/blobs/<int:job_id>") class Status(Resource): def get(self): return get_db().get_running_status() api.add_resource(Status, "/status/") def from_gzipped_file(filename): assert not os.path.isabs(filename) filename = os.path.join(STATIC_ROOT, filename) with open(filename, "rb") as f: data = f.read() headers = {"Content-Encoding": "gzip", "Content-Length": len(data)} if filename.endswith("css.gz"): headers["Content-Type"] = "text/css" return Response(data, headers=headers) # filename = os.path.join(STATIC_ROOT, "main.js.gz") # return from_gzipped_file(filename) @app.route("/static/<path:path>") def static_serve(path): return from_gzipped_file(path + ".gz") @app.route("/manifest.json") def static_manifest(): return from_gzipped_file("manifest.json.gz") @app.route("/", defaults={"path": ""}) @app.route("/<path:path>") def static_index(path): return from_gzipped_file("index.html.gz") def init_service(runtime): app.builders = list(runtime._builders.values()) app.db_url = runtime.db.url return app
22.172043
73
0.695926
8c4aa16812c5ebf7093247baffbd6df2c18f808b
102
py
Python
lang/Python/loops-continue.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/loops-continue.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/loops-continue.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
for i in range(1,11): if i % 5 == 0: print(i) continue print(i, ",", end=' ')
17
26
0.411765